WO2015030211A1 - Fatigue biomarker and use thereof - Google Patents

Fatigue biomarker and use thereof Download PDF

Info

Publication number
WO2015030211A1
WO2015030211A1 PCT/JP2014/072834 JP2014072834W WO2015030211A1 WO 2015030211 A1 WO2015030211 A1 WO 2015030211A1 JP 2014072834 W JP2014072834 W JP 2014072834W WO 2015030211 A1 WO2015030211 A1 WO 2015030211A1
Authority
WO
WIPO (PCT)
Prior art keywords
ratio
concentration
fatigue
ornithine
citrulline
Prior art date
Application number
PCT/JP2014/072834
Other languages
French (fr)
Japanese (ja)
Inventor
弘彦 倉恒
洋祐 片岡
慧嗣 久米
大和 正典
世貴 田島
恭良 渡辺
早苗 福田
朋義 曽我
恵美 山野
Original Assignee
独立行政法人理化学研究所
公立大学法人大阪市立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人理化学研究所, 公立大学法人大阪市立大学 filed Critical 独立行政法人理化学研究所
Priority to JP2015534352A priority Critical patent/JP6521321B2/en
Publication of WO2015030211A1 publication Critical patent/WO2015030211A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6803General methods of protein analysis not limited to specific proteins or families of proteins
    • G01N33/6806Determination of free amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere

Definitions

  • the present invention relates to a biomarker for evaluating fatigue and evaluation and diagnosis of fatigue using the biomarker.
  • Chronic Fatigue Syndrome Chronic Fatigue Syndrome
  • QOL quality of life
  • Patent Document 1 discloses a technique for evaluating viral behavior as an indicator of fatigue level, focusing on viral infections listed as one of the causes of immunity decline.
  • Non-Patent Document 1 discloses an attempt to objectively measure / evaluate fatigue using an acceleration pulse wave.
  • Japanese Published Patent Publication Japanese Patent Laid-Open No. 2007-330263 (Publication Date: December 27, 2007) Japanese published patent publication: JP-A-9-77688 (published date: March 25, 1997) Japanese published patent publication: JP-A-9-59161 (published date: March 4, 1997) Japanese Published Patent Publication: Japanese Patent Application Laid-Open No. 2011-177194 (Publication Date: September 15, 2011) Japan Published Patent Gazette: Japanese Patent Laid-Open No. 2013-111001 (Publication Date: June 17, 2013) Japanese Published Patent Publication: Japanese Patent Application Laid-Open No. 2011-182661 (Publication Date: September 22, 2011) Japanese Published Patent Gazette: Japanese Patent Application Laid-Open No.
  • Patent Document 1 collects the body fluid of a subject, measures the amount of human herpesvirus in the body fluid, and evaluates the relationship with the degree of fatigue.
  • this technique observes the behavior of a virus infecting a human (host), and does not measure a biomarker that reflects the cause or mechanism of fatigue in humans. Therefore, the technique described in Patent Document 1 cannot evaluate the fatigue state of individual subjects or provide a treatment or prevention method.
  • the technique described in Non-Patent Document 1 has an advantage that it can be implemented non-invasively, but requires measurement of fingertip volume pulse waves by a special device and data processing based on a special principle. Poor sex.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a method that enables objective and simple evaluation and diagnosis of fatigue.
  • the present inventors have conducted a comprehensive and comprehensive metabolomic analysis study using plasma samples from patients with chronic fatigue syndrome, chronic fatigue patients, and healthy subjects.
  • the concentration of various metabolites present in each plasma sample involved in metabolism was examined.
  • a method for evaluating fatigue (2) A kit for evaluating fatigue, comprising a reagent for measuring ornithine concentration and a reagent for measuring citrulline concentration.
  • a calculation unit that receives a reference value for evaluating fatigue and a ratio of the ornithine concentration to the citrulline concentration (OC ratio) and generates evaluation information for evaluating fatigue, and the evaluation information
  • a fatigue evaluation system including an evaluation unit that receives and evaluates fatigue.
  • biomarker values are 1) 2-aminobutyric acid (2AB), 2-oxoglutarate (3-oxoglutarate), 3-hydroxybutyrate (3-Hydroxybutyrate), 3-methylhistidine (3-Methylhistidine), 4-Hydroxy-3-methoxybenzoate, 4-methyl-2-oxopentanoate, 5-oxoproline, alanine ( Ala), arginine (Arg), asparagine (Asn), aspartic acid (Asp), azelate (Azelate), beta-alanine (beta-Ala), betaine (Betaine), carnitine (Carnitine), choline (Ch oline), citrulline, creatine, creatine, cystine, gamma-butyrobetaine,
  • the present invention enables objective and simple evaluation and diagnosis of fatigue.
  • the present invention may further provide techniques useful for treating fatigue.
  • FIG. 6 shows the results of running a random forest program for all populations of study 2 using all parameters including metabolite measurements in plasma samples of healthy (HC) and chronic fatigue syndrome (CFS) patients.
  • biological sample is intended to include any tissue (including body fluids such as blood) or cells collected from a subject, and prepared therefrom. Organized tissue sections or cell lysates can also be included in the biological sample.
  • tissue samples for use in the present invention include, but are not limited to, blood, saliva, urine, interstitial fluid, sweat, and preparations thereof (eg, serum, plasma, etc.).
  • the biological sample is preferably blood or a blood preparation (serum, plasma, etc.).
  • CDC The US Center for Disease Control and Prevention (CDC) reported a chronic fatigue syndrome called “chronic fatigue syndrome” in 1988, elucidating the mechanism, searching for biomarkers, and developing treatment prevention methods.
  • Various researches have been made with a focus on.
  • the onset mechanism of chronic fatigue syndrome has not yet been elucidated, and no objective biomarker has been developed.
  • diagnosis of chronic fatigue syndrome is made using the criteria of symptom and physical findings published by CDC in 1994.
  • a chronic fatigue patient does not include a patient with chronic fatigue syndrome.
  • the term “chronic fatigue” refers to a case where chronic fatigue syndrome has not been diagnosed by a doctor's diagnosis, although the main complaint is fatigue or feeling of fatigue intermittently for 6 months or longer.
  • Chronic fatigue syndrome is a revised version of the diagnostic criteria for chronic fatigue syndrome (Ann Intern Med. 1994; 121: 953-959) created by the American Center for Disease Control and Prevention (CDC). As described in 671-677), the latest symptom of fatigue and science from Japan: Proposals for anti-fatigue / anti-overwork (1) Strong fatigue that significantly impairs life as the main symptom, at least 6 months or more Repeat or continue recurrence for a period of 50% or more. In addition, the disease is excluded based on medical history, physical findings, and laboratory findings. Furthermore, (2) refers to a case that meets 8 or more symptom criteria, or 6 symptom criteria and 2 or more physical criteria.
  • Biomarker of the Present Invention The biomarker for fatigue according to one embodiment of the present invention is as follows.
  • Metabolites related to the urea cycle and biomarkers of metabolites related to the flow of metabolism from the urea cycle to the TCA cycle include the metabolites shown in FIG. 1 or 4, ornithine, citrulline, urea (Urea), Urate, 4-hydroxy-3-methoxybenzoate, Hydroxyproline, 4-Methyl-2-oxopentanoate, and Gamma-butyrobetaine.
  • biomarker ornithine, citrulline, urea, and the like are more preferable, and ornithine and citrulline are particularly preferable because they exhibit different behavior depending on the fatigue state.
  • Any number of the above biomarkers may be used for analysis simultaneously.
  • biomarkers described in 1) above cis-aconitic acid (Cis-aconitate), citric acid (Citrate), isocitrate (Isocitrate), lactic acid (Lactate), malic acid (Malate), and succinic acid ( Succinate) is not used alone, but may be used in combination with the biomarkers described above in 1).
  • biomarkers are obtained, for example, as concentrations in a biological sample, and compared with a predetermined threshold value (reference value) to be used for fatigue evaluation.
  • the predetermined threshold is appropriately set for each biomarker according to the analysis method and the like.
  • the analysis method is not particularly limited as long as it is generally used for measuring the concentration of a metabolite in a living body.
  • CE-MS / MS capillary electrophoresis mass spectrometry
  • LC-MS / MS liquid chromatography mass spectrometry
  • An example of the predetermined threshold is a mode value obtained from an average value of biomarker concentrations in a biological sample in a plurality of healthy subjects, a binomial distribution, or the like. Also, for example, as shown in FIGS. 2, 3, 4, 6, 7, 8, and 11, and the examples, the amount of the biomarker is in what state (for example, If it is above or below a threshold value, it is possible to evaluate whether it is fatigue (or whether it is chronic fatigue, chronic fatigue syndrome, etc.).
  • the biomarkers described in FIGS. 2, 3, 4, 7, and 8 are particularly useful as markers for evaluating whether a subject is a healthy person or a patient with chronic fatigue syndrome. It is. More specifically, for example, Ornithine, Citrulline, Urea, Hydroxyproline, Urate, 4-Hydroxy-3-methoxybenzoate, Isocitrate, Citrate, Pyruvate, Cis-aconitate, Gamma-Butyrobetaine, 4-methyl-2-oxopentanoate, and 2-oxoglutarate is a particularly useful biomarker with statistically significant differences between healthy individuals and patients with chronic fatigue syndrome.
  • Succinate, Pro, Leu, 3-Methylhistidine, Creatinine, His, Ala, N, N-Dimethylglycine, Ser, Lys, Betaine, Glu, Taurine, 2AB, Arg, 3-Hydroxybutyrate, Creatine, Trp , Mucate, Cystine, Asp, Sarcosine, Thr, and Val can be markers for evaluating whether a subject is a healthy person or a patient with chronic fatigue syndrome as a result of random forest analysis.
  • the markers from Succinate to Val are listed in order from the top (ie, promising as a marker) as a result of random forest analysis.
  • the subject evaluates whether the subject is a healthy person or a patient with chronic fatigue (especially a patient with chronic fatigue who is not chronic fatigue syndrome). It is particularly useful as a marker. More specifically, for example, Choline, Gly, Tarine, Asn, Gamma-Butyrobetaine, Gln, Lys, Trp, 4-methyl-2-oxopentanoate, and Succinate are used for healthy subjects and chronic fatigue patients (especially chronic fatigue). It is a particularly useful biocar car with statistically significant differences from patients with chronic fatigue who are not syndromes).
  • Cis-Aconitate Lactate, Arg, Mucate, His, Azelate, N, N-Dimethylglycine, Creatinine, beta-Ala, Tyr, Ornithine, 2AB, Leu, Isocitrate, Hydroxyproline, Phe, Met, 3 -Methylhistidine, Sarcosine, Ile, Betaine, Pyruvate, Urate, 4-Hydroxy-3-methoxybenzoate, Ser, Asp, Carnitine, Urea, 5-oxoproline, and Citrate, as a result of random forest analysis, the subject is healthy It can be a marker for evaluating whether the patient is chronic fatigue (particularly chronic fatigue who is not chronic fatigue syndrome).
  • the markers from Cis-Aconitate to Citrate are listed in order from the top (that is, promising as a marker) as a result of random forest analysis.
  • the biomarker described in FIG. 11 and FIG. 17 is a marker for evaluating whether a subject is a patient with chronic fatigue syndrome or a patient with chronic fatigue syndrome that is not chronic fatigue syndrome. It is particularly useful. More specifically, for example, Choline, Succinate, Gln, Taurine, Asn, Lys, Arg, His, Urate, and 4-Hydroxy-3-methoxybenzoate are used in patients with chronic fatigue syndrome and chronic but not chronic fatigue syndrome. It is a particularly useful biomarker with statistically significant differences from fatigue patients.
  • a biomarker configured as a correlation between a plurality of biomarkers of 1) above.
  • the ratio of the concentration of the plurality of biomarkers in 1) above in the biological sample, the difference in the concentration in the biological sample, and the like are applicable.
  • the ratio of ornithine concentration and citrulline concentration in a biological sample (OC ratio, for example, O / C or C / O), which is the biomarker specifically shown in FIGS. 9 and 10;
  • PI ratio ratio of pyruvic acid concentration and isocitrate concentration in a sample
  • AP ratio any number of biomarkers may be used for analysis simultaneously.
  • metabolites located at the top in random forest analysis see Fig. 3: for example, Ornithine, Citrulline, Urea, Urate, 4-hydroxy-3-methoxybenzoate, Hydroxyproline, 4-Methyl-2-oxopentanoate, Gamma-butyrobetaine, etc.
  • concentration ratio of two metabolites selected from the group consisting of can also be used as a biomarker in combination with the OC ratio or in combination with the OC ratio, or alternatively with the OC ratio or in combination with the OC ratio
  • concentration ratio of two metabolites selected from the group consisting of can also be used as a biomarker in combination with the OC ratio or in combination with the OC ratio, or alternatively with the OC ratio or in combination with the OC ratio
  • biomarkers are used, for example, for fatigue evaluation by comparison with a predetermined threshold (reference value).
  • the predetermined threshold is appropriately set for each biomarker according to the analysis method and the like.
  • An example of the predetermined threshold is a mode value obtained from an average value of biomarker values in a plurality of healthy subjects, a binomial distribution, or the like. Further, for example, as shown in FIG. 9 and FIG. 10 and the description of the examples, if the value of the biomarker is in any state (for example, whether it is greater than or less than the threshold), fatigue (Or, for example, whether it is chronic fatigue, whether it is chronic fatigue syndrome, etc.).
  • biomarkers described in FIGS. 9 and 10 are particularly useful as markers for evaluating whether a subject is a healthy person or a patient with chronic fatigue syndrome.
  • one aspect of the biomarker of the present invention is observed by comprehensively analyzing the changes in metabolites in the plasma of patients with chronic fatigue syndrome and patients with chronic fatigue and the plasma of healthy subjects. This is an objective fatigue biomarker based on the mechanism of fatigue disease. Therefore, as one aspect of the biomarker of the present invention, it is possible to objectively and easily evaluate and diagnose fatigue. Furthermore, by using the biomarker of the present invention, diagnostic methods and treatment methods for chronic fatigue and chronic fatigue syndrome can be developed.
  • the biomarker of the present invention it is possible to create an inexpensive and simple fatigue diagnosis system by using the biomarker of the present invention, and further, an effective treatment method can be found based on the diagnosis result.
  • an effective treatment method can be found based on the diagnosis result.
  • blood is collected and the biomarker of the present invention is examined to determine whether the patient is chronic fatigue or chronic fatigue syndrome.
  • This evaluation can be examined in a general medical facility without a high level of knowledge about fatigue.
  • the subject can be determined whether or not the subject belongs to chronic fatigue syndrome by measuring the blood component of the subject.
  • the main symptom is severe fatigue that significantly impairs life, and it continues or repeats for a period of at least 6 months (recognized for a period of 50% or more).
  • the disease is excluded based on medical history, physical findings, and laboratory findings.
  • urea metabolism system urea circuit
  • ammonia which is extremely toxic in the liver
  • urea chronic fatigue syndrome
  • diagnosis of chronic fatigue Can also be used.
  • urea circuit urea metabolism system
  • chronic fatigue syndrome and chronic fatigue can be objectively diagnosed faster, cheaper.
  • the biomarker of the present invention can be used in combination with a known biomarker related to fatigue.
  • Known biomarkers are not particularly limited, and examples thereof include those based on energy (ATP) -producing metabolites reported in International Publication WO2011 / 161544 A2 (US Patent Serial No. 13 / 805,449).
  • ATP energy
  • By analyzing in combination with the biomarker described in International Publication WO2011 / 161544 A2 it is possible to more accurately estimate which part of the living body is abnormal, and for life guidance for patients with chronic fatigue syndrome and patients with chronic fatigue. In addition to being able to make use of it, it is also possible to provide a remedy that corrects the metabolic system considered to be the cause.
  • the change of the urea circuit and its surrounding metabolism is used as an index.
  • a biomarker it becomes possible to particularly improve the ability to evaluate fatigue with respect to individual individual variations and provide a more suitable treatment policy.
  • the present invention provides a method, kit and system for evaluating fatigue based on the biomarker described above.
  • a method for evaluating fatigue according to the present invention includes a step of obtaining the above-described biomarker value of the present invention in a biological sample obtained from a subject (biomarker value acquisition step), And a step of evaluating using the value of the marker (evaluation step).
  • the biomarker value acquisition step can be appropriately performed according to the type of biomarker.
  • the concentration of the metabolite in the biological sample can be measured by an appropriate method according to the type of metabolite, regardless of the method of the embodiment.
  • a commercially available kit for measuring the substrate concentration using the enzyme reaction may be used.
  • those skilled in the art can successfully measure the concentration of a metabolite in a biological sample by arbitrarily using such various techniques.
  • the biological sample to be measured for the concentration of the metabolite is subjected to a treatment for suppressing the activity of the enzyme involved in the degradation reaction of arginine contained in the biological sample.
  • a treatment for suppressing the activity of the enzyme involved in the degradation reaction of arginine contained in the biological sample When a biomarker related to arginine, ornithine, citrulline, or the like is used, it may be preferable for the purpose of further improving measurement accuracy.
  • the suppression of the activity of the enzyme involved in the degradation reaction of arginine by the treatment means that the biological sample after the treatment is inhibited more than the biological sample before the treatment.
  • An example of such treatment includes adding an inhibitor of arginase and / or nitric oxide synthase, which is an enzyme involved in the degradation reaction of arginine, to a biological sample (for example, blood or blood preparation).
  • a biological sample for example, blood or blood preparation.
  • the kind of inhibitor is not specifically limited, A specific illustration is demonstrated in the [3-2] column regarding a fatigue evaluation kit.
  • the evaluation step can be appropriately performed according to the method of performing the evaluation.
  • the evaluation is performed by comparing the value of the biomarker with a predetermined threshold (reference value) or the value of the biomarker is set to the threshold (reference value). You can also evaluate without comparing with).
  • a threshold value For example, by performing analysis such as discriminant analysis, PartialPartLeast Square, or Support Vector Machine, depending on the type of biomarker, fatigue can be evaluated (diagnosis or determination) without using a threshold value (reference value). it can.
  • a threshold value even if the threshold value is a predetermined value, the healthy person is sampled simultaneously with the sampling from the subject, and the concentration of each metabolite in the biological sample obtained in the healthy person is calculated. It may be a value calculated based on this.
  • An example of the predetermined threshold is a mode value obtained from an average value of biomarker values in a plurality of healthy persons, a binomial distribution, or the like.
  • the evaluation process is not particularly limited. For example, 1) evaluation of whether or not the subject is fatigued, 2) evaluation of whether or not the subject is chronic fatigue other than chronic fatigue syndrome, and 3) the subject is Evaluation of whether or not the patient has chronic fatigue syndrome, 4) A combination of at least two evaluations selected from 1) to 3) (for example, whether the subject has chronic fatigue syndrome or chronic fatigue syndrome that is not chronic fatigue syndrome) 5) Evaluation of the degree of fatigue, etc. are performed.
  • a specific example of the method for evaluating fatigue according to the present invention includes a step (1) of obtaining a ratio (OC ratio) between an ornithine concentration and a citrulline concentration in a biological sample obtained from a subject. Furthermore, the process (2) which compares the threshold value corresponding to the said OC ratio with the said OC ratio is included after the said process (1) as needed. Furthermore, if necessary, the ratio (PI ratio) between the pyruvic acid concentration and the isocitrate concentration in the biological sample obtained from the same subject, assuming that the step (1) or the step (2) is performed. Obtaining step (3) is included. Further, if necessary, a step (4) of comparing the PI ratio with a threshold corresponding to the PI ratio is included after the step (3).
  • the step (3) of obtaining the ratio (PI ratio) between the pyruvate concentration and the isocitrate concentration in the biological sample obtained from the subject, the threshold corresponding to the ratio (PI ratio), and the ratio (PI ratio) It is highly positive to perform the step (2) of comparing the threshold corresponding to the OC ratio and the OC ratio on the subject who has been evaluated for fatigue by performing the step (4) of comparing the OC ratio) In some cases, it is preferable to obtain a discrimination rate and a low misclassification rate. For example, the evaluation by the decision tree shown in FIGS. 9 and 10 is also referred to. In FIGS.
  • a step of directly taking out tissue or cells from a human subject as a first step of sample acquisition is performed by a doctor.
  • a step in which a doctor makes a diagnosis as to whether or not the patient is fatigue (including chronic fatigue and chronic fatigue syndrome) using the result obtained by the evaluation step is also performed as necessary.
  • kits having a reagent used for carrying out the fatigue evaluation method as described above are also within the scope of the present invention. That is, the kit according to the present invention includes a reagent for measuring the concentration of a metabolite in a biological sample necessary for obtaining the value of the biomarker of the present invention in order to evaluate fatigue. As an example, when ornithine is used as a biomarker, the kit according to the present invention includes a reagent for measuring the ornithine concentration in a biological sample.
  • the kit according to the present invention includes a reagent for measuring the ornithine concentration and the citrulline concentration in the biological sample.
  • the reagent for measuring the ornithine concentration include ornithine cyclase that reacts with ornithine to generate ammonia.
  • the reagent for measuring the citrulline concentration include argininosuccinate synthase that reacts with citrulline and consumes ATP. It is done.
  • the kit may also preferably contain an inhibitor of the activity of the enzyme involved in the degradation reaction of arginine contained in the biological sample, particularly when measuring the concentration of arginine, ornithine or citrulline, etc. In some cases, it is preferable for the purpose of further improving the accuracy of measurement.
  • the enzyme involved in the degradation reaction of arginine includes arginase and nitric oxide synthase (NOS) involved in the reaction of producing nitric oxide and citrulline from arginine. Included in biological samples such as blood preparations.
  • the arginase inhibitor include N ⁇ -Hydroxy-nor-L-arginine (nor-NOHA) or a salt thereof (for example, diacetate).
  • Is for example, N G -Nitro-L-Arginine (L-NNA) or a salt thereof.
  • L-NNA N G -Nitro-L-Arginine
  • a necessary amount may be charged in advance in a container for storing a biological sample.
  • kits having a configuration for visually detecting the biomarker of the present invention is also within the scope of the present invention. That is, the second kit according to the present invention includes a presentation unit that indicates the value of the biomarker of the present invention in order to evaluate fatigue.
  • the presenting part for example, at least one of a first presenting part indicating the ratio of the ornithine concentration to the citrulline concentration (OC ratio) and a second presenting part indicating the ratio of the pyruvic acid concentration to the isocitrate concentration (PI ratio)
  • the provided kit is also a category of the kit according to the present invention.
  • kit is intended as a package with a container (eg, bottle, plate, tube, dish, etc.) containing a particular material, but as a composition. Forms containing the material in the substance are also encompassed by the term “kit”.
  • the kit preferably includes instructions for using each material.
  • the instruction sheet may further display a predetermined threshold value (reference value) for evaluation by comparison with the value of the biomarker, if necessary.
  • threshold value reference value
  • “comprising” is intended to mean being contained in any of the individual containers that make up the kit.
  • the kit which concerns on this invention may be the packaging which packed several different compositions in one, and in the case of a solution form, you may enclose in the container.
  • the kit according to the present invention may be provided with a plurality of components mixed in the same container or in separate containers.
  • the “instructions” may be written or printed on paper or other media, or may be affixed to electronic media such as magnetic tape, computer readable disk or tape, CD-ROM, etc. .
  • the kit according to the present invention may also include a container containing a diluent, a solvent, a washing solution or other reagent.
  • the kit according to the present invention may include instruments and reagents necessary for collecting a biological sample.
  • the kit according to the present invention may be provided with instruments and reagents necessary for preparing a target preparation from a biological sample.
  • the kit according to the present invention can be used easily in an actual medical field, so that it is possible to provide an objective diagnosis with faster and cheaper fatigue.
  • the kit according to the present invention not only can evaluate fatigue and propose a treatment method, but can also provide a criterion for determining fatigue (including chronic fatigue and chronic fatigue syndrome). It becomes easy to diagnose whether or not That is, the kit according to the present invention diagnoses a kit (for example, fatigue (including chronic fatigue and chronic fatigue syndrome)) for providing a diagnostic standard or a criterion for fatigue (including chronic fatigue and chronic fatigue syndrome). Or a kit for acquiring data for determination).
  • a kit for example, fatigue (including chronic fatigue and chronic fatigue syndrome)
  • each member constituting the fatigue evaluation system according to the present invention is a functional block realized by executing a program code stored in a recording medium such as a ROM or a RAM by a calculation means such as a CPU.
  • a program code stored in a recording medium such as a ROM or a RAM by a calculation means such as a CPU.
  • a case of “some” will be described as an example, but it may be realized by hardware that performs the same processing.
  • the hardware for performing a part of the processing and the arithmetic means for executing the program code for performing the control of the hardware and the remaining processing It can also be realized in combination.
  • the arithmetic means may be a single unit, or a plurality of arithmetic means connected via a bus inside the apparatus or various communication paths may execute the program code jointly.
  • the fatigue evaluation system includes at least an input receiving unit 11A, a storage unit 12, a CPU 13, and a display unit 14 as functional blocks.
  • the input receiving unit 11A is an interface that receives an input of a measurement result from the measuring unit 11, and is configured as an interface that connects the measuring unit 11 and the fatigue evaluation system, or as an input device such as a keyboard or a mouse in some cases. Composed.
  • the measurement unit 11 has a function of a measurement device that measures the concentration of a metabolite (for example, ornithine or citrulline) related to the biomarker of the present invention.
  • the storage unit 12 functions as a measurement value receiving unit 12a that receives a measurement value of the concentration of the metabolite and a reference value storage unit 12b that stores a reference value (threshold value) for evaluating fatigue.
  • the CPU 13 has a function as an operation unit 13a that generates information for evaluating fatigue and an evaluation unit 13b that receives evaluation information from the operation unit 13a and evaluates fatigue.
  • the display unit 14 has a function as the evaluation result display unit 14 that displays the evaluation result by the evaluation unit 13b (for example, configured as a liquid crystal display device). This functional block is realized by the CPU 13 executing a program stored in the storage unit 12 and controlling peripheral circuits such as an input / output circuit.
  • the measuring unit 11 measures the ornithine concentration and the citrulline concentration in the biological sample.
  • the measured value receiving unit 12a receives (stores) the ornithine concentration and citrulline concentration measured in step 1 through the input receiving unit 11A.
  • the calculation unit 13a reads the ornithine concentration and citrulline concentration stored in the measurement value receiving unit 12a, and calculates the ratio (OC ratio) between the ornithine concentration and the citrulline concentration.
  • the OC ratio is stored in the storage unit 12 as necessary.
  • the calculation unit 13a generates evaluation information for evaluating fatigue from the calculated OC ratio and the reference value stored in the reference value storage unit 12b.
  • the evaluation unit 13 b evaluates fatigue based on the evaluation information generated at step 4.
  • the fatigue evaluation result generated by the evaluation unit 13 b is displayed on the display unit 14.
  • the ratio (or OC ratio) between the ornithine concentration and the citrulline concentration may be received by the measurement value receiving unit 12a via the input receiving unit 11A.
  • the calculation unit 13a reads the OC ratio stored in the measurement value receiving unit 12a, and the OC ratio and the reference value stored in the reference value storage unit 12b. From this, evaluation information for evaluating fatigue is generated. Step 5 is as described above. Note that the steps from generation of evaluation information to fatigue evaluation can be executed by operating an evaluation program (for example, a decision tree analysis program) stored in the storage unit 12, for example. For example, when the results shown in FIGS.
  • the system according to the present invention diagnoses a system (for example, fatigue (including chronic fatigue and chronic fatigue syndrome)) for providing a diagnosis standard or determination standard for fatigue (including chronic fatigue and chronic fatigue syndrome). Or a system for obtaining data for determination).
  • a system for example, fatigue (including chronic fatigue and chronic fatigue syndrome)
  • a diagnosis standard or determination standard for fatigue including chronic fatigue and chronic fatigue syndrome.
  • a system for obtaining data for determination can be provided.
  • One aspect of the present invention includes, for example, the following inventions.
  • a method for evaluating fatigue (2) The method according to (1), comprising a step of comparing a threshold corresponding to the ratio (OC ratio) and the ratio (OC ratio).
  • the method according to (1) or (2) comprising: (4) The method according to (3), comprising a step of comparing a threshold corresponding to the ratio (PI ratio) with the ratio (PI ratio).
  • a kit for evaluating fatigue comprising a reagent for measuring ornithine concentration and a reagent for measuring citrulline concentration.
  • the kit according to (6) further including a first presenting unit indicating a ratio (OC ratio) between the ornithine concentration and the citrulline concentration.
  • the kit according to (6) or (7) further comprising a reagent for measuring pyruvic acid concentration and a reagent for measuring isocitrate concentration.
  • the kit according to (8) further including a second presentation unit indicating a ratio (PI ratio) between the pyruvic acid concentration and the isocitrate concentration.
  • a calculation unit that receives a reference value for evaluating fatigue and a ratio of the ornithine concentration to the citrulline concentration (OC ratio) and generates evaluation information for evaluating fatigue, and the evaluation information
  • a fatigue evaluation system with an evaluation unit that receives and evaluates fatigue.
  • biomarker values are 1) 2-aminobutyric acid (2AB), 2-oxoglutarate (3-oxoglutarate), 3-hydroxybutyrate (3-Hydroxybutyrate), 3-methylhistidine (3-Methylhistidine), 4-Hydroxy-3-methoxybenzoate, 4-methyl-2-oxopentanoate, 5-oxoproline, alanine ( Ala), arginine (Arg), asparagine (Asn), aspartic acid (Asp), azelate (Azelate), beta-alanine (beta-Ala), betaine (Betaine), carnitine (Carnitine), choline Choline), Citrulline, Creatine, Creatinine, Cystine, Gamma-Butyrobetaine,
  • a concentration of at least one biomarker selected from the group consisting of (Malate) and succinate (Succinate) in a biological sample is used as the value of the biomarker.
  • a method for evaluating fatigue which is a ratio or difference in the concentration of biomarkers in a biological sample.
  • the biological sample has been subjected to treatment for suppressing the activity of arginase and / or nitric oxide synthase involved in the degradation reaction of arginine, (1) to (5), (12) to (15 ).
  • the kit according to (6) which contains an inhibitor of arginase or nitric oxide synthase involved in the degradation reaction of arginine.
  • Chronic fatigue syndrome in Trials 1 and 2 is a revised version of the diagnostic criteria for chronic fatigue syndrome (Ann Intern Med. 1994; 121: 953-959) prepared by the American Center for Disease Control and Prevention (CDC) ( As described in the special issue of Ayumi, “The latest science of fatigue—from Japan: Proposals for anti-fatigue / anti-overwork” (671-677) Repeat for at least 6 months or repeat (receive at least 50%), and exclude the disease by medical history, physical findings, and laboratory findings.
  • CDC American Center for Disease Control and Prevention
  • Chronic fatigue in Test 2 is a person who has not been satisfied with the diagnosis of chronic fatigue syndrome described above by a doctor, but who has seen fatigue or a feeling of fatigue intermittently for 6 months or longer and has visited the hospital.
  • healthy subjects in Tests 1 and 2 were recruited in consideration of age, fatigue level, presence or absence of mental illness, presence or absence of sleep disorders, presence or absence of medications for mental illness or sleep disorders, etc. recruiter).
  • Random Forest The random forest (Random Forest) program was executed using the analysis software R (free software, version 3.0.1) on the measured values of metabolites in the plasma samples for the population to which test 1 and test 2 were added. Also, the same random forest program was run on the test 2 population. Random Forest is an algorithm used for identification, regression, and clustering.
  • TCA circuit-related metabolites such as Isocitrate, Succinate, and Cis-Aconitate among a plurality of measurement items.
  • Related metabolites appeared at the top.
  • the urea cycle-related metabolite also appeared in the upper rank in the same analysis only for test 2 (FIG. 3).
  • Ornithine, Citrulline, and Urea Urate, 4-hydroxy-3-methoxybenzoate, Hydroxyproline, 4-Methyl-2-oxopentanoate, and Gamma-butyrobetaine also appeared at the top.
  • these metabolites were significantly increased or decreased in the comparison between the normal group and the chronic fatigue syndrome (FIG. 4).
  • FIG. 16 shows a random forest (Random) using all parameters including the measured values of metabolites in plasma samples of healthy subjects (HC) and chronic fatigue (CF) patients for the population of Study 2.
  • FIG. 17 shows a random forest (Random Forest) for all populations, including metabolite measurements in plasma samples of patients with chronic fatigue (CF) and chronic fatigue syndrome (CFS), for the study 2 population. It is a figure which shows the result of having executed the program.
  • the correct discrimination rate can be increased and the misclassification rate can be reduced even with a smaller number of trees.
  • the classification into 3 trees with Pyruvate / Isocitrate (PI ratio) of 20.61 or less or Ornithine / Citrulline (OC ratio) of 3.215 or less is only 80.6. It is possible to discriminate patients with chronic fatigue syndrome with a positive discrimination rate of 50% (50 out of 62 CFS) and an incorrect discrimination rate of 20.0% (13 out of 65 HC).
  • one form of the present invention it is possible to infer which part of the energy (ATP) production metabolic system and urea circuit system in the living body is abnormal, so that it can be used only for patient life guidance.
  • ATP energy
  • FIG. 12 graph data shows measured values of liver samples), urea circuit and TCA The abnormality of the circuit and the flow of metabolism peculiar to the fatigue condition from the urea circuit to the TCA circuit can be confirmed.
  • the PLS-DA method (Partial least squares discriminant analysis) is a method used for constructing a prediction model using regression analysis. Using this method, discrimination between HC (healthy person) and CFS (chronic fatigue syndrome), HC and CF (chronic fatigue), and CF and CFS was performed. R (free software, version 3.0.1) was used as software for performing analysis by the PLS-DA method.
  • HC and CFS showed different distributions in the PLS-DA score plot. Moreover, the metabolite in which the statistical significance difference was recognized showed the high load amount with respect to discrimination of 2 groups. Note that one plot in FIG. 18 corresponds to one person, HC indicates a healthy person, and CFS indicates a patient with chronic fatigue syndrome.
  • HC and CF showed different distributions.
  • metabolites that were found to have a statistically significant difference showed a high load for discrimination between the two groups.
  • One plot in FIG. 19 corresponds to one person, HC indicates a healthy person, and CF indicates a patient with chronic fatigue.
  • CF and CFS showed different distributions.
  • metabolites that were found to have a statistically significant difference showed a high load for discrimination between the two groups. Note that one plot in FIG. 20 corresponds to one human, CF indicates a patient with chronic fatigue, and CFS indicates a patient with chronic fatigue syndrome.
  • the blood contains an enzyme called arginase that promotes the reaction from arginine to ornithine, and nitric oxide synthase (NOS) involved in the reaction that produces nitric oxide and citrulline from arginine. It was suggested that the enzymatic reaction was progressing in the test tube.
  • arginase that promotes the reaction from arginine to ornithine
  • NOS nitric oxide synthase
  • 0h is a state immediately after blood collection
  • 2h is a state after blood collection and left for 2 hours at room temperature without addition of an inhibitor
  • 5h is room temperature after blood collection without addition of an inhibitor.
  • 100 ⁇ M nor-NOHA (5 h) is 100 ⁇ M nor-NOHA added at a final concentration and left at room temperature for 5 hours.
  • 100 ⁇ M nor-NOHA + 100 ⁇ M L-NNA (5 h) is Add 100 ⁇ M nor-NOHA and L-NNA at final concentration and let stand for 5 hours at room temperature.
  • 300 ⁇ M nor-NOHA + 100 ⁇ M L-NNA (5 h) shows the state after adding 300 ⁇ M nor-NOHA and 100 ⁇ M L-NNA at final concentrations and left at room temperature for 5 hours.
  • the use of the present invention makes it possible to objectively and easily perform fatigue evaluation and diagnosis.
  • the present invention may further provide techniques useful for treating fatigue. Because fatigue is a very significant health problem, the realization of fatigue assessment, diagnosis and treatment contributes greatly across all industries.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Immunology (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Biotechnology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Microbiology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Cell Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Biophysics (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

With the goal of developing a biomarker that makes possible the objective and simple diagnosis and evaluation of fatigue, and a technique for diagnosing fatigue using this biomarker, this method for evaluating fatigue comprises a step for obtaining the ratio (OC ratio) of the ornithine concentration and citrulline concentration in a biological sample obtained from a subject.

Description

疲労のバイオマーカーおよびその利用Fatigue biomarkers and their use
 本発明は、疲労を評価するバイオマーカーおよび該バイオマーカーを用いた疲労の評価および診断に関する。 The present invention relates to a biomarker for evaluating fatigue and evaluation and diagnosis of fatigue using the biomarker.
 日本国における疫学調査によれば、一般大衆の約60%が疲労を自覚しており、その半数以上が6ヶ月以上続く疲労に悩まされている。このような慢性的な疲労を感じている人の約半数が、仕事または学業の能率低下を訴えており、かかる疲労による経済的損失は1兆円以上と予測されている。 According to an epidemiological survey in Japan, about 60% of the general public is aware of fatigue, and more than half of them are suffering from fatigue that lasts for more than six months. About half of those who feel such chronic fatigue complain of work or academic inefficiency, and the economic loss due to such fatigue is predicted to be 1 trillion yen or more.
 慢性的な疲労を感じている人の中には、たとえ疲れていなくても極度の疲労を感じてしまう、未だ原因が十分解明されていない慢性疲労症候群(Chronic Fatigue Syndrome)の患者が含まれている。慢性疲労症候群患者は、身体及び思考力両方の激しい疲労を主訴とすることが多く、それに伴い、日常生活の質(QOL)も著しく阻害される。臨床上、慢性疲労症候群は、疲労の蓄積による慢性疲労と区別して扱われるが、その診断ができる医師は少なく、また、効果的な治療法も見出されていない。 Some people who have chronic fatigue include patients with chronic fatigue syndrome (Chronic Fatigue Syndrome) who have experienced extreme fatigue even if they are not tired and whose cause has not yet been fully elucidated. Yes. Patients with chronic fatigue syndrome often complain of severe physical and mental fatigue, which is accompanied by significant impairment in quality of life (QOL). Clinically, chronic fatigue syndrome is treated separately from chronic fatigue due to the accumulation of fatigue, but few doctors can diagnose it, and no effective treatment has been found.
 これまでの疲労診断の多くは、患者の主観と医師の診断に基づくものであるため、疲労を客観的に診断するための指標の確立が望まれている。特許文献1には、免疫力低下の原因の1つとして挙げられているウイルス感染に着目し、ウイルスの挙動を疲労度の指標として評価する技術が開示されている。非特許文献1には、疲労を加速度脈波によって客観的に測定/評価する試みが開示されている。 Since many of the conventional fatigue diagnoses are based on the patient's subjectivity and the doctor's diagnosis, establishment of an index for objectively diagnosing fatigue is desired. Patent Document 1 discloses a technique for evaluating viral behavior as an indicator of fatigue level, focusing on viral infections listed as one of the causes of immunity decline. Non-Patent Document 1 discloses an attempt to objectively measure / evaluate fatigue using an acceleration pulse wave.
日本国公開特許公報:特開2007-330263号公報(公開日:2007年12月27日)Japanese Published Patent Publication: Japanese Patent Laid-Open No. 2007-330263 (Publication Date: December 27, 2007) 日本国公開特許公報:特開平9-77688号公報(公開日:1997年3月25日)Japanese published patent publication: JP-A-9-77688 (published date: March 25, 1997) 日本国公開特許公報:特開平9-59161号公報(公開日:1997年3月4日)Japanese published patent publication: JP-A-9-59161 (published date: March 4, 1997) 日本国公開特許公報:特開2011-177194号公報(公開日:2011年9月15日)Japanese Published Patent Publication: Japanese Patent Application Laid-Open No. 2011-177194 (Publication Date: September 15, 2011) 日本国公開特許公報:特開2013-119001号公報(公開日:2013年6月17日)Japan Published Patent Gazette: Japanese Patent Laid-Open No. 2013-111001 (Publication Date: June 17, 2013) 日本国公開特許公報:特開2011-182661号公報(公開日:2011年9月22日)Japanese Published Patent Publication: Japanese Patent Application Laid-Open No. 2011-182661 (Publication Date: September 22, 2011) 日本国公開特許公報:特開2011-161137号公報(公開日:2011年8月25日)Japanese Published Patent Gazette: Japanese Patent Application Laid-Open No. 2011-161137 (Publication Date: August 25, 2011) 日本国公開特許公報:特開2010-266238号公報(公開日:2010年11月25日)Japanese published patent publication: JP 2010-266238 A (publication date: November 25, 2010) 日本国公開特許公報:特開2010-85369号公報(公開日:2010年4月15日)Japanese Published Patent Gazette: JP 2010-85369 A (published: April 15, 2010) 日本国公開特許公報:特開2007-228878号公報(公開日:2007年9月13日)Japanese Published Patent Publication: Japanese Patent Application Laid-Open No. 2007-228878 (Publication Date: September 13, 2007) 日本国公表特許公報:特表2000-516818号公報(公表日:2000年12月19日)Japanese Patent Gazette: Special Table 2000-516818 (Publication Date: December 19, 2000) 国際公開WO2006/123611(国際公開日:2006年11月23日)International Publication WO2006 / 123611 (International Publication Date: November 23, 2006) 国際公開WO2005/012903号公報(国際公開日:2005年2月10日)International Publication No. WO2005 / 012903 (International Publication Date: February 10, 2005)
 疲労の原因や疲労のメカニズムは複雑であり、その全貌は解明されていない。しかしながら、例えば疲労の治療等の応用を考慮した場合は特に、生体が本来有しているメカニズムや疲労の原因に則して、疲労を客観的に評価する技術の開発が望まれている。 The cause of fatigue and the mechanism of fatigue are complex, and the whole picture has not been elucidated. However, particularly when considering applications such as fatigue treatment, there is a demand for the development of a technique for objectively evaluating fatigue in accordance with the mechanism inherent to the living body and the cause of fatigue.
 特許文献1に記載の技術は、被験者の体液を採取し、体液中のヒトヘルペスウイルスの量を測定し、疲労度との関係を評価している。しかし、この技術は、ヒト(宿主)に感染したウイルスの挙動を観察するものであり、ヒトにおける疲労の原因やメカニズムを反映したバイオマーカーを測定するものではない。そのため、特許文献1記載の技術では、個々の被験者の疲労状態を評価したり、治療法または予防法を提供したりすることができない。また、非特許文献1記載の技術は、非侵襲的に実施され得るという利点があるが、特殊な機器による指尖容積脈波の測定、および特殊な原理に基づくデータ処理が必要であり、汎用性に乏しい。 The technique described in Patent Document 1 collects the body fluid of a subject, measures the amount of human herpesvirus in the body fluid, and evaluates the relationship with the degree of fatigue. However, this technique observes the behavior of a virus infecting a human (host), and does not measure a biomarker that reflects the cause or mechanism of fatigue in humans. Therefore, the technique described in Patent Document 1 cannot evaluate the fatigue state of individual subjects or provide a treatment or prevention method. The technique described in Non-Patent Document 1 has an advantage that it can be implemented non-invasively, but requires measurement of fingertip volume pulse waves by a special device and data processing based on a special principle. Poor sex.
 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、疲労を客観的かつ簡便に評価および診断することを可能にする方法を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a method that enables objective and simple evaluation and diagnosis of fatigue.
 本発明者らは、上述の課題を解決するために、慢性疲労症候群患者、慢性疲労患者及び健常者からの血漿サンプルを用いて包括的且つ網羅的なメタボローム解析研究を行い、複雑な生体内の代謝に関わる各血漿サンプルに存在する多種の代謝物質の濃度を調べた。そして、統計解析を加えたところ、特定の代謝物質の増減パターンが疲労状態を反映していることを見出し、この増減パターンに基づいて生体代謝情報を数値化または定量化することにより、客観的かつ簡便な疲労診断を行うことが可能になることを明らかにし、本発明を完成させるに至った。即ち、本発明は、以下の通りである。
(1)被験者から得た生体サンプル中のオルニチン濃度とシトルリン濃度との比率(OC比率)を得る工程と、前記比率(OC比率)に基づいて、前記被験者における疲労の状態を評価する工程とを包含する、疲労を評価する方法。
(2)オルニチン濃度を測定するための試薬とシトルリン濃度を測定するための試薬とを備えている、疲労を評価するためのキット。
(3)疲労を評価するための基準値と、オルニチン濃度とシトルリン濃度との比率(OC比率)とを受け取って、疲労を評価するための評価情報を生成する演算部、および、前記評価情報を受け取って、疲労を評価する評価部、を備えた疲労評価システム。
(4)疲労を評価する方法であって、被験者から得た生体サンプル中のバイオマーカーの値を得る工程と、前記バイオマーカーの値に基づいて、前記被験者における疲労の状態を評価する工程とを包含し、前記バイオマーカーの値が、1)2-アミノ酪酸(2AB)、2-オキソグルタル酸(2-oxoglutarate)、3-ヒドロキシ酪酸(3-Hydroxybutyrate)、3-メチルヒスチジン(3-Methylhistidine)、4-ヒドロキシ-3-メトキシベンゾエート(4-Hydroxy-3-methoxybenzoate)、4-メチル-2-オキソペンタノエート(4-methyl-2-oxopentanoate)、5-オキソプロリン(5-Oxoproline)、アラニン(Ala)、アルギニン(Arg)、アスパラギン(Asn)、アスパラギン酸(Asp)、アゼライン酸(Azelate)、ベータアラニン(beta-Ala)、ベタイン(Betaine)、カルニチン(Carnitine)、コリン(Choline)、シトルリン(Citrulline)、クレアチン(Creatine)、クレアチニン(Creatinine)、シスチン(Cystine)、ガンマブチロベタイン(Gamma-Butyrobetaine)、グルタミン(Gln)、グルタミン酸(Glu)、グリシン(Gly)、ヒスチジン(His)、ヒドロキシプロリン(Hydroxyproline)、イソロイシン(Ile)、ロイシン(Leu)、リジン(Lys)、メチオニン(Met)、ムケート(Mucate)、N,N-ジメチルグリシン(N,N-Dimethylglycine)、オルニチン(Ornithine)、フェニルアラニン(Phe)、プロリン(Pro)、尿素(Urea)、ピルビン酸(Pyruvate)、サルコシン(Sarcosine)、セリン(Ser)、タウリン(Taurine)、トレオニン(Thr)、トリプトファン(Trp)、チロシン(Tyr)、尿酸(Urate)、及び、バリン(Val)からなる群より選択される少なくとも一種のバイオマーカーの生体サンプル中の濃度であるか、2)前記群にシス-アコニット酸(Cis-aconitate)、クエン酸(Citrate)、イソクエン酸(Isocitrate)、乳酸(Lactate)、リンゴ酸(Malate)、及びコハク酸(Succinate)を加えた群より選択される複数種のバイオマーカーの生体サンプル中の濃度の比率または差分である、疲労を評価する方法。
In order to solve the above-mentioned problems, the present inventors have conducted a comprehensive and comprehensive metabolomic analysis study using plasma samples from patients with chronic fatigue syndrome, chronic fatigue patients, and healthy subjects. The concentration of various metabolites present in each plasma sample involved in metabolism was examined. After statistical analysis, we found that the increase / decrease pattern of a specific metabolite reflects the fatigue state, and by quantifying or quantifying biological metabolic information based on this increase / decrease pattern, It has been clarified that a simple fatigue diagnosis can be performed, and the present invention has been completed. That is, the present invention is as follows.
(1) A step of obtaining a ratio (OC ratio) between an ornithine concentration and a citrulline concentration in a biological sample obtained from a subject, and a step of evaluating the state of fatigue in the subject based on the ratio (OC ratio). A method for evaluating fatigue.
(2) A kit for evaluating fatigue, comprising a reagent for measuring ornithine concentration and a reagent for measuring citrulline concentration.
(3) A calculation unit that receives a reference value for evaluating fatigue and a ratio of the ornithine concentration to the citrulline concentration (OC ratio) and generates evaluation information for evaluating fatigue, and the evaluation information A fatigue evaluation system including an evaluation unit that receives and evaluates fatigue.
(4) A method for evaluating fatigue, the step of obtaining a biomarker value in a biological sample obtained from a subject, and the step of evaluating the state of fatigue in the subject based on the value of the biomarker The biomarker values are 1) 2-aminobutyric acid (2AB), 2-oxoglutarate (3-oxoglutarate), 3-hydroxybutyrate (3-Hydroxybutyrate), 3-methylhistidine (3-Methylhistidine), 4-Hydroxy-3-methoxybenzoate, 4-methyl-2-oxopentanoate, 5-oxoproline, alanine ( Ala), arginine (Arg), asparagine (Asn), aspartic acid (Asp), azelate (Azelate), beta-alanine (beta-Ala), betaine (Betaine), carnitine (Carnitine), choline (Ch oline), citrulline, creatine, creatine, cystine, gamma-butyrobetaine, glutamine (Gln), glutamate (Glu), glycine (Gly), histidine ( His), hydroxyproline (Hydroxyproline), isoleucine (Ile), leucine (Leu), lysine (Lys), methionine (Met), mucate (Mucate), N, N-dimethylglycine (N, N-Dimethylglycine), ornithine ( Ornithine), phenylalanine (Phe), proline (Pro), urea (Urea), pyruvate (Pyruvate), sarcosine (Sarcosine), serine (Ser), taurine (Taurine), threonine (Thr), tryptophan (Trp), tyrosine (Tyr), uric acid (Urate), and at least one biomarker biosample selected from the group consisting of valine (Val) 2) In the above group, cis-aconitic acid (Cis-aconitate), citric acid (Citrate), isocitrate (Isocitrate), lactic acid (Lactate), malic acid (Malate), and succinate (Succinate) ) Is a method for evaluating fatigue, which is a ratio or difference in concentration in a biological sample of a plurality of types of biomarkers selected from the group to which) is added.
 本発明は、疲労の評価および診断を客観的かつ簡便に行うことを可能にする。本発明はさらに、疲労の治療に有用な技術を提供し得る。 The present invention enables objective and simple evaluation and diagnosis of fatigue. The present invention may further provide techniques useful for treating fatigue.
健常者(HC)および慢性疲労症候群(CFS)の患者の血漿中に含まれている種々の代謝物の濃度を比較した結果を示す図である。It is a figure which shows the result of having compared the density | concentration of the various metabolite contained in the plasma of the healthy subject (HC) and the patient of a chronic fatigue syndrome (CFS). 試験1および試験2を加えた集団に対して、健常者(HC)および慢性疲労症候群(CFS)の患者の血漿サンプル中の代謝物質の測定値を含めた全てのパラメータを用いてランダムフォレスト(Random Forest)プログラムを実行した結果を示す図である。Random forest (Random) with all parameters including metabolite measurements in plasma samples of healthy subjects (HC) and patients with chronic fatigue syndrome (CFS) for the population plus study 1 and study 2 It is a figure which shows the result of having executed the Forest) program. 試験2の集団に対して、健常者(HC)および慢性疲労症候群(CFS)の患者の血漿サンプル中の代謝物質の測定値を含めた全てのパラメータを用いてランダムフォレストプログラムを実行した結果を示す図である。FIG. 6 shows the results of running a random forest program for all populations of study 2 using all parameters including metabolite measurements in plasma samples of healthy (HC) and chronic fatigue syndrome (CFS) patients. FIG. 健常者(HC)および慢性疲労症候群(CFS)の患者の間で、血漿中に含まれている濃度に有意差が見られる代謝物の一例を示す図である。It is a figure which shows an example of the metabolite by which the significant difference is seen in the density | concentration contained in plasma between a healthy subject (HC) and a patient of chronic fatigue syndrome (CFS). 健常者(HC)および慢性疲労(CF)の患者の血漿中に含まれている種々の代謝物の濃度を示す図である。It is a figure which shows the density | concentration of the various metabolite contained in the plasma of a healthy subject (HC) and a chronic fatigue (CF) patient. 健常者(HC)および慢性疲労(CF)の患者の間で、血漿中に含まれている濃度に有意差が見られる代謝物の一例を示す図である。It is a figure which shows an example of the metabolite by which the significant difference is seen in the density | concentration contained in plasma between a healthy subject (HC) and a patient of chronic fatigue (CF). 健常者(HC)および慢性疲労症候群(CFS)の患者を分析する目的で、試験1と試験2のすべての血漿サンプル中の代謝物質の測定値を対象に決定木モデルによる解析を実行した結果の一例を示す図である。For the purpose of analyzing healthy subjects (HC) and patients with chronic fatigue syndrome (CFS), the results of the analysis using the decision tree model for the measured values of metabolites in all plasma samples of Test 1 and Test 2. It is a figure which shows an example. 健常者(HC)および慢性疲労症候群(CFS)の患者を分析する目的で、試験1と試験2のすべての血漿サンプル中の代謝物質の測定値を対象に決定木モデルによる解析を実行した結果の他の例を示す図である。For the purpose of analyzing healthy subjects (HC) and patients with chronic fatigue syndrome (CFS), the results of the analysis using the decision tree model for the measured values of metabolites in all plasma samples of Test 1 and Test 2. It is a figure which shows another example. 健常者(HC)および慢性疲労症候群(CFS)の患者を分析する目的で、試験1と試験2のすべての血漿サンプル中の代謝物質の測定値の比を対象に決定木モデルによる解析を実行した結果のさらに他の例を示す図である。For the purpose of analyzing patients with healthy subjects (HC) and chronic fatigue syndrome (CFS), a decision tree model analysis was performed on the ratio of measured metabolite values in all plasma samples of Study 1 and Study 2. It is a figure which shows the further another example of a result. 健常者(HC)および慢性疲労症候群(CFS)の患者を分析する目的で、試験1と試験2のすべての血漿サンプル中の代謝物質の測定値の比を対象に決定木モデルによる解析を実行した結果のさらに他の例を示す図である。For the purpose of analyzing patients with healthy subjects (HC) and chronic fatigue syndrome (CFS), a decision tree model analysis was performed on the ratio of measured metabolite values in all plasma samples of Study 1 and Study 2. It is a figure which shows the further another example of a result. 慢性疲労(CF)の患者および慢性疲労症候群(CFS)の患者の血漿中に含まれている種々の代謝物の濃度を比較した結果を示す図である。It is a figure which shows the result of having compared the density | concentration of the various metabolite contained in the plasma of the patient of chronic fatigue (CF) and the patient of chronic fatigue syndrome (CFS). 疲労モデル動物(ラット)の疲労負荷実験を通じて、当該モデル動物の血液や肝臓を対象とした網羅的代謝解析から確認された、尿素回路およびTCA回路における代謝異常と、尿素回路からTCA回路への疲労病態特有の代謝の流れ込みとを示す図である(グラフデータは肝臓検体のものを示す)。Through fatigue test of fatigue model animals (rats), metabolic abnormalities in urea circuit and TCA circuit, and fatigue from urea circuit to TCA circuit, confirmed from comprehensive metabolic analysis of blood and liver of model animal It is a figure which shows the flow of metabolism peculiar to a disease state (graph data shows the thing of a liver sample). 図および本明細書中で用いたアミノ酸の略語とフルネームとの対応を示す図である。It is a figure which shows a response | compatibility with the figure and the abbreviation and full name of an amino acid used in this specification. 採取したヒトの全血において、オルニチンの濃度、及びアルギニンの濃度が時間の経過とともに変化する様子を示すグラフである。It is a graph which shows a mode that the density | concentration of ornithine and the density | concentration of arginine change with progress of time in the extract | collected whole human blood. ラットの全血を用いた実験において、各種酵素の阻害剤を添加することでアルギニンおよびオルニチンの時間経過による濃度変化が抑えられることを示すグラフである。In an experiment using rat whole blood, it is a graph which shows that the density | concentration change with time passage of arginine and ornithine can be suppressed by adding the inhibitor of various enzymes. 試験2の集団に対して、健常者(HC)および慢性疲労(CF)の患者の血漿サンプル中の代謝物質の測定値を含めた全てのパラメータを用いてランダムフォレスト(Random Forest)プログラムを実行した結果を示す図である。A random forest (Random Forest) program was run on the study 2 population with all parameters including metabolite measurements in plasma samples of healthy (HC) and chronic fatigue (CF) patients It is a figure which shows a result. 試験2の集団に対して、慢性疲労(CF)および慢性疲労症候群(CFS)の患者の血漿サンプル中の代謝物質の測定値を含めた全てのパラメータを用いてランダムフォレスト(Random Forest)プログラムを実行した結果を示す図である。Run the random forest (Random プ ロ グ ラ ム Forest) program for the study 2 population with all parameters including metabolite measurements in plasma samples of patients with chronic fatigue (CF) and chronic fatigue syndrome (CFS) It is a figure which shows the result. PLS-DA法を用いて、HC群、CFS群の2群比較を行った結果を示す図である。It is a figure which shows the result of having performed 2 group comparison of HC group and CFS group using PLS-DA method. PLS-DA法を用いて、HC群、CF群の2群比較を行った結果を示す図である。It is a figure which shows the result of having performed 2 group comparison of HC group and CF group using PLS-DA method. PLS-DA法を用いて、CF群、CFS群の2群比較を行った結果を示す図である。It is a figure which shows the result of having performed 2 group comparison of CF group and CFS group using PLS-DA method.
 〔A〕生体サンプル
 本明細書中にて使用される場合、用語「生体サンプル」は、被験体から採取された任意の組織(血液等の体液を含む。)または細胞が意図され、これらから調製された組織切片または細胞溶解物もまた生体サンプルに包含され得る。本発明に用いるに好ましい生体サンプルとしては、血液、唾液、尿、間質液、汗、およびこれらからの調製物(例えば、血清、血漿など)などが挙げられるがこれらに限定されない。生体サンプルは好ましくは血液または血液調製物(血清、血漿など)である。
[A] Biological Sample As used herein, the term “biological sample” is intended to include any tissue (including body fluids such as blood) or cells collected from a subject, and prepared therefrom. Organized tissue sections or cell lysates can also be included in the biological sample. Preferred biological samples for use in the present invention include, but are not limited to, blood, saliva, urine, interstitial fluid, sweat, and preparations thereof (eg, serum, plasma, etc.). The biological sample is preferably blood or a blood preparation (serum, plasma, etc.).
 〔1〕疲労
 現在、疲労・倦怠感を主症状として医療機関へ訪れる患者(急性疲労・慢性疲労・慢性疲労症候群を含む)の数は、痛みを主症状とする患者の数に次いで2番目に多い。しかしながら、疲労を客観的に評価する方法は、これまでに開発されていない。疲労感および倦怠感は、ヒトが日常的に経験する感覚であり、生体のホメオスタシスの乱れを知らせる重要な生体シグナルである。しかし、疲労感はあくまでも主観的なものであり、疲労度を客観的に示すものではない。乳酸が疲労の原因物質であると考えられた時期もあるが、乳酸レベルの変動は、運動の指標になり得るが、疲労状態の指標にはならないということもわかってきている。さらに、疲労に効果的な治療法も見出されていない。
[1] Fatigue Currently, the number of patients (including acute fatigue, chronic fatigue, and chronic fatigue syndrome) who visit a medical institution with fatigue / malaise as the main symptom is the second after the number of patients whose main symptom is pain Many. However, no method for objectively evaluating fatigue has been developed so far. Fatigue and fatigue are sensations that humans experience on a daily basis, and are important biological signals that inform the disturbance of homeostasis in the living body. However, the feeling of fatigue is subjective only and does not objectively indicate the degree of fatigue. Although there were times when lactic acid was considered to be a causative agent of fatigue, it has also been found that fluctuations in lactic acid level can be an indicator of exercise, but not an indicator of fatigue. Furthermore, no effective treatment for fatigue has been found.
 アメリカ疾病予防管理センター(CDC)が、「慢性疲労症候群」という、原因不明の強い疲労を呈する疾患を1988年に報告してから、そのメカニズムの解明、バイオマーカーの探索、および治療予防法の開発を中心とした、種々の研究がなされてきた。しかし、慢性疲労症候群の発症メカニズムは未だ解明されておらず、客観的バイオマーカーについても開発されていない。現在においても、CDCが1994年に発表した、症状および身体所見の基準を用いて慢性疲労症候群の診断がなされている。 The US Center for Disease Control and Prevention (CDC) reported a chronic fatigue syndrome called “chronic fatigue syndrome” in 1988, elucidating the mechanism, searching for biomarkers, and developing treatment prevention methods. Various researches have been made with a focus on. However, the onset mechanism of chronic fatigue syndrome has not yet been elucidated, and no objective biomarker has been developed. Even now, the diagnosis of chronic fatigue syndrome is made using the criteria of symptom and physical findings published by CDC in 1994.
 一方、これまでに、慢性疲労症候群において、ウイルス活性化または自律神経異常を指標とした疲労バイオマーカーが提案されている。しかし、これらはヒトの疲労の原因やそのメカニズムに則したものではないため、疲労(慢性疲労、慢性疲労症候群を含むが、特に慢性疲労、慢性疲労症候群)に特異的なバイオマーカーとはいいがたい。さらに、これらは、ホメオスタシスの維持/回復のメカニズムの間接的な指標であっても直接的な指標ではないため、具体的な治療法の提供にまで発展させることは試行錯誤が必要である。 On the other hand, fatigue biomarkers using viral activation or autonomic nerve abnormalities as indicators in chronic fatigue syndrome have been proposed. However, these are not in accordance with the causes and mechanisms of human fatigue, so they are good biomarkers specific to fatigue (including chronic fatigue and chronic fatigue syndrome, but especially chronic fatigue and chronic fatigue syndrome). I want. Furthermore, since these are indirect indicators of the maintenance / recovery mechanism of homeostasis, they are not direct indicators, and it is necessary to trial and error to develop them to provide specific treatments.
 本願発明者らは、すでに、解糖系およびTCA回路を形成する代謝物の中に、健常者と比較して、慢性疲労症候群の患者群において低下しているものがあることを見出している(参考文献:国際公開WO2011/161544 A2(米国特許シリアル番号13/805,449))。今回、より大きな、異なる集団から得られたデータを加えることで、新たに尿素回路に関係する代謝物において、疲労患者群と健常者との間で特徴的な変化を見出した。より具体的な一例では、疲労患者群において、尿素回路からTCA回路へ流入する代謝経路が促進し、その結果、アンモニアを代謝する反応系が抑制されるといった特徴的な代謝病態が同定された。こうした疲労病態を表す代謝異常は、ラットに疲労負荷したモデル実験系でも裏付けられた。 The present inventors have already found that some of the metabolites that form the glycolytic system and the TCA cycle are lower in the group of patients with chronic fatigue syndrome than in healthy individuals ( Reference: International Publication WO2011 / 161544 A2 (US Patent Serial Number 13 / 805,449)). This time, by adding data obtained from a larger, different population, we found a characteristic change between the fatigue patient group and the healthy subject in the metabolites related to the urea cycle. In a more specific example, a characteristic metabolic pathology in which a metabolic pathway flowing from the urea circuit to the TCA circuit is promoted in the fatigue patient group and as a result, a reaction system that metabolizes ammonia is suppressed is identified. Such metabolic abnormalities that indicate fatigue pathology were supported by a model experimental system in which rats were fatigued.
 なお、本明細書において、特に断りのない限り、慢性疲労患者とは、慢性疲労症候群の患者を包含しないものである。なお、慢性疲労とは、6カ月以上断続的に疲労あるいは疲労感を主訴に持つものの、医師の診断によって慢性疲労症候群とは診断されなかったケースを指す。慢性疲労症候群とは、アメリカ疾病予防管理センター(CDC)によって作成された慢性疲労症候群診断基準(Ann Intern Med. 1994;121:953-959)を日本国内用に改定したもの(医学のあゆみ 特集「最新・疲労の科学 -日本発:抗疲労・抗過労への提言」671-677)に記されているように(1)生活が著しく損なわれるような強い疲労を主症状とし、少なくとも6ヵ月以上の期間持続または再発を繰り返す(50%以上の期間認められること)。かつ、病歴、身体所見、検査所見で疾患を除外する。さらに、(2)症状基準8項目以上か、症状基準6項目・身体基準2項目以上を満たすケースを指す。 In this specification, unless otherwise specified, a chronic fatigue patient does not include a patient with chronic fatigue syndrome. The term “chronic fatigue” refers to a case where chronic fatigue syndrome has not been diagnosed by a doctor's diagnosis, although the main complaint is fatigue or feeling of fatigue intermittently for 6 months or longer. Chronic fatigue syndrome is a revised version of the diagnostic criteria for chronic fatigue syndrome (Ann Intern Med. 1994; 121: 953-959) created by the American Center for Disease Control and Prevention (CDC). As described in 671-677), the latest symptom of fatigue and science from Japan: Proposals for anti-fatigue / anti-overwork (1) Strong fatigue that significantly impairs life as the main symptom, at least 6 months or more Repeat or continue recurrence for a period of 50% or more. In addition, the disease is excluded based on medical history, physical findings, and laboratory findings. Furthermore, (2) refers to a case that meets 8 or more symptom criteria, or 6 symptom criteria and 2 or more physical criteria.
 〔2〕本発明のバイオマーカー
 本発明の一形態にかかる、疲労のバイオマーカーは、以下の通りである。
[2] Biomarker of the Present Invention The biomarker for fatigue according to one embodiment of the present invention is as follows.
 1) 図2、図3、図4、図6、図7、図8、図11、図16、及び図17の何れかにおいて具体的に記載されているバイオマーカー。より具体的に列挙すれば、例えば、2-アミノ酪酸(2AB)、2-オキソグルタル酸(2-oxoglutarate)、3-ヒドロキシ酪酸(3-Hydroxybutyrate)、3-メチルヒスチジン(3-Methylhistidine)、4-ヒドロキシ-3-メトキシベンゾエート(4-Hydroxy-3-methoxybenzoate)、4-メチル-2-オキソペンタノエート(4-methyl-2-oxopentanoate)、5-オキソプロリン(5-Oxoproline)、アラニン(Ala)、アルギニン(Arg)、アスパラギン(Asn)、アスパラギン酸(Asp)、アゼライン酸(Azelate)、ベータアラニン(beta-Ala)、ベタイン(Betaine)、カルニチン(Carnitine)、コリン(Choline)、シス-アコニット酸(Cis-aconitate)、クエン酸(Citrate)、シトルリン(Citrulline)、クレアチン(Creatine)、クレアチニン(Creatinine)、シスチン(Cystine)、ガンマブチロベタイン(Gamma-Butyrobetaine)、グルタミン(Gln)、グルタミン酸(Glu)、グリシン(Gly)、ヒスチジン(His)、ヒドロキシプロリン(Hydroxyproline)、イソロイシン(Ile)、イソクエン酸(Isocitrate)、乳酸(Lactate)、ロイシン(Leu)、リジン(Lys)、リンゴ酸(Malate)、メチオニン(Met)、ムケート(Mucate)、N,N-ジメチルグリシン(N,N-Dimethylglycine)、オルニチン(Ornithine)、フェニルアラニン(Phe)、プロリン(Pro)、尿素(Urea)、ピルビン酸(Pyruvate)、サルコシン(Sarcosine)、セリン(Ser)、コハク酸(Succinate)、タウリン(Taurine)、トレオニン(Thr)、トリプトファン(Trp)、チロシン(Tyr)、尿酸(Urate)、及び、バリン(Val)である。これらの中で、特に、2-オキソグルタル酸(2-oxoglutarate)、4-ヒドロキシ-3-メトキシベンゾエート(4-Hydroxy-3-methoxybenzoate)、4-メチル-2-オキソペンタノエート(4-methyl-2-oxopentanoate)、アルギニン(Arg)、アスパラギン(Asn)、コリン(Choline)、シス-アコニット酸(Cis-aconitate)、クエン酸(Citrate)、シトルリン(Citrulline)、クレアチン(Creatine)、ガンマブチロベタイン(Gamma-Butyrobetaine)、グルタミン(Gln)、グリシン(Gly)、ヒスチジン(His)、ヒドロキシプロリン(Hydroxyproline)、イソクエン酸(Isocitrate)、リジン(Lys)、オルニチン(Ornithine)、尿素(Urea)、ピルビン酸(Pyruvate)、コハク酸(Succinate)、タウリン(Taurine)、トリプトファン(Trp)、及び、尿酸(Urate)は、実施例にも示す通り、異なる疲労状態の間で、統計的な有意差がある、特に有用なバイオマーカーである。
これらの中でも、尿素回路に関連する代謝物や尿素回路からTCA回路への代謝の流れ込みに関わる代謝物がバイオマーカーとしてより好ましい。尿素回路に関連する代謝物や尿素回路からTCA回路への代謝の流れ込みに関わる代謝物のバイオマーカーとしては、図1又は図4に示される代謝物、オルニチン(Ornithine)、シトルリン(Citrulline)、尿素(Urea)、Urate、4-hydroxy-3-methoxybenzoate、Hydroxyproline、4-Methyl-2-oxopentanoate、およびGamma-butyrobetaineなどが挙げられる。中でも、上記バイオマーカーとしては、疲労状態によって異なる挙動を示すことから、オルニチン(Ornithine)、シトルリン(Citrulline)、尿素(Urea)等がさらに好ましく、オルニチン(Ornithine)、シトルリン(Citrulline)が特に好ましい。上記バイオマーカーは任意の複数個を同時に解析に用いてもよい。
なお、1)で上述したバイオマーカーのうち、シス-アコニット酸(Cis-aconitate)、クエン酸(Citrate)、イソクエン酸(Isocitrate)、乳酸(Lactate)、リンゴ酸(Malate)、及び、コハク酸(Succinate)は、単独で用いるのではなく、これら以外の1)で上述したバイオマーカーと組み合わせて用いる場合がある。
1) The biomarker specifically described in any of FIGS. 2, 3, 4, 6, 7, 8, 8, 11, 16, and 17. More specifically, for example, 2-aminobutyric acid (2AB), 2-oxoglutarate, 3-hydroxybutyrate, 3-methylhistidine, 4-methylhistidine, 4-Hydroxy-3-methoxybenzoate, 4-methyl-2-oxopentanoate, 5-oxoxoline, alanine (Ala) , Arginine (Arg), asparagine (Asn), aspartic acid (Asp), azelate acid (Azelate), beta alanine (beta-Ala), betaine (Betaine), carnitine (Carnitine), choline (Choline), cis-aconitic acid (Cis-aconitate), citric acid (Citrate), citrulline (Citrulline), creatine (Creatine), creatinine (Creatinine), cystine (Cystine), gamma-butyrobetaine (Gamma-Butyrobetaine) , Glutamine (Gln), glutamic acid (Glu), glycine (Gly), histidine (His), hydroxyproline (Hydroxyproline), isoleucine (Ile), isocitrate (Isocitrate), lactic acid (Lactate), leucine (Leu), lysine ( Lys), malic acid (Malate), methionine (Met), mucate (Mucate), N, N-dimethylglycine (N, N-Dimethylglycine), ornithine (Ornithine), phenylalanine (Phe), proline (Pro), urea ( Urea), pyruvate (Pyruvate), sarcosine (Sarcosine), serine (Ser), succinate (Succinate), taurine (Taurine), threonine (Thr), tryptophan (Trp), tyrosine (Tyr), uric acid (Urate), And valine (Val). Among these, in particular, 2-oxoglutarate, 4-hydroxy-3-methoxybenzoate, 4-methyl-2-oxopentanoate (4-methyl- 2-oxopentanoate), arginine (Arg), asparagine (Asn), choline (Choline), cis-aconitic acid (Cisrate), citric acid (Citrate), citrulline (Citrulline), creatine (Creatine), gamma-butyrobetaine (Gamma-Butyrobetaine), glutamine (Gln), glycine (Gly), histidine (His), hydroxyproline (Hydroxyproline), isocitrate (Isocitrate), lysine (Lys), ornithine (Ornithine), urea (Urea), pyruvic acid (Pyruvate), succinate (Succinate), taurine (Taurine), tryptophan (Trp), and uric acid (Urate), as shown in the Examples, between different fatigue states It is a particularly useful biomarker with statistically significant differences.
Among these, metabolites related to the urea cycle and metabolites involved in the flow of metabolism from the urea cycle to the TCA cycle are more preferable as biomarkers. Metabolites related to the urea cycle and biomarkers of metabolites related to the flow of metabolism from the urea cycle to the TCA cycle include the metabolites shown in FIG. 1 or 4, ornithine, citrulline, urea (Urea), Urate, 4-hydroxy-3-methoxybenzoate, Hydroxyproline, 4-Methyl-2-oxopentanoate, and Gamma-butyrobetaine. Among them, as the biomarker, ornithine, citrulline, urea, and the like are more preferable, and ornithine and citrulline are particularly preferable because they exhibit different behavior depending on the fatigue state. Any number of the above biomarkers may be used for analysis simultaneously.
Among the biomarkers described in 1) above, cis-aconitic acid (Cis-aconitate), citric acid (Citrate), isocitrate (Isocitrate), lactic acid (Lactate), malic acid (Malate), and succinic acid ( Succinate) is not used alone, but may be used in combination with the biomarkers described above in 1).
 これらバイオマーカーは、例えば、生体サンプル中の濃度として取得され、所定の閾値(基準値)と比較されて疲労の評価に用いられる。所定の閾値は、分析の手法等に応じて、バイオマーカー毎に適宜設定される。 These biomarkers are obtained, for example, as concentrations in a biological sample, and compared with a predetermined threshold value (reference value) to be used for fatigue evaluation. The predetermined threshold is appropriately set for each biomarker according to the analysis method and the like.
 上記分析の手法としては、通常生体中の代謝物の濃度測定に用いられるものであればよく、特に限定されない。例えば、CE-MS/MS(キャピラリー電気泳動質量分析法)やLC-MS/MS(液体クロマトグラフィー質量分析法)等が広く用いられている。 The analysis method is not particularly limited as long as it is generally used for measuring the concentration of a metabolite in a living body. For example, CE-MS / MS (capillary electrophoresis mass spectrometry) and LC-MS / MS (liquid chromatography mass spectrometry) are widely used.
 所定の閾値の一例は、複数の健常者における生体サンプル中のバイオマーカーの濃度の平均値や、二項分布等から得られる最頻値である。また、例えば、図2、図3、図4、図6、図7、図8、及び図11、並びに実施例に示す通り、バイオマーカーの量が、閾値を基準としてどのような状態(例えば、閾値以上か、閾値未満か)にあれば、疲労であるか否か(或いは、例えば、慢性疲労であるか否か、慢性疲労症候群であるか否か、等)の評価が可能である。 An example of the predetermined threshold is a mode value obtained from an average value of biomarker concentrations in a biological sample in a plurality of healthy subjects, a binomial distribution, or the like. Also, for example, as shown in FIGS. 2, 3, 4, 6, 7, 8, and 11, and the examples, the amount of the biomarker is in what state (for example, If it is above or below a threshold value, it is possible to evaluate whether it is fatigue (or whether it is chronic fatigue, chronic fatigue syndrome, etc.).
 特に限定されないが、図2、図3、図4、図7、及び、図8に記載のバイオマーカーは、被験者が健常者であるか慢性疲労症候群の患者であるかを評価するマーカーとして特に有用である。より具体的には、例えば、Ornithine、Citrulline、Urea、Hydroxyproline、Urate、4-Hydroxy-3-methoxybenzoate、Isocitrate、Citrate、Pyruvate、Cis-aconitate、Gamma-Butyrobetaine、4-methyl-2-oxopentanoate、及び、2-oxoglutarateは、健常者と慢性疲労症候群の患者との間で、統計的な有意差がある、特に有用なバイオマーカーである。また、これら以外としては、Succinate、Pro、Leu、3-Methylhistidine、Creatinine、His、Ala、N,N-Dimethylglycine、Ser、Lys、Betaine、Glu、Taurine、2AB、Arg、3-Hydroxybutyrate、Creatine、Trp、Mucate、Cystine、Asp、Sarcosine、Thr、及びValが、ランダムフォレスト解析の結果として、被験者が健常者であるか慢性疲労症候群の患者であるかを評価するマーカーとなり得るものである。なお、SuccinateからValまでのマーカーは、ランダムフォレスト解析の結果として上位(すなわちマーカーとして有望)に来るものから順に列挙をしている。
また、特に限定されないが、図6、及び、図16に記載のバイオマーカーは、被験者が健常者であるか慢性疲労の患者(特に慢性疲労症候群ではない慢性疲労の患者)であるかを評価するマーカーとして特に有用である。より具体的には、例えば、Choline、Gly、Taurine、Asn、Gamma-Butyrobetaine、Gln、Lys、Trp、4-methyl-2-oxopentanoate、及び、Succinateは、健常者と慢性疲労の患者(特に慢性疲労症候群ではない慢性疲労の患者)との間で、統計的な有意差がある、特に有用なバイオカーカーである。また、これら以外としては、Cis-Aconitate、Lactate、Arg、Mucate、His、Azelate、N,N-Dimethylglycine、Creatinine、beta-Ala、Tyr、Ornithine、2AB、Leu、Isocitrate、Hydroxyproline、Phe、Met、3-Methylhistidine、Sarcosine、Ile、Betaine、Pyruvate、Urate,4-Hydroxy-3-methoxybenzoate、Ser、Asp、Carnitine、Urea、5-oxoproline及び、Citrateが、ランダムフォレスト解析の結果として、被験者が健常者であるか慢性疲労の患者(特に慢性疲労症候群ではない慢性疲労の患者)であるかを評価するマーカーとなり得るものである。なお、Cis-AconitateからCitrateまでのマーカーは、ランダムフォレスト解析の結果として上位(すなわちマーカーとして有望)に来るものから順に列挙をしている。
また、特に限定されないが、図11、及び、図17に記載のバイオマーカーは、被験者が、慢性疲労症候群の患者であるか、慢性疲労症候群ではない慢性疲労の患者であるかを評価するマーカーとして特に有用である。より具体的には、例えば、Choline、Succinate、Gln、Taurine、Asn、Lys、Arg、His、Urate、及び、4-Hydroxy-3-methoxybenzoateは、慢性疲労症候群の患者と、慢性疲労症候群ではない慢性疲労の患者との間で、統計的な有意差がある、特に有用なバイオマーカーである。また、これら以外としては、N,N-Dimethylglycine、3-Methylhistidine、Azelate、Ile、Trp、4-methyl-2-oxopentanoate、Ser、Cis-Aconitate、Met、Phe、Gly、Lactate、Ala、Leu、Citrulline、Malate、gamma-Butyrobetaine、Sarcosine、beta-Ala、Glu、2-Oxoglutarate、Pyruvate、Asp、Urea、Creatinine、Carnitine、2AB、Betaine、Citrate、及びTyrが、ランダムフォレスト解析の結果として、被験者が慢性疲労症候群の患者であるか慢性疲労の患者(慢性疲労症候群ではない)であるかを評価するマーカーとなり得るものである。なお、N,N-DimethylglycineからTyrまでのマーカーは、ランダムフォレスト解析の結果として上位(すなわちマーカーとして有望)に来るものから順に列挙をしている。
Although not particularly limited, the biomarkers described in FIGS. 2, 3, 4, 7, and 8 are particularly useful as markers for evaluating whether a subject is a healthy person or a patient with chronic fatigue syndrome. It is. More specifically, for example, Ornithine, Citrulline, Urea, Hydroxyproline, Urate, 4-Hydroxy-3-methoxybenzoate, Isocitrate, Citrate, Pyruvate, Cis-aconitate, Gamma-Butyrobetaine, 4-methyl-2-oxopentanoate, and 2-oxoglutarate is a particularly useful biomarker with statistically significant differences between healthy individuals and patients with chronic fatigue syndrome. In addition, Succinate, Pro, Leu, 3-Methylhistidine, Creatinine, His, Ala, N, N-Dimethylglycine, Ser, Lys, Betaine, Glu, Taurine, 2AB, Arg, 3-Hydroxybutyrate, Creatine, Trp , Mucate, Cystine, Asp, Sarcosine, Thr, and Val can be markers for evaluating whether a subject is a healthy person or a patient with chronic fatigue syndrome as a result of random forest analysis. In addition, the markers from Succinate to Val are listed in order from the top (ie, promising as a marker) as a result of random forest analysis.
Although not particularly limited, the biomarker described in FIGS. 6 and 16 evaluates whether the subject is a healthy person or a patient with chronic fatigue (especially a patient with chronic fatigue who is not chronic fatigue syndrome). It is particularly useful as a marker. More specifically, for example, Choline, Gly, Tarine, Asn, Gamma-Butyrobetaine, Gln, Lys, Trp, 4-methyl-2-oxopentanoate, and Succinate are used for healthy subjects and chronic fatigue patients (especially chronic fatigue). It is a particularly useful biocar car with statistically significant differences from patients with chronic fatigue who are not syndromes). Other than these, Cis-Aconitate, Lactate, Arg, Mucate, His, Azelate, N, N-Dimethylglycine, Creatinine, beta-Ala, Tyr, Ornithine, 2AB, Leu, Isocitrate, Hydroxyproline, Phe, Met, 3 -Methylhistidine, Sarcosine, Ile, Betaine, Pyruvate, Urate, 4-Hydroxy-3-methoxybenzoate, Ser, Asp, Carnitine, Urea, 5-oxoproline, and Citrate, as a result of random forest analysis, the subject is healthy It can be a marker for evaluating whether the patient is chronic fatigue (particularly chronic fatigue who is not chronic fatigue syndrome). In addition, the markers from Cis-Aconitate to Citrate are listed in order from the top (that is, promising as a marker) as a result of random forest analysis.
In addition, although not particularly limited, the biomarker described in FIG. 11 and FIG. 17 is a marker for evaluating whether a subject is a patient with chronic fatigue syndrome or a patient with chronic fatigue syndrome that is not chronic fatigue syndrome. It is particularly useful. More specifically, for example, Choline, Succinate, Gln, Taurine, Asn, Lys, Arg, His, Urate, and 4-Hydroxy-3-methoxybenzoate are used in patients with chronic fatigue syndrome and chronic but not chronic fatigue syndrome. It is a particularly useful biomarker with statistically significant differences from fatigue patients. Other than these, N, N-Dimethylglycine, 3-Methylhistidine, Azelate, Ile, Trp, 4-methyl-2-oxopentanoate, Ser, Cis-Aconitate, Met, Phe, Gly, Lactate, Ala, Leu, Citrulline , Malate, gamma-Butyrobetaine, Sarcosine, beta-Ala, Glu, 2-Oxoglutarate, Pyruvate, Asp, Urea, Creatinine, Carnitine, 2AB, Betaine, Citrate, and Tyr. It can be a marker for evaluating whether the patient is a syndrome patient or a patient with chronic fatigue (not chronic fatigue syndrome). In addition, the markers from N, N-dimethylglycine to Tyr are listed in order from the top (that is, promising as a marker) as a result of random forest analysis.
 2) 上記1)の複数個のバイオマーカーの相関関係として構成されるバイオマーカー。例えば、上記1)の複数のバイオマーカーの生体サンプル中の濃度の比率、および、当該生体サンプル中の濃度の差分、等が該当する。一例としては、図9、および図10に具体的に示されたバイオマーカーである、生体サンプル中のオルニチン濃度とシトルリン濃度との比率(OC比率、例えば、O/CまたはC/O);生体サンプル中のピルビン酸濃度とイソクエン酸濃度との比率(PI比率);生体サンプル中のアラニン濃度とヒドロキシプロリン濃度との比率(AP比率);等が該当する。バイオマーカーは任意の複数個を同時に解析に用いてもよい。なお、ランダムフォレスト解析で上位に位置する代謝物(図3参照:例えば、Ornithine、Citrulline、Urea、Urate、4-hydroxy-3-methoxybenzoate、Hydroxyproline、4-Methyl-2-oxopentanoate、Gamma-butyrobetaine等)からなる群より選択される2つの代謝物の濃度比率を、上記OC比率と代替的にかOC比率と組み合わせて、バイオマーカーとして用いることもでき、上記OC比率と代替的にかOC比率と組み合わせて用いるバイオマーカーとして好ましくは、生体サンプル中のオルニチン濃度と、Urea、Urate、4-hydroxy-3-methoxybenzoate、Hydroxyproline、4-Methyl-2-oxopentanoate、Gamma-butyrobetaineから選択される何れかの濃度との比率を挙げることが出来る。 2) A biomarker configured as a correlation between a plurality of biomarkers of 1) above. For example, the ratio of the concentration of the plurality of biomarkers in 1) above in the biological sample, the difference in the concentration in the biological sample, and the like are applicable. As an example, the ratio of ornithine concentration and citrulline concentration in a biological sample (OC ratio, for example, O / C or C / O), which is the biomarker specifically shown in FIGS. 9 and 10; A ratio of pyruvic acid concentration and isocitrate concentration in a sample (PI ratio); a ratio of alanine concentration and hydroxyproline concentration in a biological sample (AP ratio); Any number of biomarkers may be used for analysis simultaneously. In addition, metabolites located at the top in random forest analysis (see Fig. 3: for example, Ornithine, Citrulline, Urea, Urate, 4-hydroxy-3-methoxybenzoate, Hydroxyproline, 4-Methyl-2-oxopentanoate, Gamma-butyrobetaine, etc.) The concentration ratio of two metabolites selected from the group consisting of can also be used as a biomarker in combination with the OC ratio or in combination with the OC ratio, or alternatively with the OC ratio or in combination with the OC ratio Preferably, as a biomarker used, ornithine concentration in a biological sample and any concentration selected from Urea, Urate, 4-hydroxy-3-methoxybenzoate, Hydroxyproline, 4-Methyl-2-oxopentanoate, Gamma-butyrobetaine Can be mentioned.
 これらバイオマーカーは、例えば、所定の閾値(基準値)と比較されて疲労の評価に用いられる。所定の閾値は、分析の手法等に応じて、バイオマーカー毎に適宜設定される。 These biomarkers are used, for example, for fatigue evaluation by comparison with a predetermined threshold (reference value). The predetermined threshold is appropriately set for each biomarker according to the analysis method and the like.
 所定の閾値の一例は、複数の健常者におけるバイオマーカーの値の平均値や、二項分布等から得られる最頻値である。また、例えば、図9、及び図10、並びに実施例の記載に示す通り、バイオマーカーの値が、閾値を基準としてどのような状態(例えば、閾値以上か、閾値未満か)にあれば、疲労であるか否か(或いは、例えば、慢性疲労であるか否か、慢性疲労症候群であるか否か、等)の評価が可能である。 An example of the predetermined threshold is a mode value obtained from an average value of biomarker values in a plurality of healthy subjects, a binomial distribution, or the like. Further, for example, as shown in FIG. 9 and FIG. 10 and the description of the examples, if the value of the biomarker is in any state (for example, whether it is greater than or less than the threshold), fatigue (Or, for example, whether it is chronic fatigue, whether it is chronic fatigue syndrome, etc.).
 特に限定されないが、図9、及び図10に記載のバイオマーカーは、被験者が健常者であるか慢性疲労症候群の患者であるかを評価するマーカーとして特に有用である。 Although not particularly limited, the biomarkers described in FIGS. 9 and 10 are particularly useful as markers for evaluating whether a subject is a healthy person or a patient with chronic fatigue syndrome.
 実施例も参照される通り、本発明のバイオマーカーの一側面は、慢性疲労症候群の患者および慢性疲労の患者の血漿と健常者の血漿とにおける代謝物質の変動を網羅的に解析することにより見出された、疲労疾患のメカニズムに基づく客観的な疲労バイオマーカーである。従って、本発明のバイオマーカーの一側面として、客観的かつ簡便な、疲労の評価および診断を可能にする。さらに、本発明のバイオマーカーを用いれば、慢性疲労や慢性疲労症候群の診断法および治療法を開発し得る。 As also referred to in the Examples, one aspect of the biomarker of the present invention is observed by comprehensively analyzing the changes in metabolites in the plasma of patients with chronic fatigue syndrome and patients with chronic fatigue and the plasma of healthy subjects. This is an objective fatigue biomarker based on the mechanism of fatigue disease. Therefore, as one aspect of the biomarker of the present invention, it is possible to objectively and easily evaluate and diagnose fatigue. Furthermore, by using the biomarker of the present invention, diagnostic methods and treatment methods for chronic fatigue and chronic fatigue syndrome can be developed.
 また、本発明の他の側面として、本発明のバイオマーカーを用いれば、安価で簡単な疲労診断システムを作成することが可能になり、さらに、診断結果を受けて、効果的な治療法が見出せる可能性もある。例えば、強い疲労感や長期に続く疲労感を訴える患者に対し、血液を採取し、本発明のバイオマーカーを調べることで、慢性疲労か否かや慢性疲労症候群か否かの判別や、疲労度の客観的評価ができる。この評価は、疲労に関する高度な知識がなくとも、一般の医療施設で検査可能である。 As another aspect of the present invention, it is possible to create an inexpensive and simple fatigue diagnosis system by using the biomarker of the present invention, and further, an effective treatment method can be found based on the diagnosis result. There is a possibility. For example, for patients who complain of strong fatigue or long-term fatigue, blood is collected and the biomarker of the present invention is examined to determine whether the patient is chronic fatigue or chronic fatigue syndrome. Can be objectively evaluated. This evaluation can be examined in a general medical facility without a high level of knowledge about fatigue.
 また、本発明の一側面として、被験者の血液成分を測定することで被験者が慢性疲労症候群に属するか否かを判断できる。従来の診断基準では、(1)生活が著しく損なわれるような強い疲労を主症状とし、少なくとも6ヵ月以上の期間持続または再発を繰り返す(50%以上の期間認められること)。かつ、病歴、身体所見、検査所見で疾患を除外する。さらに、(2)症状基準8項目以上か、症状基準6項目・身体基準2項目以上を満たすことが必要であり(医学のあゆみ 特集「最新・疲労の科学 -日本発:抗疲労・抗過労への提言」671-677)、診断されるまでの測定項目の多さ・長期間にわたる観察(測定)時間・経済的な負担・医者の判断基準の個人差などが問題として挙げられる。本発明の一側面として、限られた血液中の代謝物を測定することで、客観的な診断が下せるだけでなく、診断結果が病態そのものを表すため、治療方針を立てることにも役立つ。また、本発明で明らかになった代謝物の多くは肝臓において猛毒であるアンモニアを尿素へ代謝する尿素代謝系(尿素回路)に深く関係しており、慢性疲労症候群のみでなく、慢性疲労の診断にも利用できる。特に、実際の医療現場で使用できる測定キットを生産することにより、慢性疲労症候群・慢性疲労をより速く、安く、客観的に診断できるものと考えられる。 Also, as one aspect of the present invention, it can be determined whether or not the subject belongs to chronic fatigue syndrome by measuring the blood component of the subject. According to the conventional diagnostic criteria, (1) the main symptom is severe fatigue that significantly impairs life, and it continues or repeats for a period of at least 6 months (recognized for a period of 50% or more). In addition, the disease is excluded based on medical history, physical findings, and laboratory findings. In addition, it is necessary to satisfy (2) symptom criteria 8 items or more, or symptom criteria 6 items, body criteria 2 items or more (Ayumi's Special Issue “Latest Science of Fatigue-From Japan: Anti-Fatigue / Over-Working” 671-677), the number of measurement items until diagnosis, long-term observation (measurement) time, economic burden, and individual differences in doctor's judgment criteria. As one aspect of the present invention, it is useful not only to make an objective diagnosis by measuring a limited amount of metabolites in blood, but also to make a treatment policy because the diagnosis result represents the disease state itself. In addition, many of the metabolites revealed in the present invention are deeply related to the urea metabolism system (urea circuit) that metabolizes ammonia, which is extremely toxic in the liver, to urea, and not only chronic fatigue syndrome but also diagnosis of chronic fatigue. Can also be used. In particular, by producing a measurement kit that can be used in actual medical settings, it is considered that chronic fatigue syndrome and chronic fatigue can be objectively diagnosed faster, cheaper.
 本発明のバイオマーカーは、疲労に関する既知のバイオマーカーと組み合わせて用いることもできる。既知のバイオマーカーは特に限定されないが、例えば、国際公開WO2011/161544 A2(米国特許シリアル番号13/805,449)で報告されたエネルギー(ATP)産生系代謝物に基づくものが挙げられる。国際公開WO2011/161544 A2に記載のバイオマーカーと組み合わせて解析することで、生体内のどの部分に異常があるかがより正確に推測でき、慢性疲労症候群の患者および慢性疲労の患者の生活指導に活かせるたけでなく、原因と考えられる代謝系を是正する食薬の提供も可能となる。また、本発明の一側面として、解糖系やTCA回路といったエネルギー産生系代謝物のみで疲労患者群を判定する方法と組み合わせて、尿素回路およびその周辺の代謝の変化を指標とする本発明のバイオマーカーを用いれば、個人個人の代謝のばらつきに対して疲労の評価能力を特段に改善し、さらにより適した治療方針を提供することが可能となる。 The biomarker of the present invention can be used in combination with a known biomarker related to fatigue. Known biomarkers are not particularly limited, and examples thereof include those based on energy (ATP) -producing metabolites reported in International Publication WO2011 / 161544 A2 (US Patent Serial No. 13 / 805,449). By analyzing in combination with the biomarker described in International Publication WO2011 / 161544 A2, it is possible to more accurately estimate which part of the living body is abnormal, and for life guidance for patients with chronic fatigue syndrome and patients with chronic fatigue. In addition to being able to make use of it, it is also possible to provide a remedy that corrects the metabolic system considered to be the cause. In addition, as one aspect of the present invention, in combination with a method for determining a fatigue patient group using only an energy-producing metabolite such as a glycolytic system or a TCA circuit, the change of the urea circuit and its surrounding metabolism is used as an index. By using a biomarker, it becomes possible to particularly improve the ability to evaluate fatigue with respect to individual individual variations and provide a more suitable treatment policy.
 〔3〕本発明のバイオマーカーの利用
 本発明は、上述したバイオマーカーに基づいた、疲労を評価するための方法、キットおよびシステムを提供する。
[3] Utilization of Biomarker of the Present Invention The present invention provides a method, kit and system for evaluating fatigue based on the biomarker described above.
 〔3-1〕疲労評価方法
 本発明に係る疲労を評価する方法は、被験者から得た生体サンプル中の上記した本発明のバイオマーカーの値を得る工程(バイオマーカー値取得工程)と、当該バイオマーカーの値を用いて評価を行う工程(評価工程)とを含んでいる。
[3-1] Fatigue Evaluation Method A method for evaluating fatigue according to the present invention includes a step of obtaining the above-described biomarker value of the present invention in a biological sample obtained from a subject (biomarker value acquisition step), And a step of evaluating using the value of the marker (evaluation step).
 バイオマーカー値取得工程は、バイオマーカーの種類に応じて適宜実施することができる。バイオマーカー値取得工程を実行するに際し、生体サンプル中の代謝物質の濃度を測定する必要がある。生体サンプル中の代謝物質の濃度の測定は、実施例の方法によらずとも、代謝物質の種類に応じた適切な方法で行うことができる。一例として、代謝物質を基質とする酵素反応がよく知られている場合は、酵素反応を利用して基質濃度を測定する市販のキットを用いてもよい。すなわち、当業者は、このような種々の技術を任意に利用して、生体サンプル中の代謝物質の濃度測定を首尾よく行い得る。なお、代謝物質の濃度の測定対象となる生体サンプルは、当該生体サンプルに含まれている、アルギニンの分解反応に関わる酵素の活性を抑制する処理を受けていることが好ましい場合があり、特に、アルギニン、オルニチンまたはシトルリン等が関連するバイオマーカーを使う場合は、測定の精度をより向上させる目的で好ましい場合がある。なお、ここで、処理によってアルギニンの分解反応に関わる酵素の活性を抑制するとは、処理後の生体サンプルの方が処理前の生体サンプルよりも当該酵素の活性が抑制されていることを意図する。係る処理の一例としては、生体サンプル(例えば、血液または血液調製物)に対して、アルギニンの分解反応に関わる酵素であるアルギナーゼ及び/または一酸化窒素合成酵素の阻害剤を添加することが挙げられる。なお、阻害剤の種類は特に限定されず、具体的な例示は、疲労評価キットに関する〔3-2〕欄で説明する。 The biomarker value acquisition step can be appropriately performed according to the type of biomarker. When performing the biomarker value acquisition step, it is necessary to measure the concentration of the metabolite in the biological sample. The concentration of the metabolite in the biological sample can be measured by an appropriate method according to the type of metabolite, regardless of the method of the embodiment. As an example, when an enzyme reaction using a metabolite as a substrate is well known, a commercially available kit for measuring the substrate concentration using the enzyme reaction may be used. In other words, those skilled in the art can successfully measure the concentration of a metabolite in a biological sample by arbitrarily using such various techniques. In addition, it may be preferable that the biological sample to be measured for the concentration of the metabolite is subjected to a treatment for suppressing the activity of the enzyme involved in the degradation reaction of arginine contained in the biological sample. When a biomarker related to arginine, ornithine, citrulline, or the like is used, it may be preferable for the purpose of further improving measurement accuracy. Here, the suppression of the activity of the enzyme involved in the degradation reaction of arginine by the treatment means that the biological sample after the treatment is inhibited more than the biological sample before the treatment. An example of such treatment includes adding an inhibitor of arginase and / or nitric oxide synthase, which is an enzyme involved in the degradation reaction of arginine, to a biological sample (for example, blood or blood preparation). . In addition, the kind of inhibitor is not specifically limited, A specific illustration is demonstrated in the [3-2] column regarding a fatigue evaluation kit.
 評価工程は、評価を行う手法に応じて適宜実施することができ、例えば、バイオマーカーの値を所定の閾値(基準値)と比較して評価をするか、バイオマーカーの値を閾値(基準値)と比較せずに評価をすることもできる。例えば、判別分析、Partial Least Square、またはSupport Vector Machine等の分析を行うことによって、バイオマーカーの種類によっては、閾値(基準値)を用いることなく、疲労の評価(診断または判定)をすることができる。なお、閾値を用いる場合において、当該閾値は予め規定された値であっても、被験者からのサンプリングと同時に健常者のサンプリングを行い、健常者において得られた生体サンプル中の各代謝物質の濃度に基づいて算出された値であってもよい。所定の閾値の一例は、複数の健常者におけるバイオマーカーの値の平均値や、二項分布等から得られる最頻値である。 The evaluation step can be appropriately performed according to the method of performing the evaluation. For example, the evaluation is performed by comparing the value of the biomarker with a predetermined threshold (reference value) or the value of the biomarker is set to the threshold (reference value). You can also evaluate without comparing with). For example, by performing analysis such as discriminant analysis, PartialPartLeast Square, or Support Vector Machine, depending on the type of biomarker, fatigue can be evaluated (diagnosis or determination) without using a threshold value (reference value). it can. In the case of using a threshold value, even if the threshold value is a predetermined value, the healthy person is sampled simultaneously with the sampling from the subject, and the concentration of each metabolite in the biological sample obtained in the healthy person is calculated. It may be a value calculated based on this. An example of the predetermined threshold is a mode value obtained from an average value of biomarker values in a plurality of healthy persons, a binomial distribution, or the like.
 なお、評価工程においては、特に限定されないが、例えば、1)被験者が疲労であるか否かの評価、2)被験者が慢性疲労症候群ではない慢性疲労であるか否かの評価、3)被験者が慢性疲労症候群であるか否かの評価、4)これら1)~3)より選択される少なくとも2つの評価の組み合わせ(例えば、被験者が慢性疲労症候群ではない慢性疲労であるか慢性疲労症候群であるかの評価、等)、5)疲労の程度の評価、等の評価が行われる。 The evaluation process is not particularly limited. For example, 1) evaluation of whether or not the subject is fatigued, 2) evaluation of whether or not the subject is chronic fatigue other than chronic fatigue syndrome, and 3) the subject is Evaluation of whether or not the patient has chronic fatigue syndrome, 4) A combination of at least two evaluations selected from 1) to 3) (for example, whether the subject has chronic fatigue syndrome or chronic fatigue syndrome that is not chronic fatigue syndrome) 5) Evaluation of the degree of fatigue, etc. are performed.
 本発明に係る疲労を評価する方法の具体的な一例では、被験者から得た生体サンプル中のオルニチン濃度とシトルリン濃度との比率(OC比率)を得る工程(1)、が包含される。さらに、必要に応じて、上記工程(1)の後に、上記OC比率に対応する閾値と当該OC比率とを比較する工程(2)が包含される。さらに、必要に応じて、上記工程(1)または工程(2)が行われることを前提として、同じ被験者から得た上記生体サンプル中のピルビン酸濃度とイソクエン酸濃度との比率(PI比率)を得る工程(3)が包含される。さらに、必要に応じて、上記工程(3)の後に、上記PI比率に対応する閾値と当該PI比率とを比較する工程(4)が包含される。なお、上記被験者から得た上記生体サンプル中のピルビン酸濃度とイソクエン酸濃度との比率(PI比率)を得る工程(3)と、当該比率(PI比率)に対応する閾値と当該比率(PI比率)とを比較する工程(4)とを行って疲労の評価がなされた被験者に対して、上記OC比率に対応する閾値と当該OC比率とを比較する工程(2)を行うことが、高い正判別率と低い誤判別率とを得る上で好ましい場合がある。例えば、図9および図10に示す決定木による評価も参照される。図9および図10では、PI比率としてピルビン酸濃度/イソクエン酸濃度を用いて決定木分析を行って2群に分けた被験者に対して、さらに、OC比率としてオルニチン濃度/シトルリン濃度を用いて決定木分析を行うことが示されている。また、同様の効果を得る観点から、上記OC比率を得る工程(1)と、当該OC比率に対応する閾値と当該OC比率とを比較する工程(2)とを行って疲労の評価がなされた被験者に対して、上記PI比率に対応する閾値と当該PI比率とを比較する工程(4)を行うことが好ましい場合がある。 A specific example of the method for evaluating fatigue according to the present invention includes a step (1) of obtaining a ratio (OC ratio) between an ornithine concentration and a citrulline concentration in a biological sample obtained from a subject. Furthermore, the process (2) which compares the threshold value corresponding to the said OC ratio with the said OC ratio is included after the said process (1) as needed. Furthermore, if necessary, the ratio (PI ratio) between the pyruvic acid concentration and the isocitrate concentration in the biological sample obtained from the same subject, assuming that the step (1) or the step (2) is performed. Obtaining step (3) is included. Further, if necessary, a step (4) of comparing the PI ratio with a threshold corresponding to the PI ratio is included after the step (3). The step (3) of obtaining the ratio (PI ratio) between the pyruvate concentration and the isocitrate concentration in the biological sample obtained from the subject, the threshold corresponding to the ratio (PI ratio), and the ratio (PI ratio) It is highly positive to perform the step (2) of comparing the threshold corresponding to the OC ratio and the OC ratio on the subject who has been evaluated for fatigue by performing the step (4) of comparing the OC ratio) In some cases, it is preferable to obtain a discrimination rate and a low misclassification rate. For example, the evaluation by the decision tree shown in FIGS. 9 and 10 is also referred to. In FIGS. 9 and 10, for the subjects divided into two groups by performing a decision tree analysis using pyruvic acid concentration / isocitrate concentration as the PI ratio, it was further determined using ornithine concentration / citrulline concentration as the OC ratio. It has been shown to do tree analysis. Further, from the viewpoint of obtaining the same effect, fatigue was evaluated by performing the step (1) of obtaining the OC ratio and the step (2) of comparing the threshold corresponding to the OC ratio with the OC ratio. It may be preferable to perform the step (4) of comparing the PI ratio with the threshold corresponding to the PI ratio for the subject.
 なお、バイオマーカー値取得工程に先立って、サンプル取得の第一段階として組織または細胞をヒト被験体から直接取り出す工程は、医師によって行われる。また、上記評価工程によって得られた結果を用いて、疲労(慢性疲労、慢性疲労症候群を含む。)であるか否かの診断を医師が下す工程も必要に応じて行われる。これらの工程は、上記バイオマーカー値取得工程と上記評価工程とには含まれない別の工程として区別される。 In addition, prior to the biomarker value acquisition step, a step of directly taking out tissue or cells from a human subject as a first step of sample acquisition is performed by a doctor. In addition, a step in which a doctor makes a diagnosis as to whether or not the patient is fatigue (including chronic fatigue and chronic fatigue syndrome) using the result obtained by the evaluation step is also performed as necessary. These steps are distinguished as separate steps not included in the biomarker value acquisition step and the evaluation step.
 〔3-2〕疲労評価キット
 上述したような疲労評価方法を実施するために用いられる試薬を併せ持つキットもまた、本発明の範囲内である。すなわち、本発明にかかるキットは、疲労を評価するために、本発明のバイオマーカーの値を取得する上で必要な、生体サンプル中の代謝物質の濃度を測定するための試薬を備えている。一例として、オルニチンをバイオマーカーとする場合は、本発明にかかるキットは、生体サンプル中のオルニチン濃度を測定するための試薬を備えている。他の例として、オルニチン濃度とシトルリン濃度との比率をバイオマーカーとする場合は、本発明にかかるキットは、生体サンプル中のオルニチン濃度とシトルリン濃度とを測定するための試薬を備えている。オルニチン濃度を測定するための試薬としては例えばオルニチンと反応してアンモニアを発生するornithine cyclaseが挙げられ、シトルリン濃度を測定するための試薬としては例えばシトルリンと反応してATPを消費するargininosuccinate synthaseが挙げられる。キットはまた、生体サンプルに含まれている、アルギニンの分解反応に関わる酵素の活性の阻害剤を含んでいることが好ましい場合があり、特に、アルギニン、オルニチンまたはシトルリン等の濃度を測定する場合は、測定の精度をより向上させる目的で好ましい場合がある。なお、ここで、アルギニンの分解反応に関わる酵素とは、アルギナーゼ、及び、アルギニンから一酸化窒素とシトルリンとを生成する反応に関わる一酸化窒素合成酵素(NOS)が挙げられ、これらはとりわけ血液または血液調製物等の生体サンプルに含まれる。なお、アルギナーゼの阻害剤としては、例えば、Nω-Hydroxy-nor-L-arginine(nor-NOHA)又はその塩(例えば、二酢酸塩等)が挙げられ、一酸化窒素合成酵素の阻害剤としては、例えば、NG-Nitro-L-Arginine(L-NNA)又はその塩が挙げられる。なお、これらの阻害剤は、キットの他の構成とは別体として備えられていてもよいが、例えば、生体サンプルを保存する容器内に必要量が予め仕込まれていてもよい。
[3-2] Fatigue evaluation kit A kit having a reagent used for carrying out the fatigue evaluation method as described above is also within the scope of the present invention. That is, the kit according to the present invention includes a reagent for measuring the concentration of a metabolite in a biological sample necessary for obtaining the value of the biomarker of the present invention in order to evaluate fatigue. As an example, when ornithine is used as a biomarker, the kit according to the present invention includes a reagent for measuring the ornithine concentration in a biological sample. As another example, when the ratio between the ornithine concentration and the citrulline concentration is used as a biomarker, the kit according to the present invention includes a reagent for measuring the ornithine concentration and the citrulline concentration in the biological sample. Examples of the reagent for measuring the ornithine concentration include ornithine cyclase that reacts with ornithine to generate ammonia. Examples of the reagent for measuring the citrulline concentration include argininosuccinate synthase that reacts with citrulline and consumes ATP. It is done. The kit may also preferably contain an inhibitor of the activity of the enzyme involved in the degradation reaction of arginine contained in the biological sample, particularly when measuring the concentration of arginine, ornithine or citrulline, etc. In some cases, it is preferable for the purpose of further improving the accuracy of measurement. Here, the enzyme involved in the degradation reaction of arginine includes arginase and nitric oxide synthase (NOS) involved in the reaction of producing nitric oxide and citrulline from arginine. Included in biological samples such as blood preparations. Examples of the arginase inhibitor include N ω -Hydroxy-nor-L-arginine (nor-NOHA) or a salt thereof (for example, diacetate). As an inhibitor of nitric oxide synthase, Is, for example, N G -Nitro-L-Arginine (L-NNA) or a salt thereof. These inhibitors may be provided separately from the other components of the kit, but for example, a necessary amount may be charged in advance in a container for storing a biological sample.
 また、本発明のバイオマーカーを、目視にて検出する構成を有するキットもまた、本発明の範囲内である。すなわち、本発明にかかる第2のキットは、疲労を評価するために、本発明のバイオマーカーの値を示す呈示部を備えている。呈示部として例えば、オルニチン濃度とシトルリン濃度との比率(OC比率)を示す第一呈示部、および、ピルビン酸濃度とイソクエン酸濃度との比率(PI比率)を示す第二呈示部の少なくとも一方を備えているキットも、本発明にかかるキットの範疇である。 Also, a kit having a configuration for visually detecting the biomarker of the present invention is also within the scope of the present invention. That is, the second kit according to the present invention includes a presentation unit that indicates the value of the biomarker of the present invention in order to evaluate fatigue. As the presenting part, for example, at least one of a first presenting part indicating the ratio of the ornithine concentration to the citrulline concentration (OC ratio) and a second presenting part indicating the ratio of the pyruvic acid concentration to the isocitrate concentration (PI ratio) The provided kit is also a category of the kit according to the present invention.
 本明細書中において使用される場合、用語「キット」は、特定の材料を内包する容器(例えば、ボトル、プレート、チューブ、ディッシュなど)を備えた包装が意図されるが、組成物としての一物質中に材料を含有している形態もまた、用語「キット」に包含される。キットは、各材料を使用するための指示書を備えていることが好ましい。指示書にはさらに必要に応じて、バイオマーカーの値と比較して評価するための、所定の閾値(基準値)が表示されていてもよい。本明細書中においてキットの局面において使用される場合、「備えた(備えている)」は、キットを構成する個々の容器のいずれかの中に内包されている状態が意図される。また、本発明に係るキットは、複数の異なる組成物を1つに梱包した包装であり得、溶液形態の場合は容器中に内包されていてもよい。本発明に係るキットは、その複数の構成要素を同一の容器に混合して備えていても別々の容器に備えていてもよい。「指示書」は、紙またはその他の媒体に書かれていても印刷されていてもよく、あるいは磁気テープ、コンピューター読み取り可能ディスクまたはテープ、CD-ROMなどのような電子媒体に付されてもよい。本発明に係るキットはまた、希釈剤、溶媒、洗浄液またはその他の試薬を内包した容器を備え得る。さらに、本発明に係るキットは、生体サンプルを採取するために必要な器具および試薬を備えていてもよい。また、本発明に係るキットは、生体サンプルから目的の調製物を調製するために必要な器具および試薬を備えていてもよい。 As used herein, the term “kit” is intended as a package with a container (eg, bottle, plate, tube, dish, etc.) containing a particular material, but as a composition. Forms containing the material in the substance are also encompassed by the term “kit”. The kit preferably includes instructions for using each material. The instruction sheet may further display a predetermined threshold value (reference value) for evaluation by comparison with the value of the biomarker, if necessary. As used herein, in the aspect of a kit, “comprising” is intended to mean being contained in any of the individual containers that make up the kit. Moreover, the kit which concerns on this invention may be the packaging which packed several different compositions in one, and in the case of a solution form, you may enclose in the container. The kit according to the present invention may be provided with a plurality of components mixed in the same container or in separate containers. The “instructions” may be written or printed on paper or other media, or may be affixed to electronic media such as magnetic tape, computer readable disk or tape, CD-ROM, etc. . The kit according to the present invention may also include a container containing a diluent, a solvent, a washing solution or other reagent. Furthermore, the kit according to the present invention may include instruments and reagents necessary for collecting a biological sample. In addition, the kit according to the present invention may be provided with instruments and reagents necessary for preparing a target preparation from a biological sample.
 上記構成を有することによって、本発明にかかるキットは、実際の医療現場にて簡便に使用することができるので、疲労をより速く、安く、客観的な診断を提供し得る。 By having the above-described configuration, the kit according to the present invention can be used easily in an actual medical field, so that it is possible to provide an objective diagnosis with faster and cheaper fatigue.
 なお、本発明にかかるキットを用いれば、疲労を評価し、治療法を提案し得るだけでなく、疲労(慢性疲労、慢性疲労症候群を含む。)の判断基準を提供することができるので、疲労の状態であるか否かの診断が容易になる。すなわち、本発明にかかるキットは、疲労(慢性疲労、慢性疲労症候群を含む。)の診断基準または判定基準を提供するためのキット(例えば、疲労(慢性疲労、慢性疲労症候群を含む。)を診断または判定するためのデータを取得するためのキット)でもあり得る。 The kit according to the present invention not only can evaluate fatigue and propose a treatment method, but can also provide a criterion for determining fatigue (including chronic fatigue and chronic fatigue syndrome). It becomes easy to diagnose whether or not That is, the kit according to the present invention diagnoses a kit (for example, fatigue (including chronic fatigue and chronic fatigue syndrome)) for providing a diagnostic standard or a criterion for fatigue (including chronic fatigue and chronic fatigue syndrome). Or a kit for acquiring data for determination).
 〔3-3〕疲労評価システム
 上述したような疲労評価方法を実行するために用いられるシステムもまた、本発明の範囲内である。下記実施形態では、本発明に係る疲労評価システムを構成する各部材が、「CPUなどの演算手段がROMやRAMなどの記録媒体に格納されたプログラムコードを実行することによって実現される機能ブロックである」場合を例にして説明するが、同様の処理を行うハードウェアによって実現してもよい。また、処理の一部を行うハードウェアと、当該ハードウェアの制御や残余の処理を行うプログラムコードを実行する上記演算手段とを組み合わせて実現することもできる。さらに、上記各部材のうち、ハードウェアとして説明した部材であっても、処理の一部を行うハードウェアと、当該ハードウェアの制御や残余の処理を行うプログラムコードを実行する上記演算手段とを組み合わせて実現することもできる。なお、上記演算手段は、単体であってもよいし、装置内部のバスや種々の通信路を介して接続された複数の演算手段が共同してプログラムコードを実行してもよい。
[3-3] Fatigue evaluation system A system used for executing the fatigue evaluation method as described above is also within the scope of the present invention. In the following embodiment, each member constituting the fatigue evaluation system according to the present invention is a functional block realized by executing a program code stored in a recording medium such as a ROM or a RAM by a calculation means such as a CPU. A case of “some” will be described as an example, but it may be realized by hardware that performs the same processing. Moreover, it is also possible to realize a combination of hardware that performs a part of the processing and the above arithmetic unit that executes program code for controlling the hardware and the remaining processing. Further, even among the members described above as hardware, the hardware for performing a part of the processing and the arithmetic means for executing the program code for performing the control of the hardware and the remaining processing It can also be realized in combination. The arithmetic means may be a single unit, or a plurality of arithmetic means connected via a bus inside the apparatus or various communication paths may execute the program code jointly.
 本発明にかかる疲労評価システムは、その機能ブロックとして、入力受付部11A、格納部12、CPU13、および表示部14を少なくとも備えている。入力受付部11Aは、測定部11での測定結果の入力を受付けるインターフェースであり、測定部11と疲労評価システムとを接続するインターフェースとして構成されるか、場合によってはキーボードやマウスなどの入力装置として構成される。測定部11は、本発明のバイオマーカーに関連した代謝物質(例えば、オルニチンやシトルリン)の濃度を測定する測定装置の機能を有している。格納部12は、当該代謝物質の濃度の測定値を受容する測定値受容部12a、および疲労を評価するための基準値(閾値)を格納した基準値格納部12bとしての機能を有している(例えば、メモリーとして構成される)。CPU13は、疲労を評価するための情報を生成する演算部13a、および演算部13aからの評価情報を受け取って疲労を評価する評価部13bとしての機能を有している。表示部14は、評価部13bによる評価結果を表示する評価結果表示部14としての機能を有している(例えば、液晶表示装置として構成される)。なお、この機能ブロックは、CPU13が格納部12に格納されたプログラムを実行し、入出力回路などの周辺回路を制御することによって実現される。 The fatigue evaluation system according to the present invention includes at least an input receiving unit 11A, a storage unit 12, a CPU 13, and a display unit 14 as functional blocks. The input receiving unit 11A is an interface that receives an input of a measurement result from the measuring unit 11, and is configured as an interface that connects the measuring unit 11 and the fatigue evaluation system, or as an input device such as a keyboard or a mouse in some cases. Composed. The measurement unit 11 has a function of a measurement device that measures the concentration of a metabolite (for example, ornithine or citrulline) related to the biomarker of the present invention. The storage unit 12 functions as a measurement value receiving unit 12a that receives a measurement value of the concentration of the metabolite and a reference value storage unit 12b that stores a reference value (threshold value) for evaluating fatigue. (For example, configured as a memory). The CPU 13 has a function as an operation unit 13a that generates information for evaluating fatigue and an evaluation unit 13b that receives evaluation information from the operation unit 13a and evaluates fatigue. The display unit 14 has a function as the evaluation result display unit 14 that displays the evaluation result by the evaluation unit 13b (for example, configured as a liquid crystal display device). This functional block is realized by the CPU 13 executing a program stored in the storage unit 12 and controlling peripheral circuits such as an input / output circuit.
 以下、疲労評価システムの一態様として、オルニチン濃度とシトルリン濃度との比率(OC比率)をバイオマーカーの一つとして疲労を評価するシステムにつき具体的に説明する。このシステムでは、ステップ1として、測定部11において、生体サンプルにおけるオルニチン濃度とシトルリン濃度とを測定する。次いで、ステップ2として、ステップ1で測定したオルニチン濃度とシトルリン濃度とを、入力受付部11Aを介して、測定値受容部12aが受容する(格納する)。次いで、ステップ3として、演算部13aが、測定値受容部12aに格納されたオルニチン濃度とシトルリン濃度とを読みだして、オルニチン濃度とシトルリン濃度との比率(OC比率)を算出する。必要に応じてOC比率は格納部12に格納される。次いで、ステップ4として、演算部13aが、前記算出したOC比率と、基準値格納部12bに格納された基準値とから、疲労を評価するための評価情報を生成する。次いで、ステップ5として、ステップ4で生成した評価情報に基づいて、評価部13bが疲労を評価する。次いで、ステップ6として、評価部13bが生成した疲労の評価結果が、表示部14に表示される。なお、ステップ2として、オルニチン濃度とシトルリン濃度との比率(OC比率)を、入力受付部11Aを介して、測定値受容部12aが受容してもよい。この場合は、上記ステップ3~4に代えて、演算部13aが、測定値受容部12aに格納されたOC比率を読み出して、当該OC比率と、基準値格納部12bに格納された基準値とから、疲労を評価するための評価情報を生成する。ステップ5は上述の通りである。なお、評価情報の生成から疲労の評価までのステップは、例えば、格納部12内に格納されている評価用のプログラム(例えば、決定木解析プログラム等)を動作させることにより実行可能である。例えば、図9や図10に示す結果を得る場合には、OC比率と同様にして、被験者の生体サンプル中のピルビン酸濃度とイソクエン酸濃度との比率(PI比率)、および、被験者の生体サンプル中のアラニン濃度とヒドロキシプロリン濃度との比率を、疲労評価システム内(例えば、格納部12)に格納した上で、評価用のプログラムを動作させればよい。 Hereinafter, as an aspect of the fatigue evaluation system, a system for evaluating fatigue using the ratio of the ornithine concentration to the citrulline concentration (OC ratio) as one of the biomarkers will be specifically described. In this system, as step 1, the measuring unit 11 measures the ornithine concentration and the citrulline concentration in the biological sample. Next, as step 2, the measured value receiving unit 12a receives (stores) the ornithine concentration and citrulline concentration measured in step 1 through the input receiving unit 11A. Next, as step 3, the calculation unit 13a reads the ornithine concentration and citrulline concentration stored in the measurement value receiving unit 12a, and calculates the ratio (OC ratio) between the ornithine concentration and the citrulline concentration. The OC ratio is stored in the storage unit 12 as necessary. Next, as Step 4, the calculation unit 13a generates evaluation information for evaluating fatigue from the calculated OC ratio and the reference value stored in the reference value storage unit 12b. Next, as step 5, the evaluation unit 13 b evaluates fatigue based on the evaluation information generated at step 4. Next, as step 6, the fatigue evaluation result generated by the evaluation unit 13 b is displayed on the display unit 14. As Step 2, the ratio (or OC ratio) between the ornithine concentration and the citrulline concentration may be received by the measurement value receiving unit 12a via the input receiving unit 11A. In this case, instead of the above steps 3 to 4, the calculation unit 13a reads the OC ratio stored in the measurement value receiving unit 12a, and the OC ratio and the reference value stored in the reference value storage unit 12b. From this, evaluation information for evaluating fatigue is generated. Step 5 is as described above. Note that the steps from generation of evaluation information to fatigue evaluation can be executed by operating an evaluation program (for example, a decision tree analysis program) stored in the storage unit 12, for example. For example, when the results shown in FIGS. 9 and 10 are obtained, the ratio (PI ratio) between the pyruvate concentration and the isocitrate concentration in the biological sample of the subject, and the biological sample of the subject in the same manner as the OC ratio What is necessary is just to operate the program for evaluation, after storing the ratio of the alanine density | concentration and hydroxyproline density | concentration in a fatigue evaluation system (for example, the storage part 12).
 なお、本発明にかかるシステムを用いれば、疲労を評価し、治療法を提案し得るだけでなく、疲労(慢性疲労、慢性疲労症候群を含む。)の判断基準を提供することができるので、疲労の状態であるか否かの診断が容易になる。すなわち、本発明にかかるシステムは、疲労(慢性疲労、慢性疲労症候群を含む。)の診断基準または判定基準を提供するためのシステム(例えば、疲労(慢性疲労、慢性疲労症候群を含む。)を診断または判定するためのデータを取得するためのシステム)でもあり得る。 In addition, if the system according to the present invention is used, not only can fatigue be evaluated and a treatment method can be proposed, but also a criterion for determining fatigue (including chronic fatigue and chronic fatigue syndrome) can be provided. It becomes easy to diagnose whether or not That is, the system according to the present invention diagnoses a system (for example, fatigue (including chronic fatigue and chronic fatigue syndrome)) for providing a diagnosis standard or determination standard for fatigue (including chronic fatigue and chronic fatigue syndrome). Or a system for obtaining data for determination).
 〔4〕本発明の一態様
 本発明の一態様には、例えば、以下のような発明も含まれる。
(1)被験者から得た生体サンプル中のオルニチン濃度とシトルリン濃度との比率(OC比率)を得る工程と、前記比率(OC比率)に基づいて、前記被験者における疲労の状態を評価する工程とを包含する、疲労を評価する方法。
(2)前記比率(OC比率)に対応する閾値と前記比率(OC比率)とを比較する工程を包含する、(1)に記載の方法。
(3)さらに、前記生体サンプル中のピルビン酸濃度とイソクエン酸濃度との比率(PI比率)を得る工程と、前記比率(PI比率)に基づいて、前記被験者における疲労の状態を評価する工程とを包含する、(1)又は(2)に記載の方法。
(4)前記比率(PI比率)に対応する閾値と前記比率(PI比率)とを比較する工程を包含する、(3)に記載の方法。
(5)前記生体サンプル中のピルビン酸濃度とイソクエン酸濃度との比率(PI比率)を得る工程と、前記比率(PI比率)に対応する閾値と前記比率(PI比率)とを比較する工程とを行って疲労の状態の評価がなされた被験者に対して、前記比率(OC比率)に対応する閾値と前記比率(OC比率)とを比較する前記工程を行う、(2)に記載の方法。
(6)オルニチン濃度を測定するための試薬とシトルリン濃度を測定するための試薬とを備えている、疲労を評価するためのキット。
(7)オルニチン濃度とシトルリン濃度との比率(OC比率)を示す第一呈示部を備えている、(6)に記載のキット。
(8)ピルビン酸濃度を測定するための試薬とイソクエン酸濃度を測定するための試薬とをさらに備えている、(6)又は(7)に記載のキット。
(9)ピルビン酸濃度とイソクエン酸濃度との比率(PI比率)を示す第二呈示部を備えている、(8)に記載のキット。
(10)疲労を評価するための基準値と、オルニチン濃度とシトルリン濃度との比率(OC比率)とを受け取って、疲労を評価するための評価情報を生成する演算部、および、前記評価情報を受け取って、疲労を評価する評価部を備えた疲労評価システム。
(11)1)オルニチン濃度とシトルリン濃度との比率(OC比率)の入力を受付ける入力受付部を備えるか、2)オルニチン濃度およびシトルリン濃度の測定値の入力を受付ける入力受付部を備え、前記演算部が、入力が受付けられた測定値からオルニチン濃度とシトルリン濃度との比率(OC比率)を算出する、(10)に記載の疲労評価システム。
(12)オルニチン濃度とシトルリン濃度との比率(OC比率)に代えて、前記生体サンプル中のオルニチン濃度と、Urea、Urate、4-hydroxy-3-methoxybenzoate、Hydroxyproline、4-Methyl-2-oxopentanoate、Gamma-butyrobetaineから選択される何れかの濃度との比率を用いる、(1)から(5)の何れかに記載の方法。
(13)疲労を評価する方法であって、被験者から得た生体サンプル中のバイオマーカーの値を得る工程と、前記バイオマーカーの値に基づいて、前記被験者における疲労の状態を評価する工程とを包含し、前記バイオマーカーの値が、1)2-アミノ酪酸(2AB)、2-オキソグルタル酸(2-oxoglutarate)、3-ヒドロキシ酪酸(3-Hydroxybutyrate)、3-メチルヒスチジン(3-Methylhistidine)、4-ヒドロキシ-3-メトキシベンゾエート(4-Hydroxy-3-methoxybenzoate)、4-メチル-2-オキソペンタノエート(4-methyl-2-oxopentanoate)、5-オキソプロリン(5-Oxoproline)、アラニン(Ala)、アルギニン(Arg)、アスパラギン(Asn)、アスパラギン酸(Asp)、アゼライン酸(Azelate)、ベータアラニン(beta-Ala)、ベタイン(Betaine)、カルニチン(Carnitine)、コリン(Choline)、シトルリン(Citrulline)、クレアチン(Creatine)、クレアチニン(Creatinine)、シスチン(Cystine)、ガンマブチロベタイン(Gamma-Butyrobetaine)、グルタミン(Gln)、グルタミン酸(Glu)、グリシン(Gly)、ヒスチジン(His)、ヒドロキシプロリン(Hydroxyproline)、イソロイシン(Ile)、ロイシン(Leu)、リジン(Lys)、メチオニン(Met)、ムケート(Mucate)、N,N-ジメチルグリシン(N,N-Dimethylglycine)、オルニチン(Ornithine)、フェニルアラニン(Phe)、プロリン(Pro)、尿素(Urea)、ピルビン酸(Pyruvate)、サルコシン(Sarcosine)、セリン(Ser)、タウリン(Taurine)、トレオニン(Thr)、トリプトファン(Trp)、チロシン(Tyr)、尿酸(Urate)、及び、バリン(Val)からなる群より選択される少なくとも一種のバイオマーカーの生体サンプル中の濃度であるか、2)前記群にシス-アコニット酸(Cis-aconitate)、クエン酸(Citrate)、イソクエン酸(Isocitrate)、乳酸(Lactate)、リンゴ酸(Malate)、及びコハク酸(Succinate)を加えた群より選択される複数種のバイオマーカーの生体サンプル中の濃度の比率または差分である、疲労を評価する方法。
(14)(13)に記載の、疲労を評価する方法であって、さらに、シス-アコニット酸(Cis-aconitate)、クエン酸(Citrate)、イソクエン酸(Isocitrate)、乳酸(Lactate)、リンゴ酸(Malate)、及び、コハク酸(Succinate)からなる群より選択される少なくとも一種のバイオマーカーの生体サンプル中の濃度を、前記バイオマーカーの値として用いる、疲労を評価する方法。
(15)(13)又は(14)に記載の、疲労を評価する方法であって、前記バイオマーカーの値が、1)シトルリン(Citrulline)、イソクエン酸(Isocitrate)、ピルビン酸(Pyruvate)、及び、オルニチン(Ornithine)からなる群より選択される少なくとも一種のバイオマーカーの生体サンプル中の濃度であるか、2)シトルリン、イソクエン酸、ピルビン酸、及び、オルニチンからなる群より選択される複数種のバイオマーカーの生体サンプル中の濃度の比率または差分である、疲労を評価する方法。
(16)上記生体サンプルは、アルギニンの分解反応に関わるアルギナーゼの活性及び/または一酸化窒素合成酵素の活性を抑制する処理を受けている、(1)~(5)、(12)~(15)の何れかに記載の方法。
(17)アルギニンの分解反応に関わるアルギナーゼまたは一酸化窒素合成酵素の阻害剤を含んでいる、(6)に記載のキット。
[4] One aspect of the present invention One aspect of the present invention includes, for example, the following inventions.
(1) A step of obtaining a ratio (OC ratio) between an ornithine concentration and a citrulline concentration in a biological sample obtained from a subject, and a step of evaluating the state of fatigue in the subject based on the ratio (OC ratio). A method for evaluating fatigue.
(2) The method according to (1), comprising a step of comparing a threshold corresponding to the ratio (OC ratio) and the ratio (OC ratio).
(3) Furthermore, obtaining a ratio (PI ratio) of pyruvic acid concentration and isocitrate concentration in the biological sample, and evaluating a fatigue state in the subject based on the ratio (PI ratio); The method according to (1) or (2), comprising:
(4) The method according to (3), comprising a step of comparing a threshold corresponding to the ratio (PI ratio) with the ratio (PI ratio).
(5) obtaining a ratio (PI ratio) between pyruvic acid concentration and isocitrate concentration in the biological sample, and comparing a threshold corresponding to the ratio (PI ratio) with the ratio (PI ratio); The method according to (2), wherein the step of comparing the ratio (OC ratio) with a threshold corresponding to the ratio (OC ratio) is performed on a subject who has been subjected to the evaluation of the fatigue state.
(6) A kit for evaluating fatigue, comprising a reagent for measuring ornithine concentration and a reagent for measuring citrulline concentration.
(7) The kit according to (6), further including a first presenting unit indicating a ratio (OC ratio) between the ornithine concentration and the citrulline concentration.
(8) The kit according to (6) or (7), further comprising a reagent for measuring pyruvic acid concentration and a reagent for measuring isocitrate concentration.
(9) The kit according to (8), further including a second presentation unit indicating a ratio (PI ratio) between the pyruvic acid concentration and the isocitrate concentration.
(10) A calculation unit that receives a reference value for evaluating fatigue and a ratio of the ornithine concentration to the citrulline concentration (OC ratio) and generates evaluation information for evaluating fatigue, and the evaluation information A fatigue evaluation system with an evaluation unit that receives and evaluates fatigue.
(11) 1) An input receiving unit that receives an input of a ratio of ornithine concentration to citrulline concentration (OC ratio) or 2) an input receiving unit that receives input of measured values of ornithine concentration and citrulline concentration, and the calculation The fatigue evaluation system according to (10), wherein the unit calculates a ratio (OC ratio) between the ornithine concentration and the citrulline concentration from the measured value in which the input is accepted.
(12) Instead of the ratio of the ornithine concentration and citrulline concentration (OC ratio), the ornithine concentration in the biological sample, Urea, Urate, 4-hydroxy-3-methoxybenzoate, Hydroxyproline, 4-Methyl-2-oxopentanoate, The method according to any one of (1) to (5), wherein a ratio with any concentration selected from Gamma-butyrobetaine is used.
(13) A method for evaluating fatigue, the step of obtaining a biomarker value in a biological sample obtained from a subject, and the step of evaluating the state of fatigue in the subject based on the value of the biomarker The biomarker values are 1) 2-aminobutyric acid (2AB), 2-oxoglutarate (3-oxoglutarate), 3-hydroxybutyrate (3-Hydroxybutyrate), 3-methylhistidine (3-Methylhistidine), 4-Hydroxy-3-methoxybenzoate, 4-methyl-2-oxopentanoate, 5-oxoproline, alanine ( Ala), arginine (Arg), asparagine (Asn), aspartic acid (Asp), azelate (Azelate), beta-alanine (beta-Ala), betaine (Betaine), carnitine (Carnitine), choline Choline), Citrulline, Creatine, Creatinine, Cystine, Gamma-Butyrobetaine, Glutamine (Gln), Glutamate (Glu), Glycine (Gly), Histidine ( His), hydroxyproline (Hydroxyproline), isoleucine (Ile), leucine (Leu), lysine (Lys), methionine (Met), mucate (Mucate), N, N-dimethylglycine (N, N-Dimethylglycine), ornithine ( Ornithine), phenylalanine (Phe), proline (Pro), urea (Urea), pyruvate (Pyruvate), sarcosine (Sarcosine), serine (Ser), taurine (Taurine), threonine (Thr), tryptophan (Trp), tyrosine (Tyr), uric acid (Urate), and at least one biomarker biological sun selected from the group consisting of valine (Val) 2) In the above group, cis-aconitic acid (Cis-aconitate), citric acid (Citrate), isocitrate (Isocitrate), lactic acid (Lactate), malic acid (Malate), and succinic acid ( A method for assessing fatigue, which is a ratio or difference of concentrations in a biological sample of a plurality of types of biomarkers selected from the group to which Succinate is added.
(14) The method for evaluating fatigue according to (13), further comprising cis-aconitic acid (Cis-aconitate), citric acid (Citrate), isocitrate (Isocitrate), lactic acid (Lactate), malic acid A method for evaluating fatigue, wherein a concentration of at least one biomarker selected from the group consisting of (Malate) and succinate (Succinate) in a biological sample is used as the value of the biomarker.
(15) The method for evaluating fatigue according to (13) or (14), wherein the value of the biomarker is 1) citrulline, isocitrate, pyruvate, and A concentration of at least one biomarker selected from the group consisting of ornithine in a biological sample, or 2) a plurality of types selected from the group consisting of citrulline, isocitrate, pyruvate, and ornithine A method for evaluating fatigue, which is a ratio or difference in the concentration of biomarkers in a biological sample.
(16) The biological sample has been subjected to treatment for suppressing the activity of arginase and / or nitric oxide synthase involved in the degradation reaction of arginine, (1) to (5), (12) to (15 ).
(17) The kit according to (6), which contains an inhibitor of arginase or nitric oxide synthase involved in the degradation reaction of arginine.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.
 〔1.ヒトでの評価〕
 試験1では、健常者20名(男性10名、女性10名;平均年齢=36.10歳;大阪市立大学附属病院から提供)、慢性疲労症候群20名(男性10名、女性10名;平均年齢=36.15歳;大阪市立大学附属病院から提供)を対象とした。また、試験2では健常者46名(男性5名、女性41名;平均年齢=38.78歳;大阪市立大学附属病院から提供)、慢性疲労症候群47名(男性6名、女性41名;平均年齢=37.96歳;大阪市立大学附属病院から提供)、慢性疲労13名(男性5名、女性8名;平均年齢=33.62歳;大阪市立大学附属病院から提供)を対象とした。
[1. (Evaluation in humans)
In Study 1, 20 healthy subjects (10 men, 10 women; average age = 36.10 years; provided by Osaka City University Hospital), 20 chronic fatigue syndrome (10 men, 10 women; average age) = 36.15 years old; provided by Osaka City University Hospital). In Study 2, 46 healthy subjects (5 men, 41 women; average age = 38.78 years; provided by Osaka City University Hospital), 47 chronic fatigue syndrome (6 men, 41 women; average) Age = 37.96; provided by Osaka City University Hospital), 13 chronic fatigue (5 men, 8 women; average age = 33.62 years; provided by Osaka City University Hospital).
 試験1・2における慢性疲労症候群とは、アメリカ疾病予防管理センター(CDC)によって作成された慢性疲労症候群診断基準(Ann Intern Med. 1994;121:953-959)を日本国内用に改定したもの(医学のあゆみ 特集「最新・疲労の科学 -日本発:抗疲労・抗過労への提言」671-677)に記されているように「(1)生活が著しく損なわれるような強い疲労を主症状とし、少なくとも6ヵ月以上の期間持続または再発を繰り返す(50%以上の期間認められること)。かつ、病歴、身体所見、検査所見で疾患を除外する。さらに、(2)症状基準8項目以上か、症状基準6項目・身体基準2項目以上を満たす。」といった診断基準に従って病気と診断された者である。試験2における慢性疲労とは、医師による上記の慢性疲労症候群の診断は満たさないが、6カ月以上断続的に疲労あるいは疲労感が見られ、来院した者である。また、試験1・2における健常者とは、年代、疲労度、精神疾患の有無、睡眠障害の有無、精神疾患や睡眠障害の治療薬の服用の有無等を考慮して募集をした(健常者リクルート)者である。 Chronic fatigue syndrome in Trials 1 and 2 is a revised version of the diagnostic criteria for chronic fatigue syndrome (Ann Intern Med. 1994; 121: 953-959) prepared by the American Center for Disease Control and Prevention (CDC) ( As described in the special issue of Ayumi, “The latest science of fatigue—from Japan: Proposals for anti-fatigue / anti-overwork” (671-677) Repeat for at least 6 months or repeat (receive at least 50%), and exclude the disease by medical history, physical findings, and laboratory findings. It is a person who has been diagnosed with a disease according to a diagnostic standard such as “satisfying 6 criteria for symptom criteria and 2 items for physical criteria” Chronic fatigue in Test 2 is a person who has not been satisfied with the diagnosis of chronic fatigue syndrome described above by a doctor, but who has seen fatigue or a feeling of fatigue intermittently for 6 months or longer and has visited the hospital. In addition, healthy subjects in Tests 1 and 2 were recruited in consideration of age, fatigue level, presence or absence of mental illness, presence or absence of sleep disorders, presence or absence of medications for mental illness or sleep disorders, etc. Recruiter).
 試験1,2ともに、健常者(HC)、そして慢性疲労症候群(CFS: Chronic Fatigue Syndrome)および慢性疲労(CF: Chronic Fatigue)の患者から採取した血液から血漿サンプルを調製した。前処理した血漿サンプル中の代謝物質の測定を、慶応義塾大学先端生命科学研究所に依頼した。血漿中の代謝物の測定には、キャピラリー電気泳動-質量分析器が用いられた。一方、血糖値の測定には、Glucose analysis kit II(Biovision)を用いた。統計解析には、SPSS 17.0およびAmos 18.0を用いた有意差検定、相関解析、およびパス解析を採用した。 In both tests 1 and 2, plasma samples were prepared from blood collected from healthy subjects (HC) and patients with chronic fatigue syndrome (CFS: Chronic FatigueomeSyndrome) and chronic fatigue (CF: Chronic Fatigue). We asked Keio University Institute for Advanced Life Sciences to measure metabolites in pretreated plasma samples. A capillary electrophoresis-mass spectrometer was used to measure plasma metabolites. On the other hand, Glucose analysis II (Biovision) was used for blood glucose level measurement. For statistical analysis, significant difference test, correlation analysis, and path analysis using SPSS 17.0 and Amos 18.0 were adopted.
 試験1および試験2を加えた集団で評価した結果、本願発明者らが国際公開WO2011/161544 A2(米国特許シリアル番号13/805,449)で報告の通り、健常者と慢性疲労症候群患者との間でのエネルギー産生系代謝物の変化の再現性が確認された。さらに、他の代謝経路を含めた解析を詳細に行ったところ、尿素回路関連代謝物を中心に試験1・試験2を通してきわめて再現よく変化している代謝系から、新たなバイオマーカーを見出し、既に見出したバイオマーカーとの組合せによる、より高精度の疲労診断の可能性を見出した。 As a result of evaluation in a group including Test 1 and Test 2, as reported by the present inventors in International Publication WO2011 / 161544A2 (US Patent Serial No. 13 / 805,449), healthy subjects and patients with chronic fatigue syndrome The reproducibility of changes in energy production metabolites was confirmed. Furthermore, when detailed analysis including other metabolic pathways was conducted, a new biomarker was found from the metabolic system that changed very reproducibly through Test 1 and Test 2 mainly on urea cycle related metabolites. We found the possibility of more accurate fatigue diagnosis by combining with the found biomarkers.
 すなわち、慢性疲労症候群患者群において、オルニチン(Ornithine)の血中レベルが上昇する一方、シトルリン(Citrulline)や尿素(Urea)のレベルが低下していた(図1)。 That is, in the group of patients with chronic fatigue syndrome, the blood level of ornithine increased, while the levels of citrulline and urea (Urea) decreased (FIG. 1).
 試験1および試験2を加えた集団に対して、血漿サンプル中の代謝物質の測定値を解析ソフトR(フリーソフト、バージョン3.0.1)を用いてランダムフォレスト(Random Forest)プログラムを実行した。また、同じランダムフォレストプログラムの実行を、試験2の集団に対して行った。Random Forestは識別、回帰、クラスタリングに用いられるアルゴリズムである。 The random forest (Random Forest) program was executed using the analysis software R (free software, version 3.0.1) on the measured values of metabolites in the plasma samples for the population to which test 1 and test 2 were added. Also, the same random forest program was run on the test 2 population. Random Forest is an algorithm used for identification, regression, and clustering.
 図2に示すように、健常者と慢性疲労症候群患者とを分類する際に、複数の測定項目の中で、Isocitrate、SuccinateおよびCis-Aconitate等のTCA回路関連代謝物に交じってこれらの尿素回路関連代謝物が上位に出現した。試験2のみを対象にした同解析においても尿素回路関連代謝物が上位に出現した(図3)。Ornithine、Citrulline、Urea以外にもUrateあるいは4-hydroxy-3-methoxybenzoateやHydroxyproline、4-Methyl-2-oxopentanoate、Gamma-butyrobetaineも上位に出現した。また、こうした代謝物は健常者群と慢性疲労症候群の二群比較において有意に増加あるいは減少していた(図4)。 As shown in FIG. 2, when classifying healthy subjects and patients with chronic fatigue syndrome, these urea circuits are combined with TCA circuit-related metabolites such as Isocitrate, Succinate, and Cis-Aconitate among a plurality of measurement items. Related metabolites appeared at the top. The urea cycle-related metabolite also appeared in the upper rank in the same analysis only for test 2 (FIG. 3). In addition to Ornithine, Citrulline, and Urea, Urate, 4-hydroxy-3-methoxybenzoate, Hydroxyproline, 4-Methyl-2-oxopentanoate, and Gamma-butyrobetaine also appeared at the top. In addition, these metabolites were significantly increased or decreased in the comparison between the normal group and the chronic fatigue syndrome (FIG. 4).
 この結果から、被験者の個人のばらつきに対して比較的安定している尿素回路関連代謝物を単独で用いるか、或いは、エネルギー代謝系(解糖系からTCA回路)のバイオマーカーと組み合わせることにより、慢性疲労患者群や健常者の個人差による判別の安定性が向上することが予想された。 From this result, by using a urea cycle-related metabolite that is relatively stable with respect to individual variation of the subject alone or in combination with a biomarker of the energy metabolic system (glycolytic system to TCA circuit), It was expected that the stability of discrimination due to individual differences between chronic fatigue patients and healthy individuals would be improved.
 一方、慢性疲労の患者群でも尿素回路関連代謝物に同様の変化が見られたが(図5)、これらの比であるCitrulline/Ornithine、あるいはUrea/Ornithineの値を用いて評価したところ、慢性疲労症候群患者に比べて慢性疲労患者ではその低下の程度が小さかった。なお、ureaとAspartateに関しては試験2のみで検出できた。さらに、慢性疲労症候群患者群では見出されなかったいくつかの代謝物に関して、健常者群と比較して有意に減少あるいは増加しているものが見出された(図6)。なお、図16は、試験2の集団に対して、健常者(HC)および慢性疲労(CF)の患者の血漿サンプル中の代謝物質の測定値を含めた全てのパラメータを用いてランダムフォレスト(Random Forest)プログラムを実行した結果を示す図である。図17は、試験2の集団に対して、慢性疲労(CF)および慢性疲労症候群(CFS)の患者の血漿サンプル中の代謝物質の測定値を含めた全てのパラメータを用いてランダムフォレスト(Random Forest)プログラムを実行した結果を示す図である。 On the other hand, a similar change was observed in the urea cycle-related metabolites in the group of patients with chronic fatigue (Fig. 5), but when evaluated using the ratio of Citrulline / Ornithine or Urea / Ornithine, the ratio of these was found to be chronic. The degree of decline was less in patients with chronic fatigue than in patients with fatigue syndrome. For urea and Aspartate, detection was possible only in Test 2. Furthermore, some metabolites that were not found in the chronic fatigue syndrome patient group were found to be significantly reduced or increased compared to the healthy subject group (FIG. 6). FIG. 16 shows a random forest (Random) using all parameters including the measured values of metabolites in plasma samples of healthy subjects (HC) and chronic fatigue (CF) patients for the population of Study 2. It is a figure which shows the result of having executed the Forest) program. FIG. 17 shows a random forest (Random Forest) for all populations, including metabolite measurements in plasma samples of patients with chronic fatigue (CF) and chronic fatigue syndrome (CFS), for the study 2 population. It is a figure which shows the result of having executed the program.
 次いで、試験1と試験2のすべてのデータを対象に、疲労の有無に対応して血漿中の量が有意に変動した代謝物質と、パフォーマンス・ステイタス(PS)との相関を調べた。PSは、疲労の主観的重症度の尺度であり、数値が高いほど重症であることを示す。その結果、代謝物質のうちのいくつかが、PSと有意な相関を示すことがわかった(Proline; R=0.323, P=0.027: Urateあるいは4-hydroxy-3-methoxybenzoate; R=-0.334, P=0.022)。 Next, for all the data in Test 1 and Test 2, the correlation between the metabolite whose amount in plasma significantly changed corresponding to the presence or absence of fatigue and the performance status (PS) was examined. PS is a measure of the subjective severity of fatigue, with higher numbers indicating more severe. As a result, it was found that some of the metabolites showed significant correlation with PS (Proline; R = 0.323, P = 0.027: Urate or 4-hydroxy-3-methoxybenzoate; R = -0.334, P = 0.022).
 また、試験1と試験2のすべての血漿サンプル中の代謝物質の測定値を対象に解析ソフトRを用いて決定木モデルによる解析を実行した。このプログラムは、決定理論の分野において、計画を立案して目標に到達するために用いられる。例えば図7のように4ツリーへ分類した場合、Isocitrateが8.15μM以上か未満か、さらにOrnithineが62μM 以上か未満か、Hydroxyprolineが9.3μM以上か未満かで分類することで、慢性疲労症候群の患者群と健常者群の集団から、慢性疲労症候群の患者を79.0%の正判別率(CFS62名中49名)で判別できることになる。この場合、誤判別率は18.5%(HC65名中12名)であった。さらに分類ツリーの数を増やして9ツリーに分類した場合、図8にあるようにSuccinateが12.5μM以上か未満か、Glutamine(Gln)が1069μM以上か未満か、Glutamate(Glu)が50μM以上か未満か、Leucine(Leu)が95μM以上か未満か、Lysine(Lys)が181.5μM以上か未満かで分類することで慢性疲労症候群の患者群と健常者群の集団から、慢性疲労症候群の患者を90.3%の正判別率(CFS62名中56名)で判別可能である。この場合、誤判別率は7.7%(HC65名中5名)であった。さらに、代謝物の比を用いることで、より少ないツリー数でも正判別率を上昇させ、かつ誤判別率を低下させることができる。例えば、図9のように、Pyruvate/Isocitrate(PI比率)が20.61以上か未満か、Ornithine/Citrulline(OC比率)が3.215以上か未満かの3ツリーへの分類だけで80.6%の正判別率(CFS62名中50名)、20.0%の誤判別率(HC65名中13名)で慢性疲労症候群の患者を判別することが可能となる。さらに、Ornithine/Citrullineが1.321以上か未満か、Alanine/Hydroxyprolineが37.71以上か未満かを加えることで、80.6%の正判別率は維持されつつ、誤判別率が10.7%((HC65名中7名)まで低下する(図10)。ただし、上記の決定木上の分岐を決める数値は、測定条件や目的によって変わるものであり、固定された数値ではない。こうした決定木分析は診断アルゴリズムとして用いることも可能である。 In addition, analysis using a decision tree model was performed using the analysis software R for the measured values of metabolites in all the plasma samples of Test 1 and Test 2. This program is used in the field of decision theory to plan and reach goals. For example, when it is classified into 4 trees as shown in FIG. 7, it is classified according to whether Isocitrate is 8.15 μM or more, Ornithine is 62 μM or more, or Hydroxyproline is 9.3 μM or less. Thus, patients with chronic fatigue syndrome can be discriminated with a positive discrimination rate of 79.0% (49 out of 62 CFS) from the groups of patients and healthy subjects. In this case, the misclassification rate was 18.5% (12 out of 65 HC). When the number of classification trees is further increased to 9 trees, whether Succinate is 12.5 μM or more, Glutamine (Gln) is 1069 μM or less, or Glutamate (Glu) is 50 μM or more as shown in FIG. Patients with chronic fatigue syndrome from the group of patients with chronic fatigue syndrome and healthy subjects by classifying them with less than or less than 95 μM Leucine (Leu) or less than 181.5 μM Lysine (Lys) Can be discriminated with a positive discrimination rate of 90.3% (56 out of 62 CFS). In this case, the misclassification rate was 7.7% (5 out of 65 HC). Furthermore, by using the metabolite ratio, the correct discrimination rate can be increased and the misclassification rate can be reduced even with a smaller number of trees. For example, as shown in FIG. 9, the classification into 3 trees with Pyruvate / Isocitrate (PI ratio) of 20.61 or less or Ornithine / Citrulline (OC ratio) of 3.215 or less is only 80.6. It is possible to discriminate patients with chronic fatigue syndrome with a positive discrimination rate of 50% (50 out of 62 CFS) and an incorrect discrimination rate of 20.0% (13 out of 65 HC). Furthermore, by adding whether Ornithine / Citrulline is 1.321 or less or Alanine / Hydroxyproline is 37.71 or less, the correct discrimination rate of 80.6% is maintained, while the misclassification rate is 10.7. % ((7 out of 65 HC)) (Figure 10) However, the numerical value that determines the branch on the above decision tree varies depending on the measurement conditions and purpose, and is not a fixed numerical value. Tree analysis can also be used as a diagnostic algorithm.
 一方、慢性疲労症候群と慢性疲労との間で、代謝における差があるかを直接比較して検討した。その結果、図11に示すように、尿素回路関連代謝物、および尿素回路からTCA回路への代謝の流れに関わる代謝物、例えばArginineやSuccinate、Glutamine等で有意な差を示した。こうした代謝物は上記のような診断のための決定木分析を行う上で有用である。 On the other hand, we examined whether there was a difference in metabolism between chronic fatigue syndrome and chronic fatigue. As a result, as shown in FIG. 11, there was a significant difference between the urea cycle-related metabolites and metabolites related to the metabolic flow from the urea cycle to the TCA cycle, such as Arginine, Succinate, and Glutamine. Such metabolites are useful in performing decision tree analysis for diagnosis as described above.
 〔2.ヒトでの評価を受けたラットでの評価〕
 本発明の一形態を用いれば、簡便なキットでの疲労診断が可能になる。さらに、本発明の一形態を用いた診断結果に基づいて、効果的な治療法を見出す可能性がある。例えば、強い疲労感や長期にわたる疲労感を訴える患者に対して、本発明の一形態を適用することによって、疲労度の客観的評価ができ、さらには慢性疲労症候群か否かの判別ができるだけでなく、代謝病態を把握することで、個人個人の疲労病態に合わせた治療・予防を実現する食薬成分の選択も可能となる。本発明による疲労度の評価は、疲労に関する高度な知識を必要としないので、一般の医療施設においても実施可能である。また、本発明の一形態を用いれば、生体内のエネルギー(ATP)産生代謝系および尿素回路系のどの部分に異常があるかを推測することができるので、患者の生活指導に活かせるだけでなく、原因と考えられる代謝系を促進または抑制することで代謝病態を是正する食薬を提供することが可能となる。特に、上記ヒトの血液成分の解析結果のみならず、疲労モデル動物の血液や肝臓を対象とした網羅的代謝解析(図12:グラフデータは肝臓検体の測定値を示す)から、尿素回路およびTCA回路の異常と、尿素回路からTCA回路への疲労病態特有の代謝の流れ込みを確認できている。すなわち、疲労病態においては、TCA回路内のCitrate、cis-Aconitate、Isocitrateが有意に減少する一方、Succinate、Malateが有意に増加する。加えて、疲労病態では尿素回路におけるオルニチンが、Putrescine、GABA、Succinateと順に代謝される系が優位となってTCA回路へ流れ込む。同時に、この代謝経路の促進には、尿素回路におけるオルニチンからシトルリンへの代謝が低下すること、および同回路のアルギニンからオルニチンへの代謝が増強されていることが関係している。
[2. (Evaluation in rats that have been evaluated in humans)
If one embodiment of the present invention is used, fatigue diagnosis can be performed with a simple kit. Furthermore, there is a possibility of finding an effective treatment based on the diagnosis result using one embodiment of the present invention. For example, by applying one form of the present invention to a patient who complains of intense fatigue or long-term fatigue, it is possible to objectively evaluate the degree of fatigue and to determine whether or not it is chronic fatigue syndrome. In addition, by grasping the metabolic pathology, it becomes possible to select a pharmacological component that realizes treatment / prevention according to the individual's fatigue pathology. The evaluation of the degree of fatigue according to the present invention does not require a high level of knowledge about fatigue, and therefore can be performed in general medical facilities. Moreover, if one form of the present invention is used, it is possible to infer which part of the energy (ATP) production metabolic system and urea circuit system in the living body is abnormal, so that it can be used only for patient life guidance. However, it is possible to provide a remedy that corrects the metabolic pathology by promoting or suppressing the metabolic system considered to be the cause. In particular, not only from the analysis results of human blood components, but also from comprehensive metabolic analysis of the blood and liver of fatigue model animals (FIG. 12: graph data shows measured values of liver samples), urea circuit and TCA The abnormality of the circuit and the flow of metabolism peculiar to the fatigue condition from the urea circuit to the TCA circuit can be confirmed. That is, in fatigue pathology, Citrate, cis-Aconitate, and Isocitrate in the TCA circuit are significantly decreased, while Succinate and Malate are significantly increased. In addition, in a fatigue condition, a system in which ornithine in the urea circuit is metabolized in order of Putrescine, GABA, and Succinate is dominant, and flows into the TCA circuit. At the same time, promotion of this metabolic pathway is associated with a decrease in the metabolism of ornithine to citrulline in the urea cycle and an increase in the metabolism of arginine to ornithine in the cycle.
 疲労モデル動物の実験では、オス7週齢SD系ラット(日本SLC)を使用し、各動物は明暗周期12時間、室温23℃、湿度50%の条件にて飼育した。購入したラットは、無作為に無処理群(対照群)、食事制限群、および疲労群に群分けを行った。無処理群のラットは、エサおよび水分が十分に摂取できる環境にて5日間飼育した。疲労群のラットは、水深2.2 cmの水を張ったケージにて5日間飼育した。食事制限群のラットは、1日あたり10gのエサを与え、5日間飼育した。その後にラットを屠殺し、リン酸緩衝液を用いて血液灌流を行い、ラット肝臓を取得した。取得した肝臓試料の各代謝物は、キャピラリー電気泳動-質量分析計のカチオンモード、およびアニオンモードの両メソッドで測定を行い、約85種類の代謝物を検出した。 In the experiment of fatigue model animals, male 7-week-old SD rats (Japan SLC) were used, and each animal was bred under conditions of 12 hours light-dark cycle, room temperature 23 ° C. and humidity 50%. The purchased rats were randomly divided into an untreated group (control group), a diet restriction group, and a fatigue group. The rats in the untreated group were bred for 5 days in an environment where food and water could be sufficiently consumed. The rats in the fatigue group were raised for 5 days in cages filled with water at a depth of 2.2 cm. Rats in the dietary restriction group were fed 10 g of food per day and were raised for 5 days. Thereafter, the rat was sacrificed, blood perfusion was performed using a phosphate buffer, and a rat liver was obtained. Each metabolite of the obtained liver sample was measured by both the cation mode and anion mode methods of the capillary electrophoresis-mass spectrometer, and about 85 types of metabolites were detected.
 〔3.PLS-DA法による解析〕
 PLS-DA法(Partial least squares discriminant analysis;部分最少二乗法判別分析)は、回帰分析を用いた予測モデル構築に使用される手法である。本手法を用いて、HC(健常者)とCFS(慢性疲労症候群)、HCとCF(慢性疲労)、CFとCFSの判別を行った。PLS-DA法による解析を行うためのソフトウェアとしては、R(フリーソフト、バージョン3.0.1)を用いた。
[3. Analysis by PLS-DA method]
The PLS-DA method (Partial least squares discriminant analysis) is a method used for constructing a prediction model using regression analysis. Using this method, discrimination between HC (healthy person) and CFS (chronic fatigue syndrome), HC and CF (chronic fatigue), and CF and CFS was performed. R (free software, version 3.0.1) was used as software for performing analysis by the PLS-DA method.
 =HCとCFSの判別結果=
 生体情報として、上述の試験2で、HC群、CFS群の2群比較で統計的な有意差が認められたOrnithine、Citrulline、Urea、Hydroxyproline、Urate、4-Hydroxy-3-methoxybenzoate、Isocitrate、Citrate、Pyruvate、Cis-aconitate、Gamma-Butyrobetaine、4-methyl-2-oxopentanoate、2-oxoglutarateそれぞれの濃度、および、ランダムフォレスト解析の結果からマーカーとして有望なSuccinate、Pro、Leu、3-Methylhistidine、Creatinine、His、Ala、N,N-Dimethylglycine、Ser、Lys、Betaine、Glu、Taurine、2AB、Arg、3-Hydroxybutyrate、Creatine、Trp、Mucate、Cystine、Asp、Sarcosine、Thr、Valそれぞれの濃度を全て用いてPLS-DA解析を行った。その結果、図18に示すように、PLS-DAスコアプロットにおいて、HCとCFSでは異なった分布を示した。また、統計的有意差が認められた代謝物質が、2群の判別に対する高い負荷量を示した。なお、図18中のプロット一つはヒト一人に対応し、HCは健常者、CFSは慢性疲労症候群の患者を指す。
= HC and CFS discrimination result =
As biological information, statistically significant differences were observed in the above-mentioned test 2 between the HC group and the CFS group, Ornithine, Citrullline, Urea, Hydroxyproline, Urate, 4-Hydroxy-3-methoxybenzoate, Isocitrate, Citrate Pyruvate, Cis-aconitate, Gamma-Butyrobetaine, 4-methyl-2-oxopentanoate, 2-oxoglutarate, and random forest analysis results, Succinate, Pro, Leu, 3-Methylhistidine, Creatinine, Using all concentrations of His, Ala, N, N-Dimethylglycine, Ser, Lys, Betaine, Glu, Taurine, 2AB, Arg, 3-Hydroxybutyrate, Creatine, Trp, Mucate, Cystine, Asp, Sarcosine, Thr, Val PLS-DA analysis was performed. As a result, as shown in FIG. 18, HC and CFS showed different distributions in the PLS-DA score plot. Moreover, the metabolite in which the statistical significance difference was recognized showed the high load amount with respect to discrimination of 2 groups. Note that one plot in FIG. 18 corresponds to one person, HC indicates a healthy person, and CFS indicates a patient with chronic fatigue syndrome.
 =HCとCFの判別結果=
 生体情報として、上述の試験2で、HC群、CF群の2群比較で統計的な有意差が認められた、Choline、Gly、Taurine、Asn、Gamma-Butyrobetaine、Gln、Lys、Trp、4-methyl-2-oxopentanoate、Succinateそれぞれの濃度、および、ランダムフォレスト結果からマーカーとして有望なCis-Aconitate、Lactate、Arg、Mucate、His、Azelate、N,N-Dimethylglycine、Creatinine、beta-Ala、Tyr、Ornithine、2AB、Leu、Isocitrate、Hydroxyproline、Phe、Met、3-Methylhistidine、Sarcosine、Ile、Betaine、Pyruvate、Urate、4-Hydroxy-3-methoxybenzoate、Ser、Asp、Carnitine、Urea、5-oxoproline、Citrateそれぞれの濃度を全て用いてPLS-DA解析を行った。その結果、図19に示すように、PLS-DAスコアプロットにおいて、HCとCFでは異なった分布を示した。また、統計的有意差が認められた代謝物質が、2群の判別に高い負荷量を示した。なお、図19中のプロット一つはヒト一人に対応し、HCは健常者、CFは慢性疲労の患者を指す。
= HC and CF discrimination results =
As biological information, statistically significant differences were observed in the above-mentioned test 2 in comparison between the HC group and the CF group, Choline, Gly, Tarine, Asn, Gamma-Butyrobetaine, Gln, Lys, Trp, 4- Concentrations of methyl-2-oxopentanoate and Succinate, and promising markers from random forest results, Cis-Aconitate, Lactate, Arg, Mucate, His, Azelate, N, N-Dimethylglycine, Creatinine, beta-Ala, Tyr, Ornithine , 2AB, Leu, Isocitrate, Hydroproproline, Phe, Met, 3-Methylhistidine, Sarcosine, Ile, Betaine, Pyruvate, Urate, 4-Hydroxy-3-methoxybenzoate, Ser, Asp, Carnitine, Urea, 5-oxoproline, Citrate PLS-DA analysis was performed using all concentrations. As a result, as shown in FIG. 19, in the PLS-DA score plot, HC and CF showed different distributions. In addition, metabolites that were found to have a statistically significant difference showed a high load for discrimination between the two groups. One plot in FIG. 19 corresponds to one person, HC indicates a healthy person, and CF indicates a patient with chronic fatigue.
 =CFとCFSの判別結果=
 生体情報として、上述の試験2で、CF群、CFS群の2群比較で統計的な有意差が認められた、Choline、Succinate、Gln、Taurine、Asn、Lys、Arg、His、Urate、4-Hydroxy-3-methoxybenzoateそれぞれの濃度、および、ランダムフォレスト結果からマーカーとして有望なN,N-Dimethylglycine、3-Methylhistidine、Azelate、Ile、Trp、4-methyl-2-oxopentanoate、Ser、Cis-Aconitate、Met、Phe、Gly、Lactate、Ala、Leu、Citrulline、Malate、gamma-Butyrobetaine、Sarcosine、beta-Ala、Glu、2-Oxoglutarate、Pyruvate、Asp、Urea、Creatinine、Carnitine、2AB、Betaine、Citrate、Tyrそれぞれの濃度を全て用いてPLS-DA解析を行った。その結果、図20に示すように、PLS-DAスコアプロットにおいて、CFとCFSでは異なった分布を示した。また、統計的有意差が認められた代謝物質が、2群の判別に高い負荷量を示した。なお、図20中のプロット一つはヒト一人に対応し、CFは慢性疲労の患者、CFSは慢性疲労症候群の患者を指す。
= CF and CFS discrimination result =
As biometric information, statistically significant differences were found in the above-mentioned test 2 in comparison between the CF group and the CFS group, Choline, Succinate, Gln, Taurine, Asn, Lys, Arg, His, Urate, 4- N, N-Dimethylglycine, 3-Methylhistidine, Azelate, Ile, Trp, 4-methyl-2-oxopentanoate, Ser, Cis-Aconitate, Met are promising markers from the concentration of each of Hydroxy-3-methoxybenzoate and random forest results , Phe, Gly, Lactate, Ala, Leu, Citrulline, Malate, gamma-Butyrobetaine, Sarcosine, beta-Ala, Glu, 2-Oxoglutarate, Pyruvate, Asp, Urea, Creatinine, Carnitine, 2AB, Betaine, Citrate, Tyr PLS-DA analysis was performed using all concentrations. As a result, as shown in FIG. 20, in the PLS-DA score plot, CF and CFS showed different distributions. In addition, metabolites that were found to have a statistically significant difference showed a high load for discrimination between the two groups. Note that one plot in FIG. 20 corresponds to one human, CF indicates a patient with chronic fatigue, and CFS indicates a patient with chronic fatigue syndrome.
 
 図18~図20の結果より、検出される生体情報を用いてHC、CF、CFSの生理・病態を定性的に捉えることが可能であり、疲労を評価・診断する上で有用であることが示された。

From the results shown in FIGS. 18 to 20, it is possible to qualitatively understand the physiology / pathology of HC, CF, and CFS using detected biological information, and it is useful for evaluating and diagnosing fatigue. Indicated.
 〔4.アルギニンの分解が与える影響の評価〕
 採血後全血のまま、どのくらいの時間、室温で放置すると、バイオマーカーの値に変化が現れるかを10名の健常者の血液(全血)を利用して検討した。その結果、採血後の血液の放置時間が長くなると、オルニチン値が上昇し、かつアルギニン値が低下することが判明した(図14)。一方、クエン酸のように、放置をしても濃度変化を示さない代謝物もあった(図示せず)。血液中には、アルギニンからオルニチンへの反応を進めるアルギナーゼという酵素、及び、アルギニンから一酸化窒素とシトルリンとを生成する反応に関わる一酸化窒素合成酵素(NOS)が含まれており、採血後も試験管の中で酵素反応が進行していることが示唆された。
[4. (Evaluation of the effect of arginine degradation)
Using the blood (whole blood) of 10 healthy subjects, it was examined how much time would remain at room temperature after collecting the blood and the change in the value of the biomarker would appear. As a result, it was found that the ornithine value increased and the arginine value decreased when the blood was left for a long time after blood collection (FIG. 14). On the other hand, some metabolites such as citric acid did not show a change in concentration even after standing (not shown). The blood contains an enzyme called arginase that promotes the reaction from arginine to ornithine, and nitric oxide synthase (NOS) involved in the reaction that produces nitric oxide and citrulline from arginine. It was suggested that the enzymatic reaction was progressing in the test tube.
 そこで、ラットの血液(全血)を使用して、採血した血液を入れる試験管の中にアルギナーゼ又は一酸化窒素合成酵素の阻害剤を入れることで、オルニチンやアルギニンの濃度変化が抑えられるかを検討した。アルギナーゼ阻害剤であるNω-Hydroxy-nor-L-arginine(nor-NOHA)と一酸化窒素合成酵素阻害剤であるNG-Nitro-L-Arginine(L-NNA)とを用いて阻害実験を試み、LC-MSシステムを用いてアルギニン及びオルニチンの定量解析を行った。なお、nor-NOHAは一酸化窒素合成酵素の活性は実質的に阻害せず、L-NNAはアルギナーゼの活性は実質的に阻害しない。 Therefore, using rat blood (whole blood), whether or not the change in the concentration of ornithine or arginine can be suppressed by placing an inhibitor of arginase or nitric oxide synthase into a test tube containing the collected blood. investigated. Inhibition experiments with and is arginase inhibitor N ω -Hydroxy-nor-L- arginine (nor-NOHA) and nitric oxide synthase inhibitor N G -Nitro-L-Arginine ( L-NNA) Attempts were made to quantitatively analyze arginine and ornithine using an LC-MS system. Nor-NOHA does not substantially inhibit the activity of nitric oxide synthase, and L-NNA does not substantially inhibit the activity of arginase.
 その結果、図15に示すように、採血後にラットの血液を室温放置すると、アルギニン値、及びオルニチン値がともに高くなることが判明した。次に、nor-NOHA、あるいはnor-NOHA、L-NNA両方を採血後すぐに添加することにより、アルギニン値やオルニチン値の上昇を抑えられることが分かった。なお、図15において、左側はアルギニン濃度の測定結果を示し、右側はオルニチン濃度の測定結果を示す。図15において、左側から順に、0hは採血直後の状態を、2hは採血後、阻害剤を添加せずに室温で2時間放置した状態を、5hは採血後、阻害剤を添加せずに室温で5時間放置した状態を示し、100μM nor-NOHA(5h)は、終濃度で100μM nor-NOHAを添加し、室温で5時間放置した状態を、100μM nor-NOHA+100μM L-NNA(5h)は、終濃度で100μMのnor-NOHAとL-NNAとを添加し、室温で5時間放置した状態を、300μM nor-NOHA(5h)は、終濃度で300μM nor-NOHAを添加し、室温で5時間放置した状態を、300μM nor-NOHA+100μM L-NNA(5h)は、終濃度で300μMのnor-NOHAと100μMのL-NNAとを添加し、室温で5時間放置した状態を、それぞれ示す。 As a result, as shown in FIG. 15, it was found that when the blood of the rat was allowed to stand at room temperature after blood collection, both the arginine value and the ornithine value increased. Next, it was found that increases in arginine and ornithine levels can be suppressed by adding nor-NOHA or both nor-NOHA and L-NNA immediately after blood collection. In FIG. 15, the left side shows the measurement result of the arginine concentration, and the right side shows the measurement result of the ornithine concentration. In FIG. 15, in order from the left side, 0h is a state immediately after blood collection, 2h is a state after blood collection and left for 2 hours at room temperature without addition of an inhibitor, and 5h is room temperature after blood collection without addition of an inhibitor. And 100 μM nor-NOHA (5 h) is 100 μM nor-NOHA added at a final concentration and left at room temperature for 5 hours. 100 μM nor-NOHA + 100 μM L-NNA (5 h) is Add 100 μM nor-NOHA and L-NNA at final concentration and let stand for 5 hours at room temperature. Add 300 μM nor-NOHA at final concentration for 5 hours at 300 μM nor-NOHA (5 h). 300 μM nor-NOHA + 100 μM L-NNA (5 h) shows the state after adding 300 μM nor-NOHA and 100 μM L-NNA at final concentrations and left at room temperature for 5 hours.
 採血後に直ちに血液試料を冷却処理することが不可能なケースを想定して、疲労診断のための血液採取用試験管に、こうした阻害剤を前もって添加しておくことで、バイオマーカー値の変化を防ぎ、検査の精度をより一層向上させうる。 Assuming that it is not possible to cool the blood sample immediately after blood collection, adding these inhibitors in advance to a blood collection test tube for fatigue diagnosis will reduce the change in the biomarker value. This can prevent and improve the accuracy of inspection.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention.
 また、本明細書中で言及した全ての文献は、本明細書の一部を構成するものとして参照によって本明細書中に組み込まれる。 Also, all documents referred to in this specification are hereby incorporated by reference as part of this specification.
 本発明を用いれば、疲労の評価および診断を客観的かつ簡便に行うことが可能となる。本発明はさらに、疲労の治療に有用な技術を提供し得る。疲労は、非常に重大な健康問題であるので、疲労の評価、診断および治療が実現することは、あらゆる産業にわたって大いに貢献する。 The use of the present invention makes it possible to objectively and easily perform fatigue evaluation and diagnosis. The present invention may further provide techniques useful for treating fatigue. Because fatigue is a very significant health problem, the realization of fatigue assessment, diagnosis and treatment contributes greatly across all industries.

Claims (17)

  1.  被験者から得た生体サンプル中のオルニチン濃度とシトルリン濃度との比率(OC比率)を得る工程と、前記比率(OC比率)に基づいて、前記被験者における疲労の状態を評価する工程とを包含する、疲労を評価する方法。 Including a step of obtaining a ratio (OC ratio) of ornithine concentration and citrulline concentration in a biological sample obtained from a subject, and a step of evaluating a fatigue state in the subject based on the ratio (OC ratio). A method of assessing fatigue.
  2.  前記比率(OC比率)に対応する閾値と前記比率(OC比率)とを比較する工程を包含する、請求項1に記載の方法。 The method according to claim 1, comprising a step of comparing a threshold corresponding to the ratio (OC ratio) with the ratio (OC ratio).
  3.  さらに、前記生体サンプル中のピルビン酸濃度とイソクエン酸濃度との比率(PI比率)を得る工程と、前記比率(PI比率)に基づいて、前記被験者における疲労の状態を評価する工程とを包含する、請求項1又は2に記載の方法。 Furthermore, the method includes a step of obtaining a ratio (PI ratio) between pyruvic acid concentration and isocitrate concentration in the biological sample, and a step of evaluating a fatigue state in the subject based on the ratio (PI ratio). The method according to claim 1 or 2.
  4.  前記比率(PI比率)に対応する閾値と前記比率(PI比率)とを比較する工程を包含する、請求項3に記載の方法。 The method according to claim 3, comprising comparing a threshold corresponding to the ratio (PI ratio) with the ratio (PI ratio).
  5.  前記生体サンプル中のピルビン酸濃度とイソクエン酸濃度との比率(PI比率)を得る工程と、前記比率(PI比率)に対応する閾値と前記比率(PI比率)とを比較する工程とを行って疲労の状態の評価がなされた被験者に対して、前記比率(OC比率)に対応する閾値と前記比率(OC比率)とを比較する前記工程を行う、請求項2に記載の方法。 Performing a step of obtaining a ratio (PI ratio) of pyruvic acid concentration and isocitrate concentration in the biological sample, and a step of comparing a threshold corresponding to the ratio (PI ratio) with the ratio (PI ratio). The method according to claim 2, wherein the step of comparing a threshold corresponding to the ratio (OC ratio) with the ratio (OC ratio) is performed on a subject who has been evaluated for fatigue status.
  6.  オルニチン濃度を測定するための試薬とシトルリン濃度を測定するための試薬とを備えている、疲労を評価するためのキット。 A kit for evaluating fatigue, comprising a reagent for measuring ornithine concentration and a reagent for measuring citrulline concentration.
  7.  オルニチン濃度とシトルリン濃度との比率(OC比率)を示す第一呈示部を備えている、請求項6に記載のキット。 The kit according to claim 6, further comprising a first presenting portion that indicates a ratio (OC ratio) between an ornithine concentration and a citrulline concentration.
  8.  ピルビン酸濃度を測定するための試薬とイソクエン酸濃度を測定するための試薬とをさらに備えている、請求項6又は7に記載のキット。 The kit according to claim 6 or 7, further comprising a reagent for measuring pyruvic acid concentration and a reagent for measuring isocitrate concentration.
  9.  ピルビン酸濃度とイソクエン酸濃度との比率(PI比率)を示す第二呈示部を備えている、請求項8に記載のキット。 The kit according to claim 8, further comprising a second presentation unit indicating a ratio (PI ratio) between a pyruvic acid concentration and an isocitrate concentration.
  10.  疲労を評価するための基準値と、オルニチン濃度とシトルリン濃度との比率(OC比率)とを受け取って、疲労を評価するための評価情報を生成する演算部、および
     前記評価情報を受け取って、疲労を評価する評価部
    を備えた疲労評価システム。
    A calculation unit that receives a reference value for evaluating fatigue and a ratio of the ornithine concentration and citrulline concentration (OC ratio) and generates evaluation information for evaluating fatigue; and receiving the evaluation information, Fatigue evaluation system with an evaluation unit that evaluates
  11. 1)オルニチン濃度とシトルリン濃度との比率(OC比率)の入力を受付ける入力受付部を備えるか、
    2)オルニチン濃度およびシトルリン濃度の測定値の入力を受付ける入力受付部を備え、前記演算部が、入力が受付けられた測定値からオルニチン濃度とシトルリン濃度との比率(OC比率)を算出する、
    請求項10に記載の疲労評価システム。
    1) whether an input receiving unit that receives an input of a ratio (OC ratio) between an ornithine concentration and a citrulline concentration is provided;
    2) An input receiving unit that receives input of measured values of ornithine concentration and citrulline concentration, and the calculation unit calculates a ratio (OC ratio) between the ornithine concentration and the citrulline concentration from the measured value that is input.
    The fatigue evaluation system according to claim 10.
  12.  オルニチン濃度とシトルリン濃度との比率(OC比率)に代えて、前記生体サンプル中のオルニチン濃度と、Urea、Urate、4-hydroxy-3-methoxybenzoate、Hydroxyproline、4-Methyl-2-oxopentanoate、Gamma-butyrobetaineから選択される何れかの濃度との比率を用いる、請求項1から5の何れか一項に記載の方法。 Instead of the ratio of the ornithine concentration to the citrulline concentration (OC ratio), the ornithine concentration in the biological sample, Urea, Urate, 4-hydroxy-3-methoxybenzoate, Hydroxyproline, 4-Methyl-2-oxopentanoate, Gamma-butyrobetaine The method according to any one of claims 1 to 5, wherein a ratio with any concentration selected from the above is used.
  13.  疲労を評価する方法であって、
     被験者から得た生体サンプル中のバイオマーカーの値を得る工程と、前記バイオマーカーの値に基づいて、前記被験者における疲労の状態を評価する工程とを包含し、
     前記バイオマーカーの値が、1)2-アミノ酪酸(2AB)、2-オキソグルタル酸(2-oxoglutarate)、3-ヒドロキシ酪酸(3-Hydroxybutyrate)、3-メチルヒスチジン(3-Methylhistidine)、4-ヒドロキシ-3-メトキシベンゾエート(4-Hydroxy-3-methoxybenzoate)、4-メチル-2-オキソペンタノエート(4-methyl-2-oxopentanoate)、5-オキソプロリン(5-Oxoproline)、アラニン(Ala)、アルギニン(Arg)、アスパラギン(Asn)、アスパラギン酸(Asp)、アゼライン酸(Azelate)、ベータアラニン(beta-Ala)、ベタイン(Betaine)、カルニチン(Carnitine)、コリン(Choline)、シトルリン(Citrulline)、クレアチン(Creatine)、クレアチニン(Creatinine)、シスチン(Cystine)、ガンマブチロベタイン(Gamma-Butyrobetaine)、グルタミン(Gln)、グルタミン酸(Glu)、グリシン(Gly)、ヒスチジン(His)、ヒドロキシプロリン(Hydroxyproline)、イソロイシン(Ile)、ロイシン(Leu)、リジン(Lys)、メチオニン(Met)、ムケート(Mucate)、N,N-ジメチルグリシン(N,N-Dimethylglycine)、オルニチン(Ornithine)、フェニルアラニン(Phe)、プロリン(Pro)、尿素(Urea)、ピルビン酸(Pyruvate)、サルコシン(Sarcosine)、セリン(Ser)、タウリン(Taurine)、トレオニン(Thr)、トリプトファン(Trp)、チロシン(Tyr)、尿酸(Urate)、及び、バリン(Val)からなる群より選択される少なくとも一種のバイオマーカーの生体サンプル中の濃度であるか、2)前記群にシス-アコニット酸(Cis-aconitate)、クエン酸(Citrate)、イソクエン酸(Isocitrate)、乳酸(Lactate)、リンゴ酸(Malate)、及びコハク酸(Succinate)を加えた群より選択される複数種のバイオマーカーの生体サンプル中の濃度の比率または差分である、
    疲労を評価する方法。
    A method for assessing fatigue,
    Including the step of obtaining the value of a biomarker in a biological sample obtained from a subject, and the step of evaluating the state of fatigue in the subject based on the value of the biomarker,
    The biomarker values are 1) 2-aminobutyric acid (2AB), 2-oxoglutarate, 3-hydroxybutyrate, 3-methylhistidine, 4-hydroxyhistidine -4-methoxybenzoate (4-Hydroxy-3-methoxybenzoate), 4-methyl-2-oxopentanoate (5-methyl-2-oxopentanoate), 5-oxoproline (5-Oxoproline), alanine (Ala), Arginine (Arg), asparagine (Asn), aspartic acid (Asp), azelate (Azelate), beta-alanine (beta-Ala), betaine (Betaine), carnitine (Carnitine), choline (Choline), citrulline (Citrulline), Creatine, Creatinine, Cystine, Gamma-Butyrobetaine, Glutamine (Gln), Glutamic acid (Glu), Glycine (Gly , Histidine (His), hydroxyproline (Hydroxyproline), isoleucine (Ile), leucine (Leu), lysine (Lys), methionine (Met), mucate (Nucate), N, N-dimethylglycine (N, N-Dimethylglycine) , Ornithine, phenylalanine (Phe), proline (Pro), urea (Urea), pyruvate (Pyruvate), sarcosine (Sercosine), serine (Ser), taurine (Taurine), threonine (Thr), tryptophan (Trp) ), Tyrosine (Tyr), uric acid (Urate), and valine (Val), or at least one biomarker selected from the group consisting of valine (Val) in the biological sample, or 2) cis-aconitic acid ( Cis-aconitate), citric acid (Citrate), isocitrate (Isocitrate), lactic acid (Lactate), malic acid (Malate), and succinic acid (Succinate) The ratio or difference in the concentration of the multiple types of biomarkers in the biological sample,
    A method of assessing fatigue.
  14.  請求項13に記載の、疲労を評価する方法であって、
     さらに、シス-アコニット酸(Cis-aconitate)、クエン酸(Citrate)、イソクエン酸(Isocitrate)、乳酸(Lactate)、リンゴ酸(Malate)、及び、コハク酸(Succinate)からなる群より選択される少なくとも一種のバイオマーカーの生体サンプル中の濃度を、前記バイオマーカーの値として用いる、
    疲労を評価する方法。
    A method for assessing fatigue according to claim 13,
    Furthermore, at least selected from the group consisting of cis-aconitic acid (Cis-aconitate), citric acid (Citrate), isocitrate (Isocitrate), lactic acid (Lactate), malic acid (Malate), and succinate (Succinate) The concentration of a kind of biomarker in a biological sample is used as the value of the biomarker.
    A method of assessing fatigue.
  15.  請求項13又は14に記載の、疲労を評価する方法であって、
     前記バイオマーカーの値が、1)シトルリン(Citrulline)、イソクエン酸(Isocitrate)、ピルビン酸(Pyruvate)、及び、オルニチン(Ornithine)からなる群より選択される少なくとも一種のバイオマーカーの生体サンプル中の濃度であるか、2)シトルリン、イソクエン酸、ピルビン酸、及び、オルニチンからなる群より選択される複数種のバイオマーカーの生体サンプル中の濃度の比率または差分である、
    疲労を評価する方法。
    A method for evaluating fatigue according to claim 13 or 14,
    The concentration of the biomarker in the biological sample of at least one biomarker selected from the group consisting of 1) citrulline, isocitrate, pyruvate, and ornithine Or 2) a ratio or a difference in concentration in a biological sample of a plurality of biomarkers selected from the group consisting of citrulline, isocitrate, pyruvate, and ornithine,
    A method of assessing fatigue.
  16.  上記生体サンプルは、アルギニンの分解反応に関わるアルギナーゼの活性及び/または一酸化窒素合成酵素の活性を抑制する処理を受けている、請求項1~5、12~15の何れか一項に記載の方法。 The biological sample according to any one of claims 1 to 5, and 12 to 15, wherein the biological sample is subjected to a treatment that suppresses the activity of arginase and / or the activity of nitric oxide synthase involved in the degradation reaction of arginine. Method.
  17.  アルギニンの分解反応に関わるアルギナーゼまたは一酸化窒素合成酵素の阻害剤を含んでいる、請求項6に記載のキット。 The kit according to claim 6, comprising an inhibitor of arginase or nitric oxide synthase involved in the decomposition reaction of arginine.
PCT/JP2014/072834 2013-08-30 2014-08-29 Fatigue biomarker and use thereof WO2015030211A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015534352A JP6521321B2 (en) 2013-08-30 2014-08-29 Biomarkers of fatigue and their use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013180739 2013-08-30
JP2013-180739 2013-08-30

Publications (1)

Publication Number Publication Date
WO2015030211A1 true WO2015030211A1 (en) 2015-03-05

Family

ID=52586757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072834 WO2015030211A1 (en) 2013-08-30 2014-08-29 Fatigue biomarker and use thereof

Country Status (2)

Country Link
JP (1) JP6521321B2 (en)
WO (1) WO2015030211A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015159942A (en) * 2014-02-27 2015-09-07 花王株式会社 Fatigue evaluation method
EP3376229A4 (en) * 2015-11-12 2019-08-28 Kyushu University National University Corporation Biomarker for diagnosing depression and use of said biomarker
CN116626276A (en) * 2023-07-14 2023-08-22 汤臣倍健股份有限公司 Elastic steady-state model and use method thereof
CN116660421A (en) * 2023-06-13 2023-08-29 中国民用航空总局第二研究所 Method for dividing brain fatigue degree of healthy personnel in industrial production based on column chromatography
JP7360807B2 (en) 2019-04-26 2023-10-13 株式会社東レリサーチセンター Methods to assist in detecting fatigue conditions

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010266238A (en) * 2009-05-12 2010-11-25 Osaka City Univ Fatigue degree determination method and fatigue degree determination kit
JP2011161137A (en) * 2010-02-15 2011-08-25 Hitachi Ltd Fatigue evaluation system, intracompany fatigue evaluation system using the same, and fatigue evaluation method
JP2011182661A (en) * 2010-03-05 2011-09-22 National Institute Of Advanced Industrial Science & Technology Method and device for assessing physiologically fatigued state
JP2012024555A (en) * 2010-06-24 2012-02-09 Institute Of Physical & Chemical Research Biomarker for fatigue, and use thereof
JP2013076692A (en) * 2011-09-13 2013-04-25 Taisho Pharmaceutical Co Ltd Method for determining fatigue with use of oxidized phospholipid

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010266238A (en) * 2009-05-12 2010-11-25 Osaka City Univ Fatigue degree determination method and fatigue degree determination kit
JP2011161137A (en) * 2010-02-15 2011-08-25 Hitachi Ltd Fatigue evaluation system, intracompany fatigue evaluation system using the same, and fatigue evaluation method
JP2011182661A (en) * 2010-03-05 2011-09-22 National Institute Of Advanced Industrial Science & Technology Method and device for assessing physiologically fatigued state
JP2012024555A (en) * 2010-06-24 2012-02-09 Institute Of Physical & Chemical Research Biomarker for fatigue, and use thereof
JP2013076692A (en) * 2011-09-13 2013-04-25 Taisho Pharmaceutical Co Ltd Method for determining fatigue with use of oxidized phospholipid

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SATOSHI KUME ET AL.: "Study on pathophysiology of fatigue and development of biomarkers for diagnosis of chronic fatigue syndrome by metabolome analysis", JOURNAL OF CLINICAL AND EXPERIMENTAL MEDICINE, vol. 249, no. 4, 26 April 2014 (2014-04-26), pages 299 - 303 *
SATOSHI KUME ET AL.: "Suishin Hiro Fuka Model Dobutsu ni Okeru TCA Kairo Oyobi Nyoso Kairo Nai Taishabutsu Level no Henka", NIPPON HIRO GAKKAISHI, vol. 9, no. 1, 7 June 2013 (2013-06-07), pages 86 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015159942A (en) * 2014-02-27 2015-09-07 花王株式会社 Fatigue evaluation method
EP3376229A4 (en) * 2015-11-12 2019-08-28 Kyushu University National University Corporation Biomarker for diagnosing depression and use of said biomarker
EP3677914A1 (en) * 2015-11-12 2020-07-08 Kyushu University National University Corporation Biomarker for diagnosing depression and use of biomarker
JP7360807B2 (en) 2019-04-26 2023-10-13 株式会社東レリサーチセンター Methods to assist in detecting fatigue conditions
CN116660421A (en) * 2023-06-13 2023-08-29 中国民用航空总局第二研究所 Method for dividing brain fatigue degree of healthy personnel in industrial production based on column chromatography
CN116626276A (en) * 2023-07-14 2023-08-22 汤臣倍健股份有限公司 Elastic steady-state model and use method thereof
CN116626276B (en) * 2023-07-14 2024-04-09 汤臣倍健股份有限公司 Elastic steady-state model and use method thereof

Also Published As

Publication number Publication date
JPWO2015030211A1 (en) 2017-03-02
JP6521321B2 (en) 2019-05-29

Similar Documents

Publication Publication Date Title
Smith et al. Amino acid dysregulation metabotypes: potential biomarkers for diagnosis and individualized treatment for subtypes of autism spectrum disorder
US9442121B2 (en) Biomarker of depression, method for measuring biomarker of depression, computer program, and recording medium
ES2669620T3 (en) Biomarkers related to the progress of insulin resistance and methods that use it
Rhee et al. A combined epidemiologic and metabolomic approach improves CKD prediction
Şenol et al. Red cell distribution width as a predictor of mortality in acute pancreatitis
JP6595984B2 (en) Biomarkers associated with renal function and methods of using the same
WO2015030211A1 (en) Fatigue biomarker and use thereof
Knudsen et al. Abnormal glucose regulation in patients with acute ST-elevation myocardial infarction-a cohort study on 224 patients
Kuehnbaum et al. Personalized metabolomics for predicting glucose tolerance changes in sedentary women after high-intensity interval training
JP6882776B2 (en) Biomarkers for diagnosing depression and their use
JP2010507075A (en) Biomarkers for metabolic age and methods of use
JP2010507075A5 (en)
Bai et al. Kidney function and cognitive decline in an oldest-old Chinese population
Sylvestre et al. Untargeted metabolomic analysis of plasma from relapsing-remitting multiple sclerosis patients reveals changes in metabolites associated with structural changes in brain
Liebenberg et al. Metabolomics as a tool to investigate HIV/TB co-infection
Cegielski et al. Combined in vivo muscle mass, muscle protein synthesis and muscle protein breakdown measurement: a ‘Combined Oral Stable Isotope Assessment of Muscle (COSIAM)’approach
McEvoy et al. Serum methylarginines and incident depression in a cohort of older adults
Tan et al. 1H-NMR-based metabolic profiling of healthy individuals and high-resolution CT-classified phenotypes of COPD with treatment of tiotropium bromide
Fjeldstad et al. Vascular function and multiple sclerosis
Xu et al. Relationship between TyG index and the degree of coronary artery lesions in patients with H-type hypertension
Son et al. Cerebrospinal fluid lactate levels, brain lactate metabolism and neurologic outcome in patients with out-of-hospital cardiac arrest
JP5811545B2 (en) Fatigue biomarkers and their use
TWI735470B (en) Method for determining diabetic nephropathy and the use of biomarkers in this method
Bavato et al. Introducing neurofilament light chain measure in psychiatry: current evidence, opportunities, and pitfalls
Ahn et al. Performance of the PSS, APACHE II, and SOFA score as in-hospital prognostic tool in glufosinate-poisoned patients in the intensive care unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14839462

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015534352

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14839462

Country of ref document: EP

Kind code of ref document: A1