WO2015029870A1 - Method for production of non-alkali glass - Google Patents

Method for production of non-alkali glass Download PDF

Info

Publication number
WO2015029870A1
WO2015029870A1 PCT/JP2014/071887 JP2014071887W WO2015029870A1 WO 2015029870 A1 WO2015029870 A1 WO 2015029870A1 JP 2014071887 W JP2014071887 W JP 2014071887W WO 2015029870 A1 WO2015029870 A1 WO 2015029870A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
less
mgo
cao
alkali
Prior art date
Application number
PCT/JP2014/071887
Other languages
French (fr)
Japanese (ja)
Inventor
博文 ▲徳▼永
和孝 小野
Original Assignee
旭硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭硝子株式会社 filed Critical 旭硝子株式会社
Priority to CN201480047420.3A priority Critical patent/CN105492395B/en
Priority to KR1020167004664A priority patent/KR20160046809A/en
Publication of WO2015029870A1 publication Critical patent/WO2015029870A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/18Stirring devices; Homogenisation
    • C03B5/183Stirring devices; Homogenisation using thermal means, e.g. for creating convection currents
    • C03B5/185Electric means
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/42Details of construction of furnace walls, e.g. to prevent corrosion; Use of materials for furnace walls
    • C03B5/43Use of materials for furnace walls, e.g. fire-bricks
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present invention relates to a method for producing alkali-free glass suitable as various display substrate glasses and photomask substrate glasses.
  • non-alkali means that the content of alkali metal oxides (Li 2 O, Na 2 O, K 2 O) is 2000 ppm or less.
  • the following characteristics have been required for various display substrate glasses, particularly those in which a metal or oxide thin film is formed on the surface.
  • alkali metal oxide When alkali metal oxide is contained, alkali metal ions diffuse into the thin film and deteriorate the film characteristics, so that the content of alkali metal oxide is extremely low. The oxide content is 2000 ppm or less.
  • the strain point When exposed to a high temperature in the thin film forming process, the strain point is high so that the deformation (thermal shrinkage) associated with glass deformation and glass structural stabilization can be minimized.
  • BHF buffered hydrofluoric acid
  • ITO various acids used for etching metal electrodes
  • ITO various acids used for etching metal electrodes
  • resistant to alkali of resist stripping solution Resistant to alkali of resist stripping solution.
  • a-Si amorphous silicon
  • p-Si polycrystalline silicon
  • a glass having a small average thermal expansion coefficient is required to increase productivity and thermal shock resistance by increasing the temperature raising / lowering rate of the heat treatment for producing a liquid crystal display.
  • Patent Document 1 discloses a glass containing 0 to 5 mol% of B 2 O 3 , but the average coefficient of thermal expansion at 50 to 300 ° C. exceeds 50 ⁇ 10 ⁇ 7 / ° C.
  • the alkali-free glass described in Patent Document 2 has a high strain point and can be molded by a float process, and is said to be suitable for applications such as a display substrate and a photomask substrate.
  • Alkali-free glass used for applications such as display substrates and photomask substrates specifically, plate glass with non-alkali glass composition is prepared so that the raw materials of each component become target components, and this is used in a melting kiln. Continuously charged, heated to a predetermined temperature and dissolved. This molten glass can be obtained by forming it into a predetermined plate thickness and cutting it after slow cooling.
  • a heating means at the time of melting the raw material it is common to heat to a predetermined temperature by a combustion flame of a burner disposed above the melting furnace, but as an additional heating means, There is a method in which a heating electrode is provided so as to be immersed in the molten glass, and the molten glass in the melting furnace is energized and heated by applying a DC voltage or an AC voltage to the heating electrode (see Patent Documents 3 and 4).
  • a heating electrode is provided so as to be immersed in the molten glass, and the molten glass in the melting furnace is energized and heated by applying a DC voltage or an AC voltage to the heating electrode.
  • Erosion of the refractory constituting the melting furnace is likely to occur particularly near the interface between the molten glass and the upper space. For this reason, the combined use of energization heating that heats only the molten glass without raising the atmospheric temperature of the upper space is effective in suppressing erosion of the refractory.
  • alkali-free glass like soda lime glass has lower alkali metal oxide content, so less alkali metal ions are present in the molten glass. And current is difficult to flow during energization heating. For this reason, there exists a possibility that an electric current may flow not only from molten glass but to the refractory which comprises a melting kiln from the heating electrode provided in the melting kiln.
  • a current flows through the refractory constituting the melting furnace, it is not possible to use all of the charged electricity for current heating of the molten glass, which is not preferable from the viewpoint of utilization efficiency of the charged electricity.
  • the electric current also flows through a metal member (for example, a metal frame) around the melting kiln and there is a risk of electric shock.
  • current heating of the refractory material may occur, and the temperature of the refractory material may rise and melt.
  • the object of the present invention is to produce an alkali-free glass that solves the above-mentioned drawbacks, has a high strain point, and has a low viscosity, particularly a low temperature T 4 at which the glass viscosity is 10 4 dPa ⁇ s, and is particularly easy to float. It is in providing a suitable method.
  • a glass raw material is prepared so as to have the following glass composition, put into a melting furnace, heated to a temperature of 1350 to 1750 ° C. to form molten glass, and then the molten glass is formed into a plate shape
  • a method for producing alkali-free glass For heating in the melting furnace, heating by a combustion flame of a burner and electric heating of the molten glass by a heating electrode arranged to be immersed in the molten glass in the melting furnace are used in combination.
  • the electrical resistivity at T 3.3 (the temperature at which the glass viscosity becomes 10 3.3 dPa ⁇ s, unit: ° C.), which is the clarification temperature of the molten glass, is Rg ( ⁇ cm), and the melting furnace at T 3.3 is Provided is a method for producing an alkali-free glass in which the glass raw material and the refractory are selected so that Rb> Rg when the electrical resistivity of the refractory to be configured is Rb ( ⁇ cm).
  • the strain point is 680 to 735 ° C.
  • the average thermal expansion coefficient at 50 to 350 ° C. is 30 ⁇ 10 ⁇ 7 to 43 ⁇ 10 ⁇ 7 / ° C.
  • the glass viscosity is A non-alkali glass having a temperature T 2 of 10 2 dPa ⁇ s of 1710 ° C. or lower and a temperature T 4 of 10 4 dPa ⁇ s of 13 10 ° C. or lower can be preferably produced.
  • the alkali-free glass produced by the method of the present invention is particularly suitable for a display substrate, a photomask substrate and the like for high strain point use, and is a glass that is particularly easy to float.
  • the heating in the melting furnace is combined with the heating by the combustion flame of the burner and the electric heating of the molten glass in the melting furnace to constitute the melting furnace at the time of high temperature heating of 1350 to 1750 ° C.
  • Erosion of refractories can be suppressed.
  • the component of a refractory melts into a molten glass, and the quality of the alkali free glass manufactured improves.
  • an electric current flows into the refractory material which comprises a melting kiln from a heating electrode.
  • the utilization efficiency of the electric quantity supplied at the time of energization heating improves.
  • FIG. 1 is a graph showing measurement results of electrical resistivity of molten glass (glass 1) and refractories (refractory 1, refractory 2) in Examples.
  • FIG. 2 is a graph showing measurement results of electrical resistivity of molten glass (glass 2) and refractory (refractory 1, refractory 2) in the examples.
  • FIG. 3 is a graph showing measurement results of electrical resistivity of molten glass (glass 3) and refractory (refractory 1, refractory 2) in the examples.
  • a glass raw material prepared so as to have the following glass composition is used.
  • the composition range of each component will be described. If the SiO 2 content is less than 63% (mol%, the same unless otherwise specified), the strain point is not sufficiently increased, the thermal expansion coefficient is increased, and the density is increased. It is preferably 64% or more, more preferably 65% or more, further preferably 66% or more, and particularly preferably 66.5% or more. In 74 percent, the solubility decreases, the temperature T 4 which is a temperature T 2 and 10 4 dPa ⁇ s glass viscosity becomes 10 2 dPa ⁇ s is increased, the liquidus temperature rises. 70% or less is preferable, 69% or less is more preferable, and 68% or less is more preferable.
  • Al 2 O 3 suppresses the phase separation property of the glass, lowers the thermal expansion coefficient, and increases the strain point. However, this effect does not appear at less than 11.5%, and the glass composition has a component that increases the thermal expansion coefficient (for example, since the ratio of BaO, SrO) becomes high, the coefficient of thermal expansion of the glass increases as a result. It is preferably 12% or more, 12.5% or more, and more preferably 13% or more. If it exceeds 16%, the solubility of the glass may be deteriorated, or the devitrification temperature may be increased. It is preferably 15% or less, more preferably 14% or less, and further preferably 13.5% or less.
  • B 2 O 3 improves the meltability of the glass, lowers the devitrification temperature, and improves the BHF resistance, but this effect is not sufficiently exhibited at 1.5% or less, and the strain point is excessive. Or become a haze problem after treatment with BHF. 2% or more is preferable, and 3% or more is more preferable. However, if it exceeds 5%, the strain point becomes low and the Young's modulus becomes small. 4.5% or less is preferable and 4% or less is more preferable.
  • MgO has the feature of increasing the Young's modulus while keeping the density low while keeping the density low in alkaline earths, and improves the solubility. However, if it is less than 5.5%, this effect appears sufficiently. Furthermore, in the glass composition, the density increases because the ratio of other alkaline earths increases. It is preferably 6% or more, more preferably 7% or more, more preferably 7.5% or more and 8% or more, and particularly preferably 8.5% or more. If it exceeds 13%, the devitrification temperature rises. It is preferably 12% or less, more preferably 11% or less, and particularly preferably 10% or less.
  • CaO has the characteristics that it does not increase the expansion in alkaline earth after MgO, and does not excessively lower the strain point, and also improves the solubility. If it is less than 1.5%, the above-described effect due to the addition of CaO is not sufficiently exhibited. It is preferably 2% or more, more preferably 3% or more, further preferably 3.5% or more, and particularly preferably 4% or more. However, if it exceeds 12%, the devitrification temperature may increase, or a large amount of phosphorus, which is an impurity in limestone (CaCO 3 ), which is a CaO raw material, may be mixed. It is preferably 10% or less, more preferably 9% or less, further preferably 8% or less, and particularly preferably 7% or less.
  • SrO improves the solubility without increasing the devitrification temperature of the glass, but if it is less than 1.5%, this effect does not appear sufficiently. 2% or more is preferable, 2.5% or more is more preferable, and 3% or more is more preferable. However, if it exceeds 9%, the expansion coefficient may increase. It is preferably 7% or less, more preferably 6% or less and 5% or less.
  • BaO is not essential, but can be contained to improve solubility. However, if the amount is too large, the expansion and density of the glass are excessively increased, so the content is made 1% or less. 0.5% or less is preferable, 0.3% or less is more preferable, 0.1% or less is further preferable, and it is particularly preferable that it is not substantially contained. “Substantially not contained” means not containing any inevitable impurities.
  • ZrO 2 may be contained up to 2% in order to lower the glass melting temperature or to promote crystal precipitation during firing. If it exceeds 2%, the glass becomes unstable or the relative dielectric constant ⁇ of the glass increases. Preferably it is 1.5% or less. 1% or less is more preferable, 0.5% or less is more preferable, and it is desirable not to contain substantially.
  • MgO / (MgO + CaO + SrO + BaO) is 0.35 or more, preferably 0.37 or more, and more preferably 0.4 or more.
  • CaO / (MgO + CaO + SrO + BaO) is 0.50 or less, preferably 0.48 or less, and more preferably 0.45 or less.
  • SrO / (MgO + CaO + SrO + BaO) is 0.50 or less, preferably 0.40 or less, more preferably 0.30 or less, more preferably 0.27 or less, and further preferably 0.25 or less.
  • Al 2 O 3 ⁇ (MgO / (MgO + CaO + SrO + BaO)) is preferably 4.3 or more because the Young's modulus can be increased. 4.5 or more is preferable, 4.7 or more is more preferable, and 5.0 or more is further more preferable.
  • an alkali metal oxide is contained in the glass raw material in an amount of 200 to 2000 ppm (mole) in order to heat and heat the molten glass in the melting furnace.
  • Alkali-free glass has lower alkali metal oxide content than alkali glass such as soda lime glass, and less alkali metal ions are present in molten glass. Not suitable.
  • the electrical resistivity of the molten glass decreases. As a result, the electrical conductivity of the molten glass is improved, and current heating is possible.
  • the content of the alkali metal oxide when the content of the alkali metal oxide is increased, alkali metal ions diffuse into the thin film and deteriorate the film characteristics. This causes a problem when used as a substrate glass for various displays.
  • the content of the metal oxide is 2000 ppm or less, preferably 1500 ppm or less, more preferably 1300 ppm or less, and even more preferably 1000 ppm or less, such a problem does not occur.
  • the glass raw material used in the present invention preferably contains an alkali metal oxide of 1500 ppm or less, more preferably 1300 ppm or less, further preferably 1000 ppm or less, more preferably 700 ppm or less, and more preferably 200 to 500 ppm. preferable.
  • examples of the alkali metal oxide include Na 2 O, K 2 O, and Li 2 O.
  • the glass raw material does not substantially contain P 2 O 5 . Furthermore, in order to facilitate recycling of the glass, it is preferable that the glass raw material does not substantially contain PbO, As 2 O 3 , or Sb 2 O 3 .
  • the glass raw material contains ZnO, Fe 2 O 3 , SO 3 , F, Cl, SnO 2 in a total amount of 1% or less, preferably 0.5% or less. it can. It is preferable that ZnO is not substantially contained.
  • the glass raw material prepared to have the above composition is continuously charged into a melting furnace and melted by heating to 1350 to 1750 ° C.
  • heating in the melting furnace heating by a burner flame and electric heating of the molten glass in the melting furnace are used in combination.
  • the burner is disposed above the melting kiln, and is heated by a combustion flame of fossil fuel, specifically, a liquid fuel such as heavy oil and kerosene, or a gaseous fuel such as LPG.
  • a combustion flame of fossil fuel specifically, a liquid fuel such as heavy oil and kerosene, or a gaseous fuel such as LPG.
  • the fuel can be mixed and burned with oxygen gas, or the fuel can be mixed and burned with oxygen gas and air.
  • the electric heating of the molten glass in the melting furnace is performed by applying a DC voltage or an AC voltage to a heating electrode provided on the bottom or side of the melting furnace so as to be immersed in the molten glass in the melting furnace.
  • a DC voltage or an AC voltage to a heating electrode provided on the bottom or side of the melting furnace so as to be immersed in the molten glass in the melting furnace.
  • the material used for the heating electrode is required to be excellent in heat resistance and corrosion resistance to the molten glass because it is immersed in the molten glass in the melting furnace.
  • the material satisfying these include rhodium, iridium, osmium, hafnium, molybdenum, tungsten, platinum, and alloys thereof.
  • the heat amount T (J / h) by current heating when the total amount of heating by the combustion flame of the burner and current heating of the molten glass in the melting furnace is T 0 (J / h), the heat amount T (J / h) by current heating.
  • T satisfies the following formula. 0.10 ⁇ T 0 ⁇ T ⁇ 0.40 ⁇ T 0
  • T is smaller than 0.10 ⁇ T 0 , there is a possibility that the effect by the combined use of the electrically heated heating of the molten glass, that is, the effect of suppressing the erosion of the refractory constituting the melting kiln may be insufficient.
  • T is larger than 0.40 ⁇ T 0 , the temperature at the bottom of the melting furnace rises and erosion of the refractory may proceed.
  • the melting furnace is heated to a high temperature of 1300 to 1700 ° C. or 1350 to 1750 ° C. when the glass raw material is melted, a refractory is used as a constituent material.
  • the refractory constituting the melting furnace is required to have corrosion resistance, mechanical strength, and oxidation resistance against molten glass.
  • a zirconia refractory containing 90% by mass or more of ZrO 2 has been preferably used since it has excellent corrosion resistance against molten glass.
  • the above zirconia refractory contains alkali components (Na 2 O and K 2 O) in a total amount of 0.12% by mass or more as components for reducing the viscosity of the matrix glass.
  • alkali components Na 2 O and K 2 O
  • the above zirconia refractory contains alkali components (Na 2 O and K 2 O) in a total amount of 0.12% by mass or more as components for reducing the viscosity of the matrix glass.
  • the electrical resistivity at T 3.3 (the temperature at which the glass viscosity becomes 10 3.3 dPa ⁇ s, unit: ° C.), which is the glass refining temperature, is Rg ( ⁇ cm), and the melting at T 3.3
  • the electrical resistivity of the refractory constituting the kiln is Rb ( ⁇ cm)
  • the glass raw material and the refractory constituting the melting kiln are selected so that Rb> Rg.
  • the electrical resistivity of the molten glass and the refractory decreases as the temperature increases, but the decrease in the electrical resistivity with respect to the temperature increase is larger in the molten glass than in the refractory.
  • the electrical resistivity at T 3.3 is Rb> Rg, a higher temperature range (for example, T 2 which is the melting temperature of glass (temperature at which the glass viscosity becomes 10 2 dPa ⁇ s). , Unit: ° C)), the refractory always has a higher electrical resistivity than the molten glass. Therefore, if the glass raw material and the refractory constituting the melting kiln are selected so that Rb> Rg at T 3.3 , the current flows from the heating electrode to the refractory constituting the melting kiln during energization heating. Flow is suppressed.
  • the ratio of Rb to Rg preferably satisfies Rb / Rg> 1.00, more preferably satisfies Rb / Rg> 1.05, and Rb / Rg> It is more preferable to satisfy 1.10.
  • Rg can be adjusted by changing the content of the alkali metal oxide within the range of 200 to 2000 ppm. Rg becomes low, so that there is much content of an alkali metal oxide. Rg can also be adjusted by changing T3.3 of the alkali-free glass to be produced. The lower T 3.3 is, the lower Rg is.
  • Rb can be adjusted by changing the content of alkali components (Na 2 O, K 2 O). Moreover, Rb can be adjusted by changing the ratio of K 2 O in the alkali component. Rb becomes higher as the content of alkali components (Na 2 O, K 2 O) is lower. Rb increases as the proportion of K 2 O in the alkali component increases.
  • refractories satisfying Rb> Rg are ZrO 2 85 to 91%, SiO 2 7.0 to 11.2%, and Al 2 O 3 0% by mass. 0.85-3.0%, P 2 O 5 0.05-1.0%, B 2 O 3 0.05-1.0%, and the total amount of K 2 O and Na 2 O is 0.8.
  • examples thereof include high zirconia molten cast refractories containing 01 to 0.12% and containing K 2 O in an amount of Na 2 O or more.
  • the high zirconia molten cast refractory having the above composition is a refractory consisting mainly of zirconia (ZrO 2 ) of 85 to 91% of the chemical component, and has a badelite crystal as a main constituent, It exhibits excellent corrosion resistance, has a low alkali component content, and mainly contains K 2 O having a large ionic radius and a small mobility as an alkali component, and therefore has an electrical resistivity in a temperature range of 1350 to 1750 ° C. large.
  • the composition range of each component will be described.
  • the higher the content of ZrO 2 in the refractory the better the corrosion resistance to the molten glass, so 85% or more, preferably 88% or more.
  • the content of ZrO 2 is more than 91%, the amount of matrix glass is relatively small and the volume change associated with the transition (ie transformation) of the baderite crystal cannot be absorbed, and the heat cycle resistance deteriorates. 91% or less.
  • SiO 2 is an essential component for forming a matrix glass that relieves stress generated in the refractory, and in order to obtain a molten cast refractory having a practical size without cracks, it is necessary to contain 7.0% or more. is there. However, if the content of the SiO 2 component is more than 11.2%, the corrosion resistance to the molten glass becomes small, so it is 11.2% or less, preferably 10.0% or less.
  • Al 2 O 3 plays the role of adjusting the relationship between the temperature and viscosity of the matrix glass, and also shows the effect of reducing the content of ZrO 2 in the matrix glass.
  • the content of ZrO 2 in the matrix glass is small, the precipitation of zircon (ZrO 2 ⁇ SiO 2 ) crystals found in conventional refractories in the matrix glass is suppressed, and the cumulative tendency of residual volume expansion is significantly reduced. .
  • the content of Al 2 O 3 in the refractory is set to 0.85% or more, preferably 1.0% or more.
  • Al 2 O 3 is used so that crystals such as mullite precipitate in the matrix glass and the matrix glass is not altered and cracks are not generated in the refractory.
  • the content of is set to 3.0% or less.
  • the content of Al 2 O 3 in the high zirconia molten cast refractory is 0.85 to 3.0%, preferably 1.0 to 3.0%.
  • heat cycle resistance that is, volume increase due to accumulation of residual volume expansion is suppressed within a practically no problem range.
  • chip-off phenomenon is remarkably improved.
  • B 2 O 3 and P 2 O 5 are included in addition to a small amount of alkali component, so that the viscosity of the matrix glass at 800 to 1250 ° C. is adjusted to an appropriate level even if the alkali component content is small. Therefore, even when the thermal cycle that passes through the transition temperature range of the badelite crystal is repeatedly used during use, the residual volume expansion becomes small, and thus there is no tendency to cause cracks due to the accumulation of the residual volume expansion.
  • B 2 O 3 is contained mainly in the matrix glass with P 2 O 5, as well as soften the matrix glass in cooperation with the P 2 O 5 in place of the alkali components, the refractory at the temperature range of 1350 ⁇ 1750 ° C. It is a component that does not reduce the electrical resistivity.
  • the content of B 2 O 3 is 0.05% or more because the amount of the matrix glass in the high zirconia molten cast refractory is small, an effect of adjusting the viscosity of the matrix glass is exhibited. However, if the content of B 2 O 3 is too large, a dense melt-cast refractory cannot be cast. Therefore, the content of B 2 O 3 is 0.05 to 1.0%, preferably 0.10 to 1. 0%.
  • P 2 O 5 is mostly contained in the matrix glass together with B 2 O 3 and the alkali component, and the volume change accompanying the transition of the badelite crystal is adjusted (soft) by adjusting the viscosity of the matrix glass in the transition temperature range of the badelite crystal. Prevents the occurrence of cracks due to the stress caused by. Further, P 2 O 5 and B 2 O 3 is, when the refractory is used in a glass melting furnace, which is no possibility of components for coloring glass even if the leach into the glass. Furthermore, when P 2 O 5 is added to the refractory raw material, the refractory raw material is easily melted, so that there is an advantage that the amount of electric power required for casting the refractory can be reduced.
  • the amount of matrix glass in the high zirconia molten cast refractory is small, even if the content of P 2 O 5 in the refractory is small, the content of P 2 O 5 in the matrix glass is relatively In particular, the effect of adjusting the viscosity of the matrix glass can be obtained if 0.05% or more of P 2 O 5 is contained in the refractory. Further, if the content of P 2 O 5 is more than 1.0%, the property of the matrix glass changes and tends to promote the residual volume expansion of the refractory and the generation of cracks accompanying the accumulation.
  • the content of P 2 O 5 in the refractory suitable for adjusting the viscosity is 0.05 to 1.0%, preferably 0.1 to 1.0%.
  • the content of the alkali component consisting of K 2 O and Na 2 O is 0.12 in terms of the total amount as an oxide so that the electrical resistivity of the refractory in the temperature range of 1350 to 1750 ° C. has a sufficiently large value. %, And 50% or more, preferably 70% or more of the alkali component is K 2 O having a low ion mobility in the glass. However, if the total amount of K 2 O and Na 2 O is less than 0.01%, it becomes difficult to produce a melt-cast refractory without cracks, so the total amount of K 2 O and Na 2 O is 0.8. 01% or more.
  • the content of K 2 O is made larger than the content of Na 2 O so that a high zirconia molten cast refractory without cracks can be stably cast. It is preferable that the Na 2 O content is 0.008% or more and the K 2 O content is 0.02 to 0.10%.
  • the total content of Fe 2 O 3 and TiO 2 contained as impurities in the raw material is 0.55% or less, there is no problem of coloring in the melting furnace of the alkali-free glass having the above glass composition.
  • the total amount does not exceed 0.30%.
  • ZrO 2 is 88 to 91%
  • SiO 2 is 7.0 to 10%
  • Al 2 O 3 is 1.0 to 3.0%
  • P 2 O 5 High zirconia molten cast refractories containing 0.10 to 1.0% and B 2 O 3 containing 0.10 to 1.0% are preferred.
  • the glass composition prepared to have the above composition is continuously charged into a melting furnace, heated to 1350 to 1750 ° C. to form molten glass, and then the molten glass is formed into a plate shape by a float process.
  • alkali-free glass can be obtained. More specifically, an alkali-free glass can be obtained as a plate glass by forming it to a predetermined plate thickness by a float process, and cutting it after slow cooling.
  • the forming method for the plate glass is preferably a float method, a fusion method, a roll-out method, or a slot down draw method, and the float method is particularly preferable in consideration of productivity and enlargement of the plate glass.
  • the alkali-free glass obtained by the method of the present invention (hereinafter referred to as “the alkali-free glass of the present invention”) has a strain point of 680 to 735 ° C. and can suppress thermal shrinkage during panel production. Further, a solid phase crystallization method can be applied as a method for manufacturing a p-Si TFT.
  • the strain point is more preferably 685 ° C or higher, and further 690 ° C or higher. When the strain point is 690 ° C.
  • a high strain point for example, a display substrate or lighting substrate for organic EL having a plate thickness of 0.7 mm or less, preferably 0.5 mm or less, more preferably 0.3 mm or less. Or a thin display substrate or lighting substrate having a thickness of 0.3 mm or less, preferably 0.1 mm or less.
  • a sheet glass having a plate thickness of 0.7 mm or less, further 0.5 mm or less, further 0.3 mm or less, and further 0.1 mm or less
  • the drawing speed at the time of forming tends to increase.
  • Increases and the glass compaction heat shrinkage rate
  • compaction can be suppressed when the glass is a high strain point glass.
  • the strain point exceeds 735 ° C., the glass temperature at the time of conveying the glass after molding becomes high, which may affect the equipment life.
  • the strain point is preferably 730 ° C. or lower, and more preferably 725 ° C. or lower.
  • the alkali-free glass of the present invention has a glass transition point of preferably 750 ° C. or higher, more preferably 760 ° C. or higher, and further preferably 770 ° C. or higher.
  • the alkali-free glass of the present invention has an average coefficient of thermal expansion at 50 to 350 ° C. of 30 ⁇ 10 ⁇ 7 to 43 ⁇ 10 ⁇ 7 / ° C., has high thermal shock resistance, and has high productivity during panel production. it can.
  • the average thermal expansion coefficient at 50 to 350 ° C. is preferably 35 ⁇ 10 ⁇ 7 to 43 ⁇ 10 ⁇ 7 / ° C.
  • the alkali-free glass of the present invention has a specific gravity of preferably 2.65 or less, more preferably 2.64 or less, and further preferably 2.62 or less.
  • the alkali-free glass of the present invention has a T 2 of 1710 ° C. or less, preferably less than 1710 ° C., more preferably 1700 ° C. or less, and even more preferably 1690 ° C. or less. is there.
  • the alkali-free glass of the present invention has a T 3.3 of 1430 ° C. or less, preferably less than 1420 ° C., more preferably 1410 ° C. or less, and even more preferably 1400 ° C. or less. Easy.
  • the alkali-free glass of the present invention has a temperature T 4 at which the viscosity becomes 10 4 dPa ⁇ s is 1310 ° C. or less, preferably 1305 ° C. or less, more preferably 1300 ° C. or less, still more preferably less than 1300 ° C., 1295 ° C. or less, It is 1290 ° C. or lower and is suitable for float forming.
  • the alkali-free glass of the present invention preferably has a devitrification temperature of 1315 ° C. or lower because molding by the float method is easy.
  • T 4 temperature at which the glass viscosity is 10 4 dPa ⁇ s, unit: ° C.
  • T 4 ⁇ devitrification temperature which is a standard for float moldability and fusion moldability, is It is preferably ⁇ 20 ° C. or higher, ⁇ 10 ° C. or higher, further 0 ° C. or higher, more preferably 10 ° C. or higher, still more preferably 20 ° C. or higher, and particularly preferably 30 ° C. or higher.
  • the devitrification temperature is obtained by putting crushed glass particles in a platinum dish and performing heat treatment for 17 hours in an electric furnace controlled at a constant temperature. It is an average value of the maximum temperature at which crystals are deposited inside and the minimum temperature at which crystals are not deposited.
  • the alkali-free glass of the present invention has a Young's modulus of preferably 78 GPa or more, 79 GPa or more, 80 GPa or more, more preferably 81 GPa or more, and further preferably 82 GPa or more.
  • the alkali-free glass of the present invention preferably has a photoelastic constant of 31 nm / MPa / cm or less. Due to the birefringence of the glass substrate due to stress generated during the manufacturing process of the liquid crystal display panel and the liquid crystal display device, a phenomenon in which the black display becomes gray and the contrast of the liquid crystal display decreases may be observed. By setting the photoelastic constant to 31 nm / MPa / cm or less, this phenomenon can be suppressed small.
  • the alkali-free glass of the present invention has a photoelastic constant of 23 nm / MPa / cm or more, more preferably 25 nm / MPa / cm or more, considering the ease of securing other physical properties.
  • the photoelastic constant can be measured by a disk compression method at a measurement wavelength of 546 nm.
  • the ⁇ -OH value of the alkali-free glass can be appropriately selected according to the required characteristics of the alkali-free glass. In order to increase the strain point of the alkali-free glass, it is preferable that the ⁇ -OH value is low. For example, when the strain point is 725 ° C. or more, the ⁇ -OH value is preferably 0.3 mm ⁇ 1 or less, more preferably 0.25 mm ⁇ 1 or less, and 0.2 mm ⁇ 1 or less. More preferably.
  • the ⁇ -OH value can be adjusted by various conditions at the time of melting the raw material, for example, the amount of water in the glass raw material, the water vapor concentration in the melting kiln, the residence time of the molten glass in the melting kiln, and the like.
  • a method for adjusting the amount of water in the glass raw material a method using a hydroxide instead of an oxide as a glass raw material (for example, magnesium hydroxide (Mg (OH) 2 instead of magnesium oxide (MgO) as a magnesium source) )).
  • Mg (OH) 2 magnesium hydroxide
  • MgO magnesium oxide
  • a method for adjusting the water vapor concentration in the melting furnace there are a method in which fossil fuel is mixed with oxygen gas and burned, and a method in which it is burned with oxygen gas and air at the time of combustion in a burner.
  • the electrical resistivity of the molten glass and refractory (zirconia electrocast refractory) in the temperature range of 1300 to 1700 ° C. was measured.
  • Molten glass Glass 1, Glass 2, Glass 3
  • the electrical resistivity was measured by the method described in the following document while the molten glass thus obtained was maintained in a temperature range of 1300 to 1700 ° C.
  • Glass 1 Composition (expressed as mol% based on oxide) SiO 2 67.5 Al 2 O 3 12.7 B 2 O 3 3.5 MgO 6.2 CaO 6.5 SrO 3.6 BaO 0 ZrO 2 0 MgO + CaO + SrO + BaO 16.3 MgO / (MgO + CaO + SrO + BaO) 0.38 CaO / (MgO + CaO + SrO + BaO) 0.40 SrO / (MgO + CaO + SrO + BaO) 0.22
  • Glass 2 Composition (expressed as mol% based on oxide) SiO 2 66.9 Al 2 O 3 13.0 B 2 O 3 1.7 MgO 8.8 CaO 5.1 SrO 4.5 BaO 0 ZrO 2 0 MgO + CaO + SrO + BaO 18.4 MgO / (MgO + CaO + SrO + BaO) 0.48 CaO / (MgO + CaO + SrO + BaO) 0.28 SrO / (MgO + CaO + SrO + BaO) 0.24 [Glass 3] Composition (expressed as mol% based on oxide) SiO 2 66.8 Al 2 O 3 13.8 B 2 O 3 2.8 MgO 8.4 CaO 5.0 SrO 3.2 BaO 0 ZrO 2 0 MgO + CaO + SrO + BaO 16.6 MgO / (MgO + CaO + SrO + BaO) 0.51 CaO / (MgO + CaO + Sr
  • the Na 2 O content was added in two ways of 200 ppm and 1000 ppm based on the oxide.
  • zirconia-based electrocast refractories having the following chemical composition and mineral composition also have an electrical resistivity of “JIS C2141 for electrical insulation” in a temperature range of 700 to 1600 ° C.
  • the measurement principle of the volume resistivity (Section 14) of “Ceramic material test method” was developed at a high temperature (the sample was placed in an electric furnace and heated) and measured.
  • the measurement result of the electrical resistivity of the glass 1 is shown in FIG. 1, the measurement result of the electrical resistivity of the glass 2 is shown in FIG. 2, and the measurement result of the electrical resistivity of the glass 3 is shown in FIG.
  • T 3.3 Glass 1 1393 ° C., T 3.3 of the glass 2 is 1378 ° C., T 3.3 of the glass 3 is 1396 ° C..
  • the refractory 1 has an electrical resistivity Rb at T 3.3 when the glass 1, glass 2 and glass 3 have a Na 2 O content of 200 ppm or more.
  • the electric resistivity Rg of the molten glass in the T 3.3 satisfied the relationship of Rb> Rg. Further, even in the temperature range of T 3.3 or higher, the refractory 1 had a higher electrical resistivity than the molten glass. If a melting kiln is comprised with such a refractory 1, it will be thought that it is suppressed that an electric current flows into the refractory which comprises a melting kiln from a heating electrode at the time of energization heating. When the Na 2 O content of Glass 1, Glass 2, and Glass 3 was less than 200 ppm, the electrical resistivity Rb, Rg at T 3.3 was in a relationship of Rb ⁇ Rg.
  • electrical resistivity Rb of refractory 2 T 3.3 is a Glass 1
  • a glass 2 200 ppm is the content of Na 2 O of the glass 3, in each case 1000ppm of the molten glass in the T 3.3
  • the relationship was Rb ⁇ Rg with respect to the electrical resistivity Rg.
  • the refractory 2 had a lower electrical resistivity than the molten glass.
  • Examples 1 to 23 and Examples 27 to 28 are Examples, and Examples 24 to 26 are Comparative Examples.
  • a mixture of raw materials of each component so as to have a target composition was put into a melting furnace composed of the refractory 1, and was melted at a temperature of 1500 to 1600 ° C.
  • heating by a burner flame and electric heating of the molten glass by a heating electrode arranged so as to be immersed in the molten glass in the melting furnace were used in combination.
  • an alternating voltage was applied to the heating electrode at a local current density of 0.5 A / cm 2 , a potential difference between the electrodes of 300 V, and a frequency of 50 Hz.
  • Tables 1 to 4 show the glass composition (unit: mol%), the coefficient of thermal expansion at 50 to 350 ° C. (unit: ⁇ 10 ⁇ 7 / ° C.), the strain point (unit: ° C.), and the glass transition point (unit: ° C.).
  • the sample is held at a temperature of glass transition point + 100 ° C. for 10 minutes and then cooled to room temperature at 40 ° C. per minute. Here, the total length of the sample is measured. Thereafter, the sample is heated at 100 ° C./hour to 600 ° C., held at 600 ° C. for 80 minutes, cooled to room temperature at 100 ° C./hour, and the total length of the sample is measured again.
  • the ratio of the shrinkage of the sample before and after the heat treatment at 600 ° C. to the total length of the sample before the heat treatment at 600 ° C. was defined as the heat shrinkage rate.
  • Tables 1 to 4 the values shown in parentheses are calculated values.
  • all the glasses of the examples have a low thermal expansion coefficient of 30 ⁇ 10 ⁇ 7 to 43 ⁇ 10 ⁇ 7 / ° C. and a high strain point of 680 to 735 ° C., which is sufficient for heat treatment at high temperatures. I can see that it can withstand.
  • Temperature T 2 which is a measure of the solubility 1710 ° C. or less and relatively low solubility is easy. Moreover, T3.3 is 1430 degrees C or less, and clarification is comparatively easy. In addition, the temperature T 4 that is a measure of moldability is 1310 ° C. or less, and molding by the float method is particularly easy. Further, the devitrification temperature is 1320 ° C. or lower, and it is considered that there is no trouble such as devitrification generated particularly during float forming.
  • a photoelastic constant is 31 nm / MPa / cm or less, and when used as a glass substrate of a liquid crystal display, a decrease in contrast can be suppressed. Further, the relative dielectric constant is 5.6 or more, and the sensing sensitivity of the touch sensor is improved when used as a glass substrate of an in-cell type touch panel.
  • the alkali-free glass of the present invention has a high strain point and is suitable for uses such as a display substrate and a photomask substrate. Moreover, it is suitable also for uses, such as a substrate for solar cells and a glass substrate for magnetic disks.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Glass Compositions (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

 The present invention pertains to a method for production of non-alkali glass in which a glass starting material is loaded into a melting furnace and heated to a temperature of 1350 to 1750°C to form molten glass, and the molten glass is thereafter molded into a plate shape using a float glass process, the method for production of non-alkali glass comprising selecting the glass starting material and a refractory material so that Rb > Rg, using for heating in the melting furnace both heating by a combustion flame of a burner and energizing heating of the molten glass using a heating electrode disposed so as to be immersed in the molten glass inside the melting furnace, where Rg (Ωcm) is the electrical resistivity at T3.3, which is the clarifying temperature of the molten glass (the temperature at which glass viscosity is 103.3dPa・s; units: °C), and Rb (Ωcm) is the electrical resistivity of the refractory material constituting the melting furnace at T3.3.

Description

無アルカリガラスの製造方法Method for producing alkali-free glass
 本発明は、各種ディスプレイ用基板ガラスやフォトマスク用基板ガラスとして好適な無アルカリガラスの製造方法に関する。
 以下、本明細書において、「無アルカリ」と言った場合、アルカリ金属酸化物(LiO、NaO、KO)の含有量が2000ppm以下であることを意味する。
The present invention relates to a method for producing alkali-free glass suitable as various display substrate glasses and photomask substrate glasses.
Hereinafter, in the present specification, the term “non-alkali” means that the content of alkali metal oxides (Li 2 O, Na 2 O, K 2 O) is 2000 ppm or less.
 従来、各種ディスプレイ用基板ガラス、特に表面に金属ないし酸化物薄膜等を形成するものでは、以下に示す特性が要求されてきた。
(1)アルカリ金属酸化物を含有していると、アルカリ金属イオンが薄膜中に拡散して膜特性を劣化させるため、アルカリ金属酸化物の含有量がきわめて低いこと、具体的には、アルカリ金属酸化物の含有量が2000ppm以下であること。
(2)薄膜形成工程で高温にさらされる際に、ガラスの変形およびガラスの構造安定化に伴う収縮(熱収縮)を最小限に抑えうるように、歪点が高いこと。
Conventionally, the following characteristics have been required for various display substrate glasses, particularly those in which a metal or oxide thin film is formed on the surface.
(1) When alkali metal oxide is contained, alkali metal ions diffuse into the thin film and deteriorate the film characteristics, so that the content of alkali metal oxide is extremely low. The oxide content is 2000 ppm or less.
(2) When exposed to a high temperature in the thin film forming process, the strain point is high so that the deformation (thermal shrinkage) associated with glass deformation and glass structural stabilization can be minimized.
(3)半導体形成に用いる各種薬品に対して充分な化学耐久性を有すること。特にSiOやSiNのエッチングのためのバッファードフッ酸(BHF:フッ酸とフッ化アンモニウムの混合液)、およびITOのエッチングに用いる塩酸を含有する薬液、金属電極のエッチングに用いる各種の酸(硝酸、硫酸等)、レジスト剥離液のアルカリに対して耐久性のあること。
(4)内部および表面に欠点(泡、脈理、インクルージョン、ピット、キズ等)がないこと。
(3) Sufficient chemical durability against various chemicals used for semiconductor formation. In particular, buffered hydrofluoric acid (BHF: liquid mixture of hydrofluoric acid and ammonium fluoride) for etching SiO x and SiN x , and chemicals containing hydrochloric acid used for etching ITO, various acids used for etching metal electrodes (Nitric acid, sulfuric acid, etc.) Resistant to alkali of resist stripping solution.
(4) There are no defects (bubbles, striae, inclusions, pits, scratches, etc.) inside and on the surface.
 上記の要求に加えて、近年では、以下のような状況にある。
(5)ディスプレイの軽量化が要求され、ガラス自身も密度の小さいガラスが望まれる。
(6)ディスプレイの軽量化が要求され、基板ガラスの薄板化が望まれる。
In addition to the above requirements, in recent years, there are the following situations.
(5) The weight reduction of the display is required, and the glass itself is desired to have a low density glass.
(6) A reduction in the weight of the display is required, and a reduction in the thickness of the substrate glass is desired.
(7)これまでのアモルファスシリコン(a-Si)タイプの液晶ディスプレイに加え、若干熱処理温度の高い多結晶シリコン(p-Si)タイプの液晶ディスプレイが作製されるようになってきた(a-Si:約350℃→p-Si:350~550℃)。
(8)液晶ディスプレイ作製熱処理の昇降温速度を速くして、生産性を上げたり耐熱衝撃性を上げるために、ガラスの平均熱膨張係数の小さいガラスが求められる。
(7) In addition to the conventional amorphous silicon (a-Si) type liquid crystal display, a polycrystalline silicon (p-Si) type liquid crystal display having a slightly higher heat treatment temperature has been produced (a-Si). : About 350 ° C. → p-Si: 350 to 550 ° C.).
(8) A glass having a small average thermal expansion coefficient is required to increase productivity and thermal shock resistance by increasing the temperature raising / lowering rate of the heat treatment for producing a liquid crystal display.
 一方、エッチングのドライ化が進み、耐BHF性に対する要求が弱くなってきている。これまでのガラスは、耐BHF性を良くするために、Bを6~10モル%含有するガラスが多く用いられてきた。しかし、Bは歪点を下げる傾向がある。Bを含有しないまたは含有量の少ない無アルカリガラスの例としては以下のようなものがある。 On the other hand, dry etching has progressed, and the demand for BHF resistance has become weaker. Conventionally, glass containing 6 to 10 mol% of B 2 O 3 has been often used in order to improve BHF resistance. However, B 2 O 3 tends to lower the strain point. Examples of non-alkali glass that does not contain B 2 O 3 or have a low content are as follows.
 特許文献1にはBを0~5モル%含有するガラスが開示されているが、50~300℃での平均熱膨張係数が50×10-7/℃を超える。 Patent Document 1 discloses a glass containing 0 to 5 mol% of B 2 O 3 , but the average coefficient of thermal expansion at 50 to 300 ° C. exceeds 50 × 10 −7 / ° C.
 特許文献2に記載の無アルカリガラスは、歪点が高く、フロート法による成形ができ、ディスプレイ用基板、フォトマスク用基板等の用途に好適であるとされている。 The alkali-free glass described in Patent Document 2 has a high strain point and can be molded by a float process, and is said to be suitable for applications such as a display substrate and a photomask substrate.
 ディスプレイ用基板、フォトマスク用基板等の用途に用いられる無アルカリガラス、具体的には、無アルカリガラス組成の板ガラスは、各成分の原料を目標成分になるように調合し、これを溶解窯に連続的に投入し、所定の温度に加熱して溶解する。この溶融ガラスを所定の板厚に成形し、徐冷後切断することによって得ることができる。 Alkali-free glass used for applications such as display substrates and photomask substrates, specifically, plate glass with non-alkali glass composition is prepared so that the raw materials of each component become target components, and this is used in a melting kiln. Continuously charged, heated to a predetermined temperature and dissolved. This molten glass can be obtained by forming it into a predetermined plate thickness and cutting it after slow cooling.
 歪点の高いガラスの場合、原料の溶解時に1350~1750℃という高温に加熱する必要がある。原料の溶解時における加熱手段としては、溶解窯の上方に配置したバーナーの燃焼炎による加熱で所定の温度に加熱することが一般的であるが、1350~1750℃という高温に加熱した場合、溶解窯を構成する耐火物が浸食されるおそれがある。耐火物の浸食が起こると、耐火物の成分が溶融ガラスに溶け込み、製造されるガラスの品質低下につながるので問題となる。
 上述したように、原料の溶解時における加熱手段としては、溶解窯の上方に配置したバーナーの燃焼炎により所定の温度に加熱することが一般的であるが、追加加熱手段として、溶解窯内の溶融ガラスに浸漬するように加熱電極を設けて、該加熱電極に直流電圧または交流電圧を印加することで溶解窯内の溶融ガラスを通電加熱する方法がある(特許文献3、4参照)。このような、バーナーの燃焼炎による加熱と、溶融ガラスの通電加熱と、の併用は、溶解窯を構成する耐火物の浸食を抑制するうえで有効である。溶解窯を構成する耐火物の浸食は、特に溶融ガラスと上部空間との界面付近で起こりやすい。このため、上部空間の雰囲気温度を上げずに溶融ガラスのみを加熱する通電加熱の併用は、耐火物の浸食を抑制するうえで有効である。
In the case of a glass having a high strain point, it is necessary to heat to a high temperature of 1350 to 1750 ° C. when the raw material is melted. As a heating means at the time of melting the raw material, it is generally heated to a predetermined temperature by heating with a combustion flame of a burner disposed above the melting furnace, but when heated to a high temperature of 1350 to 1750 ° C., There is a risk that the refractory constituting the kiln will be eroded. When refractory erosion occurs, the components of the refractory melt into the molten glass, leading to a deterioration in the quality of the produced glass.
As described above, as a heating means at the time of melting the raw material, it is common to heat to a predetermined temperature by a combustion flame of a burner disposed above the melting furnace, but as an additional heating means, There is a method in which a heating electrode is provided so as to be immersed in the molten glass, and the molten glass in the melting furnace is energized and heated by applying a DC voltage or an AC voltage to the heating electrode (see Patent Documents 3 and 4). Such combined use of heating by a burner combustion flame and energization heating of molten glass is effective in suppressing erosion of the refractory constituting the melting kiln. Erosion of the refractory constituting the melting furnace is likely to occur particularly near the interface between the molten glass and the upper space. For this reason, the combined use of energization heating that heats only the molten glass without raising the atmospheric temperature of the upper space is effective in suppressing erosion of the refractory.
日本国特開平5-232458号公報Japanese Patent Laid-Open No. 5-232458 日本国特開平10-45422号公報Japanese Patent Laid-Open No. 10-45422 日本国特開2005-132713号公報Japanese Unexamined Patent Publication No. 2005-132713 日本国特表2009-523697号公報Japan Special Table 2009-523697
 しかしながら、高品質のp-Si TFTの製造方法として固相結晶化法があるが、これを実施するためには、歪点をさらに高くすることが求められる。
 一方、ガラス製造プロセス、特に溶解、成形における要請から、ガラスの粘性、特にガラス粘度が10dPa・sとなる温度Tを低くすることが求められている。
However, there is a solid-phase crystallization method as a method for producing a high-quality p-Si TFT. In order to implement this, it is required to further increase the strain point.
On the other hand, due to demands in the glass production process, particularly melting and molding, it is required to lower the temperature T 4 at which the viscosity of the glass, particularly the glass viscosity, becomes 10 4 dPa · s.
 但し、無アルカリガラスを通電加熱する場合、以下の点に留意する必要がある。
 ソーダライムガラスのようなアルカリガラスに比べて、無アルカリガラスはアルカリ金属酸化物の含有量が低いため、溶融ガラス中に存在するアルカリ金属イオンも少ないので、ソーダライムガラスのようなアルカリガラスに比べると、通電加熱時に電流が流れにくい。このため、溶解窯に設けた加熱電極から、溶融ガラスだけではなく、溶解窯を構成する耐火物にも電流が流れるおそれがある。
 溶解窯を構成する耐火物に電流が流れると、投入した電気量の全てを溶融ガラスの通電加熱に使用することができなくなるので、投入した電気量の利用効率の観点から好ましくない。また、溶解窯を構成する耐火物に電流が流れると、溶解窯周辺の金属部材(たとえば、金属フレーム)にも電流が流れて感電の危険性がある。また、耐火物の通電加熱が起こり、耐火物の温度が上昇して溶損するおそれもある。
However, when the non-alkali glass is energized and heated, it is necessary to pay attention to the following points.
Compared to alkali glass like soda lime glass, alkali-free glass like soda lime glass has lower alkali metal oxide content, so less alkali metal ions are present in the molten glass. And current is difficult to flow during energization heating. For this reason, there exists a possibility that an electric current may flow not only from molten glass but to the refractory which comprises a melting kiln from the heating electrode provided in the melting kiln.
If a current flows through the refractory constituting the melting furnace, it is not possible to use all of the charged electricity for current heating of the molten glass, which is not preferable from the viewpoint of utilization efficiency of the charged electricity. Further, when an electric current flows through the refractory constituting the melting kiln, the electric current also flows through a metal member (for example, a metal frame) around the melting kiln and there is a risk of electric shock. In addition, current heating of the refractory material may occur, and the temperature of the refractory material may rise and melt.
 本発明の目的は、上記欠点を解決し、歪点が高く、かつ、低粘性、特にガラス粘度が10dPa・sとなる温度Tが低く、特にフロート成形が容易な無アルカリガラスの製造に好適な方法を提供することにある。 The object of the present invention is to produce an alkali-free glass that solves the above-mentioned drawbacks, has a high strain point, and has a low viscosity, particularly a low temperature T 4 at which the glass viscosity is 10 4 dPa · s, and is particularly easy to float. It is in providing a suitable method.
 本発明は、以下のガラス組成となるように、ガラス原料を調製し、溶解窯に投入し、1350~1750℃の温度に加熱して溶融ガラスにした後、該溶融ガラスを板状に成形する無アルカリガラスの製造方法であって、
 前記溶解窯での加熱には、バーナーの燃焼炎による加熱と、前記溶解窯内の溶融ガラスに浸漬するように配置された加熱電極による該溶融ガラスの通電加熱と、を併用し、
 前記溶融ガラスの清澄温度であるT3.3(ガラス粘度が103.3dPa・sとなる温度、単位:℃)における電気抵抗率をRg(Ωcm)とし、T3.3における溶解窯を構成する耐火物の電気抵抗率をRb(Ωcm)とするとき、Rb>Rgとなるように、前記ガラス原料、および、前記耐火物を選択する無アルカリガラスの製造方法を提供する。
酸化物基準のモル%表示で
SiO        63~74、
Al       11.5~16、
         1.5超5以下、
MgO         5.5~13、
CaO         1.5~12、
SrO        1.5~9、
BaO         0~1、
ZrO        0~2を含有し
かつ、アルカリ金属酸化物を200~2000ppm含有し、
MgO+CaO+SrO+BaO が15.5~21であり、
MgO/(MgO+CaO+SrO+BaO)が0.35以上であり、CaO/(MgO+CaO+SrO+BaO)が0.50以下であり、SrO/(MgO+CaO+SrO+BaO)が0.50以下。
In the present invention, a glass raw material is prepared so as to have the following glass composition, put into a melting furnace, heated to a temperature of 1350 to 1750 ° C. to form molten glass, and then the molten glass is formed into a plate shape A method for producing alkali-free glass,
For heating in the melting furnace, heating by a combustion flame of a burner and electric heating of the molten glass by a heating electrode arranged to be immersed in the molten glass in the melting furnace are used in combination.
The electrical resistivity at T 3.3 (the temperature at which the glass viscosity becomes 10 3.3 dPa · s, unit: ° C.), which is the clarification temperature of the molten glass, is Rg (Ωcm), and the melting furnace at T 3.3 is Provided is a method for producing an alkali-free glass in which the glass raw material and the refractory are selected so that Rb> Rg when the electrical resistivity of the refractory to be configured is Rb (Ωcm).
SiO 2 63 to 74 in terms of mol% based on oxide,
Al 2 O 3 11.5-16,
B 2 O 3 greater than 1.5 and less than 5,
MgO 5.5-13,
CaO 1.5-12,
SrO 1.5-9,
BaO 0 ~ 1,
Containing ZrO 2 0-2 and containing 200-2000 ppm of alkali metal oxide,
MgO + CaO + SrO + BaO is 15.5-21,
MgO / (MgO + CaO + SrO + BaO) is 0.35 or more, CaO / (MgO + CaO + SrO + BaO) is 0.50 or less, and SrO / (MgO + CaO + SrO + BaO) is 0.50 or less.
 本発明の方法によれば、歪点が680~735℃であって、50~350℃での平均熱膨張係数が30×10-7~43×10-7/℃であって、ガラス粘度が10dPa・sとなる温度Tが1710℃以下であって、ガラス粘度が10dPa・sとなる温度Tが1310℃以下である無アルカリガラスを好ましく製造することができる。
 本発明の方法により製造される無アルカリガラスは、特に高歪点用途のディスプレイ用基板、フォトマスク用基板等に好適であり、また、特にフロート成形が容易なガラスである。
According to the method of the present invention, the strain point is 680 to 735 ° C., the average thermal expansion coefficient at 50 to 350 ° C. is 30 × 10 −7 to 43 × 10 −7 / ° C., and the glass viscosity is A non-alkali glass having a temperature T 2 of 10 2 dPa · s of 1710 ° C. or lower and a temperature T 4 of 10 4 dPa · s of 13 10 ° C. or lower can be preferably produced.
The alkali-free glass produced by the method of the present invention is particularly suitable for a display substrate, a photomask substrate and the like for high strain point use, and is a glass that is particularly easy to float.
 本発明では、溶解窯での加熱に、バーナーの燃焼炎による加熱と、溶解窯内の溶融ガラスの通電加熱と、を併用することで、1350~1750℃という高温加熱時における溶解窯を構成する耐火物の浸食を抑制することができる。これにより、耐火物の成分が溶融ガラスに溶け込むことが抑制され、製造される無アルカリガラスの品質が向上する。
 本発明では、溶融ガラスの通電加熱時において、加熱電極から溶解窯を構成する耐火物に電流が流れるのが抑制される。これにより、通電加熱時に投入する電気量の利用効率が向上する。また、溶解窯を構成する耐火物に電流が流れると、溶解窯周辺の金属部材(たとえば、金属フレーム)にも電流が流れて感電の危険性があり、耐火物の通電加熱が起こり、耐火物の温度が上昇して溶損するおそれもあるが、本発明ではこれらのおそれが解消されている。
In the present invention, the heating in the melting furnace is combined with the heating by the combustion flame of the burner and the electric heating of the molten glass in the melting furnace to constitute the melting furnace at the time of high temperature heating of 1350 to 1750 ° C. Erosion of refractories can be suppressed. Thereby, it is suppressed that the component of a refractory melts into a molten glass, and the quality of the alkali free glass manufactured improves.
In this invention, at the time of the electric heating of molten glass, it is suppressed that an electric current flows into the refractory material which comprises a melting kiln from a heating electrode. Thereby, the utilization efficiency of the electric quantity supplied at the time of energization heating improves. In addition, if a current flows through the refractory constituting the melting furnace, the current also flows through a metal member (for example, a metal frame) around the melting furnace, and there is a risk of electric shock. However, in the present invention, these fears are eliminated.
図1は、実施例における溶融ガラス(ガラス1)、および、耐火物(耐火物1、耐火物2)の電気抵抗率の測定結果を示したグラフである。FIG. 1 is a graph showing measurement results of electrical resistivity of molten glass (glass 1) and refractories (refractory 1, refractory 2) in Examples. 図2は、実施例における溶融ガラス(ガラス2)、および、耐火物(耐火物1、耐火物2)の電気抵抗率の測定結果を示したグラフである。FIG. 2 is a graph showing measurement results of electrical resistivity of molten glass (glass 2) and refractory (refractory 1, refractory 2) in the examples. 図3は、実施例における溶融ガラス(ガラス3)、および、耐火物(耐火物1、耐火物2)の電気抵抗率の測定結果を示したグラフである。FIG. 3 is a graph showing measurement results of electrical resistivity of molten glass (glass 3) and refractory (refractory 1, refractory 2) in the examples.
 以下、本発明の無アルカリガラスの製造方法を説明する。 Hereinafter, a method for producing the alkali-free glass of the present invention will be described.
 本発明の無アルカリガラスの製造方法では、下記ガラス組成となるように調合したガラス原料を用いる。
 酸化物基準のモル%表示で
SiO        63~74、
Al       11.5~16、
         1.5超5以下、
MgO         5.5~13、
CaO         1.5~12、
SrO        1.5~9、
BaO         0~1、
ZrO        0~2を含有し
かつ、アルカリ金属酸化物を200~2000ppm含有し、
MgO+CaO+SrO+BaO が15.5~21であり、
MgO/(MgO+CaO+SrO+BaO)が0.35以上であり、CaO/(MgO+CaO+SrO+BaO)が0.50以下であり、SrO/(MgO+CaO+SrO+BaO)が0.50以下。
In the method for producing alkali-free glass of the present invention, a glass raw material prepared so as to have the following glass composition is used.
SiO 2 63 to 74 in terms of mol% based on oxide,
Al 2 O 3 11.5-16,
B 2 O 3 greater than 1.5 and less than 5,
MgO 5.5-13,
CaO 1.5-12,
SrO 1.5-9,
BaO 0 ~ 1,
Containing ZrO 2 0-2 and containing 200-2000 ppm of alkali metal oxide,
MgO + CaO + SrO + BaO is 15.5-21,
MgO / (MgO + CaO + SrO + BaO) is 0.35 or more, CaO / (MgO + CaO + SrO + BaO) is 0.50 or less, and SrO / (MgO + CaO + SrO + BaO) is 0.50 or less.
 次に各成分の組成範囲について説明する。SiOは63%(モル%、以下特記しないかぎり同じ)未満では、歪点が充分に上がらず、かつ、熱膨張係数が増大し、密度が上昇する。64%以上が好ましく、65%以上がより好ましく、66%以上がさらに好ましく、66.5%以上が特に好ましい。74%超では、溶解性が低下し、ガラス粘度が10dPa・sとなる温度Tや10dPa・sとなる温度Tが上昇し、失透温度が上昇する。70%以下が好ましく、69%以下がより好ましく、68%以下がさらに好ましい。 Next, the composition range of each component will be described. If the SiO 2 content is less than 63% (mol%, the same unless otherwise specified), the strain point is not sufficiently increased, the thermal expansion coefficient is increased, and the density is increased. It is preferably 64% or more, more preferably 65% or more, further preferably 66% or more, and particularly preferably 66.5% or more. In 74 percent, the solubility decreases, the temperature T 4 which is a temperature T 2 and 10 4 dPa · s glass viscosity becomes 10 2 dPa · s is increased, the liquidus temperature rises. 70% or less is preferable, 69% or less is more preferable, and 68% or less is more preferable.
 Alはガラスの分相性を抑制し、熱膨脹係数を下げ、歪点を上げるが、11.5%未満ではこの効果があらわれず、また、ガラス組成において、熱膨張係数を高くする成分(例えば、BaO、SrO)の比率が高くなるため、結果的にガラスの熱膨張係数が増大する。12%以上、12.5%以上、さらに13%以上が好ましい。16%超ではガラスの溶解性が悪くなったり、失透温度を上昇させるおそれがある。15%以下が好ましく、14%以下がより好ましく、13.5%以下がさらに好ましい。 Al 2 O 3 suppresses the phase separation property of the glass, lowers the thermal expansion coefficient, and increases the strain point. However, this effect does not appear at less than 11.5%, and the glass composition has a component that increases the thermal expansion coefficient ( For example, since the ratio of BaO, SrO) becomes high, the coefficient of thermal expansion of the glass increases as a result. It is preferably 12% or more, 12.5% or more, and more preferably 13% or more. If it exceeds 16%, the solubility of the glass may be deteriorated, or the devitrification temperature may be increased. It is preferably 15% or less, more preferably 14% or less, and further preferably 13.5% or less.
 Bは、ガラスの溶解性をよくし、また、失透温度を低下させ、耐BHF性を改善するが、1.5%以下ではこの効果が十分あらわれず、また、歪点が過度に高くなったり、BHFによる処理後にヘイズの問題になりやすい。2%以上が好ましく、3%以上がより好ましい。しかし、5%超では歪点が低くなり、ヤング率が小さくなる。4.5%以下が好ましく、4%以下がより好ましい。 B 2 O 3 improves the meltability of the glass, lowers the devitrification temperature, and improves the BHF resistance, but this effect is not sufficiently exhibited at 1.5% or less, and the strain point is excessive. Or become a haze problem after treatment with BHF. 2% or more is preferable, and 3% or more is more preferable. However, if it exceeds 5%, the strain point becomes low and the Young's modulus becomes small. 4.5% or less is preferable and 4% or less is more preferable.
 MgOは、アルカリ土類の中では膨張を高くせず、かつ密度を低く維持したままヤング率を上げるという特徴を有し、溶解性も向上させるが、5.5%未満ではこの効果が十分あらわれず、また、ガラス組成において、他のアルカリ土類比率が高くなることから密度が高くなる。6%以上、さらに7%以上が好ましく、7.5%以上、8%以上がより好ましく、8.5%以上が特に好ましい。13%超では失透温度が上昇する。12%以下が好ましく、11%以下がより好ましく、10%以下が特に好ましい。 MgO has the feature of increasing the Young's modulus while keeping the density low while keeping the density low in alkaline earths, and improves the solubility. However, if it is less than 5.5%, this effect appears sufficiently. Furthermore, in the glass composition, the density increases because the ratio of other alkaline earths increases. It is preferably 6% or more, more preferably 7% or more, more preferably 7.5% or more and 8% or more, and particularly preferably 8.5% or more. If it exceeds 13%, the devitrification temperature rises. It is preferably 12% or less, more preferably 11% or less, and particularly preferably 10% or less.
 CaOは、MgOに次いでアルカリ土類中では膨張を高くせず、かつ歪点を過大には低下させないという特徴を有し、溶解性も向上させる。
 1.5%未満では上述したCaO添加による効果が十分あらわれない。2%以上が好ましく、3%以上がより好ましく、3.5%以上がさらに好ましく、4%以上が特に好ましい。しかし、12%を超えると、失透温度が上昇したり、CaO原料である石灰石(CaCO)中の不純物であるリンが、多く混入するおそれがある。10%以下が好ましく、9%以下がより好ましく、8%以下がさらに好ましく、7%以下が特に好ましい。
CaO has the characteristics that it does not increase the expansion in alkaline earth after MgO, and does not excessively lower the strain point, and also improves the solubility.
If it is less than 1.5%, the above-described effect due to the addition of CaO is not sufficiently exhibited. It is preferably 2% or more, more preferably 3% or more, further preferably 3.5% or more, and particularly preferably 4% or more. However, if it exceeds 12%, the devitrification temperature may increase, or a large amount of phosphorus, which is an impurity in limestone (CaCO 3 ), which is a CaO raw material, may be mixed. It is preferably 10% or less, more preferably 9% or less, further preferably 8% or less, and particularly preferably 7% or less.
 SrOは、ガラスの失透温度を上昇させず溶解性を向上させるが、1.5%未満ではこの効果が十分あらわれない。2%以上が好ましく、2.5%以上がより好ましく、3%以上がさらに好ましい。しかし、9%を超えると膨脹係数が増大するおそれがある。7%以下が好ましく、6%以下、5%以下がより好ましい。 SrO improves the solubility without increasing the devitrification temperature of the glass, but if it is less than 1.5%, this effect does not appear sufficiently. 2% or more is preferable, 2.5% or more is more preferable, and 3% or more is more preferable. However, if it exceeds 9%, the expansion coefficient may increase. It is preferably 7% or less, more preferably 6% or less and 5% or less.
 BaOは必須ではないが溶解性向上のために含有できる。しかし、多すぎるとガラスの膨張と密度を過大に増加させるので1%以下とする。0.5%以下が好ましく、0.3%以下がより好ましく、0.1%以下がさらに好ましく、実質的に含有しないことが特に好ましい。実質的に含有しないとは、不可避的不純物を除き含有しない意味である。 BaO is not essential, but can be contained to improve solubility. However, if the amount is too large, the expansion and density of the glass are excessively increased, so the content is made 1% or less. 0.5% or less is preferable, 0.3% or less is more preferable, 0.1% or less is further preferable, and it is particularly preferable that it is not substantially contained. “Substantially not contained” means not containing any inevitable impurities.
 ZrOは、ガラス溶解温度を低下させるために、または焼成時の結晶析出を促進するために、2%まで含有してもよい。2%超ではガラスが不安定になる、またはガラスの比誘電率εが大きくなる。好ましくは1.5%以下である。1%以下がより好ましく、0.5%以下がさらに好ましく、さらに実質的に含有しないことが望ましい。 ZrO 2 may be contained up to 2% in order to lower the glass melting temperature or to promote crystal precipitation during firing. If it exceeds 2%, the glass becomes unstable or the relative dielectric constant ε of the glass increases. Preferably it is 1.5% or less. 1% or less is more preferable, 0.5% or less is more preferable, and it is desirable not to contain substantially.
 MgO、CaO、SrO、BaOは合量で15.5%よりも少ないと、ガラス粘度が10dPa・sとなる温度Tが高くなり、フロート成形の際にフロートバスの筐体構造物やヒーターの寿命を極端に短くする恐れがある。16%以上が好ましく、17%以上がさらに好ましい。21%よりも多いと、熱膨張係数を小さくできないという難点が生じるおそれがある。20%以下、19%以下、さらに18%以下が好ましい。 MgO, CaO, SrO, when BaO is less than 15.5% in total, the higher the temperature T 4 which glass viscosity of 10 4 dPa · s, Ya housing structure of the float bath during the float forming There is a risk of extremely shortening the life of the heater. 16% or more is preferable, and 17% or more is more preferable. If it exceeds 21%, there is a risk that the thermal expansion coefficient cannot be reduced. It is preferably 20% or less, 19% or less, and more preferably 18% or less.
 MgO、CaO、SrOおよびBaOの合量が上記を満たし、かつ、下記の条件を満たすことにより、失透温度を上昇させることなしに、ヤング率、比弾性率を上昇させ、さらにガラスの粘性、特にTを下げることができる。
 MgO/(MgO+CaO+SrO+BaO)が0.35以上であり、0.37以上が好ましく、0.4以上がより好ましい。
 CaO/(MgO+CaO+SrO+BaO)が0.50以下であり、0.48以下が好ましく、0.45以下がより好ましい。
 SrO/(MgO+CaO+SrO+BaO)が0.50以下であり、0.40以下が好ましく、0.30以下がより好ましく、0.27以下がより好ましく、0.25以下がさらに好ましい。
When the total amount of MgO, CaO, SrO, and BaO satisfies the above and satisfies the following conditions, the Young's modulus and the specific elastic modulus are increased without increasing the devitrification temperature. In particular T 4 can be lowered.
MgO / (MgO + CaO + SrO + BaO) is 0.35 or more, preferably 0.37 or more, and more preferably 0.4 or more.
CaO / (MgO + CaO + SrO + BaO) is 0.50 or less, preferably 0.48 or less, and more preferably 0.45 or less.
SrO / (MgO + CaO + SrO + BaO) is 0.50 or less, preferably 0.40 or less, more preferably 0.30 or less, more preferably 0.27 or less, and further preferably 0.25 or less.
 本発明の無アルカリガラスにおいて、Al×(MgO/(MgO+CaO+SrO+BaO))が4.3以上であることがヤング率を高められるので好ましい。4.5以上が好ましく、4.7以上がより好ましく、5.0以上がさらに好ましい。 In the alkali-free glass of the present invention, Al 2 O 3 × (MgO / (MgO + CaO + SrO + BaO)) is preferably 4.3 or more because the Young's modulus can be increased. 4.5 or more is preferable, 4.7 or more is more preferable, and 5.0 or more is further more preferable.
 本発明の無アルカリガラスの製造方法では、溶解窯内の溶融ガラスを通電加熱するため、ガラス原料にアルカリ金属酸化物を200~2000ppm(モル)含有させる。
 無アルカリガラスは、ソーダライムガラスのようなアルカリガラスに比べて、アルカリ金属酸化物の含有量が低く、溶融ガラス中に存在するアルカリ金属イオンも少ないため、導電性が低く、通電加熱には本来適していない。
 本発明では、ガラス原料にアルカリ金属酸化物を200ppm以上含有させることにより、溶融ガラス中でアルカリ金属イオンが増加する結果、溶融ガラスの電気抵抗率が低下する。その結果、溶融ガラスの導電性が向上しており、通電加熱が可能である。
 ここで、アルカリ金属酸化物を含有量が高くなると、アルカリ金属イオンが薄膜中に拡散して膜特性を劣化させるため、各種ディスプレイ用基板ガラスとしての使用時に問題となるが、ガラス組成中のアルカリ金属酸化物を含有量が2000ppm以下、好ましくは1500ppm以下、より好ましくは1300ppm以下、さらに好ましくは1000ppm以下であれば、このような問題を生じることがない。
 本発明に用いるガラス原料は、アルカリ金属酸化物を好ましくは1500ppm以下、より好ましくは1300ppm以下、さらに好ましくは1000ppm以下含有し、さらには700ppm含有以下することが好ましく、200~500ppm含有することがより好ましい。
 また、アルカリ金属酸化物としては、NaO、KO、LiOが挙げられるが、NaO、KOが、溶融ガラスの電気抵抗率を下げる効果と、原料コストと、バランスの観点から好ましく、NaOがより好ましい。
In the method for producing an alkali-free glass of the present invention, an alkali metal oxide is contained in the glass raw material in an amount of 200 to 2000 ppm (mole) in order to heat and heat the molten glass in the melting furnace.
Alkali-free glass has lower alkali metal oxide content than alkali glass such as soda lime glass, and less alkali metal ions are present in molten glass. Not suitable.
In the present invention, by containing 200 ppm or more of the alkali metal oxide in the glass raw material, as a result of the increase of alkali metal ions in the molten glass, the electrical resistivity of the molten glass decreases. As a result, the electrical conductivity of the molten glass is improved, and current heating is possible.
Here, when the content of the alkali metal oxide is increased, alkali metal ions diffuse into the thin film and deteriorate the film characteristics. This causes a problem when used as a substrate glass for various displays. If the content of the metal oxide is 2000 ppm or less, preferably 1500 ppm or less, more preferably 1300 ppm or less, and even more preferably 1000 ppm or less, such a problem does not occur.
The glass raw material used in the present invention preferably contains an alkali metal oxide of 1500 ppm or less, more preferably 1300 ppm or less, further preferably 1000 ppm or less, more preferably 700 ppm or less, and more preferably 200 to 500 ppm. preferable.
In addition, examples of the alkali metal oxide include Na 2 O, K 2 O, and Li 2 O. The balance between the effect that Na 2 O and K 2 O lower the electrical resistivity of the molten glass, the raw material cost, and the balance. From the viewpoint of, Na 2 O is more preferable.
 なお、パネル製造時にガラス表面に設ける金属ないし酸化物薄膜の特性劣化を生じさせないために、ガラス原料はPを実質的に含有しないことが好ましい。さらに、ガラスのリサイクルを容易にするため、ガラス原料はPbO、As、Sbは実質的に含有しないことが好ましい。 In order to prevent the deterioration of the properties of the metal or oxide thin film provided on the glass surface during panel manufacture, it is preferable that the glass raw material does not substantially contain P 2 O 5 . Furthermore, in order to facilitate recycling of the glass, it is preferable that the glass raw material does not substantially contain PbO, As 2 O 3 , or Sb 2 O 3 .
 ガラスの溶解性、清澄性、成形性を改善するため、ガラス原料にはZnO、Fe、SO、F、Cl、SnOを総量で1%以下、好ましくは0.5%以下含有できる。ZnOは実質的に含有しないことが好ましい。 In order to improve the solubility, clarity and formability of the glass, the glass raw material contains ZnO, Fe 2 O 3 , SO 3 , F, Cl, SnO 2 in a total amount of 1% or less, preferably 0.5% or less. it can. It is preferable that ZnO is not substantially contained.
 本発明では、上記組成となるように調合したガラス原料を溶解窯に連続的に投入し、1350~1750℃に加熱して溶解する。
 ここで、溶解窯での加熱には、バーナーの燃焼炎による加熱と、溶解窯内の溶融ガラスの通電加熱と、を併用する。
In the present invention, the glass raw material prepared to have the above composition is continuously charged into a melting furnace and melted by heating to 1350 to 1750 ° C.
Here, for the heating in the melting furnace, heating by a burner flame and electric heating of the molten glass in the melting furnace are used in combination.
 バーナーは、溶解窯の上方に配置されており、化石燃料の燃焼炎、具体的には、重油、灯油等の液体燃料や、LPG等の気体燃料等の燃焼炎により加熱を行う。これら燃焼の燃焼時には、燃料を酸素ガスと混合して燃焼させたり、燃料を酸素ガスおよび空気と混合して燃焼させたりすることができる。これらの方法を用いることにより、溶融ガラスに水分を含有させることができ、製造される無アルカリガラスのβ-OH値を調節することができる。 The burner is disposed above the melting kiln, and is heated by a combustion flame of fossil fuel, specifically, a liquid fuel such as heavy oil and kerosene, or a gaseous fuel such as LPG. During the combustion of these combustions, the fuel can be mixed and burned with oxygen gas, or the fuel can be mixed and burned with oxygen gas and air. By using these methods, moisture can be contained in the molten glass, and the β-OH value of the alkali-free glass to be produced can be adjusted.
 一方、溶解窯内の溶融ガラスの通電加熱は、溶解窯内の溶融ガラスに浸漬するように、該溶解窯の底部または側面に設けられた加熱電極に直流電圧または交流電圧を印加することによって行う。但し、後述するように、通電加熱の実施時には電極間の電位差を100~500Vに保持することが好ましいが、このような直流電圧を印加するためには、商用電源として利用可能な交流から直流へと変換する必要があるので、交流電圧を印加することが好ましい。 On the other hand, the electric heating of the molten glass in the melting furnace is performed by applying a DC voltage or an AC voltage to a heating electrode provided on the bottom or side of the melting furnace so as to be immersed in the molten glass in the melting furnace. . However, as will be described later, it is preferable to maintain the potential difference between the electrodes at 100 to 500 V when conducting the heating by heating. Therefore, it is preferable to apply an AC voltage.
 溶融ガラスの通電加熱時において、加熱電極には下記を満たすように交流電圧を印加することが、溶解窯内の溶融ガラスでの電気分解、および、それによる泡発生を抑制でき、かつ、通電加熱時の効率の点から好ましい。
局所電流密度:0.1~2.0A/cm
電極間の電位差:20~500V
交流電圧の周波数:10~90Hz
 局所電流密度は、0.2~1.7A/cmであることがより好ましく、0.3~1.0A/cmであることがさらに好ましい。
 電極間の電位差は、30~480Vであることがより好ましく、40~450Vであることがさらに好ましい。
 交流電圧の周波数は、30~80Hzであることがより好ましく、50~60Hzであることがさらに好ましい。
At the time of energization heating of the molten glass, applying an AC voltage to the heating electrode so as to satisfy the following can suppress the electrolysis of the molten glass in the melting furnace and the generation of bubbles thereby, and the energization heating It is preferable from the point of efficiency of time.
Local current density: 0.1 to 2.0 A / cm 2
Potential difference between electrodes: 20-500V
AC voltage frequency: 10 to 90 Hz
Local current density is more preferably 0.2 ~ 1.7A / cm 2, further preferably 0.3 ~ 1.0A / cm 2.
The potential difference between the electrodes is more preferably 30 to 480V, and further preferably 40 to 450V.
The frequency of the AC voltage is more preferably 30 to 80 Hz, and further preferably 50 to 60 Hz.
 加熱電極に使用する材料は、導電性に優れることに加えて、溶解窯内の溶融ガラスに浸漬することから、耐熱性、溶融ガラスに対する耐食性に優れることが求められる。
 これらの満たす材料としては、ロジウム、イリジウム、オスミウム、ハフニウム、モリブデン、タングステン、白金、および、これらの合金が例示される。
In addition to being excellent in conductivity, the material used for the heating electrode is required to be excellent in heat resistance and corrosion resistance to the molten glass because it is immersed in the molten glass in the melting furnace.
Examples of the material satisfying these include rhodium, iridium, osmium, hafnium, molybdenum, tungsten, platinum, and alloys thereof.
 本発明において、バーナーの燃焼炎による加熱量と、溶解窯内の溶融ガラスの通電加熱による加熱量の合計をT(J/h)とするとき、通電加熱による加熱量T(J/h)が下記式を満たすことが好ましい。
0.10×T≦T≦0.40×T
 Tが0.10×Tより小さいと、溶融ガラスの通電加熱の併用による効果、すなわち、溶解窯を構成する耐火物の浸食を抑制する効果が不十分となるおそれがある。
 Tが0.40×Tより大きいと、溶融窯底部の温度が上昇し、耐火物の浸食が進行する恐れがある。
In the present invention, when the total amount of heating by the combustion flame of the burner and current heating of the molten glass in the melting furnace is T 0 (J / h), the heat amount T (J / h) by current heating. Preferably satisfies the following formula.
0.10 × T 0 ≦ T ≦ 0.40 × T 0
When T is smaller than 0.10 × T 0 , there is a possibility that the effect by the combined use of the electrically heated heating of the molten glass, that is, the effect of suppressing the erosion of the refractory constituting the melting kiln may be insufficient.
If T is larger than 0.40 × T 0 , the temperature at the bottom of the melting furnace rises and erosion of the refractory may proceed.
 溶解窯は、ガラス原料の溶解時に1300~1700℃や1350~1750℃という高温に加熱されるため、耐火物を構成材料とする。溶解窯を構成する耐火物には、耐熱性に加えて、溶融ガラスに対する耐食性、機械的強度、耐酸化性が要求される。
 溶解窯を構成する耐火物としては、溶融ガラスに対する耐食性に優れることから、ZrOを90質量%以上含有するジルコニア系耐火物が好ましく用いられてきた。
 しかしながら、上記のジルコニア系耐火物には、マトリックスガラスの粘性を低減する成分としてアルカリ成分(NaOやKO)を合量で0.12質量%以上含有するため、1300~1700℃や1350~1750℃という高温に加熱した際には、該アルカリ成分の存在によりイオン導電性を示す。このため、通電加熱時に、溶解窯に設けた加熱電極から、溶融ガラスだけではなく、溶解窯を構成する耐火物にも電流が流れるおそれがある。
Since the melting furnace is heated to a high temperature of 1300 to 1700 ° C. or 1350 to 1750 ° C. when the glass raw material is melted, a refractory is used as a constituent material. In addition to heat resistance, the refractory constituting the melting furnace is required to have corrosion resistance, mechanical strength, and oxidation resistance against molten glass.
As the refractory constituting the melting kiln, a zirconia refractory containing 90% by mass or more of ZrO 2 has been preferably used since it has excellent corrosion resistance against molten glass.
However, the above zirconia refractory contains alkali components (Na 2 O and K 2 O) in a total amount of 0.12% by mass or more as components for reducing the viscosity of the matrix glass. When heated to a high temperature of 1350 to 1750 ° C., it exhibits ionic conductivity due to the presence of the alkali component. For this reason, at the time of energization heating, current may flow not only from the molten glass but also to the refractory constituting the melting kiln from the heating electrode provided in the melting kiln.
 本発明では、ガラスの清澄温度であるT3.3(ガラス粘度が103.3dPa・sとなる温度、単位:℃)における電気抵抗率をRg(Ωcm)とし、T3.3における溶解窯を構成する耐火物の電気抵抗率をRb(Ωcm)とするとき、Rb>Rgとなるように、ガラス原料、および、溶解窯を構成する耐火物を選択する。
 後述する実施例に示すように、溶融ガラスおよび耐火物の電気抵抗率は、温度の上昇に応じて低くなるが、温度上昇に対する電気抵抗率の低下は、耐火物よりも溶融ガラスのほうが大きい。このため、T3.3における電気抵抗率がRb>Rgの関係であれば、それよりも高い温度域(たとえば、ガラスの溶融温度であるT(ガラス粘度が10dPa・sとなる温度、単位:℃))では、常に耐火物のほうが溶融ガラスよりも電気抵抗率が大きくなる。
 したがって、T3.3において、Rb>Rgとなるように、ガラス原料、および、溶解窯を構成する耐火物を選択すれば、通電加熱時に、加熱電極から溶解窯を構成する耐火物に電流が流れるのが抑制される。
In the present invention, the electrical resistivity at T 3.3 (the temperature at which the glass viscosity becomes 10 3.3 dPa · s, unit: ° C.), which is the glass refining temperature, is Rg (Ωcm), and the melting at T 3.3 When the electrical resistivity of the refractory constituting the kiln is Rb (Ωcm), the glass raw material and the refractory constituting the melting kiln are selected so that Rb> Rg.
As shown in the examples described later, the electrical resistivity of the molten glass and the refractory decreases as the temperature increases, but the decrease in the electrical resistivity with respect to the temperature increase is larger in the molten glass than in the refractory. Therefore, if the electrical resistivity at T 3.3 is Rb> Rg, a higher temperature range (for example, T 2 which is the melting temperature of glass (temperature at which the glass viscosity becomes 10 2 dPa · s). , Unit: ° C)), the refractory always has a higher electrical resistivity than the molten glass.
Therefore, if the glass raw material and the refractory constituting the melting kiln are selected so that Rb> Rg at T 3.3 , the current flows from the heating electrode to the refractory constituting the melting kiln during energization heating. Flow is suppressed.
 本発明において、Rbと、Rgと、の比(Rb/Rg)が、Rb/Rg>1.00を満たすことが好ましく、Rb/Rg>1.05を満たすことがより好ましく、Rb/Rg>1.10を満たすことがさらに好ましい。 In the present invention, the ratio of Rb to Rg (Rb / Rg) preferably satisfies Rb / Rg> 1.00, more preferably satisfies Rb / Rg> 1.05, and Rb / Rg> It is more preferable to satisfy 1.10.
 なお、上述した組成の無アルカリガラスの場合、アルカリ金属酸化物の含有量を200~2000ppmの範囲内で変えることで、Rgを調節することができる。アルカリ金属酸化物の含有量が多いほどRgは低くなる。
 また、製造される無アルカリガラスのT3.3を変えることによっても、Rgを調節することができる。T3.3が低いほどRgは低くなる。
In the case of the alkali-free glass having the above-described composition, Rg can be adjusted by changing the content of the alkali metal oxide within the range of 200 to 2000 ppm. Rg becomes low, so that there is much content of an alkali metal oxide.
Rg can also be adjusted by changing T3.3 of the alkali-free glass to be produced. The lower T 3.3 is, the lower Rg is.
 後述する耐火物の好適組成の場合、アルカリ成分(NaO,KO)の含有量を変えることで、Rbを調節することができる。また、アルカリ成分におけるKOの割合を変えることで、Rbを調節することができる。アルカリ成分(NaO,KO)の含有量が低いほどRbが高くなる。アルカリ成分におけるKOの割合が高いほどRbが高くなる。 In the case of a suitable composition of a refractory described later, Rb can be adjusted by changing the content of alkali components (Na 2 O, K 2 O). Moreover, Rb can be adjusted by changing the ratio of K 2 O in the alkali component. Rb becomes higher as the content of alkali components (Na 2 O, K 2 O) is lower. Rb increases as the proportion of K 2 O in the alkali component increases.
 上述した組成の無アルカリガラスに対して、Rb>Rgとなる耐火物としては、質量%でZrOを85~91%、SiOを7.0~11.2%、Alを0.85~3.0%、Pを0.05~1.0%、Bを0.05~1.0%およびKOとNaOをその合量で0.01~0.12%含み、かつKOをNaO以上に含む高ジルコニア質溶融鋳造耐火物が挙げられる。 With respect to the alkali-free glass having the above-described composition, refractories satisfying Rb> Rg are ZrO 2 85 to 91%, SiO 2 7.0 to 11.2%, and Al 2 O 3 0% by mass. 0.85-3.0%, P 2 O 5 0.05-1.0%, B 2 O 3 0.05-1.0%, and the total amount of K 2 O and Na 2 O is 0.8. Examples thereof include high zirconia molten cast refractories containing 01 to 0.12% and containing K 2 O in an amount of Na 2 O or more.
 上記組成の高ジルコニア質溶融鋳造耐火物は、化学成分の85~91%という大部分がジルコニア(ZrO)からなる耐火物であり、バデライト結晶を主な構成成分としていて、溶融ガラスに対して優れた耐食性を示すとともに、アルカリ成分の含有量が少なく、しかもアルカリ成分としてイオン半径が大きく移動度が小さいKOを主に含んでいるので、1350~1750℃の温度域における電気抵抗率が大きい。 The high zirconia molten cast refractory having the above composition is a refractory consisting mainly of zirconia (ZrO 2 ) of 85 to 91% of the chemical component, and has a badelite crystal as a main constituent, It exhibits excellent corrosion resistance, has a low alkali component content, and mainly contains K 2 O having a large ionic radius and a small mobility as an alkali component, and therefore has an electrical resistivity in a temperature range of 1350 to 1750 ° C. large.
 次に各成分の組成範囲について説明する。
 高ジルコニア質溶融鋳造耐火物としては、耐火物中のZrOの含有量は多い方が溶融ガラスに対する耐食性が優れているので、85%以上、好ましくは88%以上とする。しかし、ZrOの含有量が91%より多いと、マトリックスガラスの量が相対的に少なくなってバデライト結晶の転移(すなわち変態)にともなう体積変化を吸収できなくなり、耐熱サイクル抵抗性が劣化するので91%以下とされる。
Next, the composition range of each component will be described.
As the high zirconia molten cast refractory, the higher the content of ZrO 2 in the refractory, the better the corrosion resistance to the molten glass, so 85% or more, preferably 88% or more. However, if the content of ZrO 2 is more than 91%, the amount of matrix glass is relatively small and the volume change associated with the transition (ie transformation) of the baderite crystal cannot be absorbed, and the heat cycle resistance deteriorates. 91% or less.
 SiOは、耐火物中に発生する応力を緩和するマトリックスガラスを形成する必須成分であり、亀裂のない実用寸法の溶融鋳造耐火物を得るために、7.0%以上含有している必要がある。しかし、SiO成分の含有量が11.2%より多いと溶融ガラスに対する耐食性が小さくなるので11.2%以下としてあり、好ましくは10.0%以下とする。 SiO 2 is an essential component for forming a matrix glass that relieves stress generated in the refractory, and in order to obtain a molten cast refractory having a practical size without cracks, it is necessary to contain 7.0% or more. is there. However, if the content of the SiO 2 component is more than 11.2%, the corrosion resistance to the molten glass becomes small, so it is 11.2% or less, preferably 10.0% or less.
 Alは、マトリックスガラスの温度と粘性の関係を調整する役割を果たす他、マトリックスガラス中のZrOの含有量を低減する効果を示す。マトリックスガラス中のZrOの含有量が少ないと、従来の耐火物に認められるジルコン(ZrO・SiO)結晶のマトリックスガラス中における析出が抑制され、残存体積膨張の累積傾向が顕著に減少する。 Al 2 O 3 plays the role of adjusting the relationship between the temperature and viscosity of the matrix glass, and also shows the effect of reducing the content of ZrO 2 in the matrix glass. When the content of ZrO 2 in the matrix glass is small, the precipitation of zircon (ZrO 2 · SiO 2 ) crystals found in conventional refractories in the matrix glass is suppressed, and the cumulative tendency of residual volume expansion is significantly reduced. .
 マトリックスガラス中のZrOの含有量を有効に低減せしめるため、耐火物中のAlの含有量は0.85%以上、好ましくは1.0%以上とする。また、耐火物を鋳造したり使用する際に、マトリックスガラス中にムライトなどの結晶が析出してマトリックスガラスが変質し、耐火物に亀裂が発生したりすることがないように、Alの含有量は3.0%以下としてある。 In order to effectively reduce the content of ZrO 2 in the matrix glass, the content of Al 2 O 3 in the refractory is set to 0.85% or more, preferably 1.0% or more. In addition, when casting or using a refractory, Al 2 O 3 is used so that crystals such as mullite precipitate in the matrix glass and the matrix glass is not altered and cracks are not generated in the refractory. The content of is set to 3.0% or less.
 したがって、高ジルコニア質溶融鋳造耐火物におけるAlの含有量は0.85~3.0%、好ましくは1.0~3.0%である。耐火物組成をこのような範囲に調整して鋳造した高ジルコニア質溶融鋳造耐火物では、耐熱サイクル抵抗性、すなわち残存体積膨張の累積による体積増加が実用的に問題のない範囲内に抑制されるとともに、チップオフ現象も顕著に改善される。 Therefore, the content of Al 2 O 3 in the high zirconia molten cast refractory is 0.85 to 3.0%, preferably 1.0 to 3.0%. In high zirconia molten cast refractories cast with the refractory composition adjusted to such a range, heat cycle resistance, that is, volume increase due to accumulation of residual volume expansion is suppressed within a practically no problem range. At the same time, the chip-off phenomenon is remarkably improved.
 また、少量のアルカリ成分の他にBとPが含まれていることによってアルカリ成分の含有量が少なくてもマトリックスガラスの800~1250℃における粘性が適度の大きさに調整されており、使用時にバデライト結晶の転移温度域を通過する熱サイクルを繰り返し受けても、残存体積膨張がわずかとなるので、残存体積膨張の累積によって亀裂を生じる傾向を示さない。 In addition, B 2 O 3 and P 2 O 5 are included in addition to a small amount of alkali component, so that the viscosity of the matrix glass at 800 to 1250 ° C. is adjusted to an appropriate level even if the alkali component content is small. Therefore, even when the thermal cycle that passes through the transition temperature range of the badelite crystal is repeatedly used during use, the residual volume expansion becomes small, and thus there is no tendency to cause cracks due to the accumulation of the residual volume expansion.
 BはPとともに主にマトリックスガラス中に含まれ、アルカリ成分の代わりにPと共働してマトリックスガラスを軟らかくするとともに、1350~1750℃の温度域における耐火物の電気抵抗率を小さくしない成分である。 B 2 O 3 is contained mainly in the matrix glass with P 2 O 5, as well as soften the matrix glass in cooperation with the P 2 O 5 in place of the alkali components, the refractory at the temperature range of 1350 ~ 1750 ° C. It is a component that does not reduce the electrical resistivity.
 Bの含有量は、高ジルコニア質溶融鋳造耐火物中のマトリックスガラスの量が少ないので0.05%以上あればマトリックスガラスの粘性を調整する効果を示す。しかし、Bの含有量が多すぎると緻密な溶融鋳造耐火物が鋳造できなくなるので、Bの含有量は0.05~1.0%、好ましくは0.10~1.0%とされる。 If the content of B 2 O 3 is 0.05% or more because the amount of the matrix glass in the high zirconia molten cast refractory is small, an effect of adjusting the viscosity of the matrix glass is exhibited. However, if the content of B 2 O 3 is too large, a dense melt-cast refractory cannot be cast. Therefore, the content of B 2 O 3 is 0.05 to 1.0%, preferably 0.10 to 1. 0%.
 PはBおよびアルカリ成分とともにほとんどがマトリックスガラス中に含有されており、バデライト結晶の転移温度域におけるマトリックスガラスの粘性を調整(軟らかく)してバデライト結晶の転移に伴う体積変化によって生じる応力に起因する亀裂の発生を防止する。また、PとBは、耐火物がガラス溶解窯に使用される際、ガラス中に溶け出すことがあってもガラスを着色する恐れのない成分である。さらに、Pを耐火物原料に添加すると、耐火物原料の溶融が容易となるので、耐火物を鋳造するのに要する電力の消費量を少なくできる利点もある。 P 2 O 5 is mostly contained in the matrix glass together with B 2 O 3 and the alkali component, and the volume change accompanying the transition of the badelite crystal is adjusted (soft) by adjusting the viscosity of the matrix glass in the transition temperature range of the badelite crystal. Prevents the occurrence of cracks due to the stress caused by. Further, P 2 O 5 and B 2 O 3 is, when the refractory is used in a glass melting furnace, which is no possibility of components for coloring glass even if the leach into the glass. Furthermore, when P 2 O 5 is added to the refractory raw material, the refractory raw material is easily melted, so that there is an advantage that the amount of electric power required for casting the refractory can be reduced.
 ここで、高ジルコニア質溶融鋳造耐火物中にあるマトリックスガラスの量が少ないので、耐火物中のPの含有量が少なくても、マトリックスガラス中におけるPの含有量は相対的に多く、マトリックスガラスの粘性を調整する効果はPが耐火物中に0.05%以上含まれていれば得られる。また、Pの含有量が1.0%より多いと、マトリックスガラスの性質が変って耐火物の残存体積膨張とその累積に伴う亀裂の発生を助長する傾向を示すので、マトリックスガラスの粘性の調整に適した耐火物中のPの含有量は0.05~1.0%であり、好ましくは0.1~1.0%である。 Here, since the amount of matrix glass in the high zirconia molten cast refractory is small, even if the content of P 2 O 5 in the refractory is small, the content of P 2 O 5 in the matrix glass is relatively In particular, the effect of adjusting the viscosity of the matrix glass can be obtained if 0.05% or more of P 2 O 5 is contained in the refractory. Further, if the content of P 2 O 5 is more than 1.0%, the property of the matrix glass changes and tends to promote the residual volume expansion of the refractory and the generation of cracks accompanying the accumulation. The content of P 2 O 5 in the refractory suitable for adjusting the viscosity is 0.05 to 1.0%, preferably 0.1 to 1.0%.
 また、1350~1750℃の温度域における耐火物の電気抵抗率が充分大きな値となるように、KOとNaOからなるアルカリ成分の含有量は酸化物としての合計量で0.12%以下とし、さらにアルカリ成分の50%以上、好ましくは70%以上をガラス中におけるイオン移動度が小さいKOとしている。しかし、KOとNaOの合量が0.01%より少ないと、溶融鋳造耐火物を亀裂なく製造することが困難となるので、KOとNaOの合量は0.01%以上とする。また、亀裂のない高ジルコニア質溶融鋳造耐火物を安定して鋳造できるようにKOの含有量をNaOの含有量より多くする。NaOの含有量を0.008%以上とし、KOの含有量を0.02~0.10%とするのが好ましい。 Further, the content of the alkali component consisting of K 2 O and Na 2 O is 0.12 in terms of the total amount as an oxide so that the electrical resistivity of the refractory in the temperature range of 1350 to 1750 ° C. has a sufficiently large value. %, And 50% or more, preferably 70% or more of the alkali component is K 2 O having a low ion mobility in the glass. However, if the total amount of K 2 O and Na 2 O is less than 0.01%, it becomes difficult to produce a melt-cast refractory without cracks, so the total amount of K 2 O and Na 2 O is 0.8. 01% or more. Further, the content of K 2 O is made larger than the content of Na 2 O so that a high zirconia molten cast refractory without cracks can be stably cast. It is preferable that the Na 2 O content is 0.008% or more and the K 2 O content is 0.02 to 0.10%.
 また、原料中に不純物として含まれるFeとTiOの含有量は、その合量が0.55%以下であれば、上記ガラス組成の無アルカリガラスの溶解窯において着色の問題はなく、好ましくはその合量が0.30%を超えない量とされる。また、耐火物中にアルカリ土類酸化物を含有せしめる必要はなく、アルカリ土類酸化物の含有量は合計して0.10%未満であることが好ましい。 Further, if the total content of Fe 2 O 3 and TiO 2 contained as impurities in the raw material is 0.55% or less, there is no problem of coloring in the melting furnace of the alkali-free glass having the above glass composition. Preferably, the total amount does not exceed 0.30%. Moreover, it is not necessary to contain alkaline earth oxides in the refractory, and the total content of alkaline earth oxides is preferably less than 0.10%.
 溶解窯を構成する耐火物としては、化学成分として、ZrOを88~91%、SiOを7.0~10%、Alを1.0~3.0%、Pを0.10~1.0%およびBを0.10~1.0%含有するに含む高ジルコニア質溶融鋳造耐火物が好ましい。 As the refractory constituting the melting furnace, as chemical components, ZrO 2 is 88 to 91%, SiO 2 is 7.0 to 10%, Al 2 O 3 is 1.0 to 3.0%, P 2 O 5 High zirconia molten cast refractories containing 0.10 to 1.0% and B 2 O 3 containing 0.10 to 1.0% are preferred.
 本発明では、上記組成となるように調合したガラス組成を溶解窯に連続的に投入し、1350~1750℃に加熱して溶融ガラスにした後、該溶融ガラスをフロート法により板状に成形することで、無アルカリガラスを得ることができる。より具体的には、フロート法により所定の板厚に成形し、徐冷後切断することによって、無アルカリガラスを板ガラスとして得ることができる。
 なお、板ガラスへの成形法は、フロート法、フュージョン法、ロールアウト法、スロットダウンドロー法が好ましく、特に生産性や板ガラスの大型化を考慮するとフロート法が好ましい。
In the present invention, the glass composition prepared to have the above composition is continuously charged into a melting furnace, heated to 1350 to 1750 ° C. to form molten glass, and then the molten glass is formed into a plate shape by a float process. Thus, alkali-free glass can be obtained. More specifically, an alkali-free glass can be obtained as a plate glass by forming it to a predetermined plate thickness by a float process, and cutting it after slow cooling.
The forming method for the plate glass is preferably a float method, a fusion method, a roll-out method, or a slot down draw method, and the float method is particularly preferable in consideration of productivity and enlargement of the plate glass.
 本発明の方法により得られる無アルカリガラス(以下、「本発明の無アルカリガラス」)は、歪点が680~735℃であり、パネル製造時の熱収縮を抑えられる。また、p-Si TFTの製造方法として固相結晶化法を適用することができる。
 本発明の無アルカリガラスにおいて、さらに好ましくは歪点が685℃以上、さらには690℃以上である。歪点が690℃以上であると、高歪点用途(例えば、板厚0.7mm以下、好ましくは0.5mm以下、より好ましくは0.3mm以下の有機EL用のディスプレイ用基板または照明用基板、あるいは板厚0.3mm以下、好ましくは0.1mm以下の薄板のディスプレイ用基板または照明用基板)に適している。板厚0.7mm以下、さらには0.5mm以下、さらには0.3mm以下、さらには0.1mm以下の板ガラスの成形では、成形時の引き出し速度が速くなる傾向があるため、ガラスの仮想温度が上昇し、ガラスのコンパクション(熱収縮率)が増大しやすい。この場合、高歪点ガラスであると、コンパクションを抑制することができる。ただし、歪点が735℃超になると、成形後のガラスを搬送する際のガラス温度が高くなり、設備寿命に影響する場合がある。歪点は、730℃以下が好ましく、725℃以下がより好ましい。
The alkali-free glass obtained by the method of the present invention (hereinafter referred to as “the alkali-free glass of the present invention”) has a strain point of 680 to 735 ° C. and can suppress thermal shrinkage during panel production. Further, a solid phase crystallization method can be applied as a method for manufacturing a p-Si TFT.
In the alkali-free glass of the present invention, the strain point is more preferably 685 ° C or higher, and further 690 ° C or higher. When the strain point is 690 ° C. or higher, it is used for a high strain point (for example, a display substrate or lighting substrate for organic EL having a plate thickness of 0.7 mm or less, preferably 0.5 mm or less, more preferably 0.3 mm or less. Or a thin display substrate or lighting substrate having a thickness of 0.3 mm or less, preferably 0.1 mm or less. When forming a sheet glass having a plate thickness of 0.7 mm or less, further 0.5 mm or less, further 0.3 mm or less, and further 0.1 mm or less, the drawing speed at the time of forming tends to increase. Increases and the glass compaction (heat shrinkage rate) tends to increase. In this case, compaction can be suppressed when the glass is a high strain point glass. However, if the strain point exceeds 735 ° C., the glass temperature at the time of conveying the glass after molding becomes high, which may affect the equipment life. The strain point is preferably 730 ° C. or lower, and more preferably 725 ° C. or lower.
 また本発明の無アルカリガラスは、ガラス転移点が好ましくは750℃以上であり、より好ましくは760℃以上であり、さらに好ましくは770℃以上である。 Further, the alkali-free glass of the present invention has a glass transition point of preferably 750 ° C. or higher, more preferably 760 ° C. or higher, and further preferably 770 ° C. or higher.
 また本発明の無アルカリガラスは、50~350℃での平均熱膨張係数が30×10-7~43×10-7/℃であり、耐熱衝撃性が大きく、パネル製造時の生産性を高くできる。本発明の無アルカリガラスにおいて、50~350℃での平均熱膨張係数が35×10-7~43×10-7/℃であることが好ましい。 The alkali-free glass of the present invention has an average coefficient of thermal expansion at 50 to 350 ° C. of 30 × 10 −7 to 43 × 10 −7 / ° C., has high thermal shock resistance, and has high productivity during panel production. it can. In the alkali-free glass of the present invention, the average thermal expansion coefficient at 50 to 350 ° C. is preferably 35 × 10 −7 to 43 × 10 −7 / ° C.
 さらに、本発明の無アルカリガラスは、比重が好ましくは2.65以下であり、より好ましくは2.64以下であり、さらに好ましくは2.62以下である。 Furthermore, the alkali-free glass of the present invention has a specific gravity of preferably 2.65 or less, more preferably 2.64 or less, and further preferably 2.62 or less.
 また、本発明の無アルカリガラスは、Tが1710℃以下であり、好ましくは1710℃未満、より好ましくは1700℃以下、さらに好ましくは1690℃以下になっているため、溶解が比較的容易である。 The alkali-free glass of the present invention has a T 2 of 1710 ° C. or less, preferably less than 1710 ° C., more preferably 1700 ° C. or less, and even more preferably 1690 ° C. or less. is there.
 また、本発明の無アルカリガラスは、T3.3が1430℃以下であり、好ましくは1420℃未満、より好ましくは1410℃以下、さらに好ましくは1400℃以下になっているため、清澄が比較的容易である。 The alkali-free glass of the present invention has a T 3.3 of 1430 ° C. or less, preferably less than 1420 ° C., more preferably 1410 ° C. or less, and even more preferably 1400 ° C. or less. Easy.
 さらに、本発明の無アルカリガラスは粘度が10dPa・sとなる温度Tが1310℃以下、好ましくは1305℃以下、より好ましくは1300℃以下、さらに好ましくは1300℃未満、1295℃以下、1290℃以下であり、フロート成形に適している。
 また、本発明の無アルカリガラスは失透温度が、1315℃以下であることがフロート法による成形が容易となることから好ましい。好ましくは1300℃以下、1300℃未満、1290℃以下、より好ましくは1280℃以下である。また、フロート成形性やフュージョン成形性の目安となる温度T(ガラス粘度が10dPa・sとなる温度、単位:℃)と失透温度との差(T-失透温度)は、好ましくは-20℃以上、-10℃以上、さらには0℃以上、より好ましくは10℃以上、さらに好ましくは20℃以上、特に好ましくは30℃以上である。
 本明細書における失透温度は、白金製の皿に粉砕されたガラス粒子を入れ、一定温度に制御された電気炉中で17時間熱処理を行い、熱処理後の光学顕微鏡観察によって、ガラスの表面及び内部に結晶が析出する最高温度と結晶が析出しない最低温度との平均値である。
Further, the alkali-free glass of the present invention has a temperature T 4 at which the viscosity becomes 10 4 dPa · s is 1310 ° C. or less, preferably 1305 ° C. or less, more preferably 1300 ° C. or less, still more preferably less than 1300 ° C., 1295 ° C. or less, It is 1290 ° C. or lower and is suitable for float forming.
In addition, the alkali-free glass of the present invention preferably has a devitrification temperature of 1315 ° C. or lower because molding by the float method is easy. Preferably they are 1300 degrees C or less, 1300 degrees C or less, 1290 degrees C or less, More preferably, it is 1280 degrees C or less. The difference between the temperature T 4 (temperature at which the glass viscosity is 10 4 dPa · s, unit: ° C.) and the devitrification temperature (T 4 −devitrification temperature), which is a standard for float moldability and fusion moldability, is It is preferably −20 ° C. or higher, −10 ° C. or higher, further 0 ° C. or higher, more preferably 10 ° C. or higher, still more preferably 20 ° C. or higher, and particularly preferably 30 ° C. or higher.
In this specification, the devitrification temperature is obtained by putting crushed glass particles in a platinum dish and performing heat treatment for 17 hours in an electric furnace controlled at a constant temperature. It is an average value of the maximum temperature at which crystals are deposited inside and the minimum temperature at which crystals are not deposited.
 また、本発明の無アルカリガラスは、ヤング率は78GPa以上が好ましく、79GPa以上、80GPa以上、さらに81GPa以上がより好ましく、82GPa以上がさらに好ましい。 The alkali-free glass of the present invention has a Young's modulus of preferably 78 GPa or more, 79 GPa or more, 80 GPa or more, more preferably 81 GPa or more, and further preferably 82 GPa or more.
 また、本発明の無アルカリガラスは、光弾性定数が31nm/MPa/cm以下であることが好ましい。
 液晶ディスプレイパネル製造工程や液晶ディスプレイ装置使用時に発生した応力によってガラス基板が複屈折性を有することにより、黒の表示がグレーになり、液晶ディスプレイのコントラストが低下する現象が認められることがある。光弾性定数を31nm/MPa/cm以下とすることにより、この現象を小さく抑えることができる。好ましくは30nm/MPa/cm以下、より好ましくは29nm/MPa/cm以下、さらに好ましくは28.5nm/MPa/cm以下、特に好ましくは28nm/MPa/cm以下である。
 また、本発明の無アルカリガラスは、他の物性確保の容易性を考慮すると、光弾性定数が光弾性定数が23nm/MPa/cm以上、さらには25nm/MPa/cm以上であることが好ましい、
 なお、光弾性定数は円盤圧縮法により測定波長546nmにて測定できる。
The alkali-free glass of the present invention preferably has a photoelastic constant of 31 nm / MPa / cm or less.
Due to the birefringence of the glass substrate due to stress generated during the manufacturing process of the liquid crystal display panel and the liquid crystal display device, a phenomenon in which the black display becomes gray and the contrast of the liquid crystal display decreases may be observed. By setting the photoelastic constant to 31 nm / MPa / cm or less, this phenomenon can be suppressed small. Preferably it is 30 nm / MPa / cm or less, More preferably, it is 29 nm / MPa / cm or less, More preferably, it is 28.5 nm / MPa / cm or less, Most preferably, it is 28 nm / MPa / cm or less.
The alkali-free glass of the present invention has a photoelastic constant of 23 nm / MPa / cm or more, more preferably 25 nm / MPa / cm or more, considering the ease of securing other physical properties.
The photoelastic constant can be measured by a disk compression method at a measurement wavelength of 546 nm.
 無アルカリガラスのβ-OH値は、無アルカリガラスの要求特性に応じて適宜選択することができる。無アルカリガラスの歪点を高くするためには、β-OH値が低いことが好ましい。例えば、歪点を725℃以上とする場合、β-OH値を0.3mm-1以下とすることが好ましく、0.25mm-1以下とすることがより好ましく、0.2mm-1以下とすることがさらに好ましい。
 β-OH値は、原料溶融時の各種条件、たとえば、ガラス原料中の水分量、溶解窯中の水蒸気濃度、溶解窯における溶融ガラスの滞在時間等によって調節することができる。ガラス原料中の水分量を調節する方法としては、ガラス原料として酸化物の代わりに水酸化物を用いる方法(例えば、マグネシウム源として酸化マグネシウム(MgO)の代わりに水酸化マグネシウム(Mg(OH))を用いる)がある。また、溶解窯中の水蒸気濃度を調節する方法としては、バーナーでの燃焼時に、化石燃料を酸素ガスと混合して燃焼させる方法、酸素ガスおよび空気と混合して燃焼させる方法がある。
The β-OH value of the alkali-free glass can be appropriately selected according to the required characteristics of the alkali-free glass. In order to increase the strain point of the alkali-free glass, it is preferable that the β-OH value is low. For example, when the strain point is 725 ° C. or more, the β-OH value is preferably 0.3 mm −1 or less, more preferably 0.25 mm −1 or less, and 0.2 mm −1 or less. More preferably.
The β-OH value can be adjusted by various conditions at the time of melting the raw material, for example, the amount of water in the glass raw material, the water vapor concentration in the melting kiln, the residence time of the molten glass in the melting kiln, and the like. As a method for adjusting the amount of water in the glass raw material, a method using a hydroxide instead of an oxide as a glass raw material (for example, magnesium hydroxide (Mg (OH) 2 instead of magnesium oxide (MgO) as a magnesium source) )). In addition, as a method for adjusting the water vapor concentration in the melting furnace, there are a method in which fossil fuel is mixed with oxygen gas and burned, and a method in which it is burned with oxygen gas and air at the time of combustion in a burner.
 溶融ガラスと耐火物(ジルコニア系電鋳耐火物)の1300~1700℃の温度域における電気抵抗率を測定した。
 溶融ガラス(ガラス1、ガラス2、ガラス3)は、各成分の原料を以下に示す組成になるように調合し、白金坩堝を用いて1600℃の温度で溶解した。溶解にあたっては、白金スターラを用い撹拌しガラスの均質化を行った。このようにして得られた溶融ガラスを1300~1700℃の温度域に保持した状態で電気抵抗率を、下記文献に記載の方法で測定した。
「イオン性融体の導電率測定法、大田能生、宮永光、森永健次、柳ヶ瀬勉、日本金属学会誌第45巻第10号(1981)1036~1043」
The electrical resistivity of the molten glass and refractory (zirconia electrocast refractory) in the temperature range of 1300 to 1700 ° C. was measured.
Molten glass (Glass 1, Glass 2, Glass 3) was prepared by mixing the raw materials of each component so as to have the following composition, and was melted at a temperature of 1600 ° C. using a platinum crucible. In melting, the mixture was stirred using a platinum stirrer to homogenize the glass. The electrical resistivity was measured by the method described in the following document while the molten glass thus obtained was maintained in a temperature range of 1300 to 1700 ° C.
"Conductivity measurement method for ionic melt, Norio Ota, Mitsuo Miyanaga, Kenji Morinaga, Tsutomu Yanagase, Journal of the Japan Institute of Metals, Vol. 45 No. 10 (1981) 1036-1043"
[ガラス1]
組成(酸化物基準のモル%表示)
SiO2        67.5
Al        12.7
          3.5
MgO         6.2
CaO         6.5
SrO         3.6
BaO         0
ZrO         0
MgO+CaO+SrO+BaO       16.3
MgO/(MgO+CaO+SrO+BaO)  0.38
CaO/(MgO+CaO+SrO+BaO)  0.40
SrO/(MgO+CaO+SrO+BaO)  0.22
[Glass 1]
Composition (expressed as mol% based on oxide)
SiO 2 67.5
Al 2 O 3 12.7
B 2 O 3 3.5
MgO 6.2
CaO 6.5
SrO 3.6
BaO 0
ZrO 2 0
MgO + CaO + SrO + BaO 16.3
MgO / (MgO + CaO + SrO + BaO) 0.38
CaO / (MgO + CaO + SrO + BaO) 0.40
SrO / (MgO + CaO + SrO + BaO) 0.22
[ガラス2]
組成(酸化物基準のモル%表示)
SiO2        66.9
Al        13.0
          1.7
MgO          8.8
CaO          5.1
SrO         4.5
BaO         0
ZrO         0
MgO+CaO+SrO+BaO       18.4
MgO/(MgO+CaO+SrO+BaO)  0.48
CaO/(MgO+CaO+SrO+BaO)  0.28
SrO/(MgO+CaO+SrO+BaO)  0.24
[ガラス3]
組成(酸化物基準のモル%表示)
SiO2        66.8
Al        13.8
          2.8
MgO          8.4
CaO          5.0
SrO         3.2
BaO         0
ZrO         0
MgO+CaO+SrO+BaO       16.6
MgO/(MgO+CaO+SrO+BaO)  0.51
CaO/(MgO+CaO+SrO+BaO)  0.30
SrO/(MgO+CaO+SrO+BaO)  0.19
[Glass 2]
Composition (expressed as mol% based on oxide)
SiO 2 66.9
Al 2 O 3 13.0
B 2 O 3 1.7
MgO 8.8
CaO 5.1
SrO 4.5
BaO 0
ZrO 2 0
MgO + CaO + SrO + BaO 18.4
MgO / (MgO + CaO + SrO + BaO) 0.48
CaO / (MgO + CaO + SrO + BaO) 0.28
SrO / (MgO + CaO + SrO + BaO) 0.24
[Glass 3]
Composition (expressed as mol% based on oxide)
SiO 2 66.8
Al 2 O 3 13.8
B 2 O 3 2.8
MgO 8.4
CaO 5.0
SrO 3.2
BaO 0
ZrO 2 0
MgO + CaO + SrO + BaO 16.6
MgO / (MgO + CaO + SrO + BaO) 0.51
CaO / (MgO + CaO + SrO + BaO) 0.30
SrO / (MgO + CaO + SrO + BaO) 0.19
 これらに加えて、NaO含有量を酸化物基準で200ppm、および、1000ppmの2通りに変えて添加した。
 また、化学組成、鉱物組成が下記のジルコニア系電鋳耐火物(耐火物1、耐火物2)についても、700~1600℃の温度域に保持した状態で電気抵抗率を「JIS C2141電気絶縁用セラミック材料試験方法」の体積抵抗率(第14節)の測定原理を高温に展開(試料を電気炉内に設置して加熱)して測定した。
[耐火物1]
化学組成(質量%)
ZrO   88
SiO    9.3
Al   1.5
5     0.1
     0.8
Fe   0.05
TiO    0.15
NaO    0.02
O     0.04
鉱物組成(質量%)
バテライト 88
ガラス相  12
[耐火物2]
化学組成(質量%)
ZrO   94.5
SiO    4.0
Al   0.8
5     0.10
     0.8
Fe   0.05
TiO    0.15
NaO    0.4
O     0.01
鉱物組成(質量%)
バテライト 88
ガラス相  12
In addition to these, the Na 2 O content was added in two ways of 200 ppm and 1000 ppm based on the oxide.
In addition, zirconia-based electrocast refractories (refractory 1 and refractory 2) having the following chemical composition and mineral composition also have an electrical resistivity of “JIS C2141 for electrical insulation” in a temperature range of 700 to 1600 ° C. The measurement principle of the volume resistivity (Section 14) of “Ceramic material test method” was developed at a high temperature (the sample was placed in an electric furnace and heated) and measured.
[Refractory 1]
Chemical composition (mass%)
ZrO 2 88
SiO 2 9.3
Al 2 O 3 1.5
P 2 O 5 0.1
B 2 O 3 0.8
Fe 2 O 3 0.05
TiO 2 0.15
Na 2 O 0.02
K 2 O 0.04
Mineral composition (mass%)
Vatelite 88
Glass phase 12
[Refractory 2]
Chemical composition (mass%)
ZrO 2 94.5
SiO 2 4.0
Al 2 O 3 0.8
P 2 O 5 0.10
B 2 O 3 0.8
Fe 2 O 3 0.05
TiO 2 0.15
Na 2 O 0.4
K 2 O 0.01
Mineral composition (mass%)
Vatelite 88
Glass phase 12
 ガラス1の電気抵抗率の測定結果を図1、ガラス2の電気抵抗率の測定結果を図2、ガラス3の電気抵抗率の測定結果を図3に示す。図1、図2、図3において、NaO=200ppm、1000ppmの結果は実測値であり、それ以外は計算値である。ガラス1のT3.3は1393℃、ガラス2のT3.3は1378℃、ガラス3のT3.3は1396℃である。図1、図2、図3から明らかなように、耐火物1は、ガラス1、ガラス2、ガラス3のNaO含有量が200ppm以上の場合、T3.3における電気抵抗率Rbが、T3.3における溶融ガラスの電気抵抗率Rgに対して、Rb>Rgの関係を満たしていた。また、T3.3以上の温度域においても、耐火物1のほうが溶融ガラスよりも電気抵抗率が高かった。このような耐火物1で溶解窯を構成すれば、通電加熱時に、加熱電極から溶解窯を構成する耐火物に電流が流れるのが抑制されると考えられる。
 ガラス1、ガラス2、ガラス3のNaO含有量が200ppm未満の場合は、T3.3における電気抵抗率Rb,Rgが、Rb<Rgの関係となっていた。
 一方、耐火物2はT3.3における電気抵抗率Rbが、ガラス1、ガラス2、ガラス3のNaO含有量が200ppm、1000ppmのいずれの場合にも、T3.3における溶融ガラスの電気抵抗率Rgに対して、Rb<Rgの関係となっていた。また、T3.3以上の温度域においても、耐火物2のほうが溶融ガラスよりも電気抵抗率が低かった。このような耐火物2で溶解窯を構成した場合、通電加熱時に、加熱電極から溶解窯を構成する耐火物に電流が流れると考えられる。
The measurement result of the electrical resistivity of the glass 1 is shown in FIG. 1, the measurement result of the electrical resistivity of the glass 2 is shown in FIG. 2, and the measurement result of the electrical resistivity of the glass 3 is shown in FIG. In FIGS. 1, 2, and 3, the results of Na 2 O = 200 ppm and 1000 ppm are actually measured values, and the other values are calculated values. T 3.3 Glass 1 1393 ° C., T 3.3 of the glass 2 is 1378 ° C., T 3.3 of the glass 3 is 1396 ° C.. As is apparent from FIGS. 1, 2 and 3, the refractory 1 has an electrical resistivity Rb at T 3.3 when the glass 1, glass 2 and glass 3 have a Na 2 O content of 200 ppm or more. the electric resistivity Rg of the molten glass in the T 3.3, satisfied the relationship of Rb> Rg. Further, even in the temperature range of T 3.3 or higher, the refractory 1 had a higher electrical resistivity than the molten glass. If a melting kiln is comprised with such a refractory 1, it will be thought that it is suppressed that an electric current flows into the refractory which comprises a melting kiln from a heating electrode at the time of energization heating.
When the Na 2 O content of Glass 1, Glass 2, and Glass 3 was less than 200 ppm, the electrical resistivity Rb, Rg at T 3.3 was in a relationship of Rb <Rg.
On the other hand, electrical resistivity Rb of refractory 2 T 3.3 is a Glass 1, a glass 2, 200 ppm is the content of Na 2 O of the glass 3, in each case 1000ppm of the molten glass in the T 3.3 The relationship was Rb <Rg with respect to the electrical resistivity Rg. Further, even in the temperature range of T 3.3 or higher, the refractory 2 had a lower electrical resistivity than the molten glass. When a melting kiln is configured with such a refractory 2, it is considered that a current flows from the heating electrode to the refractory constituting the melting kiln during energization heating.
 以下において例1~23、例27~28は実施例、例24~26は比較例である。各成分の原料を目標組成になるように調合したものを、上記耐火物1で構成される溶解窯に投入して、1500~1600℃の温度で溶解した。溶解窯の加熱には、バーナーの燃焼炎による加熱と、溶解窯内の溶融ガラスに浸漬するように配置された加熱電極による該溶融ガラスの通電加熱と、を併用した。なお、通電加熱時の際、局所電流密度0.5A/cm、電極間の電位差300V、周波数50Hzで交流電圧を加熱電極に印加した。
 なお、バーナーの燃焼炎による加熱量と、溶解窯内の溶融ガラスの通電加熱による加熱量の合計をT(J/h)とするとき、通電加熱による加熱量T(J/h)は、T=0.30×Tの関係を満たしていた。
In the following, Examples 1 to 23 and Examples 27 to 28 are Examples, and Examples 24 to 26 are Comparative Examples. A mixture of raw materials of each component so as to have a target composition was put into a melting furnace composed of the refractory 1, and was melted at a temperature of 1500 to 1600 ° C. For heating of the melting furnace, heating by a burner flame and electric heating of the molten glass by a heating electrode arranged so as to be immersed in the molten glass in the melting furnace were used in combination. At the time of energization heating, an alternating voltage was applied to the heating electrode at a local current density of 0.5 A / cm 2 , a potential difference between the electrodes of 300 V, and a frequency of 50 Hz.
In addition, when the total amount of heating by the burning flame of the burner and current heating of the molten glass in the melting furnace is T 0 (J / h), the heating amount T (J / h) by current heating is The relationship of T = 0.30 × T 0 was satisfied.
 表1~4には、ガラス組成(単位:モル%)と50~350℃での熱膨脹係数(単位:×10-7/℃)、歪点(単位:℃)、ガラス転移点(単位:℃)、比重、ヤング率(GPa)(超音波法により測定)、高温粘性値として、溶解性の目安となる温度T(ガラス粘度が10dPa・sとなる温度、単位:℃)と、清澄性の目安となる温度T3.3(ガラス粘度が103.3dPa・sとなる温度、単位:℃)と、フロート法、フュージョン法、ロールアウト法、スロットダウンドロー法等の成形性の目安となる温度T(ガラス粘度が10dPa・sとなる温度、単位:℃)、および、失透温度(単位:℃)、光弾性定数(単位:nm/MPa/cm)(板状に成形した徐冷したサンプルを用いて円盤圧縮法により測定波長546nmにて測定)、および、比誘電率(板状に成形した徐冷したサンプルを用いてJIS C-2141に記載の方法により測定)を示す。熱収縮率の評価は次の手順で行った。試料をガラス転移点+100゜Cの温度で10分間保持した後、毎分40゜Cで室温まで冷却する。ここで試料の全長を計測する。その後、毎時100゜Cで600゜Cまで加熱し、600゜Cで80分間保持し、毎時100゜Cで室温まで冷却し、再度試料の全長を計測する。600゜Cでの熱処理前後での試料の収縮量と、600゜Cでの熱処理前の試料全長との比を熱収縮率とした。
 なお、表1~4中、括弧書で示した値は計算値である。
Tables 1 to 4 show the glass composition (unit: mol%), the coefficient of thermal expansion at 50 to 350 ° C. (unit: × 10 −7 / ° C.), the strain point (unit: ° C.), and the glass transition point (unit: ° C.). ), Specific gravity, Young's modulus (GPa) (measured by ultrasonic method), high temperature viscosity value, temperature T 2 (temperature at which glass viscosity becomes 10 2 dPa · s, unit: ° C.) (temperature at which the glass viscosity is 10 3.3 dPa · s, the unit: ° C.) temperature T 3.3 which is a measure of the clarity and the float method, a fusion method, a roll out method, moldability such as a slot down draw method Temperature T 4 (temperature at which the glass viscosity becomes 10 4 dPa · s, unit: ° C.), devitrification temperature (unit: ° C.), photoelastic constant (unit: nm / MPa / cm) (plate Wavelength measured by disk compression method using a slowly cooled sample molded into a shape And a relative dielectric constant (measured by a method described in JIS C-2141 using a slowly cooled sample formed into a plate shape). Evaluation of the heat shrinkage rate was performed according to the following procedure. The sample is held at a temperature of glass transition point + 100 ° C. for 10 minutes and then cooled to room temperature at 40 ° C. per minute. Here, the total length of the sample is measured. Thereafter, the sample is heated at 100 ° C./hour to 600 ° C., held at 600 ° C. for 80 minutes, cooled to room temperature at 100 ° C./hour, and the total length of the sample is measured again. The ratio of the shrinkage of the sample before and after the heat treatment at 600 ° C. to the total length of the sample before the heat treatment at 600 ° C. was defined as the heat shrinkage rate.
In Tables 1 to 4, the values shown in parentheses are calculated values.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 表から明らかなように、実施例のガラスはいずれも、熱膨脹係数は30×10-7~43×10-7/℃と低く、歪点も680~735℃と高く、高温での熱処理に充分耐えうることがわかる。 As is apparent from the table, all the glasses of the examples have a low thermal expansion coefficient of 30 × 10 −7 to 43 × 10 −7 / ° C. and a high strain point of 680 to 735 ° C., which is sufficient for heat treatment at high temperatures. I can see that it can withstand.
 溶解性の目安となる温度Tも1710℃以下と比較的低く溶解が容易である。また、T3.3が1430℃以下であり、清澄が比較的容易である。また、成形性の目安となる温度Tが1310℃以下であり、特にフロート法による成形が容易である。また、失透温度が1320℃以下であり、特にフロート成形時に失透が生成するなどのトラブルがないと考えられる。 Temperature T 2 which is a measure of the solubility 1710 ° C. or less and relatively low solubility is easy. Moreover, T3.3 is 1430 degrees C or less, and clarification is comparatively easy. In addition, the temperature T 4 that is a measure of moldability is 1310 ° C. or less, and molding by the float method is particularly easy. Further, the devitrification temperature is 1320 ° C. or lower, and it is considered that there is no trouble such as devitrification generated particularly during float forming.
 光弾性定数が31nm/MPa/cm以下であり、液晶ディスプレイのガラス基板として使用した場合にコントラストの低下を抑制することができる。
 また、比誘電率が5.6以上であり、インセル型のタッチパネルのガラス基板として使用した場合にタッチセンサのセンシング感度が向上する。
A photoelastic constant is 31 nm / MPa / cm or less, and when used as a glass substrate of a liquid crystal display, a decrease in contrast can be suppressed.
Further, the relative dielectric constant is 5.6 or more, and the sensing sensitivity of the touch sensor is improved when used as a glass substrate of an in-cell type touch panel.
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく、様々な変更や修正を加えることができることは、当業者にとって明らかである。
 本出願は、2013年8月26日出願の日本特許出願2013-174621に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application No. 2013-174621 filed on August 26, 2013, the contents of which are incorporated herein by reference.
 本発明の無アルカリガラスは、歪点が高く、ディスプレイ用基板、フォトマスク用基板等の用途に好適である。また、太陽電池用基板、磁気ディスク用ガラス基板等の用途にも好適である。 The alkali-free glass of the present invention has a high strain point and is suitable for uses such as a display substrate and a photomask substrate. Moreover, it is suitable also for uses, such as a substrate for solar cells and a glass substrate for magnetic disks.

Claims (6)

  1.  以下のガラス組成となるように、ガラス原料を調製し、溶解窯に投入し、1350~1750℃の温度に加熱して溶融ガラスにした後、該溶融ガラスを板状に成形する無アルカリガラスの製造方法であって、
     前記溶解窯での加熱には、バーナーの燃焼炎による加熱と、前記溶解窯内の溶融ガラスに浸漬するように配置された加熱電極による該溶融ガラスの通電加熱と、を併用し、
     前記溶融ガラスの清澄温度であるT3.3(ガラス粘度が103.3dPa・sとなる温度、単位:℃)における電気抵抗率をRg(Ωcm)とし、T3.3における溶解窯を構成する耐火物の電気抵抗率をRb(Ωcm)とするとき、Rb>Rgとなるように、前記ガラス原料、および、前記耐火物を選択する無アルカリガラスの製造方法:
    酸化物基準のモル%表示で
    SiO        63~74、
    Al       11.5~16、
             1.5超5以下、
    MgO         5.5~13、
    CaO         1.5~12、
    SrO        1.5~9、
    BaO         0~1、
    ZrO        0~2を含有し
    かつ、アルカリ金属酸化物を200~2000ppm含有し、
    MgO+CaO+SrO+BaO が15.5~21であり、
    MgO/(MgO+CaO+SrO+BaO)が0.35以上であり、CaO/(MgO+CaO+SrO+BaO)が0.50以下であり、SrO/(MgO+CaO+SrO+BaO)が0.50以下。
    A glass raw material is prepared so as to have the following glass composition, put into a melting furnace, heated to a temperature of 1350 to 1750 ° C. to form molten glass, and then the alkali-free glass for forming the molten glass into a plate shape A manufacturing method comprising:
    For heating in the melting furnace, heating by a combustion flame of a burner and electric heating of the molten glass by a heating electrode arranged to be immersed in the molten glass in the melting furnace are used in combination.
    The electrical resistivity at T 3.3 (the temperature at which the glass viscosity becomes 10 3.3 dPa · s, unit: ° C.), which is the clarification temperature of the molten glass, is Rg (Ωcm), and the melting furnace at T 3.3 is When the electrical resistivity of the refractory to be configured is Rb (Ωcm), the glass raw material and the method for producing an alkali-free glass that selects the refractory so that Rb> Rg are satisfied:
    SiO 2 63 to 74 in terms of mol% based on oxide,
    Al 2 O 3 11.5-16,
    B 2 O 3 greater than 1.5 and less than 5,
    MgO 5.5-13,
    CaO 1.5-12,
    SrO 1.5-9,
    BaO 0 ~ 1,
    Containing ZrO 2 0-2 and containing 200-2000 ppm of alkali metal oxide,
    MgO + CaO + SrO + BaO is 15.5-21,
    MgO / (MgO + CaO + SrO + BaO) is 0.35 or more, CaO / (MgO + CaO + SrO + BaO) is 0.50 or less, and SrO / (MgO + CaO + SrO + BaO) is 0.50 or less.
  2.  組成が以下である、請求項1に記載の無アルカリガラスの製造方法:
     酸化物基準のモル%表示で
    SiO        63~74、
    Al       11.5~14、
             1.5超5以下、
    MgO         5.5~13、
    CaO         1.5~12、
    SrO        1.5~9、
    BaO         0~1、
    ZrO        0~2を含有し
    かつ、アルカリ金属酸化物を200~2000ppm含有し、
    MgO+CaO+SrO+BaO が15.5~21であり、
    MgO/(MgO+CaO+SrO+BaO)が0.35以上であり、CaO/(MgO+CaO+SrO+BaO)が0.50以下であり、SrO/(MgO+CaO+SrO+BaO)が0.30以下。
    The manufacturing method of the alkali free glass of Claim 1 whose composition is the following:
    SiO 2 63 to 74 in terms of mol% based on oxide,
    Al 2 O 3 11.5-14,
    B 2 O 3 greater than 1.5 and less than 5,
    MgO 5.5-13,
    CaO 1.5-12,
    SrO 1.5-9,
    BaO 0 ~ 1,
    Containing ZrO 2 0-2 and containing 200-2000 ppm of alkali metal oxide,
    MgO + CaO + SrO + BaO is 15.5-21,
    MgO / (MgO + CaO + SrO + BaO) is 0.35 or more, CaO / (MgO + CaO + SrO + BaO) is 0.50 or less, and SrO / (MgO + CaO + SrO + BaO) is 0.30 or less.
  3.  前記Rbと、前記Rgと、の比(Rb/Rg)が下記式を満たすように、前記ガラス原料、および、前記耐火物を選択する、請求項1または2に記載の無アルカリガラスの製造方法。
    Rb/Rg > 1.00
    The method for producing an alkali-free glass according to claim 1 or 2, wherein the glass raw material and the refractory are selected so that a ratio (Rb / Rg) between the Rb and the Rg satisfies the following formula. .
    Rb / Rg> 1.00
  4.  バーナーの燃焼炎による加熱量と、溶解窯内の溶融ガラスの通電加熱による加熱量の合計をT(J/h)とするとき、通電加熱による加熱量T(J/h)が下記式を満たす、請求項1~3のいずれか一項に記載の無アルカリガラスの製造方法。
    0.10×T≦T≦0.40×T
    When the sum of the heating amount by the burner combustion flame and the heating amount by the electric heating of the molten glass in the melting furnace is T 0 (J / h), the heating amount T (J / h) by the electric heating has the following formula: The method for producing an alkali-free glass according to any one of claims 1 to 3, which satisfies the above.
    0.10 × T 0 ≦ T ≦ 0.40 × T 0
  5.  前記溶解窯を構成する耐火物は、該耐火物の化学成分として、質量%でZrOを85~91%、SiOを7.0~11.2%、Alを0.85~3.0%、Pを0.05~1.0%、Bを0.05~1.0%およびKOとNaOをその合量で0.01~0.12%含み、かつKOをNaO以上に含む高ジルコニア質溶融鋳造耐火物である、請求項1~4のいずれか一項に記載の無アルカリガラスの製造方法。 The refractory that constitutes the melting furnace includes, as chemical components of the refractory, ZrO 2 of 85 to 91%, SiO 2 of 7.0 to 11.2%, and Al 2 O 3 of 0.85 to 0.5% by mass. 3.0%, P 2 O 5 0.05-1.0%, B 2 O 3 0.05-1.0%, and the total amount of K 2 O and Na 2 O is 0.01-0 The method for producing an alkali-free glass according to any one of claims 1 to 4, which is a high zirconia molten cast refractory containing 12% and containing K 2 O in an amount of Na 2 O or more.
  6.  前記加熱電極には、局所電流密度が0.1~2.0A/cm、電極間の電位差が20~500Vとなるように、周波数10~90Hzの交流電圧を印加する、請求項1~5のいずれか一項に記載の無アルカリガラスの製造方法。 6. An AC voltage having a frequency of 10 to 90 Hz is applied to the heating electrode so that a local current density is 0.1 to 2.0 A / cm 2 and a potential difference between the electrodes is 20 to 500 V. The manufacturing method of the alkali free glass as described in any one of these.
PCT/JP2014/071887 2013-08-26 2014-08-21 Method for production of non-alkali glass WO2015029870A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480047420.3A CN105492395B (en) 2013-08-26 2014-08-21 The manufacturing method of alkali-free glass
KR1020167004664A KR20160046809A (en) 2013-08-26 2014-08-21 Method for production of non-alkali glass

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-174621 2013-08-26
JP2013174621A JP2016188147A (en) 2013-08-26 2013-08-26 Method for manufacturing non-alkali glass

Publications (1)

Publication Number Publication Date
WO2015029870A1 true WO2015029870A1 (en) 2015-03-05

Family

ID=52586430

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071887 WO2015029870A1 (en) 2013-08-26 2014-08-21 Method for production of non-alkali glass

Country Status (5)

Country Link
JP (1) JP2016188147A (en)
KR (1) KR20160046809A (en)
CN (2) CN109970318A (en)
TW (1) TW201512122A (en)
WO (1) WO2015029870A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113929298A (en) * 2015-05-18 2022-01-14 日本电气硝子株式会社 Alkali-free glass substrate

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102403524B1 (en) * 2016-08-23 2022-05-31 에이지씨 가부시키가이샤 alkali free glass
CN109678341B (en) * 2018-12-11 2022-03-25 东旭光电科技股份有限公司 Alkali-free glass composition, alkali-free glass and application

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010260782A (en) * 2009-04-06 2010-11-18 Asahi Glass Co Ltd Highly zirconia-based refractory and melting furnace
WO2012046785A1 (en) * 2010-10-06 2012-04-12 旭硝子株式会社 High zirconia refractory product
WO2013084832A1 (en) * 2011-12-06 2013-06-13 旭硝子株式会社 Method for manufacturing alkali-free glass

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5116789A (en) 1991-08-12 1992-05-26 Corning Incorporated Strontium aluminosilicate glasses for flat panel displays
JP3804112B2 (en) 1996-07-29 2006-08-02 旭硝子株式会社 Alkali-free glass, alkali-free glass manufacturing method and flat display panel
JP5105571B2 (en) 2003-10-10 2012-12-26 日本電気硝子株式会社 Method for producing alkali-free glass
DE102006003534A1 (en) 2006-01-24 2007-08-02 Schott Ag Refining of optical glass with temperature-regulated electrodes

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010260782A (en) * 2009-04-06 2010-11-18 Asahi Glass Co Ltd Highly zirconia-based refractory and melting furnace
WO2012046785A1 (en) * 2010-10-06 2012-04-12 旭硝子株式会社 High zirconia refractory product
WO2013084832A1 (en) * 2011-12-06 2013-06-13 旭硝子株式会社 Method for manufacturing alkali-free glass

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113929298A (en) * 2015-05-18 2022-01-14 日本电气硝子株式会社 Alkali-free glass substrate

Also Published As

Publication number Publication date
JP2016188147A (en) 2016-11-04
CN105492395B (en) 2019-04-02
TW201512122A (en) 2015-04-01
KR20160046809A (en) 2016-04-29
CN105492395A (en) 2016-04-13
CN109970318A (en) 2019-07-05

Similar Documents

Publication Publication Date Title
JP5943064B2 (en) Method for producing alkali-free glass
KR101973829B1 (en) Method for manufacturing alkali-free glass
US11053160B2 (en) Alkali-free glass
JP7197978B2 (en) glass
WO2013183626A1 (en) Alkali-free glass and method for producing same
JP2015143185A (en) Non-alkali glass and method of producing the same
TWI798332B (en) Glass
JP6983377B2 (en) Glass
JP2017007870A (en) Manufacturing method of sheet glass
WO2015030013A1 (en) Non-alkali glass
JP2024040438A (en) Alkali-free glass plate
CN109843817B (en) Glass
WO2015029870A1 (en) Method for production of non-alkali glass

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480047420.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14839347

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167004664

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14839347

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP