WO2015030424A1 - Biological tissue diagnosis apparatus and method - Google Patents

Biological tissue diagnosis apparatus and method Download PDF

Info

Publication number
WO2015030424A1
WO2015030424A1 PCT/KR2014/007771 KR2014007771W WO2015030424A1 WO 2015030424 A1 WO2015030424 A1 WO 2015030424A1 KR 2014007771 W KR2014007771 W KR 2014007771W WO 2015030424 A1 WO2015030424 A1 WO 2015030424A1
Authority
WO
WIPO (PCT)
Prior art keywords
tissue
interest
time
value
perfusion
Prior art date
Application number
PCT/KR2014/007771
Other languages
French (fr)
Korean (ko)
Inventor
이수길
강유정
최철희
Original Assignee
주식회사 뷰웍스
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR20140089525A external-priority patent/KR20150024766A/en
Application filed by 주식회사 뷰웍스, 한국과학기술원 filed Critical 주식회사 뷰웍스
Priority to JP2016538844A priority Critical patent/JP6356246B2/en
Priority to US14/915,387 priority patent/US20160206218A1/en
Priority to EP14841148.1A priority patent/EP3040026A4/en
Publication of WO2015030424A1 publication Critical patent/WO2015030424A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0071Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence by measuring fluorescence emission

Definitions

  • the present invention relates to an apparatus and method for diagnosing a biological tissue, and more particularly, to analyze an image data of energy emitted from a tissue of interest of a living body injected with an imaging contrast agent to accurately detect abnormalities of a tube or perfusion of the tissue of interest.
  • the present invention relates to a biological tissue diagnosis apparatus and method for making a diagnosis.
  • SPECT, PET, and MRangiograpyh are currently used in the clinician to quantitatively measure tissue perfusion.
  • the equipment and test costs used in these methods are expensive and the test process is cumbersome, these methods are used only for the blood perfusion measurement of life-directed tissues such as the heart or brain.
  • CT-angiography a method of measuring peripheral arterial disease in the lower extremities, is a method of obtaining anatomy of anatomical vessels through images and estimating perfusion of tissues, and thus cannot provide accurate information about blood flow.
  • Ankle-Brachial Index (ABI) technique is a method that measures the blood pressure of the arm and leg by measuring the abnormality of the leg arteries based on the ratio.
  • this method has a problem of making a diagnosis of perfusion lower than the actual tissue perfusion when the artery has a calcification or a large collateral artery ⁇ Kashyap VS, 2008; Luetkemeier MJ, 2001>.
  • ICG angiography Conventional indocyanine green (ICG) angiography (ICG angiography) has been proven to be safe and used clinically to measure the angiogenesis of transplanted skin or ocular neovascularization of diabetic patients.
  • the ICG receives near-infrared light at 730-790 nm and fluoresces the longer wavelength in the near-infrared region at 800-860 nm, which can be measured with a camera or spectrometer.
  • Near-infrared ray has a high permeability and little light scattering and is a field that has been studied for human imaging technology recently.
  • the technical problem to be achieved by the present invention is to continuously image the tissues of interest and the tissues such as blood vessels and lymphatic vessels, which are injected with an image contrast agent, in the peripheral tissues and the carotid artery, which are easy to take near-infrared, for a predetermined time.
  • the present invention provides an apparatus and method for diagnosing a biological tissue to accurately diagnose the abnormality of the tube or perfusion of the tissue of interest.
  • the present invention can perform a precise diagnosis through a complex diagnosis by diagnosing abnormalities in blood vessels or lymphatic vessels by selectively taking at least one of a portion or a plurality of tissues, more specifically both hands and feet in vivo.
  • the present invention provides a biotissue diagnostic apparatus and method that can reduce the diagnostic time.
  • the present invention includes at least one light dimming unit for irradiating contrast agent excitation energy to at least one tissue of interest in vivo to which an imaging contrast agent is injected; At least one inspection unit for imaging energy dissipated from the at least one tissue of interest, respectively; And a determination unit determining whether an abnormality of the tube or perfusion of the at least one tissue of interest is abnormal based on the image data captured by the at least one inspection unit.
  • the determination unit comprises a pattern processing unit for patterning a change over time of the captured image data; A characteristic value calculator for calculating at least one characteristic value based on the patterned data; And a diagnosis unit for diagnosing an abnormality of the tube or perfusion of the at least one tissue of interest based on the at least one characteristic value or a combination of two or more of the characteristic values.
  • the diagnostic unit is further characterized in that the abnormal tissue of interest through the comparison of the characteristic value of each tissue of interest.
  • the determination unit may diagnose the tissue of interest corresponding to the characteristic value that is outside the preset normal distribution range of the characteristic values of the tissues of interest as the abnormal tissue of interest.
  • the at least one characteristic value is obtained from a change in a specific physical value over time in the tissue of interest obtained from the image data;
  • the at least one characteristic value is a time from the initial detection of the physical value until the physical value becomes the highest, the slope at which the physical value increases or decreases for a predetermined time, and the time for which the physical value is maintained above a reference value.
  • the imaging agent is characterized in that the Indocyanin Green (ICG) pigment.
  • the inspection unit is provided with a plurality of the same number in order to independently examine one or more biological tissues, the imaging member included in each inspection unit is characterized in that the operating time is controlled by a control unit.
  • the operating time of the image pickup member is within a time from the start of image pickup until the near-infrared radiation is not measured from the image contrast agent, and the image pickup member is controlled to image at a set time interval.
  • the determination unit for determining the abnormality of the tube or perfusion of the at least one tissue of interest characterized in that to present the diagnosis result of the abnormality of the determined tube or perfusion as one or more numerical values or perfusion map.
  • the apparatus for diagnosing a biological tissue further includes a dark room for blocking light from the outside to make the contrast of the image clear, wherein each dimming part includes a lighting member for irradiating the contrast agent excitation energy, and the dark room is It characterized in that for receiving the illumination member and the inspection unit.
  • the present invention comprises the steps of irradiating the contrast agent excitation energy to at least one tissue of interest in vivo, at least one dimming unit is injected image contrast agent; Photographing, by at least one inspection unit, energy dissipated from the at least one tissue of interest, respectively; And a determining unit determining whether an abnormality of a tube or perfusion of the at least one tissue of interest is abnormal based on the image data captured by the at least one inspecting unit.
  • the determination unit in the step of diagnosing the abnormal tissue of interest, may be characterized as diagnosing the tissue of interest corresponding to the characteristic value outside the preset normal distribution range of the characteristic values of each tissue of interest as the abnormal tissue of interest.
  • the at least one characteristic value is obtained from a change in a specific physical value over time in the tissue of interest obtained from the image data, wherein the at least one characteristic value is obtained from the point of time of initial detection of the physical value.
  • the apparatus and method for diagnosing a biological tissue continuously image a tissue of interest, particularly a blood vessel / lymphatic tube, in which a contrast agent is injected to the peripheral tissue and a carotid artery, which are easy to near-infrared, for a predetermined time. By doing so, it is possible to accurately diagnose the abnormality of the tube or perfusion of the tissue of interest.
  • the apparatus and method for diagnosing a biological tissue according to the present invention can perform complex diagnosis by diagnosing abnormality of blood vessels or lymphatic vessels by selectively or simultaneously photographing a portion or a plurality of tissues, more specifically, both hands and feet in vivo. Precise diagnosis can be performed, thereby reducing the diagnostic time.
  • FIG. 2 is a cross-sectional view of a biological tissue diagnosis apparatus according to an embodiment of the present invention.
  • FIG. 4 is a flowchart illustrating a method for diagnosing a living tissue according to an embodiment of the present invention.
  • 5 and 6 is a schematic diagram of examining the blood flow of the foot with a biological tissue diagnostic apparatus according to an embodiment of the present invention.
  • FIG. 7 is a graph showing a pattern of change in fluorescence intensity over time of an imaging contrast agent administered from a foot of a human whose blood flow is normal by a biotissue diagnostic apparatus according to an exemplary embodiment of the present invention.
  • FIG. 8 is a schematic diagram illustrating a method of selecting Onset, Tmax, Plateau Tmax, and Slope among characteristic values, which are means for defining characteristics of a pattern for comparison of patterned data.
  • FIG. 9 is a graph showing a pattern of blood flow in a hand and a foot of a person whose blood flow is normal by a biological tissue diagnosis apparatus according to an embodiment of the present invention.
  • FIG. 11 is a reference diagram for explaining a method of diagnosing a tissue of interest with an abnormality based on a patterned graph of fluorescence intensity of a plurality of tissues of interest in vivo.
  • FIG. 1 is a perspective view of a biological tissue diagnostic apparatus according to an embodiment of the present invention
  • Figure 2 is a cross-sectional view of the biological tissue diagnostic apparatus according to an embodiment of the present invention
  • Figure 3 is a living body according to an embodiment of the present invention
  • FIGS. 5 and 6 are schematic diagrams for examining blood flow of a foot by using the apparatus for diagnosing a biological tissue according to an embodiment of the present invention. .
  • FIG. 7 is a graph showing a pattern of change in fluorescence intensity over time of an imaging contrast agent administered from a foot of a human whose blood flow is normal by a biotissue diagnostic apparatus according to an exemplary embodiment of the present invention.
  • FIG. 8 is a schematic diagram illustrating a method of selecting Onset, Tmax, Plateau Tmax, and Slope among characteristic values, which are means for defining characteristics of a pattern for comparison of patterned data.
  • the biological tissue diagnostic apparatus is a facility for diagnosing abnormality of the tube or perfusion including blood flow and blood vessels by injecting an imaging contrast agent into the living tissue.
  • the apparatus for diagnosing a biological tissue according to the present embodiment includes at least one dimming unit 110 for irradiating contrast excitation energy to at least one tissue of interest in a living body to which an imaging contrast agent is injected; At least one inspection unit 120 for imaging energy dissipated from the image contrast agent of the living body; And a determination unit 130 that determines whether an abnormality of the tube or perfusion of the at least one tissue of interest is abnormal based on the image data captured by the at least one inspection unit 120.
  • the determination unit 130 may include a pattern processing unit 132 for patterning a change over time of the captured image data; A characteristic value calculator 134 for calculating at least one characteristic value based on the patterned data; And a diagnosis unit 136 for diagnosing an abnormality of the tube or perfusion of the at least one tissue of interest based on the at least one characteristic value or a combination of two or more of the characteristic values.
  • the living body means an animal or a human, which is shown as a part of the human body for convenience.
  • tissue of interest in the present embodiment may represent, for example, the end microvascular of the finger, and the end microvascular of the toe.
  • the biological tissue diagnosis apparatus 100 may simultaneously test or diagnose the finger microvascular and the toe microvascular system, or test or diagnose any one of the finger microvascular and the toe microvascular system.
  • the biological tissue diagnosis apparatus 100 may simultaneously and separately examine and / or diagnose perfusion (blood flow, lymph flow) or tubes (vascular, lymphatic vessels) of a plurality of tissues of interest in vivo.
  • the light dimming unit 110 serves to irradiate light to the tissue of interest in which the image contrast agent is injected.
  • the imaging agent molecular imaging contrast agent
  • the imaging agent is a near-infrared fluorescence contrast agent is preferably used as a polymethine pigment, a fluorescent dye, in particular near-infrared pigment.
  • the imaging contrast agent may be an Indocyanin Green (ICG) pigment.
  • the imaging agent is administered orally or parenterally to the living body.
  • the light control unit 110 includes a casing 112 and an illumination member 114.
  • the casing 112 includes a dark room 116 for blocking the inflow of external light to make the contrast of the image clear.
  • the dark room 116 serves as a space for receiving a living body.
  • the casing 112 may include a plurality of dark chambers 116 to simultaneously accommodate a plurality of living bodies.
  • the plurality of dark rooms 116 may be provided in one casing 112 or may be provided in one-to-one correspondence with the casing 112.
  • each of the casings 112 may be applied in various shapes and various materials.
  • the two casing 112 is preferably connected and integrated while being supported on the frame 119, of course, the frame 119 may be applied in various shapes and various materials.
  • the lighting member 114 is provided at a position corresponding to the inside of the dark room 116 of the portion of the casing 112 serves to illuminate the biological tissue accommodated in the dark room 116.
  • the illumination member 114 is provided to emit excitation energy (light) of a predetermined wavelength to the living body (s) injected with an imaging contrast agent, especially indocyanine green (ICG) pigment, the tissue of interest of the living body (s) injected with ICG It activates the ICG in the body to observe the fluorescence signal from the tissue of interest (biological tissue).
  • an imaging contrast agent especially indocyanine green (ICG) pigment
  • the excitation energy (light) irradiated from the illumination member 114 has a center wavelength in the range of 750 to 780 nm, the wavelength is a near infrared region, the near infrared of this wavelength is irradiated for fluorescence observation by ICG injection,
  • a light emitting diode or a laser that dissipates energy of this wavelength may be used.
  • the lighting member 114 may include a white light lighting member for monitoring a support state of the living body to the fixing member 118 in the dark room 116 of the living body, in addition to the near-infrared lighting member for emitting the image contrast agent.
  • the lighting member 114 may be provided to correspond to the dark room 116 one-to-one, and may be adjusted to vary the lighting time under the control of the controller 140. That is, the controller 140 may control the lighting member 114 provided in each dark room 116 so as to change the time for which the excitation energy is irradiated to the tissue of interest (biological tissue) of the corresponding living body. Of course, the controller 140 may control all the lighting members 114 to be turned off and on at the same time.
  • a fixing member 118 is provided in each of the dark chambers 116.
  • the fixing member 118 serves to fix the corresponding living body part, and may be modified to allow photographing in a sitting state, a lying state, or a side lying state.
  • the fixing member 118 may be applied in various shapes and various materials so as to support the corresponding living parts, ie, hands or feet.
  • the inspection unit 120 serves to capture the energy (fluorescence signal) of the near-infrared region emitted from each of the tissues of interest (image contrast medium) by the light irradiated to the tissue (s) of interest of the living body.
  • the inspection unit 120 may include a filter member 122 and an image pickup member 124.
  • the filter member 122 is provided inside the casing 112 so as to correspond to each of the dark chambers 116, and serves to pass mainly the near infrared region of the energy (fluorescence signal) emitted from each tissue of interest (image contrast agent).
  • the range of the near infrared region may be set in various ways according to the specifications of the filter member 122 or the system requirements. That is, the filter member 122 passes the light of a predetermined wavelength range from the fluorescent signal generated from the corresponding tissue of interest (biological tissue) due to the light irradiated from the lighting member 114, the living body by the lighting member 114 It serves to pass only near-infrared wavelengths between 800 and 850 nm of the fluorescence signal.
  • a band pass filter may be employed as the filter member 122 so that only the near infrared wavelength is irradiated to the white light.
  • one or more filter members 122 may be provided for each dark room 116, may be installed to be adjustable in position, and may adjust intensity of energy (fluorescent signal) having a near infrared wavelength.
  • the imaging member 124 is provided in each of the dark chambers 116 and serves to image the energy (fluorescence signal) in the near infrared region passing through the filter member 122.
  • the image pickup member 124 detects light passing through the filter member 122 and converts the light into a digital signal.
  • the image conversion member 124 converts the image into an electrical signal and converts the analog image into digital data and stores it through the storage medium.
  • a charge-coupled device camera (CCD) among digital camera types may be employed.
  • the imaging member 124 photographs the fluorescence signal input to the inspection unit 120 and passed through the filter member 122, and converts the fluorescence signal into digital data.
  • the inspection unit 120 and the lighting member 114 may be positioned to be close to each other, and the inspection unit 120 may be positioned to photograph a corresponding tissue of interest (biotissue) in the casing 112 of the light control unit 110. .
  • the filter member 122 and the image pickup member 124 may be provided in plural in the same number to independently inspect one or more tissues of interest, and are installed in the corresponding dark room 116.
  • the plurality of filter member 122 and the plurality of imaging member 124 is connected to the control unit 140 for controlling the operation time. That is, the controller 140 controls the overall operating time of the inspection unit 120 provided in each dark room 116. In other words, the controller 140 may control the same operation time of different imaging members 124, or may control the operation time to be different.
  • the operating time of the imaging member 124 can be set within a time from the start of imaging until the near infrared dissipation is not measured from the imaging contrast agent, and the imaging member 124 can be controlled to image at a set time interval. have.
  • the operating time of the image pickup member 124 is preferably image-controlled at intervals of several milliseconds to 10 seconds. At this time, the operating time of the imaging member 124 may vary depending on the type, dosage, external temperature, etc. of the imaging contrast agent. That is, the interval of the operation time of the imaging member 124 can be adjusted within the range of 10 seconds.
  • the determination unit 130 serves to determine the perfusion and / or abnormality of the tube of the tissue of interest in vivo through the image data (result data of the near infrared region) captured by the inspection unit 120.
  • the determination unit 130 may further include an input device (not shown) for receiving digital data from the inspection unit 120, and as illustrated in FIGS. 5 and 6, an output device for outputting data ( 138 may be connected to the determination unit 130 or may be provided in the determination unit 130.
  • the digital data output from the inspection unit 120 is transmitted to the determination unit 130 through wireless communication or wired communication, preferably RSC 232, parallel port, IEEE 1934 or USB.
  • wireless communication or wired communication preferably RSC 232, parallel port, IEEE 1934 or USB.
  • the determination unit 130 includes a pattern processing unit 132, a characteristic value calculating unit 134, and a diagnosis unit 136.
  • the pattern processor 132 serves to pattern changes over time of image data photographed with respect to a tissue of interest or a region of interest (ROI) of each living body.
  • the characteristic value calculator 134 calculates various feature values reflecting the perfusion state (eg, blood flow state) from the patterned result data, and the diagnostic unit 136 calculates various calculated values. Through the characteristic value or a combination of two or more of said characteristic values, it serves to diagnose the abnormality (eg, vascular disease) of the tube or perfusion of the tissue of interest.
  • the abnormality eg, vascular disease
  • the pattern processing unit 132 is provided to process and pattern the input signal with the fluorescence intensity according to time in the tissue of interest
  • the characteristic value calculating unit 134 is a part from the pattern of the fluorescence intensity according to the processed time.
  • the characteristic value of each characteristic is calculated, and the diagnosis unit 136 diagnoses an abnormality of the pipe or perfusion of the tissue of interest by using each characteristic value from the characteristic value calculating unit 134 or a combination of two or more of the characteristic values. To calculate.
  • the determination unit 130 measures ICG fluorescence intensity for each part according to the time flow of the ICG injected into the living body, and performs pattern analysis and diagnosis of abnormality of the tube (perfusion) for each part.
  • the determination unit 130 may be provided in one-to-one correspondence with the inspection unit 120 provided in each dark room 116, or may be provided with only one and may be connected to the plurality of inspection units 120.
  • the inspection unit 120 is connected to the control unit 140.
  • the controller 140 controls the dimming unit 110 and the inspection unit 120 corresponding to each different tissues of interest (biological tissues) of the living body, and controls the determination unit 130, and controls the dimming unit 110.
  • Each component and the inspection unit 120 serves to adjust the operating time of each component.
  • the characteristic value (s) is a factor that is converted into one real number that can specify a pattern of result data over time in the tissue of interest or region of interest (ROI), and the determination The unit 130 may calculate the blood flow of the region of interest by comparing the characteristic values.
  • the characteristic value (s) may be obtained from a change in a specific physical value (eg, ICG fluorescence intensity) over time in the tissue of interest obtained from the image data from the inspection unit 120.
  • the combination value of one or more characteristic values included in the normal group or the abnormal group of the tube or perfusion may be 80%. The above sensitivity and specificity can be classified.
  • the determination unit 130 includes a plurality of images.
  • the characteristics of the dogs of interest are compared and analyzed to diagnose whether the tube or perfusion (blood vessel, blood flow) is normal.
  • FIGS. 5 and 6 is a state diagram for testing the blood flow of the foot, which is any one in vivo site. Reference numerals not described in FIGS. 5 and 6 replace those described above.
  • the determination unit 130 for determining abnormalities in blood flow and blood vessels of the living body may diagnose whether diabetic patients develop vascular complications or develop lymphatic diseases according to the determined blood flow and blood vessel abnormalities diagnosis results.
  • the determination unit 130 determines whether atherosclerosis and stenosis, in particular, coronary artery, carotid artery, femoral artery, anterior carotid artery, and posterior tibial artery, develop atherosclerosis and stenosis according to the determined diagnosis of blood flow and blood vessel abnormalities. It can also be diagnosed.
  • the determination unit 130 may diagnose cold hands, Raynaud's disease, and Raynaud's syndrome according to the determined diagnosis of blood flow and blood vessel abnormalities. At this time, the determination unit 130 preferably presents the diagnosis result of the abnormal blood flow and blood vessels by one or more numerical values or perfusion map.
  • the determination unit 130 may determine whether the diabetic patient develops vascular complications or lymphatic disease through the pattern processing unit 132, the characteristic value calculation unit 134, and the diagnosis unit 136.
  • Atherosclerosis especially in coronary, carotid, femoral, anterior tibia, and posterior tibia may be determined, and cold sores, Raynaud's disease, and Raynaud's syndrome can be diagnosed.
  • the result determined or diagnosed by the determination unit 130 may be easily interpreted or understood by a user or a patient by presenting one or more numerical values or perfusion maps.
  • the characteristic value which is a criterion for determining the abnormality of the tube or the perfusion (eg, blood vessel, lymphatic vessel, blood flow, lymph flow, etc.), is modified by the following procedure.
  • a graph (see FIG. 7) is prepared by imaging the change in ICG fluorescence intensity at 1/5 Hz for 10 minutes at the same time as the implantation of ICG in the body and the strongest fluorescence brightness as 1.
  • the blood flow of the tissue of interest (biological tissue) corresponding to the hand or foot in the normal state through the biological tissue diagnostic apparatus 100 according to the present embodiment as a change in the fluorescence intensity over time Will appear.
  • T max It is determined by a combination of at least one of Plateau T max , Onset, and Slope.
  • T max represents the time when the intensity becomes the highest among the patterned NIR regions
  • Plateau T max represents the section showing a specific intensity or more among the patterned NIR regions.
  • Onset means the area from the start of patterning (first detection time) to the time when a sudden inflection occurs and starts to rise above the reference slope, and Slope is a downward area after Plateau T max in the patterned near infrared display area.
  • the point where the fluorescence intensity is set to a predetermined intensity or more, and the abnormality of blood vessels or blood flow in consideration of the time (T max ) when the ICG fluorescence intensity of the ischemic tissue becomes the highest in the corresponding section (Plateau T max ) Determine.
  • the point above a certain intensity is any value between 70% and 95% of the highest fluorescence intensity.
  • the difference between the T max value of one tissue of interest and the T max value of another tissue of interest is If it is larger than the first set point, it may be diagnosed as abnormal blood flow.
  • the abnormal blood flow may be diagnosed.
  • abnormal blood flow can be diagnosed even when the ratio of Onset value of one tissue of interest to Onset value of another tissue of interest is greater than the third set value in vivo.
  • one tissue of interest may be a toe
  • the other tissue of interest may be a finger
  • the first setpoint, the second setpoint, and the third setpoint are average values (normal values) of normal people.
  • the feature value of the other tissue of interest ie, both hands
  • the feature value of the other tissue of interest can be averaged or calculated using each of them. If the ICG pattern of the tissue of interest, ie, both feet, is different, the values of both feet are determined to determine which of the legs. Diagnosis of arterial stenosis can be diagnosed in one or both legs.
  • the values of the Tmax and Onset of the two hands are obtained from the feet in patients with abnormal blood flow of FIG. Compared to, the size of Onset obtained from both feet is very different.
  • artery stenosis is diagnosed on both legs, and especially the degree of stenosis is diagnosed to be more severe on the left side.
  • FIG. 11 is a reference diagram for explaining a method of diagnosing a tissue of interest with an abnormality based on a patterned graph of fluorescence intensity of a plurality of tissues of interest in vivo.
  • the trend graphs for three tissues of interest are synchronized in a certain distribution range.
  • the trend graph for the other organization of interest top right
  • the trend graph for the other organization of interest shows a very different trend.
  • the three tissues of interest synchronized with each other can be seen to show normal blood flow or vascular characteristics, but the other tissue of interest (right hand) indicates abnormalities in blood flow or blood vessels. . Therefore, based on this characteristic, the determination unit 130 may diagnose the tissue of interest corresponding to the characteristic value that is outside the preset normal distribution range of the characteristic values of each tissue of interest as the abnormal tissue of interest.
  • the determination unit 130 outputs the diagnosis result determined by the inspection unit 120 through the output unit 138.
  • the output unit 138 a CRT monitor or LCD, a plasma display device, or the like may be employed.
  • the dimming unit 110 and the inspection unit 120 may be provided with one or more according to the number of tissues of interest.
  • the lighting member 114 irradiates contrast excitation energy to at least one tissue of interest in the living body to which the image contrast agent is injected (S410), and the inspection unit 120 dissipates from each tissue of interest (image contrast agent) of the living body.
  • the captured energy energy in the near infrared region is imaged (S420).
  • the determination unit 130 determines whether there is an abnormality in the tube or perfusion of the at least one tissue of interest based on the image data captured by the inspection unit 120 (S430), and the step S430 is described in more detail. Is as follows.
  • the pattern processing unit 132 patterns the change with time of the captured image data (S431). That is, the pattern processing unit 132 receives the digital signal captured by the image pickup member 124 of the inspection unit 120 and processes the digital signal to process the change in time of a specific physical value (for example, fluorescence intensity). Pattern.
  • the at least one characteristic value is a time T max from the initial detection of a physical value (eg, fluorescence intensity) until the physical value becomes the highest, the slope at which the physical value increases or decreases over a period of time,
  • a physical value eg, fluorescence intensity
  • the time when the physical value is maintained above the reference value (Plateau T max ), the time before the physical value rises above the reference slope from the initial detection of the physical value (Onset), and the physical value falls below the reference value It may be at least one of the time (Slop) from the start of the start to the last detection time of the physical value.
  • the diagnosis unit 136 diagnoses the abnormality of the tube or perfusion of the at least one tissue of interest based on the at least one characteristic value or a combination of two or more of the characteristic values. For example, if one tissue of interest and one tissue of interest are simultaneously diagnosed with blood flow, the difference between the T max of one tissue of interest and the T max of another tissue of interest is greater than the first set point.
  • the abnormal blood flow can be diagnosed, and the abnormal blood flow can be diagnosed even when the ratio of the Plateau T max value of the tissue of interest to the plateau T max value of the other tissue of interest is larger than the second set value in vivo.
  • abnormal blood flow can be diagnosed even when the ratio of Onset value of one tissue of interest to Onset value of another tissue of interest is greater than the third set value in vivo.
  • the first setpoint, the second setpoint and the third setpoint are taken as average values (normal values) of normal persons.
  • the tissue of interest may be plural, and the determination unit 130 may diagnose the abnormal tissue of interest by comparing the characteristic values of the tissues of interest.
  • the determination unit 130 may diagnose the tissue of interest corresponding to the characteristic value outside the preset normal distribution range of the characteristic values of the tissues of interest as the abnormal tissue of interest. More specifically, as shown in FIG. 11, in the patterned trend graph of fluorescence intensities for four tissues of interest, the trend graphs for three tissues of interest show synchronism in a certain distribution range while the other The trend graph for the organization of interest shows a different trend.
  • the determination unit 130 may diagnose the tissue of interest corresponding to the characteristic value that is outside the preset normal distribution range of the characteristic values of each tissue of interest as the abnormal tissue of interest.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

The present invention relates to a biological tissue diagnosis apparatus, which comprises: at least one lighting control unit for irradiating a contrast agent excitation energy on at least one tissue of interest within a living body in which an imaging contrast agent has been injected; at least one inspection unit for imaging an energy radiated from the at least one tissue of interest; and a determination unit for determining, on the basis of the image data imaged by the at least one inspection unit, whether a tube or perfusion of the at least one tissue of interest is abnormal.

Description

생체조직 진단장치 및 방법Biological tissue diagnosis apparatus and method
본 발명은 생체조직 진단장치 및 방법에 관한 것으로서, 더욱 상세하게는 영상조영제를 주입한 생체의 관심조직으로부터 방산되는 에너지를 촬영한 영상데이터를 분석하여 해당 관심조직의 관 또는 관류의 이상여부를 정확하게 진단할 수 있도록 하는 생체조직 진단장치 및 방법에 관한 것이다.The present invention relates to an apparatus and method for diagnosing a biological tissue, and more particularly, to analyze an image data of energy emitted from a tissue of interest of a living body injected with an imaging contrast agent to accurately detect abnormalities of a tube or perfusion of the tissue of interest. The present invention relates to a biological tissue diagnosis apparatus and method for making a diagnosis.
조직의 혈액 관류를 정량적으로 측정하는 방법으로 현재 임상에서는 SPECT, PET, MRangiograpyh 등이 이용되고 있다. 그러나, 이들 방법에 사용되는 장비 및 검사 비용은 고가이며 그 검사과정이 번거롭기 때문에, 이들 방법은 심장이나 뇌 등 생명과 직결된 조직의 혈액 관류 측정에만 이용되고 있는 실정이다. SPECT, PET, and MRangiograpyh are currently used in the clinician to quantitatively measure tissue perfusion. However, since the equipment and test costs used in these methods are expensive and the test process is cumbersome, these methods are used only for the blood perfusion measurement of life-directed tissues such as the heart or brain.
이에, 고령화 사회에서 고혈압, 당뇨, 성인병 등의 질병은 계속적으로 증가 추세에 있으며 이것이 삶의 질 저하에 막대한 영향을 초래함에도 불구하고, 생체조직의 혈류를 기능적, 정량적으로 측정할 기술이 부재한 상태이다.As a result, diseases such as hypertension, diabetes, and adult diseases continue to increase in an aging society, and although this has a huge impact on the deterioration of quality of life, there is no technology to measure the blood flow of biological tissues functionally and quantitatively. to be.
현재 임상에서 하지의 말초동맥 질환을 측정하는 방법인 CT-angiography는 영상을 통해 해부학적 혈관의 구조에 대한 정보를 얻고 이를 통해 조직의 관류를 추정하는 방법으로 혈류에 대한 정확한 정보는 줄 수 없다. 또한, Ankle-Brachial Index(ABI) 기법은 팔과 다리의 혈압을 측정하여 그 비율을 통해 다리 동맥의 이상 여부를 측정하는 방법으로 하지 말초동맥질환이 의심되는 환자에서 시행되고 있다. 하지만, 이 방법은 동맥에 석회화가 있다거나 곁동맥(collateral artery)이 많이 발달했을 경우에는, 실제의 조직 관류 정도보다 낮은 관류로 진단하는 오류를 범하게 하는 문제점이 있다 <Kashyap VS, 2008; Luetkemeier MJ, 2001>. 또한, 동물 실험을 통한 혈관/림프관계 기능 연구 및 혈관/림프관 질환과 관련된 치료약물 개발 연구 등을 위한 정량적 혈류측정 방법을 제시하는 기술이 없다.CT-angiography, a method of measuring peripheral arterial disease in the lower extremities, is a method of obtaining anatomy of anatomical vessels through images and estimating perfusion of tissues, and thus cannot provide accurate information about blood flow. In addition, the Ankle-Brachial Index (ABI) technique is a method that measures the blood pressure of the arm and leg by measuring the abnormality of the leg arteries based on the ratio. However, this method has a problem of making a diagnosis of perfusion lower than the actual tissue perfusion when the artery has a calcification or a large collateral artery <Kashyap VS, 2008; Luetkemeier MJ, 2001>. In addition, there is no technique for suggesting a quantitative blood flow measurement method for vascular / lymphatic function research through animal experiments and research on the development of therapeutic drugs related to vascular / lymphatic disease.
기존의 인도시아닌 그린(Indocyanine green, ICG)을 이용한 혈관 조영술 (ICG angiography)은 이미 안전성을 입증받아 이식된 피부의 혈관 형성이나 당뇨 환자의 안구 신생 혈관 정도 측정에 임상적으로 사용되고 있다.Conventional indocyanine green (ICG) angiography (ICG angiography) has been proven to be safe and used clinically to measure the angiogenesis of transplanted skin or ocular neovascularization of diabetic patients.
ICG는 730~790 nm의 근적외선을 받아서 더 긴 파장인 800~860nm의 근적외선 영역의 형광을 내고 이를 카메라나 분광계로 측정할 수 있다. 근적외선은 높은 투과성을 가지며, 빛의 산란이 적어서 최근 인체 영상 기술을 위해 많이 연구되고 있는 분야이다.The ICG receives near-infrared light at 730-790 nm and fluoresces the longer wavelength in the near-infrared region at 800-860 nm, which can be measured with a camera or spectrometer. Near-infrared ray has a high permeability and little light scattering and is a field that has been studied for human imaging technology recently.
[참고 문헌][references]
1. Kashyap VS, Pavkov ML, Bishop PD, Nassoiy SP, Eagleton MJ, et al. (2008) Angiography underestimatesperipheral atherosclerosis: lumenography revisited. J Endovasc Ther 15: 117-125.Kashyap VS, Pavkov ML, Bishop PD, Nassoiy SP, Eagleton MJ, et al. (2008) Angiography underestimatesperipheral atherosclerosis: lumenography revisited. J Endovasc Ther 15: 117-125.
2. Luetkemeier MJ, Fattor JA (2001) Measurement of Indocyanine Green dye is improved by use of polyethylene glycol to reduce plasma turbidity. Clin Chem 47: 1843-1845.Luetkemeier MJ, Fattor JA (2001) Measurement of Indocyanine Green dye is improved by use of polyethylene glycol to reduce plasma turbidity. Clin Chem 47: 1843-1845.
본 발명이 이루고자 하는 기술적 과제는, 영상 조영제를 주입한 생체의 관심조직, 특히 혈관이나 림프관 등의 관이 피부 가까이 분포되어 있어 근적외선 촬영이 용이한 말초조직 및 경동맥 부분 등을 일정시간 연속되게 영상 촬영함으로써 상기 관심조직의 관이나 관류의 이상여부를 정확하게 진단할 수 있도록 한 생체조직 진단장치 및 방법을 제공하는 데에 있다.The technical problem to be achieved by the present invention is to continuously image the tissues of interest and the tissues such as blood vessels and lymphatic vessels, which are injected with an image contrast agent, in the peripheral tissues and the carotid artery, which are easy to take near-infrared, for a predetermined time. The present invention provides an apparatus and method for diagnosing a biological tissue to accurately diagnose the abnormality of the tube or perfusion of the tissue of interest.
또한, 본 발명은 생체 내 한 부분 또는 복수 개의 조직, 더욱 상세히는 양손 및 양발을 동시에 또는 적어도 어느 하나를 선택적으로 촬영하여 혈관이나 림프관의 이상을 진단함으로써 복합 진단을 통한 정밀한 진단을 수행할 수 있으며, 이로써 진단 시간을 줄일 수 있는 생체조직 진단장치 및 방법을 제공하는 데에 있다.In addition, the present invention can perform a precise diagnosis through a complex diagnosis by diagnosing abnormalities in blood vessels or lymphatic vessels by selectively taking at least one of a portion or a plurality of tissues, more specifically both hands and feet in vivo. The present invention provides a biotissue diagnostic apparatus and method that can reduce the diagnostic time.
본 발명의 일 측면에 따르면, 본 발명은 영상 조영제가 주입된 생체 내 적어도 하나의 관심 조직에 조영제 여기에너지를 각각 조사하는 적어도 하나의 조광부; 상기 적어도 하나의 관심 조직으로부터 각각 방산되는 에너지를 촬상하는 적어도 하나의 검사부; 및 상기 적어도 하나의 검사부에 의해 촬상된 영상데이터에 근거하여 상기 적어도 하나의 관심조직의 관 또는 관류의 이상여부를 판단하는 판단부를 포함하는 것을 특징으로 하는, 생체조직 진단장치를 제공한다.According to an aspect of the present invention, the present invention includes at least one light dimming unit for irradiating contrast agent excitation energy to at least one tissue of interest in vivo to which an imaging contrast agent is injected; At least one inspection unit for imaging energy dissipated from the at least one tissue of interest, respectively; And a determination unit determining whether an abnormality of the tube or perfusion of the at least one tissue of interest is abnormal based on the image data captured by the at least one inspection unit.
본 발명에서, 상기 판단부는 상기 촬상된 영상데이터의 시간에 따른 변화를 패턴화하는 패턴처리부; 패턴화된 데이터에 근거하여 적어도 하나의 특성값을 산출하는 특성값 연산부; 및 상기 적어도 하나의 특성값 또는 두개 이상의 상기 특성값의 조합에 근거하여 상기 적어도 하나의 관심조직의 관 또는 관류의 이상여부를 진단하는 진단부를 포함하는 것을 특징으로 한다.In the present invention, the determination unit comprises a pattern processing unit for patterning a change over time of the captured image data; A characteristic value calculator for calculating at least one characteristic value based on the patterned data; And a diagnosis unit for diagnosing an abnormality of the tube or perfusion of the at least one tissue of interest based on the at least one characteristic value or a combination of two or more of the characteristic values.
본 발명에서, 상기 관심조직은 복수 개이고, 상기 진단부는 각 관심조직별 상기 특성값의 비교를 통해 이상 관심조직을 추가로 진단하는 것을 특징으로 한다.In the present invention, there are a plurality of tissues of interest, and the diagnostic unit is further characterized in that the abnormal tissue of interest through the comparison of the characteristic value of each tissue of interest.
상기 이상 관심조직의 진단시, 상기 판단부는 상기 관심조직별 특성값들의 미리 설정된 정상 분포범위를 벗어나는 특성값에 대응하는 관심조직을 이상 관심조직으로 진단하는 것을 특징으로 한다.When diagnosing the abnormal tissue of interest, the determination unit may diagnose the tissue of interest corresponding to the characteristic value that is outside the preset normal distribution range of the characteristic values of the tissues of interest as the abnormal tissue of interest.
본 발명에서, 상기 관심조직별 특성값들이 정상군, 또는 관이나 관류의 이상군에서 각각 취득되는 경우, 상기 정상군 또는 상기 관이나 관류의 이상군에 포함된 하나 이상의 특성값들의 조합값은 해당 각 군을 80% 이상의 민감도 및 특이도로 구분하는 것을 특징으로 한다.In the present invention, when the characteristic values for each tissue of interest are acquired in the normal group or the abnormal group of the tube or perfusion, respectively, the combination value of one or more characteristic values included in the normal group or the abnormal group of the tube or perfusion is the respective group. It is characterized by distinguishing the sensitivity and specificity of more than 80%.
본 발명에서, 상기 적어도 하나의 특성값은 상기 영상데이터로부터 얻어지는 상기 관심조직에서의 시간에 따른 특정 물리값의 변화로부터 얻어지고; 상기 적어도 하나의 특성값은 상기 물리값의 최초 검출시점으로부터 상기 물리값이 최고가 될 때까지의 시간, 상기 물리값이 일정 시간에 대해 증가하거나 감소하는 기울기, 상기 물리값이 기준값 이상으로 유지되는 시간, 상기 물리값의 최초 검출시점으로부터 상기 물리값이 기준기울기 이상으로 상승하기 전까지의 시간, 및 상기 물리값이 상기 기준값 미만으로 떨어지기 시작하는 시점으로부터 상기 물리값의 최후 검출시점까지의 시간 중 적어도 하나를 포함하는 것을 특징으로 한다.In the present invention, the at least one characteristic value is obtained from a change in a specific physical value over time in the tissue of interest obtained from the image data; The at least one characteristic value is a time from the initial detection of the physical value until the physical value becomes the highest, the slope at which the physical value increases or decreases for a predetermined time, and the time for which the physical value is maintained above a reference value. At least one of a time from the initial detection of the physical value until the physical value rises above the reference slope, and a time from the time when the physical value starts to fall below the reference value to the last detection time of the physical value. Characterized by including one.
본 발명에서, 상기 영상조영제는 인도시아닌 그린(ICG;Indocyanin Green) 색소인 것을 특징으로 한다.In the present invention, the imaging agent is characterized in that the Indocyanin Green (ICG) pigment.
본 발명에서, 상기 각 검사부는, 상기 영상 조영제로부터 방산되는 에너지의 근적외선 영역을 통과시키는 필터부재; 및 상기 필터부재를 통과하는 근적외선 영역을 촬상하는 촬상부재를 포함하는 것을 특징으로 한다.In the present invention, each of the inspection unit, the filter member for passing the near infrared region of the energy dissipated from the image contrast agent; And an imaging member for imaging the near-infrared region passing through the filter member.
본 발명에서, 상기 검사부는 하나 이상의 생체조직을 독립적으로 검사하기 위해 동일한 개수로 복수 개 구비되며, 상기 각 검사부에 포함된 상기 촬상부재는 제어부에 의해 가동 시간이 제어되는 것을 특징으로 한다.In the present invention, the inspection unit is provided with a plurality of the same number in order to independently examine one or more biological tissues, the imaging member included in each inspection unit is characterized in that the operating time is controlled by a control unit.
본 발명에서, 상기 촬상부재의 가동 시간은 촬상개시 시점으로부터 상기 영상 조영제로부터 근적외선 방산이 미측정되는 때까지의 시간 이내이고, 상기 촬상부재는 설정 시간 간격으로 촬상하도록 제어되는 것을 특징으로 한다.In the present invention, the operating time of the image pickup member is within a time from the start of image pickup until the near-infrared radiation is not measured from the image contrast agent, and the image pickup member is controlled to image at a set time interval.
본 발명에서, 상기 적어도 하나의 관심조직의 관 또는 관류의 이상을 판단하는 상기 판단부는, 판단된 관 또는 관류의 이상 여부 진단 결과를 하나 이상의 수치나 관류맵으로 제시하는 것을 특징으로 한다.In the present invention, the determination unit for determining the abnormality of the tube or perfusion of the at least one tissue of interest, characterized in that to present the diagnosis result of the abnormality of the determined tube or perfusion as one or more numerical values or perfusion map.
본 발명에 따른 생체조직 진단장치는 외부로부터의 빛을 차단하여 영상의 명암을 뚜렷하게 하기 위한 암실을 더 포함하고, 상기 각 조광부는 상기 조영제 여기에너지를 조사하는 조명부재를 포함하고, 상기 암실은 상기 조명부재 및 상기 검사부를 수용하는 것을 특징으로 한다.The apparatus for diagnosing a biological tissue according to the present invention further includes a dark room for blocking light from the outside to make the contrast of the image clear, wherein each dimming part includes a lighting member for irradiating the contrast agent excitation energy, and the dark room is It characterized in that for receiving the illumination member and the inspection unit.
또한 본 발명의 다른 측면에 따르면, 본 발명은 적어도 하나의 조광부가, 영상 조영제가 주입된 생체 내 적어도 하나의 관심 조직에 조영제 여기에너지를 각각 조사하는 단계; 적어도 하나의 검사부가 상기 적어도 하나의 관심 조직으로부터 각각 방산되는 에너지를 촬상하는 단계; 및 판단부가 상기 적어도 하나의 검사부에 의해 촬상된 영상데이터에 근거하여 상기 적어도 하나의 관심조직의 관 또는 관류의 이상여부를 판단하는 단계를 포함하는 것을 특징으로 하는, 생체조직 진단방법을 제공한다.In addition, according to another aspect of the invention, the present invention comprises the steps of irradiating the contrast agent excitation energy to at least one tissue of interest in vivo, at least one dimming unit is injected image contrast agent; Photographing, by at least one inspection unit, energy dissipated from the at least one tissue of interest, respectively; And a determining unit determining whether an abnormality of a tube or perfusion of the at least one tissue of interest is abnormal based on the image data captured by the at least one inspecting unit.
본 발명에서, 상기 적어도 하나의 관심조직의 관 또는 관류의 이상여부를 판단하는 단계는, 상기 촬상된 영상데이터의 시간에 따른 변화를 패턴화하는 단계; 패턴화된 데이터에 근거하여 적어도 하나의 특성값을 산출하는 단계; 및 상기 적어도 하나의 특성값 또는 두개 이상의 상기 특성값의 조합에 근거하여 상기 적어도 하나의 관심조직의 관 또는 관류의 이상여부를 진단하는 단계를 포함하는 것을 특징으로 한다.In the present invention, the step of determining whether the at least one tissue of interest or perfusion is abnormal, patterning a change over time of the captured image data; Calculating at least one characteristic value based on the patterned data; And diagnosing an abnormality of the tube or perfusion of the at least one tissue of interest based on the at least one characteristic value or a combination of two or more of the characteristic values.
본 발명에서, 상기 관심조직은 복수 개이고, 상기 적어도 하나의 관심조직의 관 또는 관류의 이상여부를 판단하는 단계는, 각 관심조직별 상기 특성값의 비교를 통해 이상 관심조직을 진단하는 단계를 더 포함하는 것을 특징으로 한다.In the present invention, the plurality of tissues of interest, the step of determining whether the abnormality of the tube or perfusion of the at least one tissue of interest, further comprising the step of diagnosing abnormal tissue of interest through the comparison of the characteristic value for each tissue of interest It is characterized by including.
본 발명에서, 상기 이상 관심조직을 진단하는 단계에서, 상기 판단부는 상기 관심조직별 특성값들의 미리 설정된 정상 분포범위를 벗어나는 특성값에 대응하는 관심조직을 이상 관심조직으로 진단하는 것을 특징으로 한다.In the present invention, in the step of diagnosing the abnormal tissue of interest, the determination unit may be characterized as diagnosing the tissue of interest corresponding to the characteristic value outside the preset normal distribution range of the characteristic values of each tissue of interest as the abnormal tissue of interest.
본 발명에서, 상기 적어도 하나의 특성값은 상기 영상데이터로부터 얻어지는 상기 관심조직에서의 시간에 따른 특정 물리값의 변화로부터 얻어지고, 상기 적어도 하나의 특성값은 상기 물리값의 최초 검출시점으로부터 상기 물리값이 최고가 될 때까지의 시간, 상기 물리값이 일정 시간에 대해 증가하거나 감소하는 기울기, 상기 물리값이 기준값 이상으로 유지되는 시간, 상기 물리값의 최초 검출시점으로부터 상기 물리값이 기준기울기 이상으로 상승하기 전까지의 시간, 및 상기 물리값이 상기 기준값 미만으로 떨어지기 시작하는 시점으로부터 상기 물리값의 최후 검출시점까지의 시간 중 적어도 하나를 포함하는 것을 특징으로 한다.In the present invention, the at least one characteristic value is obtained from a change in a specific physical value over time in the tissue of interest obtained from the image data, wherein the at least one characteristic value is obtained from the point of time of initial detection of the physical value. The time until the value becomes the highest, the slope at which the physical value increases or decreases with respect to a certain time, the time the physical value is kept above the reference value, and the physical value is above the reference slope from the initial detection of the physical value. And at least one of a time before rising and a time from the time when the physical value starts to fall below the reference value to the last detection time of the physical value.
본 발명에 따른 생체조직 진단장치 및 방법은, 영상 조영제를 주입한 생체의 관심조직, 특히 혈관/림프관이 피부 가까이 분포되어 있어 근적외선 촬영이 용이한 말초조직 및 경동맥 부분 등을 일정시간 연속되게 영상 촬영함으로써 상기 관심조직의 관이나 관류의 이상여부를 정확하게 진단할 수 있도록 한다.The apparatus and method for diagnosing a biological tissue according to the present invention continuously image a tissue of interest, particularly a blood vessel / lymphatic tube, in which a contrast agent is injected to the peripheral tissue and a carotid artery, which are easy to near-infrared, for a predetermined time. By doing so, it is possible to accurately diagnose the abnormality of the tube or perfusion of the tissue of interest.
또한, 본 발명에 따른 생체조직 진단장치 및 방법은 생체 내 한 부분 또는 복수 개의 조직, 더욱 상세히는 양손 및 양발을 동시에 또는 적어도 어느 하나를 선택적으로 촬영하여 혈관이나 림프관의 이상을 진단함으로써 복합 진단을 통한 정밀한 진단을 수행할 수 있으며, 이로써 진단 시간을 줄일 수 있다.In addition, the apparatus and method for diagnosing a biological tissue according to the present invention can perform complex diagnosis by diagnosing abnormality of blood vessels or lymphatic vessels by selectively or simultaneously photographing a portion or a plurality of tissues, more specifically, both hands and feet in vivo. Precise diagnosis can be performed, thereby reducing the diagnostic time.
도 1은 본 발명의 일 실시예에 따른 생체조직 진단장치의 사시도이다.1 is a perspective view of a biological tissue diagnosis apparatus according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 생체조직 진단장치의 단면도이다.2 is a cross-sectional view of a biological tissue diagnosis apparatus according to an embodiment of the present invention.
도 3은 본 발명의 일 실시예에 따른 생체조직 진단장치의 개략적 구성도를 보인 블록도이다.Figure 3 is a block diagram showing a schematic configuration of a biological tissue diagnostic apparatus according to an embodiment of the present invention.
도 4는 본 발명에 일 실시예에 따른 생체조직 진단방법을 설명하기 위한 흐름도이다.4 is a flowchart illustrating a method for diagnosing a living tissue according to an embodiment of the present invention.
도 5 및 도 6은 본 발명의 일 실시예에 따른 생체조직 진단장치로 발의 혈류를 검사하는 개략도이다.5 and 6 is a schematic diagram of examining the blood flow of the foot with a biological tissue diagnostic apparatus according to an embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따른 생체조직 진단장치에 의해 혈류가 정상인 사람의 발에서 투여된 영상 조영제의 시간에 따른 형광세기의 변화를 패턴화하여 나타낸 그래프이다.FIG. 7 is a graph showing a pattern of change in fluorescence intensity over time of an imaging contrast agent administered from a foot of a human whose blood flow is normal by a biotissue diagnostic apparatus according to an exemplary embodiment of the present invention.
도 8은 패턴화된 데이터의 비교를 위해 패턴의 특징을 규정짓는 수단인 특성값들 중 Onset, Tmax, Plateau Tmax, Slope을 선정하는 방법에 대한 모식도이다.FIG. 8 is a schematic diagram illustrating a method of selecting Onset, Tmax, Plateau Tmax, and Slope among characteristic values, which are means for defining characteristics of a pattern for comparison of patterned data.
도 9는 본 발명의 일 실시예에 따른 생체조직 진단장치에 의해 혈류가 정상인 사람의 손과 발의 혈류를 패턴화하여 나타낸 그래프이다.9 is a graph showing a pattern of blood flow in a hand and a foot of a person whose blood flow is normal by a biological tissue diagnosis apparatus according to an embodiment of the present invention.
도 10은 본 발명의 일 실시예에 따른 생체조직 진단장치에 의해 혈류가 비정상인 사람의 손과 발의 혈류를 패턴화하여 나타낸 그래프이다.10 is a graph showing a pattern of blood flow in a hand and a foot of a person whose blood flow is abnormal by a biological tissue diagnosis apparatus according to an embodiment of the present invention.
도 11은 생체 내 복수의 관심조직에 대한 형광세기의 패턴화된 그래프에 근거하여 이상이 있는 관심조직을 진단하는 방법을 설명하기 위한 참고도이다.11 is a reference diagram for explaining a method of diagnosing a tissue of interest with an abnormality based on a patterned graph of fluorescence intensity of a plurality of tissues of interest in vivo.
아래에서는 첨부한 도면을 참고로 하여 본 발명의 실시예에 대하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 그러나, 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고, 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면부호를 붙였다.DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention. As those skilled in the art would realize, the described embodiments may be modified in various different ways, all without departing from the spirit or scope of the present invention. In the drawings, parts irrelevant to the description are omitted for simplicity of explanation, and like reference numerals designate like parts throughout the specification.
명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Throughout the specification, when a part is said to "include" a certain component, it means that it can further include other components, except to exclude other components unless specifically stated otherwise.
도 1은 본 발명의 일 실시예에 따른 생체조직 진단장치의 사시도이고, 도 2는 본 발명의 일 실시예에 따른 생체조직 진단장치의 단면도이며, 도 3은 본 발명의 일 실시예에 따른 생체조직 진단장치의 개략적 구성도를 보인 블록도이다.1 is a perspective view of a biological tissue diagnostic apparatus according to an embodiment of the present invention, Figure 2 is a cross-sectional view of the biological tissue diagnostic apparatus according to an embodiment of the present invention, Figure 3 is a living body according to an embodiment of the present invention A block diagram showing a schematic configuration diagram of a tissue diagnosis apparatus.
그리고, 도 4는 본 발명에 일 실시예에 따른 생체조직 진단방법을 설명하기 위한 흐름도이고, 도 5 및 도 6은 본 발명의 일 실시예에 따른 생체조직 진단장치로 발의 혈류를 검사하는 개략도이다.4 is a flowchart illustrating a method for diagnosing a biological tissue according to an embodiment of the present invention, and FIGS. 5 and 6 are schematic diagrams for examining blood flow of a foot by using the apparatus for diagnosing a biological tissue according to an embodiment of the present invention. .
도 7은 본 발명의 일 실시예에 따른 생체조직 진단장치에 의해 혈류가 정상인 사람의 발에서 투여된 영상 조영제의 시간에 따른 형광세기의 변화를 패턴화하여 나타낸 그래프이다.FIG. 7 is a graph showing a pattern of change in fluorescence intensity over time of an imaging contrast agent administered from a foot of a human whose blood flow is normal by a biotissue diagnostic apparatus according to an exemplary embodiment of the present invention.
도 8은 패턴화된 데이터의 비교를 위해 패턴의 특징을 규정짓는 수단인 특성값들 중 Onset, Tmax, Plateau Tmax, Slope을 선정하는 방법에 대한 모식도이다.FIG. 8 is a schematic diagram illustrating a method of selecting Onset, Tmax, Plateau Tmax, and Slope among characteristic values, which are means for defining characteristics of a pattern for comparison of patterned data.
도 9는 본 발명의 일 실시예에 따른 생체조직 진단장치에 의해 혈류가 정상인 사람의 손과 발의 혈류를 패턴화하여 나타낸 그래프이고, 도 10은 본 발명의 일 실시예에 따른 생체조직 진단장치에 의해 혈류가 비정상인 사람의 손과 발의 혈류를 패턴화하여 나타낸 그래프이며, 도 11은 생체 내 복수의 관심조직에 대한 형광세기의 패턴화된 그래프에 근거하여 이상이 있는 관심조직을 진단하는 방법을 설명하기 위한 참고도이다.9 is a graph showing a pattern of the blood flow of the hands and feet of the person whose blood flow is normal by the biological tissue diagnostic apparatus according to an embodiment of the present invention, Figure 10 is a biological tissue diagnostic apparatus according to an embodiment of the present invention FIG. 11 is a graph showing patterns of blood flow in the hands and feet of a person with abnormal blood flow, and FIG. 11 illustrates a method of diagnosing an abnormal tissue of interest based on a patterned graph of fluorescence intensity of a plurality of tissues of interest in vivo. This is a reference diagram for explanation.
도 1 내지 도 3에 도시된 바와 같이, 본 실시예에 따른 생체조직 진단장치는 영상 조영제를 생체(生體) 조직에 주입하여 혈류와 혈관을 포함한 관이나 관류의 이상을 진단하는 설비이다. 본 실시예에 따른 생체조직 진단장치는 영상 조영제가 주입된 생체 내 적어도 하나의 관심 조직에 조영제 여기에너지를 각각 조사하는 적어도 하나의 조광부(110); 상기 생체의 영상 조영제로부터 방산되는 에너지를 촬상하는 적어도 하나의 검사부(120); 및 상기 적어도 하나의 검사부(120)에 의해 촬상된 영상데이터에 근거하여 상기 적어도 하나의 관심조직의 관 또는 관류의 이상여부를 판단하는 판단부(130)를 포함하여 구성된다.As shown in Figures 1 to 3, the biological tissue diagnostic apparatus according to the present embodiment is a facility for diagnosing abnormality of the tube or perfusion including blood flow and blood vessels by injecting an imaging contrast agent into the living tissue. The apparatus for diagnosing a biological tissue according to the present embodiment includes at least one dimming unit 110 for irradiating contrast excitation energy to at least one tissue of interest in a living body to which an imaging contrast agent is injected; At least one inspection unit 120 for imaging energy dissipated from the image contrast agent of the living body; And a determination unit 130 that determines whether an abnormality of the tube or perfusion of the at least one tissue of interest is abnormal based on the image data captured by the at least one inspection unit 120.
여기서, 판단부(130)는 상기 촬상된 영상데이터의 시간에 따른 변화를 패턴화하는 패턴처리부(132); 패턴화된 데이터에 근거하여 적어도 하나의 특성값을 산출하는 특성값 연산부(134); 및 상기 적어도 하나의 특성값 또는 두개 이상의 상기 특성값의 조합에 근거하여 상기 적어도 하나의 관심조직의 관 또는 관류의 이상여부를 진단하는 진단부(136)를 포함한다.Here, the determination unit 130 may include a pattern processing unit 132 for patterning a change over time of the captured image data; A characteristic value calculator 134 for calculating at least one characteristic value based on the patterned data; And a diagnosis unit 136 for diagnosing an abnormality of the tube or perfusion of the at least one tissue of interest based on the at least one characteristic value or a combination of two or more of the characteristic values.
본 실시예에서, 생체는 동물이나 사람을 의미하는데, 편의상 사람의 신체 일부로 도시된다.In this embodiment, the living body means an animal or a human, which is shown as a part of the human body for convenience.
아울러, 본 실시예에서 관심조직(생체조직)은 예를 들어 손가락의 끝단 미세혈관, 및 발가락의 끝단 미세혈관을 나타낼 수 있다.In addition, the tissue of interest (biotissue) in the present embodiment may represent, for example, the end microvascular of the finger, and the end microvascular of the toe.
따라서, 본 실시예에 따른 생체조직 진단장치(100)는 양쪽 손의 손가락 미세혈관을 동시에 검사 또는 진단하거나, 또는 어느 한 손의 손가락 미세혈관을 검사 또는 진단할 수 있다. 그리고, 본 실시예에 따른 생체조직 진단장치(100)는 양쪽 발의 발가락 미세혈관을 동시에 검사 또는 진단하거나, 또는 어느 한 발의 발가락 미세혈관을 검사 또는 진단할 수 있다.Therefore, the biological tissue diagnosis apparatus 100 according to the present exemplary embodiment may simultaneously test or diagnose the finger microvessels of both hands, or may examine or diagnose the finger microvessels of either hand. In addition, the biological tissue diagnosing apparatus 100 according to the present embodiment may simultaneously examine or diagnose the toe microvascularity of both feet, or the toe microvascularity of any one foot.
아울러, 본 실시예에 따른 생체조직 진단장치(100)는 손가락 미세혈관과 발가락 미세혈관을 동시에 검사 또는 진단하거나, 또는 손가락 미세혈관과 발가락 미세혈관 중 어느 하나를 검사 또는 진단할 수 있다.In addition, the biological tissue diagnosis apparatus 100 according to the present embodiment may simultaneously test or diagnose the finger microvascular and the toe microvascular system, or test or diagnose any one of the finger microvascular and the toe microvascular system.
즉, 본 실시예에 따른 생체조직 진단장치(100)는 생체 내 복수의 관심조직의 관류(혈류, 림프류) 또는 관(혈관, 림프관)을 동시에 또는 개별적으로 검사 및/또는 진단할 수 있다.That is, the biological tissue diagnosis apparatus 100 according to the present embodiment may simultaneously and separately examine and / or diagnose perfusion (blood flow, lymph flow) or tubes (vascular, lymphatic vessels) of a plurality of tissues of interest in vivo.
조광부(110)는 영상 조영제가 주입된 생체 내 관심조직에 빛을 조사하는 역할을 한다. 특히, 영상 조영제(molecular imaging contrast agent)는 근적외선 형광 조영제로서 형광 색소인 폴리메틴(polymethine) 색소로 함이 바람직하고, 특히 근적외선(near-infrared) 색소로 함이 바람직하다. 특히, 영상 조영제는 인도시아닌 그린(ICG;Indocyanin Green) 색소일 수 있다.The light dimming unit 110 serves to irradiate light to the tissue of interest in which the image contrast agent is injected. In particular, the imaging agent (molecular imaging contrast agent) is a near-infrared fluorescence contrast agent is preferably used as a polymethine pigment, a fluorescent dye, in particular near-infrared pigment. In particular, the imaging contrast agent may be an Indocyanin Green (ICG) pigment.
여기서, 영상조영제는 경구적으로 또는 비경구적으로 생체에 투여된다.Here, the imaging agent is administered orally or parenterally to the living body.
도 1 내지 도 3에 도시된 바와 같이, 조광부(110)는 케이싱(112) 및 조명부재(114)를 포함하여 구성된다. 케이싱(112)은 외부 빛의 유입을 차단하여 영상의 명암을 뚜렷하게 하기 위한 암실(116)을 구비한다. 암실(116)은 생체를 수용하는 공간으로서의 역할을 한다.As illustrated in FIGS. 1 to 3, the light control unit 110 includes a casing 112 and an illumination member 114. The casing 112 includes a dark room 116 for blocking the inflow of external light to make the contrast of the image clear. The dark room 116 serves as a space for receiving a living body.
이 때, 케이싱(112)은 복수의 생체를 동시에 수용하도록 암실(116)을 복수 개 구비할 수 있다. 특히, 복수 개의 암실(116)은 하나의 케이싱(112)에 구비될 수도 있고, 케이싱(112)에 일대일 대응되게 구비될 수도 있다.In this case, the casing 112 may include a plurality of dark chambers 116 to simultaneously accommodate a plurality of living bodies. In particular, the plurality of dark rooms 116 may be provided in one casing 112 or may be provided in one-to-one correspondence with the casing 112.
편의상, 본 실시예에서는 도 1에 도시된 바와 같이 케이싱(112)은 2개 구비된 것으로 도시되고, 암실(116)은 케이싱(112) 각각에 한 쌍씩 구비되는 것으로 도시된다. 이는 생체의 각 부분인 양손과 양발을 동시에 암실(116)에 수용할 수 있도록 하기 위함이다. 물론, 케이싱(112)의 각각은 다양한 형상 및 다양한 재질로 적용될 수 있다.For convenience, in this embodiment, as shown in FIG. 1, two casings 112 are illustrated as being provided, and a dark room 116 is illustrated as being provided in pairs in each of the casings 112. This is to allow both hands and feet, which are each part of the living body, to be simultaneously accommodated in the dark room 116. Of course, each of the casings 112 may be applied in various shapes and various materials.
이 때, 2개인 케이싱(112)은 프레임(119)에 지지된 채 연결되어 일체화됨이 바람직하며, 물론 프레임(119)은 다양한 형상 및 다양한 재질로 적용될 수 있다.At this time, the two casing 112 is preferably connected and integrated while being supported on the frame 119, of course, the frame 119 may be applied in various shapes and various materials.
그리고, 조명부재(114)는 케이싱(112)의 부분 중 암실(116)의 내부에 해당되는 위치에 구비되어 암실(116)에 수용된 생체조직을 조명하는 역할을 한다.And, the lighting member 114 is provided at a position corresponding to the inside of the dark room 116 of the portion of the casing 112 serves to illuminate the biological tissue accommodated in the dark room 116.
조명부재(114)는 영상 조영제 특히 인도시아닌 그린(ICG) 색소를 주사한 생체(들)에 일정 파장의 여기에너지(빛)을 발광하도록 구비되는데, ICG를 주사한 생체(들)의 관심조직 내의 ICG를 활성화해 해당 관심조직(생체조직)으로부터의 형광 신호를 관찰할 수 있도록 하는 역할을 한다.The illumination member 114 is provided to emit excitation energy (light) of a predetermined wavelength to the living body (s) injected with an imaging contrast agent, especially indocyanine green (ICG) pigment, the tissue of interest of the living body (s) injected with ICG It activates the ICG in the body to observe the fluorescence signal from the tissue of interest (biological tissue).
여기서, 조명부재(114)로부터 조사되는 여기에너지(광)는 750 내지 780nm 사이 범위의 중심파장을 갖는데, 이 파장은 근적외선 영역으로서, 이 파장의 근적외선은 ICG 주입에 따른 형광 관찰을 위하여 조사되며, 조명부재(114)로는 이 파장의 에너지를 방산하는 발광 다이오드 또는 레이저가 이용될 수 있다.Here, the excitation energy (light) irradiated from the illumination member 114 has a center wavelength in the range of 750 to 780 nm, the wavelength is a near infrared region, the near infrared of this wavelength is irradiated for fluorescence observation by ICG injection, As the lighting member 114, a light emitting diode or a laser that dissipates energy of this wavelength may be used.
조명부재(114)는 영상 조영제를 발광하도록 하는 근적외선 조명부재 이외에 생체의 암실(116) 내의 고정부재(118)로의 지지상태를 모니터링할 수 있도록 하는 백색광선 조명부재를 포함할 수 있다.The lighting member 114 may include a white light lighting member for monitoring a support state of the living body to the fixing member 118 in the dark room 116 of the living body, in addition to the near-infrared lighting member for emitting the image contrast agent.
특히, 조명부재(114)는 암실(116)에 일대일 대응되게 구비될 수 있으며, 제어부(140)의 제어에 따라 조명 시간을 달리하도록 조정될 수 있다. 즉, 제어부(140)는 각 암실(116)에 구비된 조명부재(114)를 제어하여 대응되는 생체의 관심조직(생체조직)에 여기에너지가 조사되는 시간을 달리하도록 제어할 수 있다. 물론, 제어부(140)는 모든 조명부재(114)가 동시에 소등 및 점등되도록 제어할 수도 있다.In particular, the lighting member 114 may be provided to correspond to the dark room 116 one-to-one, and may be adjusted to vary the lighting time under the control of the controller 140. That is, the controller 140 may control the lighting member 114 provided in each dark room 116 so as to change the time for which the excitation energy is irradiated to the tissue of interest (biological tissue) of the corresponding living body. Of course, the controller 140 may control all the lighting members 114 to be turned off and on at the same time.
아울러, 암실(116) 각각의 내부에는 고정부재(118)가 구비된다. 고정부재(118)는 대응되는 생체 부분을 고정하는 역할을 하는데, 앉은 상태, 누운 상태 또는 옆으로 누운 상태에서 모두 촬영이 가능하도록 변형될 수 있다. 특히, 고정부재(118)는 대응되는 생체 부분, 즉 손 또는 발을 지지할 수 있도록 다양한 형상 및 다양한 재질로 적용될 수 있다.In addition, a fixing member 118 is provided in each of the dark chambers 116. The fixing member 118 serves to fix the corresponding living body part, and may be modified to allow photographing in a sitting state, a lying state, or a side lying state. In particular, the fixing member 118 may be applied in various shapes and various materials so as to support the corresponding living parts, ie, hands or feet.
한편, 검사부(120)는 생체의 관심조직(들)에 조사되는 빛에 의해 상기 각 관심조직(영상 조영제)으로부터 방산되는 근적외선 영역의 에너지(형광신호)를 촬상하는 역할을 한다. 특히, 검사부(120)는 필터부재(122) 및 촬상부재(124)를 포함하여 구성될 수 있다.On the other hand, the inspection unit 120 serves to capture the energy (fluorescence signal) of the near-infrared region emitted from each of the tissues of interest (image contrast medium) by the light irradiated to the tissue (s) of interest of the living body. In particular, the inspection unit 120 may include a filter member 122 and an image pickup member 124.
필터부재(122)는 암실(116) 각각에 대응되도록 케이싱(112) 내부에 구비되어 각 관심조직(영상 조영제)으로부터 방산되는 에너지(형광신호) 중 주로 근적외선 영역을 통과시키는 역할을 하며, 통과시키는 근적외선 영역의 범위는 필터부재(122)의 사양이나 시스템 요구조건에 따라 다양하게 설정될 수 있다. 즉, 필터부재(122)는 조명부재(114)에서 조사된 빛으로 인하여 대응되는 관심조직(생체조직)으로부터 발생되는 형광 신호 중에서 일정 파장 범위의 빛을 통과시키는데, 조명부재(114)에 의하여 생체에서 나오는 형광 신호 중 800 내지 850 nm 사이의 근적외선 파장만을 통과시키는 역할을 수행한다.The filter member 122 is provided inside the casing 112 so as to correspond to each of the dark chambers 116, and serves to pass mainly the near infrared region of the energy (fluorescence signal) emitted from each tissue of interest (image contrast agent). The range of the near infrared region may be set in various ways according to the specifications of the filter member 122 or the system requirements. That is, the filter member 122 passes the light of a predetermined wavelength range from the fluorescent signal generated from the corresponding tissue of interest (biological tissue) due to the light irradiated from the lighting member 114, the living body by the lighting member 114 It serves to pass only near-infrared wavelengths between 800 and 850 nm of the fluorescence signal.
필터부재(122)로는 백색광에 근적외선 파장만이 조사될 수 있도록 대역 통과 필터(BPF:Band Pass Filter)가 채용될 수 있다. 또한, 필터부재(122)는 암실(116) 각각에 대하여 하나 이상 구비될 수 있고, 위치 조절 가능하게 설치될 수 있으며, 근적외선 파장을 가지는 에너지(형광신호)의 강도를 조절할 수 있다.A band pass filter (BPF) may be employed as the filter member 122 so that only the near infrared wavelength is irradiated to the white light. In addition, one or more filter members 122 may be provided for each dark room 116, may be installed to be adjustable in position, and may adjust intensity of energy (fluorescent signal) having a near infrared wavelength.
아울러, 촬상부재(124)는 암실(116) 각각의 내부에 구비되어 필터부재(122)를 통과하는 근적외선 영역의 에너지(형광신호)를 촬상하는 역할을 한다. 특히, 촬상부재(124)는 필터부재(122)를 통과한 빛을 감지하여 디지털 신호로 변환시키는데, 영상을 전기 신호로 변환하는 것에 의해 아날로그 영상을 디지털 데이터로 변환하여 저장 매체를 통하여 저장한다. 촬상부재(124)의 일예로는 디지털 카메라 종류 중 전하 결합 소자(CCD, Charge-Coupled Device camera)가 채용될 수 있다. 촬상부재(124)는 검사부(120)로 입력되어 필터부재(122)를 통과한 형광 신호를 촬영하여 디지털 데이터의 형태로 변환하여 출력한다.In addition, the imaging member 124 is provided in each of the dark chambers 116 and serves to image the energy (fluorescence signal) in the near infrared region passing through the filter member 122. In particular, the image pickup member 124 detects light passing through the filter member 122 and converts the light into a digital signal. The image conversion member 124 converts the image into an electrical signal and converts the analog image into digital data and stores it through the storage medium. As an example of the imaging member 124, a charge-coupled device camera (CCD) among digital camera types may be employed. The imaging member 124 photographs the fluorescence signal input to the inspection unit 120 and passed through the filter member 122, and converts the fluorescence signal into digital data.
검사부(120)와 조명부재(114)는 근접하도록 위치할 수 있으며, 검사부(120)는 조광부(110)의 케이싱(112) 내에서 대응되는 관심조직(생체조직)을 촬영할 수 있도록 위치하게 된다.The inspection unit 120 and the lighting member 114 may be positioned to be close to each other, and the inspection unit 120 may be positioned to photograph a corresponding tissue of interest (biotissue) in the casing 112 of the light control unit 110. .
특히, 필터부재(122)와 촬상부재(124)는 하나 이상의 관심조직을 독립적으로 검사하기 위해 동일한 개수로 복수 개 구비될 수 있고, 대응되는 암실(116) 내부에 설치된다.In particular, the filter member 122 and the image pickup member 124 may be provided in plural in the same number to independently inspect one or more tissues of interest, and are installed in the corresponding dark room 116.
한편, 복수 개의 필터부재(122)와 복수 개의 촬상부재(124)는 가동 시간을 제어하는 제어부(140)에 연결된다. 즉, 제어부(140)는 각각의 암실(116) 내부에 구비되는 검사부(120)의 전체 가동 시간을 제어한다. 다시 말해서, 제어부(140)는 서로 다른 촬상부재(124)의 가동 시간을 동일하게 제어할 수도 있고, 가동 시간을 달리하도록 제어할 수도 있다.On the other hand, the plurality of filter member 122 and the plurality of imaging member 124 is connected to the control unit 140 for controlling the operation time. That is, the controller 140 controls the overall operating time of the inspection unit 120 provided in each dark room 116. In other words, the controller 140 may control the same operation time of different imaging members 124, or may control the operation time to be different.
또한, 촬상부재(124)의 가동 시간은 촬상개시시점으로부터 상기 영상 조영제로부터 근적외선 방산이 미측정되는 때까지의 시간 이내로 설정될 수 있으며, 촬상부재(124)는 설정 시간 간격으로 촬상하도록 제어될 수 있다. 특히, 촬상부재(124)의 가동시간은 수 밀리초 내지 10초 간격으로 촬상 제어됨이 바람직하다. 이 때, 촬상부재(124)의 가동시간은 영상 조영제의 종류나 투여량, 외부 온도 등에 따라 달라질 수 있다. 즉, 촬상부재(124)의 가동시간은 10초 이내의 범위에서 그 간격이 조정될 수 있다.In addition, the operating time of the imaging member 124 can be set within a time from the start of imaging until the near infrared dissipation is not measured from the imaging contrast agent, and the imaging member 124 can be controlled to image at a set time interval. have. In particular, the operating time of the image pickup member 124 is preferably image-controlled at intervals of several milliseconds to 10 seconds. At this time, the operating time of the imaging member 124 may vary depending on the type, dosage, external temperature, etc. of the imaging contrast agent. That is, the interval of the operation time of the imaging member 124 can be adjusted within the range of 10 seconds.
한편, 판단부(130)는 검사부(120)에 의해 촬상된 영상데이터(근적외선 영역의 결과 데이터)를 통해 생체 내 관심조직(들)의 관류 및/또는 관의 이상을 판단하는 역할을 한다.On the other hand, the determination unit 130 serves to determine the perfusion and / or abnormality of the tube of the tissue of interest in vivo through the image data (result data of the near infrared region) captured by the inspection unit 120.
이 때, 판단부(130)는 검사부(120)로부터 디지털 데이터를 입력받기 위한 입력장치(미도시)를 더 구비할 수 있고, 도 5 및 도 6에 도시된 바와 같이 데이터를 출력하기 위한 출력기(138)가 판단부(130)에 연결되거나 판단부(130)에 구비될 수도 있다.In this case, the determination unit 130 may further include an input device (not shown) for receiving digital data from the inspection unit 120, and as illustrated in FIGS. 5 and 6, an output device for outputting data ( 138 may be connected to the determination unit 130 or may be provided in the determination unit 130.
여기서, 검사부(120)로부터 출력되는 디지털 데이터는 무선통신이나 유선통신 등을 통해 판단부(130)에 전달되는데, RSC 232, 병렬 포트, IEEE 1934 또는 USB 등을 이용하는 것이 바람직하다.Here, the digital data output from the inspection unit 120 is transmitted to the determination unit 130 through wireless communication or wired communication, preferably RSC 232, parallel port, IEEE 1934 or USB.
판단부(130)는 패턴처리부(132), 특성값 연산부(134) 및 진단부(136)를 포함하여 이루어진다.The determination unit 130 includes a pattern processing unit 132, a characteristic value calculating unit 134, and a diagnosis unit 136.
패턴처리부(132)는 생체의 검사부위별 관심조직이나 관심지역(ROI;Region Of Interest)에 대하여 촬상된 영상데이터의 시간에 따른 변화를 패턴화하는 역할을 한다.The pattern processor 132 serves to pattern changes over time of image data photographed with respect to a tissue of interest or a region of interest (ROI) of each living body.
그리고, 특성값 연산부(134)는 패턴화된 결과 데이터들로부터 관류상태(가령, 혈류상태)를 반영하는 다양한 특성값(feature value)을 산출하는 역할을 하고, 진단부(136)는 산출된 다양한 특성값 또는 두개 이상의 상기 특성값의 조합을 통해 해당 관심조직의 관 또는 관류의 이상여부(가령, 혈관계 질환)를 진단하는 역할을 한다.The characteristic value calculator 134 calculates various feature values reflecting the perfusion state (eg, blood flow state) from the patterned result data, and the diagnostic unit 136 calculates various calculated values. Through the characteristic value or a combination of two or more of said characteristic values, it serves to diagnose the abnormality (eg, vascular disease) of the tube or perfusion of the tissue of interest.
다시 말해서, 패턴처리부(132)는 입력된 신호를 관심조직에서의 시간에 따른 형광 세기로 처리하여 패턴화하기 위하여 구비되고, 특성값 연산부(134)는 처리된 시간에 따른 형광 세기의 패턴으로부터 부분별 특성값을 산출하며, 진단부(136)는 특성값 연산부(134)로부터의 각각의 특성값 또는 두개 이상의 상기 특성값의 조합을 이용하여 관심조직의 관 또는 관류의 이상여부를 진단하거나 류정도를 산출한다.In other words, the pattern processing unit 132 is provided to process and pattern the input signal with the fluorescence intensity according to time in the tissue of interest, and the characteristic value calculating unit 134 is a part from the pattern of the fluorescence intensity according to the processed time. The characteristic value of each characteristic is calculated, and the diagnosis unit 136 diagnoses an abnormality of the pipe or perfusion of the tissue of interest by using each characteristic value from the characteristic value calculating unit 134 or a combination of two or more of the characteristic values. To calculate.
이와 같이, 판단부(130)는 생체 내에 주입된 ICG의 시간 흐름에 따른 각 부분별 ICG 형광세기를 측정하고, 각 부분에 대한 패턴 분석 및 관(관류)의 이상여부 진단을 수행한다.As such, the determination unit 130 measures ICG fluorescence intensity for each part according to the time flow of the ICG injected into the living body, and performs pattern analysis and diagnosis of abnormality of the tube (perfusion) for each part.
판단부(130)는 각각의 암실(116)에 구비되는 검사부(120)와 일대일 대응되게 구비될 수도 있고, 하나만 구비되어 복수의 검사부(120)에 연결될 수도 있다. 아울러, 검사부(120)는 제어부(140)에 연결된다.The determination unit 130 may be provided in one-to-one correspondence with the inspection unit 120 provided in each dark room 116, or may be provided with only one and may be connected to the plurality of inspection units 120. In addition, the inspection unit 120 is connected to the control unit 140.
제어부(140)는 생체의 서로 다른 관심조직(생체조직)별로 이에 대응하여 구비되는 조광부(110)와 검사부(120)를 제어함과 아울러 판단부(130)를 제어하고, 조광부(110)의 각 구성과 검사부(120)의 각 구성의 가동 시간을 조절하는 역할을 한다.The controller 140 controls the dimming unit 110 and the inspection unit 120 corresponding to each different tissues of interest (biological tissues) of the living body, and controls the determination unit 130, and controls the dimming unit 110. Each component and the inspection unit 120 serves to adjust the operating time of each component.
본 실시예에서, 상기 특성값(들)은 관심조직이나 관심지역(ROI)에서의 시간에 따른 결과 데이터의 패턴을 특정 지을 수 있는 하나의 실수(實數)로 변환되는 인자(factor)이고, 판단부(130)는 특성값의 비교를 통해 관심지역의 혈류를 계산할 수 있다. 상기 특성값(들)은 검사부(120)로부터의 영상데이터에서 얻어지는 관심조직에서의 시간에 따른 특정 물리값(가령, ICG 형광 세기)의 변화로부터 얻어질 수 있다. In the present embodiment, the characteristic value (s) is a factor that is converted into one real number that can specify a pattern of result data over time in the tissue of interest or region of interest (ROI), and the determination The unit 130 may calculate the blood flow of the region of interest by comparing the characteristic values. The characteristic value (s) may be obtained from a change in a specific physical value (eg, ICG fluorescence intensity) over time in the tissue of interest obtained from the image data from the inspection unit 120.
아울러, 관심조직별 특성값들이 정상군, 또는 관이나 관류의 이상군에서 각각 취득되는 경우, 상기 정상군 또는 상기 관이나 관류의 이상군에 포함된 하나 이상의 특성값들의 조합값은 해당 각 군을 80% 이상의 민감도 및 특이도로 구분할 수 있다.In addition, when the characteristic values of each tissue of interest are obtained from the normal group or the abnormal group of the tube or perfusion, the combination value of one or more characteristic values included in the normal group or the abnormal group of the tube or perfusion may be 80%. The above sensitivity and specificity can be classified.
조명부재(114), 필터부재(122) 및 촬상부재(124)를 각각 수용하는 복수 개의 암실(116)에서는 서로 다른 복수 개의 관심조직(생체조직)이 동시에 촬상되고, 판단부(130)는 복수 개의 관심조직에 대해 산출된 특성값들을 상호 비교 분석하여 관이나 관류(혈관, 혈류)의 정상 여부를 진단한다.In the plurality of dark rooms 116 accommodating the lighting member 114, the filter member 122, and the imaging member 124, a plurality of different tissues of interest (biological tissues) are simultaneously imaged, and the determination unit 130 includes a plurality of images. The characteristics of the dogs of interest are compared and analyzed to diagnose whether the tube or perfusion (blood vessel, blood flow) is normal.
도 5와 도 6은 어느 한 생체 내 부위인 발의 혈류를 검사하는 상태도이다. 도 5 및 도 6에서 미설명된 도면부호는 상술한 것으로 대체한다.5 and 6 is a state diagram for testing the blood flow of the foot, which is any one in vivo site. Reference numerals not described in FIGS. 5 and 6 replace those described above.
생체의 혈류와 혈관의 이상을 판단하는 판단부(130)는 판단된 혈류 및 혈관의 이상 여부 진단 결과에 따라 당뇨환자의 혈관 합병증 발병 여부 또는 림프관 질환 발생 여부를 진단할 수 있다. 그리고, 판단부(130)는 판단된 혈류 및 혈관의 이상 여부 진단 결과에 따라 동맥경화 및 협착, 특히 관상동맥, 경동맥, 대퇴동맥, 앞정강동맥, 뒤정강동맥에서의 동맥 경화 및 협착증 발병 여부를 진단할 수도 있다. 아울러, 판단부(130)는 판단된 혈류 및 혈관의 이상 여부 진단 결과에 따라 손발냉증 및 레이노병, 레이노증후군를 진단할 수 있다. 이 때, 판단부(130)는 판단된 혈류 및 혈관의 이상 여부 진단 결과를 하나 이상의 수치나 관류맵으로 제시함이 바람직하다.The determination unit 130 for determining abnormalities in blood flow and blood vessels of the living body may diagnose whether diabetic patients develop vascular complications or develop lymphatic diseases according to the determined blood flow and blood vessel abnormalities diagnosis results. In addition, the determination unit 130 determines whether atherosclerosis and stenosis, in particular, coronary artery, carotid artery, femoral artery, anterior carotid artery, and posterior tibial artery, develop atherosclerosis and stenosis according to the determined diagnosis of blood flow and blood vessel abnormalities. It can also be diagnosed. In addition, the determination unit 130 may diagnose cold hands, Raynaud's disease, and Raynaud's syndrome according to the determined diagnosis of blood flow and blood vessel abnormalities. At this time, the determination unit 130 preferably presents the diagnosis result of the abnormal blood flow and blood vessels by one or more numerical values or perfusion map.
이와 같이, 판단부(130)는 패턴처리부(132), 특성값 연산부(134) 및 진단부(136)를 통해 당뇨환자의 혈관 합병증 발병 여부 또는 림프관 질환 발생 여부를 판단할 수 있고, 동맥경화 및 협착, 특히 관상동맥, 경동맥, 대퇴동맥, 앞정강동맥, 뒤정강동맥에서의 동맥 경화 및 협착증 발병 여부를 판단할 수 있으며, 손발냉증 및 레이노병, 레이노증후군을 진단할 수 있다.As such, the determination unit 130 may determine whether the diabetic patient develops vascular complications or lymphatic disease through the pattern processing unit 132, the characteristic value calculation unit 134, and the diagnosis unit 136. Atherosclerosis, especially in coronary, carotid, femoral, anterior tibia, and posterior tibia may be determined, and cold sores, Raynaud's disease, and Raynaud's syndrome can be diagnosed.
그리고, 판단부(130)를 통해 판단되거나 진단된 결과치는 하나 이상의 수치나 관류맵으로 제시됨으로써, 사용자나 환자가 쉽게 해석하거나 이해될 수 있다.In addition, the result determined or diagnosed by the determination unit 130 may be easily interpreted or understood by a user or a patient by presenting one or more numerical values or perfusion maps.
본 실시예에서 관이나 관류(가령, 혈관, 림프관, 혈류, 림프류 등)의 이상여부를 판단하는 기준이 되는 특성값은 다음과 같은 과정에 의해 수식화된다.In the present embodiment, the characteristic value, which is a criterion for determining the abnormality of the tube or the perfusion (eg, blood vessel, lymphatic vessel, blood flow, lymph flow, etc.), is modified by the following procedure.
실시 예로, 체 내 ICG 주입과 동시에 발등에서 ICG 형광세기의 변화를 1/5Hz로 10분 동안 촬상하여 제일 강한 형광 밝기를 1로 하여 패턴화한 그래프(도 7 참조)를 작성한다.As an example, a graph (see FIG. 7) is prepared by imaging the change in ICG fluorescence intensity at 1/5 Hz for 10 minutes at the same time as the implantation of ICG in the body and the strongest fluorescence brightness as 1.
도 8은 혈류가 정상인 사람의 시간에 따른 형광세기의 변화를 도시한 그래프로서, 특성값인 Tmax, Plateau Tmax, Onset, Slope를 나타낸 그래프이다.8 is a graph showing the change in fluorescence intensity over time in a person with normal blood flow, with characteristic values T max , Plateau T max , Onset, and Slope.
특히, 도 8에 도시된 바와 같이, 본 실시예에 따른 생체조직 진단장치(100)를 통해 정상 상태의 손 또는 발에 해당되는 관심조직(생체조직)의 혈류는 시간에 대한 형광 세기의 변화로 나타나게 된다.In particular, as shown in Figure 8, the blood flow of the tissue of interest (biological tissue) corresponding to the hand or foot in the normal state through the biological tissue diagnostic apparatus 100 according to the present embodiment as a change in the fluorescence intensity over time Will appear.
여기서, 특성값은 Tmax, Plateau Tmax, Onset, Slope 중 적어도 어느 하나의 조합에 의해 결정된다.Where the characteristic value is T max , It is determined by a combination of at least one of Plateau T max , Onset, and Slope.
Tmax는 패턴화된 근적외선 표출영역 중 세기가 최고가 될 때의 시간을 나타내고, Plateau Tmax는 패턴화된 근적외선 표출영역 중 특정 세기 이상을 보이는 구간을 의미한다.T max represents the time when the intensity becomes the highest among the patterned NIR regions, and Plateau T max represents the section showing a specific intensity or more among the patterned NIR regions.
특히, 혈류가 원활하지 못하여 다수의 혈관에 흐르는 형광물질이 누적되거나, 혈류 흐름의 지연 등으로 인해 일정 구간 형광 세기가 높게 유지되는 평평한 구간이 관측되는데, 이 구간이 Plateau Tmax이다.In particular, a flat section in which the fluorescence intensity is maintained in a certain section due to poor blood flow or accumulation of fluorescent substances flowing in a plurality of blood vessels or a delay in blood flow is observed, and this section is Plateau T max .
그리고, Onset은 패턴화 시작시점(최초 검출시점)으로부터 급격한 변곡이 발생하여 기준기울기 이상으로 상승하기 시작하는 시점까지의 영역을 의미하고, Slope는 패턴화된 근적외선 표출영역 중 Plateau Tmax 이후 하향 영역의 패턴(형광세기가 기준값 미만으로 떨어지기 시작하는 시점으로부터 상기 형광세기의 최후 검출시점까지의 시간)을 의미한다.Onset means the area from the start of patterning (first detection time) to the time when a sudden inflection occurs and starts to rise above the reference slope, and Slope is a downward area after Plateau T max in the patterned near infrared display area. Means a pattern (time from when the fluorescence intensity begins to fall below the reference value to the time of the last detection of the fluorescence intensity).
형광세기가 소정의 기준값(FIc) 이상이 되는 구간인 플래토 구간(Plateau Tmax)에 퍼져 있거나 기울기가 완만한 구간이 관측되면 혈류에 이상이 있다고 볼 수 있다.If the fluorescence intensity is spread over the plateau section (Plateau T max ), which is a section where the predetermined reference value (FI c ) or more, or the slope is gentle, it may be considered that there is an abnormality in blood flow.
따라서, 본 실시예에서는 형광세기가 일정 세기 이상인 지점을 설정하고, 해당 구간(Plateau Tmax)에서 허혈 조직의 ICG 형광 세기가 최고가 될 때의 시간(Tmax)을 고려하여 혈관이나 혈류의 이상유무를 판별한다. 여기서, 일정 세기 이상인 지점은 최고 형광 세기의 70% 에서 95% 사이의 임의의 값이다. Therefore, in the present embodiment, the point where the fluorescence intensity is set to a predetermined intensity or more, and the abnormality of blood vessels or blood flow in consideration of the time (T max ) when the ICG fluorescence intensity of the ischemic tissue becomes the highest in the corresponding section (Plateau T max ) Determine. Here, the point above a certain intensity is any value between 70% and 95% of the highest fluorescence intensity.
도 8, 도 9 및 도 10에서처럼, 어느 한 관심조직(생체조직)과 다른 한 관심조직을 동시에 혈류 진단할 경우, 어느 한 관심조직의 Tmax값과 다른 한 관심조직의 Tmax값의 차이가 제 1설정치보다 클 경우 비정상 혈류로 진단할 수 있다. As shown in FIGS. 8, 9, and 10, when diagnosing blood flow of one tissue of interest (Tissue) and another tissue of interest at the same time, the difference between the T max value of one tissue of interest and the T max value of another tissue of interest is If it is larger than the first set point, it may be diagnosed as abnormal blood flow.
그리고, 생체 내 어느 한 관심조직의 Plateau Tmax값에 대한 다른 한 관심조직의 Plateau Tmax값의 비율이 제 2설정치보다 클 경우에도 비정상 혈류로 진단할 수 있다.In addition, even when the ratio of the Plateau T max value of one tissue of interest to the Plateau T max value of another tissue of interest is greater than the second set value, the abnormal blood flow may be diagnosed.
또한, 생체 내 어느 한 관심조직의 Onset값에 대한 다른 한 관심조직의 Onset값의 비율이 제 3설정치보다 클 경우에도 비정상 혈류로 진단할 수 있다.In addition, abnormal blood flow can be diagnosed even when the ratio of Onset value of one tissue of interest to Onset value of another tissue of interest is greater than the third set value in vivo.
여기서, 어느 한 관심조직은 발가락이 될 수 있고, 다른 한 관심조직은 손가락이 될 수 있으며, 상기 제 1설정치, 제 2설정치 및 제 3설정치는 정상인들의 평균값(정상값)으로 한다.Here, one tissue of interest may be a toe, the other tissue of interest may be a finger, and the first setpoint, the second setpoint, and the third setpoint are average values (normal values) of normal people.
혈류가 느릴 경우, 단순하게는 FI 절대값은 작아지며, Onset과 Tmax, plateau Tmax 는 길어지고, slope는 낮아지는 패턴으로 보임을 알 수 있다. 이 특성값들을 비교하면, 검사조직의 혈류를 진단할 수 있고, 혈류의 정도를 수치로 표현하기 위해 각 특성값들을 사용해서 수식을 만들 수 있다.If the blood flow is slow, the absolute value of FI simply decreases, and the onset, Tmax, and plateau Tmax are long, and the slope appears to be a pattern. Comparing these characteristic values, the blood flow of the test tissue can be diagnosed, and an expression can be formulated using each characteristic value to express the degree of blood flow numerically.
아울러, 다른 한 관심조직 즉 양 손의 특성값(Feature value)은 평균을 내거나 각각 사용해서 계산할 수 있으며, 어느 한 관심조직 즉 양 발의 ICG 패턴이 다를 경우, 양 발의 값을 각각 구해서 양 다리 중 어느 한 쪽 다리 또는 양 다리 모두에 동맥협착이 있는지 진단할 수 있다.In addition, the feature value of the other tissue of interest, ie, both hands, can be averaged or calculated using each of them.If the ICG pattern of the tissue of interest, ie, both feet, is different, the values of both feet are determined to determine which of the legs. Diagnosis of arterial stenosis can be diagnosed in one or both legs.
일 실시예로 도 9의 정상군의 양 손의 Tmax와 Onset이 양 발에서의 Tmax 및 Onset과 큰 차이가 없는데 반해, 도 10의 혈류 이상 환자의 경우 양 손의 Tmax와 Onset이 발에서 얻어진 값에 비해 상이하게 작으며, 특히 양 발에서 각각 얻은 Onset의 값도 확연히 차이가 난다. In one embodiment, while the Tmax and Onset of the two hands of the normal group of FIG. 9 are not significantly different from the Tmax and Onset of the two feet, the values of the Tmax and Onset of the two hands are obtained from the feet in patients with abnormal blood flow of FIG. Compared to, the size of Onset obtained from both feet is very different.
도 10의 경우, 양쪽 다리에 동맥 협착이 진단되며 특히 협착 정도가 왼쪽이 더 심한 것으로 진단된다.In the case of Fig. 10, artery stenosis is diagnosed on both legs, and especially the degree of stenosis is diagnosed to be more severe on the left side.
도 11은 생체 내 복수의 관심조직에 대한 형광세기의 패턴화된 그래프에 근거하여 이상이 있는 관심조직을 진단하는 방법을 설명하기 위한 참고도이다. 도 11에 도시된 바와 같이 4개의 관심조직에 대한 형광세기의 패턴화된 추이그래프에서, 3개의 관심조직(좌측상단, 우측하단, 좌측하단)에 대한 추이그래프는 일정 분포범위에서 동조하는 모양을 보이는 반면 나머지 하나의 관심조직(우측상단), 즉 오른쪽 손부분의 관심조직에 대한 추이그래프는 이와는 동떨어진 추이를 보이고 있다. 이 경우, 서로 동조된 상기 3개의 관심조직의 경우에는 정상적인 혈류나 혈관특성을 보이는 것으로 볼 수 있지만, 다른 한 개의 관심조직(오른쪽 손부분)의 경우에는 혈류나 혈관의 상태에 이상이 있다는 것을 나타낸다. 따라서, 이러한 특성에 기초하여, 판단부(130)는 각 관심조직별 특성값들의 미리 설정된 정상 분포범위를 벗어나는 특성값에 대응하는 관심조직을 이상 관심조직으로 진단할 수 있다.11 is a reference diagram for explaining a method of diagnosing a tissue of interest with an abnormality based on a patterned graph of fluorescence intensity of a plurality of tissues of interest in vivo. In the patterned trend graph of fluorescence intensity for four tissues of interest as shown in FIG. 11, the trend graphs for three tissues of interest (top left, bottom right, bottom left) are synchronized in a certain distribution range. On the other hand, the trend graph for the other organization of interest (top right), namely the organization of interest in the right hand, shows a very different trend. In this case, the three tissues of interest synchronized with each other can be seen to show normal blood flow or vascular characteristics, but the other tissue of interest (right hand) indicates abnormalities in blood flow or blood vessels. . Therefore, based on this characteristic, the determination unit 130 may diagnose the tissue of interest corresponding to the characteristic value that is outside the preset normal distribution range of the characteristic values of each tissue of interest as the abnormal tissue of interest.
한편, 판단부(130)는 검사부(120)에서 판별한 진단 결과를 출력기(138)를 통해서 출력한다. 출력기(138)로는 CRT 모니터 또는 LCD, 플라즈마 디스플레이 장치 등이 채용될 수 있다.Meanwhile, the determination unit 130 outputs the diagnosis result determined by the inspection unit 120 through the output unit 138. As the output unit 138, a CRT monitor or LCD, a plasma display device, or the like may be employed.
도 4는 본 발명에 일 실시예에 따른 생체조직 진단방법을 설명하기 위한 흐름도로서, 이를 참조하여 본 실시예에 따른 생제조직 진단방법을 설명한다. 본 실시예에서 조광부(110) 및 검사부(120)는 관심조직의 갯수에 따라 하나 이상 구비될 수 있다.4 is a flowchart illustrating a method for diagnosing a biological tissue according to an exemplary embodiment of the present invention, with reference to this, a method for diagnosing a biological tissue according to the present exemplary embodiment will be described. In the present embodiment, the dimming unit 110 and the inspection unit 120 may be provided with one or more according to the number of tissues of interest.
먼저, 조명부재(114)는 영상 조영제가 주입된 생체 내 적어도 하나의 관심 조직에 조영제 여기에너지를 각각 조사하고(S410), 검사부(120)는 상기 생체의 각 관심조직(영상 조영제)으로부터 각각 방산되는 에너지(근적외선 영역의 에너지)를 촬상한다(S420).First, the lighting member 114 irradiates contrast excitation energy to at least one tissue of interest in the living body to which the image contrast agent is injected (S410), and the inspection unit 120 dissipates from each tissue of interest (image contrast agent) of the living body. The captured energy (energy in the near infrared region) is imaged (S420).
이어서, 판단부(130)는 검사부(120)에 의해 촬상된 영상데이터에 근거하여 상기 적어도 하나의 관심조직의 관 또는 관류의 이상여부를 판단하는데(S430), 단계(S430)를 좀 더 자세히 설명하면 다음과 같다.Subsequently, the determination unit 130 determines whether there is an abnormality in the tube or perfusion of the at least one tissue of interest based on the image data captured by the inspection unit 120 (S430), and the step S430 is described in more detail. Is as follows.
먼저, 패턴처리부(132)가 상기 촬상된 영상데이터의 시간에 따른 변화를 패턴화한다(S431). 즉, 패턴처리부(132)는 검사부(120)의 촬상부재(124)에 의해 촬상되어 디지털화된 전기신호를 입력받아 이를 처리하여 특정 물리값(예를 들어, 형광세기)의 시간에 대한 변화추이를 패턴화한다.First, the pattern processing unit 132 patterns the change with time of the captured image data (S431). That is, the pattern processing unit 132 receives the digital signal captured by the image pickup member 124 of the inspection unit 120 and processes the digital signal to process the change in time of a specific physical value (for example, fluorescence intensity). Pattern.
이어서, 특성값 연산부(134)는 상기 패턴화된 데이터에 근거하여 적어도 하나 이상의 특성값을 산출한다(S432). 즉, 특성값 연산부(134)는 상기 패턴화된 데이터 내지는 패턴화된 그래프로부터 하나 이상의 특성값을 산출하는데, 이 특성값(들)은 관심조직에서의 시간에 따른 특정 물리값의 변화로부터 얻어진다. 상기 적어도 하나의 특성값은 물리값(가령, 형광세기)의 최초 검출시점으로부터 상기 물리값이 최고가 될 때까지의 시간(Tmax), 상기 물리값이 일정 시간에 대해 증가하거나 감소하는 기울기, 상기 물리값이 기준값 이상으로 유지되는 시간(Plateau Tmax), 상기 물리값의 최초 검출시점으로부터 상기 물리값이 기준기울기 이상으로 상승하기 전까지의 시간(Onset), 및 상기 물리값이 상기 기준값 미만으로 떨어지기 시작하는 시점으로부터 상기 물리값의 최후 검출시점까지의 시간(Slop) 중 적어도 하나가 될 수 있다.Subsequently, the characteristic value calculator 134 calculates at least one characteristic value based on the patterned data (S432). That is, the characteristic value calculator 134 calculates one or more characteristic values from the patterned data or the patterned graph, which characteristic value (s) are obtained from a change of a specific physical value over time in the tissue of interest. . The at least one characteristic value is a time T max from the initial detection of a physical value (eg, fluorescence intensity) until the physical value becomes the highest, the slope at which the physical value increases or decreases over a period of time, The time when the physical value is maintained above the reference value (Plateau T max ), the time before the physical value rises above the reference slope from the initial detection of the physical value (Onset), and the physical value falls below the reference value It may be at least one of the time (Slop) from the start of the start to the last detection time of the physical value.
다음으로, 진단부(136)는 상기 적어도 하나의 특성값 또는 두개 이상의 상기 특성값의 조합에 근거하여 상기 적어도 하나의 관심조직의 관 또는 관류의 이상여부를 진단한다. 예를 들어, 어느 한 관심조직(생체조직)과 다른 한 관심조직을 동시에 혈류 진단할 경우, 어느 한 관심조직의 Tmax값과 다른 한 관심조직의 Tmax값의 차이가 제 1설정치보다 클 경우 비정상 혈류로 진단할 수 있고, 생체 내 어느 한 관심조직의 Plateau Tmax값에 대한 다른 한 관심조직의 Plateau Tmax값의 비율이 제 2설정치보다 클 경우에도 비정상 혈류로 진단할 수 있다. 또한, 생체 내 어느 한 관심조직의 Onset값에 대한 다른 한 관심조직의 Onset값의 비율이 제 3설정치보다 클 경우에도 비정상 혈류로 진단할 수 있다. 상기 제 1설정치, 제 2설정치 및 제 3설정치는 정상인들의 평균값(정상값)으로 한다.Next, the diagnosis unit 136 diagnoses the abnormality of the tube or perfusion of the at least one tissue of interest based on the at least one characteristic value or a combination of two or more of the characteristic values. For example, if one tissue of interest and one tissue of interest are simultaneously diagnosed with blood flow, the difference between the T max of one tissue of interest and the T max of another tissue of interest is greater than the first set point. The abnormal blood flow can be diagnosed, and the abnormal blood flow can be diagnosed even when the ratio of the Plateau T max value of the tissue of interest to the plateau T max value of the other tissue of interest is larger than the second set value in vivo. In addition, abnormal blood flow can be diagnosed even when the ratio of Onset value of one tissue of interest to Onset value of another tissue of interest is greater than the third set value in vivo. The first setpoint, the second setpoint and the third setpoint are taken as average values (normal values) of normal persons.
또한, 상기 관심조직은 복수 개일 수 있고, 판단부(130)는 각 관심조직별 상기 특성값의 비교를 통해 이상 관심조직을 진단할 수 있다. 이 때, 판단부(130)는 상기 관심조직별 특성값들의 미리 설정된 정상 분포범위를 벗어나는 특성값에 대응하는 관심조직을 이상 관심조직으로 진단할 수 있다. 좀 구체적으로 살펴 보면, 도 11에 도시된 바와 같이 4개의 관심조직에 대한 형광세기의 패턴화된 추이그래프에서, 3개의 관심조직에 대한 추이그래프는 일정 분포범위에서 동조하는 모양을 보이는 반면 나머지 하나의 관심조직에 대한 추이그래프는 이와는 동떨어진 추이를 보이고 있다. 이 경우, 서로 동조된 상기 3개의 관심조직의 경우에는 정상적인 혈류나 혈관특성을 보이는 것으로 볼 수 있지만, 다른 한 개의 관심조직의 경우에는 혈류나 혈관의 상태에 이상이 있다는 것을 나타낸다. 따라서, 이러한 특성에 기초하여, 판단부(130)는 각 관심조직별 특성값들의 미리 설정된 정상 분포범위를 벗어나는 특성값에 대응하는 관심조직을 이상 관심조직으로 진단할 수 있다.In addition, the tissue of interest may be plural, and the determination unit 130 may diagnose the abnormal tissue of interest by comparing the characteristic values of the tissues of interest. In this case, the determination unit 130 may diagnose the tissue of interest corresponding to the characteristic value outside the preset normal distribution range of the characteristic values of the tissues of interest as the abnormal tissue of interest. More specifically, as shown in FIG. 11, in the patterned trend graph of fluorescence intensities for four tissues of interest, the trend graphs for three tissues of interest show synchronism in a certain distribution range while the other The trend graph for the organization of interest shows a different trend. In this case, it can be seen that the three tissues of interest tuned to each other show normal blood flow or vascular characteristics, whereas the other tissues of interest indicate abnormalities in blood flow or blood vessel status. Therefore, based on this characteristic, the determination unit 130 may diagnose the tissue of interest corresponding to the characteristic value that is outside the preset normal distribution range of the characteristic values of each tissue of interest as the abnormal tissue of interest.
이상 살펴 본 바와 같이, 본 발명에 따른 생체조직 진단장치 및 방법은, 영상 조영제를 주입한 생체의 관심조직, 특히 혈관이 피부 가까이 분포되어 있어 근적외선 촬영이 용이한 말초조직 및 경동맥 부분 등을 일정시간 연속되게 영상 촬영함으로써 상기 관심조직의 관이나 관류의 이상여부를 정확하게 진단할 수 있도록 한다. 또한, 본 발명에 따른 생체조직 진단장치 및 방법은 생체 내 한 부분 또는 복수 개의 조직, 더욱 상세히는 양손 및 양발을 동시에 또는 적어도 어느 하나를 선택적으로 촬영하여 혈관이나 림프관의 이상을 진단함으로써 복합 진단을 통한 정밀한 진단을 수행할 수 있으며, 이로써 진단 시간을 줄일 수 있다.As described above, the apparatus and method for diagnosing a biological tissue according to the present invention include a tissue of interest, in particular, blood vessels distributed near the skin of a living body injected with an imaging contrast agent, and thus, peripheral tissues and carotid artery, which are easy to take near infrared rays, for a predetermined time. By taking images continuously, it is possible to accurately diagnose the abnormality of the tube or perfusion of the tissue of interest. In addition, the apparatus and method for diagnosing a biological tissue according to the present invention can perform complex diagnosis by diagnosing abnormality of blood vessels or lymphatic vessels by selectively or simultaneously photographing a portion or a plurality of tissues, more specifically, both hands and feet in vivo. Precise diagnosis can be performed, thereby reducing the diagnostic time.
이상에서 본 발명의 실시 예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고, 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.Although the embodiments of the present invention have been described in detail above, the scope of the present invention is not limited thereto, and various modifications and improvements of those skilled in the art using the basic concepts of the present invention defined in the following claims are also provided. It belongs to the scope of rights.

Claims (17)

  1. 영상 조영제가 주입된 생체 내 적어도 하나의 관심 조직에 조영제 여기에너지를 각각 조사하는 적어도 하나의 조광부;At least one dimming unit which irradiates the imaging agent excitation energy to at least one tissue of interest in vivo to which the imaging contrast agent is injected;
    상기 적어도 하나의 관심 조직으로부터 각각 방산되는 에너지를 촬상하는 적어도 하나의 검사부; 및At least one inspection unit for imaging energy dissipated from the at least one tissue of interest, respectively; And
    상기 적어도 하나의 검사부에 의해 촬상된 영상데이터에 근거하여 상기 적어도 하나의 관심조직의 관 또는 관류의 이상여부를 판단하는 판단부를 포함하는 것을 특징으로 하는, 생체조직 진단장치.And a determination unit to determine whether an abnormality in the tube or perfusion of the at least one tissue of interest is based on the image data captured by the at least one inspection unit.
  2. 제 1항에 있어서,The method of claim 1,
    상기 판단부는The determination unit
    상기 촬상된 영상데이터의 시간에 따른 변화를 패턴화하는 패턴처리부;A pattern processor for patterning a change over time of the captured image data;
    패턴화된 데이터에 근거하여 적어도 하나의 특성값을 산출하는 특성값 연산부; 및A characteristic value calculator for calculating at least one characteristic value based on the patterned data; And
    상기 적어도 하나의 특성값 또는 두개 이상의 상기 특성값의 조합에 근거하여 상기 적어도 하나의 관심조직의 관 또는 관류의 이상여부를 진단하는 진단부를 포함하는 것을 특징으로 하는, 생체조직 진단장치.And a diagnosis unit for diagnosing an abnormality of the tube or perfusion of the at least one tissue of interest based on the at least one characteristic value or a combination of two or more of the characteristic values.
  3. 제 2항에 있어서,The method of claim 2,
    상기 관심조직은 복수 개이고,The organization of interest is a plurality,
    상기 진단부는 각 관심조직별 상기 특성값의 비교를 통해 이상 관심조직을 추가로 진단하는 것을 특징으로 하는, 생체조직 진단장치.The diagnostic unit further comprises diagnosing an abnormal tissue of interest by comparing the characteristic value of each tissue of interest.
  4. 제 3항에 있어서,The method of claim 3, wherein
    상기 이상 관심조직의 진단시, 상기 판단부는 상기 관심조직별 특성값들의 미리 설정된 정상 분포범위를 벗어나는 특성값에 대응하는 관심조직을 이상 관심조직으로 진단하는 것을 특징으로 하는, 생체조직 진단장치.When diagnosing the abnormal tissue of interest, the determining unit may diagnose the tissue of interest corresponding to the characteristic value that is outside the preset normal distribution range of the characteristic values of each tissue of interest as the abnormal tissue of interest.
  5. 제 3항에 있어서,The method of claim 3, wherein
    상기 관심조직별 특성값들이 정상군, 또는 관이나 관류의 이상군에서 각각 취득되는 경우, 상기 정상군 또는 상기 관이나 관류의 이상군에 포함된 하나 이상의 특성값들의 조합값은 해당 각 군을 80% 이상의 민감도 및 특이도로 구분하는 것을 특징으로 하는 생체조직 진단장치.When the characteristic values for each tissue of interest are obtained from the normal group or the abnormal group of the tube or perfusion, the combination value of one or more characteristic values included in the normal group or the abnormal group of the tube or perfusion may be 80% or more. Biological tissue diagnostic apparatus characterized in that it is divided into sensitivity and specificity.
  6. 제 2항에 있어서,The method of claim 2,
    상기 적어도 하나의 특성값은 상기 영상데이터로부터 얻어지는 상기 관심조직에서의 시간에 따른 특정 물리값의 변화로부터 얻어지고,The at least one characteristic value is obtained from a change in a particular physical value over time in the tissue of interest obtained from the image data,
    상기 적어도 하나의 특성값은 상기 물리값의 최초 검출시점으로부터 상기 물리값이 최고가 될 때까지의 시간, 상기 물리값이 일정 시간에 대해 증가하거나 감소하는 기울기, 상기 물리값이 기준값 이상으로 유지되는 시간, 상기 물리값의 최초 검출시점으로부터 상기 물리값이 기준기울기 이상으로 상승하기 전까지의 시간, 및 상기 물리값이 상기 기준값 미만으로 떨어지기 시작하는 시점으로부터 상기 물리값의 최후 검출시점까지의 시간 중 적어도 하나를 포함하는 것을 특징으로 하는, 생체조직 진단장치.The at least one characteristic value is a time from the initial detection of the physical value until the physical value becomes the highest, the slope at which the physical value increases or decreases for a predetermined time, and the time for which the physical value is maintained above a reference value. At least one of a time from the initial detection of the physical value until the physical value rises above the reference slope, and a time from the time when the physical value starts to fall below the reference value to the last detection time of the physical value. Characterized in that it comprises a, biological tissue diagnostic apparatus.
  7. 제 1항에 있어서,The method of claim 1,
    상기 영상조영제는 인도시아닌 그린(ICG;Indocyanin Green) 색소인 것을 특징으로 하는 생체조직 진단장치.The imaging agent is a tissue diagnosis apparatus, characterized in that the indocyanin Green (ICG) pigment.
  8. 제 1항에 있어서, 상기 각 검사부는,According to claim 1, wherein each of the inspection unit,
    상기 영상 조영제로부터 방산되는 에너지의 근적외선 영역을 통과시키는 필터부재; 및A filter member for passing a near infrared region of energy dissipated from the image contrast agent; And
    상기 필터부재를 통과하는 근적외선 영역을 촬상하는 촬상부재를 포함하는 것을 특징으로 하는 생체조직 진단장치.And an imaging member for capturing a near infrared region passing through the filter member.
  9. 제 8항에 있어서,The method of claim 8,
    상기 검사부는 하나 이상의 생체조직을 독립적으로 검사하기 위해 동일한 개수로 복수 개 구비되며,The inspection unit is provided with a plurality of the same number to independently test one or more biological tissues,
    상기 각 검사부에 포함된 상기 촬상부재는 제어부에 의해 가동 시간이 제어되는 것을 특징으로 하는 생체조직 진단장치.The imaging member included in each of the inspection unit is a biological tissue diagnostic apparatus, characterized in that the operating time is controlled by a control unit.
  10. 제 8항에 있어서,The method of claim 8,
    상기 촬상부재의 가동 시간은 촬상개시시점으로부터 상기 영상 조영제로부터 근적외선 방산이 미측정되는 때까지의 시간 이내이고,The operating time of the imaging member is within the time from the start of imaging until the near infrared emission is not measured from the imaging contrast agent,
    상기 촬상부재는 설정 시간 간격으로 촬상하도록 제어되는 것을 특징으로 하는 생체조직 진단장치.And the imaging member is controlled to capture images at set time intervals.
  11. 제 1항에 있어서,The method of claim 1,
    상기 적어도 하나의 관심조직의 관 또는 관류의 이상을 판단하는 상기 판단부는, 판단된 관 또는 관류의 이상 여부 진단 결과를 하나 이상의 수치나 관류맵으로 제시하는 것을 특징으로 하는 생체조직 진단장치.The determination unit for determining the abnormality of the tube or perfusion of the at least one tissue of interest, biological tissue diagnostic apparatus, characterized in that for presenting the diagnosis result of the abnormality of the determined tube or perfusion as one or more numerical values or perfusion map.
  12. 제 1항에 있어서,The method of claim 1,
    외부로부터의 빛을 차단하여 영상의 명암을 뚜렷하게 하기 위한 암실을 더 포함하되,Further comprising a dark room for blocking the light from the outside to make the contrast of the image clear,
    상기 각 조광부는 상기 조영제 여기에너지를 조사하는 조명부재를 포함하고,Wherein each dimming part includes an illumination member for irradiating the contrast agent excitation energy,
    상기 암실은 상기 조명부재 및 상기 검사부를 수용하는 것을 특징으로 하는 생체조직 진단장치.The dark room is a tissue diagnosis apparatus, characterized in that for receiving the illumination member and the inspection unit.
  13. 적어도 하나의 조광부가, 영상 조영제가 주입된 생체 내 적어도 하나의 관심 조직에 조영제 여기에너지를 각각 조사하는 단계;At least one dimming unit irradiating the contrast agent excitation energy to at least one tissue of interest in the living body to which the imaging contrast agent is injected;
    적어도 하나의 검사부가 상기 적어도 하나의 관심 조직으로부터 각각 방산되는 에너지를 촬상하는 단계; 및Photographing, by at least one inspection unit, energy dissipated from the at least one tissue of interest, respectively; And
    판단부가 상기 적어도 하나의 검사부에 의해 촬상된 영상데이터에 근거하여 상기 적어도 하나의 관심조직의 관 또는 관류의 이상여부를 판단하는 단계를 포함하는 것을 특징으로 하는, 생체조직 진단방법.And determining, by the determiner, whether there is an abnormality in the tube or perfusion of the at least one tissue of interest based on the image data photographed by the at least one inspector.
  14. 제 13항에 있어서,The method of claim 13,
    상기 적어도 하나의 관심조직의 관 또는 관류의 이상여부를 판단하는 단계는,Determining whether the at least one tissue of interest or perfusion is abnormal,
    상기 촬상된 영상데이터의 시간에 따른 변화를 패턴화하는 단계; Patterning a change over time of the captured image data;
    패턴화된 데이터에 근거하여 적어도 하나의 특성값을 산출하는 단계; 및Calculating at least one characteristic value based on the patterned data; And
    상기 적어도 하나의 특성값 또는 두개 이상의 상기 특성값의 조합에 근거하여 상기 적어도 하나의 관심조직의 관 또는 관류의 이상여부를 진단하는 단계를 포함하는 것을 특징으로 하는, 생체조직 진단방법. And diagnosing abnormality of the tube or perfusion of the at least one tissue of interest based on the at least one characteristic value or a combination of two or more of the characteristic values.
  15. 제 14항에 있어서,The method of claim 14,
    상기 관심조직은 복수 개이고,The organization of interest is a plurality,
    상기 적어도 하나의 관심조직의 관 또는 관류의 이상여부를 판단하는 단계는,Determining whether the tube or perfusion of the at least one tissue of interest is abnormal,
    각 관심조직별 상기 특성값의 비교를 통해 이상 관심조직을 진단하는 단계를 더 포함하는 것을 특징으로 하는, 생체조직 진단방법. Diagnosing abnormal tissue of interest by comparing the characteristic value of each tissue of interest, biological tissue diagnostic method.
  16. 제 15항에 있어서,The method of claim 15,
    상기 이상 관심조직을 진단하는 단계에서, 상기 판단부는 상기 관심조직별 특성값들의 미리 설정된 정상 분포범위를 벗어나는 특성값에 대응하는 관심조직을 이상 관심조직으로 진단하는 것을 특징으로 하는, 생체조직 진단방법.In the diagnosing the abnormal tissue of interest, the determination unit may diagnose the tissue of interest corresponding to the characteristic value out of a preset normal distribution range of the characteristic values of the tissues of interest as the abnormal tissue of interest, a biological tissue diagnosis method. .
  17. 제 14항에 있어서,The method of claim 14,
    상기 적어도 하나의 특성값은 상기 영상데이터로부터 얻어지는 상기 관심조직에서의 시간에 따른 특정 물리값의 변화로부터 얻어지고,The at least one characteristic value is obtained from a change in a particular physical value over time in the tissue of interest obtained from the image data,
    상기 적어도 하나의 특성값은 상기 물리값의 최초 검출시점으로부터 상기 물리값이 최고가 될 때까지의 시간, 상기 물리값이 기준값 이상으로 유지되는 시간, 상기 물리값의 최초 검출시점으로부터 상기 물리값이 기준기울기 이상으로 상승하기 전까지의 시간, 및 상기 물리값이 상기 기준값 미만으로 떨어지기 시작하는 시점으로부터 상기 물리값의 최후 검출시점까지의 시간 중 적어도 하나를 포함하는 것을 특징으로 하는, 생체조직 진단방법.The at least one characteristic value is a time from the initial detection time of the physical value until the physical value becomes the highest, the time the physical value is kept above the reference value, and the physical value is referenced from the initial detection time of the physical value. And at least one of a time before rising above a slope and a time from a time when the physical value starts to fall below the reference value to a final detection time of the physical value.
PCT/KR2014/007771 2013-08-28 2014-08-21 Biological tissue diagnosis apparatus and method WO2015030424A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016538844A JP6356246B2 (en) 2013-08-28 2014-08-21 Biological tissue diagnostic apparatus and method of operating biological tissue diagnostic apparatus
US14/915,387 US20160206218A1 (en) 2013-08-28 2014-08-21 Biological Tissue Diagnosis Apparatus and Method
EP14841148.1A EP3040026A4 (en) 2013-08-28 2014-08-21 Biological tissue diagnosis apparatus and method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20130102415 2013-08-28
KR10-2013-0102415 2013-08-28
KR10-2014-0089525 2014-07-16
KR20140089525A KR20150024766A (en) 2013-08-26 2014-07-16 Diagn0sis apparatus and method of organism tissue

Publications (1)

Publication Number Publication Date
WO2015030424A1 true WO2015030424A1 (en) 2015-03-05

Family

ID=52586906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/007771 WO2015030424A1 (en) 2013-08-28 2014-08-21 Biological tissue diagnosis apparatus and method

Country Status (1)

Country Link
WO (1) WO2015030424A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017124035A (en) * 2016-01-14 2017-07-20 株式会社島津製作所 Imaging device
JP2019048111A (en) * 2018-11-07 2019-03-28 株式会社島津製作所 Imaging method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080071176A1 (en) * 1999-09-24 2008-03-20 National Research Council Of Canada Method and apparatus for performing intra-operative angiography
KR20080032916A (en) * 2006-10-11 2008-04-16 한국과학기술원 Machine to analyze tissue perfusion using concentration of indocyanine green in blood
KR20100047451A (en) * 2008-10-29 2010-05-10 한국과학기술원 Analysis apparatus for perfusion rate and method for the same
KR20110048364A (en) * 2009-11-02 2011-05-11 한국과학기술원 Apparatus for measuring of endothelial function and method for the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080071176A1 (en) * 1999-09-24 2008-03-20 National Research Council Of Canada Method and apparatus for performing intra-operative angiography
KR20080032916A (en) * 2006-10-11 2008-04-16 한국과학기술원 Machine to analyze tissue perfusion using concentration of indocyanine green in blood
KR20100047451A (en) * 2008-10-29 2010-05-10 한국과학기술원 Analysis apparatus for perfusion rate and method for the same
KR20110048364A (en) * 2009-11-02 2011-05-11 한국과학기술원 Apparatus for measuring of endothelial function and method for the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KASHYAP VS; PAVKOV ML; BISHOP PD; NASSOIY SP; EAGLETON MJ ET AL.: "Angiography underestimates peripheral atherosclerosis: lumenography revisited", J ENDOVASC THER, vol. 15, 2008, pages 117 - 125
LUETKEMEIER MJ; FATTOR JA: "Measurement of Indocyanine Green dye is improved by use of polyethylene glycol to reduce plasma turbidity", CLIN CHEM, vol. 47, 2001, pages 1843 - 1845
See also references of EP3040026A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017124035A (en) * 2016-01-14 2017-07-20 株式会社島津製作所 Imaging device
JP2019048111A (en) * 2018-11-07 2019-03-28 株式会社島津製作所 Imaging method

Similar Documents

Publication Publication Date Title
KR101599077B1 (en) Device and procedure for the diagnosis or diagnostic preparation and/or therapy monitoring of inflammatory diseases such as rheumatoid arthritis
JP6970306B2 (en) Multispectral fundus imaging system and method with dynamic visual stimuli
Paul et al. Noninvasive imaging technologies for cutaneous wound assessment: A review
JP4989728B2 (en) Tissue perfusion analysis system using indocyanine green blood concentration dynamics
US20200305717A1 (en) Optical Detection Method and Device for Optical Detection of the Condition of Joints
WO2015041451A1 (en) Image diagnosis device for photographing breast by using matching of tactile image and near-infrared image and method for acquiring breast tissue image
JP2007530186A (en) Spectrophotometric method for determining blood oxygen saturation in optically accessible blood vessels
WO2017135681A9 (en) Apparatus for angiographic optical coherence tomography in retina or choroid, and method for diagnosing diseases by using same
JP5594788B2 (en) Method and apparatus for optical detection of joint condition
WO2015030424A1 (en) Biological tissue diagnosis apparatus and method
KR19990022569A (en) Method and apparatus for detecting and measuring the condition affecting color
JP6356246B2 (en) Biological tissue diagnostic apparatus and method of operating biological tissue diagnostic apparatus
BRPI0413061B1 (en) method and device for the detection and characterization of biological tissue
KR100973183B1 (en) Analysis Apparatus For Perfusion Rate And Method For The Same
WO2017135659A1 (en) Fluorescent imaging device for plaque monitoring and multiple imaging system using same
WO2014081158A1 (en) Optical coherence tomography method and optical coherence tomography device
McCormick et al. Image processing in television ophthalmoscopy
van Herpt et al. Burn imaging with a whole field laser Doppler perfusion imager based on a CMOS imaging array
WO2017142376A1 (en) Non-label imaging system for selective microscopy of peripheral nerve
IT201800011113A1 (en) Point-of-Care device for rapid diagnosis of intoxication
JP2014533567A (en) Method and apparatus for measuring hemoglobin
WO2024106850A1 (en) Non-invasive alzheimer&#39;s risk testing device and testing method
CN112996439A (en) System and method for determining oxygenated blood content of biological tissue
US20240033381A1 (en) Quantitative nir reference and exposure
KR101032479B1 (en) Measurement apparatus for perfusion rate in peripheral tissue and method for the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14841148

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016538844

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 14915387

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014841148

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014841148

Country of ref document: EP