WO2015029865A1 - Secondary battery unit and secondary battery equipment - Google Patents

Secondary battery unit and secondary battery equipment Download PDF

Info

Publication number
WO2015029865A1
WO2015029865A1 PCT/JP2014/071858 JP2014071858W WO2015029865A1 WO 2015029865 A1 WO2015029865 A1 WO 2015029865A1 JP 2014071858 W JP2014071858 W JP 2014071858W WO 2015029865 A1 WO2015029865 A1 WO 2015029865A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
module
external terminal
positive electrode
battery unit
Prior art date
Application number
PCT/JP2014/071858
Other languages
French (fr)
Japanese (ja)
Inventor
玉越富夫
武山幹根
福原基広
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to JP2015534163A priority Critical patent/JP6388866B2/en
Publication of WO2015029865A1 publication Critical patent/WO2015029865A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/296Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by terminals of battery packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/271Lids or covers for the racks or secondary casings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a secondary battery unit and a secondary battery facility which can operate as a secondary battery with only one unit, and can operate as a large secondary battery by combining a plurality of units.
  • frequency adjustment of the power system, and adjustment of demand power and supply power of the power system are performed by a plurality of generators and storage batteries in the system.
  • adjustment of the difference between the generated power from the natural energy power generation device and the planned output power, and the fluctuation mitigation of the generated power from the natural energy power generation device are also often carried out by a plurality of generators, storage batteries and the like.
  • the storage battery can change the output power at high speed compared to a general generator, adjust the frequency of the power system, adjust the difference between the generated power from the natural energy generator and the planned output power, of the power system It is effective for the adjustment of demand power and supply power.
  • a sodium-sulfur battery (hereinafter referred to as a NaS battery) can be mentioned.
  • This NaS battery is a high temperature secondary battery having a structure in which metallic sodium and sulfur which are active materials are separated and accommodated by a solid electrolyte tube, and when heated to a temperature of about 300 ° C. The chemical reaction generates predetermined energy.
  • NaS batteries are used in the form of module batteries in which a plurality of single batteries are erected and connected together.
  • a module battery has a structure in which a circuit (string) in which a plurality of unit cells are connected in series is connected in parallel to form a block, and at least two or more blocks are connected in series and accommodated in a heat insulation container. .
  • a plurality of heat insulation containers are vertically stacked (stacked) to form one module row, and a plurality of module rows are juxtaposed to form one package, and further, a package A controller for controlling each module battery is installed (see, for example, Japanese Patent Application Laid-Open No. 2008-226488).
  • the wiring work includes wiring for forming each module row, wiring between the module row and the control device, etc., and as the number of module batteries increases, the time for wiring work will increase.
  • the present invention has been made in consideration of such problems, and can be operated as a secondary battery by itself or can be operated as a large secondary battery (package) by combining a plurality of units. It is an object of the present invention to provide a secondary battery unit and a secondary battery facility capable of significantly reducing the number of steps from the requirement definition (including the requirement definition) to the installation of the package.
  • a secondary battery unit includes a module battery storage portion formed in a box shape, and a control device formed in a box shape and provided adjacent to the module battery storage portion A storage unit, two or more module batteries accommodated in the module battery accommodation unit and including an assembled battery of two or more single cells, and a control for accommodating at least the module battery accommodated in the control device accommodation unit And a device.
  • the secondary battery unit itself functions as a secondary battery, and moreover, it is formed in a box shape and also functions as a container, so the secondary battery unit is transported to the site as it is (b) Installation (c) Wiring work
  • each secondary battery unit itself operates as a secondary battery, complicated wiring between module batteries, for example, is unnecessary. It is sufficient to connect a plurality of secondary battery units in series and a connection between the secondary battery unit serving as a DC main circuit and the main computer (central monitoring). As compared with the conventional wiring work, the work can be greatly simplified and the working time can be shortened.
  • an intake port installed at a lower side opposite to the control device storage unit, an intake port of the module battery storage unit, and the control device storage unit It is preferable to have the communication port installed in the upper part of the boundary, and the exhaust port installed in the upper part on the opposite side to the said module battery accommodating part among the said control apparatus accommodating parts.
  • the box-shaped secondary battery unit has a form in which the internal space is surrounded by the upper plate, the bottom plate, the left side plate, the right side plate, the back plate and the like, heat easily builds up in the internal space, causing a malfunction. It is also a cause.
  • a ventilation route is formed from the lower portion to the upper portion along the diagonal direction of the inner space Becomes easier to do.
  • the air intake is installed at the lower side and the front side of the module battery storage unit, and the exhaust port is at the upper portion of the control device storage unit. It may be installed on the back side. Thereby, a ventilation route from the lower part to the upper part of the internal space and a ventilation route in the depth direction are formed, and the ventilation of the internal space can be performed efficiently.
  • control device storage unit includes an exhaust device installed facing the exhaust port, and the control device includes the exhaust device in the control device storage unit. It may be installed in the lower part than it.
  • forced ventilation can be performed by the exhaust device along the above-described ventilation route.
  • a salt damage filter may be provided in at least one of the intake port and the exhaust port. Thereby, measures against salt damage can be taken on the secondary battery unit.
  • an exhaust duct extending toward the exhaust port is provided at an upper portion in the module battery housing, and the exhaust duct has a smaller opening size as it approaches the exhaust port. It may have a plurality of air inlets.
  • the opening size of the air intake port of the exhaust duct can be optimized according to the distance from the exhaust port, so that more efficient ventilation inside the secondary battery unit can be realized.
  • At least a front side of the module battery storage portion may have a door which can be opened and closed with respect to the internal space.
  • the module battery is mounted on a pedestal installed in the module battery storage unit, and the module battery is installed on the base and has an opening on the upper surface, and the assembled battery is accommodated. And a lid for closing the opening of the box, and a positive electrode external terminal and a negative electrode external terminal which are provided on the front of the box and to which conductive members are respectively connected.
  • At least a beam supporting the gantry may be shared with the surface partitioning the module battery storage unit. Thereby, the strength of the secondary battery unit itself can be secured. And since a thin metal plate etc. can be used as a beam, the weight of a secondary battery unit can be reduced.
  • the positive electrode external terminal and the negative electrode external terminal be respectively installed on the base via an insulator.
  • the module battery has a rectangular shape in which the direction from the front to the back is a long side when viewed from the top, and the positive electrode of the assembled battery is through the side wall of the front of the box. It is connected to the said positive electrode external terminal, and the negative electrode of the said assembled battery may be connected to the said negative electrode external terminal via the side wall and relay conductor of the back surface of the said box.
  • the positive electrode external terminal, the negative electrode external terminal, and the relay conductor are respectively disposed on the base via an insulator.
  • the direction in which the conductive member connected to the positive electrode external terminal is derived may be separated from the direction in which the conductive member connected to the negative electrode external terminal is separated. In this case, the wiring route of the wiring cable is simplified.
  • module battery a module battery in which the negative electrode external terminal is disposed on the left side with respect to the positive electrode external terminal, and a module battery in which the negative electrode external terminal is disposed on the right side with respect to the positive electrode external terminal And may be included.
  • the arrangement of the positive electrode external terminal and the negative electrode external terminal can be simplified, and moreover, the wiring configuration can also be simplified. This is advantageous in simplifying the wiring operation and shortening the operation time.
  • the positive electrode external terminal is disposed at the upper or lower portion of the front of the box, and the negative electrode external terminal is disposed at the lower or upper portion of the front of the box, and the positive electrode external terminal
  • the lead-out direction of the conductive member to be connected is the direction passing through the upper or lower part of the negative electrode external terminal, and the lead-out direction of the conductive member connected to the negative electrode external terminal is the lower portion or upper part of the positive electrode external terminal
  • the direction may be via.
  • the conductive member connected to the positive electrode external terminal is connected to the negative electrode external terminal of one module battery adjacent in the lateral direction, and the conductive member connected to the negative electrode external terminal is in the lateral direction It may be connected to the positive electrode external terminal of the other module battery adjacent to.
  • a secondary battery installation according to a second aspect of the present invention includes one or more secondary battery units according to the first aspect of the present invention described above.
  • At least two of the secondary battery units may be provided with an inlet port and face each other. Thereby, a plurality of secondary battery units can be efficiently installed.
  • the exhaust ducts of at least two of the secondary battery units may be extended, and ventilation of the at least two of the secondary battery units may be performed in a concentrated manner.
  • the number of exhaust devices installed can be reduced, the time required for maintenance of the exhaust devices can be shortened, and the cost also becomes advantageous.
  • the exhaust device can be installed only in the lower secondary battery unit, which facilitates maintenance work of the exhaust device.
  • a plurality of the secondary battery units may be provided, one of which may serve as a master and the other secondary battery unit may serve as a slave.
  • the number of installed control devices can be reduced, and the time required for maintenance of the control devices can be shortened, which is also advantageous in cost.
  • maintenance work of the control device is also facilitated by using one of the lower secondary battery units as a master.
  • the gas treatment apparatus may have one gas treatment device that sucks air in at least one of the secondary battery units to perform gas treatment.
  • the exhaust gas from the secondary battery unit in which a fire or the like has occurred can be exhausted through the gas processing device without being exhausted to the outside as it is.
  • the secondary battery unit and the secondary battery facility can operate as a single battery, but also it can operate as a large secondary battery (package) by combining a plurality of units, Man-hours from the requirement definition (including the requirement definition) to the installation of the package can be significantly reduced.
  • FIG. 1A is a perspective view showing the appearance of a secondary battery unit according to the present embodiment
  • FIG. 1B is a perspective view showing the configuration of the secondary battery unit with the door removed and a part broken away.
  • It is a longitudinal cross-sectional view which shows the structure of the module battery installed in a secondary battery unit.
  • It is explanatory drawing which shows typically an example of the circuit of the assembled battery accommodated in the module battery, and a part of box.
  • It is sectional drawing which shows an example of the connection form of the conductor connection part of a positive electrode bus (negative electrode bus), and the connection part of a wiring cable.
  • FIG. 14A is a see-through perspective view partially showing the structure in the secondary battery unit
  • FIG. 14B is a perspective view showing a configuration of an internal exhaust duct installed in the secondary battery unit
  • FIG. 15A is a partially broken perspective view showing an example in which the exhaust paths of two or more secondary battery units are integrated into one
  • FIG. 15B is a partially broken perspective view showing another example.
  • FIG. 16A is an explanatory view showing an example in which the negative electrode bus bar is disposed on the left side of the positive electrode bus as viewed from above
  • FIG. 16A is an explanatory view showing an example in which the negative electrode bus bar is disposed on the left side of the positive electrode bus as viewed from above
  • FIG. 16B is an explanatory view showing the example in which the negative electrode bus bar is disposed on the right side of the positive electrode bus.
  • FIG. 6 is an explanatory view showing a wiring state of upper and lower module batteries in the secondary battery unit as viewed from the front.
  • FIG. 18A is an explanatory view showing the wiring state of the upper module battery in the secondary battery unit from above
  • FIG. 18B is an explanatory drawing showing the wiring state of the lower module battery from above. It is explanatory drawing which shows the example which made one secondary battery unit function as a master among several secondary battery units, and let another secondary battery unit function as a slave. It is explanatory drawing which shows the example which installed one gas processing apparatus in one package comprised with several secondary battery units.
  • the appearance of the secondary battery unit 10 according to the present embodiment has a rectangular parallelepiped shape having a front, a back, an upper surface, a lower surface, a left side, and a right side, as shown in FIG. 1A.
  • one internal space 22 is formed by the top plate 12, the bottom plate 14, the left side plate 16, the right side plate 18 and the back plate 20.
  • the inner space 22 is divided by a partition plate 24 into two spaces 22a and 22b.
  • a door 26 that is openable and closable with respect to one space 22a is attached to the front side, so that it has an appearance as one rectangular solid as a whole.
  • the right side plate 18 also functions as a door that can be opened and closed with respect to the other space 22b.
  • the secondary battery unit 10 is formed in a box shape that divides the space 22b into a module battery storage portion 28 formed in a box shape that divides one space 22a.
  • the control device accommodation unit 30 The module battery housing portion 28 and the control device housing portion 30 are disposed adjacent to each other with the partition plate 24 interposed therebetween.
  • Two or more module batteries 32 are housed in the module battery housing portion 28. That is, in the space 22 a of the module battery housing portion 28, a plurality of columns 34 are installed, and on each column 34, for example, mounts 36 are installed at equal intervals in parallel with each other. One module battery 32 is mounted and fixed on each of the mounts 36 one by one. When a plurality of mounts 36 are installed in the vertical direction, the module batteries 32 arranged in the vertical direction are installed with a certain amount of clearance.
  • the control device housing unit 30 houses a control device 38 that controls at least the module battery 32.
  • the door 26 and the right side plate (door) 18 which can be opened and closed with respect to the respective spaces 22a and 22b are attached to the front sides of the module battery storage unit 28 and the control device storage unit 30, respectively. There is.
  • the door 26 and the right side plate 18 (door) are in a closed state during normal use.
  • the control device 38, etc., the module battery 32 etc. can be easily replaced from the front side or maintenance etc. by opening the door 26 and the right side plate 18 (door). be able to.
  • the control device 38 and the like can be easily replaced from the right side and maintenance can be performed.
  • each module battery 32 housed in the module battery housing portion 28 is, for example, a base 40 made of steel, a box 42 mounted and fixed on the base 40, and a box It has the assembled battery 46 which consists of many single cells 44 accommodated in the body 42, and the cover body 48 which obstruct
  • the unit cell 44 has, for example, a cylindrical shape, and is accommodated in the box 42 with the axial direction directed vertically. Further, although not shown, silica sand is filled in the gap between the box 42 and the battery assembly 46 as digested sand so as to cope with breakage of the unit cell 44, abnormal heating, or leakage of the active material.
  • the box 42 has, for example, a shape close to a rectangular parallelepiped, includes four side walls and a bottom wall, and is an upper opening.
  • the box 42 is made of, for example, a plate material made of stainless steel, and is itself formed in a box shape having the hollow portion 50.
  • the hollow portion 50 is a hermetically sealed space, and has a structure in which the hollow portion 50 and the external space can communicate with each other by a vacuum valve (not shown).
  • a porous vacuum heat insulation board 52 in which glass fibers are solidified in a plate shape with an adhesive is loaded, and the box body 42 has a vacuum heat insulation structure.
  • the lid 48 includes a top wall 54 and a weir 56, and is installed to close the top opening of the box 42.
  • the lid 48 is made of, for example, a plate made of stainless steel, as the box 42.
  • a heat insulating material layer (not shown) for obtaining the minimum necessary heat insulation is disposed on the inner surface side (lower surface side) of the lid 48.
  • the hollow portion 58 of the lid 48 is stacked and filled with at least two removable heat insulating plates 60. That is, only the lid 48 (upper surface) has an air insulation structure, and the amount of heat released from the upper surface of the module battery 32 can be controlled.
  • the lid 48 may adopt a vacuum heat insulation structure as well as the box 42.
  • the assembled battery 46 is configured by connecting two or more blocks 66 in series from the positive electrode 62 to the negative electrode 64.
  • Each block 66 is configured by connecting in parallel two or more circuits (strings 68) in which two or more unit cells 44 are connected in series.
  • the positive electrode 62 includes a positive electrode bus 70 that constitutes a positive electrode external terminal.
  • the positive electrode bus 70 is electrically connected to the positive electrode current collector portion 74 of the battery pack 46 via the positive electrode pole 76. That is, the positive electrode pole 76 is coupled to the positive electrode current collector 74 in the housing space of the box 42, penetrates the front wall 78 a of the box 42, and is coupled to the positive electrode bus 70 outside the box 42.
  • the negative electrode 64 includes a negative electrode bus bar 80 which constitutes a negative electrode external terminal, and a negative electrode bus 84 which functions as a relay conductor.
  • the negative electrode bus 84 is electrically connected to the negative electrode current collector portion 86 of the battery pack 46 via the negative electrode pole 88. That is, the negative electrode pole 88 is coupled to the negative electrode current collector 86 in the housing space of the box 42, penetrates the back wall 78 b of the box 42, and is coupled to the negative electrode bus 84 outside the box 42.
  • the negative electrode bus 84 and the negative electrode bus bar 80 are electrically connected via the wiring cable 90. In this case, since the wiring cable 90 is long, it is preferable to interpose an insulator 92 such as a ladder between the wiring cable 90 and the base 40.
  • a relay bus bar is installed between the negative electrode bus 84 and the negative electrode bus bar 80, the negative electrode bus 84 and the relay bus bar, and the relay bus bar and the negative bus bar 80 are electrically connected via the wiring cable 90, respectively.
  • a metal bus bar such as an aluminum bus bar, may be used.
  • the number of insulators 92 installed can be reduced even with a long distance wiring.
  • the positive electrode current collection part 74 mentioned above and the negative electrode current collection part 86 being comprised by a metal plate contributes to the fall of the electrical resistance of the positive electrode bus 70 and the negative electrode bus 84.
  • FIG. the positive electrode pole 76 and the negative electrode pole 88 having a pole shape, respectively, contribute to the suppression of heat entering and exiting through the positive electrode pole 76 and the negative electrode pole 88.
  • the positive electrode bus 70 includes a conductor connection portion 94 and a bent portion 96.
  • Wiring cable 90 electrically connects positive electrode bus 70 of one adjacent module battery 32 and negative electrode bus bar 80 (not shown in FIG. 4) of the other module battery 32.
  • the wiring cable 90 electrically connects the negative electrode bus 84 and the negative electrode bus bar 80.
  • the positive electrode pole 76 is coupled to the bent portion 96 of the positive electrode bus 70.
  • bolt holes 102 are formed in the conductor connection portion 94 of the positive electrode bus 70.
  • the bolt holes 104 are also formed in the connection portion 98 of the wiring cable 90.
  • the conductor connection portion 94 of the positive electrode bus 70 and the connection portion 98 of the wiring cable 90 are overlapped, and the bolt hole 102 formed in the conductor connection portion 94 of the positive electrode bus 70 and the bolt hole 104 formed in the connection portion 98 of the wiring cable 90.
  • the bolt 106 is inserted into the The nut 108 is screwed into the bolt 106.
  • the conductor connection portion 94 of the positive electrode bus 70 and the connection portion 98 of the wiring cable 90 are fastened by the bolt 106 and the nut 108.
  • the surface of the conductor connection portion 94 of the positive electrode bus 70 and the surface of the connection portion 98 of the wiring cable 90 are plated with nickel.
  • the durability and heat resistance of the positive electrode bus 70 and the wiring cable 90 are improved as compared with the case of silver plating, but the connection resistance is increased.
  • the problem that the connection resistance increases is that the contact area of the conductor connection portion 94 of the positive electrode bus 70 and the connection portion 98 of the wiring cable 90 is increased, and the conductor connection portion 94 of the positive electrode bus 70 and the connection portion 98 of the wiring cable 90 are adhered. Eliminate it by
  • the positive electrode bus 70 has a plate shape.
  • the conductor connection portion 94 of the positive electrode bus 70 occupies one end of the positive electrode bus 70.
  • the bent portion 96 of the positive electrode bus 70 occupies the other end of the positive electrode bus 70.
  • the conductor connection portion 94 and the bending portion 96 of the positive electrode bus 70 are disposed parallel to the outer surface of the front wall 78a.
  • the distance from the front wall 78 a to the conductor connection portion 94 of the positive electrode bus 70 is longer than the bolt length of the bolt 106 and longer than the distance from the front wall 78 a to the bending portion 96.
  • the distance from the front wall 78a to the conductor connection portion 94 of the positive electrode bus 70 is at least twice the bolt length.
  • the positive electrode pole 76 When the distance from the front wall 78a to the bent portion 96 of the positive electrode bus 70 is short, the positive electrode pole 76 is short. As a result, heat inflow and outflow through the positive electrode pole 76 is suppressed, and adjustment of the temperature in the box 42 becomes easy.
  • the positive electrode support 110 for supporting the positive electrode bus 70 on the base 40 is the pedestal 120, the pedestal fixing bolt 122, the lower end cap 124, the insulator 126, the upper end cap 128, L
  • the bracket 130, the L-shaped bracket fixing bolt 132, and the L-shaped bracket fixing nut 134 are provided.
  • the lower end 136 of the forceps 126 and the recess 138 of the lower end cap 124 are cemented.
  • the outer surface 140 of the lower end cap 124 and the upper surface 142 of the pedestal 120 are welded.
  • the pedestal 120 is fixed to the base 40 by a pedestal fixing bolt 122.
  • Bolt holes 144 are formed in the base 40.
  • Bolt holes 146 are formed in the base 120.
  • a screw groove is cut on the inner surface of the bolt hole 144.
  • the pedestal 120 is mounted on the base 40 of the module battery 32.
  • the pedestal fixing bolt 122 is inserted into a bolt hole 146 formed in the pedestal 120 and a bolt hole 144 formed in the base 40 and screwed into a screw groove cut in the bolt hole 144 formed in the base 40 Ru.
  • the bolt holes 146 formed in the pedestal 120 are long holes that are long in the depth direction of the pedestal 120. Thereby, the position of the pedestal 120 can be adjusted in the depth direction.
  • the upper end 148 of the forceps 126 and the recess 150 of the upper end cap 128 are cemented.
  • the outer surface 152 of the top end cap 128 and the outer surface 156 of the horizontal portion 154 of the L-shaped fitting 130 are welded.
  • the vertical portion 158 of the L-shaped fitting 130 is fixed to the positive electrode bus 70 by the L-shaped fitting fixing bolt 132 and the L-shaped fitting fixing nut 134.
  • a bolt hole 160 is formed in the vertical portion 158 of the L-shaped fitting 130.
  • Bolt holes 162 are formed in the positive electrode bus 70.
  • the vertical portion 158 of the L-shaped metal fitting 130 and the positive electrode bus 70 are overlapped.
  • the L-shaped bracket fixing bolt 132 is inserted into the bolt hole 160 formed in the L-shaped bracket 130 and the bolt hole 162 formed in the positive electrode bus 70.
  • the L-shaped fitting fixing nut 134 is screwed into the L-shaped fitting fixing bolt 132.
  • the bolt holes 160 formed in the L-shaped fitting 130 are long holes that are long in the vertical direction. Thereby, the position of the L-shaped fitting 130 can be adjusted in the vertical direction. Therefore, the variation in the size of the insulator 126 is absorbed by the positional adjustment of the pedestal 120 and the L-shaped bracket 130.
  • the positive electrode bus 70 is supported by the positive electrode support 110.
  • the pedestal 120 coupled to the base 40 and the L-shaped fitting 130 coupled to the positive electrode bus 70 are electrically isolated by the insulator 126.
  • the negative electrode bus 84 and the relay support 164 also have the same configuration as that of the positive electrode bus 70 and the positive electrode support 110 described above. Therefore, in FIGS. 4 and 6, the members relating to the negative electrode bus 84 are shown in parentheses.
  • the negative electrode bus bar 80 and the negative electrode support 166 have substantially the same configuration as the above-described positive electrode bus 70, as shown in FIG. 7, the shape of the conductor connection portion 94 is L-shaped as viewed from the top. It differs in That is, it has a first connection portion 94 a extending along the front wall 78 a of the box 42 and a second connection portion 94 b extending along the left side wall 78 c of the box 42.
  • the wiring cable 90 connected to the positive electrode bus 70 (see FIG. 4) of the adjacent module battery 32 is connected to the first connection portion 94a, and the second connection portion 94b is connected to the negative electrode bus 84 (see FIG. 4).
  • the wiring cable 90 connected to the conductor connection portion 94 is connected.
  • the positive electrode bus 70 of one module battery 32 and the negative electrode bus bar 80 of the other module battery 32 adjacent in the lateral direction are electrically To connect to.
  • the wiring direction of the wiring cable 90 connected to the external terminal of the module battery 32 is the arrangement direction in the lateral direction of the module battery 32. Therefore, the wiring length can be shortened between the adjacent module batteries 32. The bending of the wiring cable 90 or the like can be suppressed.
  • a bus bar may be installed midway, or an insulator 92 (see FIG. 3) such as a ladder may be interposed between the wiring cable 90 and the base 40 to ensure electrical insulation. Even if the insulation coating melts, the electrical insulation is maintained, and the occurrence of a short circuit due to a multipoint ground fault can be avoided.
  • module batteries 32 are accommodated in the module battery accommodation unit 28, and a method of connecting the module batteries 32 in series will be described with reference to FIGS. 8 and 9.
  • the six module batteries 32 are referred to as module batteries 32A to 32F.
  • the first method is a method of constructing one module row 168 by connection between the two module batteries 32C and 32D by the distribution cable 90 in the control device housing 30.
  • the positive electrode bus 70 and the negative electrode bus bar 80 are installed at substantially the same position in the vertical direction of the box 42.
  • the lead-out direction of the wiring cable 90 connected to the positive electrode bus 70 and the lead-out direction of the wiring cable 90 connected to the negative electrode busbar 80 are mutually separated. .
  • the positive electrode bus 70 of the right side module battery 32A in the upper stage and the control device 38 are connected by the wiring cable 90.
  • a wiring cable 90 connects the negative electrode bus bar 80 of the right module battery 32A and the positive electrode bus 70 of the adjacent central module battery 32B.
  • the negative electrode bus bar 80 of the central module battery 32B and the positive electrode bus 70 of the adjacent left module battery 32C are connected by the wiring cable 90.
  • the negative electrode bus bar 80 of the left module battery 32C and the positive electrode bus 70 of the right module battery 32D in the lower part are connected by the wiring cable 90 wired in the control device housing 30.
  • the negative electrode bus bar 80 of the right side module battery 32D in the lower stage and the positive electrode bus 70 of the adjacent central module battery 32E are connected by the wiring cable 90.
  • the negative electrode bus bar 80 of the central module battery 32E and the positive electrode bus 70 of the adjacent left module battery 32F are connected by the wiring cable 90.
  • the negative electrode bus bar 80 of the left module battery 32F and the control device 38 are connected by the wiring cable 90.
  • the second method is a method of configuring one module row 168 by series connection of the module batteries 32 in the module battery housing 28.
  • the positive electrode bus 70 is disposed, for example, at the lower portion of the front of the box 42, and the negative electrode bus bar 80 is disposed, for example, at the upper portion of the front of the box 42.
  • the lead-out direction of the wiring cable 90 connected to the positive electrode bus 70 and the lead-out of the wiring cable 90 connected to the negative electrode busbar 80 as in the first method described above are separated from each other.
  • the positive electrode bus 70 of the right side module battery 32A in the upper stage and the control device 38 are connected by the wiring cable 90.
  • a wiring cable 90 connects the negative electrode bus bar 80 of the right module battery 32A and the positive electrode bus 70 of the adjacent central module battery 32B.
  • the negative electrode bus bar 80 of the central module battery 32B and the positive electrode bus 70 of the adjacent left module battery 32C are connected by the wiring cable 90.
  • the lead-out direction of the wiring cable 90 connected to the positive electrode bus 70 is the direction passing through the lower part of the negative electrode busbar 80, and the wiring cable 90 connected to the negative electrode busbar 80.
  • the lead-out direction is a direction passing through the upper portion of the positive electrode bus 70.
  • the negative electrode bus bar 80 of the lower right module battery 32D and the control device 38 are connected by the wiring cable 90.
  • the positive electrode bus 70 of the right module battery 32D and the negative electrode busbar 80 of the adjacent central module battery 32E are via the lower part of the negative electrode busbar 80 of the right module battery 32D and the upper part of the positive electrode bus 70 of the central module battery 32E And connect with the wiring cable 90.
  • the positive electrode bus 70 of the central module battery 32E and the negative electrode busbar 80 of the adjacent left module battery 32F are connected via the lower part of the negative electrode busbar 80 of the central module battery 32E and the upper part of the positive electrode bus 70 of the left module battery 32F And connect with the wiring cable 90.
  • the positive electrode bus 70 of the lower left module battery 32F and the negative electrode bus bar 80 of the upper upper left module battery 32C vertically adjacent to each other pass through the lower part of the negative electrode bus bar 80 of the lower left module battery 32F.
  • Whether to adopt the first method or the second method may be set in consideration of the wiring operation, the wiring length and the like.
  • secondary battery unit 10 has an inlet 170, a communication port 172, and an exhaust port 174.
  • the intake port 170 is installed in the lower part of the module battery storage unit 28 opposite to the control device storage unit 30.
  • the communication port 172 is installed at an upper portion of the boundary (partition plate 24) between the module battery housing portion 28 and the control device housing portion 30.
  • the exhaust port 174 is disposed at an upper portion of the control device housing 30 opposite to the module battery housing 28.
  • an exhaust device 176 is installed in the control device housing 30 so as to face the exhaust port 174.
  • the control device 38 is installed below the exhaust device 176 in the control device housing 30.
  • the module battery storage unit 28 is positioned on the left side facing the control unit storage unit 30 on the right side, but of course, the opposite may be applied.
  • the secondary battery unit 10 has a form in which the internal space 22 is surrounded by the door 26, the upper plate 12, the bottom plate 14, the left side plate 16, the right side plate 18 and the back plate 20.
  • the intake port 170, the communication port 172 and the exhaust port 174 are installed at the above-mentioned positions, and the exhaust device 176 is driven to ventilate from the lower portion of the left side plate 16 to the upper portion of the right side plate 18. Routes are formed and forced ventilation is facilitated.
  • each module battery 32 has a rectangular shape in which the direction from the front to the back is a long side when viewed from the top.
  • the wiring cable 90 is wired from the rear side of each module battery 32 to the negative electrode bus bar 80 on the front side via the negative electrode bus 84. From this, in addition to the route from the lower portion to the upper portion of the internal space 22, it is preferable to secure a route in the depth direction as a ventilation route. As a result, ventilation of the internal space 22 becomes possible, and air cooling of the positive electrode bus 70, the negative electrode bus 84, the negative electrode bus bar 80, and the wiring cable 90 can be efficiently performed.
  • the intake port 170 is installed at the lower side of the module battery storage unit 28 and on the front side, and the exhaust port 174 is the upper portion of the control device storage unit 30. And on the back side.
  • a ventilation route from the lower part to the upper part of the internal space 22 and a ventilation route in the depth direction are formed.
  • ventilation of the internal space 22 can be performed efficiently, and air cooling of the positive electrode bus 70, the negative electrode bus 84, the negative electrode bus bar 80, and the wiring cable 90 can be performed efficiently.
  • a gap is provided between the module batteries 32 lined up and down, so that a ventilation route is also formed between the module batteries 32 lined up and down, and forced ventilation can be performed efficiently. .
  • the control device 38 has a detection unit 178 and a control unit 180, as shown in FIG.
  • the detection unit 178 detects the concentration of the active material contained in the gas exhausted through the ventilation route.
  • the gas to be detected may be a gas in the module battery storage unit 28 or a gas forcibly exhausted by the exhaust device 176.
  • a concentration detection device 182 shown in FIG. 12 can be preferably used as a concentration detection device for detecting the concentration of the active material contained in the gas forcibly exhausted from the exhaust device 176. That is, the gas in the module battery housing portion 28 is led to the exhaust device 176 side through the communication port 172 (see FIG. 8) by the exhaust device 176, and further, outside the secondary battery unit 10 through the exhaust port 174. Forced exhaustion. From this, when drawing in a part of the gas from the module battery storage unit 28 to another path, for example, the gas sensor side, it is difficult to draw the gas even when using a vacuum pump, for example.
  • the concentration detection device 182 draws in gas using two conduits in which the positions of one opening (opening on the exhaust side) are different.
  • the concentration detection device 182 includes a first conduit 184, a second conduit 186, a chamber 188, and a gas sensor 190.
  • the first conduit 184 extends, for example, linearly, and one opening 184 a faces upward.
  • the second conduit 186 is bent and deformed halfway, and one opening 186 a has an L shape facing the exhaust device 176.
  • the chamber 188 is inserted with the other opening 184 b and 186 b sides of the first conduit 184 and the second conduit 186.
  • the gas sensor 190 has a sensing unit 190 a installed in the chamber 188. In the present embodiment, gas is drawn in by the concentration detector 182.
  • the first A gas flow occurs between the other opening 184 b of the first conduit 184 and the other opening 186 b of the second conduit 186. That is, part of the gas from the module battery housing portion 28 is drawn into the chamber 188.
  • the gas sensor 190 detects the concentration of the active material contained in the gas drawn into the chamber 188.
  • FIG. 12 shows that a flow of gas is generated in the chamber 188 from the other opening 186 b of the second conduit 186 to the other opening 184 b of the first conduit 184.
  • gas flow may occur from the other opening 184 b of the first conduit 184 toward the other opening 186 b of the second conduit 186.
  • the first conduit 184 is straight, and the second conduit 186 is bent in the middle.
  • any shape may be used, and the position of each one opening 184a and 186a It may be changed arbitrarily.
  • control unit 180 controls each of the module batteries 32 based on the set charge and discharge sequence.
  • the control unit 180 also controls the exhaust device 176.
  • the control unit 180 Since the calorific value of each module battery 32 is small during the discharge period of each module battery 32 during the normal operation, the control unit 180 reduces the number of rotations of the fan of the exhaust device 176 to limit the exhaust flow rate. Control to On the contrary, since the calorific value of each module battery 32 is large during the charging period of each module battery 32, the control unit 180 controls the increase of the exhaust flow rate by increasing the rotational speed of the fan of the exhaust device 176. I do.
  • the control described above in the discharge period and the charge period may be performed in conjunction with the information from the temperature sensor 192 attached to each module battery 32 or the charge and discharge sequence.
  • the control unit 180 reports the occurrence of the gas concentration abnormality.
  • the identification number of the secondary battery unit 10 and the identification code indicating the gas concentration abnormality are stored in the transmission file, and the transmission file is transmitted to the monitoring center or the like to report the gas concentration abnormality.
  • transmission may be performed via a public communication network such as the Internet or a mobile telephone network.
  • the notification may be sent to local users, local administrators, etc.
  • reporting by telephone can accelerate the initial action for gas concentration abnormalities.
  • the first set 202A and the second set 202B are arranged side by side.
  • the first pair 202A is configured by stacking two secondary battery units 10 in which the module battery storage 28 is located on the left side when viewed from the front and the control device storage 30 is located on the right.
  • the second pair 202B is configured by stacking two secondary battery units 10 in which the module battery storage 28 is located on the right side when viewed from the front and the control device storage 30 is located on the left.
  • the module battery housing 28 is located on the left side, and the control battery housing 30 is located on the right side. Place on the side. At this time, the back surfaces of the secondary battery unit 10 of the second set 202B and the secondary battery unit 10 of the third set 202C are disposed to face each other.
  • the module battery housing 28 is located on the right side, and the control battery housing 30 is located on the left side. Arrange on the back side. At this time, the back surfaces of the secondary battery unit 10 of the first set 202A and the secondary battery unit 10 of the fourth set 202D are disposed to face each other.
  • the secondary battery unit 10 of the third set 202C and the secondary battery unit 10 of the fourth set 202D are installed with the surfaces provided with the intake ports 170 facing each other.
  • the control device housing 30 is located in front of the exhaust port 174 and the secondary battery of the first set 202A is close. Since the unit 10 is positioned, exhaust may not be sufficient, and forced ventilation may not be performed efficiently.
  • the two secondary battery units 10 aligned in the lateral direction have the surfaces provided with the intake ports 170 opposite to each other, for the reason described above.
  • the secondary battery unit 10 itself functions as a secondary battery, and moreover, is formed in a box shape and also functions as a container, so the secondary battery unit 10 is transported to the site as it is (b) secondary battery Installation of unit 10 (c) Wiring work
  • each secondary battery unit 10 itself operates as a secondary battery, for example, complicated wiring between the module batteries 32 is not necessary.
  • an internal exhaust duct 210 extending toward the exhaust port 174 may be provided at the upper portion in the module battery housing portion 28.
  • the air in the heat accumulation in the upper part in the module battery storage 28 can be selectively sucked.
  • the module battery 32, the control device 38, the exhaust device 176 and the like are omitted.
  • the inner exhaust duct 210 has a plurality of intake ports 212 whose opening size is reduced as approaching the exhaust port 211.
  • the inside of the module battery storage unit 28 is divided into three areas (first area Z1 to third area Z3) according to the installation position of the module battery 32.
  • the opening size of the intake port 212a corresponding to the first area Z1 farthest from the exhaust port 211 is the largest, and the opening size of the intake port 212c corresponding to the third area Z3 closest to the exhaust port 211 is the smallest.
  • the opening size of the air inlet 212b corresponding to the second area Z2 sandwiched between the first area Z1 and the third area Z3 is set to the middle level.
  • the opening size of the intake port 212 can be optimized according to the distance from the exhaust port 211. Therefore, the secondary battery unit can be equally inhaled from each of the areas Z1 to Z3. Ventilation within 10 can be realized.
  • the cross-sectional area in the inner exhaust duct 210 increases. That is, the cross-sectional area A in the conduit 214 in the internal exhaust duct 210 has the smallest cross-sectional area Aa corresponding to the first area Z1, the largest cross-sectional area Ac corresponding to the third area Z3, and corresponds to the second area Z2.
  • the cross-sectional area Ab is at an intermediate level.
  • the exhaust paths of two or more secondary battery units 10 may be integrated into one.
  • FIG. 15A assuming that two secondary battery units 10 are stacked, if the internal exhaust duct 210 is not used, an exhaust device 176 is provided outside the secondary battery unit 10 located in the lower stage.
  • the external exhaust duct 216 is installed from the exhaust ports 174 of the upper and lower secondary battery units 10 toward the exhaust device 176. Then, the air from the upper and lower secondary battery units 10 is exhausted to the outside through the exhaust port 218 of the external exhaust duct 216.
  • each internal exhaust duct 210 may be extended to the exhaust port 174, and the air in each secondary battery unit 10 may be exhausted through the external exhaust duct 216.
  • the number of exhaust devices 176 can be reduced, and the time required for maintenance of the exhaust devices 176 can be shortened, which is also advantageous in cost.
  • the exhaust device 176 is installed only in the lower secondary battery unit 10, so the maintenance work of the exhaust device 176 is facilitated.
  • At least a beam 220 supporting the columns 34 and the frame 36 may be shared with the surface that divides the module battery housing 28.
  • the lower beam 220b is embedded in, for example, the bottom plate 14 of the ceiling portion (the upper plate 12) and the floor portion (the bottom plate 14) which define the module battery storage portion 28, for example.
  • the upper beam 220a is installed in contact with the ceiling surface of the upper plate 12 (shown by a two-dot chain line). Thereby, the strength of the secondary battery unit 10 itself can be secured.
  • a thin metal plate or the like can be used as the lower beam 220b and the upper beam 220a, the weight of the secondary battery unit 10 can be reduced.
  • the positive electrode bus 70 is disposed at a central position relative to the front wall 78a of the box 42
  • the negative electrode bus 84 is disposed at a central position relative to the rear wall 78b of the box 42.
  • the installation position of the negative electrode bus bar 80 may be installed on the left side of the front wall 78a of the box 42 (or the positive electrode bus 70 in the center) (see FIG. 16A), or It is installed at a position on the right side with respect to the front wall 78a of 42 (or the positive electrode bus 70 in the center) (see FIG. 16B).
  • the negative electrode bus bar 80 is installed on the right side with respect to the front wall 78a. Further, as shown in FIGS. 17 and 18B, for the three module batteries 32D, 32E, and 32F in the lower stage, the negative electrode bus bar 80 is disposed on the left side with respect to the front wall 78a.
  • the negative electrode bus bar 80 of the right side module battery 32A in the upper stage and the control device 38 are connected by the wiring cable 90.
  • the positive electrode bus of the right module battery 32A and the negative electrode bus bar 80 of the adjacent central module battery 32B are connected by the wiring cable 90.
  • the positive electrode bus 70 of the central module battery 32 B and the negative electrode bus bar 80 of the adjacent left module battery 32 C are connected by the wiring cable 90.
  • the positive electrode bus 70 of the right side module battery 32D in the lower stage and the control device 38 are connected by the wiring cable 90.
  • a wiring cable 90 connects the negative electrode bus bar 80 of the right module battery 32D and the positive electrode bus 70 of the adjacent central module battery 32E.
  • Wiring cable 90 connects the negative electrode bus bar 80 of the central module battery 32E and the positive electrode bus 70 of the adjacent left module battery 32F.
  • the negative electrode bus bar 80 of the lower left module battery 32F and the positive electrode bus 70 of the upper upper left module battery 32C vertically adjacent to each other are connected by the wiring cable 90.
  • the wiring cable 90 may be a bus bar or a flexible conductor.
  • the control device 38 is installed only on one secondary battery unit 10A.
  • the wiring cables 90 from the four secondary battery units 10A to 10D are integrated into the control device 38, and the secondary battery unit 10A functions as a master, and the other three secondary battery units 10B to 10D as slaves. It may be made to function.
  • the number of installed control devices 38 can be reduced, and the time required for maintenance of the control devices 38 can be shortened, which is also advantageous in cost.
  • the maintenance operation of the control device can be facilitated.
  • the exhaust device 176 installed in each of the secondary battery units 10A to 10D is driven and stopped through the control device 38, or from the detection unit 178 installed in each of the secondary battery units 10A to 10D.
  • the detection information may be centrally monitored by the control device 38.
  • one gas processing device 222 may be installed in one package 200 configured of four secondary battery units 10A to 10D.
  • a gate 224 is provided for each of the secondary battery units 10A to 10D, and the exhaust path 226 from each gate 224 is integrated into the gas processing device 222.
  • the intake port 170 and the exhaust port 174 of the secondary battery unit 10B where the fire has occurred are closed and the exhaust is performed. Stop the device 176 and open the gate 224 instead.
  • the air (exhaust gas) from the secondary battery unit 10B in which the fire has occurred is sucked by the gas processing device 222 through the exhaust path 226, gas-treated, and exhausted.
  • the exhaust gas from the secondary battery unit 10B where the fire has occurred can be exhausted through the gas processing device 222 without being exhausted as it is.
  • the secondary battery unit and the secondary battery facility according to the present invention are not limited to the above embodiment, and it goes without saying that various configurations can be adopted without departing from the scope of the present invention.

Abstract

The present invention relates to a secondary battery unit and secondary battery equipment. This secondary battery unit (10) comprises: a modular battery housing unit (28) formed in a box shape; a control device housing unit (30) formed in a box shape and provided adjacent to the modular battery housing unit (28); two or more modular batteries (32) housed in the modular battery housing unit (28), with each housing an aggregate battery comprising two or more unit batteries; and a control device (38) housed in the control device housing unit (30) and controlling at least the modular batteries (32).

Description

二次電池ユニット及び二次電池設備Secondary battery unit and secondary battery facility
 本発明は、1つのユニットのみでも二次電池として稼働できるほか、複数のユニットを組み合わせて大型の二次電池として稼働することができる二次電池ユニット及び二次電池設備に関する。 The present invention relates to a secondary battery unit and a secondary battery facility which can operate as a secondary battery with only one unit, and can operate as a large secondary battery by combining a plurality of units.
 一般に、電力系統の周波数調整、電力系統の需用電力と供給電力の調整は、系統内の複数の発電機や蓄電池等により実施される。また、自然エネルギー発電装置からの発電電力と計画出力電力との差の調整や、自然エネルギー発電装置からの発電電力の変動緩和も、複数の発電機や蓄電池等により実施される場合が多い。蓄電池は、一般的な発電機に比べて、高速に出力電力を変更することができ、電力系統の周波数調整、自然エネルギー発電装置からの発電電力と計画出力電力との差の調整、電力系統の需用電力と供給電力の調整に有効である。 In general, frequency adjustment of the power system, and adjustment of demand power and supply power of the power system are performed by a plurality of generators and storage batteries in the system. In addition, adjustment of the difference between the generated power from the natural energy power generation device and the planned output power, and the fluctuation mitigation of the generated power from the natural energy power generation device are also often carried out by a plurality of generators, storage batteries and the like. The storage battery can change the output power at high speed compared to a general generator, adjust the frequency of the power system, adjust the difference between the generated power from the natural energy generator and the planned output power, of the power system It is effective for the adjustment of demand power and supply power.
 そして、電力系統に接続される高温動作型の蓄電池として、例えばナトリウム-硫黄電池(以下、NaS電池と記す)が挙げられる。このNaS電池は、活物質である金属ナトリウム及び硫黄が固体電解質管により隔離収容された構造の高温二次電池であり、約300℃の温度に加熱されると、溶融された両活物質の電気化学反応により、所定のエネルギーが発生する。そして、通常、NaS電池は、複数の単電池を立設集合し、相互に接続したモジュール電池の形で用いられている。モジュール電池は、複数の単電池を直列に接続した回路(ストリング)を、並列に接続してブロックを構成し、さらに該ブロックを少なくとも2以上直列に接続した上で断熱容器に収容した構造を有する。 And, as a high temperature operation type storage battery connected to the electric power system, for example, a sodium-sulfur battery (hereinafter referred to as a NaS battery) can be mentioned. This NaS battery is a high temperature secondary battery having a structure in which metallic sodium and sulfur which are active materials are separated and accommodated by a solid electrolyte tube, and when heated to a temperature of about 300 ° C. The chemical reaction generates predetermined energy. And, usually, NaS batteries are used in the form of module batteries in which a plurality of single batteries are erected and connected together. A module battery has a structure in which a circuit (string) in which a plurality of unit cells are connected in series is connected in parallel to form a block, and at least two or more blocks are connected in series and accommodated in a heat insulation container. .
 NaS電池の使用にあたっては、複数の断熱容器を鉛直方向に積載(段積み)して1つのモジュール列を構成し、このモジュール列を複数個並置して、1つのパッケージを構成し、さらに、パッケージの各モジュール電池を制御する制御装置を設置するようにしている(例えば特開2008-226488号公報参照)。 When using a NaS battery, a plurality of heat insulation containers are vertically stacked (stacked) to form one module row, and a plurality of module rows are juxtaposed to form one package, and further, a package A controller for controlling each module battery is installed (see, for example, Japanese Patent Application Laid-Open No. 2008-226488).
 しかしながら、パッケージを設置する場合、以下のような手順になり、工数がかかるという問題がある。
  (a) モジュール電池、架台、制御装置等を個別に現地に輸送
  (b) 架台の組立
  (c) エアダクト等、通風ルートを確保するための部品取付作業
  (d) 架台へのモジュール電池の据え付け
  (e) 制御装置の設置
  (f) 配線工事
However, in the case of installing the package, the following procedure is required, and there is a problem that the number of steps is increased.
(A) Transport the module battery, stand, control device, etc. individually to the site (b) Assemble the stand (c) Install parts for securing the ventilation route such as air duct (d) Install the module battery on the stand ( e) Installation of control unit (f) Wiring work
 配線工事は、各モジュール列を構成するための配線、モジュール列と制御装置間の配線等があり、モジュール電池が多くなるにつれて配線作業に係る時間が増大することとなる。 The wiring work includes wiring for forming each module row, wiring between the module row and the control device, etc., and as the number of module batteries increases, the time for wiring work will increase.
 本発明はこのような課題を考慮してなされたものであり、それ単体でも二次電池として稼働できるほか、複数のユニットを組み合わせて大型の二次電池(パッケージ)としても稼働することができ、要件定義(要求定義を含む)からパッケージの設置までの工数を大幅に低減することができる二次電池ユニット及び二次電池設備を提供することを目的とする。 The present invention has been made in consideration of such problems, and can be operated as a secondary battery by itself or can be operated as a large secondary battery (package) by combining a plurality of units. It is an object of the present invention to provide a secondary battery unit and a secondary battery facility capable of significantly reducing the number of steps from the requirement definition (including the requirement definition) to the installation of the package.
[1] 第1の本発明に係る二次電池ユニットは、箱体状に形成されたモジュール電池収容部と、箱体状に形成され、前記モジュール電池収容部に隣接して設けられた制御装置収容部と、前記モジュール電池収容部に収容され、2以上の単電池による集合電池が収容されてなる2以上のモジュール電池と、前記制御装置収容部に収容され、少なくとも前記モジュール電池を制御する制御装置とを有することを特徴とする。 [1] A secondary battery unit according to the first aspect of the present invention includes a module battery storage portion formed in a box shape, and a control device formed in a box shape and provided adjacent to the module battery storage portion A storage unit, two or more module batteries accommodated in the module battery accommodation unit and including an assembled battery of two or more single cells, and a control for accommodating at least the module battery accommodated in the control device accommodation unit And a device.
 1つのパッケージ(二次電池設備)を設置する場合、以下のような手順になる。
  (a) 二次電池ユニット自体が二次電池として機能し、しかも、箱状に形成されてコンテナとしても機能しているため、二次電池ユニットのまま現地に輸送
  (b) 二次電池ユニットの設置
  (c) 配線工事
When installing one package (secondary battery installation), the procedure is as follows.
(A) The secondary battery unit itself functions as a secondary battery, and moreover, it is formed in a box shape and also functions as a container, so the secondary battery unit is transported to the site as it is (b) Installation (c) Wiring work
 従来必要であった架台の組立、エアダクト等の通風ルートを確保するための部品取付作業、架台へのモジュール電池の据え付け、制御装置の設置が不要となり、従来と比して大幅に工数の低減を図ることができる。 There is no need to assemble the frame, install parts for securing ventilation routes such as air ducts, install the module battery on the frame, and install the control device. Can be
 また、配線工事は、個々の二次電池ユニット自体が二次電池として稼働するため、例えばモジュール電池間の煩雑な配線等は不要である。複数の二次電池ユニットの直列接続と、直流の主回路となる二次電池ユニットとメインコンピュータ(中央監視)との接続で済む。従来の配線作業と比して、大幅な作業の簡略化、作業時間の短縮化を図ることができる。 In addition, in the wiring work, since each secondary battery unit itself operates as a secondary battery, complicated wiring between module batteries, for example, is unnecessary. It is sufficient to connect a plurality of secondary battery units in series and a connection between the secondary battery unit serving as a DC main circuit and the main computer (central monitoring). As compared with the conventional wiring work, the work can be greatly simplified and the working time can be shortened.
[2] 第1の本発明において、前記モジュール電池収容部のうち、前記制御装置収容部とは反対側の下部に設置された吸気口と、前記モジュール電池収容部と前記制御装置収容部との境界の上部に設置された連通口と、前記制御装置収容部のうち、前記モジュール電池収容部とは反対側の上部に設置された排気口とを有することが好ましい。 [2] In the first aspect of the present invention, of the module battery storage unit, an intake port installed at a lower side opposite to the control device storage unit, an intake port of the module battery storage unit, and the control device storage unit It is preferable to have the communication port installed in the upper part of the boundary, and the exhaust port installed in the upper part on the opposite side to the said module battery accommodating part among the said control apparatus accommodating parts.
 箱状に形成された二次電池ユニットは、内部空間が上板、底板、左側板、右側板及び背面板等で囲まれた形態になることから、内部空間に熱がこもりやすくなり、誤動作の原因等にもなる。しかし、この第1の本発明では、上述した位置に吸気口、連通口及び排気口を設置したので、内部空間の対角方向に沿った下部から上部にかけて通風ルートが形成され、内部空間の換気が行われやすくなる。 Since the box-shaped secondary battery unit has a form in which the internal space is surrounded by the upper plate, the bottom plate, the left side plate, the right side plate, the back plate and the like, heat easily builds up in the internal space, causing a malfunction. It is also a cause. However, in the first aspect of the present invention, since the intake port, the communication port and the exhaust port are disposed at the above-mentioned positions, a ventilation route is formed from the lower portion to the upper portion along the diagonal direction of the inner space Becomes easier to do.
[3] 第1の本発明において、前記吸気口は、前記モジュール電池収容部の前記下部で、且つ、正面側に設置され、前記排気口は、前記制御装置収容部の前記上部で、且つ、背面側に設置されていてもよい。これにより、内部空間の下部から上部にかけての通風ルートと、奥行方向の通風ルートとが形成され、内部空間の換気を効率よく行うことができる。 [3] In the first aspect of the present invention, the air intake is installed at the lower side and the front side of the module battery storage unit, and the exhaust port is at the upper portion of the control device storage unit. It may be installed on the back side. Thereby, a ventilation route from the lower part to the upper part of the internal space and a ventilation route in the depth direction are formed, and the ventilation of the internal space can be performed efficiently.
[4] 第1の本発明において、前記制御装置収容部内のうち、前記排気口に対向して設置された排気装置を有し、前記制御装置は、前記制御装置収容部内のうち、前記排気装置よりも下部に設置されていてもよい。これにより、上述した通風ルートに沿って排気装置による強制換気を行うことができる。 [4] In the first aspect of the present invention, the control device storage unit includes an exhaust device installed facing the exhaust port, and the control device includes the exhaust device in the control device storage unit. It may be installed in the lower part than it. Thus, forced ventilation can be performed by the exhaust device along the above-described ventilation route.
[5] 第1の本発明において、吸気口及び排気口のうち、少なくともいずれか一方に塩害フィルターを設置してもよい。これにより、二次電池ユニットに対して塩害対策を施すことができる。 [5] In the first aspect of the present invention, a salt damage filter may be provided in at least one of the intake port and the exhaust port. Thereby, measures against salt damage can be taken on the secondary battery unit.
[6] 第1の本発明において、前記モジュール電池収容部内の上部に、前記排気口に向かって延びる排気ダクトが設けられ、前記排気ダクトは、前記排気口に近づくにつれて開口サイズが小とされた複数の吸気口を有してもよい。これにより、排気口からの距離に応じて排気ダクトの吸気口における開口サイズの適正化を図ることができるため、より効率的な二次電池ユニット内の換気を実現することができる。 [6] In the first aspect of the present invention, an exhaust duct extending toward the exhaust port is provided at an upper portion in the module battery housing, and the exhaust duct has a smaller opening size as it approaches the exhaust port. It may have a plurality of air inlets. Thus, the opening size of the air intake port of the exhaust duct can be optimized according to the distance from the exhaust port, so that more efficient ventilation inside the secondary battery unit can be realized.
[7] 第1の本発明において、少なくとも前記モジュール電池収容部の正面側に、内部空間に対して開閉自在とされた扉を有してもよい。これにより、モジュール電池や制御装置等の交換やメンテナンス等の際には、扉を開くことによって、正面側から容易にモジュール電池等を交換したり、メンテナンス等を行うことができる。これは、複数の二次電池ユニットを組み立てて1つのパッケージを構築した後においても同様である。 [7] In the first aspect of the present invention, at least a front side of the module battery storage portion may have a door which can be opened and closed with respect to the internal space. Thus, at the time of replacement or maintenance of the module battery, the control device or the like, by opening the door, the module battery can be easily replaced from the front side, or maintenance can be performed. This is the same even after assembling a plurality of secondary battery units to construct one package.
[8] この場合、前記モジュール電池は、前記モジュール電池収容部内に設置された架台に設置される基台と、前記基台上に設置され、且つ、上面に開口を有し、集合電池が収容される箱体と、前記箱体の前記開口を閉塞する蓋体と、前記箱体の正面に設けられ、それぞれ導電部材が接続される正極外部端子及び負極外部端子とを有してもよい。 [8] In this case, the module battery is mounted on a pedestal installed in the module battery storage unit, and the module battery is installed on the base and has an opening on the upper surface, and the assembled battery is accommodated. And a lid for closing the opening of the box, and a positive electrode external terminal and a negative electrode external terminal which are provided on the front of the box and to which conductive members are respectively connected.
[9] さらに、前記架台を支持する少なくとも梁が前記モジュール電池収容部を区画する面と共有化されていてもよい。これにより、二次電池ユニット自体の強度を確保することができる。しかも、梁として、薄い金属板等を用いることができるため、二次電池ユニットの重量を低減することができる。 [9] Furthermore, at least a beam supporting the gantry may be shared with the surface partitioning the module battery storage unit. Thereby, the strength of the secondary battery unit itself can be secured. And since a thin metal plate etc. can be used as a beam, the weight of a secondary battery unit can be reduced.
[10] さらに、前記正極外部端子及び前記負極外部端子は、前記基台上にそれぞれ絶縁体を介して設置されていることが好ましい。 [10] Furthermore, it is preferable that the positive electrode external terminal and the negative electrode external terminal be respectively installed on the base via an insulator.
[11] また、前記モジュール電池は、上面から見たとき、正面から背面に向かう方向が長辺とされた長方形状を有し、前記集合電池の正極が前記箱体の正面の側壁を介して前記正極外部端子に接続され、前記集合電池の負極が前記箱体の背面の側壁及び中継導体を介して前記負極外部端子に接続されていてもよい。 [11] Further, the module battery has a rectangular shape in which the direction from the front to the back is a long side when viewed from the top, and the positive electrode of the assembled battery is through the side wall of the front of the box. It is connected to the said positive electrode external terminal, and the negative electrode of the said assembled battery may be connected to the said negative electrode external terminal via the side wall and relay conductor of the back surface of the said box.
[12] この場合、前記正極外部端子、前記負極外部端子及び前記中継導体は、前記基台上にそれぞれ絶縁体を介して設置されていることが好ましい。 [12] In this case, it is preferable that the positive electrode external terminal, the negative electrode external terminal, and the relay conductor are respectively disposed on the base via an insulator.
[13] また、前記正極外部端子と接続される前記導電部材の導出方向と、前記負極外部端子と接続される前記導電部材の導出方向とが互いに離間する方向であってもよい。この場合、配線ケーブルの配線経路が簡単になる。 [13] The direction in which the conductive member connected to the positive electrode external terminal is derived may be separated from the direction in which the conductive member connected to the negative electrode external terminal is separated. In this case, the wiring route of the wiring cable is simplified.
[14] さらに、前記モジュール電池として、前記負極外部端子が前記正極外部端子に対して左側に設置されたモジュール電池と、前記負極外部端子が前記正極外部端子に対して右側に設置されたモジュール電池とを有してもよい。これにより、正極外部端子及び負極外部端子の配置が単純化され、しかも、配線形態も単純化させることができる。これは、配線作業の簡単化並びに作業時間の短縮化を図る上で有利である。 [14] Further, as the module battery, a module battery in which the negative electrode external terminal is disposed on the left side with respect to the positive electrode external terminal, and a module battery in which the negative electrode external terminal is disposed on the right side with respect to the positive electrode external terminal And may be included. Thereby, the arrangement of the positive electrode external terminal and the negative electrode external terminal can be simplified, and moreover, the wiring configuration can also be simplified. This is advantageous in simplifying the wiring operation and shortening the operation time.
[15] 前記正極外部端子は、前記箱体の正面のうち、上部又は下部に設置され、前記負極外部端子は、前記箱体の正面のうち、下部又は上部に設置され、前記正極外部端子と接続される前記導電部材の導出方向が、前記負極外部端子の上部又は下部を経由する方向であり、前記負極外部端子と接続される前記導電部材の導出方向が、前記正極外部端子の下部又は上部を経由する方向であってもよい。 [15] The positive electrode external terminal is disposed at the upper or lower portion of the front of the box, and the negative electrode external terminal is disposed at the lower or upper portion of the front of the box, and the positive electrode external terminal The lead-out direction of the conductive member to be connected is the direction passing through the upper or lower part of the negative electrode external terminal, and the lead-out direction of the conductive member connected to the negative electrode external terminal is the lower portion or upper part of the positive electrode external terminal The direction may be via.
[16] また、前記正極外部端子と接続される前記導電部材は、横方向に隣接する一方のモジュール電池の負極外部端子に接続され、前記負極外部端子と接続される前記導電部材は、横方向に隣接する他方のモジュール電池の正極外部端子に接続されてもよい。 [16] Further, the conductive member connected to the positive electrode external terminal is connected to the negative electrode external terminal of one module battery adjacent in the lateral direction, and the conductive member connected to the negative electrode external terminal is in the lateral direction It may be connected to the positive electrode external terminal of the other module battery adjacent to.
[17] 第2の本発明に係る二次電池設備は、上述した第1の本発明に係る二次電池ユニットを1つ以上有することを特徴とする。 [17] A secondary battery installation according to a second aspect of the present invention includes one or more secondary battery units according to the first aspect of the present invention described above.
[18] この場合、少なくとも2つの前記二次電池ユニットが、それぞれ吸気口が設けられ面を対向させて設置されていてもよい。これにより、複数の二次電池ユニットを効率よく設置することができる。 [18] In this case, at least two of the secondary battery units may be provided with an inlet port and face each other. Thereby, a plurality of secondary battery units can be efficiently installed.
[19] 第2の本発明において、少なくとも2つの前記二次電池ユニットの排気ダクトが延長して設置され、少なくとも2つの前記二次電池ユニットの換気が集中して行われてもよい。これにより、排気装置の設置台数を削減することができ、排気装置の保守にかかる時間を短縮することができると共に、コスト的にも有利になる。特に、二次電池ユニットを段積みする場合に、下段の二次電池ユニットのみに排気装置を設置することができるため、排気装置の保守作業が容易になる。 [19] In the second invention, the exhaust ducts of at least two of the secondary battery units may be extended, and ventilation of the at least two of the secondary battery units may be performed in a concentrated manner. As a result, the number of exhaust devices installed can be reduced, the time required for maintenance of the exhaust devices can be shortened, and the cost also becomes advantageous. In particular, when the secondary battery units are stacked, the exhaust device can be installed only in the lower secondary battery unit, which facilitates maintenance work of the exhaust device.
[20] 第2の本発明において、複数の前記二次電池ユニットを有し、そのうちの1つの二次電池ユニットがマスターとして機能し、他の二次電池ユニットがスレーブとして機能してもよい。この場合、制御装置の設置台数を削減することができ、制御装置の保守にかかる時間を短縮することができると共に、コスト的にも有利になる。特に、二次電池ユニットを段積みする場合に、下段の二次電池ユニットの1つをマスターとすることで、制御装置の保守作業も容易になる。 [20] In the second invention, a plurality of the secondary battery units may be provided, one of which may serve as a master and the other secondary battery unit may serve as a slave. In this case, the number of installed control devices can be reduced, and the time required for maintenance of the control devices can be shortened, which is also advantageous in cost. In particular, when stacking the secondary battery units, maintenance work of the control device is also facilitated by using one of the lower secondary battery units as a master.
[21] 第2の本発明において、少なくとも1つの前記二次電池ユニット内の空気を吸引してガス処理を行う1つのガス処理装置を有してもよい。この場合、火災等が生じた二次電池ユニットからの排気ガスをそのまま外部に排気することなく、ガス処理装置を介して排気することができる。 [21] In the second aspect of the present invention, the gas treatment apparatus may have one gas treatment device that sucks air in at least one of the secondary battery units to perform gas treatment. In this case, the exhaust gas from the secondary battery unit in which a fire or the like has occurred can be exhausted through the gas processing device without being exhausted to the outside as it is.
 本発明に係る二次電池ユニット及び二次電池設備によれば、それ単体でも二次電池として稼働できるほか、複数のユニットを組み合わせて大型の二次電池(パッケージ)としても稼働することができ、要件定義(要求定義含む)からパッケージの設置までの工数を大幅に低減することができる。 According to the secondary battery unit and the secondary battery facility according to the present invention, not only it can operate as a single battery, but also it can operate as a large secondary battery (package) by combining a plurality of units, Man-hours from the requirement definition (including the requirement definition) to the installation of the package can be significantly reduced.
図1Aは本実施の形態に係る二次電池ユニットの外観を示す斜視図であり、図1Bは二次電池ユニットの構成を、扉を外し、一部を破断して示す斜視図である。FIG. 1A is a perspective view showing the appearance of a secondary battery unit according to the present embodiment, and FIG. 1B is a perspective view showing the configuration of the secondary battery unit with the door removed and a part broken away. 二次電池ユニット内に設置されるモジュール電池の構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the structure of the module battery installed in a secondary battery unit. モジュール電池内に収容された集合電池の回路の一例と、箱体の一部を模式的に示す説明図である。It is explanatory drawing which shows typically an example of the circuit of the assembled battery accommodated in the module battery, and a part of box. モジュール電池の基台上に設置される正極ブス(負極ブス)と正極支持体(負極支持体)を示す斜視図である。It is a perspective view which shows the positive electrode bus (negative electrode bus) and positive electrode support (negative electrode support) which are installed on the base of a module battery. 正極ブス(負極ブス)の導体接続部と配線ケーブルの接続部との接続形態の一例を示す断面図である。It is sectional drawing which shows an example of the connection form of the conductor connection part of a positive electrode bus (negative electrode bus), and the connection part of a wiring cable. 正極ブス(負極ブス)と正極支持体(負極支持体)を示す縦断面図である。It is a longitudinal cross-sectional view which shows a positive electrode bus (negative electrode bus) and a positive electrode support (negative electrode support). モジュール電池の基台上に設置される負極ブスバーを、上面から見て示す平面図である。It is a top view which shows the negative electrode bus bar installed on the base of a module battery, seeing from an upper surface. 二次電池ユニット内のモジュール電池の配線状態(第1方法)と通風ルートを示す説明図である。It is explanatory drawing which shows the wiring state (1st method) of a module battery in a secondary battery unit, and a ventilation route. 二次電池ユニット内のモジュール電池の配線状態(第2方法)を示す説明図である。It is explanatory drawing which shows the wiring state (2nd method) of the module battery in a secondary battery unit. 二次電池ユニット内のモジュール電池の配線状態と通風ルートを、上面から見て示す説明図である。It is explanatory drawing which shows the wiring state and ventilation route of the module battery in a secondary battery unit seeing from an upper surface. 二次電池ユニットの制御系を示すブロック図である。It is a block diagram showing a control system of a rechargeable battery unit. 濃度検知装置の一例を示す構成図である。It is a block diagram which shows an example of a density | concentration detection apparatus. 複数の二次電池ユニットを組み立てて1つのパッケージを構成した状態を一部破断して示す斜視図である。It is a perspective view which partially breaks and shows the state which assembled the several secondary battery unit and comprised one package. 図14Aは二次電池ユニット内の構造を一部省略して示す透視斜視図であり、図14Bは二次電池ユニット内に設置される内部排気ダクトの構成を示す斜視図である。FIG. 14A is a see-through perspective view partially showing the structure in the secondary battery unit, and FIG. 14B is a perspective view showing a configuration of an internal exhaust duct installed in the secondary battery unit. 図15Aは2つ以上の二次電池ユニットの排気経路を1つに集約した1つの例を一部破断して示す斜視図であり、図15Bは他の例を一部破断して示す斜視図である。FIG. 15A is a partially broken perspective view showing an example in which the exhaust paths of two or more secondary battery units are integrated into one, and FIG. 15B is a partially broken perspective view showing another example. It is. 図16Aは負極ブスバーを正極ブスの左側に設置した例を上から見て示す説明図であり、図16Bは負極ブスバーを正極ブスの右側に設置した例を上から見て示す説明図である。FIG. 16A is an explanatory view showing an example in which the negative electrode bus bar is disposed on the left side of the positive electrode bus as viewed from above, and FIG. 16B is an explanatory view showing the example in which the negative electrode bus bar is disposed on the right side of the positive electrode bus. 二次電池ユニット内における上段及び下段のモジュール電池の配線状態を正面から見て示す説明図である。FIG. 6 is an explanatory view showing a wiring state of upper and lower module batteries in the secondary battery unit as viewed from the front. 図18Aは二次電池ユニット内における上段のモジュール電池の配線状態を上から見て示す説明図であり、図18Bは下段のモジュール電池の配線状態を上から見て示す説明図である。FIG. 18A is an explanatory view showing the wiring state of the upper module battery in the secondary battery unit from above, and FIG. 18B is an explanatory drawing showing the wiring state of the lower module battery from above. 複数の二次電池ユニットのうち、1つの二次電池ユニットをマスターとして機能させ、他の二次電池ユニットをスレーブとして機能させた例を示す説明図である。It is explanatory drawing which shows the example which made one secondary battery unit function as a master among several secondary battery units, and let another secondary battery unit function as a slave. 複数の二次電池ユニットにて構成される1つのパッケージに1つのガス処理装置を設置した例を示す説明図である。It is explanatory drawing which shows the example which installed one gas processing apparatus in one package comprised with several secondary battery units.
 以下、本発明に係る二次電池ユニット及び二次電池設備を例えばNaS電池に適用した実施の形態例を図1A~図20を参照しながら説明する。 Hereinafter, an embodiment in which a secondary battery unit and a secondary battery facility according to the present invention are applied to, for example, a NaS battery will be described with reference to FIGS. 1A to 20.
 本実施の形態に係る二次電池ユニット10の外観は、図1Aに示すように、正面、背面、上面、下面、左側面及び右側面を有する直方体の形状を有する。 The appearance of the secondary battery unit 10 according to the present embodiment has a rectangular parallelepiped shape having a front, a back, an upper surface, a lower surface, a left side, and a right side, as shown in FIG. 1A.
 すなわち、この二次電池ユニット10は、上板12、底板14、左側板16、右側板18及び背面板20によって、図1Bに示すように、1つの内部空間22が形成されている。この内部空間22が仕切り板24によって2つの空間22a及び22bに分割されている。さらに、図1Aに示すように、正面側に一方の空間22aに対して開閉自在とされた扉26が取り付けられることで、全体として、1つの直方体状としての外観を有する。なお、右側板18は、他方の空間22bに対して開閉自在とされた扉としても機能している。 That is, in the secondary battery unit 10, as shown in FIG. 1B, one internal space 22 is formed by the top plate 12, the bottom plate 14, the left side plate 16, the right side plate 18 and the back plate 20. The inner space 22 is divided by a partition plate 24 into two spaces 22a and 22b. Furthermore, as shown in FIG. 1A, a door 26 that is openable and closable with respect to one space 22a is attached to the front side, so that it has an appearance as one rectangular solid as a whole. The right side plate 18 also functions as a door that can be opened and closed with respect to the other space 22b.
 そして、この二次電池ユニット10は、図1Bに示すように、一方の空間22aを区画する箱体状に形成されたモジュール電池収容部28と、他方の空間22bを区画する箱体状に形成された制御装置収容部30とを有する。モジュール電池収容部28と制御装置収容部30は、仕切り板24を間に挟んで隣接して配置されている。 Then, as shown in FIG. 1B, the secondary battery unit 10 is formed in a box shape that divides the space 22b into a module battery storage portion 28 formed in a box shape that divides one space 22a. And the control device accommodation unit 30. The module battery housing portion 28 and the control device housing portion 30 are disposed adjacent to each other with the partition plate 24 interposed therebetween.
 モジュール電池収容部28には、2以上のモジュール電池32が収容されている。すなわち、モジュール電池収容部28の空間22a内に、複数の支柱34が設置され、各支柱34には、例えば架台36が等間隔に、且つ、互いに平行に設置されている。各架台36には、それぞれ1つずつモジュール電池32が載置固定される。架台36が上下方向に複数設置される場合は、上下方向に並ぶモジュール電池32間に、ある程度の隙間ができるようにして設置する。 Two or more module batteries 32 are housed in the module battery housing portion 28. That is, in the space 22 a of the module battery housing portion 28, a plurality of columns 34 are installed, and on each column 34, for example, mounts 36 are installed at equal intervals in parallel with each other. One module battery 32 is mounted and fixed on each of the mounts 36 one by one. When a plurality of mounts 36 are installed in the vertical direction, the module batteries 32 arranged in the vertical direction are installed with a certain amount of clearance.
 制御装置収容部30には、少なくともモジュール電池32を制御する制御装置38が収容されている。 The control device housing unit 30 houses a control device 38 that controls at least the module battery 32.
 モジュール電池収容部28及び制御装置収容部30の各正面側には、上述したように、それぞれの空間22a及び22bに対して開閉自在とされた扉26及び右側板(扉)18が取り付けられている。扉26及び右側板18(扉)は、通常の使用時には閉じた状態となっている。モジュール電池32や制御装置38等の交換やメンテナンス等の際には、扉26及び右側板18(扉)を開くことによって、正面側から容易にモジュール電池32等を交換したり、メンテナンス等を行うことができる。また、右側面側から容易に制御装置38等を交換したり、メンテナンス等を行うことができる。 As described above, the door 26 and the right side plate (door) 18 which can be opened and closed with respect to the respective spaces 22a and 22b are attached to the front sides of the module battery storage unit 28 and the control device storage unit 30, respectively. There is. The door 26 and the right side plate 18 (door) are in a closed state during normal use. At the time of replacement or maintenance of the module battery 32, the control device 38, etc., the module battery 32 etc. can be easily replaced from the front side or maintenance etc. by opening the door 26 and the right side plate 18 (door). be able to. In addition, the control device 38 and the like can be easily replaced from the right side and maintenance can be performed.
 モジュール電池収容部28に収容される各モジュール電池32は、図2に示すように、例えば鋼材で構成された基台40と、該基台40上に載置固定された箱体42と、箱体42内に収容された多数の単電池44からなる集合電池46と、箱体42の開口を閉塞する蓋体48とを有する。単電池44は例えば円筒状を有し、軸方向が鉛直方向に向けて箱体42内に収容されている。また、単電池44の破損、異常加熱、あるいは活物質の漏洩等に対応できるように、図示しないが、消化砂として珪砂を箱体42と集合電池46との間隙に充填されている。 As shown in FIG. 2, each module battery 32 housed in the module battery housing portion 28 is, for example, a base 40 made of steel, a box 42 mounted and fixed on the base 40, and a box It has the assembled battery 46 which consists of many single cells 44 accommodated in the body 42, and the cover body 48 which obstruct | occludes the opening of the box 42. As shown in FIG. The unit cell 44 has, for example, a cylindrical shape, and is accommodated in the box 42 with the axial direction directed vertically. Further, although not shown, silica sand is filled in the gap between the box 42 and the battery assembly 46 as digested sand so as to cope with breakage of the unit cell 44, abnormal heating, or leakage of the active material.
 箱体42は、例えば直方体に近い形状を有し、4つの側壁及び底壁を備え、上面開口とされている。箱体42は、例えばステンレスからなる板材によって構成し、それ自体が中空部50を有する箱状に形成されている。中空部50は、気密的に封止された密閉空間であり、図示されない真空バルブによって、中空部50と外部空間とが連通し得る構造となっている。中空部50には、ガラス繊維を接着剤で板状に固化させた多孔質の真空断熱ボード52を装填して、箱体42を真空断熱構造としている。 The box 42 has, for example, a shape close to a rectangular parallelepiped, includes four side walls and a bottom wall, and is an upper opening. The box 42 is made of, for example, a plate material made of stainless steel, and is itself formed in a box shape having the hollow portion 50. The hollow portion 50 is a hermetically sealed space, and has a structure in which the hollow portion 50 and the external space can communicate with each other by a vacuum valve (not shown). In the hollow portion 50, a porous vacuum heat insulation board 52 in which glass fibers are solidified in a plate shape with an adhesive is loaded, and the box body 42 has a vacuum heat insulation structure.
 蓋体48は、天壁54及び庇56を備え、箱体42の上面開口を閉塞するように設置される。蓋体48は、箱体42と同様に例えばステンレスからなる板材によって構成されている。蓋体48は、その内面側(下面側)に、必要最小限の断熱性を得るための図示しない断熱材層が配置されている。蓋体48の中空部58には、少なくとも2以上の脱着可能な断熱板60が積層充填されている。つまり、蓋体48(上面)のみを大気断熱構造にして、且つ、モジュール電池32の上面からの放熱量を制御可能にしている。もちろん、モジュール電池32内の断熱性能を重視する場合は、蓋体48も、箱体42と同様に真空断熱構造を採用してもよい。 The lid 48 includes a top wall 54 and a weir 56, and is installed to close the top opening of the box 42. The lid 48 is made of, for example, a plate made of stainless steel, as the box 42. On the inner surface side (lower surface side) of the lid 48, a heat insulating material layer (not shown) for obtaining the minimum necessary heat insulation is disposed. The hollow portion 58 of the lid 48 is stacked and filled with at least two removable heat insulating plates 60. That is, only the lid 48 (upper surface) has an air insulation structure, and the amount of heat released from the upper surface of the module battery 32 can be controlled. Of course, when importance is placed on the heat insulation performance in the module battery 32, the lid 48 may adopt a vacuum heat insulation structure as well as the box 42.
 一方、集合電池46は、図3に示すように、正極62から負極64に向かって2以上のブロック66が直列接続されて構成されている。各ブロック66は、2以上の単電池44が直列接続した2以上の回路(ストリング68)が並列に接続されて構成されている。 On the other hand, as shown in FIG. 3, the assembled battery 46 is configured by connecting two or more blocks 66 in series from the positive electrode 62 to the negative electrode 64. Each block 66 is configured by connecting in parallel two or more circuits (strings 68) in which two or more unit cells 44 are connected in series.
 正極62は、正極外部端子を構成する正極ブス70を備える。正極ブス70は、集合電池46の正極集電部74に正極ポール76を介して電気的に接続される。すなわち、正極ポール76は、箱体42の収容空間において正極集電部74に結合され、箱体42の正面壁78aを貫通し、箱体42の外部において正極ブス70に結合される。 The positive electrode 62 includes a positive electrode bus 70 that constitutes a positive electrode external terminal. The positive electrode bus 70 is electrically connected to the positive electrode current collector portion 74 of the battery pack 46 via the positive electrode pole 76. That is, the positive electrode pole 76 is coupled to the positive electrode current collector 74 in the housing space of the box 42, penetrates the front wall 78 a of the box 42, and is coupled to the positive electrode bus 70 outside the box 42.
 負極64は、負極外部端子を構成する負極ブスバー80、中継導体として機能する負極ブス84を備える。負極ブス84は、集合電池46の負極集電部86に負極ポール88を介して電気的に接続される。すなわち、負極ポール88は、箱体42の収容空間において負極集電部86に結合され、箱体42の背面壁78bを貫通し、箱体42の外部において負極ブス84に結合される。負極ブス84と負極ブスバー80は配線ケーブル90を介して電気的に接続される。この場合、配線ケーブル90が長くなるため、配線ケーブル90と基台40との間に碍子等の絶縁体92を介在させることが好ましい。また、負極ブス84と負極ブスバー80との間に中継ブスバーを設置して、負極ブス84と中継バスバー間、中継バスバーと負極ブスバー80とをそれぞれ配線ケーブル90を介して電気的に接続してもよい。配線として、配線ケーブル90を使用した例を示しているが、金属製のブスバー、例えばアルミ製のブスバーを使用してもよい。この場合、配線ケーブル90と異なり、撓みにくいため、長い距離の配線でも絶縁体92の設置個数を減らすことができる The negative electrode 64 includes a negative electrode bus bar 80 which constitutes a negative electrode external terminal, and a negative electrode bus 84 which functions as a relay conductor. The negative electrode bus 84 is electrically connected to the negative electrode current collector portion 86 of the battery pack 46 via the negative electrode pole 88. That is, the negative electrode pole 88 is coupled to the negative electrode current collector 86 in the housing space of the box 42, penetrates the back wall 78 b of the box 42, and is coupled to the negative electrode bus 84 outside the box 42. The negative electrode bus 84 and the negative electrode bus bar 80 are electrically connected via the wiring cable 90. In this case, since the wiring cable 90 is long, it is preferable to interpose an insulator 92 such as a ladder between the wiring cable 90 and the base 40. Even if a relay bus bar is installed between the negative electrode bus 84 and the negative electrode bus bar 80, the negative electrode bus 84 and the relay bus bar, and the relay bus bar and the negative bus bar 80 are electrically connected via the wiring cable 90, respectively. Good. Although an example in which the wiring cable 90 is used as the wiring is shown, a metal bus bar, such as an aluminum bus bar, may be used. In this case, unlike the wiring cable 90, since it is difficult to bend, the number of insulators 92 installed can be reduced even with a long distance wiring.
 なお、上述した正極集電部74及び負極集電部86が金属板にて構成されることは、正極ブス70並びに負極ブス84の電気抵抗の低下に寄与する。また、正極ポール76及び負極ポール88がそれぞれポール形状を有することは、正極ポール76及び負極ポール88を経由する熱の出入りの抑制に寄与する。 In addition, that the positive electrode current collection part 74 mentioned above and the negative electrode current collection part 86 being comprised by a metal plate contributes to the fall of the electrical resistance of the positive electrode bus 70 and the negative electrode bus 84. FIG. In addition, the positive electrode pole 76 and the negative electrode pole 88 having a pole shape, respectively, contribute to the suppression of heat entering and exiting through the positive electrode pole 76 and the negative electrode pole 88.
 ここで、モジュール電池32の正極ブス70に配線ケーブル90を接続した状態について図4~図6を参照しながら説明する。 Here, a state in which the wiring cable 90 is connected to the positive electrode bus 70 of the module battery 32 will be described with reference to FIGS. 4 to 6.
 図4に示すように、正極ブス70は、導体接続部94と屈曲部96とを備える。配線ケーブル90は、隣接する一方のモジュール電池32の正極ブス70と他方のモジュール電池32の負極ブスバー80(図4において図示せず)とを電気的に接続する。また、図4において図示しないが、配線ケーブル90は、負極ブス84と負極ブスバー80とを電気的に接続する。配線ケーブル90としては、金属板で構成された接続部98及び金属製の網線100を備えることで、垂れ下がりやたわみが抑制されながらも、カーブした配線経路に追従させることが可能となる。 As shown in FIG. 4, the positive electrode bus 70 includes a conductor connection portion 94 and a bent portion 96. Wiring cable 90 electrically connects positive electrode bus 70 of one adjacent module battery 32 and negative electrode bus bar 80 (not shown in FIG. 4) of the other module battery 32. Although not illustrated in FIG. 4, the wiring cable 90 electrically connects the negative electrode bus 84 and the negative electrode bus bar 80. By providing the connection portion 98 made of a metal plate and the mesh wire 100 made of a metal plate as the wiring cable 90, it becomes possible to follow a curved wiring path while sagging and bending are suppressed.
 正極ブス70の屈曲部96には、正極ポール76が結合される。正極ブス70の導体接続部94には、図5に示すように、ボルト孔102が形成される。配線ケーブル90の接続部98にも、ボルト孔104が形成される。正極ブス70の導体接続部94及び配線ケーブル90の接続部98は重ねられ、正極ブス70の導体接続部94に形成されるボルト孔102及び配線ケーブル90の接続部98に形成されるボルト孔104にボルト106が挿入される。ナット108は、ボルト106に螺合される。正極ブス70の導体接続部94及び配線ケーブル90の接続部98は、ボルト106及びナット108により締結される。 The positive electrode pole 76 is coupled to the bent portion 96 of the positive electrode bus 70. As shown in FIG. 5, bolt holes 102 are formed in the conductor connection portion 94 of the positive electrode bus 70. The bolt holes 104 are also formed in the connection portion 98 of the wiring cable 90. The conductor connection portion 94 of the positive electrode bus 70 and the connection portion 98 of the wiring cable 90 are overlapped, and the bolt hole 102 formed in the conductor connection portion 94 of the positive electrode bus 70 and the bolt hole 104 formed in the connection portion 98 of the wiring cable 90. The bolt 106 is inserted into the The nut 108 is screwed into the bolt 106. The conductor connection portion 94 of the positive electrode bus 70 and the connection portion 98 of the wiring cable 90 are fastened by the bolt 106 and the nut 108.
 正極ブス70の導体接続部94の表面及び配線ケーブル90の接続部98の表面は、ニッケルめっきされる。この場合、銀めっきする場合と比較して、正極ブス70及び配線ケーブル90の耐久性及び耐熱性が向上するが、接続抵抗が高くなる。接続抵抗が高くなる問題は、正極ブス70の導体接続部94及び配線ケーブル90の接続部98の接触面積を大きくし、正極ブス70の導体接続部94及び配線ケーブル90の接続部98を密着させることにより解消する。 The surface of the conductor connection portion 94 of the positive electrode bus 70 and the surface of the connection portion 98 of the wiring cable 90 are plated with nickel. In this case, the durability and heat resistance of the positive electrode bus 70 and the wiring cable 90 are improved as compared with the case of silver plating, but the connection resistance is increased. The problem that the connection resistance increases is that the contact area of the conductor connection portion 94 of the positive electrode bus 70 and the connection portion 98 of the wiring cable 90 is increased, and the conductor connection portion 94 of the positive electrode bus 70 and the connection portion 98 of the wiring cable 90 are adhered. Eliminate it by
 正極ブス70は板形状を有する。正極ブス70の導体接続部94は、正極ブス70の一端寄りを占める。正極ブス70の屈曲部96は、正極ブス70の他端寄りを占める。正極ブス70の導体接続部94及び屈曲部96は、正面壁78aの外面に平行に配置される。正面壁78aから正極ブス70の導体接続部94までの距離は、ボルト106のボルト長より長く、正面壁78aから屈曲部96までの距離より長い。望ましくは、正面壁78aから正極ブス70の導体接続部94までの距離は、ボルト長の2倍以上である。 The positive electrode bus 70 has a plate shape. The conductor connection portion 94 of the positive electrode bus 70 occupies one end of the positive electrode bus 70. The bent portion 96 of the positive electrode bus 70 occupies the other end of the positive electrode bus 70. The conductor connection portion 94 and the bending portion 96 of the positive electrode bus 70 are disposed parallel to the outer surface of the front wall 78a. The distance from the front wall 78 a to the conductor connection portion 94 of the positive electrode bus 70 is longer than the bolt length of the bolt 106 and longer than the distance from the front wall 78 a to the bending portion 96. Desirably, the distance from the front wall 78a to the conductor connection portion 94 of the positive electrode bus 70 is at least twice the bolt length.
 正面壁78aから正極ブス70の導体接続部94までの距離がボルト長より長い場合は、ボルト106が正面壁78aに接触しにくい。 When the distance from the front wall 78a to the conductor connection portion 94 of the positive electrode bus 70 is longer than the bolt length, the bolt 106 does not easily contact the front wall 78a.
 正面壁78aから正極ブス70の屈曲部96までの距離が短い場合は、正極ポール76が短くなる。その結果、正極ポール76を経由する熱の出入りが抑制され、箱体42内の温度の調整が容易になる。 When the distance from the front wall 78a to the bent portion 96 of the positive electrode bus 70 is short, the positive electrode pole 76 is short. As a result, heat inflow and outflow through the positive electrode pole 76 is suppressed, and adjustment of the temperature in the box 42 becomes easy.
 一方、正極ブス70を基台40上に支持する正極支持体110は、図4及び図6に示すように、台座120、台座固定用ボルト122、下端キャップ124、碍子126、上端キャップ128、L字金具130、L字金具固定用ボルト132及びL字金具固定用ナット134を備える。 On the other hand, as shown in FIGS. 4 and 6, the positive electrode support 110 for supporting the positive electrode bus 70 on the base 40 is the pedestal 120, the pedestal fixing bolt 122, the lower end cap 124, the insulator 126, the upper end cap 128, L The bracket 130, the L-shaped bracket fixing bolt 132, and the L-shaped bracket fixing nut 134 are provided.
 碍子126の下端136及び下端キャップ124の凹部138は、セメント接合される。下端キャップ124の外面140及び台座120の上面142は溶接される。 The lower end 136 of the forceps 126 and the recess 138 of the lower end cap 124 are cemented. The outer surface 140 of the lower end cap 124 and the upper surface 142 of the pedestal 120 are welded.
 台座120は、台座固定用ボルト122により基台40に固定される。基台40にはボルト孔144が形成される。台座120にはボルト孔146が形成される。ボルト孔144の内面には、ねじ溝が切られる。台座120は、モジュール電池32の基台40に載せられる。台座固定用ボルト122は、台座120に形成されるボルト孔146及び基台40に形成されるボルト孔144に挿入され、基台40に形成されるボルト孔144に切られるねじ溝に螺合される。台座120に形成されるボルト孔146は、台座120の奥行方向に長い長孔である。これにより、台座120の位置を奥行方向に調整可能である。 The pedestal 120 is fixed to the base 40 by a pedestal fixing bolt 122. Bolt holes 144 are formed in the base 40. Bolt holes 146 are formed in the base 120. A screw groove is cut on the inner surface of the bolt hole 144. The pedestal 120 is mounted on the base 40 of the module battery 32. The pedestal fixing bolt 122 is inserted into a bolt hole 146 formed in the pedestal 120 and a bolt hole 144 formed in the base 40 and screwed into a screw groove cut in the bolt hole 144 formed in the base 40 Ru. The bolt holes 146 formed in the pedestal 120 are long holes that are long in the depth direction of the pedestal 120. Thereby, the position of the pedestal 120 can be adjusted in the depth direction.
 碍子126の上端148及び上端キャップ128の凹部150は、セメント接合される。上端キャップ128の外面152及びL字金具130の水平部154の外面156は、溶接される。 The upper end 148 of the forceps 126 and the recess 150 of the upper end cap 128 are cemented. The outer surface 152 of the top end cap 128 and the outer surface 156 of the horizontal portion 154 of the L-shaped fitting 130 are welded.
 L字金具130の鉛直部158は、L字金具固定用ボルト132及びL字金具固定用ナット134により正極ブス70に固定される。L字金具130の鉛直部158には、ボルト孔160が形成される。正極ブス70には、ボルト孔162が形成される。L字金具130の鉛直部158及び正極ブス70は重ねられる。L字金具固定用ボルト132は、L字金具130に形成されるボルト孔160及び正極ブス70に形成されるボルト孔162に挿入される。L字金具固定用ナット134は、L字金具固定用ボルト132に螺合される。L字金具130に形成されるボルト孔160は、鉛直方向に長い長孔である。これにより、L字金具130の位置を鉛直方向に調整可能である。従って、碍子126の寸法のばらつきは、台座120及びL字金具130の位置調整により吸収される。 The vertical portion 158 of the L-shaped fitting 130 is fixed to the positive electrode bus 70 by the L-shaped fitting fixing bolt 132 and the L-shaped fitting fixing nut 134. A bolt hole 160 is formed in the vertical portion 158 of the L-shaped fitting 130. Bolt holes 162 are formed in the positive electrode bus 70. The vertical portion 158 of the L-shaped metal fitting 130 and the positive electrode bus 70 are overlapped. The L-shaped bracket fixing bolt 132 is inserted into the bolt hole 160 formed in the L-shaped bracket 130 and the bolt hole 162 formed in the positive electrode bus 70. The L-shaped fitting fixing nut 134 is screwed into the L-shaped fitting fixing bolt 132. The bolt holes 160 formed in the L-shaped fitting 130 are long holes that are long in the vertical direction. Thereby, the position of the L-shaped fitting 130 can be adjusted in the vertical direction. Therefore, the variation in the size of the insulator 126 is absorbed by the positional adjustment of the pedestal 120 and the L-shaped bracket 130.
 正極ブス70は、正極支持体110に支持される。基台40に結合される台座120及び正極ブス70に結合されるL字金具130は、碍子126により電気的に絶縁される。 The positive electrode bus 70 is supported by the positive electrode support 110. The pedestal 120 coupled to the base 40 and the L-shaped fitting 130 coupled to the positive electrode bus 70 are electrically isolated by the insulator 126.
 負極ブス84及び中継支持体164も、上述した正極ブス70及び正極支持体110と同様の構成を有する。従って、図4及び図6では、負極ブス84に関する部材をカッコ書きにて示した。 The negative electrode bus 84 and the relay support 164 also have the same configuration as that of the positive electrode bus 70 and the positive electrode support 110 described above. Therefore, in FIGS. 4 and 6, the members relating to the negative electrode bus 84 are shown in parentheses.
 一方、負極ブスバー80及び負極支持体166は、上述した正極ブス70とほぼ同じ構成を有するが、図7に示すように、導体接続部94の形状が、上面から見てL字状とされている点で異なる。すなわち、箱体42の正面壁78aに沿って延びる第1接続部94aと、箱体42の左側面壁78cに沿って延びる第2接続部94bとを有する。第1接続部94aには、隣接するモジュール電池32の正極ブス70(図4参照)に接続される配線ケーブル90が接続され、第2接続部94bには、負極ブス84(図4参照)の導体接続部94に接続される配線ケーブル90が接続される。 On the other hand, although the negative electrode bus bar 80 and the negative electrode support 166 have substantially the same configuration as the above-described positive electrode bus 70, as shown in FIG. 7, the shape of the conductor connection portion 94 is L-shaped as viewed from the top. It differs in That is, it has a first connection portion 94 a extending along the front wall 78 a of the box 42 and a second connection portion 94 b extending along the left side wall 78 c of the box 42. The wiring cable 90 connected to the positive electrode bus 70 (see FIG. 4) of the adjacent module battery 32 is connected to the first connection portion 94a, and the second connection portion 94b is connected to the negative electrode bus 84 (see FIG. 4). The wiring cable 90 connected to the conductor connection portion 94 is connected.
 そして、本実施の形態では、例えば図8に示すように、一方のモジュール電池32の正極ブス70と、横方向に隣接する他方のモジュール電池32の負極ブスバー80とを配線ケーブル90にて電気的に接続するようにしている。これにより、モジュール電池32の外部端子と接続される配線ケーブル90の配線方向がモジュール電池32の横方向への配列方向となるため、隣接するモジュール電池32間では、配線長を短くすることができ、配線ケーブル90等が撓むのを抑制することができる。 In the present embodiment, for example, as shown in FIG. 8, the positive electrode bus 70 of one module battery 32 and the negative electrode bus bar 80 of the other module battery 32 adjacent in the lateral direction are electrically To connect to. As a result, the wiring direction of the wiring cable 90 connected to the external terminal of the module battery 32 is the arrangement direction in the lateral direction of the module battery 32. Therefore, the wiring length can be shortened between the adjacent module batteries 32. The bending of the wiring cable 90 or the like can be suppressed.
 配線長が長いところでは、途中にバスバーを設置したり、配線ケーブル90と基台40との間に碍子等の絶縁体92(図3参照)を介在させて電気的絶縁を確保しているため、たとえ絶縁被覆が溶けても電気的絶縁が維持され、多点地絡によるショートの発生を回避することができる。 Where the wiring length is long, a bus bar may be installed midway, or an insulator 92 (see FIG. 3) such as a ladder may be interposed between the wiring cable 90 and the base 40 to ensure electrical insulation. Even if the insulation coating melts, the electrical insulation is maintained, and the occurrence of a short circuit due to a multipoint ground fault can be avoided.
 ここで、モジュール電池収容部28に6つのモジュール電池32が収容され、これらモジュール電池32を直列に接続する方法について図8及び図9を参照しながら説明する。なお、図8及び図9では、6つのモジュール電池32を、モジュール電池32A~32Fと記す。 Here, six module batteries 32 are accommodated in the module battery accommodation unit 28, and a method of connecting the module batteries 32 in series will be described with reference to FIGS. 8 and 9. In FIGS. 8 and 9, the six module batteries 32 are referred to as module batteries 32A to 32F.
 第1方法は、制御装置収容部30内での配線ケーブル90による2つのモジュール電池32C及び32D間の接続によって、1つのモジュール列168を構成する方法である。 The first method is a method of constructing one module row 168 by connection between the two module batteries 32C and 32D by the distribution cable 90 in the control device housing 30.
 具体的には、図8に示すように、正極ブス70と負極ブスバー80は、箱体42の上下方向ほぼ同じ位置に設置されている。 Specifically, as shown in FIG. 8, the positive electrode bus 70 and the negative electrode bus bar 80 are installed at substantially the same position in the vertical direction of the box 42.
 そして、上段における3つのモジュール電池32A~32Cについては、正極ブス70と接続される配線ケーブル90の導出方向と、負極ブスバー80と接続される配線ケーブル90の導出方向とが互いに離間する方向とする。 Then, for the three module batteries 32A to 32C in the upper row, the lead-out direction of the wiring cable 90 connected to the positive electrode bus 70 and the lead-out direction of the wiring cable 90 connected to the negative electrode busbar 80 are mutually separated. .
 具体的には、上段における右側のモジュール電池32Aの正極ブス70と制御装置38間を配線ケーブル90で接続する。右側のモジュール電池32Aの負極ブスバー80と、隣接する中央のモジュール電池32Bの正極ブス70とを配線ケーブル90で接続する。同様に、中央のモジュール電池32Bの負極ブスバー80と、隣接する左側のモジュール電池32Cの正極ブス70とを配線ケーブル90で接続する。そして、左側のモジュール電池32Cの負極ブスバー80と、下段における右側のモジュール電池32Dの正極ブス70とを制御装置収容部30内にわたって配線された配線ケーブル90で接続する。 Specifically, the positive electrode bus 70 of the right side module battery 32A in the upper stage and the control device 38 are connected by the wiring cable 90. A wiring cable 90 connects the negative electrode bus bar 80 of the right module battery 32A and the positive electrode bus 70 of the adjacent central module battery 32B. Similarly, the negative electrode bus bar 80 of the central module battery 32B and the positive electrode bus 70 of the adjacent left module battery 32C are connected by the wiring cable 90. Then, the negative electrode bus bar 80 of the left module battery 32C and the positive electrode bus 70 of the right module battery 32D in the lower part are connected by the wiring cable 90 wired in the control device housing 30.
 同様に、下段における右側のモジュール電池32Dの負極ブスバー80と、隣接する中央のモジュール電池32Eの正極ブス70とを配線ケーブル90で接続する。同様に、中央のモジュール電池32Eの負極ブスバー80と、隣接する左側のモジュール電池32Fの正極ブス70とを配線ケーブル90で接続する。そして、左側のモジュール電池32Fの負極ブスバー80と制御装置38間を配線ケーブル90で接続する。 Similarly, the negative electrode bus bar 80 of the right side module battery 32D in the lower stage and the positive electrode bus 70 of the adjacent central module battery 32E are connected by the wiring cable 90. Similarly, the negative electrode bus bar 80 of the central module battery 32E and the positive electrode bus 70 of the adjacent left module battery 32F are connected by the wiring cable 90. Then, the negative electrode bus bar 80 of the left module battery 32F and the control device 38 are connected by the wiring cable 90.
 第2方法は、モジュール電池収容部28内でのモジュール電池32の直列接続によって1つのモジュール列168を構成する方法である。 The second method is a method of configuring one module row 168 by series connection of the module batteries 32 in the module battery housing 28.
 具体的には、図9に簡略的に示すように、正極ブス70を、箱体42の正面の例えば下部に設置し、負極ブスバー80を、箱体42の正面の例えば上部に設置する。 Specifically, as schematically shown in FIG. 9, the positive electrode bus 70 is disposed, for example, at the lower portion of the front of the box 42, and the negative electrode bus bar 80 is disposed, for example, at the upper portion of the front of the box 42.
 そして、上段における3つのモジュール電池32A~32Cについては、上述した第1方法と同様に、正極ブス70と接続される配線ケーブル90の導出方向と、負極ブスバー80と接続される配線ケーブル90の導出方向とが互いに離間する方向とする。 Then, for the three module batteries 32A to 32C in the upper row, the lead-out direction of the wiring cable 90 connected to the positive electrode bus 70 and the lead-out of the wiring cable 90 connected to the negative electrode busbar 80 as in the first method described above The directions are separated from each other.
 具体的には、上段における右側のモジュール電池32Aの正極ブス70と制御装置38間を配線ケーブル90で接続する。右側のモジュール電池32Aの負極ブスバー80と、隣接する中央のモジュール電池32Bの正極ブス70とを配線ケーブル90で接続する。同様に、中央のモジュール電池32Bの負極ブスバー80と、隣接する左側のモジュール電池32Cの正極ブス70とを配線ケーブル90で接続する。 Specifically, the positive electrode bus 70 of the right side module battery 32A in the upper stage and the control device 38 are connected by the wiring cable 90. A wiring cable 90 connects the negative electrode bus bar 80 of the right module battery 32A and the positive electrode bus 70 of the adjacent central module battery 32B. Similarly, the negative electrode bus bar 80 of the central module battery 32B and the positive electrode bus 70 of the adjacent left module battery 32C are connected by the wiring cable 90.
 下段における3つのモジュール電池32D~32Fについては、正極ブス70と接続される配線ケーブル90の導出方向が、負極ブスバー80の下部を経由する方向であり、負極ブスバー80と接続される配線ケーブル90の導出方向が、正極ブス70の上部を経由する方向とする。 In the lower three module batteries 32D to 32F, the lead-out direction of the wiring cable 90 connected to the positive electrode bus 70 is the direction passing through the lower part of the negative electrode busbar 80, and the wiring cable 90 connected to the negative electrode busbar 80. The lead-out direction is a direction passing through the upper portion of the positive electrode bus 70.
 具体的には、下段における右側のモジュール電池32Dの負極ブスバー80と制御装置38間を配線ケーブル90で接続する。右側のモジュール電池32Dの正極ブス70と、隣接する中央のモジュール電池32Eの負極ブスバー80とを、右側のモジュール電池32Dの負極ブスバー80の下部及び中央のモジュール電池32Eの正極ブス70の上部を経由して配線ケーブル90で接続する。中央のモジュール電池32Eの正極ブス70と、隣接する左側のモジュール電池32Fの負極ブスバー80とを、中央のモジュール電池32Eの負極ブスバー80の下部及び左側のモジュール電池32Fの正極ブス70の上部を経由して配線ケーブル90で接続する。そして、下段左側のモジュール電池32Fの正極ブス70と、上下に隣接する上段左側のモジュール電池32Cの負極ブスバー80とを、下段左側のモジュール電池32Fの負極ブスバー80の下部を経由して配線ケーブル90で接続する。 Specifically, the negative electrode bus bar 80 of the lower right module battery 32D and the control device 38 are connected by the wiring cable 90. The positive electrode bus 70 of the right module battery 32D and the negative electrode busbar 80 of the adjacent central module battery 32E are via the lower part of the negative electrode busbar 80 of the right module battery 32D and the upper part of the positive electrode bus 70 of the central module battery 32E And connect with the wiring cable 90. The positive electrode bus 70 of the central module battery 32E and the negative electrode busbar 80 of the adjacent left module battery 32F are connected via the lower part of the negative electrode busbar 80 of the central module battery 32E and the upper part of the positive electrode bus 70 of the left module battery 32F And connect with the wiring cable 90. Then, the positive electrode bus 70 of the lower left module battery 32F and the negative electrode bus bar 80 of the upper upper left module battery 32C vertically adjacent to each other pass through the lower part of the negative electrode bus bar 80 of the lower left module battery 32F. Connect with
 第1方法及び第2方法のいずれを採用するかは、配線作業や、配線長等を考慮して設定すればよい。 Whether to adopt the first method or the second method may be set in consideration of the wiring operation, the wiring length and the like.
 さらに、本実施の形態に係る二次電池ユニット10は、図8に示すように、吸気口170と、連通口172と、排気口174とを有する。吸気口170は、モジュール電池収容部28のうち、制御装置収容部30とは反対側の下部に設置されている。連通口172は、モジュール電池収容部28と制御装置収容部30との境界(仕切り板24)の上部に設置されている。排気口174は、制御装置収容部30のうち、モジュール電池収容部28とは反対側の上部に設置されている。また、制御装置収容部30内のうち、排気口174に対向して排気装置176が設置されている。制御装置38は、制御装置収容部30内のうち、排気装置176よりも下部に設置されている。図8の例では、向かって左側にモジュール電池収容部28が位置し、向かって右側に制御装置収容部30が位置している例を示しているが、もちろん、この逆でもよい。 Furthermore, as shown in FIG. 8, secondary battery unit 10 according to the present embodiment has an inlet 170, a communication port 172, and an exhaust port 174. The intake port 170 is installed in the lower part of the module battery storage unit 28 opposite to the control device storage unit 30. The communication port 172 is installed at an upper portion of the boundary (partition plate 24) between the module battery housing portion 28 and the control device housing portion 30. The exhaust port 174 is disposed at an upper portion of the control device housing 30 opposite to the module battery housing 28. Further, an exhaust device 176 is installed in the control device housing 30 so as to face the exhaust port 174. The control device 38 is installed below the exhaust device 176 in the control device housing 30. In the example of FIG. 8, the module battery storage unit 28 is positioned on the left side facing the control unit storage unit 30 on the right side, but of course, the opposite may be applied.
 二次電池ユニット10は、図1A及び図1Bにも示すように、内部空間22が扉26、上板12、底板14、左側板16、右側板18及び背面板20で囲まれた形態であることから、内部空間22に熱がこもりやすくなり、誤動作の原因等にもなる。そこで、図8に示すように、上述した位置に吸気口170、連通口172及び排気口174を設置し、排気装置176を駆動することで、左側板16の下部から右側板18の上部にかけて通風ルートが形成され、強制換気が行われやすくなる。 As shown in FIGS. 1A and 1B, the secondary battery unit 10 has a form in which the internal space 22 is surrounded by the door 26, the upper plate 12, the bottom plate 14, the left side plate 16, the right side plate 18 and the back plate 20. As a result, heat is easily accumulated in the internal space 22, which may cause a malfunction or the like. Therefore, as shown in FIG. 8, the intake port 170, the communication port 172 and the exhaust port 174 are installed at the above-mentioned positions, and the exhaust device 176 is driven to ventilate from the lower portion of the left side plate 16 to the upper portion of the right side plate 18. Routes are formed and forced ventilation is facilitated.
 特に、本実施の形態では、図10に示すように、上面から見たとき、各モジュール電池32が正面から背面に向かう方向が長辺とされた長方形状である。しかも、各モジュール電池32の背面側から負極ブス84を介して正面側の負極ブスバー80に配線ケーブル90を配線している。このことから、通風ルートとして、内部空間22の下部から上部にかけてのルートに加えて、奥行方向のルートも確保することが好ましい。これにより、内部空間22の換気が可能になると共に、正極ブス70、負極ブス84、負極ブスバー80、配線ケーブル90に対する空冷を効率よく行うことが可能となる。 In particular, in the present embodiment, as shown in FIG. 10, each module battery 32 has a rectangular shape in which the direction from the front to the back is a long side when viewed from the top. In addition, the wiring cable 90 is wired from the rear side of each module battery 32 to the negative electrode bus bar 80 on the front side via the negative electrode bus 84. From this, in addition to the route from the lower portion to the upper portion of the internal space 22, it is preferable to secure a route in the depth direction as a ventilation route. As a result, ventilation of the internal space 22 becomes possible, and air cooling of the positive electrode bus 70, the negative electrode bus 84, the negative electrode bus bar 80, and the wiring cable 90 can be efficiently performed.
 そこで、本実施の形態では、図10にも示すように、吸気口170は、モジュール電池収容部28の下部で、且つ、正面側に設置され、排気口174は、制御装置収容部30の上部で、且つ、背面側に設置されている。これにより、内部空間22の下部から上部にかけての通風ルートと、奥行方向の通風ルートとが形成される。その結果、内部空間22の換気が効率よく行われると共に、正極ブス70、負極ブス84、負極ブスバー80、配線ケーブル90に対する空冷を効率よく行うことができる。特に、本実施の形態では、上下に並ぶモジュール電池32間に隙間を設けるようにしているため、上下に並ぶモジュール電池32間にも通風ルートが形成され、強制換気を効率的に行うことができる。 Therefore, in the present embodiment, as also shown in FIG. 10, the intake port 170 is installed at the lower side of the module battery storage unit 28 and on the front side, and the exhaust port 174 is the upper portion of the control device storage unit 30. And on the back side. Thus, a ventilation route from the lower part to the upper part of the internal space 22 and a ventilation route in the depth direction are formed. As a result, ventilation of the internal space 22 can be performed efficiently, and air cooling of the positive electrode bus 70, the negative electrode bus 84, the negative electrode bus bar 80, and the wiring cable 90 can be performed efficiently. In particular, in the present embodiment, a gap is provided between the module batteries 32 lined up and down, so that a ventilation route is also formed between the module batteries 32 lined up and down, and forced ventilation can be performed efficiently. .
 制御装置38は、図11に示すように、検知ユニット178と制御部180とを有する。 The control device 38 has a detection unit 178 and a control unit 180, as shown in FIG.
 検知ユニット178は、通風ルートを通じて排気されるガスに含まれる活物質の濃度を検知する。検知対象のガスは、モジュール電池収容部28内のガスでもよいし、排気装置176にて強制排気されるガスでもよい。 The detection unit 178 detects the concentration of the active material contained in the gas exhausted through the ventilation route. The gas to be detected may be a gas in the module battery storage unit 28 or a gas forcibly exhausted by the exhaust device 176.
 排気装置176から強制排気されるガスに含まれる活物質の濃度を検知する濃度検知装置としては、図12に示す濃度検知装置182を好ましく使用することができる。すなわち、モジュール電池収容部28内のガスは、排気装置176によって、連通口172(図8参照)を介して排気装置176側に導かれ、さらに、排気口174を介して二次電池ユニット10外に強制排気される。このことから、モジュール電池収容部28からのガスの一部を他の経路、例えばガスセンサ側に引き込む場合、例えば真空ポンプを用いても、ガスの引き込みには困難が伴う。 As a concentration detection device for detecting the concentration of the active material contained in the gas forcibly exhausted from the exhaust device 176, a concentration detection device 182 shown in FIG. 12 can be preferably used. That is, the gas in the module battery housing portion 28 is led to the exhaust device 176 side through the communication port 172 (see FIG. 8) by the exhaust device 176, and further, outside the secondary battery unit 10 through the exhaust port 174. Forced exhaustion. From this, when drawing in a part of the gas from the module battery storage unit 28 to another path, for example, the gas sensor side, it is difficult to draw the gas even when using a vacuum pump, for example.
 そこで、濃度検知装置182は、それぞれ一方の開口(排気側の開口)の位置が異なった2本の導管を用いて、ガスを引き込む。具体的には、濃度検知装置182は、第1導管184と、第2導管186と、チャンバー188と、ガスセンサ190とを有する。第1導管184は、例えば直線状に延び、一方の開口184aが上方を向いている。第2導管186は、途中で屈曲変形され、一方の開口186aが排気装置176に向いたL字状を有する。チャンバー188は、第1導管184及び第2導管186の各他方の開口184b及び186b側が挿入されている。ガスセンサ190は、感知部190aがチャンバー188内に設置されている。本実施の形態は、この濃度検知装置182によりガスを引き込む。 Therefore, the concentration detection device 182 draws in gas using two conduits in which the positions of one opening (opening on the exhaust side) are different. Specifically, the concentration detection device 182 includes a first conduit 184, a second conduit 186, a chamber 188, and a gas sensor 190. The first conduit 184 extends, for example, linearly, and one opening 184 a faces upward. The second conduit 186 is bent and deformed halfway, and one opening 186 a has an L shape facing the exhaust device 176. The chamber 188 is inserted with the other opening 184 b and 186 b sides of the first conduit 184 and the second conduit 186. The gas sensor 190 has a sensing unit 190 a installed in the chamber 188. In the present embodiment, gas is drawn in by the concentration detector 182.
 第1導管184の一方の開口184aと第2導管186の一方の開口186aは、それぞれ開口部の向きが異なり、各一方の開口184a及び186b間で圧力差が生じるため、チャンバー188内において、第1導管184の他方の開口184bと第2導管186の他方の開口186bとの間にガスの流れが発生する。すなわち、モジュール電池収容部28からのガスの一部がチャンバー188内に引き込まれることになる。ガスセンサ190は、チャンバー188内に引き込まれたガスに含まれる活物質の濃度を検出する。 Since one opening 184 a of the first conduit 184 and one opening 186 a of the second conduit 186 have different opening orientations and a pressure difference occurs between the one openings 184 a and 186 b, the first A gas flow occurs between the other opening 184 b of the first conduit 184 and the other opening 186 b of the second conduit 186. That is, part of the gas from the module battery housing portion 28 is drawn into the chamber 188. The gas sensor 190 detects the concentration of the active material contained in the gas drawn into the chamber 188.
 なお、図12では、チャンバー188内において、第2導管186の他方の開口186bから第1導管184の他方の開口184bに向かってガスの流れが生じていることを示している。もちろん、第1導管184の他方の開口184bから第2導管186の他方の開口186bに向かってガスの流れが生じる場合もある。また、上述の例では、第1導管184を直線状とし、第2導管186を途中で屈曲した形状とした。もちろん、第1導管184の一方の開口184aにかかる圧力と、第2導管186の一方の開口186aにかかる圧力が異なれば、どのような形状でもよいし、各一方の開口184a及び186aの位置を任意に変えてもよい。 Note that FIG. 12 shows that a flow of gas is generated in the chamber 188 from the other opening 186 b of the second conduit 186 to the other opening 184 b of the first conduit 184. Of course, gas flow may occur from the other opening 184 b of the first conduit 184 toward the other opening 186 b of the second conduit 186. Further, in the above-described example, the first conduit 184 is straight, and the second conduit 186 is bent in the middle. Of course, as long as the pressure applied to one opening 184a of the first conduit 184 and the pressure applied to one opening 186a of the second conduit 186 are different, any shape may be used, and the position of each one opening 184a and 186a It may be changed arbitrarily.
 図11に示すように、制御部180は、設定された充放電シーケンスに基づいて各モジュール電池32を制御する。また、制御部180は、排気装置176を制御する。 As shown in FIG. 11, the control unit 180 controls each of the module batteries 32 based on the set charge and discharge sequence. The control unit 180 also controls the exhaust device 176.
 通常運転のうち、各モジュール電池32の放電期間においては、各モジュール電池32の発熱量が小であるため、制御部180は、排気装置176のファンの回転数を小にして、排気流量を制限する制御を行う。反対に、各モジュール電池32の充電期間においては、各モジュール電池32の発熱量が大となるため、制御部180は、排気装置176のファンの回転数を大にして、排気流量を増大する制御を行う。放電期間及び充電期間での上述した制御は、各モジュール電池32に取り付けた温度センサー192からの情報あるいは充放電シーケンスに連動して行うようにしてもよい。 Since the calorific value of each module battery 32 is small during the discharge period of each module battery 32 during the normal operation, the control unit 180 reduces the number of rotations of the fan of the exhaust device 176 to limit the exhaust flow rate. Control to On the contrary, since the calorific value of each module battery 32 is large during the charging period of each module battery 32, the control unit 180 controls the increase of the exhaust flow rate by increasing the rotational speed of the fan of the exhaust device 176. I do. The control described above in the discharge period and the charge period may be performed in conjunction with the information from the temperature sensor 192 attached to each module battery 32 or the charge and discharge sequence.
 また、制御部180は、検知ユニット178にて検知された活物質の濃度が規定値以上の場合に、ガス濃度異常の発生を通報する。例えば二次電池ユニット10の識別番号とガス濃度異常を示す識別コードを送信ファイルに格納し、該送信ファイルを監視センター等に向けて送信して、ガス濃度異常の通報を行う。この場合、インターネット等の公衆通信網や携帯電話網を経由して送信してもよい。また、通報は、監視センターのほか、現地使用者、現地管理者等に対して行ってもよい。また、データ通信による通報のほか、電話による通報も行うことで、ガス濃度異常に対する初動行為を早めることができる。 In addition, when the concentration of the active material detected by the detection unit 178 is equal to or higher than a specified value, the control unit 180 reports the occurrence of the gas concentration abnormality. For example, the identification number of the secondary battery unit 10 and the identification code indicating the gas concentration abnormality are stored in the transmission file, and the transmission file is transmitted to the monitoring center or the like to report the gas concentration abnormality. In this case, transmission may be performed via a public communication network such as the Internet or a mobile telephone network. In addition to the monitoring center, the notification may be sent to local users, local administrators, etc. In addition to reporting by data communication, reporting by telephone can accelerate the initial action for gas concentration abnormalities.
 さらに、吸気口170及び排気口174のうち、少なくともいずれか一方に、塩害フィルター等を追加設置することで、二次電池ユニット10に対して塩害対策を施すことができる。 Furthermore, by additionally installing a salt damage filter or the like in at least one of the intake port 170 and the exhaust port 174, it is possible to take measures against salt damage to the secondary battery unit 10.
 次に、複数の二次電池ユニット10を組み合わせて1つのパッケージ200を構成する場合の1つの例について図13を参照しながら説明する。 Next, one example in the case where a plurality of secondary battery units 10 are combined to constitute one package 200 will be described with reference to FIG.
 例えば8つの二次電池ユニット10を並置して1つのパッケージ200を構成する場合は、第1組202Aと、第2組202Bとを横に並べて配置する。第1組202Aは、正面から見て左側にモジュール電池収容部28が位置し、右側に制御装置収容部30が位置する2つの二次電池ユニット10を段積みして構成される。第2組202Bは、正面から見て右側にモジュール電池収容部28が位置し、左側に制御装置収容部30が位置する2つの二次電池ユニット10を段積みして構成される。 For example, in the case where eight secondary battery units 10 are juxtaposed to constitute one package 200, the first set 202A and the second set 202B are arranged side by side. The first pair 202A is configured by stacking two secondary battery units 10 in which the module battery storage 28 is located on the left side when viewed from the front and the control device storage 30 is located on the right. The second pair 202B is configured by stacking two secondary battery units 10 in which the module battery storage 28 is located on the right side when viewed from the front and the control device storage 30 is located on the left.
 さらに、正面から見て左側にモジュール電池収容部28が位置し、右側に制御装置収容部30が位置する2つの二次電池ユニット10を段積みした第3組202Cを、第2組202Bの背面側に配置する。このとき、第2組202Bの二次電池ユニット10と第3組202Cの二次電池ユニット10の背面同士を対向させて配置する。 Furthermore, when viewed from the front, the module battery housing 28 is located on the left side, and the control battery housing 30 is located on the right side. Place on the side. At this time, the back surfaces of the secondary battery unit 10 of the second set 202B and the secondary battery unit 10 of the third set 202C are disposed to face each other.
 同様に、正面から見て右側にモジュール電池収容部28が位置し、左側に制御装置収容部30が位置する2つの二次電池ユニット10を段積みした第4組202Dを、第1組202Aの背面側に配置する。このとき、第1組202Aの二次電池ユニット10と第4組202Dの二次電池ユニット10の背面同士を対向させて配置する。 Similarly, when viewed from the front, the module battery housing 28 is located on the right side, and the control battery housing 30 is located on the left side. Arrange on the back side. At this time, the back surfaces of the secondary battery unit 10 of the first set 202A and the secondary battery unit 10 of the fourth set 202D are disposed to face each other.
 この場合も、第3組202Cの二次電池ユニット10と第4組202Dの二次電池ユニット10とが、それぞれ吸気口170が設けられた面が対向して設置されることになる。 Also in this case, the secondary battery unit 10 of the third set 202C and the secondary battery unit 10 of the fourth set 202D are installed with the surfaces provided with the intake ports 170 facing each other.
 これにより、各組の二次電池ユニット10における排気口174がパッケージ200の外方に向かうことになるため、各二次電池ユニット10内での強制換気を効率よく行うことができる。 Thereby, since the exhaust port 174 in each set of secondary battery units 10 is directed outward of the package 200, forced ventilation in each secondary battery unit 10 can be efficiently performed.
 もし、例えば第2組202Bの二次電池ユニット10が、正面に向かって右側に制御装置収容部30が位置していた場合、排気口174の前に近接して第1組202Aの二次電池ユニット10が位置することになるため、排気が十分でなくなり、強制換気が効率よく行われなくなるおそれがある。 If, for example, the secondary battery unit 10 of the second set 202B is located on the right side toward the front, the control device housing 30 is located in front of the exhaust port 174 and the secondary battery of the first set 202A is close. Since the unit 10 is positioned, exhaust may not be sufficient, and forced ventilation may not be performed efficiently.
 上述の例は、あくまでも一例であり、様々な配置例が考えられる。ただ、横方向に並ぶ2つの二次電池ユニット10は、上述の理由から、それぞれ吸気口170が設けられた面を対向させることが好ましい。 The above example is just an example, and various arrangements can be considered. However, it is preferable that the two secondary battery units 10 aligned in the lateral direction have the surfaces provided with the intake ports 170 opposite to each other, for the reason described above.
 このように、本実施の形態においては、1つのパッケージ200を設置する場合、以下のような手順になる。
  (a) 二次電池ユニット10自体が二次電池として機能し、しかも、箱状に形成されてコンテナとしても機能しているため、二次電池ユニット10のまま現地に輸送
  (b) 二次電池ユニット10の設置
  (c) 配線工事
Thus, in the present embodiment, when one package 200 is installed, the following procedure is performed.
(A) The secondary battery unit 10 itself functions as a secondary battery, and moreover, is formed in a box shape and also functions as a container, so the secondary battery unit 10 is transported to the site as it is (b) secondary battery Installation of unit 10 (c) Wiring work
 従来必要であった、現地での架台36の組立、エアダクト等による通風ルートを確保するための部品取付作業、架台36へのモジュール電池32の据え付け、制御装置38の設置が不要となり、従来と比して大幅に工数の低減を図ることができる。 It is not necessary to assemble the stand 36 in the field, install parts for securing ventilation route by air duct etc., install the module battery 32 to the stand 36 and install the control unit 38, which is conventionally required. Thus, the number of man-hours can be greatly reduced.
 また、配線工事は、個々の二次電池ユニット10自体が二次電池として稼働するため、例えばモジュール電池32間の煩雑な配線等は不要である。複数の二次電池ユニット10の直列接続と、直流の主回路となる二次電池ユニット10とメインコンピュータ(中央監視)との接続で済み、従来の配線作業と比して、大幅な作業の簡略化、作業時間の短縮化を図ることができる。 Further, in the wiring work, since each secondary battery unit 10 itself operates as a secondary battery, for example, complicated wiring between the module batteries 32 is not necessary. The series connection of a plurality of secondary battery units 10 and the connection between the secondary battery unit 10 serving as a DC main circuit and the main computer (central monitoring) simplifies the work significantly compared to the conventional wiring work. And work time can be shortened.
 次に、本実施の形態に係る二次電池ユニット10及び二次電池設備(パッケージ200)の各種変形例を図14A~図20を参照しながら説明する。 Next, various modifications of the secondary battery unit 10 and the secondary battery facility (package 200) according to the present embodiment will be described with reference to FIGS. 14A to 20.
(第1変形例)
 例えば図14A(透視図)に示すように、モジュール電池収容部28内の上部に、排気口174に向かって延びる内部排気ダクト210を設けてもよい。この場合、内部排気ダクト210をモジュール電池収容部28内の上部に設置することで、モジュール電池収容部28内の上部の熱溜まりの空気を選択的に吸気することができる。なお、図14Aは、モジュール電池32、制御装置38、排気装置176等を省略して示す。
(First modification)
For example, as shown in FIG. 14A (perspective view), an internal exhaust duct 210 extending toward the exhaust port 174 may be provided at the upper portion in the module battery housing portion 28. In this case, by installing the internal exhaust duct 210 in the upper part in the module battery storage 28, the air in the heat accumulation in the upper part in the module battery storage 28 can be selectively sucked. In FIG. 14A, the module battery 32, the control device 38, the exhaust device 176 and the like are omitted.
 また、内部排気ダクト210は、図14Bにも示すように、排気口211に近づくにつれて開口サイズが小とされた複数の吸気口212を有する。具体的には、例えばモジュール電池収容部28内をモジュール電池32の設置位置に応じて3つのエリア(第1エリアZ1~第3エリアZ3)に分けた場合を想定する。排気口211から最も遠い第1エリアZ1に対応した吸気口212aの開口サイズが最も大きく、排気口211に最も近い第3エリアZ3に対応した吸気口212cの開口サイズが最も小さい。第1エリアZ1と第3エリアZ3に挟まれた第2エリアZ2に対応した吸気口212bの開口サイズはその中間レベルとされている。これにより、排気口211からの距離に応じて吸気口212の開口サイズの適正化を図ることができるため、各エリアZ1~Z3から均等に吸気することができ、より効率的な二次電池ユニット10内の換気を実現することができる。 Further, as shown in FIG. 14B, the inner exhaust duct 210 has a plurality of intake ports 212 whose opening size is reduced as approaching the exhaust port 211. Specifically, it is assumed that, for example, the inside of the module battery storage unit 28 is divided into three areas (first area Z1 to third area Z3) according to the installation position of the module battery 32. The opening size of the intake port 212a corresponding to the first area Z1 farthest from the exhaust port 211 is the largest, and the opening size of the intake port 212c corresponding to the third area Z3 closest to the exhaust port 211 is the smallest. The opening size of the air inlet 212b corresponding to the second area Z2 sandwiched between the first area Z1 and the third area Z3 is set to the middle level. As a result, the opening size of the intake port 212 can be optimized according to the distance from the exhaust port 211. Therefore, the secondary battery unit can be equally inhaled from each of the areas Z1 to Z3. Ventilation within 10 can be realized.
 さらに、この内部排気ダクト210は、排気口211に近づくにつれて内部排気ダクト210内の断面積が大きくなっている。すなわち、内部排気ダクト210における導管214内の断面積Aは、第1エリアZ1に対応した断面積Aaが最も小さく、第3エリアZ3に対応した断面積Acが最も大きく、第2エリアZ2に対応した断面積Abがその中間レベルとなっている。これにより、内部排気ダクト210内の流速を一定にすることができ、内部排気ダクト210内で空気の流れが滞ることがなくなる。 Furthermore, as the inner exhaust duct 210 approaches the exhaust port 211, the cross-sectional area in the inner exhaust duct 210 increases. That is, the cross-sectional area A in the conduit 214 in the internal exhaust duct 210 has the smallest cross-sectional area Aa corresponding to the first area Z1, the largest cross-sectional area Ac corresponding to the third area Z3, and corresponds to the second area Z2. The cross-sectional area Ab is at an intermediate level. As a result, the flow velocity in the internal exhaust duct 210 can be made constant, and the flow of air in the internal exhaust duct 210 will not be stagnant.
(第2変形例)
 2つ以上の二次電池ユニット10の排気経路を1つに集約してもよい。例えば図15Aに示すように、2つの二次電池ユニット10を段積みする場合を想定したとき、内部排気ダクト210を用いない場合は、下段に位置する二次電池ユニット10の外部に排気装置176を設置し、上段及び下段の二次電池ユニット10の各排気口174から排気装置176に向かって外部排気ダクト216を設置する。そして、上段及び下段の二次電池ユニット10からの空気を外部排気ダクト216の排気口218を通じて外部に排気する。
(2nd modification)
The exhaust paths of two or more secondary battery units 10 may be integrated into one. For example, as shown in FIG. 15A, assuming that two secondary battery units 10 are stacked, if the internal exhaust duct 210 is not used, an exhaust device 176 is provided outside the secondary battery unit 10 located in the lower stage. The external exhaust duct 216 is installed from the exhaust ports 174 of the upper and lower secondary battery units 10 toward the exhaust device 176. Then, the air from the upper and lower secondary battery units 10 is exhausted to the outside through the exhaust port 218 of the external exhaust duct 216.
 また、図15Bに示すように、内部排気ダクト210が設置された二次電池ユニット10の場合においても、下段に位置する二次電池ユニット10の外部に排気装置176を設置する。そして、各内部排気ダクト210をそれぞれ排気口174まで延ばし、外部排気ダクト216を通じて各二次電池ユニット10内の空気を排気するようにしてもよい。 Moreover, as shown to FIG. 15B, also in the case of the secondary battery unit 10 in which the internal exhaust duct 210 was installed, the exhaust apparatus 176 is installed in the exterior of the secondary battery unit 10 located in a lower stage. Then, each internal exhaust duct 210 may be extended to the exhaust port 174, and the air in each secondary battery unit 10 may be exhausted through the external exhaust duct 216.
 これらの構成を採用することによって、排気装置176の設置台数を削減することができ、排気装置176の保守にかかる時間を短縮することができると共に、コスト的にも有利になる。特に、二次電池ユニット10を段積みする場合に、下段の二次電池ユニット10のみに排気装置176を設置するようにしたので、排気装置176の保守作業が容易になる。 By adopting these configurations, the number of exhaust devices 176 can be reduced, and the time required for maintenance of the exhaust devices 176 can be shortened, which is also advantageous in cost. In particular, when stacking the secondary battery units 10, the exhaust device 176 is installed only in the lower secondary battery unit 10, so the maintenance work of the exhaust device 176 is facilitated.
(第3変形例)
 図14Aに示すように、支柱34及び架台36を支持する少なくとも梁220を、モジュール電池収容部28を区画する面と共有化してもよい。例えばモジュール電池収容部28を区画する天井部分(上板12)や床部分(底板14)のうち、例えば底板14に、下梁220bを埋め込む。上梁220aは上板12(二点鎖線で示す)の天井面に接するように設置する。これにより、二次電池ユニット10自体の強度を確保することができる。しかも、下梁220bや上梁220aとして、薄い金属板等を用いることができるため、二次電池ユニット10の重量を低減することができる。
(Third modification)
As shown in FIG. 14A, at least a beam 220 supporting the columns 34 and the frame 36 may be shared with the surface that divides the module battery housing 28. For example, the lower beam 220b is embedded in, for example, the bottom plate 14 of the ceiling portion (the upper plate 12) and the floor portion (the bottom plate 14) which define the module battery storage portion 28, for example. The upper beam 220a is installed in contact with the ceiling surface of the upper plate 12 (shown by a two-dot chain line). Thereby, the strength of the secondary battery unit 10 itself can be secured. In addition, since a thin metal plate or the like can be used as the lower beam 220b and the upper beam 220a, the weight of the secondary battery unit 10 can be reduced.
(第4変形例)
 図16A及び図16Bに示すように、正極ブス70を箱体42の正面壁78aに対して中央の位置に設置し、負極ブス84を箱体42の背面壁78bに対して中央の位置に設置する。そして、モジュール電池32に応じて、負極ブスバー80の設置位置を、箱体42の正面壁78a(あるいは中央の正極ブス70)に対して左側の位置に設置したり(図16A参照)、箱体42の正面壁78a(あるいは中央の正極ブス70)に対して右側の位置に設置する(図16B参照)。
(4th modification)
As shown in FIGS. 16A and 16B, the positive electrode bus 70 is disposed at a central position relative to the front wall 78a of the box 42, and the negative electrode bus 84 is disposed at a central position relative to the rear wall 78b of the box 42. Do. Then, depending on the module battery 32, the installation position of the negative electrode bus bar 80 may be installed on the left side of the front wall 78a of the box 42 (or the positive electrode bus 70 in the center) (see FIG. 16A), or It is installed at a position on the right side with respect to the front wall 78a of 42 (or the positive electrode bus 70 in the center) (see FIG. 16B).
 具体的には、図17及び図18Aに示すように、上段における3つのモジュール電池32A、32B及び32Cについては、負極ブスバー80を正面壁78aに対して右側に設置する。また、図17及び図18Bに示すように、下段における3つのモジュール電池32D、32E及び32Fについては、負極ブスバー80を正面壁78aに対して左側に設置する。 Specifically, as shown in FIGS. 17 and 18A, for the three module batteries 32A, 32B and 32C in the upper stage, the negative electrode bus bar 80 is installed on the right side with respect to the front wall 78a. Further, as shown in FIGS. 17 and 18B, for the three module batteries 32D, 32E, and 32F in the lower stage, the negative electrode bus bar 80 is disposed on the left side with respect to the front wall 78a.
 そして、上段における右側のモジュール電池32Aの負極ブスバー80と制御装置38間を配線ケーブル90で接続する。右側のモジュール電池32Aの正極ブスと、隣接する中央のモジュール電池32Bの負極ブスバー80とを配線ケーブル90で接続する。中央のモジュール電池32Bの正極ブス70と、隣接する左側のモジュール電池32Cの負極ブスバー80とを配線ケーブル90で接続する。 Then, the negative electrode bus bar 80 of the right side module battery 32A in the upper stage and the control device 38 are connected by the wiring cable 90. The positive electrode bus of the right module battery 32A and the negative electrode bus bar 80 of the adjacent central module battery 32B are connected by the wiring cable 90. The positive electrode bus 70 of the central module battery 32 B and the negative electrode bus bar 80 of the adjacent left module battery 32 C are connected by the wiring cable 90.
 同様に、下段における右側のモジュール電池32Dの正極ブス70と制御装置38間を配線ケーブル90で接続する。右側のモジュール電池32Dの負極ブスバー80と、隣接する中央のモジュール電池32Eの正極ブス70とを配線ケーブル90で接続する。中央のモジュール電池32Eの負極ブスバー80と、隣接する左側のモジュール電池32Fの正極ブス70とを配線ケーブル90で接続する。 Similarly, the positive electrode bus 70 of the right side module battery 32D in the lower stage and the control device 38 are connected by the wiring cable 90. A wiring cable 90 connects the negative electrode bus bar 80 of the right module battery 32D and the positive electrode bus 70 of the adjacent central module battery 32E. Wiring cable 90 connects the negative electrode bus bar 80 of the central module battery 32E and the positive electrode bus 70 of the adjacent left module battery 32F.
 そして、下段左側のモジュール電池32Fの負極ブスバー80と、上下に隣接する上段左側のモジュール電池32Cの正極ブス70とを配線ケーブル90で接続する。 Then, the negative electrode bus bar 80 of the lower left module battery 32F and the positive electrode bus 70 of the upper upper left module battery 32C vertically adjacent to each other are connected by the wiring cable 90.
 このように、正極ブス70及び負極ブスバー80の配置が単純化され、しかも、配線ケーブル90の配線も、図8や図9の例よりも単純化させることができる。これは、配線作業の簡単化並びに作業時間の短縮化を図る上で有利である。なお、配線ケーブル90は、ブスバーや可とう導体としてもよい。 Thus, the arrangement of the positive electrode bus 70 and the negative electrode bus bar 80 is simplified, and the wiring of the wiring cable 90 can also be simplified as compared with the examples of FIGS. 8 and 9. This is advantageous in simplifying the wiring operation and shortening the operation time. The wiring cable 90 may be a bus bar or a flexible conductor.
(第5変形例)
 図19に示すように、例えば4つの二次電池ユニット10A~10Dを組み合わせて1つのパッケージ200を構成する場合を想定したとき、1つの二次電池ユニット10Aのみに制御装置38を設置する。そして、4つの二次電池ユニット10A~10Dからの配線ケーブル90を制御装置38に集約させて、二次電池ユニット10Aをマスターとして機能させ、他の3つの二次電池ユニット10B~10Dをスレーブとして機能させてもよい。この場合、制御装置38の設置台数を削減することができ、制御装置38の保守にかかる時間を短縮することができると共に、コスト的にも有利になる。特に、二次電池ユニット10を段積みする場合に、下段の二次電池ユニットの1つをマスターとすることで、制御装置の保守作業も容易になる。
(5th modification)
As shown in FIG. 19, when it is assumed that, for example, four secondary battery units 10A to 10D are combined to constitute one package 200, the control device 38 is installed only on one secondary battery unit 10A. The wiring cables 90 from the four secondary battery units 10A to 10D are integrated into the control device 38, and the secondary battery unit 10A functions as a master, and the other three secondary battery units 10B to 10D as slaves. It may be made to function. In this case, the number of installed control devices 38 can be reduced, and the time required for maintenance of the control devices 38 can be shortened, which is also advantageous in cost. In particular, when stacking the secondary battery units 10, by using one of the lower secondary battery units as a master, the maintenance operation of the control device can be facilitated.
 もちろん、図示しないが、各二次電池ユニット10A~10Dに設置された排気装置176を、制御装置38を通じて駆動及び停止したり、各二次電池ユニット10A~10Dに設置された検知ユニット178からの検知情報を制御装置38にて集中的に監視するようにしてもよい。 Of course, although not shown, the exhaust device 176 installed in each of the secondary battery units 10A to 10D is driven and stopped through the control device 38, or from the detection unit 178 installed in each of the secondary battery units 10A to 10D. The detection information may be centrally monitored by the control device 38.
(第6変形例)
 図20に示すように、例えば4つの二次電池ユニット10A~10Dにて構成される1つのパッケージ200に1つのガス処理装置222を設置してもよい。各二次電池ユニット10A~10Dにそれぞれゲート224を設け、各ゲート224からの排気経路226をガス処理装置222に集約させる。そして、いずれか1つ以上の二次電池ユニット(例えば二次電池ユニット10B)にて火災が生じた場合に、火災が生じた二次電池ユニット10Bの吸気口170及び排気口174を閉じると共に排気装置176を停止し、代わりにゲート224を開く。これにより、火災が生じた二次電池ユニット10Bからの空気(排気ガス)のみが排気経路226を介してガス処理装置222によって吸引され、ガス処理されて排気されることになる。
(Sixth modification)
As shown in FIG. 20, for example, one gas processing device 222 may be installed in one package 200 configured of four secondary battery units 10A to 10D. A gate 224 is provided for each of the secondary battery units 10A to 10D, and the exhaust path 226 from each gate 224 is integrated into the gas processing device 222. Then, when a fire occurs in any one or more of the secondary battery units (for example, the secondary battery unit 10B), the intake port 170 and the exhaust port 174 of the secondary battery unit 10B where the fire has occurred are closed and the exhaust is performed. Stop the device 176 and open the gate 224 instead. As a result, only the air (exhaust gas) from the secondary battery unit 10B in which the fire has occurred is sucked by the gas processing device 222 through the exhaust path 226, gas-treated, and exhausted.
 この場合、火災が生じた二次電池ユニット10Bからの排気ガスをそのまま外部に排気することなく、ガス処理装置222を介して排気することができる。 In this case, the exhaust gas from the secondary battery unit 10B where the fire has occurred can be exhausted through the gas processing device 222 without being exhausted as it is.
 なお、本発明に係る二次電池ユニット及び二次電池設備は、上述の実施の形態に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得ることはもちろんである。 The secondary battery unit and the secondary battery facility according to the present invention are not limited to the above embodiment, and it goes without saying that various configurations can be adopted without departing from the scope of the present invention.

Claims (21)

  1.  箱体状に形成されたモジュール電池収容部(28)と、
     箱体状に形成され、前記モジュール電池収容部(28)に隣接して設けられた制御装置収容部(30)と、
     前記モジュール電池収容部(28)に収容され、2以上の単電池(44)による集合電池(46)が収容されてなる2以上のモジュール電池(32)と、
     前記制御装置収容部(30)に収容され、少なくとも前記モジュール電池(32)を制御する制御装置(38)と、を有することを特徴とする二次電池ユニット。
    A module battery housing (28) formed in a box shape;
    A control device housing (30) formed in a box shape and provided adjacent to the module battery housing (28);
    Two or more module batteries (32) which are accommodated in the module battery accommodation unit (28) and in which an assembled battery (46) of two or more single batteries (44) is accommodated;
    And a control device (38) housed in the control device housing (30) for controlling at least the module battery (32).
  2.  請求項1記載の二次電池ユニットにおいて、
     前記モジュール電池収容部(28)のうち、前記制御装置収容部(30)とは反対側の下部に設置された吸気口(170)と、
     前記モジュール電池収容部(28)と前記制御装置収容部(30)との境界(24)の上部に設置された連通口(172)と、
     前記制御装置収容部(30)のうち、前記モジュール電池収容部(28)とは反対側の上部に設置された排気口(174)とを有することを特徴とする二次電池ユニット。
    In the secondary battery unit according to claim 1,
    An intake port (170) installed at a lower portion of the module battery housing (28) opposite to the control device housing (30);
    A communication port (172) installed at an upper portion of a boundary (24) between the module battery housing (28) and the control device housing (30);
    A secondary battery unit characterized by having an exhaust port (174) installed at an upper portion of the control device housing (30) opposite to the module battery housing (28).
  3.  請求項2記載の二次電池ユニットにおいて、
     前記吸気口(170)は、前記モジュール電池収容部(28)の前記下部で、且つ、正面側に設置され、
     前記排気口(174)は、前記制御装置収容部(30)の前記上部で、且つ、背面側に設置されていることを特徴とする二次電池ユニット。
    In the secondary battery unit according to claim 2,
    The air intake port (170) is installed on the front side of the lower portion of the module battery housing (28).
    A secondary battery unit characterized in that the exhaust port (174) is installed on the upper side and the back side of the control device housing (30).
  4.  請求項2又は3記載の二次電池ユニットにおいて、
     前記制御装置収容部(30)内のうち、前記排気口(174)に対向して設置された排気装置(176)を有し、
     前記制御装置(38)は、前記制御装置収容部(30)内のうち、前記排気装置(176)よりも下部に設置されていることを特徴とする二次電池ユニット。
    In the secondary battery unit according to claim 2 or 3,
    In the control device housing (30), an exhaust device (176) installed opposite to the exhaust port (174),
    A secondary battery unit characterized in that the control device (38) is disposed below the exhaust device (176) in the control device housing (30).
  5.  請求項2~4のいずれか1項に記載の二次電池ユニットにおいて、
     前記吸気口(170)及び前記排気口(174)のうち、少なくともいずれか一方に塩害フィルターが設置されていることを特徴とする二次電池ユニット。
    In the secondary battery unit according to any one of claims 2 to 4,
    A salt damage filter is installed in at least one of the air inlet (170) and the air outlet (174).
  6.  請求項2~5のいずれか1項に記載の二次電池ユニットにおいて、
     前記モジュール電池収容部(28)内の上部に、前記排気口(174)に向かって延びる排気ダクト(210)が設けられ、
     前記排気ダクト(210)は、その排気口(211)に近づくにつれて開口サイズが小とされた複数の吸気口(212)を有することを特徴とする二次電池ユニット。
    In the secondary battery unit according to any one of claims 2 to 5,
    An exhaust duct (210) extending toward the exhaust port (174) is provided at an upper portion in the module battery housing (28),
    A secondary battery unit characterized in that the exhaust duct (210) has a plurality of air inlets (212) whose opening size is reduced as approaching the air outlet (211).
  7.  請求項1~6のいずれか1項に記載の二次電池ユニットにおいて、
     少なくとも前記モジュール電池収容部(28)の正面側に、内部空間(22)に対して開閉自在とされた扉(26)を有することを特徴とする二次電池ユニット。
    In the secondary battery unit according to any one of claims 1 to 6,
    A secondary battery unit characterized by having a door (26) openable and closable with respect to the internal space (22) at least on the front side of the module battery storage (28).
  8.  請求項7記載の二次電池ユニットにおいて、
     前記モジュール電池(32)は、
     前記モジュール電池収容部(28)内に設置された架台(36)に設置される基台(40)と、
     前記基台(40)上に設置され、且つ、上面に開口を有し、集合電池(46)が収容される箱体(42)と、
     前記箱体(42)の前記開口を閉塞する蓋体(48)と、
     前記箱体(42)の正面に設けられ、それぞれ導電部材(90)が接続される正極外部端子(70)及び負極外部端子(80)と、を有することを特徴とする二次電池ユニット。
    In the secondary battery unit according to claim 7,
    The module battery (32) is
    A base (40) installed on a rack (36) installed in the module battery storage (28);
    A box (42) installed on the base (40) and having an opening on the upper surface, in which the battery pack (46) is housed;
    A lid (48) closing the opening of the box (42);
    A secondary battery unit comprising a positive electrode external terminal (70) and a negative electrode external terminal (80) which are provided on the front of the box (42) and to which the conductive members (90) are respectively connected.
  9.  請求項8記載の二次電池ユニットにおいて、
     前記架台(36)を支持する少なくとも梁(220)が前記モジュール電池収容部(28)を区画する面と共有化されていることを特徴とする二次電池ユニット。
    In the secondary battery unit according to claim 8,
    A secondary battery unit characterized in that at least a beam (220) for supporting the rack (36) is shared with a surface for partitioning the module battery storage (28).
  10.  請求項8又は9記載の二次電池ユニットにおいて、
     前記正極外部端子(70)及び前記負極外部端子(80)は、前記基台(40)上にそれぞれ絶縁体(92)を介して設置されていることを特徴とする二次電池ユニット。
    In the secondary battery unit according to claim 8 or 9,
    A secondary battery unit characterized in that the positive electrode external terminal (70) and the negative electrode external terminal (80) are respectively installed on the base (40) via an insulator (92).
  11.  請求項8~10のいずれか1項に記載の二次電池ユニットにおいて、
     前記モジュール電池(32)は、上面から見たとき、正面から背面に向かう方向が長辺とされた長方形状を有し、
     前記集合電池(46)の正極(62)が前記箱体(42)の正面の側壁(78a)を介して前記正極外部端子(70)に接続され、
     前記集合電池(46)の負極(64)が前記箱体(42)の背面の側壁(78b)及び中継導体(84)を介して前記負極外部端子(80)に接続されていることを特徴とする二次電池ユニット。
    The secondary battery unit according to any one of claims 8 to 10,
    The module battery (32) has a rectangular shape in which the direction from the front to the back is a long side when viewed from the top,
    The positive electrode (62) of the battery assembly (46) is connected to the positive electrode external terminal (70) through the front side wall (78a) of the box (42).
    The negative electrode (64) of the battery assembly (46) is connected to the negative electrode external terminal (80) through the side wall (78b) on the rear surface of the box (42) and the relay conductor (84). Secondary battery unit.
  12.  請求項11記載の二次電池ユニットにおいて、
     前記正極外部端子(70)、前記負極外部端子(80)及び前記中継導体(84)は、前記基台(40)上にそれぞれ絶縁体(92)を介して設置されていることを特徴とする二次電池ユニット。
    In the secondary battery unit according to claim 11,
    The positive electrode external terminal (70), the negative electrode external terminal (80), and the relay conductor (84) are each disposed on the base (40) via an insulator (92). Secondary battery unit.
  13.  請求項8~12のいずれか1項に記載の二次電池ユニットにおいて、
     前記正極外部端子(70)と接続される前記導電部材(90)の導出方向と、前記負極外部端子(80)と接続される前記導電部材(90)の導出方向とが互いに離間する方向であることを特徴とする二次電池ユニット。
    The secondary battery unit according to any one of claims 8 to 12,
    The lead-out direction of the conductive member (90) connected to the positive electrode external terminal (70) and the lead-out direction of the conductive member (90) connected to the negative electrode external terminal (80) are mutually separated. A secondary battery unit characterized by
  14.  請求項13記載の二次電池ユニットにおいて、
     前記モジュール電池(32)として、前記負極外部端子(80)が前記正極外部端子(70)に対して左側に設置されたモジュール電池(32)と、前記負極外部端子(80)が前記正極外部端子(70)に対して右側に設置されたモジュール電池(32)とを有することを特徴とする二次電池ユニット。
    In the secondary battery unit according to claim 13,
    As the module battery (32), a module battery (32) in which the negative electrode external terminal (80) is disposed on the left side with respect to the positive electrode external terminal (70), and the negative electrode external terminal (80) is the positive electrode external terminal A secondary battery unit comprising: a module battery (32) installed on the right side with respect to (70).
  15.  請求項8~12のいずれか1項に記載の二次電池ユニットにおいて、
     前記正極外部端子(70)は、前記箱体(42)の正面のうち、上部又は下部に設置され、
     前記負極外部端子(80)は、前記箱体(42)の正面のうち、下部又は上部に設置され、
     前記正極外部端子(70)と接続される前記導電部材(90)の導出方向が、前記負極外部端子(80)の上部又は下部を経由する方向であり、
     前記負極外部端子(80)と接続される前記導電部材(90)の導出方向が、前記正極外部端子(70)の下部又は上部を経由する方向であることを特徴とする二次電池ユニット。
    The secondary battery unit according to any one of claims 8 to 12,
    The positive electrode external terminal (70) is installed at an upper portion or a lower portion of a front surface of the box (42),
    The negative electrode external terminal (80) is disposed at a lower portion or an upper portion of a front surface of the box (42),
    The lead-out direction of the conductive member (90) connected to the positive electrode external terminal (70) is a direction passing through the upper or lower part of the negative electrode external terminal (80),
    A secondary battery unit characterized in that the lead-out direction of the conductive member (90) connected to the negative electrode external terminal (80) is a direction passing through a lower portion or an upper portion of the positive electrode external terminal (70).
  16.  請求項13~15のいずれか1項に記載の二次電池ユニットにおいて、
     前記正極外部端子(70)と接続される前記導電部材(90)は、横方向に隣接する一方のモジュール電池(32)の負極外部端子(80)に接続され、
     前記負極外部端子(80)と接続される前記導電部材(90)は、横方向に隣接する他方のモジュール電池(32)の正極外部端子(70)に接続されることを特徴とする二次電池ユニット。
    In the secondary battery unit according to any one of claims 13 to 15,
    The conductive member (90) connected to the positive electrode external terminal (70) is connected to the negative electrode external terminal (80) of one module battery (32) adjacent in the lateral direction,
    The conductive member (90) connected to the negative electrode external terminal (80) is connected to the positive electrode external terminal (70) of the other module battery (32) adjacent in the lateral direction. unit.
  17.  請求項1~16のいずれか1項に記載の二次電池ユニット(10)を1つ以上有することを特徴とする二次電池設備。 A secondary battery facility comprising one or more secondary battery units (10) according to any one of claims 1 to 16.
  18.  請求項17記載の二次電池設備において、
     少なくとも2つの前記二次電池ユニット(10)が、それぞれ吸気口(170)が設けられ面を対向させて設置されていることを特徴とする二次電池設備。
    In the secondary battery facility according to claim 17,
    A secondary battery installation characterized in that at least two of the secondary battery units (10) are provided with an inlet (170) and face each other.
  19.  請求項17又は18記載の二次電池設備において、
     少なくとも2つの前記二次電池ユニット(10)の排気ダクトが延長して設置され、
     少なくとも2つの前記二次電池ユニット(10)の換気が集中して行われることを特徴とする二次電池設備。
    The secondary battery facility according to claim 17 or 18,
    Exhaust ducts of at least two of the secondary battery units (10) are extended and installed,
    A secondary battery facility characterized in that ventilation of at least two of the secondary battery units (10) is performed in a concentrated manner.
  20.  請求項17~19のいずれか1項に記載の二次電池設備において、
     複数の前記二次電池ユニット(10)を有し、
     そのうちの1つの二次電池ユニット(10)がマスターとして機能し、他の二次電池ユニット(10)がスレーブとして機能することを特徴とする二次電池設備。
    The secondary battery facility according to any one of claims 17 to 19,
    Having a plurality of the secondary battery units (10);
    A secondary battery facility characterized in that one of the secondary battery units (10) functions as a master and the other secondary battery unit (10) functions as a slave.
  21.  請求項17~20のいずれか1項に記載の二次電池設備において、
     少なくとも1つの前記二次電池ユニット(10)内の空気を吸引してガス処理を行う1つのガス処理装置(222)を有することを特徴とする二次電池設備。
    The secondary battery facility according to any one of claims 17 to 20,
    A secondary battery facility characterized by comprising one gas processing device (222) for suctioning air in at least one of the secondary battery units (10) to perform gas processing.
PCT/JP2014/071858 2013-08-26 2014-08-21 Secondary battery unit and secondary battery equipment WO2015029865A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015534163A JP6388866B2 (en) 2013-08-26 2014-08-21 Secondary battery equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-175055 2013-08-26
JP2013175055 2013-08-26

Publications (1)

Publication Number Publication Date
WO2015029865A1 true WO2015029865A1 (en) 2015-03-05

Family

ID=52586426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071858 WO2015029865A1 (en) 2013-08-26 2014-08-21 Secondary battery unit and secondary battery equipment

Country Status (2)

Country Link
JP (1) JP6388866B2 (en)
WO (1) WO2015029865A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016189317A (en) * 2015-03-30 2016-11-04 株式会社Gsユアサ Container type power storage unit
JP2016189315A (en) * 2015-03-30 2016-11-04 株式会社Gsユアサ Power storage facility
JP2016189314A (en) * 2015-03-30 2016-11-04 株式会社Gsユアサ Container type power storage unit
JP2018049753A (en) * 2016-09-21 2018-03-29 オートモーティブエナジーサプライ株式会社 Battery pack
JP2019174026A (en) * 2018-03-28 2019-10-10 日本碍子株式会社 Storage device and exhaust method for storage device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02123064U (en) * 1989-03-20 1990-10-09 Toyota Jidoshokki Kk Gas discharge device
JPH11260399A (en) * 1998-03-06 1999-09-24 Hitachi Ltd High temperature sodium secondary battery system
JP2002316599A (en) * 2001-04-24 2002-10-29 Toshiba Kyaria Kk Vehicle storage battery unit, automobile and chill car
JP2003045384A (en) * 2001-07-31 2003-02-14 Shin Kobe Electric Mach Co Ltd Battery module
JP2008041376A (en) * 2006-08-04 2008-02-21 Toyota Motor Corp Warming/cooling system for vehicular battery pack
JP2008226488A (en) * 2007-03-08 2008-09-25 Ngk Insulators Ltd Package for sodium-sulfur battery
WO2013111426A1 (en) * 2012-01-24 2013-08-01 日本碍子株式会社 Power storage apparatus and method of operating power storage apparatus
WO2013118166A1 (en) * 2012-02-08 2013-08-15 株式会社 日立製作所 Cell system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5849517B2 (en) * 2011-08-12 2016-01-27 株式会社Ihi Power system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02123064U (en) * 1989-03-20 1990-10-09 Toyota Jidoshokki Kk Gas discharge device
JPH11260399A (en) * 1998-03-06 1999-09-24 Hitachi Ltd High temperature sodium secondary battery system
JP2002316599A (en) * 2001-04-24 2002-10-29 Toshiba Kyaria Kk Vehicle storage battery unit, automobile and chill car
JP2003045384A (en) * 2001-07-31 2003-02-14 Shin Kobe Electric Mach Co Ltd Battery module
JP2008041376A (en) * 2006-08-04 2008-02-21 Toyota Motor Corp Warming/cooling system for vehicular battery pack
JP2008226488A (en) * 2007-03-08 2008-09-25 Ngk Insulators Ltd Package for sodium-sulfur battery
WO2013111426A1 (en) * 2012-01-24 2013-08-01 日本碍子株式会社 Power storage apparatus and method of operating power storage apparatus
WO2013118166A1 (en) * 2012-02-08 2013-08-15 株式会社 日立製作所 Cell system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016189317A (en) * 2015-03-30 2016-11-04 株式会社Gsユアサ Container type power storage unit
JP2016189315A (en) * 2015-03-30 2016-11-04 株式会社Gsユアサ Power storage facility
JP2016189314A (en) * 2015-03-30 2016-11-04 株式会社Gsユアサ Container type power storage unit
JP2018049753A (en) * 2016-09-21 2018-03-29 オートモーティブエナジーサプライ株式会社 Battery pack
JP2019174026A (en) * 2018-03-28 2019-10-10 日本碍子株式会社 Storage device and exhaust method for storage device

Also Published As

Publication number Publication date
JPWO2015029865A1 (en) 2017-03-02
JP6388866B2 (en) 2018-09-12

Similar Documents

Publication Publication Date Title
WO2015029865A1 (en) Secondary battery unit and secondary battery equipment
JP6157627B2 (en) Containment device
JP6058260B2 (en) Storage battery unit
US8704486B2 (en) Electricity storage system
JP4889370B2 (en) Power system
WO2012015002A1 (en) Energy storage system and secondary battery storage system rack
WO2014103038A1 (en) Power storage apparatus
EP2725635A1 (en) Electricity storage device
CN103460437A (en) Battery pack
JP2012243754A (en) Battery pack for battery cooling
US20130252047A1 (en) Battery module
CN106410081A (en) Battery pack
EP3046159B1 (en) Battery-pack case
CN112673519A (en) Modular battery pack and support system
RU2014132120A (en) Modular data center
US8922032B2 (en) Engine operating machine
JP5936114B2 (en) Power storage device
JP6455282B2 (en) Container type power storage unit
JP2009277394A (en) Battery pack case, battery pack using same, and high electric power storage facility
JP4279251B2 (en) Elevator equipment
CN115764051A (en) High-density medium-voltage energy storage system with miniaturized structure and convenient operation and maintenance and design method thereof
JP2019175560A (en) Storage battery device
CN210092646U (en) Outdoor four-port electric energy router structure
JP6007641B2 (en) Battery pack
CN219937235U (en) Battery cluster structure and energy storage system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14839685

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015534163

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14839685

Country of ref document: EP

Kind code of ref document: A1