WO2015029969A1 - Data processing device, and data processing method and program - Google Patents

Data processing device, and data processing method and program Download PDF

Info

Publication number
WO2015029969A1
WO2015029969A1 PCT/JP2014/072234 JP2014072234W WO2015029969A1 WO 2015029969 A1 WO2015029969 A1 WO 2015029969A1 JP 2014072234 W JP2014072234 W JP 2014072234W WO 2015029969 A1 WO2015029969 A1 WO 2015029969A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
measurement
subtree
measurement point
configuration information
Prior art date
Application number
PCT/JP2014/072234
Other languages
French (fr)
Japanese (ja)
Inventor
隆顕 中村
幹人 菅野
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201480046468.2A priority Critical patent/CN105493050B/en
Priority to JP2015534215A priority patent/JP5972472B2/en
Priority to SG11201600589RA priority patent/SG11201600589RA/en
Publication of WO2015029969A1 publication Critical patent/WO2015029969A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F16/00Information retrieval; Database structures therefor; File system structures therefor
    • G06F16/20Information retrieval; Database structures therefor; File system structures therefor of structured data, e.g. relational data
    • G06F16/24Querying
    • G06F16/245Query processing

Definitions

  • the present invention relates to a technique for managing measurement results of a measuring device (also referred to as a sensor).
  • a measurement data management device that aggregates measurement data measured by a measurement device from various viewpoints such as the arrangement, affiliation, or usage of the measurement device
  • the actual measurement point where the measurement device is actually installed is actually A method of providing a virtual measurement point where no measuring device is installed is disclosed (for example, Patent Document 1).
  • the actual measurement point corresponds to measurement data measured by an actual measurement device
  • the virtual measurement point corresponds to fictitious measurement data calculated using the sum or apportionment of the measurement data of the actual measurement point.
  • a method for obtaining measurement data of virtual measurement points by distributing the measurement data of actual measurement points according to management categories such as time lapse units, building units, location units, measurement type units, and usage units has been released. (For example, Patent Document 2).
  • the measurement data has a characteristic that it arrives continuously with the passage of time, and the measurement data measured in the same time zone are often closely related. Therefore, when storing measurement data in a database table, it is convenient to use it by associating individual measurement values with each column of the table and storing the measurement values at the same measurement time in one record.
  • the maximum number of columns that can be defined per table is about 1,000. For this reason, when managing measurement data of a type far exceeding the upper limit of the number of columns generated from the measuring device, it is necessary to divide the table in the column direction and store the measurement data in a plurality of tables.
  • the measurement data may be read from multiple tables when performing aggregation using virtual measurement points or analysis using multiple types of measurement data. To do. For this reason, there is a problem that the time required for aggregation / analysis increases as compared with the case of reading measurement data from a single table. Basically, this time increases as the number of tables from which measurement data is read increases.
  • post-processing such as additional tabulation processing may be necessary on the user's application side, and there is a problem that the development load of the application increases.
  • the main object of the present invention is to solve the above-described problems, and when the measurement values are distributed in a plurality of tables and stored in a plurality of tables, the aggregation and analysis can be efficiently performed.
  • the main purpose is to determine a table for storing measurement values.
  • the data processing apparatus A data processing device for managing tree structure data associated with a measuring device,
  • the tree structure data is converted into a plurality of subtree data so that the number of measuring devices associated with each subtree data is equal to or less than the number of table storage devices that is the upper limit number of measuring devices that can store measurement values in the measurement value table.
  • a data dividing unit that divides the data into A state determination unit that determines whether the subtree data divided by the data division unit is in a definite state;
  • a table allocating unit for allocating a measurement value table for storing measurement values from a measuring device associated with the partial tree data, with respect to the partial tree data determined to be in a finalized state by the state determination unit; ,
  • the state determination unit A measuring device associated with one subtree data is not associated with any other subtree data, and the number of measuring devices associated with the one subtree data is equal to or less than the number of table storage devices.
  • At least one measuring device among measuring devices associated with one subtree data is duplicated and associated with other subtree data, and the number of measuring devices associated with the one subtree data
  • the one subtree data and the other subtree data are It is determined to be in the second final state
  • the partial tree data determined not to be in either the first finalized state or the second finalized state is further divided into a plurality of partial tree data by the data dividing unit.
  • the measurement values used for aggregation and analysis can be simultaneously performed. As long as they can be associated with the same measurement value table, it is possible to efficiently perform aggregation and analysis.
  • FIG. 3 is a diagram illustrating a configuration example of a measurement data management device according to the first embodiment.
  • 1 is a diagram illustrating a configuration example of a measurement data management system according to Embodiment 1.
  • FIG. 1 is a diagram illustrating a configuration example of a measurement data management system according to Embodiment 1.
  • FIG. 4 is a diagram illustrating a format example of measurement data according to the first embodiment.
  • FIG. 4 is a diagram illustrating an example of a measurement value table according to the first embodiment.
  • FIG. 4 is a diagram showing an example of configuration information according to Embodiment 1.
  • FIG. 4 is a diagram showing an example of configuration information according to Embodiment 1.
  • FIG. 4 is a diagram showing an example of configuration information according to Embodiment 1.
  • FIG. 4 is a diagram showing an example of configuration information according to Embodiment 1.
  • FIG. 3 is a diagram illustrating an example of a configuration information table according to the first embodiment.
  • FIG. 4 shows an example of a virtual measurement point definition table according to the first embodiment.
  • FIG. 4 is a diagram showing an example of measurement value table design information according to the first embodiment.
  • FIG. 5 is a diagram showing an example of an alternative measurement point definition table according to the first embodiment.
  • FIG. 4 is a flowchart showing a procedure for generating measurement value table design information according to the first embodiment.
  • FIG. 4 is a flowchart showing a procedure for generating measurement value table design information according to the first embodiment.
  • FIG. 4 is a diagram showing an example of a measurement point management information table according to the first embodiment.
  • FIG. 6 is a diagram showing an example of a partial configuration information tree management table according to the first embodiment.
  • the flowchart figure which shows the procedure which divides
  • FIG. which shows the collection and accumulation
  • FIG. The figure which shows the read-out and totaling step of measurement data of the measurement data management apparatus which concerns on Embodiment 1.
  • FIG. FIG. 6 shows an example of a first confirmed state according to the first embodiment.
  • FIG. 6 is a diagram showing an example of a second confirmed state according to the first embodiment.
  • FIG. 10 shows an example of a third finalized state according to the first embodiment.
  • FIG. 3 is a diagram illustrating an example of a configuration information tree according to the first embodiment.
  • FIG. 3 is a diagram illustrating an example of a configuration information table according to the first embodiment.
  • FIG. 3 is a diagram illustrating an example of a configuration information tree according to the first embodiment.
  • FIG. 3 is a diagram illustrating an example of a configuration information table according to the first embodiment. The figure which shows the relationship between the structure information tree which concerns on Embodiment 1, and an actual measurement point.
  • FIG. 4 shows an example of a virtual measurement point definition table according to the first embodiment.
  • FIG. 4 shows an example of a virtual measurement point definition table according to the first embodiment.
  • FIG. 4 is a diagram illustrating an example of a temporary configuration information table according to the first embodiment.
  • FIG. 4 is a diagram illustrating an example of a temporary configuration information table according to the first embodiment.
  • FIG. 4 is a diagram showing an example of a measurement point management information table according to the first embodiment.
  • FIG. 5 is a diagram showing an example of a partial configuration information tree table according to the first embodiment. The figure which shows the example of an update of the temporary structure information table which concerns on Embodiment 1.
  • FIG. The figure which shows the example of an update of the measurement point management information table which concerns on Embodiment 1.
  • FIG. 3 is a diagram illustrating a hardware configuration example of a measurement data management device according to the first embodiment.
  • FIG. 6 is a diagram showing a procedure for deriving an alternative point measurement point definition according to the first embodiment.
  • Embodiment 1 FIG.
  • the measurement data used for simultaneous counting and analysis is as much as possible.
  • a measurement data management apparatus that can suppress an increase in execution time at the time of execution of aggregation and execution time at the time of execution of analysis and reduce a user's application development load by associating with the above table will be described.
  • the measurement data management apparatus 100 has a configuration illustrated in FIG. Details of each component of the measurement data management apparatus 100 shown in FIG. 1 will be described later.
  • the measurement data management device 100 corresponds to an example of a data processing device.
  • the measurement data management apparatus 100 constitutes a measurement data management system 200 together with the measurement device 201, the base apparatus 210, and the operation terminal 220. Details of the measuring device 201, the base device 210, and the operation terminal 220 shown in FIGS. 2 and 3 will be described later.
  • the operation of the measurement data management apparatus 100 is divided into the following three types of processes. (1) Preparation for operation (2) Collection and accumulation of measurement data (3) Reading and aggregation of measurement data
  • Operation preparation In the operation preparation stage, the following processing is executed as preparation prior to the start of actual operation such as collection and accumulation of sensor data, reading and aggregation (FIG. 20).
  • the user sets the virtual measurement point definition table 141 in the measurement data management device 100 using the virtual measurement point information input / output unit 111 (S11).
  • the user sets the configuration information table 142 in the measurement data management apparatus 100 using the configuration information input / output unit 112 (S12).
  • the measurement value table design unit 121 generates measurement value table design information 143 based on the virtual measurement point definition table 141 and the configuration information table 142 (S13). At this time, the measurement value table design unit 121 describes information on alternative measurement points in the virtual measurement point definition table 141 as necessary. The alternative measurement points will be described later.
  • the measurement value table definition unit 122 generates (CREATE) the measurement value table based on the measurement value table design information 143 (S14). In the present embodiment, the process of S13 will be mainly described.
  • the virtual measurement data calculation unit 132 is used. Reads out the measurement data from the column corresponding to the alternative measurement point (S32). Then, the virtual measurement data calculation unit 132 outputs the measurement data calculated according to the virtual measurement point definition to the operation terminal 220 (S33).
  • the measurement value table design unit 121 corresponds to an example of a data division unit, a state determination unit, a table allocation unit, and an alternative measurement point setting unit.
  • the measurement data collection / storage unit 131 corresponds to an example of an alternative measurement point calculation unit.
  • the measurement data management apparatus 100 manages a configuration information tree 700 and a configuration information tree 710 that are tree structure data as illustrated in FIG. Further, the measurement data management apparatus 100 manages the measurement value table 144.
  • the measurement value table 144 measurement values measured by a plurality of measurement devices 201 are stored.
  • Each of the configuration information tree 700 and the configuration information tree 710 has a hierarchical structure with a plurality of nodes.
  • Each node is a unit of measurement value aggregation.
  • Each node defines a calculation formula for calculation of aggregation, and the calculation formula includes zero or more actual measurement points and zero or more virtual measurement points.
  • the actual measurement point is an identifier that is directly associated with the measurement value in the measurement value table 144
  • the virtual measurement point is an identifier that is directly associated with the actual measurement point or indirectly through another virtual measurement point. . That is, each node is associated with the measurement device via the actual measurement point and the virtual measurement point.
  • 721, 722, and 723 are virtual measurement points
  • 731, 732, and 733 are actual measurement points.
  • the number of columns in the measurement value table 144 that is, the number of measurement devices that can store measurement values in the measurement value table 144 (the number of table storage devices) is finite, and the number of actual measurement points (that is, the number of measurement devices) is measured. The number of columns in the value table 144 may be exceeded.
  • the measurement data management apparatus 100 determines which measurement value table 144 of the plurality of measurement value tables 144 stores the measurement value.
  • the measurement value table design unit 121 has the number of measurement devices associated with the partial configuration information tree (also referred to as partial tree data or partial tree) in the measurement value table 214.
  • the configuration information tree 700 and the configuration information tree 710 are each divided into a plurality of partial configuration information trees so that the number of columns is less than or equal to the number of columns.
  • the measurement value table design unit 121 includes a partial configuration information tree having only the node 701, a partial configuration information tree having the node 702a as a root node, and a partial configuration information tree having 702b as a root node.
  • the partial configuration information tree is not further divided.
  • the partial configuration information tree is, for example, a partial tree of only the node 702b, The node is divided into a partial configuration information tree having the node 703a as a root node and a partial configuration information tree having the node 703b as a root node.
  • the measurement value table design unit 121 determines whether or not each partial configuration information tree is in a definite state. to decide. Then, the measurement value table design unit 121 assigns a measurement value table that stores measurement values from the measuring device associated with the partial configuration information tree to the partial configuration information tree in the finalized state. For a partial configuration information tree that is not in a fixed state, the measurement value table design unit 121 further divides the partial configuration information tree into a plurality of partial configuration information trees.
  • the measurement value table design unit 121 measures the number of measurement devices associated with one partial tree, while the measurement device associated with one partial tree is not associated with any other partial tree. When the number of columns of the value table is less than or equal to, it is determined that the one subtree is in the first definite state.
  • the measurement value table design unit 121 also associates at least one measurement device among the measurement devices associated with one subtree in duplicate with each other, and is associated with the one subtree.
  • the subtrees 1101 and 1102 in FIG. 23 are in the first finalized state.
  • the actual measurement points 1 to 5 related to the subtree 1101 are related only to the subtree 1101 and the number of columns in the measurement value table is 8 or less.
  • the actual measurement points 6 to 11 related to the subtree 1102 are related only to the subtree 1102 and the number of columns in the measurement value table is 8 or less. Therefore, the subtrees 1101 and 1102 in FIG. 23 are in the first confirmed state.
  • the subtrees 1111 and 1112 in FIG. 24 are in the second finalized state.
  • the actual measurement points associated with the subtree 1111 are 1 to 6, and the actual measurement points associated with the subtree 1112 are 2 to 7. Since the actual measurement points 2 to 6 are associated with both the subtree 1111 and the subtree 1112, when this overlap is removed and counted, the number of actual measurement points associated with the subtree 1111 and the subtree 1112 are counted.
  • the total number of related actual measurement points is seven, that is, actual measurement points 1 to 7.
  • the seven actual measurement points are 8 or less in the number of columns in the measurement value table. For this reason, the subtrees 1111 and 1112 in FIG. 24 are in the second finalized state.
  • the measurement value table design unit 121 when two or more actual measurement points are included in the calculation formula of the root node (node R in FIG. 23) includes a measurement point other than one actual measurement point. Is included, when a combination of a real measurement point and a virtual measurement point is included, or when only a virtual measurement point is included), an alternative measurement point is associated with the root node.
  • the alternative measurement point is an identifier indicating that it is necessary to perform a calculation for counting of measurement values in advance before receiving a counting instruction from the user. Measurement is also performed when a virtual measurement point is included in the calculation formula of the root node (node R in FIG.
  • the value table design unit 121 uses the actual measurement point to which the virtual measurement point is directly or indirectly related, and includes only the actual measurement point, and obtains the same calculation result as the calculation formula defined in the root node.
  • the alternative calculation formula is generated and the alternative calculation formula is associated with the alternative measurement point.
  • the measurement data collection and accumulation unit 131 pre-calculates a measurement value for the root node associated with the alternative measurement point before receiving an aggregation instruction for the root node. Associating with an alternative measurement point. By doing in this way, since the total value has been calculated at the time when the total instruction for the root node is received from the user, the total value can be presented to the user without delay.
  • FIG. 1 is a functional configuration diagram of a measurement data management apparatus 100 according to the first embodiment. A functional configuration of the measurement data management apparatus 100 according to Embodiment 1 will be described with reference to FIG.
  • the measurement data management device 100 is a computer device that manages various measurement data.
  • the measurement data management apparatus 100 generally includes a virtual measurement point management unit 110, a measurement value table management unit 120, a measurement data management unit 130, and a data storage unit 140.
  • the virtual measurement point management unit 110 includes a virtual measurement point information input / output unit 111 and a configuration information input / output unit 112.
  • the virtual measurement point information input / output unit 111 receives input of virtual measurement point information from the user, and stores the virtual measurement point information in the virtual measurement point definition table 141.
  • the configuration information input / output unit 112 receives input of configuration information from the user and stores the configuration information in the configuration information table 142 of the data storage unit 140. Further, the virtual measurement point information input / output unit 111 reads virtual measurement point information from the virtual measurement point definition table 141 in accordance with a request from the user, and outputs the read virtual measurement point information.
  • the configuration information input / output unit 112 reads the configuration information from the configuration information table 142 in accordance with a request from the user, and outputs the read configuration information.
  • the virtual measurement point information, the configuration information, the virtual measurement point definition table 141, and the configuration information table 142 will be described later.
  • the measurement value table management unit 120 includes a measurement value table design unit 121 and a measurement value table definition unit 122.
  • the measurement value table design unit 121 generates design information of the measurement value table 144 based on information recorded in the virtual measurement point definition table 141 and the configuration information table 142, and the generated design information is used as measurement value table design information 143. Record. Further, the measurement value table definition unit 122 actually generates the measurement value table 144 based on the measurement value table design information 143.
  • the measurement data management unit 130 includes a measurement data collection / storage unit 131, a virtual measurement data calculation unit 132, and a measurement data output unit 133.
  • the measurement data collection / accumulation unit 131 accepts input of measurement data collected from various measurement devices and stores it in the measurement value table 144.
  • the virtual measurement data calculation unit 132 calculates the measurement data of the virtual measurement point based on the virtual measurement point definition in the virtual measurement point definition table 141.
  • the measurement data output unit 133 reads measurement data from the measurement value table 144 in accordance with a measurement data read request from the user, such as aggregation, and outputs the read measurement data to the user.
  • the data storage unit 140 stores various data such as a virtual measurement point definition table 141, a configuration information table 142, a measurement value table design information 143, and a measurement value table 144.
  • Each functional unit of the measurement data management device 100 may be realized on a single computer device, or may be realized in a distributed manner on a plurality of computer devices connected via a network.
  • FIGS. 2 and 3 are diagrams illustrating a configuration example of the measurement data management system 200 according to the first embodiment.
  • a configuration example of the measurement data management system 200 according to Embodiment 1 will be described with reference to FIGS. 2 and 3.
  • the measurement data management system 200 shown in FIG. 2 includes one or more base apparatuses 210 and one or more operation terminals 220 connected to the measurement data management apparatus 100 via a network.
  • the measurement data management apparatus 100 includes the function (application execution unit 221) of the operation terminal 220, the measurement data management system 200 may not include the operation terminal 220.
  • the base device 210 is a computer or communication device that transmits measurement data including measurement values (eg, power consumption, voltage, water consumption, temperature, etc.) to the measurement data management device 100.
  • the base device 210 includes a measurement data reception unit 211, a measurement data transmission unit 212, and a base device storage unit 219.
  • the measurement data receiving unit 211 receives measurement data including measurement values from each measurement device 201 (for example, a distribution board, a voltmeter, a water meter, a thermometer, etc.) that measures the measurement values.
  • the measurement data transmission unit 212 transmits the measurement data received by the measurement data reception unit 211 to the measurement data management device 100.
  • the base device storage unit 219 stores data used by the base device 210 such as measurement data received by the measurement data reception unit 211.
  • the operation terminal 220 is an apparatus (computer) that executes an application program (hereinafter referred to as an application) for performing processing requested by a user, such as measurement value aggregation processing.
  • the operation terminal 220 includes an application execution unit 221 that executes an application, and an operation terminal storage unit 229 that stores data used by the operation terminal 220.
  • the application execution unit 221 of the operation terminal 220 operates as follows by executing the application.
  • the application execution unit 221 requests a measurement value from the measurement data management device 100, acquires the measurement value from the measurement data management device 100, and executes a totaling process regarding the acquired measurement value.
  • the measurement data collection and accumulation unit 131 (see FIG. 1) of the measurement data management device 100 collects measurement data including measurement values from each base device 210 connected to the measurement data management device 100, and uses the collected measurement data as measurement values. Store in table 144.
  • the measurement data management system 200 illustrated in FIG. 2 is configured in a star shape in which each base device 210 is connected to the measurement data management device 100. However, in the measurement data management system 200, as shown in FIG. 3, the measurement data management device 100 and each site device 210 are connected in a tree configuration in which the site devices 210 are hierarchically connected, or in other connection forms. You may be the structure which carried out. In the measurement data management system 200 shown in FIG. 3, the base device 210A collects measurement data from the lower base devices 210B and 210C connected via the network, and transmits the collected measurement data to the measurement data management device 100. .
  • FIG. 4 is a diagram showing a basic structure of measurement data according to the present embodiment.
  • the measurement data 400 of the first embodiment includes at least an actual measurement point ID 401, a measurement time 402, and a measurement value 403.
  • the actual measurement point ID 401 is an identifier for uniquely identifying the measurement device 201 or the location where the measurement device 201 is installed.
  • the measurement device 201 or a place where the measurement device 201 is set is referred to as an “actual measurement point”.
  • the actual measurement point ID is expressed in the format of “$ x”.
  • “x” is an arbitrary integer value.
  • the measurement time 402 indicates the date and time when the measurement value was measured.
  • the measurement time 402 is set by each measuring device 201 and each base device 210.
  • a measured value 403 indicates a measured value measured by the measuring device 201.
  • FIG. 5 is a diagram showing the measurement value table 144 in the first embodiment.
  • Each record (row) of the measurement value table 144 includes a row number 501, a measurement time 502, and a plurality of measurement values 503A to 503E measured at the same time.
  • the line number 501 is a number for identifying a measured value measured at the same time.
  • the measurement time 502 corresponds to the measurement time 402, but may include some errors. There may be an error in the measurement time 402 due to a clock deviation of each measuring device 201 or base device 210. In that case, it is necessary to round the measurement time 402 within the allowable error range and use the same measurement time 502 as measurement data.
  • an allowable error is set to 100 milliseconds in advance, and a measurement time 402 from “2013/4/1 18: 00: 00.000” to “2013/4/1 18: 00: 00.099” is set.
  • the rounding method of the error at the measurement time 402 is not an essential problem, and the details are omitted.
  • the measured value 403 is stored in any of the measured values 503. The corresponding relationship is determined based on measurement value table design information 143 described later.
  • the configuration information has a hierarchical structure.
  • This hierarchical structure can be expressed as a tree structure as shown in FIG. 6, for example, and information having such a hierarchical structure is referred to as a configuration information tree here.
  • This hierarchical relationship is also called a parent-child relationship or a hierarchical relationship.
  • the configuration information tree has a plurality of types (viewpoints) as shown in the examples of FIGS.
  • FIG. 9 is a diagram for explaining the relationship among the configuration information trees 700 and 710, the virtual measurement point information 720, the actual measurement point information 730, and the measurement value 503 stored in the measurement value table 144.
  • the configuration information has a plurality of configuration information trees such as configuration information trees 700 and 710.
  • the configuration information tree is a tree structure composed of nodes called configuration information nodes.
  • the configuration information node includes normal nodes 702 and 703 having a parent node and a child node, a root node 701 having no parent node, and leaf nodes 704 and 711 having no child node.
  • Each configuration information node is associated with one virtual measurement point (for example, 722) in the virtual measurement point information 720.
  • a plurality of configuration information nodes, such as configuration information nodes 704 and 711, may point to one virtual measurement point 723.
  • the virtual measurement points included in the virtual measurement point information 720 are associated with one or more actual measurement points (eg, 731) included in the one or more actual measurement point information 730, or one or more virtual measurement points.
  • the virtual measurement point 722 is associated with two actual measurement points 731 and 732.
  • the virtual measurement point 721 may be associated with only the virtual measurement point (here, the virtual measurement point 722), or the virtual measurement point 723 may be associated with both the actual measurement point 733 and the virtual measurement point.
  • the virtual measurement point is an identifier that is directly associated with the actual measurement point or indirectly through another virtual measurement point.
  • the actual measurement points 731 included in the actual measurement point information 730 are associated with one or more columns of measurement values 503 in the measurement value table 144.
  • the actual measurement point is thus an identifier that is directly associated with the measurement value of the measurement device.
  • the configuration information tree is composed of nodes (rounded rectangles in FIG. 6) that represent the components of the target for which virtual measurement points are provided, and edges (lines connecting the nodes) that represent the hierarchical relationship between the components. It is a tree structure provided with.
  • a node for example, a “company” node in FIG. 6) located at the top of the tree structure is a root node, and is the highest parent node.
  • a node located at the end of the tree structure (for example, “one-piece” node in FIG. 6) is a leaf node and is the lowest child node.
  • FIG. 6 is a configuration information tree representing the configuration of an “organization” that is a target for providing virtual measurement points.
  • a “company” node 601 represents the entire company.
  • the “company” is composed of a plurality of “departments” such as “management department” 602, “ ⁇ business department” 603, and “ ⁇ business department” 604.
  • the management department 602 includes a plurality of “departments” such as a “personnel department” 605, a “general affairs department” 606, and an “accounting department” 607.
  • the personnel department 605 includes a plurality of “sections” such as a “personnel section” 608 and a “training section” 609.
  • Each node “company” 601, “management department” 602, “HR department” 605, “HR section” 608, etc. are examples of virtual measurement points.
  • FIG. 7 is an example of a configuration information tree representing a configuration of “arrangement” that is a target for providing virtual measurement points.
  • FIG. 8 is an example of a configuration information tree representing the configuration of a “device” that is a target for providing virtual measurement points.
  • the configuration information table 142 is an example of data indicating configuration information representing an object to be provided with virtual measurement points.
  • the configuration information table 142 shown in FIGS. 10 and 11 includes configuration information related to the configuration information trees shown in FIGS.
  • the configuration information table 142 includes a record in which “node ID”, “parent ID”, “group ID”, “level”, “virtual measurement point ID”, and “node name” are associated with each other.
  • “Node ID” indicates an identifier for identifying a configuration information node.
  • “Parent ID” indicates an identifier for identifying a parent node having a parent-child relationship with the configuration information node. When the “parent ID” is “null”, the node means a root node.
  • “Group ID” indicates an identifier for identifying a configuration information tree.
  • Level indicates the depth (level) of the hierarchy in which the configuration information node is located.
  • the level of the root node is set to “1”, and the numerical value increases by 1 every time one level is lowered toward the lower level.
  • “Virtual measurement point ID” indicates an identifier for identifying a virtual measurement point associated with the configuration information node.
  • the virtual measurement point ID is described as “#x”.
  • “x” is an arbitrary integer value.
  • “Node name” indicates a node name representing the contents of the configuration information node.
  • the node ID of the “company” node shown in FIG. 6 is “1”, the group ID is “1”, the level is “1”, and the virtual measurement point ID is “# 1”.
  • the node ID of the “management department” node is “2”, the parent ID is “1” (that is, “company” node), the group ID is “1”, and the level is “2”.
  • the virtual measurement point ID is “# 2”.
  • the configuration information table 142 is associated with a group name table 142A that defines group names that represent the contents of the configuration information tree, and a level name table 142B that defines level names that represent the contents of each hierarchy of the configuration information tree ( Both are FIG. 11).
  • the group name table 142A includes a record in which “group ID” and “group name” are associated with each other.
  • the configuration information tree shown in FIG. 6 is identified by the group ID “1” and represents the “organization” in the company.
  • the tree structure shown in FIG. 7 is identified by the group ID “2” and represents “placement (location)” in the company.
  • the level name table 142B includes a record in which “group ID”, “level”, and “level name” are associated with each other.
  • the level “1” hierarchy in the tree structure shown in FIG. 6 represents the entire “company”, and the level “2” hierarchy represents the “department” in the company.
  • the level “1” hierarchy in the tree structure shown in FIG. 7 represents the entire “location”, the level “2” hierarchy represents the “district” where the company office is located, and the level “3” The hierarchy represents the “office” in the company.
  • FIG. 12 is a diagram showing the virtual measurement point definition table 141 in the first embodiment.
  • the virtual measurement point definition table 141 is an example of data in which virtual measurement points are defined in association with actual measurement points.
  • the virtual measurement point definition table 141 includes a record in which “virtual measurement point ID” 901, “virtual measurement point name” 902, “virtual measurement point definition” 903, and “alternative measurement point flag” 904 are associated with each other.
  • “Virtual measurement point ID” 901 indicates an identifier for identifying a virtual measurement point.
  • the “virtual measurement point ID” 901 corresponds to the virtual measurement point ID 805 in the configuration information table 142.
  • a “virtual measurement point name” 902 indicates a virtual measurement point name representing the contents of the virtual measurement point.
  • a “virtual measurement point definition” 903 indicates the definition of a virtual measurement point in association with an actual measurement point or another virtual measurement point.
  • An “alternative measurement point flag” 904 indicates a flag as to whether or not the virtual measurement point definition includes an alternative measurement point.
  • the virtual measurement point “# 1” is associated with “company-wide power” which means power consumption of the entire company.
  • company-wide power is a virtual measuring point that is not actually provided. Therefore, the power consumption of the virtual measurement point “# 1” is the power consumption of the virtual measurement point “# 2” (management department power) of the lower organization, the power consumption of “# 10” ( ⁇ business department power), and “# It is equal to the sum of the power consumption of 20 ”( ⁇ business sector power). That is, the virtual measurement point “# 1” is defined by the definition formula “# 2 + # 10 + # 20”.
  • the virtual measurement point “# 201” is associated with “Tokyo first building substation equipment” that controls the power consumption of the entire building “Tokyo first building”.
  • the power consumption at the virtual measurement point “# 201” is equal to the power consumption measured at the actual measurement point “$ 1” representing the substation facility in the first building in Tokyo.
  • an alternative measurement point “% 1” is defined in addition to the definition formula “# 2 + # 10 + # 20”.
  • the alternative measurement point is a measurement point defined in the measurement value table 144 in addition to the original virtual measurement point definition formula or the actual measurement point, and a column for reading the measurement value of the virtual measurement point. That is, when an alternative measurement point is defined, the measurement value can be read directly from the corresponding column of the measurement value table 144 as with the actual measurement point. Whether or not an alternative measurement point is defined in the virtual measurement point definition is also set in the alternative measurement point flag 904. Details of the alternative measurement points will be described later.
  • the alternative measurement point ID that is the identifier of the alternative measurement point is referred to as “% x”.
  • “x” is an arbitrary integer value.
  • alternative measurement points “% 1”, “% 2”, “% 3”, and “% 4” are described, but the alternative measurement points are measured value table design in S13 (FIG. 20) in the operation stage. Since the unit 121 sets, the alternative measurement points “% 1”, “% 2”, “% 3”, and “% 4” are described in the measurement value table 144 after the process of S13 is performed.
  • FIG. 13 is a diagram showing measurement value table design information 143 in the first embodiment.
  • the measurement value table design information 143 is an example of data defining a correspondence relationship between an actual measurement point or an alternative measurement point and the measurement value table 144.
  • the measurement value table design information 143 includes a record in which “measurement point ID” 1001, “DB server name” 1002, “database name” 1003, “table name” 1004, “column name” 1005, and “data type” 1006 are associated with each other. Is provided.
  • “Measurement point ID” 1001 indicates an actual measurement point ID or an alternative measurement point ID.
  • DB server name” 1002 indicates a server name in which the database management system in which the measurement value table 144 is defined exists.
  • Database name 1003 indicates a database name in which the measurement value table 144 is defined.
  • Table name 1004 indicates the actual table name of the measurement value table 144.
  • DB server name 1002, “database name” 1003, and “table name” 1004 are examples, and information that can uniquely identify the table of the measurement value table 144 corresponding to the actual measurement point or the alternative measurement point is set. It only has to be.
  • Cold name 1005 indicates a column name on the measurement value table 144 in which measurement values of actual measurement points or alternative measurement points are stored.
  • Data type 1006 indicates the data type of the measurement value.
  • FIG. 14 is a diagram showing an alternative measurement point definition table 143A attached to the measurement value table design information 143 in the first embodiment.
  • the alternative measurement point definition table 143A includes a record in which “alternative measurement point ID” 1011 and “alternative measurement point definition” 1012 are associated with each other.
  • “Alternative measurement point ID” 1011 indicates an alternative measurement point ID.
  • “Alternative measurement point definition” 1012 indicates an alternative measurement point definition for calculating measurement data of an alternative measurement point.
  • the alternative measurement point definition is composed of measurement data of a single actual measurement point, or an arithmetic expression of measurement data of the actual measurement point and the alternative measurement point. Details of the alternative measurement point definition will be described later.
  • the number of actual measurement points associated with one configuration information tree is the number of columns in one table of the measurement value table 144. May be much more than the upper limit.
  • a measure can be considered in which the table is divided in the column direction and the measurement data of the actual measurement points are distributed and managed in a plurality of tables.
  • a method of storing which measurement data of which actual measurement point is stored in which table a method of focusing on a certain configuration information tree and dividing the table in units of the subtrees can be considered.
  • the configuration information tree is divided into subtrees for each “establishment”, and a table for storing measurement data related to “Tokyo establishment” and “Kanagawa establishment”
  • the table is divided into a table for storing related measurement data and a table for storing measurement data related to “Saitama office”.
  • the efficiency of the aggregation and analysis processing may decrease.
  • one virtual measurement point or real measurement point may be associated with a plurality of configuration information trees.
  • most virtual measurement points and actual measurement points may be associated with a plurality of configuration information trees.
  • the measurement value table design unit 121 generates design information of the measurement value table 144 that suppresses such fragmentation of measurement data.
  • C Number of columns in which measurement data can be stored in one table of the measurement value table 144
  • Tree size Number of all nodes included in the tree Tree size: Unique actual measurement point and alternative measurement associated with the tree Number of points
  • FIGS. 15 and 16 are flowcharts showing a flow of processing for generating the measurement value table design information 143 in the measurement value table design unit 121 according to the first embodiment.
  • the measurement value table design unit 121 generates a temporary configuration information table, which is a copy of the configuration information table 142, in the working storage device.
  • the measurement value table design unit 121 creates and initializes a measurement point management information table and a partial configuration information tree management table. These tables may be created in a temporary storage device provided independently in the measurement value table design unit 121, or may be created on a temporary storage device on the measurement data management device 100.
  • the temporary configuration information table is used to manage the state of the partial configuration information tree.
  • FIG. 17 is a diagram illustrating an example of the measurement point management information table 1200 generated in step S1101.
  • the measurement point management information table 1200 includes a record in which “measurement point ID” 1201, “own node ID” 1202, “root node ID” 1203, “column name” 1204, and “alternative measurement point definition” 1205 are associated with each other.
  • “Measurement point ID” 1201 indicates an actual measurement point ID or an alternative measurement point ID.
  • “Own node ID” 1202 indicates the node IDs of all nodes associated with virtual measurement points having a virtual measurement point definition that directly includes the actual measurement point ID specified by the “measurement point ID” 1201. For example, in the virtual measurement point definition table 141 of FIG.
  • the virtual measurement point definition 903 of the virtual measurement point ID “# 201” is “$ 1”, and directly includes the actual measurement point ID.
  • “201” is extracted as the node ID 801 associated with the virtual measurement point ID “# 201” from the configuration information table 142, and is set to “own node ID” 1202.
  • the virtual measurement point definition 903 with the virtual measurement point ID “# 1” is all composed of the calculation formula of the measurement data of the virtual measurement point, and thus directly includes the actual measurement point ID. Absent.
  • FIG. 17 indicates the root node ID of the partial configuration information tree associated with the actual measurement point or the alternative measurement point specified by the “measurement point ID” 1201.
  • the node IDs of the root nodes of all the partial configuration information trees associated with the root node ID are set. If the size of all the related partial configuration information trees is 1 (one node) or is not related to any partial configuration information tree, “null” is set.
  • a “column name” 1204 indicates a column name on the measurement value table 144 that stores the measurement data specified by the “measurement point ID” 1201.
  • “Alternative measurement point definition” 1205 indicates a definition formula for calculating measurement data of an alternative measurement point.
  • the definition formula of the alternative measurement point definition is composed of measurement data of a single actual measurement point, or an arithmetic expression of the measurement data of the actual measurement point and the alternative measurement point.
  • FIG. 18 is a diagram showing the partial configuration information tree management table 1210 generated in step S1101.
  • the partial configuration information tree management table 1210 includes “partial configuration information tree ID” 1211, “root node ID” 1212, “partial configuration information tree group ID” 1213, “confirmation flag” 1214, “DB server name” 1215, “database”. A record in which “name” 1216 and “table name” 1217 are associated with each other is provided.
  • the “partial configuration information tree ID” 1211 indicates an identifier for uniquely identifying the partial configuration information tree.
  • “Root node ID” 1212 indicates the node ID of the root node of the partial configuration information tree identified by the partial configuration information tree ID.
  • the “partial configuration information tree group ID” 1213 indicates an identifier for uniquely identifying a set of related partial configuration information trees (partial configuration information tree group). The same “partial configuration information tree group ID” is set for a plurality of partial configuration information trees determined to be in the second confirmed state.
  • the “confirmation flag” 1214 indicates whether or not the partial configuration information tree identified by the “partial configuration information tree ID” 1211 is fixed.
  • “DB server name” 1215, “database name” 1216, and “table name” 1217 indicate the DB server name, database name, and table name of the measurement value table 144, respectively. This is information for uniquely identifying a table storing measurement data of actual measurement points or alternative measurement points associated with the partial configuration information tree identified by the “partial configuration information tree ID” 1211. This is the same as “DB server name” 1002 and “database name” 1003 in the measurement value table design information 143.
  • partial configuration information tree T1 is determined” means that the partial configuration information tree is in the following “first determined state” or “second determined state” as described above. Point to. A partial configuration information tree that does not correspond to either the “first confirmed state” or the “second confirmed state” is referred to as an “undefined partial configuration information tree”.
  • the measurement value table design unit 121 first sets all the actual measurement point IDs one by one in the measurement point ID 1201 of each record in the measurement point management information table 1200. Next, for each actual measurement point ID, a related configuration information tree is extracted, and the node ID of the root node is set as the root node ID 1203. Therefore, the measurement value table design unit 121 searches the virtual measurement point definition 903 in the virtual measurement point definition table 141 and extracts all virtual measurement point IDs 901 corresponding to the virtual measurement point definition including the corresponding actual measurement point ID. To do. Next, all group IDs 803 associated with the virtual measurement point ID are extracted from the configuration information table 142. Finally, among the node IDs belonging to the extracted group ID, the node ID of the root node is extracted and set in the root node ID 1203 of the measurement point management information table 1200.
  • the number of nodes having the node ID as the parent ID may be recursively counted in order from the node corresponding to the root node of the tree.
  • the number of times that the root node ID of the tree appears in the root node ID 1203 of the measurement point management information table 1200 may be counted.
  • the group ID 803 of the configuration information table 142 may be used as the partial configuration information tree ID at this time.
  • Step S1102 The measurement value table design unit 121 divides the configuration information tree into partial trees so that the actual sizes of all the partial configuration information trees are C or less.
  • An example of this step is as follows. (1) The measurement value table design unit 121 selects one partial configuration information tree T whose actual size exceeds C from all the partial configuration information trees. (2) The measurement value table design unit 121 divides the selected partial configuration information tree T into a partial tree having a root node and a child node of the root node as a new root node. Then, the measurement value table design unit 121 updates the measurement point management information table 1200 and the partial configuration information tree management table 1210. Details of this procedure will be described later. (3) The measurement value table design unit 121 repeats the operations (1) and (2) until there is no partial configuration information tree whose actual size exceeds C.
  • Step S1103 The measurement value table design unit 121 selects the partial configuration information tree T1 having the largest size from the partial configuration information trees that are not fixed.
  • Step S1104 The measurement value table design unit 121 makes another undefined partial configuration information tree related to the actual measurement point or the alternative measurement point N1 related to the partial configuration information tree T1 selected in step S1103.
  • the partial configuration information tree T2 having the largest size is selected from among them.
  • Step S1105 The measurement value table design unit 121 compares the number of child nodes of the root node among the partial configuration information trees T1 and T2, and selects the partial configuration information tree T ′ having a larger number of child nodes. To do. Then, the measurement value table design unit 121 divides the partial configuration information tree T ′ into a root node R and a partial configuration information tree whose child node is a new parent. Here, in the division of the selected partial configuration information tree T ′, the same procedure as (2) of step S1102 is applied.
  • Step S1106 The measurement value table design unit 121 checks whether or not the actual measurement point is directly included in the virtual measurement point definition of the root node R in step S1105. That is, the measurement value table design unit 121 extracts the virtual measurement point ID 805 related to the node ID of the root node R from the configuration information table 142. Then, the measurement value table design unit 121 extracts the virtual measurement point definition 903 of the virtual measurement point ID from the virtual measurement point definition table 141, and checks whether the actual measurement point is directly included. If it is included directly as a result of the check (YES), the process proceeds to step S1109. If not included directly (NO), the process proceeds to step S1107.
  • Directly including actual measurement points refers to a case where the virtual measurement point definition 903 is defined by one actual measurement point. If the virtual measurement point definition 903 is defined by a plurality of actual measurement points, if it is defined only by virtual measurement points, or if it is defined by a combination of actual measurement points and virtual measurement points, it is included directly No (NO) is determined.
  • Step S1107 The measurement value table design unit 121 newly assigns an alternative measurement point ID to the root node R in step S1105 and adds it to the measurement point management information table 1200.
  • the measurement value table design unit 121 adds a new record to the measurement point management information table 1200, sets an alternative measurement point ID newly assigned as “measurement point ID” 1201 to “own node ID” 1202, and
  • the node ID of the root node R is set in the “root node ID” 1203.
  • the “column name” 1204 is set later.
  • “Alternative measurement point definition” 1205 a definition formula for calculating measurement data of the alternative measurement point is set.
  • the measurement value table design unit 121 uses the virtual measurement point ID associated with the node ID of the root node R as the virtual measurement point ID 805 in the configuration information table 142. And the virtual measurement point definition of the virtual measurement point is extracted from the virtual measurement point definition 903 of the virtual measurement point definition table 141. Further, the measurement value table design unit 121 recursively expands the definition formula until the virtual measurement point ID is not included in the extracted definition formula of the virtual measurement point definition 903, and displays the expansion result as “alternative measurement”. Point definition "1205 is set.
  • the “alternative measurement point definition” 1205 after deployment is very complicated and the measurement data calculation load is high, the measurement data of the alternative measurement point cannot be calculated only from the measurement data at the same measurement time, etc.
  • the measurement value table design unit 121 need not define alternative measurement points.
  • the measurement value table design unit 121 adds information on alternative measurement points to the virtual measurement point definition table 141.
  • the measurement value table design unit 121 identifies the virtual measurement point definition 903 related to the node ID of the root node R in the same manner as in the above step S1107, and sets the alternative measurement point ID assigned to the root node R therein. to add.
  • the measurement value table design unit 121 adds the root node R to the partial configuration information tree management table as a partial configuration information tree of size 1.
  • the measurement value table design unit 121 generates a record corresponding to the root node R, newly assigns a partial configuration information tree ID, and sets it to “partial configuration information tree ID” 1211. Further, the measurement value table design unit 121 sets the node ID of the root node R to “root node ID” 1212. Furthermore, the measurement value table design unit 121 newly assigns a group ID to the partial configuration information tree, and sets it to “partial configuration information tree group ID” 1213.
  • Step S1110 The measurement value table design unit 121 checks the partial configuration information tree management table 1210, and determines whether all the partial configuration information trees have been confirmed (whether the “confirmation flag” 904 is set). To check. If all the partial configuration information trees have been confirmed (YES when “confirmation flag” 904 is set), the process proceeds to step S1111. If there is an undefined partial configuration information tree (NO), the process returns to step S1103.
  • the measurement value table design unit 121 sets the DB server name 1215, the database name 1216, the table name 1217, and the column name 1204 when all the partial configuration information trees are determined.
  • the measurement value table design unit 121 uses the same “DB server name” 1215 and “database name” for records in which the same “partial configuration information tree group ID” 1213 is set in the partial configuration information tree management table 1210. 1216, “table name” 1217 is set.
  • the measurement value table design unit 121 has at least one of “DB server name” 1215, “database name” 1216, and “table name” 1217 in a record in which a different “partial configuration information tree group ID” 1213 is set. Set a different value.
  • the measurement value table design unit 121 extracts the root node ID of the partial configuration information tree belonging to the same partial configuration information tree group from the “root node ID” 1212, and “root node ID” 1203 of the measurement point management information table 1200.
  • a unique “column name” 1204 is assigned to the measurement point for which the root node ID is set.
  • the measurement value table design unit 121 updates the measurement value table design information 143 and the alternative measurement point definition table 143A based on the information in the measurement point management information table 1200 and the partial configuration information tree management table 1210. That is, it sets as follows.
  • Measurement point ID 1201 in the measurement point management information table 1200 ⁇ "Measurement point ID” 1001 of the measurement value table design information 143 “DB server name” 1215 in the partial configuration information tree management table 1210 ⁇ "DB server name” 1002 of the measurement value table design information 143 “Database name” 1216 of the partial configuration information tree management table 1210 ⁇ "Database name” 1003 of the measurement value table design information 143 “Table name” 1217 of the partial configuration information tree management table 1210 ⁇ "Table name” 1004 of the measurement value table design information 143 “Column name” 1204 of the measurement point management information table 1200 ⁇ "Column name” 1005 of the measurement value table design information 143
  • step S1112 the correspondence between the “measurement point ID” 1001 of the measurement value table design information 143 and the “DB server name” 1215 and “database name” 1216 of the partial configuration information tree management table 1210 is the measurement point management information table. It can be determined by using “root node ID” 1203 of 1200 and “root node ID” 1212 of the partial configuration information tree management table 1210 as keys.
  • step S1111 “DB server name” 1215, “database name” 1216, “table name” 1217, and “column name” 1204 are assigned. "Measurement point ID” 1201, "own node ID” 1202, "root node ID” 1203, "alternative measurement point definition” 1205, "partial configuration information tree ID” 1211 of the partial configuration information tree management table 1210, "root” Only the “node ID” 1212, “partial configuration information tree group ID” 1213, “confirmation flag” 1214 are set, and the remaining “DB server name” 1215, “database name” 1216, “table name” 1217, “column name” 1204 may be set by the user.
  • the measurement value table design unit 121 records the updated measurement value table design information 143 and the alternative measurement point definition table 143A in the data storage unit 140, and ends.
  • the measurement value table design unit 121 preferentially selects and divides a tree having a large partial configuration information tree size.
  • the partial configuration information tree T may be selected based on the actual tree size instead of the tree size.
  • the partial configuration information tree having the largest number of child nodes of the root node may be selected. As the number of child nodes of the root node increases, the number of steps until all partial configuration information trees are determined is reduced because the partial configuration information tree is divided into smaller partial configuration information trees. Can be expected.
  • a threshold value is set in advance for the size of the tree, the actual size, or the number of child nodes of the root node, and the first partial configuration information tree found in the partial configuration information tree exceeding the threshold is selected. You may do it. As a result, the effect of reducing the time required for searching for candidates for the partial configuration information tree to be divided can be expected.
  • the partial configuration information tree may be selected based on the size of the tree or the actual size of the tree instead of the number of children nodes of the root node.
  • a threshold value is set in advance for the number of child nodes of the root node, the tree size, or the actual tree size, and the first partial configuration information tree found in the partial configuration information tree exceeding the threshold is selected. You may do it.
  • FIG. 19 is a flowchart showing a flow of processing for dividing the partial configuration information tree into partial trees in the first embodiment. That is, the details of the procedure (2) of step S1102 are shown.
  • Step S1301 A partial configuration information tree T to be divided is designated.
  • Step S1302 The measurement value table design unit 121 extracts all records in which the node ID of the root node R of the partial configuration information tree T is “parent ID” 802 in the temporary configuration information table. Let Ri be the node of those records. Then, the measurement value table design unit 121 sets “parent ID” 802 of the corresponding record to “null”.
  • the measurement value table design unit 121 extracts a record having the node ID of the root node R of the partial configuration information tree T as the “root node ID” 1203 of the measurement point management information table 1200, and the root node ID. Update. At the same time, the measurement value table design unit 121 updates the “level” 804 of all nodes included in the partial configuration information tree T in the configuration information table 142.
  • the measurement value table design unit 121 selects one of the node IDs of the record of the node Ri extracted in step S1302. Then, the measurement value table design unit 121 searches the node ID of the child node in the configuration information table 142 in order from the selected node ID, and subtracts 1 from the “level” 804 of the corresponding record.
  • the measurement value table design unit 121 detects the node ID included in the “own node ID” 1202 of the measurement point management information table 1200, the “root node ID” of the record of the measurement point management information table 1200 is The selected node ID is set instead of the original ID.
  • the measurement value table design unit 121 repeats this operation for the node IDs of all the records extracted in step S1302.
  • the measurement value table design unit 121 adds the information of the partial configuration information tree Ti divided by the operations of steps S1302 to S1303 to the partial configuration information tree management table 1210.
  • the measurement value table design unit 121 generates a record corresponding to each partial configuration information tree Ti, assigns a new partial configuration information tree ID, and sets it to “partial configuration information tree ID” 1211. Further, the measurement value table design unit 121 sets the node ID of the root node Ri of the partial configuration information tree Ti to “root node ID” 1212. Furthermore, the measurement value table design unit 121 newly assigns a group ID of the partial configuration information tree and sets it to “partial configuration information tree group ID” 1213.
  • the measurement value table design unit 121 checks the confirmed partial configuration information tree, and if there is a confirmed partial configuration information tree, it corresponds to the partial configuration information tree in the partial configuration information tree management table 1210. “Confirm flag” 1214 is set. When a plurality of confirmed partial configuration information trees are associated with the same actual measurement point or alternative measurement point, the measurement value table design unit 121 sets “partial configuration information tree group ID” 1213 of those partial configuration information trees. Are assigned the same partial configuration information tree group ID. In addition, even if the partial configuration information trees that belong to different partial configuration information tree groups have a unique number of actual measurement points or alternative measurement points associated with them, the measurement value table design The unit 121 may reset the same partial configuration information tree group ID.
  • step S1305 Another condition (third confirmed state) for determining that the partial configuration information tree has been confirmed in step S1305 will be described.
  • the actual measurement points P are associated with a plurality of undefined partial configuration information trees, the actual measurement points P are regarded as independent measurement points and assigned different alternative measurement point IDs.
  • the partial configuration information tree can be determined. That is, the measurement value table design unit 121 stores the measurement data of the actual measurement point P in the plurality of measurement value tables 144. However, when there are a large number of such actual measurement points P, a large amount of measurement data is stored in duplicate and triple, which is a waste of storage capacity.
  • the measurement value table design unit 121 sets the number of measurement points that can be overlapped in advance as a threshold, and the number of actual measurement points associated with a plurality of undefined partial configuration information trees sets the threshold. If not, a record is added to the measurement point management information table 1200, an alternative measurement point ID is newly assigned to the actual measurement point P, and the alternative measurement point ID is set in the “measurement point ID” 1201. At the same time, the measurement value table design unit 121 sets the original actual measurement point ID in the “alternative measurement point definition” 1205 of the record. Then, the measurement value table design unit 121 determines the partial configuration information tree associated with the actual measurement point P as it is. By assigning different alternative measurement point IDs to the actual measurement points P, the partial configuration information trees associated with the actual measurement points P can be regarded as independent partial configuration information trees. In the case of satisfying one confirmed state or the second confirmed state, the partial configuration information tree can be confirmed.
  • the subtree data 1101 is associated with the actual measurement points 1 to 6, and the subtree data 1102 is associated with the actual measurement points 6 to 11.
  • the actual measurement point 6 is associated with both the partial tree data 1101 and the partial tree data 1102.
  • the number of columns in one measurement value table is 8, and the number of actual measurement points associated with the subtree data 1101 and the subtree data 1102 is 11. Therefore, the second measurement shown in FIG. It does not correspond to the fixed state.
  • the number of actual measurement points associated with a plurality of subtree data does not exceed the threshold value, it is determined that the subtree data 1101 and the subtree data 1102 are in the third final state.
  • the actual measurement point 6 is assigned to both the measurement value table of the subtree data 1101 and the measurement value table of the subtree data 1102.
  • the threshold for the number of actual measurement points can be arbitrarily determined by the user.
  • 26 and 28 show a configuration information tree 1131 and a configuration information tree 1132 used in the following description.
  • the node with the double outline is a node directly associated with the actual measurement point.
  • 27 is a configuration information table (corresponding to the configuration information table 142 in FIG. 10) of the configuration information tree 1131 in FIG. 26, and
  • FIG. 29 is a configuration information table in the configuration information tree 1132 in FIG.
  • the configuration information tree 1131 and the configuration information tree 1132 are associated with actual measurement points $ 1 to $ 15 as shown in FIG.
  • FIG. 31 is a virtual measurement point definition table (corresponding to the virtual measurement point definition table 141 of FIG.
  • FIG. 32 is a virtual measurement point definition table of the configuration information tree 1132.
  • FIG. 33 is a temporary configuration information table of the configuration information tree 1131
  • FIG. 34 is a temporary configuration information table of the configuration information tree 1132.
  • FIG. 35 is a measurement point management information table (corresponding to the measurement point management information table 1200 of FIG. 17) of the configuration information tree 1131 and the configuration information tree 1132.
  • FIG. 36 is a partial configuration information tree table (corresponding to the partial configuration information tree management table 1210 in FIG. 18) before the measurement value table design unit 121 starts dividing the configuration information tree 1131 and the configuration information tree 1132.
  • the actual size C 8 that is, the number of actual measurement points (measurement devices) that can store measurement values in the measurement value table 144 is eight.
  • the measurement value table design unit 121 selects, for example, the configuration information tree 1131 (S1301 in FIG. 19), and extracts nodes “A02” and “A03” that are child nodes of the root node “A01”. (S1302). Then, the measurement value table design unit 121 subtracts 1 from the “level” of the nodes “A02” to “A39” of the temporary configuration information table (FIG. 33) of the configuration information tree 1131 (S1303). As a result, the temporary configuration information table of the configuration information tree 1131 is updated as shown in FIG.
  • the measurement value table design unit 121 updates the root node ID of the record in which “1” (ID of the root node “A01”) is described in the root node ID column in the measurement point management information table (FIG. 35). (S1303). As a result, the measurement point management information table is updated as shown in FIG.
  • the measurement value table design unit 121 stores the partial tree information having the node “A02” as the root node and the partial tree information having the node “A03” as the root node into the partial configuration information tree table (FIG. 36). (S1304). At this time, neither the subtree having the node “A02” as the root node nor the subtree having the node “A03” as the root node has been determined. Since the actual measurement points directly associated with the subtree having the node “A02” as the root node are the actual measurement points 1 to 7, the actual size is 7, but the actual measurement points 1 to 7 are the configuration information. Also associated with tree 1132.
  • the subtree having the node “A02” as the root node is not in the first definite state. Since the configuration information tree 1132 is not divided at this point, the configuration information tree 1132 associated with the actual measurement points 1 to 7 is also associated with the actual measurement points 8 to 15, so that the second confirmation is made. It is not in a state. Further, the configuration information tree 1132 is not in the third finalized state. Since the actual measurement points directly associated with the subtree having the node “A03” as the root node are the actual measurement points 8 to 14, the actual size is 7, but the actual measurement points 8 to 14 are the configuration information. Also associated with tree 1132. For this reason, the subtree having the node “A03” as the root node is not in the first definite state.
  • the configuration information tree 1132 Since the configuration information tree 1132 is not divided at this point, the configuration information tree 1132 associated with the actual measurement points 8 to 14 is also associated with the actual measurement points 1 to 7 and 15, so that the second It is not in the final state. Further, the configuration information tree 1132 is not in the third finalized state. Therefore, the partial configuration information tree table is updated as shown in FIG. In the partial configuration information tree table of FIG. 39, the confirmation flag is “1” in the partial tree composed only of the root node “A01”, but the confirmation flag is “0” in the other partial trees.
  • the measurement value table design unit 121 selects the configuration information tree 1132 (S1301 in FIG. 19), and extracts nodes “B11” to “B13” that are child nodes of the root node “B01” (S1302). Then, the measurement value table design unit 121 subtracts 1 from the “level” of the nodes “B11” to “B44” in the temporary configuration information table (FIG. 34) of the configuration information tree 1132 (S1303). As a result, the temporary configuration information table of the configuration information tree 1132 is updated as shown in FIG.
  • the measurement value table design unit 121 updates the root node ID of the record in which “101” (the ID of the root node “B01”) is described in the root node ID column in the measurement point management information table (FIG. 38). (S1303). As a result, the measurement point management information table is updated as shown in FIG.
  • the measurement value table design unit 121 uses the subtree information having the node “B11” as the root node, the subtree information having the node “B12” as the root node, and the node “B13” as the root node.
  • the partial tree information is added to the partial configuration information tree table (FIG. 39) (S1307).
  • all subtrees are fixed. Since the unique number of actual measurement points associated with the subtree having the node “A02” as the root node and the subtree having the node “B11” as the root node is 7, the node “A02” is defined as the root node. And the subtree having the node “B11” as the root node corresponds to the second definite state.
  • Eight unique measurement points are associated with the subtree having the node “A03” as the root node, the subtree having the node “B12” as the root node, and the subtree having the node “B13” as the root node. Therefore, the subtree having the node “A03” as the root node, the subtree having the node “B12” as the root node, and the subtree having the node “B13” as the root node correspond to the second definite state. Therefore, the partial configuration information tree table is updated as shown in FIG. In the partial configuration information tree table of FIG. 42, the confirmation flag is “1” in all the partial trees.
  • the measurement value table design unit 121 updates the “partial configuration information tree group ID” field of the partial configuration information tree table. Specifically, the measurement value table design unit 121 updates the “partial configuration information tree group ID” field as shown in FIG.
  • the measurement value table design unit 121 performs S1103 to S1105 in FIG. 15. In this example, since all subtrees have been determined, the processing of S1103 to S1105 is omitted.
  • the measurement value table design unit 121 determines whether the actual measurement point is directly included in the virtual measurement point definition of the root node (S1106). Referring to the virtual measurement point definition tables in FIG. 31 and FIG. 32, all of the root nodes “A01”, “A02”, “A03”, “B01”, “B11”, “B12”, “B13” The actual measurement point is not directly included in the virtual measurement point definition (NO in S1106).
  • the measurement value table design unit 121 virtually transmits the information of the alternative measurement points for each of “A01”, “A02”, “A03”, “B01”, “B11”, “B12”, and “B13”. It adds to a measurement point definition table (S1108). Further, in this example, since the information of all the partial trees has already been registered in the partial configuration information tree management table, the process of S1109 is omitted. Since all subtrees have been determined (YES in S1110), the measurement value table design unit 121 performs the processes of S1111 to S1113. Since the processing of S1111 to S1113 is as described with reference to FIG. 16, the description thereof is omitted here.
  • the virtual measurement point definition table is updated as shown in FIGS. 45 and 46, and the measurement point management information table is updated as shown in FIG.
  • the alternative measurement point “% 1” is added in the virtual measurement point definition of the virtual measurement point ID: # 1, and the alternative measurement point flag is “1”.
  • alternative measurement points “% 2” and “% 3” are added to the virtual measurement point definitions of the virtual measurement point IDs: # 2 and # 3, and the alternative measurement point flag is “1”.
  • the alternative measurement points “% 4”, “% 5”, “%” in the virtual measurement point definitions of the virtual measurement point IDs: # 101, # 111, # 112, and # 113 6 ”and“% 7 ” are added, and the alternative measurement point flag is“ 1 ”.
  • the measurement point management information table of FIG. 47 records of measurement point IDs:% 1 to% 7 are added.
  • the alternative measurement point definition in the measurement point management information table is derived, for example, according to the procedure shown in FIG. FIG. 48 shows a procedure for deriving% 1 alternative measurement points. As shown in FIG.
  • a measurement data collection and storage unit that receives input of a plurality of measurement data measured by a measurement device, and a storage device for storing the measurement data, and a plurality of input measurement data defined in the storage device Stored in one of the measured value tables.
  • the measuring device is associated with configuration information having a plurality of hierarchies (tree structure).
  • a virtual measurement point definition for calculating the measurement data of the virtual measurement point depending on the hierarchical relationship of the configuration information is provided, based on the measurement data stored in the measurement value table and the virtual measurement point definition
  • a measurement data output unit that calculates and outputs measurement data of virtual measurement points is provided.
  • a measurement value table design unit is provided that divides the configuration information into subtrees based on the configuration information and the virtual measurement point definition.
  • the measurement value table design unit further associates measurement data associated with one or more subtrees of the configuration information with the measurement value table, and records the corresponding information as measurement value table design information.
  • a measurement value table definition unit that defines a plurality of tables in the storage device based on the measurement value table design information is provided.
  • the measurement data collection and accumulation unit determines a measurement value table for storing the measurement data based on the measurement data identifier and the measurement value table design information.
  • the configuration information is stored in the subtree so that the number of types of measurement data associated with the subtree of the configuration information is within the specifications of the database management system used for storing the measurement data.
  • the measurement value table design unit for recursively dividing has been described.
  • any one of the pieces of associated configuration information is selected and associated with one or a plurality of subtrees.
  • a measurement value table design unit that repeatedly divides the measurement data into subtrees until the number of measurement data falls within the range of the above specifications has been described.
  • the measurement value table design unit described below has been described.
  • A) The division of the configuration information into subtrees is performed by dividing the root node of the tree structure into a subtree whose new root is a child node of the root node.
  • B) The identifier of the alternative measurement point is newly assigned to the original root node, and the identifier and the calculation formula for calculating the measurement data of the virtual measurement point corresponding to the root node are used as the measurement value table design information.
  • the measurement value table design unit that stores the measurement device identifier or calculation formula for obtaining the measurement data in the measurement value table design information has been described.
  • the measurement data management apparatus 100 is a computer, and each element of the measurement data management apparatus 100 can be realized by a program.
  • an arithmetic device 1901, an external storage device 1902, a main storage device 1903, a communication device 1904, and an input / output device 1905 are connected to the bus.
  • the arithmetic device 1901 is a CPU (Central Processing Unit) that executes a program.
  • the external storage device 1902 is, for example, a ROM (Read Only Memory), a flash memory, or a hard disk device.
  • the main storage device 1903 is a RAM (Random Access Memory).
  • the communication device 1904 is, for example, a NIC (Network Interface Card).
  • the input / output device 1905 is, for example, a mouse, a keyboard, a display device, or the like.
  • the program is normally stored in the external storage device 1902, and is sequentially read into the arithmetic device 1901 and executed while being loaded in the main storage device 1903.
  • the program is a program that realizes the function described as “ ⁇ unit” (excluding the data storage unit, the same applies hereinafter) shown in FIG.
  • an operating system (OS) is also stored in the external storage device 1902. At least a part of the OS is loaded into the main storage device 1903, and the arithmetic unit 1901 executes “OS” while executing “OS” shown in FIG. ”Is executed.
  • Data, signal values, and variable values are stored in the main storage device 1903 as files.
  • the encryption key / decryption key, random number value, and parameter may be stored in the main storage device 1903 as a file.
  • the configuration in FIG. 44 is merely an example of the hardware configuration of the measurement data management device 100, and the hardware configuration of the measurement data management device 100 is not limited to the configuration described in FIG. There may be.
  • the data processing method according to the present invention can be realized by the procedure shown in the present embodiment.
  • 100 measurement data management device 110 virtual measurement point management unit, 111 virtual measurement point information input / output unit, 112 configuration information input / output unit, 120 measurement value table management unit, 121 measurement value table design unit, 122 measurement value table definition unit, 130 measurement data management unit, 131 measurement data collection storage unit, 132 virtual measurement data calculation unit, 133 measurement data output unit, 140 data storage unit, 141 virtual measurement point definition table, 142 configuration information table, 143 measurement value table design information, 144 measurement value table, 200 measurement data management system, 201 measurement device, 210 base device, 211 measurement data reception unit, 212 measurement data transmission unit, 219 base device storage unit, 220 operation terminal, 221 application execution unit, 229 operation terminal storage , 400 measurement data, 1200 measurement points management information table, 1210 partial configuration information tree management table.

Abstract

A measured value table design unit (121) which: divides tree structure data into a plurality of subtrees in a manner such that the number of measuring instruments associated with each subtree is equal to or less than a number of table storage instruments, which is the upper limit number of measuring instruments that can store measured values in a measured value table; determines whether the divided subtrees are in an established state; and allocates measured value tables to the subtrees that are in an established state, said measured value tables storing the measured values from the measuring instruments associated with the subtrees. The subtrees that are not in an established state are further divided into a plurality of subtrees.

Description

データ処理装置及びデータ処理方法及びプログラムData processing apparatus, data processing method, and program
 本発明は、計測機器(センサともいう)の計測結果を管理する技術に関する。 The present invention relates to a technique for managing measurement results of a measuring device (also referred to as a sensor).
 計測機器により計測された計測データを計測機器の配置、所属または用途などの様々な視点で集計する計測データ管理装置において、実際に計測機器が設置されている実計測点に対して、実際には計測機器が設置されていない仮想計測点を設ける方法が公開されている(例えば特許文献1)。
 実計測点は、実在の計測機器により計測される計測データと対応し、仮想計測点は実計測点の計測データの和または按分などを用いて算出される架空の計測データと対応する。
 また、時間経過単位、建物単位、場所単位、計測種別単位、用途単位などの管理区分に応じて実計測点の計測データを按分することによって、仮想計測点の計測データを求める方法が公開されている(例えば特許文献2)。
In a measurement data management device that aggregates measurement data measured by a measurement device from various viewpoints such as the arrangement, affiliation, or usage of the measurement device, the actual measurement point where the measurement device is actually installed is actually A method of providing a virtual measurement point where no measuring device is installed is disclosed (for example, Patent Document 1).
The actual measurement point corresponds to measurement data measured by an actual measurement device, and the virtual measurement point corresponds to fictitious measurement data calculated using the sum or apportionment of the measurement data of the actual measurement point.
In addition, a method for obtaining measurement data of virtual measurement points by distributing the measurement data of actual measurement points according to management categories such as time lapse units, building units, location units, measurement type units, and usage units has been released. (For example, Patent Document 2).
特許4640212号公報Japanese Patent No. 4640212 特開2006-185318号公報JP 2006-185318 A
 計測データは時間の経過に従って継続して到着する、同一時間帯に計測された計測データ同士が密に関連する場合も多い、という特性がある。
 そのため、計測データをデータベースのテーブルに格納する場合は、テーブルの各列に個々の計測値を対応付け、同一計測時刻の計測値を1レコードにまとめて格納するのが利用に便利である。
The measurement data has a characteristic that it arrives continuously with the passage of time, and the measurement data measured in the same time zone are often closely related.
Therefore, when storing measurement data in a database table, it is convenient to use it by associating individual measurement values with each column of the table and storing the measurement values at the same measurement time in one record.
 一方、近年の、計測機器の高性能化・低価格化、ネットワーク帯域の拡大、単位容量当たりのストレージ価格の低下等の技術的な背景を受けて、より多数の計測機器から、より短い収集周期で計測データを収集して、蓄積・保存することが可能となってきている。
 また、計測データの利用者からも、それらの計測データを活用するニーズが高まっている。
 例えば、電力消費量を収集・分析し省エネルギー対策の効果を高める施策を決定する、機械・設備の状態データを収集・分析して機械・設備の故障を未然に予防する予防保全、等のニーズがある。
 上記の様な背景もあって、計測データ管理装置の1システムで管理する計測データは増加して来ている。
On the other hand, in response to technical backgrounds such as high performance and low price of measurement equipment, expansion of network bandwidth, and reduction of storage price per unit capacity in recent years, a shorter collection cycle from a larger number of measurement equipment. It is now possible to collect measurement data and store / save it.
In addition, there is a growing need for users of measurement data to utilize such measurement data.
For example, there are needs such as collecting and analyzing power consumption and determining measures to enhance the effects of energy saving measures, and collecting and analyzing machine and equipment status data to prevent machine and equipment failures before they occur. is there.
Against the background described above, the measurement data managed by one system of the measurement data management apparatus is increasing.
 一般的なデータベース管理システムでは、1テーブルあたりに定義可能な列数は最大1,000程度である。
 そのため、計測機器から発生した、列数の上限をはるかに超える種類の計測データを管理する場合は、テーブルを列方向に分割し、計測データを複数のテーブルに分散して格納する必要が生じる。
 計測データを複数のテーブルに分散すると、上記従来技術の様な仮想計測点を利用した集計や、複数種類の計測データを利用する分析を行う場合に、複数のテーブルから計測データを読み出す場合が発生する。
 このため、単一のテーブルから計測データを読み出す場合と比較して、集計・分析に要する時間が増加するという課題がある。
 基本的に計測データを読み出すテーブルの数が増加するに従って、この時間も増加する。
 また、複数のテーブルから計測データを読み出す場合は、ユーザのアプリケーション側で、追加の集計処理などの後処理が必要になる場合もあり、アプリケーションの開発負荷も高くなるという課題もある。
In a general database management system, the maximum number of columns that can be defined per table is about 1,000.
For this reason, when managing measurement data of a type far exceeding the upper limit of the number of columns generated from the measuring device, it is necessary to divide the table in the column direction and store the measurement data in a plurality of tables.
When measurement data is distributed to multiple tables, the measurement data may be read from multiple tables when performing aggregation using virtual measurement points or analysis using multiple types of measurement data. To do.
For this reason, there is a problem that the time required for aggregation / analysis increases as compared with the case of reading measurement data from a single table.
Basically, this time increases as the number of tables from which measurement data is read increases.
In addition, when measuring data is read from a plurality of tables, post-processing such as additional tabulation processing may be necessary on the user's application side, and there is a problem that the development load of the application increases.
 この発明は、上記のような課題を解決することを主な目的としており、計測機器の数が多く、複数のテーブルに分散して計測値を格納する場合に、効率的に集計及び分析が行えるように計測値の格納先のテーブルを決定することを主な目的とする。 The main object of the present invention is to solve the above-described problems, and when the measurement values are distributed in a plurality of tables and stored in a plurality of tables, the aggregation and analysis can be efficiently performed. Thus, the main purpose is to determine a table for storing measurement values.
 本発明に係るデータ処理装置は、
 計測機器と関連付けられている木構造データを管理するデータ処理装置であって、
 各部分木データに関連付けられている計測機器の数が計測値テーブルで計測値を格納できる計測機器の上限数であるテーブル格納機器数以下となるように、前記木構造データを複数の部分木データに分割するデータ分割部と、
 前記データ分割部により分割された部分木データが確定状態にあるか否かを判断する状態判断部と、
 前記状態判断部により確定状態にあると判断された部分木データに対して、当該部分木データに関連付けられている計測機器からの計測値を格納する計測値テーブルを割り当てるテーブル割り当て部とを有し、
 前記状態判断部は、
 1つの部分木データに関連付けられている計測機器が他のいずれの部分木データにも関連付けられておらず、当該1つの部分木データに関連付けられている計測機器の数が前記テーブル格納機器数以下である場合に、当該1つの部分木データが第1の確定状態にあると判断し、
 1つの部分木データに関連付けられている計測機器のうちの少なくとも1つの計測機器が重複して他の部分木データにも関連付けられ、当該1つの部分木データに関連付けられている計測機器の数と当該他の部分木データに関連付けられている計測機器の数との重複を除去した合計数が前記テーブル格納機器数以下である場合に、当該1つの部分木データと当該他の部分木データとが第2の確定状態にあると判断し、
 第1の確定状態及び第2の確定状態のいずれにもないと判断した部分木データを前記データ分割部に更に複数の部分木データに分割させることを特徴とする。
The data processing apparatus according to the present invention
A data processing device for managing tree structure data associated with a measuring device,
The tree structure data is converted into a plurality of subtree data so that the number of measuring devices associated with each subtree data is equal to or less than the number of table storage devices that is the upper limit number of measuring devices that can store measurement values in the measurement value table. A data dividing unit that divides the data into
A state determination unit that determines whether the subtree data divided by the data division unit is in a definite state;
A table allocating unit for allocating a measurement value table for storing measurement values from a measuring device associated with the partial tree data, with respect to the partial tree data determined to be in a finalized state by the state determination unit; ,
The state determination unit
A measuring device associated with one subtree data is not associated with any other subtree data, and the number of measuring devices associated with the one subtree data is equal to or less than the number of table storage devices. Is determined that the one subtree data is in the first definite state,
At least one measuring device among measuring devices associated with one subtree data is duplicated and associated with other subtree data, and the number of measuring devices associated with the one subtree data When the total number obtained by eliminating duplication with the number of measuring devices associated with the other subtree data is equal to or less than the number of table storage devices, the one subtree data and the other subtree data are It is determined to be in the second final state,
The partial tree data determined not to be in either the first finalized state or the second finalized state is further divided into a plurality of partial tree data by the data dividing unit.
 本発明によれば、部分木データが第1の確定状態又は第2の確定状態にあるかどうかを判断しながら部分木データの分割を行うため、同時に集計及び分析に利用する計測値を可能な限り同一の計測値テーブルに対応付けることができ、効率的に集計及び分析を行うことができる。 According to the present invention, since the subtree data is divided while determining whether the subtree data is in the first definite state or the second definite state, the measurement values used for aggregation and analysis can be simultaneously performed. As long as they can be associated with the same measurement value table, it is possible to efficiently perform aggregation and analysis.
実施の形態1に係る計測データ管理装置の構成例を示す図。FIG. 3 is a diagram illustrating a configuration example of a measurement data management device according to the first embodiment. 実施の形態1に係る計測データ管理システムの構成例を示す図。1 is a diagram illustrating a configuration example of a measurement data management system according to Embodiment 1. FIG. 実施の形態1に係る計測データ管理システムの構成例を示す図。1 is a diagram illustrating a configuration example of a measurement data management system according to Embodiment 1. FIG. 実施の形態1に係る計測データのフォーマット例を示す図。FIG. 4 is a diagram illustrating a format example of measurement data according to the first embodiment. 実施の形態1に係る計測値テーブルの例を示す図。FIG. 4 is a diagram illustrating an example of a measurement value table according to the first embodiment. 実施の形態1に係る構成情報の例を示す図。FIG. 4 is a diagram showing an example of configuration information according to Embodiment 1. 実施の形態1に係る構成情報の例を示す図。FIG. 4 is a diagram showing an example of configuration information according to Embodiment 1. 実施の形態1に係る構成情報の例を示す図。FIG. 4 is a diagram showing an example of configuration information according to Embodiment 1. 実施の形態1に係る構成情報木と仮想計測点情報と実計測点と計測値テーブルとの関係を示す図。The figure which shows the relationship between the structure information tree which concerns on Embodiment 1, virtual measurement point information, a real measurement point, and a measured value table. 実施の形態1に係る構成情報テーブルの例を示す図。FIG. 3 is a diagram illustrating an example of a configuration information table according to the first embodiment. 実施の形態1に係るグループ名称テーブル及びレベル名称テーブルの例を示す図。The figure which shows the example of the group name table and level name table which concern on Embodiment 1. FIG. 実施の形態1に係る仮想計測点定義テーブルの例を示す図。FIG. 4 shows an example of a virtual measurement point definition table according to the first embodiment. 実施の形態1に係る計測値テーブル設計情報の例を示す図。FIG. 4 is a diagram showing an example of measurement value table design information according to the first embodiment. 実施の形態1に係る代替計測点定義テーブルの例を示す図。FIG. 5 is a diagram showing an example of an alternative measurement point definition table according to the first embodiment. 実施の形態1に係る計測値テーブル設計情報の生成手順を示すフローチャート図。FIG. 4 is a flowchart showing a procedure for generating measurement value table design information according to the first embodiment. 実施の形態1に係る計測値テーブル設計情報の生成手順を示すフローチャート図。FIG. 4 is a flowchart showing a procedure for generating measurement value table design information according to the first embodiment. 実施の形態1に係る計測点管理情報テーブルの例を示す図。FIG. 4 is a diagram showing an example of a measurement point management information table according to the first embodiment. 実施の形態1に係る部分構成情報木管理テーブルの例を示す図。FIG. 6 is a diagram showing an example of a partial configuration information tree management table according to the first embodiment. 実施の形態1に係る部分構成情報木を部分木に分割する手順を示すフローチャート図。The flowchart figure which shows the procedure which divides | segments the partial structure information tree which concerns on Embodiment 1 into a partial tree. 実施の形態1に係る計測データ管理装置の運用準備段階を示す図。The figure which shows the operation preparation stage of the measurement data management apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る計測データ管理装置の計測データの収集及び蓄積段階を示す図。The figure which shows the collection and accumulation | storage stage of the measurement data of the measurement data management apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る計測データ管理装置の計測データの読み出し及び集計段階を示す図。The figure which shows the read-out and totaling step of measurement data of the measurement data management apparatus which concerns on Embodiment 1. FIG. 実施の形態1に係る第1の確定状態の例を示す図。FIG. 6 shows an example of a first confirmed state according to the first embodiment. 実施の形態1に係る第2の確定状態の例を示す図。FIG. 6 is a diagram showing an example of a second confirmed state according to the first embodiment. 実施の形態1に係る第3の確定状態の例を示す図。FIG. 10 shows an example of a third finalized state according to the first embodiment. 実施の形態1に係る構成情報木の例を示す図。FIG. 3 is a diagram illustrating an example of a configuration information tree according to the first embodiment. 実施の形態1に係る構成情報テーブルの例を示す図。FIG. 3 is a diagram illustrating an example of a configuration information table according to the first embodiment. 実施の形態1に係る構成情報木の例を示す図。FIG. 3 is a diagram illustrating an example of a configuration information tree according to the first embodiment. 実施の形態1に係る構成情報テーブルの例を示す図。FIG. 3 is a diagram illustrating an example of a configuration information table according to the first embodiment. 実施の形態1に係る構成情報木と実計測点との関係を示す図。The figure which shows the relationship between the structure information tree which concerns on Embodiment 1, and an actual measurement point. 実施の形態1に係る仮想計測点定義テーブルの例を示す図。FIG. 4 shows an example of a virtual measurement point definition table according to the first embodiment. 実施の形態1に係る仮想計測点定義テーブルの例を示す図。FIG. 4 shows an example of a virtual measurement point definition table according to the first embodiment. 実施の形態1に係る一時構成情報テーブルの例を示す図。FIG. 4 is a diagram illustrating an example of a temporary configuration information table according to the first embodiment. 実施の形態1に係る一時構成情報テーブルの例を示す図。FIG. 4 is a diagram illustrating an example of a temporary configuration information table according to the first embodiment. 実施の形態1に係る計測点管理情報テーブルの例を示す図。FIG. 4 is a diagram showing an example of a measurement point management information table according to the first embodiment. 実施の形態1に係る部分構成情報木テーブルの例を示す図。FIG. 5 is a diagram showing an example of a partial configuration information tree table according to the first embodiment. 実施の形態1に係る一時構成情報テーブルの更新例を示す図。The figure which shows the example of an update of the temporary structure information table which concerns on Embodiment 1. FIG. 実施の形態1に係る計測点管理情報テーブルの更新例を示す図。The figure which shows the example of an update of the measurement point management information table which concerns on Embodiment 1. FIG. 実施の形態1に係る部分構成情報木テーブルの更新例を示す図。The figure which shows the example of an update of the partial structure information tree table which concerns on Embodiment 1. FIG. 実施の形態1に係る一時構成情報テーブルの更新例を示す図。The figure which shows the example of an update of the temporary structure information table which concerns on Embodiment 1. FIG. 実施の形態1に係る計測点管理情報テーブルの更新例を示す図。The figure which shows the example of an update of the measurement point management information table which concerns on Embodiment 1. FIG. 実施の形態1に係る部分構成情報木テーブルの更新例を示す図。The figure which shows the example of an update of the partial structure information tree table which concerns on Embodiment 1. FIG. 実施の形態1に係る部分構成情報木テーブルの更新例を示す図。The figure which shows the example of an update of the partial structure information tree table which concerns on Embodiment 1. FIG. 実施の形態1に係る計測データ管理装置のハードウェア構成例を示す図。FIG. 3 is a diagram illustrating a hardware configuration example of a measurement data management device according to the first embodiment. 実施の形態1に係る仮想計測点定義テーブルの更新例を示す図。The figure which shows the example of an update of the virtual measurement point definition table which concerns on Embodiment 1. FIG. 実施の形態1に係る仮想計測点定義テーブルの更新例を示す図。The figure which shows the example of an update of the virtual measurement point definition table which concerns on Embodiment 1. FIG. 実施の形態1に係る計測点管理情報テーブルの更新例を示す図。The figure which shows the example of an update of the measurement point management information table which concerns on Embodiment 1. FIG. 実施の形態1に係る代替点計測点定義の導出手順を示す図。FIG. 6 is a diagram showing a procedure for deriving an alternative point measurement point definition according to the first embodiment.
 実施の形態1.
 本実施の形態では、計測機器の数が多く、計測データの種類がデータベース管理システムの1テーブルの最大列数よりもはるかに多い場合に、同時に集計及び分析に利用する計測データを可能な限り同一のテーブルに対応付けることにより、集計実行時の実行時間及び分析実行時の実行時間の増加を抑止し、ユーザのアプリケーション開発負荷を削減することができる計測データ管理装置を説明する。
Embodiment 1 FIG.
In the present embodiment, when the number of measurement devices is large and the number of types of measurement data is much larger than the maximum number of columns in one table of the database management system, the measurement data used for simultaneous counting and analysis is as much as possible. A measurement data management apparatus that can suppress an increase in execution time at the time of execution of aggregation and execution time at the time of execution of analysis and reduce a user's application development load by associating with the above table will be described.
 本実施の形態に係る計測データ管理装置100は、図1に例示する構成を有する。
 なお、図1に示す計測データ管理装置100の構成要素の各々の詳細は、後述する。
 計測データ管理装置100は、データ処理装置の例に相当する。
The measurement data management apparatus 100 according to the present embodiment has a configuration illustrated in FIG.
Details of each component of the measurement data management apparatus 100 shown in FIG. 1 will be described later.
The measurement data management device 100 corresponds to an example of a data processing device.
 また、本実施の形態に係る計測データ管理装置100は、図2、図3に示すように、計測機器201、拠点装置210、操作端末220とともに、計測データ管理システム200を構成する。
 なお、図2、図3に示す計測機器201、拠点装置210、操作端末220の詳細は、後述する。
Further, as shown in FIGS. 2 and 3, the measurement data management apparatus 100 according to the present embodiment constitutes a measurement data management system 200 together with the measurement device 201, the base apparatus 210, and the operation terminal 220.
Details of the measuring device 201, the base device 210, and the operation terminal 220 shown in FIGS. 2 and 3 will be described later.
 本実施の形態に係る計測データ管理装置100の構成及び動作の詳細を説明する前に、先ず、計測データ管理装置の動作の概要を説明する。 Before describing details of the configuration and operation of the measurement data management apparatus 100 according to the present embodiment, first, an outline of the operation of the measurement data management apparatus will be described.
 計測データ管理装置100の動作は、以下の3種類の過程に分かれる。
 (1)運用準備
 (2)計測データの収集及び蓄積
 (3)計測データの読み出し及び集計
The operation of the measurement data management apparatus 100 is divided into the following three types of processes.
(1) Preparation for operation (2) Collection and accumulation of measurement data (3) Reading and aggregation of measurement data
(1)運用準備
 運用準備段階では、センサデータの収集及び蓄積や、読み出し及び集計等の実運用の開始に先立ち、準備として以下の処理が実行される(図20)。
 ユーザが仮想計測点情報入出力部111を用いて、仮想計測点定義テーブル141を計測データ管理装置100に設定する(S11)。
 ユーザが構成情報入出力部112を用いて、構成情報テーブル142を計測データ管理装置100に設定する(S12)。
 計測値テーブル設計部121が、仮想計測点定義テーブル141及び構成情報テーブル142に基づき、計測値テーブル設計情報143を生成する(S13)。
 この時、計測値テーブル設計部121は、必要に応じて仮想計測点定義テーブル141に代替計測点の情報を記述する。
 代替計測点は後述する。
 このステップS13により、実計測点と計測値テーブル144(複数)の列との対応関係が決定される。
 計測値テーブル定義部122が、計測値テーブル設計情報143に基づき、計測値テーブルを生成(CREATE)する(S14)。
 なお、本実施の形態では、主に、S13の処理を説明する。
(1) Operation preparation In the operation preparation stage, the following processing is executed as preparation prior to the start of actual operation such as collection and accumulation of sensor data, reading and aggregation (FIG. 20).
The user sets the virtual measurement point definition table 141 in the measurement data management device 100 using the virtual measurement point information input / output unit 111 (S11).
The user sets the configuration information table 142 in the measurement data management apparatus 100 using the configuration information input / output unit 112 (S12).
The measurement value table design unit 121 generates measurement value table design information 143 based on the virtual measurement point definition table 141 and the configuration information table 142 (S13).
At this time, the measurement value table design unit 121 describes information on alternative measurement points in the virtual measurement point definition table 141 as necessary.
The alternative measurement points will be described later.
By this step S13, the correspondence between the actual measurement points and the columns of the measurement value table 144 (plurality) is determined.
The measurement value table definition unit 122 generates (CREATE) the measurement value table based on the measurement value table design information 143 (S14).
In the present embodiment, the process of S13 will be mainly described.
(2)計測データの収集及び蓄積
 通常運用が開始されると、各実計測点に対応した計測機器から計測データが収集され、計測値が計測値テーブル144に蓄積される。
 計測データの収集及び蓄積では、具体的には以下の処理が実行される(図21)。
 各計測機器201において、繰り返し(多くの場合定期的に)データが計測される(S21)。
 計測データは、拠点装置210を介して計測データ管理装置100に収集される。
 収集された計測データは、計測データ管理装置100の計測データ収集蓄積部131に書き込まれる(S22)。
 計測データ収集蓄積部131は、計測値テーブル設計情報143に基づき、計測値の格納先の計測値テーブル144と列を決定し、該当する列に計測データの計測値を書き込む(S23)。
 また、計測データの実計測点IDに関連する代替計測点が定義されている場合は、該当する列に計測データが書き込まれる。
 代替計測点は後述する。
(2) Collection and Accumulation of Measurement Data When normal operation is started, measurement data is collected from measurement equipment corresponding to each actual measurement point, and measurement values are accumulated in the measurement value table 144.
In the collection and accumulation of measurement data, specifically, the following processing is executed (FIG. 21).
In each measuring device 201, data is measured repeatedly (in many cases periodically) (S21).
The measurement data is collected by the measurement data management device 100 via the base device 210.
The collected measurement data is written in the measurement data collection / storage unit 131 of the measurement data management apparatus 100 (S22).
Based on the measurement value table design information 143, the measurement data collection / accumulation unit 131 determines the measurement value table 144 and the column where the measurement values are stored, and writes the measurement value of the measurement data in the corresponding column (S23).
Further, when an alternative measurement point related to the actual measurement point ID of the measurement data is defined, the measurement data is written in the corresponding column.
The alternative measurement points will be described later.
(3)計測データの読み出し及び集計
 通常運用が開始され、計測データの計測値が計測値テーブル144に蓄積されると、必要に応じて計測データの読み出し及び集計が行われ、計測データ管理装置100のユーザが、計測データを利用する。
 計測データの読み出し及び集計では、具体的には以下の処理が実行される(図22)。
 ユーザが、仮想計測点名称や計測データの計測時刻の期間を指定して、操作端末220から、計測データ管理装置100に対して、計測データの読み出しを要求する(S31)。
 仮想計測データ演算部132は、指定された仮想計測点名称から、ユーザが所望する計測データを得るための実計測点のリストを、仮想計測点定義テーブル141に基づき取得する(S32)。
 この時、ある仮想計測点に対して、代替計測点が定義されており、その代替計測点と他の実計測点の計測データが同一テーブルに割り付いている場合は、仮想計測データ演算部132は、代替計測点に対応する列から計測データを読み出す(S32)。
 そして、仮想計測データ演算部132は、仮想計測点定義に従って算出した計測データを操作端末220に出力する(S33)。
(3) Reading and totaling of measurement data When normal operation is started and the measurement values of the measurement data are accumulated in the measurement value table 144, the measurement data is read and totaled as necessary, and the measurement data management apparatus 100 Users use measurement data.
Specifically, the following processing is executed in reading and tabulating measurement data (FIG. 22).
The user designates the virtual measurement point name and the measurement time period of the measurement data, and requests the measurement data management device 100 to read the measurement data from the operation terminal 220 (S31).
The virtual measurement data calculation unit 132 acquires a list of actual measurement points for obtaining measurement data desired by the user from the designated virtual measurement point name based on the virtual measurement point definition table 141 (S32).
At this time, if an alternative measurement point is defined for a certain virtual measurement point and the measurement data of the alternative measurement point and other actual measurement points are assigned to the same table, the virtual measurement data calculation unit 132 is used. Reads out the measurement data from the column corresponding to the alternative measurement point (S32).
Then, the virtual measurement data calculation unit 132 outputs the measurement data calculated according to the virtual measurement point definition to the operation terminal 220 (S33).
 なお、計測値テーブル設計部121は、データ分割部、状態判断部、テーブル割り当て部及び代替計測点設定部の例に相当する。
 また、計測データ収集蓄積部131は、代替計測点計算部の例に相当する。
The measurement value table design unit 121 corresponds to an example of a data division unit, a state determination unit, a table allocation unit, and an alternative measurement point setting unit.
The measurement data collection / storage unit 131 corresponds to an example of an alternative measurement point calculation unit.
 次に、(1)運用準備(図20のS13)を、より詳細に説明する。 Next, (1) Operation preparation (S13 in FIG. 20) will be described in more detail.
 本実施の形態に係る計測データ管理装置100は、図9に例示するような、木構造データである構成情報木700及び構成情報木710を管理している。
 また、計測データ管理装置100は、計測値テーブル144を管理している。
 計測値テーブル144には、複数の計測機器201で計測された計測値が格納されている。
 構成情報木700及び構成情報木710は、それぞれ、複数のノードによる階層構造を持つ。
 各ノードは、計測値の集計の単位となる。
 各ノードには、集計の計算のための計算式が定義されており、その計算式には、0個以上の実計測点と0個以上の仮想計測点が含まれる。
 実計測点は、計測値テーブル144の計測値に直接関連付けられている識別子であり、仮想計測点は、実計測点に直接又は他の仮想計測点を介して間接に関連付けられている識別子である。
 つまり、各ノードは、実計測点及び仮想計測点を介して、計測機器と関連付けられている。
 図9では、721、722、723が仮想計測点であり、731、732、733が実計測点である。
 計測値テーブル144の列数、すなわち、計測値テーブル144で計測値を格納できる計測機器の数(テーブル格納機器数)は有限であり、実計測点の数(すなわち、計測機器の数)が計測値テーブル144の列数を超える場合がある。
 実計測点の数が計測値テーブル144の列数を超える場合には、複数の計測値テーブル144を用いる必要がある。
 本実施の形態に係る計測データ管理装置100は、計測値を複数の計測値テーブル144のうちのどの計測値テーブル144に格納するのかを決定する。
The measurement data management apparatus 100 according to the present embodiment manages a configuration information tree 700 and a configuration information tree 710 that are tree structure data as illustrated in FIG.
Further, the measurement data management apparatus 100 manages the measurement value table 144.
In the measurement value table 144, measurement values measured by a plurality of measurement devices 201 are stored.
Each of the configuration information tree 700 and the configuration information tree 710 has a hierarchical structure with a plurality of nodes.
Each node is a unit of measurement value aggregation.
Each node defines a calculation formula for calculation of aggregation, and the calculation formula includes zero or more actual measurement points and zero or more virtual measurement points.
The actual measurement point is an identifier that is directly associated with the measurement value in the measurement value table 144, and the virtual measurement point is an identifier that is directly associated with the actual measurement point or indirectly through another virtual measurement point. .
That is, each node is associated with the measurement device via the actual measurement point and the virtual measurement point.
In FIG. 9, 721, 722, and 723 are virtual measurement points, and 731, 732, and 733 are actual measurement points.
The number of columns in the measurement value table 144, that is, the number of measurement devices that can store measurement values in the measurement value table 144 (the number of table storage devices) is finite, and the number of actual measurement points (that is, the number of measurement devices) is measured. The number of columns in the value table 144 may be exceeded.
When the number of actual measurement points exceeds the number of columns in the measurement value table 144, it is necessary to use a plurality of measurement value tables 144.
The measurement data management apparatus 100 according to the present embodiment determines which measurement value table 144 of the plurality of measurement value tables 144 stores the measurement value.
 本実施の形態に係る計測データ管理装置100では、計測値テーブル設計部121が、部分構成情報木(部分木データ又は部分木ともいう)に関連付けられている計測機器の数が計測値テーブル214の列数以下となるように、構成情報木700及び構成情報木710をそれぞれ複数の部分構成情報木に分割する。
 例えば、構成情報木700については、計測値テーブル設計部121は、ノード701のみの部分構成情報木と、ノード702aを根ノードとする部分構成情報木と、702bを根ノードとする部分構成情報木に分割する。
 ノード702aの部分構成情報木に関連付けられている計測機器の数が計測値テーブル214の列数以下であれば、この部分構成情報木の更なる分割は行わない。
 一方、ノード702bの部分構成情報木に関連付けられている計測機器の数が計測値テーブル214の列数を超えている場合は、この部分構成情報木を、例えば、ノード702bのみの部分木と、ノード703aを根ノードとする部分構成情報木と、ノード703bを根ノードとする部分構成情報木とに分割する。
 全ての部分構成情報木に関連付けられている計測機器の数が計測値テーブル214の列数以下となったら、計測値テーブル設計部121は、各部分構成情報木が確定状態にあるか否かを判断する。
 そして、計測値テーブル設計部121は、確定状態にある部分構成情報木に対して、当該部分構成情報木に関連付けられている計測機器からの計測値を格納する計測値テーブルを割り当てる。
 確定状態にない部分構成情報木に対しては、計測値テーブル設計部121は、当該部分構成情報木を更に複数の部分構成情報木に分割する。
In the measurement data management apparatus 100 according to the present embodiment, the measurement value table design unit 121 has the number of measurement devices associated with the partial configuration information tree (also referred to as partial tree data or partial tree) in the measurement value table 214. The configuration information tree 700 and the configuration information tree 710 are each divided into a plurality of partial configuration information trees so that the number of columns is less than or equal to the number of columns.
For example, for the configuration information tree 700, the measurement value table design unit 121 includes a partial configuration information tree having only the node 701, a partial configuration information tree having the node 702a as a root node, and a partial configuration information tree having 702b as a root node. Divide into
If the number of measuring devices associated with the partial configuration information tree of the node 702a is less than or equal to the number of columns in the measurement value table 214, the partial configuration information tree is not further divided.
On the other hand, when the number of measuring devices associated with the partial configuration information tree of the node 702b exceeds the number of columns of the measurement value table 214, the partial configuration information tree is, for example, a partial tree of only the node 702b, The node is divided into a partial configuration information tree having the node 703a as a root node and a partial configuration information tree having the node 703b as a root node.
When the number of measurement devices associated with all the partial configuration information trees is equal to or less than the number of columns in the measurement value table 214, the measurement value table design unit 121 determines whether or not each partial configuration information tree is in a definite state. to decide.
Then, the measurement value table design unit 121 assigns a measurement value table that stores measurement values from the measuring device associated with the partial configuration information tree to the partial configuration information tree in the finalized state.
For a partial configuration information tree that is not in a fixed state, the measurement value table design unit 121 further divides the partial configuration information tree into a plurality of partial configuration information trees.
 本実施の形態では、2種類の確定状態がある。
 計測値テーブル設計部121は、1つの部分木に関連付けられている計測機器が他のいずれの部分木にも関連付けられておらず、当該1つの部分木に関連付けられている計測機器の数が計測値テーブルの列数以下である場合に、当該1つの部分木が第1の確定状態にあると判断する。
 また、計測値テーブル設計部121は、1つの部分木に関連付けられている計測機器のうちの少なくとも1つの計測機器が重複して他の部分木にも関連付けられ、当該1つの部分木に関連付けられている計測機器の数と当該他の部分木に関連付けられている計測機器の数との重複を除去した合計数(ユニークな合計数)が計測値テーブルの列数以下である場合に、当該1つの部分木と当該他の部分木とが第2の確定状態にあると判断する。
In the present embodiment, there are two types of confirmed states.
The measurement value table design unit 121 measures the number of measurement devices associated with one partial tree, while the measurement device associated with one partial tree is not associated with any other partial tree. When the number of columns of the value table is less than or equal to, it is determined that the one subtree is in the first definite state.
The measurement value table design unit 121 also associates at least one measurement device among the measurement devices associated with one subtree in duplicate with each other, and is associated with the one subtree. When the total number (unique total number) obtained by removing the overlap between the number of measuring devices and the number of measuring devices associated with the other subtree is equal to or less than the number of columns in the measurement value table, It is determined that one subtree and the other subtree are in the second definite state.
 図23の部分木1101、1102は、第1の確定状態にある。
 部分木1101に関連付いている実計測点1~5は、部分木1101にのみ関連付いており、また、計測値テーブルの列数8以下である。
 同様に、部分木1102に関連付いている実計測点6~11は、部分木1102にのみ関連付いており、また、計測値テーブルの列数8以下である。
 このため、図23の部分木1101、1102は、第1の確定状態にある。
The subtrees 1101 and 1102 in FIG. 23 are in the first finalized state.
The actual measurement points 1 to 5 related to the subtree 1101 are related only to the subtree 1101 and the number of columns in the measurement value table is 8 or less.
Similarly, the actual measurement points 6 to 11 related to the subtree 1102 are related only to the subtree 1102 and the number of columns in the measurement value table is 8 or less.
Therefore, the subtrees 1101 and 1102 in FIG. 23 are in the first confirmed state.
 図24の部分木1111、1112は、第2の確定状態にある。
 部分木1111に関連付いている実計測点は1~6であり、部分木1112に関連付いている実計測点は、2~7である。
 実計測点2~6は部分木1111と部分木1112の双方に関連付いているので、この重複を除去してカウントすると、部分木1111に関連付いている実計測点の数と部分木1112に関連付いている実計測点の数の合計数は、実計測点1~7の7つである。
 7つの実計測点数は、計測値テーブルの列数8以下である。
 このため、図24の部分木1111、1112は、第2の確定状態にある。
The subtrees 1111 and 1112 in FIG. 24 are in the second finalized state.
The actual measurement points associated with the subtree 1111 are 1 to 6, and the actual measurement points associated with the subtree 1112 are 2 to 7.
Since the actual measurement points 2 to 6 are associated with both the subtree 1111 and the subtree 1112, when this overlap is removed and counted, the number of actual measurement points associated with the subtree 1111 and the subtree 1112 are counted. The total number of related actual measurement points is seven, that is, actual measurement points 1 to 7.
The seven actual measurement points are 8 or less in the number of columns in the measurement value table.
For this reason, the subtrees 1111 and 1112 in FIG. 24 are in the second finalized state.
 また、本実施の形態に係る計測値テーブル設計部121は、根ノード(図23のノードR)の計算式に1つの実計測点以外の計測点が含まれる場合(2つ以上の実計測点が含まれる場合、実計測点と仮想計測点との組合せが含まれる場合、仮想計測点のみが含まれる場合)に、根ノードに代替計測点を関連付ける。
 代替計測点は、ユーザからの集計指示がある前に計測値の集計のための計算を予め行っておくことが必要である旨を示す識別子である。
 また、根ノード(図23のノードR)の計算式に仮想計測点が含まれる場合(実計測点と仮想計測点との組合せが含まれる場合、仮想計測点のみが含まれる場合)に、計測値テーブル設計部121は、当該仮想計測点が直接又は間接に関連付いている実計測点を用いて、実計測点のみが含まれ、根ノードに定義されている計算式と同じ計算結果が得られる代替計算式を生成し、代替計算式を代替計測点に関連付ける。
 そして、計測データ収集蓄積部131は、代替計測点が関連付けられている根ノードに対して、当該根ノードについての集計指示がある前に計測値の集計のための計算を予め行い、計算結果を代替計測点に関連付けておく。
 このようにすることで、ユーザから根ノードについての集計指示があった時点では集計値が計算済みであるため、遅延なくユーザに集計値を提示することができる。
Further, the measurement value table design unit 121 according to the present embodiment (when two or more actual measurement points are included) in the calculation formula of the root node (node R in FIG. 23) includes a measurement point other than one actual measurement point. Is included, when a combination of a real measurement point and a virtual measurement point is included, or when only a virtual measurement point is included), an alternative measurement point is associated with the root node.
The alternative measurement point is an identifier indicating that it is necessary to perform a calculation for counting of measurement values in advance before receiving a counting instruction from the user.
Measurement is also performed when a virtual measurement point is included in the calculation formula of the root node (node R in FIG. 23) (when a combination of an actual measurement point and a virtual measurement point is included, only a virtual measurement point is included). The value table design unit 121 uses the actual measurement point to which the virtual measurement point is directly or indirectly related, and includes only the actual measurement point, and obtains the same calculation result as the calculation formula defined in the root node. The alternative calculation formula is generated and the alternative calculation formula is associated with the alternative measurement point.
Then, the measurement data collection and accumulation unit 131 pre-calculates a measurement value for the root node associated with the alternative measurement point before receiving an aggregation instruction for the root node. Associating with an alternative measurement point.
By doing in this way, since the total value has been calculated at the time when the total instruction for the root node is received from the user, the total value can be presented to the user without delay.
 以上の概要説明をもとに、本実施の形態に係る計測データ管理装置100の構成及び動作の詳細を説明する。 Based on the above description of the outline, details of the configuration and operation of the measurement data management apparatus 100 according to the present embodiment will be described.
 図1は、実施の形態1における計測データ管理装置100の機能構成図である。
 実施の形態1における計測データ管理装置100の機能構成について、図1に基づいて説明する。
FIG. 1 is a functional configuration diagram of a measurement data management apparatus 100 according to the first embodiment.
A functional configuration of the measurement data management apparatus 100 according to Embodiment 1 will be described with reference to FIG.
 計測データ管理装置100は、各種の計測データを管理するコンピュータ装置である。
 計測データ管理装置100は、大きくは、仮想計測点管理部110、計測値テーブル管理部120、計測データ管理部130、データ記憶部140を備える。
The measurement data management device 100 is a computer device that manages various measurement data.
The measurement data management apparatus 100 generally includes a virtual measurement point management unit 110, a measurement value table management unit 120, a measurement data management unit 130, and a data storage unit 140.
 仮想計測点管理部110は、仮想計測点情報入出力部111と構成情報入出力部112とを備える。
 仮想計測点情報入出力部111は、ユーザからの仮想計測点情報の入力を受け付け、仮想計測点定義テーブル141に仮想計測点情報を格納する。
 構成情報入出力部112は、ユーザからの構成情報の入力を受け付け、データ記憶部140の構成情報テーブル142に構成情報を格納する。
 また、仮想計測点情報入出力部111は、ユーザからの要求に従って、仮想計測点情報を仮想計測点定義テーブル141から読み出し、読み出した仮想計測点情報を出力する。
 また、構成情報入出力部112は、ユーザからの要求に従って、構成情報を構成情報テーブル142から読み出し、読み出した構成情報を出力する。
 これらの仮想計測点情報、構成情報、仮想計測点定義テーブル141、構成情報テーブル142については後述する。
The virtual measurement point management unit 110 includes a virtual measurement point information input / output unit 111 and a configuration information input / output unit 112.
The virtual measurement point information input / output unit 111 receives input of virtual measurement point information from the user, and stores the virtual measurement point information in the virtual measurement point definition table 141.
The configuration information input / output unit 112 receives input of configuration information from the user and stores the configuration information in the configuration information table 142 of the data storage unit 140.
Further, the virtual measurement point information input / output unit 111 reads virtual measurement point information from the virtual measurement point definition table 141 in accordance with a request from the user, and outputs the read virtual measurement point information.
Further, the configuration information input / output unit 112 reads the configuration information from the configuration information table 142 in accordance with a request from the user, and outputs the read configuration information.
The virtual measurement point information, the configuration information, the virtual measurement point definition table 141, and the configuration information table 142 will be described later.
 計測値テーブル管理部120は、計測値テーブル設計部121と計測値テーブル定義部122を備える。
 計測値テーブル設計部121は、仮想計測点定義テーブル141、構成情報テーブル142に記録された情報に基づき、計測値テーブル144の設計情報を生成し、生成した設計情報を計測値テーブル設計情報143として記録する。
 また、計測値テーブル定義部122は、計測値テーブル設計情報143に基づき、実際に計測値テーブル144を生成する。
The measurement value table management unit 120 includes a measurement value table design unit 121 and a measurement value table definition unit 122.
The measurement value table design unit 121 generates design information of the measurement value table 144 based on information recorded in the virtual measurement point definition table 141 and the configuration information table 142, and the generated design information is used as measurement value table design information 143. Record.
Further, the measurement value table definition unit 122 actually generates the measurement value table 144 based on the measurement value table design information 143.
 計測データ管理部130は、計測データ収集蓄積部131、仮想計測データ演算部132、計測データ出力部133から構成される。
 計測データ収集蓄積部131は、各種計測機器から収集された計測データの入力を受け付け、計測値テーブル144に格納する。
 仮想計測データ演算部132は、仮想計測点定義テーブル141の仮想計測点定義に基づき、仮想計測点の計測データを算出する。
 計測データ出力部133は、ユーザからの集計などの計測データの読み出し要求に従って、計測値テーブル144から計測データを読み出し、読み出した計測データをユーザに出力する。
The measurement data management unit 130 includes a measurement data collection / storage unit 131, a virtual measurement data calculation unit 132, and a measurement data output unit 133.
The measurement data collection / accumulation unit 131 accepts input of measurement data collected from various measurement devices and stores it in the measurement value table 144.
The virtual measurement data calculation unit 132 calculates the measurement data of the virtual measurement point based on the virtual measurement point definition in the virtual measurement point definition table 141.
The measurement data output unit 133 reads measurement data from the measurement value table 144 in accordance with a measurement data read request from the user, such as aggregation, and outputs the read measurement data to the user.
 データ記憶部140は、仮想計測点定義テーブル141、構成情報テーブル142、計測値テーブル設計情報143、計測値テーブル144等の各種データを記憶する。 The data storage unit 140 stores various data such as a virtual measurement point definition table 141, a configuration information table 142, a measurement value table design information 143, and a measurement value table 144.
 計測データ管理装置100の各機能部は、1台のコンピュータ装置上に実現されていてもよいし、ネットワークで接続された複数のコンピュータ装置上に分散して実現されていてもよい。 Each functional unit of the measurement data management device 100 may be realized on a single computer device, or may be realized in a distributed manner on a plurality of computer devices connected via a network.
 図2、図3は、実施の形態1における計測データ管理システム200の構成例を示す図である。
 実施の形態1における計測データ管理システム200の構成例について、図2および図3に基づいて説明する。
2 and 3 are diagrams illustrating a configuration example of the measurement data management system 200 according to the first embodiment.
A configuration example of the measurement data management system 200 according to Embodiment 1 will be described with reference to FIGS. 2 and 3.
 図2に示す計測データ管理システム200は、計測データ管理装置100の他に、ネットワークを介して計測データ管理装置100に接続する1台以上の拠点装置210および1台以上の操作端末220を備える。
 但し、計測データ管理装置100が操作端末220の機能(アプリケーション実行部221)を備える場合、計測データ管理システム200は操作端末220を備えなくても構わない。
In addition to the measurement data management apparatus 100, the measurement data management system 200 shown in FIG. 2 includes one or more base apparatuses 210 and one or more operation terminals 220 connected to the measurement data management apparatus 100 via a network.
However, when the measurement data management apparatus 100 includes the function (application execution unit 221) of the operation terminal 220, the measurement data management system 200 may not include the operation terminal 220.
 拠点装置210は、計測値(例:消費電力、電圧、水消費量、温度など)を含んだ計測データを計測データ管理装置100へ送信するコンピュータまたは通信装置である。
 拠点装置210は、計測データ受信部211と、計測データ送信部212と、拠点装置記憶部219とを備える。
 計測データ受信部211は、計測値を計測する各計測機器201(例:分電盤、電圧計、水道メータ、温度計など)から計測値を含んだ計測データを受信する。
 計測データ送信部212は、計測データ受信部211によって受信された計測データを計測データ管理装置100へ送信する。
 拠点装置記憶部219は、計測データ受信部211によって受信された計測データなど、拠点装置210で使用するデータを記憶する。
The base device 210 is a computer or communication device that transmits measurement data including measurement values (eg, power consumption, voltage, water consumption, temperature, etc.) to the measurement data management device 100.
The base device 210 includes a measurement data reception unit 211, a measurement data transmission unit 212, and a base device storage unit 219.
The measurement data receiving unit 211 receives measurement data including measurement values from each measurement device 201 (for example, a distribution board, a voltmeter, a water meter, a thermometer, etc.) that measures the measurement values.
The measurement data transmission unit 212 transmits the measurement data received by the measurement data reception unit 211 to the measurement data management device 100.
The base device storage unit 219 stores data used by the base device 210 such as measurement data received by the measurement data reception unit 211.
 操作端末220は、計測値の集計処理など、ユーザから要求される処理を行うためのアプリケーションプログラム(以下、アプリケーションという)を実行する装置(コンピュータ)である。
 操作端末220は、アプリケーションを実行するアプリケーション実行部221と、操作端末220で使用するデータを記憶する操作端末記憶部229とを備える。
 例えば、操作端末220のアプリケーション実行部221は、アプリケーションを実行することによって、次のように動作する。
 アプリケーション実行部221は、計測データ管理装置100に対して計測値を要求し、計測データ管理装置100から計測値を取得し、取得した計測値に関する集計処理を実行する。
The operation terminal 220 is an apparatus (computer) that executes an application program (hereinafter referred to as an application) for performing processing requested by a user, such as measurement value aggregation processing.
The operation terminal 220 includes an application execution unit 221 that executes an application, and an operation terminal storage unit 229 that stores data used by the operation terminal 220.
For example, the application execution unit 221 of the operation terminal 220 operates as follows by executing the application.
The application execution unit 221 requests a measurement value from the measurement data management device 100, acquires the measurement value from the measurement data management device 100, and executes a totaling process regarding the acquired measurement value.
 計測データ管理装置100の計測データ収集蓄積部131(図1参照)は、計測データ管理装置100に接続する各拠点装置210から計測値を含んだ計測データを収集し、収集した計測データを計測値テーブル144に格納する。 The measurement data collection and accumulation unit 131 (see FIG. 1) of the measurement data management device 100 collects measurement data including measurement values from each base device 210 connected to the measurement data management device 100, and uses the collected measurement data as measurement values. Store in table 144.
 図2に示す計測データ管理システム200は、各拠点装置210が計測データ管理装置100に接続したスター型で構成されている。但し、計測データ管理システム200は、図3に示すように各拠点装置210が階層的に接続したツリー型の構成、または、その他の接続形態で計測データ管理装置100と各拠点装置210とが接続した構成であっても構わない。
 図3に示す計測データ管理システム200において、拠点装置210Aはネットワークを介して接続している下位の拠点装置210B、210Cから計測データを収集し、収集した計測データを計測データ管理装置100へ送信する。
The measurement data management system 200 illustrated in FIG. 2 is configured in a star shape in which each base device 210 is connected to the measurement data management device 100. However, in the measurement data management system 200, as shown in FIG. 3, the measurement data management device 100 and each site device 210 are connected in a tree configuration in which the site devices 210 are hierarchically connected, or in other connection forms. You may be the structure which carried out.
In the measurement data management system 200 shown in FIG. 3, the base device 210A collects measurement data from the lower base devices 210B and 210C connected via the network, and transmits the collected measurement data to the measurement data management device 100. .
 図4は、本実施の形態に係る計測データの基本的な構造を示す図である。
 実施の形態1の計測データ400は、少なくとも、実計測点ID401、計測時刻402、計測値403を含んでいる。
 実計測点ID401は、計測機器201または計測機器201が設置されている場所を一意に識別するための識別子である。
 以降、計測機器201または計測機器201が設定されている場所を「実計測点」と呼ぶ。
 また、実計測点IDを「$x」の形式で表現する。
 ここで「x」は任意の整数値である。
 計測時刻402は、計測値が計測された日時を示す。
 計測時刻402は、各計測機器201や各拠点装置210によって設定される。
 計測値403は、計測機器201によって計測された計測値を示す。
FIG. 4 is a diagram showing a basic structure of measurement data according to the present embodiment.
The measurement data 400 of the first embodiment includes at least an actual measurement point ID 401, a measurement time 402, and a measurement value 403.
The actual measurement point ID 401 is an identifier for uniquely identifying the measurement device 201 or the location where the measurement device 201 is installed.
Hereinafter, the measurement device 201 or a place where the measurement device 201 is set is referred to as an “actual measurement point”.
Further, the actual measurement point ID is expressed in the format of “$ x”.
Here, “x” is an arbitrary integer value.
The measurement time 402 indicates the date and time when the measurement value was measured.
The measurement time 402 is set by each measuring device 201 and each base device 210.
A measured value 403 indicates a measured value measured by the measuring device 201.
 図5は、実施の形態1における計測値テーブル144を示す図である。
 計測値テーブル144の各レコード(行)は、行番号501、計測時刻502、及び同一時刻に計測された複数の計測値503A~503Eから構成される。
 行番号501は、同一時刻に計測された計測値を識別する番号である。
 計測時刻502は、計測時刻402に相当するが、多少の誤差を含んでいてもよい。
 計測時刻402は、各計測機器201や拠点装置210の時計のずれにより、誤差が生じる場合がある。
 その場合、許容される誤差の範囲で計測時刻402を丸め、同じ計測時刻502の計測データとする処理が必要となる。
 例えば、予め許容される誤差を100ミリ秒と設定しておき、「2013/4/1 18:00:00.000」~「2013/4/1 18:00:00.099」の計測時刻402に含まれる複数の計測データを、計測時刻502が「2013/4/1 18:00:00.000」の計測データとして同一のレコードにまとめる。
 なお、本実施の形態において、計測時刻402の誤差の丸め方式は本質的な問題ではないため、詳細は省略する。
 計測値503のいずれかに、計測値403が格納される。
 その対応関係は、後述する計測値テーブル設計情報143に基づき決定される。
FIG. 5 is a diagram showing the measurement value table 144 in the first embodiment.
Each record (row) of the measurement value table 144 includes a row number 501, a measurement time 502, and a plurality of measurement values 503A to 503E measured at the same time.
The line number 501 is a number for identifying a measured value measured at the same time.
The measurement time 502 corresponds to the measurement time 402, but may include some errors.
There may be an error in the measurement time 402 due to a clock deviation of each measuring device 201 or base device 210.
In that case, it is necessary to round the measurement time 402 within the allowable error range and use the same measurement time 502 as measurement data.
For example, an allowable error is set to 100 milliseconds in advance, and a measurement time 402 from “2013/4/1 18: 00: 00.000” to “2013/4/1 18: 00: 00.099” is set. A plurality of measurement data included in the same record as measurement data with a measurement time 502 of “2013/4/1 18: 00: 0.0000”.
Note that, in this embodiment, the rounding method of the error at the measurement time 402 is not an essential problem, and the details are omitted.
The measured value 403 is stored in any of the measured values 503.
The corresponding relationship is determined based on measurement value table design information 143 described later.
 本実施の形態では、仮想計測点を設定する対象となる対象物の構成を表すため、階層構造をもった構成情報を持つことを前提としている。
 この階層構造は、例えば図6に示すような木構造として表現することができ、このような階層構造を持った情報を、ここでは、構成情報木と呼ぶこととする。
 この階層関係は親子関係または上下関係ともいう。
 構成情報木には、図6、図7、図8の例に示す様に複数の種類(視点)がある。
In the present embodiment, in order to represent the configuration of the target object for which virtual measurement points are set, it is assumed that the configuration information has a hierarchical structure.
This hierarchical structure can be expressed as a tree structure as shown in FIG. 6, for example, and information having such a hierarchical structure is referred to as a configuration information tree here.
This hierarchical relationship is also called a parent-child relationship or a hierarchical relationship.
The configuration information tree has a plurality of types (viewpoints) as shown in the examples of FIGS.
 図9は、構成情報木700、710、仮想計測点情報720、実計測点情報730、計測値テーブル144に格納された計測値503の関係を説明する図である。
 構成情報は、構成情報木700、710のように複数の構成情報木を持つ。
 構成情報木は、構成情報ノードと呼ぶノードから構成される木構造である。
 構成情報ノードは、親ノードと子ノードを持つ通常ノード702、703と、親ノードを持たない根ノード701と、子ノードを持たない葉ノード704、711により構成される。
 各構成情報ノードは、仮想計測点情報720の中の1個の仮想計測点(例えば722)と関連付けられる。
 構成情報ノード704と711のように複数の構成情報ノードが1個の仮想計測点723を指すことがある。
FIG. 9 is a diagram for explaining the relationship among the configuration information trees 700 and 710, the virtual measurement point information 720, the actual measurement point information 730, and the measurement value 503 stored in the measurement value table 144.
The configuration information has a plurality of configuration information trees such as configuration information trees 700 and 710.
The configuration information tree is a tree structure composed of nodes called configuration information nodes.
The configuration information node includes normal nodes 702 and 703 having a parent node and a child node, a root node 701 having no parent node, and leaf nodes 704 and 711 having no child node.
Each configuration information node is associated with one virtual measurement point (for example, 722) in the virtual measurement point information 720.
A plurality of configuration information nodes, such as configuration information nodes 704 and 711, may point to one virtual measurement point 723.
 また、仮想計測点情報720に含まれる仮想計測点は、1個以上の実計測点情報730に含まれる実計測点(例えば731)、または1個以上の仮想計測点と関連づいている。
 例えば、仮想計測点722は、実計測点731、732の2個の実計測点と関連付いている。
 また、仮想計測点721の様に仮想計測点(ここでは仮想計測点722)だけと関連付くこともあれば、仮想計測点723の様に、実計測点733と仮想計測点の両方と関連付く場合もある。
 このように、仮想計測点は、実計測点に直接又は他の仮想計測点を介して間接に関連付けられている識別子である。
The virtual measurement points included in the virtual measurement point information 720 are associated with one or more actual measurement points (eg, 731) included in the one or more actual measurement point information 730, or one or more virtual measurement points.
For example, the virtual measurement point 722 is associated with two actual measurement points 731 and 732.
In addition, the virtual measurement point 721 may be associated with only the virtual measurement point (here, the virtual measurement point 722), or the virtual measurement point 723 may be associated with both the actual measurement point 733 and the virtual measurement point. In some cases.
Thus, the virtual measurement point is an identifier that is directly associated with the actual measurement point or indirectly through another virtual measurement point.
 さらに、実計測点情報730に含まれる実計測点731は、計測値テーブル144の1列以上の計測値503と関連付けられる。
 実計測点は、このように、計測機器の計測値に直接関連付けられている識別子である。
Furthermore, the actual measurement points 731 included in the actual measurement point information 730 are associated with one or more columns of measurement values 503 in the measurement value table 144.
The actual measurement point is thus an identifier that is directly associated with the measurement value of the measurement device.
 図6を用いて、構成情報木の例を示す。
 構成情報木は、仮想計測点を設ける対象となる対象物の構成要素を表すノード(図6中の角丸四角形)と、構成要素同士の階層関係を表すエッジ(ノード同士を結んだ線)とを備える木構造である。
 木構造の頂点に位置するノード(例えば、図6中の「会社」ノード)が、根ノードであり、最上位の親ノードである。
 また、木構造の末端に位置するノード(例えば、図6中の「一係」ノード)が、葉ノードであり、最下位の子ノードである。
An example of the configuration information tree is shown using FIG.
The configuration information tree is composed of nodes (rounded rectangles in FIG. 6) that represent the components of the target for which virtual measurement points are provided, and edges (lines connecting the nodes) that represent the hierarchical relationship between the components. It is a tree structure provided with.
A node (for example, a “company” node in FIG. 6) located at the top of the tree structure is a root node, and is the highest parent node.
Also, a node located at the end of the tree structure (for example, “one-piece” node in FIG. 6) is a leaf node and is the lowest child node.
 図6は、仮想計測点を設ける対象となる「組織」の構成を表す構成情報木である。
 「会社」ノード601は、会社全体を表している。
 「会社」は「管理部門」602、「○事業部門」603、「△事業部門」604等の複数の「部門」から構成される。
 管理部門602は、「人事部」605、「総務部」606、「経理部」607等の複数の「部」から構成されている。
 人事部605は、「人事課」608、「研修課」609等の複数の「課」から構成されている。
 各ノード「会社」601、「管理部門」602、「人事部」605、「人事課」608等は、それぞれ仮想計測点の一例である。
FIG. 6 is a configuration information tree representing the configuration of an “organization” that is a target for providing virtual measurement points.
A “company” node 601 represents the entire company.
The “company” is composed of a plurality of “departments” such as “management department” 602, “○ business department” 603, and “△ business department” 604.
The management department 602 includes a plurality of “departments” such as a “personnel department” 605, a “general affairs department” 606, and an “accounting department” 607.
The personnel department 605 includes a plurality of “sections” such as a “personnel section” 608 and a “training section” 609.
Each node “company” 601, “management department” 602, “HR department” 605, “HR section” 608, etc. are examples of virtual measurement points.
 図7は、仮想計測点を設ける対象となる「配置」の構成を表す構成情報木の一例である。 FIG. 7 is an example of a configuration information tree representing a configuration of “arrangement” that is a target for providing virtual measurement points.
 図8は、仮想計測点を設ける対象となる「機器」の構成を表す構成情報木の一例である。 FIG. 8 is an example of a configuration information tree representing the configuration of a “device” that is a target for providing virtual measurement points.
 図10及び図11は、実施の形態1における構成情報テーブル142を示す図である。
 構成情報テーブル142は、仮想計測点を設ける対象となる対象物を表す構成情報を示すデータの一例である。
 図10及び図11に示す構成情報テーブル142は、図6~図8に示した構成情報木に関する構成情報を含んでいる。
10 and 11 are diagrams illustrating the configuration information table 142 according to the first embodiment.
The configuration information table 142 is an example of data indicating configuration information representing an object to be provided with virtual measurement points.
The configuration information table 142 shown in FIGS. 10 and 11 includes configuration information related to the configuration information trees shown in FIGS.
 構成情報テーブル142は、「ノードID」「親ID」「グループID」「レベル」「仮想計測点ID」「ノード名称」を対応付けたレコードを備える。
 「ノードID」は、構成情報ノードを識別する識別子を示す。
 「親ID」は、当該構成情報ノードと親子関係にある親ノードを識別する識別子を示す。
 「親ID」が「null」の場合、当該ノードは根ノードを意味する。
 「グループID」は、構成情報木を識別する識別子を示す。
 「レベル」は、当該構成情報ノードが位置している階層の深さ(レベル)を示す。
 根ノードのレベルを「1」とし、下位に向かって1階層下がる毎に数値が1ずつ増加する。
 「仮想計測点ID」は、当該構成情報ノードに対応付けられた仮想計測点を識別する識別子を示す。
 以下、仮想計測点IDを「#x」と記す。
 ここで、「x」は任意の整数値である。
 「ノード名称」は、当該構成情報ノードの内容を表すノード名を示す。
The configuration information table 142 includes a record in which “node ID”, “parent ID”, “group ID”, “level”, “virtual measurement point ID”, and “node name” are associated with each other.
“Node ID” indicates an identifier for identifying a configuration information node.
“Parent ID” indicates an identifier for identifying a parent node having a parent-child relationship with the configuration information node.
When the “parent ID” is “null”, the node means a root node.
“Group ID” indicates an identifier for identifying a configuration information tree.
“Level” indicates the depth (level) of the hierarchy in which the configuration information node is located.
The level of the root node is set to “1”, and the numerical value increases by 1 every time one level is lowered toward the lower level.
“Virtual measurement point ID” indicates an identifier for identifying a virtual measurement point associated with the configuration information node.
Hereinafter, the virtual measurement point ID is described as “#x”.
Here, “x” is an arbitrary integer value.
“Node name” indicates a node name representing the contents of the configuration information node.
 例えば、図6に示した「会社」ノードのノードIDは「1」であり、グループIDは「1」であり、レベルは「1」であり、仮想計測点IDは「#1」である。
 また、「管理部門」ノードのノードIDは「2」であり、親IDは「1」(すなわち「会社」ノード)であり、グループIDは「1」であり、レベルは「2」であり、仮想計測点IDは「#2」である。
For example, the node ID of the “company” node shown in FIG. 6 is “1”, the group ID is “1”, the level is “1”, and the virtual measurement point ID is “# 1”.
The node ID of the “management department” node is “2”, the parent ID is “1” (that is, “company” node), the group ID is “1”, and the level is “2”. The virtual measurement point ID is “# 2”.
 構成情報テーブル142は、構成情報木の内容を表すグループ名を定義したグループ名称テーブル142Aと、構成情報木の各階層の内容を表すレベル名称を定義したレベル名称テーブル142Bとに関連付けられている(いずれも図11)。 The configuration information table 142 is associated with a group name table 142A that defines group names that represent the contents of the configuration information tree, and a level name table 142B that defines level names that represent the contents of each hierarchy of the configuration information tree ( Both are FIG. 11).
 グループ名称テーブル142Aは、「グループID」「グループ名称」を対応付けたレコードを備える。
 例えば、図6に示した構成情報木はグループID「1」で識別され、会社内の「組織」を表している。
 また、図7に示した木構造はグループID「2」で識別され、会社内の「配置(場所)」を表している。
The group name table 142A includes a record in which “group ID” and “group name” are associated with each other.
For example, the configuration information tree shown in FIG. 6 is identified by the group ID “1” and represents the “organization” in the company.
Further, the tree structure shown in FIG. 7 is identified by the group ID “2” and represents “placement (location)” in the company.
 レベル名称テーブル142Bは、「グループID」「レベル」「レベル名称」を対応付けたレコードを備える。
 例えば、図6に示した木構造内のレベル「1」の階層は「会社」全体を表し、レベル「2」の階層は、会社内の「部門」を表している。
 また、図7に示した木構造内のレベル「1」の階層は「配置」全体を表し、レベル「2」の階層は会社内の事業所がある「地区」を表し、レベル「3」の階層は会社内の「事業所」を表している。
The level name table 142B includes a record in which “group ID”, “level”, and “level name” are associated with each other.
For example, the level “1” hierarchy in the tree structure shown in FIG. 6 represents the entire “company”, and the level “2” hierarchy represents the “department” in the company.
Further, the level “1” hierarchy in the tree structure shown in FIG. 7 represents the entire “location”, the level “2” hierarchy represents the “district” where the company office is located, and the level “3” The hierarchy represents the “office” in the company.
 図12は、実施の形態1における仮想計測点定義テーブル141を示す図である。
 仮想計測点定義テーブル141は、実計測点に対応付けて仮想計測点を定義したデータの一例である。
 仮想計測点定義テーブル141は、「仮想計測点ID」901、「仮想計測点名称」902、「仮想計測点定義」903、「代替計測点フラグ」904を対応付けたレコードを備える。
 「仮想計測点ID」901は、仮想計測点を識別する識別子を示す。
 「仮想計測点ID」901は、構成情報テーブル142の仮想計測点ID805に相当する。
 「仮想計測点名称」902は、仮想計測点の内容を表す仮想計測点名を示す。
 仮想計測点名称は、ノード名称と一致していなくても良い。
 「仮想計測点定義」903は、実計測点または他の仮想計測点に対応付けて仮想計測点の定義を示す。
 「代替計測点フラグ」904は、仮想計測点定義に代替計測点を含むか否かのフラグを示す。
FIG. 12 is a diagram showing the virtual measurement point definition table 141 in the first embodiment.
The virtual measurement point definition table 141 is an example of data in which virtual measurement points are defined in association with actual measurement points.
The virtual measurement point definition table 141 includes a record in which “virtual measurement point ID” 901, “virtual measurement point name” 902, “virtual measurement point definition” 903, and “alternative measurement point flag” 904 are associated with each other.
“Virtual measurement point ID” 901 indicates an identifier for identifying a virtual measurement point.
The “virtual measurement point ID” 901 corresponds to the virtual measurement point ID 805 in the configuration information table 142.
A “virtual measurement point name” 902 indicates a virtual measurement point name representing the contents of the virtual measurement point.
The virtual measurement point name may not match the node name.
A “virtual measurement point definition” 903 indicates the definition of a virtual measurement point in association with an actual measurement point or another virtual measurement point.
An “alternative measurement point flag” 904 indicates a flag as to whether or not the virtual measurement point definition includes an alternative measurement point.
 例えば、仮想計測点「#1」は、会社全体の消費電力を意味する「全社電力」に関連付けられている。
 特に会社全体の様な大規模な組織の場合、その消費電力を直接計測するための計測機器は存在せず、「全社電力」は実際には設けられていない仮想的な計測点である。
 そこで、仮想計測点「#1」の消費電力は、下位の組織の仮想計測点「#2」(管理部門電力)の消費電力と「#10」(○事業部門電力)の消費電力と「#20」(△事業部門電力)の消費電力との和と等しい。
 すなわち、仮想計測点「#1」は「#2+#10+#20」という定義式で定義される。
For example, the virtual measurement point “# 1” is associated with “company-wide power” which means power consumption of the entire company.
In particular, in the case of a large-scale organization such as the entire company, there is no measuring device for directly measuring the power consumption, and “company-wide power” is a virtual measuring point that is not actually provided.
Therefore, the power consumption of the virtual measurement point “# 1” is the power consumption of the virtual measurement point “# 2” (management department power) of the lower organization, the power consumption of “# 10” (○ business department power), and “# It is equal to the sum of the power consumption of 20 ”(△ business sector power).
That is, the virtual measurement point “# 1” is defined by the definition formula “# 2 + # 10 + # 20”.
 仮想計測点「#201」は、建屋「東京第1棟」全体の消費電力を制御する「東京第1棟変電設備」に関連付けられている。
 仮想計測点「#201」の消費電力は、東京第1棟変電設備を表す実計測点「$1」で計測された消費電力に等しい。
The virtual measurement point “# 201” is associated with “Tokyo first building substation equipment” that controls the power consumption of the entire building “Tokyo first building”.
The power consumption at the virtual measurement point “# 201” is equal to the power consumption measured at the actual measurement point “$ 1” representing the substation facility in the first building in Tokyo.
 ここで、仮想計測点「#1」の仮想計測点定義には、定義式「#2+#10+#20」の他に、代替計測点「%1」が定義している。
 代替計測点とは、本来の仮想計測点定義式または実計測点の他に、その仮想計測点の計測値を読み出すための列が、計測値テーブル144に定義されている計測点である。
 すなわち、代替計測点が定義されている場合は、実計測点同様に、計測値テーブル144の対応する列から直接計測値を読み出すことができる。
 仮想計測点定義に、代替計測点が定義されているか否かは、代替計測点フラグ904にも設定する。
 代替計測点の詳細は後述する。
 以下、代替計測点の識別子である代替計測点IDを「%x」と記すこととする。
 ここで、「x」は任意の整数値である。
 図12では、代替計測点「%1」、「%2」、「%3」及び「%4」が記述されているが、代替計測点は運用段階のS13(図20)において計測値テーブル設計部121が設定するので、代替計測点「%1」、「%2」、「%3」及び「%4」は、S13の処理が行われた後に、計測値テーブル144に記述される。
Here, in the virtual measurement point definition of the virtual measurement point “# 1”, an alternative measurement point “% 1” is defined in addition to the definition formula “# 2 + # 10 + # 20”.
The alternative measurement point is a measurement point defined in the measurement value table 144 in addition to the original virtual measurement point definition formula or the actual measurement point, and a column for reading the measurement value of the virtual measurement point.
That is, when an alternative measurement point is defined, the measurement value can be read directly from the corresponding column of the measurement value table 144 as with the actual measurement point.
Whether or not an alternative measurement point is defined in the virtual measurement point definition is also set in the alternative measurement point flag 904.
Details of the alternative measurement points will be described later.
Hereinafter, the alternative measurement point ID that is the identifier of the alternative measurement point is referred to as “% x”.
Here, “x” is an arbitrary integer value.
In FIG. 12, alternative measurement points “% 1”, “% 2”, “% 3”, and “% 4” are described, but the alternative measurement points are measured value table design in S13 (FIG. 20) in the operation stage. Since the unit 121 sets, the alternative measurement points “% 1”, “% 2”, “% 3”, and “% 4” are described in the measurement value table 144 after the process of S13 is performed.
 図13は、実施の形態1における計測値テーブル設計情報143を示す図である。
 計測値テーブル設計情報143は、実計測点または代替計測点と、計測値テーブル144との対応関係を定義したデータの一例である。
 計測値テーブル設計情報143は、「計測点ID」1001、「DBサーバ名」1002、「データベース名」1003、「テーブル名」1004、「列名」1005、「データ型」1006を対応付けたレコードを備える。
 「計測点ID」1001は、実計測点IDまたは代替計測点IDを示す。
 「DBサーバ名」1002は、計測値テーブル144が定義されているデータベース管理システムが存在するサーバ名を示す。
 「データベース名」1003は、計測値テーブル144が定義されているデータベース名を示す。
 「テーブル名」1004は、計測値テーブル144の実際のテーブル名を示す。
 なお、「DBサーバ名」1002、「データベース名」1003、「テーブル名」1004は例であり、実計測点または代替計測点と対応づく計測値テーブル144のテーブルが一意に特定できる情報が設定されていればよい。
 「列名」1005は、実計測点または代替計測点の計測値が格納されている計測値テーブル144上の列名を示す。
 「データ型」1006は、計測値のデータ型を示す。
FIG. 13 is a diagram showing measurement value table design information 143 in the first embodiment.
The measurement value table design information 143 is an example of data defining a correspondence relationship between an actual measurement point or an alternative measurement point and the measurement value table 144.
The measurement value table design information 143 includes a record in which “measurement point ID” 1001, “DB server name” 1002, “database name” 1003, “table name” 1004, “column name” 1005, and “data type” 1006 are associated with each other. Is provided.
“Measurement point ID” 1001 indicates an actual measurement point ID or an alternative measurement point ID.
“DB server name” 1002 indicates a server name in which the database management system in which the measurement value table 144 is defined exists.
“Database name” 1003 indicates a database name in which the measurement value table 144 is defined.
“Table name” 1004 indicates the actual table name of the measurement value table 144.
Note that “DB server name” 1002, “database name” 1003, and “table name” 1004 are examples, and information that can uniquely identify the table of the measurement value table 144 corresponding to the actual measurement point or the alternative measurement point is set. It only has to be.
“Column name” 1005 indicates a column name on the measurement value table 144 in which measurement values of actual measurement points or alternative measurement points are stored.
“Data type” 1006 indicates the data type of the measurement value.
 図14は、実施の形態1における計測値テーブル設計情報143に付属する、代替計測点定義テーブル143Aを示す図である。
 代替計測点定義テーブル143Aは、「代替計測点ID」1011、「代替計測点定義」1012を対応付けたレコードを備える。
 「代替計測点ID」1011は、代替計測点IDを示す。
 「代替計測点定義」1012は、代替計測点の計測データを算出するための代替計測点定義を示す。
 代替計測点定義は、単一の実計測点の計測データ、または実計測点と代替計測点の計測データの演算式からなる。
 代替計測点定義の詳細は後述する。
FIG. 14 is a diagram showing an alternative measurement point definition table 143A attached to the measurement value table design information 143 in the first embodiment.
The alternative measurement point definition table 143A includes a record in which “alternative measurement point ID” 1011 and “alternative measurement point definition” 1012 are associated with each other.
“Alternative measurement point ID” 1011 indicates an alternative measurement point ID.
“Alternative measurement point definition” 1012 indicates an alternative measurement point definition for calculating measurement data of an alternative measurement point.
The alternative measurement point definition is composed of measurement data of a single actual measurement point, or an arithmetic expression of measurement data of the actual measurement point and the alternative measurement point.
Details of the alternative measurement point definition will be described later.
 大規模なビルや、組織など、そこで利用されている計測機器の数が多い場合は、ひとつの構成情報木に関連付いた実計測点の数が、計測値テーブル144の1テーブルの列数の上限よりもはるかに多くなる場合がある。
 その場合は、テーブルを列方向に分割して、実計測点の計測データを複数のテーブルに分散して管理する対策が考えられる。
 このとき、どの実計測点の計測データを、どのテーブルに格納するかの方法として、ある一つの構成情報木に着目して、その部分木の単位でテーブルを分割する方法が考えられる。
 例えば、「配置」の構成情報に着目し、構成情報木を「事業所」毎の部分木に分割し、「東京事業所」に関連する計測データを格納するテーブルと、「神奈川事業所」に関連する計測データを格納するテーブルと、「埼玉事業所」に関連する計測データを格納するテーブルに分割する。
 この場合、計測値の集計及び分析の範囲が事業所内に納まっている場合は、集計及び分析処理の効率低下の問題は発生しない。
 一方で、「配置」以外の構成情報に従って集計及び分析を行おうとした場合に集計及び分析処理の効率が低下する場合がある。
When there are a large number of measuring devices used there, such as a large building or organization, the number of actual measurement points associated with one configuration information tree is the number of columns in one table of the measurement value table 144. May be much more than the upper limit.
In that case, a measure can be considered in which the table is divided in the column direction and the measurement data of the actual measurement points are distributed and managed in a plurality of tables.
At this time, as a method of storing which measurement data of which actual measurement point is stored in which table, a method of focusing on a certain configuration information tree and dividing the table in units of the subtrees can be considered.
For example, paying attention to the configuration information of “placement”, the configuration information tree is divided into subtrees for each “establishment”, and a table for storing measurement data related to “Tokyo establishment” and “Kanagawa establishment” The table is divided into a table for storing related measurement data and a table for storing measurement data related to “Saitama office”.
In this case, when the range of measurement value aggregation and analysis is within the office, the problem of reduction in efficiency of the aggregation and analysis processing does not occur.
On the other hand, when the aggregation and analysis are performed according to the configuration information other than “arrangement”, the efficiency of the aggregation and analysis processing may decrease.
 図9に示したように、1個の仮想計測点や実計測点は、複数の構成情報木と関連付く場合がある。
 実際の場合、ほとんどの仮想計測点や実計測点が、複数の構成情報木と関連付くことが考えられる。
 ここで、仮に「○事業部門」に属する各部が全国各地の事業所に存在した場合、「○事業部門」に関する計測データの集計及び分析のために複数の計測値テーブル144からの計測値の読み出しが必要となる。
 また、構成情報木の上位のノードに対応した仮想計測点の場合、例えば上記の「配置」の構成情報に着目して計測値テーブル144を分割した場合の「会社」や「関東地区」の場合、その計測データを仮想計測点定義式により算出する場合は、常に複数の計測値テーブル144からの計測値の読み出しが必要となる。
 このような、集計及び分析に必要な計測データが複数の計測値テーブル144に分散している状態を、ここでは計測データの断片化と呼ぶこととする。
As shown in FIG. 9, one virtual measurement point or real measurement point may be associated with a plurality of configuration information trees.
In actual cases, most virtual measurement points and actual measurement points may be associated with a plurality of configuration information trees.
Here, if each department belonging to “○ business department” exists in business offices throughout the country, reading of measurement values from a plurality of measurement value tables 144 for aggregation and analysis of measurement data related to “○ business department” Is required.
Further, in the case of a virtual measurement point corresponding to a higher-order node of the configuration information tree, for example, in the case of “company” or “Kanto district” when the measurement value table 144 is divided focusing on the configuration information of the above “placement” When the measurement data is calculated by the virtual measurement point definition formula, it is necessary to always read the measurement values from the plurality of measurement value tables 144.
Such a state in which measurement data necessary for aggregation and analysis is dispersed in a plurality of measurement value tables 144 is referred to as fragmentation of measurement data here.
 計測値テーブル設計部121は、このような計測データの断片化を抑止するような、計測値テーブル144の設計情報を生成する。 The measurement value table design unit 121 generates design information of the measurement value table 144 that suppresses such fragmentation of measurement data.
 前提として、ここでは仮想計測点情報と構成情報が予め作成され、それぞれ仮想計測点定義テーブル141と構成情報テーブル142に格納されているものとする。
 なお、代替計測点は計測値テーブル設計部121が定義するため、この時点で仮想計測点定義には代替計測点は定義されていない状態である。
 また、計測値テーブル設計情報143には、実計測点の「計測点ID」1001と、「データ型」1006は設定されているものとする。
Here, it is assumed that virtual measurement point information and configuration information are created in advance and stored in the virtual measurement point definition table 141 and the configuration information table 142, respectively.
Note that since the alternative measurement points are defined by the measurement value table design unit 121, the alternative measurement points are not defined in the virtual measurement point definition at this time.
Further, it is assumed that “measurement point ID” 1001 and “data type” 1006 of actual measurement points are set in the measurement value table design information 143.
 ここでは、以下の様に定義する。
 C:計測値テーブル144の1テーブルの中で、計測データを格納可能な列数
 木のサイズ:その木に含まれる全ノードの数
 木の実サイズ:その木に関連付くユニークな実計測点及び代替計測点の数
Here, it is defined as follows.
C: Number of columns in which measurement data can be stored in one table of the measurement value table 144 Tree size: Number of all nodes included in the tree Tree size: Unique actual measurement point and alternative measurement associated with the tree Number of points
 図15及び図16に基づき、実施の形態1における計測値テーブル設計部121の動作(図20に示すS13の動作)を説明する。
 図15及び図16は、実施の形態1における、計測値テーブル設計部121での、計測値テーブル設計情報143の生成処理の流れを示すフローチャートである。
Based on FIGS. 15 and 16, the operation of the measurement value table design unit 121 in the first embodiment (operation of S13 shown in FIG. 20) will be described.
FIGS. 15 and 16 are flowcharts showing a flow of processing for generating the measurement value table design information 143 in the measurement value table design unit 121 according to the first embodiment.
(ステップS1101)計測値テーブル設計部121は、作業用の記憶装置に、構成情報テーブル142のコピーである一時構成情報テーブルを生成する。
 また、計測値テーブル設計部121は、計測点管理情報テーブル、部分構成情報木管理テーブルを作成及び初期化する。
 これらのテーブルは、計測値テーブル設計部121が独自に備える一時記憶装置に作成してもよいし、計測データ管理装置100上の一時記憶装置上に作成してもよい。
(Step S1101) The measurement value table design unit 121 generates a temporary configuration information table, which is a copy of the configuration information table 142, in the working storage device.
The measurement value table design unit 121 creates and initializes a measurement point management information table and a partial configuration information tree management table.
These tables may be created in a temporary storage device provided independently in the measurement value table design unit 121, or may be created on a temporary storage device on the measurement data management device 100.
 ここで、一時構成情報テーブルは、部分構成情報木の状態を管理するために使用する。 Here, the temporary configuration information table is used to manage the state of the partial configuration information tree.
 図17は、ステップS1101で生成される計測点管理情報テーブル1200の例を示す図である。
 計測点管理情報テーブル1200は、「計測点ID」1201と、「自ノードID」1202、「根ノードID」1203、「列名」1204、「代替計測点定義」1205を対応付けたレコードを備える。
 「計測点ID」1201は、実計測点IDまたは代替計測点IDを示す。
 「自ノードID」1202は、「計測点ID」1201により指定される実計測点IDを直接含む仮想計測点定義を持つ仮想計測点に関連付いた全てのノードのノードIDを示す。
 例えば、図12の仮想計測点定義テーブル141において、仮想計測点ID「#201」の仮想計測点定義903は「$1」であり、直接実計測点IDを含んでいる。
 その場合、構成情報テーブル142から、仮想計測点ID「#201」に関連付くノードID 801として「201」を抽出し、「自ノードID」1202に設定する。
 一方、図12の仮想計測点定義テーブル141において、仮想計測点ID「#1」の仮想計測点定義903は、全て仮想計測点の計測データの演算式からなるため、実計測点IDを直接含まない。
 図17の計測点管理情報テーブル1200の「根ノードID」1203は、「計測点ID」1201により指定される実計測点または代替計測点が関連付く部分構成情報木の根ノードIDを示す。
 実計測点または代替計測点が、複数の部分構成情報木に関連付く場合は、根ノードIDには、その関連付く全ての部分構成情報木の根ノードのノードIDを設定する。
 その関連付く全ての部分構成情報木のサイズが1(ノード1個)の場合、またはいずれの部分構成情報木とも関連づかない場合は、「null」を設定する。
 「列名」1204は、「計測点ID」1201により指定される計測データを格納する計測値テーブル144上の列名を示す。
 「代替計測点定義」1205は、代替計測点の計測データを算出するための定義式を示す。
 代替計測点定義の定義式は、単一の実計測点の計測データ、または実計測点と代替計測点の計測データの演算式からなる。
FIG. 17 is a diagram illustrating an example of the measurement point management information table 1200 generated in step S1101.
The measurement point management information table 1200 includes a record in which “measurement point ID” 1201, “own node ID” 1202, “root node ID” 1203, “column name” 1204, and “alternative measurement point definition” 1205 are associated with each other. .
“Measurement point ID” 1201 indicates an actual measurement point ID or an alternative measurement point ID.
“Own node ID” 1202 indicates the node IDs of all nodes associated with virtual measurement points having a virtual measurement point definition that directly includes the actual measurement point ID specified by the “measurement point ID” 1201.
For example, in the virtual measurement point definition table 141 of FIG. 12, the virtual measurement point definition 903 of the virtual measurement point ID “# 201” is “$ 1”, and directly includes the actual measurement point ID.
In this case, “201” is extracted as the node ID 801 associated with the virtual measurement point ID “# 201” from the configuration information table 142, and is set to “own node ID” 1202.
On the other hand, in the virtual measurement point definition table 141 in FIG. 12, the virtual measurement point definition 903 with the virtual measurement point ID “# 1” is all composed of the calculation formula of the measurement data of the virtual measurement point, and thus directly includes the actual measurement point ID. Absent.
A “root node ID” 1203 in the measurement point management information table 1200 of FIG. 17 indicates the root node ID of the partial configuration information tree associated with the actual measurement point or the alternative measurement point specified by the “measurement point ID” 1201.
When an actual measurement point or an alternative measurement point is associated with a plurality of partial configuration information trees, the node IDs of the root nodes of all the partial configuration information trees associated with the root node ID are set.
If the size of all the related partial configuration information trees is 1 (one node) or is not related to any partial configuration information tree, “null” is set.
A “column name” 1204 indicates a column name on the measurement value table 144 that stores the measurement data specified by the “measurement point ID” 1201.
“Alternative measurement point definition” 1205 indicates a definition formula for calculating measurement data of an alternative measurement point.
The definition formula of the alternative measurement point definition is composed of measurement data of a single actual measurement point, or an arithmetic expression of the measurement data of the actual measurement point and the alternative measurement point.
 図18は、ステップS1101で生成される部分構成情報木管理テーブル1210を示す図である。
 部分構成情報木管理テーブル1210は、「部分構成情報木ID」1211、「根ノードID」1212、「部分構成情報木グループID」1213、「確定フラグ」1214、「DBサーバ名」1215、「データベース名」1216、「テーブル名」1217を対応付けたレコードを備える。
 「部分構成情報木ID」1211は、部分構成情報木を一意に識別するための識別子を示す。
 「根ノードID」1212は、部分構成情報木IDにより識別される部分構成情報木の根ノードのノードIDを示す。
 「部分構成情報木グループID」1213は、関連する部分構成情報木の集合(部分構成情報木グループ)を一意に識別するための識別子を示す。
 第2の確定状態と判定された複数の部分構成情報木に対して、同一の「部分構成情報木グループID」が設定される。
 「確定フラグ」1214は、「部分構成情報木ID」1211により識別される部分構成情報木が確定しているか否かを示す。
 「DBサーバ名」1215、「データベース名」1216、「テーブル名」1217は、それぞれ、計測値テーブル144のDBサーバ名、データベース名、テーブル名を示す。
 これは、「部分構成情報木ID」1211により識別される部分構成情報木に関連付いた実計測点または代替計測点の計測データを格納するテーブルを一意に識別するための情報で、図13の計測値テーブル設計情報143の「DBサーバ名」1002、「データベース名」1003と同じものである。
FIG. 18 is a diagram showing the partial configuration information tree management table 1210 generated in step S1101.
The partial configuration information tree management table 1210 includes “partial configuration information tree ID” 1211, “root node ID” 1212, “partial configuration information tree group ID” 1213, “confirmation flag” 1214, “DB server name” 1215, “database”. A record in which “name” 1216 and “table name” 1217 are associated with each other is provided.
The “partial configuration information tree ID” 1211 indicates an identifier for uniquely identifying the partial configuration information tree.
“Root node ID” 1212 indicates the node ID of the root node of the partial configuration information tree identified by the partial configuration information tree ID.
The “partial configuration information tree group ID” 1213 indicates an identifier for uniquely identifying a set of related partial configuration information trees (partial configuration information tree group).
The same “partial configuration information tree group ID” is set for a plurality of partial configuration information trees determined to be in the second confirmed state.
The “confirmation flag” 1214 indicates whether or not the partial configuration information tree identified by the “partial configuration information tree ID” 1211 is fixed.
“DB server name” 1215, “database name” 1216, and “table name” 1217 indicate the DB server name, database name, and table name of the measurement value table 144, respectively.
This is information for uniquely identifying a table storing measurement data of actual measurement points or alternative measurement points associated with the partial configuration information tree identified by the “partial configuration information tree ID” 1211. This is the same as “DB server name” 1002 and “database name” 1003 in the measurement value table design information 143.
 ここで、「部分構成情報木T1が確定している」とは、前述したように、部分構成情報木が以下の「第1の確定状態」又は「第2の確定状態」になっていることを指す。
 そして、「第1の確定状態」及び「第2の確定状態」のいずれにも該当しない部分構成情報木を、「確定していない部分構成情報木」と呼ぶ。
Here, “partial configuration information tree T1 is determined” means that the partial configuration information tree is in the following “first determined state” or “second determined state” as described above. Point to.
A partial configuration information tree that does not correspond to either the “first confirmed state” or the “second confirmed state” is referred to as an “undefined partial configuration information tree”.
 (第1の確定状態)
 実サイズがC以下の部分構成情報木T1であって、関連付く全ての実計測点または代替計測点が、他の部分構成情報木T2と関連付いていない。
 計測点管理情報テーブル1200において、関連付く全ての実計測点または代替計測点の根ノードIDが部分構成情報木T1の根ノードだけである。
(First confirmed state)
It is a partial configuration information tree T1 having an actual size of C or less, and all associated actual measurement points or alternative measurement points are not associated with other partial configuration information trees T2.
In the measurement point management information table 1200, the root node IDs of all the associated actual measurement points or alternative measurement points are only the root node of the partial configuration information tree T1.
 (第2の確定状態)
 実サイズがC以下の部分構成情報木T1に関連付く全ての実計測点または代替計測点が、他の部分構成情報木T2と関連付いていた場合であっても、部分構成情報木T1、T2に関連付いた実計測点のユニークな(重複を除外した)数がC以下である。
 ある部分構成情報木T1に関連付いた実計測点N1が、他の部分構成情報木T2にも関連付いており、部分構成情報木T2に関連付いた他の実計測点N2がさらに別の部分構成情報木T3に関連付いていた場合は、部分構成情報木T1、T2、T3のいずれかに関連付く全ての実計測点または代替計測点のユニークな数を計測し、その数がC以下であれば第2の確定状態である。
(Second final state)
Even if all actual measurement points or alternative measurement points associated with the partial configuration information tree T1 having an actual size of C or less are associated with other partial configuration information trees T2, the partial configuration information trees T1 and T2 The number of unique measurement points (excluding duplicates) associated with is less than or equal to C.
An actual measurement point N1 associated with a partial configuration information tree T1 is also associated with another partial configuration information tree T2, and another actual measurement point N2 associated with the partial configuration information tree T2 is a further portion. If it is related to the configuration information tree T3, the unique number of all actual measurement points or alternative measurement points related to any of the partial configuration information trees T1, T2, T3 is measured, and the number is less than or equal to C If there is, it is the second definite state.
 計測値テーブル設計部121は、初めに、計測点管理情報テーブル1200の各レコードの計測点ID1201に、全実計測点IDを1個ずつ設定する。
 次に各実計測点IDに対して、関連する構成情報木を抽出し、その根ノードのノードIDを根ノードID1203に設定する。
 そのために、計測値テーブル設計部121は、仮想計測点定義テーブル141の仮想計測点定義903を探索して、該当する実計測点IDを含む仮想計測点定義に対応する仮想計測点ID901を全て抽出する。
 次に、その仮想計測点IDが関連付くグループID803を、構成情報テーブル142から全て抽出する。
 最後に、抽出したグループIDに属するノードIDの内、根ノードのノードIDを抽出し、計測点管理情報テーブル1200の根ノードID1203に設定する。
The measurement value table design unit 121 first sets all the actual measurement point IDs one by one in the measurement point ID 1201 of each record in the measurement point management information table 1200.
Next, for each actual measurement point ID, a related configuration information tree is extracted, and the node ID of the root node is set as the root node ID 1203.
Therefore, the measurement value table design unit 121 searches the virtual measurement point definition 903 in the virtual measurement point definition table 141 and extracts all virtual measurement point IDs 901 corresponding to the virtual measurement point definition including the corresponding actual measurement point ID. To do.
Next, all group IDs 803 associated with the virtual measurement point ID are extracted from the configuration information table 142.
Finally, among the node IDs belonging to the extracted group ID, the node ID of the root node is extracted and set in the root node ID 1203 of the measurement point management information table 1200.
 ある木のサイズを知るためには、一時構成情報テーブルにおいて、その木の根ノードに相当するノードから順に、そのノードIDを親IDとするノードの数を再帰的に数えていけばよい。
 また、ある木の実サイズを知るためには、計測点管理情報テーブル1200の根ノードID1203の中に、その木の根ノードIDが出現する回数を数え上げればよい。
In order to know the size of a tree, in the temporary configuration information table, the number of nodes having the node ID as the parent ID may be recursively counted in order from the node corresponding to the root node of the tree.
In order to know the actual size of a tree, the number of times that the root node ID of the tree appears in the root node ID 1203 of the measurement point management information table 1200 may be counted.
 同様に、計測値テーブル設計部121は、初めに、各構成情報木を一意に識別するための識別子=部分構成情報木IDを定義し、部分構成情報木管理テーブル1210の各レコードの部分構成情報木ID1211に設定する。
 この時の部分構成情報木IDとして、構成情報テーブル142のグループID803を使用してもよい。
Similarly, the measurement value table design unit 121 first defines an identifier = partial configuration information tree ID for uniquely identifying each configuration information tree, and sets partial configuration information of each record in the partial configuration information tree management table 1210. Set to tree ID1211.
The group ID 803 of the configuration information table 142 may be used as the partial configuration information tree ID at this time.
(ステップS1102)計測値テーブル設計部121は、全ての部分構成情報木の実サイズがC以下となるよう、構成情報木を部分木に分割していく。
 このステップの一例として、以下の手順がある。
(1)計測値テーブル設計部121は、全ての部分構成情報木の中から、実サイズがCを超える部分構成情報木Tを1個選択する。
(2)計測値テーブル設計部121は、選択した部分構成情報木Tを根ノードと、その根ノードの子のノードを新たな根ノードとする部分木に分割する。
 そして、計測値テーブル設計部121は、計測点管理情報テーブル1200、部分構成情報木管理テーブル1210を更新する。
 この手順の詳細は後述する。
(3)計測値テーブル設計部121は、(1)~(2)の操作を、実サイズがCを超える部分構成情報木が存在しなくなるまで繰り返す。
(Step S1102) The measurement value table design unit 121 divides the configuration information tree into partial trees so that the actual sizes of all the partial configuration information trees are C or less.
An example of this step is as follows.
(1) The measurement value table design unit 121 selects one partial configuration information tree T whose actual size exceeds C from all the partial configuration information trees.
(2) The measurement value table design unit 121 divides the selected partial configuration information tree T into a partial tree having a root node and a child node of the root node as a new root node.
Then, the measurement value table design unit 121 updates the measurement point management information table 1200 and the partial configuration information tree management table 1210.
Details of this procedure will be described later.
(3) The measurement value table design unit 121 repeats the operations (1) and (2) until there is no partial configuration information tree whose actual size exceeds C.
(ステップS1103)計測値テーブル設計部121は、確定していない部分構成情報木の中から、最もサイズが大きい部分構成情報木T1を選択する。 (Step S1103) The measurement value table design unit 121 selects the partial configuration information tree T1 having the largest size from the partial configuration information trees that are not fixed.
(ステップS1104)計測値テーブル設計部121は、ステップS1103で選択した部分構成情報木T1に関連付く実計測点または代替計測点N1と関連付いている、他の確定していない部分構成情報木の中から、最もサイズが大きい部分構成情報木T2を選択する。 (Step S1104) The measurement value table design unit 121 makes another undefined partial configuration information tree related to the actual measurement point or the alternative measurement point N1 related to the partial configuration information tree T1 selected in step S1103. The partial configuration information tree T2 having the largest size is selected from among them.
(ステップS1105)計測値テーブル設計部121は、部分構成情報木T1、T2の内、根ノードの子のノードの数を比較し、より子のノードの数が多い部分構成情報木T´を選択する。
 そして、計測値テーブル設計部121は、部分構成情報木T´を根ノードRと、その子ノードを新たな親とする部分構成情報木とに分割する。
 ここで、選択した部分構成情報木T´の分割では、ステップS1102の(2)と同様の手順が適用される。
(Step S1105) The measurement value table design unit 121 compares the number of child nodes of the root node among the partial configuration information trees T1 and T2, and selects the partial configuration information tree T ′ having a larger number of child nodes. To do.
Then, the measurement value table design unit 121 divides the partial configuration information tree T ′ into a root node R and a partial configuration information tree whose child node is a new parent.
Here, in the division of the selected partial configuration information tree T ′, the same procedure as (2) of step S1102 is applied.
(ステップS1106)計測値テーブル設計部121は、ステップS1105の根ノードRの仮想計測点定義に、実計測点が直接含まれるか否かをチェックする。
 すなわち、計測値テーブル設計部121は、構成情報テーブル142より、根ノードRのノードIDに関連する仮想計測点ID805を抽出する。
 そして、計測値テーブル設計部121は、仮想計測点定義テーブル141から、その仮想計測点IDの仮想計測点定義903を抽出し、実計測点を直接含むかチェックする。
 チェックの結果、直接含む場合(YES)は、処理はステップS1109に進む。
 直接含まない場合(NO)は、処理はステップS1107に進む。
 「実計測点を直接含む」とは、仮想計測点定義903が1つの実計測点で定義されている場合をいう。
 仮想計測点定義903が、複数の実計測点で定義されている場合、仮想計測点のみで定義されている場合、実計測点と仮想計測点との組合せで定義されている場合は、直接含まない(NO)と判定される。
(Step S1106) The measurement value table design unit 121 checks whether or not the actual measurement point is directly included in the virtual measurement point definition of the root node R in step S1105.
That is, the measurement value table design unit 121 extracts the virtual measurement point ID 805 related to the node ID of the root node R from the configuration information table 142.
Then, the measurement value table design unit 121 extracts the virtual measurement point definition 903 of the virtual measurement point ID from the virtual measurement point definition table 141, and checks whether the actual measurement point is directly included.
If it is included directly as a result of the check (YES), the process proceeds to step S1109.
If not included directly (NO), the process proceeds to step S1107.
“Directly including actual measurement points” refers to a case where the virtual measurement point definition 903 is defined by one actual measurement point.
If the virtual measurement point definition 903 is defined by a plurality of actual measurement points, if it is defined only by virtual measurement points, or if it is defined by a combination of actual measurement points and virtual measurement points, it is included directly No (NO) is determined.
(ステップS1107)計測値テーブル設計部121は、ステップS1105の根ノードRに、新たに代替計測点IDを割り当てて、計測点管理情報テーブル1200に追加する。
 計測値テーブル設計部121は、計測点管理情報テーブル1200に新規のレコードを追加し、「計測点ID」1201として新たに割り当てた代替計測点IDを、「自ノードID」1202に設定し、「根ノードID」1203に根ノードRのノードIDを設定する。
 「列名」1204は後から設定される。
 「代替計測点定義」1205には、その代替計測点の計測データを算出するための定義式が設定される。
(Step S1107) The measurement value table design unit 121 newly assigns an alternative measurement point ID to the root node R in step S1105 and adds it to the measurement point management information table 1200.
The measurement value table design unit 121 adds a new record to the measurement point management information table 1200, sets an alternative measurement point ID newly assigned as “measurement point ID” 1201 to “own node ID” 1202, and The node ID of the root node R is set in the “root node ID” 1203.
The “column name” 1204 is set later.
In “Alternative measurement point definition” 1205, a definition formula for calculating measurement data of the alternative measurement point is set.
 「代替計測点定義」1205に定義式を設定するためには、計測値テーブル設計部121は、その根ノードRのノードIDに関連付く仮想計測点IDを、構成情報テーブル142の仮想計測点ID805から抽出し、その仮想計測点の仮想計測点定義を、仮想計測点定義テーブル141の仮想計測点定義903から抽出する。
 さらに、計測値テーブル設計部121は、その抽出した仮想計測点定義903の定義式に、仮想計測点IDが含まれなくなるまで、再帰的に定義式を展開した上で、展開結果を「代替計測点定義」1205に設定する。
In order to set a definition formula in the “alternative measurement point definition” 1205, the measurement value table design unit 121 uses the virtual measurement point ID associated with the node ID of the root node R as the virtual measurement point ID 805 in the configuration information table 142. And the virtual measurement point definition of the virtual measurement point is extracted from the virtual measurement point definition 903 of the virtual measurement point definition table 141.
Further, the measurement value table design unit 121 recursively expands the definition formula until the virtual measurement point ID is not included in the extracted definition formula of the virtual measurement point definition 903, and displays the expansion result as “alternative measurement”. Point definition "1205 is set.
 このとき、展開後の「代替計測点定義」1205が非常に複雑で計測データの算出負荷が高い、同じ計測時刻の計測データからだけでは、代替計測点の計測データを算出することができない等の場合においては、計測値テーブル設計部121は、代替計測点を定義しなくてもよい。 At this time, the “alternative measurement point definition” 1205 after deployment is very complicated and the measurement data calculation load is high, the measurement data of the alternative measurement point cannot be calculated only from the measurement data at the same measurement time, etc. In some cases, the measurement value table design unit 121 need not define alternative measurement points.
(ステップS1108)計測値テーブル設計部121は、仮想計測点定義テーブル141に、代替計測点の情報を追加する。
 計測値テーブル設計部121は、上記のステップS1107における手順と同様にして、根ノードRのノードIDに関連する仮想計測点定義903を特定し、そこに根ノードRに割り当てた代替計測点IDを追加する。
(Step S1108) The measurement value table design unit 121 adds information on alternative measurement points to the virtual measurement point definition table 141.
The measurement value table design unit 121 identifies the virtual measurement point definition 903 related to the node ID of the root node R in the same manner as in the above step S1107, and sets the alternative measurement point ID assigned to the root node R therein. to add.
(ステップS1109)計測値テーブル設計部121は、根ノードRを、サイズ1の部分構成情報木として、部分構成情報木管理テーブルに追加する。
 計測値テーブル設計部121は、根ノードRに対応するレコードを生成し、新たに部分構成情報木IDを割り当て、「部分構成情報木ID」1211に設定する。
 また、計測値テーブル設計部121は、根ノードRのノードIDを「根ノードID」1212に設定する。
 さらに、計測値テーブル設計部121は、新たに部分構成情報木にグループIDを割り当て、「部分構成情報木グループID」1213に設定する。
(Step S1109) The measurement value table design unit 121 adds the root node R to the partial configuration information tree management table as a partial configuration information tree of size 1.
The measurement value table design unit 121 generates a record corresponding to the root node R, newly assigns a partial configuration information tree ID, and sets it to “partial configuration information tree ID” 1211.
Further, the measurement value table design unit 121 sets the node ID of the root node R to “root node ID” 1212.
Furthermore, the measurement value table design unit 121 newly assigns a group ID to the partial configuration information tree, and sets it to “partial configuration information tree group ID” 1213.
(ステップS1110)計測値テーブル設計部121は、部分構成情報木管理テーブル1210をチェックし、全ての部分構成情報木が確定しているか否か(「確定フラグ」904が立っているか否か)をチェックする。
 全ての部分構成情報木が確定していた場合(「確定フラグ」904が立っていた場合、YES)は、処理はステップS1111に進む。
 確定していない部分構成情報木が存在する場合(NO)は、処理はステップS1103に戻る。
(Step S1110) The measurement value table design unit 121 checks the partial configuration information tree management table 1210, and determines whether all the partial configuration information trees have been confirmed (whether the “confirmation flag” 904 is set). To check.
If all the partial configuration information trees have been confirmed (YES when “confirmation flag” 904 is set), the process proceeds to step S1111.
If there is an undefined partial configuration information tree (NO), the process returns to step S1103.
(ステップS1111)計測値テーブル設計部121は、全ての部分構成情報木が確定したら、DBサーバ名1215、データベース名1216、テーブル名1217、列名1204を設定する。
 まず、計測値テーブル設計部121は、部分構成情報木管理テーブル1210において、同じ「部分構成情報木グループID」1213が設定されているレコードには、同じ「DBサーバ名」1215、「データベース名」1216、「テーブル名」1217を設定する。
 計測値テーブル設計部121は、異なる「部分構成情報木グループID」1213が設定されているレコードには、少なくとも、「DBサーバ名」1215、「データベース名」1216、「テーブル名」1217のいずれかが異なる値を設定する。
 続けて、計測値テーブル設計部121は、同じ部分構成情報木グループに属する部分構成情報木の根ノードIDを、「根ノードID」1212から抽出し、計測点管理情報テーブル1200の「根ノードID」1203に、その根ノードIDが設定されている計測点に対して、ユニークな「列名」1204を割り当てる。
(Step S1111) The measurement value table design unit 121 sets the DB server name 1215, the database name 1216, the table name 1217, and the column name 1204 when all the partial configuration information trees are determined.
First, the measurement value table design unit 121 uses the same “DB server name” 1215 and “database name” for records in which the same “partial configuration information tree group ID” 1213 is set in the partial configuration information tree management table 1210. 1216, “table name” 1217 is set.
The measurement value table design unit 121 has at least one of “DB server name” 1215, “database name” 1216, and “table name” 1217 in a record in which a different “partial configuration information tree group ID” 1213 is set. Set a different value.
Subsequently, the measurement value table design unit 121 extracts the root node ID of the partial configuration information tree belonging to the same partial configuration information tree group from the “root node ID” 1212, and “root node ID” 1203 of the measurement point management information table 1200. A unique “column name” 1204 is assigned to the measurement point for which the root node ID is set.
(ステップS1112)計測値テーブル設計部121は、計測点管理情報テーブル1200と部分構成情報木管理テーブル1210の情報に基づき、計測値テーブル設計情報143と代替計測点定義テーブル143Aを更新する。
 すなわち、下記の通りに設定する。
 計測点管理情報テーブル1200の「計測点ID」1201
 → 計測値テーブル設計情報143の「計測点ID」1001
 部分構成情報木管理テーブル1210の「DBサーバ名」1215
 → 計測値テーブル設計情報143の「DBサーバ名」1002
 部分構成情報木管理テーブル1210の「データベース名」1216
 → 計測値テーブル設計情報143の「データベース名」1003
 部分構成情報木管理テーブル1210の「テーブル名」1217
 → 計測値テーブル設計情報143の「テーブル名」1004
 計測点管理情報テーブル1200の「列名」1204
 → 計測値テーブル設計情報143の「列名」1005
 計測点管理情報テーブル1200の「計測点ID」1201の中の代替計測点ID
 → 代替計測点定義テーブル143Aの「代替計測点ID」1011
 計測点管理情報テーブル1200の「代替計測点定義」1205
 → 代替計測点定義テーブル143Aの「代替計測点定義」1012
 ここで、計測値テーブル設計情報143の、代替計測点の「データ型」1006は、その代替計測点に関連する実計測点の「データ型」1006を基に設定することができる。
(Step S1112) The measurement value table design unit 121 updates the measurement value table design information 143 and the alternative measurement point definition table 143A based on the information in the measurement point management information table 1200 and the partial configuration information tree management table 1210.
That is, it sets as follows.
“Measurement point ID” 1201 in the measurement point management information table 1200
→ "Measurement point ID" 1001 of the measurement value table design information 143
“DB server name” 1215 in the partial configuration information tree management table 1210
→ "DB server name" 1002 of the measurement value table design information 143
“Database name” 1216 of the partial configuration information tree management table 1210
→ "Database name" 1003 of the measurement value table design information 143
“Table name” 1217 of the partial configuration information tree management table 1210
→ "Table name" 1004 of the measurement value table design information 143
“Column name” 1204 of the measurement point management information table 1200
→ "Column name" 1005 of the measurement value table design information 143
Alternative measurement point ID in “measurement point ID” 1201 of the measurement point management information table 1200
→ "Alternative measurement point ID" 1011 in the alternative measurement point definition table 143A
“Alternative measurement point definition” 1205 in the measurement point management information table 1200
→ "Alternative measurement point definition" 1012 in the alternative measurement point definition table 143A
Here, the “data type” 1006 of the alternative measurement point in the measurement value table design information 143 can be set based on the “data type” 1006 of the actual measurement point related to the alternative measurement point.
 ステップS1112において、計測値テーブル設計情報143の「計測点ID」1001と、部分構成情報木管理テーブル1210の「DBサーバ名」1215や「データベース名」1216との対応関係は、計測点管理情報テーブル1200の「根ノードID」1203と、部分構成情報木管理テーブル1210の「根ノードID」1212をキーにして、決定することができる。 In step S1112, the correspondence between the “measurement point ID” 1001 of the measurement value table design information 143 and the “DB server name” 1215 and “database name” 1216 of the partial configuration information tree management table 1210 is the measurement point management information table. It can be determined by using “root node ID” 1203 of 1200 and “root node ID” 1212 of the partial configuration information tree management table 1210 as keys.
 なお、ステップS1111において、「DBサーバ名」1215、「データベース名」1216、「テーブル名」1217、「列名」1204を割り当てるとしているが、計測値テーブル設計部121は、計測点管理情報テーブル1200の「計測点ID」1201、「自ノードID」1202、「根ノードID」1203、「代替計測点定義」1205と、部分構成情報木管理テーブル1210の「部分構成情報木ID」1211、「根ノードID」1212、「部分構成情報木グループID」1213、「確定フラグ」1214だけを設定し、残りの「DBサーバ名」1215、「データベース名」1216、「テーブル名」1217、「列名」1204はユーザが設定するようにしてもよい。 In step S1111, “DB server name” 1215, “database name” 1216, “table name” 1217, and “column name” 1204 are assigned. "Measurement point ID" 1201, "own node ID" 1202, "root node ID" 1203, "alternative measurement point definition" 1205, "partial configuration information tree ID" 1211 of the partial configuration information tree management table 1210, "root" Only the “node ID” 1212, “partial configuration information tree group ID” 1213, “confirmation flag” 1214 are set, and the remaining “DB server name” 1215, “database name” 1216, “table name” 1217, “column name” 1204 may be set by the user.
 (ステップS1113)計測値テーブル設計部121は、更新された計測値テーブル設計情報143と代替計測点定義テーブル143Aを、データ記憶部140に記録し、終了する。 (Step S1113) The measurement value table design unit 121 records the updated measurement value table design information 143 and the alternative measurement point definition table 143A in the data storage unit 140, and ends.
 部分構成情報木のサイズが大きい程、そこに関連付く実計測点または代替計測点が、他の部分構成情報木と関連付いている確率が高くなる。
 そのため、上記のステップS1103、S1104においては、計測値テーブル設計部121は、部分構成情報木のサイズが大きい木を優先的に選択して分割している。
 上記のステップS1103、S1104において、木のサイズではなく、木の実サイズを基準として部分構成情報木Tを選択してもよい。
 また、根ノードの子のノードの数が最も多い部分構成情報木を選択するようにしてもよい。
 根ノードの子ノードの数が多い程、1回の部分構成情報木への分割によって、より小さい部分構成情報木に分割されるため、全ての部分構成情報木が確定するまでのステップ数の削減の効果が期待できる。
 また、予め木のサイズ、または実サイズ、または根ノードの子のノードの数の閾値を設けておき、その閾値を超える部分構成情報木の中で、最初に見つかった部分構成情報木を選択するようにしてもよい。
 これにより、分割する部分構成情報木の候補の探索に要する時間の削減の効果が期待できる。
The larger the size of the partial configuration information tree, the higher the probability that an actual measurement point or an alternative measurement point associated therewith is associated with another partial configuration information tree.
Therefore, in steps S1103 and S1104 described above, the measurement value table design unit 121 preferentially selects and divides a tree having a large partial configuration information tree size.
In steps S1103 and S1104 described above, the partial configuration information tree T may be selected based on the actual tree size instead of the tree size.
Alternatively, the partial configuration information tree having the largest number of child nodes of the root node may be selected.
As the number of child nodes of the root node increases, the number of steps until all partial configuration information trees are determined is reduced because the partial configuration information tree is divided into smaller partial configuration information trees. Can be expected.
Also, a threshold value is set in advance for the size of the tree, the actual size, or the number of child nodes of the root node, and the first partial configuration information tree found in the partial configuration information tree exceeding the threshold is selected. You may do it.
As a result, the effect of reducing the time required for searching for candidates for the partial configuration information tree to be divided can be expected.
 ステップS1105において、根ノードの子のノードの数ではなく、木のサイズ、または木の実サイズを基準に、部分構成情報木を選択してもよい。
 また、予め根ノードの子のノードの数、または木のサイズ、または木の実サイズの閾値を設けておき、その閾値を超える部分構成情報木の中で、最初に見つかった部分構成情報木を選択するようにしてもよい。
In step S1105, the partial configuration information tree may be selected based on the size of the tree or the actual size of the tree instead of the number of children nodes of the root node.
In addition, a threshold value is set in advance for the number of child nodes of the root node, the tree size, or the actual tree size, and the first partial configuration information tree found in the partial configuration information tree exceeding the threshold is selected. You may do it.
 図19は、実施の形態1における、部分構成情報木を部分木に分割する処理の流れを示すフローチャートである。
 すなわちステップS1102の(2)の手順の詳細を示すものである。
FIG. 19 is a flowchart showing a flow of processing for dividing the partial configuration information tree into partial trees in the first embodiment.
That is, the details of the procedure (2) of step S1102 are shown.
(ステップS1301)分割する部分構成情報木Tが指定される。 (Step S1301) A partial configuration information tree T to be divided is designated.
(ステップS1302)計測値テーブル設計部121は、一時構成情報テーブルにおいて、部分構成情報木Tの根ノードRのノードIDを「親ID」802とするレコードを全て抽出する。
 それらのレコードのノードをRiとする。
 そして、計測値テーブル設計部121は、該当するレコードの「親ID」802を「null」に設定する。
(Step S1302) The measurement value table design unit 121 extracts all records in which the node ID of the root node R of the partial configuration information tree T is “parent ID” 802 in the temporary configuration information table.
Let Ri be the node of those records.
Then, the measurement value table design unit 121 sets “parent ID” 802 of the corresponding record to “null”.
 (ステップS1303)計測値テーブル設計部121は、部分構成情報木Tの根ノードRのノードIDを、計測点管理情報テーブル1200の「根ノードID」1203として持つレコードを抽出し、その根ノードIDを更新する。同時に、計測値テーブル設計部121は、構成情報テーブル142において、部分構成情報木Tに含まれる全ノードの「レベル」804を更新する。 (Step S1303) The measurement value table design unit 121 extracts a record having the node ID of the root node R of the partial configuration information tree T as the “root node ID” 1203 of the measurement point management information table 1200, and the root node ID. Update. At the same time, the measurement value table design unit 121 updates the “level” 804 of all nodes included in the partial configuration information tree T in the configuration information table 142.
 ステップS1303における、計測点管理情報テーブル1200の「根ノードID」1203の更新手順の一例を示す。
 まず、計測値テーブル設計部121は、ステップS1302において抽出されたノードRiのレコードのノードIDのいずれかを選択する。
 そして、計測値テーブル設計部121は、構成情報テーブル142において、その選択したノードIDから順に子ノードのノードIDを探索し、該当するレコードの「レベル」804から1を引く。さらに、計測値テーブル設計部121は、計測点管理情報テーブル1200の「自ノードID」1202に含まれるノードIDを検出したところで、その計測点管理情報テーブル1200のレコードの「根ノードID」を、元のIDに替えて、その選択したノードIDを設定する。
 計測値テーブル設計部121は、この操作を、ステップS1302において抽出された全レコードのノードIDに対して繰り返す。
An example of a procedure for updating the “root node ID” 1203 of the measurement point management information table 1200 in step S1303 will be described.
First, the measurement value table design unit 121 selects one of the node IDs of the record of the node Ri extracted in step S1302.
Then, the measurement value table design unit 121 searches the node ID of the child node in the configuration information table 142 in order from the selected node ID, and subtracts 1 from the “level” 804 of the corresponding record. Furthermore, when the measurement value table design unit 121 detects the node ID included in the “own node ID” 1202 of the measurement point management information table 1200, the “root node ID” of the record of the measurement point management information table 1200 is The selected node ID is set instead of the original ID.
The measurement value table design unit 121 repeats this operation for the node IDs of all the records extracted in step S1302.
(ステップS1304)計測値テーブル設計部121は、ステップS1302~S1303の操作によって分割された部分構成情報木Tiの情報を、部分構成情報木管理テーブル1210に追加する。
 計測値テーブル設計部121は、各部分構成情報木Tiに対応するレコードを生成し、新たに部分構成情報木IDを割り当て、「部分構成情報木ID」1211に設定する。
 また、計測値テーブル設計部121は、部分構成情報木Tiの根ノードRiのノードIDを「根ノードID」1212に設定する。さらに、計測値テーブル設計部121は、新たに部分構成情報木のグループIDを割り当て、「部分構成情報木グループID」1213に設定する。
(Step S1304) The measurement value table design unit 121 adds the information of the partial configuration information tree Ti divided by the operations of steps S1302 to S1303 to the partial configuration information tree management table 1210.
The measurement value table design unit 121 generates a record corresponding to each partial configuration information tree Ti, assigns a new partial configuration information tree ID, and sets it to “partial configuration information tree ID” 1211.
Further, the measurement value table design unit 121 sets the node ID of the root node Ri of the partial configuration information tree Ti to “root node ID” 1212. Furthermore, the measurement value table design unit 121 newly assigns a group ID of the partial configuration information tree and sets it to “partial configuration information tree group ID” 1213.
(ステップS1305)計測値テーブル設計部121は、確定した部分構成情報木をチェックし、確定した部分構成情報木が存在した場合は、部分構成情報木管理テーブル1210における、その部分構成情報木に該当する「確定フラグ」1214を立てる。
 確定した複数の部分構成情報木が、同じ実計測点または代替計測点に関連付いていた場合は、計測値テーブル設計部121は、それらの部分構成情報木の「部分構成情報木グループID」1213に、同じ部分構成情報木グループIDを割り当て設定する。
 また、異なる部分構成情報木グループに属する確定した部分構成情報木であっても、それらに関連付いた実計測点または代替計測点のユニークな数がC以下であった場合は、計測値テーブル設計部121は、同じ部分構成情報木グループIDを設定し直してもよい。
(Step S1305) The measurement value table design unit 121 checks the confirmed partial configuration information tree, and if there is a confirmed partial configuration information tree, it corresponds to the partial configuration information tree in the partial configuration information tree management table 1210. “Confirm flag” 1214 is set.
When a plurality of confirmed partial configuration information trees are associated with the same actual measurement point or alternative measurement point, the measurement value table design unit 121 sets “partial configuration information tree group ID” 1213 of those partial configuration information trees. Are assigned the same partial configuration information tree group ID.
In addition, even if the partial configuration information trees that belong to different partial configuration information tree groups have a unique number of actual measurement points or alternative measurement points associated with them, the measurement value table design The unit 121 may reset the same partial configuration information tree group ID.
 ステップS1305において、部分構成情報木を確定したと判定する別の条件(第3の確定状態)について示す。
 1個以上の実計測点Pが複数の確定していない部分構成情報木に関連付いていた場合であっても、その実計測点Pを独立した計測点とみなして、異なる代替計測点IDを割り当てることで、部分構成情報木を確定させることができる。
 すなわち、計測値テーブル設計部121は、実計測点Pの計測データを、複数の計測値テーブル144に格納する。
 ただし、そのような実計測点Pの数が多い場合は、多くの計測データを二重、三重に重複して記憶することになり、ストレージ容量の無駄である。
 そこで、計測値テーブル設計部121は、予め重複可能な計測点の数を閾値として設定しておき、複数の確定していない部分構成情報木に関連付いている実計測点の数がその閾値を超えない場合は、計測点管理情報テーブル1200にレコードを追加し、実計測点Pに新たに代替計測点IDを割り当て、「計測点ID」1201にその代替計測点IDを設定する。
 同時に、計測値テーブル設計部121は、そのレコードの「代替計測点定義」1205には、元の実計測点IDを設定する。
 そして、計測値テーブル設計部121は、その実計測点Pに関連付いていた部分構成情報木については、そのまま確定させる。
 実計測点Pに異なる代替計測点IDを割り当てることにより、実計測点Pに関連付いていた部分構成情報木を、独立した部分構成情報木とみなすことができ、これらの部分構成情報木が第1の確定状態または第2の確定状態を満たす場合には、当該部分構成情報木を確定させることができる。
Another condition (third confirmed state) for determining that the partial configuration information tree has been confirmed in step S1305 will be described.
Even when one or more actual measurement points P are associated with a plurality of undefined partial configuration information trees, the actual measurement points P are regarded as independent measurement points and assigned different alternative measurement point IDs. Thus, the partial configuration information tree can be determined.
That is, the measurement value table design unit 121 stores the measurement data of the actual measurement point P in the plurality of measurement value tables 144.
However, when there are a large number of such actual measurement points P, a large amount of measurement data is stored in duplicate and triple, which is a waste of storage capacity.
Therefore, the measurement value table design unit 121 sets the number of measurement points that can be overlapped in advance as a threshold, and the number of actual measurement points associated with a plurality of undefined partial configuration information trees sets the threshold. If not, a record is added to the measurement point management information table 1200, an alternative measurement point ID is newly assigned to the actual measurement point P, and the alternative measurement point ID is set in the “measurement point ID” 1201.
At the same time, the measurement value table design unit 121 sets the original actual measurement point ID in the “alternative measurement point definition” 1205 of the record.
Then, the measurement value table design unit 121 determines the partial configuration information tree associated with the actual measurement point P as it is.
By assigning different alternative measurement point IDs to the actual measurement points P, the partial configuration information trees associated with the actual measurement points P can be regarded as independent partial configuration information trees. In the case of satisfying one confirmed state or the second confirmed state, the partial configuration information tree can be confirmed.
 図25に示す例では、部分木データ1101は実計測点1~6と関連付いており、部分木データ1102は実計測点6~11と関連付いている。
 実計測点6は、部分木データ1101と部分木データ1102の両方に関連付いている。
 図25の例では、1つの計測値テーブルの列数は8個であり、部分木データ1101と部分木データ1102に関連付く実計測点の数は11であるため、図24に示した第2の確定状態には該当しない。
 図25の例では、複数の部分木データに関連付いている実計測点の数が閾値を超えないので、部分木データ1101と部分木データ1102は、それぞれ第3の確定状態にあると判定される。
 そして、実計測点6は、部分木データ1101の計測値テーブルと、部分木データ1102の計測値テーブルの双方に割当てられる。
 実計測点の数の閾値は、ユーザが任意に決定することができる。
In the example shown in FIG. 25, the subtree data 1101 is associated with the actual measurement points 1 to 6, and the subtree data 1102 is associated with the actual measurement points 6 to 11.
The actual measurement point 6 is associated with both the partial tree data 1101 and the partial tree data 1102.
In the example of FIG. 25, the number of columns in one measurement value table is 8, and the number of actual measurement points associated with the subtree data 1101 and the subtree data 1102 is 11. Therefore, the second measurement shown in FIG. It does not correspond to the fixed state.
In the example of FIG. 25, since the number of actual measurement points associated with a plurality of subtree data does not exceed the threshold value, it is determined that the subtree data 1101 and the subtree data 1102 are in the third final state. The
The actual measurement point 6 is assigned to both the measurement value table of the subtree data 1101 and the measurement value table of the subtree data 1102.
The threshold for the number of actual measurement points can be arbitrarily determined by the user.
 ここで、計測値テーブル設計部121の動作例を、具体例を用いて説明する。 Here, an operation example of the measurement value table design unit 121 will be described using a specific example.
 図26及び図28は、以下の説明で用いる構成情報木1131及び構成情報木1132を示す。
 構成情報木1131にはグループID=1が設定され、構成情報木1132にはグループID=2が設定されている。
 図26及び図28において、輪郭が二重になっているノードは、実計測点と直接関連付いているノードである。
 図27は、図26の構成情報木1131の構成情報テーブル(図10の構成情報テーブル142に相当)であり、図29は、図28の構成情報木1132の構成情報テーブルである。
 構成情報木1131と構成情報木1132は、図30に示すように、実計測点$1~$15と関連付いている。
 図31は、構成情報木1131の仮想計測点定義テーブル(図12の仮想計測点定義テーブル141に相当)であり、図32は、構成情報木1132の仮想計測点定義テーブルである。
 図33は、構成情報木1131の一時構成情報テーブルであり、図34は、構成情報木1132の一時構成情報テーブルである。
 図35は、構成情報木1131と構成情報木1132の計測点管理情報テーブル(図17の計測点管理情報テーブル1200に相当)である。
 図36は、計測値テーブル設計部121が構成情報木1131と構成情報木1132の分割を開始する前の部分構成情報木テーブル(図18の部分構成情報木管理テーブル1210に相当)である。
 以下では、実サイズC=8、すなわち、計測値テーブル144に計測値を格納可能な実計測点(計測機器)の数が8個であると仮定する。
26 and 28 show a configuration information tree 1131 and a configuration information tree 1132 used in the following description.
Group ID = 1 is set in the configuration information tree 1131, and group ID = 2 is set in the configuration information tree 1132.
In FIG. 26 and FIG. 28, the node with the double outline is a node directly associated with the actual measurement point.
27 is a configuration information table (corresponding to the configuration information table 142 in FIG. 10) of the configuration information tree 1131 in FIG. 26, and FIG. 29 is a configuration information table in the configuration information tree 1132 in FIG.
The configuration information tree 1131 and the configuration information tree 1132 are associated with actual measurement points $ 1 to $ 15 as shown in FIG.
FIG. 31 is a virtual measurement point definition table (corresponding to the virtual measurement point definition table 141 of FIG. 12) of the configuration information tree 1131, and FIG. 32 is a virtual measurement point definition table of the configuration information tree 1132.
FIG. 33 is a temporary configuration information table of the configuration information tree 1131, and FIG. 34 is a temporary configuration information table of the configuration information tree 1132.
FIG. 35 is a measurement point management information table (corresponding to the measurement point management information table 1200 of FIG. 17) of the configuration information tree 1131 and the configuration information tree 1132.
FIG. 36 is a partial configuration information tree table (corresponding to the partial configuration information tree management table 1210 in FIG. 18) before the measurement value table design unit 121 starts dividing the configuration information tree 1131 and the configuration information tree 1132.
In the following, it is assumed that the actual size C = 8, that is, the number of actual measurement points (measurement devices) that can store measurement values in the measurement value table 144 is eight.
 計測値テーブル設計部121は、図15のS1102に示すように、構成情報木1131と構成情報木1132を、各部分木の実サイズがC=8以下となるように分割する。 The measurement value table design unit 121 divides the configuration information tree 1131 and the configuration information tree 1132 so that the actual size of each partial tree is C = 8 or less, as shown in S1102 of FIG.
 具体的には、計測値テーブル設計部121は、例えば、構成情報木1131を選択し(図19のS1301)、根ノード「A01」の子ノードであるノード「A02」及び「A03」を抽出する(S1302)。
 そして、計測値テーブル設計部121は、構成情報木1131の一時構成情報テーブル(図33)のノード「A02」~「A39」の「レベル」から1を引く(S1303)。
 この結果、構成情報木1131の一時構成情報テーブルは図37のように更新される。
 また、計測値テーブル設計部121は、計測点管理情報テーブル(図35)内の根ノードID欄に「1」(根ノード「A01」のID)が記述されているレコードの根ノードIDを更新する(S1303)。
 この結果、計測点管理情報テーブルは、図38のように更新される。
Specifically, the measurement value table design unit 121 selects, for example, the configuration information tree 1131 (S1301 in FIG. 19), and extracts nodes “A02” and “A03” that are child nodes of the root node “A01”. (S1302).
Then, the measurement value table design unit 121 subtracts 1 from the “level” of the nodes “A02” to “A39” of the temporary configuration information table (FIG. 33) of the configuration information tree 1131 (S1303).
As a result, the temporary configuration information table of the configuration information tree 1131 is updated as shown in FIG.
Further, the measurement value table design unit 121 updates the root node ID of the record in which “1” (ID of the root node “A01”) is described in the root node ID column in the measurement point management information table (FIG. 35). (S1303).
As a result, the measurement point management information table is updated as shown in FIG.
 次に、計測値テーブル設計部121は、ノード「A02」を根ノードとする部分木の情報と、ノード「A03」を根ノードとする部分木の情報とを、部分構成情報木テーブル(図36)に追加する(S1304)。
 なお、この時点では、ノード「A02」を根ノードとする部分木もノード「A03」を根ノードとする部分木も、確定していない。
 ノード「A02」を根ノードとする部分木と直接関連付いている実計測点は、実計測点1~7であるため、実サイズは7であるが、実計測点1~7は、構成情報木1132にも関連付いている。
 このため、ノード「A02」を根ノードとする部分木は、第1の確定状態になっていない。
 構成情報木1132は、この時点では、分割されていないので、実計測点1~7と関連付いている構成情報木1132は実計測点8~15にも関連付いているので、第2の確定状態にもなっていない。
 また、構成情報木1132は、第3の確定状態にもなっていない。
 ノード「A03」を根ノードとする部分木と直接関連付いている実計測点は、実計測点8~14であるため、実サイズは7であるが、実計測点8~14は、構成情報木1132にも関連付いている。
 このため、ノード「A03」を根ノードとする部分木は、第1の確定状態になっていない。
 構成情報木1132は、この時点では、分割されていないので、実計測点8~14と関連付いている構成情報木1132は実計測点1~7及び15にも関連付いているので、第2の確定状態にもなっていない。
 また、構成情報木1132は、第3の確定状態にもなっていない。
 このため、部分構成情報木テーブルは図39のように更新される。
 図39の部分構成情報木テーブルでは、根ノード「A01」のみで構成される部分木では確定フラグが「1」となっているが、それ以外の部分木では確定フラグが「0」である。
Next, the measurement value table design unit 121 stores the partial tree information having the node “A02” as the root node and the partial tree information having the node “A03” as the root node into the partial configuration information tree table (FIG. 36). (S1304).
At this time, neither the subtree having the node “A02” as the root node nor the subtree having the node “A03” as the root node has been determined.
Since the actual measurement points directly associated with the subtree having the node “A02” as the root node are the actual measurement points 1 to 7, the actual size is 7, but the actual measurement points 1 to 7 are the configuration information. Also associated with tree 1132.
For this reason, the subtree having the node “A02” as the root node is not in the first definite state.
Since the configuration information tree 1132 is not divided at this point, the configuration information tree 1132 associated with the actual measurement points 1 to 7 is also associated with the actual measurement points 8 to 15, so that the second confirmation is made. It is not in a state.
Further, the configuration information tree 1132 is not in the third finalized state.
Since the actual measurement points directly associated with the subtree having the node “A03” as the root node are the actual measurement points 8 to 14, the actual size is 7, but the actual measurement points 8 to 14 are the configuration information. Also associated with tree 1132.
For this reason, the subtree having the node “A03” as the root node is not in the first definite state.
Since the configuration information tree 1132 is not divided at this point, the configuration information tree 1132 associated with the actual measurement points 8 to 14 is also associated with the actual measurement points 1 to 7 and 15, so that the second It is not in the final state.
Further, the configuration information tree 1132 is not in the third finalized state.
Therefore, the partial configuration information tree table is updated as shown in FIG.
In the partial configuration information tree table of FIG. 39, the confirmation flag is “1” in the partial tree composed only of the root node “A01”, but the confirmation flag is “0” in the other partial trees.
 次に、計測値テーブル設計部121は、構成情報木1132を選択し(図19のS1301)、根ノード「B01」の子ノードであるノード「B11」~「B13」を抽出する(S1302)。
 そして、計測値テーブル設計部121は、構成情報木1132の一時構成情報テーブル(図34)のノード「B11」~「B44」の「レベル」から1を引く(S1303)。
 この結果、構成情報木1132の一時構成情報テーブルは図40のように更新される。
 また、計測値テーブル設計部121は、計測点管理情報テーブル(図38)内の根ノードID欄に「101」(根ノード「B01」のID)が記述されているレコードの根ノードIDを更新する(S1303)。
 この結果、計測点管理情報テーブルは、図41のように更新される。
Next, the measurement value table design unit 121 selects the configuration information tree 1132 (S1301 in FIG. 19), and extracts nodes “B11” to “B13” that are child nodes of the root node “B01” (S1302).
Then, the measurement value table design unit 121 subtracts 1 from the “level” of the nodes “B11” to “B44” in the temporary configuration information table (FIG. 34) of the configuration information tree 1132 (S1303).
As a result, the temporary configuration information table of the configuration information tree 1132 is updated as shown in FIG.
Further, the measurement value table design unit 121 updates the root node ID of the record in which “101” (the ID of the root node “B01”) is described in the root node ID column in the measurement point management information table (FIG. 38). (S1303).
As a result, the measurement point management information table is updated as shown in FIG.
 次に、計測値テーブル設計部121は、ノード「B11」を根ノードとする部分木の情報と、ノード「B12」を根ノードとする部分木の情報と、ノード「B13」を根ノードとする部分木の情報とを、部分構成情報木テーブル(図39)に追加する(S1307)。
 なお、この時点では、全ての部分木が確定する。
 ノード「A02」を根ノードとする部分木とノード「B11」を根ノードとする部分木に関連付いている実計測点のユニークな数は7個であるため、ノード「A02」を根ノードとする部分木とノード「B11」を根ノードとする部分木は第2の確定状態に該当する。
 ノード「A03」を根ノードとする部分木とノード「B12」を根ノードとする部分木とノード「B13」を根ノードとする部分木に関連付いている実計測点のユニークな数は8個であるため、ノード「A03」を根ノードとする部分木とノード「B12」を根ノードとする部分木とノード「B13」を根ノードとする部分木は第2の確定状態に該当する。
 このため、部分構成情報木テーブルは図42のように更新される。
 図42の部分構成情報木テーブルでは、全ての部分木において確定フラグが「1」である。
Next, the measurement value table design unit 121 uses the subtree information having the node “B11” as the root node, the subtree information having the node “B12” as the root node, and the node “B13” as the root node. The partial tree information is added to the partial configuration information tree table (FIG. 39) (S1307).
At this point, all subtrees are fixed.
Since the unique number of actual measurement points associated with the subtree having the node “A02” as the root node and the subtree having the node “B11” as the root node is 7, the node “A02” is defined as the root node. And the subtree having the node “B11” as the root node corresponds to the second definite state.
Eight unique measurement points are associated with the subtree having the node “A03” as the root node, the subtree having the node “B12” as the root node, and the subtree having the node “B13” as the root node. Therefore, the subtree having the node “A03” as the root node, the subtree having the node “B12” as the root node, and the subtree having the node “B13” as the root node correspond to the second definite state.
Therefore, the partial configuration information tree table is updated as shown in FIG.
In the partial configuration information tree table of FIG. 42, the confirmation flag is “1” in all the partial trees.
 次に、計測値テーブル設計部121は、部分構成情報木テーブルの「部分構成情報木グループID」の欄を更新する。
 具体的には、計測値テーブル設計部121は、図43に示すように「部分構成情報木グループID」の欄を更新する。
Next, the measurement value table design unit 121 updates the “partial configuration information tree group ID” field of the partial configuration information tree table.
Specifically, the measurement value table design unit 121 updates the “partial configuration information tree group ID” field as shown in FIG.
 次に、計測値テーブル設計部121は、図15のS1103~S1105を行うが、本例では、全ての部分木が確定しているので、S1103~S1105の処理は省略される。
 計測値テーブル設計部121は、根ノードの仮想計測点定義に実計測点が直接含まれるかを判断する(S1106)。
 図31及び図32の仮想計測点定義テーブルを参照すると、根ノードである「A01」、「A02」、「A03」、「B01」、「B11」、「B12」、「B13」のいずれも、仮想計測点定義に実計測点が直接含まれていない(S1106でNO)。
 このため、計測値テーブル設計部121は、「A01」、「A02」、「A03」、「B01」、「B11」、「B12」、「B13」の各々に対して代替計測点の情報を仮想計測点定義テーブルに追加する(S1108)。
 また、本例では、全ての部分木の情報が既に部分構成情報木管理テーブルに登録されているので、S1109の処理は省略される。
 そして、全ての部分木が確定している(S1110でYES)ので、計測値テーブル設計部121はS1111~S1113の処理を行う。
 S1111~S1113の処理は、図16を参照して説明した通りなので、ここでは説明を割愛する。
 S1113の処理が完了した段階では、仮想計測点定義テーブルが図45及び図46に示すように更新され、計測点管理情報テーブルが図47に示すように更新されている。
 図45の仮想計測点定義テーブルでは、仮想計測点ID:#1の仮想計測点定義において代替計測点「%1」が追加され、代替計測点フラグが「1」になっている。
 また、仮想計測点ID:#2、#3の仮想計測点定義において代替計測点「%2」、「%3」が追加され、代替計測点フラグが「1」になっている。
 同様に、図46の仮想計測点定義テーブルでも、仮想計測点ID:#101、#111、#112、#113の仮想計測点定義において代替計測点「%4」、「%5」、「%6」、「%7」が追加され、代替計測点フラグが「1」になっている。
 また、図47の計測点管理情報テーブルでは、計測点ID:%1~%7のレコードが追加されている。
 計測点管理情報テーブル内の代替計測点定義は、例えば、図48に示す手順で導出される。
 図48は、%1の代替計測点の導出手順を示している。
 図45に示すように、%1の代替計測点は、#1の仮想計測点に対応しており、仮想計測点定義から、#1=#2+#3であり、#2=#11+#12+#13であり、#3=#14+#15+#16である。
 このため、%1の代替計測点は、#1=(#11+#12+#13)+(#14+#15+#16)となる。
 以降、同様にして、各仮想計測点を仮想計測点定義に従って展開していくと、図48の最終行のような代替計測点定義が得られる。
Next, the measurement value table design unit 121 performs S1103 to S1105 in FIG. 15. In this example, since all subtrees have been determined, the processing of S1103 to S1105 is omitted.
The measurement value table design unit 121 determines whether the actual measurement point is directly included in the virtual measurement point definition of the root node (S1106).
Referring to the virtual measurement point definition tables in FIG. 31 and FIG. 32, all of the root nodes “A01”, “A02”, “A03”, “B01”, “B11”, “B12”, “B13” The actual measurement point is not directly included in the virtual measurement point definition (NO in S1106).
Therefore, the measurement value table design unit 121 virtually transmits the information of the alternative measurement points for each of “A01”, “A02”, “A03”, “B01”, “B11”, “B12”, and “B13”. It adds to a measurement point definition table (S1108).
Further, in this example, since the information of all the partial trees has already been registered in the partial configuration information tree management table, the process of S1109 is omitted.
Since all subtrees have been determined (YES in S1110), the measurement value table design unit 121 performs the processes of S1111 to S1113.
Since the processing of S1111 to S1113 is as described with reference to FIG. 16, the description thereof is omitted here.
At the stage where the processing of S1113 is completed, the virtual measurement point definition table is updated as shown in FIGS. 45 and 46, and the measurement point management information table is updated as shown in FIG.
In the virtual measurement point definition table of FIG. 45, the alternative measurement point “% 1” is added in the virtual measurement point definition of the virtual measurement point ID: # 1, and the alternative measurement point flag is “1”.
In addition, alternative measurement points “% 2” and “% 3” are added to the virtual measurement point definitions of the virtual measurement point IDs: # 2 and # 3, and the alternative measurement point flag is “1”.
Similarly, in the virtual measurement point definition table of FIG. 46, the alternative measurement points “% 4”, “% 5”, “%” in the virtual measurement point definitions of the virtual measurement point IDs: # 101, # 111, # 112, and # 113 6 ”and“% 7 ”are added, and the alternative measurement point flag is“ 1 ”.
In the measurement point management information table of FIG. 47, records of measurement point IDs:% 1 to% 7 are added.
The alternative measurement point definition in the measurement point management information table is derived, for example, according to the procedure shown in FIG.
FIG. 48 shows a procedure for deriving% 1 alternative measurement points.
As shown in FIG. 45, the alternative measurement point% 1 corresponds to the virtual measurement point # 1, and from the virtual measurement point definition, # 1 = # 2 + # 3 and # 2 = # 11 + # 12 + # 13 and # 3 = # 14 + # 15 + # 16.
Therefore, the alternative measurement point of% 1 is # 1 = (# 11 + # 12 + # 13) + (# 14 + # 15 + # 16).
Thereafter, similarly, when each virtual measurement point is expanded in accordance with the virtual measurement point definition, an alternative measurement point definition such as the last line in FIG. 48 is obtained.
 以上、本実施の形態では、以下に示す計測データ管理装置を説明した。
(a)計測機器により計測された複数の計測データの入力を受け付ける計測データ収集蓄積部と、計測データを格納するため記憶装置を備え、入力された計測データを、記憶装置内に定義された複数の計測値テーブルのいずれかに格納する。
(b)計測機器は、複数の階層(木構造)をもった構成情報と関連付けられている。
(c)上記の構成情報の階層関係に依存して仮想計測点の計測データを算出するための仮想計測点定義を備え、計測値テーブルに格納された計測データと、仮想計測点定義に基づいて仮想計測点の計測データを算出し、出力する計測データ出力部を備える。
(d)上記の構成情報と仮想計測点定義に基づき、構成情報を部分木に分割する計測値テーブル設計部を備える。
(e)計測値テーブル設計部は、さらに、構成情報の1または複数の部分木に関連付いた計測データと、計測値テーブルとを関連付け、その対応情報を計測値テーブル設計情報として記録する。
(f)計測値テーブル設計情報に基づき、記憶装置内に複数のテーブルを定義する、計測値テーブル定義部を備える。
(g)計測データ収集蓄積部は、計測データの識別子と、計測値テーブル設計情報に基づき、その計測データを格納する計測値テーブルを決定する。
As described above, in the present embodiment, the following measurement data management device has been described.
(A) A measurement data collection and storage unit that receives input of a plurality of measurement data measured by a measurement device, and a storage device for storing the measurement data, and a plurality of input measurement data defined in the storage device Stored in one of the measured value tables.
(B) The measuring device is associated with configuration information having a plurality of hierarchies (tree structure).
(C) A virtual measurement point definition for calculating the measurement data of the virtual measurement point depending on the hierarchical relationship of the configuration information is provided, based on the measurement data stored in the measurement value table and the virtual measurement point definition A measurement data output unit that calculates and outputs measurement data of virtual measurement points is provided.
(D) A measurement value table design unit is provided that divides the configuration information into subtrees based on the configuration information and the virtual measurement point definition.
(E) The measurement value table design unit further associates measurement data associated with one or more subtrees of the configuration information with the measurement value table, and records the corresponding information as measurement value table design information.
(F) A measurement value table definition unit that defines a plurality of tables in the storage device based on the measurement value table design information is provided.
(G) The measurement data collection and accumulation unit determines a measurement value table for storing the measurement data based on the measurement data identifier and the measurement value table design information.
 また、本実施の形態では、構成情報の部分木に関連付いた計測データの種類数が、計測データの格納に使用するデータベース管理システムの諸元の範囲内になるよう、構成情報を部分木に再帰的に分割する計測値テーブル設計部を説明した。 In the present embodiment, the configuration information is stored in the subtree so that the number of types of measurement data associated with the subtree of the configuration information is within the specifications of the database management system used for storing the measurement data. The measurement value table design unit for recursively dividing has been described.
 また、本実施の形態では、1または複数の計測データが、複数の構成情報に関連付いている場合に、その関連付いた構成情報のいずれかを選択し、1または複数の部分木に関連付いた計測データの数が、上記諸元の範囲内になるまで繰り返し部分木に分割する計測値テーブル設計部を説明した。 In this embodiment, when one or a plurality of measurement data is associated with a plurality of pieces of configuration information, any one of the pieces of associated configuration information is selected and associated with one or a plurality of subtrees. A measurement value table design unit that repeatedly divides the measurement data into subtrees until the number of measurement data falls within the range of the above specifications has been described.
 また、本実施の形態では、以下に示す計測値テーブル設計部を説明した。
(a)構成情報の部分木への分割は、木構造の根ノードと、その根ノードの子のノードを新たな根とする部分木とに分割する。
(b)元の根ノードに、新たに代替計測点の識別子を割り当て、その識別子と、その根ノードに相当する仮想計測点の計測データを算出するための算出式とを計測値テーブル設計情報に記憶する。
In the present embodiment, the measurement value table design unit described below has been described.
(A) The division of the configuration information into subtrees is performed by dividing the root node of the tree structure into a subtree whose new root is a child node of the root node.
(B) The identifier of the alternative measurement point is newly assigned to the original root node, and the identifier and the calculation formula for calculating the measurement data of the virtual measurement point corresponding to the root node are used as the measurement value table design information. Remember.
 また、本実施の形態では、1または複数の計測データが、複数の構成情報の部分木に関連付いている場合に、その計測データに複数の代替計測点の識別子を割り当て、その識別子と、元の計測データを得るための計測機器の識別子、または算出式とを計測値テーブル設計情報に記憶する計測値テーブル設計部を説明した。 Further, in the present embodiment, when one or a plurality of measurement data is associated with a plurality of subtrees of configuration information, an identifier of a plurality of alternative measurement points is assigned to the measurement data, The measurement value table design unit that stores the measurement device identifier or calculation formula for obtaining the measurement data in the measurement value table design information has been described.
 最後に、本実施の形態に示した計測データ管理装置100のハードウェア構成例を図44を参照して説明する。
 計測データ管理装置100はコンピュータであり、計測データ管理装置100の各要素をプログラムで実現することができる。
 計測データ管理装置100のハードウェア構成としては、バスに、演算装置1901、外部記憶装置1902、主記憶装置1903、通信装置1904、入出力装置1905が接続されている。
Finally, a hardware configuration example of the measurement data management apparatus 100 shown in the present embodiment will be described with reference to FIG.
The measurement data management apparatus 100 is a computer, and each element of the measurement data management apparatus 100 can be realized by a program.
As a hardware configuration of the measurement data management apparatus 100, an arithmetic device 1901, an external storage device 1902, a main storage device 1903, a communication device 1904, and an input / output device 1905 are connected to the bus.
 演算装置1901は、プログラムを実行するCPU(Central Processing Unit)である。
 外部記憶装置1902は、例えばROM(Read Only Memory)やフラッシュメモリ、ハードディスク装置である。
 主記憶装置1903は、RAM(Random Access Memory)である。
 通信装置1904は、例えばNIC(Network Interface Card)である。
 入出力装置1905は、例えばマウス、キーボード、ディスプレイ装置等である。
The arithmetic device 1901 is a CPU (Central Processing Unit) that executes a program.
The external storage device 1902 is, for example, a ROM (Read Only Memory), a flash memory, or a hard disk device.
The main storage device 1903 is a RAM (Random Access Memory).
The communication device 1904 is, for example, a NIC (Network Interface Card).
The input / output device 1905 is, for example, a mouse, a keyboard, a display device, or the like.
 プログラムは、通常は外部記憶装置1902に記憶されており、主記憶装置1903にロードされた状態で、順次演算装置1901に読み込まれ、実行される。
 プログラムは、図1に示す「~部」(データ記憶部を除く、以下も同様)として説明している機能を実現するプログラムである。
 更に、外部記憶装置1902にはオペレーティングシステム(OS)も記憶されており、OSの少なくとも一部が主記憶装置1903にロードされ、演算装置1901はOSを実行しながら、図1に示す「~部」の機能を実現するプログラムを実行する。
 また、本実施の形態の説明において、「~の判断」、「~の判定」、「~の抽出」、「~の分割」、「~の検知」、「~の設定」、「~の登録」、「~の選択」、「~の生成」、「~の追加」、「~の更新」、「~の入力」、「~の出力」等として説明している処理の結果を示す情報やデータや信号値や変数値が主記憶装置1903にファイルとして記憶されている。
 また、暗号鍵・復号鍵や乱数値やパラメータが、主記憶装置1903にファイルとして記憶されてもよい。
The program is normally stored in the external storage device 1902, and is sequentially read into the arithmetic device 1901 and executed while being loaded in the main storage device 1903.
The program is a program that realizes the function described as “˜unit” (excluding the data storage unit, the same applies hereinafter) shown in FIG.
Further, an operating system (OS) is also stored in the external storage device 1902. At least a part of the OS is loaded into the main storage device 1903, and the arithmetic unit 1901 executes “OS” while executing “OS” shown in FIG. ”Is executed.
In the description of the present embodiment, “determining”, “determining”, “extracting”, “dividing”, “detecting”, “setting of”, “registering” ”,“ Selection of ”,“ generation of ”,“ addition of ”,“ update of ”,“ input of ”,“ output of ”, etc. Data, signal values, and variable values are stored in the main storage device 1903 as files.
Also, the encryption key / decryption key, random number value, and parameter may be stored in the main storage device 1903 as a file.
 なお、図44の構成は、あくまでも計測データ管理装置100のハードウェア構成の一例を示すものであり、計測データ管理装置100のハードウェア構成は図44に記載の構成に限らず、他の構成であってもよい。 The configuration in FIG. 44 is merely an example of the hardware configuration of the measurement data management device 100, and the hardware configuration of the measurement data management device 100 is not limited to the configuration described in FIG. There may be.
 また、本実施の形態に示す手順により、本発明に係るデータ処理方法を実現可能である。 Further, the data processing method according to the present invention can be realized by the procedure shown in the present embodiment.
 100 計測データ管理装置、110 仮想計測点管理部、111 仮想計測点情報入出力部、112 構成情報入出力部、120 計測値テーブル管理部、121 計測値テーブル設計部、122 計測値テーブル定義部、130 計測データ管理部、131 計測データ収集蓄積部、132 仮想計測データ演算部、133 計測データ出力部、140 データ記憶部、141 仮想計測点定義テーブル、142 構成情報テーブル、143 計測値テーブル設計情報、144 計測値テーブル、200 計測データ管理システム、201 計測機器、210 拠点装置、211 計測データ受信部、212 計測データ送信部、219 拠点装置記憶部、220 操作端末、221 アプリケーション実行部、229 操作端末記憶部、400 計測データ、1200 計測点管理情報テーブル、1210 部分構成情報木管理テーブル。 100 measurement data management device, 110 virtual measurement point management unit, 111 virtual measurement point information input / output unit, 112 configuration information input / output unit, 120 measurement value table management unit, 121 measurement value table design unit, 122 measurement value table definition unit, 130 measurement data management unit, 131 measurement data collection storage unit, 132 virtual measurement data calculation unit, 133 measurement data output unit, 140 data storage unit, 141 virtual measurement point definition table, 142 configuration information table, 143 measurement value table design information, 144 measurement value table, 200 measurement data management system, 201 measurement device, 210 base device, 211 measurement data reception unit, 212 measurement data transmission unit, 219 base device storage unit, 220 operation terminal, 221 application execution unit, 229 operation terminal storage , 400 measurement data, 1200 measurement points management information table, 1210 partial configuration information tree management table.

Claims (10)

  1.  計測機器と関連付けられている木構造データを管理するデータ処理装置であって、
     各部分木データに関連付けられている計測機器の数が計測値テーブルで計測値を格納できる計測機器の上限数であるテーブル格納機器数以下となるように、前記木構造データを複数の部分木データに分割するデータ分割部と、
     前記データ分割部により分割された部分木データが確定状態にあるか否かを判断する状態判断部と、
     前記状態判断部により確定状態にあると判断された部分木データに対して、当該部分木データに関連付けられている計測機器からの計測値を格納する計測値テーブルを割り当てるテーブル割り当て部とを有し、
     前記状態判断部は、
     1つの部分木データに関連付けられている計測機器が他のいずれの部分木データにも関連付けられておらず、当該1つの部分木データに関連付けられている計測機器の数が前記テーブル格納機器数以下である場合に、当該1つの部分木データが第1の確定状態にあると判断し、
     1つの部分木データに関連付けられている計測機器のうちの少なくとも1つの計測機器が重複して他の部分木データにも関連付けられ、当該1つの部分木データに関連付けられている計測機器の数と当該他の部分木データに関連付けられている計測機器の数との重複を除去した合計数が前記テーブル格納機器数以下である場合に、当該1つの部分木データと当該他の部分木データとが第2の確定状態にあると判断し、
     第1の確定状態及び第2の確定状態のいずれにもないと判断した部分木データを前記データ分割部に更に複数の部分木データに分割させることを特徴とするデータ処理装置。
    A data processing device for managing tree structure data associated with a measuring device,
    The tree structure data is converted into a plurality of subtree data so that the number of measuring devices associated with each subtree data is equal to or less than the number of table storage devices that is the upper limit number of measuring devices that can store measurement values in the measurement value table. A data dividing unit that divides the data into
    A state determination unit that determines whether the subtree data divided by the data division unit is in a definite state;
    A table allocating unit for allocating a measurement value table for storing measurement values from a measuring device associated with the partial tree data, with respect to the partial tree data determined to be in a finalized state by the state determination unit; ,
    The state determination unit
    A measuring device associated with one subtree data is not associated with any other subtree data, and the number of measuring devices associated with the one subtree data is equal to or less than the number of table storage devices. Is determined that the one subtree data is in the first definite state,
    At least one measuring device among measuring devices associated with one subtree data is duplicated and associated with other subtree data, and the number of measuring devices associated with the one subtree data When the total number obtained by eliminating duplication with the number of measuring devices associated with the other subtree data is equal to or less than the number of table storage devices, the one subtree data and the other subtree data are It is determined to be in the second final state,
    A data processing apparatus characterized by causing the data dividing unit to further divide subtree data determined to be neither in the first definite state or the second definite state into a plurality of subtree data.
  2.  前記状態判断部は、
     1つの部分木データに関連付けられている計測機器のうちの少なくとも1つの計測機器が重複して他の部分木データにも関連付けられ、当該1つの部分木データに関連付けられている計測機器の数と当該他の部分木データに関連付けられている計測機器の数との重複を除去した合計数が前記テーブル格納機器数を超え、当該1つの部分木データと当該他の部分木データとに重複して関連付けられている計測機器の数が所定数以下である場合であって、当該1つの部分木データと当該他の部分木データとが第1または第2の確定状態にあると判断できる場合に、当該1つの部分木データと当該他の部分木データとが第3の確定状態にあると判断し、
     第1の確定状態及び第2の確定状態及び第3の確定状態のいずれにもないと判断した部分木データを前記データ分割部に更に複数の部分木データに分割させることを特徴とする請求項1に記載のデータ処理装置。
    The state determination unit
    At least one measuring device among measuring devices associated with one subtree data is duplicated and associated with other subtree data, and the number of measuring devices associated with the one subtree data The total number obtained by eliminating duplication with the number of measuring devices associated with the other subtree data exceeds the number of table storage devices, and is duplicated in the one subtree data and the other subtree data. When it is determined that the number of associated measuring devices is equal to or less than a predetermined number and the one subtree data and the other subtree data are in the first or second definite state, Judging that the one subtree data and the other subtree data are in the third definite state,
    The subtree data determined not to be in any of the first definite state, the second definite state, and the third definite state is further divided into a plurality of subtree data by the data dividing unit. The data processing apparatus according to 1.
  3.  前記データ処理装置は、
     複数のノードが含まれる木構造データを管理し、
     前記データ分割部は、
     前記複数の部分木データとして、根ノードのみの部分木データと、前記根ノードの子ノードを新たな根ノードとする2つ以上の部分木データの各々とに分割し、
     前記状態判断部は、
     根ノードのみの部分木データを除く全ての部分木データが確定状態になるまで、根ノードのみの部分木データを除く確定状態にない部分木データを前記データ分割部に更に複数の部分木データに分割させることを特徴とする請求項1に記載のデータ処理装置。
    The data processing device includes:
    Manage tree structure data including multiple nodes,
    The data dividing unit
    Dividing the plurality of subtree data into subtree data of only a root node and each of two or more subtree data having a child node of the root node as a new root node;
    The state determination unit
    Until all the subtree data except the subtree data of only the root node is in a definite state, the subtree data that is not in the definite state excluding the subtree data of only the root node is further divided into a plurality of subtree data. The data processing apparatus according to claim 1, wherein the data processing apparatus is divided.
  4.  前記データ処理装置は、
     計測値の集計の単位となる複数のノードが含まれ、各ノードに対して、計測機器の計測値に直接関連付けられている識別子である実計測点及び実計測点に直接又は間接に関連付けられている識別子である仮想計測点の少なくともいずれかが含まれる、計測値の集計のための計算式が定義されている木構造データを管理し、
     前記データ処理装置は、更に、
     前記データ分割部により分割された部分木データの根ノードの計算式に含まれる計測点が実計測点1つのみであるか否かを判断し、
     前記根ノードの計算式に含まれる計測点が実計測点1つのみでない場合に、集計指示がある前に計測値の集計のための計算を予め行っておくことが必要である旨を示す識別子である代替計測点を前記根ノードに関連付けることを特徴とする代替計測点設定部を有することを特徴とする請求項3に記載のデータ処理装置。
    The data processing device includes:
    Multiple nodes that are the unit of measurement value aggregation are included, and each node is directly or indirectly associated with an actual measurement point, which is an identifier that is directly associated with the measurement value of the measurement device. Manage tree-structured data that defines at least one of the virtual measurement points that are identifiers, and for which calculation formulas for measurement value aggregation are defined,
    The data processing device further includes:
    Determining whether or not the number of measurement points included in the calculation formula of the root node of the subtree data divided by the data dividing unit is only one actual measurement point;
    An identifier indicating that it is necessary to pre-calculate the measurement values before the aggregation instruction is given when there is not only one actual measurement point in the root node calculation formula The data processing apparatus according to claim 3, further comprising an alternative measurement point setting unit that associates an alternative measurement point that is a root node with the root node.
  5.  前記代替計測点設定部は、
     前記根ノードの計算式に仮想計測点が含まれる場合に、当該仮想計測点が直接又は間接に関連付いている実計測点を用いて、実計測点のみが含まれ、前記根ノードの計算式と同じ計算結果が得られる代替計算式を生成し、
     前記代替計測点に前記代替計算式を関連付けることを特徴とする請求項4に記載のデータ処理装置。
    The alternative measurement point setting unit is
    When a virtual measurement point is included in the calculation formula of the root node, only the actual measurement point is included using the actual measurement point directly or indirectly related to the virtual measurement point, and the calculation formula of the root node Generate an alternative formula that yields the same calculation results as
    The data processing apparatus according to claim 4, wherein the alternative calculation formula is associated with the alternative measurement point.
  6.  前記データ処理装置は、更に、
     前記代替計測点が関連付けられている根ノードに対して、当該根ノードについての集計指示がある前に計測値の集計のための計算を予め行い、計算結果を前記代替計測点に関連付ける代替計測点計算部を有することを特徴とする請求項4に記載のデータ処理装置。
    The data processing device further includes:
    For the root node associated with the alternative measurement point, an alternative measurement point that performs a calculation for totaling the measurement values in advance before the aggregation instruction for the root node is given, and associates the calculation result with the alternative measurement point The data processing apparatus according to claim 4, further comprising a calculation unit.
  7.  前記テーブル割り当て部は、
     前記状態判断部により前記第1の確定状態にあると判断された1つの部分木データに、1つの計測値テーブルを割り当て、
     前記状態判断部により前記第2の確定状態にあると判断された複数の部分木データに、1つの計測値テーブルを割り当てることを特徴とする請求項1に記載のデータ処理装置。
    The table allocation unit
    One measurement value table is assigned to one subtree data determined to be in the first definite state by the state determination unit,
    The data processing apparatus according to claim 1, wherein one measurement value table is assigned to a plurality of partial tree data determined to be in the second definite state by the state determination unit.
  8.  前記テーブル割り当て部は、
     前記状態判断部により前記第3の確定状態にあると判断された複数の部分木データの各々に、1つの計測値テーブルを割り当て、
     前記複数の部分木データに重複して関連付けられている計測機器からの計測値をそれぞれの部分木データの計測値テーブルに格納させることを特徴とする請求項2に記載のデータ処理装置。
    The table allocation unit
    One measurement value table is assigned to each of the plurality of subtree data determined to be in the third finalized state by the state determination unit,
    The data processing apparatus according to claim 2, wherein measurement values from measurement devices that are associated with the plurality of partial tree data are stored in a measurement value table of each partial tree data.
  9.  計測機器と関連付けられている木構造データを管理するコンピュータが行うデータ処理方法であって、
     前記コンピュータが、各部分木データに関連付けられている計測機器の数が計測値テーブルで計測値を格納できる計測機器の上限数であるテーブル格納機器数以下となるように、前記木構造データを複数の部分木データに分割するデータ分割処理と、
     前記コンピュータが、前記データ分割処理により分割された部分木データが確定状態にあるか否かを判断する状態判断処理と、
     前記コンピュータが、前記状態判断処理により確定状態にあると判断された部分木データに対して、当該部分木データに関連付けられている計測機器からの計測値を格納する計測値テーブルを割り当てるテーブル割り当て処理とを有し、
     前記状態判断処理において、
     前記コンピュータが、
     1つの部分木データに関連付けられている計測機器が他のいずれの部分木データにも関連付けられておらず、当該1つの部分木データに関連付けられている計測機器の数が前記テーブル格納機器数以下である場合に、当該1つの部分木データが第1の確定状態にあると判断し、
     1つの部分木データに関連付けられている計測機器のうちの少なくとも1つの計測機器が重複して他の部分木データにも関連付けられ、当該1つの部分木データに関連付けられている計測機器の数と当該他の部分木データに関連付けられている計測機器の数との重複を除去した合計数が前記テーブル格納機器数以下である場合に、当該1つの部分木データと当該他の部分木データとが第2の確定状態にあると判断し、
     前記データ分割処理において、
     前記コンピュータが、
     前記状態判断処理で第1の確定状態及び第2の確定状態のいずれにもないと判断した部分木データを更に複数の部分木データに分割することを特徴とするデータ処理方法。
    A data processing method performed by a computer that manages tree structure data associated with a measuring device,
    The computer includes a plurality of pieces of tree structure data such that the number of measurement devices associated with each partial tree data is equal to or less than the number of table storage devices that is the upper limit number of measurement devices that can store measurement values in the measurement value table. Data division processing to divide into subtree data of
    A state determination process in which the computer determines whether the subtree data divided by the data division process is in a definite state;
    Table allocation processing for assigning a measurement value table for storing measurement values from a measuring device associated with the partial tree data to the partial tree data determined by the computer to be in a definite state by the state determination processing And
    In the state determination process,
    The computer is
    A measuring device associated with one subtree data is not associated with any other subtree data, and the number of measuring devices associated with the one subtree data is equal to or less than the number of table storage devices. Is determined that the one subtree data is in the first definite state,
    At least one measuring device among measuring devices associated with one subtree data is duplicated and associated with other subtree data, and the number of measuring devices associated with the one subtree data When the total number obtained by eliminating duplication with the number of measuring devices associated with the other subtree data is equal to or less than the number of table storage devices, the one subtree data and the other subtree data are It is determined to be in the second final state,
    In the data division process,
    The computer is
    A data processing method characterized by further dividing the partial tree data determined to be neither in the first fixed state or the second fixed state in the state determination processing into a plurality of partial tree data.
  10.  計測機器と関連付けられている木構造データを管理するコンピュータに、
     各部分木データに関連付けられている計測機器の数が計測値テーブルで計測値を格納できる計測機器の上限数であるテーブル格納機器数以下となるように、前記木構造データを複数の部分木データに分割するデータ分割処理と、
     前記データ分割処理により分割された部分木データが確定状態にあるか否かを判断する状態判断処理と、
     前記状態判断処理により確定状態にあると判断された部分木データに対して、当該部分木データに関連付けられている計測機器からの計測値を格納する計測値テーブルを割り当てるテーブル割り当て処理とを実行させ、
     前記状態判断処理において、
     前記コンピュータに、
     1つの部分木データに関連付けられている計測機器が他のいずれの部分木データにも関連付けられておらず、当該1つの部分木データに関連付けられている計測機器の数が前記テーブル格納機器数以下である場合に、当該1つの部分木データが第1の確定状態にあると判断させ、
     1つの部分木データに関連付けられている計測機器のうちの少なくとも1つの計測機器が重複して他の部分木データにも関連付けられ、当該1つの部分木データに関連付けられている計測機器の数と当該他の部分木データに関連付けられている計測機器の数との重複を除去した合計数が前記テーブル格納機器数以下である場合に、当該1つの部分木データと当該他の部分木データとが第2の確定状態にあると判断させ、
     前記データ分割処理において、
     前記コンピュータに、
     前記状態判断処理で第1の確定状態及び第2の確定状態のいずれにもないと判断した部分木データを更に複数の部分木データに分割させることを特徴とするプログラム。
    To the computer that manages the tree structure data associated with the measuring device,
    The tree structure data is converted into a plurality of subtree data so that the number of measuring devices associated with each subtree data is equal to or less than the number of table storage devices that is the upper limit number of measuring devices that can store measurement values in the measurement value table. Data division processing to divide into
    A state determination process for determining whether or not the subtree data divided by the data division process is in a definite state;
    A table allocation process for allocating a measurement value table for storing a measurement value from a measuring device associated with the subtree data, for the subtree data determined to be in the finalized state by the state determination process; ,
    In the state determination process,
    In the computer,
    A measuring device associated with one subtree data is not associated with any other subtree data, and the number of measuring devices associated with the one subtree data is equal to or less than the number of table storage devices. In the case where the one subtree data is in the first definite state,
    At least one measuring device among measuring devices associated with one subtree data is duplicated and associated with other subtree data, and the number of measuring devices associated with the one subtree data When the total number obtained by eliminating duplication with the number of measuring devices associated with the other subtree data is equal to or less than the number of table storage devices, the one subtree data and the other subtree data are Let them determine that they are in the second final state,
    In the data division process,
    In the computer,
    A program characterized in that the subtree data determined to be neither in the first definite state or the second definite state in the state determination process is further divided into a plurality of subtree data.
PCT/JP2014/072234 2013-08-28 2014-08-26 Data processing device, and data processing method and program WO2015029969A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201480046468.2A CN105493050B (en) 2013-08-28 2014-08-26 Data processing equipment and data processing method
JP2015534215A JP5972472B2 (en) 2013-08-28 2014-08-26 Data processing apparatus, data processing method, and program
SG11201600589RA SG11201600589RA (en) 2013-08-28 2014-08-26 Data processing apparatus, data processing method, and program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013176173 2013-08-28
JP2013-176173 2013-08-28

Publications (1)

Publication Number Publication Date
WO2015029969A1 true WO2015029969A1 (en) 2015-03-05

Family

ID=52586526

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072234 WO2015029969A1 (en) 2013-08-28 2014-08-26 Data processing device, and data processing method and program

Country Status (4)

Country Link
JP (1) JP5972472B2 (en)
CN (1) CN105493050B (en)
SG (1) SG11201600589RA (en)
WO (1) WO2015029969A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018142247A (en) * 2017-02-28 2018-09-13 株式会社テクロック Measurement solution service provision system
JP2019145113A (en) * 2019-02-28 2019-08-29 株式会社テクロック・スマートソリューションズ Measurement solution service providing system
WO2020166026A1 (en) * 2019-02-14 2020-08-20 三菱電機株式会社 Management device, management system, management method, and program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6583871B2 (en) * 2019-02-28 2019-10-02 株式会社テクロック・スマートソリューションズ Measurement solution service provision system

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0793261A (en) * 1990-04-16 1995-04-07 Internatl Business Mach Corp <Ibm> Method for balancing of distributed tree file structure in parallel computation system
JP2004362574A (en) * 2003-05-30 2004-12-24 Microsoft Corp Position access using b-tree
JP2012146207A (en) * 2011-01-13 2012-08-02 Mitsubishi Electric Corp Control computer, information processing system, control method, and program
JP2013164813A (en) * 2012-02-13 2013-08-22 Canon Inc Information processor and control method of the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2498186A4 (en) * 2009-11-04 2013-04-10 Fujitsu Ltd Operation management device and operation management method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0793261A (en) * 1990-04-16 1995-04-07 Internatl Business Mach Corp <Ibm> Method for balancing of distributed tree file structure in parallel computation system
JP2004362574A (en) * 2003-05-30 2004-12-24 Microsoft Corp Position access using b-tree
JP2012146207A (en) * 2011-01-13 2012-08-02 Mitsubishi Electric Corp Control computer, information processing system, control method, and program
JP2013164813A (en) * 2012-02-13 2013-08-22 Canon Inc Information processor and control method of the same

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MASASHI TATEDOKO ET AL.: "A Virtual Sensor Management System for Large Scale Maintenance Management", FIT2013 DAI 12 KAI FORUM ON INFORMATION TECHNOLOGY KOEN RONBUNSHU, vol. 2, 20 August 2013 (2013-08-20), pages 87 - 88 *
MASASHI TATEDOKO ET AL.: "An Access Control Method for Virtual Meter of Multi-Site, Multi- Sensor Data Management Systems", FIT2012 DAI 11 KAI FORUM ON INFORMATION TECHNOLOGY KOEN RONBUNSHU, vol. 2, 21 August 2012 (2012-08-21), pages 103 - 104 *
REIKO MORIYAMA ET AL.: "Kankyo Joho Database Muke Takyoten Sensor Data Kanri Hoshiki", DAI 73 KAI (HEISEI 23 NEN) ZENKOKU TAIKAI KOEN RONBUNSHU (1, 2 March 2011 (2011-03-02), pages 1-557 - 1-558 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018142247A (en) * 2017-02-28 2018-09-13 株式会社テクロック Measurement solution service provision system
US11580132B2 (en) 2017-02-28 2023-02-14 Teclock SmartSolutionsCo., Ltd. Measurement solution service providing system
WO2020166026A1 (en) * 2019-02-14 2020-08-20 三菱電機株式会社 Management device, management system, management method, and program
US11442433B2 (en) 2019-02-14 2022-09-13 Mitsubishi Electric Corporation Management device, management system, management method, and program for providing virtual and real resource information values
JP2019145113A (en) * 2019-02-28 2019-08-29 株式会社テクロック・スマートソリューションズ Measurement solution service providing system

Also Published As

Publication number Publication date
CN105493050B (en) 2019-03-12
SG11201600589RA (en) 2016-03-30
JP5972472B2 (en) 2016-08-17
JPWO2015029969A1 (en) 2017-03-02
CN105493050A (en) 2016-04-13

Similar Documents

Publication Publication Date Title
JP5972472B2 (en) Data processing apparatus, data processing method, and program
CN102096688A (en) Method and device for generating data report
US10701213B2 (en) Dynamically generating an aggregation routine
WO2016063341A1 (en) Time series prediction apparatus and time series prediction method
JPWO2008056682A1 (en) Resource information collection device, resource information collection method, program, and collection schedule generation device
CN111324604A (en) Database table processing method and device, electronic equipment and storage medium
JP2009217455A (en) Information processor, information processing program, and method
CN109684517B (en) Historical data storage method, reading and writing method, storage device and equipment
CN111966707A (en) Query statement generation method and device, electronic equipment and computer readable medium
CN111090803A (en) Data processing method and device, electronic equipment and storage medium
CN112541711A (en) Model construction method and device, computer equipment and storage medium
CN110737727B (en) Data processing method and system
CN106649108A (en) Generation method and device of test data
CN105653355A (en) Method and system for calculating Hadoop configuration parameters
CN114860759A (en) Data processing method, device and equipment and readable storage medium
CN115203435A (en) Entity relation generation method and data query method based on knowledge graph
JP7105718B2 (en) Information processing device, information processing method, and program
JP2022165476A (en) Facility id inference method and facility id inference device
JP2018190107A (en) Internal transaction determination device, internal transaction determination method and internal transaction determination program
EP3759665A1 (en) Multi-dimensional organization of data for efficient analysis
CN117271480B (en) Data processing method, device, electronic equipment and medium
CN110837365A (en) Script aided design method and device based on root table
JP2020052451A (en) Computer system and pattern generation method of business flow
CN111949682B (en) Compensation protocol generation method, device, computer equipment and storage medium
CN107885710A (en) A kind of generation method and device of bank&#39;s parameter report

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480046468.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14839848

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015534215

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14839848

Country of ref document: EP

Kind code of ref document: A1