WO2015030116A1 - Polyene-polythiol composition - Google Patents

Polyene-polythiol composition Download PDF

Info

Publication number
WO2015030116A1
WO2015030116A1 PCT/JP2014/072579 JP2014072579W WO2015030116A1 WO 2015030116 A1 WO2015030116 A1 WO 2015030116A1 JP 2014072579 W JP2014072579 W JP 2014072579W WO 2015030116 A1 WO2015030116 A1 WO 2015030116A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
composition according
meth
carbon
mass
Prior art date
Application number
PCT/JP2014/072579
Other languages
French (fr)
Japanese (ja)
Inventor
貴子 星野
慶次 後藤
Original Assignee
電気化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 電気化学工業株式会社 filed Critical 電気化学工業株式会社
Priority to JP2015534285A priority Critical patent/JP6407153B2/en
Publication of WO2015030116A1 publication Critical patent/WO2015030116A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/04Polythioethers from mercapto compounds or metallic derivatives thereof
    • C08G75/045Polythioethers from mercapto compounds or metallic derivatives thereof from mercapto compounds and unsaturated compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/045Polysiloxanes containing less than 25 silicon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/37Thiols

Definitions

  • the present invention relates to a polyene-polythiol-based composition, for example, a polyene-polythiol-based resin composition.
  • the present invention relates to an adhesive comprising a polyene-polythiol composition, a coating agent (coating agent), and a molding material, for example.
  • the present invention relates to an adhesive body bonded using the composition, a coated body coated with the composition, a cured body, and an optical component.
  • poly indicates polyfunctionality of bifunctionality or higher.
  • Patent Document 1 a resin composition containing polyene and polythiol as main components is known.
  • the polyene-polythiol-based resin composition has excellent transparency in the visible light region (380 to 780 nm), adhesiveness, and surface curability under air (hereinafter referred to as surface curability).
  • adhesives and molding materials for transparent plastics and the like they are used in various fields such as optical parts and electronic parts.
  • the conventional polyene-polythiol-based resin has a problem in that the resin composition is yellowed and exposed to transparency when exposed to a high temperature exceeding 200 ° C. such as solder reflow. Therefore, a resin composition satisfying excellent heat resistance has been desired.
  • Silsesquioxane derivatives are one of the materials that have recently attracted attention as resin compositions having excellent heat resistance and light resistance.
  • a radical reaction type or addition reaction type silsesquioxane derivative, a copolymer, a resin and a method for producing them are disclosed that react with light or heat (Patent Document 2).
  • a resin composition, a varnish, a molded body, an adhesive, an adhesive sheet, a sealing material, a nanoimprinting composition, and the like using the above-described properties are disclosed (Patent Document 3).
  • Patent Document 3 shows that a polyene-polythiol-based resin assembly composition using a silsesquioxane derivative has transparency, adhesiveness, and heat resistance.
  • An adhesive using the above characteristics, a sealing agent for liquid crystal sealing, a cured film, and the like are disclosed.
  • Patent Document 4 contains (A) (meth) acryloyl group-containing silicone compound, (B) thiol compound, (C) photopolymerizable monomer, and (D) photoradical polymerization initiator, and (A) to (D ) Component (A) is 10 wt% or more and 80 wt% or less, component (B) is 1 wt% or more and 80 wt% or less, (C) component is 10 wt% or more and 80 wt% or less, In addition, a polyene / polythiol-based photosensitive resin composition characterized in that the component (D) is 0.1 wt% or more and 5 wt% or less is disclosed.
  • Patent Document 5 is characterized by containing a condensate obtained by hydrolysis and condensation of an alkoxysilane containing an alkoxysilane having a carbon-carbon double bond, and a compound having a secondary thiol group.
  • An ultraviolet curable resin composition is disclosed.
  • Patent Document 6 contains a repeating unit derived from a (meth) acrylic acid ester having a trialkoxysilyl group, and an alkali-soluble copolymer having an ethylenic carbon-carbon double bond in the molecule.
  • a photosensitive composition comprising a silsesquioxane-containing compound obtained by co-condensing a good trialkoxysilane compound, metal fine particles and / or metal oxide fine particles, and a photopolymerization initiator. ing.
  • Patent Document 2 does not describe an application such as an adhesive.
  • the silsesquioxane derivatives of Patent Documents 2 to 4 are of a cage type.
  • the resin composition using the cage-type silsesquioxane derivative has a problem that it does not dissolve in the polyene-polythiol resin composition.
  • Patent Document 5 exemplifies triphenylphosphine and triphenyl phosphite as the phosphorus compound, but does not describe dialkyl phosphite.
  • Patent Document 6 exemplifies ethyl phosphite and diphenyl phosphite as the phosphoric acid compound, but does not describe dialkyl phosphite.
  • Patent Document 6 does not describe polythiol.
  • the present invention relates to (A) a silsesquioxane derivative having two or more carbon-carbon unsaturated bonds per molecule and having a random structure, (B) polythiol, (C) photoradical polymerization initiator (D) A composition containing dialkyl phosphite.
  • the composition whose (A) is a silsesquioxane derivative represented by following General formula [1] is provided.
  • General formula [1] (In the formula, R 0 has one or more functional groups selected from a (meth) acryloyl group, a vinyl group, a vinyl ether group, an allyl group, and an allyl ether group. R 0 may be the same or different. Some of the (meth) acryloyl group, vinyl group, vinyl ether group, allyl group and allyl ether group are alkyl groups having 1 to 6 carbon atoms, alkoxy groups having 1 to 6 carbon atoms, and alkyl halides having 1 to 6 carbon atoms. And may be substituted with a group, a phenyl group or a halogen, m represents the degree of polymerization.)
  • composition whose (D) is dialkyl phosphite represented by following General formula [3] is provided.
  • General formula [3] (In the formula, R 1 and R 2 are each an alkyl group. R 1 and R 2 may be the same group or different groups.)
  • compositions wherein (D) is a dialkyl phosphite having a branched or straight chain alkyl group having 1 to 18 carbon atoms are provided.
  • the composition whose (D) is 1 or more types in the group which consists of dimethyl phosphite and diethyl phosphite is provided.
  • a composition containing a compound having a carbon-carbon unsaturated bond other than (E) a silsesquioxane derivative is provided.
  • the composition whose (E) is an allyl compound is provided.
  • the composition which contains (F) antioxidant further is provided to the said composition.
  • the composition which contains the (G) adhesiveness imparting agent further to the said composition is provided.
  • the said composition is further provided with the composition containing (H) nitroso compound.
  • the adhesive agent consisting of the said composition is provided.
  • attaching using the said adhesive agent is provided.
  • the coating agent which consists of the said composition is provided.
  • covering using the said coating agent is provided.
  • surface or both surfaces of a base material is provided.
  • the laminated body whose said base material is a glass material is provided.
  • the hardening body which consists of the said composition is provided.
  • stacking the layer which consists of the said hardening body, and the layer which has a higher refractive index than this layer is provided.
  • the optical component containing the said composition is provided.
  • the present invention has storage stability.
  • the present invention has, for example, heat resistance, light resistance, transparency, fast curability, or adhesiveness.
  • a to B mean A to B.
  • a resin composition is illustrated and demonstrated as a composition of this embodiment.
  • the (A) polyene of this embodiment is a silsesquioxane derivative (A) having two or more carbon-carbon unsaturated bonds per molecule and having a random structure.
  • a silsesquioxane derivative represented by the following general formula [1] is preferable.
  • Polyene of this embodiment is used as a main component with the polythiol mentioned later.
  • R 0 has one or more functional groups selected from a (meth) acryloyl group, a vinyl group, a vinyl ether group, an allyl group, and an allyl ether group.
  • R 0 may be the same or different.
  • Some of the (meth) acryloyl group, vinyl group, vinyl ether group, allyl group and allyl ether group are alkyl groups having 1 to 6 carbon atoms, alkoxy groups having 1 to 6 carbon atoms, and alkyl halides having 1 to 6 carbon atoms. And may be substituted with a group, a phenyl group or a halogen, m represents the degree of polymerization.
  • the silsesquioxane derivative preferably used has a functional group having a carbon-carbon unsaturated bond such as a (meth) acryloyl group, a vinyl group, a vinyl ether group, an allyl group, and an allyl ether group in the molecule.
  • Silsesquioxane compound As the carbon-carbon unsaturated bond, a (meth) acryloyl group is preferable.
  • the average number of functional groups in one molecule is preferably 2 to 50, more preferably 3 to 10.
  • the average number of functional groups in one molecule is any of 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50. Or a range of any two values.
  • silsesquioxane derivative of the present embodiment can be obtained in a ladder type structure or a random type structure depending on the conditions of cohydrolysis and cocondensation of alkoxysilane.
  • the derivative has, for example, a structure represented by the following general formula [2].
  • R 0 has one or more functional groups selected from (meth) acryloyl group, vinyl group, vinyl ether group, allyl group and allyl ether group. R 0 may be the same or different.
  • a part of acryloyl group, vinyl group, vinyl ether group, allyl group and allyl ether group are alkyl groups having 1 to 6 carbon atoms, alkoxy groups having 1 to 6 carbon atoms, and halogenated alkyl groups having 1 to 6 carbon atoms. , Phenyl group, or halogen may be substituted.
  • the silsesquioxane derivative of the present embodiment is mainly composed of a silsesquioxane derivative having a random structure.
  • the silsesquioxane derivative having a cage structure (cage type) is within the range that does not impair the object of the present embodiment.
  • An oxane derivative or a silsesquioxane derivative having a ladder structure may be contained.
  • the silsesquioxane derivative of this embodiment preferably contains 10% by mass or more of a random structure, and particularly preferably contains 20% by mass or more. It may contain 100% by mass of a random structure. If this random structure is 10% by mass or more, the adhesiveness is excellent.
  • the silsesquioxane derivative of the present embodiment preferably includes a cage-type (cage-type) structure or a ladder-type structure by 90% by mass or less.
  • the silsesquioxane derivative of the present embodiment is a cage-type (cage-type) structure or a ladder-type structure silsesquioxane derivative of 0% to less than 50% by mass, 45% by mass or less, 40% by mass or less, and 30% by mass. Hereinafter, it may be contained by 20% by mass or less and 10% by mass or less.
  • cage type (cage type) structure or ladder type structure of the silsesquioxane derivative of the present embodiment for example, the GPC measurement results and mass spectrometry after liquid chromatography separation (LC-MS) measurement results and 1 H-NMR measurement results are compared for calculation.
  • the content of the random structure of the silsesquioxane derivative of this embodiment is 10% by mass, 20% by mass, 30% by mass, 40% by mass, 50% by mass, 60% by mass, 70% by mass, and 80% by mass. %, 90% by mass, or 100% by mass or more, and may be within the range of any two values.
  • the molecular weight of the silsesquioxane derivative is preferably 100 to 100,000, more preferably 500 to 60,000.
  • the molecular weight is 100 or more, excellent heat resistance can be obtained, and when the molecular weight is 100,000 or less, the viscosity of the adhesive does not become too high, and the workability and moldability are not impaired and stored. There is no problem with stability.
  • the molecular weight of the silsesquioxane derivative is 100, 200, 300, 400, 500, 600, 700, 800, 900, 1,000, 2,000, 3,000, 4,000, 5,000, 6 , 000, 7,000, 8,000, 9,000, 10,000, 20,000, 30,000, 40,000, 50,000, 60,000, 70,000, 80,000, 90,000 , 100,000, or any two values.
  • the molecular weight of the oligomer refers to the weight average molecular weight calculated as the average molecular weight per molecule.
  • the weight average molecular weight in terms of polystyrene measured by GPC gel permeation chromatography
  • the number of grams of the silsesquioxane derivative per equivalent of the ethylenically unsaturated group is preferably 50 to 300 g / eq, more preferably 100 to 200 g / eq.
  • the ethylenically unsaturated group refers to one or more functional groups selected from a (meth) acryloyl group, a vinyl group, a vinyl ether group, an allyl group, and an allyl ether group.
  • the gram number of the silsesquioxane derivative per 1 equivalent of ethylenically unsaturated groups is 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190. , 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300 g / eq, or any two values.
  • the (B) polythiol of this embodiment has two or more thiol groups per molecule.
  • the average molecular weight of the polythiol of this embodiment is preferably 50 to 15,000.
  • the polythiol of this embodiment is used as a main component together with the aforementioned polyene.
  • Preferred polythiols include mercapto group-substituted alkyl compounds such as dimercaptobutane and trimercaptohexane, mercapto group-substituted allyl compounds such as dimercaptobenzene, polyhydric alcohol esters such as thioglycolic acid and thiopropionic acid, and alkylenes of polyhydric alcohols. Examples include a reaction product of an oxide adduct and hydrogen sulfide.
  • polythiol of the present embodiment examples include tris [(3-mercaptopropionyloxy) -ethyl] isocyanurate, trimethylolpropane-tris- ( ⁇ -thiopropionate), tris-2-hydroxyethyl-isocyanurate, tris- ⁇ -mercaptopropionate, pentaerythritol tetrakis ( ⁇ -thiopropionate), 1,8-dimercapto-3,6-dioxaoctane, 1,8-dimercapto-3,6-disulfide octane, triazine thiol, and more Includes polythiols of silsesquioxane derivatives.
  • the polythiol of this embodiment is not particularly limited, and may be a single thiol or a mixture of two or more.
  • one or more members selected from the group consisting of trimethylolpropane-tris- ( ⁇ -thiopropionate) and tris [(3-mercaptopropionyloxy) -ethyl] isocyanurate are preferable, and trimethylolpropane is preferable.
  • -Tris- ( ⁇ -thiopropionate) is more preferred.
  • the mass ratio of the silsesquioxane derivative of (A) of this embodiment to the polythiol of (B) is preferably 5 to 95:95 to 5 when the total of (A) and (B) is 100, ⁇ 90: 85-10 is more preferred, and 35-85: 65-15 is most preferred.
  • the mass ratio is 5:95, 10:90, 15:85, 20:80, 25:75, 30:70, 35:65, 40:60, 45:55, 50:50, 55:45. , 60:40, 65:35, 70:30, 75:25, 80:20, 85:15, 90:10, within the range of 95: 5 or any two values Also good.
  • the resin composition of this embodiment contains (C) radical photopolymerization initiator.
  • the (C) photoradical polymerization initiator of this embodiment is not particularly limited as long as it is a compound that absorbs light and generates a radical capable of initiating polymerization.
  • the photo radical polymerization initiator of this embodiment include benzoin derivatives such as benzyl, benzoin, benzoin benzoic acid, benzoin ethyl ether, benzoin isopropyl ether, and benzoin isobutyl ether, benzophenone derivatives such as benzophenone and 4-phenylbenzophenone, 2,2 Alkyl acetophenone derivatives such as -dimethoxy-1,2-diphenylethane-1-one, 2,2-diethoxyacetophenone, benzyldimethyl ketal, 1-hydroxycyclohexyl phenyl ketone, 1- (4-isopropylphenyl) -2-hydroxy -2-Methylpropan-1-one, 1- (4- (2-hydroxyethoxy) -phenyl)
  • the radical photopolymerization initiator of the present embodiment is not particularly limited, and may be a single type or a mixture of two or more types. Among these, one or more members selected from the group consisting of alkylacetophenone derivatives and ⁇ -hydroxyacetophenone derivatives are preferable, and alkylacetophenone derivatives are more preferable. Of the alkyl acetophenone derivatives, 2,2-dimethoxy-1,2-diphenylethane-1-one is preferred. Of the ⁇ -hydroxyacetophenone derivatives, 2-hydroxy-2-methyl-1-phenyl-propan-1-one is preferred.
  • the radical photopolymerization initiator of this embodiment can be mixed with polyene or polythiol in advance.
  • the amount of the (C) radical photopolymerization initiator used in this embodiment is 0.01 with respect to a total of 100 parts by mass of the component (A), the component (B), and the component (E) used as necessary. Is preferably 10 to 10 parts by mass, and more preferably 0.05 to 5 parts by mass. If it is 0.01 mass part or more, sufficient sclerosis
  • the resin composition of this embodiment contains (D) dialkyl phosphite.
  • dialkyl phosphite of this embodiment has two alkyl groups per molecule.
  • the dialkyl phosphite has, for example, a structure represented by the following general formula [3].
  • R 1 and R 2 are each an alkyl group. R 1 and R 2 may be the same group or different groups.
  • the alkyl group is preferably a branched or straight chain alkyl group having 1 to 18 carbon atoms, more preferably a branched or straight chain alkyl group having 1 to 12 carbon atoms, and more preferably 1 to 8 carbon atoms. Most preferred are branched or straight chain alkyl groups having carbon atoms, and even more preferred are branched or straight chain alkyl groups having 1 to 6 carbon atoms.
  • alkyl group examples include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, an octyl group including a 2-ethylhexyl group and an n-octyl group, a lauryl group, and an oleyl group.
  • a hydrocarbon group is preferable.
  • dialkyl phosphites one or more members selected from the group consisting of dimethyl phosphite, diethyl phosphite, di (2-ethylhexyl) phosphite, dilauryl phosphite and dioleyl phosphite are preferred.
  • One or more members of the group consisting of dimethyl phosphate and diethyl phosphite are more preferred, and diethyl phosphite is most preferred.
  • the amount of (D) dialkyl phosphite used in the present embodiment is 0.01 to 100 parts by mass with respect to 100 parts by mass in total of the component (A), the component (B), and the component (E) used as necessary.
  • 10 parts by mass is preferable, and 0.05 to 5 parts by mass is more preferable. If it is 0.01 mass part or more, sufficient storage stability can be obtained, and if it is 10 mass parts or less, curability will not be impaired.
  • this usage-amount is 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2. 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 parts by mass May be within the range of any value or any two values.
  • the resin composition of the present embodiment further contains (E) a compound having a carbon-carbon unsaturated bond other than the silsesquioxane derivative. Can do.
  • the compound having a carbon-carbon unsaturated bond other than the silsesquioxane derivative is not particularly defined, but even if it is a monofunctional compound having one carbon-carbon unsaturated bond, carbon -It may be a bifunctional or higher functional compound having two or more carbon unsaturated bonds.
  • the viscosity of the compound having a carbon-carbon unsaturated bond other than the (E) silsesquioxane derivative of this embodiment is preferably 1000 mPa ⁇ s or less, and 500 mPa ⁇ s or less in terms of adjusting the viscosity of the composition. Is more preferable, and 100 mPa ⁇ s or less is most preferable.
  • the molecular weight of the compound having a carbon-carbon unsaturated bond other than the (E) silsesquioxane derivative of this embodiment is preferably 1000 or less, more preferably 100 to 800, in terms of adjusting the viscosity of the composition. 100 to 500 is most preferred.
  • the carbon-carbon unsaturated bond particularly refers to a carbon-carbon double bond.
  • the compound having a carbon-carbon unsaturated bond other than the (E) silsesquioxane derivative of the present embodiment is not particularly limited, but 2-ethylhexyl (meth) acrylate, 2-ethylhexyl carbitol (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, benzyl (meth) acrylate, butanediol mono (meth) acrylate, Butyl (meth) acrylate, ethylene oxide modified (hereinafter referred to as “EO”) cresol (meth) acrylate, dipropylene glycol (meth) acrylate, ethoxylated phenyl (meth) acrylate, ethyl (meth) acrylate, iso Chill (meth) acrylate, isooct
  • allyl compounds having an allyl group are preferred.
  • the allyl compound include diallyl phthalate, diallyl maleate, triallyl cyanurate, triallyl isocyanurate, triallyl trimellitate, tetraallyloxyethane, trimethylolpropane diallyl, trimethylolpropane triallyl and the like.
  • allyl group compounds one or more members selected from the group consisting of triallyl isocyanurate and diallyl maleate are preferable.
  • the compound having a carbon-carbon unsaturated bond other than the (E) silsesquioxane derivative of this embodiment preferably excludes the (G) adhesion-imparting agent described later.
  • the amount of the compound having a carbon-carbon unsaturated bond other than the (E) silsesquioxane derivative of this embodiment is low in viscosity, so that the workability is improved and the adhesiveness is improved.
  • a total of 100 parts by mass of A), component (B), and component (E) is preferably 60 parts by mass or less, more preferably 2 to 50 parts by mass, most preferably 5 to 30 parts by mass, and 7 to 15 parts by mass. Is even more preferred.
  • the resin composition of the present embodiment further contains (E) an antioxidant because excellent heat resistance and storage stability can be obtained.
  • Antioxidant is an antioxidant substance added in order to suppress the oxidation of the component in a product.
  • the antioxidant is not particularly limited, but triethylene glycol-bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanediol-bis [3- ( 3,5-di-tert-butyl-4-hydroxyphenyl) propionate], pentaerythrityl tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 2,2′- Methylene bis (6-tert-butyl-p-cresol), isooctyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, 2,2′-methylene bis (4-methyl-6-tert- Butylphenol), 2,2,4,4-tetramethyl-21-oxo-7-oxa .20-diazadispiro [5.1.1.12
  • a phenol type compound and / or a hindered amine compound are preferable, and a phenol type compound is more preferable.
  • the phenolic compounds the group consisting of isooctyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate and 2,2′-methylenebis (4-methyl-6-tert-butylphenol) One or more of them are preferable, and isooctyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate and 2,2′-methylenebis (4-methyl-6-tert-butylphenol) are used in combination. It is more preferable.
  • the amount of the antioxidant (F) used in this embodiment is 0.001 to 3 with respect to 100 parts by mass in total of the component (A), the component (B), and the component (E) used as necessary. Part by mass is preferable, and 0.01 to 2 parts by mass is more preferable. If it is 0.001 part by mass or more, durability and storage stability are sufficient, and if it is 3 parts by mass or less, reliable adhesiveness is obtained, and there is no possibility of becoming uncured.
  • the mass ratio of the polyene and the polythiol in the present embodiment is preferably 98: 2 to 2:98 when the total of the polyene and the polythiol is 100 in terms of obtaining good heat resistance and adhesion, and 90:10 to 10:90 is more preferable.
  • the double bond in the polyene and the thiol group in the polythiol have a chemical equivalent.
  • the chemical equivalent here means that (number of moles of polyene / number of double bonds of polyene molecule) and (number of moles of polythiol / number of SH groups of polythiol molecule) are equal.
  • polyene refers to component (A) and component (E)
  • polythiol refers to component (B).
  • adhesion imparting agent in the present embodiment, (F) an adhesion imparting agent may be used to improve adhesion.
  • the adhesion promoter include 3-glycidoxypropyltrimethoxysilane, ⁇ -chloropropyltrimethoxysilane, vinyltrimethoxysilane, vinyltrichlorosilane, vinyltriethoxysilane, vinyl-tris ( ⁇ -methoxyethoxy) silane, ⁇ - (meth) acryloxypropyltrimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -mercaptopropyltrimethoxysilane, ⁇ -aminopropyltri Ethoxysilane, N- ⁇ - (aminoethyl) - ⁇ -aminopropyltrimethoxysilane, N-
  • the amount of the adhesion-imparting agent used is 0.001 to 10 parts by mass with respect to 100 parts by mass in total of the component (A), the component (B), and the component (E) used as necessary. Preferably, 0.01 to 5 parts by mass is more preferable. If it is 0.001 part by mass or more, the adhesiveness is sufficient, and if it is 10 parts by mass or less, reliable adhesiveness is obtained.
  • (H) Nitroso Compound In this embodiment, (H) a nitroso compound may be used to improve storage stability.
  • N-nitrosoarylhydroxylamine salts are preferred.
  • N-nitrosoarylhydroxylamine salts include ammonium salt, sodium salt, potassium salt, magnesium salt, strontium salt, aluminum salt, copper salt, zinc salt, cerium salt, iron salt, nickel salt of N-nitrosophenyl hydroxylamine And cobalt salts.
  • one or more members selected from the group consisting of N-nitrosophenyl hydroxylamine aluminum salt and N-nitrosophenyl hydroxylamine ammonium salt are preferable, and N-nitrosophenyl hydroxylamine aluminum salt is more preferable.
  • the amount of the nitroso compound used is preferably 0.0001 to 1 part by mass with respect to 100 parts by mass in total of the component (A), the component (B), and the component (E) used as necessary. 0.001 to 0.1 parts by mass is more preferable. If it is 0.0001 part by mass or more, the storage stability is improved, and if it is 1 part by mass or less, the curability is not impaired.
  • the resin composition of the present embodiment is a range that does not impair the intended effect, and if necessary, a thermal radical polymerization initiator, a curing accelerator, a filler, a colorant, a thixotropic agent, a plasticizer, a surfactant, Additives such as lubricants and antistatic agents can be added.
  • the resin composition of this embodiment can be used as an adhesive or a coating agent.
  • a base material to be bonded or coated with the adhesive or coating agent of the present embodiment or a base material to form a molded body with the adhesive or coating agent of the present invention halogenated materials such as glass materials, potassium bromide, calcium fluoride, etc.
  • Single crystal ceramics such as mineral, sapphire, acrylic resin, polycarbonate resin, polystyrene resin, polyester resin, polyethylene terephthalate resin, polyvinyl chloride resin, polyethylene resin, polypropylene resin, fluorine resin, cellulose resin, diethylene glycol bisallyl carbonate resin, styrene Butadiene copolymer, (meth) acrylic acid methyl-styrene copolymer, silicone resin, polycycloolefin resin, (meth) acrylonitrile-butadiene-styrene copolymer resin, poly (meth) acrylic ester resin, poly Tan resin, polyphenyl sulfide resin, liquid crystal polymer, epoxy resin, resin material such as resin reinforced with glass fiber or carbon fiber, semiconductor material such as silicon, germanium, gallium, indium, zinc oxide, titanium oxide, metal layer, Examples of the above-mentioned semiconductor materials on which resin layers and ceramic layers are deposited, plated, and sputtered, and metal materials
  • the substrate is composed of these materials.
  • the resin composition of the present embodiment has a great effect.
  • the glass material is preferably selected from soda glass such as soda lime glass, quartz glass, lead glass, borosilicate glass, and alkali-free glass, and more preferably borosilicate glass.
  • the laminated body formed in the one or both surfaces of the base material may be sufficient as the film
  • the resin composition of this embodiment can be used as an optical component. Examples of the optical component include a lens and a prism.
  • the resin composition of the present embodiment can be cured by active energy rays such as light and ultraviolet rays.
  • An optical member using the resin composition of the present embodiment can also be bonded by active energy rays.
  • halogen lamp for curing, coating or bonding with active energy rays, halogen lamp, metal halide lamp, high power metal halide lamp (containing indium etc.), low pressure mercury lamp, high pressure mercury lamp, ultra high pressure mercury lamp, xenon lamp, xenon excimer lamp, xenon
  • An irradiation device using a flash lamp or the like as a light source can be applied, and laser light, electron beam (EUV), or the like can also be applied.
  • EUV electron beam
  • the above apparatus can irradiate condensed light by a direct irradiation, a reflecting mirror, or the like, and collect and irradiate with a fiber or the like.
  • a low wavelength cut filter, a heat ray cut filter, a cold mirror, or the like can also be used.
  • This embodiment has an effect of being excellent in, for example, heat resistance, light resistance, transparency, fast curability, adhesiveness, and storage stability.
  • the present invention can provide an adhesive body, a cured body, a molded body, an optical component, and an optical waveguide.
  • An optical waveguide confines light by creating a part with a slightly higher refractive index than the surroundings on the surface of the substrate or just below the substrate surface, and controls light propagation, branching, reflection, refraction, amplification, attenuation, etc.
  • This invention can provide an optical waveguide by laminating
  • optical waveguide Specific examples of specific components of the optical waveguide include optical multiplexing circuits, frequency filters, optical switches, and optical interconnection components used in the fields of communication and optical information processing.
  • A Silsesquioxane derivative having two or more carbon-carbon unsaturated bonds per molecule and having a random structure (a-1) manufactured by Toagosei Co., Ltd .: polyacryloyloxypropyl polyorganosilsesqui Oxane (AC-SQ TA-100) (weight average molecular weight 1,200 to 4,000 in terms of polystyrene by GPC, acryl group equivalent 165 g / eq (A-2) Toagosei Co., Ltd .: polymethacryloyloxypropyl polyorganosilsesquioxane (MAC-SQ TM-100) (weight average molecular weight in terms of polystyrene by GPC 1,000 to 2,500, methacryl group equivalent 179 g) / Eq
  • B Polythiol (b-1) manufactured by Sakai Chemical Industry Co., Ltd .: trimethylolpropane-tris- ( ⁇ -thiopropionate) (TP) (B-
  • adhesion test specimen was prepared according to the procedure described below.
  • Curing method Curing was performed under the condition of an integrated light amount of 3000 mJ / cm 2 at a wavelength of 365 nm by a curing apparatus manufactured by HOYA using an ultrahigh pressure mercury lamp.
  • the viscosity of the viscosity composition was measured using an E-type viscometer under the conditions of a temperature of 25 ° C. and a rotation speed of 20 rpm.
  • Test piece was prepared by curing a resin composition having a shape of 20 mm ⁇ ⁇ 200 ⁇ mt on a BK7 glass (30 mm ⁇ ⁇ 3 mmt) substrate as a test piece under the curing conditions described above. This test piece was exposed to an atmosphere of 260 ° C. for 40 seconds. Using a spectrophotometer (manufactured by Shimadzu Corporation, UV-2550), the transmittance of the test piece after the exposure was measured, and the transmittance at wavelengths of 400 nm and 600 nm was measured. The evaluation results are shown in Tables 1 and 2.
  • a test piece was prepared by curing a resin composition having a shape of 20 mm ⁇ ⁇ 200 ⁇ mt on a BK7 glass (30 mm ⁇ ⁇ 3 mmt) substrate as a test piece under the curing conditions described above. This test piece was exposed for 80 hours under light of 365 nm light with an illuminance of 7 mW / cm 2 using a high-pressure mercury lamp (Toshier 400 HC-0411, manufactured by Toshiba Corporation). Using a spectrophotometer (manufactured by Shimadzu Corporation, UV-2550), the transmittance of the test piece after the exposure was measured, and the transmittance at wavelengths of 400 nm and 600 nm was measured. The evaluation results are shown in Tables 1 and 2.
  • Tensile shear bond strength (adhesiveness) It measured according to JIS K 6850. Specifically, using Tempax (trademark) glass (25 mm ⁇ 25 mm ⁇ 2.0 mm) as an adherend, the bonded portion was 8 mm in diameter, and two Tempax glasses were made with the produced resin composition. Bonding was performed, and the resin composition was cured under the curing conditions described above to prepare a tensile shear bond strength test piece. The produced test piece was measured for tensile shear bond strength at a tensile speed of 10 mm / min in an environment of a temperature of 23 ° C. and a humidity of 50% using a tensile tester. The evaluation results are shown in Tables 1 and 2.
  • the resin composition of this example is excellent in storage stability, heat resistance, light resistance, transparency, and adhesiveness.
  • the storage stability was slightly low.
  • the number of carbon atoms in the alkyl group of the dialkyl phosphite is preferably from 1 to 18 alkyl groups, more preferably from 1 to 12 alkyl groups, from the viewpoints of adhesion and storage stability. The group was most preferred, 1-2 alkyl groups were even more preferred, and the ethyl group was even more preferred (Comparison between Example 2 and Examples 13-16).
  • the present invention provides a polyene-polythiol-based composition having excellent storage stability.
  • the present invention also provides a polyene-polythiol-based composition excellent in, for example, heat resistance, light resistance, transparency, fast curability, adhesion, and storage stability.
  • the adhesive, coating agent, and molding material of the present invention exhibit remarkable effects in various fields such as optical waveguide layers, optical components, and electronic components.

Abstract

Provided is a polyene-polythiol composition having excellent storage stability. The composition comprises: (A) a silsesquioxane derivative having at least two carbon-carbon unsaturated bonds per molecule and having a random structure; (B) a polythiol; (C) a photo-radical polymerization initiator; and (D) a dialkyl phosphite.

Description

ポリエン-ポリチオール系組成物Polyene-polythiol composition
本発明は、ポリエン-ポリチオール系組成物、例えば、ポリエン-ポリチオール系樹脂組成物に関する。本発明は、例えば、ポリエン-ポリチオール系組成物からなる接着剤、被覆剤(コーティング剤)、成形材料に関する。本発明は、該組成物を用いて接着した接着体、該組成物を用いて被覆した被覆体、硬化体、光学部品に関する。ここで、「ポリ」とは二官能性以上の多官能性を示す。 The present invention relates to a polyene-polythiol-based composition, for example, a polyene-polythiol-based resin composition. The present invention relates to an adhesive comprising a polyene-polythiol composition, a coating agent (coating agent), and a molding material, for example. The present invention relates to an adhesive body bonded using the composition, a coated body coated with the composition, a cured body, and an optical component. Here, “poly” indicates polyfunctionality of bifunctionality or higher.
近年、紫外線等の活性光線の照射や熱によって硬化する樹脂組成物が、接着剤、コーティング剤等の各種の分野で用いられるようになってきている。このような樹脂組成物のひとつとして、ポリエンとポリチオールを主成分とする樹脂組成物が知られている(特許文献1)。 In recent years, resin compositions that are cured by irradiation with actinic rays such as ultraviolet rays or heat have been used in various fields such as adhesives and coating agents. As one of such resin compositions, a resin composition containing polyene and polythiol as main components is known (Patent Document 1).
ポリエン-ポリチオール系樹脂組成物は、可視光域(380~780nm)での優れた透明性、接着性、空気下での表面の硬化性(以下、表面硬化性という)を有することから、ガラス及び透明プラスチック用等の接着剤や成形材料として、光学部品や電子部品等の各種分野で用いられている。 The polyene-polythiol-based resin composition has excellent transparency in the visible light region (380 to 780 nm), adhesiveness, and surface curability under air (hereinafter referred to as surface curability). As adhesives and molding materials for transparent plastics and the like, they are used in various fields such as optical parts and electronic parts.
しかしながら、従来のポリエン-ポリチオール系樹脂は、ハンダリフロー等の200℃を越える高温暴露等において、樹脂組成物が黄変し、透明性が低下してしまうという課題があった。そこで、優れた耐熱性を満たす樹脂組成物が望まれていた。 However, the conventional polyene-polythiol-based resin has a problem in that the resin composition is yellowed and exposed to transparency when exposed to a high temperature exceeding 200 ° C. such as solder reflow. Therefore, a resin composition satisfying excellent heat resistance has been desired.
シルセスキオキサン誘導体は、優れた耐熱性や耐光性をもつ樹脂組成物として、近年、注目される材料の一つである。光や熱により反応するラジカル反応型や付加反応型のシルセスキオキサン誘導体、共重合体、樹脂及びそれらの製造方法が開示されている(特許文献2)。上述の特性を利用した樹脂組成物、ワニス、成形体、接着剤、接着シート、封止材、ナノインプリント用組成物等が開示されている(特許文献3)。 Silsesquioxane derivatives are one of the materials that have recently attracted attention as resin compositions having excellent heat resistance and light resistance. A radical reaction type or addition reaction type silsesquioxane derivative, a copolymer, a resin and a method for producing them are disclosed that react with light or heat (Patent Document 2). A resin composition, a varnish, a molded body, an adhesive, an adhesive sheet, a sealing material, a nanoimprinting composition, and the like using the above-described properties are disclosed (Patent Document 3).
特許文献3は、シルセスキオキサン誘導体を用いたポリエン-ポリチオール系樹脂組組成物が透明性、接着性、耐熱性を有することが示されている。上記の特性を利用した接着剤、液晶封止用のシール剤や硬化膜等が開示されている。 Patent Document 3 shows that a polyene-polythiol-based resin assembly composition using a silsesquioxane derivative has transparency, adhesiveness, and heat resistance. An adhesive using the above characteristics, a sealing agent for liquid crystal sealing, a cured film, and the like are disclosed.
特許文献4は、(A)(メタ)アクリロイル基含有シリコーン化合物、(B)チオール化合物、(C)光重合性モノマー、及び(D)光ラジカル重合開始剤を含有し、(A)~(D)成分の合計に対して、(A)成分は10重量%以上80重量%以下、(B)成分は1重量%以上80重量%以下、(C)成分は10重量%以上80重量%以下、及び(D)成分は0.1重量%以上5重量%以下であることを特徴とするポリエン/ポリチオール系感光性樹脂組成物が開示されている。 Patent Document 4 contains (A) (meth) acryloyl group-containing silicone compound, (B) thiol compound, (C) photopolymerizable monomer, and (D) photoradical polymerization initiator, and (A) to (D ) Component (A) is 10 wt% or more and 80 wt% or less, component (B) is 1 wt% or more and 80 wt% or less, (C) component is 10 wt% or more and 80 wt% or less, In addition, a polyene / polythiol-based photosensitive resin composition characterized in that the component (D) is 0.1 wt% or more and 5 wt% or less is disclosed.
特許文献5は、炭素‐炭素二重結合を有するアルコキシシラン類を含有するアルコキシシラン類を加水分解及び縮合して得られる縮合物、並びに二級チオール基を有する化合物を含有することを特徴とする紫外線硬化性樹脂組成物が開示されている。 Patent Document 5 is characterized by containing a condensate obtained by hydrolysis and condensation of an alkoxysilane containing an alkoxysilane having a carbon-carbon double bond, and a compound having a secondary thiol group. An ultraviolet curable resin composition is disclosed.
特許文献6は、トリアルコキシシリル基を有する(メタ)アクリル酸エステルから導かれる繰り返し単位を含有し、かつアルカリ可溶性の共重合体に、分子中にエチレン性炭素-炭素二重結合を有してもよいトリアルコキシシラン化合物を共縮合してなるシルセスキオキサン含有化合物、金属微粒子及び/又は金属酸化物微粒子、並びに、光重合開始剤を含有することを特徴とする感光性組成物が開示されている。 Patent Document 6 contains a repeating unit derived from a (meth) acrylic acid ester having a trialkoxysilyl group, and an alkali-soluble copolymer having an ethylenic carbon-carbon double bond in the molecule. Disclosed is a photosensitive composition comprising a silsesquioxane-containing compound obtained by co-condensing a good trialkoxysilane compound, metal fine particles and / or metal oxide fine particles, and a photopolymerization initiator. ing.
特開平03-243626号公報Japanese Patent Laid-Open No. 03-243626 特開2004-143449号公報JP 2004-143449 A 特開2010-168452号公報JP 2010-168452 A 特開2011-202128号公報JP 2011-202128 A 特開2008-184514号公報JP 2008-184514 A 特開2008-298880号公報JP 2008-298880 A
しかしながら、特許文献2は、接着剤といった用途について記載がない。また、特許文献2~4のシルセスキオキサン誘導体は、かご型である。かご型のシルセスキオキサン誘導体を用いた樹脂組成物は、ポリエン-ポリチオール系樹脂組成物に溶解しない課題があった。特許文献5は、リン系化合物として、トリフェニルホスフィンや亜リン酸トリフェニルを例示しているものの、亜リン酸ジアルキルについて記載はない。特許文献6は、リン酸化合物として、亜リン酸エチル、亜リン酸ジフェニルを例示しているものの、亜リン酸ジアルキルについて記載はない。特許文献6は、ポリチオールについて記載はない。 However, Patent Document 2 does not describe an application such as an adhesive. In addition, the silsesquioxane derivatives of Patent Documents 2 to 4 are of a cage type. The resin composition using the cage-type silsesquioxane derivative has a problem that it does not dissolve in the polyene-polythiol resin composition. Patent Document 5 exemplifies triphenylphosphine and triphenyl phosphite as the phosphorus compound, but does not describe dialkyl phosphite. Patent Document 6 exemplifies ethyl phosphite and diphenyl phosphite as the phosphoric acid compound, but does not describe dialkyl phosphite. Patent Document 6 does not describe polythiol.
本発明は、(A)1分子当たり2個以上の炭素-炭素不飽和結合を有し、かつ、ランダム型構造を有するシルセスキオキサン誘導体、(B)ポリチオール、(C)光ラジカル重合開始剤、(D)亜リン酸ジアルキルを含有する組成物である。 The present invention relates to (A) a silsesquioxane derivative having two or more carbon-carbon unsaturated bonds per molecule and having a random structure, (B) polythiol, (C) photoradical polymerization initiator (D) A composition containing dialkyl phosphite.
また、本発明によれば、(A)が、下記一般式〔1〕で表されるシルセスキオキサン誘導体である組成物が提供される。
一般式〔1〕
Figure JPOXMLDOC01-appb-C000003
(式中、Rは、(メタ)アクリロイル基、ビニル基、ビニルエーテル基、アリル基及びアリルエーテル基から選ばれる1種以上の官能基を有する。Rは、同一でも異なっても良い。(メタ)アクリロイル基、ビニル基、ビニルエーテル基、アリル基及びアリルエーテル基は、一部が、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のハロゲン化アルキル基、フェニル基、ハロゲンで置換されても良い。mは重合度を表す。)
Moreover, according to this invention, the composition whose (A) is a silsesquioxane derivative represented by following General formula [1] is provided.
General formula [1]
Figure JPOXMLDOC01-appb-C000003
(In the formula, R 0 has one or more functional groups selected from a (meth) acryloyl group, a vinyl group, a vinyl ether group, an allyl group, and an allyl ether group. R 0 may be the same or different. Some of the (meth) acryloyl group, vinyl group, vinyl ether group, allyl group and allyl ether group are alkyl groups having 1 to 6 carbon atoms, alkoxy groups having 1 to 6 carbon atoms, and alkyl halides having 1 to 6 carbon atoms. And may be substituted with a group, a phenyl group or a halogen, m represents the degree of polymerization.)
また、本発明によれば、(D)が、下記一般式〔3〕で表される亜リン酸ジアルキルである組成物が提供される。
一般式〔3〕
Figure JPOXMLDOC01-appb-C000004
(式中、R、Rは、それぞれアルキル基である。R、Rは、同一の基であっても異なる基であってもよい。)
Moreover, according to this invention, the composition whose (D) is dialkyl phosphite represented by following General formula [3] is provided.
General formula [3]
Figure JPOXMLDOC01-appb-C000004
(In the formula, R 1 and R 2 are each an alkyl group. R 1 and R 2 may be the same group or different groups.)
また、本発明によれば、(D)が、1~18個の炭素原子を有する分岐又は直鎖構成のアルキル基を有する亜リン酸ジアルキルである組成物が提供される。また、本発明によれば、(D)が、亜リン酸ジメチル及び亜リン酸ジエチルからなる群のうちの1種以上である組成物が提供される。また、本発明によれば、上記組成物に、更に、(E)シルセスキオキサン誘導体以外の、炭素-炭素不飽和結合を有する化合物を含有する組成物が提供される。また、本発明によれば、(E)が、アリル化合物である組成物が提供される。また、本発明によれば、上記組成物に、更に、(F)酸化防止剤を含有する組成物が提供される。また、本発明によれば、上記組成物に、更に、(G)密着性付与剤を含有する組成物が提供される。また、本発明によれば、上記組成物に、更に、(H)ニトロソ化合物を含有する組成物が提供される。また、本発明によれば、上記組成物からなる接着剤が提供される。また、本発明によれば、上記接着剤を用いて接着してなる接着体が提供される。また、本発明によれば、上記組成物からなる被覆剤が提供される。また、本発明によれば、上記被覆剤を用いて被覆してなる被覆体が提供される。また、本発明によれば、上記被覆剤による皮膜が基材の片面又は両面に形成された積層体が提供される。また、本発明によれば、上記基材がガラス材料である積層体が提供される。また、本発明によれば、上記組成物からなる硬化体が提供される。また、本発明によれば、上記硬化体からなる層と、この層より高い屈折率を有する層とを積層してなる光導波路が提供される。また、本発明によれば、上記組成物を含む光学部品が提供される。 According to the present invention, there is also provided a composition wherein (D) is a dialkyl phosphite having a branched or straight chain alkyl group having 1 to 18 carbon atoms. Moreover, according to this invention, the composition whose (D) is 1 or more types in the group which consists of dimethyl phosphite and diethyl phosphite is provided. According to the present invention, there is further provided a composition containing a compound having a carbon-carbon unsaturated bond other than (E) a silsesquioxane derivative. Moreover, according to this invention, the composition whose (E) is an allyl compound is provided. Moreover, according to this invention, the composition which contains (F) antioxidant further is provided to the said composition. Moreover, according to this invention, the composition which contains the (G) adhesiveness imparting agent further to the said composition is provided. Moreover, according to this invention, the said composition is further provided with the composition containing (H) nitroso compound. Moreover, according to this invention, the adhesive agent consisting of the said composition is provided. Moreover, according to this invention, the adhesive body formed by adhere | attaching using the said adhesive agent is provided. Moreover, according to this invention, the coating agent which consists of the said composition is provided. Moreover, according to this invention, the coating body formed by coat | covering using the said coating agent is provided. Moreover, according to this invention, the laminated body by which the membrane | film | coat by the said coating agent was formed in the single side | surface or both surfaces of a base material is provided. Moreover, according to this invention, the laminated body whose said base material is a glass material is provided. Moreover, according to this invention, the hardening body which consists of the said composition is provided. Moreover, according to this invention, the optical waveguide formed by laminating | stacking the layer which consists of the said hardening body, and the layer which has a higher refractive index than this layer is provided. Moreover, according to this invention, the optical component containing the said composition is provided.
本発明は、貯蔵安定性を有する。本発明は他にも、例えば、耐熱性、耐光性、透明性、速硬化性または接着性を有する。 The present invention has storage stability. In addition, the present invention has, for example, heat resistance, light resistance, transparency, fast curability, or adhesiveness.
以下、本発明の実施の形態について詳細に説明する。なお、本明細書においてA~Bとは、A以上B以下を意味するものとする。本実施形態の組成物として樹脂組成物を例示し、説明する。 Hereinafter, embodiments of the present invention will be described in detail. In the present specification, A to B mean A to B. A resin composition is illustrated and demonstrated as a composition of this embodiment.
 (A)ポリエンについて
本実施形態の(A)ポリエンは、(A)1分子当たり2個以上の炭素-炭素不飽和結合を有し、かつ、ランダム型構造を有するシルセスキオキサン誘導体である。本実施形態の(A)ポリエンとしては、下記一般式〔1〕で表されるシルセスキオキサン誘導体が好ましい。本実施形態の(A)ポリエンは、後述のポリチオールと共に主成分として用いられる。
(A) Polyene The (A) polyene of this embodiment is a silsesquioxane derivative (A) having two or more carbon-carbon unsaturated bonds per molecule and having a random structure. As the polyene (A) of this embodiment, a silsesquioxane derivative represented by the following general formula [1] is preferable. (A) Polyene of this embodiment is used as a main component with the polythiol mentioned later.
一般式〔1〕
Figure JPOXMLDOC01-appb-C000005
(式中、Rは、(メタ)アクリロイル基、ビニル基、ビニルエーテル基、アリル基及びアリルエーテル基から選ばれる1種以上の官能基を有する。Rは、同一でも異なっても良い。(メタ)アクリロイル基、ビニル基、ビニルエーテル基、アリル基及びアリルエーテル基は、一部が、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のハロゲン化アルキル基、フェニル基、ハロゲンで置換されても良い。mは重合度を表す。)
General formula [1]
Figure JPOXMLDOC01-appb-C000005
(In the formula, R 0 has one or more functional groups selected from a (meth) acryloyl group, a vinyl group, a vinyl ether group, an allyl group, and an allyl ether group. R 0 may be the same or different. Some of the (meth) acryloyl group, vinyl group, vinyl ether group, allyl group and allyl ether group are alkyl groups having 1 to 6 carbon atoms, alkoxy groups having 1 to 6 carbon atoms, and alkyl halides having 1 to 6 carbon atoms. And may be substituted with a group, a phenyl group or a halogen, m represents the degree of polymerization.)
本実施形態において、好ましく用いられるシルセスキオキサン誘導体は、分子内に(メタ)アクリロイル基、ビニル基、ビニルエーテル基、アリル基及びアリルエーテル基といった、炭素-炭素不飽和結合を持つ官能基を有するシルセスキオキサン化合物である。炭素-炭素不飽和結合としては、(メタ)アクリロイル基が好ましい。1分子内における官能基の平均数は、2~50が好ましく、3~10がより好ましい。なお、1分子内における官能基の平均数は、2、3、4、5、6、7、8、9、10、15、20、25、30、35、40、45、50のうちいずれかの値または任意の2つの値の範囲内であってもよい。 In this embodiment, the silsesquioxane derivative preferably used has a functional group having a carbon-carbon unsaturated bond such as a (meth) acryloyl group, a vinyl group, a vinyl ether group, an allyl group, and an allyl ether group in the molecule. Silsesquioxane compound. As the carbon-carbon unsaturated bond, a (meth) acryloyl group is preferable. The average number of functional groups in one molecule is preferably 2 to 50, more preferably 3 to 10. The average number of functional groups in one molecule is any of 2, 3, 4, 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 35, 40, 45, 50. Or a range of any two values.
本実施形態のシルセスキオキサン誘導体は、アルコキシシランの共加水分解、共縮合の条件によりラダー型又はランダム型構造のものを得ることができることが知られており、ラダー型構造のシルセスキオキサン誘導体は、例えば、下記一般式〔2〕のような構造を有する。 It is known that the silsesquioxane derivative of the present embodiment can be obtained in a ladder type structure or a random type structure depending on the conditions of cohydrolysis and cocondensation of alkoxysilane. The derivative has, for example, a structure represented by the following general formula [2].
一般式〔2〕
Figure JPOXMLDOC01-appb-C000006
(式中Rは、(メタ)アクリロイル基、ビニル基、ビニルエーテル基、アリル基及びアリルエーテル基から選ばれる1種以上の官能基を有する。Rは、同一でも異なっても良い。(メタ)アクリロイル基、ビニル基、ビニルエーテル基、アリル基及びアリルエーテル基は、一部が、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のハロゲン化アルキル基、フェニル基、ハロゲンで置換されても良い。)
General formula [2]
Figure JPOXMLDOC01-appb-C000006
(In the formula, R 0 has one or more functional groups selected from (meth) acryloyl group, vinyl group, vinyl ether group, allyl group and allyl ether group. R 0 may be the same or different. ) A part of acryloyl group, vinyl group, vinyl ether group, allyl group and allyl ether group are alkyl groups having 1 to 6 carbon atoms, alkoxy groups having 1 to 6 carbon atoms, and halogenated alkyl groups having 1 to 6 carbon atoms. , Phenyl group, or halogen may be substituted.)
本実施形態のシルセスキオキサン誘導体は、ランダム型構造のシルセスキオキサン誘導体を主成分とするものであるが、本実施形態の目的を阻害しない範囲でケージ型(かご型)構造のシルセスキオキサン誘導体又はラダー型構造のシルセスキオキサン誘導体を含有してもよい。具体的には、本実施形態のシルセスキオキサン誘導体は、ランダム型構造を10質量%以上含むことが好ましく、20質量%以上含むことが特に好ましい。ランダム型構造を100質量%含んでもよい。このランダム型構造が10質量%以上であれば、接着性に優れる。別の観点から表現すれば、本実施形態のシルセスキオキサン誘導体は、ケージ型(かご型)構造またはラダー型構造を90%質量以下だけ含むことが好ましく、80%質量以下だけであればさらに好ましい。本実施形態のシルセスキオキサン誘導体は、ケージ型(かご型)構造またはラダー型構造のシルセスキオキサン誘導体を0%以上50質量%未満、45質量%以下、40質量%以下、30質量%以下、20質量%以下、10質量%以下含んでもよい。本実施形態のシルセスキオキサン誘導体のランダム型構造、ケージ型(かご型)構造またはラダー型構造の含有率の測定方法としては、例えば、GPCの測定結果と液体クロマトグラフィー分離後の質量分析(LC-MS)の測定結果とH-NMRの測定結果とを比較して算出する方法が挙げられる。なお、本実施形態のシルセスキオキサン誘導体のランダム型構造の含有率は、10質量%、20質量%、30質量%、40質量%、50質量%、60質量%、70質量%、80質量%、90質量%、100質量%のうちいずれかの値以上であってもよく、任意の2つの値の範囲内であってもよい。 The silsesquioxane derivative of the present embodiment is mainly composed of a silsesquioxane derivative having a random structure. However, the silsesquioxane derivative having a cage structure (cage type) is within the range that does not impair the object of the present embodiment. An oxane derivative or a silsesquioxane derivative having a ladder structure may be contained. Specifically, the silsesquioxane derivative of this embodiment preferably contains 10% by mass or more of a random structure, and particularly preferably contains 20% by mass or more. It may contain 100% by mass of a random structure. If this random structure is 10% by mass or more, the adhesiveness is excellent. From another viewpoint, the silsesquioxane derivative of the present embodiment preferably includes a cage-type (cage-type) structure or a ladder-type structure by 90% by mass or less. preferable. The silsesquioxane derivative of the present embodiment is a cage-type (cage-type) structure or a ladder-type structure silsesquioxane derivative of 0% to less than 50% by mass, 45% by mass or less, 40% by mass or less, and 30% by mass. Hereinafter, it may be contained by 20% by mass or less and 10% by mass or less. As a measuring method of the content rate of the random type structure, cage type (cage type) structure or ladder type structure of the silsesquioxane derivative of the present embodiment, for example, the GPC measurement results and mass spectrometry after liquid chromatography separation ( LC-MS) measurement results and 1 H-NMR measurement results are compared for calculation. The content of the random structure of the silsesquioxane derivative of this embodiment is 10% by mass, 20% by mass, 30% by mass, 40% by mass, 50% by mass, 60% by mass, 70% by mass, and 80% by mass. %, 90% by mass, or 100% by mass or more, and may be within the range of any two values.
シルセスキオキサン誘導体の分子量は、100~100,000が好ましく、500~60,000がより好ましい。分子量が100以上であれば、優れた耐熱性を得ることができ、100,000以下であれば、接着剤の粘度が高くなりすぎたりせず、作業性や成形性を損ねたりせず、保存安定性に問題が生じたりしない。なお、シルセスキオキサン誘導体の分子量は、100、200、300、400、500、600、700、800、900、1,000、2,000、3,000、4,000、5,000、6,000、7,000、8,000、9,000、10,000、20,000、30,000、40,000、50,000、60,000、70,000、80,000、90,000、100,000のうちいずれかの値または任意の2つの値の範囲内であってもよい。 The molecular weight of the silsesquioxane derivative is preferably 100 to 100,000, more preferably 500 to 60,000. When the molecular weight is 100 or more, excellent heat resistance can be obtained, and when the molecular weight is 100,000 or less, the viscosity of the adhesive does not become too high, and the workability and moldability are not impaired and stored. There is no problem with stability. The molecular weight of the silsesquioxane derivative is 100, 200, 300, 400, 500, 600, 700, 800, 900, 1,000, 2,000, 3,000, 4,000, 5,000, 6 , 000, 7,000, 8,000, 9,000, 10,000, 20,000, 30,000, 40,000, 50,000, 60,000, 70,000, 80,000, 90,000 , 100,000, or any two values.
オリゴマーの分子量は、分子1個あたりの平均の分子量として算出される重量平均分子量を指す。本実施形態の実施例では、GPC(ゲルパーミエーションクロマトグラフィー)により測定した、ポリスチレン換算の重量平均分子量を使用する。 The molecular weight of the oligomer refers to the weight average molecular weight calculated as the average molecular weight per molecule. In the examples of this embodiment, the weight average molecular weight in terms of polystyrene measured by GPC (gel permeation chromatography) is used.
本実施形態のシルセスキオキサン誘導体において、エチレン性不飽和基1当量あたりのシルセスキオキサン誘導体のグラム数(例えば、エチレン性不飽和基が、(メタ)アクリル基の場合は、(メタ)アクリル基当量が該当)は、50~300g/eqが好ましく、100~200g/eqがより好ましい。エチレン性不飽和基とは、(メタ)アクリロイル基、ビニル基、ビニルエーテル基、アリル基及びアリルエーテル基から選ばれる1種以上の官能基をいう。なお、エチレン性不飽和基1当量あたりのシルセスキオキサン誘導体のグラム数は、50、60、70、80、90、100、110、120、130、140、150、160、170、180、190、200、210、220、230、240、250、260、270、280、290、300g/eqのうちいずれかの値または任意の2つの値の範囲内であってもよい。 In the silsesquioxane derivative of the present embodiment, the number of grams of the silsesquioxane derivative per equivalent of the ethylenically unsaturated group (for example, when the ethylenically unsaturated group is a (meth) acrylic group, (meth) Acrylic group equivalent) is preferably 50 to 300 g / eq, more preferably 100 to 200 g / eq. The ethylenically unsaturated group refers to one or more functional groups selected from a (meth) acryloyl group, a vinyl group, a vinyl ether group, an allyl group, and an allyl ether group. In addition, the gram number of the silsesquioxane derivative per 1 equivalent of ethylenically unsaturated groups is 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 170, 180, 190. , 200, 210, 220, 230, 240, 250, 260, 270, 280, 290, 300 g / eq, or any two values.
 (B)ポリチオールについて
本実施形態の(B)ポリチオールは、1分子当たり2個以上のチオール基を有する。
(B) Polythiol The (B) polythiol of this embodiment has two or more thiol groups per molecule.
本実施形態のポリチオールの平均分子量は、50~15,000が好ましい。本実施形態のポリチオールは、前述のポリエンと共に主成分として用いられる。好ましいポリチオールとしては、ジメルカプトブタンやトリメルカプトヘキサン等のメルカプト基置換アルキル化合物、ジメルカプトベンゼン等のメルカプト基置換アリル化合物、チオグリコール酸やチオプロピオン酸等の多価アルコールエステル及び多価アルコールのアルキレンオキサイド付加物と硫化水素の反応生成物等が挙げられる。 The average molecular weight of the polythiol of this embodiment is preferably 50 to 15,000. The polythiol of this embodiment is used as a main component together with the aforementioned polyene. Preferred polythiols include mercapto group-substituted alkyl compounds such as dimercaptobutane and trimercaptohexane, mercapto group-substituted allyl compounds such as dimercaptobenzene, polyhydric alcohol esters such as thioglycolic acid and thiopropionic acid, and alkylenes of polyhydric alcohols. Examples include a reaction product of an oxide adduct and hydrogen sulfide.
本実施形態のポリチオールとしては、トリス[(3-メルカプトプロピオニロキシ)-エチル]イソシアヌレート、トリメチロールプロパン-トリス-(β-チオプロピネート)、トリス-2-ヒドロキシエチル-イソシアヌレート、トリス-β-メルカプトプロピオネート、ペンタエリスリトールテトラキス(β-チオプロピオネート)、1,8-ジメルカプト-3,6-ジオキサオクタン、1,8-ジメルカプト-3,6-ジスルフィドオクタン、トリアジンチオール、更にはシルセスキオキサン誘導体のポリチオール等が挙げられる。本実施形態のポリチオールは、特に限定されず、単独であっても構わないし、2種以上の混合物であっても構わない。これらの中では、トリメチロールプロパン-トリス-(β-チオプロピオネート)とトリス[(3-メルカプトプロピオニロキシ)-エチル]イソシアヌレートからなる群のうちの1種以上が好ましく、トリメチロールプロパン-トリス-(β-チオプロピオネート)がより好ましい。 Examples of the polythiol of the present embodiment include tris [(3-mercaptopropionyloxy) -ethyl] isocyanurate, trimethylolpropane-tris- (β-thiopropionate), tris-2-hydroxyethyl-isocyanurate, tris- β-mercaptopropionate, pentaerythritol tetrakis (β-thiopropionate), 1,8-dimercapto-3,6-dioxaoctane, 1,8-dimercapto-3,6-disulfide octane, triazine thiol, and more Includes polythiols of silsesquioxane derivatives. The polythiol of this embodiment is not particularly limited, and may be a single thiol or a mixture of two or more. Among these, one or more members selected from the group consisting of trimethylolpropane-tris- (β-thiopropionate) and tris [(3-mercaptopropionyloxy) -ethyl] isocyanurate are preferable, and trimethylolpropane is preferable. -Tris- (β-thiopropionate) is more preferred.
本実施形態の(A)のシルセスキオキサン誘導体と(B)のポリチオールの質量比は、(A)と(B)の合計を100とした場合、5~95:95~5が好ましく、15~90:85~10がより好ましく、35~85:65~15が最も好ましい。なお、この質量比は、5:95、10:90、15:85、20:80、25:75、30:70、35:65、40:60、45:55、50:50、55:45、60:40、65:35、70:30、75:25、80:20、85:15、90:10、95:5のうちいずれかの値または任意の2つの値の範囲内であってもよい。 The mass ratio of the silsesquioxane derivative of (A) of this embodiment to the polythiol of (B) is preferably 5 to 95:95 to 5 when the total of (A) and (B) is 100, ~ 90: 85-10 is more preferred, and 35-85: 65-15 is most preferred. The mass ratio is 5:95, 10:90, 15:85, 20:80, 25:75, 30:70, 35:65, 40:60, 45:55, 50:50, 55:45. , 60:40, 65:35, 70:30, 75:25, 80:20, 85:15, 90:10, within the range of 95: 5 or any two values Also good.
 (C)光ラジカル重合開始剤について
更に、本実施形態の樹脂組成物は(C)光ラジカル重合開始剤を含有することが好ましい。
About (C) radical photopolymerization initiator Furthermore, it is preferable that the resin composition of this embodiment contains (C) radical photopolymerization initiator.
本実施形態の(C)光ラジカル重合開始剤としては、光を吸収して重合開始能のあるラジカルを発生する化合物であれば特に制限はない。本実施形態の光ラジカル重合開始剤としては、ベンジル、ベンゾイン、ベンゾイン安息香酸、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル等のベンゾイン誘導体、ベンゾフェノン、4-フェニルベンゾフェノン等のベンゾフェノン誘導体、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、2,2-ジエトキシアセトフェノン、ベンジルジメチルケタール等のアルキルアセトフェノン誘導体、1-ヒドロキシシクロヘキシルフェニルケトン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、1-(4-(2-ヒドロキシエトキシ)-フェニル)-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン等のα-ヒドロキシアセトフェノン誘導体、ビスジエチルアミノベンゾフェノン、2-メチル-1-(4-(メチルチオ)フェニル)-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-1-ブタノン-1-オン等のα-アミノアルキルアセトフェノン誘導体、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキサイド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルホスフィンオキサイド等のアシルフォスフィンオキサイド誘導体等が挙げられる。本実施形態の光ラジカル重合開始剤は、特に限定されず、単独であっても構わないし、2種以上の混合物であっても構わない。これらの中では、アルキルアセトフェノン誘導体とα-ヒドロキシアセトフェノン誘導体からなる群のうちの1種以上が好ましく、アルキルアセトフェノン誘導体がより好ましい。アルキルアセトフェノン誘導体の中では、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オンが好ましい。α-ヒドロキシアセトフェノン誘導体の中では、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オンが好ましい。 The (C) photoradical polymerization initiator of this embodiment is not particularly limited as long as it is a compound that absorbs light and generates a radical capable of initiating polymerization. Examples of the photo radical polymerization initiator of this embodiment include benzoin derivatives such as benzyl, benzoin, benzoin benzoic acid, benzoin ethyl ether, benzoin isopropyl ether, and benzoin isobutyl ether, benzophenone derivatives such as benzophenone and 4-phenylbenzophenone, 2,2 Alkyl acetophenone derivatives such as -dimethoxy-1,2-diphenylethane-1-one, 2,2-diethoxyacetophenone, benzyldimethyl ketal, 1-hydroxycyclohexyl phenyl ketone, 1- (4-isopropylphenyl) -2-hydroxy -2-Methylpropan-1-one, 1- (4- (2-hydroxyethoxy) -phenyl) -2-hydroxy-2-methyl-1-propan-1-one, 2-hydroxy-2-methyl-1 - Α-hydroxyacetophenone derivatives such as phenyl-propan-1-one, bisdiethylaminobenzophenone, 2-methyl-1- (4- (methylthio) phenyl) -2-morpholinopropan-1-one, 2-benzyl-2- Α-aminoalkylacetophenone derivatives such as dimethylamino-1- (4-morpholinophenyl) -1-butanone-1-one, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis (2,4,6-trimethyl) And acylphosphine oxide derivatives such as benzoyl) -phenylphosphine oxide and bis (2,6-dimethoxybenzoyl) -2,4,4-trimethyl-pentylphosphine oxide. The radical photopolymerization initiator of the present embodiment is not particularly limited, and may be a single type or a mixture of two or more types. Among these, one or more members selected from the group consisting of alkylacetophenone derivatives and α-hydroxyacetophenone derivatives are preferable, and alkylacetophenone derivatives are more preferable. Of the alkyl acetophenone derivatives, 2,2-dimethoxy-1,2-diphenylethane-1-one is preferred. Of the α-hydroxyacetophenone derivatives, 2-hydroxy-2-methyl-1-phenyl-propan-1-one is preferred.
本実施形態の光ラジカル重合開始剤は、予め、ポリエン又はポリチオールに混合させておくことも可能である。 The radical photopolymerization initiator of this embodiment can be mixed with polyene or polythiol in advance.
本実施形態の(C)光ラジカル重合開始剤の使用量は、成分(A)、成分(B)、及び必要に応じて使用する成分(E)の合計100質量部に対して、0.01~10質量部が好ましく、0.05~5質量部がより好ましい。0.01質量部以上であれば、充分な硬化性を得ることができ、10質量部以下であれば、可視光透明性を損なうこともない。なお、この使用量は、0.01、0.02、0.03、0.04、0.05、0.06、0.07、0.08、0.09、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1、2、3、4、5、6、7、8、9、10質量部のうちいずれかの値または任意の2つの値の範囲内であってもよい。 The amount of the (C) radical photopolymerization initiator used in this embodiment is 0.01 with respect to a total of 100 parts by mass of the component (A), the component (B), and the component (E) used as necessary. Is preferably 10 to 10 parts by mass, and more preferably 0.05 to 5 parts by mass. If it is 0.01 mass part or more, sufficient sclerosis | hardenability can be obtained, and if it is 10 mass parts or less, visible light transparency will not be impaired. In addition, this usage-amount is 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2. 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 parts by mass May be within the range of any value or any two values.
 (D)亜リン酸ジアルキルについて
更に、本実施形態の樹脂組成物は(D)亜リン酸ジアルキルを含有することが好ましい。
(D) Furthermore, about the dialkyl phosphite, it is preferable that the resin composition of this embodiment contains (D) dialkyl phosphite.
本実施形態の(D)亜リン酸ジアルキルは、1分子当たり2個のアルキル基を有する。亜リン酸ジアルキルは、例えば、下記一般式〔3〕のような構造を有する。 (D) dialkyl phosphite of this embodiment has two alkyl groups per molecule. The dialkyl phosphite has, for example, a structure represented by the following general formula [3].
一般式〔3〕
Figure JPOXMLDOC01-appb-C000007
(式中、R、Rは、それぞれアルキル基である。R、Rは、同一の基であっても異なる基であってもよい。)
General formula [3]
Figure JPOXMLDOC01-appb-C000007
(In the formula, R 1 and R 2 are each an alkyl group. R 1 and R 2 may be the same group or different groups.)
アルキル基は、1~18個の炭素原子を有する分岐又は直鎖構成のアルキル基が好ましく、1~12個の炭素原子を有する分岐又は直鎖構成のアルキル基がより好ましく、1~8個の炭素原子を有する分岐又は直鎖構成のアルキル基が最も好ましく、1~6個の炭素原子を有する分岐又は直鎖構成のアルキル基が尚更好ましい。アルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、2-エチルヘキシル基やn-オクチル基を含むオクチル基、ラウリル基、オレイル基等が挙げられる。アルキル基としては、炭化水素基が好ましい。亜リン酸ジアルキルの中では、亜リン酸ジメチル、亜リン酸ジエチル、亜リン酸ジ(2-エチルヘキシル)、亜リン酸ジラウリル及び亜リン酸ジオレイルからなる群のうちの1種以上が好ましく、亜リン酸ジメチルと亜リン酸ジエチルからなる群のうちの1種以上がより好ましく、亜リン酸ジエチルが最も好ましい。
本実施形態の(D)亜リン酸ジアルキルの使用量は、成分(A)、成分(B)、及び必要に応じて使用する成分(E)の合計100質量部に対して、0.01~10質量部が好ましく、0.05~5質量部がより好ましい。0.01質量部以上であれば、充分な貯蔵安定性を得ることができ、10質量部以下であれば、硬化性を損なうこともない。なお、この使用量は、0.01、0.02、0.03、0.04、0.05、0.06、0.07、0.08、0.09、0.1、0.2、0.3、0.4、0.5、0.6、0.7、0.8、0.9、1、2、3、4、5、6、7、8、9、10質量部のうちいずれかの値または任意の2つの値の範囲内であってもよい。
The alkyl group is preferably a branched or straight chain alkyl group having 1 to 18 carbon atoms, more preferably a branched or straight chain alkyl group having 1 to 12 carbon atoms, and more preferably 1 to 8 carbon atoms. Most preferred are branched or straight chain alkyl groups having carbon atoms, and even more preferred are branched or straight chain alkyl groups having 1 to 6 carbon atoms. Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, an octyl group including a 2-ethylhexyl group and an n-octyl group, a lauryl group, and an oleyl group. As the alkyl group, a hydrocarbon group is preferable. Among dialkyl phosphites, one or more members selected from the group consisting of dimethyl phosphite, diethyl phosphite, di (2-ethylhexyl) phosphite, dilauryl phosphite and dioleyl phosphite are preferred. One or more members of the group consisting of dimethyl phosphate and diethyl phosphite are more preferred, and diethyl phosphite is most preferred.
The amount of (D) dialkyl phosphite used in the present embodiment is 0.01 to 100 parts by mass with respect to 100 parts by mass in total of the component (A), the component (B), and the component (E) used as necessary. 10 parts by mass is preferable, and 0.05 to 5 parts by mass is more preferable. If it is 0.01 mass part or more, sufficient storage stability can be obtained, and if it is 10 mass parts or less, curability will not be impaired. In addition, this usage-amount is 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.2. 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 parts by mass May be within the range of any value or any two values.
 (E)他の炭素-炭素不飽和結合を有する化合物について
本実施形態の樹脂組成物は、更に、(E)シルセスキオキサン誘導体以外の、炭素-炭素不飽和結合を有する化合物を含有することができる。
(E) Other compound having carbon-carbon unsaturated bond The resin composition of the present embodiment further contains (E) a compound having a carbon-carbon unsaturated bond other than the silsesquioxane derivative. Can do.
(E)シルセスキオキサン誘導体以外の、炭素-炭素不飽和結合を有する化合物としては、特に定めるものではないが、炭素-炭素不飽和結合を1つ有する1官能の化合物であっても、炭素-炭素不飽和結合を2つ以上有する2官能以上の化合物であってもよい。 (E) The compound having a carbon-carbon unsaturated bond other than the silsesquioxane derivative is not particularly defined, but even if it is a monofunctional compound having one carbon-carbon unsaturated bond, carbon -It may be a bifunctional or higher functional compound having two or more carbon unsaturated bonds.
本実施形態の、(E)シルセスキオキサン誘導体以外の、炭素-炭素不飽和結合を有する化合物の粘度は、組成物の粘度の調製の点で、1000mPa・s以下が好ましく、500mPa・s以下がより好ましく、100mPa・s以下が最も好ましい。 The viscosity of the compound having a carbon-carbon unsaturated bond other than the (E) silsesquioxane derivative of this embodiment is preferably 1000 mPa · s or less, and 500 mPa · s or less in terms of adjusting the viscosity of the composition. Is more preferable, and 100 mPa · s or less is most preferable.
本実施形態の(E)シルセスキオキサン誘導体以外の、炭素-炭素不飽和結合を有する化合物の分子量は、組成物の粘度の調製の点で、1000以下が好ましく、100~800がより好ましく、100~500が最も好ましい。炭素-炭素不飽和結合とは、特に炭素-炭素の二重結合をいう。 The molecular weight of the compound having a carbon-carbon unsaturated bond other than the (E) silsesquioxane derivative of this embodiment is preferably 1000 or less, more preferably 100 to 800, in terms of adjusting the viscosity of the composition. 100 to 500 is most preferred. The carbon-carbon unsaturated bond particularly refers to a carbon-carbon double bond.
本実施形態の(E)シルセスキオキサン誘導体以外の、炭素-炭素不飽和結合を有する化合物としては、特に限定されないが、2-エチルヘキシル(メタ)アクリレート、2-エチルヘキシルカルビトール(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、ベンジル(メタ)アクリレート、ブタンジオールモノ(メタ)アクリレート、ブチル(メタ)アクリレート、エチレンオキシド変性(以下「EO」という。)クレゾール(メタ)アクリレート、ジプロピレングリコール(メタ)アクリレート、エトキシ化フェニル(メタ)アクリレート、エチル(メタ)アクリレート、イソブチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンタニルオキシエチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ノニルフェノキシポリエチレングリコール(メタ)アクリレート、ノニルフェノキシポリプロピレングリコール(メタ)アクリレート、オクチル(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、プロピレンオキシド(以後「PO」という。)ネオペンチルグリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、PO変性トリメチロールプロパントリ(メタ)アクリレート、トリス((メタ)アクリロキシエチル)イソシアヌレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールヒドロキシペンタ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールエトキシテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、トリメチロールエタントリビニルエーテル、ヘキサンジオールジビニルエーテル、テトラエチレングリコールジビニルエーテル、ペンタエリスリトールジビニルエーテル、トリエチレングリコールジエチレンビニルエーテル、エチレングリコールジプロピレンビニルエーテル、トリエチレングリコールジエチレンビニルエーテル、ジアリルフタレート、ジアリルマレエート、トリアリルシアヌレート、トリアリルイソシアヌレート、トリアリルトリメリテート、テトラアリロキシエタン、トリメチロールプロパンジアリル、トリメチロールプロパントリアリル等が挙げられる。これらの中では、アリル基を有するアリル化合物が好ましい。アリル化合物としては、ジアリルフタレート、ジアリルマレエート、トリアリルシアヌレート、トリアリルイソシアヌレート、トリアリルトリメリテート、テトラアリロキシエタン、トリメチロールプロパンジアリル、トリメチロールプロパントリアリル等が挙げられる。アリル基化合物の中では、トリアリルイソシアヌレートとジアリルマレエートからなる群のうちの1種以上が好ましい。本実施形態の(E)シルセスキオキサン誘導体以外の、炭素-炭素不飽和結合を有する化合物は、後述する(G)密着性付与剤を除くことが好ましい。 The compound having a carbon-carbon unsaturated bond other than the (E) silsesquioxane derivative of the present embodiment is not particularly limited, but 2-ethylhexyl (meth) acrylate, 2-ethylhexyl carbitol (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, benzyl (meth) acrylate, butanediol mono (meth) acrylate, Butyl (meth) acrylate, ethylene oxide modified (hereinafter referred to as “EO”) cresol (meth) acrylate, dipropylene glycol (meth) acrylate, ethoxylated phenyl (meth) acrylate, ethyl (meth) acrylate, iso Chill (meth) acrylate, isooctyl (meth) acrylate, cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentanyloxyethyl (meth) acrylate, lauryl (meth) acrylate, Nonylphenoxypolyethylene glycol (meth) acrylate, nonylphenoxypolypropylene glycol (meth) acrylate, octyl (meth) acrylate, phenoxyethyl (meth) acrylate, 1,9-nonanediol di (meth) acrylate, propylene oxide (hereinafter “PO”) Neopentyl glycol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, PO-modified trimethylolpropane tri (meth) Acrylate, tris ((meth) acryloxyethyl) isocyanurate, dipentaerythritol hexa (meth) acrylate, dipentaerythritol hydroxypenta (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, pentaerythritol ethoxytetra (meth) acrylate , Pentaerythritol tetra (meth) acrylate, trimethylolethane trivinyl ether, hexanediol divinyl ether, tetraethylene glycol divinyl ether, pentaerythritol divinyl ether, triethylene glycol diethylene vinyl ether, ethylene glycol dipropylene vinyl ether, triethylene glycol diethylene vinyl ether, diallyl Phthalate, diallyl male , Triallyl cyanurate, triallyl isocyanurate, triallyl trimellitate, tetraallyloxyethane, trimethylolpropane diallyl, trimethylolpropane triallyl and the like. Of these, allyl compounds having an allyl group are preferred. Examples of the allyl compound include diallyl phthalate, diallyl maleate, triallyl cyanurate, triallyl isocyanurate, triallyl trimellitate, tetraallyloxyethane, trimethylolpropane diallyl, trimethylolpropane triallyl and the like. Among allyl group compounds, one or more members selected from the group consisting of triallyl isocyanurate and diallyl maleate are preferable. The compound having a carbon-carbon unsaturated bond other than the (E) silsesquioxane derivative of this embodiment preferably excludes the (G) adhesion-imparting agent described later.
本実施形態の(E)シルセスキオキサン誘導体以外の、炭素-炭素不飽和結合を有する化合物の使用量は、低粘度になるので作業性が良くなり、接着性が向上する点で、成分(A)、成分(B)、及び成分(E)の合計100質量部中、60質量部以下が好ましく、2~50質量部がより好ましく、5~30質量部が最も好ましく、7~15質量部が尚更好ましい。 The amount of the compound having a carbon-carbon unsaturated bond other than the (E) silsesquioxane derivative of this embodiment is low in viscosity, so that the workability is improved and the adhesiveness is improved. A total of 100 parts by mass of A), component (B), and component (E) is preferably 60 parts by mass or less, more preferably 2 to 50 parts by mass, most preferably 5 to 30 parts by mass, and 7 to 15 parts by mass. Is even more preferred.
 (F)酸化防止剤について
本実施形態の樹脂組成物は、更に、(E)酸化防止剤を含有することが、優れた耐熱性、保存安定性が得られる点で、好ましい。
(F) Antioxidant It is preferable that the resin composition of the present embodiment further contains (E) an antioxidant because excellent heat resistance and storage stability can be obtained.
(F)酸化防止剤は、製品中の成分の酸化を抑制するために添加される抗酸化物質である。酸化防止剤としては、特に限定されないが、トリエチレングリコール-ビス[3-(3-tert-ブチル-5-メチル-4-ヒドロキシフェニル)プロピオネート]、1,6-ヘキサンジオール-ビス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、ペンタエリスリチル・テトラキス[3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート]、2,2’-メチレンビス(6-tert-ブチル-p-クレゾール)、イソオクチル-3-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)プロピオネート、2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)等のフェノール系、2,2,4,4-テトラメチル-21-オキソ-7-オキサ-3.20-ジアザジスピロ[5.1.11.2]-ヘンイコサン-20-プロピオン酸ドデシルエステル及び2,2,4,4-テトラメチル-21-オキソ-7-オキサ-3.20-ジアザジスピロ[5.1.11.2]-ヘンイコサン-20-プロピオン酸テトラデシルエステルの混合物、2-[2-ヒドロキシ-3,5-ビス(α,α-ジメチルベンジル)フェニル]-2H-ベンゾトリアゾール、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート等のヒンダートアミン系、6-〔3-(3-tert-ブチル-4-ヒドロキシ-5-メチルフェニル)プロポキシ〕-2,4,8,10-テトラ-tert-ブチルジベンズ〔d、f〕〔1,3,2〕ジオキサフォスフェピン等のリン系化合物、ジラウリル3,3′-チオジプロピオネート、ジミリスチル3,3′-チオジプロピオネート、ジステアリル3,3’-チオジプロピオネート、ペンタエリスリチル・テトラキス(3-ラウリルチオプロピオネート)、2-メルカプトベンズイミダゾール等のイオウ系化合物が挙げられる。これらの中では、フェノール系化合物及び/又はヒンダートアミン化合物が好ましく、フェノール系化合物がより好ましい。
フェノール系化合物の中では、イソオクチル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネートと2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)からなる群のうちの1種以上が好ましく、イソオクチル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネートと2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)を併用することがより好ましい。イソオクチル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネートと2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)を併用する場合、その混合割合は、イソオクチル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネートと2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)の合計100質量部中、イソオクチル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート:2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)=1:99~99:1が好ましく、5:95~97:3がより好ましく、85:15~95:5が最も好ましい。
(F) Antioxidant is an antioxidant substance added in order to suppress the oxidation of the component in a product. The antioxidant is not particularly limited, but triethylene glycol-bis [3- (3-tert-butyl-5-methyl-4-hydroxyphenyl) propionate], 1,6-hexanediol-bis [3- ( 3,5-di-tert-butyl-4-hydroxyphenyl) propionate], pentaerythrityl tetrakis [3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate], 2,2′- Methylene bis (6-tert-butyl-p-cresol), isooctyl-3- (3,5-di-tert-butyl-4-hydroxyphenyl) propionate, 2,2′-methylene bis (4-methyl-6-tert- Butylphenol), 2,2,4,4-tetramethyl-21-oxo-7-oxa .20-diazadispiro [5.1.1.12] -henicosane-20-propionic acid dodecyl ester and 2,2,4,4-tetramethyl-21-oxo-7-oxa-3.20-diazadispiro [5. 1.11.2] -Henicosane-20-propionic acid tetradecyl ester mixture, 2- [2-hydroxy-3,5-bis (α, α-dimethylbenzyl) phenyl] -2H-benzotriazole, bis (2 , 2,6,6-tetramethyl-4-piperidyl) sebacate and other hindered amines, 6- [3- (3-tert-butyl-4-hydroxy-5-methylphenyl) propoxy] -2,4, Phosphorus compounds such as 8,10-tetra-tert-butyldibenz [d, f] [1,3,2] dioxaphosphine, dilauryl 3,3′-thio Sulfur compounds such as dipropionate, dimyristyl 3,3'-thiodipropionate, distearyl 3,3'-thiodipropionate, pentaerythrityl tetrakis (3-laurylthiopropionate), 2-mercaptobenzimidazole Is mentioned. In these, a phenol type compound and / or a hindered amine compound are preferable, and a phenol type compound is more preferable.
Among the phenolic compounds, the group consisting of isooctyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate and 2,2′-methylenebis (4-methyl-6-tert-butylphenol) One or more of them are preferable, and isooctyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate and 2,2′-methylenebis (4-methyl-6-tert-butylphenol) are used in combination. It is more preferable. When isooctyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate and 2,2′-methylenebis (4-methyl-6-tert-butylphenol) are used in combination, the mixing ratio is isooctyl. In a total of 100 parts by mass of -3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate and 2,2′-methylenebis (4-methyl-6-tert-butylphenol), isooctyl-3- ( 3,5-di-tert-butyl-4-hydroxyphenyl) propionate: 2,2′-methylenebis (4-methyl-6-tert-butylphenol) = 1: 99 to 99: 1 is preferred, and 5:95 to 97 : 3 is more preferable, and 85:15 to 95: 5 is most preferable.
本実施形態の(F)酸化防止剤の使用量は、成分(A)、成分(B)、及び必要に応じて使用する成分(E)の合計100質量部に対して、0.001~3質量部が好ましく、0.01~2質量部がより好ましい。0.001質量部以上であれば耐久性及び貯蔵安定性が充分であるし、3質量部以下であれば確実な接着性が得られ、未硬化になるおそれもない。 The amount of the antioxidant (F) used in this embodiment is 0.001 to 3 with respect to 100 parts by mass in total of the component (A), the component (B), and the component (E) used as necessary. Part by mass is preferable, and 0.01 to 2 parts by mass is more preferable. If it is 0.001 part by mass or more, durability and storage stability are sufficient, and if it is 3 parts by mass or less, reliable adhesiveness is obtained, and there is no possibility of becoming uncured.
本実施形態のポリエンとポリチオールの質量比は、良好な耐熱性、接着性を得られる点で、ポリエンとポリチオールの合計を100とした場合、98:2~2:98が好ましく、90:10~10:90がより好ましい。特にポリエン中の二重結合とポリチオール中のチオール基が化学当量であるときが、最も好ましい。ここで言う化学当量とは、(ポリエンのモル数/ポリエン分子が有する二重結合の数)と、(ポリチオールのモル数/ポリチオール分子が有するSH基の数)が等しいことを意味している。ここでポリエンは、成分(A)と成分(E)をいい、ポリチオールは、成分(B)をいう。 The mass ratio of the polyene and the polythiol in the present embodiment is preferably 98: 2 to 2:98 when the total of the polyene and the polythiol is 100 in terms of obtaining good heat resistance and adhesion, and 90:10 to 10:90 is more preferable. In particular, it is most preferable when the double bond in the polyene and the thiol group in the polythiol have a chemical equivalent. The chemical equivalent here means that (number of moles of polyene / number of double bonds of polyene molecule) and (number of moles of polythiol / number of SH groups of polythiol molecule) are equal. Here, polyene refers to component (A) and component (E), and polythiol refers to component (B).
 (G)密着性付与剤について
本実施形態は、接着性向上のために、(F)密着性付与剤を使用しても良い。密着性付与剤としては、3-グリシドキシプロピルトリメトキシシラン、γ-クロロプロピルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリクロルシラン、ビニルトリエトキシシラン、ビニル-トリス(β-メトキシエトキシ)シラン、γ-(メタ)アクリロキシプロピルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルトリメトキシシラン、N-β-(アミノエチル)-γ-アミノプロピルメチルジメトキシシラン、γ-ユレイドプロピルトリエトキシシラン、ヒドロキシエチル(メタ)アクリレートリン酸エステル、(2-ヒドロキシエチル)(メタ)アクリルアシッドフォスフェート、(メタ)アクリロキシオキシエチルアシッドフォスフェート、(メタ)アクリロキシオキシエチルアシッドフォスフェートモノエチルアミンハーフソルト等が挙げられる。これらの中では、γ-(メタ)アクリロキシプロピルトリメトキシシランと3-グリシドキシプロピルトリメトキシシランからなる群のうちの1種以上が好ましい。
(G) Adhesion imparting agent In the present embodiment, (F) an adhesion imparting agent may be used to improve adhesion. Examples of the adhesion promoter include 3-glycidoxypropyltrimethoxysilane, γ-chloropropyltrimethoxysilane, vinyltrimethoxysilane, vinyltrichlorosilane, vinyltriethoxysilane, vinyl-tris (β-methoxyethoxy) silane, γ- (meth) acryloxypropyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, γ-mercaptopropyltrimethoxysilane, γ-aminopropyltri Ethoxysilane, N-β- (aminoethyl) -γ-aminopropyltrimethoxysilane, N-β- (aminoethyl) -γ-aminopropylmethyldimethoxysilane, γ-ureidopropyltriethoxysilane, hydroxyethyl (meta Acrylate Phosphate esters, (2-hydroxyethyl) (meth) acrylic acid phosphate, (meth) acrylate Roxio carboxyethyl acid phosphate, and (meth) acrylate Roxio carboxyethyl acid phosphate Tomono ethylamine half salt and the like. Among these, at least one member selected from the group consisting of γ- (meth) acryloxypropyltrimethoxysilane and 3-glycidoxypropyltrimethoxysilane is preferable.
(G)密着性付与剤の使用量は、成分(A)、成分(B)、及び必要に応じて使用する成分(E)の合計100質量部に対して、0.001~10質量部が好ましく、0.01~5質量部がより好ましい。0.001質量部以上であれば接着性が充分であるし、10質量部以下であれば確実な接着性が得られる。 (G) The amount of the adhesion-imparting agent used is 0.001 to 10 parts by mass with respect to 100 parts by mass in total of the component (A), the component (B), and the component (E) used as necessary. Preferably, 0.01 to 5 parts by mass is more preferable. If it is 0.001 part by mass or more, the adhesiveness is sufficient, and if it is 10 parts by mass or less, reliable adhesiveness is obtained.
 (H)ニトロソ化合物について
本実施形態は、貯蔵安定性向上のために、(H)ニトロソ化合物を使用しても良い。
(H) Nitroso Compound In this embodiment, (H) a nitroso compound may be used to improve storage stability.
ニトロソ化合物としては、N-ニトロソアリールヒドロキシルアミン塩が好ましい。N-ニトロソアリールヒドロキシルアミン塩としては、N-ニトロソフェニル・ヒドロキシルアミンのアンモニウム塩、ナトリウム塩、カリウム塩、マグネシウム塩、ストロンチウム塩、アルミニウム塩、銅塩、亜鉛塩、セリウム塩、鉄塩、ニッケル塩、コバルト塩等が挙げられる。これらの中では、N-ニトロソフェニル・ヒドロキシルアミンアルミニウム塩及びN-ニトロソフェニル・ヒドロキシルアミンアンモニウム塩からなる群のうちの1種以上が好ましく、N-ニトロソフェニル・ヒドロキシルアミンアルミニウム塩がより好ましい。 As the nitroso compound, N-nitrosoarylhydroxylamine salts are preferred. N-nitrosoarylhydroxylamine salts include ammonium salt, sodium salt, potassium salt, magnesium salt, strontium salt, aluminum salt, copper salt, zinc salt, cerium salt, iron salt, nickel salt of N-nitrosophenyl hydroxylamine And cobalt salts. Among these, one or more members selected from the group consisting of N-nitrosophenyl hydroxylamine aluminum salt and N-nitrosophenyl hydroxylamine ammonium salt are preferable, and N-nitrosophenyl hydroxylamine aluminum salt is more preferable.
(H)ニトロソ化合物の使用量は、成分(A)、成分(B)、及び必要に応じて使用する成分(E)の合計100質量部に対して、0.0001~1質量部が好ましく、0.001~0.1質量部がより好ましい。0.0001質量部以上であれば貯蔵安定性が向上するし、1質量部以下であれば硬化性を損なうこともない。 (H) The amount of the nitroso compound used is preferably 0.0001 to 1 part by mass with respect to 100 parts by mass in total of the component (A), the component (B), and the component (E) used as necessary. 0.001 to 0.1 parts by mass is more preferable. If it is 0.0001 part by mass or more, the storage stability is improved, and if it is 1 part by mass or less, the curability is not impaired.
本実施形態の樹脂組成物は、目的の効果を損なわない範囲で、必要に応じて、熱ラジカル重合開始剤、硬化促進剤、充填剤、着色剤、チキソトロピー付与剤、可塑剤、界面活性剤、滑剤、帯電防止剤等の添加剤を加えることができる。 The resin composition of the present embodiment is a range that does not impair the intended effect, and if necessary, a thermal radical polymerization initiator, a curing accelerator, a filler, a colorant, a thixotropic agent, a plasticizer, a surfactant, Additives such as lubricants and antistatic agents can be added.
本実施形態の樹脂組成物は、接着剤や被覆剤として使用できる。本実施形態の接着剤又は被覆剤により接着又は被覆する基材や本発明の接着剤や被覆剤により成形体を形成する基材としては、ガラス材料、臭素化カリウム、フッ化カルシウム等のハロゲン化鉱物、サファイア等の単結晶セラミックス、アクリル樹脂、ポリカーボネート樹脂、ポリスチレン樹脂、ポリエステル樹脂、ポリエチレンテレフタレート樹脂、ポリ塩化ビニル樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、フッ素樹脂、セルロース樹脂、ジエチレングリコールビスアリルカーボネート樹脂、スチレン-ブタジエン共重合体、(メタ)アクリル酸メチル-スチレン共重合体、シリコン樹脂、ポリシクロオレフィン樹脂、(メタ)アクリロニトリル-ブタジエン-スチレン共重合体樹脂、ポリ(メタ)アクリル酸エステル樹脂、ポリウレタン樹脂、ポリフェニルサルファイド樹脂、液晶ポリマー、エポキシ樹脂、ガラスファイバー又はカーボンファイバーで強化された樹脂等の樹脂材料、シリコン、ゲルマニウム、ガリウム、インジウム、酸化亜鉛、酸化チタン等の半導体材料、金属層、樹脂層、セラミックス層が蒸着、メッキ、スパッタされた前記の半導体材料、更には鉄、ステンレス、アルミニウム、亜鉛、マグネシウム、銅、真鍮、リン青銅、銀、金、白金等の金属材料等が挙げられる。基材の全部又は一部が、これらの材料から構成される。基材としてガラス材料を使用した場合、本実施形態の樹脂組成物は、大きな効果を有する。ガラス材料としては、ソーダ石灰ガラス等のソーダガラス、石英ガラス、鉛ガラス、硼珪酸ガラス、無アルカリガラスから選ばれることが好ましく、硼珪酸ガラスがより好ましい。
本実施形態では、接着剤や被覆剤による皮膜が、基材の片面又は両面に形成された積層体であっても良い。
本実施形態の樹脂組成物は、光学部品として使用できる。光学部品としては、レンズやプリズム等が挙げられる。
The resin composition of this embodiment can be used as an adhesive or a coating agent. As a base material to be bonded or coated with the adhesive or coating agent of the present embodiment or a base material to form a molded body with the adhesive or coating agent of the present invention, halogenated materials such as glass materials, potassium bromide, calcium fluoride, etc. Single crystal ceramics such as mineral, sapphire, acrylic resin, polycarbonate resin, polystyrene resin, polyester resin, polyethylene terephthalate resin, polyvinyl chloride resin, polyethylene resin, polypropylene resin, fluorine resin, cellulose resin, diethylene glycol bisallyl carbonate resin, styrene Butadiene copolymer, (meth) acrylic acid methyl-styrene copolymer, silicone resin, polycycloolefin resin, (meth) acrylonitrile-butadiene-styrene copolymer resin, poly (meth) acrylic ester resin, poly Tan resin, polyphenyl sulfide resin, liquid crystal polymer, epoxy resin, resin material such as resin reinforced with glass fiber or carbon fiber, semiconductor material such as silicon, germanium, gallium, indium, zinc oxide, titanium oxide, metal layer, Examples of the above-mentioned semiconductor materials on which resin layers and ceramic layers are deposited, plated, and sputtered, and metal materials such as iron, stainless steel, aluminum, zinc, magnesium, copper, brass, phosphor bronze, silver, gold, and platinum. . All or part of the substrate is composed of these materials. When a glass material is used as the substrate, the resin composition of the present embodiment has a great effect. The glass material is preferably selected from soda glass such as soda lime glass, quartz glass, lead glass, borosilicate glass, and alkali-free glass, and more preferably borosilicate glass.
In this embodiment, the laminated body formed in the one or both surfaces of the base material may be sufficient as the film | membrane by an adhesive agent or a coating material.
The resin composition of this embodiment can be used as an optical component. Examples of the optical component include a lens and a prism.
本実施形態の樹脂組成物は光や紫外線等の活性エネルギー線により硬化できる。本実施形態の樹脂組成物を用いた光学部材も活性エネルギー線によって接着できる。 The resin composition of the present embodiment can be cured by active energy rays such as light and ultraviolet rays. An optical member using the resin composition of the present embodiment can also be bonded by active energy rays.
活性エネルギー線による硬化、被覆又は接着には、ハロゲンランプ、メタルハライドランプ、ハイパワーメタルハライドランプ(インジウム等を含有する)、低圧水銀ランプ、高圧水銀ランプ超高圧水銀ランプ、キセノンランプ、キセノンエキシマランプ、キセノンフラッシュランプ等を光源とした照射装置が適用でき、更には、レーザー光や電子線(EUV)等も適用可能である。 For curing, coating or bonding with active energy rays, halogen lamp, metal halide lamp, high power metal halide lamp (containing indium etc.), low pressure mercury lamp, high pressure mercury lamp, ultra high pressure mercury lamp, xenon lamp, xenon excimer lamp, xenon An irradiation device using a flash lamp or the like as a light source can be applied, and laser light, electron beam (EUV), or the like can also be applied.
上記装置は、直接照射、反射鏡等により、集光照射、ファイバー等による集光照射をすることができ、低波長カットフィルター、熱線カットフィルター、コールドミラー等も用いることもできる。 The above apparatus can irradiate condensed light by a direct irradiation, a reflecting mirror, or the like, and collect and irradiate with a fiber or the like. A low wavelength cut filter, a heat ray cut filter, a cold mirror, or the like can also be used.
本実施形態は、例えば、耐熱性、耐光性、透明性、速硬化性、接着性、保存安定性に優れるといった効果を有する。本発明は、接着体、硬化体、成形体、光学部品、光導波路を提供することができる。 This embodiment has an effect of being excellent in, for example, heat resistance, light resistance, transparency, fast curability, adhesiveness, and storage stability. The present invention can provide an adhesive body, a cured body, a molded body, an optical component, and an optical waveguide.
光導波路とは、基板の表面又は基板表面直下に周囲よりわずかに屈折率の高い部分を作ることにより光を閉じこめ、光の伝搬、分岐、反射、屈折、増幅、減衰等を制御し、光の合波・分波やスイッチングを行う電子部品である。本発明は、本発明の樹脂組成物の硬化体からなる層と、この層より高い屈折率を有する層とを積層することにより、光導波路を提供できる。 An optical waveguide confines light by creating a part with a slightly higher refractive index than the surroundings on the surface of the substrate or just below the substrate surface, and controls light propagation, branching, reflection, refraction, amplification, attenuation, etc. Electronic components that perform multiplexing / demultiplexing and switching. This invention can provide an optical waveguide by laminating | stacking the layer which consists of a hardening body of the resin composition of this invention, and the layer which has a higher refractive index than this layer.
光導波路の具体的部品の一般的な例としては、通信や光情報処理の分野で用いられる光合波回路、周波数フィルター、光スイッチ、光インターコネクション部品等が挙げられる。 Specific examples of specific components of the optical waveguide include optical multiplexing circuits, frequency filters, optical switches, and optical interconnection components used in the fields of communication and optical information processing.
 以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。 As described above, the embodiments of the present invention have been described with reference to the drawings. However, these are exemplifications of the present invention, and various configurations other than the above can be adopted.
以下に実施例及び比較例を用いて本発明をより詳細に説明するが、本発明はこれらの実施例により限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these Examples.
〈実施例1~16、及び比較例1~3〉
表1~2に示す種類の各成分を表中に示す組成で混合して樹脂組成物を調製した。表1~2に記載の各成分には以下の化合物を選択した。
<Examples 1 to 16 and Comparative Examples 1 to 3>
Resin compositions were prepared by mixing the components shown in Tables 1 and 2 in the composition shown in the table. The following compounds were selected for each component listed in Tables 1-2.
(A)1分子当たり2個以上の炭素-炭素不飽和結合を有し、かつ、ランダム型構造のシルセスキオキサン誘導体
(a-1)東亞合成社製:ポリアクリロイロキシプロピルポリオルガノシルセスキオキサン(AC-SQ TA-100)(GPCによるポリスチレン換算の重量平均分子量1,200~4,000、アクリル基当量165g/eq
(a-2)東亞合成社製:ポリメタクリロイロキシプロピルポリオルガノシルセスキオキサン(MAC-SQ TM-100)(GPCによるポリスチレン換算の重量平均分子量1,000~2,500、メタクリル基当量179g/eq
(B)ポリチオール
(b-1)淀化学社製:トリメチロールプロパン-トリス-(β-チオプロピオネート)(TP)
(b-2)SC有機化学社:トリス[(3-メルカプトプロピオニロキシ)-エチル]イソシアヌレート(TEMPIC)
(E)シルセスキオキサン誘導体以外の、炭素-炭素不飽和結合を有する化合物
(e-1)日本化成社製:トリアリルイソシアヌレート(TAIC)
(e-2)黒金化成社製:ジアリルマレエート(DAM)
(C)光ラジカル重合開始剤
(c-1)BASF社製:2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(IRGACURE651)
(c-2)BASF社製:2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン(DAROCUR1173)
(D)亜リン酸ジアルキル
(d-1)和光純薬社製:亜リン酸ジエチル
(d-2)東京化成工業社製:亜リン酸ジメチル
(d-3)城北化学工業社製:亜リン酸ジ(2-エチルヘキシル)(JPE-208)
(d-4)城北化学工業社製:亜リン酸ジラウリル(JP-212)
(d-5)城北化学工業社製:亜リン酸ジオレイル(JP-260)
(F)酸化防止剤
(f-1)BASF社製:イソオクチル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート(IRGANOX1135)
(f-2)住友化学社製:2,2’-メチレンビス(4-メチル-6-tert-ブチルフェノール)(スミライザーMDP-S)
(G)密着性付与剤
(g-1)モメンティブ社製:γ-メタクリロキシプロピルトリメトキシシラン(A-174)
(g-2)信越化学社製:3-グリシドキシプロピルトリメトキシシラン(KBM-403)
(H)ニトロソ化合物
(h-1)和光純薬社製:N-ニトロソフェニルヒドロキシルアミンアルミニウム塩(Q-1301)
(h-2)和光純薬社製:N-ニトロソフェニルヒドロキシルアミンアンモニウム塩(Q-1300)
(I)かご型構造のシルセスキオキサン誘導体ポリエン
(i-1)東亞合成社製:オクタ[(3-メタクリロキシプロピル)ジメチルシロキシ]シルセスキオキサン](Q-8)(分子量 2027)
(J)リン系化合物
(j-1)市販品:亜リン酸トリフェニル
(A) Silsesquioxane derivative having two or more carbon-carbon unsaturated bonds per molecule and having a random structure (a-1) manufactured by Toagosei Co., Ltd .: polyacryloyloxypropyl polyorganosilsesqui Oxane (AC-SQ TA-100) (weight average molecular weight 1,200 to 4,000 in terms of polystyrene by GPC, acryl group equivalent 165 g / eq
(A-2) Toagosei Co., Ltd .: polymethacryloyloxypropyl polyorganosilsesquioxane (MAC-SQ TM-100) (weight average molecular weight in terms of polystyrene by GPC 1,000 to 2,500, methacryl group equivalent 179 g) / Eq
(B) Polythiol (b-1) manufactured by Sakai Chemical Industry Co., Ltd .: trimethylolpropane-tris- (β-thiopropionate) (TP)
(B-2) SC Organic Chemical Company: Tris [(3-mercaptopropionyloxy) -ethyl] isocyanurate (TEMPIC)
(E) Compound having carbon-carbon unsaturated bond other than silsesquioxane derivative (e-1) Nippon Kasei Co., Ltd .: triallyl isocyanurate (TAIC)
(E-2) Kurokin Kasei Co., Ltd .: diallyl maleate (DAM)
(C) Photo radical polymerization initiator (c-1) manufactured by BASF: 2,2-dimethoxy-1,2-diphenylethane-1-one (IRGACURE651)
(C-2) manufactured by BASF: 2-hydroxy-2-methyl-1-phenyl-propan-1-one (DAROCUR 1173)
(D) Dialkyl phosphite (d-1) Wako Pure Chemical Industries: Diethyl phosphite (d-2) Tokyo Chemical Industry: Dimethyl phosphite (d-3) Johoku Chemical Co., Ltd .: Phosphorous Di (2-ethylhexyl) acid (JPE-208)
(D-4) Johoku Chemical Industry Co., Ltd .: Dilauryl phosphite (JP-212)
(D-5) Johoku Chemical Industry Co., Ltd .: Dioleyl phosphite (JP-260)
(F) Antioxidant (f-1) manufactured by BASF: isooctyl-3- (3,5-di-t-butyl-4-hydroxyphenyl) propionate (IRGANOX1135)
(F-2) manufactured by Sumitomo Chemical Co., Ltd .: 2,2′-methylenebis (4-methyl-6-tert-butylphenol) (Sumilyzer MDP-S)
(G) Adhesion imparting agent (g-1) manufactured by Momentive: γ-methacryloxypropyltrimethoxysilane (A-174)
(G-2) Shin-Etsu Chemical Co., Ltd .: 3-glycidoxypropyltrimethoxysilane (KBM-403)
(H) Nitroso compound (h-1) Wako Pure Chemical Industries, Ltd .: N-nitrosophenylhydroxylamine aluminum salt (Q-1301)
(H-2) Wako Pure Chemical Industries, Ltd .: N-nitrosophenylhydroxylamine ammonium salt (Q-1300)
(I) Silsesquioxane derivative polyene having a cage structure (i-1) manufactured by Toagosei Co., Ltd .: Octa [(3-methacryloxypropyl) dimethylsiloxy] silsesquioxane] (Q-8) (molecular weight 2027)
(J) Phosphorus compound (j-1) Commercial product: Triphenyl phosphite
上記実施例及び比較例で得られた組成物につき、下記の性能評価を行い、その結果を表1~2に示す。 The following performance evaluation was performed on the compositions obtained in the above Examples and Comparative Examples, and the results are shown in Tables 1 and 2.
(接着剤の硬化条件)
評価には下記に記す手順により接着試験体を作製した。
(Adhesive curing conditions)
For the evaluation, an adhesion test specimen was prepared according to the procedure described below.
硬化方法
超高圧水銀ランプを使用したHOYA社製硬化装置により、365nmの波長の積算光量3000mJ/cmの条件にて硬化させた。
Curing method Curing was performed under the condition of an integrated light amount of 3000 mJ / cm 2 at a wavelength of 365 nm by a curing apparatus manufactured by HOYA using an ultrahigh pressure mercury lamp.
(1)粘度
組成物の粘度はE型粘度計を用い、温度25℃、回転数20rpmの条件下で測定した。
(1) The viscosity of the viscosity composition was measured using an E-type viscometer under the conditions of a temperature of 25 ° C. and a rotation speed of 20 rpm.
(2)光線透過率(透明性評価、UV硬化後)
試験片としてBK7ガラス(硼珪酸ガラス、30mmφ×3mmt)基板上に、形状20mmφ×200μmtの樹脂組成物を前記に述べる硬化条件にて硬化した試験片を作製した。光線透過率は、分光光度計(島津製作所(株)製、UV-2550)を用い、波長400nmと600nmの透過率を測定し、90%以上のものを評価良好とした。評価結果を表1~2に示す。
(2) Light transmittance (transparency evaluation, after UV curing)
As a test piece, a test piece was prepared by curing a resin composition having a shape of 20 mmφ × 200 μmt on a BK7 glass (borosilicate glass, 30 mmφ × 3 mmt) substrate under the curing conditions described above. The light transmittance was measured using a spectrophotometer (manufactured by Shimadzu Corporation, UV-2550), and the transmittance at wavelengths of 400 nm and 600 nm was measured. The evaluation results are shown in Tables 1 and 2.
(3)耐熱試験(光線透過率、耐熱試験後)
試験片としてBK7ガラス(30mmφ×3mmt)基板上に、形状20mmφ×200μmtの樹脂組成物を前記に述べる硬化条件にて硬化した試験片を作製した。この試験片を260℃の雰囲気に40秒暴露した。暴露後の試験片の光線透過率を分光光度計(島津製作所(株)製、UV-2550)を用い、波長400nmと600nmの透過率を測定し、90%以上のものを評価良好とした。評価結果を表1~2に示す。
(3) Heat resistance test (after light transmittance, heat resistance test)
A test piece was prepared by curing a resin composition having a shape of 20 mmφ × 200 μmt on a BK7 glass (30 mmφ × 3 mmt) substrate as a test piece under the curing conditions described above. This test piece was exposed to an atmosphere of 260 ° C. for 40 seconds. Using a spectrophotometer (manufactured by Shimadzu Corporation, UV-2550), the transmittance of the test piece after the exposure was measured, and the transmittance at wavelengths of 400 nm and 600 nm was measured. The evaluation results are shown in Tables 1 and 2.
(4)耐光試験(光線透過率、耐光試験後)
試験片としてBK7ガラス(30mmφ×3mmt)基板上に、形状20mmφ×200μmtの樹脂組成物を前記に述べる硬化条件にて硬化した試験片を作製した。この試験片を高圧水銀ランプ(東芝社製、トスキュアー400 HC-0411型)を用いて、365nm光の照度7mW/cmの光の下、80時間暴露した。暴露後の試験片の光線透過率を分光光度計(島津製作所(株)製、UV-2550)を用い、波長400nmと600nmの透過率を測定し、90%以上のものを評価良好とした。評価結果を表1~2に示す。
(4) Light resistance test (after light transmittance, light resistance test)
A test piece was prepared by curing a resin composition having a shape of 20 mmφ × 200 μmt on a BK7 glass (30 mmφ × 3 mmt) substrate as a test piece under the curing conditions described above. This test piece was exposed for 80 hours under light of 365 nm light with an illuminance of 7 mW / cm 2 using a high-pressure mercury lamp (Toshier 400 HC-0411, manufactured by Toshiba Corporation). Using a spectrophotometer (manufactured by Shimadzu Corporation, UV-2550), the transmittance of the test piece after the exposure was measured, and the transmittance at wavelengths of 400 nm and 600 nm was measured. The evaluation results are shown in Tables 1 and 2.
(5)引張剪断接着強さ(接着性)
JIS K 6850に従い測定した。具体的には被着体としたテンパックス(商標)ガラス(25mm×25mm×2.0mm)を用いて、接着部位を直径8mmとして、作製した樹脂組成物にて、2枚のテンパックスガラスを貼り合わせ、前記の樹脂組成物を、前記に述べる硬化条件にて硬化させ、引張剪断接着強さ試験片を作製した。作製した試験片は、引張試験機を使用して、温度23℃、湿度50%の環境下、引張速度10mm/minで引張剪断接着強さを測定した。評価結果を表1~2に示す。
(5) Tensile shear bond strength (adhesiveness)
It measured according to JIS K 6850. Specifically, using Tempax (trademark) glass (25 mm × 25 mm × 2.0 mm) as an adherend, the bonded portion was 8 mm in diameter, and two Tempax glasses were made with the produced resin composition. Bonding was performed, and the resin composition was cured under the curing conditions described above to prepare a tensile shear bond strength test piece. The produced test piece was measured for tensile shear bond strength at a tensile speed of 10 mm / min in an environment of a temperature of 23 ° C. and a humidity of 50% using a tensile tester. The evaluation results are shown in Tables 1 and 2.
(6)保存安定性試験(貯蔵安定性評価)
組成物の初期粘度(V)を測定した後、容器に入れて蓋をした状態(密閉系)で、40℃の高温環境下における養生促進試験を行い、4週間後の組成物の粘度(V)を測定した。そして、式:V/Vに従って粘度変化率を求めた。粘度変化率が2以下のものを貯蔵安定性(保存安定性)良好と判断した。
(6) Storage stability test (storage stability evaluation)
After the initial viscosity (V 0 ) of the composition was measured, a curing acceleration test was conducted in a high-temperature environment at 40 ° C. in a state where it was put in a container and covered (sealed system), and the viscosity of the composition after 4 weeks ( V 4) were measured. The formula was determined viscosity change rate according to V 4 / V 0. Those having a viscosity change rate of 2 or less were judged to have good storage stability (storage stability).
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
表1~2より以下が確認された。本実施例の樹脂組成物は、貯蔵安定性、耐熱性、耐光性、透明性、接着性が優れる。但し、実施例1、実施例9~10は、(H)ニトロソ化合物を使用しなかったため、貯蔵安定性が若干小さかった。
亜リン酸ジアルキルのアルキル基の炭素原子数は、接着性と貯蔵安定性の点で、1~18個のアルキル基が好ましく、1~12個のアルキル基がより好ましく、1~8個のアルキル基が最も好ましく、1~2個のアルキル基が尚更好ましく、エチル基が更に好ましかった(実施例2と、実施例13~実施例16との比較)。
但し、実施例11~12は、(G)密着性付与剤を使用したため、接着性が大きかった。本実施例の(D)亜リン酸ジアルキルを使用しない場合、貯蔵安定性が得られない(比較例1)。亜リン酸トリフェニルを使用した場合、貯蔵安定性と接着性が得られない(比較例2)。かご型構造のシルセスキオキサン誘導体を使用した場合、樹脂組成物に溶解せず、本実施例の効果が得られない(比較例3)。本実施例の(B)ポリチオールを使用しない場合、耐熱性、接着性が得られない(比較例4)。
From Tables 1 and 2, the following was confirmed. The resin composition of this example is excellent in storage stability, heat resistance, light resistance, transparency, and adhesiveness. However, in Example 1 and Examples 9 to 10, since the (H) nitroso compound was not used, the storage stability was slightly low.
The number of carbon atoms in the alkyl group of the dialkyl phosphite is preferably from 1 to 18 alkyl groups, more preferably from 1 to 12 alkyl groups, from the viewpoints of adhesion and storage stability. The group was most preferred, 1-2 alkyl groups were even more preferred, and the ethyl group was even more preferred (Comparison between Example 2 and Examples 13-16).
However, in Examples 11 to 12, since (G) an adhesion-imparting agent was used, the adhesiveness was large. When (D) dialkyl phosphite of this example is not used, storage stability cannot be obtained (Comparative Example 1). When triphenyl phosphite is used, storage stability and adhesion cannot be obtained (Comparative Example 2). When a cage-type silsesquioxane derivative is used, it does not dissolve in the resin composition and the effect of this example cannot be obtained (Comparative Example 3). When (B) polythiol of this example is not used, heat resistance and adhesion cannot be obtained (Comparative Example 4).
本発明は、貯蔵安定性に優れたポリエン-ポリチオール系組成物を提供する。本発明は他にも、例えば、耐熱性、耐光性、透明性、速硬化性、接着性、保存安定性に優れたポリエン-ポリチオール系組成物を提供する。本発明の接着剤、被覆剤、成形材料は、光導波路の層、光学部品、電子部品等の各種分野において顕著な効果を示す。 The present invention provides a polyene-polythiol-based composition having excellent storage stability. The present invention also provides a polyene-polythiol-based composition excellent in, for example, heat resistance, light resistance, transparency, fast curability, adhesion, and storage stability. The adhesive, coating agent, and molding material of the present invention exhibit remarkable effects in various fields such as optical waveguide layers, optical components, and electronic components.

Claims (19)

  1. (A)1分子当たり2個以上の炭素-炭素不飽和結合を有し、かつ、ランダム型構造を有するシルセスキオキサン誘導体、(B)ポリチオール、(C)光ラジカル重合開始剤、(D)亜リン酸ジアルキルを含有する組成物。 (A) Silsesquioxane derivative having two or more carbon-carbon unsaturated bonds per molecule and having a random structure, (B) polythiol, (C) photoradical polymerization initiator, (D) A composition containing a dialkyl phosphite.
  2. (A)が、下記一般式〔1〕で表されるシルセスキオキサン誘導体である請求項1に記載の組成物。
    一般式〔1〕
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは、(メタ)アクリロイル基、ビニル基、ビニルエーテル基、アリル基及びアリルエーテル基から選ばれる1種以上の官能基を有する。Rは、同一でも異なっても良い。(メタ)アクリロイル基、ビニル基、ビニルエーテル基、アリル基及びアリルエーテル基は、一部が、炭素数1~6のアルキル基、炭素数1~6のアルコキシ基、炭素数1~6のハロゲン化アルキル基、フェニル基、ハロゲンで置換されても良い。mは重合度を表す。)
    The composition according to claim 1, wherein (A) is a silsesquioxane derivative represented by the following general formula [1].
    General formula [1]
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, R 0 has one or more functional groups selected from a (meth) acryloyl group, a vinyl group, a vinyl ether group, an allyl group, and an allyl ether group. R 0 may be the same or different. Some of the (meth) acryloyl group, vinyl group, vinyl ether group, allyl group and allyl ether group are alkyl groups having 1 to 6 carbon atoms, alkoxy groups having 1 to 6 carbon atoms, and alkyl halides having 1 to 6 carbon atoms. And may be substituted with a group, a phenyl group or a halogen, m represents the degree of polymerization.)
  3. (D)が、下記一般式〔3〕で表される亜リン酸ジアルキルである請求項1~2のうちの1項に記載の組成物。
    一般式〔3〕
    Figure JPOXMLDOC01-appb-C000002
    (式中、R、Rは、それぞれアルキル基である。R、Rは、同一の基であっても異なる基であってもよい。)
    3. The composition according to claim 1, wherein (D) is a dialkyl phosphite represented by the following general formula [3].
    General formula [3]
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, R 1 and R 2 are each an alkyl group. R 1 and R 2 may be the same group or different groups.)
  4. (D)が、1~18個の炭素原子を有する分岐又は直鎖構成のアルキル基を有する亜リン酸ジアルキルである請求項1~3のうちの1項に記載の組成物。 The composition according to any one of claims 1 to 3, wherein (D) is a dialkyl phosphite having a branched or straight-chain alkyl group having 1 to 18 carbon atoms.
  5. (D)が、亜リン酸ジメチル及び亜リン酸ジエチルからなる群のうちの1種以上である請求項1~4のうちの1項に記載の組成物。 The composition according to claim 1, wherein (D) is one or more members selected from the group consisting of dimethyl phosphite and diethyl phosphite.
  6. 更に、(E)シルセスキオキサン誘導体以外の、炭素-炭素不飽和結合を有する化合物を含有する請求項1~5のうちの1項に記載の組成物。 The composition according to any one of claims 1 to 5, further comprising (E) a compound having a carbon-carbon unsaturated bond other than the silsesquioxane derivative.
  7. (E)が、アリル化合物である請求項6に記載の組成物。 The composition according to claim 6, wherein (E) is an allyl compound.
  8. 更に、(F)酸化防止剤を含有する請求項1~7のうちの1項に記載の組成物。 The composition according to any one of claims 1 to 7, further comprising (F) an antioxidant.
  9. 更に、(G)密着性付与剤を含有する請求項1~8のうちの1項に記載の組成物。 The composition according to any one of claims 1 to 8, further comprising (G) an adhesion-imparting agent.
  10. 更に、(H)ニトロソ化合物を含有する請求項1~9のうちの1項に記載の組成物。 The composition according to any one of claims 1 to 9, further comprising (H) a nitroso compound.
  11. 請求項1~10のうちの1項に記載の組成物からなる接着剤。 An adhesive comprising the composition according to any one of claims 1 to 10.
  12. 請求項11に記載の接着剤を用いて接着してなる接着体。 The adhesive body formed by adhere | attaching using the adhesive agent of Claim 11.
  13. 請求項1~10のうちの1項に記載の組成物からなる被覆剤。 A coating comprising the composition according to any one of claims 1 to 10.
  14. 請求項13に記載の被覆剤を用いて被覆してなる被覆体。 A covering formed by coating with the coating agent according to claim 13.
  15. 請求項13に記載の被覆剤による皮膜が基材の片面又は両面に形成された積層体。 The laminated body in which the membrane | film | coat by the coating agent of Claim 13 was formed in the single side | surface or both surfaces of a base material.
  16. 前記基材がガラス材料である請求項15の積層体。 The laminate according to claim 15, wherein the substrate is a glass material.
  17. 請求項1~10のうちの1項に記載の組成物からなる硬化体。 A cured body comprising the composition according to any one of claims 1 to 10.
  18. 請求項17に記載の硬化体からなる層と、この層より高い屈折率を有する層とを積層してなる光導波路。 An optical waveguide formed by laminating a layer made of the cured body according to claim 17 and a layer having a higher refractive index than this layer.
  19. 請求項1~10のうちの1項に記載の組成物を含む光学部品。 An optical component comprising the composition according to any one of claims 1 to 10.
PCT/JP2014/072579 2013-08-30 2014-08-28 Polyene-polythiol composition WO2015030116A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015534285A JP6407153B2 (en) 2013-08-30 2014-08-28 Polyene-polythiol composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-179062 2013-08-30
JP2013179062 2013-08-30

Publications (1)

Publication Number Publication Date
WO2015030116A1 true WO2015030116A1 (en) 2015-03-05

Family

ID=52586664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072579 WO2015030116A1 (en) 2013-08-30 2014-08-28 Polyene-polythiol composition

Country Status (3)

Country Link
JP (1) JP6407153B2 (en)
TW (1) TWI652312B (en)
WO (1) WO2015030116A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016511706A (en) * 2013-01-11 2016-04-21 マルチフォトン オプティクス ゲーエムベーハー Layer or three-dimensional molded body having two regions having different primary structures and / or secondary structures, and method for producing the same
WO2018212257A1 (en) * 2017-05-17 2018-11-22 株式会社ダイセル Adhesive composition, cured product, laminate, and device
KR20200007893A (en) * 2017-05-17 2020-01-22 주식회사 다이셀 Curable Compositions, Adhesive Sheets, Cured Products, Laminates and Devices for Adhesives

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005298637A (en) * 2004-04-09 2005-10-27 Mitsui Chemicals Inc Polymerizable composition and use thereof
JP2007308542A (en) * 2006-05-16 2007-11-29 Dow Corning Toray Co Ltd Curable silicone resin composition and cured product thereof
JP2008184514A (en) * 2007-01-29 2008-08-14 Osaka City Ultraviolet curable resin composition, cured product thereof, and various kinds of articles derived therefrom
JP2008203605A (en) * 2007-02-21 2008-09-04 Asahi Kasei Electronics Co Ltd Polyorganosiloxane composition
JP2009020268A (en) * 2007-07-11 2009-01-29 Asahi Kasei Electronics Co Ltd Photosensitive resin composition
JP2009086291A (en) * 2007-09-28 2009-04-23 Mitsui Chemicals Inc Liquid crystal sealing material, method for manufacturing liquid crystal display panel using the same, and liquid crystal display panel
WO2012081708A1 (en) * 2010-12-16 2012-06-21 日立化成工業株式会社 Photocurable resin composition, and image display device and process for production thereof
JP2013112721A (en) * 2011-11-28 2013-06-10 Samsung Yokohama Research Institute Co Ltd Chitin nano-fiber composite material and method for producing the same
WO2013129565A1 (en) * 2012-03-02 2013-09-06 電気化学工業株式会社 Resin composition

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003292887A (en) * 2002-04-03 2003-10-15 Dainippon Toryo Co Ltd Finishing paint
JP5075680B2 (en) * 2007-03-28 2012-11-21 リンテック株式会社 Optical element sealing material and optical element sealing body
JP4899100B2 (en) * 2007-05-29 2012-03-21 ナガセケムテックス株式会社 Photosensitive composition
JP5570267B2 (en) * 2010-03-26 2014-08-13 新日鉄住金化学株式会社 Polyene / polythiol photosensitive resin composition
CN102208549B (en) 2011-04-18 2013-01-30 电子科技大学 Flexible substrate used in optoelectronic device and preparation method thereof

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005298637A (en) * 2004-04-09 2005-10-27 Mitsui Chemicals Inc Polymerizable composition and use thereof
JP2007308542A (en) * 2006-05-16 2007-11-29 Dow Corning Toray Co Ltd Curable silicone resin composition and cured product thereof
JP2008184514A (en) * 2007-01-29 2008-08-14 Osaka City Ultraviolet curable resin composition, cured product thereof, and various kinds of articles derived therefrom
JP2008203605A (en) * 2007-02-21 2008-09-04 Asahi Kasei Electronics Co Ltd Polyorganosiloxane composition
JP2009020268A (en) * 2007-07-11 2009-01-29 Asahi Kasei Electronics Co Ltd Photosensitive resin composition
JP2009086291A (en) * 2007-09-28 2009-04-23 Mitsui Chemicals Inc Liquid crystal sealing material, method for manufacturing liquid crystal display panel using the same, and liquid crystal display panel
WO2012081708A1 (en) * 2010-12-16 2012-06-21 日立化成工業株式会社 Photocurable resin composition, and image display device and process for production thereof
JP2013112721A (en) * 2011-11-28 2013-06-10 Samsung Yokohama Research Institute Co Ltd Chitin nano-fiber composite material and method for producing the same
WO2013129565A1 (en) * 2012-03-02 2013-09-06 電気化学工業株式会社 Resin composition

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016511706A (en) * 2013-01-11 2016-04-21 マルチフォトン オプティクス ゲーエムベーハー Layer or three-dimensional molded body having two regions having different primary structures and / or secondary structures, and method for producing the same
WO2018212257A1 (en) * 2017-05-17 2018-11-22 株式会社ダイセル Adhesive composition, cured product, laminate, and device
CN110651016A (en) * 2017-05-17 2020-01-03 株式会社大赛璐 Adhesive composition, cured product, laminate, and device
KR20200007893A (en) * 2017-05-17 2020-01-22 주식회사 다이셀 Curable Compositions, Adhesive Sheets, Cured Products, Laminates and Devices for Adhesives
KR20200010317A (en) * 2017-05-17 2020-01-30 주식회사 다이셀 Adhesive Compositions, Cured Products, Laminates and Devices
JPWO2018212257A1 (en) * 2017-05-17 2020-03-26 株式会社ダイセル Adhesive composition, cured product, laminate, and device
EP3626796A4 (en) * 2017-05-17 2021-02-17 Daicel Corporation Adhesive composition, cured product, laminate, and device
CN110651016B (en) * 2017-05-17 2022-06-24 株式会社大赛璐 Adhesive composition, cured product, laminate, and device
JP7198747B2 (en) 2017-05-17 2023-01-04 株式会社ダイセル Adhesive composition, cured product, laminate, and device
KR102560345B1 (en) 2017-05-17 2023-07-28 주식회사 다이셀 Curable compositions for adhesives, adhesive sheets, cured products, laminates and devices
KR102587545B1 (en) * 2017-05-17 2023-10-11 주식회사 다이셀 Adhesive compositions, cured products, laminates and devices

Also Published As

Publication number Publication date
TWI652312B (en) 2019-03-01
JPWO2015030116A1 (en) 2017-03-02
JP6407153B2 (en) 2018-10-17
TW201518418A (en) 2015-05-16

Similar Documents

Publication Publication Date Title
WO2013129565A1 (en) Resin composition
JP6870196B2 (en) Photocurable resin composition, fuel cell and sealing method
JP5989417B2 (en) Ultraviolet curable silicone resin composition and image display device using the same
KR20140006766A (en) Ultraviolet-curable silicone resin composition and image display device using same
TWI488910B (en) Photocurable resin composition, method of fabricating optical film using the same, and optical film including the same
JP6063228B2 (en) Photocurable resin composition
KR102206665B1 (en) Photocurable resin composition
JP2006342222A (en) Light-curable resin composition
JP6407153B2 (en) Polyene-polythiol composition
CN112585181B (en) Curable resin composition and cured product
CN114200567A (en) Polarizing film, method for producing same, optical film, and image display device
KR102607576B1 (en) Adhesive composition
TWI731116B (en) Polarizing film with adhesion layer and manufacturing method of polarizing film with adhesion layer
JP5798259B1 (en) Sealant for display element
JP7266881B2 (en) Photocurable and thermosetting resin compositions and their cured products, adhesives, semiconductor devices, and electronic components
JP2015193820A (en) Curable resin composition and substrate end protectant
KR20190132955A (en) Adhesive composition and surface-protective film
JP2003238904A (en) Photocuring adhesive composition for optical use
JP2011202070A (en) Curable resin composition and cured product thereof
JP5550818B2 (en) Adhesive for optical components
JP6535797B2 (en) Adhesive composition for polarizing film, polarizing film, optical film and image display device
KR102554013B1 (en) Adhesive composition, and adhesive film, surface-protective film using the same
JP2017054084A (en) Display element sealing agent
KR20190113773A (en) Adhesive composition, polarizing film, optical film, and image display apparatus for polarizing films
AU2018270565B2 (en) Optical transparent resin and electronic element formed using same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14840217

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015534285

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14840217

Country of ref document: EP

Kind code of ref document: A1