WO2015029794A1 - Wireless sensor device - Google Patents

Wireless sensor device Download PDF

Info

Publication number
WO2015029794A1
WO2015029794A1 PCT/JP2014/071444 JP2014071444W WO2015029794A1 WO 2015029794 A1 WO2015029794 A1 WO 2015029794A1 JP 2014071444 W JP2014071444 W JP 2014071444W WO 2015029794 A1 WO2015029794 A1 WO 2015029794A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
transmission line
circuit
signal
wireless sensor
Prior art date
Application number
PCT/JP2014/071444
Other languages
French (fr)
Japanese (ja)
Inventor
▲貞▼旬 金
大滝 幸夫
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Priority to JP2015534137A priority Critical patent/JP6165870B2/en
Publication of WO2015029794A1 publication Critical patent/WO2015029794A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/52Discriminating between fixed and moving objects or between objects moving at different speeds
    • G01S13/56Discriminating between fixed and moving objects or between objects moving at different speeds for presence detection

Definitions

  • the present invention relates to a wireless sensor device, and more particularly to a wireless sensor device capable of stably detecting a detection target.
  • an antenna 901, a transmission circuit 902, a detection circuit 903, a signal processing circuit 904, and a control circuit 905 are provided.
  • a plurality of transmission lines (906, 907) having different line lengths, a switch 908, and a switch 909 are switched between the antenna 901 and an output terminal 902a provided in the transmission circuit 902, and the plurality of transmission lines are switched.
  • Switching means for connecting the antenna 901 and the output terminal 902a is provided. The difference between the line lengths of the plurality of transmission lines is set to less than a quarter of the wavelength of the transmission signal.
  • Control that selects and switches transmission lines with different line lengths when the detection output decreases when the phase difference of the reflected wave with respect to the transmission output approaches the null point where the sensitivity decreases due to a change in the distance to the detection target, etc. I do. For this reason, a technique is disclosed in which a phase difference between a transmission output and a reflected wave can be changed, and a minute variation is detected while avoiding a deterioration in sensitivity for detecting a motion of a detection target.
  • the amplitude of the reflected wave is very small with respect to the amplitude of the transmission signal.
  • the change of the reflected wave with respect to the minute displacement is also minute.
  • the signal processing circuit 904 needs to use an amplifier having a large amplification factor. When an amplifier with a large amplification factor is used, if a direct current is applied to the input, the output of the amplifier will be in a state where it has been swung to the upper limit or lower limit of the amplitude. Must be prevented from entering the amplifier.
  • the movement to be detected from the detection target is a low frequency change such as body movements associated with heartbeat or breathing, etc., and a low frequency change of about several Hz or less, the low frequency signal is not attenuated. It is necessary to use a capacitor having a large capacity.
  • the following operation may occur.
  • the phase of the signal input to the detection circuit 903 changes by ⁇ / 2 (rad) along with the switching.
  • the DC voltage output from the detection circuit 903 greatly fluctuates, and this fluctuation is input to the amplifier through a capacitor having a large capacitance. Due to the fluctuation of the DC voltage, the output of the amplifier may be in a state where it has been swung to the upper limit or the lower limit of the amplitude.
  • This invention solves the subject mentioned above, and aims at providing the wireless sensor apparatus which can detect a detection target stably.
  • a wireless sensor device of the present invention includes an antenna that radiates a transmission signal, receives a reflected signal reflected by a detection target, and a transmission circuit that generates the transmission signal.
  • a detection circuit that receives and detects a part of the transmission signal and the reflected signal received by the antenna, and a signal processing circuit that is connected to the detection circuit and processes a signal output from the detection circuit;
  • the transmission circuit and the first A control circuit for controlling the switching means and the second switching means, wherein the control circuit connects a transmission line connecting the antenna and the transmission circuit from the first transmission line or the second transmission line.
  • the detection circuit since the detection circuit is provided for each transmission line, even when the transmission line is switched, the signal input to the detection circuit is not affected by the phase change caused by the switching. Therefore, since the DC voltage of the output of the detection circuit does not fluctuate, the output of the amplifier of the signal processing circuit is not shaken off, and it does not take a long time to output a fluctuation of a low frequency. Therefore, it is possible to provide a wireless sensor device that can detect a detection target stably.
  • control by the control circuit is performed at predetermined time intervals so as to select and switch between the first transmission line and the second transmission line, and the first transmission.
  • the line and the second transmission line are alternately selected and switched.
  • the transmission operation is performed by alternately switching the first transmission line and the second transmission line having different line lengths, the components orthogonal to each other can be extracted, and the presence or absence of the reflected wave is reliably detected. Therefore, the detection target can be detected more stably.
  • the wireless sensor device of the present invention is characterized in that a phase difference between the first transmission line and the second transmission line is ⁇ / 4 (rad).
  • the phase difference between the first transmission line and the second transmission line is different by ⁇ / 4 (rad)
  • the phase difference between the transmission signal and the reflected signal is ⁇ / Different signals can be obtained by 2 (rad). For this reason, it is possible to reliably avoid the null point where the sensitivity is remarkably lowered and to detect the detection target more stably.
  • FIG. 10 is a block diagram illustrating a configuration of a wireless sensor device described in Patent Document 1.
  • the wireless sensor device 100 radiates a transmission signal, and detects the detection target 500 from the reflected signal that is reflected from the detection target 500.
  • FIG. 2 is a block diagram illustrating a configuration of the wireless sensor device 100.
  • the wireless sensor device 100 includes an antenna 10, a transmission circuit 20, a first transmission line 31, a second transmission line 32, a first switching unit 41, a second switching unit 42, A first detection circuit 51, a second detection circuit 52, a first signal processing circuit 61, a second signal processing circuit 62, and a control circuit 70 are provided.
  • the wireless sensor device 100 has a power supply circuit (not shown) and supplies power necessary for operation to each part of the wireless sensor device 100.
  • the antenna 10 radiates a transmission signal and receives a reflection signal obtained by reflecting the transmission signal on the detection target 500.
  • the antenna 10 is connected to the first switching means 41.
  • the transmission circuit 20 performs a transmission operation for generating and outputting a transmission signal.
  • the transmission circuit 20 is connected to the second switching means 42 and the control circuit 70 and is controlled by the control circuit 70.
  • the first transmission line 31 is a transmission line having a characteristic length substantially equal to the output impedance of the transmission circuit 20 and the impedance of the antenna 10 at the frequency of the transmission signal generated by the transmission circuit 20 and having a line length Le.
  • One end of the first transmission line 31 is connected to the first switching means 41, and the other end is connected to the second switching means 42 and the first detection circuit 51.
  • the second transmission line 32 has a characteristic impedance substantially equal to the output impedance of the transmission circuit 20 and the impedance of the antenna 10 at the frequency of the transmission signal generated by the transmission circuit 20.
  • the second transmission line 32 is a transmission line having a line length that is different (delayed) from the first transmission line 31 by a phase difference of ⁇ / 4 (rad).
  • One end of the second transmission line 32 is connected to the first switching means 41, and the other end is connected to the second switching means 42 and the second detection circuit 52.
  • the first switching means 41 selects the antenna 10, the first transmission line 31, and the second transmission line so that either the first transmission line 31 or the second transmission line 32 can be selected and connected to the antenna 10. One end of 32 is connected.
  • the second switching means 42 selects the transmission circuit 20, the first transmission line 31, and the second transmission line so that either the first transmission line 31 or the second transmission line 32 can be selected and connected to the transmission circuit 20.
  • the other end of the transmission line 32 is connected.
  • the first detection circuit 51 is connected to the other end of the first transmission line 31 and the second switching means 42. In the first detection circuit 51, the first switching means 41 and the second switching means 42 select the first transmission line 31 and the transmission circuit 20 is transmitting the transmission signal while the transmission circuit 20 is transmitting the transmission signal. A part of the signal and the reflected signal received by the antenna 10 are input. The first detection circuit 51 detects a part of the input transmission signal and the reflected signal received by the antenna 10.
  • the second detection circuit 52 is connected to the other end of the second transmission line 32 and the second switching means 42.
  • the first switching means 41 and the second switching means 42 select the second transmission line 32, and the transmission output from the transmission circuit 20 while the transmission circuit 20 transmits the transmission signal.
  • a part of the signal and the reflected signal received by the antenna 10 are input.
  • the second detection circuit 52 detects a part of the input transmission signal and the reflected signal received by the antenna 10.
  • the first signal processing circuit 61 is connected to the first detection circuit 51 and the control circuit 70.
  • the first signal processing circuit 61 processes the detection output signal output from the first detection circuit 51 and outputs the result to the control circuit 70.
  • the second signal processing circuit 62 is connected to the second detection circuit 52 and the control circuit 70.
  • the second signal processing circuit 62 processes the detection output signal output from the second detection circuit 52 and outputs the result to the control circuit 70.
  • the first detection circuit 51 is connected to the other end of the first transmission line 31, and the second detection circuit 52 is connected to the other end of the second transmission line 32.
  • the first signal processing circuit 61 and the first detection circuit 51 are connected to the first signal processing circuit 61.
  • the control circuit 70 is connected to the transmission circuit 20, the first switching means 41, the second switching means 42, the first signal processing circuit 61, and the second signal processing circuit 62.
  • the control circuit 70 controls the operation state of the transmission circuit 20.
  • the control circuit 70 controls the first switching unit 41 and the second switching unit 42, and connects the transmission line connecting the antenna 10 and the transmission circuit 20 from the first transmission line 31 or the second transmission line 32. Control to select and switch.
  • the control circuit 70 acquires output signals from the first signal processing circuit 61 and the second signal processing circuit 62, and detects and detects body movements accompanying the breathing of the detection target 500 and body surface movements accompanying the heartbeat. Judgment of presence or absence is performed.
  • FIG. 3 is a diagram for explaining the operation timing of the wireless sensor device 100.
  • the control circuit 70 controls the first switching means 41 and the second switching means 42 at time T ⁇ b> 1, and sets the transmission line connecting the antenna 10 and the transmission circuit 20 as the first transmission line. Control to select and switch 31 is performed. Further, the control circuit 70 outputs a transmission output control signal during a time t1 from time T1 to T2, and controls the transmission circuit 20 so that the transmission signal is output. The transmission signal is output from the transmission circuit 20 and radiated from the antenna 10 through the second switching means 42, the first transmission line 31, and the first switching means 41.
  • Part of the transmission signal radiated from the antenna 10 is reflected by the detection target 500 and received by the antenna 10 as a reflected signal.
  • the reflected signal received by the antenna 10 is input to the first detection circuit 51 via the first switching means 41 and the first transmission line 31, and a part of the transmission signal and the reflected signal are detected.
  • B is the amplitude of the reflected signal
  • the transmission signal radiated from the antenna 10 with the amplitude A represented by the expression (1) is reflected by the detection target 500 and returns to the antenna 10 again.
  • the amplitude of the reflected signal is attenuated to B and received by the attenuation (transmission loss) received by the transmission path between the transmission line and the attenuation (reflection loss) caused by the reflectance when the transmission signal is reflected by the detection object 500 It will be.
  • the detection output Vd represented by the expression (3) is output to the output of the first detection circuit 51.
  • ⁇ 1 representing the phase shift angle of the reflected signal Vr with respect to the transmission signal Vo is given by the path from the transmission signal Vo output from the transmission circuit 20 to the detection object 500 being reflected back to the first detection circuit 51. This is the total phase shift amount.
  • the output signal Vp1 of the first detection circuit 51 is obtained from Equation (4). Becomes 0.
  • the output signal Vp1 of the first detection circuit 51 becomes the maximum value (A ⁇ B / 2), and the phase difference ⁇ 1 becomes ⁇ ( rad), the minimum value is-(A ⁇ B / 2).
  • the detection sensitivity with respect to the movement of the detection target 500 is a ratio at which the output changes with respect to the change of ⁇ 1 due to the movement of the detection target 500, and therefore, the value obtained by differentiating Equation (4) by ⁇ 1 is expressed by Equation (5). Is done.
  • the maximum sensitivity is obtained when ⁇ 1 is ⁇ / 2 + n ⁇ (rad), and ⁇ 1 is 0 + n ⁇ (r In the case of ad), the sensitivity is a so-called null point (where n is a natural number).
  • the transmission signal is output from the transmission circuit 20, reflected by the detection target 500 through the antenna 10, and returned to the first detection circuit 51.
  • the path length L1 is expressed as in equation (6). However, in Expression (6), the distance from the antenna 10 to the detection target 500 is Lx.
  • Vp1 shown in Equation (4) changes when ⁇ 1 changes due to the change in the distance between the antenna 10 and the detection target 500 due to the movement of the detection target 500, so that Vp1 changes due to the change in ⁇ 1. Therefore, the movement of the detection target 500 can be detected by detecting the change in Vp1.
  • the signal output from the first detection circuit 51 during the time t1 from the time T1 to the time T2 is a signal including a direct current component as shown in the first detection circuit output of FIG. Become.
  • the first signal processing circuit 61 performs amplification and AD conversion necessary for detecting the amount of change from the signal output from the first detection circuit 51 and outputs the processing result to the control circuit 70.
  • the control circuit 70 outputs a transmission output control signal for controlling the transmission circuit 20 so that the transmission signal is not output from the transmission circuit 20 at time T2, and stops the transmission operation for a time t2 until time T3.
  • control circuit 70 controls the first switching means 41 and the second switching means 42 at time T3 and selects the second transmission line 32 as the transmission line connecting the antenna 10 and the transmission circuit 20. To perform switching control. Further, the control circuit 70 outputs a transmission output control signal during a time t1 from time T3 to T4, and controls the transmission circuit 20 so that the transmission signal is output. The transmission signal is output from the transmission circuit 20 and radiated from the antenna 10 through the second switching means 42, the second transmission line 32, and the first switching means 41.
  • Part of the transmission signal radiated from the antenna 10 is reflected by the detection target 500 and received by the antenna 10 as a reflected signal.
  • the reflected signal received by the antenna 10 is input to the second detection circuit 52 through the first switching means 41 and the second transmission line 32, and a part of the transmission signal and the reflected signal are detected.
  • the transmission signal Vo is expressed by the equation (1)
  • the reflected signal Vr is expressed by the equation (7).
  • (theta) 2 represents the phase shift angle (phase difference) of the reflected signal Vr with respect to the transmission signal Vo of a 2nd period.
  • Vp2 is expressed by Expression (9).
  • Expression (9) is an output determined by the phase difference ⁇ 2 of the reflected signal Vr with respect to the transmission signal Vo.
  • ⁇ 2 representing the phase shift angle of the reflected signal Vr with respect to the transmission signal Vo is given by the path from the transmission signal Vo output from the transmission circuit 20, reflected by the detection target 500, and returned to the second detection circuit 52. This is the total phase shift amount.
  • the output signal Vp2 of the second detection circuit 52 is obtained from Equation (8). Becomes 0.
  • the output signal Vp1 of the first detection circuit 51 becomes the maximum value (A ⁇ B / 2)
  • the phase difference ⁇ 2 becomes ⁇ ( rad)
  • the minimum value is-(A ⁇ B / 2).
  • the detection sensitivity with respect to the movement of the detection target 500 is a ratio at which the output changes with respect to the change of ⁇ 2 due to the movement of the detection target 500. Therefore, the value is obtained by differentiating Equation (9) by ⁇ 2, and is expressed by Equation (10). Is done.
  • the maximum sensitivity is obtained when ⁇ 2 is ⁇ / 2 + n ⁇ (rad), and the sensitivity is very low when ⁇ 2 is 0 + n ⁇ (rad) (where n is a natural number).
  • the transmission signal is output from the transmission circuit 20, reflected by the detection target 500 through the antenna 10, and returned to the first detection circuit 51.
  • the path length L2 is expressed as shown in Expression (11). However, in Expression (11), the distance from the antenna 10 to the detection target 500 is Lx.
  • Vp2 shown in Expression (9) also changes when ⁇ 2 changes due to the movement of the detection object 500, and thus the output changes according to the change of ⁇ 2. Therefore, the movement of the detection target 500 can also be detected by detecting a change in Vp2.
  • the signal output from the second detection circuit 52 during the time t1 from the time T3 to the time T4 is a signal including a direct current component as shown in the second detection circuit output of FIG. .
  • the second signal processing circuit 62 performs amplification and AD conversion necessary for detecting the amount of change from the signal output from the second detection circuit 52, and outputs the processing result to the control circuit 70.
  • the control circuit 70 outputs a transmission output control signal so that the transmission signal is not output from the transmission circuit 20 at time T4, and stops the transmission operation for time t2 until time T5. After time T5, the operation from time T1 is repeated in the same manner.
  • the transmission lines 32 are alternately selected and switched.
  • Equation (12) The difference ⁇ L between the path length L1 when the first transmission line 31 is selected and the path length L2 when the second transmission line 32 is selected is expressed by Equation (6) and Equation (11). Equation (12) is obtained.
  • the phase difference is different by ⁇ / 4 (rad) when the first transmission line 31 is selected and when the second transmission line 32 is selected.
  • the phase of the reflected wave is delayed by ⁇ / 2 (rad) when the first transmission line 31 is selected.
  • the phase of the reflected signal input to the first detection circuit 51 and the second detection circuit 52 can be changed by ⁇ / 2 (rad). it can. For this reason, even when the phase difference ⁇ 1 between the transmission signal input to the first detection circuit 51 and the reflection signal becomes a null point where ⁇ (rad) is reached, the transmission signal and the reflection signal input to the second detection circuit 52
  • the first detection circuit 51 is connected to the other end of the first transmission line 31, and the second detection circuit 52 is connected to the other end of the second transmission line 32.
  • the first detection circuit 51 is connected to the first signal processing circuit 61, and the first detection circuit 51 is connected to the first signal processing circuit 61.
  • the signals input to the first detection circuit 51 and the second detection circuit 52 are affected by the change in phase associated with the switching. There is no. Therefore, since the DC voltage of the detection output appearing at the outputs of the first detection circuit 51 and the second detection circuit 52 does not fluctuate greatly, the outputs of the amplifiers of the first signal processing circuit 61 and the second signal processing circuit 62 may be shaken out. It does not take a long time to output low frequency fluctuations. Therefore, it is possible to provide a wireless sensor device that can detect a detection target stably.
  • control by the control circuit 70 is performed at predetermined time intervals so as to select and switch between the first transmission line 31 and the second transmission line 32, and the first transmission.
  • the line 31 and the second transmission line 32 are alternately selected and switched.
  • the transmission operation is performed by alternately switching the first transmission line 31 and the second transmission line 32 having different line lengths, extracting the components orthogonal to each other reliably detects the presence or absence of the reflected wave. Therefore, the detection target can be detected more stably.
  • the wireless sensor device 100 of the present embodiment is configured such that the phase difference between the first transmission line 31 and the second transmission line 32 is ⁇ / 4 (rad).
  • the wireless sensor device 100 of the present embodiment it is possible to provide a wireless sensor device that can stably detect a detection target.
  • the wireless sensor device 100 As described above, the wireless sensor device 100 according to the embodiment of the present invention has been specifically described. However, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention. Is possible. For example, the present invention can be modified as follows, and these embodiments also belong to the technical scope of the present invention.
  • the wireless sensor device 100 has been described with reference to a drawing away from the detection target 500. However, the wireless sensor device 100 may be carried or worn to detect body movement of the detection target 500. .
  • the first signal processing circuit 61 and the second signal processing circuit 62 will be described with reference to an example of performing amplification, AD conversion, and the like necessary to detect the amount of change from the detected signal. However, it may be configured to perform signal processing such as band limitation and sampling.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

[Problem] To provide a wireless sensor device that is capable of stably detecting a subject to be detected. [Solution] A wireless sensor device (100) is provided with an antenna (10), a transmission circuit (20), a first transmission line (31), a second transmission line (32), a first switching means (41), a second switching means (42), a first detector circuit (51), a second detector circuit (52), a first signal processing circuit (61), a second signal processing circuit (62) and a control circuit (70). From between the first transmission line (31) and the second transmission line (32), the control circuit (70) controls the selection of the transmission line for connecting the antenna (10) and the transmission circuit (20), and the switching between the first transmission line and the second transmission line. The first detector circuit (51) and the second detector circuit (52) are connected to the first transmission line (31) and the second transmission line (32), respectively. The first signal processing circuit (61) is connected to the first detector circuit (51), and the second signal processing circuit (62) is connected to the second detector circuit (52).

Description

無線センサ装置Wireless sensor device
 本発明は、無線センサ装置に関し、特に、検出対象を安定して検出することができる無線センサ装置に関する。 The present invention relates to a wireless sensor device, and more particularly to a wireless sensor device capable of stably detecting a detection target.
 従来から、電波を用いて対象物までの距離を測定するセンサや、対象物の動きを検出し対象物の有無や接近を検出するセンサなどが提案されている。 Conventionally, sensors that measure the distance to an object using radio waves and sensors that detect the presence or proximity of the object by detecting the movement of the object have been proposed.
 近年、健康に対する意識の高まりから、対象への負担が少ない非接触で心拍や呼吸などのバイタルサインの検出を行うことができるセンサが強く望まれている。 In recent years, a sensor capable of detecting vital signs such as heartbeat and respiration in a non-contact manner with less burden on the subject has been strongly demanded due to an increase in health awareness.
 特許文献1(従来例1)に記載の無線センサ装置900では、図4に示すように、アンテナ901と、送信回路902と、検波回路903と、信号処理回路904と、制御回路905と、を備えている。また、アンテナ901と送信回路902に備えられた出力端子902aとの間に、線路長の異なる複数の伝送線路(906、907)と、スイッチ908,スイッチ909で構成され複数の伝送線路を切替えてアンテナ901と出力端子902aを接続する切替え手段が設けられている。複数の伝送線路の線路長の差は送信信号の波長の4分の1未満に設定されている。 In the wireless sensor device 900 described in Patent Document 1 (conventional example 1), as shown in FIG. 4, an antenna 901, a transmission circuit 902, a detection circuit 903, a signal processing circuit 904, and a control circuit 905 are provided. I have. Further, a plurality of transmission lines (906, 907) having different line lengths, a switch 908, and a switch 909 are switched between the antenna 901 and an output terminal 902a provided in the transmission circuit 902, and the plurality of transmission lines are switched. Switching means for connecting the antenna 901 and the output terminal 902a is provided. The difference between the line lengths of the plurality of transmission lines is set to less than a quarter of the wavelength of the transmission signal.
 検出対象との距離が変化する等で、送信出力に対する反射波の位相差が、感度が低下するヌル点に近づいて検出出力が低下した場合に、線路長の異なる伝送線路を選択して切替える制御を行う。このため、送信出力と反射波の位相差を変化させることができ、検出対象の動きを検知する感度の劣化を回避して微小変異を検出する技術が開示されている。 Control that selects and switches transmission lines with different line lengths when the detection output decreases when the phase difference of the reflected wave with respect to the transmission output approaches the null point where the sensitivity decreases due to a change in the distance to the detection target, etc. I do. For this reason, a technique is disclosed in which a phase difference between a transmission output and a reflected wave can be changed, and a minute variation is detected while avoiding a deterioration in sensitivity for detecting a motion of a detection target.
特願2012-213344号Japanese Patent Application No. 2012-213344
 上述した従来技術の無線センサ装置では、送信信号の振幅に対して反射波の振幅は大変小さくなる。また微小変位に対する反射波の変化も微小なものとなる。この振幅が小さい反射波の微小な変化を捉えるために、信号処理回路904では増幅率の大きい増幅器を用いる必要がある。増幅率の大きな増幅器を用いる場合、入力に直流が印加されると、増幅器の出力が振幅の上限または下限に振り切れた状態となってしまうので、増幅器の入力に直流カット用のキャパシタを用いて直流が増幅器に入力されるのを防止する必要がある。また、検出対象から検出しようとする動きが、心拍や呼吸などに伴う体動などのように変動する周波数が数Hz以下程度の低い周波数変化の場合には、低い周波数の信号が減衰しないように大きな容量のキャパシタを用いる必要がある。 In the conventional wireless sensor device described above, the amplitude of the reflected wave is very small with respect to the amplitude of the transmission signal. In addition, the change of the reflected wave with respect to the minute displacement is also minute. In order to capture the minute change of the reflected wave having a small amplitude, the signal processing circuit 904 needs to use an amplifier having a large amplification factor. When an amplifier with a large amplification factor is used, if a direct current is applied to the input, the output of the amplifier will be in a state where it has been swung to the upper limit or lower limit of the amplitude. Must be prevented from entering the amplifier. Also, if the movement to be detected from the detection target is a low frequency change such as body movements associated with heartbeat or breathing, etc., and a low frequency change of about several Hz or less, the low frequency signal is not attenuated. It is necessary to use a capacitor having a large capacity.
 しかしながら、大きな容量のキャパシタを用いた場合には以下のような動作となることがある。検出対象を検出する信号出力が低下して伝送線路の切替えた際に、切替えに伴って検波回路903に入力される信号の位相がπ/2(rad)変化する。このため、検波回路903から出力される直流電圧が大きく変動し、この変動が大きな容量のキャパシタを通して増幅器に入力されてしまう。このよう直流電圧の変動によって、増幅器の出力が振幅の上限または下限に振り切れた状態となってしまう虞があった。また、キャパシタの容量が大きいために、キャパシタを含む回路全体の時定数が大きくなり、直流電圧の変動に追従して再び低い周波数の変動を出力できるようになるまでに長い時間が掛かり、その間、検出対象を検出できなくなってしまうという課題があった。 However, when a large capacity capacitor is used, the following operation may occur. When the signal output for detecting the detection target decreases and the transmission line is switched, the phase of the signal input to the detection circuit 903 changes by π / 2 (rad) along with the switching. For this reason, the DC voltage output from the detection circuit 903 greatly fluctuates, and this fluctuation is input to the amplifier through a capacitor having a large capacitance. Due to the fluctuation of the DC voltage, the output of the amplifier may be in a state where it has been swung to the upper limit or the lower limit of the amplitude. In addition, since the capacitance of the capacitor is large, the time constant of the entire circuit including the capacitor becomes large, and it takes a long time to follow the fluctuation of the DC voltage and output the fluctuation of the low frequency again. There was a problem that the detection target could not be detected.
 本発明は、上述した課題を解決するもので、安定して検出対象を検出することができる無線センサ装置を提供することを目的とする。 This invention solves the subject mentioned above, and aims at providing the wireless sensor apparatus which can detect a detection target stably.
 この課題を解決するために、本発明の無線センサ装置は、送信信号を放射し、前記送信信号が検出対象で反射した反射信号を受信するアンテナと、前記送信信号を生成する送信回路と、第1伝送線路と、前記第1伝送線路と線路長の異なる第2伝送線路と、前記第1伝送線路の一端と前記第2伝送線路の一端と、を選択して前記アンテナと接続する第1切替え手段と、前記第1伝送線路の他端と前記第2伝送線路の他端と、を選択して前記送信回路と接続する第2切替え手段と、前記送信回路から前記送信信号を送信中に、前記送信信号の一部と前記アンテナで受信された前記反射信号と、が入力され検波される検波回路と、前記検波回路に接続され、前記検波回路から出力される信号を処理する信号処理回路と、前記送信回路と前記第1切替え手段と前記第2切替え手段と、を制御する制御回路と、を備え前記制御回路は、前記アンテナと前記送信回路とを接続する伝送線路を、前記第1伝送線路または前記第2伝送線路から、選択して切替える制御を行う無線センサ装置において、前記第1伝送線路と前記第2伝送線路それぞれの他端に、前記検波回路と前記信号処理回路が、接続されていることを特徴とする。 In order to solve this problem, a wireless sensor device of the present invention includes an antenna that radiates a transmission signal, receives a reflected signal reflected by a detection target, and a transmission circuit that generates the transmission signal. A first switching for selecting one transmission line, a second transmission line having a different line length from the first transmission line, one end of the first transmission line, and one end of the second transmission line, and connecting to the antenna Means, a second switching means for selecting and connecting the other end of the first transmission line and the other end of the second transmission line to the transmission circuit, and during transmission of the transmission signal from the transmission circuit, A detection circuit that receives and detects a part of the transmission signal and the reflected signal received by the antenna, and a signal processing circuit that is connected to the detection circuit and processes a signal output from the detection circuit; , The transmission circuit and the first A control circuit for controlling the switching means and the second switching means, wherein the control circuit connects a transmission line connecting the antenna and the transmission circuit from the first transmission line or the second transmission line. In the wireless sensor device that performs control to select and switch, the detection circuit and the signal processing circuit are connected to the other ends of the first transmission line and the second transmission line, respectively.
 これによれば、伝送線路ごとに検波回路が設けられているため、伝送線路を切替えた場合でも検波回路に入力される信号は、切替えに伴う位相の変化の影響を受けない。そのため検波回路の出力の直流電圧が変動しないので、信号処理回路の増幅器の出力が振り切れてしまったり、低い周波数の変動を出力するまでに長い時間が掛かったりすることがない。従って、安定して検出対象を検出することができる無線センサ装置を提供することができる。 According to this, since the detection circuit is provided for each transmission line, even when the transmission line is switched, the signal input to the detection circuit is not affected by the phase change caused by the switching. Therefore, since the DC voltage of the output of the detection circuit does not fluctuate, the output of the amplifier of the signal processing circuit is not shaken off, and it does not take a long time to output a fluctuation of a low frequency. Therefore, it is possible to provide a wireless sensor device that can detect a detection target stably.
 また、本発明の無線センサ装置は、前記制御回路による制御が、前記第1伝送線路と前記第2伝送線路と、を選択して切替えるよう所定の時間間隔ごとに行われるとともに、前記第1伝送線路と前記第2伝送線路と、が交互に選択されて切替えられることを特徴する。 In the wireless sensor device of the present invention, the control by the control circuit is performed at predetermined time intervals so as to select and switch between the first transmission line and the second transmission line, and the first transmission. The line and the second transmission line are alternately selected and switched.
 これによれば、線路長の異なる第1伝送線路と第2伝送線路と、を交互に切替えて送信動作を行うので、互いに直交する成分を抽出することができ、反射波の有無を確実に検出することができるので、より安定して検出対象を検出することができる。 According to this, since the transmission operation is performed by alternately switching the first transmission line and the second transmission line having different line lengths, the components orthogonal to each other can be extracted, and the presence or absence of the reflected wave is reliably detected. Therefore, the detection target can be detected more stably.
 また、本発明の無線センサ装置は、前記第1伝送線路と前記第2伝送線路の線路間の位相差がπ/4(rad)であることを特徴とする。 The wireless sensor device of the present invention is characterized in that a phase difference between the first transmission line and the second transmission line is π / 4 (rad).
 これによれば、第1伝送線路と前記第2伝送線路の線路間の位相差がπ/4(rad)異なるので、伝送線路を切替えることで、送信信号と反射信号の位相差が、π/2(rad)ずつ異なる信号を得ることができる。このため、感度が著しく低下してしまうヌル点を確実に回避してより安定して検出対象を検出することができる。 According to this, since the phase difference between the first transmission line and the second transmission line is different by π / 4 (rad), by switching the transmission line, the phase difference between the transmission signal and the reflected signal is π / Different signals can be obtained by 2 (rad). For this reason, it is possible to reliably avoid the null point where the sensitivity is remarkably lowered and to detect the detection target more stably.
 本発明によれば、安定して検出対象を検出することができる無線センサ装置を提供することができる。 According to the present invention, it is possible to provide a wireless sensor device that can detect a detection target stably.
本発明の実施形態に係る無線センサ装置の動作概要を示す図である。It is a figure which shows the operation | movement outline | summary of the wireless sensor apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る無線センサ装置の構成を示すブロック図である。It is a block diagram which shows the structure of the wireless sensor apparatus which concerns on embodiment of this invention. 本発明の実施形態に係る無線センサ装置の動作タイミング図である。It is an operation | movement timing diagram of the wireless sensor apparatus which concerns on embodiment of this invention. 特許文献1に記載の無線センサ装置の構成を示すブロック図である。10 is a block diagram illustrating a configuration of a wireless sensor device described in Patent Document 1. FIG.
 [第1実施形態]
 以下に第1実施形態における無線センサ装置100について説明する。
[First Embodiment]
The wireless sensor device 100 according to the first embodiment will be described below.
 まず始めに本実施形態における無線センサ装置100の動作概要について図1を用いて説明する。無線センサ装置100は図1に示すように、送信信号を放射し、送信信号が検出対象500で反射された反射信号から検出対象500の検出を行う。 First, an operation outline of the wireless sensor device 100 according to the present embodiment will be described with reference to FIG. As shown in FIG. 1, the wireless sensor device 100 radiates a transmission signal, and detects the detection target 500 from the reflected signal that is reflected from the detection target 500.
 次に、無線センサ装置100の構成について図2を用いて説明する。図2は無線センサ装置100の構成を示すブロック図である。 Next, the configuration of the wireless sensor device 100 will be described with reference to FIG. FIG. 2 is a block diagram illustrating a configuration of the wireless sensor device 100.
 無線センサ装置100は図2に示すように、アンテナ10と、送信回路20と、第1伝送線路31と、第2伝送線路32と、第1切替え手段41と、第2切替え手段42と、第1検波回路51と、第2検波回路52と、第1信号処理回路61と、第2信号処理回路62と、制御回路70と、を備えている。 As shown in FIG. 2, the wireless sensor device 100 includes an antenna 10, a transmission circuit 20, a first transmission line 31, a second transmission line 32, a first switching unit 41, a second switching unit 42, A first detection circuit 51, a second detection circuit 52, a first signal processing circuit 61, a second signal processing circuit 62, and a control circuit 70 are provided.
 また無線センサ装置100にはその他に図示しない電源回路を有しており、無線センサ装置100の各部に動作に必要な電力を供給する。 In addition, the wireless sensor device 100 has a power supply circuit (not shown) and supplies power necessary for operation to each part of the wireless sensor device 100.
 アンテナ10は、送信信号を放射し、送信信号が検出対象500で反射された反射信号を受信する。またアンテナ10は、第1切替え手段41に接続されている。 The antenna 10 radiates a transmission signal and receives a reflection signal obtained by reflecting the transmission signal on the detection target 500. The antenna 10 is connected to the first switching means 41.
 送信回路20は、送信信号を生成して出力する送信動作を行う。また、送信回路20は、第2切替え手段42と制御回路70に接続されており、制御回路70によって制御される。 The transmission circuit 20 performs a transmission operation for generating and outputting a transmission signal. The transmission circuit 20 is connected to the second switching means 42 and the control circuit 70 and is controlled by the control circuit 70.
 第1伝送線路31は、送信回路20が生成する送信信号の周波数において、送信回路20の出力インピーダンス及びアンテナ10のインピーダンスと概ね等しい特性インピーダンスを有し、線路長Leを有する伝送線路である。また第1伝送線路31の一端が第1切替え手段41に接続されるとともに、他端が第2切替え手段42と第1検波回路51に接続されている。 The first transmission line 31 is a transmission line having a characteristic length substantially equal to the output impedance of the transmission circuit 20 and the impedance of the antenna 10 at the frequency of the transmission signal generated by the transmission circuit 20 and having a line length Le. One end of the first transmission line 31 is connected to the first switching means 41, and the other end is connected to the second switching means 42 and the first detection circuit 51.
 第2伝送線路32は、送信回路20が生成する送信信号の周波数において、送信回路20の出力インピーダンス及びアンテナ10のインピーダンスと概ね等しい特性インピーダンスを有している。第2伝送線路32は第1伝送線路31に対して位相差がπ/4(rad)異なる(遅れる)線路長を有している伝送線路である。また第2伝送線路32の一端が第1切替え手段41に接続されるとともに、他端が第2切替え手段42と第2検波回路52に接続されている。 The second transmission line 32 has a characteristic impedance substantially equal to the output impedance of the transmission circuit 20 and the impedance of the antenna 10 at the frequency of the transmission signal generated by the transmission circuit 20. The second transmission line 32 is a transmission line having a line length that is different (delayed) from the first transmission line 31 by a phase difference of π / 4 (rad). One end of the second transmission line 32 is connected to the first switching means 41, and the other end is connected to the second switching means 42 and the second detection circuit 52.
 第1切替え手段41は、第1伝送線路31と第2伝送線路32と、のいずれか一方を選択してアンテナ10に接続できるように、アンテナ10と、第1伝送線路31及び第2伝送線路32の一端と、が接続されている。 The first switching means 41 selects the antenna 10, the first transmission line 31, and the second transmission line so that either the first transmission line 31 or the second transmission line 32 can be selected and connected to the antenna 10. One end of 32 is connected.
 第2切替え手段42は、第1伝送線路31と第2伝送線路32と、のいずれか一方を選択して送信回路20に接続できるように、送信回路20と、第1伝送線路31及び第2伝送線路32の他端と、が接続されている。 The second switching means 42 selects the transmission circuit 20, the first transmission line 31, and the second transmission line so that either the first transmission line 31 or the second transmission line 32 can be selected and connected to the transmission circuit 20. The other end of the transmission line 32 is connected.
 第1検波回路51は、第1伝送線路31の他端と第2切替え手段42とに接続されている。第1検波回路51には、第1切替え手段41と第2切替え手段42とが、第1伝送線路31を選択して送信回路20が送信信号を送信中に、送信回路20から出力される送信信号の一部と、アンテナ10で受信された反射信号と、が入力される。第1検波回路51は、入力された送信信号の一部と、アンテナ10で受信された反射信号と、を検波する。 The first detection circuit 51 is connected to the other end of the first transmission line 31 and the second switching means 42. In the first detection circuit 51, the first switching means 41 and the second switching means 42 select the first transmission line 31 and the transmission circuit 20 is transmitting the transmission signal while the transmission circuit 20 is transmitting the transmission signal. A part of the signal and the reflected signal received by the antenna 10 are input. The first detection circuit 51 detects a part of the input transmission signal and the reflected signal received by the antenna 10.
 第2検波回路52は、第2伝送線路32の他端と第2切替え手段42とに接続されている。第2検波回路52には、第1切替え手段41と第2切替え手段42とが、第2伝送線路32を選択して送信回路20が送信信号を送信中に、送信回路20から出力される送信信号の一部と、アンテナ10で受信された反射信号と、が入力される。第2検波回路52は、入力された送信信号の一部と、アンテナ10で受信された反射信号と、を検波する。 The second detection circuit 52 is connected to the other end of the second transmission line 32 and the second switching means 42. In the second detection circuit 52, the first switching means 41 and the second switching means 42 select the second transmission line 32, and the transmission output from the transmission circuit 20 while the transmission circuit 20 transmits the transmission signal. A part of the signal and the reflected signal received by the antenna 10 are input. The second detection circuit 52 detects a part of the input transmission signal and the reflected signal received by the antenna 10.
 第1信号処理回路61は、第1検波回路51と制御回路70に接続されている。第1信号処理回路61は、第1検波回路51から出力される検波出力信号を処理し、その結果を制御回路70へ出力する。 The first signal processing circuit 61 is connected to the first detection circuit 51 and the control circuit 70. The first signal processing circuit 61 processes the detection output signal output from the first detection circuit 51 and outputs the result to the control circuit 70.
 第2信号処理回路62は、第2検波回路52と制御回路70に接続されている。第2信号処理回路62は、第2検波回路52から出力される検波出力信号を処理し、その結果を制御回路70へ出力する。 The second signal processing circuit 62 is connected to the second detection circuit 52 and the control circuit 70. The second signal processing circuit 62 processes the detection output signal output from the second detection circuit 52 and outputs the result to the control circuit 70.
 つまり、第1伝送線路31の他端には第1検波回路51が、また第2伝送線路32の他端には第2検波回路52が、それぞれ接続されており、第1検波回路51には第1信号処理回路61が、また第1検波回路51には第1信号処理回路61が、接続されている。 That is, the first detection circuit 51 is connected to the other end of the first transmission line 31, and the second detection circuit 52 is connected to the other end of the second transmission line 32. The first signal processing circuit 61 and the first detection circuit 51 are connected to the first signal processing circuit 61.
 制御回路70は、送信回路20と、第1切替え手段41と、第2切替え手段42と、第1信号処理回路61と、第2信号処理回路62と、に接続されている。制御回路70は、送信回路20の動作状態の制御を行う。また制御回路70は、第1切替え手段41と第2切替え手段42と、を制御し、アンテナ10と送信回路20とを接続する伝送線路を、第1伝送線路31または第2伝送線路32から、選択して切替える制御を行う。更に制御回路70は、第1信号処理回路61及び第2信号処理回路62から出力信号を取得し、検出対象500の呼吸に伴う体動や、心拍に伴う体表面の動き等の検出や、検出有無の判断等を行う。 The control circuit 70 is connected to the transmission circuit 20, the first switching means 41, the second switching means 42, the first signal processing circuit 61, and the second signal processing circuit 62. The control circuit 70 controls the operation state of the transmission circuit 20. In addition, the control circuit 70 controls the first switching unit 41 and the second switching unit 42, and connects the transmission line connecting the antenna 10 and the transmission circuit 20 from the first transmission line 31 or the second transmission line 32. Control to select and switch. Further, the control circuit 70 acquires output signals from the first signal processing circuit 61 and the second signal processing circuit 62, and detects and detects body movements accompanying the breathing of the detection target 500 and body surface movements accompanying the heartbeat. Judgment of presence or absence is performed.
 次に、無線センサ装置100の動作について図2から図4を用いて説明する。 Next, the operation of the wireless sensor device 100 will be described with reference to FIGS.
 図3は、無線センサ装置100の動作タイミングを説明する図である。 FIG. 3 is a diagram for explaining the operation timing of the wireless sensor device 100.
 制御回路70は図3に示すように、時刻T1で、第1切替え手段41と第2切替え手段42と、を制御し、アンテナ10と送信回路20とを接続する伝送線路を、第1伝送線路31を選択して切替える制御を行う。また、制御回路70は時刻T1からT2までの時間t1の間、送信出力制御信号を出力し、送信信号が出力されるように送信回路20を制御する。送信信号は、送信回路20から出力され、第2切替え手段42、第1伝送線路31、第1切替え手段41、を経てアンテナ10から放射される。 As shown in FIG. 3, the control circuit 70 controls the first switching means 41 and the second switching means 42 at time T <b> 1, and sets the transmission line connecting the antenna 10 and the transmission circuit 20 as the first transmission line. Control to select and switch 31 is performed. Further, the control circuit 70 outputs a transmission output control signal during a time t1 from time T1 to T2, and controls the transmission circuit 20 so that the transmission signal is output. The transmission signal is output from the transmission circuit 20 and radiated from the antenna 10 through the second switching means 42, the first transmission line 31, and the first switching means 41.
 アンテナ10から放射された送信信号の一部は、検出対象500で反射され、反射信号としてアンテナ10で受信される。 Part of the transmission signal radiated from the antenna 10 is reflected by the detection target 500 and received by the antenna 10 as a reflected signal.
 アンテナ10で受信された反射信号は、第1切替え手段41、第1伝送線路31を経て第1検波回路51に入力され、送信信号の一部と反射信号と、が検波される。 The reflected signal received by the antenna 10 is input to the first detection circuit 51 via the first switching means 41 and the first transmission line 31, and a part of the transmission signal and the reflected signal are detected.
 送信信号Voの振幅をA、周波数をfとしたときの角周波数2πfをω時間をtとして、送信信号Voを式(1)で表す。また、反射信号Vrの振幅をBとして、反射信号Vrを式(2)で表す、但し、θ1は第1の期間の送信信号Voに対する反射信号Vrの位相変移角度(位相差)である。 When the amplitude of the transmission signal Vo is A and the frequency is f, the angular frequency 2πf is ω time, and the transmission signal Vo is expressed by Expression (1). Further, the amplitude of the reflected signal Vr is B, and the reflected signal Vr is expressed by Expression (2), where θ1 is the phase shift angle (phase difference) of the reflected signal Vr with respect to the transmission signal Vo in the first period.
(数1)
Vo=A・cosωt・・・・・・式(1)
Vr=B・cos(ωt+θ1)・・・式(2)
(Equation 1)
Vo = A · cosωt (1)
Vr = B · cos (ωt + θ1) (2)
 前述のように、Bは反射信号の振幅であり、式(1)で表される振幅Aでアンテナ10から放射された送信信号が、検出対象500で反射されて再びアンテナ10まで戻ってくるまでの間の伝送路で受ける減衰(伝送損失)と、送信信号が検出対象500で反射される際の反射率によって受ける減衰(反射損失)によって、反射信号の振幅がBまで減衰して受信されたことになる。 As described above, B is the amplitude of the reflected signal, and the transmission signal radiated from the antenna 10 with the amplitude A represented by the expression (1) is reflected by the detection target 500 and returns to the antenna 10 again. The amplitude of the reflected signal is attenuated to B and received by the attenuation (transmission loss) received by the transmission path between the transmission line and the attenuation (reflection loss) caused by the reflectance when the transmission signal is reflected by the detection object 500 It will be.
 第1検波回路51で送信信号Voを参照信号として反射信号Vrが検波されると、第1検波回路51の出力には式(3)で表される検波出力Vdが出力される。 When the reflected signal Vr is detected by the first detection circuit 51 using the transmission signal Vo as a reference signal, the detection output Vd represented by the expression (3) is output to the output of the first detection circuit 51.
(数2)
Vd=Vo×Vr
  =A・B{cosωt・cos(ωt+θ1)}
  =(A・B/2)cos(2ωt+θ1)+(A・B/2)cosθ1・・式(3)
(Equation 2)
Vd = Vo × Vr
= A · B {cosωt · cos (ωt + θ1)}
= (A · B / 2) cos (2ωt + θ1) + (A · B / 2) cosθ1 ·· Equation (3)
 式(3)の前半の項は、角周波数が2ωtとなっているので、送信信号の周波数の2倍の周波数となるため、高い周波数を除去するバイパスコンデンサを第1検波回路51に設けるなどの手段で簡単に除去することができる。送信周波数の2倍の周波数成分が除去された第1検波回路51の出力信号Vp1とするとVp1は、式(4)で表される。式(4)は、送信信号Voに対する反射信号Vrの位相差θ1によって決定される出力となる。 In the first half of the equation (3), since the angular frequency is 2ωt, the frequency is twice the frequency of the transmission signal. Therefore, a bypass capacitor for removing a high frequency is provided in the first detection circuit 51. It can be easily removed by means. Assuming that the output signal Vp1 of the first detection circuit 51 from which the frequency component twice the transmission frequency is removed, Vp1 is expressed by Expression (4). Expression (4) is an output determined by the phase difference θ1 of the reflected signal Vr with respect to the transmission signal Vo.
(数3)
Vp1=(A・B/2)cosθ1・・・式(4)
(Equation 3)
Vp1 = (A · B / 2) cos θ1 (4)
 送信信号Voに対する反射信号Vrの位相変移角度を表すθ1は、送信信号Voが送信回路20から出力され、検出対象500で反射されて第1検波回路51に戻ってくるまでの経路と、で与えられる移相量の合計となる。 Θ1 representing the phase shift angle of the reflected signal Vr with respect to the transmission signal Vo is given by the path from the transmission signal Vo output from the transmission circuit 20 to the detection object 500 being reflected back to the first detection circuit 51. This is the total phase shift amount.
 無線センサ装置100と検出対象500の距離によって、送信信号と反射信号の位相差θ1がπ/2(rad)となった場合には、式(4)から、第1検波回路51の出力信号Vp1の振幅が0となる。また、送信信号と反射信号の位相差θ1が0(rad)となった場合には、第1検波回路51の出力信号Vp1が最大値(A・B/2)となり、位相差θ1がπ(rad)となった場合には最小値-(A・B/2)となる。 When the phase difference θ1 between the transmission signal and the reflected signal is π / 2 (rad) depending on the distance between the wireless sensor device 100 and the detection target 500, the output signal Vp1 of the first detection circuit 51 is obtained from Equation (4). Becomes 0. When the phase difference θ1 between the transmission signal and the reflected signal becomes 0 (rad), the output signal Vp1 of the first detection circuit 51 becomes the maximum value (A · B / 2), and the phase difference θ1 becomes π ( rad), the minimum value is-(A · B / 2).
 また、検出対象500の動きに対する検出感度は、検出対象500が動くことによるθ1の変化に対して出力が変化する割合なので、式(4)をθ1で微分した値となり、式(5)で表される。 Further, the detection sensitivity with respect to the movement of the detection target 500 is a ratio at which the output changes with respect to the change of θ1 due to the movement of the detection target 500, and therefore, the value obtained by differentiating Equation (4) by θ1 is expressed by Equation (5). Is done.
(数4)
dVp1/dθ1=-(A・B/2)sinθ1・・・式(5)
(Equation 4)
dVp1 / dθ1 = − (A · B / 2) sin θ1 (5)
 従って、θ1がπ/2+nπ(rad)の場合に最大感度となり、θ1が0+nπ(r
ad)の場合に感度が非常に低いいわゆるヌル点となる(但しnは自然数)。
Therefore, the maximum sensitivity is obtained when θ1 is π / 2 + nπ (rad), and θ1 is 0 + nπ (r
In the case of ad), the sensitivity is a so-called null point (where n is a natural number).
 また、第1伝送線路31が選択されている場合には、送信信号が送信回路20から出力されてから、アンテナ10を経て、検出対象500で反射され、第1検波回路51まで戻ってくるまでの経路の長さL1は、式(6)のように表される。但し式(6)でアンテナ10から検出対象500までの距離はLxとする。 When the first transmission line 31 is selected, the transmission signal is output from the transmission circuit 20, reflected by the detection target 500 through the antenna 10, and returned to the first detection circuit 51. The path length L1 is expressed as in equation (6). However, in Expression (6), the distance from the antenna 10 to the detection target 500 is Lx.
(数5)
L1=2(Lx+Le)=2Lx+2Le・・・式(6)
(Equation 5)
L1 = 2 (Lx + Le) = 2Lx + 2Le Expression (6)
 式(4)に示すVp1は、検出対象500が動くとその動きによってアンテナ10と検出対象500の距離が変化することによりθ1が変化するので、θ1の変化によってVp1が変化する。そのため、Vp1の変化を検出することで検出対象500の動きを検出することができる。 Vp1 shown in Equation (4) changes when θ1 changes due to the change in the distance between the antenna 10 and the detection target 500 due to the movement of the detection target 500, so that Vp1 changes due to the change in θ1. Therefore, the movement of the detection target 500 can be detected by detecting the change in Vp1.
 また、検出対象500の動きが遅い場合には、アンテナ10と検出対象500との距離によって決まるθ1の値の変化が緩やかとなる。このため、時刻T1からT2までの時間t1の間に第1検波回路51から出力される信号は、図3の第1検波回路出力に示すように、直流成分を含む信号が出力されることとなる。 In addition, when the movement of the detection target 500 is slow, the change in the value of θ1 determined by the distance between the antenna 10 and the detection target 500 becomes gradual. For this reason, the signal output from the first detection circuit 51 during the time t1 from the time T1 to the time T2 is a signal including a direct current component as shown in the first detection circuit output of FIG. Become.
 第1信号処理回路61は、第1検波回路51から出力された信号からその変化量を検出するのに必要な増幅やAD変換等を行い、処理結果を制御回路70に出力する。 The first signal processing circuit 61 performs amplification and AD conversion necessary for detecting the amount of change from the signal output from the first detection circuit 51 and outputs the processing result to the control circuit 70.
 制御回路70は、時刻T2で送信回路20から送信信号が出力されないように送信回路20を制御する送信出力制御信号を出力し、時刻T3までの時間t2の間、送信動作を停止する。 The control circuit 70 outputs a transmission output control signal for controlling the transmission circuit 20 so that the transmission signal is not output from the transmission circuit 20 at time T2, and stops the transmission operation for a time t2 until time T3.
 次に、制御回路70は、時刻T3で、第1切替え手段41と第2切替え手段42と、を制御し、アンテナ10と送信回路20とを接続する伝送線路を、第2伝送線路32を選択して切替える制御を行う。また、制御回路70は時刻T3からT4までの時間t1の間、送信出力制御信号を出力し、送信信号が出力されるように送信回路20を制御する。送信信号は、送信回路20から出力され、第2切替え手段42、第2伝送線路32、第1切替え手段41、を経てアンテナ10から放射される。 Next, the control circuit 70 controls the first switching means 41 and the second switching means 42 at time T3 and selects the second transmission line 32 as the transmission line connecting the antenna 10 and the transmission circuit 20. To perform switching control. Further, the control circuit 70 outputs a transmission output control signal during a time t1 from time T3 to T4, and controls the transmission circuit 20 so that the transmission signal is output. The transmission signal is output from the transmission circuit 20 and radiated from the antenna 10 through the second switching means 42, the second transmission line 32, and the first switching means 41.
 アンテナ10から放射された送信信号の一部は、検出対象500で反射され、反射信号としてアンテナ10で受信される。 Part of the transmission signal radiated from the antenna 10 is reflected by the detection target 500 and received by the antenna 10 as a reflected signal.
 アンテナ10で受信された反射信号は、第1切替え手段41、第2伝送線路32を経て第2検波回路52に入力され、送信信号の一部と反射信号と、が検波される。 The reflected signal received by the antenna 10 is input to the second detection circuit 52 through the first switching means 41 and the second transmission line 32, and a part of the transmission signal and the reflected signal are detected.
 前述と同様に送信信号Voは式(1)で表わされ、反射信号Vrは式(7)のように表される。但し、但しθ2は第2の期間の送信信号Voに対する反射信号Vrの位相変移角度(位相差)を表す。 As described above, the transmission signal Vo is expressed by the equation (1), and the reflected signal Vr is expressed by the equation (7). However, (theta) 2 represents the phase shift angle (phase difference) of the reflected signal Vr with respect to the transmission signal Vo of a 2nd period.
(数6)
Vr=B・cos(ωt+θ2)・・・式(7)
(Equation 6)
Vr = B · cos (ωt + θ2) (7)
 第2検波回路52の出力Vdは、式(3)と同様に計算すると式(8)が得られる。 When the output Vd of the second detection circuit 52 is calculated in the same manner as the equation (3), the equation (8) is obtained.
(数7)
Vd=Vo×Vr
  =A・B{cosωt・cos(ωt+θ2)}
  =(A・B/2)cos(2ωt+θ2)+(A・B/2)cosθ2・・式(8)
(Equation 7)
Vd = Vo × Vr
= A · B {cosωt · cos (ωt + θ2)}
= (A · B / 2) cos (2ωt + θ2) + (A · B / 2) cosθ2 ·· Equation (8)
 前述と同様に、送信周波数の2倍の周波数成分が除去された第2検波回路52の出力信号Vp2とするとVp2は、式(9)で表される。式(9)は、送信信号Voに対する反射信号Vrの位相差θ2によって決定される出力となる。 Similarly to the above, assuming that the output signal Vp2 of the second detection circuit 52 from which the frequency component twice the transmission frequency has been removed, Vp2 is expressed by Expression (9). Expression (9) is an output determined by the phase difference θ2 of the reflected signal Vr with respect to the transmission signal Vo.
(数8)
Vp2=(A・B/2)cosθ2・・・式(9)
(Equation 8)
Vp2 = (A · B / 2) cos θ2 (9)
 送信信号Voに対する反射信号Vrの位相変移角度を表すθ2は、送信信号Voが送信回路20から出力され、検出対象500で反射されて第2検波回路52に戻ってくるまでの経路と、で与えられる移相量の合計となる。 Θ2 representing the phase shift angle of the reflected signal Vr with respect to the transmission signal Vo is given by the path from the transmission signal Vo output from the transmission circuit 20, reflected by the detection target 500, and returned to the second detection circuit 52. This is the total phase shift amount.
 無線センサ装置100と検出対象500の距離によって、送信信号と反射信号の位相差θ2がπ/2(rad)となった場合には、式(8)から、第2検波回路52の出力信号Vp2の振幅が0となる。また、送信信号と反射信号の位相差θ2が0(rad)となった場合には、第1検波回路51の出力信号Vp1が最大値(A・B/2)となり、位相差θ2がπ(rad)となった場合には最小値-(A・B/2)となる。 When the phase difference θ2 between the transmission signal and the reflected signal becomes π / 2 (rad) depending on the distance between the wireless sensor device 100 and the detection target 500, the output signal Vp2 of the second detection circuit 52 is obtained from Equation (8). Becomes 0. When the phase difference θ2 between the transmission signal and the reflected signal becomes 0 (rad), the output signal Vp1 of the first detection circuit 51 becomes the maximum value (A · B / 2), and the phase difference θ2 becomes π ( rad), the minimum value is-(A · B / 2).
 また、検出対象500の動きに対する検出感度は、検出対象500が動くことによるθ2の変化に対して出力が変化する割合なので、式(9)をθ2で微分した値となり、式(10)で表される。 Further, the detection sensitivity with respect to the movement of the detection target 500 is a ratio at which the output changes with respect to the change of θ2 due to the movement of the detection target 500. Therefore, the value is obtained by differentiating Equation (9) by θ2, and is expressed by Equation (10). Is done.
(数9)
dVp2/dθ2=-(A・B/2)sinθ2・・・式(10)
(Equation 9)
dVp2 / dθ2 = − (A · B / 2) sin θ2 Formula (10)
 従って、θ2がπ/2+nπ(rad)の場合に最大感度となり、θ2が0+nπ(rad)の場合に感度が非常に低いいわゆるヌル点となる(但しnは自然数)。 Therefore, the maximum sensitivity is obtained when θ2 is π / 2 + nπ (rad), and the sensitivity is very low when θ2 is 0 + nπ (rad) (where n is a natural number).
 また、第2伝送線路32が選択されている場合には、送信信号が送信回路20から出力されてから、アンテナ10を経て、検出対象500で反射され、第1検波回路51まで戻ってくるまでの経路の長さL2は、式(11)のように表される。但し式(11)でアンテナ10から検出対象500までの距離はLxとする。 When the second transmission line 32 is selected, the transmission signal is output from the transmission circuit 20, reflected by the detection target 500 through the antenna 10, and returned to the first detection circuit 51. The path length L2 is expressed as shown in Expression (11). However, in Expression (11), the distance from the antenna 10 to the detection target 500 is Lx.
(数10)
L2=2(Lx+Le+π/4)=2Lx+2Le+π/2・・・式(11)
(Equation 10)
L2 = 2 (Lx + Le + π / 4) = 2Lx + 2Le + π / 2 Formula (11)
 式(9)に示すVp2もVp1と同様に、検出対象500が動くとその動きによってθ2が変化するので、θ2の変化によって出力が変化する。そのため、Vp2の変化を検出することでも検出対象500の動きを検出することができる。 Similarly to Vp1, Vp2 shown in Expression (9) also changes when θ2 changes due to the movement of the detection object 500, and thus the output changes according to the change of θ2. Therefore, the movement of the detection target 500 can also be detected by detecting a change in Vp2.
 また、検出対象500の動きが遅い場合には、アンテナ10と検出対象500との距離によって決まるθ2の値の変化が緩やかとなる。このため、時刻T3からT4までの時間t1の間に第2検波回路52から出力される信号は、図3の第2検波回路出力に示すように直流成分を含む信号が出力されることとなる。 In addition, when the movement of the detection target 500 is slow, the change in the value of θ2 determined by the distance between the antenna 10 and the detection target 500 becomes gradual. For this reason, the signal output from the second detection circuit 52 during the time t1 from the time T3 to the time T4 is a signal including a direct current component as shown in the second detection circuit output of FIG. .
 第2信号処理回路62は、第2検波回路52から出力された信号からその変化量を検出するのに必要な増幅やAD変換等を行い、処理結果を制御回路70に出力する。 The second signal processing circuit 62 performs amplification and AD conversion necessary for detecting the amount of change from the signal output from the second detection circuit 52, and outputs the processing result to the control circuit 70.
 制御回路70は、時刻T4で送信回路20から送信信号が出力されないように送信出力制御信号を出力し、時刻T5までの時間t2の間、送信動作を停止する。時刻T5以降は時刻T1からの動作を同様に繰り返すよう動作する。 The control circuit 70 outputs a transmission output control signal so that the transmission signal is not output from the transmission circuit 20 at time T4, and stops the transmission operation for time t2 until time T5. After time T5, the operation from time T1 is repeated in the same manner.
 つまり、制御回路70による制御が、第1伝送線路31と第2伝送線路32と、を選択して切替えるよう所定の時間間隔(t3=t1+t2)ごとに行われ、第1伝送線路31と第2伝送線路32と、が交互に選択されて切替えられる。 That is, the control by the control circuit 70 is performed at predetermined time intervals (t3 = t1 + t2) so as to select and switch between the first transmission line 31 and the second transmission line 32. The transmission lines 32 are alternately selected and switched.
 第1伝送線路31が選択されている場合の経路の長さL1と、第2伝送線路32が選択されている場合の経路の長さL2の差ΔLは式(6)式(11)から、式(12)となる。 The difference ΔL between the path length L1 when the first transmission line 31 is selected and the path length L2 when the second transmission line 32 is selected is expressed by Equation (6) and Equation (11). Equation (12) is obtained.
(数11)
ΔL=L2-L1=π/2・・・式(12)
(Equation 11)
ΔL = L2-L1 = π / 2 Formula (12)
 以上のように、第1伝送線路31を選択した場合と、第2伝送線路32を選択した場合で、位相の差がπ/4(rad)異なる。この位相差の分、第1伝送線路31を選択した場合に対して、第2伝送線路32を選択した場合には、反射波の位相がπ/2(rad)遅れることとなる。 As described above, the phase difference is different by π / 4 (rad) when the first transmission line 31 is selected and when the second transmission line 32 is selected. When the second transmission line 32 is selected with respect to the phase difference, the phase of the reflected wave is delayed by π / 2 (rad) when the first transmission line 31 is selected.
 従って、第1伝送線路31と第2伝送線路32の選択を変更することで、第1検波回路51と第2検波回路52に入力される反射信号の位相をπ/2(rad)変えることができる。このため、第1検波回路51に入力される送信信号と反射信号の位相差θ1がπ(rad)となるヌル点となった場合でも、第2検波回路52に入力される送信信号と反射信号の位相差の位相差θ2はθ1+π/2=3π/2(rad)となる。従って、検出対象500を検出する感度が劣化するヌル点を回避して検出対象500の変異を検出することができる。 Therefore, by changing the selection of the first transmission line 31 and the second transmission line 32, the phase of the reflected signal input to the first detection circuit 51 and the second detection circuit 52 can be changed by π / 2 (rad). it can. For this reason, even when the phase difference θ1 between the transmission signal input to the first detection circuit 51 and the reflection signal becomes a null point where π (rad) is reached, the transmission signal and the reflection signal input to the second detection circuit 52 The phase difference θ2 of the phase difference is θ1 + π / 2 = 3π / 2 (rad). Accordingly, it is possible to detect a mutation in the detection target 500 while avoiding a null point at which the sensitivity for detecting the detection target 500 deteriorates.
 以下、本実施形態としたことによる効果について説明する。 Hereinafter, the effects of the present embodiment will be described.
 本実施形態の無線センサ装置100では、第1伝送線路31の他端には第1検波回路51が、また第2伝送線路32の他端には第2検波回路52が、それぞれ接続されており、第1検波回路51には第1信号処理回路61が、また第1検波回路51には第1信号処理回路61が、接続される構成とした。 In the wireless sensor device 100 of the present embodiment, the first detection circuit 51 is connected to the other end of the first transmission line 31, and the second detection circuit 52 is connected to the other end of the second transmission line 32. The first detection circuit 51 is connected to the first signal processing circuit 61, and the first detection circuit 51 is connected to the first signal processing circuit 61.
 これにより、第1伝送線路31と第2伝送線路32とを切替えた場合でも、第1検波回路51及び第2検波回路52に入力される信号は、切替えに伴う位相の変化の影響を受けることがない。そのため第1検波回路51及び第2検波回路52の出力に現れる検波出力の直流電圧が大きく変動しないので、第1信号処理回路61及び第2信号処理回路62の増幅器の出力が振り切れてしまったり、低い周波数の変動を出力するまでに長い時間が掛かったりすることがない。従って、安定して検出対象を検出することができる無線センサ装置を提供することができる。 As a result, even when the first transmission line 31 and the second transmission line 32 are switched, the signals input to the first detection circuit 51 and the second detection circuit 52 are affected by the change in phase associated with the switching. There is no. Therefore, since the DC voltage of the detection output appearing at the outputs of the first detection circuit 51 and the second detection circuit 52 does not fluctuate greatly, the outputs of the amplifiers of the first signal processing circuit 61 and the second signal processing circuit 62 may be shaken out. It does not take a long time to output low frequency fluctuations. Therefore, it is possible to provide a wireless sensor device that can detect a detection target stably.
 また、本実施形態の無線センサ装置100では、制御回路70による制御が、第1伝送線路31と第2伝送線路32と、を選択して切替えるよう所定の時間間隔ごとに行われ、第1伝送線路31と第2伝送線路32と、が交互に選択されて切替えるよう構成した。 Further, in the wireless sensor device 100 of the present embodiment, the control by the control circuit 70 is performed at predetermined time intervals so as to select and switch between the first transmission line 31 and the second transmission line 32, and the first transmission. The line 31 and the second transmission line 32 are alternately selected and switched.
 これにより、線路長の異なる第1伝送線路31と第2伝送線路32と、を交互に切替えて送信動作を行うので、互いに直交する成分を抽出することが反射波の有無を確実に検出することができるので、より安定して検出対象を検出することができる。 Thereby, since the transmission operation is performed by alternately switching the first transmission line 31 and the second transmission line 32 having different line lengths, extracting the components orthogonal to each other reliably detects the presence or absence of the reflected wave. Therefore, the detection target can be detected more stably.
 また、本実施形態の無線センサ装置100では、第1伝送線路31と第2伝送線路32との線路長の線路間の位相差がπ/4(rad)となるように構成した。 In addition, the wireless sensor device 100 of the present embodiment is configured such that the phase difference between the first transmission line 31 and the second transmission line 32 is π / 4 (rad).
 これにより、第1伝送線路31と第2伝送線路32とを切換えることで、送信信号と反射信号の位相差が、π/2(rad)ずつ異なる信号を得ることができる。このため、感度が著しく低下してしまうヌル点を確実に回避してより安定して検出対象を検出することができる。 Thus, by switching between the first transmission line 31 and the second transmission line 32, it is possible to obtain signals in which the phase difference between the transmission signal and the reflected signal is different by π / 2 (rad). For this reason, it is possible to reliably avoid the null point where the sensitivity is remarkably lowered and to detect the detection target more stably.
 以上説明したように、本実施形態の無線センサ装置100によれば、安定して検出対象を検出することができる無線センサ装置を提供することができる。 As described above, according to the wireless sensor device 100 of the present embodiment, it is possible to provide a wireless sensor device that can stably detect a detection target.
 以上のように、本発明の実施形態に係る無線センサ装置100を具体的に説明したが、本発明は上記の実施形態に限定されるものではなく、要旨を逸脱しない範囲で種々変更して実施することが可能である。例えば次のように変形して実施することができ、これらの実施形態も本発明の技術的範囲に属する。 As described above, the wireless sensor device 100 according to the embodiment of the present invention has been specifically described. However, the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the scope of the invention. Is possible. For example, the present invention can be modified as follows, and these embodiments also belong to the technical scope of the present invention.
 (1)本実施形態において、無線センサ装置100は検出対象500から離れている図を示して説明を行ったが、検出対象500の体動などを検出するために携行あるいは装着されていても良い。 (1) In the present embodiment, the wireless sensor device 100 has been described with reference to a drawing away from the detection target 500. However, the wireless sensor device 100 may be carried or worn to detect body movement of the detection target 500. .
 (2)本実施形態において、第1信号処理回路61及び第2信号処理回路62は、検波された信号からその変化量を検出するのに必要な増幅やAD変換等を行う例を示して説明したが、帯域制限や、サンプリング等、の信号処理を行うように構成しても良い。 (2) In the present embodiment, the first signal processing circuit 61 and the second signal processing circuit 62 will be described with reference to an example of performing amplification, AD conversion, and the like necessary to detect the amount of change from the detected signal. However, it may be configured to perform signal processing such as band limitation and sampling.
 (3)本実施形態において、1回の送信ごとに第1伝送線路31と第2伝送線路32とを切換える例を示して説明したが、複数回の送信動作ごとに切替えるよう制御しても良い。 (3) In the present embodiment, the example in which the first transmission line 31 and the second transmission line 32 are switched for each transmission has been described, but the switching may be performed for each of the plurality of transmission operations. .
 10  アンテナ
 20  送信回路
 31  第1伝送線路
 32  第2伝送線路
 41  第1切替え手段
 42  第2切替え手段
 51  第1検波回路
 52  第2検波回路
 61  第1信号処理回路
 62  第2信号処理回路
 70  制御回路
 100 無線センサ装置
DESCRIPTION OF SYMBOLS 10 Antenna 20 Transmission circuit 31 1st transmission line 32 2nd transmission line 41 1st switching means 42 2nd switching means 51 1st detection circuit 52 2nd detection circuit 61 1st signal processing circuit 62 2nd signal processing circuit 70 Control circuit 100 Wireless sensor device

Claims (3)

  1.  送信信号を放射し、前記送信信号が検出対象で反射した反射信号を受信するアンテナと、
     前記送信信号を生成する送信回路と、第1伝送線路と、前記第1伝送線路と線路長の異なる第2伝送線路と、
     前記第1伝送線路の一端と前記第2伝送線路の一端と、を選択して前記アンテナと接続する第1切替え手段と、
     前記第1伝送線路の他端と前記第2伝送線路の他端と、を選択して前記送信回路と接続する第2切替え手段と、
     前記送信回路から前記送信信号を送信中に、前記送信信号の一部と前記アンテナで受信された前記反射信号と、が入力され検波される検波回路と、
     前記検波回路に接続され、前記検波回路から出力される信号を処理する信号処理回路と、
     前記送信回路と前記第1切替え手段と前記第2切替え手段と、を制御する制御回路と、を備え
     前記制御回路は、前記アンテナと前記送信回路とを接続する伝送線路を、前記第1伝送線路または前記第2伝送線路から、選択して切替える制御を行う無線センサ装置において、
     前記第1伝送線路と前記第2伝送線路それぞれの他端に、前記検波回路と前記信号処理回路が、接続されていることを特徴とする無線センサ装置。
    An antenna that radiates a transmission signal and receives a reflected signal that is reflected from the detection target by the transmission signal;
    A transmission circuit for generating the transmission signal; a first transmission line; a second transmission line having a different line length from the first transmission line;
    A first switching means for selecting one end of the first transmission line and one end of the second transmission line and connecting to the antenna;
    Second switching means for selecting the other end of the first transmission line and the other end of the second transmission line and connecting to the transmission circuit;
    A detection circuit that receives and detects a part of the transmission signal and the reflected signal received by the antenna during transmission of the transmission signal from the transmission circuit;
    A signal processing circuit connected to the detection circuit and processing a signal output from the detection circuit;
    A control circuit that controls the transmission circuit, the first switching unit, and the second switching unit; and the control circuit includes a transmission line that connects the antenna and the transmission circuit, and the first transmission line. Alternatively, in the wireless sensor device that performs control to select and switch from the second transmission line,
    The wireless sensor device, wherein the detection circuit and the signal processing circuit are connected to the other ends of the first transmission line and the second transmission line, respectively.
  2.  前記制御回路による制御は、前記第1伝送線路と前記第2伝送線路と、を選択して切替えるよう所定の時間間隔ごとに行われるとともに、前記第1伝送線路と前記第2伝送線路と、が交互に選択されて切替えられることを特徴する請求項1に記載の無線センサ装置。 The control by the control circuit is performed at predetermined time intervals so as to select and switch between the first transmission line and the second transmission line, and the first transmission line and the second transmission line include: The wireless sensor device according to claim 1, wherein the wireless sensor device is alternately selected and switched.
  3.  前記第1伝送線路と前記第2伝送線路の線路間の位相差がπ/4(rad)であることを特徴とする請求項1または請求項2に記載の無線センサ装置。 The wireless sensor device according to claim 1 or 2, wherein a phase difference between the first transmission line and the second transmission line is π / 4 (rad).
PCT/JP2014/071444 2013-09-02 2014-08-14 Wireless sensor device WO2015029794A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015534137A JP6165870B2 (en) 2013-09-02 2014-08-14 Wireless sensor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013181347 2013-09-02
JP2013-181347 2013-09-02

Publications (1)

Publication Number Publication Date
WO2015029794A1 true WO2015029794A1 (en) 2015-03-05

Family

ID=52586363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071444 WO2015029794A1 (en) 2013-09-02 2014-08-14 Wireless sensor device

Country Status (2)

Country Link
JP (1) JP6165870B2 (en)
WO (1) WO2015029794A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10239426A (en) * 1997-02-27 1998-09-11 Ikuo Arai Target displacement detecting device
JP2005017193A (en) * 2003-06-27 2005-01-20 Makita Corp Radar system, and method of measuring distance and reflectivity
WO2012042636A1 (en) * 2010-09-30 2012-04-05 トヨタ自動車株式会社 Mobile body sensing device
WO2014050055A1 (en) * 2012-09-27 2014-04-03 アルプス電気株式会社 Wireless sensor device
WO2014057651A1 (en) * 2012-10-10 2014-04-17 アルプス電気株式会社 Wireless sensor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3562642A (en) * 1968-12-02 1971-02-09 Richard Hochschild Apparatus and method for measuring properties of materials by sensing signals responsive to both amplitude and phase changes in transmitted or reflected microwave energy
JPH0738463A (en) * 1993-07-16 1995-02-07 Sharp Corp Interrogator used for mobile identification system
JP2007074640A (en) * 2005-09-09 2007-03-22 Nec Tokin Corp Mobile identification device
JP2007170990A (en) * 2005-12-22 2007-07-05 Yokogawa Denshikiki Co Ltd Minute movement detector
JP2014050055A (en) * 2012-09-03 2014-03-17 Nec System Technologies Ltd Amplifier and control method
JP5738250B2 (en) * 2012-09-14 2015-06-17 株式会社ユニバーサルエンターテインメント Game machine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10239426A (en) * 1997-02-27 1998-09-11 Ikuo Arai Target displacement detecting device
JP2005017193A (en) * 2003-06-27 2005-01-20 Makita Corp Radar system, and method of measuring distance and reflectivity
WO2012042636A1 (en) * 2010-09-30 2012-04-05 トヨタ自動車株式会社 Mobile body sensing device
WO2014050055A1 (en) * 2012-09-27 2014-04-03 アルプス電気株式会社 Wireless sensor device
WO2014057651A1 (en) * 2012-10-10 2014-04-17 アルプス電気株式会社 Wireless sensor

Also Published As

Publication number Publication date
JP6165870B2 (en) 2017-07-19
JPWO2015029794A1 (en) 2017-03-02

Similar Documents

Publication Publication Date Title
JP4405343B2 (en) Heart rate measurement device
JP6515107B2 (en) Inductive position sensing with single channel interface to multiple resonant sensors
KR20110110525A (en) Wireless power transmission apparatus and wireless power transmission mehod
KR101697975B1 (en) Inductive Displacement Sensor Using Frequency Modulation
US20140293748A1 (en) Magnetic synchronization for a positioning system
WO2014057651A1 (en) Wireless sensor
TWI416378B (en) Handwriting input device with electromagnetic energy transmitting
JP6165870B2 (en) Wireless sensor device
US10194409B2 (en) Near field communication device and an operating method of the near field communication device
JP5899698B2 (en) Human body part position measuring device and electronic device system
JPWO2016006468A1 (en) Wireless sensor device
WO2014050055A1 (en) Wireless sensor device
JP5853755B2 (en) Input device
JP5834409B2 (en) IC tag distance measuring device and IC tag
WO2008113708A3 (en) Device for receiving satellite signals including a phase loop with delay compensation
KR101619491B1 (en) Metal detecting apparatus generating variable frequency according to digital switching
TW201324499A (en) Oscillating device for frequency detection, ultrasonic transceiver system and frequency detection method thereof
JPWO2014061239A1 (en) Communication sensor device
KR101755945B1 (en) Pressure sensitive pointing apparatus and information processing apparatus using frequency filtering
JP6346663B2 (en) Wireless sensor device
JP2005121475A (en) Apparatus for detecting object and system for detecting movement of object
JP6210416B2 (en) Position sensor
KR102344098B1 (en) Position indicator
US11695446B2 (en) Communication apparatus
JP2583512B2 (en) Tuning circuit for position indicator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14840698

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015534137

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14840698

Country of ref document: EP

Kind code of ref document: A1