WO2015033481A1 - Process for manufacturing carbonized cloth - Google Patents

Process for manufacturing carbonized cloth Download PDF

Info

Publication number
WO2015033481A1
WO2015033481A1 PCT/JP2013/079795 JP2013079795W WO2015033481A1 WO 2015033481 A1 WO2015033481 A1 WO 2015033481A1 JP 2013079795 W JP2013079795 W JP 2013079795W WO 2015033481 A1 WO2015033481 A1 WO 2015033481A1
Authority
WO
WIPO (PCT)
Prior art keywords
cloth
furnace
temperature
carbonized
manufacturing
Prior art date
Application number
PCT/JP2013/079795
Other languages
French (fr)
Japanese (ja)
Inventor
道宇 可児
基弘 上野
Original Assignee
Kani Dou
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kani Dou filed Critical Kani Dou
Priority to US14/916,221 priority Critical patent/US20160222550A1/en
Priority to EP13892959.1A priority patent/EP3042988A4/en
Publication of WO2015033481A1 publication Critical patent/WO2015033481A1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/14Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments
    • D01F9/16Carbon filaments; Apparatus specially adapted for the manufacture thereof by decomposition of organic filaments from products of vegetable origin or derivatives thereof, e.g. from cellulose acetate

Definitions

  • the present invention relates to a carbonized cloth manufacturing method for manufacturing a carbonized cloth by heating a cloth containing cellulose in a furnace.
  • Charcoal obtained by carbonizing organic matter is used as a heating element by obtaining electrical conductivity, or as an adsorbent due to its large surface area and high porosity, and is used in various fields.
  • the carbonized cloth obtained by carbonizing the cloth is suitable as a planar heating element such as a floor heating device or a snow melting device.
  • carbonized cloth can be manufactured by heating in an inert atmosphere, but if carbonization is not sufficient, conductivity may not be obtained.
  • an object of the present invention is to provide a method for manufacturing a carbonized cloth that can be a highly efficient heating element that generates heat instantaneously after power is turned on.
  • a carbonized cloth manufacturing method for manufacturing a carbonized cloth by heating a cloth containing cellulose in a furnace, wherein the cloth arranging step for arranging the cloth in the furnace and at least the cloth arranging area in the furnace are inactive.
  • a first temperature raising step for raising the temperature to a temperature before the cloth is carbonized, and after the first temperature raising step, at least the cloth arrangement region in the furnace is relative to at least the inert atmosphere in the first temperature raising step.
  • a carbonized fabric manufacturing method comprising: a temperature lowering step for gradually lowering the furnace temperature after a predetermined time has elapsed; and a furnace opening step for opening the furnace after the temperature inside the furnace becomes approximately 100 ° C. or lower by the temperature lowering step. Subjected to.
  • the cloth provides a carbonized cloth manufacturing method using cotton as a raw material.
  • a carbonized cloth manufacturing method is provided in which the predetermined time is approximately 1 to 2 hours.
  • the carbonized cloth manufacturing method in which the time spent for the temperature lowering step is 20 hours or more is provided.
  • the said furnace opening step provides the carbonized cloth manufacturing method which opens and closes a furnace intermittently so that the temperature in a furnace may not fall rapidly.
  • the temperature is raised in an inert atmosphere to a temperature before carbonization, and then the temperature is further raised to 1200 ° C. to 1400 ° C. while maintaining the inside of the furnace in a reducing atmosphere, and is maintained for a predetermined time.
  • Such a manufacturing method makes it possible to manufacture a carbonized fabric that can be a highly efficient heating element that generates heat instantaneously after power is turned on.
  • FIG. 1 is a flowchart showing the flow of each step constituting the carbonized fabric manufacturing method of the present embodiment.
  • This embodiment is a carbonized cloth manufacturing method for manufacturing a carbonized cloth by heating a cloth containing cellulose in a furnace.
  • a “fabric placement step” S0101
  • Temperature step ”(S0102) “ second temperature raising step ”(S0103),“ maintenance step ”(S0104),“ temperature lowering step ”(S0105), and“ furnace opening step ”(S0106). It is a waste.
  • Cloth of this embodiment contains cellulose.
  • it is made by weaving or weaving vegetable cellulose fibers such as cotton, hemp, silk, bamboo, ridges, and wood pulp.
  • dissolves a natural fiber or polymer once, and makes it a fiber may be sufficient.
  • the cloth is not necessarily limited to a planar shape, and may be a string shape.
  • “Cloth placement step” (S0101) is a step of placing the cloth in the furnace.
  • the furnace is only required to be able to control the temperature in the furnace, shut off the outside air, and control so that the atmosphere in the furnace can be an inert atmosphere or a reducing atmosphere.
  • the form of the cloth arranged in the furnace is arranged by laminating cloths cut according to the size of the arrangement area, arranged in multiple folded without cutting, or in a wound state Or may be arranged.
  • the region in the furnace where the cloth is disposed is not particularly limited, but it is preferably disposed in a region where the above temperature control and in-furnace control are satisfactorily achieved. That is, when an inert gas is introduced into the furnace, if there may be a region where the inert gas is difficult to reach, it is not preferable to place a cloth in such a region.
  • the “first temperature raising step” is a step of raising the temperature to a temperature before the cloth is carbonized with an inert atmosphere in at least the cloth arrangement region in the furnace.
  • the temperature at which the cloth is carbonized varies depending on the material and composition of the cloth, but is generally about 300 ° C to 500 ° C.
  • the fabric placement region is made an inert atmosphere until such temperature is reached.
  • the inert gas for making the inert atmosphere include nitrogen gas, helium gas, argon gas, neon gas, and the like.
  • the time spent for the first temperature raising step depends on various conditions such as the material and amount of the cloth and the volume of the furnace, and is, for example, about 0.5 to 3 hours.
  • the temperature is raised in an excessively short time, there is a possibility that the fibers constituting the cloth may break or split due to a sudden volume change.
  • the cloth arrangement region in the furnace is made a reducing atmosphere relatively to the inert atmosphere in at least the first heating step, 1200 ° C. This is a step of raising the temperature to ⁇ 1400 ° C.
  • “To make the reducing atmosphere relatively less than the inert atmosphere in the first temperature raising step” is to make the reducing atmosphere contain more in the furnace than the inert atmosphere. By making the inside of the furnace a relatively reducing atmosphere, carbonization is promoted by the oxygen scavenging action on the cloth, and impurities are removed to obtain a carbonized cloth with high carbon purity.
  • Examples of the reducing gas for making the reducing atmosphere include carbon monoxide gas, hydrogen sulfide gas, sulfur dioxide gas, hydrogen gas, and formaldehyde gas. Introducing the reducing gas into the furnace may introduce these gases directly, or install a burner using a fuel gas such as propane or butane in the furnace and incompletely combust it. A gas may be generated. Further, reducing metal particles may be exposed in the furnace by sputtering or vapor deposition, and the inside of the furnace may be made a reducing atmosphere by reaction of these metal particles.
  • Examples of such metals include lithium, cesium, rubidium, potassium, barium, strontium, calcium, sodium, magnesium, thorium, beryllium, aluminum, titanium, zirconium, manganese, tantalum, zinc, chromium, iron, cadmium, cobalt, Nickel, tin, zinc and the like can be used.
  • each said process for setting it as a reducing atmosphere may be performed collectively, and you may make it perform each process in steps.
  • the fuel gas of the burner is not limited to the gas having the purity of propane or methane of 100%, but may be city gas to which an odorant such as thiol is added.
  • the higher the carbonization temperature the more the carbon crystallization proceeds. This crystallization is partial, but this improves the conductivity.
  • the embrittlement progresses as the carbonization is performed at a high temperature, the shape of the cloth may be lost. Therefore, the ultimate temperature in the second temperature raising step is as described above. That is, when the ultimate temperature is below 1200 ° C., it may be difficult to obtain desired conductivity. In addition, when the ultimate temperature exceeds 1400 ° C., embrittlement may progress excessively.
  • the time taken to reach the temperature reached in the second temperature raising step can be appropriately determined according to the material and amount of the carbonized cloth, the furnace volume, etc., but is preferably about 1 to 5 hours, for example.
  • the temperature is raised in an excessively short time, there is a possibility that the fibers constituting the cloth may break or split due to a sudden volume change.
  • the temperature is increased by spending too much time, the effect is not so much, and time and energy may be wasted.
  • the “maintenance step” (S0104) is a step of maintaining the furnace temperature that has reached 1200 ° C. to 1400 ° C. for the predetermined time by the second temperature raising step. Carbonization is completed in the maintenance step.
  • the time spent for this step depends on various conditions such as the material and amount of the cloth and the volume of the furnace, and is preferably about 1 to 2 hours, for example. When the time is shorter than 1 hour, carbonization may not be sufficiently performed and desired conductivity may not be obtained. Moreover, when longer than 2 hours, there exists a possibility that embrittlement may advance.
  • the atmosphere in the furnace in the maintenance step may be an inert atmosphere or a reducing atmosphere.
  • the maintenance step may be continuously performed in a reducing atmosphere, or the same as in the second temperature raising step. Further, the maintenance step may be performed while performing a process for making the inside of the furnace a relative reducing atmosphere.
  • a reducing atmosphere is preferably maintained from the viewpoint of increasing the carbon purity and removing impurities.
  • the temperature lowering step (S0105) is a step of gradually lowering the furnace temperature after the predetermined time has elapsed. A rapid drop in the furnace temperature causes internal stress of the carbonized cloth, which may cause nonuniformity in the structure and properties of the carbonized cloth, and may break or split the fibers constituting the cloth. This step is a step for preventing such an adverse effect.
  • the temperature lowering step is performed in an inert atmosphere or a reducing atmosphere, similarly to the maintenance step, and is preferably performed in the above-described relative reducing atmosphere.
  • the time spent for the temperature lowering step depends on various conditions such as the material and amount of the cloth and the volume of the furnace, but is preferably 20 hours or more, for example. By slowly decreasing the temperature over this amount of time, it is possible to prevent the above-described adverse effects caused by the rapid temperature decrease.
  • the “opening step” is a step of opening the furnace after the inside of the furnace becomes approximately 100 ° C. or lower by the temperature lowering step.
  • the furnace is opened in a state where the temperature inside the furnace is high, the carbonized cloth may be in contact with the air and burned.
  • the opening of the furnace is performed not to maintain the open state after the opening of the furnace for the first time but to open and close the furnace intermittently so that the temperature drop in the furnace is moderate. For example, when opening the furnace for the first time, immediately after opening, the furnace is once closed, and then the furnace is opened again. It is preferable to open and close such a furnace intermittently. Thus, it is preferable to suppress the influence by internal stress etc. by performing a furnace opening so that the furnace temperature may fall gradually.
  • FIG. 2 is a photograph of the carbonized fabric produced by the carbonized fabric production method of the present embodiment, taken at a magnification of 30 times with an FE-SEM (field emission type scanning electron microscope).
  • the material cloth is a cloth made of natural cotton.
  • FIG. 3 is a photograph of the carbonized cloth taken at a magnification of 100 times.
  • FIG. 4 is a photograph of the carbonized cloth taken at a magnification of 1000 times.
  • 5 to 7 are photographs of the carbonized cloth taken at a magnification of 10,000 times.
  • FIG. 8 is a diagram showing a result of Raman spectroscopic analysis performed on the carbonized cloth.
  • FIG. 9 is a conceptual diagram showing carbonized cloth applied as a planar heating element. As shown in the drawing, positive and negative long electrodes are attached to opposing edges of the carbonized cloth (0901) according to the present embodiment (0902, 0903). The carbonized cloth immediately generates heat by connecting the power source (0904) to the positive and negative electrodes and applying a voltage. Such an aspect is suitable when embodied as a floor heating device or a snow melting device.
  • long and negative electrodes are provided on both side edges in the longitudinal direction of carbonized cloth with a width of 150 mm ⁇ length of 1000 mm, and when a voltage is applied by adjusting the voltage to approximately 30 V with a transformer, the current becomes approximately 3 A. Within 2 to 3 seconds after application, the temperature near the surface of the carbonized cloth reaches 80 degrees. Further, this heat generation occurs uniformly throughout the carbonized cloth. Thus, it can be seen that this is an extremely efficient heating element because it reaches a high temperature instantaneously after the power is turned on at an electric power of less than 100 W.
  • FIG. 10 shows a heating element in which string-like carbonized cloth (1001) is sealed in a quartz glass tube (1002) in a vacuum state. Electrodes are provided at both ends of the string-like carbonized cloth, connected to the power source (1003), and the string-like carbonized cloth generates heat by applying a voltage.
  • Such an aspect is suitable when embodied as a heating device, a cooking device, or a lighting device.
  • the carbonized cloth manufacturing method of the present embodiment can manufacture a carbonized cloth that can be a highly efficient heating element that generates heat instantaneously after power is turned on.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Inorganic Fibers (AREA)
  • Surface Heating Bodies (AREA)
  • Resistance Heating (AREA)

Abstract

The present invention addresses the problem of providing a process for manufacturing a carbonized cloth which exhibits conductivity and such softness and strength that the cloth can withstand processing. A process for manufacturing a carbonized cloth by heating a cellulose-containing cloth in a furnace, comprising: a cloth-disposing step for disposing the cloth in a furnace; a first temperature-rising step for providing an inert atmosphere to at least a region which is in the inside of the furnace and in which the cloth is disposed, and rising the internal temperature of the furnace to a level that is close to and lower than the temperature at which the cloth is carbonized; a second temperature-rising step for providing, after the first temperature-rising step, an atmosphere which is more reductive than the inert atmosphere in the first temperature-rising step to at least the region which is in the inside of the furnace and in which the cloth is disposed, and rising the internal temperature of the furnace to 1200 to 1400ºC; a keeping step for keeping, for a prescribed time, the internal temperature which has been risen to 1200 to 1400ºC in the second temperature-rising step; a temperature-lowering step for lowering gradually the internal temperature of the furnace after the lapse of the prescribed time; and a furnace-opening step for opening the furnace after the internal temperature of the furnace has lowered to about 100ºC or lower in the temperature-lowering step.

Description

炭化布製造方法Carbonized fabric manufacturing method
 本発明は、セルロースを含む布を炉内で加熱して炭化布を製造するための炭化布製造方法に関する。 The present invention relates to a carbonized cloth manufacturing method for manufacturing a carbonized cloth by heating a cloth containing cellulose in a furnace.
 有機物を炭化させた炭は、導電性を得ることで発熱体として利用されたり、また、表面積の大きさや空隙率の高さにより吸着材として利用されたりするなど、様々な分野で利用されている。とくに布を炭化させた炭化布は、床暖房装置や融雪装置などの面状発熱体として好適である。 Charcoal obtained by carbonizing organic matter is used as a heating element by obtaining electrical conductivity, or as an adsorbent due to its large surface area and high porosity, and is used in various fields. . In particular, the carbonized cloth obtained by carbonizing the cloth is suitable as a planar heating element such as a floor heating device or a snow melting device.
 一般的に炭化布は不活性雰囲気下で加熱することにより製造することができるが、炭化が十分ではない場合には導電性が得られないことがある。 Generally, carbonized cloth can be manufactured by heating in an inert atmosphere, but if carbonization is not sufficient, conductivity may not be obtained.
特開2009-129807号公報JP 2009-129807 A
 そこで、本発明は、電力投入後瞬間的に発熱する高効率な発熱体となり得る炭化布の製造方法を提供することを課題とする。 Therefore, an object of the present invention is to provide a method for manufacturing a carbonized cloth that can be a highly efficient heating element that generates heat instantaneously after power is turned on.
 上記課題を解決するための手段として、以下の発明などを提供する。すなわち、セルロースを含む布を炉内で加熱して炭化布を製造するための炭化布製造方法であって、布を炉内に配置する布配置ステップと、炉内の少なくとも布配置領域を不活性雰囲気とし布が炭化する手前の温度まで昇温する第一昇温ステップと、第一昇温ステップの後、炉内の少なくとも布配置領域を少なくとも第一昇温ステップにおける不活性雰囲気よりも相対的に還元性雰囲気とし、1200℃~1400℃まで昇温する第二昇温ステップと、前記第二昇温ステップにより1200℃~1400℃に至った炉内温度を所定時間維持する維持ステップと、前記所定時間経過後、炉内温度を緩やかに降下させる降温ステップと、降温ステップにより炉内が略100℃以下となった後に炉を開ける開炉ステップと、を含む炭化布製造方法を提供する。 The following inventions are provided as means for solving the above problems. That is, a carbonized cloth manufacturing method for manufacturing a carbonized cloth by heating a cloth containing cellulose in a furnace, wherein the cloth arranging step for arranging the cloth in the furnace and at least the cloth arranging area in the furnace are inactive. A first temperature raising step for raising the temperature to a temperature before the cloth is carbonized, and after the first temperature raising step, at least the cloth arrangement region in the furnace is relative to at least the inert atmosphere in the first temperature raising step. A second heating step for raising the temperature to 1200 ° C. to 1400 ° C., a maintaining step for maintaining the furnace temperature that has reached 1200 ° C. to 1400 ° C. for a predetermined time by the second heating step, A carbonized fabric manufacturing method comprising: a temperature lowering step for gradually lowering the furnace temperature after a predetermined time has elapsed; and a furnace opening step for opening the furnace after the temperature inside the furnace becomes approximately 100 ° C. or lower by the temperature lowering step. Subjected to.
 また、上記炭化布製造方法において、前記布は、原料を綿とする炭化布製造方法を提供する。また、上記維持ステップにおいて、上記所定時間が略1~2時間である炭化布製造方法を提供する。また、上記降温ステップに費やされる時間が20時間以上である炭化布製造方法を提供する。また、上記開炉ステップが、炉内温度が急激に低下しないよう炉の開閉を断続的に行う炭化布製造方法を提供する。 Further, in the carbonized cloth manufacturing method, the cloth provides a carbonized cloth manufacturing method using cotton as a raw material. In the maintenance step, a carbonized cloth manufacturing method is provided in which the predetermined time is approximately 1 to 2 hours. Moreover, the carbonized cloth manufacturing method in which the time spent for the temperature lowering step is 20 hours or more is provided. Moreover, the said furnace opening step provides the carbonized cloth manufacturing method which opens and closes a furnace intermittently so that the temperature in a furnace may not fall rapidly.
 本発明により、電力投入後瞬間的に発熱する高効率な発熱体となり得る炭化布の製造方法を提供することができる。 According to the present invention, it is possible to provide a method for manufacturing a carbonized fabric that can be a highly efficient heating element that generates heat instantaneously after power is turned on.
本実施形態の製造方法を構成する各ステップの流れを示すフロー図The flowchart which shows the flow of each step which comprises the manufacturing method of this embodiment. 本実施形態の製造方法により製造された炭化布のFE-SEMによる写真Photograph by FE-SEM of carbonized fabric manufactured by the manufacturing method of this embodiment 本実施形態の製造方法により製造された炭化布のFE-SEMによる写真Photograph by FE-SEM of carbonized fabric manufactured by the manufacturing method of this embodiment 本実施形態の製造方法により製造された炭化布のFE-SEMによる写真Photograph by FE-SEM of carbonized fabric manufactured by the manufacturing method of this embodiment 本実施形態の製造方法により製造された炭化布のFE-SEMによる写真Photograph by FE-SEM of carbonized fabric manufactured by the manufacturing method of this embodiment 本実施形態の製造方法により製造された炭化布のFE-SEMによる写真Photograph by FE-SEM of carbonized fabric manufactured by the manufacturing method of this embodiment 本実施形態の製造方法により製造された炭化布のFE-SEMによる写真Photograph by FE-SEM of carbonized fabric manufactured by the manufacturing method of this embodiment 本実施形態の製造方法により製造された炭化布に対するラマン分光分析結果Raman spectroscopic analysis result for carbonized fabric manufactured by the manufacturing method of the present embodiment 本実施形態の製造方法により製造された炭化布の応用例を示す概念図The conceptual diagram which shows the application example of the carbonization cloth manufactured by the manufacturing method of this embodiment 本実施形態の製造方法により製造された炭化布の応用例を示す概念図The conceptual diagram which shows the application example of the carbonization cloth manufactured by the manufacturing method of this embodiment
 以下、本発明の実施の形態について説明する。なお、本発明は、これらの実施形態に何ら限定されるべきものではなく、その要旨を逸脱しない範囲において、種々なる態様で実施し得る。
<実施形態 概要>
Embodiments of the present invention will be described below. In addition, this invention should not be limited to these embodiments at all, and can be implemented in various modes without departing from the gist thereof.
<Summary of Embodiment>
 本実施形態の炭化布製造方法は、炭化する手前の温度まで不活性雰囲気にて昇温させてから、炉内を還元性雰囲気にしつつさらに1200℃~1400℃まで昇温させ、所定時間維持させる。かかる製造方法により、電力投入後瞬間的に発熱する高効率な発熱体となり得る炭化布を製造することが可能となる。
<実施形態 構成>
In the carbonized fabric manufacturing method of the present embodiment, the temperature is raised in an inert atmosphere to a temperature before carbonization, and then the temperature is further raised to 1200 ° C. to 1400 ° C. while maintaining the inside of the furnace in a reducing atmosphere, and is maintained for a predetermined time. . Such a manufacturing method makes it possible to manufacture a carbonized fabric that can be a highly efficient heating element that generates heat instantaneously after power is turned on.
<Embodiment Configuration>
 図1は、本実施形態の炭化布製造方法を構成する各ステップの流れを示すフロー図である。本実施形態は、セルロースを含む布を炉内で加熱して炭化布を製造するための炭化布製造方法であって、図示するように、「布配置ステップ」(S0101)と、「第一昇温ステップ」(S0102)と、「第二昇温ステップ」(S0103)と、「維持ステップ」(S0104)と、「降温ステップ」(S0105)と、「開炉ステップ」(S0106)と、を含むものである。 FIG. 1 is a flowchart showing the flow of each step constituting the carbonized fabric manufacturing method of the present embodiment. This embodiment is a carbonized cloth manufacturing method for manufacturing a carbonized cloth by heating a cloth containing cellulose in a furnace. As shown in the figure, a “fabric placement step” (S0101), Temperature step ”(S0102),“ second temperature raising step ”(S0103),“ maintenance step ”(S0104),“ temperature lowering step ”(S0105), and“ furnace opening step ”(S0106). It is a waste.
 本実施形態の布は、セルロースを含むものである。例えば、綿、麻、絹、竹、こうぞ、木材パルプなどの植物性のセルロース繊維を編んだり織ったりしてなるものである。また、天然の繊維あるいは高分子をいったん溶解してから紡糸して繊維とする再生繊維からなる布であってもよい。また、編んだり織ったりしたものだけでなく、不織布としてもよい。また、布は必ずしも面状に限られず紐状であってもよい。 Cloth of this embodiment contains cellulose. For example, it is made by weaving or weaving vegetable cellulose fibers such as cotton, hemp, silk, bamboo, ridges, and wood pulp. Moreover, the cloth which consists of a recycled fiber which melt | dissolves a natural fiber or polymer once, and makes it a fiber may be sufficient. Moreover, it is good also as a nonwoven fabric as well as the thing knitted or woven. Further, the cloth is not necessarily limited to a planar shape, and may be a string shape.
 「布配置ステップ」(S0101)は、布を炉内に配置するステップである。炉は炉内温度の制御が可能であって、外気を遮断することができるとともに、炉内雰囲気を不活性雰囲気や還元性雰囲気などとし得るように制御可能であればよい。 “Cloth placement step” (S0101) is a step of placing the cloth in the furnace. The furnace is only required to be able to control the temperature in the furnace, shut off the outside air, and control so that the atmosphere in the furnace can be an inert atmosphere or a reducing atmosphere.
 炉内に配置される布の態様は、配置領域の大きさに応じて裁断された布を積層して配置したり、裁断せずに幾重にも折りたたんで配置したり、あるいは、巻いた状態で配置したりしてもよい。 The form of the cloth arranged in the furnace is arranged by laminating cloths cut according to the size of the arrangement area, arranged in multiple folded without cutting, or in a wound state Or may be arranged.
 布を配置する炉内の領域は、とくに限定するものではないが、上記のような温度制御や炉内制御が良好に行き届く領域に配置することが好ましい。すなわち、不活性ガスを炉内に導入するときに、当該不活性ガスが行き届きにくい領域があり得る場合には、そのような領域に布を配置することは好ましくない。 The region in the furnace where the cloth is disposed is not particularly limited, but it is preferably disposed in a region where the above temperature control and in-furnace control are satisfactorily achieved. That is, when an inert gas is introduced into the furnace, if there may be a region where the inert gas is difficult to reach, it is not preferable to place a cloth in such a region.
 また、炉内を還元性雰囲気にするためにバーナーの不完全燃焼により一酸化炭素を生成させる場合には、燃焼炎が直接布に当たらないように配置したり、あるいは、耐火性の金属等で燃焼炎と隔絶するように布を配置することが好ましい。 In addition, when carbon monoxide is generated by incomplete combustion of the burner to create a reducing atmosphere in the furnace, it is arranged so that the combustion flame does not directly hit the cloth, or with a refractory metal, etc. It is preferable to arrange the cloth so as to be isolated from the combustion flame.
 「第一昇温ステップ」(S0102)は、炉内の少なくとも布配置領域を不活性雰囲気とし布が炭化する手前の温度まで昇温するステップである。布が炭化する温度は、布の材料や組成などにより変動するが、概ね300℃から500℃程度である。配置された布が炭化する温度に応じて、かかる温度に至るまで布配置領域を不活性雰囲気とする。不活性雰囲気とするための不活性ガスとしては、例えば、窒素ガス、ヘリウムガス、アルゴンガス、ネオンガスなどが挙げられる。不活性雰囲気下で昇温することで、布を燃焼させずに炭化を促す。なお、第一昇温ステップに費やす時間は、布の材質や量、炉の容積などの諸条件に応じたものとなるが、例えば、0.5~3時間程度である。あまりに短時間で昇温した場合には、急激な体積変化により布を構成する繊維の破断や分裂が生じるおそれがある。 The “first temperature raising step” (S0102) is a step of raising the temperature to a temperature before the cloth is carbonized with an inert atmosphere in at least the cloth arrangement region in the furnace. The temperature at which the cloth is carbonized varies depending on the material and composition of the cloth, but is generally about 300 ° C to 500 ° C. Depending on the temperature at which the disposed fabric is carbonized, the fabric placement region is made an inert atmosphere until such temperature is reached. Examples of the inert gas for making the inert atmosphere include nitrogen gas, helium gas, argon gas, neon gas, and the like. By raising the temperature in an inert atmosphere, carbonization is promoted without burning the cloth. Note that the time spent for the first temperature raising step depends on various conditions such as the material and amount of the cloth and the volume of the furnace, and is, for example, about 0.5 to 3 hours. When the temperature is raised in an excessively short time, there is a possibility that the fibers constituting the cloth may break or split due to a sudden volume change.
 「第二昇温ステップ」(S0103)は、第一昇温ステップの後、炉内の少なくとも布配置領域を少なくとも第一昇温ステップにおける不活性雰囲気よりも相対的に還元性雰囲気とし、1200℃~1400℃まで昇温するステップである。 In the “second heating step” (S0103), after the first heating step, at least the cloth arrangement region in the furnace is made a reducing atmosphere relatively to the inert atmosphere in at least the first heating step, 1200 ° C. This is a step of raising the temperature to ˜1400 ° C.
 「第一昇温ステップにおける不活性雰囲気よりも相対的に還元性雰囲気とする」とは、炉内において還元性雰囲気の方が不活性雰囲気よりも多く含まれるようにすることである。炉内を相対的に還元性雰囲気とすることで、布に対する奪酸素作用による炭化を促すとともに、不純物を除去し炭素純度の高い炭化布とするものである。 “To make the reducing atmosphere relatively less than the inert atmosphere in the first temperature raising step” is to make the reducing atmosphere contain more in the furnace than the inert atmosphere. By making the inside of the furnace a relatively reducing atmosphere, carbonization is promoted by the oxygen scavenging action on the cloth, and impurities are removed to obtain a carbonized cloth with high carbon purity.
 還元性雰囲気とするための還元性ガスとしては、例えば、一酸化炭素ガス、硫化水素ガス、二酸化硫黄ガス、水素ガス、ホルムアルデヒドガスなどが挙げられる。還元性ガスの炉内への導入は、それらのガスを直接導入してもよいし、あるいは、プロパンやブタンなどの燃料ガスを用いるバーナーを炉内に設け、不完全燃焼させることで一酸化炭素ガスを生じさせるなどしてもよい。また、スパッタリングや蒸着などにより還元性の金属粒子を炉内に表出させ、これら金属粒子の反応により炉内を還元性雰囲気となるようにしてもよい。このような金属として、例えば、リチウム、セシウム、ルビジウム、カリウム、バリウム、ストロンチウム、カルシウム、ナトリウム、マグネシウム、トリウム、ベリリウム、アルミニウム、チタン、ジルコニウム、マンガン、タンタル、亜鉛、クロム、鉄、カドミウム、コバルト、ニッケル、スズ、亜鉛などを利用することができる。なお、還元性雰囲気とするための上記各処理は併せて行ってもよいし、段階的にそれぞれの処理を行うようにしてもよい。また、バーナーの燃料ガスは、上記プロパンやメタンの純度が100%のガスに限らず、チオールなどの付臭剤が添加されている都市ガスなどであってもよい。 Examples of the reducing gas for making the reducing atmosphere include carbon monoxide gas, hydrogen sulfide gas, sulfur dioxide gas, hydrogen gas, and formaldehyde gas. Introducing the reducing gas into the furnace may introduce these gases directly, or install a burner using a fuel gas such as propane or butane in the furnace and incompletely combust it. A gas may be generated. Further, reducing metal particles may be exposed in the furnace by sputtering or vapor deposition, and the inside of the furnace may be made a reducing atmosphere by reaction of these metal particles. Examples of such metals include lithium, cesium, rubidium, potassium, barium, strontium, calcium, sodium, magnesium, thorium, beryllium, aluminum, titanium, zirconium, manganese, tantalum, zinc, chromium, iron, cadmium, cobalt, Nickel, tin, zinc and the like can be used. In addition, each said process for setting it as a reducing atmosphere may be performed collectively, and you may make it perform each process in steps. Further, the fuel gas of the burner is not limited to the gas having the purity of propane or methane of 100%, but may be city gas to which an odorant such as thiol is added.
 布の炭化は、炭化温度が高温であるほど炭素の結晶化が進む。この結晶化は部分的なものであるが、これにより導電性が向上する。その一方で、高温で炭化させるほど脆化が進むため、布として形状が失われてしまうおそれがある。そこで、第二昇温ステップにおける到達温度を上記の通りとした。すなわち、到達温度が1200℃を下回る場合には、所望の導電性を得ることが難しい場合が生じる。また、到達温度が1400℃を上回る場合には、脆化が進み過ぎてしまう場合がある。 In the carbonization of cloth, the higher the carbonization temperature, the more the carbon crystallization proceeds. This crystallization is partial, but this improves the conductivity. On the other hand, since the embrittlement progresses as the carbonization is performed at a high temperature, the shape of the cloth may be lost. Therefore, the ultimate temperature in the second temperature raising step is as described above. That is, when the ultimate temperature is below 1200 ° C., it may be difficult to obtain desired conductivity. In addition, when the ultimate temperature exceeds 1400 ° C., embrittlement may progress excessively.
 第二昇温ステップでの到達温度に至るまでに費やす時間は、炭化する布の材質や量、炉の容積などに応じて適宜定め得るが、例えば、1~5時間程度とすることが好ましい。あまりに短時間で昇温した場合には、急激な体積変化により布を構成する繊維の破断や分裂が生じるおそれがある。一方、あまりにも長時間を費やして昇温させたとしても、それによる効果はさほどなく、時間とエネルギーの浪費となりかねない。 The time taken to reach the temperature reached in the second temperature raising step can be appropriately determined according to the material and amount of the carbonized cloth, the furnace volume, etc., but is preferably about 1 to 5 hours, for example. When the temperature is raised in an excessively short time, there is a possibility that the fibers constituting the cloth may break or split due to a sudden volume change. On the other hand, even if the temperature is increased by spending too much time, the effect is not so much, and time and energy may be wasted.
 「維持ステップ」(S0104)は、上記第二昇温ステップにより1200℃~1400℃に至った炉内温度を所定時間維持するステップである。維持ステップにて炭化を完了させる。本ステップに費やす時間は、布の材質や量、炉の容積などの諸条件に応じたものとなるが、例えば、1~2時間程度が好ましい。1時間よりも短い場合には、炭化が十分になされず所望の導電性が得られなくなるおそれが生じ得る。また、2時間よりも長い場合には、脆化が進むおそれが生じ得る。 The “maintenance step” (S0104) is a step of maintaining the furnace temperature that has reached 1200 ° C. to 1400 ° C. for the predetermined time by the second temperature raising step. Carbonization is completed in the maintenance step. The time spent for this step depends on various conditions such as the material and amount of the cloth and the volume of the furnace, and is preferably about 1 to 2 hours, for example. When the time is shorter than 1 hour, carbonization may not be sufficiently performed and desired conductivity may not be obtained. Moreover, when longer than 2 hours, there exists a possibility that embrittlement may advance.
 なお、維持ステップにおける炉内雰囲気は、不活性雰囲気ないし還元性雰囲気であればよい。例えば、第二昇温ステップにおいて炉内に導入された還元性ガスが存する限りにおいて、引き続き還元性雰囲気下で維持ステップが行われるものであってもよいし、あるいは、第二昇温ステップと同様に炉内を相対的な還元性雰囲気とするための処理を行いつつ維持ステップが行われるようにしてもよい。なお、上記の通り、炭素純度を高め不純物を除去する観点からは還元性雰囲気が維持されることが好ましい。 Note that the atmosphere in the furnace in the maintenance step may be an inert atmosphere or a reducing atmosphere. For example, as long as the reducing gas introduced into the furnace in the second temperature raising step exists, the maintenance step may be continuously performed in a reducing atmosphere, or the same as in the second temperature raising step. Further, the maintenance step may be performed while performing a process for making the inside of the furnace a relative reducing atmosphere. As described above, a reducing atmosphere is preferably maintained from the viewpoint of increasing the carbon purity and removing impurities.
 「降温ステップ」(S0105)は、上記所定時間経過後、炉内温度を緩やかに降下させるステップである。炉内温度の急激な降下は炭化布の内部応力を生じさせ、炭化布の構造や性状に不均一もたらしたり、布を構成する繊維の破断や分裂が生じたりするおそれがある。本ステップは、係る弊害を防止するためのステップである。なお、降温ステップは、上記維持ステップと同様に不活性雰囲気下ないし還元性雰囲気下にて行われ、好ましくは、上記の相対的な還元性雰囲気下で行われる。 “The temperature lowering step” (S0105) is a step of gradually lowering the furnace temperature after the predetermined time has elapsed. A rapid drop in the furnace temperature causes internal stress of the carbonized cloth, which may cause nonuniformity in the structure and properties of the carbonized cloth, and may break or split the fibers constituting the cloth. This step is a step for preventing such an adverse effect. The temperature lowering step is performed in an inert atmosphere or a reducing atmosphere, similarly to the maintenance step, and is preferably performed in the above-described relative reducing atmosphere.
 降温ステップに費やす時間は、布の材質や量、炉の容積などの諸条件に応じたものとなるが、例えば、20時間以上であることが好ましい。この程度の時間をかけて緩やかに降温させることで、上記のような急激な降温による弊害を防止することができる。 The time spent for the temperature lowering step depends on various conditions such as the material and amount of the cloth and the volume of the furnace, but is preferably 20 hours or more, for example. By slowly decreasing the temperature over this amount of time, it is possible to prevent the above-described adverse effects caused by the rapid temperature decrease.
 「開炉ステップ」(S0106)は、降温ステップにより炉内が略100℃以下となった後に炉を開けるステップである。炉内の温度が高い状態で炉を開けた場合、炭化布が空気に触れて燃焼してしまう場合があり、かかる場合が生じないよう炉内が略100℃以下となってから開炉する。 The “opening step” (S0106) is a step of opening the furnace after the inside of the furnace becomes approximately 100 ° C. or lower by the temperature lowering step. When the furnace is opened in a state where the temperature inside the furnace is high, the carbonized cloth may be in contact with the air and burned.
 なお、上記開炉は、最初に炉を開けてからそのまま開炉状態を維持するのではなく、炉の開閉を断続的に行い、炉内の温度低下が緩やかになるよう行うことが好ましい。例えば、最初に炉を開けるときは開けてからただちにいったん炉を閉めて、その後再度炉を開ける。このような炉の開閉を断続的に行うことが好ましい。このように徐々に炉内温度が低下するように開炉を行うことで、内部応力による影響などを抑制することが好ましい。 Note that it is preferable that the opening of the furnace is performed not to maintain the open state after the opening of the furnace for the first time but to open and close the furnace intermittently so that the temperature drop in the furnace is moderate. For example, when opening the furnace for the first time, immediately after opening, the furnace is once closed, and then the furnace is opened again. It is preferable to open and close such a furnace intermittently. Thus, it is preferable to suppress the influence by internal stress etc. by performing a furnace opening so that the furnace temperature may fall gradually.
 図2は、本実施形態の炭化布製造方法により製造された炭化布をFE-SEM(電界放射型 走査型電子顕微鏡)により30倍の倍率で撮影した写真である。材料となる布は天然綿を編んでなる布である。図3は、上記の炭化布を100倍の倍率で撮影した写真である。図4は、上記の炭化布を1000倍の倍率で撮影した写真である。図5から図7は、上記の炭化布を10000倍の倍率で撮影した写真である。 FIG. 2 is a photograph of the carbonized fabric produced by the carbonized fabric production method of the present embodiment, taken at a magnification of 30 times with an FE-SEM (field emission type scanning electron microscope). The material cloth is a cloth made of natural cotton. FIG. 3 is a photograph of the carbonized cloth taken at a magnification of 100 times. FIG. 4 is a photograph of the carbonized cloth taken at a magnification of 1000 times. 5 to 7 are photographs of the carbonized cloth taken at a magnification of 10,000 times.
 図8は、上記の炭化布に対してラマン分光分析を行った結果を示す図である。分光光度計は「NRS-3100(株式会社日本分光)」を用い、レーザー波長532nm、レーザー光強度10mW、露光時間30sec、積算回数2回の条件にて、場所を変えて5回(N=1~5)行い、「Gバンド強度(1590cm-1)」、「Dバンド強度(1350cm-1)」、「ラマン強度比(D/G)」測定した。測定結果によれば、Dバンド強度の方が強いもののグラファイト構造由来のGバンド強度もそれなりに存在することから、部分的な黒鉛化が生じていると考えられる。 FIG. 8 is a diagram showing a result of Raman spectroscopic analysis performed on the carbonized cloth. The spectrophotometer used is “NRS-3100 (JASCO Corporation)” and changed five times (N = 1) under the conditions of laser wavelength of 532 nm, laser light intensity of 10 mW, exposure time of 30 sec, and integration number of 2 times. 1-5) carried out, "G band intensity (1590 cm -1)", "D band intensity (1350 cm -1)", was determined "Raman intensity ratio (D / G)". According to the measurement results, although the D band intensity is stronger, the G band intensity derived from the graphite structure also exists as it is, so that it is considered that partial graphitization has occurred.
 本実施形態の製造方法により製造される炭化布は、発熱体として様々な態様で応用することができる。図9は、面状発熱体として応用した炭化布を示す概念図である。図示するように本実施形態に係る炭化布(0901)の対向する縁に正負それぞれの長尺の電極を付ける(0902、0903)。そして、電源(0904)を正負の電極に接続し電圧を印加することにより炭化布はただちに発熱する。このような態様は、床暖房装置や融雪装置などとして具現する場合に好適である。 The carbonized fabric manufactured by the manufacturing method of the present embodiment can be applied in various modes as a heating element. FIG. 9 is a conceptual diagram showing carbonized cloth applied as a planar heating element. As shown in the drawing, positive and negative long electrodes are attached to opposing edges of the carbonized cloth (0901) according to the present embodiment (0902, 0903). The carbonized cloth immediately generates heat by connecting the power source (0904) to the positive and negative electrodes and applying a voltage. Such an aspect is suitable when embodied as a floor heating device or a snow melting device.
 例えば、幅150mm×長さ1000mmの炭化布の長手方向の両側縁部に正負それぞれの長尺の電極を設け、これに変圧器で略30Vに調整して電圧付加すると電流が略3Aとなり、電圧印加後2~3秒で炭化布の表面付近の温度は80度に至る。また、この発熱は、炭化布全体でむらなく生じる。このように、100Wに満たない電力にて、電力投入後瞬間的に高温に至るため、極めて高効率な発熱体であることが分かる。 For example, long and negative electrodes are provided on both side edges in the longitudinal direction of carbonized cloth with a width of 150 mm × length of 1000 mm, and when a voltage is applied by adjusting the voltage to approximately 30 V with a transformer, the current becomes approximately 3 A. Within 2 to 3 seconds after application, the temperature near the surface of the carbonized cloth reaches 80 degrees. Further, this heat generation occurs uniformly throughout the carbonized cloth. Thus, it can be seen that this is an extremely efficient heating element because it reaches a high temperature instantaneously after the power is turned on at an electric power of less than 100 W.
 図10は、紐状の炭化布(1001)を石英ガラス管(1002)に真空状態にて封入した発熱体である。紐状の炭化布の両端に電極を設け、電源(1003)と接続し、電圧を印加することで紐状の炭化布は発熱する。このような態様は、暖房装置や加熱調理装置あるいは照明装置などとして具現する場合に好適である。
<実施形態 効果>
FIG. 10 shows a heating element in which string-like carbonized cloth (1001) is sealed in a quartz glass tube (1002) in a vacuum state. Electrodes are provided at both ends of the string-like carbonized cloth, connected to the power source (1003), and the string-like carbonized cloth generates heat by applying a voltage. Such an aspect is suitable when embodied as a heating device, a cooking device, or a lighting device.
<Effect of embodiment>
 本実施形態の炭化布製造方法により、電力投入後瞬間的に発熱する高効率な発熱体となり得る炭化布を製造することができる。 The carbonized cloth manufacturing method of the present embodiment can manufacture a carbonized cloth that can be a highly efficient heating element that generates heat instantaneously after power is turned on.
 S0101 布配置ステップ
 S0102 第一昇温ステップ
 S0103 第二昇温ステップ
 S0104 維持ステップ
 S0105 降温ステップ
 S0106 開炉ステップ
S0101 Fabric placement step S0102 First temperature increase step S0103 Second temperature increase step S0104 Maintenance step S0105 Temperature decrease step S0106 Opening step

Claims (5)

  1.  セルロースを含む布を炉内で加熱して炭化布を製造するための炭化布製造方法であって、
     布を炉内に配置する布配置ステップと、
     炉内の少なくとも布配置領域を不活性雰囲気とし布が炭化する手前の温度まで昇温する第一昇温ステップと、
     第一昇温ステップの後、炉内の少なくとも布配置領域を少なくとも第一昇温ステップにおける不活性雰囲気よりも相対的に還元性雰囲気とし、1200℃~1400℃まで昇温する第二昇温ステップと、
     前記第二昇温ステップにより1200℃~1400℃に至った炉内温度を所定時間維持する維持ステップと、
     前記所定時間経過後、炉内温度を緩やかに降下させる降温ステップと、
     降温ステップにより炉内が略100℃以下となった後に炉を開ける開炉ステップと、を含む炭化布製造方法。
    A carbonized cloth manufacturing method for manufacturing a carbonized cloth by heating a cloth containing cellulose in a furnace,
    A cloth placement step for placing the cloth in a furnace;
    A first temperature raising step for raising the temperature to a temperature before the cloth is carbonized with an inert atmosphere in at least the cloth arrangement region in the furnace;
    After the first temperature raising step, the second temperature raising step for raising the temperature to 1200 ° C. to 1400 ° C. by setting at least the cloth arrangement region in the furnace as a reducing atmosphere at least relative to the inert atmosphere in the first temperature raising step. When,
    A maintaining step of maintaining the furnace temperature that has reached 1200 ° C. to 1400 ° C. by the second temperature raising step for a predetermined time;
    A temperature lowering step for gradually lowering the furnace temperature after the predetermined time has elapsed;
    And a furnace opening step of opening the furnace after the inside of the furnace becomes approximately 100 ° C. or lower by the temperature lowering step.
  2.  前記布は、原料を綿とするものである請求項1に記載の炭化布製造方法。 The carbonized cloth manufacturing method according to claim 1, wherein the cloth is made of cotton.
  3.  前記所定時間は、略1~2時間である請求項1又は2に記載の炭化布製造方法。 The carbonized cloth manufacturing method according to claim 1 or 2, wherein the predetermined time is approximately 1 to 2 hours.
  4.  前記降温ステップに費やされる時間は、20時間以上である請求項1から3のいずれか一に記載の炭化布製造方法。 The carbonized cloth manufacturing method according to any one of claims 1 to 3, wherein a time spent for the temperature lowering step is 20 hours or more.
  5.  前記開炉ステップは、炉内温度が急激に低下しないよう炉の開閉を断続的に行う請求項1から4のいずれか一に記載の炭化布製造方法。 The method for producing carbonized cloth according to any one of claims 1 to 4, wherein in the furnace opening step, the furnace is opened and closed intermittently so that the temperature in the furnace does not rapidly decrease.
PCT/JP2013/079795 2013-09-05 2013-11-01 Process for manufacturing carbonized cloth WO2015033481A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/916,221 US20160222550A1 (en) 2013-09-05 2013-11-01 Method for producing carbonized fabric
EP13892959.1A EP3042988A4 (en) 2013-09-05 2013-11-01 Process for manufacturing carbonized cloth

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-184445 2013-09-05
JP2013184445A JP6217040B2 (en) 2013-09-05 2013-09-05 Carbonized fabric manufacturing method

Publications (1)

Publication Number Publication Date
WO2015033481A1 true WO2015033481A1 (en) 2015-03-12

Family

ID=52627986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079795 WO2015033481A1 (en) 2013-09-05 2013-11-01 Process for manufacturing carbonized cloth

Country Status (4)

Country Link
US (1) US20160222550A1 (en)
EP (1) EP3042988A4 (en)
JP (1) JP6217040B2 (en)
WO (1) WO2015033481A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008169492A (en) * 2007-01-09 2008-07-24 Shin Nippon Tex Kk Method for producing carbonized fabric and carbonized fabric obtained by the method
JP2009129807A (en) 2007-11-27 2009-06-11 Tomoaki Ito Heat generating device, light-emitting device, negative ion generator, carbonized fiber, and carbonized fiber manufacturing method
JP2010163709A (en) * 2009-01-14 2010-07-29 Maeda Toshikatsu Method for producing carbonized fabric and carbonized fabric

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1016351A (en) * 1962-01-05 1966-01-12 Lorraine Carbone Improvements in or relating to the manufacture of carbonised products
US4738872A (en) * 1985-07-02 1988-04-19 International Fuel Cells Carbon-graphite component for an electrochemical cell and method for making the component
WO2000049213A1 (en) * 1999-02-18 2000-08-24 Showa Denko K. K. Carbon fiber woven fabric and method for production thereof
JP2001234435A (en) * 2000-02-25 2001-08-31 Tokai Senko Kk Carbonized cellulosic fiber, and method and apparatus for continuously producing activated carbonized cellulosic fiber
JP4392434B2 (en) * 2007-01-09 2010-01-06 新日本テックス株式会社 Method for producing carbonized fabric

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008169492A (en) * 2007-01-09 2008-07-24 Shin Nippon Tex Kk Method for producing carbonized fabric and carbonized fabric obtained by the method
JP2009129807A (en) 2007-11-27 2009-06-11 Tomoaki Ito Heat generating device, light-emitting device, negative ion generator, carbonized fiber, and carbonized fiber manufacturing method
JP2010163709A (en) * 2009-01-14 2010-07-29 Maeda Toshikatsu Method for producing carbonized fabric and carbonized fabric

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3042988A4 *

Also Published As

Publication number Publication date
JP2015052175A (en) 2015-03-19
EP3042988A4 (en) 2017-01-11
EP3042988A1 (en) 2016-07-13
JP6217040B2 (en) 2017-10-25
US20160222550A1 (en) 2016-08-04

Similar Documents

Publication Publication Date Title
JP7290242B2 (en) Manufacturing equipment for carbon materials
CN104030284B (en) A kind of diamond manufacture method based on hair
WO2006040872A1 (en) Energy conversion apparatus
JP2008169492A5 (en)
JP6217040B2 (en) Carbonized fabric manufacturing method
WO2015011970A1 (en) Electrode material, and secondary battery
JP2021104930A (en) Carbon electrode for melting quartz glass crucible, quartz glass crucible manufacturing apparatus using the same and method for manufacturing quartz glass crucible using carbon electrode
Bai et al. CH 3 NH 3 PbI 3 perovskite: Poly (N-vinylcarbazole) blends for broadband optical limiting
JPWO2006073099A1 (en) Method for producing carbon-based material
FR2556166A1 (en) PROCESS FOR THE CONTINUOUS PRODUCTION OF CARBON LONG BODIES
US9768442B2 (en) Carbon electrode and method for manufacturing thereof
KR101005115B1 (en) Carbonized cellulose fiber with the graphite-like surface nano-layer and synthesis method thereof
CN103545159A (en) Method for fixing amalgam in lamp tube
JP2008169493A5 (en)
CN108439379A (en) A kind of preparation method for the porous graphene nano material that aperture is controllable
JP2018185971A (en) Direct carbon fuel cell
CN102103975A (en) Lamp cathode structure and gas discharge lamp adopting same
JP2005350307A (en) Modified carbon material and method for manufacturing the same
JP2007122951A (en) Carbon fiber felt for heating element, and its manufacturing method
JP2008169494A5 (en)
KR102440776B1 (en) Nitrogen-doped fuel cell catalyst support manufacturing method
KR102440190B1 (en) Fuel cell catalyst support wet nitrogen doping method
KR102440786B1 (en) Method for producing a cleaned fuel cell catalyst support after doping with nitrogen from aniline
KR102440185B1 (en) Fuel cell catalyst support aniline nitrogen doping method
KR102440785B1 (en) Fuel cell catalyst support acetonitrile nitrogen doping method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13892959

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14916221

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013892959

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013892959

Country of ref document: EP