WO2015029910A1 - Organic semiconductor device, as well as compound, composition, and coating film for same - Google Patents

Organic semiconductor device, as well as compound, composition, and coating film for same Download PDF

Info

Publication number
WO2015029910A1
WO2015029910A1 PCT/JP2014/072052 JP2014072052W WO2015029910A1 WO 2015029910 A1 WO2015029910 A1 WO 2015029910A1 JP 2014072052 W JP2014072052 W JP 2014072052W WO 2015029910 A1 WO2015029910 A1 WO 2015029910A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
carbon atoms
organic semiconductor
organic
Prior art date
Application number
PCT/JP2014/072052
Other languages
French (fr)
Japanese (ja)
Inventor
寛記 杉浦
野村 公篤
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2015029910A1 publication Critical patent/WO2015029910A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/124Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one nitrogen atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D165/00Coating compositions based on macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Coating compositions based on derivatives of such polymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/151Copolymers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/856Thermoelectric active materials comprising organic compositions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1414Unsaturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3241Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more nitrogen atoms as the only heteroatom, e.g. carbazole
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/324Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed
    • C08G2261/3243Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain condensed containing one or more sulfur atoms as the only heteroatom, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/334Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/414Stille reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/92TFT applications
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/484Insulated gate field-effect transistors [IGFETs] characterised by the channel regions
    • H10K10/488Insulated gate field-effect transistors [IGFETs] characterised by the channel regions the channel region comprising a layer of composite material having interpenetrating or embedded materials, e.g. a mixture of donor and acceptor moieties, that form a bulk heterojunction
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/20Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising organic-organic junctions, e.g. donor-acceptor junctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/20Carbon compounds, e.g. carbon nanotubes or fullerenes
    • H10K85/211Fullerenes, e.g. C60
    • H10K85/215Fullerenes, e.g. C60 comprising substituents, e.g. PCBM
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to an organic semiconductor device suitable for use as an organic thin film transistor, an organic photoelectric conversion device, an organic thermoelectric conversion device, or the like. Moreover, this invention relates to the compound suitable for using for the semiconductor layer of an organic-semiconductor device, the composition containing this compound, and a coating film.
  • Organic semiconductor polymers are being researched as new semiconductor materials to replace inorganic semiconductor materials in the electronics field. Since organic semiconductor polymers have a wide variety of molecular structures, they can be used to manufacture semiconductor devices with various characteristics, and have the advantage that the area of the semiconductor layer can be easily increased compared to inorganic semiconductor materials. Yes. Today, organic electroluminescence elements that emit light when voltage is applied, organic thin film transistors that control the amount of current and voltage, organic photoelectric conversion devices that convert light energy into power, organic thermoelectric conversion devices that convert heat energy into power, etc. The range of applications of organic semiconductor polymers is diverse.
  • the organic semiconductor polymer is a donor-acceptor type ⁇ -electron conjugated polymer having a repeating unit in which a donor-type structural unit and an acceptor-type structural unit are connected via a spacer structure capable of ⁇ -electron conjugation if necessary. .
  • the polymer needs to be soluble in an organic solvent (hereinafter simply referred to as “solubility”) for film formation, and thus has a soluble group such as an alkyl group.
  • Done-acceptor type organic semiconductor polymers are donor-like structural units (for example, dithienosilol, cyclopentadithiophene, benzodi) having a structure condensed in the main chain direction of the polymer (condensed in the main chain direction) as described below.
  • Thiophene and an acceptor structural unit for example, benzothiadiazole, thienopyrroledione, thieno [3,4-b] thiophene
  • It has a repeating unit (see Non-Patent Document 1, for example).
  • Patent Document 1 describes a polymer having a repeating unit in which a thienothiazole structural unit and a thienopyrrole dione structural unit are linked, and a synthesis method thereof. ing.
  • Non-Patent Document 2 describes a polymer having a repeating unit in which structural units of isothianaphthene, thiophene, benzothiadiazole and thiophene are connected in this order.
  • Organic semiconductor polymers generally require high carrier mobility when used in a semiconductor layer of an organic semiconductor device.
  • the higher the carrier mobility when used in the semiconductor layer the higher the power generation efficiency when the polymer is used in the semiconductor layer of a photoelectric conversion device or a thermoelectric conversion device, for example.
  • a conventional donor-acceptor type organic semiconductor polymer is composed of a main chain direction condensed ring donor structural unit and a side chain direction condensed ring acceptor structural unit as described above. Therefore, as described below, the polymer main chain part can overlap (pack) closely between molecules, but the soluble group part cannot overlap closely.
  • the conventional donor-acceptor type polymer cannot be said to have sufficient crystallinity (packing property), and there is a restriction on the carrier mobility, and if the carrier mobility is increased by increasing the crystallinity (packing property). Solubility had to be sacrificed. That is, the conventional donor-acceptor type polymer has a trade-off between carrier mobility and solubility.
  • the present inventors have not only the main chain part of the donor-acceptor type polymer but also the soluble group part to make the structure regularity more densely between the molecules. We considered increasing (improving packing properties) and further improving carrier mobility without sacrificing solubility.
  • the present invention improves the crystallinity (packing property) of an organic semiconductor polymer, achieves both carrier mobility and solubility at a higher level, exhibits excellent carrier mobility when used in a semiconductor layer, and has good coating characteristics. It is an object to provide a semiconductor compound and an organic semiconductor device containing the compound in a semiconductor layer. Furthermore, this invention makes it a subject to provide the composition and coating film containing the said organic-semiconductor compound.
  • a specific side chain direction condensed ring structure that has been conventionally incorporated into a polymer as an acceptor structural unit can function as a donor structural unit.
  • a specific side chain direction condensed ring structure has a deepest maximum occupied orbital (HOMO) level in the monomer state and a weak donor property.
  • HOMO deepest maximum occupied orbital
  • the knowledge which showed the donor property equivalent to or more than a ring structure was acquired.
  • a donor-acceptor type polymer having a very high structure regularity including a soluble group can be obtained by making both the donor and acceptor structural units into a side-chain direction condensed ring structure. It has been found that due to its high structural regularity, this polymer forms a highly crystalline coating film by arranging the main chain and the soluble group as shown below, and exhibits excellent carrier mobility.
  • the present invention has been completed through further studies based on these findings.
  • D represents a donor structural unit represented by formula (2) or formula (3).
  • A represents an acceptor structural unit composed of an aromatic ring having a side-chain direction condensed ring structure.
  • S 1 and S 2 represent ethenylene, ethynylene, arylene group, heteroarylene group, azo group, or —C ⁇ N—.
  • l and n are integers of 1 to 4
  • m1 and m2 are integers of 0 to 2.
  • p represents an integer of 2 to 2000.
  • X 21 and X 22 represent a sulfur atom, an oxygen atom, a selenium atom or —NR 22 —, and Y 21 represents a nitrogen atom or —C (—L 22 —R 23 ) ⁇ .
  • R 21 to R 23 represent a hydrogen atom or a monovalent substituent.
  • R 5 represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, or a heteroaryl group.
  • X 31 represents a sulfur atom, an oxygen atom, a selenium atom or —NR 31 —.
  • Y 31 to Y 34 represent a nitrogen atom or —C (—L 31 —R 32 ) ⁇ .
  • L 31 of Y 31 and Y 34 has the same meaning as L 22, and R 32 of Y 31 and Y 34 has the same meaning as R 23 .
  • L 31 of Y 32 and Y 33 has the same meaning as L 21, and R 32 of Y 32 and Y 33 has the same meaning as R 21 .
  • R 31 has the same meaning as R 22 described above.
  • * indicates a linking site.
  • D and A have at least one group selected from an alkyl group, an alkenyl group, and an alkynyl group.
  • D, A, l, n and p have the same meanings as D, A, l, n and p in the above formula (1), respectively.
  • X 51 and X 52 represent a sulfur atom, oxygen atom, selenium atom or —NR 52 —
  • Y 51 represents a nitrogen atom or —C (—L 52 —R 53 ) ⁇ .
  • R 5 has the same meaning as R 5 in L 21 in the formula (2).
  • R 51 to R 53 represent a hydrogen atom or a monovalent substituent.
  • X 61 has the same meaning as X 51 in formula (5).
  • Z 61 and Z 62 represent an oxygen atom or a sulfur atom.
  • R 62 to R 66 represent a hydrogen atom or a monovalent substituent.
  • X 71 has the same meaning as X 51 in the formula (5).
  • Y 71 to Y 74 each represents a nitrogen atom or —C (—L 71 —R 72 ) ⁇ .
  • L 71 in Y 71 and Y 74 has the same meaning as L 52 in the above formula (5)
  • L 71 in Y 72 and Y 73 has the same meaning as L 51 in the above formula (5)
  • R 72 represents a hydrogen atom or a monovalent substituent.
  • X 81 has the same meaning as X 52 in the formula (5)
  • Y 81 to Y 84 each represents a nitrogen atom or —C (—L 81 —R 82 ) ⁇ .
  • L 81 of Y 83 has the same meaning as L 51 in the formula (5)
  • L 81 of Y 81, Y 82 and Y 84 has the same meaning as L 52 in the formula (5).
  • R 82 represents a hydrogen atom or a monovalent substituent.
  • W 91 represents —NR 91 — or —CR 92 R 93 —, and R 91 to R 93 represent a hydrogen atom or a monovalent substituent.
  • Y 91 and Y 92 have the same meanings as Y 81 and Y 82 in the above formula (8), respectively.
  • Y 101 and Y 102 have the same meanings as Y 81 and Y 82 in formula (8), respectively.
  • Z 101 and Z 102 are synonymous with Z 61 and Z 62 in the above formula (6), respectively.
  • W 101 is synonymous with W 61 in the above formula (6).
  • X 111 and X 112 have the same meanings as X 51 and X 52 in formula (5), respectively.
  • Y 111 and Y 112 have the same meanings as Y 71 and Y 74 in the above formula (7), respectively.
  • Y 113 and Y 114 are synonymous with Y 83 and Y 84 in the above formula (8), respectively.
  • X 121 has the same meaning as X 51 in formula (5).
  • Y 121 and Y 122 are synonymous with Y 71 and Y 74 in the above formula (7), respectively.
  • Z 121 and Z 122 are synonymous with Z 61 and Z 62 in the above formula (6), respectively.
  • W 121 is synonymous with W 61 in the above formula (6).
  • the structure represented by each of the formulas (5) to (12) has at least one group selected from an alkyl group, an alkenyl group, and an alkynyl group. Moreover, * shows a connection part in each formula.
  • R 51 is an alkyl group, alkenyl group or alkynyl group having 6 to 24 carbon atoms, and does not have any other aliphatic group having 6 or more carbon atoms
  • W 61 is —NR 62 —, —CR 63 R 64 — or> C ⁇ CR 65 R 66
  • R 62 to R 66 are alkyl having 6 to 24 carbon atoms.
  • W 91 is —NR 91 — or —CR 92 R 93 —, and R 91 to R 93 are alkyl groups, alken
  • X 131 , X 132 , Y 131 , L 131 and R 131 have the same meanings as X 21 , X 22 , Y 21 , L 21 and R 21 in formula (2), respectively.
  • L 133 and R 133 are synonymous with L 22 and R 23 in Y 21 in the formula (2), respectively.
  • X 133 , X 134 , Y 132 , L 132 and R 132 have the same meanings as X 51 , X 52 , Y 51 , L 51 and R 51 in the formula (5), respectively.
  • p is synonymous with p in the above formula (1).
  • X 141 , X 142 , Y 141 , L 141, and R 141 have the same meanings as X 21 , X 22 , Y 21 , L 21, and R 21 in formula (2), respectively.
  • L 142 and R 142 are synonymous with L 22 and R 23 in Y 21 in Formula (2), respectively.
  • X 143 and Y 142 to Y 145 have the same meanings as X 71 and Y 71 to Y 74 in formula (7), respectively.
  • p is synonymous with p in the above formula (1).
  • X 151 , X 152 , Y 151 , L 151 and R 151 have the same meanings as X 21 , X 22 , Y 21 , L 21 and R 21 in the formula (2), respectively.
  • L 152 and R 152 are synonymous with L 22 and R 23 in Y 21 in Formula (2), respectively.
  • X 153, W 151, Z 151 and Z 152 are each synonymous with X 61, W 61, Z 61 and Z 62 in the formula (6).
  • p is synonymous with p in the above formula (1).
  • X 161 , X 162 , Y 161 , L 161 and R 161 have the same meanings as X 21 , X 22 , Y 21 , L 21 and R 21 in the formula (2), respectively.
  • L 163 and R 163 have the same meanings as L 22 and R 23 in Y 21 in formula (2), respectively.
  • X 163 , Y 162 , Y 163 , Y 164 and Y 165 are synonymous with X 81 , Y 81 , Y 82 , Y 83 and Y 84 in the above formula (8), respectively.
  • p is synonymous with p in the above formula (1).
  • X 171 , X 172 , Y 171 , L 171 and R 171 have the same meaning as X 21 , X 22 , Y 21 , L 21 and R 21 in the above formula (2), respectively.
  • L 172 and R 172 have the same meanings as L 22 and R 23 in Y 21 in formula (2), respectively.
  • Y 172 , Y 173 and W 171 have the same meanings as Y 91 , Y 92 and W 91 in the above formula (9), respectively.
  • p is synonymous with p in the above formula (1).
  • the fused aromatic ring having two condensed rings in the side chain direction linked by a single bond is at least one group selected from an alkyl group, an alkenyl group and an alkynyl group.
  • the number of carbon atoms of at least one group selected from the alkyl group, alkenyl group, and alkynyl group included in the donor structural unit and the acceptor structural unit is 6 to 24, The organic semiconductor device in any one.
  • the organic semiconductor device according to [6], which satisfies the following (a) to (e): (A) In the above formula (13), an alkyl group, an alkenyl group of R 131 and R 132 is 6 to 24 carbon atoms are alkynyl groups, no aliphatic group having 6 or more carbon atoms other, (B) In the above formula (14), at least one of Y 143 and Y 144 is-(CL 71 -R 72 ) , and R 141 and R 72 are alkyl groups having 6 to 24 carbon atoms, An alkenyl group or an alkynyl group, which has no other aliphatic group having 6 or more carbon atoms, (C) In the above formula (15), W 151 is
  • W 171 is —NR 173 or —CR 174 R 175 —
  • R 171 and R 173 to R 175 are an alkyl group, alkenyl group or alkynyl group having 6 to 24 carbon atoms.
  • no other aliphatic groups having 6 or more carbon atoms are no other aliphatic groups having 6 or more carbon atoms.
  • D represents a donor structural unit represented by formula (2) or formula (3).
  • A represents an acceptor structural unit composed of an aromatic ring having a side-chain direction condensed ring structure.
  • S 1 and S 2 represent ethenylene, ethynylene, arylene group, heteroarylene group, azo group, or —C ⁇ N—.
  • l and n are integers of 1 to 4, and m1 and m2 are integers of 0 to 2.
  • p represents an integer of 2 to 2000.
  • D and A have at least one group selected from an alkyl group, an alkenyl group, and an alkynyl group.
  • X 21 and X 22 represent a sulfur atom, an oxygen atom, a selenium atom or —NR 22 —, and Y 21 represents a nitrogen atom or —C (—L 22 —R 23 ) ⁇ .
  • R 21 to R 23 represent a hydrogen atom or a monovalent substituent.
  • R 5 represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, or a heteroaryl group.
  • X 31 represents a sulfur atom, an oxygen atom, a selenium atom or —NR 31 —.
  • Y 31 to Y 34 represent a nitrogen atom or —C (—L 31 —R 32 ) ⁇ .
  • L 31 of Y 31 and Y 34 has the same meaning as L 22, and R 32 of Y 31 and Y 34 has the same meaning as R 23 .
  • L 31 of Y 32 and Y 33 has the same meaning as L 21, and R 32 of Y 32 and Y 33 has the same meaning as R 21 .
  • R 31 has the same meaning as R 22 described above.
  • * represents a linking site.
  • composition comprising the compound according to [15] and an organic solvent.
  • composition according to [16] which is used for forming a semiconductor layer of an organic semiconductor device.
  • composition according to [16] which is used for forming a semiconductor layer of an organic semiconductor device.
  • coating film formed using the composition according to [16] or [17].
  • substituents when there are a plurality of substituents, linking groups, ring structures, repeating units, etc. (hereinafter referred to as “substituents”, etc.) indicated by a specific symbol, or a plurality of substituents are simultaneously or alternatively selected.
  • each substituent may be the same as or different from each other. The same applies to the definition of the number of substituents and the like.
  • substituents and the like when a plurality of substituents and the like are adjacent to each other, they may be connected to each other to form a ring unless otherwise specified.
  • each substituent may further have a substituent unless otherwise specified.
  • donor property and “acceptor property” in the donor structural unit and the acceptor structural unit are the at least two types of divalent aromatic ring groups present in one molecular chain length of the organic semiconductor compound. , Indicating a relative electronic relationship. Specifically, those having relatively high electron donating properties are donor properties, and those having relatively high electron accepting properties are acceptor properties. In other words, the higher the HOMO (highest occupied orbital) energy level of the two aromatic rings to be compared is the donor property, and conversely the lower the LUMO (lowest orbital energy level) energy level is the acceptor property. It is. Even with the same aromatic ring structure, if it has an electron-withdrawing group as a substituent, it can be acceptor, and if it has an electron-donating group as a substituent, it can be donor.
  • an aromatic ring is a ring satisfying the Hückel rule that is a 4n + 2 ⁇ -electron system (n is an integer of 0 or more), and includes an aromatic hydrocarbon ring (an aryl group in the case of a group) and an aromatic ring.
  • Group heterocycles in the case of groups, heteroaryl groups).
  • an aliphatic group is a group that collectively refers to an alkyl group, an alkenyl group, and an alkynyl group.
  • the organic semiconductor device of the present invention has a semiconductor layer exhibiting excellent hole mobility, and can be suitably used as an organic thin film transistor, an organic photoelectric conversion device, an organic thermoelectric conversion device, and the like.
  • the transistor when the organic semiconductor device of the present invention is applied to an organic thin film transistor, the transistor can have a high hole mobility and a small change in threshold voltage after repeated driving.
  • the organic-semiconductor device of this invention is applied to an organic photoelectric conversion device, it can be set as the organic photoelectric conversion device excellent in the conversion efficiency of the light energy to the electric power.
  • the organic semiconductor device of this invention is applied to an organic thermoelectric conversion device, it can be set as the thermoelectric conversion device which is excellent in the conversion efficiency of the heat energy to the electric power.
  • the composition of the present invention contains the compound of the present invention and an organic solvent, has good coating characteristics, and can form a semiconductor layer with excellent hole mobility.
  • the coating film of the present invention is formed by applying the composition of the present invention, and is suitable as a semiconductor layer of an organic semiconductor device.
  • FIG. 1 is a schematic sectional view showing an example of the organic thin film transistor of the present invention.
  • FIG. 2 is a schematic cross-sectional view of an organic thin film transistor manufactured as an FET characteristic measurement substrate in an example of the present invention.
  • FIG. 3 is a side view schematically showing a preferred embodiment of the organic photoelectric conversion device of the present invention.
  • FIG. 4 is a diagram schematically showing a cross section of an example of the organic thermoelectric conversion device of the present invention. The arrows in FIG. 4 indicate the direction of the temperature difference applied when the element is used.
  • FIG. 5 is a diagram schematically showing a cross section of another example of the organic thermoelectric conversion device of the present invention. The arrows in FIG. 5 indicate the direction of the temperature difference applied when the element is used.
  • Organic semiconductor compounds The compound of the present invention (hereinafter also referred to as “the organic semiconductor compound of the present invention”) is suitably used in the organic semiconductor layer provided in the organic semiconductor device. Moreover, the organic-semiconductor device of this invention which has the organic-semiconductor compound of this invention in a semiconductor layer is used suitably for an organic thin-film transistor, an organic photoelectric conversion device, and an organic thermoelectric conversion device. First, the organic semiconductor compound of the present invention will be described below.
  • the organic semiconductor compound of the present invention is represented by the following formula (1).
  • D represents a donor structural unit represented by the above formula (2) or the above formula (3).
  • A represents an acceptor structural unit composed of an aromatic ring having a side-chain direction condensed ring structure.
  • the “side chain direction condensed ring structure” is a structural unit of a condensed ring structure in which two or more monocycles are condensed that constitutes an organic semiconductor compound, and includes two connecting sites for incorporation into the main chain of the organic semiconductor compound Each means that it exists in one ring among two or more condensed monocycles.
  • the structure represented by the above formula (2) is a form in which two monocycles are condensed, and two linking sites (*) for constituting the main chain of the organic semiconductor compound have two monocyclic condensed rings. Since it exists only in the ring containing X 21 among them, it is a “side chain direction condensed ring structure”.
  • the structure represented by the above formula (3) is a form in which two monocycles are condensed, and two connecting sites (*) with the main chain of the organic semiconductor compound are among the two monocycles condensed. Since it exists only in the ring containing X 31 , it is a “side chain direction condensed ring structure”. On the other hand, in this specification, the term “main chain direction condensed ring structure” is sometimes used as a concept different from “side chain direction condensed ring structure”.
  • “Main chain direction condensed ring structure” is a structural unit of a condensed ring structure in which two or more monocycles constituting a compound are fused, and one of two linking sites for incorporation into the main chain of an organic semiconductor compound is Means that it is present in one of two or more condensed monocycles, and another linking site is present in another ring.
  • X 21 and X 22 represent a sulfur atom, an oxygen atom, a selenium atom or —NR 22 —.
  • X 21 and X 22 are preferably a sulfur atom, an oxygen atom or —NR 22 —, more preferably X 21 is a sulfur atom, X 22 is a sulfur atom or an oxygen atom, and X 21 and X 22 are It is more preferable that both are sulfur atoms.
  • R 21 is an alkyl group (preferably a branched or straight chain alkyl group having 1 to 30 carbon atoms, more preferably 3 to 28 carbon atoms, still more preferably 6 to 24 carbon atoms, and particularly preferably 8 to 24 carbon atoms).
  • alkenyl group preferably a branched or straight chain alkenyl group having 2 to 30 carbon atoms, more preferably 3 to 28 carbon atoms, still more preferably 6 to 24 carbon atoms, and particularly preferably 8 to 24 carbon atoms
  • alkynyl A group preferably a branched or straight-chain alkynyl group having 2 to 30 carbon atoms, more preferably 3 to 28 carbon atoms, still more preferably 6 to 24 carbon atoms, and particularly preferably 8 to 24 carbon atoms. More preferably, it is a branched or straight chain alkyl group having 6 to 24 carbon atoms, more preferably 8 to 24 carbon atoms.
  • R 22 is a hydrogen atom or an alkyl group (preferably a branched or straight chain alkyl group having 1 to 30 carbon atoms), an alkenyl group (preferably a branched or straight chain alkenyl group having 2 to 30 carbon atoms), or an alkynyl group. (Preferably a branched or straight chain alkynyl group having 2 to 30 carbon atoms), more preferably a hydrogen atom, or a branched or straight chain alkyl group having 1 to 30 carbon atoms, still more preferably hydrogen. Is an atom.
  • R 23 is a hydrogen atom, a halogen atom (a fluorine atom, a chlorine atom, a bromine atom, an iodine atom), an alkyl group (preferably a branched or straight chain alkyl group having 1 to 30 carbon atoms), an alkenyl group (preferably A branched or straight chain alkenyl group having 2 to 30 carbon atoms) or an alkynyl group (preferably a branched or straight chain alkynyl group having 2 to 30 carbon atoms), more preferably a hydrogen atom, a fluorine atom, A chlorine atom, or a branched or straight chain alkyl group having 1 to 30 carbon atoms, more preferably a hydrogen atom or a fluorine atom, and particularly preferably a hydrogen atom.
  • a halogen atom a fluorine atom, a chlorine atom, a bromine atom, an iodine atom
  • an alkyl group preferably
  • a heteroarylene group preferably a heteroarylene group having 3 to 14 carbon atoms, more preferably 5 to 12 carbon atoms
  • an alkenylene group preferably an alkenylene group having 2 to 10 carbon atoms, more preferably 2 to 5 carbon atoms.
  • an alkynylene group preferably an alkynylene group having 2 to 10 carbon atoms, more preferably 2 to 5 carbon atoms
  • an arylene group preferably having 6 to 15 carbon atoms, more preferably 6 to 6 carbon atoms.
  • Examples of the group formed by combining two or more groups selected from the above arylene group, heteroarylene group, alkenylene group, alkynylene group, carbonyl group, and acyloxy group include groups represented by the following L1 to L39.
  • a group represented by L1, L3, L6, L7, L8, L10, L13, L14, L15, L16, L17 or L18 is preferred, and a group represented by L3, L6, L7, L10, L13 or L14 is more preferred.
  • the two linking sites possessed by L1 to L39 below are any of the sites indicated by * (one when there are two *) and the ring-constituting atoms in the arylene group or heteroarylene group in L1 to L39. There is no particular limitation on the position of the ring-constituting atom of the arylene group or heteroarylene group that is one and serves as a linking site.
  • R 5 represents a hydrogen atom, an alkyl group (preferably a branched or straight chain alkyl group having 1 to 30 carbon atoms, more preferably 1 to 24 carbon atoms), an alkenyl group (preferably 2 to 30 carbon atoms, more preferably a carbon atom).
  • R 5 is more preferably a hydrogen atom or an alkyl group.
  • L 21 represents a single bond, —O—, —S—, —NR 5 —, —Si (R 5 ) 2 —, an arylene group (preferably an arylene group having 6 to 15 carbon atoms, more preferably an arylene group having 6 to 12 carbon atoms). ), A heteroarylene group (preferably a heteroarylene group having 3 to 14 carbon atoms, more preferably 5 to 12 carbon atoms), an alkenylene group (preferably an alkenylene group having 2 to 10 carbon atoms, more preferably 2 to 5 carbon atoms).
  • An alkynylene group (preferably an alkynylene group having 2 to 10 carbon atoms, more preferably 2 to 5 carbon atoms), or L1, L3, L6, L7, L8, L10, L13, L14, L15, L16, L17, And a group selected from L18, a single bond, —O—, —S—, —NR 5 —, —Si (R 5 ) 2 —, a heteroarylene group (preferably having 3 to 14 carbon atoms, More preferably, it is a heteroarylene group having 5 to 12 carbon atoms), L3, or L10.
  • L 22 represents a single bond, —O—, —S—, —NR 5 —, —Si (R 5 ) 2 —, an arylene group (preferably an arylene group having 6 to 15 carbon atoms, more preferably an arylene group having 6 to 12 carbon atoms). ), A heteroarylene group (preferably a heteroarylene group having 3 to 14 carbon atoms, more preferably 5 to 12 carbon atoms), an alkenylene group (preferably an alkenylene group having 2 to 10 carbon atoms, more preferably 2 to 5 carbon atoms).
  • An alkynylene group (preferably an alkynylene group having 2 to 10 carbon atoms, more preferably 2 to 5 carbon atoms), or L1, L3, L6, L7, L8, L10, L13, L14, L15, L16, L17, And a group selected from L18, a single bond, —O—, —S—, —NR 5 —, —Si (R 5 ) 2 —, a heteroarylene group (preferably having 3 to 14 carbon atoms, More preferably, it is more preferably a heteroarylene group having 5 to 12 carbon atoms), L3 or L10, and particularly preferably a single bond.
  • L 21 and L 22 When L 21 and L 22 are other than a single bond, it is preferable that L 21 and L 22 form an electron donating group in a state of being linked to R 21 and R 23 , respectively (that is, -L 21 -R 21 and It is preferred that -L 22 -R 23 is an electron donating group).
  • the electron donating group include branched or straight-chain alkoxy groups having 1 to 30 carbon atoms (preferably 6 to 24 carbon atoms, more preferably 8 to 24 carbon atoms), and 1 to 30 carbon atoms (preferably carbon atoms).
  • an alkyl group (preferably having a carbon number of 1 to 30, more preferably a carbon number of 3 to 28, and still more preferably a carbon number within the above-defined range of the formula (2).
  • R 21 is preferably an alkyl group, an alkenyl group, or an alkynyl group.
  • R 21 is an alkyl group, an alkenyl group, or More preferably, it is an alkynyl group and does not have an aliphatic group having 6 or more carbon atoms at a site other than R 21 .
  • X 31 represents a sulfur atom, an oxygen atom, a selenium atom or —NR 31 —.
  • R 31 has the same meaning as R 22 described above, and the preferred range is also the same.
  • X 31 is preferably a sulfur atom or an oxygen atom, and more preferably a sulfur atom.
  • Examples of the electron donating group include branched or straight chain alkoxy groups having 1 to 30 carbon atoms (preferably 6 to 24 carbon atoms), branched or straight chain groups having 1 to 30 carbon atoms (preferably 6 to 24 carbon atoms).
  • an alkyl group (preferably having a carbon number of 1 to 30, more preferably a carbon number of 3 to 28, and still more preferably a carbon number of 6 within the above-defined range of the formula (3).
  • an alkenyl group (preferably having 2 to 30 carbon atoms, more preferably 3 to 28 carbon atoms, still more preferably 6 to 24 carbon atoms, Particularly preferably a branched or straight chain alkenyl group having 8 to 24 carbon atoms) and an alkynyl group (preferably having 2 to 30 carbon atoms, more preferably 3 to 28 carbon atoms, still more preferably 6 to 24 carbon atoms, particularly preferably Includes at least one group selected from a branched or straight chain alkynyl group having 8 to 24 carbon atoms.
  • Y 32 and Y 33 may be linked to form a ring.
  • Examples of the case where Y 32 and Y 33 are linked to form a ring include the following formulas (31) and (32). Or group represented by (33) is mention
  • X 31 ′ is synonymous with X 31 in formula (3), and the preferred range is also the same.
  • Y 31 ′ and Y 34 ′ have the same meanings as Y 31 and Y 34 in formula (3), respectively, and the preferred ranges are also the same.
  • Y 32 ′ and Y 33 ′ have the same meanings as Y 32 and Y 33 in formula (3), respectively, and the preferred ranges are also the same.
  • X 32 ′ , L 31 ′ , R 31 ′ , and Y 36 ′ have the same meanings as X 22 , L 21 , R 21 , and Y 21 in the formula (2), respectively, and preferred ranges are also included. The same.
  • Y 36 ′ may be a nitrogen atom.
  • Z 31 ′ and Z 32 ′ represent an oxygen atom or a sulfur atom, and more preferably an oxygen atom.
  • R 32 ′ to R 36 ′ each represent a hydrogen atom or a monovalent substituent.
  • This substituent is an alkyl group (preferably a linear or branched alkyl group having 1 to 30 carbon atoms, more preferably 3 to 28 carbon atoms, still more preferably 6 to 24 carbon atoms), an alkenyl group (preferably 2 carbon atoms).
  • alkyl group preferably a linear or branched alkyl group having 1 to 30 carbon atoms, more preferably 3 to 28 carbon atoms, still more preferably 6 to 24 carbon atoms
  • an alkenyl group preferably 2 carbon atoms
  • alkyl group preferably a linear or branched alkyl group having 1 to 30 carbon atoms, more preferably 3 to 28 carbon atoms, still more preferably 6 to 24 carbon atoms.
  • R 31 ′ is an alkyl group having 6 to 24 carbon atoms, an alkenyl group having 6 to 24 carbon atoms, or an alkynyl group having 6 to 24 carbon atoms, and other aliphatic groups having 6 or more carbon atoms It is preferable not to have.
  • R 32 ′ to R 36 ′ of W 31 ′ are an alkyl group having 6 to 24 carbon atoms, an alkenyl group having 6 to 24 carbon atoms, or an alkynyl group having 6 to 24 carbon atoms, It preferably has no aliphatic group having 6 or more carbon atoms.
  • each of the organic semiconductor compounds represented by the above formulas (13) to (17) there are four variations of the connection between the donor structural unit shown on the left side and the acceptor structural unit shown on the right side.
  • Each of the formulas (13) to (17) is used as a notation including any of these four linked forms.
  • the connection form of a donor-type structural unit and an acceptor-type structural unit may be the same or different among the repeating units constituting one organic semiconductor compound.
  • l representing the number of D represents an integer of 1 to 4, more preferably 1 or 2, and even more preferably 1.
  • n representing the number of A represents an integer of 1 to 4, more preferably 1 or 2, and even more preferably 1.
  • the number of D and the number of A are preferably the same.
  • the groups represented by formulas (2) and (3) exhibit weak donor properties as monomers before being incorporated into the polymer, but exhibit strong donor properties when incorporated into the polymer. The reason for this will be described below.
  • An aromatic structure shows a structure like the ring II of Formula (2) and Formula (3).
  • the pseudoquinoid structure indicates a quinone-like structure such as ring I.
  • the reason why the groups represented by the formulas (2) and (3) of the present invention function as a strong donor in the polymer originates from the fact that Ring I has a quinoid structure.
  • the ⁇ -conjugated polymer can have a limit structure A having an aromatic structure as a main chain and a limit structure B having a pseudoquinoid structure as a main chain (in the following formula, thienopyrrole dione is used as an acceptor).
  • ring I has a quinoid structure
  • limit structure B ring I has an aromatic structure. That is, due to the aromatization of ring I, the limit structure B is stabilized, and as a result, the contribution of the limit structure B is increased.
  • the limit structure B has a polyene-like ⁇ -conjugated structure, and the conjugation extends in the main chain direction as compared with the limit structure A. Therefore, the HOMO level of the polymer becomes shallow. This is the reason why the group represented by the formula (2) or the formula (3) exhibits strong donor properties when incorporated in a polymer.
  • conjugation expansion in the main chain direction by stabilizing the ultimate structure B of the polymer makes it easier for the carriers to move in the main chain direction, which is considered advantageous for improving the carrier mobility.
  • the concept of conjugate expansion by stabilizing the pseudoquinoid structure (extreme structure B) of a polymer has been known so far.
  • the side chain aromatic condensed ring unit represented by the formula (2) or the formula (3) that has been used as an acceptor conventionally functions as a strong donor due to the effect of stabilizing the ultimate structure B. There wasn't.
  • the aromatization of the donor unit does not occur in the limit structure B Therefore, the stabilization of the limit structure B as described above does not appear.
  • the values of the HOMO and LUMO levels in the following formulas are calculated values obtained by molecular orbital calculation software Gaussian 09 (manufactured by Gaussian) using the basis function system 6-31G (d) in the B3LYP method.
  • A is selected from benzene, pyridine, pyrazine, pyrimidine, pyridazine, triazine, tetrazine, thiophene, furan, pyrrole, selenophene, thiazole, oxazole, imidazole, pyrazole, oxadiazole, thiadiazole, and triazole.
  • the group represented by A has both a HOMO level and a LUMO level of a compound in which two bonds of A are substituted with hydrogen atoms, and both are deeper than a compound in which the bond of the group represented by D is substituted with a hydrogen atom. It is a group.
  • A is preferably an aromatic ring having a side chain direction condensed ring structure represented by the following formulas (5) to (12).
  • X 51 and X 52 represent a sulfur atom, an oxygen atom, a selenium atom or —NR 52 —.
  • X 51 and X 52 are preferably a sulfur atom, an oxygen atom or —NR 52 —, and more preferably a sulfur atom.
  • Y 51 represents a nitrogen atom or —C (—L 52 —R 53 ) ⁇ .
  • R 51 to R 53 represent a hydrogen atom or a monovalent substituent.
  • R 51 is an alkyl group (preferably a branched or straight chain alkyl group having 1 to 30 carbon atoms, more preferably 3 to 28 carbon atoms, still more preferably 6 to 24 carbon atoms, and particularly preferably 8 to 24 carbon atoms).
  • alkenyl group preferably a branched or straight chain alkenyl group having 2 to 30 carbon atoms, more preferably 3 to 28 carbon atoms, still more preferably 6 to 24 carbon atoms, and particularly preferably 8 to 24 carbon atoms
  • alkynyl And a group preferably a branched or straight chain alkynyl group having 2 to 30 carbon atoms, more preferably 3 to 28 carbon atoms, still more preferably 6 to 24 carbon atoms, and particularly preferably 8 to 24 carbon atoms. More preferably, it is a branched or straight chain alkyl group having 6 to 24 carbon atoms, more preferably 8 to 24 carbon atoms.
  • R 52 represents a hydrogen atom or an alkyl group (preferably a branched or straight chain alkyl group having 1 to 30 carbon atoms, more preferably 1 to 24 carbon atoms), an alkenyl group (preferably 2 to 30 carbon atoms, more preferably A branched or linear alkenyl group having 2 to 24 carbon atoms) or an alkynyl group (preferably a branched or straight chain alkynyl group having 2 to 30 carbon atoms, more preferably 2 to 24 carbon atoms), A hydrogen atom or a branched or straight chain alkyl group having 1 to 30 carbon atoms, more preferably 1 to 24 carbon atoms is more preferable, and a hydrogen atom is still more preferable.
  • an alkenyl group preferably 2 to 30 carbon atoms, more preferably A branched or linear alkenyl group having 2 to 24 carbon atoms
  • an alkynyl group preferably a branched or straight chain alkynyl group having 2 to 30 carbon
  • R 53 is a hydrogen atom, a halogen atom (a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc.), a cyano group, a nitro group, a formyl group, or an alkyl group (preferably having a carbon number of 1 to 30, more preferably a carbon number). 1 to 24 branched or straight chain alkyl groups), alkenyl groups (preferably 2 to 30 carbon atoms, more preferably 2 to 24 carbon branched or straight chain alkenyl groups), or alkynyl groups (preferably carbon numbers).
  • a branched or straight-chain alkynyl group having 2 to 24 carbon atoms more preferably a hydrogen atom, a fluorine atom, a chlorine atom, or a cyano group, and still more preferably a hydrogen atom. Or it is a fluorine atom.
  • R 5 has the same meaning as R 5 in L 21 of the above formula (2), and the preferred embodiment is also the same.
  • alkynylene group preferably 2 carbon atoms To 10 and more preferably an alkynylene group having 2 to 5 carbon atoms, and more
  • L 51 and L 52 when L 51 and L 52 are other than a single bond, it is also preferable that L 51 and L 52 constitute an electron-withdrawing group together with R 51 and R 53, respectively.
  • the electron withdrawing group include a 1-alkynyl group (preferably a 1-alkynyl group having 2 to 24 carbon atoms, more preferably a 1-alkynyl group having 6 to 24 carbon atoms), an acyl group (preferably Is an acyl group having 2 to 30 carbon atoms, more preferably 4 to 28 carbon atoms, still more preferably 6 to 24 carbon atoms, an alkoxycarbonyl group (preferably 2 to 30 carbon atoms, more preferably 4 to 28 carbon atoms, More preferably, it is an alkoxycarbonyl group having 6 to 24 carbon atoms, an aryloxycarbonyl group (preferably an aryloxycarbonyl group having 7 to 30 carbon atoms, more preferably an aryloxycarbonyl group having 7 to 20 carbon
  • an acyloxy group having 6 to 24 carbon atoms an arylcarbonyloxy group (preferably having 7 to 30 carbon atoms, more preferably Or an arylcarbonyloxy group having 7 to 20 carbon atoms), a carbamoyl group (preferably 1 to 49 carbon atoms, more preferably a carbamoyl group having 3 to 49 carbon atoms), a sulfamoyl group (preferably having 0 to 48 carbon atoms, Preferably a sulfamoyl group having 2 to 48 carbon atoms), an alkylsulfonyl group (preferably an alkylsulfonyl group having 1 to 30, more preferably 4 to 28 carbon atoms, more preferably 6 to 24 carbon atoms), an arylsulfonyl group (Preferably an arylsulfonyl group having 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms), an alkylsulfinyl group (
  • alkylsulfinyl groups preferably having 1 to 30 carbon atoms, more preferably Ku is 4-28 carbon atoms, more preferably include sulfonyloxy group) having 6 to 24 carbon atoms.
  • X 61 has the same meaning as X 51 in formula (5), and the preferred embodiment is also the same.
  • Z 61 and Z 62 each represents an oxygen atom or a sulfur atom, preferably an oxygen atom.
  • R 62 to R 66 represent a hydrogen atom or a monovalent substituent. This substituent is an alkyl group (preferably a linear or branched alkyl group having 1 to 30 carbon atoms, more preferably 1 to 24 carbon atoms), an alkenyl group (preferably 2 to 30 carbon atoms, more preferably 2 carbon atoms).
  • alkynyl groups preferably 2 to 30 carbon atoms, more preferably branched or straight chain alkynyl groups having 2 to 24 carbon atoms.
  • X 71 has the same meaning as X 51 in the formula (5), preferred embodiments are also the same.
  • Y 71 to Y 74 each represents a nitrogen atom or —C (—L 71 —R 72 ) ⁇ .
  • the preferred embodiments are also the same.
  • Y 71 and Y 74 are a nitrogen atom or —CH ⁇ .
  • said electron withdrawing group what was mentioned as an example of an electron withdrawing group in description of the said Formula (5) is employable, for example.
  • X 81 has the same meaning as X 52 in the formula (5), preferred embodiments are also the same.
  • Y 81 to Y 84 each represents a nitrogen atom or —C (—L 81 —R 82 ) ⁇ .
  • —L 81 —R 82 is an electron withdrawing group.
  • this electron withdrawing group for example, those exemplified as examples of the electron withdrawing group in the description of the above formula (5) can be adopted.
  • W 91 represents —NR 91 — or —CR 92 R 93 —
  • R 91 to R 93 represent a hydrogen atom or a monovalent substituent.
  • the substituent include an alkyl group (preferably a linear or branched alkyl group having 1 to 30 carbon atoms, more preferably 3 to 28 carbon atoms, and still more preferably 6 to 24 carbon atoms), an alkenyl group (preferably a carbon atom).
  • an alkynyl group preferably 2 to 30 carbon atoms, more preferably 6 to 28 carbon atoms.
  • Y 91 and Y 92 are synonymous with Y 81 and Y 82 in formula (8), respectively, and preferred embodiments are also the same.
  • Y 101 and Y 102 are synonymous with Y 81 and Y 82 in formula (8), respectively, and preferred embodiments are also the same.
  • Z 101 and Z 102 are synonymous with Z 61 and Z 62 in the above formula (6), respectively, and preferred embodiments are also the same.
  • W 101 is synonymous with W 61 in the above formula (6), and a preferred embodiment is also the same.
  • X 111 and X 112 have the same meanings as X 51 and X 52 in formula (5), respectively, and preferred embodiments are also the same.
  • Y 111 and Y 112 are synonymous with Y 71 and Y 74 in the above formula (7), respectively, and preferred embodiments are also the same.
  • Y 113 is synonymous with Y 83 in the above formula (8), and the preferred embodiment is also the same.
  • Y 114 is synonymous with Y 84 in the above formula (8), and the preferred embodiment is also the same.
  • X 121 has the same meaning as X 51 in formula (5), and the preferred embodiment is also the same.
  • Y 121 and Y 122 are synonymous with Y 71 and Y 74 in the above formula (7), respectively, and preferred embodiments are also the same.
  • Z 121 and Z 122 are synonymous with Z 61 and Z 62 in the above formula (6), respectively, and preferred embodiments are also the same.
  • W 121 is synonymous with W 61 in the above formula (6), and the preferred embodiment is also the same.
  • an alkyl group (preferably having a carbon number of 1 to 30, more preferably a carbon number of 3 to 28, and still more preferably within the range defined by each formula.
  • a branched or straight chain alkyl group having 6 to 24 carbon atoms, particularly preferably 8 to 24 carbon atoms, or an alkenyl group (preferably 2 to 30 carbon atoms, more preferably 3 to 28 carbon atoms, still more preferably carbon atoms).
  • * shows a connection part in each formula.
  • R 51 is preferably the alkyl group, alkenyl group, or alkynyl group.
  • R 51 is an alkyl group, alkenyl group, Or it is an alkynyl group, and it is more preferable not to have an aliphatic group having 6 or more carbon atoms in addition to R 51 .
  • the R 62 to R 66 are preferably the alkyl group, alkenyl group, or alkynyl group.
  • At least one of Y 72 and Y 73 is the above-C (L 71 -R 72 ), and R 72 is the above alkyl group, alkenyl group, or alkynyl group.
  • at least one of Y 72 and Y 73 is the above-C (L 71 -R 72 ), R 72 is an alkyl group, an alkenyl group, or an alkynyl group, It is more preferable not to have an aliphatic group having 6 or more carbon atoms.
  • R 91 to R 93 are preferably the alkyl group, alkenyl group, or alkynyl group, and R 91 to R 93 are preferably the alkyl group, alkenyl group, or alkynyl. It is more preferable that it is a group and does not have an aliphatic group having 6 or more carbon atoms.
  • the R 62 to R 66 in the referenced formula (6) are preferably the alkyl group, alkenyl group, or alkynyl group, and the structure represented by the formula (10) Among them, it is more preferable that R 62 to R 66 in the formula (6) to be referred to are an alkyl group, an alkenyl group, or an alkynyl group, and no other aliphatic group having 6 or more carbon atoms.
  • Y 113 is preferably —C (—L 81 —R 82 ) ⁇ , and R 82 is preferably the above alkyl group, alkenyl group, or alkynyl group. More preferably, it does not have an aliphatic group having 6 or more carbon atoms.
  • the R 62 to R 66 in the referenced formula (6) are preferably the alkyl group, alkenyl group, or alkynyl group, and other aliphatic groups having 6 or more carbon atoms. More preferably, it has no group.
  • S 1 and S 2 represent ethenylene, ethynylene, arylene group, heteroarylene group, azo group, or —C ⁇ N—.
  • the arylene group preferably has 6 to 20 carbon atoms, and more preferably 6 to 15 carbon atoms.
  • the arylene group is preferably phenylene or naphthylene.
  • the carbon number of the heteroarylene group is preferably 2 to 20, and more preferably 3 to 12.
  • Preferred examples of the heteroarylene group include a divalent thiophene ring, a divalent thiazole ring, a divalent oxazole ring, a divalent furan ring, a divalent pyrrole ring, a divalent selenophene ring, and a divalent thiazole ring.
  • M1 representing the number of S 1 is an integer of 0 to 2, preferably 0 or 1, and more preferably 0.
  • M2 representing the number of S 2 is an integer of 0 to 2, preferably 0 or 1, and more preferably 0.
  • m1 and m2 are preferably the same.
  • p represents an integer of 2 to 2000, more preferably an integer of 10 to 2000.
  • the compound represented by the above formula (1) is preferably represented by the following formula (4).
  • D, A, l, n and p have the same meanings as D, A, l, n and p in the formula (1), respectively, and preferred embodiments are also the same.
  • the compound represented by the above formula (1) or (4) is preferably represented by any of the following formulas (13) to (17).
  • X 131 , X 132 , Y 131 , L 131 and R 131 have the same meaning as X 21 , X 22 , Y 21 , L 21 and R 21 in formula (2), respectively, and are preferable.
  • the aspect is also the same.
  • L 133 and R 133 are synonymous with L 22 and R 23 in Y 21 in the formula (2), respectively, and preferred embodiments are also the same.
  • X 133 , X 134 , Y 132 , L 132 and R 132 are the same as X 51 , X 52 , Y 51 , L 51 and R 51 in the above formula (5), respectively, and preferred embodiments are also the same.
  • p is synonymous with p of the said Formula (1), and its preferable aspect is also the same.
  • X 141 , X 142 , Y 141 , L 141 and R 141 have the same meaning as X 21 , X 22 , Y 21 , L 21 and R 21 in formula (2), respectively, and are preferable.
  • the aspect is also the same.
  • L 142 and R 142 are respectively synonymous with L 22 and R 23 in Y 21 in the formula (2), and preferred embodiments are also the same.
  • X 143 and Y 142 to Y 145 have the same meanings as X 71 and Y 71 to Y 74 in formula (7), respectively, and preferred embodiments are also the same.
  • p is synonymous with p of the said Formula (1), and its preferable aspect is also the same.
  • X 151 , X 152 , Y 151 , L 151 and R 151 have the same meanings as X 21 , X 22 , Y 21 , L 21 and R 21 in formula (2), respectively, and are preferable.
  • the aspect is also the same.
  • L 152 and R 152 have the same definitions as L 22 and R 23 described for Y 21 in formula (2), respectively, and preferred embodiments are also the same.
  • X 153, W 151, Z 151 and Z 152 are each synonymous with X 61, W 61, Z 61 and Z 62 in the formula (6), a preferred embodiment is also the same.
  • p is synonymous with p of the said Formula (1), and its preferable aspect is also the same.
  • X 161 , X 162 , Y 161 , L 161 and R 161 are respectively synonymous with X 21 , X 22 , Y 21 , L 21 and R 21 in the formula (2), and are preferable.
  • the aspect is also the same.
  • L 163 and R 163 have the same meanings as L 22 and R 23 described for Y 21 in formula (2), respectively, and preferred embodiments are also the same.
  • X 163 , Y 162 , Y 163 , Y 164 and Y 165 are synonymous with X 81 , Y 81 , Y 82 , Y 83 and Y 84 in the above formula (8), respectively, and preferred embodiments are also the same.
  • p is synonymous with p of the said Formula (1), and its preferable aspect is also the same.
  • X 171 , X 172 , Y 171 , L 171 and R 171 are the same as X 21 , X 22 , Y 21 , L 21 and R 21 in the above formula (2), respectively.
  • the aspect is also the same.
  • L 172 and R 172 have the same meanings as L 22 and R 23 described for Y 21 in formula (2), respectively, and preferred embodiments are also the same.
  • Y 172 , Y 173 and W 171 have the same meanings as Y 91 , Y 92 and W 91 in the above formula (9), respectively, and preferred embodiments are also the same.
  • p is synonymous with p of the said Formula (1), and its preferable aspect is also the same.
  • any of the two condensed aromatic rings linked by a single bond may be an alkyl group (preferably having a carbon number of 1 to 30, more preferably 3 to 28 carbon atoms, more preferably 6 to 24 carbon atoms, particularly preferably a branched or straight chain alkyl group having 8 to 24 carbon atoms, an alkenyl group (preferably 2 to 30 carbon atoms, more Preferably, it has 3 to 28 carbon atoms, more preferably 6 to 24 carbon atoms, particularly preferably a branched or straight chain alkenyl group having 8 to 24 carbon atoms, and an alkynyl group (preferably 2 to 30 carbon atoms, more preferably A branched or straight-chain alkynyl group having 3 to 28 carbon atoms, more preferably 6 to 24 carbon atoms, particularly preferably 8 to 24 carbon atoms, and at least one group. At least one group selected from the alkyl group, alkenyl group, and alkynyl
  • W 171 is —NR 173 or
  • the organic semiconductor compounds in the forms (a) to (e) described above are an alkyl group, alkenyl group or alkynyl group (hereinafter referred to as an alkyl chain or the like) having a specific carbon number or more in a direction perpendicular to the main chain direction of the organic semiconductor compound Said). Furthermore, the organic semiconductor compound of the present invention has high structural regularity because both the donor structural unit and the acceptor structural unit have a side-chain direction condensed ring structure. As a result, as shown in the following examples, in addition to the main chain portion, alkyl chains and the like can also be closely overlapped (packing) (see the packing form shown on the right side of the arrow in the following examples). Thereby, it is considered that the organic semiconductor compound of the present invention has high crystallinity and improved carrier mobility. As a result, it is considered that carrier mobility and solubility can be achieved at a high level.
  • the side chain represented by R represents a soluble group such as an alkyl group, an alkenyl group, or an alkynyl group.
  • R is a straight chain extending vertically.
  • p represents the number of repeating units.
  • R does not need to be a straight chain and may be a branched chain.
  • the donor structural unit has a main chain direction condensed ring structure, and acceptor properties
  • the structural unit is a side chain direction condensed ring structure.
  • the weight average molecular weight of the organic semiconductor compound used in the present invention is preferably from 5,000 to 1,000,000, and more preferably from 10,000 to 1,000,000.
  • the weight average molecular weight is measured using a GPC (gel filtration chromatography) method.
  • the molecular weight is a weight average molecular weight in terms of polystyrene.
  • the gel packed in the column used in the GPC method is preferably a gel having an aromatic compound as a repeating unit, and examples thereof include a gel made of a styrene-divinylbenzene copolymer. Two to six columns are preferably connected and used.
  • Solvents used include halogen solvents such as chloroform, aromatic solvents such as toluene, chlorobenzene, 1,2-dichlorobenzene and trichlorobenzene, ether solvents such as tetrahydrofuran, and amide solvents such as N-methylpyrrolidone.
  • An aromatic solvent is preferable from the viewpoint of the solubility of the compound.
  • the measurement is preferably performed at a solvent flow rate in the range of 0.1 to 2 mL / min, and more preferably in the range of 0.5 to 1.5 mL / min.
  • the measurement temperature is appropriately changed depending on the boiling point of the solvent, but it is preferably 10 to 200 ° C., more preferably 20 to 150 ° C.
  • the column and carrier to be used can be selected according to the physical properties of the polymer compound to be measured.
  • the column TSK-GEL SUPER H-RC 6.0 * 150 + TSK-GEL BMHHR-H (20) 7.8 * 300 (two), solvent: 1,2-dichlorobenzene, temperature: 145 ° C.
  • Flow rate sample side: 1 mL / min, reference side: determined at 0.5 mL / min.
  • the method for synthesizing the compound of the present invention is not particularly limited, and can be synthesized with reference to various known methods.
  • the compound represented by the formula (1) or the formula (4) is a coupling reaction of the compounds represented by (M1) to (M6) as in the following formula (for example, Chemical Reviews, 2002, Volume 102). 1359, Chemical Reviews, 2011, 111, 1493, Journal of Materials of Chemistry, 2004, 14, 11, etc.).
  • Negishi coupling using transition metal catalyst zinc reactive agent, right-Kosugi-Still coupling using tin reactant, Suzuki-Miyaura coupling using boron reactant, magnesium reactant It can be synthesized using Kumada-Tamao-Coriu coupling, cross coupling such as Ulsan coupling using a silicon reagent, Ullmann reaction using copper, Yamamoto polymerization using nickel, and the like. In the present invention, it is more preferable to use the Ueda-Kosugi-Still coupling and the Suzuki-Miyaura coupling.
  • the transition metal catalyst metals such as palladium, nickel, copper, cobalt, and iron (Journal of the American Chemical Society, 2007, Vol.
  • the metal may have a ligand, such as PPh 3 , P (t-Bu) 3 , P (o-tol) 3 , P (2-furyl) 3 , S-Phos, X-Phos, etc.
  • a phosphorus ligand, an N-heterocyclic carbene ligand (Angewandte Chemie International Edition, 2002, 41, 1290) and the like are preferably used.
  • the reaction may be performed under microwave irradiation as described in Macromolecular Rapid Communications, 2007, 28, 387.
  • M 1 and M 2 are a trialkyltin group, a trialkylsilyl group, or —B (OR ⁇ ) 2
  • M 3 and M 4 are a halogen atom or a perfluoroalkanesulfonyloxy group.
  • M 1 and M 2 are a halogen atom or a perfluoroalkanesulfonyloxy group
  • M 3 and M 4 are a trialkyltin group, a trialkylsilyl group, or —B (OR ⁇ ) 2
  • R ⁇ represents a hydrogen atom or an alkyl group.
  • R ⁇ may be linked to form a ring.
  • the terminal group of the organic semiconductor compound of the present invention is a hydrogen atom, or a trialkyltin group, a trialkylsilyl group, -B (OR ⁇ ) 2 derived from the monomer used for synthesis (where R ⁇ is a hydrogen atom or An alkyl group), a halogen atom, or a perfluoroalkanesulfonyloxy group.
  • R ⁇ is a hydrogen atom or An alkyl group
  • a halogen atom or a perfluoroalkanesulfonyloxy group.
  • an aryl group or a heteroaryl group may be used as a terminal group by performing capping described below.
  • capping may be performed by adding a compound represented by Ar—V 1 after polymerization and reacting with a polymer terminal.
  • Ar represents an aryl group (for example, phenyl group, naphthyl group, tolyl group, etc.) or a heteroaryl group (for example, thienyl group, thiazolyl group, furyl group, pyridyl group, etc.).
  • Ar may have a substituent such as an alkyl group, an alkenyl group, an alkynyl group, an acyl group, an alkoxycarbonyl group, an acyloxy group, or a halogen atom.
  • V 1 is a halogen atom (eg, fluorine atom, chlorine atom, bromine atom, iodine atom), perfluoroalkanesulfonyloxy group (eg, trifluoromethanesulfonyloxy group, nonafluorobutanesulfonyloxy group), trialkyltin A group (for example, trimethylstannyl group, tributylstannyl group, etc.), a trialkylsilyl group (for example, trimethylsilyl group, triethylsilyl group, etc.), and —B (OR x ) 2 .
  • R x represents a hydrogen atom or an alkyl group.
  • R x may be linked to form a ring.
  • tin reactants and boron reactants represented by (M1) to (M6), which are the raw materials, and they are synthesized according to various arbitrary methods.
  • the tin reactant is Journal of the American Chemistry, 2009, 131, 7792, the Journal of the American Chemistry, 2008, 130, 16144, the European Patent Application No. 2407465, and the boron reactant is Journal.
  • American Chemistry, 2012, 134, 539 and the like, and halogenated compounds can be synthesized with reference to Journal of American Chemical Society 2009, 131, 7792-7799 and the like.
  • the method for synthesizing the compound in which the bond of the group represented by A in Formula (2), Formula (3), or Formula (1) and (4) is replaced with a hydrogen atom is not particularly limited, and various arbitrary methods Can be synthesized.
  • Compounds in which the bond of the group represented by the formula (2) is changed to a hydrogen atom include, for example, Journal of Polymer Science, part A; Polymer Chemistry, 2011, 49, 3260-3271, Tetrahedron Letters 2010, 50, 2089- It can be synthesized with reference to the method described on page 2091.
  • Compounds in which the bond of the group represented by formula (3) is changed to a hydrogen atom include, for example, Journal of Materials Chemistry 2012, 22, 23514-23524, Journal of Organic Chemistry 2002, 67, 9073-9076, Chemist of Materials 2012, 45, 4069-4074, Tetrahedron 1998, 54, 7075-7080, and the like.
  • Examples of the compound in which the bond of the group represented by A is changed to a hydrogen atom or a halogen atom include, for example, Journal of American Chemical Society 2010, 132, 5330-5331 (imide), JP 2012-214621 A, Macromolecules 2011.
  • the organic semiconductor device of the present invention is not particularly limited as long as the semiconductor layer contains the organic semiconductor compound of the present invention.
  • transistors for example, transistors, photoelectric conversion devices, organic thermoelectric conversion devices, photodetectors (for example, infrared photodetectors), photovoltaic detectors, imaging devices (for example, RGB imaging devices for cameras or medical imaging systems), light emission Diodes (LEDs) (eg, organic LEDs, or infrared or near infrared LEDs), laser elements, conversion layers (eg, layers that convert visible emission to infrared emission), telecommunications amplifiers and radiators (eg, , Fiber dopants), storage elements (eg holographic storage elements), and electrochromic elements (eg electrochromic displays).
  • transistors for example, photoelectric conversion devices, organic thermoelectric conversion devices, photodetectors (for example, infrared photodetectors), photovoltaic detectors, imaging devices (for example, RGB imaging devices for cameras or medical imaging systems), light emission Diodes (LEDs) (e
  • the organic thin film transistor of the present invention has a semiconductor layer containing the organic semiconductor compound of the present invention.
  • the organic thin film transistor of the present invention may further include other layers in addition to the semiconductor layer.
  • the organic thin film transistor of the present invention is preferably used as an organic field effect transistor (FET), and more preferably used as an insulated gate FET in which a gate-channel is insulated.
  • FET organic field effect transistor
  • ⁇ Laminated structure> There is no restriction
  • the structure of the organic thin film transistor of the present invention there is a structure (bottom gate / top contact type) in which an electrode, an insulator layer, an organic semiconductor layer, and two electrodes are sequentially arranged on the upper surface of the lowermost substrate. it can.
  • the electrode disposed on the upper surface of the lowermost substrate is disposed on a part of the substrate, and the insulator layer is disposed so as to be in contact with the substrate at a portion other than the portion where the electrode is disposed.
  • FIG. 1 is a schematic view showing a cross section of an example of the structure of the organic thin film transistor of the present invention.
  • the organic thin film transistor of FIG. 1 has a substrate 11 disposed in the lowermost layer, an electrode 12 is provided on a part of the upper surface thereof, and further covers the electrode 12 and is in contact with the substrate 11 at a portion other than the electrode 12. 13 is provided. Further, a semiconductor layer 14 is provided on the upper surface of the insulator layer 13, and the two electrodes 15a and 15b are disposed separately on a part of the upper surface.
  • the electrode 12 is a gate, and the electrodes 15a and 15b are drains or sources, respectively.
  • the organic thin film transistor 1 shown in FIG. 1 is an insulated gate FET in which a channel that is a current path between a drain and a source is insulated from a gate.
  • FIG. 2 is a schematic view showing a cross section of the structure of an organic thin film transistor manufactured as a substrate for measuring FET characteristics in an example of the present invention.
  • the substrate 21 is disposed in the lowermost layer, the electrode 22 is provided on a part of the upper surface thereof, the electrode 22 is further covered, and the insulating layer is in contact with the substrate 21 at a portion other than the electrode 22.
  • 23 is provided.
  • the semiconductor layer 24 is provided on the upper surface of the insulator layer 23, and the electrodes 25 a and 25 b are below the semiconductor layer 24.
  • the electrode 22 is a gate
  • the electrode 25a and the electrode 25b are a drain or a source, respectively.
  • the organic thin film transistor 2 shown in FIG. 2 is an insulated gate FET in which a channel that is a current path between a drain and a source is insulated from a gate.
  • the structure of the organic thin film transistor of the present invention is preferably a top gate / top contact type element having an insulator and a gate electrode above the semiconductor layer, or a top gate / bottom contact type element in addition to the above example.
  • the thickness of the entire transistor is, for example, 0.1 to 0.5 ⁇ m.
  • the entire organic thin film transistor is made of a metal sealing can, an inorganic material such as glass or silicon nitride, a polymer material such as parylene, or a low molecular material. It may be sealed with.
  • a metal sealing can an inorganic material such as glass or silicon nitride, a polymer material such as parylene, or a low molecular material. It may be sealed with.
  • the organic thin film transistor of the present invention preferably includes a substrate.
  • substrate Arbitrary materials can be used.
  • polyester films such as polyethylene naphthoate (PEN) and polyethylene terephthalate (PET), cycloolefin polymer films, polycarbonate films, triacetyl cellulose (TAC) films, polyimide films, and these polymer films were bonded to ultrathin glass.
  • PEN polyethylene naphthoate
  • PET polyethylene terephthalate
  • TAC triacetyl cellulose
  • polyimide films and these polymer films were bonded to ultrathin glass.
  • the organic thin film transistor of the present invention preferably includes an electrode.
  • the constituent material of the electrode include metal materials such as Cr, Al, Ta, Mo, Nb, Cu, Ag, Au, Pt, Pd, In, Ni, and Nd, alloy materials thereof, carbon materials, and conductive materials. Any known conductive material such as a conductive polymer can be used without particular limitation.
  • the thickness of the electrode is not particularly limited, but is preferably 10 to 50 nm.
  • the gate width (or channel width) W and the gate length (or channel length) L are preferably 10 or more, and more preferably 20 or more.
  • the material constituting the insulator layer is not particularly limited as long as a necessary insulating effect is obtained.
  • fluoropolymer insulating materials such as silicon dioxide, silicon nitride, PTFE, CYTOP, polyester insulating materials, polycarbonate insulating materials, acrylic polymer insulating materials, epoxy resin insulating materials, polyimide insulating materials, polyvinylphenol resin insulating materials, Examples include polyparaxylylene resin-based insulating materials.
  • the top surface of the insulator layer may be surface-treated.
  • an insulator layer in which the surface of silicon dioxide is surface-treated by application of hexamethyldisilazane (HMDS) or octadecyltrichlorosilane (OTS) can be preferably used.
  • the thickness of the insulator layer is preferably 10 to 400 nm, more preferably 20 to 200 nm, and particularly preferably 50 to 200 nm.
  • the organic thin film transistor of the present invention is characterized in that the semiconductor layer contains the organic semiconductor compound of the present invention.
  • the semiconductor layer may be a layer made of the organic semiconductor compound of the present invention.
  • the layer further contained the below-mentioned low molecular organic semiconductor and the below-mentioned polymer may be sufficient.
  • the residual solvent at the time of film-forming may be contained.
  • Examples of the low molecular organic semiconductor include compounds in which a benzene ring, a thiophene ring, a furan ring, a pyrrole ring, a thiazole ring, a selenophene ring, a thiadiazole ring, an oxadiazole ring, and the like are condensed or connected.
  • anthracene for example, anthracene, tetracene, pentacene, hexacene, heptacene, chrysene, picene, fluorene, pyrene, peropyrene, perylene, terylene, quaterylene, coronene, ovalene, circumcamanthracene, bisanthene, zestrene, heptazesulene, pyranthrene, violanthene, isoviolanthene, Polycyclic aromatic hydrocarbons such as circobiphenyl, polycyclic heteroaromatic hydrocarbon compounds such as anthradithiophene, benzodithiophene, naphthodithiophene, benzothienobenzothiophene, dinaphthothienothiophene, porphyrin and copper phthalocyanine, and these And derivatives and precursors thereof.
  • Polycyclic aromatic hydrocarbons such as circ
  • polystyrene examples include insulating polymers such as polystyrene, polycarbonate, polyarylate, polyester, polyamide, polyimide, polyurethane, polysiloxane, polysulfone, polymethyl methacrylate, polymethyl acrylate, cellulose, polyethylene, and polypropylene, and their co-polymers.
  • insulating polymers such as polystyrene, polycarbonate, polyarylate, polyester, polyamide, polyimide, polyurethane, polysiloxane, polysulfone, polymethyl methacrylate, polymethyl acrylate, cellulose, polyethylene, and polypropylene, and their co-polymers.
  • photoconductive polymers such as coalescence, polyvinyl carbazole, and polysilane, conductive polymers such as polythiophene, polypyrrole, polyaniline, and polyparaphenylene vinylene, and semiconductor polymers.
  • the above low molecular organic semiconductors and polymers may be used alone or
  • the organic semiconductor compound of the present invention and the polymer may be homogeneously mixed, or a part or all of them may be phase separated.
  • the organic semiconductor compound and the polymer are preferably phase-separated in the film thickness direction.
  • the phase separation can prevent the charge transfer of the organic semiconductor from being hindered by the polymer.
  • the thickness of the semiconductor layer is preferably 10 to 400 nm, more preferably 10 to 200 nm, and particularly preferably 10 to 100 nm.
  • the organic semiconductor compound of the present invention is preferably formed on the surface of a substrate or the like. Any film forming method may be used. During film formation, a substrate to be formed may be heated or cooled. By changing the temperature of the substrate or the like, the film quality and molecular packing in the film can be controlled to some extent. There is no restriction
  • Examples of film formation by a vacuum process include vacuum vapor deposition, sputtering, ion plating, physical vapor deposition such as molecular beam epitaxy (MBE), or chemical vapor deposition (CVD) such as plasma polymerization. It is particularly preferable to use a vacuum deposition method.
  • film formation by solution process refers to a method of preparing a composition in which the organic semiconductor compound of the present invention is dissolved in an organic solvent, applying the composition, and forming the film.
  • coating methods such as casting method, dip coating method, die coater method, roll coater method, bar coater method (bar coating method), spin coating method, ink jet method, screen printing method, gravure printing method, flexography
  • Various printing methods such as a printing method, an offset printing method, a microcontact printing method, and a normal method such as a Langmuir-Blodgett (LB) method can be used.
  • the semiconductor layer of the organic thin film transistor of the present invention contains a polymer
  • this semiconductor layer is obtained by dissolving or dispersing at least the organic semiconductor compound of the present invention and the polymer in an appropriate organic solvent (
  • the coating solution is preferably formed by various coating methods.
  • the coating solution that can be used for film formation by a solution process will be described.
  • organic solvent used in the coating solution examples include hydrocarbon solvents such as hexane, octane, decane, toluene, xylene, mesitylene, ethylbenzene, decalin, and 1-methylnaphthalene, such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.
  • hydrocarbon solvents such as hexane, octane, decane, toluene, xylene, mesitylene, ethylbenzene, decalin, and 1-methylnaphthalene, such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.
  • Ketone solvents such as dichloromethane, chloroform, tetrachloromethane, dichloroethane, trichloroethane, tetrachloroethane, chlorobenzene, dichlorobenzene, chlorotoluene, trichlorobenzene, 1-chloronaphthalene and other halogenated hydrocarbon solvents, ethyl acetate, Esters such as butyl acetate and amyl acetate, methanol, propanol, butanol, pentanol, hexanol, cyclohexanol, methyl cellosolve, Alcohol solvents such as tilcellosolve, ethylene glycol, ether solvents such as dibutyl ether, tetrahydrofuran, dioxane, anisole, N, N-dimethylformamide, N, N-dimethylacetamide, 1-methyl-2-pyrrolidone, 1-methyl
  • a solvent may be used individually by 1 type and may be used in combination of multiple types. Among these, hydrocarbon solvents, halogenated hydrocarbon solvents or ether solvents are preferred, and toluene, xylene, mesitylene, tetralin, chloroform, chlorobenzene, dichlorobenzene or trichlorobenzene are more preferred.
  • the concentration of the organic semiconductor compound in the coating solution is preferably 0.1 to 80% by mass, more preferably 0.1 to 10% by mass, and particularly preferably 0.5 to 10% by mass.
  • FIG. 3 is a side view schematically showing an example of the organic photoelectric conversion device of the present invention.
  • the photoelectric conversion device 3 of this embodiment includes a photoelectric conversion layer 33 containing the organic semiconductor compound of the present invention.
  • the photoelectric conversion layer of an organic photoelectric conversion device generally includes a p-type organic semiconductor and an n-type organic semiconductor, and a pn two-layer junction or a pin three-layer junction type and a bulk heterojunction type depending on the junction form. are categorized.
  • the photoelectric conversion layer of the organic photoelectric conversion device of the present invention may be in any of these forms.
  • FIG. 3 shows a bulk heterojunction photoelectric conversion layer 33. By providing a bulk heterojunction photoelectric conversion layer, higher power generation efficiency can be obtained more easily.
  • the organic photoelectric conversion device of the present invention contains the organic semiconductor compound of the present invention as a p-type organic semiconductor in the photoelectric conversion layer 33 (semiconductor layer).
  • the photoelectric conversion layer 33 is provided between the first electrode 35 and the second electrode 31.
  • By providing the hole transport layer 34 and the electron transport layer 32 it is possible to more efficiently take out the charges generated in the photoelectric conversion layer 33.
  • the distinction between the upper and lower sides is not particularly important, but the first electrode 35 side is positioned as “up” or “top” side and the second electrode 31 side is “ Position it as “bottom” or “bottom”.
  • the configuration of the substrate, the positive electrode, the hole transport layer, the photoelectric conversion layer, the electron transport layer, and the negative electrode is referred to as the forward configuration
  • the substrate, the negative electrode, the electron transport layer, the photoelectric conversion layer, and the hole transport in order from the upper layer The configuration of the layer and the positive electrode is referred to as a reverse configuration. In the present invention, both forward and reverse configurations are preferably applied.
  • the p-type organic semiconductor and the n-type organic semiconductor phase are mixed in a specific form as described above.
  • photoelectric conversion charge separation
  • the phases are interdigitated in a nanometer order.
  • the p-type organic semiconductor has a specific compatibility or incompatibility with the n-type organic semiconductor.
  • the material that becomes the p-type semiconductor is not determined only by the specific physical properties, but is specified by the relative relationship with the material that becomes the n-type semiconductor.
  • a material having a higher electron donating property can be a p-type semiconductor material.
  • the organic photoelectric conversion device of the present invention is preferably used as an organic thin film solar cell.
  • n-type organic semiconductor is not particularly limited. In general, it is a ⁇ -electron conjugated compound having a lowest unoccupied orbital (LUMO) level of ⁇ 3.5 to ⁇ 4.5 eV.
  • LUMO lowest unoccupied orbital
  • fullerene or a derivative thereof, octaazaporphyrin, etc., a perfluoro compound in which a hydrogen atom of a p-type organic semiconductor is substituted with a fluorine atom for example, perfluoropentacene or perfluorophthalocyanine
  • naphthalenetetracarboxylic anhydride for example, naphthalenetetracarboxylic
  • naphthalenetetracarboxylic Examples thereof include aromatic carboxylic acid anhydrides such as acid diimide, perylene tetracarboxylic acid anhydride, and perylene tetracarboxylic acid diimide, and polymer compounds containing an imidized product thereof as a skeleton.
  • fullerene or a derivative thereof is preferable because charge separation can be performed at high speed and efficiently from the organic semiconductor compound of the present invention.
  • the fullerene or its derivatives C 60 fullerene, C 70 fullerene, C 76 fullerene, C 78 fullerene, C 84 fullerene, C 240 fullerenes, C 540 fullerenes, mixed fullerenes, fullerene nanotubes, and some of these hydrogen atoms , Fullerene derivatives substituted by halogen atoms, substituted or unsubstituted alkyl groups, alkenyl groups, alkynyl groups, aryl groups, heteroaryl groups, cycloalkyl groups, silyl groups, ether groups, thioether groups, amino groups, silyl groups, etc. Can be mentioned.
  • Preferred fullerene derivatives are phenyl-C 61 -butyric acid ester, diphenyl-C 62 -bis (butyric acid ester), phenyl-C 71 -butyric acid ester, phenyl-C 85 -butyric acid ester or thienyl-C 61 -butyric acid ester,
  • the preferred number of carbon atoms in the alcohol portion of the butyric acid ester is 1-30, more preferably 1-8, still more preferably 1-4, and most preferably 1.
  • Examples of preferred fullerene derivatives include phenyl-C 61 -butyric acid methyl ester ([60] PCBM), phenyl-C 61 -butyric acid n-butyl ester ([60] PCBnB), phenyl-C 61 -butyric acid isobutyl ester ([60 PCBiB), phenyl-C 61 -butyric acid n-hexyl ester ([60] PCBH), phenyl-C 61 -butyric acid n-octyl ester ([60] PCBO), diphenyl-C 62 -bis (butyric acid methyl ester) ( Bis [60] PCBM), phenyl-C 71 -butyric acid methyl ester ([70] PCBM), phenyl-C 85 -butyric acid methyl ester ([84] PCBM), thienyl-C 61 -butyric acid methyl ester (
  • the organic semiconductor compound of the present invention is used for the photoelectric conversion layer of the photoelectric conversion device of the present invention.
  • Other p-type organic semiconductors for example, condensed polycyclic aromatic low molecular weight compounds, oligomers or polymers may be contained.
  • condensed polycyclic aromatic low-molecular compound that is a p-type organic semiconductor examples include, for example, anthracene, tetracene, pentacene, hexacene, heptacene, chrysene, picene, fluorene, pyrene, peropyrene, perylene, terylene, quaterylene, coronene, ovalene, circumcam Compounds such as anthracene, bisanthene, zeslen, heptazesulene, pyranthrene, violanthene, isoviolanthene, sacobiphenyl, anthradithiophene, porphyrin, copper phthalocyanine, tetrathiafulvalene (TTF) -tetracyanoquinodimethane (TCNQ) complex, bis Examples thereof include ethylenetetrathiafulvalene (BEDTTTTF) -perchloric acid complex
  • the photoelectric conversion layer contains a p-type organic semiconductor as an electron donating material and an n-type organic semiconductor as an electron accepting material in a ratio showing a desired photoelectric conversion efficiency.
  • p-type: n-type 10: 90 to 90:10, preferably 20:80 to 80:20.
  • a coating method is preferable in order to increase the area of the interface where holes and electrons are separated by charge and to have high photoelectric conversion efficiency.
  • a coating solution used for the coating method it is preferable to use a composition in which at least the organic semiconductor compound of the present invention and an n-type organic semiconductor are dissolved or dispersed in an organic solvent.
  • the organic solvent used in the coating solution, the content of the organic semiconductor compound of the present invention in the coating solution is the organic solvent that can be used in the coating solution described in the organic thin film transistor and the organic semiconductor compound in the coating solution described in the organic thin film transistor. The content of can be adopted.
  • the method for the purpose of promoting the phase separation of the electron donating region (donor) and the electron accepting region (acceptor) in the photoelectric conversion layer, crystallization of the organic material contained in the photoelectric conversion layer, and transparency of the electron transport layer, etc.
  • You may heat-process (anneal) by the method.
  • a dry film formation method such as vapor deposition
  • the substrate temperature during film formation is heated to 30 ° C. to 150 ° C.
  • a wet film forming method such as printing or coating
  • there is a method of setting the drying temperature after coating to 30 ° C. to 250 ° C. Further, it may be heated to 30 ° C. to 250 ° C.
  • the thickness of the photoelectric conversion layer is preferably 30 to 1000 nm, and more preferably 50 to 600 nm. In the present invention, a plurality of photoelectric conversion layers may be provided, but the photoelectric conversion layer is preferably a single layer.
  • the organic photoelectric conversion device has at least a first electrode and a second electrode.
  • One of the first electrode and the second electrode is a positive electrode, and the rest is a negative electrode.
  • the tandem configuration can be achieved by using an intermediate electrode.
  • an electrode through which holes mainly flow is referred to as a positive electrode
  • an electrode through which electrons mainly flow is referred to as a negative electrode.
  • an electrode having translucency is referred to as a transparent electrode
  • an electrode having no translucency is referred to as a counter electrode or a metal electrode.
  • the positive electrode is a translucent transparent electrode
  • the negative electrode is a non-translucent counter electrode or metal electrode.
  • the negative electrode is a translucent transparent electrode
  • the positive electrode is a non-translucent counter electrode or metal electrode.
  • Both the first electrode and the second electrode can be transparent electrodes.
  • the first electrode is a positive electrode.
  • it is preferably a transparent electrode that transmits light from visible light to near infrared light (380 to 800 nm).
  • the material include transparent conductive metal oxides such as indium tin oxide (ITO), indium zinc oxide (IZO), indium tungsten oxide (IWO), tin oxide, zinc oxide, and indium oxide, magnesium, aluminum, calcium,
  • transparent conductive metal oxides such as indium tin oxide (ITO), indium zinc oxide (IZO), indium tungsten oxide (IWO), tin oxide, zinc oxide, and indium oxide, magnesium, aluminum, calcium
  • ultrathin films of metal and metal alloys such as titanium, chromium, manganese, iron, copper, zinc, strontium, silver, indium, tin, barium, and bismuth, metal nanowires, and carbon nanotubes can be used.
  • a mesh electrode in which a metal such as silver is meshed to ensure light transmission.
  • a conductive material selected from the group consisting of polypyrrole, polyaniline, polythiophene, polythienylene vinylene, polyazulene, polyisothianaphthene, polycarbazole, polyacetylene, polyphenylene, polyphenylene vinylene, polyacene, polyphenylacetylene, polydiacetylene and polynaphthalene.
  • a functional polymer can also be used.
  • a plurality of these conductive compounds can be combined to form a positive electrode.
  • the transmittance of the positive electrode is the thickness used for solar cells (for example, 0.2 ⁇ m thickness), and the average light transmittance in the wavelength region of 380 nm to 800 nm is 75% or more. It is preferably some 85% or more. If light transmittance is not required in the reverse configuration, metals such as chromium, cobalt, nickel, copper, molybdenum, palladium, silver, tantalum, tungsten, platinum, gold, alloys thereof, transparent conductive oxide, polyaniline
  • the positive electrode can be formed of a conductive polymer such as polythiophene or polypyrrole.
  • Suitable conductive polymer layers are disclosed in JP 2012-43835 A, polythiophene derivatives are preferable, and polyethylenedioxythiophene-polystyrene sulfonic acid (PEDOT-PSS) is more preferable.
  • PEDOT-PSS polyethylenedioxythiophene-polystyrene sulfonic acid
  • These metals, transparent conductive oxides, and conductive polymers may be used alone, or two or more kinds may be mixed or laminated.
  • the second electrode is a negative electrode.
  • the negative electrode may be a conductive material single layer. Or in addition to the material which has electroconductivity, you may use together resin which hold
  • As the conductive material for the negative electrode a material having a small work function (4 eV or less) metal, alloy, electrically conductive compound, and a mixture thereof as an electrode material is used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like.
  • a mixture of these metals and a second metal which is a stable metal having a larger work function value than this for example, a magnesium / silver mixture, magnesium / Aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred.
  • the negative electrode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering.
  • the film thickness is usually selected in the range of 10 nm to 5 ⁇ m, preferably 50 to 200 nm.
  • the second electrode is a transparent electrode.
  • a transparent electrode that transmits light from visible light to near infrared light (380 to 800 nm) is preferable, and examples thereof include metals, metal oxides, conductive polymers, mixtures thereof, and laminated structures.
  • transparent conductive oxides such as tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO), and indium tungsten oxide (IWO), magnesium, aluminum, calcium, titanium
  • transparent conductive oxides such as tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO), and indium tungsten oxide (IWO)
  • magnesium aluminum, calcium, titanium
  • ultrathin films of metals and metal alloys such as chromium, manganese, iron, copper, zinc, strontium, silver, indium, tin, barium, and bismuth
  • conductive polymers such as polyaniline, polythiophene, and polypyrrole.
  • the transparent conductive oxide is ITO, IZO, tin oxide, antimony-doped tin oxide (ATO), fluorine-doped tin oxide (FTO), zinc oxide, antimony-doped zinc oxide (AZO), and gallium-doped oxide.
  • Zinc (GZO) can be used.
  • the transmittance of the negative electrode is the thickness used for solar cells (eg, 0.2 ⁇ m thickness), and the average light transmittance in the wavelength region of 380 nm to 800 nm is 75% or more. It is preferably some 85% or more.
  • the metal electrode may be a metal (eg, gold, silver, copper, platinum, rhodium, ruthenium, aluminum, magnesium, indium, etc.), carbon nanoparticle, nanowire, or nanostructure.
  • a dispersion is preferable because a transparent and highly conductive negative electrode can be formed by a coating method.
  • the metal electrode side is made light transmissive, for example, a conductive material suitable for the negative electrode such as aluminum and aluminum alloy, silver and silver compound is formed in a thin film thickness of about 1 to 20 nm, and then the positive electrode is formed.
  • a light-transmitting negative electrode can be obtained by providing the conductive light-transmitting material film mentioned in the description.
  • the conductive polymer that forms the hole transport layer include polythiophene, polypyrrole, polyaniline, polyphenylene vinylene, polyphenylene, polyacetylene, polyquinoxaline, polyoxadiazole, polybenzothiadiazole, and polymers having a plurality of these conductive skeletons.
  • polythiophene and its derivatives are preferable, and polyethylenedioxythiophene and polythienothiophene are particularly preferable. These polythiophenes are usually partially oxidized in order to obtain conductivity.
  • the electrical conductivity of the conductive polymer can be adjusted by the degree of partial oxidation (doping amount). The larger the doping amount, the higher the electrical conductivity. Since polythiophene becomes cationic by partial oxidation, a counter anion for neutralizing the charge is required. Examples of such polythiophenes include polyethylene dioxythiophene (PEDOT-PSS) with polystyrene sulfonic acid as a counter ion and polyethylene dioxythiophene (PEDOT-TsO) with p-toluenesulfonic acid as a counter anion.
  • the thickness of the hole transport layer is usually from 0.1 to 500 nm, preferably from 0.5 to 300 nm.
  • the hole transport layer can be suitably formed by any of a wet film formation method by coating or the like, a dry film formation method by PVD method such as vapor deposition or sputtering, a transfer method, or a printing method.
  • -Electron transport layer- In the present invention, it is preferable to provide an electron transport layer between the second electrode and the photoelectric conversion layer, a hole transport layer is provided between the first electrode and the photoelectric conversion layer, and the photoelectric conversion layer and the second It is particularly preferable to provide an electron transport layer between the electrodes.
  • the electron transport material that can be used for the electron transport layer include an n-type semiconductor compound that is the electron accepting material mentioned in the photoelectric conversion layer, and Electron in Chemical Review, Vol. 107, pages 953 to 1010 (2007). -Listed as Transporting and Hole-Blocking Materials.
  • alkali metal compounds such as lithium fluoride, sodium fluoride, and cesium fluoride are preferable.
  • Various metal oxides are preferably used as materials for electron transport layers having high stability.
  • relatively stable aluminum oxide, titanium oxide, and zinc oxide are more preferable.
  • the thickness of the electron transport layer is usually from 0.1 to 500 nm, preferably from 0.5 to 300 nm.
  • the electron transport layer can be suitably formed by any of a wet film formation method such as coating, a dry film formation method such as vapor deposition and sputtering, a transfer method, and a printing method.
  • holes generated in the photoelectric conversion layer do not flow to the negative electrode side in the electron transport layer having a HOMO level deeper than the HOMO level of the p-type organic semiconductor used in the photoelectric conversion layer.
  • a hole blocking function having a rectifying effect is provided.
  • a material deeper than the HOMO level of the n-type organic semiconductor is used as the electron transport layer.
  • Such an electron transport layer is also referred to as a hole block layer, and it is preferable to use an electron transport layer having such a function.
  • Such materials include phenanthrene compounds such as bathocuproine, n-type semiconductor compounds such as naphthalene tetracarboxylic acid anhydride, naphthalene tetracarboxylic acid diimide, perylene tetracarboxylic acid anhydride, perylene tetracarboxylic acid diimide, and titanium oxide.
  • n-type semiconductor compounds such as naphthalene tetracarboxylic acid anhydride, naphthalene tetracarboxylic acid diimide, perylene tetracarboxylic acid anhydride, perylene tetracarboxylic acid diimide, and titanium oxide.
  • N-type inorganic oxides such as zinc oxide and gallium oxide, and alkali metal compounds such as lithium fluoride, sodium fluoride, and cesium fluoride can be used.
  • the support constituting the photoelectric conversion device includes at least a first electrode (positive electrode), a photoelectric conversion layer, a second electrode (metal negative electrode), and in a more preferred embodiment, the first electrode (positive electrode).
  • a hole transport layer, a photoelectric conversion layer, an electron transport layer, and a second electrode (metal negative electrode) are not particularly limited as long as they can be formed and held.
  • glass, plastic film, etc. Can be selected as appropriate.
  • a conventional layer may be applied to provide an easy adhesion layer / undercoat layer, functional layer, recombination layer, other semiconductor layer, protective layer, gas barrier layer, UV absorption layer, antireflection layer, etc. Good.
  • the organic thermoelectric conversion device of this invention has a 1st electrode, an organic thermoelectric conversion layer, and a 2nd electrode on a base material, and a thermoelectric conversion layer contains the organic-semiconductor compound of this invention at least.
  • the organic thermoelectric conversion device of this invention should just have a 1st electrode, a thermoelectric conversion layer, and a 2nd electrode on a base material, A 1st electrode, a 2nd electrode, and a thermoelectric conversion layer There are no particular limitations on other configurations such as the positional relationship.
  • the thermoelectric conversion layer may be disposed on at least one surface so as to be in contact with the first electrode and the second electrode.
  • the aspect in which the thermoelectric conversion layer is sandwiched between the first electrode and the second electrode that is, the organic thermoelectric conversion device of the present invention has the first electrode, the thermoelectric conversion layer, and the second electrode in this order on the substrate. The aspect which has may be sufficient.
  • thermoelectric conversion layer is disposed on one surface so as to be in contact with the first electrode and the second electrode, that is, the organic thermoelectric conversion device of the present invention is formed on the substrate so as to be separated from each other.
  • stacked on the 1st electrode and the 2nd electrode may be sufficient.
  • the structure of the device shown in FIGS. 4 and 5, the arrows indicate the direction of the temperature difference when using the thermoelectric conversion device.
  • the thermoelectric conversion device 4 shown in FIG. 4 includes a pair of electrodes including the first electrode 43 and the second electrode 45 on the first base material 42, and the organic semiconductor compound of the present invention between the electrodes 43 and 45.
  • thermoelectric conversion layer 44 formed using is provided.
  • a second substrate 46 is disposed on the other surface of the second electrode 45, and the metal plates 41 and 47 are opposed to each other on the outside of the first substrate 42 and the second substrate 46.
  • a thermoelectric conversion layer containing the organic semiconductor compound of the present invention is provided on a base material via an electrode, and this base material functions as a first base material.
  • the thermoelectric conversion device 4 is provided with the first electrode 43 or the second electrode 45 on the surface of the two base materials 42 and 46 (formation surface of the thermoelectric conversion layer 44), and between these electrodes 43 and 45. It is preferable that the structure has a thermoelectric conversion layer 44 containing the organic semiconductor compound of the present invention.
  • thermoelectric conversion device 5 a first electrode 52 and a second electrode 53 are disposed on a first base 51, and a thermoelectric conversion layer 54 containing the organic semiconductor compound of the present invention thereon. Is provided.
  • thermoelectric conversion layer 44 of the thermoelectric conversion device 4 is covered with the first base material 42 via the first electrode 43, and the thermoelectric conversion layer 54 of the thermoelectric conversion device 5 is The surface is covered with the first electrode 52, the second electrode 53, and the first base material 51.
  • the second substrate 46 or 55 is also bonded to the other surface via the second electrode 45 or without the electrode. That is, it is preferable that the second electrode 45 is formed in advance on the surface of the second substrate 46 used in the thermoelectric conversion device 4 (the pressure contact surface of the thermoelectric conversion layer 44). Further, in the thermoelectric conversion devices 4 and 5, it is preferable to press the electrode and the thermoelectric conversion layer by heating to about 100 ° C. to 200 ° C. from the viewpoint of improving adhesion.
  • the base material of the organic thermoelectric conversion device of the present invention, the first base material 42 and the second base material 46 in the thermoelectric conversion device 4 may be a base material such as glass, transparent ceramics, metal, or plastic film.
  • the substrate has flexibility. Specifically, the flexibility is such that the number of bending resistances MIT by a measurement method prescribed in ASTM D2176 is 10,000 cycles or more. It is preferable to have a tee.
  • the substrate having such flexibility is preferably a plastic film.
  • polyethylene terephthalate polyethylene isophthalate, polyethylene naphthalate, polybutylene terephthalate, poly (1,4-cyclohexylenedimethylene terephthalate), Polyethylene-2,6-naphthalene dicarboxylate, polyester film such as polyester film of bisphenol A and iso and terephthalic acid, ZEONOR film (trade name, manufactured by Nippon Zeon), ARTON film (trade name, manufactured by JSR), Sumilite Polycycloolefin films such as FS1700 (trade name, manufactured by Sumitomo Bakelite), Kapton (trade name, manufactured by Toray DuPont), Apical (trade name, manufactured by Kaneka), Upilex (trade name, Ube) Sumilite FS1100 (product), polyimide film such as Pomilan (trade name, manufactured by Arakawa Chemical Co., Ltd.), polycarbonate film such as Pure Ace (trade name, manufactured by Teijin Chemicals), Elmec (trade name, manufactured by Kaneka
  • polyethylene terephthalate polyethylene naphthalate
  • various polyimides polycarbonate films, and the like are preferable from the viewpoints of availability, preferably heat resistance of 100 ° C. or higher, economy, and effects.
  • a base material in which an electrode is provided on the pressure contact surface with the thermoelectric conversion layer.
  • electrode materials for forming the first electrode and the second electrode provided on the base material transparent electrodes such as ITO and ZnO, metal electrodes such as silver, copper, gold and aluminum, CNT (carbon nanotube), graphene Carbon materials such as PODOT / PSS, conductive pastes in which conductive fine particles such as silver and carbon are dispersed, and conductive pastes containing metal nanowires such as silver, copper, and aluminum can be used.
  • a metal material is preferable, and aluminum, gold, silver, or copper is more preferable.
  • thermoelectric conversion device 4 is configured in the order of the first base material 42, the first electrode 43, the thermoelectric conversion layer 44, and the second electrode 45. Even if the base materials 46 are adjacent to each other, the second electrode 45 may be exposed to air as the outermost surface without providing the second base material 46.
  • the thermoelectric conversion element 5 includes a first base 51, a first electrode 52, a second electrode 53, and a thermoelectric conversion layer 54, and a second substrate is disposed outside the thermoelectric conversion layer 54. Even if the material 55 is adjacent, the thermoelectric conversion layer 44 may be exposed to air as the outermost surface without providing the second substrate 55.
  • the thickness of the substrate is preferably from 30 to 3000 ⁇ m, more preferably from 50 to 1000 ⁇ m, still more preferably from 100 to 1000 ⁇ m, particularly preferably from 200 to 800 ⁇ m from the viewpoints of handleability and durability. If the substrate is too thick, the thermal conductivity may decrease, and if it is too thin, the film may be easily damaged by external impact.
  • the layer thickness of the thermoelectric conversion layer is preferably 0.1 to 1000 ⁇ m, and more preferably 1 to 100 ⁇ m. If the layer thickness is thin, it is not preferable because it is difficult to provide a temperature difference and the resistance in the layer increases.
  • thermoelectric conversion layer is not particularly limited.
  • spin coating extrusion die coating, blade coating, bar coating, screen printing, stencil printing, roll coating, curtain coating, spray coating, dip coating, ink jet printing, etc.
  • a known coating method can be used.
  • screen printing is preferable from the viewpoint of excellent adhesion of the thermoelectric conversion layer to the electrode.
  • Ink jet printing is also preferable because it is easy to handle the apparatus and has a high degree of freedom in selecting an element pattern shape.
  • thermoelectric conversion material When applying a thermoelectric conversion material and forming a film, at least the organic semiconductor compound of the present invention is used as a coating solution. It is preferable to appropriately adjust the amount of the dispersion medium so that the coating solution has a desired solid content concentration and viscosity.
  • the organic solvent used in the coating solution, the content of the organic semiconductor compound of the present invention in the coating solution is the organic solvent that can be used in the coating solution described in the organic thin film transistor and the organic semiconductor compound in the coating solution described in the organic thin film transistor.
  • the content of can be adopted.
  • the organic thermoelectric conversion device of the present invention can be suitably used as a power generation device for an article for thermoelectric power generation. Specific examples of such power generation devices include power generators such as hot spring thermal generators, solar thermal generators, and waste heat generators, wristwatch power supplies, semiconductor drive power supplies, and (small) sensor power supplies.
  • SiO 2 thickness 200 nm
  • PEDOT-PSS (CLEVIOS P VP.AI4083 (trade name) manufactured by Heraeus Precision Material) used as a hole transport layer is spin-coated on a glass-ITO substrate that has been cleaned and UV-ozone-treated. (3000 rpm) and heated at 140 ° C. for 30 minutes.
  • This solution was applied onto the PEDOT-PSS layer by spin coating (1000 rpm) and dried to prepare a photoelectric conversion layer having a thickness of 80 nm. LiF (1 nm) and aluminum (100 nm) were sequentially deposited on the photoelectric conversion layer to form an upper electrode, thereby obtaining an organic photoelectric conversion device.
  • thermoelectric conversion layer 44 having a film thickness of 3.1 ⁇ m and a size of 8 mm ⁇ 8 mm was formed by drying at room temperature under vacuum for 10 hours. Thereafter, a glass substrate 46 in which gold is deposited as the second electrode 45 on the thermoelectric conversion layer 44 (the thickness of the electrode 45: 20 nm, the width of the electrode 45: 5 mm, the thickness of the glass substrate 46: 0.8 mm). Were bonded at 80 ° C. so that the second electrode 45 was in contact with the thermoelectric conversion layer 44, and the thermoelectric conversion device 4 shown in FIG. 4 was produced.
  • thermoelectric conversion device was produced in the same manner as in Example 1 except that the polymer P1 was changed to P7.
  • thermoelectric conversion device was produced in the same manner as in Example 1 except that the polymer P1 was changed to P9.
  • Example 2 The same procedure as in Example 1 was conducted, except that 182 mg (0.300 mmol) of compound (11-1) and 198 mg (0.300 mmol) of (11-2) were used, and 178 mg of polymer P11 (yield 75.9%) Obtained.
  • Example 2 The same procedure as in Example 1 was conducted, except that 173 mg (0.300 mmol) of compound (14-1) and 167 mg (0.300 mmol) of (14-2) were used, and 173 mg of polymer P14 (yield: 89.0%) Obtained.
  • Example 2 The same procedure as in Example 1 was carried out, except that 206 mg (0.300 mmol) of compound (17-1) and 161 mg (0.300 mmol) of (17-2) were used, and 661 mg of polymer P17 (yield 90.1%) Obtained.
  • thermoelectric conversion device A thermoelectric conversion device was obtained in the same manner as in Example 1 except that the polymer P1 was changed to P18.
  • thermoelectric conversion device A thermoelectric conversion device was obtained in the same manner as in Example 1 except that the polymer P1 was changed to P19.
  • the photoelectric conversion efficiency of an organic photoelectric conversion device in which the photoelectric conversion layer is formed by spin coating or bar coating (hereinafter also simply referred to as conversion efficiency). Evaluated. The obtained results were evaluated according to the following criteria. A: (conversion efficiency of bar coating method) / (conversion efficiency of spin coating method) 0.9 or more B: (conversion efficiency of bar coating method) / (conversion efficiency of spin coating method) 0.8 or more to 0.9 Less than C: (conversion efficiency of bar coating method) / (conversion efficiency of spin coating method) 0.7 or more and less than 0.8 D: (conversion efficiency of bar coating method) / (conversion efficiency of spin coating method) 0. Less than 7
  • the organic semiconductor compound of the present invention has very high structural regularity including not only the main chain but also the side chain structure. Therefore, the organic semiconductor compound of the present invention has a highly crystalline structure (packing property) that is spontaneously arranged during film formation by ⁇ - ⁇ interaction in the main chain portion and van der Waals interaction (fastener effect) in the side chain portion. High structure). Therefore, the change in conversion efficiency when the coating method is changed is small. Further, since the organic semiconductor compound of the present invention has high crystallinity, it is considered that the change in molecular arrangement due to repeated driving in the organic thin film transistor is small, and the change in threshold voltage is also reduced.
  • thermoelectric characteristic value thermoelectric conversion device.
  • the first electrode of the thermoelectric conversion device was placed on a hot plate maintained at a constant temperature, and a Peltier element for temperature control was placed on the second electrode. While maintaining the temperature of the hot plate constant (100 ° C.), the temperature of the Peltier element was lowered to give a temperature difference (over 0K to 10K or less) between both electrodes.
  • the thermoelectromotive force S ( ⁇ V / K) per unit temperature difference is obtained by dividing the thermoelectromotive force ( ⁇ V) generated between both electrodes by the specific temperature difference (K) generated between both electrodes. This value was calculated as the thermoelectric characteristic value of the thermoelectric conversion device.
  • the calculated thermoelectric characteristic values are shown in Table 2 as relative values to the calculated values of the thermoelectric conversion device using the comparative polymer P19.
  • thermoelectric conversion device using the semiconductor layer of the organic semiconductor compound of the present invention is excellent in thermoelectric conversion efficiency.
  • Photoelectric conversion devices Bulk heterojunction organic thin film solar cells
  • Counter electrode second electrode
  • Electron transport layer 33
  • Photoelectric conversion layer 33a n-type semiconductor phase
  • 33b p-type semiconductor phase 34 hole transport layer
  • 35 transparent electrode first electrode
  • 36 Transparent support L Light P Electric motor (winding machine)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Photovoltaic Devices (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

The present invention has the purpose of providing an organic semiconductor compound which increases crystallinity (packing properties) of an organic semiconductor polymer, achieves both carrier mobility and solubility at a higher level, shows superior carrier mobility if used in a semiconductor layer, and for which application properties are also good. The present invention also has the purpose of providing a composition using the compound, a coating film, and an organic semiconductor device for which the compound is included in a semiconductor layer. The present invention is an organic semiconductor device for which a semiconductor layer contains a compound represented in formula (1). In formula (1), D indicates a donor structural unit represented in formula (2) or formula (3). Symbols in formula (2) and formula (3) indicate specific groups or atoms. A indicates an acceptor structural unit comprising an aromatic ring of a side-chain direction fused-ring structure. S1 and S2 indicate specific groups or bonds. l, n, m1, m2, and p indicate specific integers. Moreover, D and A comprise at least one of an alkyl group, an alkenyl group, and an alkynyl group.

Description

有機半導体デバイス、これに用いる化合物、組成物及び塗布膜Organic semiconductor device, compound used for the same, composition and coating film
 本発明は、有機薄膜トランジスタ、有機光電変換デバイス又は有機熱電変換デバイス等として用いるのに好適な有機半導体デバイスに関する。また、本発明は、有機半導体デバイスの半導体層に用いるのに好適な化合物、この化合物を含む組成物及び塗布膜に関する。 The present invention relates to an organic semiconductor device suitable for use as an organic thin film transistor, an organic photoelectric conversion device, an organic thermoelectric conversion device, or the like. Moreover, this invention relates to the compound suitable for using for the semiconductor layer of an organic-semiconductor device, the composition containing this compound, and a coating film.
 有機半導体ポリマーは、エレクトロニクス分野において無機半導体材料に代わる新たな半導体材料として研究が進められている。有機半導体ポリマーは分子構造のバリエーションが豊富であるため、様々な特性の半導体デバイスの製造を可能とし、また、無機半導体材料に比べて半導体層の大面積化が容易であるという優位性を備えている。今日では、電圧をかけると発光する有機エレクトロルミネッセンス素子、電流量や電圧量を制御する有機薄膜トランジスタ、光エネルギーを電力に変換する有機光電変換デバイス、熱エネルギーを電力に変換する有機熱電変換デバイス等、有機半導体ポリマーの応用範囲は多岐に渡っている。 Organic semiconductor polymers are being researched as new semiconductor materials to replace inorganic semiconductor materials in the electronics field. Since organic semiconductor polymers have a wide variety of molecular structures, they can be used to manufacture semiconductor devices with various characteristics, and have the advantage that the area of the semiconductor layer can be easily increased compared to inorganic semiconductor materials. Yes. Today, organic electroluminescence elements that emit light when voltage is applied, organic thin film transistors that control the amount of current and voltage, organic photoelectric conversion devices that convert light energy into power, organic thermoelectric conversion devices that convert heat energy into power, etc. The range of applications of organic semiconductor polymers is diverse.
 有機半導体ポリマーは、ドナー性の構造単位とアクセプター性の構造単位とが、必要によりπ電子共役が可能なスペーサー構造を介して連結した繰り返し単位を有する、ドナー-アクセプター型のπ電子共役ポリマーである。ポリマーは成膜のため、有機溶媒に対する溶解性(以下、単に「溶解性」という)が必要であり、このためアルキル基などの可溶性基を有している。現在主流のドナー-アクセプター型有機半導体ポリマーは、下記のようにポリマーの主鎖方向に縮環した構造(主鎖方向縮環)のドナー性構造単位(例えば、ジチエノシロール、シクロペンタジチオフェン、ベンゾジチオフェン)と、ポリマーの側鎖方向に縮環した構造(側鎖方向縮環)のアクセプター性構造単位(例えば、ベンゾチアジアゾール、チエノピロールジオン、チエノ[3,4-b]チオフェン)とを組み合わせた繰り返し単位を有している(例えば、非特許文献1参照)。 The organic semiconductor polymer is a donor-acceptor type π-electron conjugated polymer having a repeating unit in which a donor-type structural unit and an acceptor-type structural unit are connected via a spacer structure capable of π-electron conjugation if necessary. . The polymer needs to be soluble in an organic solvent (hereinafter simply referred to as “solubility”) for film formation, and thus has a soluble group such as an alkyl group. Current mainstream donor-acceptor type organic semiconductor polymers are donor-like structural units (for example, dithienosilol, cyclopentadithiophene, benzodi) having a structure condensed in the main chain direction of the polymer (condensed in the main chain direction) as described below. Thiophene) and an acceptor structural unit (for example, benzothiadiazole, thienopyrroledione, thieno [3,4-b] thiophene) having a structure condensed in the side chain direction of the polymer (side chain direction condensed ring) It has a repeating unit (see Non-Patent Document 1, for example).
Figure JPOXMLDOC01-appb-I000006
Figure JPOXMLDOC01-appb-I000006
 また、側鎖方向縮環のみの構造単位で構成されたポリマーとしては、特許文献1に、チエノチアゾール構造単位とチエノピロールジオン構造単位とが連結した繰り返し単位を有するポリマーとその合成方法が記載されている。また、非特許文献2には、イソチアナフテン、チオフェン、ベンゾチアジアゾール及びチオフェンの各構造単位がこの順に連結した繰り返し単位を有するポリマーが記載されている。 In addition, as a polymer composed of a structural unit having only a side chain direction condensed ring, Patent Document 1 describes a polymer having a repeating unit in which a thienothiazole structural unit and a thienopyrrole dione structural unit are linked, and a synthesis method thereof. ing. Non-Patent Document 2 describes a polymer having a repeating unit in which structural units of isothianaphthene, thiophene, benzothiadiazole and thiophene are connected in this order.
国際公開第2013/056355A1号International Publication No. 2013 / 056355A1
 有機半導体ポリマーには一般に、有機半導体デバイスの半導体層に用いた際に高いキャリア移動度が要求される。半導体層に用いた際のキャリア移動度が高いほど、例えばポリマーを光電変換デバイスや熱電変換デバイスの半導体層に用いた際には発電効率をより高めることができる。しかし、従来のドナー-アクセプター型の有機半導体ポリマーは、前述のように主鎖方向縮環のドナー性構造単位と、側鎖方向縮環のアクセプター性構造単位からなる。したがって、下記のようにポリマー主鎖部分は分子間で密に重なる(パッキングされる)ことができるが、可溶性基部分は密に重なることができない。それゆえ、従来のドナー-アクセプター型ポリマーは結晶性(パッキング性)が十分とはいえずキャリア移動度には制約があり、結晶性(パッキング性)を高めてキャリア移動度を高めようとすれば溶解性を犠牲にせざるを得ないものであった。つまり、従来のドナー-アクセプター型ポリマーは、キャリア移動度と溶解性とがトレードオフ支配下にある。 Organic semiconductor polymers generally require high carrier mobility when used in a semiconductor layer of an organic semiconductor device. The higher the carrier mobility when used in the semiconductor layer, the higher the power generation efficiency when the polymer is used in the semiconductor layer of a photoelectric conversion device or a thermoelectric conversion device, for example. However, a conventional donor-acceptor type organic semiconductor polymer is composed of a main chain direction condensed ring donor structural unit and a side chain direction condensed ring acceptor structural unit as described above. Therefore, as described below, the polymer main chain part can overlap (pack) closely between molecules, but the soluble group part cannot overlap closely. Therefore, the conventional donor-acceptor type polymer cannot be said to have sufficient crystallinity (packing property), and there is a restriction on the carrier mobility, and if the carrier mobility is increased by increasing the crystallinity (packing property). Solubility had to be sacrificed. That is, the conventional donor-acceptor type polymer has a trade-off between carrier mobility and solubility.
Figure JPOXMLDOC01-appb-I000007
Figure JPOXMLDOC01-appb-I000007
 本発明者らは、上記のトレードオフから脱却するため、ドナー-アクセプター型ポリマーのポリマー主鎖部分だけでなく、可溶性基部分も含めて、分子間での重なりをより密にして構造規則性を高め(パッキング性を高め)、溶解性を犠牲にせずにキャリア移動度をより向上させることを考えた。 In order to get rid of the above trade-off, the present inventors have not only the main chain part of the donor-acceptor type polymer but also the soluble group part to make the structure regularity more densely between the molecules. We considered increasing (improving packing properties) and further improving carrier mobility without sacrificing solubility.
 本発明は、有機半導体ポリマーの結晶性(パッキング性)を高め、キャリア移動度と溶解性をより高いレベルで両立し、半導体層に用いれば優れたキャリア移動度を示し、塗布特性も良好な有機半導体化合物及びこの化合物を半導体層に含む有機半導体デバイスを提供することを課題とする。
 さらに、本発明は、上記有機半導体化合物を含む組成物及び塗布膜を提供することを課題とする。
The present invention improves the crystallinity (packing property) of an organic semiconductor polymer, achieves both carrier mobility and solubility at a higher level, exhibits excellent carrier mobility when used in a semiconductor layer, and has good coating characteristics. It is an object to provide a semiconductor compound and an organic semiconductor device containing the compound in a semiconductor layer.
Furthermore, this invention makes it a subject to provide the composition and coating film containing the said organic-semiconductor compound.
 本発明者らは上記課題に鑑み鋭意検討を重ねた。その結果、従来はアクセプター性構造単位としてポリマー中に組み込まれていた特定の側鎖方向縮環構造が、ドナー性構造単位として機能しうることを見い出した。すなわち、特定の側鎖方向縮環構造が、モノマーの状態では最高占有軌道(HOMO)準位が深くドナー性が弱いが、ポリマー中に組み込まれると、HOMO準位が浅くなって主鎖方向縮環構造と同等以上のドナー性を示す知見を得た。
 さらに、ドナー性とアクセプター性の双方の構造単位を共に側鎖方向縮環構造とすることにより、可溶性基を含めて極めて構造規則性の高いドナー-アクセプター型のポリマーが得られることを見出した。本ポリマーは、その高い構造規則性のため、下記のように主鎖及び可溶性基が配列することにより結晶性の高い塗膜を形成し、優れたキャリア移動度を示すことを見出した。
The present inventors have made extensive studies in view of the above problems. As a result, it has been found that a specific side chain direction condensed ring structure that has been conventionally incorporated into a polymer as an acceptor structural unit can function as a donor structural unit. In other words, a specific side chain direction condensed ring structure has a deepest maximum occupied orbital (HOMO) level in the monomer state and a weak donor property. The knowledge which showed the donor property equivalent to or more than a ring structure was acquired.
Furthermore, it has been found that a donor-acceptor type polymer having a very high structure regularity including a soluble group can be obtained by making both the donor and acceptor structural units into a side-chain direction condensed ring structure. It has been found that due to its high structural regularity, this polymer forms a highly crystalline coating film by arranging the main chain and the soluble group as shown below, and exhibits excellent carrier mobility.
Figure JPOXMLDOC01-appb-I000008
Figure JPOXMLDOC01-appb-I000008
 本発明はこれらの知見に基づきさらに検討を重ねて完成させるに至った。 The present invention has been completed through further studies based on these findings.
 すなわち、本発明によれば下記の手段が提供される。
〔1〕下記式(1)で表される化合物を半導体層に含む有機半導体デバイス。
That is, according to the present invention, the following means are provided.
[1] An organic semiconductor device containing a compound represented by the following formula (1) in a semiconductor layer.
Figure JPOXMLDOC01-appb-I000009
Figure JPOXMLDOC01-appb-I000009
 式(1)中、Dは式(2)又は式(3)で表されるドナー性構造単位を示す。Aは側鎖方向縮環構造の芳香族環からなるアクセプター性構造単位を示す。S及びSはエテニレン、エチニレン、アリーレン基、ヘテロアリーレン基、アゾ基、又は-C=N-を示す。l及びnは1~4の整数を示し、m1及びm2は0~2の整数を示す。pは2~2000の整数を示す。
 式(2)中、X21及びX22は硫黄原子、酸素原子、セレン原子又は-NR22-を示し、Y21は窒素原子又は-C(-L22-R23)=を示す。但し、X21及びX22の両方が硫黄原子の場合、Y21は-C(-L22-R23)=である。L21及びL22は、単結合、-O-、-S-、-NR-、-Si(R-、-C(=O)O-、-C(=S)O-、-C(=O)S-、-SC(=O)-、-OC(=O)-、-OC(=S)-、-C(=O)-、-C(=S)-、-C(=O)NR-、-NRC(=O)-、-S(=O)-、-S(=O)-、-S(=O)O-、-OS(=O)-、-S(=O)NR-、-NRS(=O)-、アリーレン基、ヘテロアリーレン基、アルケニレン基もしくはアルキニレン基であるか、又は、アリーレン基、ヘテロアリーレン基、アルケニレン基、アルキニレン基、カルボニル基、及びアシルオキシ基から選ばれる2以上の基を組み合わせてなる基である。R21~R23は水素原子又は一価の置換基を示す。Rは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、又はヘテロアリール基を示す。
 式(3)中、X31は硫黄原子、酸素原子、セレン原子又は-NR31-を示す。Y31~Y34は窒素原子又は-C(-L31-R32)=を示す。Y31及びY34のL31はL22と、Y31及びY34のR32はR23と同義である。Y32及びY33のL31はL21と、Y32及びY33のR32はR21と同義である。R31は上記R22と同義である。
 式(2)及び(3)中*は連結部位を示す。
 但し、D及びAはアルキル基、アルケニル基及びアルキニル基から選ばれる少なくとも1つの基を有する。
In formula (1), D represents a donor structural unit represented by formula (2) or formula (3). A represents an acceptor structural unit composed of an aromatic ring having a side-chain direction condensed ring structure. S 1 and S 2 represent ethenylene, ethynylene, arylene group, heteroarylene group, azo group, or —C═N—. l and n are integers of 1 to 4, and m1 and m2 are integers of 0 to 2. p represents an integer of 2 to 2000.
In the formula (2), X 21 and X 22 represent a sulfur atom, an oxygen atom, a selenium atom or —NR 22 —, and Y 21 represents a nitrogen atom or —C (—L 22 —R 23 ) ═. However, when both X 21 and X 22 are sulfur atoms, Y 21 is —C (—L 22 —R 23 ) =. L 21 and L 22 are a single bond, —O—, —S—, —NR 5 —, —Si (R 5 ) 2 —, —C (═O) O—, —C (═S) O—, -C (= O) S-, -SC (= O)-, -OC (= O)-, -OC (= S)-, -C (= O)-, -C (= S)-,- C (═O) NR 5 —, —NR 5 C (═O) —, —S (═O) —, —S (═O) 2 —, —S (═O) 2 O—, —OS (= O) 2 —, —S (═O) 2 NR 5 —, —NR 5 S (═O) 2 —, an arylene group, a heteroarylene group, an alkenylene group or an alkynylene group, or an arylene group, a heteroarylene group A group formed by combining two or more groups selected from a group, an alkenylene group, an alkynylene group, a carbonyl group, and an acyloxy group. R 21 to R 23 represent a hydrogen atom or a monovalent substituent. R 5 represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, or a heteroaryl group.
In the formula (3), X 31 represents a sulfur atom, an oxygen atom, a selenium atom or —NR 31 —. Y 31 to Y 34 represent a nitrogen atom or —C (—L 31 —R 32 ) ═. L 31 of Y 31 and Y 34 has the same meaning as L 22, and R 32 of Y 31 and Y 34 has the same meaning as R 23 . L 31 of Y 32 and Y 33 has the same meaning as L 21, and R 32 of Y 32 and Y 33 has the same meaning as R 21 . R 31 has the same meaning as R 22 described above.
In formulas (2) and (3), * indicates a linking site.
However, D and A have at least one group selected from an alkyl group, an alkenyl group, and an alkynyl group.
〔2〕上記式(1)で表される化合物が下記式(4)で表される、〔1〕に記載の有機半導体デバイス。 [2] The organic semiconductor device according to [1], wherein the compound represented by the formula (1) is represented by the following formula (4).
Figure JPOXMLDOC01-appb-I000010
Figure JPOXMLDOC01-appb-I000010
 式(4)中、D、A、l、n及びpはそれぞれ、上記式(1)中のD、A、l、n及びpと同義である。 In the formula (4), D, A, l, n and p have the same meanings as D, A, l, n and p in the above formula (1), respectively.
〔3〕下記(a1)~(b1)を満たす、〔1〕又は〔2〕に記載の有機半導体デバイス:
(a1)上記式(2)において、R21が炭素数6~24のアルキル基、アルケニル基又はアルキニル基であり、他に炭素数6以上の脂肪族基を有さない、
(b1)上記式(3)において、Y32及びY33のうち一方又は両方が上記-C(-L31-R32)=であって、R32が炭素数6~24のアルキル基、アルケニル基又はアルキニル基であり、他に炭素数6以上の脂肪族基を有さない。
〔4〕上記アクセプター性構造単位Aが、下記式(5)~(12)のいずれかで表される、〔1〕~〔3〕のいずれかに記載の有機半導体デバイス。
[3] The organic semiconductor device according to [1] or [2], which satisfies the following (a1) to (b1):
(A1) In the above formula (2), R 21 is an alkyl group having 6 to 24 carbon atoms, an alkenyl group, or an alkynyl group, and has no other aliphatic group having 6 or more carbon atoms.
(B1) In the above formula (3), one or both of Y 32 and Y 33 is —C (—L 31 —R 32 ) =, and R 32 is an alkyl group having 6 to 24 carbon atoms, alkenyl Group or alkynyl group, and has no other aliphatic group having 6 or more carbon atoms.
[4] The organic semiconductor device according to any one of [1] to [3], wherein the acceptor structural unit A is represented by any of the following formulas (5) to (12).
Figure JPOXMLDOC01-appb-I000011
Figure JPOXMLDOC01-appb-I000011
 式(5)中、X51及びX52は、硫黄原子、酸素原子、セレン原子又は-NR52-を示し、Y51は窒素原子又は-C(-L52-R53)=を示す。L51及びL52は単結合、-O-、-S-、-NR-、-Si(R-、-C(=O)O-、-C(=S)O-、-C(=O)S-、-SC(=O)-、-OC(=O)-、-OC(=S)-、-C(=O)-、-C(=S)-、-C(=O)NR-、-NRC(=O)-、-S(=O)-、-S(=O)-、-S(=O)O-、-OS(=O)-、-S(=O)NR-、-NRS(=O)-、アリーレン基、ヘテロアリーレン基、アルケニレン基もしくはアルキニレン基であるか、又は、アリーレン基、ヘテロアリーレン基、アルケニレン基、アルキニレン基、カルボニル基、及びアシルオキシ基から選ばれる2以上の基を組み合わせてなる基である。Rは上記式(2)のL21におけるRと同義である。R51~R53は水素原子又は一価の置換基を示す。
 式(6)中、X61は上記式(5)中のX51と同義である。Z61及びZ62は酸素原子又は硫黄原子を示す。W61は-NR62-、-CR6364-又は>C=CR6566を示す。R62~R66は水素原子又は一価の置換基を示す。
 式(7)中、X71は上記式(5)中のX51と同義である。Y71~Y74は窒素原子又は-C(-L71-R72)=を示す。Y71及びY74のL71は上記式(5)中のL52と同義であり、Y72及びY73のL71は上記式(5)中のL51と同義である。R72は水素原子又は一価の置換基を示す。
 式(8)中、X81は上記式(5)中のX52と同義である。Y81~Y84は窒素原子又は-C(-L81-R82)=を示す。Y83のL81は上記式(5)中のL51と同義であり、Y81、Y82及びY84のL81は上記式(5)中のL52と同義である。R82は水素原子又は一価の置換基を示す。
 式(9)中、W91は-NR91-又は-CR9293-を示し、R91~R93は水素原子又は一価の置換基を示す。Y91及びY92は、それぞれ上記式(8)中のY81及びY82と同義である。
 式(10)中、Y101及びY102は、それぞれ上記式(8)中のY81及びY82と同義である。Z101及びZ102は、それぞれ上記式(6)中のZ61及びZ62と同義である。W101は上記式(6)中のW61と同義である。
 式(11)中、X111及びX112は、それぞれ上記式(5)中のX51及びX52と同義である。Y111、Y112は、それぞれ上記式(7)中のY71及びY74と同義である。Y113、Y114は、それぞれ上記式(8)中のY83及びY84と同義である。
 式(12)中、X121は上記式(5)中のX51と同義である。Y121及びY122は、それぞれ上記式(7)中のY71及びY74と同義である。Z121及びZ122は、それぞれ上記式(6)中のZ61及びZ62と同義である。W121は上記式(6)中のW61と同義である。
 式(5)~(12)の各式で表される構造は、アルキル基、アルケニル基及びアルキニル基から選ばれる少なくとも1つの基を有する。また各式中、*は連結部位を示す。
In the formula (5), X 51 and X 52 represent a sulfur atom, oxygen atom, selenium atom or —NR 52 —, and Y 51 represents a nitrogen atom or —C (—L 52 —R 53 ) ═. L 51 and L 52 are a single bond, —O—, —S—, —NR 5 —, —Si (R 5 ) 2 —, —C (═O) O—, —C (═S) O—, — C (= O) S-, -SC (= O)-, -OC (= O)-, -OC (= S)-, -C (= O)-, -C (= S)-, -C (═O) NR 5 —, —NR 5 C (═O) —, —S (═O) —, —S (═O) 2 —, —S (═O) 2 O—, —OS (═O ) 2 —, —S (═O) 2 NR 5 —, —NR 5 S (═O) 2 —, an arylene group, a heteroarylene group, an alkenylene group or an alkynylene group, or an arylene group, a heteroarylene group , A group formed by combining two or more groups selected from an alkenylene group, an alkynylene group, a carbonyl group, and an acyloxy group. R 5 has the same meaning as R 5 in L 21 in the formula (2). R 51 to R 53 represent a hydrogen atom or a monovalent substituent.
In formula (6), X 61 has the same meaning as X 51 in formula (5). Z 61 and Z 62 represent an oxygen atom or a sulfur atom. W 61 represents —NR 62 —, —CR 63 R 64 —, or> C = CR 65 R 66 . R 62 to R 66 represent a hydrogen atom or a monovalent substituent.
Wherein (7), X 71 has the same meaning as X 51 in the formula (5). Y 71 to Y 74 each represents a nitrogen atom or —C (—L 71 —R 72 ) ═. L 71 in Y 71 and Y 74 has the same meaning as L 52 in the above formula (5), and L 71 in Y 72 and Y 73 has the same meaning as L 51 in the above formula (5). R 72 represents a hydrogen atom or a monovalent substituent.
Wherein (8), X 81 has the same meaning as X 52 in the formula (5). Y 81 to Y 84 each represents a nitrogen atom or —C (—L 81 —R 82 ) ═. L 81 of Y 83 has the same meaning as L 51 in the formula (5), L 81 of Y 81, Y 82 and Y 84 has the same meaning as L 52 in the formula (5). R 82 represents a hydrogen atom or a monovalent substituent.
In Formula (9), W 91 represents —NR 91 — or —CR 92 R 93 —, and R 91 to R 93 represent a hydrogen atom or a monovalent substituent. Y 91 and Y 92 have the same meanings as Y 81 and Y 82 in the above formula (8), respectively.
In formula (10), Y 101 and Y 102 have the same meanings as Y 81 and Y 82 in formula (8), respectively. Z 101 and Z 102 are synonymous with Z 61 and Z 62 in the above formula (6), respectively. W 101 is synonymous with W 61 in the above formula (6).
In formula (11), X 111 and X 112 have the same meanings as X 51 and X 52 in formula (5), respectively. Y 111 and Y 112 have the same meanings as Y 71 and Y 74 in the above formula (7), respectively. Y 113 and Y 114 are synonymous with Y 83 and Y 84 in the above formula (8), respectively.
In formula (12), X 121 has the same meaning as X 51 in formula (5). Y 121 and Y 122 are synonymous with Y 71 and Y 74 in the above formula (7), respectively. Z 121 and Z 122 are synonymous with Z 61 and Z 62 in the above formula (6), respectively. W 121 is synonymous with W 61 in the above formula (6).
The structure represented by each of the formulas (5) to (12) has at least one group selected from an alkyl group, an alkenyl group, and an alkynyl group. Moreover, * shows a connection part in each formula.
〔5〕下記(a2)~(h2)を満たす、〔4〕に記載の有機半導体デバイス:
(a2)上記式(5)において、R51が炭素数6~24のアルキル基、アルケニル基又はアルキニル基であり、他に炭素数6以上の脂肪族基を有さない、
(b2)上記式(6)において、W61が上記-NR62-、-CR6364-又は>C=CR6566であって、R62~R66が炭素数6~24のアルキル基、アルケニル基又はアルキニル基であり、他に炭素数6以上の脂肪族基を有さない、
(c2)上記式(7)において、Y72及びY73の少なくとも1つが上記-C(-L71-R72)=であって、R72が炭素数6~24のアルキル基、アルケニル基又はアルキニル基であり、他に炭素数6以上の脂肪族基を有さない、
(d2)上記式(8)において、Y83が上記-C(-L81-R82)=であって、R82が炭素数6~24のアルキル基、アルケニル基又はアルキニル基であり、他に炭素数6以上の脂肪族基を有さない、
(e2)上記式(9)において、W91が上記-NR91-又は-CR9293-であって、R91~R93が炭素数6~24のアルキル基、アルケニル基又はアルキニル基であり、他に炭素数6以上の脂肪族基を有さない、
(f2)上記式(10)において、W101が上記-NR62-、-CR6364-又は>C=CR6566であって、R62~R66が炭素数6~24のアルキル基、アルケニル基又はアルキニル基であり、他に炭素数6以上の脂肪族基を有さない、
(g2)上記式(11)において、Y113が上記-C(-L81-R82)=であって、R82が炭素数6~24のアルキル基、アルケニル基又はアルキニル基であり、他に炭素数6以上の脂肪族基を有さない、
(h2)上記式(12)において、W121が上記-NR62-、-CR6364-又は>C=CR6566であって、R62~R66が炭素数6~24のアルキル基、アルケニル基又はアルキニル基であり、他に炭素数6以上の脂肪族基を有さない。
[5] The organic semiconductor device according to [4], which satisfies the following (a2) to (h2):
(A2) In the above formula (5), R 51 is an alkyl group, alkenyl group or alkynyl group having 6 to 24 carbon atoms, and does not have any other aliphatic group having 6 or more carbon atoms,
(B2) In the above formula (6), W 61 is —NR 62 —, —CR 63 R 64 — or> C═CR 65 R 66 , and R 62 to R 66 are alkyl having 6 to 24 carbon atoms. A group, an alkenyl group or an alkynyl group, and no other aliphatic group having 6 or more carbon atoms,
(C2) In the above formula (7), at least one of Y 72 and Y 73 is —C (—L 71 —R 72 ) =, and R 72 is an alkyl group, alkenyl group having 6 to 24 carbon atoms, or An alkynyl group that does not have any other aliphatic group having 6 or more carbon atoms,
(D2) In the above formula (8), Y 83 is —C (—L 81 —R 82 ) =, R 82 is an alkyl group, alkenyl group or alkynyl group having 6 to 24 carbon atoms, Does not have an aliphatic group having 6 or more carbon atoms,
(E2) In the above formula (9), W 91 is —NR 91 — or —CR 92 R 93 —, and R 91 to R 93 are alkyl groups, alkenyl groups, or alkynyl groups having 6 to 24 carbon atoms. There is no other aliphatic group having 6 or more carbon atoms,
(F2) In the above formula (10), W 101 is —NR 62 —, —CR 63 R 64 — or> C = CR 65 R 66 , and R 62 to R 66 are alkyl having 6 to 24 carbon atoms. A group, an alkenyl group or an alkynyl group, and no other aliphatic group having 6 or more carbon atoms,
(G2) In the above formula (11), Y 113 is —C (—L 81 —R 82 ) =, R 82 is an alkyl group, alkenyl group or alkynyl group having 6 to 24 carbon atoms; Does not have an aliphatic group having 6 or more carbon atoms,
(H2) In the above formula (12), W 121 is —NR 62 —, —CR 63 R 64 — or> C = CR 65 R 66 , and R 62 to R 66 are alkyl having 6 to 24 carbon atoms. A group, an alkenyl group or an alkynyl group, and no other aliphatic group having 6 or more carbon atoms.
〔6〕上記化合物が、下記式(13)~(17)のいずれかで表される、〔1〕~〔5〕のいずれかに記載の有機半導体デバイス。 [6] The organic semiconductor device according to any one of [1] to [5], wherein the compound is represented by any of the following formulas (13) to (17).
Figure JPOXMLDOC01-appb-I000012
Figure JPOXMLDOC01-appb-I000012
 式(13)中、X131、X132、Y131、L131及びR131は、それぞれ上記式(2)中のX21、X22、Y21、L21及びR21と同義である。但し、X131とX132の両方が硫黄原子の場合、Y131は-C(-L133-R133)=である。L133及びR133は、それぞれ式(2)中のY21におけるL22及びR23と同義である。X133、X134、Y132、L132及びR132は、それぞれ上記式(5)中のX51、X52、Y51、L51及びR51と同義である。pは上記式(1)のpと同義である。
 式(14)中、X141、X142、Y141、L141及びR141は、それぞれ上記式(2)中のX21、X22、Y21、L21及びR21と同義である。但し、X141とX142の両方が硫黄原子の場合、Y141は-C(-L142-R142)=である。L142及びR142は、それぞれ式(2)中のY21におけるL22及びR23と同義である。X143及びY142~Y145は、それぞれ式(7)中のX71及びY71~Y74と同義である。pは上記式(1)のpと同義である。
 式(15)中、X151、X152、Y151、L151及びR151は、それぞれ上記式(2)中のX21、X22、Y21、L21及びR21と同義である。但し、X151とX152の両方が硫黄原子の場合、Y151は-C(-L152-R152)=である。L152及びR152は、それぞれ式(2)中のY21におけるL22及びR23と同義である。X153、W151、Z151及びZ152は、それぞれ上記式(6)中のX61、W61、Z61及びZ62と同義である。pは上記式(1)のpと同義である。
 式(16)中、X161、X162、Y161、L161及びR161は、それぞれ上記式(2)中のX21、X22、Y21、L21及びR21と同義である。但し、X161とX162の両方が硫黄原子の場合、Y161は-C(-L163-R163)=である。L163及びR163は、それぞれ式(2)中のY21におけるL22及びR23と同義である。X163、Y162、Y163、Y164及びY165は、それぞれ上記式(8)中のX81、Y81、Y82、Y83及びY84と同義である。pは上記式(1)のpと同義である。
 式(17)中、X171、X172、Y171、L171及びR171は、それぞれ上記式(2)中のX21、X22、Y21、L21及びR21と同義である。但し、X171とX172の両方が硫黄原子の場合、Y171は-C(-L172-R172)=である。L172及びR172は、それぞれ式(2)中のY21におけるL22及びR23と同義である。Y172、Y173及びW171は、それぞれ上記式(9)中のY91、Y92及びW91と同義である。pは上記式(1)のpと同義である。
 式(13)~(17)の各式中、単結合で連結した2つの側鎖方向縮環構造の縮合芳香族環は、いずれもアルキル基、アルケニル基及びアルキニル基から選ばれる少なくとも1つの基を有する。
In formula (13), X 131 , X 132 , Y 131 , L 131 and R 131 have the same meanings as X 21 , X 22 , Y 21 , L 21 and R 21 in formula (2), respectively. However, when both X 131 and X 132 are sulfur atoms, Y 131 is —C (—L 133 —R 133 ) =. L 133 and R 133 are synonymous with L 22 and R 23 in Y 21 in the formula (2), respectively. X 133 , X 134 , Y 132 , L 132 and R 132 have the same meanings as X 51 , X 52 , Y 51 , L 51 and R 51 in the formula (5), respectively. p is synonymous with p in the above formula (1).
In formula (14), X 141 , X 142 , Y 141 , L 141, and R 141 have the same meanings as X 21 , X 22 , Y 21 , L 21, and R 21 in formula (2), respectively. However, when both X 141 and X 142 are sulfur atoms, Y 141 is -C (-L 142 -R 142 ) =. L 142 and R 142 are synonymous with L 22 and R 23 in Y 21 in Formula (2), respectively. X 143 and Y 142 to Y 145 have the same meanings as X 71 and Y 71 to Y 74 in formula (7), respectively. p is synonymous with p in the above formula (1).
In the formula (15), X 151 , X 152 , Y 151 , L 151 and R 151 have the same meanings as X 21 , X 22 , Y 21 , L 21 and R 21 in the formula (2), respectively. However, when both X 151 and X 152 are sulfur atoms, Y 151 is -C (-L 152 -R 152 ) =. L 152 and R 152 are synonymous with L 22 and R 23 in Y 21 in Formula (2), respectively. X 153, W 151, Z 151 and Z 152 are each synonymous with X 61, W 61, Z 61 and Z 62 in the formula (6). p is synonymous with p in the above formula (1).
In the formula (16), X 161 , X 162 , Y 161 , L 161 and R 161 have the same meanings as X 21 , X 22 , Y 21 , L 21 and R 21 in the formula (2), respectively. However, when both X 161 and X 162 are sulfur atoms, Y 161 is —C (—L 163 —R 163 ) =. L 163 and R 163 have the same meanings as L 22 and R 23 in Y 21 in formula (2), respectively. X 163 , Y 162 , Y 163 , Y 164 and Y 165 are synonymous with X 81 , Y 81 , Y 82 , Y 83 and Y 84 in the above formula (8), respectively. p is synonymous with p in the above formula (1).
In the formula (17), X 171 , X 172 , Y 171 , L 171 and R 171 have the same meaning as X 21 , X 22 , Y 21 , L 21 and R 21 in the above formula (2), respectively. However, when both X 171 and X 172 are sulfur atoms, Y 171 is -C (-L 172 -R 172 ) =. L 172 and R 172 have the same meanings as L 22 and R 23 in Y 21 in formula (2), respectively. Y 172 , Y 173 and W 171 have the same meanings as Y 91 , Y 92 and W 91 in the above formula (9), respectively. p is synonymous with p in the above formula (1).
In each of the formulas (13) to (17), the fused aromatic ring having two condensed rings in the side chain direction linked by a single bond is at least one group selected from an alkyl group, an alkenyl group and an alkynyl group. Have
〔7〕上記ドナー性構造単位及び上記アクセプター性構造単位が有する上記アルキル基、アルケニル基及びアルキニル基から選ばれる少なくとも1つの基の炭素数が6~24である、〔1〕~〔6〕のいずれかに記載の有機半導体デバイス。
〔8〕下記(a)~(e)を満たす、〔6〕に記載の有機半導体デバイス:
(a)上記式(13)において、R131及びR132が炭素数6~24のアルキル基、アルケニル基又はアルキニル基であり、他に炭素数6以上の脂肪族基を有さない、
(b)上記式(14)において、Y143及びY144の少なくとも1つが上記-(C-L71-R72)=であって、R141及びR72が炭素数6~24のアルキル基、アルケニル基又はアルキニル基であり、他に炭素数6以上の脂肪族基を有さない、
(c)上記式(15)において、W151が-NR153-、CR154155-、又は>C=CR156157であって、R151及びR153~R157が炭素数6~24のアルキル基、アルケニル基又はアルキニル基であり、他に炭素数6以上の脂肪族基を有さない、
(d)上記式(16)において、Y164が上記-(C-L81-R82)=であって、R161及びR82が炭素数6~24のアルキル基、アルケニル基又はアルキニル基であり、他に炭素数6以上の脂肪族基を有さない、
(e)上記式(17)において、W171が-NR173又は-CR174175-であって、R171及びR173~R175が炭素数6~24のアルキル基、アルケニル基又はアルキニル基であり、他に炭素数6以上の脂肪族基を有さない。
[7] The number of carbon atoms of at least one group selected from the alkyl group, alkenyl group, and alkynyl group included in the donor structural unit and the acceptor structural unit is 6 to 24, The organic semiconductor device in any one.
[8] The organic semiconductor device according to [6], which satisfies the following (a) to (e):
(A) In the above formula (13), an alkyl group, an alkenyl group of R 131 and R 132 is 6 to 24 carbon atoms are alkynyl groups, no aliphatic group having 6 or more carbon atoms other,
(B) In the above formula (14), at least one of Y 143 and Y 144 is-(CL 71 -R 72 ) =, and R 141 and R 72 are alkyl groups having 6 to 24 carbon atoms, An alkenyl group or an alkynyl group, which has no other aliphatic group having 6 or more carbon atoms,
(C) In the above formula (15), W 151 is —NR 153 —, CR 154 R 155 —, or> C = CR 156 R 157 , and R 151 and R 153 to R 157 have 6 to 24 carbon atoms. An alkyl group, an alkenyl group or an alkynyl group, and having no other aliphatic group having 6 or more carbon atoms,
(D) In the above formula (16), Y 164 is the above-(CL 81 -R 82 ) =, and R 161 and R 82 are an alkyl group, alkenyl group or alkynyl group having 6 to 24 carbon atoms. There is no other aliphatic group having 6 or more carbon atoms,
(E) In the above formula (17), W 171 is —NR 173 or —CR 174 R 175 —, and R 171 and R 173 to R 175 are an alkyl group, alkenyl group or alkynyl group having 6 to 24 carbon atoms. And no other aliphatic groups having 6 or more carbon atoms.
〔9〕上記化合物の重量平均分子量が5000~1000000である、〔1〕~〔8〕のいずれかに記載の有機半導体デバイス。
〔10〕上記有機半導体デバイスが有機薄膜トランジスタである、〔1〕~〔9〕のいずれかに記載の有機半導体デバイス。
〔11〕上記有機半導体デバイスが有機光電変換デバイスである、〔1〕~〔9〕のいずれかに記載の有機半導体デバイス。
〔12〕上記化合物を含む上記半導体層がn型半導体を含む、〔11〕に記載の有機半導体デバイス。
〔13〕上記化合物を含む上記半導体層が、上記化合物とn型半導体との混合層からなる、〔12〕に記載の有機半導体デバイス。
〔14〕上記有機半導体デバイスが熱電変換デバイスである、〔1〕~〔9〕のいずれかに記載の有機半導体デバイス。
〔15〕下記式(1)で表される化合物。
[9] The organic semiconductor device according to any one of [1] to [8], wherein the compound has a weight average molecular weight of 5,000 to 1,000,000.
[10] The organic semiconductor device according to any one of [1] to [9], wherein the organic semiconductor device is an organic thin film transistor.
[11] The organic semiconductor device according to any one of [1] to [9], wherein the organic semiconductor device is an organic photoelectric conversion device.
[12] The organic semiconductor device according to [11], wherein the semiconductor layer containing the compound contains an n-type semiconductor.
[13] The organic semiconductor device according to [12], wherein the semiconductor layer containing the compound is composed of a mixed layer of the compound and an n-type semiconductor.
[14] The organic semiconductor device according to any one of [1] to [9], wherein the organic semiconductor device is a thermoelectric conversion device.
[15] A compound represented by the following formula (1).
Figure JPOXMLDOC01-appb-I000013
Figure JPOXMLDOC01-appb-I000013
 式(1)中、Dは式(2)又は式(3)で表されるドナー性構造単位を示す。Aは側鎖方向縮環構造の芳香族環からなるアクセプター性構造単位を示す。S及びSはエテニレン、エチニレン、アリーレン基、ヘテロアリーレン基、アゾ基、又は-C=N-を示す。l及びnは1~4の整数を示し、m1及びm2は0~2の整数を示す。pは2~2000の整数を示す。但し、D及びAはアルキル基、アルケニル基及びアルキニル基から選ばれる少なくとも1つの基を有する。
 式(2)中、X21及びX22は硫黄原子、酸素原子、セレン原子又は-NR22-を示し、Y21は窒素原子又は-C(-L22-R23)=を示す。但し、X21及びX22の両方が硫黄原子の場合、Y21は-C(-L22-R23)=である。L21及びL22は、単結合、-O-、-S-、-NR-、-Si(R-、-C(=O)O-、-C(=S)O-、-C(=O)S-、-SC(=O)-、-OC(=O)-、-OC(=S)-、-C(=O)-、-C(=S)-、-C(=O)NR-、-NRC(=O)-、-S(=O)-、-S(=O)-、-S(=O)O-、-OS(=O)-、-S(=O)NR-、-NRS(=O)-、アリーレン基、ヘテロアリーレン基、アルケニレン基もしくはアルキニレン基であるか、又は、アリーレン基、ヘテロアリーレン基、アルケニレン基、アルキニレン基、カルボニル基、及びアシルオキシ基から選ばれる2以上の基を組み合わせてなる基である。R21~R23は水素原子又は一価の置換基を示す。Rは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、又はヘテロアリール基を示す。
 式(3)中、X31は硫黄原子、酸素原子、セレン原子又は-NR31-を示す。Y31~Y34は窒素原子又は-C(-L31-R32)=を示す。Y31及びY34のL31はL22と、Y31及びY34のR32はR23と同義である。Y32及びY33のL31はL21と、Y32及びY33のR32はR21と同義である。R31は上記R22と同義である。
 式(1)~(3)中*は連結部位を示す。
In formula (1), D represents a donor structural unit represented by formula (2) or formula (3). A represents an acceptor structural unit composed of an aromatic ring having a side-chain direction condensed ring structure. S 1 and S 2 represent ethenylene, ethynylene, arylene group, heteroarylene group, azo group, or —C═N—. l and n are integers of 1 to 4, and m1 and m2 are integers of 0 to 2. p represents an integer of 2 to 2000. However, D and A have at least one group selected from an alkyl group, an alkenyl group, and an alkynyl group.
In the formula (2), X 21 and X 22 represent a sulfur atom, an oxygen atom, a selenium atom or —NR 22 —, and Y 21 represents a nitrogen atom or —C (—L 22 —R 23 ) ═. However, when both X 21 and X 22 are sulfur atoms, Y 21 is —C (—L 22 —R 23 ) =. L 21 and L 22 are a single bond, —O—, —S—, —NR 5 —, —Si (R 5 ) 2 —, —C (═O) O—, —C (═S) O—, -C (= O) S-, -SC (= O)-, -OC (= O)-, -OC (= S)-, -C (= O)-, -C (= S)-,- C (═O) NR 5 —, —NR 5 C (═O) —, —S (═O) —, —S (═O) 2 —, —S (═O) 2 O—, —OS (= O) 2 —, —S (═O) 2 NR 5 —, —NR 5 S (═O) 2 —, an arylene group, a heteroarylene group, an alkenylene group or an alkynylene group, or an arylene group, a heteroarylene group A group formed by combining two or more groups selected from a group, an alkenylene group, an alkynylene group, a carbonyl group, and an acyloxy group. R 21 to R 23 represent a hydrogen atom or a monovalent substituent. R 5 represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, or a heteroaryl group.
In the formula (3), X 31 represents a sulfur atom, an oxygen atom, a selenium atom or —NR 31 —. Y 31 to Y 34 represent a nitrogen atom or —C (—L 31 —R 32 ) ═. L 31 of Y 31 and Y 34 has the same meaning as L 22, and R 32 of Y 31 and Y 34 has the same meaning as R 23 . L 31 of Y 32 and Y 33 has the same meaning as L 21, and R 32 of Y 32 and Y 33 has the same meaning as R 21 . R 31 has the same meaning as R 22 described above.
In formulas (1) to (3), * represents a linking site.
〔16〕〔15〕に記載の化合物と有機溶媒とを含む組成物。
〔17〕有機半導体デバイスの半導体層の形成に用いる、〔16〕に記載の組成物。
〔18〕〔16〕又は〔17〕に記載の組成物を用いて形成された塗布膜。
[16] A composition comprising the compound according to [15] and an organic solvent.
[17] The composition according to [16], which is used for forming a semiconductor layer of an organic semiconductor device.
[18] A coating film formed using the composition according to [16] or [17].
 本明細書において、特定の符号で表示された置換基、連結基、環構造、繰り返し単位等(以下、置換基等という)が複数あるとき、あるいは複数の置換基等を同時もしくは択一的に規定するときには、特段の断りがない限り、それぞれの置換基等は互いに同一でも異なっていてもよい。このことは、置換基等の数の規定についても同様である。また、複数の置換基等が隣接するときには、特段の断りがない限り、それらが互いに連結して環を形成してもよい。
 本明細書においては、各置換基は、特に断らない限り、さらに置換基を有してもよい。
In this specification, when there are a plurality of substituents, linking groups, ring structures, repeating units, etc. (hereinafter referred to as “substituents”, etc.) indicated by a specific symbol, or a plurality of substituents are simultaneously or alternatively selected. When specified, unless otherwise specified, each substituent may be the same as or different from each other. The same applies to the definition of the number of substituents and the like. Further, when a plurality of substituents and the like are adjacent to each other, they may be connected to each other to form a ring unless otherwise specified.
In the present specification, each substituent may further have a substituent unless otherwise specified.
 本明細書において、ドナー性構造単位、アクセプター性構造単位における「ドナー性」、「アクセプター性」は、有機半導体化合物の1分子鎖長中に存在する少なくとも2種類の2価の芳香族環基において、相対的な電子的関係を示すものである。具体的には、電子供与性が相対的に高いものがドナー性であり、電子受容性が相対的に高いものがアクセプター性である。換言すれば、対比する2つの芳香族環のHOMO(最高被占軌道)のエネルギー準位が高い方がドナー性であり、逆にLUMO(最低空軌道)のエネルギー準位が低い方がアクセプター性である。同じ芳香族環構造であっても、置換基として電子求引性基を有すればアクセプター性となり、置換基として電子供与性基を有すればドナー性となりうる。 In the present specification, “donor property” and “acceptor property” in the donor structural unit and the acceptor structural unit are the at least two types of divalent aromatic ring groups present in one molecular chain length of the organic semiconductor compound. , Indicating a relative electronic relationship. Specifically, those having relatively high electron donating properties are donor properties, and those having relatively high electron accepting properties are acceptor properties. In other words, the higher the HOMO (highest occupied orbital) energy level of the two aromatic rings to be compared is the donor property, and conversely the lower the LUMO (lowest orbital energy level) energy level is the acceptor property. It is. Even with the same aromatic ring structure, if it has an electron-withdrawing group as a substituent, it can be acceptor, and if it has an electron-donating group as a substituent, it can be donor.
 本明細書において、芳香族環とは、4n+2のπ電子系(nは0以上の整数)であるヒュッケル則を満たす環であって、芳香族炭化水素環(基の場合、アリール基)及び芳香族ヘテロ環(基の場合、ヘテロアリール基)の両方を含むものである。また、本明細書において脂肪族基とは、アルキル基、アルケニル基、アルキニル基を包括して称する基である。 In the present specification, an aromatic ring is a ring satisfying the Hückel rule that is a 4n + 2 π-electron system (n is an integer of 0 or more), and includes an aromatic hydrocarbon ring (an aryl group in the case of a group) and an aromatic ring. Group heterocycles (in the case of groups, heteroaryl groups). Further, in this specification, an aliphatic group is a group that collectively refers to an alkyl group, an alkenyl group, and an alkynyl group.
 本発明の有機半導体デバイスは、優れた正孔移動度を示す半導体層を有し、有機薄膜トランジスタ、有機光電変換デバイス及び有機熱電変換デバイス等として好適に用いることができる。例えば、本発明の有機半導体デバイスを有機薄膜トランジスタに適用すれば、半導体層の正孔移動度が高く、且つ、繰り返し駆動後の閾値電圧の変化が小さいトランジスタとすることができる。また、本発明の有機半導体デバイスを有機光電変換デバイスに適用すれば、光エネルギーの電力への変換効率に優れる有機光電変換デバイスとすることができる。さらに、本発明の有機半導体デバイスを有機熱電変換デバイスに適用すれば、熱エネルギーの電力への変換効率に優れる熱電変換デバイスとすることができる。
 本発明の化合物は、結晶性(パッキング性)が高いため、キャリア移動度と溶解性を高いレベルで両立でき、優れた正孔移動度を示す半導体層を形成することができる。
 本発明の組成物は、本発明の化合物と有機溶媒とを含み、塗布特性が良好で、優れた正孔移動度の半導体層を形成することができる。
 本発明の塗布膜は、本発明の組成物を塗布して形成され、有機半導体デバイスの半導体層として好適である。
 本発明の上記及び他の特徴及び利点は、下記の記載および添付の図面からより明らかになるであろう。
The organic semiconductor device of the present invention has a semiconductor layer exhibiting excellent hole mobility, and can be suitably used as an organic thin film transistor, an organic photoelectric conversion device, an organic thermoelectric conversion device, and the like. For example, when the organic semiconductor device of the present invention is applied to an organic thin film transistor, the transistor can have a high hole mobility and a small change in threshold voltage after repeated driving. Moreover, if the organic-semiconductor device of this invention is applied to an organic photoelectric conversion device, it can be set as the organic photoelectric conversion device excellent in the conversion efficiency of the light energy to the electric power. Furthermore, if the organic semiconductor device of this invention is applied to an organic thermoelectric conversion device, it can be set as the thermoelectric conversion device which is excellent in the conversion efficiency of the heat energy to the electric power.
Since the compound of the present invention has high crystallinity (packing property), the carrier mobility and the solubility can be compatible at a high level, and a semiconductor layer exhibiting excellent hole mobility can be formed.
The composition of the present invention contains the compound of the present invention and an organic solvent, has good coating characteristics, and can form a semiconductor layer with excellent hole mobility.
The coating film of the present invention is formed by applying the composition of the present invention, and is suitable as a semiconductor layer of an organic semiconductor device.
The above and other features and advantages of the present invention will become more apparent from the following description and accompanying drawings.
図1は、本発明の有機薄膜トランジスタの一例を示す概略断面図である。FIG. 1 is a schematic sectional view showing an example of the organic thin film transistor of the present invention. 図2は、本発明の実施例でFET特性測定用基板として製造した有機薄膜トランジスタの概略断面図である。FIG. 2 is a schematic cross-sectional view of an organic thin film transistor manufactured as an FET characteristic measurement substrate in an example of the present invention. 図3は、本発明の有機光電変換デバイスの好ましい実施形態を模式的に示す側面図である。FIG. 3 is a side view schematically showing a preferred embodiment of the organic photoelectric conversion device of the present invention. 図4は、本発明の有機熱電変換デバイスの一例の断面を模式的に示す図である。図4中の矢印は素子の使用時に付与される温度差の方向を示す。FIG. 4 is a diagram schematically showing a cross section of an example of the organic thermoelectric conversion device of the present invention. The arrows in FIG. 4 indicate the direction of the temperature difference applied when the element is used. 図5は、本発明の有機熱電変換デバイスの別の一例の断面を模式的に示す図である。図5中の矢印は素子の使用時に付与される温度差の方向を示す。FIG. 5 is a diagram schematically showing a cross section of another example of the organic thermoelectric conversion device of the present invention. The arrows in FIG. 5 indicate the direction of the temperature difference applied when the element is used.
[有機半導体化合物]
 本発明の化合物(以下、「本発明の有機半導体化合物」ともいう。)は、有機半導体デバイスが備える有機半導体層中に好適に用いられる。また、本発明の有機半導体化合物を半導体層中に有する本発明の有機半導体デバイスは、有機薄膜トランジスタ、有機光電変換デバイス及び有機熱電変換デバイスに好適に用いられる。
 まず、本発明の有機半導体化合物について以下に説明する。
[Organic semiconductor compounds]
The compound of the present invention (hereinafter also referred to as “the organic semiconductor compound of the present invention”) is suitably used in the organic semiconductor layer provided in the organic semiconductor device. Moreover, the organic-semiconductor device of this invention which has the organic-semiconductor compound of this invention in a semiconductor layer is used suitably for an organic thin-film transistor, an organic photoelectric conversion device, and an organic thermoelectric conversion device.
First, the organic semiconductor compound of the present invention will be described below.
 本発明の有機半導体化合物は、下記式(1)で表される。 The organic semiconductor compound of the present invention is represented by the following formula (1).
Figure JPOXMLDOC01-appb-I000014
Figure JPOXMLDOC01-appb-I000014
(D、A)
 式(1)中、Dは上記式(2)又は上記式(3)で表されるドナー性構造単位を示す。Aは側鎖方向縮環構造の芳香族環からなるアクセプター性構造単位を示す。
(D, A)
In the formula (1), D represents a donor structural unit represented by the above formula (2) or the above formula (3). A represents an acceptor structural unit composed of an aromatic ring having a side-chain direction condensed ring structure.
 「側鎖方向縮環構造」とは、有機半導体化合物を構成する、2以上の単環が縮合した縮環構造の構造単位において、有機半導体化合物の主鎖に組み込まれるための2つの連結部位のいずれもが、縮合した2以上の単環のうち1つの環に存在していることを意味する。例えば上記式(2)で表される構造は2つの単環が縮合した形態であり、有機半導体化合物の主鎖を構成するための2つの連結部位(*)が、縮合した2つの単環のうちX21を含む環だけに存在しているから「側鎖方向縮環構造」である。上記式(3)で表される構造も同様に、2つの単環が縮合した形態であり、有機半導体化合物の主鎖との2つの連結部位(*)が、縮合した2つの単環のうちX31を含む環だけに存在しているから「側鎖方向縮環構造」である。
 一方、本明細書において、「側鎖方向縮環構造」とは異なる概念として、「主鎖方向縮環構造」との用語を用いることがある。「主鎖方向縮環構造」とは、化合物を構成する、2以上の単環が縮合した縮環構造の構造単位において、有機半導体化合物の主鎖に組み込まれるための2つの連結部位の一つが、縮合した2以上の単環のうち1つの環に存在し、他の連結部位が別の環に存在していることを意味する。
The “side chain direction condensed ring structure” is a structural unit of a condensed ring structure in which two or more monocycles are condensed that constitutes an organic semiconductor compound, and includes two connecting sites for incorporation into the main chain of the organic semiconductor compound Each means that it exists in one ring among two or more condensed monocycles. For example, the structure represented by the above formula (2) is a form in which two monocycles are condensed, and two linking sites (*) for constituting the main chain of the organic semiconductor compound have two monocyclic condensed rings. Since it exists only in the ring containing X 21 among them, it is a “side chain direction condensed ring structure”. Similarly, the structure represented by the above formula (3) is a form in which two monocycles are condensed, and two connecting sites (*) with the main chain of the organic semiconductor compound are among the two monocycles condensed. Since it exists only in the ring containing X 31 , it is a “side chain direction condensed ring structure”.
On the other hand, in this specification, the term “main chain direction condensed ring structure” is sometimes used as a concept different from “side chain direction condensed ring structure”. “Main chain direction condensed ring structure” is a structural unit of a condensed ring structure in which two or more monocycles constituting a compound are fused, and one of two linking sites for incorporation into the main chain of an organic semiconductor compound is Means that it is present in one of two or more condensed monocycles, and another linking site is present in another ring.
 Dを表す上記式(2)において、X21及びX22は硫黄原子、酸素原子、セレン原子又は-NR22-を示す。X21及びX22は硫黄原子、酸素原子又は-NR22-であることが好ましく、X21が硫黄原子で、X22が硫黄原子又は酸素原子であることがより好ましく、X21とX22がいずれも硫黄原子であることがさらに好ましい。 In the above formula (2) representing D, X 21 and X 22 represent a sulfur atom, an oxygen atom, a selenium atom or —NR 22 —. X 21 and X 22 are preferably a sulfur atom, an oxygen atom or —NR 22 —, more preferably X 21 is a sulfur atom, X 22 is a sulfur atom or an oxygen atom, and X 21 and X 22 are It is more preferable that both are sulfur atoms.
 Y21は窒素原子又は-C(-L22-R23)=を示す。但し、X21及びX22の両方が硫黄原子の場合、Y21は-C(-L22-R23)=である。
 上記R21~R23は水素原子又は一価の置換基を示す。
Y 21 represents a nitrogen atom or —C (—L 22 —R 23 ) ═. However, when both X 21 and X 22 are sulfur atoms, Y 21 is —C (—L 22 —R 23 ) =.
R 21 to R 23 represent a hydrogen atom or a monovalent substituent.
 上記R21はアルキル基(好ましくは炭素数1~30、より好ましくは炭素数3~28、さらに好ましくは炭素数6~24、特に好ましくは炭素数8~24の分岐又は直鎖のアルキル基)、アルケニル基(好ましくは炭素数2~30、より好ましくは炭素数3~28、さらに好ましくは炭素数6~24、特に好ましくは炭素数8~24の分岐又は直鎖のアルケニル基)、又はアルキニル基(好ましくは炭素数2~30、より好ましくは炭素数3~28、さらに好ましくは炭素数6~24、特に好ましくは炭素数8~24の分岐又は直鎖のアルキニル基)であることが好ましく、より好ましくは炭素数6~24、さらに好ましくは炭素数8~24の分岐又は直鎖のアルキル基である。 R 21 is an alkyl group (preferably a branched or straight chain alkyl group having 1 to 30 carbon atoms, more preferably 3 to 28 carbon atoms, still more preferably 6 to 24 carbon atoms, and particularly preferably 8 to 24 carbon atoms). An alkenyl group (preferably a branched or straight chain alkenyl group having 2 to 30 carbon atoms, more preferably 3 to 28 carbon atoms, still more preferably 6 to 24 carbon atoms, and particularly preferably 8 to 24 carbon atoms), or alkynyl A group (preferably a branched or straight-chain alkynyl group having 2 to 30 carbon atoms, more preferably 3 to 28 carbon atoms, still more preferably 6 to 24 carbon atoms, and particularly preferably 8 to 24 carbon atoms). More preferably, it is a branched or straight chain alkyl group having 6 to 24 carbon atoms, more preferably 8 to 24 carbon atoms.
 上記R22は水素原子又はアルキル基(好ましくは炭素数1~30の分岐又は直鎖のアルキル基)、アルケニル基(好ましくは炭素数2~30の分岐又は直鎖のアルケニル基)、又はアルキニル基(好ましくは炭素数2~30の分岐又は直鎖のアルキニル基)であることが好ましく、より好ましくは水素原子、又は炭素数1~30の分岐又は直鎖のアルキル基であり、さらに好ましくは水素原子である。
 上記R23は水素原子、又は、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子)、アルキル基(好ましくは炭素数1~30の分岐又は直鎖のアルキル基)、アルケニル基(好ましくは炭素数2~30の分岐又は直鎖のアルケニル基)、又はアルキニル基(好ましくは炭素数2~30の分岐又は直鎖のアルキニル基)であることが好ましく、より好ましくは水素原子、フッ素原子、塩素原子、又は炭素数1~30の分岐又は直鎖のアルキル基であり、さらに好ましくは水素原子又はフッ素原子であり、特に好ましくは水素原子である。
R 22 is a hydrogen atom or an alkyl group (preferably a branched or straight chain alkyl group having 1 to 30 carbon atoms), an alkenyl group (preferably a branched or straight chain alkenyl group having 2 to 30 carbon atoms), or an alkynyl group. (Preferably a branched or straight chain alkynyl group having 2 to 30 carbon atoms), more preferably a hydrogen atom, or a branched or straight chain alkyl group having 1 to 30 carbon atoms, still more preferably hydrogen. Is an atom.
R 23 is a hydrogen atom, a halogen atom (a fluorine atom, a chlorine atom, a bromine atom, an iodine atom), an alkyl group (preferably a branched or straight chain alkyl group having 1 to 30 carbon atoms), an alkenyl group (preferably A branched or straight chain alkenyl group having 2 to 30 carbon atoms) or an alkynyl group (preferably a branched or straight chain alkynyl group having 2 to 30 carbon atoms), more preferably a hydrogen atom, a fluorine atom, A chlorine atom, or a branched or straight chain alkyl group having 1 to 30 carbon atoms, more preferably a hydrogen atom or a fluorine atom, and particularly preferably a hydrogen atom.
 L21及びL22は、単結合、-O-、-S-、-NR-、-Si(R-、-C(=O)O-、-C(=S)O-、-C(=O)S-、-SC(=O)-、-OC(=O)-、-OC(=S)-、-C(=O)-、-C(=S)-、-C(=O)NR-、-NRC(=O)-、-S(=O)-、-S(=O)-、-S(=O)O-、-OS(=O)-、-S(=O)NR-、-NRS(=O)-、アリーレン基(好ましくは炭素数6~15、より好ましくは炭素数6~12のアリーレン基)、ヘテロアリーレン基(好ましくは炭素数3~14、より好ましくは炭素数5~12のヘテロアリーレン基)、アルケニレン基(好ましくは炭素数2~10、より好ましくは炭素数2~5のアルケニレン基)、もしくはアルキニレン基(好ましくは炭素数2~10、より好ましくは炭素数2~5のアルキニレン基)であるか、又は、アリーレン基(好ましくは炭素数6~15、より好ましくは炭素数6~12のアリーレン基)、ヘテロアリーレン基(好ましくは炭素数3~14、より好ましくは炭素数5~12のヘテロアリーレン基)、アルケニレン基(好ましくは炭素数2~10、より好ましくは炭素数2~5のアルケニレン基)、アルキニレン基(好ましくは炭素数2~10、より好ましくは炭素数2~5のアルキニレン基)、カルボニル基、及びアシルオキシ基(好ましくは炭素数2~10、より好ましくは炭素数2~5のアシルオキシ基)から選ばれる2以上の基を組み合わせてなる基である。 L 21 and L 22 are a single bond, —O—, —S—, —NR 5 —, —Si (R 5 ) 2 —, —C (═O) O—, —C (═S) O—, -C (= O) S-, -SC (= O)-, -OC (= O)-, -OC (= S)-, -C (= O)-, -C (= S)-,- C (═O) NR 5 —, —NR 5 C (═O) —, —S (═O) —, —S (═O) 2 —, —S (═O) 2 O—, —OS (= O) 2 —, —S (═O) 2 NR 5 —, —NR 5 S (═O) 2 —, an arylene group (preferably an arylene group having 6 to 15 carbon atoms, more preferably 6 to 12 carbon atoms). A heteroarylene group (preferably a heteroarylene group having 3 to 14 carbon atoms, more preferably 5 to 12 carbon atoms), an alkenylene group (preferably an alkenylene group having 2 to 10 carbon atoms, more preferably 2 to 5 carbon atoms). ), Or an alkynylene group (preferably an alkynylene group having 2 to 10 carbon atoms, more preferably 2 to 5 carbon atoms), or an arylene group (preferably having 6 to 15 carbon atoms, more preferably 6 to 6 carbon atoms). 12 arylene groups), heteroarylene groups (preferably 3 to 14 carbon atoms, more preferably heteroarylene groups having 5 to 12 carbon atoms), alkenylene groups (preferably 2 to 10 carbon atoms, more preferably 2 to 2 carbon atoms). 5 alkenylene groups), alkynylene groups (preferably having 2 to 10 carbon atoms, more preferably alkynylene groups having 2 to 5 carbon atoms), carbonyl groups, and acyloxy groups (preferably having 2 to 10 carbon atoms, more preferably carbon numbers). A group formed by combining two or more groups selected from 2 to 5 acyloxy groups).
 上記のアリーレン基、ヘテロアリーレン基、アルケニレン基、アルキニレン基、カルボニル基、及びアシルオキシ基から選ばれる2以上の基を組み合わせてなる基としては、例えば下記L1からL39で表される基があげられ、L1、L3、L6、L7、L8、L10、L13、L14、L15、L16、L17又はL18で表される基が好ましく、L3、L6、L7、L10、L13又はL14で表される基がより好ましい。下記L1からL39が有する2つの連結部位は、*で示した部位(*が2つある場合はいずれか一方)と、L1からL39中のアリーレン基又はヘテロアリーレン基における環構成原子のうちいずれか1つであり、連結部位となるアリーレン基又はヘテロアリーレン基の環構成原子の部位は特に限定されない。 Examples of the group formed by combining two or more groups selected from the above arylene group, heteroarylene group, alkenylene group, alkynylene group, carbonyl group, and acyloxy group include groups represented by the following L1 to L39. A group represented by L1, L3, L6, L7, L8, L10, L13, L14, L15, L16, L17 or L18 is preferred, and a group represented by L3, L6, L7, L10, L13 or L14 is more preferred. . The two linking sites possessed by L1 to L39 below are any of the sites indicated by * (one when there are two *) and the ring-constituting atoms in the arylene group or heteroarylene group in L1 to L39. There is no particular limitation on the position of the ring-constituting atom of the arylene group or heteroarylene group that is one and serves as a linking site.
Figure JPOXMLDOC01-appb-I000015
Figure JPOXMLDOC01-appb-I000015
 Rは水素原子、アルキル基(好ましくは炭素数1~30、より好ましくは炭素数1~24の分岐又は直鎖のアルキル基)、アルケニル基(好ましくは炭素数2~30、より好ましくは炭素数3~24の分岐又は直鎖のアルケニル基)又はアルキニル基(好ましくは炭素数2~30、より好ましくは炭素数3~24の分岐又は直鎖のアルキニル基)、アリール基、又はヘテロアリール基を示す。Rは水素原子またはアルキル基であることがより好ましい。 R 5 represents a hydrogen atom, an alkyl group (preferably a branched or straight chain alkyl group having 1 to 30 carbon atoms, more preferably 1 to 24 carbon atoms), an alkenyl group (preferably 2 to 30 carbon atoms, more preferably a carbon atom). A branched or linear alkenyl group having 3 to 24 carbon atoms) or an alkynyl group (preferably a branched or straight chain alkynyl group having 2 to 30 carbon atoms, more preferably 3 to 24 carbon atoms), an aryl group, or a heteroaryl group Indicates. R 5 is more preferably a hydrogen atom or an alkyl group.
 L21は単結合、-O-、-S-、-NR-、-Si(R-、アリーレン基(好ましくは炭素数6~15、より好ましくは炭素数6~12のアリーレン基)、ヘテロアリーレン基(好ましくは炭素数3~14、より好ましくは炭素数5~12のヘテロアリーレン基)、アルケニレン基(好ましくは炭素数2~10、より好ましくは炭素数2~5のアルケニレン基)、アルキニレン基(好ましくは炭素数2~10、より好ましくは炭素数2~5のアルキニレン基)、又は上記L1、L3、L6、L7、L8、L10、L13、L14、L15、L16、L17、及びL18から選ばれる基であることが好ましく、単結合、-O-、-S-、-NR-、-Si(R-、ヘテロアリーレン基(好ましくは炭素数3~14、より好ましくは炭素数5~12のヘテロアリーレン基)、L3、又はL10であることがより好ましい。 L 21 represents a single bond, —O—, —S—, —NR 5 —, —Si (R 5 ) 2 —, an arylene group (preferably an arylene group having 6 to 15 carbon atoms, more preferably an arylene group having 6 to 12 carbon atoms). ), A heteroarylene group (preferably a heteroarylene group having 3 to 14 carbon atoms, more preferably 5 to 12 carbon atoms), an alkenylene group (preferably an alkenylene group having 2 to 10 carbon atoms, more preferably 2 to 5 carbon atoms). ), An alkynylene group (preferably an alkynylene group having 2 to 10 carbon atoms, more preferably 2 to 5 carbon atoms), or L1, L3, L6, L7, L8, L10, L13, L14, L15, L16, L17, And a group selected from L18, a single bond, —O—, —S—, —NR 5 —, —Si (R 5 ) 2 —, a heteroarylene group (preferably having 3 to 14 carbon atoms, More preferably, it is a heteroarylene group having 5 to 12 carbon atoms), L3, or L10.
 L22は単結合、-O-、-S-、-NR-、-Si(R-、アリーレン基(好ましくは炭素数6~15、より好ましくは炭素数6~12のアリーレン基)、ヘテロアリーレン基(好ましくは炭素数3~14、より好ましくは炭素数5~12のヘテロアリーレン基)、アルケニレン基(好ましくは炭素数2~10、より好ましくは炭素数2~5のアルケニレン基)、アルキニレン基(好ましくは炭素数2~10、より好ましくは炭素数2~5のアルキニレン基)、又は上記L1、L3、L6、L7、L8、L10、L13、L14、L15、L16、L17、及びL18から選ばれる基であることが好ましく、単結合、-O-、-S-、-NR-、-Si(R-、ヘテロアリーレン基(好ましくは炭素数3~14、より好ましくは炭素数5~12のヘテロアリーレン基)、L3、又はL10であることがより好ましく、単結合であることが特に好ましい。 L 22 represents a single bond, —O—, —S—, —NR 5 —, —Si (R 5 ) 2 —, an arylene group (preferably an arylene group having 6 to 15 carbon atoms, more preferably an arylene group having 6 to 12 carbon atoms). ), A heteroarylene group (preferably a heteroarylene group having 3 to 14 carbon atoms, more preferably 5 to 12 carbon atoms), an alkenylene group (preferably an alkenylene group having 2 to 10 carbon atoms, more preferably 2 to 5 carbon atoms). ), An alkynylene group (preferably an alkynylene group having 2 to 10 carbon atoms, more preferably 2 to 5 carbon atoms), or L1, L3, L6, L7, L8, L10, L13, L14, L15, L16, L17, And a group selected from L18, a single bond, —O—, —S—, —NR 5 —, —Si (R 5 ) 2 —, a heteroarylene group (preferably having 3 to 14 carbon atoms, More preferably, it is more preferably a heteroarylene group having 5 to 12 carbon atoms), L3 or L10, and particularly preferably a single bond.
 L21及びL22が単結合以外の場合、L21及びL22はそれぞれR21及びR23と連結した状態で電子供与性の基を構成することが好ましい(すなわち、-L21-R21及び-L22-R23が電子供与性基であることが好ましい。)。この電子供与性基としては、炭素数1~30(好ましくは炭素数6~24、より好ましくは炭素数8~24)の分岐もしくは直鎖のアルコキシ基、炭素数1~30(好ましくは炭素数6~24、より好ましくは炭素数8~24)の分岐もしくは直鎖のアルキルチオ基、炭素数1~30(好ましくは炭素数6~24、より好ましくは炭素数8~24)のアルキルアミノ基、炭素数1~30(好ましくは炭素数6~24、より好ましくは炭素数8~24)のジアルキルアミノ基、又はトリアルキルシリル基(好ましくは炭素数3~72、より好ましくは炭素数6~72)が好ましい。 When L 21 and L 22 are other than a single bond, it is preferable that L 21 and L 22 form an electron donating group in a state of being linked to R 21 and R 23 , respectively (that is, -L 21 -R 21 and It is preferred that -L 22 -R 23 is an electron donating group). Examples of the electron donating group include branched or straight-chain alkoxy groups having 1 to 30 carbon atoms (preferably 6 to 24 carbon atoms, more preferably 8 to 24 carbon atoms), and 1 to 30 carbon atoms (preferably carbon atoms). A branched or straight-chain alkylthio group having 6 to 24, more preferably 8 to 24 carbon atoms, an alkylamino group having 1 to 30 carbon atoms (preferably 6 to 24 carbon atoms, more preferably 8 to 24 carbon atoms), A dialkylamino group having 1 to 30 carbon atoms (preferably 6 to 24 carbon atoms, more preferably 8 to 24 carbon atoms) or a trialkylsilyl group (preferably 3 to 72 carbon atoms, more preferably 6 to 72 carbon atoms). ) Is preferred.
 式(2)で表される構造中には、式(2)の上記規定の範囲内において、アルキル基(好ましくは炭素数1~30、より好ましくは炭素数3~28、さらに好ましくは炭素数6~24、特に好ましくは炭素数8~24の分岐又は直鎖のアルキル基)、アルケニル基(好ましくは炭素数2~30、より好ましくは炭素数3~28、さらに好ましくは炭素数6~24、特に好ましくは炭素数8~24の分岐又は直鎖のアルケニル基)、及びアルキニル基(好ましくは炭素数2~30、より好ましくは炭素数3~28、さらに好ましくは炭素数6~24、特に好ましくは炭素数8~24の分岐又は直鎖のアルキニル基)から選ばれる少なくとも1つの基が含まれる。式(2)で表される構造中、R21がアルキル基、アルケニル基、又はアルキニル基であることが好ましく、式(2)で表される構造中、R21がアルキル基、アルケニル基、又はアルキニル基であり、R21以外の部位には炭素数6以上の脂肪族基を有さないことがより好ましい。 In the structure represented by the formula (2), an alkyl group (preferably having a carbon number of 1 to 30, more preferably a carbon number of 3 to 28, and still more preferably a carbon number within the above-defined range of the formula (2). A branched or straight chain alkyl group having 6 to 24 carbon atoms, particularly preferably 8 to 24 carbon atoms), an alkenyl group (preferably 2 to 30 carbon atoms, more preferably 3 to 28 carbon atoms, and further preferably 6 to 24 carbon atoms). Particularly preferably a branched or straight-chain alkenyl group having 8 to 24 carbon atoms) and an alkynyl group (preferably having 2 to 30 carbon atoms, more preferably 3 to 28 carbon atoms, still more preferably 6 to 24 carbon atoms, particularly Preferably, at least one group selected from a branched or straight chain alkynyl group having 8 to 24 carbon atoms is included. In the structure represented by the formula (2), R 21 is preferably an alkyl group, an alkenyl group, or an alkynyl group. In the structure represented by the formula (2), R 21 is an alkyl group, an alkenyl group, or More preferably, it is an alkynyl group and does not have an aliphatic group having 6 or more carbon atoms at a site other than R 21 .
 上記式(3)中、X31は硫黄原子、酸素原子、セレン原子又は-NR31-を示す。R31は上記R22と同義であり、好ましい範囲も同じである。X31は硫黄原子又は酸素原子であることが好ましく、硫黄原子であることがより好ましい。Y31~Y34は窒素原子又は-C(-L31-R32)=を示す。Y31及びY34が-C(-L31-R32)=の場合、L31及びR32は、上記L22、R23と同義である。Y32及びY33が-C(-L31-R32)=の場合、L31及びR32は上記L21、R21と同義である。
 より好ましくは、式(3)中、Y31及びY34は窒素原子又は-CH=である。また、Y32及びY33のいずれか一方あるいは両方が-C(-L31-R32)=であって、L31が単結合以外の場合、L31がR32と連結した状態で(-L31-R32の状態で)電子供与性基を構成することが好ましい。この電子供与性基としては、炭素数1~30(好ましくは炭素数6~24)の分岐もしくは直鎖のアルコキシ基、炭素数1~30(好ましくは炭素数6~24)の分岐もしくは直鎖のアルキルチオ基、炭素数1~30(好ましくは炭素数6~24)のアルキルアミノ基、炭素数1~30(好ましくは炭素数6~24)のジアルキルアミノ基、又はトリアルキルシリル基(好ましくは炭素数3~72、より好ましくは炭素数6~72)が好ましい。
In the above formula (3), X 31 represents a sulfur atom, an oxygen atom, a selenium atom or —NR 31 —. R 31 has the same meaning as R 22 described above, and the preferred range is also the same. X 31 is preferably a sulfur atom or an oxygen atom, and more preferably a sulfur atom. Y 31 to Y 34 represent a nitrogen atom or —C (—L 31 —R 32 ) ═. When Y 31 and Y 34 are -C (-L 31 -R 32 ) =, L 31 and R 32 have the same meanings as L 22 and R 23 described above. When Y 32 and Y 33 are -C (-L 31 -R 32 ) =, L 31 and R 32 have the same meanings as L 21 and R 21 above.
More preferably, in the formula (3), Y 31 and Y 34 are a nitrogen atom or —CH═. Further, when one or both of Y 32 and Y 33 is —C (—L 31 —R 32 ) = and L 31 is other than a single bond, L 31 is connected to R 32 (− It is preferable to constitute an electron donating group (in the state of L 31 -R 32 ). Examples of the electron donating group include branched or straight chain alkoxy groups having 1 to 30 carbon atoms (preferably 6 to 24 carbon atoms), branched or straight chain groups having 1 to 30 carbon atoms (preferably 6 to 24 carbon atoms). An alkylthio group having 1 to 30 carbon atoms (preferably 6 to 24 carbon atoms), a dialkylamino group having 1 to 30 carbon atoms (preferably 6 to 24 carbon atoms), or a trialkylsilyl group (preferably C3-C72, more preferably C6-C72) is preferred.
 式(3)で表される構造中には、式(3)の上記規定の範囲内においてアルキル基(好ましくは炭素数1~30、より好ましくは炭素数3~28、さらに好ましくは炭素数6~24、特に好ましくは炭素数8~24の分岐又は直鎖のアルキル基)、アルケニル基(好ましくは炭素数2~30、より好ましくは炭素数3~28、さらに好ましくは炭素数6~24、特に好ましくは炭素数8~24の分岐又は直鎖のアルケニル基)、及びアルキニル基(好ましくは炭素数2~30、より好ましくは炭素数3~28、さらに好ましくは炭素数6~24、特に好ましくは炭素数8~24の分岐又は直鎖のアルキニル基)から選ばれる少なくとも1つの基が含まれる。
 上記式(3)においてY32及びY33は連結して環を形成してもよく、Y32及びY33が連結して環を形成した場合の例としては下記式(31)、(32)又は(33)で表される基があげられる。
In the structure represented by the formula (3), an alkyl group (preferably having a carbon number of 1 to 30, more preferably a carbon number of 3 to 28, and still more preferably a carbon number of 6 within the above-defined range of the formula (3). To 24, particularly preferably a branched or straight chain alkyl group having 8 to 24 carbon atoms), an alkenyl group (preferably having 2 to 30 carbon atoms, more preferably 3 to 28 carbon atoms, still more preferably 6 to 24 carbon atoms, Particularly preferably a branched or straight chain alkenyl group having 8 to 24 carbon atoms) and an alkynyl group (preferably having 2 to 30 carbon atoms, more preferably 3 to 28 carbon atoms, still more preferably 6 to 24 carbon atoms, particularly preferably Includes at least one group selected from a branched or straight chain alkynyl group having 8 to 24 carbon atoms.
In the above formula (3), Y 32 and Y 33 may be linked to form a ring. Examples of the case where Y 32 and Y 33 are linked to form a ring include the following formulas (31) and (32). Or group represented by (33) is mention | raise | lifted.
Figure JPOXMLDOC01-appb-I000016
Figure JPOXMLDOC01-appb-I000016
 式(31)から式(33)中、X31’は式(3)のX31と同義であり、好ましい範囲も同じである。Y31’及びY34’は、それぞれ式(3)のY31及びY34と同義であり、好ましい範囲も同じである。式(31)中、Y32’及びY33’は、それぞれ式(3)のY32及びY33と同義であり、好ましい範囲も同じである。式(32)中、X32’、L31’、R31’、及びY36’は、それぞれ式(2)のX22、L21、R21、及びY21と同義であり、好ましい範囲も同じである。ただし、X31’及びX32’の両方が硫黄原子の場合、Y36’は窒素原子であってもよい。
 式(33)中、Z31’及びZ32’は酸素原子又は硫黄原子を示し、より好ましくは酸素原子である。W31’は-NR32’-、-CR33’34’-又は>C=CR35’R36’を示す。R32’~R36’は水素原子又は一価の置換基を示す。この置換基はアルキル基(好ましくは炭素数1~30、より好ましくは炭素数3~28、さらに好ましくは炭素数6~24の直鎖又は分岐のアルキル基)、アルケニル基(好ましくは炭素数2~30、より好ましくは炭素数2~24、の分岐又は直鎖のアルケニル基)、又はアルキニル基(好ましくは炭素数2~30、より好ましくは炭素数2~24、の分岐又は直鎖のアルキニル基)であることが好ましく、アルキル基(好ましくは炭素数1~30、より好ましくは炭素数3~28、さらに好ましくは炭素数6~24の直鎖又は分岐のアルキル基)であることがより好ましい。
 上記式(3)において、Y32及びY33のうち一方又は両方が上記-C(-L31-R32)=であって、R32が炭素数6~24のアルキル基、炭素数6~24のアルケニル基又は炭素数6~24のアルキニル基であり、他に炭素数6以上の脂肪族基を有さないことが好ましい。
 上記式(31)において、Y32’及びY33’のうち一方又は両方が上記-C(-L31-R32)=であって、R32が炭素数6~24のアルキル基、炭素数6~24のアルケニル基又は炭素数6~24のアルキニル基であり、他に炭素数6以上の脂肪族基を有さないことが好ましい。
 上記式(32)において、R31’が炭素数6~24のアルキル基、炭素数6~24のアルケニル基又は炭素数6~24のアルキニル基であり、他に炭素数6以上の脂肪族基を有さないことが好ましい。
 上記式(33)において、W31’が有するR32’からR36’が炭素数6~24のアルキル基、炭素数6~24のアルケニル基又は炭素数6~24のアルキニル基であり、他に炭素数6以上の脂肪族基を有さないことが好ましい。
In formula (31) to formula (33), X 31 ′ is synonymous with X 31 in formula (3), and the preferred range is also the same. Y 31 ′ and Y 34 ′ have the same meanings as Y 31 and Y 34 in formula (3), respectively, and the preferred ranges are also the same. In formula (31), Y 32 ′ and Y 33 ′ have the same meanings as Y 32 and Y 33 in formula (3), respectively, and the preferred ranges are also the same. In the formula (32), X 32 ′ , L 31 ′ , R 31 ′ , and Y 36 ′ have the same meanings as X 22 , L 21 , R 21 , and Y 21 in the formula (2), respectively, and preferred ranges are also included. The same. However, when both X 31 ′ and X 32 ′ are sulfur atoms, Y 36 ′ may be a nitrogen atom.
In formula (33), Z 31 ′ and Z 32 ′ represent an oxygen atom or a sulfur atom, and more preferably an oxygen atom. W 31 'is -NR 32' -, - shows or> C = CR 35 'R 36 ' - CR 33 'R 34'. R 32 ′ to R 36 ′ each represent a hydrogen atom or a monovalent substituent. This substituent is an alkyl group (preferably a linear or branched alkyl group having 1 to 30 carbon atoms, more preferably 3 to 28 carbon atoms, still more preferably 6 to 24 carbon atoms), an alkenyl group (preferably 2 carbon atoms). A branched or straight chain alkynyl group having 2 to 24 carbon atoms, more preferably a branched or straight chain alkynyl group having 2 to 24 carbon atoms, or an alkynyl group (preferably having 2 to 30 carbon atoms, more preferably 2 to 24 carbon atoms). Group, preferably an alkyl group (preferably a linear or branched alkyl group having 1 to 30 carbon atoms, more preferably 3 to 28 carbon atoms, still more preferably 6 to 24 carbon atoms). preferable.
In the above formula (3), one or both of Y 32 and Y 33 is —C (—L 31 —R 32 ) =, and R 32 is an alkyl group having 6 to 24 carbon atoms, It is preferably an alkenyl group having 24 carbon atoms or an alkynyl group having 6 to 24 carbon atoms, and no other aliphatic group having 6 or more carbon atoms.
In the above formula (31), one or both of Y 32 ′ and Y 33 ′ is the above —C (—L 31 —R 32 ) =, and R 32 is an alkyl group having 6 to 24 carbon atoms, It is preferably an alkenyl group having 6 to 24 carbon atoms or an alkynyl group having 6 to 24 carbon atoms and having no other aliphatic group having 6 or more carbon atoms.
In the above formula (32), R 31 ′ is an alkyl group having 6 to 24 carbon atoms, an alkenyl group having 6 to 24 carbon atoms, or an alkynyl group having 6 to 24 carbon atoms, and other aliphatic groups having 6 or more carbon atoms It is preferable not to have.
In the above formula (33), R 32 ′ to R 36 ′ of W 31 ′ are an alkyl group having 6 to 24 carbon atoms, an alkenyl group having 6 to 24 carbon atoms, or an alkynyl group having 6 to 24 carbon atoms, It preferably has no aliphatic group having 6 or more carbon atoms.
 式(2)及び(3)中の*は有機半導体化合物中における連結部位を示す。ここで、式(2)及び(3)中、*で示される2つの連結部位が有機半導体化合物の主鎖中に組み込まれる方向に特に制限はない。例えば、式(2)において右側に示された連結部位*が式(1)中のAの側に向いていてもよい。あるいは、式(2)において左側に示された連結部位*が式(1)中のAの側に向いていてもよい。このことは、本明細書中に示された他の有機半導体化合物の構造単位についても同様であり、有機半導体化合物中に組み込まれた形態で示された有機半導体化合物の構造単位についても同様である。例えば上記式(13)~(17)で表される各有機半導体化合物では、左側に示されたドナー性構造単位と右側に示されたアクセプター性構造単位との連結のバリエーションは4形態ある。式(13)~(17)の各式はこれら4つ連結形態のいずれも包含する表記として用いている。さらに、本明細書において、一の有機半導体化合物を構成する各繰り返し単位の間で、ドナー性構造単位とアクセプター性構造単位の連結形態は同一であってもよいし、異なっていてもよい。 * In the formulas (2) and (3) represents a linking site in the organic semiconductor compound. Here, in the formulas (2) and (3), there is no particular limitation on the direction in which the two linking sites represented by * are incorporated into the main chain of the organic semiconductor compound. For example, the connecting part * shown on the right side in the formula (2) may face the A side in the formula (1). Or the connection part * shown on the left side in Formula (2) may face the A side in Formula (1). The same applies to the structural units of other organic semiconductor compounds shown in the present specification, and the same applies to the structural units of organic semiconductor compounds shown in a form incorporated in the organic semiconductor compound. . For example, in each of the organic semiconductor compounds represented by the above formulas (13) to (17), there are four variations of the connection between the donor structural unit shown on the left side and the acceptor structural unit shown on the right side. Each of the formulas (13) to (17) is used as a notation including any of these four linked forms. Furthermore, in this specification, the connection form of a donor-type structural unit and an acceptor-type structural unit may be the same or different among the repeating units constituting one organic semiconductor compound.
 上記式(1)中、Dの数を示すlは1~4の整数を示し、1又は2であることがより好ましく、1であることがさらに好ましい。また、上記式(1)中、Aの数を示すnは1~4の整数を示し、1又は2であることがより好ましく、1であることがさらに好ましい。上記式(1)中、Dの数とAの数は同一であることが好ましい。 In the above formula (1), l representing the number of D represents an integer of 1 to 4, more preferably 1 or 2, and even more preferably 1. In the above formula (1), n representing the number of A represents an integer of 1 to 4, more preferably 1 or 2, and even more preferably 1. In the above formula (1), the number of D and the number of A are preferably the same.
 式(2)及び(3)で表される基は、ポリマーに組み込まれる前のモノマーとしては弱いドナー性を示すものであるが、ポリマーに組み込まれた状態で強いドナー性を示す。この理由について以下に説明する。 The groups represented by formulas (2) and (3) exhibit weak donor properties as monomers before being incorporated into the polymer, but exhibit strong donor properties when incorporated into the polymer. The reason for this will be described below.
Figure JPOXMLDOC01-appb-I000017
Figure JPOXMLDOC01-appb-I000017
 ここでは、芳香族構造と擬キノイド構造という考え方が重要である。芳香族構造とは、式(2)及び式(3)の環IIのような構造を示す。擬キノイド構造とは環Iのようなキノン様の構造を示す。本発明の式(2)及び(3)で表される基が、ポリマー中で強いドナーとして機能するのは、環Iがキノイド構造をとっていることに由来する。
 π共役ポリマーは下記式のように主鎖が芳香族構造の極限構造Aと主鎖が擬キノイド構造の極限構造Bをとることができる(下記式ではアクセプターとしてチエノピロールジオンを用いている)。環Iがキノイド構造の場合、極限構造Bにおいて、環Iが芳香族構造をとる。すなわち、環Iの芳香族化により、極限構造Bが安定化され、その結果、極限構造Bの寄与が高くなる。極限構造Bは、ポリエン様のπ共役構造をとっており、極限構造Aよりも主鎖方向に共役が拡張している。したがって、ポリマーのHOMO準位が浅くなる。これが式(2)または式(3)で表される基が、ポリマーに組み込まれた状態で強いドナー性を発揮する理由である。さらに、ポリマーの極限構造B安定化による主鎖方向への共役拡張により、主鎖方向にキャリアが動きやすくなるため、キャリア移動度向上にも有利と考えられる。ポリマーの擬キノイド構造(極限構造B)の安定化による共役拡張という考え方はこれまでにも知られていた。しかしながら、従来アクセプターとして用いられていた式(2)または式(3)で表される側鎖芳香縮環ユニットが、極限構造B安定化の効果により、強いドナーとして機能するということは知られていなかった。
Here, the concept of an aromatic structure and a pseudoquinoid structure is important. An aromatic structure shows a structure like the ring II of Formula (2) and Formula (3). The pseudoquinoid structure indicates a quinone-like structure such as ring I. The reason why the groups represented by the formulas (2) and (3) of the present invention function as a strong donor in the polymer originates from the fact that Ring I has a quinoid structure.
The π-conjugated polymer can have a limit structure A having an aromatic structure as a main chain and a limit structure B having a pseudoquinoid structure as a main chain (in the following formula, thienopyrrole dione is used as an acceptor). When ring I has a quinoid structure, in limit structure B, ring I has an aromatic structure. That is, due to the aromatization of ring I, the limit structure B is stabilized, and as a result, the contribution of the limit structure B is increased. The limit structure B has a polyene-like π-conjugated structure, and the conjugation extends in the main chain direction as compared with the limit structure A. Therefore, the HOMO level of the polymer becomes shallow. This is the reason why the group represented by the formula (2) or the formula (3) exhibits strong donor properties when incorporated in a polymer. Furthermore, the conjugation expansion in the main chain direction by stabilizing the ultimate structure B of the polymer makes it easier for the carriers to move in the main chain direction, which is considered advantageous for improving the carrier mobility. The concept of conjugate expansion by stabilizing the pseudoquinoid structure (extreme structure B) of a polymer has been known so far. However, it is known that the side chain aromatic condensed ring unit represented by the formula (2) or the formula (3) that has been used as an acceptor conventionally functions as a strong donor due to the effect of stabilizing the ultimate structure B. There wasn't.
Figure JPOXMLDOC01-appb-I000018
Figure JPOXMLDOC01-appb-I000018
 下記例の下部に示されるように、従来の主鎖方向に縮環した芳香族環(下記例ではジチエノシロール)をドナー性構造単位として用いると、極限構造Bにおいてドナーユニットの芳香族化が起こらないため、上記のような極限構造Bの安定化は発現しない。下記式中のHOMO、LUMO準位の値は、分子軌道計算ソフトGaussian09(ガウシアン社製)により、B3LYP法に基底関数系6-31G(d)を用いて求めた計算値である。チエノ[3,4-b]チオフェンとジチエノシロールのドナー性はモノマー状態では後者の方が強い(HOMOが浅い)が、ポリマー化した場合、両者のHOMO準位は逆転する。上述の理由によりポリマー中では前者(チエノ[3,4-b]チオフェン)がより強いドナーとして機能することがわかる。 As shown in the lower part of the following example, when a conventional aromatic ring condensed in the direction of the main chain (dithienosilol in the following example) is used as a donor structural unit, the aromatization of the donor unit does not occur in the limit structure B Therefore, the stabilization of the limit structure B as described above does not appear. The values of the HOMO and LUMO levels in the following formulas are calculated values obtained by molecular orbital calculation software Gaussian 09 (manufactured by Gaussian) using the basis function system 6-31G (d) in the B3LYP method. The donor properties of thieno [3,4-b] thiophene and dithienosilol are stronger in the latter state in the monomer state (shallow HOMO), but when polymerized, both HOMO levels are reversed. For the reasons described above, it can be seen that the former (thieno [3,4-b] thiophene) functions as a stronger donor in the polymer.
Figure JPOXMLDOC01-appb-I000019
Figure JPOXMLDOC01-appb-I000019
 式(1)中、Aは、ベンゼン、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、テトラジン、チオフェン、フラン、ピロール、セレノフェン、チアゾール、オキサゾール、イミダゾール、ピラゾール、オキサジアゾール、チアジアゾール、及びトリアゾールから選択される二つ以上の単環が側鎖方向に縮合した構造の2価の基、又は、ベンゼン、ピリジン、ピラジン、ピリミジン、ピリダジン、トリアジン、テトラジン、チオフェン、フラン、ピロール、セレノフェン、チアゾール、オキサゾール、イミダゾール、ピラゾール、オキサジアゾール、チアジアゾール、及びトリアゾールから選択される単環に対して、もしくはこれらの単環の二つ以上が側鎖方向に縮合した縮環に対して、1,3-シクロペンタジオン、1,4-シクロヘキサジオン、又は2,5-ピロールジオンが側鎖方向に縮合した構造の2価の基であることが好ましい。Aで表される基は、Aの二つの結合手を水素原子で置換した化合物のHOMO準位及びLUMO準位がともに、Dで表される基の結合手を水素原子で置換した化合物より深い基である。 In formula (1), A is selected from benzene, pyridine, pyrazine, pyrimidine, pyridazine, triazine, tetrazine, thiophene, furan, pyrrole, selenophene, thiazole, oxazole, imidazole, pyrazole, oxadiazole, thiadiazole, and triazole. A divalent group in which two or more monocycles are condensed in the side chain direction, or benzene, pyridine, pyrazine, pyrimidine, pyridazine, triazine, tetrazine, thiophene, furan, pyrrole, selenophene, thiazole, oxazole, imidazole 1,3-cyclopentadione for a single ring selected from benzene, pyrazole, oxadiazole, thiadiazole, and triazole, or for a condensed ring in which two or more of these single rings are condensed in the side chain direction 1,4- It is preferable black hexa-dione, or 2,5-pyrrole-dione is a divalent group of the fused structure in a side chain direction. The group represented by A has both a HOMO level and a LUMO level of a compound in which two bonds of A are substituted with hydrogen atoms, and both are deeper than a compound in which the bond of the group represented by D is substituted with a hydrogen atom. It is a group.
 式(1)中、Aは下記式(5)~(12)で表される側鎖方向縮環構造の芳香族環であることが好ましい。 In the formula (1), A is preferably an aromatic ring having a side chain direction condensed ring structure represented by the following formulas (5) to (12).
Figure JPOXMLDOC01-appb-I000020
Figure JPOXMLDOC01-appb-I000020
 式(5)中、X51及びX52は、硫黄原子、酸素原子、セレン原子又は-NR52-を示す。X51及びX52は硫黄原子、酸素原子又は-NR52-であることが好ましく、硫黄原子であることがより好ましい。Y51は窒素原子又は-C(-L52-R53)=を示す。
 R51~R53は水素原子又は一価の置換基を示す。
In the formula (5), X 51 and X 52 represent a sulfur atom, an oxygen atom, a selenium atom or —NR 52 —. X 51 and X 52 are preferably a sulfur atom, an oxygen atom or —NR 52 —, and more preferably a sulfur atom. Y 51 represents a nitrogen atom or —C (—L 52 —R 53 ) ═.
R 51 to R 53 represent a hydrogen atom or a monovalent substituent.
 上記R51はアルキル基(好ましくは炭素数1~30、より好ましくは炭素数3~28、さらに好ましくは炭素数6~24、特に好ましくは炭素数8~24の分岐又は直鎖のアルキル基)、アルケニル基(好ましくは炭素数2~30、より好ましくは炭素数3~28、さらに好ましくは炭素数6~24、特に好ましくは炭素数8~24の分岐又は直鎖のアルケニル基)、又はアルキニル基(好ましくは炭素数2~30、より好ましくは炭素数3~28、さらに好ましくは炭素数6~24、特に好ましくは炭素数8~24の分岐又は直鎖のアルキニル基)であることが好ましく、より好ましくは炭素数6~24、さらに好ましくは炭素数8~24の分岐又は直鎖のアルキル基である。 R 51 is an alkyl group (preferably a branched or straight chain alkyl group having 1 to 30 carbon atoms, more preferably 3 to 28 carbon atoms, still more preferably 6 to 24 carbon atoms, and particularly preferably 8 to 24 carbon atoms). An alkenyl group (preferably a branched or straight chain alkenyl group having 2 to 30 carbon atoms, more preferably 3 to 28 carbon atoms, still more preferably 6 to 24 carbon atoms, and particularly preferably 8 to 24 carbon atoms), or alkynyl And a group (preferably a branched or straight chain alkynyl group having 2 to 30 carbon atoms, more preferably 3 to 28 carbon atoms, still more preferably 6 to 24 carbon atoms, and particularly preferably 8 to 24 carbon atoms). More preferably, it is a branched or straight chain alkyl group having 6 to 24 carbon atoms, more preferably 8 to 24 carbon atoms.
 上記R52は水素原子又はアルキル基(好ましくは炭素数1~30、より好ましくは炭素数1~24の分岐又は直鎖のアルキル基)、アルケニル基(好ましくは炭素数2~30、より好ましくは炭素数2~24の分岐又は直鎖のアルケニル基)、又はアルキニル基(好ましくは炭素数2~30、より好ましくは炭素数2~24の分岐又は直鎖のアルキニル基)であることが好ましく、より好ましくは水素原子、又は炭素数1~30、さらに好ましくは炭素数1~24の分岐又は直鎖のアルキル基であり、さらに好ましくは水素原子である。 R 52 represents a hydrogen atom or an alkyl group (preferably a branched or straight chain alkyl group having 1 to 30 carbon atoms, more preferably 1 to 24 carbon atoms), an alkenyl group (preferably 2 to 30 carbon atoms, more preferably A branched or linear alkenyl group having 2 to 24 carbon atoms) or an alkynyl group (preferably a branched or straight chain alkynyl group having 2 to 30 carbon atoms, more preferably 2 to 24 carbon atoms), A hydrogen atom or a branched or straight chain alkyl group having 1 to 30 carbon atoms, more preferably 1 to 24 carbon atoms is more preferable, and a hydrogen atom is still more preferable.
 上記R53は水素原子、ハロゲン原子(フッ素原子、塩素原子、臭素原子、ヨウ素原子など)、シアノ基、ニトロ基、ホルミル基、又はアルキル基(好ましくは炭素数1~30、より好ましくは炭素数1~24の分岐又は直鎖のアルキル基)、アルケニル基(好ましくは炭素数2~30、より好ましくは炭素数2~24の分岐又は直鎖のアルケニル基)、又はアルキニル基(好ましくは炭素数2~30、より好ましくは炭素数2~24の分岐又は直鎖のアルキニル基)であることが好ましく、より好ましくは水素原子、フッ素原子、塩素原子、又はシアノ基であり、さらに好ましくは水素原子又はフッ素原子である。 R 53 is a hydrogen atom, a halogen atom (a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, etc.), a cyano group, a nitro group, a formyl group, or an alkyl group (preferably having a carbon number of 1 to 30, more preferably a carbon number). 1 to 24 branched or straight chain alkyl groups), alkenyl groups (preferably 2 to 30 carbon atoms, more preferably 2 to 24 carbon branched or straight chain alkenyl groups), or alkynyl groups (preferably carbon numbers). A branched or straight-chain alkynyl group having 2 to 24 carbon atoms, more preferably a hydrogen atom, a fluorine atom, a chlorine atom, or a cyano group, and still more preferably a hydrogen atom. Or it is a fluorine atom.
 L51及びL52は単結合、-O-、-S-、-NR-、-Si(R-、-C(=O)O-、-C(=S)O-、-C(=O)S-、-SC(=O)-、-OC(=O)-、-OC(=S)-、-C(=O)-、-C(=S)-、-C(=O)NR-、-NRC(=O)-、-S(=O)-、-S(=O)-、-S(=O)O-、-OS(=O)-、-S(=O)NR-、-NRS(=O)-、アリーレン基(好ましくは炭素数6~15、より好ましくは炭素数6~12のアリーレン基)、ヘテロアリーレン基(好ましくは炭素数4~14、より好ましくは炭素数5~12のアリーレン基)、アルケニレン基(好ましくは炭素数2~10、より好ましくは炭素数2~5のアルケニレン基)、もしくはアルキニレン基(好ましくは炭素数2~10、より好ましくは炭素数2~5のアルキニレン基)であるか、又は、アリーレン基(好ましくは炭素数6~15、より好ましくは炭素数6~12のアリーレン基)、ヘテロアリーレン基(好ましくは炭素数4~14、より好ましくは炭素数5~12のアリーレン基)、アルケニレン基(好ましくは炭素数2~10、より好ましくは炭素数2~5のアルケニレン基)、アルキニレン基(好ましくは炭素数2~10、より好ましくは炭素数2~5のアルキニレン基)、カルボニル基、及びアシルオキシ基(好ましくは炭素数2~10、より好ましくは炭素数2~5のアシルオキシ基)から選ばれる2以上の基を組み合わせてなる基である。Rは上記式(2)のL21におけるRと同義であり、好ましい態様も同一である。 L 51 and L 52 are a single bond, —O—, —S—, —NR 5 —, —Si (R 5 ) 2 —, —C (═O) O—, —C (═S) O—, — C (= O) S-, -SC (= O)-, -OC (= O)-, -OC (= S)-, -C (= O)-, -C (= S)-, -C (═O) NR 5 —, —NR 5 C (═O) —, —S (═O) —, —S (═O) 2 —, —S (═O) 2 O—, —OS (═O ) 2 —, —S (═O) 2 NR 5 —, —NR 5 S (═O) 2 —, an arylene group (preferably an arylene group having 6 to 15 carbon atoms, more preferably an arylene group having 6 to 12 carbon atoms), A heteroarylene group (preferably an arylene group having 4 to 14 carbon atoms, more preferably an arylene group having 5 to 12 carbon atoms), an alkenylene group (preferably an alkenylene group having 2 to 10 carbon atoms, more preferably an alkenylene group having 2 to 5 carbon atoms), Or an alkynylene group (preferably an alkynylene group having 2 to 10 carbon atoms, more preferably 2 to 5 carbon atoms), or an arylene group (preferably 6 to 15 carbon atoms, more preferably 6 to 12 carbon atoms). Arylene groups), heteroarylene groups (preferably 4-14 carbon atoms, more preferably arylene groups having 5-12 carbon atoms), alkenylene groups (preferably 2-10 carbon atoms, more preferably 2-5 carbon atoms). Alkenylene group), an alkynylene group (preferably an alkynylene group having 2 to 10 carbon atoms, more preferably an alkynylene group having 2 to 5 carbon atoms), a carbonyl group, and an acyloxy group (preferably 2 to 10 carbon atoms, more preferably 2 to 2 carbon atoms). A group formed by combining two or more groups selected from 5 acyloxy groups). R 5 has the same meaning as R 5 in L 21 of the above formula (2), and the preferred embodiment is also the same.
 L51は単結合、-C(=O)O-、-C(=S)O-、-C(=O)S-、-SC(=O)-、-OC(=O)-、-OC(=S)-、-C(=O)-、-C(=S)-、-C(=O)NR-、-S(=O)-、-S(=O)-、-S(=O)O-、-OS(=O)-、-S(=O)NR-、-NRS(=O)-、又はアルキニレン基(好ましくは炭素数2~10、より好ましくは炭素数2~5のアルキニレン基)であることが好ましい。 L 51 is a single bond, —C (═O) O—, —C (═S) O—, —C (═O) S—, —SC (═O) —, —OC (═O) —, — OC (= S)-, -C (= O)-, -C (= S)-, -C (= O) NR 5- , -S (= O)-, -S (= O) 2- , -S (= O) 2 O - , - OS (= O) 2 -, - S (= O) 2 NR 5 -, - NR 5 S (= O) 2 -, or alkynylene group (preferably 2 carbon atoms To 10 and more preferably an alkynylene group having 2 to 5 carbon atoms).
 L52は単結合、-C(=O)O-、-C(=S)O-、-C(=O)S-、-SC(=O)-、-OC(=O)-、-OC(=S)-、-C(=O)-、-C(=S)-、-C(=O)NR-、-S(=O)-、-S(=O)-、-S(=O)O-、-OS(=O)-、-S(=O)NR-、-NRS(=O)-、又はアルキニレン基(好ましくは炭素数2~10、より好ましくは炭素数2~5のアルキニレン基)であることが好ましく、単結合であることがより好ましい。 L 52 represents a single bond, —C (═O) O—, —C (═S) O—, —C (═O) S—, —SC (═O) —, —OC (═O) —, — OC (= S)-, -C (= O)-, -C (= S)-, -C (= O) NR 5- , -S (= O)-, -S (= O) 2- , -S (= O) 2 O - , - OS (= O) 2 -, - S (= O) 2 NR 5 -, - NR 5 S (= O) 2 -, or alkynylene group (preferably 2 carbon atoms To 10 and more preferably an alkynylene group having 2 to 5 carbon atoms, and more preferably a single bond.
 上記の態様の他、L51及びL52が単結合以外の場合、L51及びL52はそれぞれR51及びR53と共に電子求引性の基を構成することもまた好ましい。この電子求引性基の好ましい例としては、1-アルキニル基(好ましくは、炭素数2から24の1-アルキニル基、より好ましくは炭素数6~24の1-アルキニル基)、アシル基(好ましくは炭素数2~30、より好ましくは炭素数4~28、さらに好ましくは炭素数6~24のアシル基)、アルコキシカルボニル基(好ましくは炭素数2~30、より好ましくは炭素数4~28、さらに好ましくは炭素数6~24のアルコキシカルボニル基)、アリールオキシカルボニル基(好ましくは炭素数7~30、より好ましくは炭素数7~20のアリールオキシカルボニル基)、アシルオキシ基(好ましくは炭素数2~30、より好ましくは炭素数6~24のアシルオキシ基)、アリールカルボニルオキシ基(好ましくは炭素数7~30、より好ましくは炭素数7~20のアリールカルボニルオキシ基)、カルバモイル基(好ましくは炭素数1~49、より好ましくは炭素数3~49のカルバモイル基)、スルファモイル基(好ましくは炭素数0~48、より好ましくは炭素数2~48のスルファモイル基)、アルキルスルホニル基(好ましくは炭素数1~30、より好ましくは炭素数4~28、さらに好ましくは炭素数6~24のアルキルスルホニル基)、アリールスルホニル基(好ましくは炭素数6~30、より好ましくは炭素数6~20のアリールスルホニル基)、アルキルスルフィニル基(好ましくは炭素数1~30、より好ましくは炭素数4~28、さらに好ましくは炭素数6~24のアルキルスルフィニル基)、スルホニルオキシ基(好ましくは炭素数1~30、より好ましくは炭素数4~28、さらに好ましくは炭素数6~24のスルホニルオキシ基)が挙げられる。 In addition to the above embodiment, when L 51 and L 52 are other than a single bond, it is also preferable that L 51 and L 52 constitute an electron-withdrawing group together with R 51 and R 53, respectively. Preferred examples of the electron withdrawing group include a 1-alkynyl group (preferably a 1-alkynyl group having 2 to 24 carbon atoms, more preferably a 1-alkynyl group having 6 to 24 carbon atoms), an acyl group (preferably Is an acyl group having 2 to 30 carbon atoms, more preferably 4 to 28 carbon atoms, still more preferably 6 to 24 carbon atoms, an alkoxycarbonyl group (preferably 2 to 30 carbon atoms, more preferably 4 to 28 carbon atoms, More preferably, it is an alkoxycarbonyl group having 6 to 24 carbon atoms, an aryloxycarbonyl group (preferably an aryloxycarbonyl group having 7 to 30 carbon atoms, more preferably an aryloxycarbonyl group having 7 to 20 carbon atoms), an acyloxy group (preferably having 2 carbon atoms). To 30 and more preferably an acyloxy group having 6 to 24 carbon atoms), an arylcarbonyloxy group (preferably having 7 to 30 carbon atoms, more preferably Or an arylcarbonyloxy group having 7 to 20 carbon atoms), a carbamoyl group (preferably 1 to 49 carbon atoms, more preferably a carbamoyl group having 3 to 49 carbon atoms), a sulfamoyl group (preferably having 0 to 48 carbon atoms, Preferably a sulfamoyl group having 2 to 48 carbon atoms), an alkylsulfonyl group (preferably an alkylsulfonyl group having 1 to 30, more preferably 4 to 28 carbon atoms, more preferably 6 to 24 carbon atoms), an arylsulfonyl group (Preferably an arylsulfonyl group having 6 to 30 carbon atoms, more preferably 6 to 20 carbon atoms), an alkylsulfinyl group (preferably 1 to 30 carbon atoms, more preferably 4 to 28 carbon atoms, still more preferably 6 carbon atoms). To 24 alkylsulfinyl groups) and sulfonyloxy groups (preferably having 1 to 30 carbon atoms, more preferably Ku is 4-28 carbon atoms, more preferably include sulfonyloxy group) having 6 to 24 carbon atoms.
 式(6)中、X61は上記式(5)中のX51と同義であり、好ましい態様も同一である。
 Z61及びZ62は酸素原子又は硫黄原子を示し、好ましくは酸素原子である。
 W61は-NR62-、-CR6364-又は>C=CR6566を示す。R62~R66は水素原子又は一価の置換基を示す。この置換基はアルキル基(好ましくは炭素数1~30、より好ましくは炭素数1~24の直鎖又は分岐のアルキル基)、アルケニル基(好ましくは炭素数2~30、より好ましくは炭素数2~24の分岐又は直鎖のアルケニル基)、又はアルキニル基(好ましくは炭素数2~30、より好ましくは炭素数2~24の分岐又は直鎖のアルキニル基)であることが好ましく、アルキル基(好ましくは炭素数1~30、より好ましくは炭素数1~24直鎖又は分岐のアルキル基)であることがより好ましい。
In formula (6), X 61 has the same meaning as X 51 in formula (5), and the preferred embodiment is also the same.
Z 61 and Z 62 each represents an oxygen atom or a sulfur atom, preferably an oxygen atom.
W 61 represents —NR 62 —, —CR 63 R 64 —, or> C = CR 65 R 66 . R 62 to R 66 represent a hydrogen atom or a monovalent substituent. This substituent is an alkyl group (preferably a linear or branched alkyl group having 1 to 30 carbon atoms, more preferably 1 to 24 carbon atoms), an alkenyl group (preferably 2 to 30 carbon atoms, more preferably 2 carbon atoms). To 24 branched or straight chain alkenyl groups) or alkynyl groups (preferably 2 to 30 carbon atoms, more preferably branched or straight chain alkynyl groups having 2 to 24 carbon atoms). A linear or branched alkyl group having 1 to 30 carbon atoms, more preferably 1 to 24 carbon atoms is more preferable.
 式(7)中、X71は上記式(5)中のX51と同義であり、好ましい態様も同一である。Y71~Y74は窒素原子又は-C(-L71-R72)=を示す。
 Y71及びY74が-C(-L71-R72)=の場合、L71は上記式(5)中のL52と、R72は上記式(5)中のR53と同義であり、好ましい態様も同一である。
 Y72及びY73が-C(-L71-R72)=の場合、L71は上記式(5)中のL51と、R72は上記式(5)中のR51と同義であり、好ましい態様も同一である。
 より好ましくは、式(7)中、Y71及びY74は窒素原子又は-CH=である。また、Y72及びY73が-C(-L71-R72)=であって、L71が単結合以外の場合、L71はR72と連結した状態で(-L71-R72の状態で)電子求引性基を構成することが好ましい。上記電子求引性基としては、例えば、上記式(5)の説明において、電子求引性基の例として挙げたものを採用することができる。
Wherein (7), X 71 has the same meaning as X 51 in the formula (5), preferred embodiments are also the same. Y 71 to Y 74 each represents a nitrogen atom or —C (—L 71 —R 72 ) ═.
When Y 71 and Y 74 are -C (-L 71 -R 72 ) =, L 71 is synonymous with L 52 in the above formula (5), and R 72 is synonymous with R 53 in the above formula (5). The preferred embodiments are also the same.
When Y 72 and Y 73 are -C (-L 71 -R 72 ) =, L 71 is synonymous with L 51 in the above formula (5), and R 72 is synonymous with R 51 in the above formula (5). The preferred embodiments are also the same.
More preferably, in formula (7), Y 71 and Y 74 are a nitrogen atom or —CH═. Further, when Y 72 and Y 73 are —C (—L 71 —R 72 ) = and L 71 is other than a single bond, L 71 is linked to R 72 (in the form of —L 71 —R 72 It is preferred (in the state) to constitute an electron withdrawing group. As said electron withdrawing group, what was mentioned as an example of an electron withdrawing group in description of the said Formula (5) is employable, for example.
 式(8)中、X81は上記式(5)中のX52と同義であり、好ましい態様も同一である。Y81~Y84は窒素原子又は-C(-L81-R82)=を示す。
 Y83が-C(-L81-R82)=の場合、L81は上記式(5)中のL51と、R82は上記式(5)中のR51と同義である。Y81、Y82、Y84が-C(-L81-R82)=の場合、L81は上記式(5)中のL52と、R82は上記式(5)中のR53と同義である。
 Y83が-C(-L81-R82)=であり、L81が単結合以外の場合、-L81-R82が電子求引性基であることが好ましい。この電子求引性基としては、例えば、上記式(5)の説明において、電子求引性基の例として挙げたものを採用することができる。
Wherein (8), X 81 has the same meaning as X 52 in the formula (5), preferred embodiments are also the same. Y 81 to Y 84 each represents a nitrogen atom or —C (—L 81 —R 82 ) ═.
When Y 83 is -C (-L 81 -R 82 ) =, L 81 is synonymous with L 51 in the above formula (5), and R 82 is synonymous with R 51 in the above formula (5). When Y 81 , Y 82 , and Y 84 are —C (—L 81 -R 82 ) =, L 81 is L 52 in the above formula (5), and R 82 is R 53 in the above formula (5). It is synonymous.
When Y 83 is —C (—L 81 —R 82 ) = and L 81 is other than a single bond, it is preferable that —L 81 —R 82 is an electron withdrawing group. As this electron withdrawing group, for example, those exemplified as examples of the electron withdrawing group in the description of the above formula (5) can be adopted.
 式(9)中、W91は-NR91-又は-CR9293-を示し、R91~R93は水素原子又は一価の置換基を示す。この置換基としては、アルキル基(好ましくは炭素数1~30、より好ましくは炭素数3~28、さらに好ましくは炭素数6~24の直鎖又は分岐のアルキル基)、アルケニル基(好ましくは炭素数2~30、より好ましくは炭素数6~28、さらに好ましくは炭素数8~24の直鎖又は分岐のアルケニル基)、アルキニル基好ましくは炭素数2~30、より好ましくは炭素数6~28、さらに好ましくは炭素数8~24の直鎖又は分岐のアルキニル基)が好ましい。
 Y91及びY92は、それぞれ式(8)中のY81及びY82と同義であり、好ましい態様も同一である。
In Formula (9), W 91 represents —NR 91 — or —CR 92 R 93 —, and R 91 to R 93 represent a hydrogen atom or a monovalent substituent. Examples of the substituent include an alkyl group (preferably a linear or branched alkyl group having 1 to 30 carbon atoms, more preferably 3 to 28 carbon atoms, and still more preferably 6 to 24 carbon atoms), an alkenyl group (preferably a carbon atom). A linear or branched alkenyl group having 2 to 30 carbon atoms, more preferably 6 to 28 carbon atoms, still more preferably 8 to 24 carbon atoms), an alkynyl group, preferably 2 to 30 carbon atoms, more preferably 6 to 28 carbon atoms. And more preferably a linear or branched alkynyl group having 8 to 24 carbon atoms.
Y 91 and Y 92 are synonymous with Y 81 and Y 82 in formula (8), respectively, and preferred embodiments are also the same.
 式(10)中、Y101及びY102は、それぞれ上記式(8)中のY81及びY82と同義であり、好ましい態様も同一である。Z101及びZ102は、それぞれ上記式(6)中のZ61及びZ62と同義であり、好ましい態様も同一である。W101は上記式(6)中のW61と同義であり、好ましい態様も同一である。 In formula (10), Y 101 and Y 102 are synonymous with Y 81 and Y 82 in formula (8), respectively, and preferred embodiments are also the same. Z 101 and Z 102 are synonymous with Z 61 and Z 62 in the above formula (6), respectively, and preferred embodiments are also the same. W 101 is synonymous with W 61 in the above formula (6), and a preferred embodiment is also the same.
 式(11)中、X111及びX112は、それぞれ上記式(5)中のX51及びX52と同義であり、好ましい態様も同一である。Y111、Y112は、それぞれ上記式(7)のY71、Y74と同義であり好ましい態様も同一である。Y113は上記式(8)のY83と同義であり好ましい態様も同一である。Y114は上記式(8)のY84と同義であり、好ましい様態も同一である。 In formula (11), X 111 and X 112 have the same meanings as X 51 and X 52 in formula (5), respectively, and preferred embodiments are also the same. Y 111 and Y 112 are synonymous with Y 71 and Y 74 in the above formula (7), respectively, and preferred embodiments are also the same. Y 113 is synonymous with Y 83 in the above formula (8), and the preferred embodiment is also the same. Y 114 is synonymous with Y 84 in the above formula (8), and the preferred embodiment is also the same.
 式(12)中、X121は上記式(5)中のX51と同義であり、好ましい態様も同一である。Y121及びY122は、それぞれ上記式(7)中のY71及びY74と同義であり、好ましい態様も同一である。Z121及びZ122は、それぞれ上記式(6)中のZ61及びZ62と同義であり、好ましい態様も同一である。W121は上記式(6)中のW61と同義であり好ましい態様も同一である。 In formula (12), X 121 has the same meaning as X 51 in formula (5), and the preferred embodiment is also the same. Y 121 and Y 122 are synonymous with Y 71 and Y 74 in the above formula (7), respectively, and preferred embodiments are also the same. Z 121 and Z 122 are synonymous with Z 61 and Z 62 in the above formula (6), respectively, and preferred embodiments are also the same. W 121 is synonymous with W 61 in the above formula (6), and the preferred embodiment is also the same.
 式(5)~(12)の各式で表される構造中には、各式の規定の範囲内においてアルキル基(好ましくは炭素数1~30、より好ましくは炭素数3~28、さらに好ましくは炭素数6~24、特に好ましくは炭素数8~24の分岐又は直鎖のアルキル基)、アルケニル基(好ましくは炭素数2~30、より好ましくは炭素数3~28、さらに好ましくは炭素数6~24、特に好ましくは炭素数8~24の分岐又は直鎖のアルケニル基)、及びアルキニル基(好ましくは炭素数2~30、より好ましくは炭素数3~28、さらに好ましくは炭素数6~24、特に好ましくは炭素数8~24の分岐又は直鎖のアルキニル基)から選ばれる少なくとも1つの基が含まれる。また、各式中、*は連結部位を示す。 In the structures represented by the formulas (5) to (12), an alkyl group (preferably having a carbon number of 1 to 30, more preferably a carbon number of 3 to 28, and still more preferably within the range defined by each formula. Is a branched or straight chain alkyl group having 6 to 24 carbon atoms, particularly preferably 8 to 24 carbon atoms, or an alkenyl group (preferably 2 to 30 carbon atoms, more preferably 3 to 28 carbon atoms, still more preferably carbon atoms). A branched or straight-chain alkenyl group having 6 to 24 carbon atoms, particularly preferably 8 to 24 carbon atoms, and an alkynyl group (preferably 2 to 30 carbon atoms, more preferably 3 to 28 carbon atoms, still more preferably 6 to 6 carbon atoms). 24, particularly preferably a branched or straight-chain alkynyl group having 8 to 24 carbon atoms). Moreover, * shows a connection part in each formula.
 式(5)で表される構造中、R51が上記アルキル基、アルケニル基、又はアルキニル基であることが好ましく、式(5)で表される構造中、R51がアルキル基、アルケニル基、又はアルキニル基であり、R51以外に炭素数6以上の脂肪族基を有さないことがより好ましい。 In the structure represented by formula (5), R 51 is preferably the alkyl group, alkenyl group, or alkynyl group. In the structure represented by formula (5), R 51 is an alkyl group, alkenyl group, Or it is an alkynyl group, and it is more preferable not to have an aliphatic group having 6 or more carbon atoms in addition to R 51 .
 式(6)で表される構造中、上記R62~R66が上記アルキル基、アルケニル基、又はアルキニル基であることが好ましく、式(6)で表される構造中、上記R62~R66がアルキル基、アルケニル基、又はアルキニル基であり、上記R62~R66以外に炭素数6以上の脂肪族基を有さないことがより好ましい。 In the structure represented by the formula (6), the R 62 to R 66 are preferably the alkyl group, alkenyl group, or alkynyl group. In the structure represented by the formula (6), the R 62 to R More preferably, 66 is an alkyl group, an alkenyl group, or an alkynyl group, and does not have an aliphatic group having 6 or more carbon atoms in addition to the above R 62 to R 66 .
 式(7)で表される構造中、Y72、Y73の少なくとも一方が上記-C(L71-R72)であり、R72が上記アルキル基、アルケニル基、又はアルキニル基であることが好ましく、式(7)で表される構造中、Y72、Y73の少なくとも一方が上記-C(L71-R72)であり、R72がアルキル基、アルケニル基、又はアルキニル基であり、他に炭素数6以上の脂肪族基を有さないことがより好ましい。 In the structure represented by formula (7), at least one of Y 72 and Y 73 is the above-C (L 71 -R 72 ), and R 72 is the above alkyl group, alkenyl group, or alkynyl group. Preferably, in the structure represented by formula (7), at least one of Y 72 and Y 73 is the above-C (L 71 -R 72 ), R 72 is an alkyl group, an alkenyl group, or an alkynyl group, It is more preferable not to have an aliphatic group having 6 or more carbon atoms.
 式(8)で表される構造中、Y83が上記-C(-L81-R82)=であり、R82が上記アルキル基、アルケニル基、又はアルキニル基であることが好ましく、Y83が上記-C(-L81-R82)=であり、R82が上記アルキル基、アルケニル基、又はアルキニル基であり、他に炭素数6以上の脂肪族基を有さないことがより好ましい。 Structure represented by the formula (8), Y 83 is the -C (-L 81 -R 82) = , it is preferred that R 82 is the above alkyl group, alkenyl group, or alkynyl group, Y 83 Is more preferably —C (—L 81 —R 82 ) =, R 82 is the above alkyl group, alkenyl group, or alkynyl group, and no other aliphatic group having 6 or more carbon atoms. .
 式(9)で表される構造中、上記R91~R93が上記アルキル基、アルケニル基、又はアルキニル基であることが好ましく、上記R91~R93が上記アルキル基、アルケニル基、又はアルキニル基であり、他に炭素数6以上の脂肪族基を有さないことがより好ましい。 In the structure represented by formula (9), R 91 to R 93 are preferably the alkyl group, alkenyl group, or alkynyl group, and R 91 to R 93 are preferably the alkyl group, alkenyl group, or alkynyl. It is more preferable that it is a group and does not have an aliphatic group having 6 or more carbon atoms.
 式(10)で表される構造中、参照する式(6)における上記R62~R66が上記アルキル基、アルケニル基、又はアルキニル基であることが好ましく、式(10)で表される構造中、参照する式(6)における上記R62~R66がアルキル基、アルケニル基、又はアルキニル基であり、他に炭素数6以上の脂肪族基を有さないことがより好ましい。 In the structure represented by the formula (10), the R 62 to R 66 in the referenced formula (6) are preferably the alkyl group, alkenyl group, or alkynyl group, and the structure represented by the formula (10) Among them, it is more preferable that R 62 to R 66 in the formula (6) to be referred to are an alkyl group, an alkenyl group, or an alkynyl group, and no other aliphatic group having 6 or more carbon atoms.
 式(11)で表される構造中、Y113が上記-C(-L81-R82)=であり、R82が上記アルキル基、アルケニル基、又はアルキニル基であることが好ましく、他に炭素数6以上の脂肪族基を有さないことがより好ましい。 In the structure represented by the formula (11), Y 113 is preferably —C (—L 81 —R 82 ) ═, and R 82 is preferably the above alkyl group, alkenyl group, or alkynyl group. More preferably, it does not have an aliphatic group having 6 or more carbon atoms.
 式(12)で表される構造中、参照する式(6)における上記R62~R66が上記アルキル基、アルケニル基、又はアルキニル基であることが好ましく、他に炭素数6以上の脂肪族基を有さないことがより好ましい。 In the structure represented by the formula (12), the R 62 to R 66 in the referenced formula (6) are preferably the alkyl group, alkenyl group, or alkynyl group, and other aliphatic groups having 6 or more carbon atoms. More preferably, it has no group.
(S、S
 上記式(1)中、S及びSはエテニレン、エチニレン、アリーレン基、ヘテロアリーレン基、アゾ基、又は-C=N-を示す。
 アリーレン基の炭素数は6~20であることが好ましく、6~15であることがより好ましい。アリーレン基は好ましくはフェニレン、ナフチレンである。
(S 1, S 2)
In the above formula (1), S 1 and S 2 represent ethenylene, ethynylene, arylene group, heteroarylene group, azo group, or —C═N—.
The arylene group preferably has 6 to 20 carbon atoms, and more preferably 6 to 15 carbon atoms. The arylene group is preferably phenylene or naphthylene.
 また、ヘテロアリーレン基の炭素数は2~20であることが好ましく、3~12であることがより好ましい。ヘテロアリーレン基の好ましい例としては、2価のチオフェン環、2価のチアゾール環、2価のオキサゾール環、2価のフラン環、2価のピロール環、2価のセレノフェン環、2価のチアゾール環、2価のオキサゾール環、2価のチアジアゾール環、2価のオキサジアゾール環、2価のピラゾール環、2価のイミダゾール環、2価のピリジン環、2価のピラジン環、2価のピリダジン環、2価のピリミジン環、2価のトリアジン環、2価のトリアゾール環、2価のテトラジン環が挙げられる。
 Sの数を示すm1は0~2の整数であり、0又は1であることが好ましく、0であることがより好ましい。Sの数を示すm2は0~2の整数であり、0又は1であることが好ましく、0であることがより好ましい。m1とm2は同一であることが好ましい。
The carbon number of the heteroarylene group is preferably 2 to 20, and more preferably 3 to 12. Preferred examples of the heteroarylene group include a divalent thiophene ring, a divalent thiazole ring, a divalent oxazole ring, a divalent furan ring, a divalent pyrrole ring, a divalent selenophene ring, and a divalent thiazole ring. Divalent oxazole ring, divalent thiadiazole ring, divalent oxadiazole ring, divalent pyrazole ring, divalent imidazole ring, divalent pyridine ring, divalent pyrazine ring, divalent pyridazine ring Examples thereof include a divalent pyrimidine ring, a divalent triazine ring, a divalent triazole ring, and a divalent tetrazine ring.
M1 representing the number of S 1 is an integer of 0 to 2, preferably 0 or 1, and more preferably 0. M2 representing the number of S 2 is an integer of 0 to 2, preferably 0 or 1, and more preferably 0. m1 and m2 are preferably the same.
 式(1)中、pは2~2000の整数を示し、10~2000の整数であることがより好ましい。 In the formula (1), p represents an integer of 2 to 2000, more preferably an integer of 10 to 2000.
 上記式(1)で表される化合物は、下記式(4)で表されることが好ましい。 The compound represented by the above formula (1) is preferably represented by the following formula (4).
Figure JPOXMLDOC01-appb-I000021
Figure JPOXMLDOC01-appb-I000021
 式(4)中、D、A、l、n及びpはそれぞれ、上記式(1)中のD、A、l、n及びpと同義であり、好ましい態様も同一である。 In the formula (4), D, A, l, n and p have the same meanings as D, A, l, n and p in the formula (1), respectively, and preferred embodiments are also the same.
 上記式(1)又は(4)で表される化合物は、下記式(13)~(17)のいずれかで表されることが好ましい。 The compound represented by the above formula (1) or (4) is preferably represented by any of the following formulas (13) to (17).
Figure JPOXMLDOC01-appb-I000022
Figure JPOXMLDOC01-appb-I000022
 式(13)中、X131、X132、Y131、L131及びR131は、それぞれ上記式(2)中のX21、X22、Y21、L21及びR21と同義であり、好ましい態様も同一である。但し、X131とX132の両方が硫黄原子の場合、Y131は-C(-L133-R133)=である。L133及びR133は、それぞれ式(2)中のY21におけるL22及びR23と同義であり、好ましい態様も同一である。
 X133、X134、Y132、L132及びR132は、それぞれ上記式(5)中のX51、X52、Y51、L51及びR51と同義であり、好ましい態様も同一である。pは上記式(1)のpと同義であり、好ましい態様も同一である。
In formula (13), X 131 , X 132 , Y 131 , L 131 and R 131 have the same meaning as X 21 , X 22 , Y 21 , L 21 and R 21 in formula (2), respectively, and are preferable. The aspect is also the same. However, when both X 131 and X 132 are sulfur atoms, Y 131 is —C (—L 133 —R 133 ) =. L 133 and R 133 are synonymous with L 22 and R 23 in Y 21 in the formula (2), respectively, and preferred embodiments are also the same.
X 133 , X 134 , Y 132 , L 132 and R 132 are the same as X 51 , X 52 , Y 51 , L 51 and R 51 in the above formula (5), respectively, and preferred embodiments are also the same. p is synonymous with p of the said Formula (1), and its preferable aspect is also the same.
 式(14)中、X141、X142、Y141、L141及びR141は、それぞれ上記式(2)中のX21、X22、Y21、L21及びR21と同義であり、好ましい態様も同一である。但し、X141とX142の両方が硫黄原子の場合、Y141は-C(-L142-R142)=である。L142及びR142は、それぞれ式(2)中のY21におけるL22及びR23と同義であり、好ましい態様も同一である。
 X143及びY142~Y145は、それぞれ式(7)中のX71及びY71~Y74と同義であり、好ましい態様も同一である。pは上記式(1)のpと同義であり、好ましい態様も同一である。
In formula (14), X 141 , X 142 , Y 141 , L 141 and R 141 have the same meaning as X 21 , X 22 , Y 21 , L 21 and R 21 in formula (2), respectively, and are preferable. The aspect is also the same. However, when both X 141 and X 142 are sulfur atoms, Y 141 is -C (-L 142 -R 142 ) =. L 142 and R 142 are respectively synonymous with L 22 and R 23 in Y 21 in the formula (2), and preferred embodiments are also the same.
X 143 and Y 142 to Y 145 have the same meanings as X 71 and Y 71 to Y 74 in formula (7), respectively, and preferred embodiments are also the same. p is synonymous with p of the said Formula (1), and its preferable aspect is also the same.
 式(15)中、X151、X152、Y151、L151及びR151は、それぞれ上記式(2)中のX21、X22、Y21、L21及びR21と同義であり、好ましい態様も同一である。但し、X151とX152の両方が硫黄原子の場合、Y151は-C(-L152-R152)=である。
 L152及びR152は、それぞれ式(2)中のY21で説明したL22及びR23と同義であり、好ましい態様も同一である。
 X153、W151、Z151及びZ152は、それぞれ上記式(6)中のX61、W61、Z61及びZ62と同義であり、好ましい態様も同一である。pは上記式(1)のpと同義であり、好ましい態様も同一である。
In formula (15), X 151 , X 152 , Y 151 , L 151 and R 151 have the same meanings as X 21 , X 22 , Y 21 , L 21 and R 21 in formula (2), respectively, and are preferable. The aspect is also the same. However, when both X 151 and X 152 are sulfur atoms, Y 151 is -C (-L 152 -R 152 ) =.
L 152 and R 152 have the same definitions as L 22 and R 23 described for Y 21 in formula (2), respectively, and preferred embodiments are also the same.
X 153, W 151, Z 151 and Z 152 are each synonymous with X 61, W 61, Z 61 and Z 62 in the formula (6), a preferred embodiment is also the same. p is synonymous with p of the said Formula (1), and its preferable aspect is also the same.
 式(16)中、X161、X162、Y161、L161及びR161は、それぞれ上記式(2)中のX21、X22、Y21、L21及びR21と同義であり、好ましい態様も同一である。但し、X161とX162の両方が硫黄原子の場合、Y161は-C(-L163-R163)=である。L163及びR163は、それぞれ式(2)中のY21で説明したL22及びR23と同義であり、好ましい態様も同一である。
 X163、Y162、Y163、Y164及びY165は、それぞれ上記式(8)中のX81、Y81、Y82、Y83及びY84と同義であり、好ましい態様も同一である。pは上記式(1)のpと同義であり、好ましい態様も同一である。
In the formula (16), X 161 , X 162 , Y 161 , L 161 and R 161 are respectively synonymous with X 21 , X 22 , Y 21 , L 21 and R 21 in the formula (2), and are preferable. The aspect is also the same. However, when both X 161 and X 162 are sulfur atoms, Y 161 is —C (—L 163 —R 163 ) =. L 163 and R 163 have the same meanings as L 22 and R 23 described for Y 21 in formula (2), respectively, and preferred embodiments are also the same.
X 163 , Y 162 , Y 163 , Y 164 and Y 165 are synonymous with X 81 , Y 81 , Y 82 , Y 83 and Y 84 in the above formula (8), respectively, and preferred embodiments are also the same. p is synonymous with p of the said Formula (1), and its preferable aspect is also the same.
 式(17)中、X171、X172、Y171、L171及びR171は、それぞれ上記式(2)中のX21、X22、Y21、L21及びR21と同義であり、好ましい態様も同一である。但し、X171とX172の両方が硫黄原子の場合、Y171は-C(-L172-R172)=である。L172及びR172は、それぞれ式(2)中のY21で説明したL22及びR23と同義であり、好ましい態様も同一である。Y172、Y173及びW171は、それぞれ上記式(9)中のY91、Y92及びW91と同義であり、好ましい態様も同一である。pは上記式(1)のpと同義であり、好ましい態様も同一である。 In the formula (17), X 171 , X 172 , Y 171 , L 171 and R 171 are the same as X 21 , X 22 , Y 21 , L 21 and R 21 in the above formula (2), respectively. The aspect is also the same. However, when both X 171 and X 172 are sulfur atoms, Y 171 is -C (-L 172 -R 172 ) =. L 172 and R 172 have the same meanings as L 22 and R 23 described for Y 21 in formula (2), respectively, and preferred embodiments are also the same. Y 172 , Y 173 and W 171 have the same meanings as Y 91 , Y 92 and W 91 in the above formula (9), respectively, and preferred embodiments are also the same. p is synonymous with p of the said Formula (1), and its preferable aspect is also the same.
 式(13)~(17)の各式で表される構造において、単結合で連結した2つの縮合芳香族環はいずれも、各式の規定の範囲内においてアルキル基(好ましくは炭素数1~30、より好ましくは炭素数3~28、さらに好ましくは炭素数6~24、特に好ましくは炭素数8~24の分岐又は直鎖のアルキル基)、アルケニル基(好ましくは炭素数2~30、より好ましくは炭素数3~28、さらに好ましくは炭素数6~24、特に好ましくは炭素数8~24の分岐又は直鎖のアルケニル基)、及びアルキニル基(好ましくは炭素数2~30、より好ましくは炭素数3~28、さらに好ましくは炭素数6~24、特に好ましくは炭素数8~24の分岐又は直鎖のアルキニル基)から選ばれる少なくとも1つの基を有する。縮合芳香族環が有する上記アルキル基、アルケニル基及びアルキニル基から選ばれる少なくとも1つの基は、環構成原子に直接連結していても良いし、連結基を介して結合していてもよい。 In the structures represented by the formulas (13) to (17), any of the two condensed aromatic rings linked by a single bond may be an alkyl group (preferably having a carbon number of 1 to 30, more preferably 3 to 28 carbon atoms, more preferably 6 to 24 carbon atoms, particularly preferably a branched or straight chain alkyl group having 8 to 24 carbon atoms, an alkenyl group (preferably 2 to 30 carbon atoms, more Preferably, it has 3 to 28 carbon atoms, more preferably 6 to 24 carbon atoms, particularly preferably a branched or straight chain alkenyl group having 8 to 24 carbon atoms, and an alkynyl group (preferably 2 to 30 carbon atoms, more preferably A branched or straight-chain alkynyl group having 3 to 28 carbon atoms, more preferably 6 to 24 carbon atoms, particularly preferably 8 to 24 carbon atoms, and at least one group. At least one group selected from the alkyl group, alkenyl group, and alkynyl group that the condensed aromatic ring has may be directly linked to a ring member atom or may be bonded via a linking group.
 本発明に用いる有機半導体化合物が上記式(13)~(17)のいずれかの態様をとる場合において、上記式(13)~(17)の各々に対応して下記(a)~(e)の形態をとることがより好ましい。
(a)上記式(13)において、R131及びR132が炭素数6~24のアルキル基、アルケニル基又はアルキニル基であり、他に炭素数6以上の脂肪族基を有さない形態
(b)上記式(14)において、Y143及びY144の少なくとも1つが、参照する式(7)における上記-(C-L71-R72)=であって、R141及びR72が炭素数6~24のアルキル基、アルケニル基又はアルキニル基であり、他に炭素数6以上の脂肪族基を有さない形態
(c)上記式(15)において、W151が-NR153-、CR154155-、又は>C=CR156157であって、R151及びR153~R157が炭素数6~24のアルキル基、アルケニル基又はアルキニル基であり、他に炭素数6以上の脂肪族基を有さない形態
(d)上記式(16)において、Y164が、参照する式(8)における-(C-L81-R82)=であって、R161及びR82が炭素数6~24のアルキル基、アルケニル基又はアルキニル基であり、他に炭素数6以上の脂肪族基を有さない形態
(e)上記式(17)において、W171が-NR173又は-CR174175-であって、R171及びR173~R175が炭素数6~24のアルキル基、アルケニル基又はアルキニル基であり、他に炭素数6以上の脂肪族基を有さない形態
When the organic semiconductor compound used in the present invention takes any one of the above formulas (13) to (17), the following (a) to (e) corresponding to each of the above formulas (13) to (17) It is more preferable to take the form.
(A) In the above formula (13), R 131 and R 132 are alkyl groups, alkenyl groups, or alkynyl groups having 6 to 24 carbon atoms, and have no other aliphatic groups having 6 or more carbon atoms (b ) In the above formula (14), at least one of Y 143 and Y 144 is-(CL 71 -R 72 ) = in the formula (7) to be referred to, and R 141 and R 72 have 6 carbon atoms. An alkyl group, an alkenyl group or an alkynyl group having ˜24 and no other aliphatic group having 6 or more carbon atoms (c) In the above formula (15), W 151 is —NR 153 —, CR 154 R 155 -, or> a C = CR 156 R 157, an alkyl group of R 151 and R 153 ~ R 157 is from 6 to 24 carbon atoms, alkenyl or alkynyl group having 6 or more aliphatic carbons is otherwise In embodiments without (d) is the formula (16), Y 164 is, in the reference to Equation (8) - (C-L 81 -R 82) = a A, carbon atoms R 161 and R 82 is 6 An alkyl group, an alkenyl group or an alkynyl group having from 24 to 24 and no other aliphatic group having 6 or more carbon atoms (e) In the above formula (17), W 171 is —NR 173 or —CR 174 R 175- , wherein R 171 and R 173 to R 175 are an alkyl group, alkenyl group or alkynyl group having 6 to 24 carbon atoms and no other aliphatic group having 6 or more carbon atoms
 上記(a)~(e)の形態の有機半導体化合物は、有機半導体化合物の主鎖方向に対して垂直方向に、特定の炭素数以上のアルキル基、アルケニル基又はアルキニル基(以下、アルキル鎖等という。)を有する。さらに、本発明の有機半導体化合物は、ドナー性構成単位及びアクセプター性構成単位の両方が側鎖方向縮環構造であるため、構造規則性が高い。その結果、下記の例に示すように、主鎖部分に加え、アルキル鎖等も密に重なる(パッキング)ことができる(下記例中、矢印の右側に示すパッキング形態を参照)。これにより、本発明の有機半導体化合物は結晶性が高くなりキャリア移動度が向上すると考えられる。その結果、キャリア移動度と溶解性とを高いレベルで両立することができると考えられる。 The organic semiconductor compounds in the forms (a) to (e) described above are an alkyl group, alkenyl group or alkynyl group (hereinafter referred to as an alkyl chain or the like) having a specific carbon number or more in a direction perpendicular to the main chain direction of the organic semiconductor compound Said). Furthermore, the organic semiconductor compound of the present invention has high structural regularity because both the donor structural unit and the acceptor structural unit have a side-chain direction condensed ring structure. As a result, as shown in the following examples, in addition to the main chain portion, alkyl chains and the like can also be closely overlapped (packing) (see the packing form shown on the right side of the arrow in the following examples). Thereby, it is considered that the organic semiconductor compound of the present invention has high crystallinity and improved carrier mobility. As a result, it is considered that carrier mobility and solubility can be achieved at a high level.
Figure JPOXMLDOC01-appb-I000023
Figure JPOXMLDOC01-appb-I000023
 上記Rで示される側鎖はアルキル基、アルケニル基、アルキニル基等の可溶性基を示し、上記例の右側に示すパッキング形態においてRは上下に伸びる直鎖である。pは繰り返し単位の数を示す。なお、Rは直鎖である必要はなく、分岐鎖であってもよい。 The side chain represented by R represents a soluble group such as an alkyl group, an alkenyl group, or an alkynyl group. In the packing form shown on the right side of the above example, R is a straight chain extending vertically. p represents the number of repeating units. In addition, R does not need to be a straight chain and may be a branched chain.
 一方、従来の主鎖方向縮環構造の芳香族環をドナー性構造単位として有する有機半導体化合物では、下記の例に示すように、ドナー性構成単位が主鎖方向縮環構造であり、アクセプター性構成単位が側鎖方向縮環構造である。このため、構造規則性が低く、アルキル基等の可溶性基が密に重なることができない(下記例中、矢印の右側の形態を参照)。 On the other hand, in an organic semiconductor compound having an aromatic ring having a main chain direction condensed ring structure as a donor structural unit, as shown in the following example, the donor structural unit has a main chain direction condensed ring structure, and acceptor properties The structural unit is a side chain direction condensed ring structure. For this reason, structural regularity is low and soluble groups, such as an alkyl group, cannot overlap closely (refer to the form on the right side of the arrow in the following examples).
Figure JPOXMLDOC01-appb-I000024
Figure JPOXMLDOC01-appb-I000024
 本発明に用いる有機半導体化合物の重量平均分子量は、5000~1000000であることが好ましく、10000~1000000であることがより好ましい。重量平均分子量は、GPC(ゲルろ過クロマトグラフィー)法を用いて測定される。分子量はポリスチレン換算の重量平均分子量とする。GPC法に用いるカラムに充填されているゲルは芳香族化合物を繰り返し単位に持つゲルが好ましく、例えばスチレン-ジビニルベンゼン共重合体からなるゲルが挙げられる。カラムは2~6本連結させて用いることが好ましい。用いる溶媒は、クロロホルム等のハロゲン系溶媒、トルエン、クロロベンゼン、1,2-ジクロロベンゼン、トリクロロベンゼン等の芳香族溶媒、テトラヒドロフラン等のエーテル系溶媒、N-メチルピロリドンのアミド系溶媒が挙げられる。化合物の溶解性の観点から芳香族溶媒が好ましい。測定は、溶媒の流速が0.1~2mL/minの範囲で行うことが好ましく、0.5~1.5mL/minの範囲で行うことがより好ましい。測定温度は溶媒の沸点によって適宜変更されるが、10~200℃で行うことが好ましく、20~150℃で行うことがより好ましい。使用するカラム、及びキャリアは測定対象となる高分子化合物の物性に応じて選定することができる。本発明では、カラム:TSK-GEL SUPER H-RC 6.0*150+TSK-GEL BMHHR-H(20)7.8*300(2本),溶媒:1、2-ジクロロベンゼン、温度:145℃、流速:サンプル側:1mL/min、リファレンス側:0.5mL/minで求めたものである。 The weight average molecular weight of the organic semiconductor compound used in the present invention is preferably from 5,000 to 1,000,000, and more preferably from 10,000 to 1,000,000. The weight average molecular weight is measured using a GPC (gel filtration chromatography) method. The molecular weight is a weight average molecular weight in terms of polystyrene. The gel packed in the column used in the GPC method is preferably a gel having an aromatic compound as a repeating unit, and examples thereof include a gel made of a styrene-divinylbenzene copolymer. Two to six columns are preferably connected and used. Solvents used include halogen solvents such as chloroform, aromatic solvents such as toluene, chlorobenzene, 1,2-dichlorobenzene and trichlorobenzene, ether solvents such as tetrahydrofuran, and amide solvents such as N-methylpyrrolidone. An aromatic solvent is preferable from the viewpoint of the solubility of the compound. The measurement is preferably performed at a solvent flow rate in the range of 0.1 to 2 mL / min, and more preferably in the range of 0.5 to 1.5 mL / min. The measurement temperature is appropriately changed depending on the boiling point of the solvent, but it is preferably 10 to 200 ° C., more preferably 20 to 150 ° C. The column and carrier to be used can be selected according to the physical properties of the polymer compound to be measured. In the present invention, the column: TSK-GEL SUPER H-RC 6.0 * 150 + TSK-GEL BMHHR-H (20) 7.8 * 300 (two), solvent: 1,2-dichlorobenzene, temperature: 145 ° C. Flow rate: sample side: 1 mL / min, reference side: determined at 0.5 mL / min.
 以下に、上記式(1)で表される有機半導体化合物の具体例を示すが、本発明はこれらに限定されるものではない。下記式中、pは繰り返し単位の数を示す。なお、Meはメチルを表す。 Specific examples of the organic semiconductor compound represented by the above formula (1) are shown below, but the present invention is not limited thereto. In the following formula, p represents the number of repeating units. Me represents methyl.
Figure JPOXMLDOC01-appb-I000025
Figure JPOXMLDOC01-appb-I000025
Figure JPOXMLDOC01-appb-I000026
Figure JPOXMLDOC01-appb-I000026
Figure JPOXMLDOC01-appb-I000027
Figure JPOXMLDOC01-appb-I000027
Figure JPOXMLDOC01-appb-I000028
Figure JPOXMLDOC01-appb-I000028
Figure JPOXMLDOC01-appb-I000029
Figure JPOXMLDOC01-appb-I000029
Figure JPOXMLDOC01-appb-I000030
Figure JPOXMLDOC01-appb-I000030
 本発明の化合物の合成方法は特に限定されず、種々の公知の方法を参考にして合成することができる。例えば、式(1)又は式(4)で表される化合物は、下記式のように(M1)から(M6)で表される化合物のカップリング反応(例えば、Chemical Reviews,2002年,102巻,1359頁、Chemical Reviews,2011年,111巻,1493頁、Journal of Materals of Chemistry,2004年,14巻,11頁などに記載の方法)により合成することができる。 The method for synthesizing the compound of the present invention is not particularly limited, and can be synthesized with reference to various known methods. For example, the compound represented by the formula (1) or the formula (4) is a coupling reaction of the compounds represented by (M1) to (M6) as in the following formula (for example, Chemical Reviews, 2002, Volume 102). 1359, Chemical Reviews, 2011, 111, 1493, Journal of Materials of Chemistry, 2004, 14, 11, etc.).
Figure JPOXMLDOC01-appb-I000031
Figure JPOXMLDOC01-appb-I000031
 具体的には、遷移金属触媒を使用した、亜鉛反応剤を用いる根岸カップリング、スズ反応剤を用いる右田-小杉-Stilleカップリング、ホウ素反応剤を用いる鈴木-宮浦カップリング、マグネシウム反応剤を用いる熊田-玉尾-Corriuカップリング、ケイ素反応剤を用いる檜山カップリングなどのクロスカップリングや、銅を使用したUllmann反応、ニッケルを使用した山本重合などを利用して合成することができる。本発明においては、右田-小杉-Stilleカップリング、鈴木-宮浦カップリングを用いることがより好ましい。遷移金属触媒としては、パラジウム、ニッケル、銅、コバルト、鉄(Journal of the American Chemical Society,2007年,129巻,9844頁)などの金属を使用することができる。また金属は配位子を有していても良く、PPh、P(t-Bu)、P(o-tol)、P(2-furyl)、S-Phos、X-Phosなどのリン配位子や、N-ヘテロサイクリックカルベン配位子(Angewandte Chemie International Edition,2002年,41巻,1290頁)などが好ましく用いられる。反応はMacromolecular Rapid Communications,2007年,28巻,387頁に記載されているようにマイクロウェーブ照射下で行ってもよい。
 ここで、M及びMがトリアルキルスズ基、トリアルキルシリル基または-B(ORαの場合、M及びMはハロゲン原子、パーフルオロアルカンスルホニルオキシ基である。M及びMがハロゲン原子、パーフルオロアルカンスルホニルオキシ基の場合、M及びMはトリアルキルスズ基、トリアルキルシリル基または-B(ORαである。Rαは水素原子又はアルキル基を示す。Rαは連結して環を形成していてもよい。
Specifically, Negishi coupling using transition metal catalyst, zinc reactive agent, right-Kosugi-Still coupling using tin reactant, Suzuki-Miyaura coupling using boron reactant, magnesium reactant It can be synthesized using Kumada-Tamao-Coriu coupling, cross coupling such as Ulsan coupling using a silicon reagent, Ullmann reaction using copper, Yamamoto polymerization using nickel, and the like. In the present invention, it is more preferable to use the Ueda-Kosugi-Still coupling and the Suzuki-Miyaura coupling. As the transition metal catalyst, metals such as palladium, nickel, copper, cobalt, and iron (Journal of the American Chemical Society, 2007, Vol. 129, page 9844) can be used. The metal may have a ligand, such as PPh 3 , P (t-Bu) 3 , P (o-tol) 3 , P (2-furyl) 3 , S-Phos, X-Phos, etc. A phosphorus ligand, an N-heterocyclic carbene ligand (Angewandte Chemie International Edition, 2002, 41, 1290) and the like are preferably used. The reaction may be performed under microwave irradiation as described in Macromolecular Rapid Communications, 2007, 28, 387.
Here, when M 1 and M 2 are a trialkyltin group, a trialkylsilyl group, or —B (OR α ) 2 , M 3 and M 4 are a halogen atom or a perfluoroalkanesulfonyloxy group. When M 1 and M 2 are a halogen atom or a perfluoroalkanesulfonyloxy group, M 3 and M 4 are a trialkyltin group, a trialkylsilyl group, or —B (OR α ) 2 . R α represents a hydrogen atom or an alkyl group. R α may be linked to form a ring.
 本発明の有機半導体化合物の末端基は、水素原子、又は合成に用いたモノマーに由来するトリアルキルスズ基、トリアルキルシリル基、-B(ORα(ここで、Rαは水素原子又はアルキル基を示す。)、ハロゲン原子、もしくはパーフルオロアルカンスルホニルオキシ基である。あるいは、以下に説明するキャッピングを行って、アリール基またはヘテロアリール基を末端基としてもよい。
 なお、重合後にAr-Vで表される化合物を添加して、ポリマー末端と反応させることによりキャッピングを行ってもよい。ここで、Arはアリール基(例えば、フェニル基、ナフチル基、トリル基など)またはヘテロアリール基(例えば、チエニル基、チアゾリル基、フリル基、ピリジル基など)を表す。Arはアルキル基、アルケニル基、アルキニル基、アシル基、アルコキシカルボニル基、アシルオキシ基、ハロゲン原子などの置換基を有していてもよい。
 Vは、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子など)、パーフルオロアルカンスルホニルオキシ基(例えば、トリフルオロメタンスルホニルオキシ基、ノナフルオロブタンスルホニルオキシ基など)、トリアルキルスズ基(例えば、トリメチルスタニル基、トリブチルスタニル基など)、トリアルキルシリル基(例えば、トリメチルシリル基、トリエチルシリル基など)、-B(ORを表す。ここで、Rは水素原子、アルキル基を示す。Rは連結して環を形成してもよい。
The terminal group of the organic semiconductor compound of the present invention is a hydrogen atom, or a trialkyltin group, a trialkylsilyl group, -B (OR α ) 2 derived from the monomer used for synthesis (where R α is a hydrogen atom or An alkyl group), a halogen atom, or a perfluoroalkanesulfonyloxy group. Alternatively, an aryl group or a heteroaryl group may be used as a terminal group by performing capping described below.
In addition, capping may be performed by adding a compound represented by Ar—V 1 after polymerization and reacting with a polymer terminal. Here, Ar represents an aryl group (for example, phenyl group, naphthyl group, tolyl group, etc.) or a heteroaryl group (for example, thienyl group, thiazolyl group, furyl group, pyridyl group, etc.). Ar may have a substituent such as an alkyl group, an alkenyl group, an alkynyl group, an acyl group, an alkoxycarbonyl group, an acyloxy group, or a halogen atom.
V 1 is a halogen atom (eg, fluorine atom, chlorine atom, bromine atom, iodine atom), perfluoroalkanesulfonyloxy group (eg, trifluoromethanesulfonyloxy group, nonafluorobutanesulfonyloxy group), trialkyltin A group (for example, trimethylstannyl group, tributylstannyl group, etc.), a trialkylsilyl group (for example, trimethylsilyl group, triethylsilyl group, etc.), and —B (OR x ) 2 . Here, R x represents a hydrogen atom or an alkyl group. R x may be linked to form a ring.
 原料となる(M1)から(M6)で表されるスズ反応剤やホウ素反応剤などの金属反応剤、ハロゲン化体の合成方法は特に限定されず、種々の任意の方法にしたがって、合成することができる。例えばスズ反応剤はJournal of the American Chemistry,2009,131,7792頁、Journal of the American Chemistry,2008,130,16144頁、欧州特許出願公開第2407465号明細書などを、ホウ素反応剤はJournal of the American Chemistry,2012,134,539頁などを、ハロゲン化体は、Journal of American Chemical Society 2009、131、7792-7799頁などを参考にして合成することができる。
 式(2)、式(3)、又は式(1)及び(4)中のAで表される基の結合手を水素原子に変えた化合物の合成方法も特に限定されず種々の任意の方法に従って、合成することができる。
 式(2)で表される基の結合手を水素原子に変えた化合物は、例えばJournal of Polymer Science, part A; Polymer Chemistry, 2011, 49, 3260-3271頁、Tetrahedron Letters 2010、50、2089-2091頁などに記載の方法を参考にして合成することができる。
 式(3)で表される基の結合手を水素原子に変えた化合物は、例えば、Journal of Materials Chemistry 2012、22、23514-23524頁、Journal of Organic Chemisty 2002、67、9073-9076頁、Chemistry of Materials 2012、45、4069-4074頁、Tetrahedron 1998、54、7075-7080頁などに記載の方法を参考にして合成することができる。
 Aで表される基の結合手を水素原子あるいはハロゲン原子に変えた化合物は、例えば、Journal of American Chemical Society 2010,132、5330-5331頁(イミド)、特開2012-214621号公報、Macromolecules 2011,44、7184-7187頁(チエノチアゾール)、Chemistry of Materials 2010、22、2978-2987頁(トリアゾール)、Journal of American Chemical Society 2009、131、7206-7207頁(ベンゼンのピロールジオン)、Macromolecules 2012、45、4069-4074頁、Dyes and Pigments 2013、96、619-625頁、国際特許第2011/28827号などに記載の方法を参考にして合成することができる。
There are no particular limitations on the method of synthesizing the metal reactants and halides such as tin reactants and boron reactants represented by (M1) to (M6), which are the raw materials, and they are synthesized according to various arbitrary methods. Can do. For example, the tin reactant is Journal of the American Chemistry, 2009, 131, 7792, the Journal of the American Chemistry, 2008, 130, 16144, the European Patent Application No. 2407465, and the boron reactant is Journal. American Chemistry, 2012, 134, 539 and the like, and halogenated compounds can be synthesized with reference to Journal of American Chemical Society 2009, 131, 7792-7799 and the like.
The method for synthesizing the compound in which the bond of the group represented by A in Formula (2), Formula (3), or Formula (1) and (4) is replaced with a hydrogen atom is not particularly limited, and various arbitrary methods Can be synthesized.
Compounds in which the bond of the group represented by the formula (2) is changed to a hydrogen atom include, for example, Journal of Polymer Science, part A; Polymer Chemistry, 2011, 49, 3260-3271, Tetrahedron Letters 2010, 50, 2089- It can be synthesized with reference to the method described on page 2091.
Compounds in which the bond of the group represented by formula (3) is changed to a hydrogen atom include, for example, Journal of Materials Chemistry 2012, 22, 23514-23524, Journal of Organic Chemistry 2002, 67, 9073-9076, Chemist of Materials 2012, 45, 4069-4074, Tetrahedron 1998, 54, 7075-7080, and the like.
Examples of the compound in which the bond of the group represented by A is changed to a hydrogen atom or a halogen atom include, for example, Journal of American Chemical Society 2010, 132, 5330-5331 (imide), JP 2012-214621 A, Macromolecules 2011. , 44, 7184-7187 (thienothiazole), Chemistry of Materials 2010, 22, 2978-2987 (triazole), Journal of American Chemical Society 2009, 131, 7206-7207, pyrrole of benzene, ul 20 45, 4069-4074, Dyes and Pigments 2013, 96, 61. -625 pages, the method described in international patent 2011/28827 can be synthesized with reference.
[有機半導体デバイス]
 本発明の有機半導体デバイスは、半導体層に本発明の有機半導体化合物を含有する限り特に制限はない。例えば、トランジスタ、光電変換デバイス、有機熱電変換デバイス、光検出器(例えば、赤外光検出器)、光起電力検出器、撮像素子(例えば、カメラまたは医用画像撮影システムのRGB撮像素子)、発光ダイオード(LED)(例えば、有機LED、または赤外もしくは近赤外LED)、レーザー素子、変換層(例えば、可視発光を赤外発光に変換する層)、電気通信用の増幅器兼放射器(例えば、ファイバ用ドープ剤)、記憶素子(例えば、ホログラフィック記憶素子)、並びにエレクトロクロミック素子(例えば、エレクトロクロミックディスプレイ)を挙げることができる。なかでも、有機薄膜トランジスタ、有機光電変換デバイス又は有機熱電変換デバイスであることが好ましい。
[Organic semiconductor devices]
The organic semiconductor device of the present invention is not particularly limited as long as the semiconductor layer contains the organic semiconductor compound of the present invention. For example, transistors, photoelectric conversion devices, organic thermoelectric conversion devices, photodetectors (for example, infrared photodetectors), photovoltaic detectors, imaging devices (for example, RGB imaging devices for cameras or medical imaging systems), light emission Diodes (LEDs) (eg, organic LEDs, or infrared or near infrared LEDs), laser elements, conversion layers (eg, layers that convert visible emission to infrared emission), telecommunications amplifiers and radiators (eg, , Fiber dopants), storage elements (eg holographic storage elements), and electrochromic elements (eg electrochromic displays). Especially, it is preferable that they are an organic thin-film transistor, an organic photoelectric conversion device, or an organic thermoelectric conversion device.
(有機薄膜トランジスタ)
 本発明の有機薄膜トランジスタは、本発明の有機半導体化合物を含む半導体層を有する。
 本発明の有機薄膜トランジスタは、さらに上記半導体層以外にその他の層を含んでいてもよい。
 本発明の有機薄膜トランジスタは、有機電界効果トランジスタ(Field Effect Transistor、FET)として用いられることが好ましく、ゲート-チャンネル間が絶縁されている絶縁ゲート型FETとして用いられることがより好ましい。
 以下、本発明の有機薄膜トランジスタの好ましい構造の態様について、図面を用いて詳しく説明するが、本発明はこれらの態様に限定されるものではない。
(Organic thin film transistor)
The organic thin film transistor of the present invention has a semiconductor layer containing the organic semiconductor compound of the present invention.
The organic thin film transistor of the present invention may further include other layers in addition to the semiconductor layer.
The organic thin film transistor of the present invention is preferably used as an organic field effect transistor (FET), and more preferably used as an insulated gate FET in which a gate-channel is insulated.
Hereinafter, although the aspect of the preferable structure of the organic thin-film transistor of this invention is demonstrated in detail using drawing, this invention is not limited to these aspects.
<積層構造>
 有機電界効果トランジスタの積層構造としては特に制限はなく、任意の様々な構造のものとすることができる。
 本発明の有機薄膜トランジスタの構造の一例としては、最下層の基板の上面に、電極、絶縁体層、有機半導体層、2つの電極を順に配置した構造(ボトムゲート・トップコンタクト型)を挙げることができる。この構造では、最下層の基板の上面に配設された電極は基板の一部に設けられ、絶縁体層は、電極が配設された部分以外の部分で基板と接するように配置される。また、半導体層の上面に設けられる2つの電極は、互いに隔離して配置される。
 ボトムゲート・トップコンタクト型トランジスタの構成を図1に示す。図1は、本発明の有機薄膜トランジスタの一例の構造の断面を示す概略図である。図1の有機薄膜トランジスタは、最下層に基板11を配置し、その上面の一部に電極12を設け、さらにこの電極12を覆い、かつ電極12以外の部分で基板11と接するように絶縁体層13を設けている。さらに絶縁体層13の上面に半導体層14を設け、その上面の一部に2つの電極15aと15bとを隔離して配置している。
 図1に示した有機薄膜トランジスタ1は、電極12がゲートであり、電極15aと電極15bはそれぞれドレインまたはソースである。また、図1に示した有機薄膜トランジスタ1は、ドレイン-ソース間の電流通路であるチャンネルと、ゲートとの間が絶縁されている絶縁ゲート型FETである。
<Laminated structure>
There is no restriction | limiting in particular as a laminated structure of an organic field effect transistor, It can be set as the thing of arbitrary various structures.
As an example of the structure of the organic thin film transistor of the present invention, there is a structure (bottom gate / top contact type) in which an electrode, an insulator layer, an organic semiconductor layer, and two electrodes are sequentially arranged on the upper surface of the lowermost substrate. it can. In this structure, the electrode disposed on the upper surface of the lowermost substrate is disposed on a part of the substrate, and the insulator layer is disposed so as to be in contact with the substrate at a portion other than the portion where the electrode is disposed. Further, the two electrodes provided on the upper surface of the semiconductor layer are arranged separately from each other.
The structure of the bottom-gate / top-contact transistor is shown in FIG. FIG. 1 is a schematic view showing a cross section of an example of the structure of the organic thin film transistor of the present invention. The organic thin film transistor of FIG. 1 has a substrate 11 disposed in the lowermost layer, an electrode 12 is provided on a part of the upper surface thereof, and further covers the electrode 12 and is in contact with the substrate 11 at a portion other than the electrode 12. 13 is provided. Further, a semiconductor layer 14 is provided on the upper surface of the insulator layer 13, and the two electrodes 15a and 15b are disposed separately on a part of the upper surface.
In the organic thin film transistor 1 shown in FIG. 1, the electrode 12 is a gate, and the electrodes 15a and 15b are drains or sources, respectively. The organic thin film transistor 1 shown in FIG. 1 is an insulated gate FET in which a channel that is a current path between a drain and a source is insulated from a gate.
 本発明の有機薄膜トランジスタの構造の他の例としては、ボトムゲート・ボトムコンタクト型素子を挙げることができる。
 ボトムゲート・ボトムコンタクト型トランジスタの構成を図2に示す。図2は本発明の実施例でFET特性測定用基板として製造した有機薄膜トランジスタの構造の断面を示す概略図である。図2の有機薄膜トランジスタは、最下層に基板21を配置し、その上面の一部に電極22を設け、さらにこの電極22を覆い、かつ電極22以外の部分で基板21と接するように絶縁体層23を設けている。さらに絶縁体層23の上面に半導体層24を設け、電極25aと25bが半導体層24の下部にある。
 図2に示した有機薄膜トランジスタ2は、電極22がゲートであり、電極25aと電極25bはそれぞれドレインまたはソースである。また、図2に示した有機薄膜トランジスタ2は、ドレイン-ソース間の電流通路であるチャンネルと、ゲートとの間が絶縁されている絶縁ゲート型FETである。
Another example of the structure of the organic thin film transistor of the present invention is a bottom gate / bottom contact type element.
The structure of the bottom gate / bottom contact transistor is shown in FIG. FIG. 2 is a schematic view showing a cross section of the structure of an organic thin film transistor manufactured as a substrate for measuring FET characteristics in an example of the present invention. In the organic thin film transistor of FIG. 2, the substrate 21 is disposed in the lowermost layer, the electrode 22 is provided on a part of the upper surface thereof, the electrode 22 is further covered, and the insulating layer is in contact with the substrate 21 at a portion other than the electrode 22. 23 is provided. Further, the semiconductor layer 24 is provided on the upper surface of the insulator layer 23, and the electrodes 25 a and 25 b are below the semiconductor layer 24.
In the organic thin film transistor 2 shown in FIG. 2, the electrode 22 is a gate, and the electrode 25a and the electrode 25b are a drain or a source, respectively. The organic thin film transistor 2 shown in FIG. 2 is an insulated gate FET in which a channel that is a current path between a drain and a source is insulated from a gate.
 本発明の有機薄膜トランジスタの構造は、上記の例の他、絶縁体、ゲート電極が半導体層の上部にあるトップゲート・トップコンタクト型素子や、トップゲート・ボトムコンタクト型素子であることも好ましい。 The structure of the organic thin film transistor of the present invention is preferably a top gate / top contact type element having an insulator and a gate electrode above the semiconductor layer, or a top gate / bottom contact type element in addition to the above example.
<厚さ>
 本発明の有機薄膜トランジスタは、より薄いトランジスタとする必要がある場合には、例えばトランジスタ全体の厚さを0.1~0.5μmとすることが好ましい。
<Thickness>
When the organic thin film transistor of the present invention needs to be a thinner transistor, it is preferable that the thickness of the entire transistor is, for example, 0.1 to 0.5 μm.
<封止>
 有機薄膜トランジスタを大気や水分から遮断し、有機薄膜トランジスタの保存性を高めるために、有機薄膜トランジスタ全体を金属の封止缶やガラス、窒化ケイ素などの無機材料、パリレンなどの高分子材料や、低分子材料などで封止してもよい。
 以下、本発明の有機薄膜トランジスタの各層の好ましい態様について説明するが、本発明はこれらの態様に限定されるものではない。
<Sealing>
In order to shield the organic thin film transistor from the air and moisture and improve the storage stability of the organic thin film transistor, the entire organic thin film transistor is made of a metal sealing can, an inorganic material such as glass or silicon nitride, a polymer material such as parylene, or a low molecular material. It may be sealed with.
Hereinafter, although the preferable aspect of each layer of the organic thin-film transistor of this invention is demonstrated, this invention is not limited to these aspects.
<基板>
-材料-
 本発明の有機薄膜トランジスタは、基板を含むことが好ましい。
 上記基板の材料としては特に制限はなく、任意の材料を用いることができる。例えば、ポリエチレンナフトエート(PEN)、ポリエチレンテレフタレート(PET)などのポリエステルフィルム、シクロオレフィンポリマーフィルム、ポリカーボネートフィルム、トリアセチルセルロース(TAC)フィルム、ポリイミドフィルム、及びこれらポリマーフィルムを極薄ガラスに貼り合わせたもの、セラミック、シリコン、石英、ガラス、などを挙げることができ、シリコンが好ましい。
<Board>
-material-
The organic thin film transistor of the present invention preferably includes a substrate.
There is no restriction | limiting in particular as a material of the said board | substrate, Arbitrary materials can be used. For example, polyester films such as polyethylene naphthoate (PEN) and polyethylene terephthalate (PET), cycloolefin polymer films, polycarbonate films, triacetyl cellulose (TAC) films, polyimide films, and these polymer films were bonded to ultrathin glass. Can be mentioned, ceramic, silicon, quartz, glass, etc., with silicon being preferred.
<電極>
-材料-
 本発明の有機薄膜トランジスタは、電極を含むことが好ましい。
 上記電極の構成材料としては、例えば、Cr、Al、Ta、Mo、Nb、Cu、Ag、Au、Pt、Pd、In、NiあるいはNdなどの金属材料やこれらの合金材料、あるいはカーボン材料、導電性高分子などの既知の導電性材料であれば特に制限することなく使用できる。
<Electrode>
-material-
The organic thin film transistor of the present invention preferably includes an electrode.
Examples of the constituent material of the electrode include metal materials such as Cr, Al, Ta, Mo, Nb, Cu, Ag, Au, Pt, Pd, In, Ni, and Nd, alloy materials thereof, carbon materials, and conductive materials. Any known conductive material such as a conductive polymer can be used without particular limitation.
-厚さ-
 電極の厚さは特に制限はないが、10~50nmとすることが好ましい。
 ゲート幅(またはチャンネル幅)Wとゲート長(またはチャンネル長)Lに特に制限はない。これらの比W/Lが10以上であることが好ましく、20以上であることがより好ましい。
-thickness-
The thickness of the electrode is not particularly limited, but is preferably 10 to 50 nm.
There is no particular limitation on the gate width (or channel width) W and the gate length (or channel length) L. These ratios W / L are preferably 10 or more, and more preferably 20 or more.
<絶縁体層>
-材料-
 絶縁体層を構成する材料は必要な絶縁効果が得られれば特に制限はない。例えば、二酸化ケイ素、窒化ケイ素、PTFE、CYTOP等のフッ素ポリマー系絶縁材料、ポリエステル絶縁材料、ポリカーボネート絶縁材料、アクリルポリマー系絶縁材料、エポキシ樹脂系絶縁材料、ポリイミド絶縁材料、ポリビニルフェノール樹脂系絶縁材料、ポリパラキシリレン樹脂系絶縁材料などが挙げられる。
 絶縁体層の上面は表面処理がなされていてもよい。例えば、二酸化ケイ素表面をヘキサメチルジシラザン(HMDS)やオクタデシルトリクロロシラン(OTS)の塗布により表面処理した絶縁体層を好ましく用いることができる。
<Insulator layer>
-material-
The material constituting the insulator layer is not particularly limited as long as a necessary insulating effect is obtained. For example, fluoropolymer insulating materials such as silicon dioxide, silicon nitride, PTFE, CYTOP, polyester insulating materials, polycarbonate insulating materials, acrylic polymer insulating materials, epoxy resin insulating materials, polyimide insulating materials, polyvinylphenol resin insulating materials, Examples include polyparaxylylene resin-based insulating materials.
The top surface of the insulator layer may be surface-treated. For example, an insulator layer in which the surface of silicon dioxide is surface-treated by application of hexamethyldisilazane (HMDS) or octadecyltrichlorosilane (OTS) can be preferably used.
-厚さ-
 絶縁体層の厚さに特に制限はない。薄膜化が求められる場合は厚さを10~400nmとすることが好ましく、20~200nmとすることがより好ましく、50~200nmとすることが特に好ましい。
-thickness-
There is no particular limitation on the thickness of the insulator layer. When thinning is required, the thickness is preferably 10 to 400 nm, more preferably 20 to 200 nm, and particularly preferably 50 to 200 nm.
<半導体層>
-材料-
 本発明の有機薄膜トランジスタは、半導体層が本発明の有機半導体化合物を含むことを特徴とする。
 上記半導体層は、本発明の有機半導体化合物からなる層であってもよい。あるいは、本発明の有機半導体化合物に加えて後述の低分子有機半導体及び後述のポリマーがさらに含まれた層であってもよい。また、成膜時の残留溶媒が含まれていてもよい。
 低分子有機半導体としては、ベンゼン環、チオフェン環、フラン環、ピロール環、チアゾール環、セレノフェン環、チアジアゾール環、オキサジアゾール環などが縮環あるいは連結した化合物を挙げることができる。例えば、アントラセン、テトラセン、ペンタセン、ヘキサセン、ヘプタセン、クリセン、ピセン、フルミネン、ピレン、ペロピレン、ペリレン、テリレン、クオテリレン、コロネン、オバレン、サーカムアントラセン、ビスアンテン、ゼスレン、ヘプタゼスレン、ピランスレン、ビオランテン、イソビオランテン、サーコビフェニルなどの多環芳香族炭化水素、アントラジチオフェン、ベンゾジチオフェン、ナフトジチオフェン、ベンゾチエノベンゾチオフェン、ジナフトチエノチオフェン等の多環ヘテロ芳香族炭化水素化合物、ポルフィリンや銅フタロシアニン、及びこれらの誘導体や前駆体が挙げられる。
<Semiconductor layer>
-material-
The organic thin film transistor of the present invention is characterized in that the semiconductor layer contains the organic semiconductor compound of the present invention.
The semiconductor layer may be a layer made of the organic semiconductor compound of the present invention. Or in addition to the organic-semiconductor compound of this invention, the layer further contained the below-mentioned low molecular organic semiconductor and the below-mentioned polymer may be sufficient. Moreover, the residual solvent at the time of film-forming may be contained.
Examples of the low molecular organic semiconductor include compounds in which a benzene ring, a thiophene ring, a furan ring, a pyrrole ring, a thiazole ring, a selenophene ring, a thiadiazole ring, an oxadiazole ring, and the like are condensed or connected. For example, anthracene, tetracene, pentacene, hexacene, heptacene, chrysene, picene, fluorene, pyrene, peropyrene, perylene, terylene, quaterylene, coronene, ovalene, circumcamanthracene, bisanthene, zestrene, heptazesulene, pyranthrene, violanthene, isoviolanthene, Polycyclic aromatic hydrocarbons such as circobiphenyl, polycyclic heteroaromatic hydrocarbon compounds such as anthradithiophene, benzodithiophene, naphthodithiophene, benzothienobenzothiophene, dinaphthothienothiophene, porphyrin and copper phthalocyanine, and these And derivatives and precursors thereof.
 上記ポリマーとしては、ポリスチレン、ポリカーボネート、ポリアリレート、ポリエステル、ポリアミド、ポリイミド、ポリウレタン、ポリシロキサン、ポリスルフォン、ポリメチルメタクリレート、ポリメチルアクリレート、セルロース、ポリエチレン、ポリプロピレンなどの絶縁性ポリマー、及びこれらの共重合体、ポリビニルカルバゾール、ポリシランなどの光伝導性ポリマー、ポリチオフェン、ポリピロール、ポリアニリン、ポリパラフェニレンビニレンなどの導電性ポリマー、半導体ポリマーを挙げることができる。
 上記低分子有機半導体やポリマーは、単独で使用してもよく、あるいは複数種併用してもよい。
 また、本発明の有機半導体化合物と上記ポリマーとは均質に混合されていてもよく、一部または全部が相分離していてもよい。膜厚方向にむけて有機半導体化合物と上記ポリマーが相分離していることが好ましい。相分離していることで、有機半導体の電荷移動がポリマーにより妨げられるのを防ぐことができる。
 上記半導体層中における低分子有機半導体やポリマーの含有量に特に制限はない。好ましくは0~95質量%の範囲内で用いられ、より好ましくは10~90質量%、さらに好ましくは20~80質量%、特に好ましくは30~70質量%の範囲内で用いられる。
Examples of the polymer include insulating polymers such as polystyrene, polycarbonate, polyarylate, polyester, polyamide, polyimide, polyurethane, polysiloxane, polysulfone, polymethyl methacrylate, polymethyl acrylate, cellulose, polyethylene, and polypropylene, and their co-polymers. Examples thereof include photoconductive polymers such as coalescence, polyvinyl carbazole, and polysilane, conductive polymers such as polythiophene, polypyrrole, polyaniline, and polyparaphenylene vinylene, and semiconductor polymers.
The above low molecular organic semiconductors and polymers may be used alone or in combination of two or more.
In addition, the organic semiconductor compound of the present invention and the polymer may be homogeneously mixed, or a part or all of them may be phase separated. The organic semiconductor compound and the polymer are preferably phase-separated in the film thickness direction. The phase separation can prevent the charge transfer of the organic semiconductor from being hindered by the polymer.
There is no restriction | limiting in particular in content of the low molecular organic semiconductor and polymer in the said semiconductor layer. It is preferably used in the range of 0 to 95% by mass, more preferably 10 to 90% by mass, further preferably 20 to 80% by mass, and particularly preferably 30 to 70% by mass.
-厚さ-
 半導体層の厚さに特に制限はない。薄膜化が求められる場合は厚さを10~400nmとすることが好ましく、10~200nmとすることがより好ましく、10~100nmとすることが特に好ましい。
-thickness-
There is no particular limitation on the thickness of the semiconductor layer. When thinning is required, the thickness is preferably 10 to 400 nm, more preferably 10 to 200 nm, and particularly preferably 10 to 100 nm.
<成膜方法>
 半導体層を形成するために、本発明の有機半導体化合物を基板等の表面に成膜することが好ましい。成膜方法はいかなる方法でもよい。
 成膜の際、成膜される基板等を加熱または冷却してもよい。基板等の温度を変化させることで膜質や、膜中での分子のパッキングをある程度制御することができる。成膜される基板等の温度としては特に制限はない。0℃から200℃の間であることが好ましく、15℃~100℃の間であることがより好ましく、20℃~95℃の間であることが特に好ましい。
 本発明の有機半導体化合物を基板等の表面に成膜するとき、真空プロセスあるいは溶液プロセスにより成膜することが好ましい。
<Film formation method>
In order to form a semiconductor layer, the organic semiconductor compound of the present invention is preferably formed on the surface of a substrate or the like. Any film forming method may be used.
During film formation, a substrate to be formed may be heated or cooled. By changing the temperature of the substrate or the like, the film quality and molecular packing in the film can be controlled to some extent. There is no restriction | limiting in particular as temperature of the board | substrate etc. which form into a film. It is preferably between 0 ° C. and 200 ° C., more preferably between 15 ° C. and 100 ° C., and particularly preferably between 20 ° C. and 95 ° C.
When the organic semiconductor compound of the present invention is formed on the surface of a substrate or the like, it is preferably formed by a vacuum process or a solution process.
 真空プロセスによる成膜の例としては、真空蒸着法、スパッタリング法、イオンプレーティング法、分子ビームエピタキシー(MBE)法などの物理気相成長法、あるいはプラズマ重合などの化学気相蒸着(CVD)法が挙げられ、真空蒸着法を用いることが特に好ましい。 Examples of film formation by a vacuum process include vacuum vapor deposition, sputtering, ion plating, physical vapor deposition such as molecular beam epitaxy (MBE), or chemical vapor deposition (CVD) such as plasma polymerization. It is particularly preferable to use a vacuum deposition method.
 溶液プロセスによる成膜とは、ここでは本発明の有機半導体化合物を有機溶媒中に溶解させた組成物を調製し、この組成物を塗布し、成膜する方法をさす。具体的には、キャスト法、ディップコート法、ダイコーター法、ロールコーター法、バーコーター法(バーコート法)、スピンコート法などの塗布法、インクジェット法、スクリーン印刷法、グラビア印刷法、フレキソグラフィー印刷法、オフセット印刷法、マイクロコンタクト印刷法などの各種印刷法、Langmuir-Blodgett(LB)法などの通常の方法を用いることができる。キャスト法、バーコーター法、スピンコート法、インクジェット法、グラビア印刷法、フレキソグラフィー印刷法、オフセット印刷法、マイクロコンタクト印刷法を用いることが特に好ましい。
 本発明の有機薄膜トランジスタの半導体層がポリマーを含有する場合、この半導体層は、少なくとも本発明の有機半導体化合物とポリマーとを適当な有機溶媒に溶解させ、または分散させて、得られた組成物(塗布溶液)を用いて、各種の塗布法により形成されることが好ましい。
 以下、溶液プロセスによる成膜に用いることができる上記塗布溶液について説明する。
Here, film formation by solution process refers to a method of preparing a composition in which the organic semiconductor compound of the present invention is dissolved in an organic solvent, applying the composition, and forming the film. Specifically, coating methods such as casting method, dip coating method, die coater method, roll coater method, bar coater method (bar coating method), spin coating method, ink jet method, screen printing method, gravure printing method, flexography Various printing methods such as a printing method, an offset printing method, a microcontact printing method, and a normal method such as a Langmuir-Blodgett (LB) method can be used. It is particularly preferable to use a casting method, a bar coater method, a spin coating method, an ink jet method, a gravure printing method, a flexographic printing method, an offset printing method, or a microcontact printing method.
When the semiconductor layer of the organic thin film transistor of the present invention contains a polymer, this semiconductor layer is obtained by dissolving or dispersing at least the organic semiconductor compound of the present invention and the polymer in an appropriate organic solvent ( The coating solution is preferably formed by various coating methods.
Hereinafter, the coating solution that can be used for film formation by a solution process will be described.
-塗布溶液-
 上記塗布溶液に用いる有機溶媒としては、例えば、ヘキサン、オクタン、デカン、トルエン、キシレン、メシチレン、エチルベンゼン、デカリン、1-メチルナフタレンなどの炭化水素系溶媒、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノンなどのケトン系溶媒、例えば、ジクロロメタン、クロロホルム、テトラクロロメタン、ジクロロエタン、トリクロロエタン、テトラクロロエタン、クロロベンゼン、ジクロロベンゼン、クロロトルエン、トリクロロベンゼン、1-クロロナフタレンなどのハロゲン化炭化水素系溶媒、酢酸エチル、酢酸ブチル、酢酸アミルなどのエステル系溶媒、メタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、シクロヘキサノール、メチルセロソルブ、エチルセロソルブ、エチレングリコールなどのアルコール系溶媒、ジブチルエーテル、テトラヒドロフラン、ジオキサン、アニソールなどのエーテル系溶媒、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、1-メチル-2-ピロリドン、1-メチル-2-イミダゾリジノン等のアミド・イミド系溶媒、ジメチルスルフォキサイドなどのスルホキシド系溶媒、アセトニトリル、ベンゾニトリルなどのニトリル系溶媒が挙げられる。溶媒は一種単独で用いてもよく、複数種を組み合わせて用いてもよい。これらの中でも、炭化水素系溶媒、ハロゲン化炭化水素系溶媒またはエーテル系溶媒が好ましく、トルエン、キシレン、メシチレン、テトラリン、クロロホルム、クロロベンゼン、ジクロロベンゼンまたはトリクロロベンゼンがより好ましい。塗布溶液中の有機半導体化合物の濃度は、好ましくは、0.1~80質量%、より好ましくは0.1~10質量%、特に好ましくは0.5~10質量%である。
-Coating solution-
Examples of the organic solvent used in the coating solution include hydrocarbon solvents such as hexane, octane, decane, toluene, xylene, mesitylene, ethylbenzene, decalin, and 1-methylnaphthalene, such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone. Ketone solvents such as dichloromethane, chloroform, tetrachloromethane, dichloroethane, trichloroethane, tetrachloroethane, chlorobenzene, dichlorobenzene, chlorotoluene, trichlorobenzene, 1-chloronaphthalene and other halogenated hydrocarbon solvents, ethyl acetate, Esters such as butyl acetate and amyl acetate, methanol, propanol, butanol, pentanol, hexanol, cyclohexanol, methyl cellosolve, Alcohol solvents such as tilcellosolve, ethylene glycol, ether solvents such as dibutyl ether, tetrahydrofuran, dioxane, anisole, N, N-dimethylformamide, N, N-dimethylacetamide, 1-methyl-2-pyrrolidone, 1-methyl Examples include amide / imide solvents such as -2-imidazolidinone, sulfoxide solvents such as dimethyl sulfoxide, and nitrile solvents such as acetonitrile and benzonitrile. A solvent may be used individually by 1 type and may be used in combination of multiple types. Among these, hydrocarbon solvents, halogenated hydrocarbon solvents or ether solvents are preferred, and toluene, xylene, mesitylene, tetralin, chloroform, chlorobenzene, dichlorobenzene or trichlorobenzene are more preferred. The concentration of the organic semiconductor compound in the coating solution is preferably 0.1 to 80% by mass, more preferably 0.1 to 10% by mass, and particularly preferably 0.5 to 10% by mass.
(有機光電変換デバイス)
 図3は、本発明の有機光電変換デバイスの一例を模式的に示した側面図である。本実施形態の光電変換デバイス3は、本発明の有機半導体化合物を含む光電変換層33を具備する。有機光電変換デバイスの光電変換層は、一般に、p型有機半導体とn型有機半導体を含み、その接合形態によってp-n二層接合あるいはp-i-n三層接合型とバルクへテロ接合型に分類される。本発明の有機光電変換デバイスの光電変換層はこれらのいずれの形態でも構わない。図3にはバルクへテロ接合型の光電変換層33が示されている。バルクへテロ接合型の光電変換層を具備することで、より高い発電効率をより容易に得ることができる。
(Organic photoelectric conversion device)
FIG. 3 is a side view schematically showing an example of the organic photoelectric conversion device of the present invention. The photoelectric conversion device 3 of this embodiment includes a photoelectric conversion layer 33 containing the organic semiconductor compound of the present invention. The photoelectric conversion layer of an organic photoelectric conversion device generally includes a p-type organic semiconductor and an n-type organic semiconductor, and a pn two-layer junction or a pin three-layer junction type and a bulk heterojunction type depending on the junction form. are categorized. The photoelectric conversion layer of the organic photoelectric conversion device of the present invention may be in any of these forms. FIG. 3 shows a bulk heterojunction photoelectric conversion layer 33. By providing a bulk heterojunction photoelectric conversion layer, higher power generation efficiency can be obtained more easily.
 本発明の有機光電変換デバイスは、光電変換層33(半導体層)にp型有機半導体として本発明の有機半導体化合物を含む。この光電変換層33は、第1の電極35と第2の電極31の間に設けられる。
 本発明においては、第1の電極35と光電変換層33の間にホール輸送層34を設けるのが好ましい。また、第2の電極31と光電変換層33の間に電子輸送層32を設けることが好ましい。これらのホール輸送層34や電子輸送層32を設けることにより、光電変換層33で発生した電荷をより効率的に取り出すことが可能となる。なお、本発明の光電変換素子においてその上下の区別は特に重要ではないが、便宜的に必要により、第1電極35側を「上」もしくは「天」側と位置づけ、第2電極31側を「下」もしくは「底」側と位置づける。
The organic photoelectric conversion device of the present invention contains the organic semiconductor compound of the present invention as a p-type organic semiconductor in the photoelectric conversion layer 33 (semiconductor layer). The photoelectric conversion layer 33 is provided between the first electrode 35 and the second electrode 31.
In the present invention, it is preferable to provide the hole transport layer 34 between the first electrode 35 and the photoelectric conversion layer 33. In addition, it is preferable to provide the electron transport layer 32 between the second electrode 31 and the photoelectric conversion layer 33. By providing the hole transport layer 34 and the electron transport layer 32, it is possible to more efficiently take out the charges generated in the photoelectric conversion layer 33. In the photoelectric conversion element of the present invention, the distinction between the upper and lower sides is not particularly important, but the first electrode 35 side is positioned as “up” or “top” side and the second electrode 31 side is “ Position it as “bottom” or “bottom”.
 ここで、上層から順に、基板、正極、ホール輸送層、光電変換層、電子輸送層、負極の構成を順構成と称し、上層から順に、基板、負極、電子輸送層、光電変換層、ホール輸送層、正極の構成を逆構成と称する。本発明では、順構成、逆構成ともに好ましく適用される。 Here, in order from the upper layer, the configuration of the substrate, the positive electrode, the hole transport layer, the photoelectric conversion layer, the electron transport layer, and the negative electrode is referred to as the forward configuration, and the substrate, the negative electrode, the electron transport layer, the photoelectric conversion layer, and the hole transport in order from the upper layer The configuration of the layer and the positive electrode is referred to as a reverse configuration. In the present invention, both forward and reverse configurations are preferably applied.
 光電変換層33においては上記のようにp型有機半導体とn型有機半導体相とが特有の形態で混在していることが好ましい。この場合、p型有機半導体とn型有機半導体との界面で光電変換(電荷分離)が行われる。バルクヘテロ接合型の光電変換層では、図3に示すように櫛歯状に互いの相がナノメートルオーダーで入り込んだ状態となっている。このような形態を効果的に作出できるよう、p型有機半導体にはn型有機半導体との特有の相溶性あるいは非相溶があることが好ましい。またp型半導体となる材料は固有の物性のみで定まるものではなく、n型半導体となる材料との相対的な関係で特定されるものである。例えば、n型半導体材料として代表的なフラーレンを例にとれば、これよりも電子供与性が高いものがp型半導体材料となりうる。
 本発明の有機光電変換デバイスは有機薄膜太陽電池として用いるのが好ましい。
In the photoelectric conversion layer 33, it is preferable that the p-type organic semiconductor and the n-type organic semiconductor phase are mixed in a specific form as described above. In this case, photoelectric conversion (charge separation) is performed at the interface between the p-type organic semiconductor and the n-type organic semiconductor. In the bulk heterojunction photoelectric conversion layer, as shown in FIG. 3, the phases are interdigitated in a nanometer order. In order to effectively create such a form, it is preferable that the p-type organic semiconductor has a specific compatibility or incompatibility with the n-type organic semiconductor. The material that becomes the p-type semiconductor is not determined only by the specific physical properties, but is specified by the relative relationship with the material that becomes the n-type semiconductor. For example, when a typical fullerene is taken as an example of an n-type semiconductor material, a material having a higher electron donating property can be a p-type semiconductor material.
The organic photoelectric conversion device of the present invention is preferably used as an organic thin film solar cell.
<有機光電変換デバイスの部材>
-n型有機半導体-
 n型有機半導体としては、特に限定されない。一般的に、その最低空軌道(LUMO)準位が-3.5~-4.5eVであるようなπ電子共役系化合物である。例えば、フラーレンもしくはその誘導体、オクタアザポルフィリン等、p型有機半導体の水素原子をフッ素原子に置換したパーフルオロ体(例えば、パーフルオロペンタセンやパーフルオロフタロシアニン)、ナフタレンテトラカルボン酸無水物、ナフタレンテトラカルボン酸ジイミド、ペリレンテトラカルボン酸無水物、ペリレンテトラカルボン酸ジイミド等の芳香族カルボン酸無水物やそのイミド化物を骨格として含む高分子化合物等を挙げることができる。
<Members of organic photoelectric conversion device>
-N-type organic semiconductor-
The n-type organic semiconductor is not particularly limited. In general, it is a π-electron conjugated compound having a lowest unoccupied orbital (LUMO) level of −3.5 to −4.5 eV. For example, fullerene or a derivative thereof, octaazaporphyrin, etc., a perfluoro compound in which a hydrogen atom of a p-type organic semiconductor is substituted with a fluorine atom (for example, perfluoropentacene or perfluorophthalocyanine), naphthalenetetracarboxylic anhydride, naphthalenetetracarboxylic Examples thereof include aromatic carboxylic acid anhydrides such as acid diimide, perylene tetracarboxylic acid anhydride, and perylene tetracarboxylic acid diimide, and polymer compounds containing an imidized product thereof as a skeleton.
 これらのn型有機半導体のうち、本発明の有機半導体化合物と高速かつ効率的に電荷分離ができるためフラーレンもしくはその誘導体が好ましい。
 フラーレンやその誘導体としては、C60フラーレン、C70フラーレン、C76フラーレン、C78フラーレン、C84フラーレン、C240フラーレン、C540フラーレン、ミックスドフラーレン、フラーレンナノチューブ、及びこれらの一部が水素原子、ハロゲン原子、置換または無置換のアルキル基、アルケニル基、アルキニル基、アリール基、ヘテロアリール基、シクロアルキル基、シリル基、エーテル基、チオエーテル基、アミノ基、シリル基等によって置換されたフラーレン誘導体を挙げることができる。
Among these n-type organic semiconductors, fullerene or a derivative thereof is preferable because charge separation can be performed at high speed and efficiently from the organic semiconductor compound of the present invention.
The fullerene or its derivatives, C 60 fullerene, C 70 fullerene, C 76 fullerene, C 78 fullerene, C 84 fullerene, C 240 fullerenes, C 540 fullerenes, mixed fullerenes, fullerene nanotubes, and some of these hydrogen atoms , Fullerene derivatives substituted by halogen atoms, substituted or unsubstituted alkyl groups, alkenyl groups, alkynyl groups, aryl groups, heteroaryl groups, cycloalkyl groups, silyl groups, ether groups, thioether groups, amino groups, silyl groups, etc. Can be mentioned.
 フラーレン誘導体としては、フェニル-C61-酪酸エステル、ジフェニル-C62-ビス(酪酸エステル)、フェニル-C71-酪酸エステル、フェニル-C85-酪酸エステルまたはチエニル-C61-酪酸エステルが好ましく、上記の酪酸エステルのアルコール部分の好ましい炭素数は1~30、より好ましくは1~8、さらに好ましくは1~4、最も好ましくは1である。 Preferred fullerene derivatives are phenyl-C 61 -butyric acid ester, diphenyl-C 62 -bis (butyric acid ester), phenyl-C 71 -butyric acid ester, phenyl-C 85 -butyric acid ester or thienyl-C 61 -butyric acid ester, The preferred number of carbon atoms in the alcohol portion of the butyric acid ester is 1-30, more preferably 1-8, still more preferably 1-4, and most preferably 1.
 好ましいフラーレン誘導体を例示すると、フェニル-C61-酪酸メチルエステル([60]PCBM)、フェニル-C61-酪酸n-ブチルエステル([60]PCBnB)、フェニル-C61-酪酸イソブチルエステル([60]PCBiB)、フェニル-C61-酪酸n-ヘキシルエステル([60]PCBH)、フェニル-C61-酪酸n-オクチルエステル([60]PCBO)、ジフェニル-C62-ビス(酪酸メチルエステル)(ビス[60]PCBM)、フェニル-C71-酪酸メチルエステル([70]PCBM)、フェニル-C85-酪酸メチルエステル([84]PCBM)、チエニル-C61-酪酸メチルエステル([60]ThCBM)、C60ピロリジントリス酸、C60ピロリジントリス酸エチルエステル、N-メチルフラロピロリジン(MP-C60)、(1,2-メタノフラーレンC60)-61-カルボン酸、(1,2-メタノフラーレンC60)-61-カルボン酸t-ブチルエステル、特開2008-130889号公報等のメタロセン化フラーレン、米国特許第7,329,709号明細書等の環状エーテル基を有するフラーレンが挙げられる。 Examples of preferred fullerene derivatives include phenyl-C 61 -butyric acid methyl ester ([60] PCBM), phenyl-C 61 -butyric acid n-butyl ester ([60] PCBnB), phenyl-C 61 -butyric acid isobutyl ester ([60 PCBiB), phenyl-C 61 -butyric acid n-hexyl ester ([60] PCBH), phenyl-C 61 -butyric acid n-octyl ester ([60] PCBO), diphenyl-C 62 -bis (butyric acid methyl ester) ( Bis [60] PCBM), phenyl-C 71 -butyric acid methyl ester ([70] PCBM), phenyl-C 85 -butyric acid methyl ester ([84] PCBM), thienyl-C 61 -butyric acid methyl ester ([60] ThCBM) ), C 60 pyrrolidine tris acids, C 60 pyrrolidine tris San'e Glycol ester, N- methyl hula b pyrrolidine (MP-C 60), (1,2 methanofullerene C 60) -61- carboxylic acid, (1,2-methanofullerene C 60) -61- carboxylic acid t- butyl ester And fullerene having a cyclic ether group such as US Pat. No. 7,329,709, and the like.
-p型有機半導体-
 本発明の光電変換デバイスの光電変換層には、本発明の有機半導体化合物を使用する。他のp型有機半導体(例えば、縮合多環芳香族低分子化合物、オリゴマーまたはポリマー)を含有してもよい。
-P-type organic semiconductor-
The organic semiconductor compound of the present invention is used for the photoelectric conversion layer of the photoelectric conversion device of the present invention. Other p-type organic semiconductors (for example, condensed polycyclic aromatic low molecular weight compounds, oligomers or polymers) may be contained.
 p型有機半導体である縮合多環芳香族低分子化合物としては、例えば、アントラセン、テトラセン、ペンタセン、ヘキサセン、ヘプタセン、クリセン、ピセン、フルミネン、ピレン、ペロピレン、ペリレン、テリレン、クオテリレン、コロネン、オバレン、サーカムアントラセン、ビスアンテン、ゼスレン、ヘプタゼスレン、ピランスレン、ビオランテン、イソビオランテン、サーコビフェニル、アントラジチオフェン等の化合物、ポルフィリンや銅フタロシアニン、テトラチアフルバレン(TTF)-テトラシアノキノジメタン(TCNQ)錯体、ビスエチレンテトラチアフルバレン(BEDTTTF)-過塩素酸錯体、及びこれらの誘導体や前駆体が挙げられる。 Examples of the condensed polycyclic aromatic low-molecular compound that is a p-type organic semiconductor include, for example, anthracene, tetracene, pentacene, hexacene, heptacene, chrysene, picene, fluorene, pyrene, peropyrene, perylene, terylene, quaterylene, coronene, ovalene, circumcam Compounds such as anthracene, bisanthene, zeslen, heptazesulene, pyranthrene, violanthene, isoviolanthene, sacobiphenyl, anthradithiophene, porphyrin, copper phthalocyanine, tetrathiafulvalene (TTF) -tetracyanoquinodimethane (TCNQ) complex, bis Examples thereof include ethylenetetrathiafulvalene (BEDTTTTF) -perchloric acid complex, and derivatives and precursors thereof.
-光電変換層-
 本発明において光電変換層(半導体層)には電子供与材料であるp型有機半導体と電子受容材料であるn型有機半導体が所望の光電変換効率を示す比率で含有されることが好ましい。通常は、両者の含有量は質量比で、p型:n型=10:90~90:10、好ましくは20:80~80:20の範囲から選ばれる。光電変換層の形成方法に特に制限はなく、上述の有機薄膜トランジスタにおいて説明した成膜方法を採用することができる。正孔と電子が電荷分離する界面の面積を増大させ、高い光電変換効率を有するためには、塗布法が好ましい。塗布法に用いる塗布溶液としては、少なくとも本発明の有機半導体化合物とn型有機半導体とを有機溶媒中に溶解ないしは分散させた組成物を用いるのが好ましい。塗布溶液に用いる有機溶媒、塗布溶液中の本発明の有機半導体化合物の含有量は、上記有機薄膜トランジスタで説明した塗布溶液に用いうる有機溶媒及び同じく上記有機薄膜トランジスタで説明した塗布溶液中の有機半導体化合物の含有量を採用することができる。
-Photoelectric conversion layer-
In the present invention, it is preferable that the photoelectric conversion layer (semiconductor layer) contains a p-type organic semiconductor as an electron donating material and an n-type organic semiconductor as an electron accepting material in a ratio showing a desired photoelectric conversion efficiency. Usually, the content of both is selected from the range of mass ratio, p-type: n-type = 10: 90 to 90:10, preferably 20:80 to 80:20. There is no restriction | limiting in particular in the formation method of a photoelectric converting layer, The film-forming method demonstrated in the above-mentioned organic thin-film transistor is employable. A coating method is preferable in order to increase the area of the interface where holes and electrons are separated by charge and to have high photoelectric conversion efficiency. As a coating solution used for the coating method, it is preferable to use a composition in which at least the organic semiconductor compound of the present invention and an n-type organic semiconductor are dissolved or dispersed in an organic solvent. The organic solvent used in the coating solution, the content of the organic semiconductor compound of the present invention in the coating solution is the organic solvent that can be used in the coating solution described in the organic thin film transistor and the organic semiconductor compound in the coating solution described in the organic thin film transistor. The content of can be adopted.
 ここで、光電変換層における電子供与領域(ドナー)と電子受容領域(アクセプター)の相分離促進、光電変換層に含まれる有機材料の結晶化、電子輸送層の透明化などを目的として、種々の方法で加熱処理(アニール)してもよい。蒸着等の乾式製膜法の場合は、例えば、製膜中の基板温度を30℃~150℃に加熱する方法がある。印刷や塗布等の湿式製膜法の場合は、塗布後の乾燥温度を30℃~250℃とする方法などがある。また、後の工程、例えば、金属負極の形成が終了した後に30℃~250℃に加熱してもよい。相分離が促進されることで電荷輸送パスが形成され、光電変換効率が向上することがある。光電変換層の厚さは30~1000nmであることが好ましく、50~600nmであることがより好ましい。
 なお、本発明においては、複数の光電変換層を有しても構わないが、光電変換層は1層であることが好ましい。
Here, for the purpose of promoting the phase separation of the electron donating region (donor) and the electron accepting region (acceptor) in the photoelectric conversion layer, crystallization of the organic material contained in the photoelectric conversion layer, and transparency of the electron transport layer, etc. You may heat-process (anneal) by the method. In the case of a dry film formation method such as vapor deposition, for example, there is a method in which the substrate temperature during film formation is heated to 30 ° C. to 150 ° C. In the case of a wet film forming method such as printing or coating, there is a method of setting the drying temperature after coating to 30 ° C. to 250 ° C. Further, it may be heated to 30 ° C. to 250 ° C. after the subsequent step, for example, the formation of the metal negative electrode is completed. By promoting phase separation, a charge transport path may be formed, and the photoelectric conversion efficiency may be improved. The thickness of the photoelectric conversion layer is preferably 30 to 1000 nm, and more preferably 50 to 600 nm.
In the present invention, a plurality of photoelectric conversion layers may be provided, but the photoelectric conversion layer is preferably a single layer.
-電極-
 本発明に関わる有機光電変換デバイスにおいては、少なくとも第1の電極と第2の電極を有する。第1の電極と第2の電極は、いずれか一方が正極で、残りが負極となる。また、タンデム構成をとる場合には中間電極を用いることでタンデム構成を達成することができる。なお、本発明においては主に正孔(ホール)が流れる電極を正極と称し、主に電子が流れる電極を負極と称す。また透光性があるかどうかといった機能面から、透光性のある電極を透明電極と称し、透光性のない電極を対電極または金属電極と称す。本発明の順構成においては、正極が透光性のある透明電極であり、負極は透光性のない対電極または金属電極である。逆構成では、負極が透光性のある透明電極であり、正極が透光性のない対電極または金属電極である。第1の電極と第2の電極の両方を透明電極とすることもできる。
-electrode-
The organic photoelectric conversion device according to the present invention has at least a first electrode and a second electrode. One of the first electrode and the second electrode is a positive electrode, and the rest is a negative electrode. Further, when a tandem configuration is adopted, the tandem configuration can be achieved by using an intermediate electrode. In the present invention, an electrode through which holes mainly flow is referred to as a positive electrode, and an electrode through which electrons mainly flow is referred to as a negative electrode. From the functional aspect of whether or not there is translucency, an electrode having translucency is referred to as a transparent electrode, and an electrode having no translucency is referred to as a counter electrode or a metal electrode. In the forward configuration of the present invention, the positive electrode is a translucent transparent electrode, and the negative electrode is a non-translucent counter electrode or metal electrode. In the reverse configuration, the negative electrode is a translucent transparent electrode, and the positive electrode is a non-translucent counter electrode or metal electrode. Both the first electrode and the second electrode can be transparent electrodes.
--第1の電極--
 第1の電極は、正極である。順構成の光電変換デバイスの場合、好ましくは可視光から近赤外光(380~800nm)の光を透過する透明電極である。材料としては、例えば、酸化インジウム錫(ITO)、酸化インジウム亜鉛(IZO)、酸化インジウムタングステン(IWO)、酸化錫、酸化亜鉛、酸化インジウム等の透明導電性金属酸化物、マグネシウム、アルミニウム、カルシウム、チタン、クロム、マンガン、鉄、銅、亜鉛、ストロンチウム、銀、インジウム、錫、バリウム、ビスマス等の金属及び金属合金の超薄膜、金属ナノワイヤー、カーボンナノチューブ等を用いることができる。銀等の金属をメッシュ状にして、光の透過性を確保したメッシュ電極を用いることもできる。またポリピロール、ポリアニリン、ポリチオフェン、ポリチエニレンビニレン、ポリアズレン、ポリイソチアナフテン、ポリカルバゾール、ポリアセチレン、ポリフェニレン、ポリフェニレンビニレン、ポリアセン、ポリフェニルアセチレン、ポリジアセチレン及びポリナフタレンの各誘導体からなる群より選ばれる導電性ポリマー等も用いることができる。また、これらの導電性化合物を複数組み合わせて正極とすることもできる。順構成で透明電極とする場合は、正極の透過率は、太陽電池に使用する厚さ(例えば、0.2μmの厚さ)で、波長380nm~800nm領域における平均光透過率が75%以上であることが好ましく85%以上であることがより好ましい。なお、逆構成で光透過性が要求されない場合は、クロム、コバルト、ニッケル、銅、モリブデン、パラジウム、銀、タンタル、タングステン、白金、金などの金属やこれらの合金、透明導電性酸化物、ポリアニリン、ポリチオフェン、ポリピロール等の導電性ポリマーなどによって正極を形成することができる。好適な導電性ポリマー層は、特開2012-43835号公報に詳細が開示されており、ポリチオフェン誘導体が好ましく、ポリエチレンジオキシチオフェン-ポリスチレンスルホン酸(PEDOT-PSS)がより好ましい。これらの金属、透明導電性酸化物、導電性ポリマーは、1種のみで使用しても、2種以上を混合または積層してもよい。
--First electrode--
The first electrode is a positive electrode. In the case of a photoelectric conversion device having a forward configuration, it is preferably a transparent electrode that transmits light from visible light to near infrared light (380 to 800 nm). Examples of the material include transparent conductive metal oxides such as indium tin oxide (ITO), indium zinc oxide (IZO), indium tungsten oxide (IWO), tin oxide, zinc oxide, and indium oxide, magnesium, aluminum, calcium, For example, ultrathin films of metal and metal alloys such as titanium, chromium, manganese, iron, copper, zinc, strontium, silver, indium, tin, barium, and bismuth, metal nanowires, and carbon nanotubes can be used. It is also possible to use a mesh electrode in which a metal such as silver is meshed to ensure light transmission. Also, a conductive material selected from the group consisting of polypyrrole, polyaniline, polythiophene, polythienylene vinylene, polyazulene, polyisothianaphthene, polycarbazole, polyacetylene, polyphenylene, polyphenylene vinylene, polyacene, polyphenylacetylene, polydiacetylene and polynaphthalene. A functional polymer can also be used. In addition, a plurality of these conductive compounds can be combined to form a positive electrode. In the case of a transparent electrode with a forward configuration, the transmittance of the positive electrode is the thickness used for solar cells (for example, 0.2 μm thickness), and the average light transmittance in the wavelength region of 380 nm to 800 nm is 75% or more. It is preferably some 85% or more. If light transmittance is not required in the reverse configuration, metals such as chromium, cobalt, nickel, copper, molybdenum, palladium, silver, tantalum, tungsten, platinum, gold, alloys thereof, transparent conductive oxide, polyaniline The positive electrode can be formed of a conductive polymer such as polythiophene or polypyrrole. Details of suitable conductive polymer layers are disclosed in JP 2012-43835 A, polythiophene derivatives are preferable, and polyethylenedioxythiophene-polystyrene sulfonic acid (PEDOT-PSS) is more preferable. These metals, transparent conductive oxides, and conductive polymers may be used alone, or two or more kinds may be mixed or laminated.
--第2の電極--
 本発明において第2の電極は負極である。負極は導電材単独層であってもよい。あるいは、導電性を有する材料に加えて、これらを保持する樹脂を併用してもよい。負極の導電材としては、仕事関数の小さい(4eV以下)金属、合金、電気伝導性化合物及びこれらの混合物を電極物質とするものが用いられる。このような電極物質の具体例としては、ナトリウム、ナトリウム-カリウム合金、マグネシウム、リチウム、マグネシウム/銅混合物、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、インジウム、リチウム/アルミニウム混合物、希土類金属等が挙げられる。これらの中で、電子の取り出し性能及び酸化等に対する耐久性の点から、これら金属とこれより仕事関数の値が大きく安定な金属である第二金属との混合物、例えば、マグネシウム/銀混合物、マグネシウム/アルミニウム混合物、マグネシウム/インジウム混合物、アルミニウム/酸化アルミニウム(Al)混合物、リチウム/アルミニウム混合物、アルミニウム等が好適である。負極はこれらの電極物質を蒸着やスパッタリング等の方法により薄膜を形成させることにより、作製することができる。また、膜厚は通常10nm~5μm、好ましくは50~200nmの範囲で選ばれる。
--Second electrode--
In the present invention, the second electrode is a negative electrode. The negative electrode may be a conductive material single layer. Or in addition to the material which has electroconductivity, you may use together resin which hold | maintains these. As the conductive material for the negative electrode, a material having a small work function (4 eV or less) metal, alloy, electrically conductive compound, and a mixture thereof as an electrode material is used. Specific examples of such electrode materials include sodium, sodium-potassium alloy, magnesium, lithium, magnesium / copper mixture, magnesium / silver mixture, magnesium / aluminum mixture, magnesium / indium mixture, aluminum / aluminum oxide (Al 2 O 3 ) Mixtures, indium, lithium / aluminum mixtures, rare earth metals and the like. Among these, from the viewpoint of electron extraction performance and durability against oxidation, etc., a mixture of these metals and a second metal which is a stable metal having a larger work function value than this, for example, a magnesium / silver mixture, magnesium / Aluminum mixtures, magnesium / indium mixtures, aluminum / aluminum oxide (Al 2 O 3 ) mixtures, lithium / aluminum mixtures, aluminum and the like are preferred. The negative electrode can be produced by forming a thin film of these electrode materials by a method such as vapor deposition or sputtering. The film thickness is usually selected in the range of 10 nm to 5 μm, preferably 50 to 200 nm.
 逆構成の場合、第2の電極は透明電極である。好ましくは可視光から近赤外光(380~800nm)の光を透過する透明電極であり、例えば、金属、金属酸化物、導電性ポリマー、これらの混合物や積層構造などが挙げられる。具体例としては、酸化錫、酸化亜鉛、酸化インジウム、酸化インジウム錫(ITO)、酸化インジウム亜鉛(IZO)、酸化インジウムタングステン(IWO)等の透明導電性酸化物、マグネシウム、アルミニウム、カルシウム、チタン、クロム、マンガン、鉄、銅、亜鉛、ストロンチウム、銀、インジウム、錫、バリウム、ビスマス等の金属及び金属合金の超薄膜、ポリアニリン、ポリチオフェン、ポリピロール等の導電性ポリマー等が挙げられる。透明導電性酸化物の材料として特に好ましいのは、ITO、IZO、酸化錫、アンチモンドープ酸化錫(ATO)、弗素ドープ酸化錫(FTO)、酸化亜鉛、アンチモンドープ酸化亜鉛(AZO)、ガリウムドープ酸化亜鉛(GZO)を用いることができる。逆構成で透明電極とする場合は、負極の透過率は、太陽電池に使用する厚さ(例えば、0.2μmの厚さ)で、波長380nm~800nm領域における平均光透過率が75%以上であることが好ましく85%以上であることがより好ましい。 In the case of the reverse configuration, the second electrode is a transparent electrode. A transparent electrode that transmits light from visible light to near infrared light (380 to 800 nm) is preferable, and examples thereof include metals, metal oxides, conductive polymers, mixtures thereof, and laminated structures. Specific examples include transparent conductive oxides such as tin oxide, zinc oxide, indium oxide, indium tin oxide (ITO), indium zinc oxide (IZO), and indium tungsten oxide (IWO), magnesium, aluminum, calcium, titanium, Examples thereof include ultrathin films of metals and metal alloys such as chromium, manganese, iron, copper, zinc, strontium, silver, indium, tin, barium, and bismuth, and conductive polymers such as polyaniline, polythiophene, and polypyrrole. Particularly preferable materials for the transparent conductive oxide are ITO, IZO, tin oxide, antimony-doped tin oxide (ATO), fluorine-doped tin oxide (FTO), zinc oxide, antimony-doped zinc oxide (AZO), and gallium-doped oxide. Zinc (GZO) can be used. In the case of a transparent electrode with a reverse configuration, the transmittance of the negative electrode is the thickness used for solar cells (eg, 0.2 μm thickness), and the average light transmittance in the wavelength region of 380 nm to 800 nm is 75% or more. It is preferably some 85% or more.
 順構成の負極導電材及び逆構成の正極導電材として金属材料を用いれば金属電極に到達した光は反射されて光電変換層側に反射され、反射光が再度吸収されるため、より光電変換効率が向上し好ましい。また、金属電極は、金属(例えば金、銀、銅、白金、ロジウム、ルテニウム、アルミニウム、マグネシウム、インジウム等)、炭素からなるナノ粒子、ナノワイヤー、ナノ構造体であってもよく、ナノワイヤーの分散物であれば、透明で導電性の高い負極を塗布法により形成でき好ましい。
 また、金属電極側を光透過性とする場合は、例えば、アルミニウム及びアルミニウム合金、銀及び銀化合物等の負極に適した導電性材料を薄く1~20nm程度の膜厚で作製した後、上記正極の説明で挙げた導電性光透過性材料の膜を設けることで、光透過性負極とすることができる。
If a metal material is used as the negative electrode conductive material of the forward configuration and the positive electrode conductive material of the reverse configuration, the light reaching the metal electrode is reflected and reflected to the photoelectric conversion layer side, and the reflected light is absorbed again. Is preferable. The metal electrode may be a metal (eg, gold, silver, copper, platinum, rhodium, ruthenium, aluminum, magnesium, indium, etc.), carbon nanoparticle, nanowire, or nanostructure. A dispersion is preferable because a transparent and highly conductive negative electrode can be formed by a coating method.
Further, when the metal electrode side is made light transmissive, for example, a conductive material suitable for the negative electrode such as aluminum and aluminum alloy, silver and silver compound is formed in a thin film thickness of about 1 to 20 nm, and then the positive electrode is formed. A light-transmitting negative electrode can be obtained by providing the conductive light-transmitting material film mentioned in the description.
-正孔(ホール)輸送層-
 本発明においては、第1の電極と光電変換層の間にホール輸送層を設けるのが好ましい。ホール輸送層を形成する導電性ポリマーとしては、例えば、ポリチオフェン、ポリピロール、ポリアニリン、ポリフェニレンビニレン、ポリフェニレン、ポリアセチレン、ポリキノキサリン、ポリオキサジアゾール、ポリベンゾチアジアゾール等や、これら導電骨格を複数有するポリマー等が挙げられる。
 これらのなかではポリチオフェン及びその誘導体が好ましく、ポリエチレンジオキシチオフェン、ポリチエノチオフェンが特に好ましい。これらのポリチオフェンは導電性を得るために、通常、部分酸化されている。導電性ポリマーの電気伝導率は部分酸化の程度(ドープ量)で調節することができ、ドープ量が多いほど電気伝導率が高くなる。部分酸化によりポリチオフェンはカチオン性となるので、電荷を中和するための対アニオンを要する。そのようなポリチオフェンの例としては、ポリスチレンスルホン酸を対イオンとするポリエチレンジオキシチオフェン(PEDOT-PSS)やp-トルエンスルホン酸を対アニオンとするポリエチレンジオキシチオフェン(PEDOT-TsO)が挙げられる。
 ホール輸送層の膜厚は通常0.1~500nmであり、好ましくは0.5~300nmである。ホール輸送層は、塗布などによる湿式製膜法、蒸着やスパッタ等のPVD法による乾式製膜法、転写法、印刷法など、いずれによっても好適に形成することができる。
-Hole transport layer-
In the present invention, it is preferable to provide a hole transport layer between the first electrode and the photoelectric conversion layer. Examples of the conductive polymer that forms the hole transport layer include polythiophene, polypyrrole, polyaniline, polyphenylene vinylene, polyphenylene, polyacetylene, polyquinoxaline, polyoxadiazole, polybenzothiadiazole, and polymers having a plurality of these conductive skeletons. Can be mentioned.
Among these, polythiophene and its derivatives are preferable, and polyethylenedioxythiophene and polythienothiophene are particularly preferable. These polythiophenes are usually partially oxidized in order to obtain conductivity. The electrical conductivity of the conductive polymer can be adjusted by the degree of partial oxidation (doping amount). The larger the doping amount, the higher the electrical conductivity. Since polythiophene becomes cationic by partial oxidation, a counter anion for neutralizing the charge is required. Examples of such polythiophenes include polyethylene dioxythiophene (PEDOT-PSS) with polystyrene sulfonic acid as a counter ion and polyethylene dioxythiophene (PEDOT-TsO) with p-toluenesulfonic acid as a counter anion.
The thickness of the hole transport layer is usually from 0.1 to 500 nm, preferably from 0.5 to 300 nm. The hole transport layer can be suitably formed by any of a wet film formation method by coating or the like, a dry film formation method by PVD method such as vapor deposition or sputtering, a transfer method, or a printing method.
-電子輸送層-
 本発明においては、第2の電極と光電変換層の間に電子輸送層を設けることが好ましく、第1の電極と光電変換層の間にホール輸送層を設け、かつ光電変換層と第二の電極の間に電子輸送層を設けるのが特に好ましい。
 電子輸送層に用いることのできる電子輸送材料としては、上記の光電変換層で挙げた電子受容材料であるn型半導体化合物及び、ケミカルレビュー,第107巻,953~1010頁(2007年)にElectron-Transporting and Hole-Blocking Materialsとして記載されているものが挙げられる。本発明においては、無機塩や無機酸化物を使用することが好ましい。無機塩としては、フッ化リチウム、フッ化ナトリウム、フッ化セシウム等のアルカリ金属化合物等が好ましい。各種金属酸化物は安定性が高い電子輸送層の材料として好ましく利用され、例えば、酸化リチウム、酸化マグネシウム、酸化アルミニウム、酸化カルシウム、酸化チタン、酸化亜鉛、酸化ストロンチウム、酸化ニオブ、酸化ルテニウム、酸化インジウム、酸化亜鉛、酸化バリウムが挙げられる。これらのうち比較的に安定な酸化アルミニウム、酸化チタン、酸化亜鉛がより好ましい。電子輸送層の膜厚は通常0.1~500nmであり、好ましくは0.5~300nmである。電子輸送層は、塗布などによる湿式成膜法、蒸着やスパッタ等のPVD法による乾式成膜法、転写法、印刷法など、いずれによっても好適に形成することができる。
-Electron transport layer-
In the present invention, it is preferable to provide an electron transport layer between the second electrode and the photoelectric conversion layer, a hole transport layer is provided between the first electrode and the photoelectric conversion layer, and the photoelectric conversion layer and the second It is particularly preferable to provide an electron transport layer between the electrodes.
Examples of the electron transport material that can be used for the electron transport layer include an n-type semiconductor compound that is the electron accepting material mentioned in the photoelectric conversion layer, and Electron in Chemical Review, Vol. 107, pages 953 to 1010 (2007). -Listed as Transporting and Hole-Blocking Materials. In the present invention, it is preferable to use an inorganic salt or an inorganic oxide. As the inorganic salt, alkali metal compounds such as lithium fluoride, sodium fluoride, and cesium fluoride are preferable. Various metal oxides are preferably used as materials for electron transport layers having high stability. For example, lithium oxide, magnesium oxide, aluminum oxide, calcium oxide, titanium oxide, zinc oxide, strontium oxide, niobium oxide, ruthenium oxide, indium oxide Zinc oxide and barium oxide. Of these, relatively stable aluminum oxide, titanium oxide, and zinc oxide are more preferable. The thickness of the electron transport layer is usually from 0.1 to 500 nm, preferably from 0.5 to 300 nm. The electron transport layer can be suitably formed by any of a wet film formation method such as coating, a dry film formation method such as vapor deposition and sputtering, a transfer method, and a printing method.
 なお、光電変換層に用いられるp型有機半導体のHOMO準位よりも深いHOMO準位を有する電子輸送層には、光電変換層で生成した正孔(ホール)を負極側には流さないような整流効果を有する、正孔(ホール)ブロック機能が付与される。より好ましくは、n型有機半導体のHOMO準位よりも深い材料を電子輸送層として用いることである。また、電子を輸送する特性から、電子移動度の高い化合物を用いることが好ましい。このような電子輸送層は、正孔(ホール)ブロック層とも称し、このような機能を有する電子輸送層を使用するほうが好ましい。このような材料としては、バソキュプロイン等のフェナントレン系化合物、ナフタレンテトラカルボン酸無水物、ナフタレンテトラカルボン酸ジイミド、ペリレンテトラカルボン酸無水物、ペリレンテトラカルボン酸ジイミド等のn型半導体化合物、及び酸化チタン、酸化亜鉛、酸化ガリウム等のn型無機酸化物及びフッ化リチウム、フッ化ナトリウム、フッ化セシウム等のアルカリ金属化合物等を用いることができる。また、光電変換層に用いたn型有機半導体単体からなる層を用いることもできる。 Note that holes generated in the photoelectric conversion layer do not flow to the negative electrode side in the electron transport layer having a HOMO level deeper than the HOMO level of the p-type organic semiconductor used in the photoelectric conversion layer. A hole blocking function having a rectifying effect is provided. More preferably, a material deeper than the HOMO level of the n-type organic semiconductor is used as the electron transport layer. Moreover, it is preferable to use a compound with high electron mobility from the characteristic of transporting electrons. Such an electron transport layer is also referred to as a hole block layer, and it is preferable to use an electron transport layer having such a function. Such materials include phenanthrene compounds such as bathocuproine, n-type semiconductor compounds such as naphthalene tetracarboxylic acid anhydride, naphthalene tetracarboxylic acid diimide, perylene tetracarboxylic acid anhydride, perylene tetracarboxylic acid diimide, and titanium oxide. N-type inorganic oxides such as zinc oxide and gallium oxide, and alkali metal compounds such as lithium fluoride, sodium fluoride, and cesium fluoride can be used. Moreover, the layer which consists of a n-type organic semiconductor single-piece | unit used for the photoelectric converting layer can also be used.
-支持体-
 本発明において光電変換デバイスを構成する支持体は、その上に少なくとも第1の電極(正極)、光電変換層、第2の電極(金属負極)、より好ましい態様では、第1の電極(正極)、ホール輸送層、光電変換層、電子輸送層、第2の電極(金属負極)を形成して保持することができるものであれば特に限定されず、例えば、ガラス、プラスチックフィルムなど、目的に応じて適宜選択しうる。
-Support-
In the present invention, the support constituting the photoelectric conversion device includes at least a first electrode (positive electrode), a photoelectric conversion layer, a second electrode (metal negative electrode), and in a more preferred embodiment, the first electrode (positive electrode). , A hole transport layer, a photoelectric conversion layer, an electron transport layer, and a second electrode (metal negative electrode) are not particularly limited as long as they can be formed and held. For example, glass, plastic film, etc. Can be selected as appropriate.
 その他、常用のものを適用して、易接着層/下塗り層、機能性層、再結合層、その他の半導体層、保護層、ガスバリア層、UV吸収層、反射防止層などを配設してもよい。 In addition, a conventional layer may be applied to provide an easy adhesion layer / undercoat layer, functional layer, recombination layer, other semiconductor layer, protective layer, gas barrier layer, UV absorption layer, antireflection layer, etc. Good.
(有機熱電変換デバイス)
 本発明の有機熱電変換デバイスは、基材上に、第1の電極、有機熱電変換層及び第2の電極を有し、熱電変換層は、本発明の有機半導体化合物を少なくとも含む。
(Organic thermoelectric conversion device)
The organic thermoelectric conversion device of this invention has a 1st electrode, an organic thermoelectric conversion layer, and a 2nd electrode on a base material, and a thermoelectric conversion layer contains the organic-semiconductor compound of this invention at least.
 本発明の有機熱電変換デバイスは、基材上に、第1の電極、熱電変換層及び第2の電極を有するものであればよく、第1の電極及び第2の電極と熱電変換層との位置関係等、その他の構成については特に限定されない。本発明の有機熱電変換デバイスにおいて、熱電変換層は、その少なくとも一方の面に第1の電極及び第2の電極に接するように配置されていればよい。例えば、熱電変換層が第1の電極及び第2の電極で挟まれる態様、すなわち、本発明の有機熱電変換デバイスが基材上に第1の電極、熱電変換層及び第2の電極をこの順に有している態様であってもよい。また、熱電変換層がその一方の面に第1の電極及び第2の電極に接するように配置される態様、すなわち、本発明の有機熱電変換デバイスが基材上に互いに離間して形成された第1の電極及び第2の電極に積層された熱電変換層を有している態様であってもよい。
 本発明の有機熱電変換デバイスの構造の一例として、図4及び図5に示すデバイスの構造が挙げられる。図4及び図5中、矢印は、熱電変換デバイスの使用時における温度差の向きを示す。
 図4に示す熱電変換デバイス4は、第1の基材42上に、第1の電極43及び第2の電極45を含む一対の電極と、電極43及び45間に本発明の有機半導体化合物を用いて形成された熱電変換層44を備えている。第2の電極45の他方の表面には第2の基材46が配設されており、第1の基材42及び第2の基材46の外側には互いに対向して金属板41及び47が配設されている。
 本発明の有機熱電変換デバイスは、基材上に電極を介して本発明の有機半導体化合物を含む熱電変換層を膜(フィルム)状に設け、この基材を第1の基材として機能させることが好ましい。すなわち、熱電変換デバイス4は、2枚の基材42及び46の表面(熱電変換層44の形成面)に、第1の電極43または第2の電極45を設け、これら電極43及び45の間に本発明の有機半導体化合物を含む熱電変換層44を有する構造であることが好ましい。
The organic thermoelectric conversion device of this invention should just have a 1st electrode, a thermoelectric conversion layer, and a 2nd electrode on a base material, A 1st electrode, a 2nd electrode, and a thermoelectric conversion layer There are no particular limitations on other configurations such as the positional relationship. In the organic thermoelectric conversion device of the present invention, the thermoelectric conversion layer may be disposed on at least one surface so as to be in contact with the first electrode and the second electrode. For example, the aspect in which the thermoelectric conversion layer is sandwiched between the first electrode and the second electrode, that is, the organic thermoelectric conversion device of the present invention has the first electrode, the thermoelectric conversion layer, and the second electrode in this order on the substrate. The aspect which has may be sufficient. Further, the thermoelectric conversion layer is disposed on one surface so as to be in contact with the first electrode and the second electrode, that is, the organic thermoelectric conversion device of the present invention is formed on the substrate so as to be separated from each other. The aspect which has the thermoelectric conversion layer laminated | stacked on the 1st electrode and the 2nd electrode may be sufficient.
As an example of the structure of the organic thermoelectric conversion device of the present invention, the structure of the device shown in FIGS. 4 and 5, the arrows indicate the direction of the temperature difference when using the thermoelectric conversion device.
The thermoelectric conversion device 4 shown in FIG. 4 includes a pair of electrodes including the first electrode 43 and the second electrode 45 on the first base material 42, and the organic semiconductor compound of the present invention between the electrodes 43 and 45. The thermoelectric conversion layer 44 formed using is provided. A second substrate 46 is disposed on the other surface of the second electrode 45, and the metal plates 41 and 47 are opposed to each other on the outside of the first substrate 42 and the second substrate 46. Is arranged.
In the organic thermoelectric conversion device of the present invention, a thermoelectric conversion layer containing the organic semiconductor compound of the present invention is provided on a base material via an electrode, and this base material functions as a first base material. Is preferred. That is, the thermoelectric conversion device 4 is provided with the first electrode 43 or the second electrode 45 on the surface of the two base materials 42 and 46 (formation surface of the thermoelectric conversion layer 44), and between these electrodes 43 and 45. It is preferable that the structure has a thermoelectric conversion layer 44 containing the organic semiconductor compound of the present invention.
 図5に示す熱電変換デバイス5は、第1の基材51上に、第1の電極52及び第2の電極53が配設され、その上に本発明の有機半導体化合物を含む熱電変換層54が設けられている。 In the thermoelectric conversion device 5 shown in FIG. 5, a first electrode 52 and a second electrode 53 are disposed on a first base 51, and a thermoelectric conversion layer 54 containing the organic semiconductor compound of the present invention thereon. Is provided.
 熱電変換デバイス4の熱電変換層44は、一方の表面が第1の電極43を介して第1の基材42で覆われており、また、熱電変換デバイス5の熱電変換層54は、一方の表面が第1の電極52及び第2の電極53ならびに第1の基材51で覆われている。他方の表面にも第2の基材46または55を第2の電極45を介して、または、電極を介さず、圧着させることが、熱電変換層44及び54の保護の観点から好ましい。すなわち、熱電変換デバイス4に使用される第2の基材46の表面(熱電変換層44の圧着面)には第2の電極45が予め形成されているのが好ましい。また、熱電変換デバイス4及び5において、電極と熱電変換層との圧着は、密着性向上の観点から100℃~200℃程度に加熱して行うことが好ましい。 One surface of the thermoelectric conversion layer 44 of the thermoelectric conversion device 4 is covered with the first base material 42 via the first electrode 43, and the thermoelectric conversion layer 54 of the thermoelectric conversion device 5 is The surface is covered with the first electrode 52, the second electrode 53, and the first base material 51. From the viewpoint of protecting the thermoelectric conversion layers 44 and 54, it is preferable that the second substrate 46 or 55 is also bonded to the other surface via the second electrode 45 or without the electrode. That is, it is preferable that the second electrode 45 is formed in advance on the surface of the second substrate 46 used in the thermoelectric conversion device 4 (the pressure contact surface of the thermoelectric conversion layer 44). Further, in the thermoelectric conversion devices 4 and 5, it is preferable to press the electrode and the thermoelectric conversion layer by heating to about 100 ° C. to 200 ° C. from the viewpoint of improving adhesion.
 本発明の有機熱電変換デバイスの基材、熱電変換デバイス4における第1の基材42及び第2の基材46は、ガラス、透明セラミックス、金属、プラスチックフィルム等の基材を用いることができる。本発明の有機熱電変換デバイスにおいて、基材はフレキシビリティーを有しているのが好ましく、具体的には、ASTM D2176に規定の測定法による耐屈曲回数MITが1万サイクル以上であるフレキシビリティーを有しているのが好ましい。このようなフレキシビリティーを有する基材は、プラスチックフィルムが好ましく、具体的には、ポリエチレンテレフタレート、ポリエチレンイソフタレート、ポリエチレンナフタレート、ポリブチレンテレフタレート、ポリ(1,4-シクロヘキシレンジメチレンテレフタレート)、ポリエチレン-2,6-ナフタレンジカルボキシレート、ビスフェノールAとイソ及びテレフタル酸のポリエステルフィルム等のポリエステルフィルム、ゼオノアフィルム(商品名、日本ゼオン社製)、アートンフィルム(商品名、JSR社製)、スミライトFS1700(商品名、住友ベークライト社製)等のポリシクロオレフィンフィルム、カプトン(商品名、東レ・デュポン社製)、アピカル(商品名、カネカ社製)、ユーピレックス(商品名、宇部興産社製)、ポミラン(商品名、荒川化学社製)等のポリイミドフィルム、ピュアエース(商品名、帝人化成社製)、エルメック(商品名、カネカ社製)等のポリカーボネートフィルム、スミライトFS1100(商品名、住友ベークライト社製)等のポリエーテルエーテルケトンフィルム、トレリナ(商品名、東レ社製)等のポリフェニルスルフィドフィルム等が挙げられる。これらは、使用条件や環境により適宜選択される。入手の容易性、好ましくは100℃以上の耐熱性、経済性及び効果の観点から、市販のポリエチレンテレフタレート、ポリエチレンナフタレート、各種ポリイミドやポリカーボネートフィルム等が好ましい。 The base material of the organic thermoelectric conversion device of the present invention, the first base material 42 and the second base material 46 in the thermoelectric conversion device 4 may be a base material such as glass, transparent ceramics, metal, or plastic film. In the organic thermoelectric conversion device of the present invention, it is preferable that the substrate has flexibility. Specifically, the flexibility is such that the number of bending resistances MIT by a measurement method prescribed in ASTM D2176 is 10,000 cycles or more. It is preferable to have a tee. The substrate having such flexibility is preferably a plastic film. Specifically, polyethylene terephthalate, polyethylene isophthalate, polyethylene naphthalate, polybutylene terephthalate, poly (1,4-cyclohexylenedimethylene terephthalate), Polyethylene-2,6-naphthalene dicarboxylate, polyester film such as polyester film of bisphenol A and iso and terephthalic acid, ZEONOR film (trade name, manufactured by Nippon Zeon), ARTON film (trade name, manufactured by JSR), Sumilite Polycycloolefin films such as FS1700 (trade name, manufactured by Sumitomo Bakelite), Kapton (trade name, manufactured by Toray DuPont), Apical (trade name, manufactured by Kaneka), Upilex (trade name, Ube) Sumilite FS1100 (product), polyimide film such as Pomilan (trade name, manufactured by Arakawa Chemical Co., Ltd.), polycarbonate film such as Pure Ace (trade name, manufactured by Teijin Chemicals), Elmec (trade name, manufactured by Kaneka) Name, a polyether ether ketone film such as Sumitomo Bakelite Co., Ltd.), and a polyphenyl sulfide film such as Torelina (trade name, manufactured by Toray Industries, Inc.). These are appropriately selected depending on use conditions and environment. Commercially available polyethylene terephthalate, polyethylene naphthalate, various polyimides, polycarbonate films, and the like are preferable from the viewpoints of availability, preferably heat resistance of 100 ° C. or higher, economy, and effects.
 特に、熱電変換層との圧着面に電極を設けた基材を用いることが好ましい。この基材上に設ける第1の電極及び第2の電極を形成する電極材料としては、ITO、ZnO等の透明電極、銀、銅、金、アルミニウム等の金属電極、CNT(カーボンナノチューブ)、グラフェン等の炭素材料、PEDOT/PSS等の有機材料、銀、カーボン等の導電性微粒子を分散した導電性ペースト、銀、銅、アルミニウム等の金属ナノワイヤーを含有する導電性ペースト等が使用できる。これらの中でも、金属材料が好ましく、アルミニウム、金、銀または銅であるのがより好ましい。
 この時、熱電変換デバイス4は、第1の基材42、第1の電極43、熱電変換層44及び第2の電極45の順に構成されており、第2の電極45の外側には第2の基材46が隣接していても、第2の基材46を設けることなく第2の電極45が最表面として空気に晒されていてもよい。また、熱電変換素子5は、第1の基材51、第1の電極52及び第2の電極53、熱電変換層54の順に構成されており、熱電変換層54の外側には第2の基材55が隣接していても、第2の基材55を設けることなく熱電変換層44が最表面として空気に晒されていてもよい。
In particular, it is preferable to use a base material in which an electrode is provided on the pressure contact surface with the thermoelectric conversion layer. As electrode materials for forming the first electrode and the second electrode provided on the base material, transparent electrodes such as ITO and ZnO, metal electrodes such as silver, copper, gold and aluminum, CNT (carbon nanotube), graphene Carbon materials such as PODOT / PSS, conductive pastes in which conductive fine particles such as silver and carbon are dispersed, and conductive pastes containing metal nanowires such as silver, copper, and aluminum can be used. Among these, a metal material is preferable, and aluminum, gold, silver, or copper is more preferable.
At this time, the thermoelectric conversion device 4 is configured in the order of the first base material 42, the first electrode 43, the thermoelectric conversion layer 44, and the second electrode 45. Even if the base materials 46 are adjacent to each other, the second electrode 45 may be exposed to air as the outermost surface without providing the second base material 46. The thermoelectric conversion element 5 includes a first base 51, a first electrode 52, a second electrode 53, and a thermoelectric conversion layer 54, and a second substrate is disposed outside the thermoelectric conversion layer 54. Even if the material 55 is adjacent, the thermoelectric conversion layer 44 may be exposed to air as the outermost surface without providing the second substrate 55.
 基材の厚さは、取り扱い性、耐久性等の点から、好ましくは30~3000μm、より好ましくは50~1000μm、さらに好ましくは100~1000μm、特に好ましくは200~800μmである。基材が厚すぎると熱伝導率が低下することがあり、薄すぎると外部衝撃により膜が損傷しやすくなることがある。 The thickness of the substrate is preferably from 30 to 3000 μm, more preferably from 50 to 1000 μm, still more preferably from 100 to 1000 μm, particularly preferably from 200 to 800 μm from the viewpoints of handleability and durability. If the substrate is too thick, the thermal conductivity may decrease, and if it is too thin, the film may be easily damaged by external impact.
 熱電変換層の層厚は、0.1~1000μmであることが好ましく、1~100μmであることがより好ましい。層厚が薄いと温度差を付与しにくくなることと、層内の抵抗が増大してしまうため好ましくない。 The layer thickness of the thermoelectric conversion layer is preferably 0.1 to 1000 μm, and more preferably 1 to 100 μm. If the layer thickness is thin, it is not preferable because it is difficult to provide a temperature difference and the resistance in the layer increases.
 熱電変換層の成膜方法は、特に限定されず、例えば、スピンコート、エクストルージョンダイコート、ブレードコート、バーコート、スクリーン印刷、ステンシル印刷、ロールコート、カーテンコート、スプレーコート、ディップコート、インクジェット印刷等、公知の塗布方法を用いることができる。
 この中でも、スクリーン印刷が熱電変換層の電極への密着性に優れる観点で好ましい。
 また、装置の扱いやすさ、素子パターン形状の選択自由度が大きい点から、インクジェット印刷も好ましい。
The method for forming the thermoelectric conversion layer is not particularly limited. For example, spin coating, extrusion die coating, blade coating, bar coating, screen printing, stencil printing, roll coating, curtain coating, spray coating, dip coating, ink jet printing, etc. A known coating method can be used.
Among these, screen printing is preferable from the viewpoint of excellent adhesion of the thermoelectric conversion layer to the electrode.
Ink jet printing is also preferable because it is easy to handle the apparatus and has a high degree of freedom in selecting an element pattern shape.
 熱電変換材料を塗布、成膜する場合、塗布溶液に少なくとも本発明の有機半導体化合物を用いる。塗布溶液は所望の固形分濃度や粘度となるよう、分散媒の量等を適宜調整することが好ましい。 When applying a thermoelectric conversion material and forming a film, at least the organic semiconductor compound of the present invention is used as a coating solution. It is preferable to appropriately adjust the amount of the dispersion medium so that the coating solution has a desired solid content concentration and viscosity.
 塗布溶液に用いる有機溶媒、塗布溶液中の本発明の有機半導体化合物の含有量は、上記有機薄膜トランジスタで説明した塗布溶液に用いうる有機溶媒及び同じく上記有機薄膜トランジスタで説明した塗布溶液中の有機半導体化合物の含有量を採用することができる。
 本発明の有機熱電変換デバイスは、熱電発電用物品の発電デバイスとして好適に用いることができる。このような発電デバイスとして、具体的には、温泉熱発電機、太陽熱発電機、廃熱発電機等の発電機、腕時計用電源、半導体駆動電源、(小型)センサー用電源等が挙げられる。
The organic solvent used in the coating solution, the content of the organic semiconductor compound of the present invention in the coating solution is the organic solvent that can be used in the coating solution described in the organic thin film transistor and the organic semiconductor compound in the coating solution described in the organic thin film transistor. The content of can be adopted.
The organic thermoelectric conversion device of the present invention can be suitably used as a power generation device for an article for thermoelectric power generation. Specific examples of such power generation devices include power generators such as hot spring thermal generators, solar thermal generators, and waste heat generators, wristwatch power supplies, semiconductor drive power supplies, and (small) sensor power supplies.
 以下に実施例に基づき本発明について更に詳細に説明するが、本発明は下記実施例に限定して解釈されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not construed as being limited to the following examples.
[実施例1] ポリマーP1を用いた有機半導体デバイスの作製
(1)ポリマーP1の合成
(モノマー(1-2)の合成)
[Example 1] Production of organic semiconductor device using polymer P1 (1) Synthesis of polymer P1 (synthesis of monomer (1-2))
Figure JPOXMLDOC01-appb-I000032
Figure JPOXMLDOC01-appb-I000032
 化合物(1-1)(Journal of Polymer Science,Part A: Polymer Chemistry,2011,vol.49,p.3260-3271に記載の方法にしたがって合成)をMacromolecules 2012,45,6390-6395に記載の方法を参考にしてスズ化することにより、モノマー(1-2)を合成した。 Method described in Macromolecules 2012, 45, 6390-6395, compound (1-1) (synthesized according to the method described in Journal of Polymer Science, Part A: Polymer Chemistry, 2011, vol. 49, p. 3260-3271) The monomer (1-2) was synthesized by tin formation with reference to
(ポリマーP1の合成) (Synthesis of polymer P1)
Figure JPOXMLDOC01-appb-I000033
Figure JPOXMLDOC01-appb-I000033
 化合物(1-2)190mg(0.300mmol)、化合物(1-3)159mg(0.300mmol)、トリス(ジベンジリデンアセトン)ジパラジウム(0)クロロホルムアダクト6.21mg(6.00μmol)、o-トリルホスフィン14.6mg(0.0480mmol)をガラス製反応容器にとり、容器内をアルゴン置換した。クロロベンゼン6.0mL(脱水)を加え、アルゴン雰囲気下、140℃で12時間反応させた。放冷後、反応溶液をメタノールにあけて晶析し固体を濾取した。得られた固体を順次ソックスレー抽出(メタノール12時間、アセトン3時間、ヘキサン3時間)して不純物を除去後、クロロベンゼンで抽出した。クロロベンゼン抽出溶液を濃縮後、クロロベンゼンに溶解させメタノールで晶析して濾取・乾燥することにより、ポリマーP1を163mg(収率80.0%)得た。
ポリマーP1:
 GPC(o-ジクロロベンゼン)Mw=86×10、Mn=36×10
Compound (1-2) 190 mg (0.300 mmol), Compound (1-3) 159 mg (0.300 mmol), Tris (dibenzylideneacetone) dipalladium (0) chloroform adduct 6.21 mg (6.00 μmol), o- 14.6 mg (0.0480 mmol) of tolylphosphine was placed in a glass reaction vessel, and the inside of the vessel was replaced with argon. Chlorobenzene (6.0 mL, dehydrated) was added, and the mixture was reacted at 140 ° C. for 12 hours under an argon atmosphere. After allowing to cool, the reaction solution was poured into methanol for crystallization, and the solid was collected by filtration. The obtained solid was sequentially extracted by Soxhlet extraction (methanol 12 hours, acetone 3 hours, hexane 3 hours) to remove impurities, and then extracted with chlorobenzene. The chlorobenzene extracted solution was concentrated, dissolved in chlorobenzene, crystallized with methanol, filtered and dried to obtain 163 mg (yield: 80.0%) of polymer P1.
Polymer P1:
GPC (o-dichlorobenzene) Mw = 86 × 10 3 , Mn = 36 × 10 3
(2)有機薄膜トランジスタの作製
 ポリマーP1 3mgとトルエン1mLを混合し、100℃に加熱して溶解させ有機半導体デバイス用塗布溶液とした。この塗布溶液を窒素雰囲気下、90℃に加熱したFET特性測定用基板上にスピンコート後、130℃で10分間アニールすることにより、厚さ50nmの有機半導体薄膜を形成しFET特性測定用の有機薄膜トランジスタを得た。FET特性測定用基板としては、ソース及びドレイン電極としてくし型に配置されたクロム/金(ゲート幅W=100mm、ゲート長L=100μm)、絶縁膜としてSiO(膜厚200nm)を備えたボトムゲート・ボトムコンタクト構造のシリコン基板を用いた。
(2) Production of Organic Thin Film Transistor 3 mg of polymer P1 and 1 mL of toluene were mixed and dissolved by heating to 100 ° C. to obtain a coating solution for organic semiconductor devices. This coating solution is spin-coated on a substrate for FET property measurement heated to 90 ° C. in a nitrogen atmosphere, and then annealed at 130 ° C. for 10 minutes to form an organic semiconductor thin film having a thickness of 50 nm. A thin film transistor was obtained. As a substrate for measuring FET characteristics, a bottom provided with chromium / gold (gate width W = 100 mm, gate length L = 100 μm) arranged in a comb shape as source and drain electrodes, and SiO 2 (thickness 200 nm) as an insulating film A silicon substrate having a gate / bottom contact structure was used.
(3)有機光電変換デバイスの作製
 洗浄及びUV-オゾン処理したガラス-ITO基板上に、ホール輸送層として使用するPEDOT-PSS(Heraeus Precious Material製CLEVIOS P VP.AI4083(商品名))をスピンコート(3000rpm)し、140℃で30分間加熱した。10mgのポリマーP1と10mgのPC71BM([6,6]-フェニル-C71-酪酸メチルエステル)の混合物を、1.8-ジヨードオクタンを1容量%含有するクロロベンゼン1mLに溶解させた。この溶液を、PEDOT-PSS層上にスピンコート(1000rpm)で塗布して、乾燥させ膜厚80nmの光電変換層を作製した。光電変換層上にLiF(1nm)、アルミニウム(100nm)を順次蒸着させて上部電極を形成させ、有機光電変換デバイスを得た。
(3) Preparation of organic photoelectric conversion device PEDOT-PSS (CLEVIOS P VP.AI4083 (trade name) manufactured by Heraeus Precision Material) used as a hole transport layer is spin-coated on a glass-ITO substrate that has been cleaned and UV-ozone-treated. (3000 rpm) and heated at 140 ° C. for 30 minutes. A mixture of 10 mg of polymer P1 and 10 mg of PC 71 BM ([6,6] -phenyl-C71-butyric acid methyl ester) was dissolved in 1 mL of chlorobenzene containing 1% by volume of 1.8-diiodooctane. This solution was applied onto the PEDOT-PSS layer by spin coating (1000 rpm) and dried to prepare a photoelectric conversion layer having a thickness of 80 nm. LiF (1 nm) and aluminum (100 nm) were sequentially deposited on the photoelectric conversion layer to form an upper electrode, thereby obtaining an organic photoelectric conversion device.
(4)有機熱電変換デバイスの作製
 ポリマーP1 6mgをオルトジクロロベンゼン4.0mlに溶解させた後、この溶液を、第1の電極43として金(厚み20nm、幅:5mm)を片側表面に有するガラス基材42(厚み:0.8mm)上の電極43表面にスクリーン印刷法で塗布し、80℃にて30分間加熱して溶媒を除去した。続いて塩化鉄(III)のアセトニトリル溶液に浸しドーピングした。その後、室温真空下にて10時間乾燥させることにより膜厚3.1μm、大きさ8mm×8mmの熱電変換層44を形成した。その後、熱電変換層44の上部に、第2の電極45として金を蒸着したガラス基材46(電極45の厚み:20nm、電極45の幅:5mm、ガラス基材46の厚み:0.8mm)を、第2の電極45が熱電変換層44に接するように、80℃にて貼り合わせて、図4に示される熱電変換デバイス4を作製した。
(4) Preparation of organic thermoelectric conversion device After dissolving 6 mg of polymer P1 in 4.0 ml of orthodichlorobenzene, this solution was used as the first electrode 43 to have gold (thickness 20 nm, width: 5 mm) on one side surface. It apply | coated to the electrode 43 surface on the base material 42 (thickness: 0.8 mm) by the screen printing method, and it heated for 30 minutes at 80 degreeC, and removed the solvent. Subsequently, it was doped by immersing in an acetonitrile solution of iron (III) chloride. Thereafter, the thermoelectric conversion layer 44 having a film thickness of 3.1 μm and a size of 8 mm × 8 mm was formed by drying at room temperature under vacuum for 10 hours. Thereafter, a glass substrate 46 in which gold is deposited as the second electrode 45 on the thermoelectric conversion layer 44 (the thickness of the electrode 45: 20 nm, the width of the electrode 45: 5 mm, the thickness of the glass substrate 46: 0.8 mm). Were bonded at 80 ° C. so that the second electrode 45 was in contact with the thermoelectric conversion layer 44, and the thermoelectric conversion device 4 shown in FIG. 4 was produced.
[実施例2] ポリマーP2を用いた有機半導体デバイスの作製
(1)ポリマーP2の合成
[Example 2] Production of organic semiconductor device using polymer P2 (1) Synthesis of polymer P2
Figure JPOXMLDOC01-appb-I000034
Figure JPOXMLDOC01-appb-I000034
 化合物(2-1)207mg(0.300mmol)、化合物(2-2)157mg(0.300mmol)を用いたこと以外は実施例1と同様に行い、ポリマーP2を174mg(収率79.9%)得た。
ポリマーP2:
 GPC(o-ジクロロベンゼン)Mw=93×10、Mn=40×10
The same procedure as in Example 1 was carried out except that 207 mg (0.300 mmol) of compound (2-1) and 157 mg (0.300 mmol) of compound (2-2) were used, and 174 mg of polymer P2 (yield 79.9%) )Obtained.
Polymer P2:
GPC (o-dichlorobenzene) Mw = 93 × 10 3 , Mn = 40 × 10 3
(2)有機薄膜トランジスタの作製
 ポリマーP1をポリマーP2に変えたこと以外は実施例1と同様に有機薄膜トランジスタを得た。
(2) Production of Organic Thin Film Transistor An organic thin film transistor was obtained in the same manner as in Example 1 except that the polymer P1 was changed to the polymer P2.
(3)有機光電変換デバイスの作製
 ポリマーP1をポリマーP2に変え、ジヨードオクタンを1容量%から1.5容量%にかえたこと以外は実施例1と同様に有機光電変換デバイスを得た。
(3) Production of organic photoelectric conversion device An organic photoelectric conversion device was obtained in the same manner as in Example 1 except that the polymer P1 was changed to the polymer P2 and diiodooctane was changed from 1% by volume to 1.5% by volume.
[実施例3] ポリマーP3を用いた有機半導体デバイスの作製
(1)ポリマーP3の合成
[Example 3] Production of organic semiconductor device using polymer P3 (1) Synthesis of polymer P3
Figure JPOXMLDOC01-appb-I000035
Figure JPOXMLDOC01-appb-I000035
 化合物(3-1)191mg(0.300mmol)、化合物(3-2)159mg(0.300mmol)を用いたこと以外は実施例1と同様に行い、ポリマーP3を169mg(収率80.2%)得た。
ポリマーP3:
 GPC(o-ジクロロベンゼン)Mw=80×10、Mn=32×10
The same procedure as in Example 1 was conducted, except that 191 mg (0.300 mmol) of compound (3-1) and 159 mg (0.300 mmol) of compound (3-2) were used, and 169 mg of polymer P3 (yield: 80.2%) )Obtained.
Polymer P3:
GPC (o-dichlorobenzene) Mw = 80 × 10 3 , Mn = 32 × 10 3
(2)有機薄膜トランジスタの作製
 ポリマーP1をポリマーP3に変えたこと以外は実施例1と同様に有機薄膜トランジスタを得た。
(2) Production of Organic Thin Film Transistor An organic thin film transistor was obtained in the same manner as in Example 1 except that the polymer P1 was changed to the polymer P3.
(3)有機光電変換デバイスの作製
 ポリマーP1をポリマーP3に変え、ジヨードオクタンを1容量%から1.5容量%にかえたこと以外は実施例1と同様に行い、有機光電変換デバイスを得た。
(3) Preparation of organic photoelectric conversion device An organic photoelectric conversion device was obtained in the same manner as in Example 1 except that the polymer P1 was changed to the polymer P3 and the diiodooctane was changed from 1% by volume to 1.5% by volume. It was.
[実施例4] ポリマーP4を用いた有機半導体デバイスの作製
(1)ポリマーP4の合成
[Example 4] Production of organic semiconductor device using polymer P4 (1) Synthesis of polymer P4
Figure JPOXMLDOC01-appb-I000036
Figure JPOXMLDOC01-appb-I000036
 化合物(4-1)196mg(0.300mmol)、化合物(4-2)163mg(0.300mmol)を用いたこと以外は実施例1と同様にポリマーP4を179mg(収率85.0%)得た。
ポリマーP4:
 GPC(o-ジクロロベンゼン)Mw=69×10、Mn=28×10
179 mg (yield: 85.0%) of polymer P4 was obtained in the same manner as in Example 1 except that 196 mg (0.300 mmol) of compound (4-1) and 163 mg (0.300 mmol) of compound (4-2) were used. It was.
Polymer P4:
GPC (o-dichlorobenzene) Mw = 69 × 10 3 , Mn = 28 × 10 3
(2)有機薄膜トランジスタの作製
 ポリマーP1をポリマーP4に変えたこと以外は実施例1と同様に有機薄膜トランジスタを得た。
(2) Production of Organic Thin Film Transistor An organic thin film transistor was obtained in the same manner as in Example 1 except that the polymer P1 was changed to the polymer P4.
(3)有機光電変換デバイスの作製
 ポリマーP1をポリマーP4に変えたこと以外は実施例1と同様に有機光電変換デバイスを得た。
(3) Preparation of organic photoelectric conversion device An organic photoelectric conversion device was obtained in the same manner as in Example 1 except that the polymer P1 was changed to the polymer P4.
[実施例5] ポリマーP5を用いた有機半導体デバイスの作製
(1)ポリマーP5の合成
[Example 5] Production of organic semiconductor device using polymer P5 (1) Synthesis of polymer P5
Figure JPOXMLDOC01-appb-I000037
Figure JPOXMLDOC01-appb-I000037
 化合物(5-1)182mg(0.300mmol)、化合物(5-2)127mg(0.300mmol)を用いたこと以外は実施例1と同様にポリマーP5を134mg(収率82.4%)得た。
ポリマーP5:
 GPC(o-ジクロロベンゼン)Mw=41×10、Mn=19×10
134 mg (yield: 82.4%) of polymer P5 was obtained in the same manner as in Example 1 except that 182 mg (0.300 mmol) of compound (5-1) and 127 mg (0.300 mmol) of compound (5-2) were used. It was.
Polymer P5:
GPC (o-dichlorobenzene) Mw = 41 × 10 3 , Mn = 19 × 10 3
(2)有機薄膜トランジスタの作製
 ポリマーP1をポリマーP5に変えたこと以外は実施例1と同様に有機薄膜トランジスタを得た。
(2) Production of Organic Thin Film Transistor An organic thin film transistor was obtained in the same manner as in Example 1 except that the polymer P1 was changed to the polymer P5.
(3)有機光電変換デバイスの作製
 ポリマーP1をポリマーP5変え、ジヨードオクタンを1容量%から3容量%にかえたこと以外は実施例1と同様に有機光電変換デバイスを得た。
(3) Production of Organic Photoelectric Conversion Device An organic photoelectric conversion device was obtained in the same manner as in Example 1 except that the polymer P1 was changed to the polymer P5 and diiodooctane was changed from 1% by volume to 3% by volume.
[実施例6] ポリマーP6を用いた有機半導体デバイスの作製
(1)ポリマーP6の合成
[Example 6] Production of organic semiconductor device using polymer P6 (1) Synthesis of polymer P6
Figure JPOXMLDOC01-appb-I000038
Figure JPOXMLDOC01-appb-I000038
 化合物(6-1)190mg(0.300mmol)、化合物(6-2)139mg(0.300mmol)を用いたこと以外は実施例1と同様に行い、ポリマーP6を143mg(収率78.1%)得た。
ポリマーP6:
 GPC(o-ジクロロベンゼン)Mw=37×10、Mn=20×10
The same procedure as in Example 1 was carried out except that 190 mg (0.300 mmol) of compound (6-1) and 139 mg (0.300 mmol) of compound (6-2) were used, and 143 mg of polymer P6 (yield 78.1%) )Obtained.
Polymer P6:
GPC (o-dichlorobenzene) Mw = 37 × 10 3 , Mn = 20 × 10 3
(2)有機薄膜トランジスタの作製
 ポリマーP1をポリマーP6に変えたこと以外は実施例1と同様に有機薄膜トランジスタを得た。
(2) Production of Organic Thin Film Transistor An organic thin film transistor was obtained in the same manner as in Example 1 except that the polymer P1 was changed to the polymer P6.
(3)有機光電変換デバイスの作製
 ポリマーP1をポリマーP6変え、ジヨードオクタンを1容量%から3容量%にかえたこと以外は実施例1と同様に有機光電変換デバイスを得た。
(3) Production of Organic Photoelectric Conversion Device An organic photoelectric conversion device was obtained in the same manner as in Example 1 except that the polymer P1 was changed to the polymer P6 and diiodooctane was changed from 1% by volume to 3% by volume.
[実施例7] ポリマーP7を用いた有機半導体デバイスの作製
(1)ポリマーP7の合成
[Example 7] Production of organic semiconductor device using polymer P7 (1) Synthesis of polymer P7
Figure JPOXMLDOC01-appb-I000039
Figure JPOXMLDOC01-appb-I000039
 化合物(7-1)199mg(0.300mmol)、化合物(7-2)159mg(0.300mmol)を用いたこと以外は実施例1と同様に行い、ポリマーP7を170mg(収率86.3%)得た。
ポリマーP7:
 GPC(o-ジクロロベンゼン)Mw=98×10、Mn=37×10
The same procedure as in Example 1 was conducted, except that 199 mg (0.300 mmol) of compound (7-1) and 159 mg (0.300 mmol) of compound (7-2) were used, and 170 mg of polymer P7 (yield 86.3%) )Obtained.
Polymer P7:
GPC (o-dichlorobenzene) Mw = 98 × 10 3 , Mn = 37 × 10 3
(2)有機薄膜トランジスタの作製
 ポリマーP1をポリマーP7に変えたこと以外は実施例1と同様に有機薄膜トランジスタを得た。
(2) Production of Organic Thin Film Transistor An organic thin film transistor was obtained in the same manner as in Example 1 except that the polymer P1 was changed to the polymer P7.
(3)有機光電変換デバイスの作製
 ポリマーP1をポリマーP7変え、ジヨードオクタンを1容量%から2容量%にかえたこと以外は実施例1と同様に有機光電変換デバイスを得た。
(3) Production of organic photoelectric conversion device An organic photoelectric conversion device was obtained in the same manner as in Example 1 except that the polymer P1 was changed to the polymer P7 and diiodooctane was changed from 1% by volume to 2% by volume.
(4)有機熱電変換デバイスの作製
 ポリマーP1をP7に変えたこと以外は実施例1と同様に熱電変換デバイスを作製した。
(4) Production of organic thermoelectric conversion device A thermoelectric conversion device was produced in the same manner as in Example 1 except that the polymer P1 was changed to P7.
[実施例8] ポリマーP8を用いた有機半導体デバイスの作製
(1)ポリマーP8の合成
[Example 8] Production of organic semiconductor device using polymer P8 (1) Synthesis of polymer P8
Figure JPOXMLDOC01-appb-I000040
Figure JPOXMLDOC01-appb-I000040
 化合物(8-1)173mg(0.300mmol)及び化合物(8-2)160mg(0.300mmol)を用いたこと以外は実施例1と同様に行い、ポリマーP8を166mg(収率88.8%)得た。
ポリマーP8:
 GPC(o-ジクロロベンゼン)Mw=79×10、Mn=38×10
The same procedure as in Example 1 was conducted, except that 173 mg (0.300 mmol) of compound (8-1) and 160 mg (0.300 mmol) of compound (8-2) were used, and 166 mg of polymer P8 (yield: 88.8%) )Obtained.
Polymer P8:
GPC (o-dichlorobenzene) Mw = 79 × 10 3 , Mn = 38 × 10 3
(2)有機薄膜トランジスタの作製
 ポリマーP1をポリマーP8に変えたこと以外は実施例1と同様に有機薄膜トランジスタを得た。
(2) Production of Organic Thin Film Transistor An organic thin film transistor was obtained in the same manner as in Example 1 except that the polymer P1 was changed to the polymer P8.
(3)有機光電変換デバイスの作製
 ポリマーP1をポリマーP8変えたこと以外は実施例1と同様に有機光電変換デバイスを得た。
(3) Preparation of organic photoelectric conversion device An organic photoelectric conversion device was obtained in the same manner as in Example 1 except that the polymer P1 was changed to the polymer P8.
[実施例9] ポリマーP9を用いた有機半導体デバイスの作製
(1)ポリマーP9の合成
[Example 9] Production of organic semiconductor device using polymer P9 (1) Synthesis of polymer P9
Figure JPOXMLDOC01-appb-I000041
Figure JPOXMLDOC01-appb-I000041
 化合物(9-1)173mg(0.300mmol)及び(9-2)189mg(0.300mmol)を用いたこと以外は実施例1と同様に行い、ポリマーP9を176mg(収率81.3%)得た。
ポリマーP9:
 GPC(o-ジクロロベンゼン)Mw=77×10、Mn=33×10
The same procedure as in Example 1 was conducted, except that 173 mg (0.300 mmol) of compound (9-1) and 189 mg (0.300 mmol) of (9-2) were used, and 176 mg of polymer P9 (yield 81.3%) Obtained.
Polymer P9:
GPC (o-dichlorobenzene) Mw = 77 × 10 3 , Mn = 33 × 10 3
(2)有機薄膜トランジスタの作製
 ポリマーP1をポリマーP9に変えたこと以外は実施例1と同様に有機薄膜トランジスタを得た。
(2) Production of Organic Thin Film Transistor An organic thin film transistor was obtained in the same manner as in Example 1 except that the polymer P1 was changed to the polymer P9.
(3)有機光電変換デバイスの作製
 ポリマーP1をポリマーP9変えたこと以外は実施例1と同様に有機光電変換デバイスを得た。
(3) Preparation of organic photoelectric conversion device An organic photoelectric conversion device was obtained in the same manner as in Example 1 except that the polymer P1 was changed to the polymer P9.
(4)有機熱電変換デバイスの作製
 ポリマーP1をP9に変えたこと以外は実施例1と同様に熱電変換デバイスを作製した。
(4) Production of organic thermoelectric conversion device A thermoelectric conversion device was produced in the same manner as in Example 1 except that the polymer P1 was changed to P9.
[実施例10] ポリマーP10を用いた有機半導体デバイスの作製
(1)ポリマーP10の合成
[Example 10] Production of organic semiconductor device using polymer P10 (1) Synthesis of polymer P10
Figure JPOXMLDOC01-appb-I000042
Figure JPOXMLDOC01-appb-I000042
 化合物(10-1)190mg(0.300mmol)及び(10-2)199mg(0.300mmol)を用いたこと以外は実施例1と同様に行い、ポリマーP10を204mg(収率83.9%)得た。
ポリマーP10:
 GPC(o-ジクロロベンゼン)Mw=72×10、Mn=31×10
The same procedure as in Example 1 was carried out, except that 190 mg (0.300 mmol) of compound (10-1) and 199 mg (0.300 mmol) of (10-2) were used, and 204 mg of polymer P10 (yield 83.9%) Obtained.
Polymer P10:
GPC (o-dichlorobenzene) Mw = 72 × 10 3 , Mn = 31 × 10 3
(2)有機薄膜トランジスタの作製
 ポリマーP1をポリマーP10に変えたこと以外は実施例1と同様に有機薄膜トランジスタを得た。
(2) Production of Organic Thin Film Transistor An organic thin film transistor was obtained in the same manner as in Example 1 except that the polymer P1 was changed to the polymer P10.
(3)有機光電デバイスの作製
 ポリマーP1をポリマーP10変え、ジヨードオクタンを1容量%から2.5容量%にかえたこと以外は実施例1と同様に有機光電変換デバイスを得た。
(3) Production of Organic Photoelectric Device An organic photoelectric conversion device was obtained in the same manner as in Example 1 except that the polymer P1 was changed to the polymer P10 and the diiodooctane was changed from 1% by volume to 2.5% by volume.
[実施例11] ポリマーP11を用いた有機半導体デバイスの作製
(1)ポリマーP11の合成
[Example 11] Production of organic semiconductor device using polymer P11 (1) Synthesis of polymer P11
Figure JPOXMLDOC01-appb-I000043
Figure JPOXMLDOC01-appb-I000043
 化合物(11-1)182mg(0.300mmol)及び(11-2)198mg(0.300mmol)を用いたこと以外は実施例1と同様に行い、ポリマーP11を178mg(収率75.9%)得た。
ポリマーP11:
 GPC(o-ジクロロベンゼン)Mw=79×10、Mn=31×10
(2)有機薄膜トランジスタの作製
 ポリマーP1をポリマーP11に変えたこと以外は実施例1と同様に有機薄膜トランジスタを得た。
The same procedure as in Example 1 was conducted, except that 182 mg (0.300 mmol) of compound (11-1) and 198 mg (0.300 mmol) of (11-2) were used, and 178 mg of polymer P11 (yield 75.9%) Obtained.
Polymer P11:
GPC (o-dichlorobenzene) Mw = 79 × 10 3 , Mn = 31 × 10 3
(2) Production of Organic Thin Film Transistor An organic thin film transistor was obtained in the same manner as in Example 1 except that the polymer P1 was changed to the polymer P11.
(3)有機光電変換デバイスの作製
 ポリマーP1をポリマーP11に変え、ジヨードオクタンを1容量%から4容量%にかえたこと以外は実施例1と同様に有機光電変換デバイスを得た。
(3) Production of organic photoelectric conversion device An organic photoelectric conversion device was obtained in the same manner as in Example 1 except that the polymer P1 was changed to the polymer P11 and the diiodooctane was changed from 1% by volume to 4% by volume.
[実施例12] ポリマーP12を用いた有機半導体デバイスの作製
(1)ポリマーP12の合成
[Example 12] Production of organic semiconductor device using polymer P12 (1) Synthesis of polymer P12
Figure JPOXMLDOC01-appb-I000044
Figure JPOXMLDOC01-appb-I000044
 化合物(12-1)241mg(0.300mmol)及び(12-2)164mg(0.300mmol)を用いたこと以外は実施例1と同様に行い、ポリマーP12を208mg(収率80.3%)得た。
ポリマーP12:
 GPC(o-ジクロロベンゼン)Mw=51×10、Mn=21×10
The same procedure as in Example 1 was conducted, except that 241 mg (0.300 mmol) of compound (12-1) and 164 mg (0.300 mmol) of (12-2) were used, and 208 mg of polymer P12 (yield 80.3%) Obtained.
Polymer P12:
GPC (o-dichlorobenzene) Mw = 51 × 10 3 , Mn = 21 × 10 3
(2)有機薄膜トランジスタの作製
 ポリマーP1をポリマーP12に変えたこと以外は実施例1と同様に有機薄膜トランジスタを得た。
(2) Production of Organic Thin Film Transistor An organic thin film transistor was obtained in the same manner as in Example 1 except that the polymer P1 was changed to the polymer P12.
(3)有機光電変換デバイスの作製
 ポリマーP1をポリマーP12に変え、ジヨードオクタンを1容量%から1.5容量%にかえたこと以外は実施例1と同様に有機光電変換デバイスを得た。
(3) Production of Organic Photoelectric Conversion Device An organic photoelectric conversion device was obtained in the same manner as in Example 1 except that the polymer P1 was changed to the polymer P12 and the diiodooctane was changed from 1% by volume to 1.5% by volume.
[実施例13] ポリマーP13を用いた有機半導体デバイスの作製
(1)ポリマーP13の合成
[Example 13] Production of organic semiconductor device using polymer P13 (1) Synthesis of polymer P13
Figure JPOXMLDOC01-appb-I000045
Figure JPOXMLDOC01-appb-I000045
 化合物(13-1)199mg(0.300mmol)及び(13-2)142mg(0.300mmol)を用いたこと以外は実施例1と同様にポリマーP13を151mg(収率77.7%)得た。
ポリマーP13:
 GPC(o-ジクロロベンゼン)Mw=40×10、Mn=18×10
151 mg (yield 77.7%) of polymer P13 was obtained in the same manner as in Example 1 except that 199 mg (0.300 mmol) of compound (13-1) and 142 mg (0.300 mmol) of (13-2) were used. .
Polymer P13:
GPC (o-dichlorobenzene) Mw = 40 × 10 3 , Mn = 18 × 10 3
(2)有機薄膜トランジスタの作製
 ポリマーP1をポリマーP13に変えたこと以外は実施例1と同様に有機薄膜トランジスタを得た。
(2) Production of Organic Thin Film Transistor An organic thin film transistor was obtained in the same manner as in Example 1 except that the polymer P1 was changed to the polymer P13.
(3)有機光電変換デバイスの作製
 ポリマーP1をポリマーP13に変え、ジヨードオクタンを1質量%から2質量%にかえたこと以外は実施例1と同様に有機光電変換デバイスを得た。
(3) Production of Organic Photoelectric Conversion Device An organic photoelectric conversion device was obtained in the same manner as in Example 1 except that the polymer P1 was changed to the polymer P13 and diiodooctane was changed from 1% by mass to 2% by mass.
[実施例14] ポリマーP14を用いた有機半導体デバイスの作製
(1)ポリマーP14の合成
[Example 14] Production of organic semiconductor device using polymer P14 (1) Synthesis of polymer P14
Figure JPOXMLDOC01-appb-I000046
Figure JPOXMLDOC01-appb-I000046
 化合物(14-1)173mg(0.300mmol)及び(14-2)167mg(0.300mmol)を用いたこと以外は実施例1と同様に行い、ポリマーP14を173mg(収率89.0%)得た。
ポリマーP14:
 GPC(o-ジクロロベンゼン)Mw=65×10、Mn=25×10
The same procedure as in Example 1 was conducted, except that 173 mg (0.300 mmol) of compound (14-1) and 167 mg (0.300 mmol) of (14-2) were used, and 173 mg of polymer P14 (yield: 89.0%) Obtained.
Polymer P14:
GPC (o-dichlorobenzene) Mw = 65 × 10 3 , Mn = 25 × 10 3
(2)有機薄膜トランジスタの作製
 ポリマーP1をポリマーP14に変えたこと以外は実施例1と同様に有機薄膜トランジスタを得た。
(2) Production of Organic Thin Film Transistor An organic thin film transistor was obtained in the same manner as in Example 1 except that the polymer P1 was changed to the polymer P14.
(3)有機光電変換デバイスの作製
 ポリマーP1をポリマーP14に変え、ジヨードオクタンを用いなかったこと以外は実施例1と同様に有機光電変換デバイスを得た。
(3) Preparation of organic photoelectric conversion device An organic photoelectric conversion device was obtained in the same manner as in Example 1 except that the polymer P1 was changed to the polymer P14 and diiodooctane was not used.
[実施例15] ポリマーP15を用いた有機半導体デバイスの作製
(1)ポリマーP15の合成
[Example 15] Production of organic semiconductor device using polymer P15 (1) Synthesis of polymer P15
Figure JPOXMLDOC01-appb-I000047
Figure JPOXMLDOC01-appb-I000047
 化合物(15-1)182mg(0.300mmol)及び(15-2)149mg(0.300mmol)を用いたこと以外は実施例1と同様に行い、ポリマーP15を185mg(収率75.6%)得た。
ポリマーP15:
 GPC(o-ジクロロベンゼン)Mw=32×10、Mn=16×10
The same procedure as in Example 1 was carried out except that 182 mg (0.300 mmol) of compound (15-1) and 149 mg (0.300 mmol) of (15-2) were used, and 185 mg of polymer P15 (yield: 75.6%) Obtained.
Polymer P15:
GPC (o-dichlorobenzene) Mw = 32 × 10 3 , Mn = 16 × 10 3
(2)有機薄膜トランジスタの作製
 ポリマーP1をポリマーP15に変えたこと以外は実施例1と同様に有機薄膜トランジスタを得た。
(2) Production of Organic Thin Film Transistor An organic thin film transistor was obtained in the same manner as in Example 1 except that the polymer P1 was changed to the polymer P15.
(3)有機光電変換デバイスの作製
 ポリマーP1をポリマーP15に変えたこと以外は実施例1と同様に有機光電変換デバイスを得た。
(3) Preparation of organic photoelectric conversion device An organic photoelectric conversion device was obtained in the same manner as in Example 1 except that the polymer P1 was changed to the polymer P15.
[実施例16] ポリマーP16を用いた有機半導体デバイスの作製
(1)ポリマーP16の合成
[Example 16] Production of organic semiconductor device using polymer P16 (1) Synthesis of polymer P16
Figure JPOXMLDOC01-appb-I000048
Figure JPOXMLDOC01-appb-I000048
 化合物(16-1)207mg(0.300mmol)及び(16-2)150mg(0.300mmol)を用いたこと以外は実施例1と同様に行い、ポリマーP16を180mg(収率84.9%)得た。
ポリマーP16:
 GPC(o-ジクロロベンゼン)Mw=39×10、Mn=14×10
The same procedure as in Example 1 was carried out except that 207 mg (0.300 mmol) of compound (16-1) and 150 mg (0.300 mmol) of (16-2) were used, and 180 mg of polymer P16 (yield 84.9%) Obtained.
Polymer P16:
GPC (o-dichlorobenzene) Mw = 39 × 10 3 , Mn = 14 × 10 3
(2)有機薄膜トランジスタの作製
 ポリマーP1をポリマーP16に変えたこと以外は実施例1と同様に有機薄膜トランジスタを得た。
(2) Production of Organic Thin Film Transistor An organic thin film transistor was obtained in the same manner as in Example 1 except that the polymer P1 was changed to the polymer P16.
(3)有機光電変換デバイスの作製
 ポリマーP1をポリマーP16に変え、ジヨードオクタンを1容量%から3.5容量%にかえたこと以外は実施例1と同様に有機光電変換デバイスを得た。
(3) Production of organic photoelectric conversion device An organic photoelectric conversion device was obtained in the same manner as in Example 1 except that the polymer P1 was changed to the polymer P16 and the diiodooctane was changed from 1% by volume to 3.5% by volume.
[実施例17] ポリマーP17を用いた有機半導体デバイスの作製
(1)ポリマーP17の合成
[Example 17] Production of organic semiconductor device using polymer P17 (1) Synthesis of polymer P17
Figure JPOXMLDOC01-appb-I000049
Figure JPOXMLDOC01-appb-I000049
 化合物(17-1)206mg(0.300mmol)及び(17-2)161mg(0.300mmol)を用いたこと以外は実施例1と同様に行い、ポリマーP17を661mg(収率90.1%)得た。
ポリマーP17:
 GPC(o-ジクロロベンゼン)Mw=70×10、Mn=25×10
(2)有機薄膜トランジスタの作製
 ポリマーP1をポリマーP17に変えたこと以外は実施例1と同様に行い、有機薄膜トランジスタを得た。
(3)有機光電変換デバイスの作製
 ポリマーP1をポリマーP17に変え、ジヨードオクタンを1容量%から6容量%にかえたこと以外は実施例1と同様に行い、有機光電変換デバイスを得た。
The same procedure as in Example 1 was carried out, except that 206 mg (0.300 mmol) of compound (17-1) and 161 mg (0.300 mmol) of (17-2) were used, and 661 mg of polymer P17 (yield 90.1%) Obtained.
Polymer P17:
GPC (o-dichlorobenzene) Mw = 70 × 10 3 , Mn = 25 × 10 3
(2) Production of Organic Thin Film Transistor An organic thin film transistor was obtained in the same manner as in Example 1 except that the polymer P1 was changed to the polymer P17.
(3) Production of organic photoelectric conversion device An organic photoelectric conversion device was obtained in the same manner as in Example 1 except that the polymer P1 was changed to the polymer P17 and the diiodooctane was changed from 1% by volume to 6% by volume.
[比較例1]
 WO2013/056355 A1に記載のP18を比較例として用いた。
[Comparative Example 1]
P18 described in WO2013 / 056355 A1 was used as a comparative example.
Figure JPOXMLDOC01-appb-I000050
Figure JPOXMLDOC01-appb-I000050
ポリマーP18:
 GPC(o-ジクロロベンゼン)Mw=49×10、Mn=20×10
Polymer P18:
GPC (o-dichlorobenzene) Mw = 49 × 10 3 , Mn = 20 × 10 3
(1)有機薄膜トランジスタの作製
 ポリマーP1をP18に変えたこと以外は実施例1と同様に有機薄膜トランジスタを得た。
(1) Production of Organic Thin Film Transistor An organic thin film transistor was obtained in the same manner as in Example 1 except that the polymer P1 was changed to P18.
(2)有機光電変換デバイスの作製
 ポリマーP1をP18に変えたこと以外は実施例1と同様に有機光電変換デバイスを得た。
(2) Preparation of organic photoelectric conversion device An organic photoelectric conversion device was obtained in the same manner as in Example 1 except that the polymer P1 was changed to P18.
(3)有機熱電変換エバイスの作製
 ポリマーP1をP18に変えたこと以外は実施例1と同様に熱電変換デバイスを得た。
(3) Preparation of organic thermoelectric conversion device A thermoelectric conversion device was obtained in the same manner as in Example 1 except that the polymer P1 was changed to P18.
[比較例2]
 J. Phys. Chem.C 2009,113,p21928-21936に記載のP19を比較例として用いた。
[Comparative Example 2]
J. et al. Phys. Chem. P19 described in C 2009, 113, p21928-21936 was used as a comparative example.
Figure JPOXMLDOC01-appb-I000051
Figure JPOXMLDOC01-appb-I000051
ポリマーP19:
 GPC(o-ジクロロベンゼン)Mw=12×10、Mn=4.9×10
Polymer P19:
GPC (o-dichlorobenzene) Mw = 12 × 10 3 , Mn = 4.9 × 10 3
(1)有機薄膜トランジスタの作製
 ポリマーP1をP19に変えたこと以外は実施例1と同様に有機薄膜トランジスタを得た。
(1) Production of Organic Thin Film Transistor An organic thin film transistor was obtained in the same manner as in Example 1 except that the polymer P1 was changed to P19.
(2)有機光電変換デバイスの作製
 ポリマーP1をP19に変えたこと以外は実施例1と同様に有機光電変換デバイスを得た。
(2) Production of organic photoelectric conversion device An organic photoelectric conversion device was obtained in the same manner as in Example 1 except that the polymer P1 was changed to P19.
(3)有機熱電変換デバイスの作製
ポリマーP1をP19に変えたこと以外は実施例1と同様に熱電変換デバイスを得た。
(3) Preparation of organic thermoelectric conversion device A thermoelectric conversion device was obtained in the same manner as in Example 1 except that the polymer P1 was changed to P19.
<有機光電変換デバイスの評価>
電流密度-電圧(J-V)特性
 実施例及び比較例で作製したそれぞれの有機光電変換デバイスを以下のようにして性能評価した。得られたデバイスを窒素雰囲気下で、ケースレー社(Keithley)製SMU2400型I-V測定装置を用いて、デバイスの電流密度-電圧(J-V)特性を評価した。オリエル(Oriel)社製太陽光シミュレータからの濾波キセノン灯光を使用して、100mW/cmのAM1.5Gスペクトルに近づけた。上記装置にて、出力された光電変換効率を下記表1に記載した。
<Evaluation of organic photoelectric conversion device>
Current Density-Voltage (JV) Characteristics The performance of each organic photoelectric conversion device prepared in Examples and Comparative Examples was evaluated as follows. The obtained device was evaluated for current density-voltage (JV) characteristics of the device using a SMU2400 type IV measuring apparatus manufactured by Keithley under a nitrogen atmosphere. Using a filtered xenon lamp light from Oriel (Oriel) manufactured solar simulator approximated to AM1.5G spectrum of 100 mW / cm 2. The photoelectric conversion efficiency output by the above apparatus is shown in Table 1 below.
 また、光電変換層の塗布法の変更による光電変換性能を比較するため、光電変換層をスピンコートあるいはバーコート法により形成した有機光電変換デバイスの光電変換効率(以下、単に変換効率ともいう。)を評価した。
 得られた結果を、下記の基準で評価した。
A:(バーコート法の変換効率)/(スピンコート法の変換効率) 0.9以上
B:(バーコート法の変換効率)/(スピンコート法の変換効率) 0.8以上~0.9未満
C:(バーコート法の変換効率)/(スピンコート法の変換効率) 0.7以上~0.8未満
D:(バーコート法の変換効率)/(スピンコート法の変換効率) 0.7未満
Moreover, in order to compare the photoelectric conversion performance by changing the coating method of the photoelectric conversion layer, the photoelectric conversion efficiency of an organic photoelectric conversion device in which the photoelectric conversion layer is formed by spin coating or bar coating (hereinafter also simply referred to as conversion efficiency). Evaluated.
The obtained results were evaluated according to the following criteria.
A: (conversion efficiency of bar coating method) / (conversion efficiency of spin coating method) 0.9 or more B: (conversion efficiency of bar coating method) / (conversion efficiency of spin coating method) 0.8 or more to 0.9 Less than C: (conversion efficiency of bar coating method) / (conversion efficiency of spin coating method) 0.7 or more and less than 0.8 D: (conversion efficiency of bar coating method) / (conversion efficiency of spin coating method) 0. Less than 7
<有機薄膜トランジスタの評価>
 有機薄膜トランジスタのFET特性は、セミオートプローバー(ベクターセミコン製、AX-2000(商品名))を接続した半導体パラメーターアナライザー(Agilent製、4156C(商品名))を用いて常圧・窒素雰囲気下で、キャリア移動度を評価した。
 得られた結果を下記表1に示す。
(a)正孔移動度
 各有機薄膜トランジスタ(FET素子)のソース電極-ドレイン電極間に-80Vの電圧を印加し、ゲート電圧を20V~-100Vの範囲で変化させた。ドレイン電流Iを表わす式I=(w/2L)μC(V-Vth(式中、Lはゲート長、Wはゲート幅、Cは絶縁層の単位面積当たりの容量、Vはゲート電圧、Vthは閾値電圧)を用いてキャリア移動度μを算出した。
<Evaluation of organic thin film transistor>
The FET characteristics of the organic thin film transistor are measured using a semiconductor parameter analyzer (Agilent, 4156C (trade name)) connected to a semi-auto prober (Vector Semicon, AX-2000 (trade name)) under normal pressure and nitrogen atmosphere. Mobility was evaluated.
The obtained results are shown in Table 1 below.
(A) Hole Mobility A voltage of −80 V was applied between the source electrode and the drain electrode of each organic thin film transistor (FET element), and the gate voltage was changed in the range of 20 V to −100 V. Formula I d = (w / 2L) μC i (V g −V th ) 2 representing drain current I d (where L is the gate length, W is the gate width, and C i is the capacitance per unit area of the insulating layer) , V g is a gate voltage, and V th is a threshold voltage) to calculate the carrier mobility μ.
(b)繰り返し駆動後の閾値電圧変化
 各有機薄膜トランジスタ(FET素子)のソース電極-ドレイン電極間に-80Vの電圧を印加し、ゲート電圧を+20V~-100Vの範囲で100回繰り返して(a)と同様の測定を行い、繰り返し駆動前の閾値電圧Vと繰り返し駆動後の閾値電圧Vの差(|V-V|)を以下の3段階で評価した。この値は小さいほどトランジスタの繰り返し駆動安定性が高く、好ましい。
 A:|V-V|≦5V
 B:5V<|V-V|≦10V
 C:|V-V|>10V
(B) Threshold voltage change after repeated driving A voltage of −80 V is applied between the source electrode and the drain electrode of each organic thin film transistor (FET element), and the gate voltage is repeated 100 times in the range of +20 V to −100 V. (a) The difference between the threshold voltage V before the repeated driving and the threshold voltage V after the repeated driving ( after | V− before V |) was evaluated in the following three stages. The smaller this value, the higher the repeated driving stability of the transistor, which is preferable.
A: | after the V -V before | ≦ 5V
B: 5V <| V after -V before | ≦ 10V
C: | After V- Before V |> 10V
Figure JPOXMLDOC01-appb-I000052
Figure JPOXMLDOC01-appb-I000052
 本発明の有機半導体化合物は上述のように、主鎖だけでなく側鎖構造を含め非常に構造規則性が高い。したがって、本発明の有機半導体化合物は、主鎖部分のπ-π相互作用及び側鎖部分のファンデルワールス相互作用(ファスナー効果)により成膜時に自発的に配列し高結晶性の構造(パッキング性の高い構造)をとる。したがって、塗布法を変えた場合の変換効率の変化が小さい。また、本発明の有機半導体化合物は高結晶性のため、有機薄膜トランジスタにおける繰り返し駆動による分子配列の変化が小さく、閾値電圧の変化も低減されたと考えられる。 As described above, the organic semiconductor compound of the present invention has very high structural regularity including not only the main chain but also the side chain structure. Therefore, the organic semiconductor compound of the present invention has a highly crystalline structure (packing property) that is spontaneously arranged during film formation by π-π interaction in the main chain portion and van der Waals interaction (fastener effect) in the side chain portion. High structure). Therefore, the change in conversion efficiency when the coating method is changed is small. Further, since the organic semiconductor compound of the present invention has high crystallinity, it is considered that the change in molecular arrangement due to repeated driving in the organic thin film transistor is small, and the change in threshold voltage is also reduced.
<熱電特性値(熱起電力S)の測定>
 熱電変換デバイスの第1の電極を一定温度に保ったホットプレート上に設置し、第2の電極上に温度制御用のペルチェ素子を設置した。ホットプレートの温度を一定(100℃)に保ちつつ、ペルチェ素子の温度を低下させることにより両電極間に温度差(0Kを超え10K以下の範囲)を付与した。この時、両電極間に発生した熱起電力(μV)を両電極間に生じた特定の温度差(K)で除することにより、単位温度差当たりの熱起電力S(μV/K)を算出し、この値を熱電変換デバイスの熱電特性値とした。算出した熱電特性値を、比較のポリマーP19を用いた熱電変換デバイスの算出値に対する相対値として、表2に示す。
<Measurement of thermoelectric characteristic value (thermoelectromotive force S)>
The first electrode of the thermoelectric conversion device was placed on a hot plate maintained at a constant temperature, and a Peltier element for temperature control was placed on the second electrode. While maintaining the temperature of the hot plate constant (100 ° C.), the temperature of the Peltier element was lowered to give a temperature difference (over 0K to 10K or less) between both electrodes. At this time, the thermoelectromotive force S (μV / K) per unit temperature difference is obtained by dividing the thermoelectromotive force (μV) generated between both electrodes by the specific temperature difference (K) generated between both electrodes. This value was calculated as the thermoelectric characteristic value of the thermoelectric conversion device. The calculated thermoelectric characteristic values are shown in Table 2 as relative values to the calculated values of the thermoelectric conversion device using the comparative polymer P19.
Figure JPOXMLDOC01-appb-I000053
Figure JPOXMLDOC01-appb-I000053
 上記の結果から、本発明の有機半導体化合物を半導体層用いた熱電変換デバイスは、熱電変換効率に優れることがわかった。 From the above results, it was found that the thermoelectric conversion device using the semiconductor layer of the organic semiconductor compound of the present invention is excellent in thermoelectric conversion efficiency.
1 ボトムゲート・トップコンタクト型トランジスタ
 11 基板
 12 電極
 13 絶縁体層
 14 半導体層(有機半導体層)
 15a 電極
 15b 電極
DESCRIPTION OF SYMBOLS 1 Bottom gate top contact type transistor 11 Substrate 12 Electrode 13 Insulator layer 14 Semiconductor layer (organic semiconductor layer)
15a electrode 15b electrode
2 ボトムゲート・ボトムコンタクト型トランジスタ
 21 基板
 22 電極
 23 絶縁体層
 24 半導体層(有機半導体層)
 25a 電極
 25b 電極
2 Bottom Gate / Bottom Contact Type Transistor 21 Substrate 22 Electrode 23 Insulator Layer 24 Semiconductor Layer (Organic Semiconductor Layer)
25a electrode 25b electrode
3 光電変換デバイス(バルクヘテロ接合型有機薄膜太陽電池)
 31 対極(第2電極)
 32 電子輸送層
 33 光電変換層
  33a n型半導体相
  33b p型半導体相
 34 ホール輸送層
 35 透明電極(第1電極)
 36 透明支持体
L 光
P 電動モータ(旋風機)
3 Photoelectric conversion devices (bulk heterojunction organic thin film solar cells)
31 Counter electrode (second electrode)
32 Electron transport layer 33 Photoelectric conversion layer 33a n-type semiconductor phase 33b p-type semiconductor phase 34 hole transport layer 35 transparent electrode (first electrode)
36 Transparent support L Light P Electric motor (winding machine)
4 熱電変換デバイス
 41、47 金属板
 42 第1の基材
 43 第1の電極
 44 熱電変換層
 45 第2の電極
 46 第2の基材
4 Thermoelectric Conversion Device 41, 47 Metal Plate 42 First Base Material 43 First Electrode 44 Thermoelectric Conversion Layer 45 Second Electrode 46 Second Base Material
5 熱電変換デバイス
 51 第1の基材
 52 第1の電極
 53 第2の電極
 54 熱電変換層
 55 第2の基材
5 Thermoelectric Conversion Device 51 First Base Material 52 First Electrode 53 Second Electrode 54 Thermoelectric Conversion Layer 55 Second Base Material
 本発明をその実施態様とともに説明したが、我々は特に指定しない限り我々の発明を説明のどの細部においても限定しようとするものではなく、添付の請求の範囲に示した発明の精神と範囲に反することなく幅広く解釈されるべきであると考える。 While this invention has been described in conjunction with its embodiments, we do not intend to limit our invention in any detail of the description unless otherwise specified and are contrary to the spirit and scope of the invention as set forth in the appended claims. I think it should be interpreted widely.
 本願は、2013年8月30日に日本国で特許出願された特願2013-179321に基づく優先権を主張するものであり、これらはここに参照してその内容を本明細書の記載の一部として取り込む。 This application claims priority based on Japanese Patent Application No. 2013-179321 filed in Japan on August 30, 2013, the contents of which are hereby incorporated by reference. Capture as part.

Claims (18)

  1.  下記式(1)で表される化合物を半導体層に含む有機半導体デバイス。
    Figure JPOXMLDOC01-appb-C000001
     式(1)中、Dは式(2)又は式(3)で表されるドナー性構造単位を示す。Aは側鎖方向縮環構造の芳香族環からなるアクセプター性構造単位を示す。S及びSはエテニレン、エチニレン、アリーレン基、ヘテロアリーレン基、アゾ基、又は-C=N-を示す。l及びnは1~4の整数を示し、m1及びm2は0~2の整数を示す。pは2~2000の整数を示す。
     式(2)中、X21及びX22は硫黄原子、酸素原子、セレン原子又は-NR22-を示し、Y21は窒素原子又は-C(-L22-R23)=を示す。但し、X21及びX22の両方が硫黄原子の場合、Y21は-C(-L22-R23)=である。L21及びL22は、単結合、-O-、-S-、-NR-、-Si(R-、-C(=O)O-、-C(=S)O-、-C(=O)S-、-SC(=O)-、-OC(=O)-、-OC(=S)-、-C(=O)-、-C(=S)-、-C(=O)NR-、-NRC(=O)-、-S(=O)-、-S(=O)-、-S(=O)O-、-OS(=O)-、-S(=O)NR-、-NRS(=O)-、アリーレン基、ヘテロアリーレン基、アルケニレン基もしくはアルキニレン基であるか、又は、アリーレン基、ヘテロアリーレン基、アルケニレン基、アルキニレン基、カルボニル基、及びアシルオキシ基から選ばれる2以上の基を組み合わせてなる基である。R21~R23は水素原子又は一価の置換基を示す。Rは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、又はヘテロアリール基を示す。
     式(3)中、X31は硫黄原子、酸素原子、セレン原子又は-NR31-を示す。Y31~Y34は窒素原子又は-C(-L31-R32)=を示す。Y31及びY34のL31はL22と、Y31及びY34のR32はR23と同義である。Y32及びY33のL31はL21と、Y32及びY33のR32はR21と同義である。R31は前記R22と同義である。
     式(2)及び(3)中*は連結部位を示す。
     但し、D及びAはアルキル基、アルケニル基及びアルキニル基から選ばれる少なくとも1つの基を有する。
    The organic-semiconductor device which contains the compound represented by following formula (1) in a semiconductor layer.
    Figure JPOXMLDOC01-appb-C000001
    In formula (1), D represents a donor structural unit represented by formula (2) or formula (3). A represents an acceptor structural unit composed of an aromatic ring having a side-chain direction condensed ring structure. S 1 and S 2 represent ethenylene, ethynylene, arylene group, heteroarylene group, azo group, or —C═N—. l and n are integers of 1 to 4, and m1 and m2 are integers of 0 to 2. p represents an integer of 2 to 2000.
    In the formula (2), X 21 and X 22 represent a sulfur atom, an oxygen atom, a selenium atom or —NR 22 —, and Y 21 represents a nitrogen atom or —C (—L 22 —R 23 ) ═. However, when both X 21 and X 22 are sulfur atoms, Y 21 is —C (—L 22 —R 23 ) =. L 21 and L 22 are a single bond, —O—, —S—, —NR 5 —, —Si (R 5 ) 2 —, —C (═O) O—, —C (═S) O—, -C (= O) S-, -SC (= O)-, -OC (= O)-, -OC (= S)-, -C (= O)-, -C (= S)-,- C (═O) NR 5 —, —NR 5 C (═O) —, —S (═O) —, —S (═O) 2 —, —S (═O) 2 O—, —OS (= O) 2 —, —S (═O) 2 NR 5 —, —NR 5 S (═O) 2 —, an arylene group, a heteroarylene group, an alkenylene group or an alkynylene group, or an arylene group, a heteroarylene group A group formed by combining two or more groups selected from a group, an alkenylene group, an alkynylene group, a carbonyl group, and an acyloxy group. R 21 to R 23 represent a hydrogen atom or a monovalent substituent. R 5 represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, or a heteroaryl group.
    In the formula (3), X 31 represents a sulfur atom, an oxygen atom, a selenium atom or —NR 31 —. Y 31 to Y 34 represent a nitrogen atom or —C (—L 31 —R 32 ) ═. L 31 of Y 31 and Y 34 has the same meaning as L 22, and R 32 of Y 31 and Y 34 has the same meaning as R 23 . L 31 of Y 32 and Y 33 has the same meaning as L 21, and R 32 of Y 32 and Y 33 has the same meaning as R 21 . R 31 has the same meaning as R 22 described above.
    In formulas (2) and (3), * indicates a linking site.
    However, D and A have at least one group selected from an alkyl group, an alkenyl group, and an alkynyl group.
  2.  前記式(1)で表される化合物が下記式(4)で表される、請求項1に記載の有機半導体デバイス。
    Figure JPOXMLDOC01-appb-C000002
     式(4)中、D、A、l、n及びpはそれぞれ、前記式(1)中のD、A、l、n及びpと同義である。
    The organic semiconductor device according to claim 1, wherein the compound represented by the formula (1) is represented by the following formula (4).
    Figure JPOXMLDOC01-appb-C000002
    In formula (4), D, A, l, n and p have the same meanings as D, A, l, n and p in formula (1), respectively.
  3.  下記(a1)~(b1)を満たす、請求項1又は2に記載の有機半導体デバイス:
    (a1)前記式(2)において、R21が炭素数6~24のアルキル基、アルケニル基又はアルキニル基であり、他に炭素数6以上の脂肪族基を有さない、
    (b1)前記式(3)において、Y32及びY33のうち一方又は両方が前記-C(-L31-R32)=であって、R32が炭素数6~24のアルキル基、アルケニル基又はアルキニル基であり、他に炭素数6以上の脂肪族基を有さない。
    The organic semiconductor device according to claim 1 or 2, which satisfies the following (a1) to (b1):
    (A1) In the formula (2), R 21 is an alkyl group having 6 to 24 carbon atoms, an alkenyl group, or an alkynyl group, and has no other aliphatic group having 6 or more carbon atoms.
    (B1) In the formula (3), one or both of Y 32 and Y 33 is —C (—L 31 —R 32 ) =, and R 32 is an alkyl group having 6 to 24 carbon atoms, alkenyl Group or alkynyl group, and has no other aliphatic group having 6 or more carbon atoms.
  4.  前記アクセプター性構造単位Aが、下記式(5)~(12)のいずれかで表される、請求項1~3のいずれか1項に記載の有機半導体デバイス。
    Figure JPOXMLDOC01-appb-C000003
     式(5)中、X51及びX52は、硫黄原子、酸素原子、セレン原子又は-NR52-を示し、Y51は窒素原子又は-C(-L52-R53)=を示す。L51及びL52は単結合、-O-、-S-、-NR-、-Si(R-、-C(=O)O-、-C(=S)O-、-C(=O)S-、-SC(=O)-、-OC(=O)-、-OC(=S)-、-C(=O)-、-C(=S)-、-C(=O)NR-、-NRC(=O)-、-S(=O)-、-S(=O)-、-S(=O)O-、-OS(=O)-、-S(=O)NR-、-NRS(=O)-、アリーレン基、ヘテロアリーレン基、アルケニレン基もしくはアルキニレン基であるか、又は、アリーレン基、ヘテロアリーレン基、アルケニレン基、アルキニレン基、カルボニル基、及びアシルオキシ基から選ばれる2以上の基を組み合わせてなる基である。Rは前記式(2)のL21におけるRと同義である。R51~R53は水素原子又は一価の置換基を示す。
     式(6)中、X61は前記式(5)中のX51と同義である。Z61及びZ62は酸素原子又は硫黄原子を示す。W61は-NR62-、-CR6364-又は>C=CR6566を示す。R62~R66は水素原子又は一価の置換基を示す。
     式(7)中、X71は前記式(5)中のX51と同義である。Y71~Y74は窒素原子又は-C(-L71-R72)=を示す。Y71及びY74のL71は前記式(5)中のL52と同義であり、Y72及びY73のL71は前記式(5)中のL51と同義である。R72は水素原子又は一価の置換基を示す。
     式(8)中、X81は前記式(5)中のX52と同義である。Y81~Y84は窒素原子又は-C(-L81-R82)=を示す。Y83のL81は前記式(5)中のL51と同義であり、Y81、Y82及びY84のL81は前記式(5)中のL52と同義であり、R82は水素原子又は一価の置換基を示す。
     式(9)中、W91は-NR91-又は-CR9293-を示し、R91~R93は水素原子又は一価の置換基を示す。Y91及びY92は、それぞれ前記式(8)中のY81及びY82と同義である。
     式(10)中、Y101及びY102は、それぞれ前記式(8)中のY81及びY82と同義である。Z101及びZ102は、それぞれ前記式(6)中のZ61及びZ62と同義である。W101は前記式(6)中のW61と同義である。
     式(11)中、X111及びX112は、それぞれ前記式(5)中のX51及びX52と同義である。Y111、Y112は、それぞれ前記式(7)中のY71及びY74と同義である。Y113、Y114は、それぞれ前記式(8)中のY83及びY84と同義である。
     式(12)中、X121は前記式(5)中のX51と同義である。Y121及びY122は、それぞれ前記式(7)中のY71及びY74と同義である。Z121及びZ122は、それぞれ前記式(6)中のZ61及びZ62と同義である。W121は前記式(6)中のW61と同義である。
     式(5)~(12)の各式で表される構造は、アルキル基、アルケニル基及びアルキニル基から選ばれる少なくとも1つの基を有する。また各式中、*は連結部位を示す。
    The organic semiconductor device according to any one of claims 1 to 3, wherein the acceptor structural unit A is represented by any one of the following formulas (5) to (12).
    Figure JPOXMLDOC01-appb-C000003
    In the formula (5), X 51 and X 52 represent a sulfur atom, oxygen atom, selenium atom or —NR 52 —, and Y 51 represents a nitrogen atom or —C (—L 52 —R 53 ) ═. L 51 and L 52 are a single bond, —O—, —S—, —NR 5 —, —Si (R 5 ) 2 —, —C (═O) O—, —C (═S) O—, — C (= O) S-, -SC (= O)-, -OC (= O)-, -OC (= S)-, -C (= O)-, -C (= S)-, -C (═O) NR 5 —, —NR 5 C (═O) —, —S (═O) —, —S (═O) 2 —, —S (═O) 2 O—, —OS (═O ) 2 —, —S (═O) 2 NR 5 —, —NR 5 S (═O) 2 —, an arylene group, a heteroarylene group, an alkenylene group or an alkynylene group, or an arylene group, a heteroarylene group , A group formed by combining two or more groups selected from an alkenylene group, an alkynylene group, a carbonyl group, and an acyloxy group. R 5 has the same meaning as R 5 in L 21 in the formula (2). R 51 to R 53 represent a hydrogen atom or a monovalent substituent.
    In formula (6), X 61 has the same meaning as X 51 in formula (5). Z 61 and Z 62 represent an oxygen atom or a sulfur atom. W 61 represents —NR 62 —, —CR 63 R 64 —, or> C = CR 65 R 66 . R 62 to R 66 represent a hydrogen atom or a monovalent substituent.
    Wherein (7), X 71 has the same meaning as X 51 in formula (5). Y 71 to Y 74 each represents a nitrogen atom or —C (—L 71 —R 72 ) ═. L 71 in Y 71 and Y 74 has the same meaning as L 52 in the formula (5), and L 71 in Y 72 and Y 73 has the same meaning as L 51 in the formula (5). R 72 represents a hydrogen atom or a monovalent substituent.
    Wherein (8), X 81 has the same meaning as X 52 in formula (5). Y 81 to Y 84 each represents a nitrogen atom or —C (—L 81 —R 82 ) ═. L 81 of Y 83 has the same meaning as L 51 in the formula (5), L 81 of Y 81, Y 82 and Y 84 have the same meanings as L 52 in the formula (5) in, R 82 is hydrogen An atom or a monovalent substituent is shown.
    In Formula (9), W 91 represents —NR 91 — or —CR 92 R 93 —, and R 91 to R 93 represent a hydrogen atom or a monovalent substituent. Y 91 and Y 92 have the same meanings as Y 81 and Y 82 in Formula (8), respectively.
    In formula (10), Y 101 and Y 102 have the same meanings as Y 81 and Y 82 in formula (8), respectively. Z 101 and Z 102 are synonymous with Z 61 and Z 62 in the formula (6), respectively. W 101 has the same meaning as W 61 in formula (6).
    In formula (11), X 111 and X 112 have the same meanings as X 51 and X 52 in formula (5), respectively. Y 111 and Y 112 have the same meanings as Y 71 and Y 74 in the formula (7), respectively. Y 113 and Y 114 are synonymous with Y 83 and Y 84 in the formula (8), respectively.
    In formula (12), X 121 has the same meaning as X 51 in formula (5). Y 121 and Y 122 are synonymous with Y 71 and Y 74 in the formula (7), respectively. Z 121 and Z 122 are synonymous with Z 61 and Z 62 in the formula (6), respectively. W 121 is synonymous with W 61 in the formula (6).
    The structure represented by each of the formulas (5) to (12) has at least one group selected from an alkyl group, an alkenyl group, and an alkynyl group. Moreover, * shows a connection part in each formula.
  5.  下記(a2)~(h2)を満たす、請求項4に記載の有機半導体デバイス:
    (a2)前記式(5)において、R51が炭素数6~24のアルキル基、アルケニル基又はアルキニル基であり、他に炭素数6以上の脂肪族基を有さない、
    (b2)前記式(6)において、W61が前記-NR62-、-CR6364-又は>C=CR6566であって、R62~R66が炭素数6~24のアルキル基、アルケニル基又はアルキニル基であり、他に炭素数6以上の脂肪族基を有さない、
    (c2)前記式(7)において、Y72及びY73の少なくとも1つが前記-C(-L71-R72)=であって、R72が炭素数6~24のアルキル基、アルケニル基又はアルキニル基であり、他に炭素数6以上の脂肪族基を有さない、
    (d2)前記式(8)において、Y83が前記-C(-L81-R82)=であって、R82が炭素数6~24のアルキル基、アルケニル基又はアルキニル基であり、他に炭素数6以上の脂肪族基を有さない、
    (e2)前記式(9)において、W91が前記-NR91-又は-CR9293-であって、R91~R93が炭素数6~24のアルキル基、アルケニル基又はアルキニル基であり、他に炭素数6以上の脂肪族基を有さない、
    (f2)前記式(10)において、W101が前記-NR62-、-CR6364-又は>C=CR6566であって、R62~R66が炭素数6~24のアルキル基、アルケニル基又はアルキニル基であり、他に炭素数6以上の脂肪族基を有さない、
    (g2)前記式(11)において、Y113が前記-C(-L81-R82)=であって、R82が炭素数6~24のアルキル基、アルケニル基又はアルキニル基であり、他に炭素数6以上の脂肪族基を有さない、
    (h2)前記式(12)において、W121が前記-NR62-、-CR6364-又は>C=CR6566であって、R62~R66が炭素数6~24のアルキル基、アルケニル基又はアルキニル基であり、他に炭素数6以上の脂肪族基を有さない。
    The organic semiconductor device according to claim 4, which satisfies the following (a2) to (h2):
    (A2) In the formula (5), R 51 is an alkyl group, alkenyl group or alkynyl group having 6 to 24 carbon atoms, and does not have any other aliphatic group having 6 or more carbon atoms.
    (B2) In the formula (6), W 61 is —NR 62 —, —CR 63 R 64 — or> C═CR 65 R 66 , and R 62 to R 66 are alkyl having 6 to 24 carbon atoms. A group, an alkenyl group or an alkynyl group, and no other aliphatic group having 6 or more carbon atoms,
    (C2) In the formula (7), at least one of Y 72 and Y 73 is —C (—L 71 —R 72 ) =, and R 72 is an alkyl group, alkenyl group having 6 to 24 carbon atoms, or An alkynyl group that does not have any other aliphatic group having 6 or more carbon atoms,
    (D2) In the formula (8), Y 83 is —C (—L 81 —R 82 ) =, R 82 is an alkyl group, alkenyl group, or alkynyl group having 6 to 24 carbon atoms; Does not have an aliphatic group having 6 or more carbon atoms,
    (E2) In the above formula (9), W 91 is —NR 91 — or —CR 92 R 93 —, and R 91 to R 93 are alkyl groups, alkenyl groups, or alkynyl groups having 6 to 24 carbon atoms. There is no other aliphatic group having 6 or more carbon atoms,
    (F2) In the formula (10), W 101 is —NR 62 —, —CR 63 R 64 — or> C═CR 65 R 66 , and R 62 to R 66 are alkyl having 6 to 24 carbon atoms. A group, an alkenyl group or an alkynyl group, and no other aliphatic group having 6 or more carbon atoms,
    (G2) In the formula (11), Y 113 is —C (—L 81 —R 82 ) =, R 82 is an alkyl group, alkenyl group, or alkynyl group having 6 to 24 carbon atoms; Does not have an aliphatic group having 6 or more carbon atoms,
    (H2) In the formula (12), W 121 is —NR 62 —, —CR 63 R 64 — or> C═CR 65 R 66 , and R 62 to R 66 are alkyl having 6 to 24 carbon atoms. A group, an alkenyl group or an alkynyl group, and no other aliphatic group having 6 or more carbon atoms.
  6.  前記化合物が、下記式(13)~(17)のいずれかで表される、請求項1~5のいずれか1項に記載の有機半導体デバイス。
    Figure JPOXMLDOC01-appb-C000004
     式(13)中、X131、X132、Y131、L131及びR131は、それぞれ前記式(2)中のX21、X22、Y21、L21及びR21と同義である。但し、X131とX132の両方が硫黄原子の場合、Y131は-C(-L133-R133)=である。L133及びR133は、それぞれ式(2)中のY21におけるL22及びR23と同義である。X133、X134、Y132、L132及びR132は、それぞれ前記式(5)中のX51、X52、Y51、L51及びR51と同義である。pは前記式(1)のpと同義である。
     式(14)中、X141、X142、Y141、L141及びR141は、それぞれ前記式(2)中のX21、X22、Y21、L21及びR21と同義である。但し、X141とX142の両方が硫黄原子の場合、Y141は-C(-L142-R142)=である。L142及びR142は、それぞれ式(2)中のY21におけるL22及びR23と同義である。X143及びY142~Y145は、それぞれ式(7)中のX71及びY71~Y74と同義である。pは前記式(1)のpと同義である。
     式(15)中、X151、X152、Y151、L151及びR151は、それぞれ前記式(2)中のX21、X22、Y21、L21及びR21と同義である。但し、X151とX152の両方が硫黄原子の場合、Y151は-C(-L152-R152)=である。L152及びR152は、それぞれ式(2)中のY21におけるL22及びR23と同義である。X153、W151、Z151及びZ152は、それぞれ前記式(6)中のX61、W61、Z61及びZ62と同義である。pは前記式(1)のpと同義である。
     式(16)中、X161、X162、Y161、L161及びR161は、それぞれ前記式(2)中のX21、X22、Y21、L21及びR21と同義である。但し、X161とX162の両方が硫黄原子の場合、Y161は-C(-L163-R163)=である。L163及びR163は、それぞれ式(2)中のY21におけるL22及びR23と同義である。X163、Y162、Y163、Y164及びY165は、それぞれ前記式(8)中のX81、Y81、Y82、Y83及びY84と同義である。pは前記式(1)のpと同義である。
     式(17)中、X171、X172、Y171、L171及びR171は、それぞれ前記式(2)中のX21、X22、Y21、L21及びR21と同義である。但し、X171とX172の両方が硫黄原子の場合、Y171は-C(-L172-R172)=である。L172及びR172は、それぞれ式(2)中のY21におけるL22及びR23と同義である。Y172、Y173及びW171は、それぞれ前記式(9)中のY91、Y92及びW91と同義である。pは前記式(1)のpと同義である。
     式(13)~(17)の各式中、単結合で連結した2つの側鎖方向縮環構造の縮合芳香族環は、いずれもアルキル基、アルケニル基及びアルキニル基から選ばれる少なくとも1つの基を有する。
    The organic semiconductor device according to any one of claims 1 to 5, wherein the compound is represented by any one of the following formulas (13) to (17).
    Figure JPOXMLDOC01-appb-C000004
    In formula (13), X 131 , X 132 , Y 131 , L 131 and R 131 have the same meanings as X 21 , X 22 , Y 21 , L 21 and R 21 in formula (2), respectively. However, when both X 131 and X 132 are sulfur atoms, Y 131 is —C (—L 133 —R 133 ) =. L 133 and R 133 are synonymous with L 22 and R 23 in Y 21 in the formula (2), respectively. X 133 , X 134 , Y 132 , L 132 and R 132 have the same meanings as X 51 , X 52 , Y 51 , L 51 and R 51 in the formula (5), respectively. p has the same meaning as p in the formula (1).
    In formula (14), X 141 , X 142 , Y 141 , L 141 and R 141 have the same meanings as X 21 , X 22 , Y 21 , L 21 and R 21 in formula (2), respectively. However, when both X 141 and X 142 are sulfur atoms, Y 141 is -C (-L 142 -R 142 ) =. L 142 and R 142 are synonymous with L 22 and R 23 in Y 21 in Formula (2), respectively. X 143 and Y 142 to Y 145 have the same meanings as X 71 and Y 71 to Y 74 in formula (7), respectively. p has the same meaning as p in the formula (1).
    In formula (15), X 151 , X 152 , Y 151 , L 151 and R 151 have the same meanings as X 21 , X 22 , Y 21 , L 21 and R 21 in formula (2), respectively. However, when both X 151 and X 152 are sulfur atoms, Y 151 is -C (-L 152 -R 152 ) =. L 152 and R 152 are synonymous with L 22 and R 23 in Y 21 in Formula (2), respectively. X 153, W 151, Z 151 and Z 152 are each synonymous with X 61, W 61, Z 61 and Z 62 in the formula (6) in. p has the same meaning as p in the formula (1).
    In the formula (16), X 161 , X 162 , Y 161 , L 161 and R 161 are respectively synonymous with X 21 , X 22 , Y 21 , L 21 and R 21 in the formula (2). However, when both X 161 and X 162 are sulfur atoms, Y 161 is —C (—L 163 —R 163 ) =. L 163 and R 163 have the same meanings as L 22 and R 23 in Y 21 in formula (2), respectively. X 163 , Y 162 , Y 163 , Y 164 and Y 165 have the same meanings as X 81 , Y 81 , Y 82 , Y 83 and Y 84 in the formula (8), respectively. p has the same meaning as p in the formula (1).
    In the formula (17), X 171 , X 172 , Y 171 , L 171 and R 171 have the same meaning as X 21 , X 22 , Y 21 , L 21 and R 21 in the formula (2), respectively. However, when both X 171 and X 172 are sulfur atoms, Y 171 is -C (-L 172 -R 172 ) =. L 172 and R 172 have the same meanings as L 22 and R 23 in Y 21 in formula (2), respectively. Y 172 , Y 173 and W 171 have the same meanings as Y 91 , Y 92 and W 91 in the formula (9), respectively. p has the same meaning as p in the formula (1).
    In each of the formulas (13) to (17), the fused aromatic ring having two condensed rings in the side chain direction linked by a single bond is at least one group selected from an alkyl group, an alkenyl group and an alkynyl group. Have
  7.  前記ドナー性構造単位及び前記アクセプター性構造単位が有する前記アルキル基、アルケニル基及びアルキニル基から選ばれる少なくとも1つの基の炭素数が6~24である、請求項1~6のいずれか1項に記載の有機半導体デバイス。 The carbon number of at least one group selected from the alkyl group, alkenyl group, and alkynyl group of the donor structural unit and the acceptor structural unit is 6 to 24. The organic semiconductor device described.
  8.  下記(a)~(e)を満たす、請求項6に記載の有機半導体デバイス:
    (a)前記式(13)において、R131及びR132が炭素数6~24のアルキル基、アルケニル基又はアルキニル基であり、他に炭素数6以上の脂肪族基を有さない、
    (b)前記式(14)において、Y143及びY144の少なくとも1つが前記-(C-L71-R72)=であって、R141及びR72が炭素数6~24のアルキル基、アルケニル基又はアルキニル基であり、他に炭素数6以上の脂肪族基を有さない、
    (c)前記式(15)において、W151が-NR153-、CR154155-、又は>C=CR156157であって、R151及びR153~R157が炭素数6~24のアルキル基、アルケニル基又はアルキニル基であり、他に炭素数6以上の脂肪族基を有さない、
    (d)前記式(16)において、Y164が前記-(C-L81-R82)=であって、R161及びR82が炭素数6~24のアルキル基、アルケニル基又はアルキニル基であり、他に炭素数6以上の脂肪族基を有さない、
    (e)前記式(17)において、W171が-NR173又は-CR174175-であって、R171及びR173~R175が炭素数6~24のアルキル基、アルケニル基又はアルキニル基であり、他に炭素数6以上の脂肪族基を有さない。
    The organic semiconductor device according to claim 6, which satisfies the following (a) to (e):
    (A) In the formula (13), R 131 and R 132 are an alkyl group, an alkenyl group, or an alkynyl group having 6 to 24 carbon atoms, and no other aliphatic group having 6 or more carbon atoms.
    (B) In the formula (14), at least one of Y 143 and Y 144 is the above-(CL 71 -R 72 ) =, and R 141 and R 72 are alkyl groups having 6 to 24 carbon atoms, An alkenyl group or an alkynyl group, which has no other aliphatic group having 6 or more carbon atoms,
    (C) In the formula (15), W 151 is —NR 153 —, CR 154 R 155 —, or> C = CR 156 R 157 , and R 151 and R 153 to R 157 have 6 to 24 carbon atoms. An alkyl group, an alkenyl group or an alkynyl group, and having no other aliphatic group having 6 or more carbon atoms,
    (D) In the formula (16), Y 164 is — (CL 81 —R 82 ) =, and R 161 and R 82 are alkyl groups, alkenyl groups, or alkynyl groups having 6 to 24 carbon atoms. There is no other aliphatic group having 6 or more carbon atoms,
    (E) In the above formula (17), W 171 is —NR 173 or —CR 174 R 175 —, and R 171 and R 173 to R 175 are an alkyl group, alkenyl group or alkynyl group having 6 to 24 carbon atoms. And no other aliphatic groups having 6 or more carbon atoms.
  9.  前記化合物の重量平均分子量が5000~1000000である、請求項1~8のいずれか1項に記載の有機半導体デバイス。 The organic semiconductor device according to any one of claims 1 to 8, wherein the compound has a weight average molecular weight of 5,000 to 1,000,000.
  10.  前記有機半導体デバイスが有機薄膜トランジスタである、請求項1~9のいずれか1項に記載の有機半導体デバイス。 The organic semiconductor device according to any one of claims 1 to 9, wherein the organic semiconductor device is an organic thin film transistor.
  11.  前記有機半導体デバイスが有機光電変換デバイスである、請求項1~9のいずれか1項に記載の有機半導体デバイス。 The organic semiconductor device according to any one of claims 1 to 9, wherein the organic semiconductor device is an organic photoelectric conversion device.
  12.  前記化合物を含む前記半導体層がn型半導体を含む、請求項11に記載の有機半導体デバイス。 The organic semiconductor device according to claim 11, wherein the semiconductor layer containing the compound contains an n-type semiconductor.
  13.  前記化合物を含む前記半導体層が、前記化合物とn型半導体との混合層からなる、請求項12に記載の有機半導体デバイス。 The organic semiconductor device according to claim 12, wherein the semiconductor layer containing the compound is a mixed layer of the compound and an n-type semiconductor.
  14.  前記有機半導体デバイスが熱電変換デバイスである、請求項1~9のいずれか1項に記載の有機半導体デバイス。 The organic semiconductor device according to any one of claims 1 to 9, wherein the organic semiconductor device is a thermoelectric conversion device.
  15.  下記式(1)で表される化合物。
    Figure JPOXMLDOC01-appb-C000005
     式(1)中、Dは式(2)又は式(3)で表されるドナー性構造単位を示す。Aは側鎖方向縮環構造の芳香族環からなるアクセプター性構造単位を示す。S及びSはエテニレン、エチニレン、アリーレン基、ヘテロアリーレン基、アゾ基、又は-C=N-を示す。l及びnは1~4の整数を示し、m1及びm2は0~2の整数を示す。pは2~2000の整数を示す。但し、D及びAはアルキル基、アルケニル基及びアルキニル基から選ばれる少なくとも1つの基を有する。
     式(2)中、X21及びX22は硫黄原子、酸素原子、セレン原子又は-NR22-を示し、Y21は窒素原子又は-C(-L22-R23)=を示す。但し、X21及びX22の両方が硫黄原子の場合、Y21は-C(-L22-R23)=である。L21及びL22は、単結合、-O-、-S-、-NR-、-Si(R-、-C(=O)O-、-C(=S)O-、-C(=O)S-、-SC(=O)-、-OC(=O)-、-OC(=S)-、-C(=O)-、-C(=S)-、-C(=O)NR-、-NRC(=O)-、-S(=O)-、-S(=O)-、-S(=O)O-、-OS(=O)-、-S(=O)NR-、-NRS(=O)-、アリーレン基、ヘテロアリーレン基、アルケニレン基もしくはアルキニレン基であるか、又は、アリーレン基、ヘテロアリーレン基、アルケニレン基、アルキニレン基、カルボニル基、及びアシルオキシ基から選ばれる2以上の基を組み合わせてなる基である。R21~R23は水素原子又は一価の置換基を示す。Rは水素原子、アルキル基、アルケニル基、アルキニル基、アリール基、又はヘテロアリール基を示す。
     式(3)中、X31は硫黄原子、酸素原子、セレン原子又は-NR31-を示す。Y31~Y34は窒素原子又は-C(-L31-R32)=を示す。Y31及びY34のL31はL22と、Y31及びY34のR32はR23と同義である。Y32及びY33のL31はL21と、Y32及びY33のR32はR21と同義である。R31は前記R22と同義である。
     式(1)~(3)中*は連結部位を示す。
    A compound represented by the following formula (1).
    Figure JPOXMLDOC01-appb-C000005
    In formula (1), D represents a donor structural unit represented by formula (2) or formula (3). A represents an acceptor structural unit composed of an aromatic ring having a side-chain direction condensed ring structure. S 1 and S 2 represent ethenylene, ethynylene, arylene group, heteroarylene group, azo group, or —C═N—. l and n are integers of 1 to 4, and m1 and m2 are integers of 0 to 2. p represents an integer of 2 to 2000. However, D and A have at least one group selected from an alkyl group, an alkenyl group, and an alkynyl group.
    In the formula (2), X 21 and X 22 represent a sulfur atom, an oxygen atom, a selenium atom or —NR 22 —, and Y 21 represents a nitrogen atom or —C (—L 22 —R 23 ) ═. However, when both X 21 and X 22 are sulfur atoms, Y 21 is —C (—L 22 —R 23 ) =. L 21 and L 22 are a single bond, —O—, —S—, —NR 5 —, —Si (R 5 ) 2 —, —C (═O) O—, —C (═S) O—, -C (= O) S-, -SC (= O)-, -OC (= O)-, -OC (= S)-, -C (= O)-, -C (= S)-,- C (═O) NR 5 —, —NR 5 C (═O) —, —S (═O) —, —S (═O) 2 —, —S (═O) 2 O—, —OS (= O) 2 —, —S (═O) 2 NR 5 —, —NR 5 S (═O) 2 —, an arylene group, a heteroarylene group, an alkenylene group or an alkynylene group, or an arylene group, a heteroarylene group A group formed by combining two or more groups selected from a group, an alkenylene group, an alkynylene group, a carbonyl group, and an acyloxy group. R 21 to R 23 represent a hydrogen atom or a monovalent substituent. R 5 represents a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, an aryl group, or a heteroaryl group.
    In the formula (3), X 31 represents a sulfur atom, an oxygen atom, a selenium atom or —NR 31 —. Y 31 to Y 34 represent a nitrogen atom or —C (—L 31 —R 32 ) ═. L 31 of Y 31 and Y 34 has the same meaning as L 22, and R 32 of Y 31 and Y 34 has the same meaning as R 23 . L 31 of Y 32 and Y 33 has the same meaning as L 21, and R 32 of Y 32 and Y 33 has the same meaning as R 21 . R 31 has the same meaning as R 22 described above.
    In formulas (1) to (3), * represents a linking site.
  16.  請求項15に記載の化合物と有機溶媒とを含む組成物。 A composition comprising the compound according to claim 15 and an organic solvent.
  17.  有機半導体デバイスの半導体層の形成に用いる、請求項16に記載の組成物。 The composition according to claim 16, which is used for forming a semiconductor layer of an organic semiconductor device.
  18.  請求項16又は17に記載の組成物を用いて形成された塗布膜。 A coating film formed using the composition according to claim 16 or 17.
PCT/JP2014/072052 2013-08-30 2014-08-22 Organic semiconductor device, as well as compound, composition, and coating film for same WO2015029910A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-179321 2013-08-30
JP2013179321A JP6085236B2 (en) 2013-08-30 2013-08-30 Organic semiconductor device, compound used for the same, composition and coating film

Publications (1)

Publication Number Publication Date
WO2015029910A1 true WO2015029910A1 (en) 2015-03-05

Family

ID=52586469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072052 WO2015029910A1 (en) 2013-08-30 2014-08-22 Organic semiconductor device, as well as compound, composition, and coating film for same

Country Status (2)

Country Link
JP (1) JP6085236B2 (en)
WO (1) WO2015029910A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016148169A1 (en) * 2015-03-16 2016-09-22 富士フイルム株式会社 Organic semiconductor element and method for producing same, compound, organic semiconductor composition and organic semiconductor film and method for producing same
JPWO2015129877A1 (en) * 2014-02-28 2017-03-30 国立大学法人 奈良先端科学技術大学院大学 Thermoelectric conversion material and thermoelectric conversion element
US20180175299A1 (en) * 2015-09-02 2018-06-21 Fujifilm Corporation Organic thin film transistor, method of manufacturing organic thin film transistor, organic semiconductor composition, organic semiconductor film, and method of manufacturing organic semiconductor film

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016185858A1 (en) * 2015-05-19 2016-11-24 ソニー株式会社 Imaging element, multilayer imaging element and imaging device
JP6754156B2 (en) * 2015-06-15 2020-09-09 ソニーセミコンダクタソリューションズ株式会社 Manufacturing methods for solid-state image sensors and solid-state image sensors, photoelectric conversion elements, image pickup devices, electronic devices, and photoelectric conversion elements.
WO2017006703A1 (en) * 2015-07-07 2017-01-12 富士フイルム株式会社 Organic semiconductor element, compound, organic semiconductor composition, and organic semiconductor film and method for producing same
JP6629866B2 (en) * 2015-09-02 2020-01-15 富士フイルム株式会社 Organic thin film transistor, method of manufacturing organic thin film transistor, organic semiconductor composition, organic semiconductor film, and method of manufacturing organic semiconductor film
JP6573983B2 (en) * 2015-09-30 2019-09-11 富士フイルム株式会社 Composition for forming organic semiconductor film, compound, organic semiconductor film, organic semiconductor element
EP3379590A4 (en) * 2015-11-20 2018-12-05 Fujifilm Corporation Organic semiconductor composition, organic semiconductor film, organic thin film transistor and method for manufacturing organic thin film transistor
JP6629643B2 (en) * 2016-03-08 2020-01-15 公立大学法人山陽小野田市立山口東京理科大学 Thermoelectric conversion element manufacturing method and thermoelectric conversion element
CN108780844B (en) * 2016-03-16 2022-04-29 富士胶片株式会社 Organic semiconductor composition, method for manufacturing organic thin film transistor, and organic thin film transistor
CN110317321B (en) * 2019-06-28 2020-09-01 东莞理工学院 Quinoid conjugated polymer and preparation method and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011184635A (en) * 2010-03-10 2011-09-22 Kuraray Co Ltd Pi ELECTRON-BASED CONJUGATED POLYMER AND MANUFACTURING METHOD THEREFOR
CN102234365A (en) * 2010-04-27 2011-11-09 海洋王照明科技股份有限公司 Anthracene and benzothiadiazole copolymer, and preparation method and application thereof
JP2012233072A (en) * 2011-04-28 2012-11-29 Mitsubishi Chemicals Corp Novel copolymer, organic semiconductor material, organic electronic device comprising the same, and solar cell module
JP2012241016A (en) * 2011-05-13 2012-12-10 Mitsubishi Chemicals Corp Copolymer, organic semiconductor material, and organic electronic device, photoelectric transducer, and solar cell module using the organic semiconductor material
WO2013102035A1 (en) * 2011-12-30 2013-07-04 University Of Washington Thienothiadiazole based polymer semiconductors and uses in electronics and optoelectronics
JP2013199590A (en) * 2012-03-26 2013-10-03 Toray Ind Inc Electron-donating organic material, material for photovoltaic element using the same, and photovoltaic element

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011184635A (en) * 2010-03-10 2011-09-22 Kuraray Co Ltd Pi ELECTRON-BASED CONJUGATED POLYMER AND MANUFACTURING METHOD THEREFOR
CN102234365A (en) * 2010-04-27 2011-11-09 海洋王照明科技股份有限公司 Anthracene and benzothiadiazole copolymer, and preparation method and application thereof
JP2012233072A (en) * 2011-04-28 2012-11-29 Mitsubishi Chemicals Corp Novel copolymer, organic semiconductor material, organic electronic device comprising the same, and solar cell module
JP2012241016A (en) * 2011-05-13 2012-12-10 Mitsubishi Chemicals Corp Copolymer, organic semiconductor material, and organic electronic device, photoelectric transducer, and solar cell module using the organic semiconductor material
WO2013102035A1 (en) * 2011-12-30 2013-07-04 University Of Washington Thienothiadiazole based polymer semiconductors and uses in electronics and optoelectronics
JP2013199590A (en) * 2012-03-26 2013-10-03 Toray Ind Inc Electron-donating organic material, material for photovoltaic element using the same, and photovoltaic element

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NICOLAS BERUBE ET AL.: "Low Band Gap Polymers Design Approach Based on a Mix of Aromatic and Quinoid Structures", MACROMOLECULES, vol. 46, 21 August 2013 (2013-08-21), pages 6873 - 6880 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015129877A1 (en) * 2014-02-28 2017-03-30 国立大学法人 奈良先端科学技術大学院大学 Thermoelectric conversion material and thermoelectric conversion element
WO2016148169A1 (en) * 2015-03-16 2016-09-22 富士フイルム株式会社 Organic semiconductor element and method for producing same, compound, organic semiconductor composition and organic semiconductor film and method for producing same
JPWO2016148169A1 (en) * 2015-03-16 2017-06-29 富士フイルム株式会社 ORGANIC SEMICONDUCTOR DEVICE AND ITS MANUFACTURING METHOD, COMPOUND, ORGANIC SEMICONDUCTOR COMPOSITION, AND ORGANIC SEMICONDUCTOR FILM AND ITS MANUFACTURING METHOD
US10312447B2 (en) 2015-03-16 2019-06-04 Fujifilm Corporation Organic semiconductor element, manufacturing method thereof, compound, organic semiconductor composition, organic semiconductor film, and manufacturing method thereof
US20180175299A1 (en) * 2015-09-02 2018-06-21 Fujifilm Corporation Organic thin film transistor, method of manufacturing organic thin film transistor, organic semiconductor composition, organic semiconductor film, and method of manufacturing organic semiconductor film

Also Published As

Publication number Publication date
JP6085236B2 (en) 2017-02-22
JP2015050231A (en) 2015-03-16

Similar Documents

Publication Publication Date Title
JP6085236B2 (en) Organic semiconductor device, compound used for the same, composition and coating film
Wang et al. Significant improvement of unipolar n-type transistor performances by manipulating the coplanar backbone conformation of electron-deficient polymers via hydrogen bonding
Feng et al. N-type organic and polymeric semiconductors based on bithiophene imide derivatives
Sharma et al. Improved all-polymer solar cell performance of n-type naphthalene diimide–bithiophene P (NDI2OD-T2) copolymer by incorporation of perylene diimide as coacceptor
Ahmed et al. Design of new electron acceptor materials for organic photovoltaics: synthesis, electron transport, photophysics, and photovoltaic properties of oligothiophene-functionalized naphthalene diimides
Tsai et al. New two-dimensional thiophene− acceptor conjugated copolymers for field effect transistor and photovoltaic cell applications
Chen et al. Low band gap donor–acceptor conjugated polymers with indanone-condensed thiadiazolo [3, 4-g] quinoxaline acceptors
Vegiraju et al. Solution processable pseudo n-thienoacenes via intramolecular S··· S lock for high performance organic field effect transistors
WO2014042090A1 (en) Conjugated polymer, and electron-donating organic material, photovoltaic element material and photovoltaic element comprising same
JP5848280B2 (en) Organic thin film solar cell, composition and monomer used therefor, and method for producing film
Liang et al. Donor–acceptor conjugates-functionalized zinc phthalocyanine: Towards broad absorption and application in organic solar cells
EP2857429A1 (en) Copolymer, organic semiconductor material, organic electrical device, and solar cell module
JP6904252B2 (en) Copolymers, photoelectric conversion elements, solar cells and solar cell modules
TW202211492A (en) Photoelectric conversion element and method for manufacturing same
Kafourou et al. Near-IR absorbing molecular semiconductors incorporating cyanated benzothiadiazole acceptors for high-performance semitransparent n-type organic field-effect transistors
JP5853805B2 (en) Conjugated polymer compound and organic photoelectric conversion device using the same
Kim et al. Effect of substituents of thienylene–vinylene–thienylene-based conjugated polymer donors on the performance of fullerene and nonfullerene solar cells
JP6088954B2 (en) ORGANIC PHOTOELECTRIC CONVERSION ELEMENT, ORGANIC THIN FILM SOLAR CELL, COMPOSITION USED FOR THE SAME, COATING FILM AND COMPOUND USEFUL FOR THIS
Jiang et al. Impact of regioregularity on thin-film transistor and photovoltaic cell performances of pentacene-containing polymers
Wang et al. A novel D–π–A small molecule with N-heteroacene as acceptor moiety for photovoltaic application
Wang et al. Ring fusion of thiophene–vinylene–thiophene (TVT) benefits both fullerene and non-fullerene polymer solar cells
EP2905277A1 (en) 1&#39;,2&#39;,5&#39;-trisubstituted Fulleropyrrolidines
JP2013237813A (en) π-ELECTRON CONJUGATED POLYMER, AND ORGANIC SEMICONDUCTOR DEVICE USING THE SAME
WO2020048939A1 (en) Organic semiconducting compounds
Gopalakrishnan et al. Conjugated Polymer Photovoltaic Materials: Performance and Applications of Organic Semiconductors in Photovoltaics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14839180

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14839180

Country of ref document: EP

Kind code of ref document: A1