WO2015033371A1 - Abnormal combustion detection device for engine and abnormal combustion detection method for engine - Google Patents

Abnormal combustion detection device for engine and abnormal combustion detection method for engine Download PDF

Info

Publication number
WO2015033371A1
WO2015033371A1 PCT/JP2013/005196 JP2013005196W WO2015033371A1 WO 2015033371 A1 WO2015033371 A1 WO 2015033371A1 JP 2013005196 W JP2013005196 W JP 2013005196W WO 2015033371 A1 WO2015033371 A1 WO 2015033371A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion
abnormal combustion
abnormal
engine
knock intensity
Prior art date
Application number
PCT/JP2013/005196
Other languages
French (fr)
Japanese (ja)
Inventor
安枝 信次
Original Assignee
Yasueda Shinji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yasueda Shinji filed Critical Yasueda Shinji
Priority to JP2015535176A priority Critical patent/JPWO2015033371A1/en
Priority to PCT/JP2013/005196 priority patent/WO2015033371A1/en
Publication of WO2015033371A1 publication Critical patent/WO2015033371A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/027Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions using knock sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/28Interface circuits
    • F02D2041/286Interface circuits comprising means for signal processing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/26Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using computer, e.g. microprocessor
    • F02D41/28Interface circuits
    • F02D2041/286Interface circuits comprising means for signal processing
    • F02D2041/288Interface circuits comprising means for signal processing for performing a transformation into the frequency domain, e.g. Fourier transformation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/024Fluid pressure of lubricating oil or working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/14Timing of measurement, e.g. synchronisation of measurements to the engine cycle

Definitions

  • the present invention relates to an engine abnormal combustion detection device and an abnormal combustion detection method for detecting abnormal combustion occurring in a combustion chamber of an engine.
  • the present invention has been made in view of such a problem, and an engine having a configuration capable of accurately discriminating between normal knocking generated under normal ignition and abnormal combustion other than the knocking.
  • An object of the present invention is to provide an abnormal combustion detection device and an abnormal combustion detection method.
  • an abnormal combustion detection apparatus for an engine is an engine that generates engine power by burning a mixture of air and fuel supplied into a combustion chamber.
  • a physical quantity detection means for example, the acceleration detector 12 in the embodiment
  • a knock intensity calculation means for calculating the knock magnitude of each combustion cycle based on the physical quantity detected by the physical quantity detection means (for example, the knock intensity calculating unit 52) in the embodiment and the frequency at which the knock intensity calculated by the knock intensity calculating means is equal to or higher than a predetermined threshold and the knock intensity are continuously equal to or higher than the predetermined threshold over a plurality of combustion cycles.
  • Abnormal combustion determination means for output e.g., abnormal combustion determination section 54 in the embodiment configured to include a, a.
  • the abnormal combustion detection method for an engine according to the present invention is a physical quantity correlated with the combustion state of the combustion chamber in an engine that generates engine power by burning a mixture of air and fuel supplied into the combustion chamber. Detecting a physical quantity detected in the physical quantity detecting step, calculating a knock intensity for each combustion cycle based on the physical quantity detected in the physical quantity detecting step, and determining that the knock intensity calculated in the knock intensity calculating step is equal to or greater than a predetermined threshold value. And abnormal combustion other than normal knocking that occurs under normal ignition based on at least one of the continuity in which the frequency and knock intensity continuously exceed a predetermined threshold over a plurality of combustion cycles And an abnormal combustion determination step for detecting.
  • the frequency at which the knock intensity becomes equal to or higher than a predetermined threshold and the continuity of the knock intensity continuously equal to or higher than the predetermined threshold over a plurality of combustion cycles Based on at least one of them, knocking generated in the combustion chamber of the engine and abnormal combustion other than the knocking (for example, abnormal combustion caused by lubricating oil, abnormal combustion caused by hot surface ignition, etc.) are accurately discriminated. Therefore, it is possible to perform correct avoidance control according to the type of abnormal combustion, and to quickly return the engine to an appropriate combustion state. Also, since the engine is generally equipped with a knock sensor (physical quantity detection means), the knock intensity is used as an index for detecting abnormal combustion other than normal knocking that occurs under normal ignition. By using this, the abnormal combustion detection device can be realized at low cost.
  • the engine abnormal combustion detection device when the knock intensity fluctuates more than a certain value in a plurality of combustion cycles, other abnormal combustion other than normal knocking generated under normal ignition is detected. With such a configuration, it is possible to further improve the detection accuracy of various abnormal combustion based on the combination conditions of frequency and continuity.
  • the engine abnormal combustion detection apparatus when the maximum combustion pressure in the combustion chamber rises above a certain level or when the maximum combustion pressure fluctuates above a certain level in a plurality of combustion cycles, By detecting the abnormal combustion other than the normal knocking that occurs in the combustion chamber, it is possible to reliably detect abnormal combustion that causes a sudden increase in the combustion pressure based on multi-point ignition in the combustion chamber. It becomes possible to do.
  • the frequency at which the knock intensity becomes equal to or higher than a predetermined threshold and the continuity of the knock intensity continuously equal to or higher than the predetermined threshold over a plurality of combustion cycles Based on at least one, normal knocking that occurs under normal ignition and abnormal combustion other than the knocking (for example, abnormal combustion due to lubricating oil, abnormal combustion due to hot surface ignition, etc.) Since it is possible to accurately determine, it is possible to execute correct avoidance control according to the type of abnormal combustion and to quickly return the engine to an appropriate combustion state.
  • abnormal combustion detection method for an engine when the knock intensity fluctuates more than a certain value in a plurality of combustion cycles, other abnormal combustion other than normal knocking that occurs under normal ignition is detected. With such a configuration, it is possible to further improve the detection accuracy of various abnormal combustion based on the combination conditions of frequency and continuity.
  • FIG. 1 shows an abnormal combustion detection apparatus for an engine according to an embodiment of the present invention.
  • a premixed combustion type gasoline engine is illustrated as an example of an engine (internal combustion engine).
  • the present invention can also be applied to other types of engines such as a gas engine.
  • the engine 1 includes a cylinder block 10 having a cylinder space 11, a cylinder head 20 provided so as to cover the upper surface of the cylinder block 10, a piston 30 provided in a reciprocating manner in the cylinder space 11, and a connecting rod 35. And a crankshaft 40 that is coupled to the piston 30 and is driven to rotate by receiving the reciprocating motion of the piston 30.
  • a combustion chamber 2 also referred to as “in-cylinder” is defined by being surrounded by an inner peripheral surface of the cylinder space 11, a cylinder head 20, and a piston 30.
  • the cylinder head 20 is provided with an intake passage 21 and an exhaust passage 23 connected to the combustion chamber 2.
  • An intake valve that opens and closes the intake port is provided at an intake port which is a communication portion between the combustion chamber 2 and the intake passage 21. 22 is provided, and an exhaust valve 24 for opening and closing the exhaust port is provided at an exhaust port which is a communication portion between the combustion chamber 2 and the exhaust passage 23.
  • the intake valve 22 and the exhaust valve 24 are opened and closed at a predetermined timing by a cam mechanism (not shown) that is rotationally driven in conjunction with the crankshaft 40.
  • an air-fuel ratio control device 25 (see FIG. 5), a fuel supply device 26, and the like are provided in the middle of or in front of the intake passage 21, and the compressed air and fuel are mixed through the intake passage 21. Gas (premixed gas) is introduced into the combustion chamber 2.
  • the air-fuel mixture supply method and the fuel injection method there are various types of the air-fuel mixture supply method and the fuel injection method, and any method may be adopted.
  • the cylinder head 20 is provided with an ignition device 27 with the tip (electrode portion) facing the ceiling of the combustion chamber 2, and the air-fuel mixture introduced into the combustion chamber 2 by the operation of the ignition device 27. Is ignited.
  • the operations of the air-fuel ratio control device 25, the fuel supply device 26, the ignition device 27, etc. are controlled by the electronic control unit ECU.
  • the cylinder head 20 is provided with a combustion pressure detector 28 for detecting the pressure in the combustion chamber 2 (referred to as “combustion pressure”).
  • an acceleration detector 12 for detecting vibration (vibration acceleration) generated in the cylinder block 10 is attached to the cylinder block 10.
  • the acceleration detector 12 and the combustion pressure detector 28 constitutes a so-called “knock sensor” and the acceleration detector 12 is employed, it is based on the vibration value.
  • Various abnormal combustion is detected using the knock intensity as an index
  • the combustion pressure detector 28 is employed, various abnormal combustion is detected using the knock intensity based on the combustion pressure as an index.
  • the acceleration detector 12 or the combustion pressure detector 28 may be referred to as a knock sensor 3.
  • a crank angle detector 41 for detecting the rotation angle of the crankshaft 40 is attached to the crankshaft 40.
  • the engine 1 includes both the acceleration detector 12 and the combustion pressure detector 28. However, either one of the acceleration detector 12 or the combustion pressure detector 28 is included. It may be a thing.
  • exhaust stroke When the piston 30 reaches the bottom dead center and further rises, the exhaust valve 24 is opened, and the gas in the combustion chamber 2 is exhausted through the exhaust port (“exhaust stroke”).
  • exhaust stroke When the piston 30 rises to the top dead center, the exhaust valve 24 is closed by the elastic force of the valve spring, while the intake valve 22 is opened again.
  • the series of “intake stroke”, “compression stroke”, “combustion / expansion stroke”, and “exhaust stroke” are repeated each time the piston 30 reciprocates up and down twice.
  • abnormal combustion detection device In the abnormal combustion detection device according to the present embodiment, various abnormal combustions that occur in the engine 1 based on detection information from the detectors 12, 28, 41, etc., are generated under normal ignition. A function of discriminating between knocking and other abnormal combustion (for example, abnormal combustion caused by lubricating oil, abnormal combustion caused by hot surface ignition, etc.) is provided.
  • FIG. 2 is a table comparing the characteristics of the abnormal combustion that is the object of the present embodiment
  • FIG. 3 is a graph showing how the knocking intensity changes with time in each abnormal combustion.
  • abnormal combustion caused by lubricating oil and abnormal combustion caused by hot surface ignition are basically characterized by simultaneous knocking, and hence knocking that occurs under normal ignition thereafter. May also be referred to as “normal knocking”. That is, “normal knocking” means that that occurs under normal ignition by the ignition device 27.
  • “abnormal combustion other than normal knocking” means abnormal combustion due to abnormal ignition, and knocking often occurs at the same time.
  • the characteristics of normal knocking, abnormal combustion caused by lubricating oil, and abnormal combustion caused by hot surface ignition will be described in order with reference to FIGS.
  • Normal knocking is a phenomenon in which the pressure wave reciprocates in the combustion chamber 2 and resonates due to self-ignition of the unburned portion of the air-fuel mixture in the process of increasing the combustion pressure due to flame propagation. .
  • normal knocking tends to occur continuously at a relatively high frequency with a predetermined level of knock intensity compared to the other two abnormal combustions, and its cycle fluctuations. Is relatively small.
  • the “knock strength” is an index indicating the degree of knocking generated in the engine. Further, the maximum combustion pressure Pmax obtained from the combustion pressure, the indicated mean effective pressure Pmi, and their cycle fluctuations are also relatively small compared to the other two abnormal combustions.
  • “Abnormal combustion due to lubricating oil” is a phenomenon in which the lubricating oil staying in the combustion chamber 2 (for example, the lubricating oil that has risen) causes self-ignition to rapidly increase the combustion pressure.
  • the lubricating oil is dispersed in the combustion chamber 2 in the form of mist or steam, self-ignition occurs almost simultaneously at multiple points (multiple positions) in the combustion chamber 2 (and thus causes a sudden pressure increase). Will be.)
  • abnormal combustion caused by the lubricating oil has a feature that knocking occurs simultaneously because the combustion pressure rapidly increases. As shown in FIG. 2 and FIG.
  • FIG. 4 is a graph showing the relationship between the crank angle and the combustion pressure in normal combustion and abnormal combustion (with advance and without advance) due to lubricating oil.
  • the ignition timing does not necessarily advance, and the maximum combustion pressure Pmax increases with multi-point ignition without advance. There are many cases.
  • “Abnormal combustion due to hot surface ignition” is a phenomenon in which the air-fuel mixture comes into contact with the overheated high-temperature portion in the combustion chamber 2 to cause self-ignition and gradually accelerates the ignition timing of the air-fuel mixture. Therefore, knocking occurs at the same time.
  • abnormal combustion resulting from hot surface ignition as shown in FIGS. 2 and 3, a large level of knock intensity is continuously generated and tends to grow severely in a short time. Further, there is a characteristic that the maximum combustion pressure Pmax is significantly higher than that of normal combustion.
  • various abnormal combustion detection methods include (I) a detection method based on occurrence frequency, continuity at which the knock intensity is equal to or greater than a threshold value, and (II) knock.
  • a detection method based on the cycle fluctuation value of the intensity and (III) a detection method based on the cycle fluctuation value of the combustion maximum pressure Pmax, the combustion maximum pressure Pmax, and the cycle fluctuation value of the indicated mean effective pressure Pmi are proposed.
  • FIG. 5 is a functional block diagram of the abnormal combustion detection device 50 according to the first embodiment.
  • the abnormal combustion detection device 50 is mainly composed of a microcomputer equipped with a CPU, ROM, RAM, etc., and the CPU detects abnormal combustion occurring in the engine 1 in accordance with an abnormal combustion detection control program stored in the ROM. To do. Knock sensor 3 (acceleration detector 12 etc.), crank angle detector 28 etc. are electrically connected to abnormal combustion detector 50.
  • the abnormal combustion detection device 50 includes a knock intensity calculation unit 52 that calculates a knock intensity and its cycle fluctuation value based on detection information from the knock sensor 3, and an abnormality that detects abnormal combustion in the cylinder.
  • a combustion determination unit 54 is provided.
  • the electronic control unit ECU is composed mainly of a microcomputer equipped with a CPU, ROM, RAM, etc., and the CPU is based on detection information from various detectors and the like according to a combustion control program stored in the ROM. Execute control.
  • the electronic control unit ECU is electrically connected with an air-fuel ratio control device 25, a combustion supply device 26, an ignition device 27, and the like.
  • the electronic control unit ECU controls the operation of the air-fuel ratio control device 25, the combustion supply device 26, the ignition device 27, and the like to control the combustion control unit 51 that controls the combustion in the cylinder. I have.
  • the knock intensity calculation unit 52 executes predetermined calculation processing based on the vibration value V detected by the knock sensor 3 (acceleration detector 12 or the like) and the crank angle ⁇ detected by the crank angle detector 41. Then, the knock strength is calculated. Specifically, as shown in FIG. 6A, the vibration waveform is subjected to frequency analysis (fast Fourier transform) in a predetermined analysis window, and the power spectrum shown in FIG. 6B is calculated.
  • the setting range ⁇ of the analysis window can be set to an arbitrary range near the top dead center (TDC), and may be set, for example, within a range of 40 degrees near the top dead center.
  • a bandpass filter is applied to a predetermined frequency band (referred to as “knock frequency band”) centered on the knocking natural frequency calculated by the following equation (1), and the vibration fluctuation width ⁇ V of the knock frequency band is calculated.
  • An overall value (root mean square value) is calculated, and this is defined as knock intensity.
  • the speed of sound in the tube is calculated as a function of the temperature in the tube.
  • Knocking natural frequency sound velocity in the pipe / (2 x cylinder diameter) (1)
  • Knock strength calculator 52 also calculates a cycle variation value of the knock strength.
  • the cycle fluctuation value of the knock intensity is an index indicating the degree of fluctuation of the knock intensity in a plurality of cycles. For example, the difference between the maximum value and the minimum value of the knock intensity, standard deviation, COV (covariance) ).
  • the “cycle” means a series of processes of intake, compression, combustion / expansion, and exhaust.
  • the abnormal combustion determination unit 54 executes the above detection methods (I) and (II) singly or in combination with each other, thereby causing abnormal combustion due to knocking, lubricating oil, and hot surface ignition. Various abnormal combustion is detected.
  • the abnormal combustion determination unit 54 uses at least one of the occurrence frequency and continuity as an index for detecting abnormal combustion. Specifically, the abnormal combustion determination unit 54 records the number of cycles (occurrence frequency) at which the knock intensity is equal to or higher than a predetermined threshold (referred to as “reference threshold”) during a predetermined number of cycles, and the occurrence frequency thereof. Is greater than or equal to the first threshold, that is, when the occurrence frequency is high, it is determined that the abnormal combustion is caused by hot surface ignition.
  • a predetermined threshold referred to as “reference threshold”
  • the occurrence frequency is less than the first threshold and greater than or equal to the second threshold, that is, if the occurrence frequency is medium, it is determined that the knocking is normal. Further, when the occurrence frequency is less than the second threshold, that is, when the occurrence frequency is low, it is determined that the abnormal combustion is caused by the lubricating oil.
  • the first threshold value is larger than the second threshold value (first threshold value> second threshold value). This is because, as described above, abnormal combustion caused by lubricating oil is less frequent than normal knocking, and abnormal combustion caused by hot surface ignition is compared with normal knocking. Therefore, it uses the characteristic that the frequency of occurrence is high.
  • the reference threshold value, the first threshold value, and the second threshold value are variables that can be arbitrarily variably set according to the operating state of the engine 1 or the like.
  • the abnormal combustion determination unit 54 performs hot surface ignition when the number of consecutive times is equal to or greater than the third threshold value, that is, when continuity is high. It is determined that the combustion is abnormal combustion. On the other hand, when the number of consecutive times is less than the third threshold value and greater than or equal to the fourth threshold value, that is, when the continuity is medium, it is determined that the knocking is normal. Further, when the number of continuous times is less than the fourth threshold, that is, when the continuity is low, it is determined that the abnormal combustion is caused by the lubricating oil.
  • the third threshold value is larger than the fourth threshold value (third threshold value> fourth threshold value).
  • the third threshold value and the fourth threshold value are variables that can be variably set according to the operating state of the engine 1 or the like.
  • the abnormal combustion determination unit 54 uses the cycle variation value of the knock strength as an index for detecting abnormal combustion. Specifically, the abnormal combustion determination unit 54 determines that abnormal combustion due to the lubricating oil has occurred when the cycle fluctuation value of the knock intensity is equal to or greater than the fifth threshold value. As described above, this utilizes the characteristic that in the case of abnormal combustion caused by lubricating oil, the variation between combustion cycles is larger than that of normal knocking. At this time, the detection method (II) may be used alone, but the detection accuracy of the abnormal combustion can be further improved by combination with the detection method (I).
  • the fifth threshold value is a variable that can be variably set according to the operating state of the engine 1 or the like.
  • the abnormal combustion determination unit 54 transmits detection information related to the abnormal combustion to the combustion control unit 51 of the electronic control unit ECU.
  • the combustion control unit 51 of the electronic control unit ECU executes avoidance control according to the type of abnormal combustion based on the detection information from the abnormal combustion determination unit 54, so that each part of the engine (air-fuel ratio control device 25, fuel supply device 26). The operation of the ignition device 27, etc.).
  • FIG. 7 is a flowchart showing an example of the abnormal combustion detection method.
  • the knock strength calculation unit 52 calculates the knock strength based on the detection information input from the knock sensor 3 (acceleration detector 12 or the like) (step S101).
  • the abnormal combustion determination unit 54 determines whether or not the knock intensity exceeds the reference threshold value (step S102).
  • the abnormal combustion determination unit 54 determines whether the knock intensity is greater than or equal to the reference threshold in the past N cycles or the number of consecutive times that the knock magnitude is greater than or equal to the reference threshold Is calculated (step S103). It is also possible to calculate both the occurrence frequency of knock strength and the number of consecutive times.
  • the abnormal combustion determination unit 54 compares the occurrence frequency or the continuous number obtained in step S103 with a predetermined threshold value (first to fourth threshold values), and compares the abnormal combustion caused by normal knocking and lubricating oil. Then, it is determined which of the abnormal combustion caused by hot surface ignition has occurred (step S104).
  • the combustion control unit 51 of the electronic control unit ECU executes avoidance control according to the type of abnormal combustion detected in step S104 (step S105).
  • avoidance control for knocking as control for retarding the ignition timing
  • avoidance control for abnormal combustion due to hot surface ignition as control for avoiding abnormal combustion due to lubricating oil, such as control to immediately stop the engine 1
  • Control for reducing the output of the engine 1 is executed.
  • FIG. 8 is a functional block diagram of the abnormal combustion detection device 150 according to the second embodiment.
  • the abnormal combustion detection device 150 is mainly composed of a microcomputer equipped with a CPU, ROM, RAM, etc., and the CPU detects abnormal combustion occurring in the engine 1 in accordance with the control program for detecting abnormal combustion stored in the ROM. To do. Knock sensor 3 (combustion pressure detector 28), crank angle detector 28, and the like are electrically connected to abnormal combustion detection device 150.
  • the abnormal combustion detection device 150 includes a knock intensity calculation unit 152 that calculates a knock intensity and its cycle fluctuation value based on detection information from the knock sensor 3 (combustion pressure detector 28), and also knocks. Based on the detection information from the sensor 3 (combustion pressure detector 28), the combustion pressure analysis unit 153 that calculates the maximum combustion pressure Pmax, the indicated mean effective pressure Pmi, and their cycle fluctuation values, and the like, and based on the knock intensity and the combustion pressure An abnormal combustion determination unit 154 that detects abnormal combustion in the cylinder.
  • the electronic control unit ECU is composed mainly of a microcomputer equipped with a CPU, ROM, RAM, etc., and the CPU is based on detection information from various detectors and the like according to a combustion control program stored in the ROM. Execute control.
  • the electronic control unit ECU is electrically connected with an air-fuel ratio control device 25, a combustion supply device 26, an ignition device 27, and the like.
  • the electronic control unit ECU controls the operations of the air-fuel ratio control device 25, the combustion supply device 26, the ignition device 27, etc., and controls the combustion control unit 51 that controls the combustion in the cylinder. I have.
  • Knock intensity calculation unit 152 executes a predetermined calculation process based on combustion pressure P detected by knock sensor 3 (combustion pressure detector 28) and crank angle ⁇ detected by crank angle detector 41. Then, the knock strength is calculated. Specifically, as shown in FIG. 6A, the combustion pressure waveform is subjected to frequency analysis (fast Fourier transform) in a predetermined analysis window, and the power spectrum shown in FIG. 6B is calculated.
  • the setting range ⁇ of the analysis window can be set to an arbitrary range near the top dead center (TDC), and may be set, for example, within a range of 40 degrees near the top dead center.
  • a bandpass filter is applied to a predetermined frequency band (referred to as “knock frequency band”) centered on the knocking natural frequency calculated by the above equation (1), and the combustion pressure fluctuation width ⁇ P in this knock frequency band.
  • the overall value root mean square value is calculated, and this is defined as the knock intensity.
  • Knock strength calculation unit 152 also calculates a cycle variation value of the knock strength.
  • the cycle fluctuation value of the knock intensity is an index indicating the degree of fluctuation of the knock intensity in a plurality of cycles. For example, the difference between the maximum value and the minimum value of the knock intensity, standard deviation, COV (covariance) ).
  • the “cycle” means a series of processes of intake, compression, combustion / expansion, and exhaust.
  • the combustion pressure analysis unit 153 calculates the maximum combustion pressure Pmax, the indicated mean effective pressure Pmi, and their cycle fluctuation values based on the combustion pressure P detected by the knock sensor 3 (combustion pressure detector 28).
  • the maximum combustion pressure Pmax means the maximum value of the combustion pressure (in-cylinder pressure) during one cycle of the combustion chamber 2.
  • the cycle fluctuation value of the maximum combustion pressure Pmax is an index indicating the degree of fluctuation of the maximum combustion pressure Pmax in a plurality of successive cycles. Specifically, the difference between the maximum value and the minimum value of the maximum combustion pressure Pmax. , Standard deviation, COV (covariance), and the like.
  • the indicated mean effective pressure Pmi is a value obtained by dividing the work amount per cycle of each cylinder by the stroke volume.
  • the cycle fluctuation value of the indicated mean effective pressure Pmi is an index indicating the degree of fluctuation of the indicated mean effective pressure Pmi in a plurality of consecutive cycles, and specifically, the maximum value and the minimum value of the indicated mean effective pressure Pmi. Difference, standard deviation, COV (covariance), and the like.
  • the abnormal combustion determination unit 154 executes the detection methods (I), (II), and (III) described above alone or in combination with each other to prevent abnormal combustion caused by knocking, lubricating oil, and hot surface ignition. Detect abnormal combustion caused by it.
  • the abnormal combustion determination unit 154 uses at least one of the occurrence frequency and continuity as an index for detecting abnormal combustion. Specifically, the abnormal combustion determination unit 154 records the number of cycles (occurrence frequency) at which the knock intensity is equal to or greater than a predetermined threshold (referred to as “reference threshold”) during a predetermined number of cycles, and the occurrence frequency thereof. Is greater than or equal to the first threshold, that is, when the occurrence frequency is high, it is determined that the abnormal combustion is caused by hot surface ignition.
  • a predetermined threshold referred to as “reference threshold”
  • the occurrence frequency is less than the first threshold and greater than or equal to the second threshold, that is, when the occurrence frequency is medium, it is determined that the knocking is normal. Further, when the occurrence frequency is less than the second threshold, that is, when the occurrence frequency is low, it is determined that the abnormal combustion is caused by the lubricating oil.
  • the first threshold value is larger than the second threshold value (first threshold value> second threshold value). This is because, as described above, abnormal combustion caused by lubricating oil is less frequent than normal knocking, and abnormal combustion caused by hot surface ignition is compared with normal knocking. Therefore, it uses the characteristic that the frequency of occurrence is high.
  • the reference threshold value, the first threshold value, and the second threshold value are variables that can be arbitrarily variably set according to the operating state of the engine 1 or the like.
  • the abnormal combustion determination unit 154 performs hot surface ignition when the number of consecutive times is equal to or greater than the third threshold value, that is, when continuity is high. It is determined that the combustion is abnormal combustion.
  • the third threshold value is larger than the fourth threshold value (third threshold value> fourth threshold value).
  • the third threshold value and the fourth threshold value are variables that can be variably set according to the operating state of the engine 1 or the like.
  • the abnormal combustion determination unit 154 uses the knock strength cycle variation value as an index for detecting abnormal combustion. Specifically, the abnormal combustion determination unit 154 determines that abnormal combustion due to the lubricating oil has occurred when the cycle variation value of the knock intensity is equal to or greater than the fifth threshold value. As described above, this utilizes the characteristic that in the case of abnormal combustion caused by lubricating oil, the variation between combustion cycles is larger than that of normal knocking. At this time, the detection method (II) may be used alone, but the detection accuracy of the abnormal combustion can be further improved by combination with the detection method (I).
  • the fifth threshold value is a variable that can be variably set according to the operating state of the engine 1 or the like.
  • the abnormal combustion determination unit 154 uses the maximum combustion pressure Pmax, the cycle fluctuation of the maximum combustion pressure Pmax, and the cycle fluctuation value of the indicated mean effective pressure Pmi as an index for detecting abnormal combustion. Use one of the following. Specifically, the abnormal combustion determination unit 154 determines that the abnormal combustion is other than normal knocking when the maximum combustion pressure Pmax is higher than the cycle average value by a sixth threshold or more.
  • the cycle average value means an average value of the combustion maximum pressure Pmax in a plurality of cycles (for example, 100 times).
  • the abnormal combustion determination unit 154 determines that the abnormal combustion is other than normal knocking. Furthermore, when the cycle fluctuation value of the indicated mean effective pressure Pmi is equal to or greater than a preset eighth threshold value, the abnormal combustion determination unit 154 determines that the abnormal combustion is other than normal knocking. At this time, this detection method (III) may be used alone, but the detection accuracy of the abnormal combustion can be further improved by combination with the detection methods (I) and (II).
  • the sixth threshold value, the seventh threshold value, and the eighth threshold value are variables that can be variably set according to the operating state of the engine 1 or the like.
  • the abnormal combustion determination unit 154 transmits detection information related to the abnormal combustion to the combustion control unit 51 of the electronic control unit ECU.
  • the combustion control unit 51 of the electronic control unit ECU executes avoidance control according to the type of abnormal combustion based on the detection information from the abnormal combustion determination unit 154, so that each part of the engine (air-fuel ratio control device 25, fuel supply device 26). The operation of the ignition device 27, etc.).
  • FIG. 9 is a flowchart showing an example of the abnormal combustion detection method.
  • the knock intensity calculation unit 152 calculates the knock intensity based on the detection information input from the knock sensor 3 (combustion pressure detector 28) (step S201).
  • the abnormal combustion determination unit 154 determines whether or not the knock intensity is greater than or equal to a reference threshold value (step S202).
  • step S202 When the knock magnitude is equal to or higher than the reference threshold value (step S202: YES), the abnormal combustion determination unit 154 causes the occurrence frequency of knock intensity equal to or higher than the reference value in the past N cycles, or the knock intensity is equal to or higher than the reference threshold value.
  • the number of continuous times is calculated (step S203). It is also possible to calculate both the occurrence frequency of knock strength and the number of consecutive times.
  • the knock strength calculation unit 152 also calculates the cycle variation value of the knock strength (step S204).
  • the combustion pressure analysis unit 153 calculates at least one of the maximum combustion pressure Pmax in the cylinder, the cycle variation value of the maximum combustion pressure Pmax, and the cycle variation value of the indicated mean effective pressure Pmi.
  • the abnormal combustion determination unit 154 obtains (I) knock intensity occurrence frequency, continuity, (II) knock fluctuation cycle fluctuation value, (III) maximum combustion pressure Pmax, obtained in steps S203 to S205 above. Comparing the cycle fluctuation value of the maximum combustion pressure Pmax and the cycle fluctuation value of the indicated mean effective pressure Pmi with the first to eighth threshold values, and comprehensively judging these judgment items, normal knocking and lubrication It is determined which of abnormal combustion caused by oil and abnormal combustion caused by hot surface ignition has occurred.
  • there are various methods for determining abnormal combustion For example, if any one of the detection items satisfies the determination criteria (I) to (III), abnormal combustion is detected, or all detection items are detected. Then, when the determination criteria (I) to (III) are satisfied, abnormal combustion may be detected, or the weight may be changed for each detection item.
  • the combustion control unit 51 of the electronic control unit ECU executes avoidance control according to the type of abnormal combustion detected in step S206 (step S207).
  • avoidance control for knocking as control for retarding the ignition timing
  • avoidance control for abnormal combustion due to hot surface ignition as control for avoiding abnormal combustion due to lubricating oil, such as control to immediately stop the engine 1
  • Control for reducing the output of the engine 1 is executed.
  • step S202 If the knock strength is not greater than or equal to the reference threshold (step S202: NO), steps S203 and S204 are skipped and the process proceeds to step S205. This is for improving the reliability of detection accuracy by executing abnormal combustion detection based on the maximum combustion pressure Pmax or the like even when the knock magnitude is not equal to or higher than the reference threshold value.
  • the frequency at which the knock intensity is equal to or higher than the reference threshold, and the knock intensity is continuously equal to or higher than the reference threshold over a plurality of combustion cycles Based on at least one of the continuity, the abnormal combustion occurring in the combustion chamber 2 of the engine 1 is accurately determined as normal knocking, abnormal combustion due to lubricating oil, abnormal combustion due to hot surface ignition, or the like. Therefore, it is possible to perform correct avoidance control according to the type of abnormal combustion and to quickly return the engine 1 to an appropriate combustion state.
  • a knock sensor physical quantity detection means
  • an acceleration detector is mounted on an engine, so that the knock intensity can be used as an index for detecting other abnormal combustion other than normal knocking.
  • the abnormal combustion detection device 50 can be realized at low cost.
  • abnormal combustion other than normal knocking
  • abnormal combustion caused by lubricating oil and abnormal combustion caused by hot surface ignition have been exemplified so far.
  • a major feature is that it is possible to distinguish abnormal combustion from normal knocking.
  • the present invention is not limited to the above-described embodiment, and can be improved as appropriate without departing from the gist of the present invention.
  • the knocking intensity may be calculated using sound or the ion state in the combustion gas as another physical quantity having a correlation with the combustion state of the combustion chamber.
  • abnormal combustion detection device 50 (150) may be integrated in the electronic control unit ECU, or may be configured as a separate device independent of the electronic control unit ECU.

Abstract

This abnormal combustion detection device (50) for an engine, said engine (1) being constructed so as to generate engine power by burning an air-fuel mixture that is supplied into a combustion chamber (2), comprises: an acceleration detector (12) for detecting a physical quantity correlating with a combustion state of the combustion chamber; a knock intensity calculation unit (52) for calculating a knock intensity in each combustion cycle on the basis of the physical quantity detected by the acceleration detector (12); and an abnormal combustion determination unit (54) for detecting abnormal combustion, except normal knocking that occurs under normal ignition in the combustion chamber (2), on the basis of at least either frequency, that is, how frequently the knock intensity calculated by the knock intensity calculation unit (52) becomes equal to or greater than a prescribed threshold value, or continuousness, that is, a state wherein the knock intensity stays equal to or greater than the prescribed threshold value over multiple combustion cycles.

Description

エンジンの異常燃焼検出装置及びエンジンの異常燃焼検出方法Engine abnormal combustion detection device and engine abnormal combustion detection method
 本発明は、エンジンの燃焼室に発生する異常燃焼を検出するエンジンの異常燃焼検出装置および異常燃焼検出方法に関する。 The present invention relates to an engine abnormal combustion detection device and an abnormal combustion detection method for detecting abnormal combustion occurring in a combustion chamber of an engine.
 エンジン(内燃機関)においては出力変動や燃焼騒音などの原因である異常燃焼が発生することがあるが、従来からエンジンにおける異常燃焼の代表的な一形態であるノッキングを検出する技術が知られている。この従来技術では、ノッキングセンサとして加速度センサを用いて、エンジンに固有な異常燃焼時の振動周波数を検出し、その強度が一定の閾値以上高ければ、ノッキングが発生したとみなして、点火時期を遅角する等の回避制御を施している(例えば、特許文献1を参照)。 In an engine (internal combustion engine), abnormal combustion that causes output fluctuation or combustion noise may occur. Conventionally, a technique for detecting knocking, which is a typical form of abnormal combustion in an engine, has been known. Yes. In this conventional technique, an acceleration sensor is used as a knocking sensor to detect the vibration frequency at the time of abnormal combustion inherent in the engine, and if the intensity is higher than a certain threshold value, it is considered that knocking has occurred and the ignition timing is delayed. Avoidance control such as cornering is performed (see, for example, Patent Document 1).
特開2004-346876号公報JP 2004-346876 A
 ところが、近年では、燃焼室内に存在する潤滑油(例えばオイル上がりした潤滑油)が自己着火することに起因する異常燃焼が問題となっている。この潤滑油に起因する異常燃焼が発生すると、燃焼室内の燃焼圧が急激に増大することで、基本的にノッキングを併発することになるのだが、両者は本質的には互いに異なる対策を必要とする、全く別の異常現象である。ところが、従来の技術では、正常な着火のもとで発生する通常のノッキングと潤滑油に起因する異常燃焼とを明確に判別することが難しく、潤滑油に起因する異常燃焼が発生した場合に、誤った回避制御を施した結果、事態を悪化させるという問題がある。すなわち、潤滑油に起因する異常燃焼が発生した場合に、ノッキングの回避制御と同様に、点火時期を遅角する制御を実施すると、燃焼室内の温度が一層上昇して潤滑油がさらに多点着火することで、事態を更に悪化させることになる。 However, in recent years, abnormal combustion caused by self-ignition of lubricating oil (for example, lubricating oil that has risen) in the combustion chamber has become a problem. When abnormal combustion due to this lubricating oil occurs, the combustion pressure in the combustion chamber suddenly increases, and basically knocking occurs simultaneously. However, both require essentially different measures. It is a completely different abnormal phenomenon. However, in the conventional technology, it is difficult to clearly distinguish between normal knocking generated under normal ignition and abnormal combustion due to the lubricating oil, and when abnormal combustion due to the lubricating oil occurs, As a result of incorrect avoidance control, there is a problem of worsening the situation. That is, when abnormal combustion caused by the lubricating oil occurs, if the control for retarding the ignition timing is performed as in the knocking avoidance control, the temperature in the combustion chamber rises further and the lubricating oil is further ignited at multiple points. Doing so will make things worse.
 本発明は、このような課題に鑑みてなされたものであり、正常な着火のもとで発生する通常のノッキングと、当該ノッキング以外の他の異常燃焼とを正確に判別可能な構成のエンジンの異常燃焼検出装置および異常燃焼検出方法を提供することを目的とする。 The present invention has been made in view of such a problem, and an engine having a configuration capable of accurately discriminating between normal knocking generated under normal ignition and abnormal combustion other than the knocking. An object of the present invention is to provide an abnormal combustion detection device and an abnormal combustion detection method.
 前記課題を解決するために、本発明に係るエンジンの異常燃焼検出装置は、燃焼室内に供給された空気と燃料との混合気を燃焼させてエンジン動力を生起するエンジンにおいて、燃焼室の燃焼状態と相関性のある物理量を検出する物理量検出手段(例えば、実施形態における加速度検出器12)と、物理量検出手段において検出された物理量に基づき、各燃焼サイクルのノック強度を算出するノック強度算出手段(例えば、実施形態におけるノック強度算出部52)と、ノック強度算出手段において算出されたノック強度が所定の閾値以上となる頻度およびノック強度が複数回の燃焼サイクルに亘って連続的に所定の閾値以上となる該連続性の少なくとも一方に基づき、正常な着火のもとで発生する通常のノッキング以外の他の異常燃焼を検出する異常燃焼判定手段(例えば、実施形態における異常燃焼判定部54)と、を備えて構成される。 In order to solve the above problems, an abnormal combustion detection apparatus for an engine according to the present invention is an engine that generates engine power by burning a mixture of air and fuel supplied into a combustion chamber. A physical quantity detection means (for example, the acceleration detector 12 in the embodiment) for detecting a physical quantity correlated with the knock quantity, and a knock intensity calculation means for calculating the knock magnitude of each combustion cycle based on the physical quantity detected by the physical quantity detection means ( For example, the knock intensity calculating unit 52) in the embodiment and the frequency at which the knock intensity calculated by the knock intensity calculating means is equal to or higher than a predetermined threshold and the knock intensity are continuously equal to or higher than the predetermined threshold over a plurality of combustion cycles. Based on at least one of the continuity, the abnormal combustion other than normal knocking that occurs under normal ignition Abnormal combustion determination means for output (e.g., abnormal combustion determination section 54 in the embodiment) configured to include a, a.
 また、本発明に係るエンジンの異常燃焼検出方法は、燃焼室内に供給された空気と燃料との混合気を燃焼させてエンジン動力を生起するエンジンにおいて、燃焼室の燃焼状態と相関性のある物理量を検出する物理量検出ステップと、物理量検出ステップにおいて検出された物理量に基づき、各燃焼サイクルのノック強度を算出するノック強度算出ステップと、ノック強度算出ステップにおいて算出されたノック強度が所定の閾値以上となる頻度およびノック強度が複数回の燃焼サイクルに亘って連続的に所定の閾値以上となる該連続性の少なくとも一方に基づき、正常な着火のもとで発生する通常のノッキング以外の他の異常燃焼を検出する異常燃焼判定ステップと、を備えて構成される。 Also, the abnormal combustion detection method for an engine according to the present invention is a physical quantity correlated with the combustion state of the combustion chamber in an engine that generates engine power by burning a mixture of air and fuel supplied into the combustion chamber. Detecting a physical quantity detected in the physical quantity detecting step, calculating a knock intensity for each combustion cycle based on the physical quantity detected in the physical quantity detecting step, and determining that the knock intensity calculated in the knock intensity calculating step is equal to or greater than a predetermined threshold value. And abnormal combustion other than normal knocking that occurs under normal ignition based on at least one of the continuity in which the frequency and knock intensity continuously exceed a predetermined threshold over a plurality of combustion cycles And an abnormal combustion determination step for detecting.
 本発明に係るエンジンの異常燃焼検出装置によれば、ノック強度が所定の閾値以上となる頻度およびノック強度が複数回の燃焼サイクルに亘って連続的に前記所定の閾値以上となる該連続性の少なくとも一方に基づいて、エンジンの燃焼室内に発生するノッキングと当該ノッキング以外の他の異常燃焼(例えば、潤滑油に起因する異常燃焼、熱面着火に起因する異常燃焼など)とを正確に判別することができるため、異常燃焼の種別に応じた正しい回避制御を実行して、エンジンを適正な燃焼状態に早期に復帰させることが可能である。また、一般的にエンジンにはノックセンサ(物理量検出手段)が搭載されているため、正常な着火のもとで発生する通常のノッキング以外の他の異常燃焼を検出するための指標としてノック強度を利用することで、当該異常燃焼検出装置を低コストで実現することができる。 According to the abnormal combustion detection apparatus for an engine according to the present invention, the frequency at which the knock intensity becomes equal to or higher than a predetermined threshold and the continuity of the knock intensity continuously equal to or higher than the predetermined threshold over a plurality of combustion cycles. Based on at least one of them, knocking generated in the combustion chamber of the engine and abnormal combustion other than the knocking (for example, abnormal combustion caused by lubricating oil, abnormal combustion caused by hot surface ignition, etc.) are accurately discriminated. Therefore, it is possible to perform correct avoidance control according to the type of abnormal combustion, and to quickly return the engine to an appropriate combustion state. Also, since the engine is generally equipped with a knock sensor (physical quantity detection means), the knock intensity is used as an index for detecting abnormal combustion other than normal knocking that occurs under normal ignition. By using this, the abnormal combustion detection device can be realized at low cost.
 また、上述の発明に係るエンジンの異常燃焼検出装置において、ノック強度が複数回の燃焼サイクルにおいて一定以上変動した場合、正常な着火のもとで発生する通常のノッキング以外の他の異常燃焼を検出し得るよう構成することで、頻度および連続性との組合せ条件に基づき、各種の異常燃焼の検出精度をより一層向上させることが可能となる。 Further, in the engine abnormal combustion detection device according to the above-mentioned invention, when the knock intensity fluctuates more than a certain value in a plurality of combustion cycles, other abnormal combustion other than normal knocking generated under normal ignition is detected. With such a configuration, it is possible to further improve the detection accuracy of various abnormal combustion based on the combination conditions of frequency and continuity.
 さらに、上述の発明に係るエンジンの異常燃焼検出装置において、燃焼室内の最高燃焼圧が一定以上上昇したとき又は複数回の燃焼サイクルにおいて最高燃焼圧が一定以上変動したときに、正常な着火のもとで発生する通常のノッキング以外の他の異常燃焼を検出し得るよう構成することで、燃焼室内での多点着火等に基づき燃焼圧の急激な増大を誘発するような異常燃焼を確実に検出することが可能となる。 Furthermore, in the engine abnormal combustion detection apparatus according to the above-described invention, when the maximum combustion pressure in the combustion chamber rises above a certain level or when the maximum combustion pressure fluctuates above a certain level in a plurality of combustion cycles, By detecting the abnormal combustion other than the normal knocking that occurs in the combustion chamber, it is possible to reliably detect abnormal combustion that causes a sudden increase in the combustion pressure based on multi-point ignition in the combustion chamber. It becomes possible to do.
 本発明に係るエンジンの異常燃焼検出方法によれば、ノック強度が所定の閾値以上となる頻度およびノック強度が複数回の燃焼サイクルに亘って連続的に前記所定の閾値以上となる該連続性の少なくとも一方に基づいて、正常な着火のもとで発生する通常のノッキングと当該ノッキング以外の他の異常燃焼(例えば、潤滑油に起因する異常燃焼、熱面着火に起因する異常燃焼など)とを正確に判別することができるため、異常燃焼の種別に応じた正しい回避制御を実行して、エンジンを適正な燃焼状態に早期に復帰させることが可能である。 According to the abnormal combustion detection method for an engine according to the present invention, the frequency at which the knock intensity becomes equal to or higher than a predetermined threshold and the continuity of the knock intensity continuously equal to or higher than the predetermined threshold over a plurality of combustion cycles. Based on at least one, normal knocking that occurs under normal ignition and abnormal combustion other than the knocking (for example, abnormal combustion due to lubricating oil, abnormal combustion due to hot surface ignition, etc.) Since it is possible to accurately determine, it is possible to execute correct avoidance control according to the type of abnormal combustion and to quickly return the engine to an appropriate combustion state.
 また、上述の発明に係るエンジンの異常燃焼検出方法において、ノック強度が複数回の燃焼サイクルにおいて一定以上変動した場合、正常な着火のもとで発生する通常のノッキング以外の他の異常燃焼を検出し得るよう構成することで、頻度および連続性との組合せ条件に基づき、各種の異常燃焼の検出精度をより一層向上させることが可能となる。 Further, in the abnormal combustion detection method for an engine according to the above-described invention, when the knock intensity fluctuates more than a certain value in a plurality of combustion cycles, other abnormal combustion other than normal knocking that occurs under normal ignition is detected. With such a configuration, it is possible to further improve the detection accuracy of various abnormal combustion based on the combination conditions of frequency and continuity.
 さらに、上述の発明に係るエンジンの異常燃焼検出方法において、燃焼室内の最高燃焼圧が一定以上上昇したとき又は複数回の燃焼サイクルにおいて最高燃焼圧が一定以上変動したときに、正常な着火のもとで発生する通常のノッキング以外の他の異常燃焼を検出し得るよう構成することで、燃焼室内での多点着火等に基づき燃焼圧の急激な増大を誘発するような異常燃焼を確実に検出することが可能となる。 Furthermore, in the engine abnormal combustion detection method according to the above-described invention, when the maximum combustion pressure in the combustion chamber rises above a certain level or when the maximum combustion pressure fluctuates above a certain level in a plurality of combustion cycles, By detecting the abnormal combustion other than the normal knocking that occurs in the combustion chamber, it is possible to reliably detect abnormal combustion that causes a sudden increase in the combustion pressure based on multi-point ignition in the combustion chamber. It becomes possible to do.
本発明の一実施形態に係るエンジンを示す模式図である。It is a mimetic diagram showing an engine concerning one embodiment of the present invention. 本実施形態で対象とする各種の異常燃焼の特性の一例を比較する表である。It is a table | surface which compares an example of the characteristic of various abnormal combustion made into object by this embodiment. 上記各種の異常燃焼におけるノック強度の現れ方の一例を示すグラフである。It is a graph which shows an example of how knock strength appears in the above-mentioned various abnormal combustion. 潤滑油に起因する異常燃焼が発生したときの燃焼圧とクランク角度との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between a combustion pressure and crank angle when the abnormal combustion resulting from lubricating oil generate | occur | produces. 第1実施形態の異常燃焼検出装置の機能ブロック図である。It is a functional block diagram of the abnormal combustion detection apparatus of a 1st embodiment. ノッキング強度の算出の仕方の一例を説明するための模式図である。It is a schematic diagram for demonstrating an example of the method of calculating knocking intensity | strength. 第1実施形態における異常燃焼検出方法の一例を示すフローチャートである。It is a flowchart which shows an example of the abnormal combustion detection method in 1st Embodiment. 第2実施形態の異常燃焼検出装置の機能ブロック図である。It is a functional block diagram of the abnormal combustion detection apparatus of 2nd Embodiment. 第2実施形態における異常燃焼検出方法の一例を示すフローチャートである。It is a flowchart which shows an example of the abnormal combustion detection method in 2nd Embodiment.
 以下、図面を参照して本発明の好ましい実施形態について説明する。本発明の一実施形態に係るエンジンの異常燃焼検出装置を図1に示している。まず始めに、図1を参照しながら、エンジンの基本構成について説明する。なお、本実施形態では、エンジン(内燃機関)の一例として予混合燃焼式のガソリンエンジンを例示するが、例えばガスエンジン等の他の形式のエンジンに適用することも可能である。 Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows an abnormal combustion detection apparatus for an engine according to an embodiment of the present invention. First, the basic configuration of the engine will be described with reference to FIG. In the present embodiment, a premixed combustion type gasoline engine is illustrated as an example of an engine (internal combustion engine). However, the present invention can also be applied to other types of engines such as a gas engine.
 [エンジンの基本構成]
 エンジン1は、シリンダ空間11を有するシリンダブロック10と、シリンダブロック10の上面を覆って設けられたシリンダヘッド20と、シリンダ空間内11に往復動自在に設けられたピストン30と、コネクティングロッド35を介してピストン30に連結されてピストン30の往復動を受けて回転駆動されるクランク軸40と、を主体として構成されている。このエンジン1には、シリンダ空間11の内周面と、シリンダヘッド20と、ピストン30とに囲まれて燃焼室2(「筒内」とも称する)が画成されている。
[Basic engine configuration]
The engine 1 includes a cylinder block 10 having a cylinder space 11, a cylinder head 20 provided so as to cover the upper surface of the cylinder block 10, a piston 30 provided in a reciprocating manner in the cylinder space 11, and a connecting rod 35. And a crankshaft 40 that is coupled to the piston 30 and is driven to rotate by receiving the reciprocating motion of the piston 30. In the engine 1, a combustion chamber 2 (also referred to as “in-cylinder”) is defined by being surrounded by an inner peripheral surface of the cylinder space 11, a cylinder head 20, and a piston 30.
 シリンダヘッド20には、燃焼室2に繋がる吸気通路21および排気通路23が設けられており、燃焼室2と吸気通路21との連通部分である吸気口には、この吸気口を開閉する吸気弁22が設けられ、燃焼室2と排気通路23との連通部分である排気口には、この排気口を開閉する排気弁24が設けられている。これら吸気弁22および排気弁24は、クランク軸40と連動して回転駆動されるカム機構(図示せず)によって所定のタイミングで開閉作動される。 The cylinder head 20 is provided with an intake passage 21 and an exhaust passage 23 connected to the combustion chamber 2. An intake valve that opens and closes the intake port is provided at an intake port which is a communication portion between the combustion chamber 2 and the intake passage 21. 22 is provided, and an exhaust valve 24 for opening and closing the exhaust port is provided at an exhaust port which is a communication portion between the combustion chamber 2 and the exhaust passage 23. The intake valve 22 and the exhaust valve 24 are opened and closed at a predetermined timing by a cam mechanism (not shown) that is rotationally driven in conjunction with the crankshaft 40.
 例えば、吸気通路21の途中又はその手前には、空燃比制御装置25(図5を参照)および燃料供給装置26などが設けられており、この吸気通路21を介して圧縮空気と燃料との混合気(予混合気)が燃焼室2内に導入されるようになっている。なお、混合気の供給方式や燃料の噴射方式には様々なタイプがあるが、いずれの方式を採用してもよい。 For example, an air-fuel ratio control device 25 (see FIG. 5), a fuel supply device 26, and the like are provided in the middle of or in front of the intake passage 21, and the compressed air and fuel are mixed through the intake passage 21. Gas (premixed gas) is introduced into the combustion chamber 2. There are various types of the air-fuel mixture supply method and the fuel injection method, and any method may be adopted.
 シリンダヘッド20には、燃焼室2の天井部に先端部(電極部)を臨ませて点火装置27が設けられており、この点火装置27の作動によって、燃焼室2内に導入された混合気の点火が行われるようになっている。なお、空燃比制御装置25、燃料供給装置26、点火装置27等の作動は、電子制御ユニットECUによって制御される。また、シリンダヘッド20には、燃焼室2内の圧力(「燃焼圧」と称する)を検出するための燃焼圧検出器28が取り付けられている。 The cylinder head 20 is provided with an ignition device 27 with the tip (electrode portion) facing the ceiling of the combustion chamber 2, and the air-fuel mixture introduced into the combustion chamber 2 by the operation of the ignition device 27. Is ignited. The operations of the air-fuel ratio control device 25, the fuel supply device 26, the ignition device 27, etc. are controlled by the electronic control unit ECU. The cylinder head 20 is provided with a combustion pressure detector 28 for detecting the pressure in the combustion chamber 2 (referred to as “combustion pressure”).
 一方、シリンダブロック10には、このシリンダブロック10に生じる振動(振動加速度)を検出するための加速度検出器12が取り付けられている。 On the other hand, an acceleration detector 12 for detecting vibration (vibration acceleration) generated in the cylinder block 10 is attached to the cylinder block 10.
 なお、本実施形態では、詳細後述するが、加速度検出器12および燃焼圧検出器28のうちの一方がいわゆる「ノックセンサ」を構成し、加速度検出器12を採用する場合には振動値に基づくノック強度を指標として各種の異常燃焼が検出され、燃焼圧検出器28を採用する場合には燃焼圧に基づくノック強度を指標として各種の異常燃焼が検出される。以下では、加速度検出器12又は燃焼圧検出器28をノックセンサ3とも称することがある。 In the present embodiment, as will be described in detail later, when one of the acceleration detector 12 and the combustion pressure detector 28 constitutes a so-called “knock sensor” and the acceleration detector 12 is employed, it is based on the vibration value. Various abnormal combustion is detected using the knock intensity as an index, and when the combustion pressure detector 28 is employed, various abnormal combustion is detected using the knock intensity based on the combustion pressure as an index. Hereinafter, the acceleration detector 12 or the combustion pressure detector 28 may be referred to as a knock sensor 3.
 クランク軸40には、当該クランク軸40の回転角度を検出するためのクランク角度検出器41が取り付けられている。 A crank angle detector 41 for detecting the rotation angle of the crankshaft 40 is attached to the crankshaft 40.
 なお、エンジン1には、前述のように、加速度検出器12および燃焼圧検出器28の両方が備えられているが、加速度検出器12および燃焼圧検出器28のうちのいずれか一方が備えられるものでもよい。 As described above, the engine 1 includes both the acceleration detector 12 and the combustion pressure detector 28. However, either one of the acceleration detector 12 or the combustion pressure detector 28 is included. It may be a thing.
 [エンジンの基本動作]
 本実施形態で例示する4サイクル型のエンジン1では、ピストン30が上死点から下降してクランク軸40が所定の回転方向に回転すると、吸気バルブ22が開弁して吸気通路21からの混合気が吸気口を介して燃焼室内2に吸入される(「吸気行程」)。そして、ピストン30が下死点まで下降すると、吸気バルブ22がバルブスプリングの弾性力によって閉弁される。
[Basic engine operation]
In the four-cycle engine 1 exemplified in the present embodiment, when the piston 30 descends from the top dead center and the crankshaft 40 rotates in a predetermined rotation direction, the intake valve 22 is opened and mixing from the intake passage 21 is performed. Air is drawn into the combustion chamber 2 via the intake port (“intake stroke”). When the piston 30 is lowered to the bottom dead center, the intake valve 22 is closed by the elastic force of the valve spring.
 ピストン30が下死点まで到達すると、クランク軸40の慣性力がコンロッド35を介して作用してピストン30が上昇し、密閉された燃焼室2内で混合気が圧縮される(「圧縮行程」)。 When the piston 30 reaches the bottom dead center, the inertial force of the crankshaft 40 acts through the connecting rod 35 to raise the piston 30, and the air-fuel mixture is compressed in the sealed combustion chamber 2 ("compression stroke"). ).
 続いて、ピストン30が上死点の近傍に達すると、点火装置27の火花点火により圧縮された混合気が燃焼される。そして、燃焼室2内での混合気の燃焼は、点火装置27により着火された部分の火炎が燃焼室2内で伝播することにより行われる。この燃焼エネルギーを受けて、ピストン30は再び下降する(「燃焼・膨張行程」)。 Subsequently, when the piston 30 reaches the vicinity of the top dead center, the air-fuel mixture compressed by the spark ignition of the ignition device 27 is combusted. Combustion of the air-fuel mixture in the combustion chamber 2 is performed by propagating a portion of the flame ignited by the ignition device 27 in the combustion chamber 2. In response to this combustion energy, the piston 30 descends again (“combustion / expansion stroke”).
 ピストン30が下死点に達してさらに上昇すると、排気バルブ24が開弁し、排気口を介して燃焼室2内のガスが排気される(「排気行程」)。そして、ピストン30が上死点まで上昇すると、バルブスプリングの弾性力によって排気バルブ24が閉弁する一方、再び吸気バルブ22が開弁する。この一連の「吸気行程」、「圧縮行程」、「燃焼・膨張行程」、「排気行程」が、ピストン30が上下に2往復動する毎に繰り返して行われる。 When the piston 30 reaches the bottom dead center and further rises, the exhaust valve 24 is opened, and the gas in the combustion chamber 2 is exhausted through the exhaust port (“exhaust stroke”). When the piston 30 rises to the top dead center, the exhaust valve 24 is closed by the elastic force of the valve spring, while the intake valve 22 is opened again. The series of “intake stroke”, “compression stroke”, “combustion / expansion stroke”, and “exhaust stroke” are repeated each time the piston 30 reciprocates up and down twice.
 [異常燃焼検出装置]
 本実施形態に係る異常燃焼検出装置には、各検出器12,28,41等からの検出情報に基づき、エンジン1に発生する各種の異常燃焼として、正常な着火のもとで発生する通常のノッキングと、それ以外の他の異常燃焼(例えば、潤滑油に起因する異常燃焼、熱面着火に起因する異常燃焼など)とを判別する機能が備えられている。
[Abnormal combustion detector]
In the abnormal combustion detection device according to the present embodiment, various abnormal combustions that occur in the engine 1 based on detection information from the detectors 12, 28, 41, etc., are generated under normal ignition. A function of discriminating between knocking and other abnormal combustion (for example, abnormal combustion caused by lubricating oil, abnormal combustion caused by hot surface ignition, etc.) is provided.
 ここで、図2は本実施形態で対象となる異常燃焼の特性を比較した表、図3は各異常燃焼におけるノッキング強度の時間変化の様子を示すグラフである。なお、詳細後述するが、潤滑油に起因する異常燃焼および熱面着火に起因する異常燃焼は、基本的にはノッキングを併発するという特徴があるため、以降では正常な着火の下で発生するノッキングを「通常のノッキング」とも称することがある。すなわち、「通常のノッキング」とは、点火装置27による正常な着火の下で発生するものを意味する。これに対して、「通常のノッキング以外の他の異常燃焼」とは、非正常な着火に起因する異常燃焼を意味し、しばしばノッキングも併発する。それでは、図2および図3を参照しながら、通常のノッキング、潤滑油に起因する異常燃焼、熱面着火に起因する異常燃焼、の特性について順番に説明する。 Here, FIG. 2 is a table comparing the characteristics of the abnormal combustion that is the object of the present embodiment, and FIG. 3 is a graph showing how the knocking intensity changes with time in each abnormal combustion. As will be described in detail later, abnormal combustion caused by lubricating oil and abnormal combustion caused by hot surface ignition are basically characterized by simultaneous knocking, and hence knocking that occurs under normal ignition thereafter. May also be referred to as “normal knocking”. That is, “normal knocking” means that that occurs under normal ignition by the ignition device 27. On the other hand, “abnormal combustion other than normal knocking” means abnormal combustion due to abnormal ignition, and knocking often occurs at the same time. The characteristics of normal knocking, abnormal combustion caused by lubricating oil, and abnormal combustion caused by hot surface ignition will be described in order with reference to FIGS.
 「通常のノッキング」とは、火炎伝播により燃焼圧が上昇する過程で、混合気の未燃焼部分が自己着火を起こすことにより、圧力波が燃焼室2内を往復伝播して共鳴する現象である。図2および図3に示すように、通常のノッキングは、他の二つの異常燃焼と比較して、所定レベルのノック強度が相対的に高い頻度で連続的に発生する傾向にあり、そのサイクル変動は比較的小さいという特性がある。なお、「ノック強度」とは、エンジンに発生するノッキングの強さの度合いを示す指標である。また、燃焼圧から得られる最高燃焼圧Pmaxや図示平均有効圧Pmiおよびそれらサイクル変動も、他の二つの異常燃焼と比較して、相対的に小さいという特性がある。 "Normal knocking" is a phenomenon in which the pressure wave reciprocates in the combustion chamber 2 and resonates due to self-ignition of the unburned portion of the air-fuel mixture in the process of increasing the combustion pressure due to flame propagation. . As shown in FIGS. 2 and 3, normal knocking tends to occur continuously at a relatively high frequency with a predetermined level of knock intensity compared to the other two abnormal combustions, and its cycle fluctuations. Is relatively small. The “knock strength” is an index indicating the degree of knocking generated in the engine. Further, the maximum combustion pressure Pmax obtained from the combustion pressure, the indicated mean effective pressure Pmi, and their cycle fluctuations are also relatively small compared to the other two abnormal combustions.
 「潤滑油に起因する異常燃焼」とは、燃焼室2内に滞留する潤滑油(例えばオイル上がりした潤滑油)が自己着火を起こして燃焼圧を急激に増大させる現象である。なお、潤滑油は燃焼室2内でミスト或いは蒸気の状態で分散しているため、燃焼室2内の多点(多数の位置)でほぼ同時に自己着火を起こす(故に、急激な圧力上昇を起こすことになる)。このように、潤滑油に起因する異常燃焼では、燃焼圧が急激に増大するため、ノッキングを併発するという特徴がある。図2および図3に示すように、潤滑油に起因する異常燃焼では、比較的大きなレベルのノック強度が、相対的に低頻度で単発的・偶発的又は断続的に発生する傾向にある。より詳細には、潤滑油に起因する異常燃焼は、ほとんどの場合に連続して発生せず、その発生頻度も少ない(なかでも発生初期が特に少ない)。そのため、ノック強度のサイクル変動が大きい。また、前述の多点着火によって最高燃焼圧Pmaxおよび図示平均有効圧Pmiが正常燃焼より高くなり、また、そのサイクル変動も大きくなるという特性がある。 “Abnormal combustion due to lubricating oil” is a phenomenon in which the lubricating oil staying in the combustion chamber 2 (for example, the lubricating oil that has risen) causes self-ignition to rapidly increase the combustion pressure. In addition, since the lubricating oil is dispersed in the combustion chamber 2 in the form of mist or steam, self-ignition occurs almost simultaneously at multiple points (multiple positions) in the combustion chamber 2 (and thus causes a sudden pressure increase). Will be.) As described above, abnormal combustion caused by the lubricating oil has a feature that knocking occurs simultaneously because the combustion pressure rapidly increases. As shown in FIG. 2 and FIG. 3, in abnormal combustion caused by lubricating oil, a relatively large level of knock strength tends to occur once, accidentally, or intermittently at a relatively low frequency. More specifically, the abnormal combustion caused by the lubricating oil does not occur continuously in most cases, and the frequency of occurrence is low (in particular, the initial occurrence is particularly low). Therefore, the cycle variation of knock strength is large. Further, there is a characteristic that the maximum combustion pressure Pmax and the indicated mean effective pressure Pmi are higher than those of normal combustion due to the above-mentioned multipoint ignition, and the cycle fluctuation is also increased.
 ここで、図4は、正常燃焼および潤滑油に起因する異常燃焼(進角あり、進角なし)におけるクランク角度と燃焼圧との関係を表すグラフである。この図4を参照しても分かるように、潤滑油に起因する異常燃焼では、必ずしも着火時期が進角するわけではなく、進角しなくても多点着火を伴って燃焼最高圧Pmaxが高くなるケースが多い。 Here, FIG. 4 is a graph showing the relationship between the crank angle and the combustion pressure in normal combustion and abnormal combustion (with advance and without advance) due to lubricating oil. As can be seen from FIG. 4, in the abnormal combustion caused by the lubricating oil, the ignition timing does not necessarily advance, and the maximum combustion pressure Pmax increases with multi-point ignition without advance. There are many cases.
 「熱面着火に起因する異常燃焼」とは、混合気が燃焼室2内の過熱した高温部分に接触することで自己着火を起こして、混合気の着火時期を徐々に早める現象である。そのため、ノッキングを併発する。熱面着火に起因する異常燃焼では、図2および図3に示すように、大きなレベルのノック強度が連続的に発生して短時間で重度に成長していく傾向にある。また、最高燃焼圧Pmaxが正常燃焼よりも大幅に高くなるという特性がある。 “Abnormal combustion due to hot surface ignition” is a phenomenon in which the air-fuel mixture comes into contact with the overheated high-temperature portion in the combustion chamber 2 to cause self-ignition and gradually accelerates the ignition timing of the air-fuel mixture. Therefore, knocking occurs at the same time. In abnormal combustion resulting from hot surface ignition, as shown in FIGS. 2 and 3, a large level of knock intensity is continuously generated and tends to grow severely in a short time. Further, there is a characteristic that the maximum combustion pressure Pmax is significantly higher than that of normal combustion.
 本実施形態では、上記のような特性の差異に着目して、各種の異常燃焼の検出方法として、(I)ノック強度が閾値以上となる発生頻度、連続性に基づく検出方法、(II)ノック強度のサイクル変動値に基づく検出方法、(III)燃焼最高圧Pmax、燃焼最高圧Pmaxのサイクル変動値、図示平均有効圧Pmiのサイクル変動値、に基づく検出方法、を提案する。 In the present embodiment, paying attention to the difference in characteristics as described above, various abnormal combustion detection methods include (I) a detection method based on occurrence frequency, continuity at which the knock intensity is equal to or greater than a threshold value, and (II) knock. A detection method based on the cycle fluctuation value of the intensity, and (III) a detection method based on the cycle fluctuation value of the combustion maximum pressure Pmax, the combustion maximum pressure Pmax, and the cycle fluctuation value of the indicated mean effective pressure Pmi are proposed.
 それでは、以下において、異常燃焼検出装置の具体的な構成について説明する。まず、第1実施形態に係る異常燃焼検出装置50の構成を説明する。図5は、第1実施形態に係る異常燃焼検出装置50の機能ブロック図である。 Now, a specific configuration of the abnormal combustion detection device will be described below. First, the configuration of the abnormal combustion detection device 50 according to the first embodiment will be described. FIG. 5 is a functional block diagram of the abnormal combustion detection device 50 according to the first embodiment.
 異常燃焼検出装置50は、CPU、ROM、RAM等を搭載したマイクロコンピュータを主体として構成されており、CPUがROMに記憶された異常燃焼検出用の制御プログラムに従って、エンジン1に生じる異常燃焼を検出する。異常燃焼検出器50には、ノックセンサ3(加速度検出器12等)およびクランク角度検出器28などが電気的に接続されている。 The abnormal combustion detection device 50 is mainly composed of a microcomputer equipped with a CPU, ROM, RAM, etc., and the CPU detects abnormal combustion occurring in the engine 1 in accordance with an abnormal combustion detection control program stored in the ROM. To do. Knock sensor 3 (acceleration detector 12 etc.), crank angle detector 28 etc. are electrically connected to abnormal combustion detector 50.
 図5に示すように、異常燃焼検出装置50は、ノックセンサ3からの検出情報に基づきノック強度およびそのサイクル変動値などを算出するノック強度算出部52と、筒内の異常燃焼を検出する異常燃焼判定部54と、を備えている。 As shown in FIG. 5, the abnormal combustion detection device 50 includes a knock intensity calculation unit 52 that calculates a knock intensity and its cycle fluctuation value based on detection information from the knock sensor 3, and an abnormality that detects abnormal combustion in the cylinder. A combustion determination unit 54.
 一方、電子制御ユニットECUは、CPU、ROM、RAM等を搭載したマイクロコンピュータを主体として構成されており、各種検出器等からの検出情報に基づき、CPUがROMに記憶された燃焼制御プログラムに従ってエンジン制御を実行する。この電子制御ユニットECUには、空燃比制御装置25、燃焼供給装置26および点火装置27などが電気的に接続されている。ここで、図5に示すように、電子制御ユニットECUは、空燃比制御装置25、燃焼供給装置26および点火装置27などの作動を制御して、筒内の燃焼を制御する燃焼制御部51を備えている。 On the other hand, the electronic control unit ECU is composed mainly of a microcomputer equipped with a CPU, ROM, RAM, etc., and the CPU is based on detection information from various detectors and the like according to a combustion control program stored in the ROM. Execute control. The electronic control unit ECU is electrically connected with an air-fuel ratio control device 25, a combustion supply device 26, an ignition device 27, and the like. Here, as shown in FIG. 5, the electronic control unit ECU controls the operation of the air-fuel ratio control device 25, the combustion supply device 26, the ignition device 27, and the like to control the combustion control unit 51 that controls the combustion in the cylinder. I have.
 (ノック強度の算出)
 ノック強度算出部52は、ノックセンサ3(加速度検出器12等)で検出された振動値Vと、クランク角度検出器41で検出されたクランク角度θとに基づき、所定の演算処理を実行することで、ノック強度を算出する。具体的には、図6(a)に示すように、振動波形を所定の解析ウィンドウで周波数分析(高速フーリエ変換)を行い、図6(b)に示すパワースペクトルを算出する。解析ウィンドウの設定範囲Δθとしては、上死点(TDC)近傍の任意の範囲に設定可能であり、例えば、上死点近傍の40度の範囲で設定してもよい。
(Calculation of knock strength)
The knock intensity calculation unit 52 executes predetermined calculation processing based on the vibration value V detected by the knock sensor 3 (acceleration detector 12 or the like) and the crank angle θ detected by the crank angle detector 41. Then, the knock strength is calculated. Specifically, as shown in FIG. 6A, the vibration waveform is subjected to frequency analysis (fast Fourier transform) in a predetermined analysis window, and the power spectrum shown in FIG. 6B is calculated. The setting range Δθ of the analysis window can be set to an arbitrary range near the top dead center (TDC), and may be set, for example, within a range of 40 degrees near the top dead center.
 続いて、下記の式(1)で算出されるノッキング固有周波数を中心とした所定の周波数帯域(「ノック周波数帯域」と称する)にバンドパスフィルタをかけ、このノック周波数帯域の振動変動幅ΔVのオーバーオール値(二乗平均値)を算出し、これをノック強度(Knock Intensity)と定義する。なお、下記の式(1)において、管内の音速は、管内の温度の関数として算出される。
  ノッキング固有周波数 = 管内の音速/(2×シリンダ径)…(1)
Subsequently, a bandpass filter is applied to a predetermined frequency band (referred to as “knock frequency band”) centered on the knocking natural frequency calculated by the following equation (1), and the vibration fluctuation width ΔV of the knock frequency band is calculated. An overall value (root mean square value) is calculated, and this is defined as knock intensity. In the following equation (1), the speed of sound in the tube is calculated as a function of the temperature in the tube.
Knocking natural frequency = sound velocity in the pipe / (2 x cylinder diameter) (1)
 (ノック強度のサイクル変動値の算出)
 ノック強度算出部52は、ノック強度のサイクル変動値も算出する。ここで、ノック強度のサイクル変動値とは、複数回のサイクルにおけるノック強度の変動の度合いを示す指標であり、例えば、ノック強度の最高値と最小値との差、標準偏差、COV(共分散)などが該当する。なお、本実施形態において、「サイクル」とは、吸気、圧縮、燃焼・膨張、排気の一連の過程を意味する。
(Calculation of knock fluctuation cycle fluctuation value)
Knock strength calculator 52 also calculates a cycle variation value of the knock strength. Here, the cycle fluctuation value of the knock intensity is an index indicating the degree of fluctuation of the knock intensity in a plurality of cycles. For example, the difference between the maximum value and the minimum value of the knock intensity, standard deviation, COV (covariance) ). In the present embodiment, the “cycle” means a series of processes of intake, compression, combustion / expansion, and exhaust.
 (異常燃焼の検出)
 異常燃焼判定部54は、上記の(I),(II)の検出方法を単独で又は相互に組み合わせて実行することで、ノッキング、潤滑油に起因する異常燃焼、熱面着火に起因する異常燃焼など様々な異常燃焼を検出する。
(Abnormal combustion detection)
The abnormal combustion determination unit 54 executes the above detection methods (I) and (II) singly or in combination with each other, thereby causing abnormal combustion due to knocking, lubricating oil, and hot surface ignition. Various abnormal combustion is detected.
 (I)ノック強度の発生頻度、連続性に基づく検出方法
 異常燃焼判定部54は、異常燃焼を検出するための指標として発生頻度および連続性のうち少なくとも一方を利用する。具体的には、異常燃焼判定部54は、所定回数のサイクル中において、ノック強度が所定の閾値(「基準閾値」と称する)以上となるサイクル数(発生頻度)を記録して、その発生頻度が第1の閾値以上である場合、すなわち、発生頻度が高い場合には熱面着火に起因する異常燃焼であると判定する。一方、発生頻度が第1の閾値未満且つ第2閾値の以上である場合、すなわち、発生頻度が中程度の場合には、通常のノッキングであると判定する。また、発生頻度が第2の閾値未満である場合、すなわち、発生頻度が低い場合には、潤滑油に起因する異常燃焼であると判定する。なお、第1の閾値は第2の閾値よりも大きな値(第1の閾値>第2の閾値)とする。これは上述したように、潤滑油に起因する異常燃焼は、通常のノッキングと比較して、その発生頻度が低いという特性、および、熱面着火に起因する異常燃焼は、通常のノッキングと比較して、その発生頻度が高いという特性を利用したものである。なお、基準閾値、第1の閾値および第2の閾値は、エンジン1の作動状態等に応じて任意に可変設定することのできる変数とする。
(I) Detection Method Based on Knock Strength Occurrence Frequency and Continuity The abnormal combustion determination unit 54 uses at least one of the occurrence frequency and continuity as an index for detecting abnormal combustion. Specifically, the abnormal combustion determination unit 54 records the number of cycles (occurrence frequency) at which the knock intensity is equal to or higher than a predetermined threshold (referred to as “reference threshold”) during a predetermined number of cycles, and the occurrence frequency thereof. Is greater than or equal to the first threshold, that is, when the occurrence frequency is high, it is determined that the abnormal combustion is caused by hot surface ignition. On the other hand, if the occurrence frequency is less than the first threshold and greater than or equal to the second threshold, that is, if the occurrence frequency is medium, it is determined that the knocking is normal. Further, when the occurrence frequency is less than the second threshold, that is, when the occurrence frequency is low, it is determined that the abnormal combustion is caused by the lubricating oil. Note that the first threshold value is larger than the second threshold value (first threshold value> second threshold value). This is because, as described above, abnormal combustion caused by lubricating oil is less frequent than normal knocking, and abnormal combustion caused by hot surface ignition is compared with normal knocking. Therefore, it uses the characteristic that the frequency of occurrence is high. The reference threshold value, the first threshold value, and the second threshold value are variables that can be arbitrarily variably set according to the operating state of the engine 1 or the like.
 また、異常燃焼判定部54は、基準閾値以上となるノック強度が連続して検出されたとき、その連続回数が第3の閾値以上である場合、すなわち、連続性が高い場合には熱面着火に起因する異常燃焼であると判定する。一方、連続回数が第3の閾値未満且つ第4の閾値以上である場合、すなわち、連続性が中程度の場合には、通常のノッキングであると判定する。また、連続回数が第4の閾値未満である場合、すなわち、連続性が低い場合には、潤滑油に起因する異常燃焼であると判定する。なお、第3の閾値は第4の閾値よりも大きな値(第3の閾値>第4の閾値)とする。これは上述したように、潤滑油に起因する異常燃焼は、ほとんどの場合に連続して発生しないという特性、および、熱面着火に起因する異常燃焼は、ほぼ連続的に発生するという特性を利用したものである。なお、第3の閾値および第4の閾値は、エンジン1の作動状態等に応じて任意に可変設定することのできる変数とする。 Further, when the knock intensity that is equal to or greater than the reference threshold value is continuously detected, the abnormal combustion determination unit 54 performs hot surface ignition when the number of consecutive times is equal to or greater than the third threshold value, that is, when continuity is high. It is determined that the combustion is abnormal combustion. On the other hand, when the number of consecutive times is less than the third threshold value and greater than or equal to the fourth threshold value, that is, when the continuity is medium, it is determined that the knocking is normal. Further, when the number of continuous times is less than the fourth threshold, that is, when the continuity is low, it is determined that the abnormal combustion is caused by the lubricating oil. The third threshold value is larger than the fourth threshold value (third threshold value> fourth threshold value). As described above, the abnormal combustion caused by the lubricating oil does not occur continuously in most cases, and the abnormal combustion caused by hot surface ignition occurs almost continuously. It is a thing. The third threshold value and the fourth threshold value are variables that can be variably set according to the operating state of the engine 1 or the like.
 (II)ノック強度のサイクル変動に基づく検出方法
 異常燃焼判定部54は、異常燃焼を検出するための指標としてノック強度のサイクル変動値を利用する。具体的には、異常燃焼判定部54は、ノック強度のサイクル変動値が第5の閾値以上である場合に、潤滑油に起因する異常燃焼が発生したと判定する。これは前述したように、潤滑油に起因する異常燃焼の場合には、燃焼のサイクル間のばらつきが通常のノッキングよりも大きくなるという特性を利用したものである。このとき、この検出方法(II)を単独で使用してもよいが、上記の(I)の検出方法との組合せにより、当該異常燃焼の検出精度を更に向上させることができる。なお、第5の閾値は、エンジン1の作動状態等に応じて任意に可変設定することのできる変数とする。
(II) Detection Method Based on Knock Intensity Cycle Variation The abnormal combustion determination unit 54 uses the cycle variation value of the knock strength as an index for detecting abnormal combustion. Specifically, the abnormal combustion determination unit 54 determines that abnormal combustion due to the lubricating oil has occurred when the cycle fluctuation value of the knock intensity is equal to or greater than the fifth threshold value. As described above, this utilizes the characteristic that in the case of abnormal combustion caused by lubricating oil, the variation between combustion cycles is larger than that of normal knocking. At this time, the detection method (II) may be used alone, but the detection accuracy of the abnormal combustion can be further improved by combination with the detection method (I). The fifth threshold value is a variable that can be variably set according to the operating state of the engine 1 or the like.
 (回避制御)
 異常燃焼判定部54は、いずれかの異常燃焼を検出した場合、当該異常燃焼に係る検出情報を電子制御ユニットECUの燃焼制御部51へ送信する。電子制御ユニットECUの燃焼制御部51は、異常燃焼判定部54からの検出情報に基づき、異常燃焼の種別に応じた回避制御を実行するため、エンジン各部(空燃比制御装置25、燃料供給装置26、点火装置27など)の作動を制御する。
(Avoidance control)
When any abnormal combustion is detected, the abnormal combustion determination unit 54 transmits detection information related to the abnormal combustion to the combustion control unit 51 of the electronic control unit ECU. The combustion control unit 51 of the electronic control unit ECU executes avoidance control according to the type of abnormal combustion based on the detection information from the abnormal combustion determination unit 54, so that each part of the engine (air-fuel ratio control device 25, fuel supply device 26). The operation of the ignition device 27, etc.).
 次に、第1実施形態に係る異常燃焼検出装置50が実行する異常燃焼検出方法の一例について説明する。ここで、図7は、上記異常燃焼検出方法の一例を示すフローチャートである。 Next, an example of the abnormal combustion detection method executed by the abnormal combustion detection device 50 according to the first embodiment will be described. FIG. 7 is a flowchart showing an example of the abnormal combustion detection method.
 まず、ノック強度算出部52は、ノックセンサ3(加速度検出器12など)から入力される検出情報に基づきノック強度を算出する(ステップS101)。 First, the knock strength calculation unit 52 calculates the knock strength based on the detection information input from the knock sensor 3 (acceleration detector 12 or the like) (step S101).
 続いて、異常燃焼判定部54は、ノック強度が基準閾値を超えているか否かを判定する(ステップS102)。 Subsequently, the abnormal combustion determination unit 54 determines whether or not the knock intensity exceeds the reference threshold value (step S102).
 ノック強度が基準閾値以上である場合(ステップS102:YES)、異常燃焼判定部54は、過去Nサイクル中における基準閾値以上のノック強度の発生頻度、あるいは、ノック強度が基準閾値以上となる連続回数を算出する(ステップS103)。なお、ノック強度の発生頻度および連続回数の双方を算出するようにしてもよい。 When the knock magnitude is greater than or equal to the reference threshold (step S102: YES), the abnormal combustion determination unit 54 determines whether the knock intensity is greater than or equal to the reference threshold in the past N cycles or the number of consecutive times that the knock magnitude is greater than or equal to the reference threshold Is calculated (step S103). It is also possible to calculate both the occurrence frequency of knock strength and the number of consecutive times.
 異常燃焼判定部54は、上記のステップS103で得られた、発生頻度又は連続回数を所定の閾値(第1~第4の閾値)と比較して、通常のノッキング、潤滑油に起因する異常燃焼、熱面着火に起因する異常燃焼、のうちのいずれの異常燃焼が発生したかを判定する(ステップS104)。 The abnormal combustion determination unit 54 compares the occurrence frequency or the continuous number obtained in step S103 with a predetermined threshold value (first to fourth threshold values), and compares the abnormal combustion caused by normal knocking and lubricating oil. Then, it is determined which of the abnormal combustion caused by hot surface ignition has occurred (step S104).
 続いて、電子制御ユニットECUの燃焼制御部51は、上記のステップS104で検出された異常燃焼の種別に応じた回避制御を実行する(ステップS105)。例えば、ノッキングに対する回避制御として、着火時期を遅角する制御など、熱面着火に起因する異常燃焼に対する回避制御として、エンジン1を即停止させる制御など、潤滑油に起因する異常燃焼に対する回避制御として、エンジン1の出力を低下させる制御など、を実行する。 Subsequently, the combustion control unit 51 of the electronic control unit ECU executes avoidance control according to the type of abnormal combustion detected in step S104 (step S105). For example, as avoidance control for knocking, as control for retarding the ignition timing, as avoidance control for abnormal combustion due to hot surface ignition, as control for avoiding abnormal combustion due to lubricating oil, such as control to immediately stop the engine 1 Control for reducing the output of the engine 1 is executed.
 次に、第2実施形態に係る異常燃焼検出装置150の構成を説明する。図8は、第2実施形態に係る異常燃焼検出装置150の機能ブロック図である。 Next, the configuration of the abnormal combustion detection device 150 according to the second embodiment will be described. FIG. 8 is a functional block diagram of the abnormal combustion detection device 150 according to the second embodiment.
 異常燃焼検出装置150は、CPU、ROM、RAM等を搭載したマイクロコンピュータを主体として構成されており、CPUがROMに記憶された異常燃焼検出用の制御プログラムに従って、エンジン1に生じる異常燃焼を検出する。異常燃焼検出装置150には、ノックセンサ3(燃焼圧検出器28)およびクランク角度検出器28などが電気的に接続されている。 The abnormal combustion detection device 150 is mainly composed of a microcomputer equipped with a CPU, ROM, RAM, etc., and the CPU detects abnormal combustion occurring in the engine 1 in accordance with the control program for detecting abnormal combustion stored in the ROM. To do. Knock sensor 3 (combustion pressure detector 28), crank angle detector 28, and the like are electrically connected to abnormal combustion detection device 150.
 図8に示すように、異常燃焼検出装置150は、ノックセンサ3(燃焼圧検出器28)からの検出情報に基づきノック強度およびそのサイクル変動値などを算出するノック強度算出部152と、同じくノックセンサ3(燃焼圧検出器28)からの検出情報に基づき最高燃焼圧Pmax、図示平均有効圧Pmi、およびそれらのサイクル変動値などを算出する燃焼圧解析部153と、ノック強度および燃焼圧に基づき筒内の異常燃焼を検出する異常燃焼判定部154と、を備えている。 As shown in FIG. 8, the abnormal combustion detection device 150 includes a knock intensity calculation unit 152 that calculates a knock intensity and its cycle fluctuation value based on detection information from the knock sensor 3 (combustion pressure detector 28), and also knocks. Based on the detection information from the sensor 3 (combustion pressure detector 28), the combustion pressure analysis unit 153 that calculates the maximum combustion pressure Pmax, the indicated mean effective pressure Pmi, and their cycle fluctuation values, and the like, and based on the knock intensity and the combustion pressure An abnormal combustion determination unit 154 that detects abnormal combustion in the cylinder.
 一方、電子制御ユニットECUは、CPU、ROM、RAM等を搭載したマイクロコンピュータを主体として構成されており、各種検出器等からの検出情報に基づき、CPUがROMに記憶された燃焼制御プログラムに従ってエンジン制御を実行する。この電子制御ユニットECUには、空燃比制御装置25、燃焼供給装置26および点火装置27などが電気的に接続されている。ここで、図8に示すように、電子制御ユニットECUは、空燃比制御装置25、燃焼供給装置26および点火装置27などの作動を制御して、筒内の燃焼を制御する燃焼制御部51を備えている。 On the other hand, the electronic control unit ECU is composed mainly of a microcomputer equipped with a CPU, ROM, RAM, etc., and the CPU is based on detection information from various detectors and the like according to a combustion control program stored in the ROM. Execute control. The electronic control unit ECU is electrically connected with an air-fuel ratio control device 25, a combustion supply device 26, an ignition device 27, and the like. Here, as shown in FIG. 8, the electronic control unit ECU controls the operations of the air-fuel ratio control device 25, the combustion supply device 26, the ignition device 27, etc., and controls the combustion control unit 51 that controls the combustion in the cylinder. I have.
 (ノック強度の算出)
 ノック強度算出部152は、ノックセンサ3(燃焼圧検出器28)で検出された燃焼圧Pと、クランク角度検出器41で検出されたクランク角度θとに基づき、所定の演算処理を実行することで、ノック強度を算出する。具体的には、図6(a)に示すように、燃焼圧波形を所定の解析ウィンドウで周波数分析(高速フーリエ変換)を行い、図6(b)に示すパワースペクトルを算出する。解析ウィンドウの設定範囲Δθとしては、上死点(TDC)近傍の任意の範囲に設定可能であり、例えば、上死点近傍の40度の範囲で設定してもよい。
(Calculation of knock strength)
Knock intensity calculation unit 152 executes a predetermined calculation process based on combustion pressure P detected by knock sensor 3 (combustion pressure detector 28) and crank angle θ detected by crank angle detector 41. Then, the knock strength is calculated. Specifically, as shown in FIG. 6A, the combustion pressure waveform is subjected to frequency analysis (fast Fourier transform) in a predetermined analysis window, and the power spectrum shown in FIG. 6B is calculated. The setting range Δθ of the analysis window can be set to an arbitrary range near the top dead center (TDC), and may be set, for example, within a range of 40 degrees near the top dead center.
 続いて、上記の式(1)で算出されるノッキング固有周波数を中心とした所定の周波数帯域(「ノック周波数帯域」と称する)にバンドパスフィルタをかけ、このノック周波数帯域の燃焼圧変動幅ΔPのオーバーオール値(二乗平均値)を算出し、これをノック強度(Knock Intensity)と定義する。 Subsequently, a bandpass filter is applied to a predetermined frequency band (referred to as “knock frequency band”) centered on the knocking natural frequency calculated by the above equation (1), and the combustion pressure fluctuation width ΔP in this knock frequency band. The overall value (root mean square value) is calculated, and this is defined as the knock intensity.
 (ノック強度のサイクル変動値の算出)
 ノック強度算出部152は、ノック強度のサイクル変動値も算出する。ここで、ノック強度のサイクル変動値とは、複数回のサイクルにおけるノック強度の変動の度合いを示す指標であり、例えば、ノック強度の最高値と最小値との差、標準偏差、COV(共分散)などが該当する。なお、本実施形態において、「サイクル」とは、吸気、圧縮、燃焼・膨張、排気の一連の過程を意味する。
(Calculation of knock fluctuation cycle fluctuation value)
Knock strength calculation unit 152 also calculates a cycle variation value of the knock strength. Here, the cycle fluctuation value of the knock intensity is an index indicating the degree of fluctuation of the knock intensity in a plurality of cycles. For example, the difference between the maximum value and the minimum value of the knock intensity, standard deviation, COV (covariance) ). In the present embodiment, the “cycle” means a series of processes of intake, compression, combustion / expansion, and exhaust.
 (燃焼圧の算出)
 燃焼圧解析部153は、ノックセンサ3(燃焼圧検出器28)で検出された燃焼圧Pに基づき、燃焼最高圧Pmax、図示平均有効圧Pmi、およびそれらのサイクル変動値、を算出する。ここで、最高燃焼圧Pmaxとは、燃焼室2の1サイクル中における燃焼圧(筒内圧)の最大値をいう。燃焼最高圧Pmaxのサイクル変動値とは、連続する複数サイクル中での燃焼最高圧Pmaxの変動の度合いを示す指標であり、具体的には、燃焼最高圧Pmaxの最高値と最小値との差、標準偏差、COV(共分散)、などが該当する。図示平均有効圧Pmiとは、各シリンダの1サイクル当りの仕事量を行程容積で割った値をいう。図示平均有効圧Pmiのサイクル変動値とは、連続する複数サイクル中での図示平均有効圧Pmiの変動の度合いを示す指標であり、具体的には、図示平均有効圧Pmiの最高値と最小値との差、標準偏差、COV(共分散)、などが該当する。
(Calculation of combustion pressure)
The combustion pressure analysis unit 153 calculates the maximum combustion pressure Pmax, the indicated mean effective pressure Pmi, and their cycle fluctuation values based on the combustion pressure P detected by the knock sensor 3 (combustion pressure detector 28). Here, the maximum combustion pressure Pmax means the maximum value of the combustion pressure (in-cylinder pressure) during one cycle of the combustion chamber 2. The cycle fluctuation value of the maximum combustion pressure Pmax is an index indicating the degree of fluctuation of the maximum combustion pressure Pmax in a plurality of successive cycles. Specifically, the difference between the maximum value and the minimum value of the maximum combustion pressure Pmax. , Standard deviation, COV (covariance), and the like. The indicated mean effective pressure Pmi is a value obtained by dividing the work amount per cycle of each cylinder by the stroke volume. The cycle fluctuation value of the indicated mean effective pressure Pmi is an index indicating the degree of fluctuation of the indicated mean effective pressure Pmi in a plurality of consecutive cycles, and specifically, the maximum value and the minimum value of the indicated mean effective pressure Pmi. Difference, standard deviation, COV (covariance), and the like.
 (異常燃焼の検出)
 異常燃焼判定部154は、上記の(I),(II),(III)の検出方法を単独で又は相互に組み合わせて実行することで、ノッキング、潤滑油に起因する異常燃焼、熱面着火に起因する異常燃焼などを検出する。
(Abnormal combustion detection)
The abnormal combustion determination unit 154 executes the detection methods (I), (II), and (III) described above alone or in combination with each other to prevent abnormal combustion caused by knocking, lubricating oil, and hot surface ignition. Detect abnormal combustion caused by it.
 (I)ノック強度の発生頻度、連続性に基づく検出方法
 異常燃焼判定部154は、異常燃焼を検出するための指標として発生頻度および連続性のうち少なくとも一方を利用する。具体的には、異常燃焼判定部154は、所定回数のサイクル中において、ノック強度が所定の閾値(「基準閾値」と称する)以上となるサイクル数(発生頻度)を記録して、その発生頻度が第1の閾値以上である場合、すなわち、発生頻度が高い場合には熱面着火に起因する異常燃焼であると判定する。一方、発生頻度が第1の閾値未満且つ第2の閾値以上である場合、すなわち、発生頻度が中程度の場合には、通常のノッキングであると判定する。また、発生頻度が第2の閾値未満である場合、すなわち、発生頻度が低い場合には、潤滑油に起因する異常燃焼であると判定する。なお、第1の閾値は第2の閾値よりも大きな値(第1の閾値>第2の閾値)とする。これは上述したように、潤滑油に起因する異常燃焼は、通常のノッキングと比較して、その発生頻度が低いという特性、および、熱面着火に起因する異常燃焼は、通常のノッキングと比較して、その発生頻度が高いという特性を利用したものである。なお、基準閾値、第1の閾値および第2の閾値は、エンジン1の作動状態等に応じて任意に可変設定することのできる変数とする。
(I) Detection Method Based on Knock Strength Occurrence Frequency and Continuity The abnormal combustion determination unit 154 uses at least one of the occurrence frequency and continuity as an index for detecting abnormal combustion. Specifically, the abnormal combustion determination unit 154 records the number of cycles (occurrence frequency) at which the knock intensity is equal to or greater than a predetermined threshold (referred to as “reference threshold”) during a predetermined number of cycles, and the occurrence frequency thereof. Is greater than or equal to the first threshold, that is, when the occurrence frequency is high, it is determined that the abnormal combustion is caused by hot surface ignition. On the other hand, when the occurrence frequency is less than the first threshold and greater than or equal to the second threshold, that is, when the occurrence frequency is medium, it is determined that the knocking is normal. Further, when the occurrence frequency is less than the second threshold, that is, when the occurrence frequency is low, it is determined that the abnormal combustion is caused by the lubricating oil. Note that the first threshold value is larger than the second threshold value (first threshold value> second threshold value). This is because, as described above, abnormal combustion caused by lubricating oil is less frequent than normal knocking, and abnormal combustion caused by hot surface ignition is compared with normal knocking. Therefore, it uses the characteristic that the frequency of occurrence is high. The reference threshold value, the first threshold value, and the second threshold value are variables that can be arbitrarily variably set according to the operating state of the engine 1 or the like.
 また、異常燃焼判定部154は、基準閾値以上となるノック強度が連続して検出されたとき、その連続回数が第3の閾値以上である場合、すなわち、連続性が高い場合には熱面着火に起因する異常燃焼であると判定する。一方、連続回数が第3の閾値未満且つ第4の閾値以上である場合、すなわち、連続性が中程度の場合には、通常のノッキングであると判定する。また、連続回数が第4の閾値未満である場合、すなわち、連続性が低い場合には、潤滑油に起因する異常燃焼であると判定する。なお、第3の閾値は第4の閾値よりも大きな値(第3の閾値>第4の閾値)とする。これは上述したように、潤滑油に起因する異常燃焼は、ほとんどの場合に連続して発生しないという特性、および、熱面着火に起因する異常燃焼は、ほぼ連続的に発生するという特性を利用したものである。なお、第3の閾値および第4の閾値は、エンジン1の作動状態等に応じて任意に可変設定することのできる変数とする。 Further, when the knock intensity that is equal to or greater than the reference threshold value is continuously detected, the abnormal combustion determination unit 154 performs hot surface ignition when the number of consecutive times is equal to or greater than the third threshold value, that is, when continuity is high. It is determined that the combustion is abnormal combustion. On the other hand, when the number of consecutive times is less than the third threshold value and greater than or equal to the fourth threshold value, that is, when the continuity is medium, it is determined that the knocking is normal. Further, when the number of continuous times is less than the fourth threshold, that is, when the continuity is low, it is determined that the abnormal combustion is caused by the lubricating oil. The third threshold value is larger than the fourth threshold value (third threshold value> fourth threshold value). As described above, the abnormal combustion caused by the lubricating oil does not occur continuously in most cases, and the abnormal combustion caused by hot surface ignition occurs almost continuously. It is a thing. The third threshold value and the fourth threshold value are variables that can be variably set according to the operating state of the engine 1 or the like.
 (II)ノック強度のサイクル変動に基づく検出方法
 異常燃焼判定部154は、異常燃焼を検出するための指標としてノック強度のサイクル変動値を利用する。具体的には、異常燃焼判定部154は、ノック強度のサイクル変動値が第5の閾値以上である場合に、潤滑油に起因する異常燃焼が発生したと判定する。これは前述したように、潤滑油に起因する異常燃焼の場合には、燃焼のサイクル間のばらつきが通常のノッキングよりも大きくなるという特性を利用したものである。このとき、この検出方法(II)を単独で使用してもよいが、上記の(I)の検出方法との組合せにより、当該異常燃焼の検出精度を更に向上させることができる。なお、第5の閾値は、エンジン1の作動状態等に応じて任意に可変設定することのできる変数とする。
(II) Detection Method Based on Knock Intensity Cycle Variation The abnormal combustion determination unit 154 uses the knock strength cycle variation value as an index for detecting abnormal combustion. Specifically, the abnormal combustion determination unit 154 determines that abnormal combustion due to the lubricating oil has occurred when the cycle variation value of the knock intensity is equal to or greater than the fifth threshold value. As described above, this utilizes the characteristic that in the case of abnormal combustion caused by lubricating oil, the variation between combustion cycles is larger than that of normal knocking. At this time, the detection method (II) may be used alone, but the detection accuracy of the abnormal combustion can be further improved by combination with the detection method (I). The fifth threshold value is a variable that can be variably set according to the operating state of the engine 1 or the like.
 (III)燃焼圧に基づく検出方法
 異常燃焼判定部154は、異常燃焼を検出するための指標として、最高燃焼圧Pmax、最高燃焼圧Pmaxのサイクル変動、図示平均有効圧Pmiのサイクル変動値のうちのいずれかを利用する。具体的には、異常燃焼判定部154は、燃焼最高圧Pmaxがサイクル平均値よりも第6の閾値以上上昇した場合、通常のノッキング以外の他の異常燃焼であると判定する。ここで、サイクル平均値とは、複数回のサイクル(例えば100回)での燃焼最高圧Pmaxの平均値をいう。また、異常燃焼判定部154は、最高燃焼圧Pmaxのサイクル変動値が予め設定された第7の閾値以上である場合、通常のノッキング以外の他の異常燃焼であると判定する。さらに、異常燃焼判定部154は、図示平均有効圧Pmiのサイクル変動値が予め設定された第8の閾値以上である場合、通常のノッキング以外の他の異常燃焼であると判定する。このとき、この検出方法(III)を単独で使用してもよいが、上記の(I),(II)の検出方法との組合せにより、当該異常燃焼の検出精度を更に向上させることができる。なお、第6の閾値、第7の閾値および第8の閾値は、エンジン1の作動状態等に応じて任意に可変設定することのできる変数とする。
(III) Detection Method Based on Combustion Pressure The abnormal combustion determination unit 154 uses the maximum combustion pressure Pmax, the cycle fluctuation of the maximum combustion pressure Pmax, and the cycle fluctuation value of the indicated mean effective pressure Pmi as an index for detecting abnormal combustion. Use one of the following. Specifically, the abnormal combustion determination unit 154 determines that the abnormal combustion is other than normal knocking when the maximum combustion pressure Pmax is higher than the cycle average value by a sixth threshold or more. Here, the cycle average value means an average value of the combustion maximum pressure Pmax in a plurality of cycles (for example, 100 times). Further, when the cycle variation value of the maximum combustion pressure Pmax is greater than or equal to a preset seventh threshold value, the abnormal combustion determination unit 154 determines that the abnormal combustion is other than normal knocking. Furthermore, when the cycle fluctuation value of the indicated mean effective pressure Pmi is equal to or greater than a preset eighth threshold value, the abnormal combustion determination unit 154 determines that the abnormal combustion is other than normal knocking. At this time, this detection method (III) may be used alone, but the detection accuracy of the abnormal combustion can be further improved by combination with the detection methods (I) and (II). Note that the sixth threshold value, the seventh threshold value, and the eighth threshold value are variables that can be variably set according to the operating state of the engine 1 or the like.
 (回避制御)
 異常燃焼判定部154は、いずれかの異常燃焼を検出した場合、当該異常燃焼に係る検出情報を電子制御ユニットECUの燃焼制御部51へ送信する。電子制御ユニットECUの燃焼制御部51は、異常燃焼判定部154からの検出情報に基づき、異常燃焼の種別に応じた回避制御を実行するため、エンジン各部(空燃比制御装置25、燃料供給装置26、点火装置27など)の作動を制御する。
(Avoidance control)
When any abnormal combustion is detected, the abnormal combustion determination unit 154 transmits detection information related to the abnormal combustion to the combustion control unit 51 of the electronic control unit ECU. The combustion control unit 51 of the electronic control unit ECU executes avoidance control according to the type of abnormal combustion based on the detection information from the abnormal combustion determination unit 154, so that each part of the engine (air-fuel ratio control device 25, fuel supply device 26). The operation of the ignition device 27, etc.).
 次に、第2実施形態に係る異常燃焼検出装置150が実行する異常燃焼検出方法の一例について説明する。ここで、図9は、上記異常燃焼検出方法の一例を示すフローチャートである。 Next, an example of the abnormal combustion detection method executed by the abnormal combustion detection device 150 according to the second embodiment will be described. FIG. 9 is a flowchart showing an example of the abnormal combustion detection method.
 まず、ノック強度算出部152は、ノックセンサ3(燃焼圧検出器28)から入力される検出情報に基づきノック強度を算出する(ステップS201)。 First, the knock intensity calculation unit 152 calculates the knock intensity based on the detection information input from the knock sensor 3 (combustion pressure detector 28) (step S201).
 続いて、異常燃焼判定部154は、ノック強度が基準閾値以上であるか否かを判定する(ステップS202)。 Subsequently, the abnormal combustion determination unit 154 determines whether or not the knock intensity is greater than or equal to a reference threshold value (step S202).
 ノック強度が基準閾値以上である場合(ステップS202:YES)には、異常燃焼判定部154は、過去Nサイクル中における基準値以上のノック強度の発生頻度、あるいは、ノック強度が基準閾値以上となる連続回数を算出する(ステップS203)。なお、ノック強度の発生頻度および連続回数の双方を算出するようにしてもよい。 When the knock magnitude is equal to or higher than the reference threshold value (step S202: YES), the abnormal combustion determination unit 154 causes the occurrence frequency of knock intensity equal to or higher than the reference value in the past N cycles, or the knock intensity is equal to or higher than the reference threshold value. The number of continuous times is calculated (step S203). It is also possible to calculate both the occurrence frequency of knock strength and the number of consecutive times.
 他方、ノック強度算出部152は、ノック強度のサイクル変動値も算出する(ステップS204)。 On the other hand, the knock strength calculation unit 152 also calculates the cycle variation value of the knock strength (step S204).
 続いて、燃焼圧解析部153は、筒内の最高燃焼圧Pmax、最高燃焼圧Pmaxのサイクル変動値、図示平均有効圧Pmiのサイクル変動値、のうちの少なくとも1つを算出する。 Subsequently, the combustion pressure analysis unit 153 calculates at least one of the maximum combustion pressure Pmax in the cylinder, the cycle variation value of the maximum combustion pressure Pmax, and the cycle variation value of the indicated mean effective pressure Pmi.
 そして、異常燃焼判定部154は、上記のステップS203~S205で得られた、(I)ノック強度の発生頻度、連続性、(II)ノック強度のサイクル変動値、(III)最高燃焼圧Pmax、最高燃焼圧Pmaxのサイクル変動値、図示平均有効圧Pmiのサイクル変動値、を第1~第8の閾値と比較して、これらの判定項目を総合的に判断したうえで、通常のノッキング、潤滑油に起因する異常燃焼、熱面着火に起因する異常燃焼、のうちのいずれの異常燃焼が発生したかを判定する。ここで、異常燃焼の判定手法としては種々あるが、例えば、検出項目のいずれか1項目でも上記(I)~(III)の判定基準を満たす場合に異常燃焼を検出したり、全ての検出項目で上記(I)~(III)の判定基準を満たす場合に異常燃焼を検出したり、各検出項目ごとに重み付けを変えたりしてもよい。 Then, the abnormal combustion determination unit 154 obtains (I) knock intensity occurrence frequency, continuity, (II) knock fluctuation cycle fluctuation value, (III) maximum combustion pressure Pmax, obtained in steps S203 to S205 above. Comparing the cycle fluctuation value of the maximum combustion pressure Pmax and the cycle fluctuation value of the indicated mean effective pressure Pmi with the first to eighth threshold values, and comprehensively judging these judgment items, normal knocking and lubrication It is determined which of abnormal combustion caused by oil and abnormal combustion caused by hot surface ignition has occurred. Here, there are various methods for determining abnormal combustion. For example, if any one of the detection items satisfies the determination criteria (I) to (III), abnormal combustion is detected, or all detection items are detected. Then, when the determination criteria (I) to (III) are satisfied, abnormal combustion may be detected, or the weight may be changed for each detection item.
 続いて、電子制御ユニットECUの燃焼制御部51は、上記のステップS206で検出された異常燃焼の種別に応じた回避制御を実行する(ステップS207)。例えば、ノッキングに対する回避制御として、着火時期を遅角する制御など、熱面着火に起因する異常燃焼に対する回避制御として、エンジン1を即停止させる制御など、潤滑油に起因する異常燃焼に対する回避制御として、エンジン1の出力を低下させる制御など、を実行する。 Subsequently, the combustion control unit 51 of the electronic control unit ECU executes avoidance control according to the type of abnormal combustion detected in step S206 (step S207). For example, as avoidance control for knocking, as control for retarding the ignition timing, as avoidance control for abnormal combustion due to hot surface ignition, as control for avoiding abnormal combustion due to lubricating oil, such as control to immediately stop the engine 1 Control for reducing the output of the engine 1 is executed.
 なお、ノック強度が基準閾値以上ではない場合(ステップS202:NO)には、ステップS203,S204をスキップして、ステップS205に移行する。これは、ノック強度が基準閾値以上でない場合でも、最高燃焼圧Pmax等に基づく異常燃焼検出を実行することで、検出精度の信頼性を向上させるためである。 If the knock strength is not greater than or equal to the reference threshold (step S202: NO), steps S203 and S204 are skipped and the process proceeds to step S205. This is for improving the reliability of detection accuracy by executing abnormal combustion detection based on the maximum combustion pressure Pmax or the like even when the knock magnitude is not equal to or higher than the reference threshold value.
 以上、本実施形態(第1実施形態、第2実施形態)によれば、ノック強度が基準閾値以上となる頻度およびノック強度が複数回の燃焼サイクルに亘って連続的に基準閾値以上となる該連続性の少なくとも一方に基づいて、エンジン1の燃焼室2内に発生する異常燃焼として、通常のノッキング、潤滑油に起因する異常燃焼、熱面着火に起因する異常燃焼など、を正確に判別することができるため、異常燃焼の種別に応じた正しい回避制御を実行して、エンジン1を適正な燃焼状態に早期に復帰させることが可能である。また、一般的にエンジンには加速度検出器等のノックセンサ(物理量検出手段)が搭載されているため、通常のノッキング以外の他の異常燃焼を検出するための指標としてノック強度を利用することで、当該異常燃焼検出装置50を低コストで実現することができる。 As described above, according to the present embodiment (the first embodiment and the second embodiment), the frequency at which the knock intensity is equal to or higher than the reference threshold, and the knock intensity is continuously equal to or higher than the reference threshold over a plurality of combustion cycles. Based on at least one of the continuity, the abnormal combustion occurring in the combustion chamber 2 of the engine 1 is accurately determined as normal knocking, abnormal combustion due to lubricating oil, abnormal combustion due to hot surface ignition, or the like. Therefore, it is possible to perform correct avoidance control according to the type of abnormal combustion and to quickly return the engine 1 to an appropriate combustion state. In general, a knock sensor (physical quantity detection means) such as an acceleration detector is mounted on an engine, so that the knock intensity can be used as an index for detecting other abnormal combustion other than normal knocking. The abnormal combustion detection device 50 can be realized at low cost.
 なお、これまで通常のノッキング以外の他の異常燃焼として、潤滑油に起因する異常燃焼、熱面着火に起因する異常燃焼、を例示したが、本実施形態における異常燃焼検出方法では、潤滑油に起因する異常燃焼と通常のノッキングとを判別可能とすることに大きな特徴がある。 As an example of abnormal combustion other than normal knocking, abnormal combustion caused by lubricating oil and abnormal combustion caused by hot surface ignition have been exemplified so far. A major feature is that it is possible to distinguish abnormal combustion from normal knocking.
 また、本実施形態において、ノック強度が複数回の燃焼サイクルにおいて一定以上変動した場合、通常のノッキング以外の他の異常燃焼を検出し得るよう構成することで、頻度および連続性との組合せ条件に基づき、各種の異常燃焼の検出精度をより一層向上させることが可能となる。 Further, in this embodiment, when knock intensity fluctuates more than a certain value in a plurality of combustion cycles, it is configured so that abnormal combustion other than normal knocking can be detected. Based on this, it becomes possible to further improve the detection accuracy of various abnormal combustion.
 さらに、本実施形態において、燃焼室2内の最高燃焼圧Pmaxが一定以上上昇したとき又は複数回の燃焼サイクルにおいて最高燃焼圧Pmaxが一定以上変動したときに、通常のノッキング以外の他の異常燃焼を検出し得るよう構成することで、燃焼室2内での多点着火等に基づき燃焼圧の急激な増大を誘発するような異常燃焼を確実に検出することが可能となる。 Furthermore, in this embodiment, when the maximum combustion pressure Pmax in the combustion chamber 2 rises above a certain level or when the maximum combustion pressure Pmax fluctuates above a certain level in a plurality of combustion cycles, other abnormal combustion other than normal knocking Therefore, it is possible to reliably detect abnormal combustion that induces a rapid increase in combustion pressure based on multi-point ignition in the combustion chamber 2 or the like.
 なお、本発明は、上記実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲であれば適宜改良可能である。例えば、燃焼室の燃焼状態と相関性のある他の物理量として音や燃焼ガス中のイオン状態などを用いてノッキング強度を算出してもよい。 It should be noted that the present invention is not limited to the above-described embodiment, and can be improved as appropriate without departing from the gist of the present invention. For example, the knocking intensity may be calculated using sound or the ion state in the combustion gas as another physical quantity having a correlation with the combustion state of the combustion chamber.
 また、異常燃焼検出装置50(150)は、電子制御ユニットECU内に一体的に組み込まれていてもよいし、電子制御ユニットECUとは独立した別の装置として構成してもよい。 Further, the abnormal combustion detection device 50 (150) may be integrated in the electronic control unit ECU, or may be configured as a separate device independent of the electronic control unit ECU.
1 エンジン
2 燃焼室
3 ノックセンサ(物理量検出手段)
12 加速度検出器(物理量検出手段)
28 燃焼圧検出器(物理量検出手段)
30 ピストン
40 クランク軸
41 クランク角度検出器
50 異常燃焼検出装置(第1実施形態)
52 ノック強度算出部(ノック強度算出手段)
54 異常燃焼判定部(異常燃焼判定手段)
150 異常燃焼検出装置(第2実施形態)
152 ノック強度算出部(ノック強度算出手段)
153 燃焼圧解析部
154 異常燃焼判定部(異常燃焼判定手段)
ECU 電子制御ユニット
1 Engine 2 Combustion chamber 3 Knock sensor (physical quantity detection means)
12 Acceleration detector (physical quantity detection means)
28 Combustion pressure detector (physical quantity detection means)
30 Piston 40 Crankshaft 41 Crank Angle Detector 50 Abnormal Combustion Detection Device (First Embodiment)
52 Knock strength calculation unit (knock strength calculation means)
54 Abnormal combustion determination unit (abnormal combustion determination means)
150 Abnormal Combustion Detection Device (Second Embodiment)
152 Knock strength calculation unit (knock strength calculation means)
153 Combustion pressure analysis unit 154 Abnormal combustion determination unit (abnormal combustion determination means)
ECU electronic control unit

Claims (6)

  1.  燃焼室内に供給された空気と燃料との混合気を燃焼させてエンジン動力を生起するエンジンにおいて、
     前記燃焼室の燃焼状態と相関性のある物理量を検出する物理量検出手段と、
     前記物理量検出手段において検出された物理量に基づき、各燃焼サイクルのノック強度を算出するノック強度算出手段と、
     前記ノック強度算出手段において算出されたノック強度が所定の閾値以上となる頻度およびノック強度が複数回の燃焼サイクルに亘って連続的に前記所定の閾値以上となる該連続性の少なくとも一方に基づき、前記燃焼室内で正常な着火のもとで発生する通常のノッキング以外の他の異常燃焼を検出する異常燃焼判定手段と、を備えて構成されることを特徴とするエンジンの異常燃焼検出装置。
    In an engine that generates engine power by burning a mixture of air and fuel supplied into a combustion chamber,
    Physical quantity detection means for detecting a physical quantity correlated with the combustion state of the combustion chamber;
    Knock intensity calculation means for calculating the knock intensity of each combustion cycle based on the physical quantity detected by the physical quantity detection means;
    Based on the frequency at which the knock intensity calculated by the knock intensity calculating means is greater than or equal to a predetermined threshold and at least one of the continuity where the knock intensity is continuously greater than or equal to the predetermined threshold over a plurality of combustion cycles, An abnormal combustion detection device for an engine, comprising: abnormal combustion determination means for detecting abnormal combustion other than normal knocking that occurs under normal ignition in the combustion chamber.
  2.  前記異常燃焼判定手段は、ノック強度が複数回の燃焼サイクルにおいて一定以上変動した場合、前記燃焼室内に発生する前記異常燃焼を検出することを特徴とする請求項1に記載のエンジンの異常燃焼検出装置。 2. The abnormal combustion detection of the engine according to claim 1, wherein the abnormal combustion determination means detects the abnormal combustion generated in the combustion chamber when the knock intensity fluctuates more than a predetermined value in a plurality of combustion cycles. apparatus.
  3.  前記物理量検出手段は、前記燃焼室内の燃焼圧を検出する燃焼圧検出手段を有し、
     前記異常燃焼判定手段は、前記燃焼圧検出手段において検出された最高燃焼圧に基づき、前記燃焼室内に発生する前記異常燃焼を検出することを特徴とする請求項1又は2に記載のエンジンの異常燃焼検出装置。
    The physical quantity detection means has combustion pressure detection means for detecting a combustion pressure in the combustion chamber,
    3. The engine abnormality according to claim 1, wherein the abnormal combustion determination unit detects the abnormal combustion generated in the combustion chamber based on a maximum combustion pressure detected by the combustion pressure detection unit. Combustion detection device.
  4.  燃焼室内に供給された空気と燃料との混合気を燃焼させてエンジン動力を生起するエンジンにおいて、
     前記燃焼室の燃焼状態と相関性のある物理量を検出する物理量検出ステップと、
     前記物理量検出ステップにおいて検出された物理量に基づき、各燃焼サイクルのノック強度を算出するノック強度算出ステップと、
     前記ノック強度算出ステップにおいて算出されたノック強度が所定の閾値以上となる頻度およびノック強度が複数回の燃焼サイクルに亘って連続的に前記所定の閾値以上となる該連続性の少なくとも一方に基づき、前記燃焼室内で正常な着火のもとで発生する通常のノッキング以外の他の異常燃焼を検出する異常燃焼判定ステップと、を備えて構成されることを特徴とするエンジンの異常燃焼検出方法。
    In an engine that generates engine power by burning a mixture of air and fuel supplied into a combustion chamber,
    A physical quantity detection step for detecting a physical quantity correlated with the combustion state of the combustion chamber;
    A knock intensity calculating step for calculating a knock intensity of each combustion cycle based on the physical quantity detected in the physical quantity detecting step;
    Based on the frequency at which the knock intensity calculated in the knock intensity calculating step is equal to or higher than a predetermined threshold and at least one of the continuity where the knock intensity is continuously higher than the predetermined threshold over a plurality of combustion cycles, An abnormal combustion determination method for an engine, comprising: an abnormal combustion determination step for detecting abnormal combustion other than normal knocking that occurs under normal ignition in the combustion chamber.
  5.  ノック強度が複数回の燃焼サイクルにおいて一定以上変動した場合、前記燃焼室内に発生する前記異常燃焼を検出することを特徴とする請求項4に記載のエンジンの異常燃焼検出方法。 5. The abnormal combustion detection method for an engine according to claim 4, wherein the abnormal combustion that occurs in the combustion chamber is detected when the knock intensity fluctuates more than a certain value in a plurality of combustion cycles.
  6.  前記燃焼室内の燃焼圧を検出する燃焼圧検出ステップを有し、
     前記燃焼圧検出ステップにおいて検出された最高燃焼圧に基づき、前記燃焼室内に発生する前記異常燃焼を検出することを特徴とする請求項4又は5に記載のエンジンの異常燃焼検出装置。
    A combustion pressure detecting step for detecting a combustion pressure in the combustion chamber;
    6. The abnormal combustion detection device for an engine according to claim 4, wherein the abnormal combustion generated in the combustion chamber is detected based on the maximum combustion pressure detected in the combustion pressure detection step.
PCT/JP2013/005196 2013-09-03 2013-09-03 Abnormal combustion detection device for engine and abnormal combustion detection method for engine WO2015033371A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015535176A JPWO2015033371A1 (en) 2013-09-03 2013-09-03 Engine abnormal combustion detection device and engine abnormal combustion detection method
PCT/JP2013/005196 WO2015033371A1 (en) 2013-09-03 2013-09-03 Abnormal combustion detection device for engine and abnormal combustion detection method for engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/005196 WO2015033371A1 (en) 2013-09-03 2013-09-03 Abnormal combustion detection device for engine and abnormal combustion detection method for engine

Publications (1)

Publication Number Publication Date
WO2015033371A1 true WO2015033371A1 (en) 2015-03-12

Family

ID=52627883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/005196 WO2015033371A1 (en) 2013-09-03 2013-09-03 Abnormal combustion detection device for engine and abnormal combustion detection method for engine

Country Status (2)

Country Link
JP (1) JPWO2015033371A1 (en)
WO (1) WO2015033371A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017198110A (en) * 2016-04-26 2017-11-02 スズキ株式会社 Variable valve control device of internal combustion engine
EP3392493A4 (en) * 2016-01-22 2019-01-16 Mitsubishi Heavy Industries, Ltd. Knocking detection method, ignition period control method, and ignition period control system
US11319871B2 (en) * 2017-07-18 2022-05-03 Prometheus Applied Technologies, Llc Lube oil controlled ignition engine combustion

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008057438A (en) * 2006-08-31 2008-03-13 Honda Motor Co Ltd Ignition timing control device for internal combustion engine
JP2009203883A (en) * 2008-02-27 2009-09-10 Mitsubishi Heavy Ind Ltd Failure cause estimating method and device for internal combustion engine
JP2012112300A (en) * 2010-11-24 2012-06-14 Toyota Motor Corp Control apparatus for internal combustion engine
JP2012149552A (en) * 2011-01-18 2012-08-09 Toyota Motor Corp Internal combustion engine controller
JP2013050096A (en) * 2011-08-31 2013-03-14 Fuji Heavy Ind Ltd Engine combustion condition diagnosis device
JP2013104371A (en) * 2011-11-15 2013-05-30 Toyota Motor Corp Internal combustion engine control device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008057438A (en) * 2006-08-31 2008-03-13 Honda Motor Co Ltd Ignition timing control device for internal combustion engine
JP2009203883A (en) * 2008-02-27 2009-09-10 Mitsubishi Heavy Ind Ltd Failure cause estimating method and device for internal combustion engine
JP2012112300A (en) * 2010-11-24 2012-06-14 Toyota Motor Corp Control apparatus for internal combustion engine
JP2012149552A (en) * 2011-01-18 2012-08-09 Toyota Motor Corp Internal combustion engine controller
JP2013050096A (en) * 2011-08-31 2013-03-14 Fuji Heavy Ind Ltd Engine combustion condition diagnosis device
JP2013104371A (en) * 2011-11-15 2013-05-30 Toyota Motor Corp Internal combustion engine control device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3392493A4 (en) * 2016-01-22 2019-01-16 Mitsubishi Heavy Industries, Ltd. Knocking detection method, ignition period control method, and ignition period control system
US10865719B2 (en) 2016-01-22 2020-12-15 Mitsubishi Heavy Industries, Ltd. Knocking detection method, ignition timing control method, and ignition timing control system
JP2017198110A (en) * 2016-04-26 2017-11-02 スズキ株式会社 Variable valve control device of internal combustion engine
US11319871B2 (en) * 2017-07-18 2022-05-03 Prometheus Applied Technologies, Llc Lube oil controlled ignition engine combustion
US11542860B2 (en) 2017-07-18 2023-01-03 Prometheus Applied Technologies Lube oil controlled ignition engine combustion

Also Published As

Publication number Publication date
JPWO2015033371A1 (en) 2017-03-02

Similar Documents

Publication Publication Date Title
US9291125B2 (en) Gas engine, control system and control method for gas engine
US7854218B2 (en) Method to recognize and avoid premature combustion events
EP2907993B1 (en) Method for balancing cylinders of an internal combustion engine
CN105673241A (en) Engine system and method
US9976534B2 (en) Control device and control method for internal combustion engine
US9869261B2 (en) Position based air/fuel ratio calculation in an internal combustion engine
CN103306817B (en) Method and apparatus for identifying the early fire in petrol engine
Forte et al. Evaluation of the effects of a Twin Spark Ignition System on combustion stability of a high performance PFI engine
CN104533616B (en) The method and apparatus that pinking for internal combustion engine identifies
US20160333781A1 (en) Combustion status detection device for internal combustion engine
CN104662276A (en) Abnormal combustion detection device for internal combustion engine
US20160363077A1 (en) Fuel system abnormality detecting device of internal combustion engine
WO2015033371A1 (en) Abnormal combustion detection device for engine and abnormal combustion detection method for engine
JP2008095602A (en) Knock judging device for internal combustion engine
JP2015040490A (en) Control device of engine
JP2012159048A (en) Combustion diagnosis device of internal combustion engine, and internal combustion engine control device
JP2013104371A (en) Internal combustion engine control device
WO2019082384A1 (en) Knock detection method and knock detection device
Ghanaati et al. A comparative study on knock occurrence for different fuel octane number
KR100507203B1 (en) Knocking control apparatus and method in a gasoline engine
JP2015158163A (en) Spark-ignition internal combustion engine controller
Gardiner et al. Cycle-by-cycle exhaust temperature monitoring for detection of misfiring and combustion instability in reciprocating engines
JP2024005028A (en) Control device for internal combustion engine
JP2024005027A (en) Control device for internal combustion engine
JP2024005029A (en) Control device for internal combustion engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13893076

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015535176

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 13893076

Country of ref document: EP

Kind code of ref document: A1