WO2015030131A1 - Zirconium alloy for organism, method for manufacturing said alloy, and medical tool for organism incorporating zirconium alloy for organism - Google Patents

Zirconium alloy for organism, method for manufacturing said alloy, and medical tool for organism incorporating zirconium alloy for organism Download PDF

Info

Publication number
WO2015030131A1
WO2015030131A1 PCT/JP2014/072622 JP2014072622W WO2015030131A1 WO 2015030131 A1 WO2015030131 A1 WO 2015030131A1 JP 2014072622 W JP2014072622 W JP 2014072622W WO 2015030131 A1 WO2015030131 A1 WO 2015030131A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
alloy
zirconium alloy
less
range
Prior art date
Application number
PCT/JP2014/072622
Other languages
French (fr)
Japanese (ja)
Inventor
茜 津野
勇太 田中
塙 隆夫
川崎 亮
野村 直之
Original Assignee
株式会社Ihi
国立大学法人東京医科歯科大学
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi, 国立大学法人東京医科歯科大学, 国立大学法人東北大学 filed Critical 株式会社Ihi
Priority to JP2015534293A priority Critical patent/JP6160699B2/en
Publication of WO2015030131A1 publication Critical patent/WO2015030131A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C16/00Alloys based on zirconium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • A61C8/0012Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools characterised by the material or composition, e.g. ceramics, surface layer, metal alloy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/047Other specific metals or alloys not covered by A61L27/042 - A61L27/045 or A61L27/06
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/02Inorganic materials
    • A61L31/022Metals or alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • C22F1/183High-melting or refractory metals or alloys based thereon of titanium or alloys based thereon
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/56Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor
    • A61B17/58Surgical instruments or methods for treatment of bones or joints; Devices specially adapted therefor for osteosynthesis, e.g. bone plates, screws, setting implements or the like
    • A61B17/68Internal fixation devices, including fasteners and spinal fixators, even if a part thereof projects from the skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C2201/00Material properties
    • A61C2201/007Material properties using shape memory effect
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools

Definitions

  • the present invention relates to a biomedical zirconium alloy, a production method thereof, and a biomedical device using the biomedical zirconium alloy.
  • Metal materials are used in many medical devices mainly because of their mechanical reliability. Among them, implant materials such as artificial hip joints, artificial knee joints, bone plates, and artificial tooth roots are pure materials with excellent hard tissue compatibility. Ti and Ti alloys are used. However, these metal materials are considered to have the following problems at the time of image diagnosis using a magnetic resonance diagnosis (MRI) apparatus.
  • MRI magnetic resonance diagnosis
  • an image defect called artifact occurs around the member, making it difficult to evaluate and confirm the bone fusion of the member.
  • the cause of the artifact is a mismatch between the magnetic susceptibility of the implant material and the negative magnetic susceptibility of the living tissue.
  • a metal material having a low magnetic susceptibility or a negative magnetic susceptibility has been proposed.
  • a diamagnetic metal material eg, a gold alloy
  • a negative magnetic susceptibility has difficulty in strength
  • the present inventors have attempted to lower the magnetic susceptibility with a paramagnetic metal material.
  • Zirconium (Zr) is inferior in mechanical strength to Ti, but has lower cytotoxicity and magnetic susceptibility than Ti. Therefore, the present inventors have proposed a low magnetic susceptibility alloy for living body mainly composed of Zr.
  • Zr-based alloys have the property of not forming calcium phosphate, the main component of bone, on the surface of the material, thus eliminating the above problems.
  • the elastic modulus of Ti-based alloy (about 100 to 200 GPa) is much larger than that of cortical bone (about 20 GPa).
  • This elastic modulus gap causes overload shielding (stress shielding) to the bone, resulting in bone atrophy. Therefore, if a low-elasticity Zr alloy that is as close to cortical bone as possible can be developed, it can be provided as a material for a bone anchor that can be easily removed and stress shielding is less likely to occur.
  • Patent Document 1 among the main transition metals of Groups 4 to 6 in the periodic element periodic table, Zr is a main component, and the main component other than Zr is used as a subcomponent having a lower content than the main component.
  • a biomaterial is described that contains 0.5 to 15% by mass of at least one transition metal (Ti, V, Cr, Nb, Mo, Hf, Ta, W).
  • Patent Document 2 describes a biological zirconium alloy containing Zr as a main component and containing Nb in a range of more than 15 mass% and 25 mass% or less.
  • Patent Document 3 includes Ti 25 to 50% by mass, Zr 25 to 60% by mass, Nb 5 to 30% by mass and Ta 5 to 40% by mass, and the mass ratio of Zr to Ti is 0.5 to 0.5%.
  • a Ti—Zr-based alloy having a mass ratio of Nb to Ta of 0.125 to 1.5 is described.
  • an object of the present invention is to provide a biomedical zirconium alloy having a low elastic modulus, a production method thereof, and a biomedical device using the biomedical zirconium alloy.
  • the present invention includes the following (1) to (13).
  • the biomedical zirconium alloy according to (3) which contains Ta in a range of 15% by mass to 18% by mass.
  • the biomedical zirconium alloy according to (4) which contains Ta in a range of more than 15% by mass and 18% by mass or less.
  • the biomedical zirconium alloy according to any one of (1) to (5) obtained by heat treatment in the range of 1100 to 1500 ° C. and then cooling at a cooling rate of 200 ° C./min or more. .
  • a metal molded body containing Zr as a main component and containing Ta in a range of 12% by mass to less than 20% by mass is heat-treated in a range of 1100 to 1500 ° C., and then cooled at a cooling rate of 200 ° C./min or more.
  • Zirconium alloy for living body obtained as above.
  • a metal molded body containing Zr as a main component and containing Ta in a range of 12% by mass to less than 20% by mass is heat-treated in a range of 1100 to 1500 ° C., and then cooled at a cooling rate of 200 ° C./min or more.
  • the manufacturing method of the zirconium alloy for biological bodies provided with the process to do.
  • (11) The method for producing a zirconium alloy for living body according to (10), wherein the heat treatment time is 0.1 hour or more and 5 hours or less.
  • (12) The method for producing a zirconium alloy for living body according to (11), wherein the heat treatment time is 0.1 hour or more and 2 hours or less.
  • (13) The method for producing a zirconium alloy for living body according to (12), wherein the heat treatment time is 0.1 hour or more and 1 hour or less.
  • biomedical zirconium alloy having both a low magnetic susceptibility and a low elastic modulus, a method for producing the same, and a biomedical device using the biomedical zirconium alloy.
  • 3 is a metallographic photograph of a Zr-15 mass% Ta alloy (as cast) by a scanning electron microscope.
  • 3 is a metallographic photograph of a Zr-15 mass% Ta alloy (heat treated material) by a scanning electron microscope.
  • It is a metallographic photograph of a Zr-18 mass% Ta alloy (as cast) by a scanning electron microscope.
  • 3 is a metallographic photograph of a Zr-18 mass% Ta alloy (heat treated material) by a scanning electron microscope.
  • a metal molded body containing Zr as a main component and containing Ta in a range of 12% by mass or more and less than 20% by mass is heat-treated in a range of 1100 to 1500 ° C., and then at a cooling rate of 200 ° C./min or more.
  • It is a biological zirconium alloy obtained by cooling.
  • Such a biomedical zirconium alloy is hereinafter also referred to as “the alloy of the present invention”.
  • the C content and the S content are values obtained by measurement by a high-frequency combustion-infrared absorption method
  • the Si content is a value obtained by measurement by a silicon dioxide weight method
  • the O content is Is the value obtained by measuring by infrared absorption method
  • N content is the value obtained by measuring by thermal conductivity method
  • the content of other components is the value obtained by measuring by ICP-AES method.
  • the alloy of the present invention contains Zr as a main component.
  • “Main component” means a content of 30% by mass or more.
  • the alloy of the present invention preferably contains 40 mass% or more of Zr, more preferably contains 50 mass% or more, more preferably contains 60 mass% or more, and more preferably contains 65 mass% or more. In such a case, the alloy of the present invention having a lower magnetic susceptibility and elastic modulus can be obtained.
  • the “main component” is used in the meaning as described above.
  • Zr has a lower magnetic susceptibility than Ti. Since the alloy of the present invention is mainly composed of Zr, the magnetic susceptibility is low, and artifacts during MRI diagnosis are suppressed.
  • the alloy of the present invention preferably contains Zr as a main component, contains Ta in a specific range, and the other consists of inevitable impurities.
  • Inevitable impurities mean components that may be mixed from raw materials, manufacturing processes, etc. without intentional addition.
  • B, C, N, O, Na, Mg, Si, P, S, K, Ca, Mn, and the like are impurity components. The lower the content, the better.
  • the alloy of the present invention contains Ta in the range of 12 mass% or more and less than 20 mass%. Assuming that a specific heat treatment is performed, an alloy having a high elastic modulus is obtained when Zr is the main component and Ta is contained in an amount of 20% by mass or more, but less than 20% by mass (preferably about 18% by mass or less). The inventors have found that an alloy having a very low elastic modulus can be obtained. That is, the present inventors have found that there is a critical condition for the elastic modulus. When the elastic modulus is low, for example, when the alloy of the present invention is used as a bone fixture, the load is easily transmitted to the bone tissue, and the bone resorption is suppressed.
  • the Ta content in the alloy of the present invention is preferably 13% by mass or more, more preferably 14% by mass or more, and further preferably 15% by mass or more.
  • the Ta content is more preferably greater than 15% by mass.
  • the Ta content is more preferably 19% by mass or less, and further preferably 18% by mass or less. This is because a biological zirconium alloy having a lower elastic modulus can be obtained.
  • the Ta content is preferably 15% by mass or more and less than 20% by mass, more preferably 15% by mass or more and 18% by mass or less, and more than 15% by mass and 18% by mass or less. More preferably it is.
  • the alloy of the present invention is obtained by subjecting a metal molded body containing Zr as a main component and Ta in a range of 12 mass% to less than 20 mass% to specific heat treatment and cooling.
  • the metal compact is preferably obtained by melting and casting the raw material. For example, by using a melting raw material of Zr 99.5% by mass and Ta 99.5% by mass, melting the alloy in an Ar atmosphere by a non-consumable electrode type arc melting method, and casting using a desired mold, metal forming You can get a body.
  • the metal compact can also be obtained by powder metallurgy.
  • a degreasing process and sintering can be given and a metal molded object can be obtained.
  • a metal material powder having an average particle diameter of about 1 to 30 ⁇ m is used, and this and a binder are kneaded to obtain a kneaded product, and the obtained kneaded product is injected into a mold by an injection molding machine.
  • the resulting product can be degreased at about 100 to 750 ° C. in the atmosphere to obtain a molded body.
  • the obtained product is sintered at a sintering temperature of 1000 to 1500 ° C. to obtain a metal molded body made of the sintered body.
  • the metal molded body obtained as described above is heat-treated in the range of 1100-1500 ° C.
  • this temperature is also referred to as a heat treatment temperature.
  • the heat treatment temperature is preferably 1150 ° C. or higher.
  • the heat treatment temperature is preferably 1300 ° C. or less, and more preferably 1250 ° C. or less.
  • the heat treatment temperature is preferably about 1200 ° C.
  • the heat treatment is preferably performed in a vacuum atmosphere or an inert gas atmosphere in order to prevent oxidation.
  • a metal molded body containing Zr as a main component and containing Ta in a range of 12% by mass to less than 20% by mass is subjected to heat treatment (solution treatment, homogeneous treatment) in the range of 1100 ° C to 1500 ° C.
  • heat treatment solution treatment, homogeneous treatment
  • the metal formed body becomes a single phase of ⁇ -Zr during the heat treatment.
  • This ⁇ -Zr causes martensitic transformation.
  • the constituent phase of the biological zirconium alloy is composed of martensite containing orthorhombic martensite.
  • the constituent phase of the biomedical zirconium alloy is composed of orthorhombic martensite and hexagonal martensite.
  • this metal formed body When this metal formed body is heat-treated at a heat treatment temperature lower than 1100 ° C., the metal formed body may be subjected to solid phase separation during the heat treatment to be in a two-phase coexistence state of ⁇ -Zr and ⁇ -Ta. is there.
  • this heat-treated metal compact is quenched with water or the like, ⁇ -Zr undergoes martensitic transformation, whereas ⁇ -Ta does not undergo martensitic transformation.
  • ⁇ -Ta may be included.
  • the heat treatment of the metal molded body is performed in the range of 1100 ° C. to 1500 ° C. If the heat treatment temperature exceeds 1500 ° C., the heat treatment temperature becomes high, and the productivity of the biomedical zirconium alloy may be reduced. Therefore, it is preferable that the heat treatment is performed within the range of the heat treatment temperature in order to improve the productivity of the biological zirconium alloy.
  • the time for heat-treating the metal molded body at such a heat treatment temperature is also referred to as heat treatment time below.
  • the heat treatment time is not particularly limited, it is preferably 0.1 hour or longer, and preferably 0.25 hour or longer.
  • the heat treatment time is preferably 5 hours or less, preferably 2 hours or less, and more preferably 1 hour or less.
  • the heat treatment time is preferably about 0.5 hours.
  • the heat treatment time can be further homogenized by performing the heat treatment for 0.1 hours or more and 5 hours or less. Note that if the heat treatment time exceeds 5 hours, the heat treatment time becomes longer, and the productivity of the biomedical zirconium alloy may be reduced.
  • the heat treatment is performed for 0.1 hour or more and 5 hours or less in order to improve the productivity of the biomedical zirconium alloy.
  • the heat treatment time is about 0.1 hour. It is preferably 2 hours or less and more preferably 0.1 hours or more and 1 hour or less.
  • the cooling method is not particularly limited, but water cooling is preferable. Air cooling can also be applied. By such a production method, the biological zirconium alloy of the present invention can be produced.
  • a biomedical device can be obtained using the alloy of the present invention. Such a biomedical device is also referred to as “the device of the present invention”.
  • the instrument of the present invention can be obtained by, for example, melting a raw material containing Zr and Ta, solidifying the raw material into a predetermined shape, and further performing a predetermined heat treatment and cooling. Furthermore, you may perform surface treatments, such as machining, such as cutting and grinding, and various blast processes, as needed.
  • biomedical devices include aneurysm treatment devices (clips, embolization coils, stent grafts, etc.), stents (blood vessels, bile ducts, pancreatic ducts, tracheas, esophagus, intestinal tracts, etc.), indwelling in the body Devices (hemostatic clips, prosthetic valves, etc.), medical instruments (MRI compatible surgical instruments, devices (endoscopes, etc.), etc.), bone fixation instruments (eg osteosynthesis plates, osteosynthesis nails, osteosynthesis screws, bone fixation) Plate, intramedullary nail, etc.).
  • aneurysm treatment devices clips, embolization coils, stent grafts, etc.
  • stents blood vessels, bile ducts, pancreatic ducts, tracheas, esophagus, intestinal tracts, etc.
  • indwelling in the body Devices hemostatic clips, prosthetic valves, etc.
  • medical instruments
  • Ingots with a target composition of Ta of 10% by mass and 13% by mass were obtained one by one. Two ingots having Ta target compositions of 15 mass%, 18 mass%, 20 mass% and 30 mass% were obtained.
  • the elasticity modulus measurement was performed with casting. Further, for ingots having a target composition of Ta of 15% by mass, 18% by mass, 20% by mass and 30% by mass, heat treatment at a heat treatment temperature of 1200 ° C. for 30 minutes, followed by water cooling The elastic modulus was measured.
  • FIG. 2 is a graph showing the measurement results of the relationship between the Ta content and the magnetic susceptibility of the heat-treated material and the as-cast material.
  • the magnetic susceptibility of each alloy was measured by an Evans method in the atmosphere and at room temperature using a magnetic balance MSB-MKI (manufactured by Sherwood Scientific LTD).
  • a sample obtained by cutting a round bar of ⁇ 3 mm ⁇ 25 mm from an ingot was used. Moreover, it measured twice about the sample of the same composition, and those average values were made into the magnetic susceptibility in the alloy of each composition.
  • the literature value was used for the value of 0 mass% Ta in the graph of FIG.
  • the heat-treated material measurement was performed on a Zr-15 mass% Ta alloy, a Zr-20 mass% Ta alloy, and a Zr-30 mass% Ta alloy.
  • the magnetic susceptibility of the heat-treated material was equivalent to the magnetic susceptibility of the as-cast material, and a low value was obtained. From this result, the effect of heat treatment on the magnetic susceptibility was hardly recognized.
  • FIG. 3A is a metallographic photograph of a Zr-15 mass% Ta alloy (as cast) by a scanning electron microscope.
  • FIG. 3B is a metallographic photograph of a Zr-15 mass% Ta alloy (heat treated material) obtained by a scanning electron microscope.
  • FIG. 4A is a metallographic photograph of a Zr-18 mass% Ta alloy (as cast) by a scanning electron microscope.
  • FIG. 4B is a metallographic photograph of a Zr-18 mass% Ta alloy (heat treated material) obtained by a scanning electron microscope.
  • FIG. 5A is a metallographic photograph of a Zr-20 mass% Ta alloy (as cast) by a scanning electron microscope.
  • FIG. 5B is a metallographic photograph of a Zr-20 mass% Ta alloy (heat treated material) obtained by a scanning electron microscope.
  • FIG. 6 is a graph showing X-ray diffraction results of the as-cast material and the heat-treated material in a Zr-15 mass% Ta alloy, a Zr-18 mass% Ta alloy, and a Zr-20 mass% Ta alloy.
  • the surface mechanically polished with water-resistant abrasive paper is used as the measurement surface
  • the acceleration voltage is 40 kV
  • the current is 30 mA (in the air, at room temperature)
  • the measurement range (2 ⁇ ) is 20 ° to 120 °
  • the scanning speed is 1.2 °. Measurement was performed under the condition of / min.
  • the upper side represents the X-ray diffraction data of the heat-treated material
  • the lower side represents the X-ray diffraction data of the material as cast.
  • the constituent phases of the Zr-15 mass% Ta alloy (as cast) and the Zr-18 mass% Ta alloy (as cast) consisted of hexagonal martensite.
  • the constituent phases of the Zr-15 mass% Ta alloy (heat treated material) and the Zr-18 mass% Ta alloy (heat treated material) consist of orthorhombic martensite and hexagonal martensite. It was found to be composed of martensite including crystal martensite.
  • the constituent phase of the Zr-20 mass% Ta alloy (heat treatment material) is composed of a ⁇ -Zr phase and an ⁇ phase, and neither hexagonal martensite nor orthorhombic martensite was observed.
  • FIG. 7 is a diagram showing the shape of a test piece in a tensile test.
  • FIG. 8 is a stress-strain diagram of each alloy.
  • Table 2 shows the tensile test results of each alloy.
  • the fracture toughness values shown in Table 2 are the work required for the material to break, and can be expressed as integrated values of the stress-strain diagram shown in FIG. Moreover, a large fracture toughness value means that the material does not break easily even if the elastic limit is exceeded.
  • Zr-15 mass% Ta alloy (heat treated material) and Zr-18 mass% Ta alloy (heat treated material) have higher tensile strength, elongation and fracture toughness values than Zr-20 mass% Ta alloy (heat treated material). The result was obtained.
  • fracture toughness values equal to or higher than those of maraging steel and Ti-6Al-4V alloy were obtained.
  • FIG. 9 is a diagram illustrating a configuration of the bone fixation device 10.
  • the bone fixation device 10 includes an osteosynthesis plate 10a for fixing the bone 12 and an osteosynthesis screw 10b.
  • the biological zirconium alloy of the present invention has a low magnetic susceptibility and elastic modulus, and thus is useful for biological medical instruments such as bone anchors.

Abstract

 A zirconium alloy for an organism, the alloy containing Zr as a main ingredient and 12% to less than 20% of Ta (percentages expressed in terms of mass), the constituent phase comprising martensite including orthorhombic crystals of martensite.

Description

生体用ジルコニウム合金、その製造方法およびその生体用ジルコニウム合金を用いた生体用医療器具Biomedical zirconium alloy, method for producing the same, and biomedical device using the biomedical zirconium alloy
 本発明は生体用ジルコニウム合金、その製造方法およびその生体用ジルコニウム合金を用いた生体用医療器具に関する。 The present invention relates to a biomedical zirconium alloy, a production method thereof, and a biomedical device using the biomedical zirconium alloy.
 金属材料は主に力学的信頼性の点から多くの医療用デバイスに使用されており、中でも人工股関節、人工膝関節、ボーンプレート、人工歯根等のインプラント材料には、硬組織適合性に優れる純Ti、Ti合金が用いられている。しかし、これらの金属材料は磁気共鳴診断(MRI)装置による画像診断時に次のような点が問題視されている。 Metal materials are used in many medical devices mainly because of their mechanical reliability. Among them, implant materials such as artificial hip joints, artificial knee joints, bone plates, and artificial tooth roots are pure materials with excellent hard tissue compatibility. Ti and Ti alloys are used. However, these metal materials are considered to have the following problems at the time of image diagnosis using a magnetic resonance diagnosis (MRI) apparatus.
 体内に金属材料が留置された状態でMRIを行うと、部材周囲にアーチファクトと呼ばれる画像欠損が生じ、部材の骨癒合評価や位置確認を困難にする。アーチファクトの原因は、インプラント材料の磁化率と生体組織が持つ負の磁化率とのミスマッチにあり、その解決策として常磁性金属材料の低磁化率化もしくは負の磁化率を持つ金属材料の適用が挙げられる。負の磁化率を持つ反磁性金属材料(たとえば、金合金)は、強度に難があるため、本発明者らは常磁性金属材料により低磁化率化を試みた。 If MRI is performed with a metal material placed in the body, an image defect called artifact occurs around the member, making it difficult to evaluate and confirm the bone fusion of the member. The cause of the artifact is a mismatch between the magnetic susceptibility of the implant material and the negative magnetic susceptibility of the living tissue. As a solution to this problem, the use of a metal material having a low magnetic susceptibility or a negative magnetic susceptibility has been proposed. Can be mentioned. Since a diamagnetic metal material (eg, a gold alloy) having a negative magnetic susceptibility has difficulty in strength, the present inventors have attempted to lower the magnetic susceptibility with a paramagnetic metal material.
 ジルコニウム(Zr)はTiよりも機械的強度の面で劣るものの、Tiより低い細胞毒性と磁化率を有することから、Zrを主成分とする生体用低磁化率合金を提案するに至った。Ti合金を骨固定具の素材として適用した場合、骨固定具が骨に癒着してしまい、骨癒合後に抜去しにくくなる問題が近年報告されている。Zr基合金は素材表面に骨の主成分であるリン酸カルシウムを形成しない性質を有するため、上記問題を解消する。 Zirconium (Zr) is inferior in mechanical strength to Ti, but has lower cytotoxicity and magnetic susceptibility than Ti. Therefore, the present inventors have proposed a low magnetic susceptibility alloy for living body mainly composed of Zr. In recent years, when a Ti alloy is applied as a material for a bone anchor, a problem has been reported in which the bone anchor adheres to the bone and is difficult to remove after bone fusion. Zr-based alloys have the property of not forming calcium phosphate, the main component of bone, on the surface of the material, thus eliminating the above problems.
 Ti基合金は、その弾性率(約100~200GPa)が皮質骨の弾性率(約20GPa)よりもはるかに大きい。この弾性率ギャップは、骨への過重負荷遮蔽(ストレスシールディング)を引き起こし、結果的に骨萎縮を引き起こす。したがって、できるだけ皮質骨に近い低弾性Zr合金を開発できれば、抜去しやすく、ストレスシールディングが発生しにくい骨固定具用素材としても提供できる。 The elastic modulus of Ti-based alloy (about 100 to 200 GPa) is much larger than that of cortical bone (about 20 GPa). This elastic modulus gap causes overload shielding (stress shielding) to the bone, resulting in bone atrophy. Therefore, if a low-elasticity Zr alloy that is as close to cortical bone as possible can be developed, it can be provided as a material for a bone anchor that can be easily removed and stress shielding is less likely to occur.
 Zr基合金の磁化率や弾性率については、合金化元素や構成相の制御により大きく変化する可能性がある。これに関して、従来、いくつかの提案がなされている。
 例えば、特許文献1には、周期型元素周期表における第4~6族の主遷移金属のうち、Zrを主成分とし、該主成分よりも含有率の少ない副成分として、Zr以外の前記主遷移金属(Ti、V、Cr、Nb、Mo、Hf、Ta、W)の少なくとも1種を0.5~15質量%含むことを特徴とする生体用金属材料が記載されている。
 例えば、特許文献2には、Zrを主成分とし、Nbを15質量%超25質量%以下の範囲で含む生体用ジルコニウム合金が記載されている。
 例えば、特許文献3には、Ti 25~50質量%、Zr 25~60質量%、Nb 5~30質量%及びTa 5~40質量%からなり、かつTiに対するZrの質量比が0.5~1.5であり、かつTaに対するNbの質量比が0.125~1.5であるTi-Zr系合金が記載されている。
There is a possibility that the magnetic susceptibility and elastic modulus of the Zr-based alloy may change greatly by controlling the alloying elements and the constituent phases. In this regard, several proposals have been made in the past.
For example, in Patent Document 1, among the main transition metals of Groups 4 to 6 in the periodic element periodic table, Zr is a main component, and the main component other than Zr is used as a subcomponent having a lower content than the main component. A biomaterial is described that contains 0.5 to 15% by mass of at least one transition metal (Ti, V, Cr, Nb, Mo, Hf, Ta, W).
For example, Patent Document 2 describes a biological zirconium alloy containing Zr as a main component and containing Nb in a range of more than 15 mass% and 25 mass% or less.
For example, Patent Document 3 includes Ti 25 to 50% by mass, Zr 25 to 60% by mass, Nb 5 to 30% by mass and Ta 5 to 40% by mass, and the mass ratio of Zr to Ti is 0.5 to 0.5%. A Ti—Zr-based alloy having a mass ratio of Nb to Ta of 0.125 to 1.5 is described.
特開2010-75413号公報JP 2010-75413 A 特開2012-66017号公報JP 2012-66017 A 特開2001-3127号公報Japanese Patent Laid-Open No. 2001-3127
 医療分野では高解像度撮影のためMRIの高磁場化が進んでおり、今後より一層の低磁化率合金が求められる。特許文献1または2に記載のものに代表される従来の生体用ジルコニウム合金等は、弾性率に改善の余地があった。 In the medical field, the magnetic field of MRI is increasing for high-resolution imaging, and further low magnetic susceptibility alloys are required in the future. Conventional biomedical zirconium alloys represented by those described in Patent Document 1 or 2 have room for improvement in elastic modulus.
 本発明は上記の課題を解決することを目的としている。
 すなわち、本発明の目的は、弾性率が低い生体用ジルコニウム合金、その製造方法およびその生体用ジルコニウム合金を用いた生体用医療器具を提供することにある。
The present invention aims to solve the above problems.
That is, an object of the present invention is to provide a biomedical zirconium alloy having a low elastic modulus, a production method thereof, and a biomedical device using the biomedical zirconium alloy.
 本発明者は上記課題を解決するため鋭意検討し、本発明を完成させた。
 本発明は以下の(1)~(13)である。
(1)Zrを主成分とし、Taを12質量%以上20質量%未満の範囲で含有し、構成相が、斜方晶マルテンサイトを含むマルテンサイトからなる、生体用ジルコニウム合金。
(2)Taを12質量%以上20質量%未満の範囲で含有し、残部がZr及び不可避的不純物からなる、上記(1)に記載の生体用ジルコニウム合金。
(3)Taを15質量%以上20質量%未満の範囲で含有する、上記(2)に記載の生体用ジルコニウム合金。
(4)Taを15質量%以上18質量%以下の範囲で含有する、上記(3)に記載の生体用ジルコニウム合金。
(5)Taを15質量%より大きく18質量%以下の範囲で含有する、上記(4)に記載の生体用ジルコニウム合金。
(6)前記構成相が、斜方晶マルテンサイトと、六方晶マルテンサイトとからなる、上記(1)から(5)のいずれか1つに記載の生体用ジルコニウム合金。
(7)1100~1500℃の範囲で熱処理し、その後、200℃/分以上の冷却速度で冷却して得られる、上記(1)から(5)のいずれか1つに記載の生体用ジルコニウム合金。
(8)Zrを主成分とし、Taを12質量%以上20質量%未満の範囲で含有する金属成形体を1100~1500℃の範囲で熱処理し、その後、200℃/分以上の冷却速度で冷却して得られる、生体用ジルコニウム合金。
(9)上記(1)に記載の生体用ジルコニウム合金を用いた生体用医療器具。
(10)Zrを主成分とし、Taを12質量%以上20質量%未満の範囲で含有する金属成形体を1100~1500℃の範囲で熱処理し、その後、200℃/分以上の冷却速度で冷却する工程を備える、生体用ジルコニウム合金の製造方法。
(11)熱処理時間が、0.1時間以上5時間以下である、上記(10)に記載の生体用ジルコニウム合金の製造方法。
(12)熱処理時間が、0.1時間以上2時間以下である、上記(11)に記載の生体用ジルコニウム合金の製造方法。
(13)熱処理時間が、0.1時間以上1時間以下である、上記(12)に記載の生体用ジルコニウム合金の製造方法。
The inventor has intensively studied to solve the above-mentioned problems, and has completed the present invention.
The present invention includes the following (1) to (13).
(1) A biological zirconium alloy containing Zr as a main component, containing Ta in a range of 12% by mass or more and less than 20% by mass, and the constituent phase comprising martensite including orthorhombic martensite.
(2) The biomedical zirconium alloy according to (1), wherein Ta is contained in a range of 12% by mass or more and less than 20% by mass, and the balance is made of Zr and inevitable impurities.
(3) The biomedical zirconium alloy according to (2), which contains Ta in a range of 15% by mass or more and less than 20% by mass.
(4) The biomedical zirconium alloy according to (3), which contains Ta in a range of 15% by mass to 18% by mass.
(5) The biomedical zirconium alloy according to (4), which contains Ta in a range of more than 15% by mass and 18% by mass or less.
(6) The biological zirconium alloy according to any one of (1) to (5), wherein the constituent phase is composed of orthorhombic martensite and hexagonal martensite.
(7) The biomedical zirconium alloy according to any one of (1) to (5), obtained by heat treatment in the range of 1100 to 1500 ° C. and then cooling at a cooling rate of 200 ° C./min or more. .
(8) A metal molded body containing Zr as a main component and containing Ta in a range of 12% by mass to less than 20% by mass is heat-treated in a range of 1100 to 1500 ° C., and then cooled at a cooling rate of 200 ° C./min or more. Zirconium alloy for living body obtained as above.
(9) A biomedical instrument using the biomedical zirconium alloy according to (1) above.
(10) A metal molded body containing Zr as a main component and containing Ta in a range of 12% by mass to less than 20% by mass is heat-treated in a range of 1100 to 1500 ° C., and then cooled at a cooling rate of 200 ° C./min or more. The manufacturing method of the zirconium alloy for biological bodies provided with the process to do.
(11) The method for producing a zirconium alloy for living body according to (10), wherein the heat treatment time is 0.1 hour or more and 5 hours or less.
(12) The method for producing a zirconium alloy for living body according to (11), wherein the heat treatment time is 0.1 hour or more and 2 hours or less.
(13) The method for producing a zirconium alloy for living body according to (12), wherein the heat treatment time is 0.1 hour or more and 1 hour or less.
 本発明によれば、磁化率および弾性率が共に低い生体用ジルコニウム合金、その製造方法およびその生体用ジルコニウム合金を用いた生体用医療器具を提供することができる。 According to the present invention, it is possible to provide a biomedical zirconium alloy having both a low magnetic susceptibility and a low elastic modulus, a method for producing the same, and a biomedical device using the biomedical zirconium alloy.
Ta含有率と弾性率との関係の測定結果を示すグラフである。It is a graph which shows the measurement result of the relationship between Ta content rate and an elasticity modulus. 熱処理材及び鋳造まま材におけるTa含有率と磁化率との関係の測定結果を示すグラフである。It is a graph which shows the measurement result of the relationship between Ta content rate and magnetic susceptibility in a heat-treated material and as-cast material. Zr-15質量%Ta合金(鋳造まま材)の走査型電子顕微鏡による金属組織写真である。3 is a metallographic photograph of a Zr-15 mass% Ta alloy (as cast) by a scanning electron microscope. Zr-15質量%Ta合金(熱処理材)の走査型電子顕微鏡による金属組織写真である。3 is a metallographic photograph of a Zr-15 mass% Ta alloy (heat treated material) by a scanning electron microscope. Zr-18質量%Ta合金(鋳造まま材)の走査型電子顕微鏡による金属組織写真である。It is a metallographic photograph of a Zr-18 mass% Ta alloy (as cast) by a scanning electron microscope. Zr-18質量%Ta合金(熱処理材)の走査型電子顕微鏡による金属組織写真である。3 is a metallographic photograph of a Zr-18 mass% Ta alloy (heat treated material) by a scanning electron microscope. Zr-20質量%Ta合金(鋳造まま材)の走査型電子顕微鏡による金属組織写真である。It is a metallographic photograph of a Zr-20 mass% Ta alloy (as cast) by a scanning electron microscope. Zr-20質量%Ta合金(熱処理材)の走査型電子顕微鏡による金属組織写真である。3 is a metallographic photograph of a Zr-20 mass% Ta alloy (heat treated material) by a scanning electron microscope. Zr-15質量%Ta合金、Zr-18質量%Ta合金及びZr-20質量%Ta合金における鋳造まま材と熱処理材とのX線回折結果を示すグラフである。3 is a graph showing X-ray diffraction results of an as-cast material and a heat-treated material in a Zr-15 mass% Ta alloy, a Zr-18 mass% Ta alloy, and a Zr-20 mass% Ta alloy. 引張試験の試験片形状を示す図である。It is a figure which shows the test piece shape of a tension test. 各合金の応力―ひずみ線図である。It is a stress-strain diagram of each alloy. 骨固定器具の構成を示す図である。It is a figure which shows the structure of a bone fixing device.
 本発明について説明する。
 本発明は、Zrを主成分とし、Taを12質量%以上20質量%未満の範囲で含有する金属成形体を1100~1500℃の範囲で熱処理し、その後、200℃/分以上の冷却速度で冷却して得られる生体用ジルコニウム合金である。
 このような生体用ジルコニウム合金を、以下では「本発明の合金」ともいう。
The present invention will be described.
In the present invention, a metal molded body containing Zr as a main component and containing Ta in a range of 12% by mass or more and less than 20% by mass is heat-treated in a range of 1100 to 1500 ° C., and then at a cooling rate of 200 ° C./min or more. It is a biological zirconium alloy obtained by cooling.
Such a biomedical zirconium alloy is hereinafter also referred to as “the alloy of the present invention”.
 本発明の合金の各成分について説明する。
 なお、本発明の合金におけるC含有率およびS含有率は高周波燃焼-赤外線吸収法によって測定して得た値とし、Si含有率は二酸化ケイ素重量法によって測定して得た値とし、O含有率は赤外線吸収法によって測定して得た値とし、N含有率は熱伝導度法によって測定して得た値とし、その他の成分の含有率はICP-AES法によって測定して得た値とする。
Each component of the alloy of the present invention will be described.
In the alloy of the present invention, the C content and the S content are values obtained by measurement by a high-frequency combustion-infrared absorption method, the Si content is a value obtained by measurement by a silicon dioxide weight method, and the O content is Is the value obtained by measuring by infrared absorption method, N content is the value obtained by measuring by thermal conductivity method, and the content of other components is the value obtained by measuring by ICP-AES method. .
<Zr>
 本発明の合金はZrを主成分として含む。「主成分」とは30質量%以上の含有率であることを意味するものとする。本発明の合金は、Zrを40質量%以上含むことが好ましく、50質量%以上含むことがより好ましく、60質量%以上含むことがより好ましく、65質量%以上含むことがさらに好ましい。このような場合、磁化率および弾性率がより低い本発明の合金を得ることができるからである。
 以下、特に断りがない限り、「主成分」とは、上記のような意味で用いるものとする。
<Zr>
The alloy of the present invention contains Zr as a main component. “Main component” means a content of 30% by mass or more. The alloy of the present invention preferably contains 40 mass% or more of Zr, more preferably contains 50 mass% or more, more preferably contains 60 mass% or more, and more preferably contains 65 mass% or more. In such a case, the alloy of the present invention having a lower magnetic susceptibility and elastic modulus can be obtained.
Hereinafter, unless otherwise specified, the “main component” is used in the meaning as described above.
 ZrはTiと比較して磁化率が低い。本発明の合金はZrを主成分とするため磁化率が低く、MRI診断時のアーチファクトを抑制する。 Zr has a lower magnetic susceptibility than Ti. Since the alloy of the present invention is mainly composed of Zr, the magnetic susceptibility is low, and artifacts during MRI diagnosis are suppressed.
 本発明の合金はZrを主成分とし、Taを特定範囲で含み、その他は不可避的不純物からなることが好ましい。不可避的不純物とは、意図的に添加しなくても原料や製造工程等から混入する可能性がある成分を意味する。
 本発明の合金において、B、C、N、O、Na、Mg、Si、P、S、K、CaおよびMn等は不純物成分である。これらの含有率は低いほど好ましい。
The alloy of the present invention preferably contains Zr as a main component, contains Ta in a specific range, and the other consists of inevitable impurities. Inevitable impurities mean components that may be mixed from raw materials, manufacturing processes, etc. without intentional addition.
In the alloy of the present invention, B, C, N, O, Na, Mg, Si, P, S, K, Ca, Mn, and the like are impurity components. The lower the content, the better.
<Ta>
 本発明の合金はTaを12質量%以上20質量%未満の範囲で含有する。
 特定の熱処理を施すことを前提とした場合、Zrを主成分とし、Taを20質量%以上で含有すると弾性率が高い合金が得られるものの、20質量%未満(好ましくは18質量%以下程度)であると極めて弾性率が低い合金が得られることを本発明者は見出した。すなわち、弾性率について臨界的条件が存在することを、本発明者は見出した。
 弾性率が低いと、例えば本発明の合金を骨固定具として用いた場合に、荷重負荷が骨組織に伝わりやすく、骨吸収が抑制されるという効果を奏する。
<Ta>
The alloy of the present invention contains Ta in the range of 12 mass% or more and less than 20 mass%.
Assuming that a specific heat treatment is performed, an alloy having a high elastic modulus is obtained when Zr is the main component and Ta is contained in an amount of 20% by mass or more, but less than 20% by mass (preferably about 18% by mass or less). The inventors have found that an alloy having a very low elastic modulus can be obtained. That is, the present inventors have found that there is a critical condition for the elastic modulus.
When the elastic modulus is low, for example, when the alloy of the present invention is used as a bone fixture, the load is easily transmitted to the bone tissue, and the bone resorption is suppressed.
 本発明の合金におけるTa含有率は13質量%以上であることが好ましく、14質量%以上であることがより好ましく、15質量%以上であることがさらに好ましい。なお、Ta含有率は、15質量%より大きいことがより好ましい。また、Ta含有率は19質量%以下であることがより好ましく、18質量%以下であることがさらに好ましい。弾性率がより低い生体用ジルコニウム合金が得られるからである。
 このように、Ta含有率は、例えば、15質量%以上20質量%未満であることが好ましく、15質量%以上18質量%以下であることがより好ましく、15質量%より大きく18質量%以下であることが更に好ましい。
The Ta content in the alloy of the present invention is preferably 13% by mass or more, more preferably 14% by mass or more, and further preferably 15% by mass or more. The Ta content is more preferably greater than 15% by mass. Further, the Ta content is more preferably 19% by mass or less, and further preferably 18% by mass or less. This is because a biological zirconium alloy having a lower elastic modulus can be obtained.
Thus, for example, the Ta content is preferably 15% by mass or more and less than 20% by mass, more preferably 15% by mass or more and 18% by mass or less, and more than 15% by mass and 18% by mass or less. More preferably it is.
 本発明の合金は、上記のように、Zrを主成分とし、Taを12質量%以上20質量%未満の範囲で含有する金属成形体について、特定の熱処理および冷却を施したものである。 As described above, the alloy of the present invention is obtained by subjecting a metal molded body containing Zr as a main component and Ta in a range of 12 mass% to less than 20 mass% to specific heat treatment and cooling.
 金属成形体は、原料を溶解し、鋳造して得られたものであることが好ましい。
 例えば、Zr99.5質量%、Ta99.5質量%の溶解原料を用い、Ar雰囲気中で非消耗電極式アーク溶解法にて合金を溶解し、所望の鋳型を用いて鋳造することで、金属成形体を得ることができる。
The metal compact is preferably obtained by melting and casting the raw material.
For example, by using a melting raw material of Zr 99.5% by mass and Ta 99.5% by mass, melting the alloy in an Ar atmosphere by a non-consumable electrode type arc melting method, and casting using a desired mold, metal forming You can get a body.
 金属成形体は、粉末冶金によって得ることもできる。
 例えば、金属粉末とバインダとを混合して所望の形状に成形した後、脱脂処理、焼結を施して金属成形体を得ることができる。具体的には、例えば1~30μm程度の平均粒子径の金属材料粉末を用い、これとバインダとを混練し、混練物を得た後、得られた混練物を射出成形機により型内に射出し、得られたものを大気中で100~750℃程度で脱脂処理して成形体を得ることができる。得られたものを、焼結温度1000~1500℃で焼結し、焼結体からなる金属成形体を得る。
The metal compact can also be obtained by powder metallurgy.
For example, after mixing metal powder and a binder and shape | molding in a desired shape, a degreasing process and sintering can be given and a metal molded object can be obtained. Specifically, for example, a metal material powder having an average particle diameter of about 1 to 30 μm is used, and this and a binder are kneaded to obtain a kneaded product, and the obtained kneaded product is injected into a mold by an injection molding machine. The resulting product can be degreased at about 100 to 750 ° C. in the atmosphere to obtain a molded body. The obtained product is sintered at a sintering temperature of 1000 to 1500 ° C. to obtain a metal molded body made of the sintered body.
<熱処理>
 上記のようにして得られる金属成形体を1100~1500℃の範囲で熱処理する。
 この温度を以下では熱処理温度ともいう。
 熱処理温度は1150℃以上であることが好ましい。また、熱処理温度は1300℃以下であることが好ましく、1250℃以下であることがより好ましい。熱処理温度は1200℃程度であることが好ましい。なお、熱処理については、酸化防止等のために、真空雰囲気または不活性ガス雰囲気で行うことが好ましい。
 本発明の生体用ジルコニウム合金では、Zrを主成分とし、Taを12質量%以上20質量%未満の範囲で含有する金属成形体を、1100℃~1500℃の範囲で熱処理(溶体化処理、均質化処理)を行っているので、この熱処理温度の範囲では、金属成形体は、熱処理中にβ―Zrの単相となる。
 このβ―Zrは、マルテンサイト変態を起こす。このため、熱処理された金属成形体を、マルテンサイト変態を起こさせるために水冷等して急冷すると、生体用ジルコニウム合金の構成相は、斜方晶マルテンサイトを含むマルテンサイトから構成される。例えば、生体用ジルコニウム合金の構成相は、斜方晶マルテンサイトと、六方晶マルテンサイトとから構成される。
 この金属成形体を、1100℃より低い熱処理温度で熱処理する場合には、金属成形体は、熱処理中に固相分離してβ―Zrとβ―Taとの2相共存状態になる可能性がある。この熱処理された金属成形体を水冷等して急冷すると、β―Zrがマルテンサイト変態を起こすのに対して、β―Taはマルテンサイト変態を起こさないので、生体用ジルコニウム合金の構成相に、β―Taが含まれる可能性がある。生体用ジルコニウム合金の構成相にβ―Taが含まれると、生体用ジルコニウム合金の延性が低下する可能性があるので、β―Taについては抑制されていることが好ましい。
 このような理由から、金属成形体の熱処理については、1100℃~1500℃の範囲で行われる。なお、熱処理温度が1500℃を越えると、熱処理温度が高温になるので生体用ジルコニウム合金の生産性が低下する可能性がある。したがって、生体用ジルコニウム合金の生産性向上からも、この熱処理温度の範囲で熱処理されることが好ましい。
<Heat treatment>
The metal molded body obtained as described above is heat-treated in the range of 1100-1500 ° C.
Hereinafter, this temperature is also referred to as a heat treatment temperature.
The heat treatment temperature is preferably 1150 ° C. or higher. The heat treatment temperature is preferably 1300 ° C. or less, and more preferably 1250 ° C. or less. The heat treatment temperature is preferably about 1200 ° C. The heat treatment is preferably performed in a vacuum atmosphere or an inert gas atmosphere in order to prevent oxidation.
In the biomedical zirconium alloy of the present invention, a metal molded body containing Zr as a main component and containing Ta in a range of 12% by mass to less than 20% by mass is subjected to heat treatment (solution treatment, homogeneous treatment) in the range of 1100 ° C to 1500 ° C. In this heat treatment temperature range, the metal formed body becomes a single phase of β-Zr during the heat treatment.
This β-Zr causes martensitic transformation. For this reason, when the heat-treated metal molded body is quenched by water cooling or the like in order to cause martensite transformation, the constituent phase of the biological zirconium alloy is composed of martensite containing orthorhombic martensite. For example, the constituent phase of the biomedical zirconium alloy is composed of orthorhombic martensite and hexagonal martensite.
When this metal formed body is heat-treated at a heat treatment temperature lower than 1100 ° C., the metal formed body may be subjected to solid phase separation during the heat treatment to be in a two-phase coexistence state of β-Zr and β-Ta. is there. When this heat-treated metal compact is quenched with water or the like, β-Zr undergoes martensitic transformation, whereas β-Ta does not undergo martensitic transformation. β-Ta may be included. When β-Ta is contained in the constituent phase of the biological zirconium alloy, the ductility of the biological zirconium alloy may be lowered. Therefore, it is preferable that β-Ta is suppressed.
For these reasons, the heat treatment of the metal molded body is performed in the range of 1100 ° C. to 1500 ° C. If the heat treatment temperature exceeds 1500 ° C., the heat treatment temperature becomes high, and the productivity of the biomedical zirconium alloy may be reduced. Therefore, it is preferable that the heat treatment is performed within the range of the heat treatment temperature in order to improve the productivity of the biological zirconium alloy.
 このような熱処理温度にて金属成形体を熱処理する時間を、以下では熱処理時間ともいう。
 熱処理時間は特に限定されないものの、0.1時間以上であることが好ましく、0.25時間以上であることが好ましい。また、熱処理時間は5時間以下であることが好ましく、2時間以下であることが好ましく、1時間以下であることがさらに好ましい。熱処理時間は0.5時間程度であることが好ましい。
 このように、熱処理時間については、0.1時間以上5時間以下で熱処理することにより、より均質化することが可能となる。なお、熱処理時間が5時間を越えると、熱処理時間が長くなるので生体用ジルコニウム合金の生産性が低下する可能性がある。したがって、生体用ジルコニウム合金の生産性向上からも、0.1時間以上5時間以下で熱処理されることが好ましい。
 また、熱処理時間が長くなると、生体用ジルコニウム合金の構成相にβ―Taが形成される可能性があることから、β―Taの形成を抑制するために、熱処理時間については、0.1時間以上2時間以下であることが好ましく、0.1時間以上1時間以下であることがさらに好ましい。
The time for heat-treating the metal molded body at such a heat treatment temperature is also referred to as heat treatment time below.
Although the heat treatment time is not particularly limited, it is preferably 0.1 hour or longer, and preferably 0.25 hour or longer. The heat treatment time is preferably 5 hours or less, preferably 2 hours or less, and more preferably 1 hour or less. The heat treatment time is preferably about 0.5 hours.
As described above, the heat treatment time can be further homogenized by performing the heat treatment for 0.1 hours or more and 5 hours or less. Note that if the heat treatment time exceeds 5 hours, the heat treatment time becomes longer, and the productivity of the biomedical zirconium alloy may be reduced. Therefore, it is preferable that the heat treatment is performed for 0.1 hour or more and 5 hours or less in order to improve the productivity of the biomedical zirconium alloy.
In addition, if the heat treatment time becomes longer, β-Ta may be formed in the constituent phase of the biological zirconium alloy. Therefore, in order to suppress the formation of β-Ta, the heat treatment time is about 0.1 hour. It is preferably 2 hours or less and more preferably 0.1 hours or more and 1 hour or less.
<冷却>
 上記のような熱処理温度にて金属成形体を熱処理した後、200℃/分以上の冷却速度で冷却する。
 冷却速度は200℃/分以上であることが好ましく、300℃/分以上であることがより好ましい。
 このように、200℃/分以上の冷却速度で急冷することにより、上記のような1100~1500℃の範囲の熱処理温度にて熱処理した金属成形体にマルテンサイト変態を生じさせることが可能となる。
<Cooling>
After heat-treating the metal molded body at the heat treatment temperature as described above, it is cooled at a cooling rate of 200 ° C./min or more.
The cooling rate is preferably 200 ° C./min or more, and more preferably 300 ° C./min or more.
Thus, by rapidly cooling at a cooling rate of 200 ° C./min or more, it becomes possible to cause martensitic transformation in the metal molded body heat-treated at the heat treatment temperature in the range of 1100 to 1500 ° C. as described above. .
 冷却方法は特に限定されないが、水冷であることが好ましい。また、空冷を適用することもできる。
 このような製造方法により、本発明の生体用ジルコニウム合金を製造することが可能となる。
The cooling method is not particularly limited, but water cooling is preferable. Air cooling can also be applied.
By such a production method, the biological zirconium alloy of the present invention can be produced.
<生体用医療器具>
 本発明の合金を用いて生体用医療器具を得ることができる。
 このような生体用医療器具を「本発明の器具」ともいう。
<Medical medical device>
A biomedical device can be obtained using the alloy of the present invention.
Such a biomedical device is also referred to as “the device of the present invention”.
 本発明の器具は、例えば、ZrおよびTaを含む原料を溶解した後、所定の形状に凝固させ、さらに所定の熱処理および冷却を施して得ることができる。さらに、必要に応じて切削、研削のような機械加工、各種ブラスト処理のような表面処理等を施してもよい。 The instrument of the present invention can be obtained by, for example, melting a raw material containing Zr and Ta, solidifying the raw material into a predetermined shape, and further performing a predetermined heat treatment and cooling. Furthermore, you may perform surface treatments, such as machining, such as cutting and grinding, and various blast processes, as needed.
 生体用医療器具の具体例としては、動脈瘤治療用器具(クリップ、塞栓用コイル、ステントグラフト等)、ステント(血管用、胆管用、膵管用、気管用、食道用、腸管用等)、体内留置デバイス(止血クリップ、人工弁等)、医療用器具(MRI対応手術器具、装置(内視鏡等)等)、骨固定器具(例えば骨接合板、骨接合用くぎ、骨接合用ねじ、骨固定用プレート、髄内釘等)が挙げられる。 Specific examples of biomedical devices include aneurysm treatment devices (clips, embolization coils, stent grafts, etc.), stents (blood vessels, bile ducts, pancreatic ducts, tracheas, esophagus, intestinal tracts, etc.), indwelling in the body Devices (hemostatic clips, prosthetic valves, etc.), medical instruments (MRI compatible surgical instruments, devices (endoscopes, etc.), etc.), bone fixation instruments (eg osteosynthesis plates, osteosynthesis nails, osteosynthesis screws, bone fixation) Plate, intramedullary nail, etc.).
 次に、本発明の実施例および比較例を説明する。
<Zr-Ta合金の溶製>
 Zr99.5質量%、Ta99.5質量%の溶解原料を用い、Ar雰囲気中で非消耗電極式アーク溶解法にて合金を溶製した。合金の偏析を防ぐため、3度溶解を行い、その都度、インゴットを反転させた。
 これにより、6組成のZr-Ta合金(各350g、約500mm×400mm×15mm)のインゴットを得た。6個の合金におけるTaの目標組成は、10質量%、13質量%、15質量%、18質量%、20質量%、および30質量%であり、残部はいずれもZrである。
Next, examples and comparative examples of the present invention will be described.
<Melting of Zr-Ta alloy>
An alloy was melted by a non-consumable electrode type arc melting method in an Ar atmosphere using melting raw materials of Zr 99.5 mass% and Ta 99.5 mass%. In order to prevent segregation of the alloy, melting was performed three times, and the ingot was inverted each time.
Thus, an ingot of a Zr—Ta alloy having six compositions (each 350 g, approximately 500 mm × 400 mm × 15 mm) was obtained. The target composition of Ta in the six alloys is 10 mass%, 13 mass%, 15 mass%, 18 mass%, 20 mass%, and 30 mass%, and the balance is Zr.
 Taの目標組成が10質量%および13質量%のインゴットを1つずつ得た。また、Taの目標組成が15質量%、18質量%、20質量%および30質量%のインゴットは2つずつ得た。 Ingots with a target composition of Ta of 10% by mass and 13% by mass were obtained one by one. Two ingots having Ta target compositions of 15 mass%, 18 mass%, 20 mass% and 30 mass% were obtained.
 そして、各合金について、鋳造ままで、弾性率測定を行った。
 また、Taの目標組成が15質量%、18質量%、20質量%および30質量%のインゴットについては、1200℃の熱処理温度にて30分間の熱処理時間の熱処理を施し、その後、水冷したものについて、弾性率測定を行った。
And about each alloy, the elasticity modulus measurement was performed with casting.
Further, for ingots having a target composition of Ta of 15% by mass, 18% by mass, 20% by mass and 30% by mass, heat treatment at a heat treatment temperature of 1200 ° C. for 30 minutes, followed by water cooling The elastic modulus was measured.
<弾性率測定>
 JE-RT(日本テクノプラス社製)を用いて、大気中かつ室温中にて自由共振法によって、各合金の弾性率を測定した。サンプルは、インゴットからφ3mm×25mmの丸棒を切り出したものを用いた。また、同一組成のサンプルについて2回測定し、それらの平均値を各組成の合金における弾性率とした。測定結果を表1および図1に示す。なお、図1中の0質量%Taの値には文献値を用いた。
<Elastic modulus measurement>
The elastic modulus of each alloy was measured by a free resonance method in the air and at room temperature using JE-RT (manufactured by Nippon Techno Plus). A sample obtained by cutting a round bar of φ3 mm × 25 mm from an ingot was used. Moreover, it measured twice about the sample of the same composition, and made those average values into the elasticity modulus in the alloy of each composition. The measurement results are shown in Table 1 and FIG. In addition, the literature value was used for the value of 0 mass% Ta in FIG.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1および図1に示すように、本発明の合金に相当する、熱処理を施した15質量%Ta合金および18質量%Ta合金の場合に、弾性率が極めて低くなった。 As shown in Table 1 and FIG. 1, in the case of heat-treated 15% by mass Ta alloy and 18% by mass Ta alloy corresponding to the alloy of the present invention, the elastic modulus was extremely low.
 また、熱処理を施した15質量%Ta合金および18質量%Ta合金の磁化率はMRI撮影が問題なく行える値であり、同様に開発が進められているZr-Mo合金やZr-Nb合金と比べても、同等もしくは低値である。
 図2は、熱処理材及び鋳造まま材におけるTa含有率と磁化率との関係の測定結果を示すグラフである。磁化率の測定については、磁気天秤MSB-MKI(Sherwood Scientific LTD社製)を用いて、大気中かつ室温中にてエバンス法によって、各合金の磁化率を測定した。サンプルは、インゴットからφ3mm×25mmの丸棒を切り出したものを用いた。また、同一組成のサンプルについて2回測定し、それらの平均値を各組成の合金における磁化率とした。なお、図2のグラフにおける0質量%Taの値には文献値を用いた。熱処理材については、Zr-15質量%Ta合金、Zr-20質量%Ta合金、Zr-30質量%Ta合金について測定を行った。
 図2のグラフに示すように、熱処理材の磁化率は、鋳造まま材の磁化率と同等であり、低い値が得られた。この結果から、磁化率への熱処理の影響については、ほとんど認められなかった。
In addition, the magnetic susceptibility of the heat-treated 15% by mass Ta alloy and 18% by mass Ta alloy is a value at which MRI imaging can be performed without any problem, and compared with Zr—Mo alloys and Zr—Nb alloys that are being developed in the same way. However, it is equivalent or low.
FIG. 2 is a graph showing the measurement results of the relationship between the Ta content and the magnetic susceptibility of the heat-treated material and the as-cast material. Regarding the measurement of magnetic susceptibility, the magnetic susceptibility of each alloy was measured by an Evans method in the atmosphere and at room temperature using a magnetic balance MSB-MKI (manufactured by Sherwood Scientific LTD). A sample obtained by cutting a round bar of φ3 mm × 25 mm from an ingot was used. Moreover, it measured twice about the sample of the same composition, and those average values were made into the magnetic susceptibility in the alloy of each composition. In addition, the literature value was used for the value of 0 mass% Ta in the graph of FIG. As for the heat-treated material, measurement was performed on a Zr-15 mass% Ta alloy, a Zr-20 mass% Ta alloy, and a Zr-30 mass% Ta alloy.
As shown in the graph of FIG. 2, the magnetic susceptibility of the heat-treated material was equivalent to the magnetic susceptibility of the as-cast material, and a low value was obtained. From this result, the effect of heat treatment on the magnetic susceptibility was hardly recognized.
<組織>
 添加元素が比較的少ない鋳造ままのZr合金で認められるマルテンサイトは六方晶のα’であるのに対し、15質量%Taおよび18質量%Ta合金の熱処理材で認められるマルテンサイトは斜方晶のα'であると組織観察やX線回折ピークから推察でき,この結晶構造の変化が少なくとも弾性率の低下に寄与していると推察される。
<Organization>
The martensite found in the as-cast Zr alloy with relatively few additive elements is hexagonal α ', whereas the martensite found in the heat-treated materials of 15% Ta and 18% Ta alloy is orthorhombic. It can be inferred from the structural observation and X-ray diffraction peak that it is α ′, and it is presumed that this change in crystal structure contributes at least to a decrease in elastic modulus.
 図3Aは、Zr-15質量%Ta合金(鋳造まま材)の走査型電子顕微鏡による金属組織写真である。図3Bは、Zr-15質量%Ta合金(熱処理材)の走査型電子顕微鏡による金属組織写真である。図4Aは、Zr-18質量%Ta合金(鋳造まま材)の走査型電子顕微鏡による金属組織写真である。図4Bは、Zr-18質量%Ta合金(熱処理材)の走査型電子顕微鏡による金属組織写真である。図5Aは、Zr-20質量%Ta合金(鋳造まま材)の走査型電子顕微鏡による金属組織写真である。図5Bは、Zr-20質量%Ta合金(熱処理材)の走査型電子顕微鏡による金属組織写真である。 FIG. 3A is a metallographic photograph of a Zr-15 mass% Ta alloy (as cast) by a scanning electron microscope. FIG. 3B is a metallographic photograph of a Zr-15 mass% Ta alloy (heat treated material) obtained by a scanning electron microscope. FIG. 4A is a metallographic photograph of a Zr-18 mass% Ta alloy (as cast) by a scanning electron microscope. FIG. 4B is a metallographic photograph of a Zr-18 mass% Ta alloy (heat treated material) obtained by a scanning electron microscope. FIG. 5A is a metallographic photograph of a Zr-20 mass% Ta alloy (as cast) by a scanning electron microscope. FIG. 5B is a metallographic photograph of a Zr-20 mass% Ta alloy (heat treated material) obtained by a scanning electron microscope.
 図6は、Zr-15質量%Ta合金、Zr-18質量%Ta合金及びZr-20質量%Ta合金における鋳造まま材と熱処理材とのX線回折結果を示すグラフである。X線回折測定については、耐水研磨紙で機械研磨した面を測定面とし、加速電圧40kV、電流30mA(大気中、室温)、測定範囲(2θ)20°~120°、走査速度1.2°/minの条件の下、測定を行った。なお、図6のグラフの各合金において、上側が熱処理材のX線回折データを表しており、下側が鋳造まま材のX線回折データを表している。 FIG. 6 is a graph showing X-ray diffraction results of the as-cast material and the heat-treated material in a Zr-15 mass% Ta alloy, a Zr-18 mass% Ta alloy, and a Zr-20 mass% Ta alloy. For X-ray diffraction measurement, the surface mechanically polished with water-resistant abrasive paper is used as the measurement surface, the acceleration voltage is 40 kV, the current is 30 mA (in the air, at room temperature), the measurement range (2θ) is 20 ° to 120 °, and the scanning speed is 1.2 °. Measurement was performed under the condition of / min. In addition, in each alloy of the graph of FIG. 6, the upper side represents the X-ray diffraction data of the heat-treated material, and the lower side represents the X-ray diffraction data of the material as cast.
 金属組織観察とX線回折結果から、Zr-15質量%Ta合金(鋳造まま材)及びZr-18質量%Ta合金(鋳造まま材)の構成相は、六方晶マルテンサイトからなることがわかった。これに対して、Zr-15質量%Ta合金(熱処理材)及びZr-18質量%Ta合金(熱処理材)の構成相は、斜方晶マルテンサイトと、六方晶マルテンサイトとからなり、斜方晶マルテンサイトを含むマルテンサイトから構成されることがわかった。
 また、Zr-20質量%Ta合金(熱処理材)の構成相は、β―Zr相とω相とから構成されており、六方晶マルテンサイト及び斜方晶マルテンサイトのいずれも認められなかった。
 この結果から、Zr-15質量%Ta合金(熱処理材)及びZr-18質量%Ta合金(熱処理材)における斜方晶マルテンサイトの形成が、弾性率の低下に寄与していると推察される。
 なお、Zr-15質量%Ta合金(熱処理材)、Zr-18質量%Ta合金(熱処理材)及びZr-20質量%Ta合金(熱処理材)では、X線回折結果からβ―Taについては検出されてなく、β―Taの形成が抑制されていた。
From the observation of the metal structure and the X-ray diffraction results, it was found that the constituent phases of the Zr-15 mass% Ta alloy (as cast) and the Zr-18 mass% Ta alloy (as cast) consisted of hexagonal martensite. . On the other hand, the constituent phases of the Zr-15 mass% Ta alloy (heat treated material) and the Zr-18 mass% Ta alloy (heat treated material) consist of orthorhombic martensite and hexagonal martensite. It was found to be composed of martensite including crystal martensite.
The constituent phase of the Zr-20 mass% Ta alloy (heat treatment material) is composed of a β-Zr phase and an ω phase, and neither hexagonal martensite nor orthorhombic martensite was observed.
From this result, it is inferred that the formation of orthorhombic martensite in the Zr-15 mass% Ta alloy (heat treated material) and the Zr-18 mass% Ta alloy (heat treated material) contributes to the decrease in the elastic modulus. .
For Zr-15 mass% Ta alloy (heat treated material), Zr-18 mass% Ta alloy (heat treated material) and Zr-20 mass% Ta alloy (heat treated material), β-Ta was detected from the X-ray diffraction results. In other words, the formation of β-Ta was suppressed.
<引張特性>
 次に、引張特性について説明する。引張試験の試験片には、Zr-15質量%Ta合金(熱処理材)、Zr-18質量%Ta合金(熱処理材)及びZr-20質量%Ta合金(熱処理材)を用いた。引張試験については、JIS Z2241に準拠して、室温大気中で行った。図7は、引張試験の試験片形状を示す図である。
<Tensile properties>
Next, the tensile properties will be described. A Zr-15 mass% Ta alloy (heat treated material), a Zr-18 mass% Ta alloy (heat treated material) and a Zr-20 mass% Ta alloy (heat treated material) were used as test pieces for the tensile test. The tensile test was performed in the air at room temperature in accordance with JIS Z2241. FIG. 7 is a diagram showing the shape of a test piece in a tensile test.
 図8は、各合金の応力―ひずみ線図である。表2は、各合金の引張試験結果を示している。なお、表2に示す破壊靱性値は、材料が破断するのに要する仕事量のことであり、図8に示す応力―ひずみ線図の積分値として表すことができる。また、破壊靱性値が大きいことは、弾性限界を超えても材料が容易に破断しないことを意味している。 FIG. 8 is a stress-strain diagram of each alloy. Table 2 shows the tensile test results of each alloy. The fracture toughness values shown in Table 2 are the work required for the material to break, and can be expressed as integrated values of the stress-strain diagram shown in FIG. Moreover, a large fracture toughness value means that the material does not break easily even if the elastic limit is exceeded.
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 Zr-15質量%Ta合金(熱処理材)及びZr-18質量%Ta合金(熱処理材)は、Zr-20質量%Ta合金(熱処理材)よりも、引張強さ、伸び、破壊靱性値が大きくなる結果が得られた。また、Zr-15質量%Ta合金(熱処理材)及びZr-18質量%Ta合金(熱処理材)については、マルエージ鋼やTi-6Al-4V合金と同等以上の破壊靱性値が得られた。 Zr-15 mass% Ta alloy (heat treated material) and Zr-18 mass% Ta alloy (heat treated material) have higher tensile strength, elongation and fracture toughness values than Zr-20 mass% Ta alloy (heat treated material). The result was obtained. For the Zr-15 mass% Ta alloy (heat treated material) and the Zr-18 mass% Ta alloy (heat treated material), fracture toughness values equal to or higher than those of maraging steel and Ti-6Al-4V alloy were obtained.
 このように、Zr-15質量%Ta合金(熱処理材)及びZr-18質量%Ta合金(熱処理材)等のZrを主成分とし、Taを12質量%以上20質量%未満の範囲で含有し、構成相が斜方晶マルテンサイトを含むマルテンサイトからなる生体用ジルコニウム合金については、磁化率及び弾性率が低くなることから、骨固定器具等の生体用医療機器に適用可能である。図9は、骨固定器具10の構成を示す図である。骨固定器具10は、骨12を固定するための骨接合板10aと、骨接合用ねじ10bと、を備えている。 Thus, Zr such as Zr-15 mass% Ta alloy (heat treated material) and Zr-18 mass% Ta alloy (heat treated material) is the main component, and Ta is contained in the range of 12 mass% to less than 20 mass%. The biomedical zirconium alloy whose constituent phase is composed of martensite including orthorhombic martensite has a low magnetic susceptibility and elastic modulus, and thus can be applied to biomedical devices such as bone fixation devices. FIG. 9 is a diagram illustrating a configuration of the bone fixation device 10. The bone fixation device 10 includes an osteosynthesis plate 10a for fixing the bone 12 and an osteosynthesis screw 10b.
 本発明の生体用ジルコニウム合金は、磁化率及び弾性率が低いことから、骨固定具等の生体用医療器具に有用なものである。 The biological zirconium alloy of the present invention has a low magnetic susceptibility and elastic modulus, and thus is useful for biological medical instruments such as bone anchors.

Claims (8)

  1.  Zrを主成分とし、Taを12質量%以上20質量%未満の範囲で含有し、
     構成相が、斜方晶マルテンサイトを含むマルテンサイトからなる、生体用ジルコニウム合金。
    Zr is the main component, Ta is contained in the range of 12 mass% or more and less than 20 mass%,
    A zirconium alloy for living body, wherein the constituent phase is composed of martensite including orthorhombic martensite.
  2.  Taを12質量%以上20質量%未満の範囲で含有し、残部がZr及び不可避的不純物からなる、請求項1に記載の生体用ジルコニウム合金。 2. The biological zirconium alloy according to claim 1, wherein Ta is contained in a range of 12% by mass or more and less than 20% by mass, and the balance is made of Zr and inevitable impurities.
  3.  Taを15質量%以上20質量%未満の範囲で含有する、請求項2に記載の生体用ジルコニウム合金。 The biological zirconium alloy according to claim 2, comprising Ta in a range of 15% by mass or more and less than 20% by mass.
  4.  Taを15質量%以上18質量%以下の範囲で含有する、請求項3に記載の生体用ジルコニウム合金。 The biomedical zirconium alloy according to claim 3, containing Ta in a range of 15 mass% or more and 18 mass% or less.
  5.  前記構成相が、斜方晶マルテンサイトと、六方晶マルテンサイトとからなる、請求項1から4のいずれか1つに記載の生体用ジルコニウム合金。 The biological zirconium alloy according to any one of claims 1 to 4, wherein the constituent phase is composed of orthorhombic martensite and hexagonal martensite.
  6.  1100~1500℃の範囲で熱処理し、その後、200℃/分以上の冷却速度で冷却して得られる、請求項1から4のいずれか1つに記載の生体用ジルコニウム合金。 The biomedical zirconium alloy according to any one of claims 1 to 4, obtained by heat treatment in the range of 1100 to 1500 ° C and then cooling at a cooling rate of 200 ° C / min or more.
  7.  請求項1に記載の生体用ジルコニウム合金を用いた生体用医療器具。 A medical device for living body using the zirconium alloy for living body according to claim 1.
  8.  Zrを主成分とし、Taを12質量%以上20質量%未満の範囲で含有する金属成形体を1100~1500℃の範囲で熱処理し、その後、200℃/分以上の冷却速度で冷却する工程を備える、生体用ジルコニウム合金の製造方法。 A step of heat-treating a metal molded body containing Zr as a main component and containing Ta in a range of 12% by mass or more and less than 20% by mass in a range of 1100 to 1500 ° C., and then cooling at a cooling rate of 200 ° C./min or more. A method for producing a biological zirconium alloy.
PCT/JP2014/072622 2013-08-30 2014-08-28 Zirconium alloy for organism, method for manufacturing said alloy, and medical tool for organism incorporating zirconium alloy for organism WO2015030131A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015534293A JP6160699B2 (en) 2013-08-30 2014-08-28 Biomedical zirconium alloy, method for producing the same, and biomedical device using the biomedical zirconium alloy

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-180468 2013-08-30
JP2013180468 2013-08-30

Publications (1)

Publication Number Publication Date
WO2015030131A1 true WO2015030131A1 (en) 2015-03-05

Family

ID=52586679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072622 WO2015030131A1 (en) 2013-08-30 2014-08-28 Zirconium alloy for organism, method for manufacturing said alloy, and medical tool for organism incorporating zirconium alloy for organism

Country Status (2)

Country Link
JP (1) JP6160699B2 (en)
WO (1) WO2015030131A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107794425A (en) * 2016-10-31 2018-03-13 中南大学 A kind of low-elasticity-modulus tantalum zirconium dentistry implant material and preparation method thereof
WO2018047611A1 (en) * 2016-09-08 2018-03-15 トクセン工業株式会社 Biocompatible alloy and medical product

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03107436A (en) * 1989-09-21 1991-05-07 Sumitomo Metal Ind Ltd Zirconium alloy having excellent stress corrosion cracking resistance
JP2001329325A (en) * 2000-05-18 2001-11-27 Tohoku Techno Arch Co Ltd Shape memory alloy for living body
JP2004089580A (en) * 2002-09-03 2004-03-25 Kozo Nakamura Biomaterial member
JP2010075413A (en) * 2008-09-25 2010-04-08 Seiko Epson Corp Metallic biomaterial and medical device
WO2014156934A1 (en) * 2013-03-25 2014-10-02 株式会社Ihi Biocompatible zirconium alloy and biomedical instrument using same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03107436A (en) * 1989-09-21 1991-05-07 Sumitomo Metal Ind Ltd Zirconium alloy having excellent stress corrosion cracking resistance
JP2001329325A (en) * 2000-05-18 2001-11-27 Tohoku Techno Arch Co Ltd Shape memory alloy for living body
JP2004089580A (en) * 2002-09-03 2004-03-25 Kozo Nakamura Biomaterial member
JP2010075413A (en) * 2008-09-25 2010-04-08 Seiko Epson Corp Metallic biomaterial and medical device
WO2014156934A1 (en) * 2013-03-25 2014-10-02 株式会社Ihi Biocompatible zirconium alloy and biomedical instrument using same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018047611A1 (en) * 2016-09-08 2018-03-15 トクセン工業株式会社 Biocompatible alloy and medical product
CN107794425A (en) * 2016-10-31 2018-03-13 中南大学 A kind of low-elasticity-modulus tantalum zirconium dentistry implant material and preparation method thereof

Also Published As

Publication number Publication date
JPWO2015030131A1 (en) 2017-03-02
JP6160699B2 (en) 2017-07-12

Similar Documents

Publication Publication Date Title
Mehjabeen et al. Zirconium alloys for orthopaedic and dental applications
Correa et al. Development of Ti-15Zr-Mo alloys for applying as implantable biomedical devices
Alshammari et al. Mechanical properties and microstructure of Ti-Mn alloys produced via powder metallurgy for biomedical applications
Kuroda et al. Design and mechanical properties of new β type titanium alloys for implant materials
Nomura et al. Microstructure and magnetic susceptibility of as-cast Zr–Mo alloys
Kondo et al. Microstructure and mechanical properties of as-cast Zr–Nb alloys
US9828655B2 (en) Titanium alloys for biomedical applications and fabrication methods thereof
Kondo et al. Effect of cold rolling on the magnetic susceptibility of Zr–14Nb alloy
Ribeiro et al. Mechanical, physical, and chemical characterization of Ti–35Nb–5Zr and Ti–35Nb–10Zr casting alloys
JP5476696B2 (en) Biomaterials and medical equipment
Hsu et al. Effects of heat treatments on the structure and mechanical properties of Zr–30Ti alloys
Stráský et al. Biocompatible beta-Ti alloys with enhanced strength due to increased oxygen content
Patricio et al. Relationship between microstructure, phase transformation, and mechanical behavior in Ti–40Ta alloys for biomedical applications
JP6160699B2 (en) Biomedical zirconium alloy, method for producing the same, and biomedical device using the biomedical zirconium alloy
US8492002B2 (en) Titanium-based alloy
Pinotti et al. Influence of oxygen addition and aging on the microstructure and mechanical properties of a β-Ti-29Nb–13Ta–4Mo alloy
JP6041045B2 (en) Zirconium alloy for living body and bone fixing device using the same
JP6497689B2 (en) Co-Cr-W base alloy hot-worked material, annealed material, cast material, homogenized heat treatment material, Co-Cr-W-based alloy hot-worked material manufacturing method, and annealed material manufacturing method
CN110499438B (en) Material composition, titanium alloy product and preparation method thereof
US9039963B2 (en) Titanium based ceramic reinforced alloy for use in medical implants
JP2012066017A (en) Zirconium alloy for biological use, and bone fixator
Kondo et al. Effect of heat treatment and the fabrication process on mechanical properties of Zr-14Nb alloy
JP6494172B2 (en) Ceramic reinforced titanium-based alloy for use in medical implants
Niinomi et al. Super elastic functional β titanium alloy with low young's modulus for biomedical applications
JP2018044239A (en) Titanium based ceramic reinforced alloy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14839953

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015534293

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14839953

Country of ref document: EP

Kind code of ref document: A1