WO2015029757A1 - Method for forming multilayer film - Google Patents

Method for forming multilayer film Download PDF

Info

Publication number
WO2015029757A1
WO2015029757A1 PCT/JP2014/071096 JP2014071096W WO2015029757A1 WO 2015029757 A1 WO2015029757 A1 WO 2015029757A1 JP 2014071096 W JP2014071096 W JP 2014071096W WO 2015029757 A1 WO2015029757 A1 WO 2015029757A1
Authority
WO
WIPO (PCT)
Prior art keywords
chemical conversion
coating
forming
multilayer film
resin
Prior art date
Application number
PCT/JP2014/071096
Other languages
French (fr)
Japanese (ja)
Inventor
根本 幸宏
松田 英樹
飯島 英基
Original Assignee
関西ペイント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 関西ペイント株式会社 filed Critical 関西ペイント株式会社
Publication of WO2015029757A1 publication Critical patent/WO2015029757A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/4007Curing agents not provided for by the groups C08G59/42 - C08G59/66
    • C08G59/4014Nitrogen containing compounds
    • C08G59/4028Isocyanates; Thioisocyanates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/44Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications
    • C09D5/4419Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes for electrophoretic applications with polymers obtained otherwise than by polymerisation reactions only involving carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • C23C22/364Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing also manganese cations
    • C23C22/365Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing also manganese cations containing also zinc and nickel cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/05Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
    • C23C22/06Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
    • C23C22/34Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
    • C23C22/36Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates
    • C23C22/368Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides containing also phosphates containing magnesium cations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/82After-treatment
    • C23C22/83Chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D13/00Electrophoretic coating characterised by the process
    • C25D13/20Pretreatment

Definitions

  • the present invention is capable of electrodeposition coating without being affected by the solution adhered and / or deposited on the metal coating after chemical conversion treatment, even if a part or all of the water washing step is omitted after chemical conversion treatment.
  • TECHNICAL FIELD The present invention relates to a method for forming a multilayer film that provides a coated article having excellent properties and corrosion resistance, and a coated article using the multilayer film formation method.
  • the chemical conversion liquid contains a large amount of various ion components, and also contains a large amount of heavy metal components such as zinc, nickel, and manganese in order to improve the performance of the chemical conversion treatment film to be formed.
  • the electrodeposition coating is carried out using the cationic electrodeposition paint as it is, the excess chemical conversion solution that adheres to and deposits on the metal coating will be applied to the electrodeposition paintability, finish, and corrosion resistance. It is known to have an adverse effect.
  • Patent Document 1 discloses a method for forming a multi-layered film that can reduce the process and save space by performing electrodeposition without performing water washing after the chemical conversion treatment. There is a description that even if the liquid is brought into the electrodeposition coating, which is the next step, a coated article having excellent finish and anticorrosion properties can be obtained without affecting the electrodeposition coating properties and coating film properties. However, depending on the composition of the electrodeposition paint, if the electrodeposition paint is used for the electrodeposition without washing with water, sufficient anticorrosion and finish may not be ensured.
  • Patent Document 2 defines a sodium ion concentration of an aqueous zinc nitrite solution used as an accelerator in a method of chemical conversion treatment by immersion treatment using an acidic zinc phosphate aqueous solution.
  • the sodium ion concentration in the chemical conversion treatment tank is 10000 ppm by weight, a good chemical conversion treatment film can be obtained.
  • the electrical conductivity also increases, the water washing process cannot be omitted, and it is difficult to save process and space.
  • the electrical conductivity of the chemical conversion treatment liquid is 10 to 200 mS / cm (10,000 to 200,000 ⁇ S / cm) in paragraph [0063] of the specification.
  • a sufficient water washing process is essential, and the water washing process cannot be omitted. Is difficult.
  • An object of the present invention is to provide a method for forming a multi-layer coating that enables process saving and space saving, and even if a part or all of the water washing process is omitted after the chemical conversion treatment, It is intended to provide a coated article that is excellent in finish and anticorrosion properties without affecting the surface.
  • the present inventor has formed a chemical conversion treatment film on a metal object, and then electrodeposited, in a multilayer film forming method characterized by the fourth grade in a cationic electrodeposition paint. It has been found that by making the ammonium salt concentration within a specific range, it is possible to achieve both process saving, space saving and coating film performance, and the present invention has been completed.
  • the present invention provides the following multilayer film forming method and coated article.
  • Item 1 The following processes for forming a chemical conversion treatment film and an electrodeposition coating film on a metal object: Step 1: a step of immersing a metal coating in a chemical conversion treatment solution to form a chemical conversion treatment film, Step 2: In a multilayer film forming method including a step of forming an electrodeposition coating film by electrodeposition-coating the metal coating using a cationic electrodeposition coating, The cationic electrodeposition coating composition is based on the total amount of resin solids, amino group-containing epoxy resin (A) 40 to 88 mass%, blocked polyisocyanate (B) 10 to 50 mass%, pigment dispersion resin (C) A method for forming a multilayer film, comprising 2 to 40% by mass, wherein the quaternary ammonium salt concentration in the cationic electrodeposition coating is 0.03 mmol / g or less per resin solid content in the coating.
  • a method for forming a multilayer film comprising 2 to 40% by
  • Item 2. The method for forming a multilayer film according to Item 1, wherein, in Step 2, part or all of the water washing step before electrodeposition coating is omitted.
  • At least one resin used as the pigment dispersion resin (C) contains at least one selected from a sulfonium base and a tertiary ammonium base as a functional group, and is used as the pigment dispersion resin (C).
  • Item 3. The method for forming a multilayer film according to Item 1 or 2, wherein a concentration of the quaternary ammonium salt per resin solid content of the total resin is 0.7 mmol / g or less.
  • the method for forming a multilayer film according to claim 1. Item 5.
  • Item 5. The item according to any one of Items 1 to 4, wherein the sodium ion concentration of the solution adhering to and / or stagnating on the metal coating is less than 500 ppm, based on the mass of the solution.
  • Item 6. Item 6.
  • a method for forming a multilayer film Item 7.
  • Item 7. The item according to any one of Items 1 to 6, wherein the calcium ion concentration of the solution adhering to and / or stagnating on the metal coating is less than 500 ppm, based on the mass of the solution.
  • a method for forming a multilayer film Item 8.
  • Item 8. The magnesium ion concentration of the solution adhering to and / or stagnating on the metal coating is less than 500 ppm, based on the mass of the solution, A method for forming a multilayer film.
  • the chemical conversion treatment liquid is at least one metal compound selected from zirconium, titanium, cobalt, aluminum, vanadium, tungsten, molybdenum, copper, zinc, indium, bismuth, yttrium, iron, nickel, manganese, gallium, silver, and lanthanoid metal Item 9.
  • Method. Item 10. Item 10. The method for forming a multilayer film according to any one of Items 1 to 9, wherein the chemical conversion treatment solution contains a zirconium compound.
  • the multilayer film forming method of the present invention is a method by which a coated article having excellent finish and anticorrosion properties can be obtained without affecting the electrodeposition coating properties even if part or all of the washing step is omitted after the chemical conversion treatment. It is.
  • the multilayer film forming method of the present invention can omit part or all of the water washing step, thus enabling process saving and space saving, and reducing various wastewater treatment facilities and waste. Can do.
  • the conductivity of the solution adhering / depositing on the metal coating is high (adhering to the surface of the metal coating at a high concentration)
  • the electrodeposition coating is carried out using a cationic electrodeposition paint containing a quaternary ammonium base-containing compound in the deposited state
  • the quaternary ammonium base and components of the chemical conversion liquid are aggregated, and the electrical conductivity is high. Since the component remains in the multilayer film, it is considered that the finish and / or anticorrosion properties are inferior.
  • a compound having a quaternary ammonium base is not contained in the cationic electrodeposition coating as much as possible.
  • the functional group of the pigment dispersion resin (C) which is one of the components of the cationic electrodeposition paint, contains at least one selected from sulfonium bases and tertiary ammonium bases, and can form a quaternary ammonium base. Do not contain as much as possible.
  • the concentration of sodium ion, potassium ion, calcium ion and / or magnesium ion contained in the solution adhering to and depositing on the metal coating is suppressed to lower the conductivity.
  • FIG. 1 is a schematic view showing a conventional method for forming a multilayer film.
  • One preferred embodiment of the present invention is as follows.
  • a metal coating is immersed in a chemical conversion treatment tank filled with a chemical conversion treatment solution, and the metal coating is performed with or without energization.
  • a chemical conversion film is formed on the object.
  • the present invention relates to a multilayer film forming method in which part or all of the washing step is omitted and the electrodeposition coating is performed by dipping in an electrodeposition coating tank filled with a specific cationic electrodeposition coating. Details will be described below.
  • the metal coating used in the multilayer film forming method of the present invention is not particularly limited as long as it is a metal coating capable of electrodeposition coating, cold-rolled steel sheet, galvannealed steel sheet Galvanized steel sheet, electrogalvanized steel double-layer plated steel sheet, organic composite plated steel sheet, Al material, Mg material, etc., and these may be used alone or in combination of two or more metals. Alternatively, even an object to be coated in which two or more kinds of metals are combined can be suitably used. Further, the metal coating may be optionally subjected to degreasing, surface adjustment, water washing and the like.
  • composition of the chemical conversion liquid used in the method for forming a multilayer film of the present invention includes the following metal compound component (M) and optionally a water-dispersible or water-soluble resin composition (P). Is done.
  • Metal compound component (M) The chemical conversion treatment liquid used in the method for forming a multilayer film of the present invention preferably contains 30 to 20,000 ppm of the total amount of metal (in terms of mass) of the metal compound component (M) from the viewpoint of corrosion resistance and finish.
  • the metal compound component (M) examples include zirconium compounds, titanium, cobalt, aluminum, vanadium, tungsten, molybdenum, copper, zinc, indium, bismuth, yttrium, iron, nickel, manganese, gallium, silver, and lanthanoid metals ( Lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium).
  • the metal compound component (M) preferably contains a zirconium compound. These can be used alone or in combination of two or more.
  • the zirconium compound used in the metal compound component (M) is a compound that generates a zirconium-containing ion such as a zirconium ion, an oxyzirconium ion, or a fluorozirconium ion.
  • a compound that generates a zirconium ion for example, a compound that generates an oxyzirconium ion Zirconyl nitrate, zirconyl acetate, zirconyl sulfate, etc .; examples of compounds that generate fluorozirconium ions include zirconium hydrofluoric acid, sodium zirconium fluoride, potassium zirconium fluoride, lithium zirconium fluoride, and ammonium zirconium fluoride. It is done. Among these, zirconyl nitrate and zirconium ammonium fluoride are particularly preferable.
  • Examples of compounds that generate titanium ions include titanium chloride, titanium sulfate, and compounds that generate fluorotitanium ions.
  • Examples include titanium hydrofluoric acid, sodium titanium fluoride, potassium titanium fluoride, lithium titanium fluoride, and titanium fluoride. Ammonium etc. are mentioned. Among these, ammonium titanium fluoride is particularly preferable.
  • Examples of the compound that generates cobalt ions include cobalt chloride, cobalt bromide, cobalt iodide, cobalt nitrate, cobalt sulfate, cobalt acetate, and cobalt ammonium sulfate. Of these, cobalt nitrate is particularly preferred.
  • Examples of the compound that generates aluminum ions include aluminum phosphate, aluminum nitrate, aluminum carbonate, aluminum sulfate, aluminum acetate, aluminum formate, aluminum oxalate, aluminum lactate, aluminum malonate, aluminum tartrate, and aluminum ascorbate. . Of these, aluminum sulfate is particularly preferred.
  • Examples of the compound that generates vanadium ions include lithium orthovanadate, sodium orthovanadate, lithium metavanadate, potassium metavanadate, sodium metavanadate, ammonium metavanadate, sodium pyrovanadate, vanadyl chloride, and vanadyl sulfate. Among these, ammonium metavanadate is particularly preferable.
  • Examples of compounds that generate tungsten ions include lithium tungstate, sodium tungstate, potassium tungstate, ammonium tungstate, sodium metatungstate, sodium paratungstate, ammonium pentatungstate, ammonium heptungstate, sodium phosphotungstate. And barium borotungstate. Among these, ammonium tungstate is particularly preferable.
  • Examples of compounds that generate molybdenum ions include lithium molybdate, sodium molybdate, potassium molybdate, ammonium heptamolybdate, calcium molybdate, magnesium molybdate, strontium molybdate, barium molybdate, phosphomolybdic acid, and phosphomolybdic acid. Examples thereof include sodium and zinc phosphomolybdate.
  • Examples of compounds that generate copper ions include copper sulfate, copper (II) nitrate trihydrate, copper (II) ammonium sulfate hexahydrate, cupric oxide, and copper phosphate.
  • Examples of the compound that generates zinc ions include zinc acetate, zinc lactate, and zinc oxide.
  • Examples of the compound that generates indium ions include indium ammonium nitrate.
  • Examples of compounds that generate bismuth ions include inorganic bismuth-containing compounds such as bismuth chloride, bismuth oxychloride, bismuth bromide, bismuth silicate, bismuth hydroxide, bismuth trioxide, bismuth nitrate, bismuth nitrite, and bismuth oxycarbonate.
  • Examples of the compound that generates yttrium ions include yttrium nitrate, yttrium acetate, yttrium chloride, yttrium sulfamate, yttrium lactate, and yttrium formate.
  • Compounds that produce iron ions include iron (II) chloride, iron (III) chloride, iron (III) ammonium citrate, iron (III) ammonium oxalate, iron (III) nitrate, iron (III) fluoride, sulfuric acid Examples thereof include iron (III) and ammonium iron (III) sulfate.
  • Nickel ions include nickel chloride (II), nickel acetate (II), nickel citrate (II), nickel oxalate (II), nickel nitrate (II), nickel sulfamate (II), nickel carbonate ( II), nickel sulfate (II), nickel fluoride (II) soot and the like.
  • Compounds that produce manganese ions include manganese acetate (II), manganese acetate (III), manganese oxalate (II), manganese nitrate (II), manganese carbonate (II), manganese sulfate (II), manganese sulfate (II) Ammonium etc. are mentioned.
  • Examples of the compound that generates gallium ions include gallium nitrate.
  • Examples of compounds that generate silver ions include silver acetate (I), silver chloride (I), silver nitrate (I), and silver sulfate (I).
  • examples of the compound that generates lanthanum ions include lanthanum nitrate, lanthanum fluoride, lanthanum acetate, lanthanum boride, lanthanum phosphate, and lanthanum carbonate; Cerium (III), cerium chloride (III), cerium acetate (III), cerium oxalate (III), ammonium cerium nitrate (III), diammonium cerium nitrate (IV), etc .;
  • Examples of compounds that produce praseodymium ions include nitric acid Praseodymium, praseodymium sulfate, praseodymium oxalate and the like;
  • Examples of compounds that generate neodymium ions include neodymium nitrate and neodymium oxide.
  • the metal compound component (M) is optionally selected from alkali metals (lithium, sodium, potassium, rubidium, cesium, francium) and alkaline earth metals (beryllium, magnesium, calcium, strontium, barium, radium). It is also possible to contain at least one metal compound.
  • the metal compound component (M) used in the present invention preferably contains at least one zirconium compound and aluminum nitrate, and more preferably contains at least one zirconium compound.
  • Water-dispersible or water-soluble resin composition (P) The chemical conversion treatment solution used in the multilayer film forming method of the present invention can optionally contain 0.01 to 40% by mass of a water-dispersible or water-soluble resin composition (P).
  • water-dispersible or water-soluble resin composition examples include cationic resin compositions that can be cationized in an aqueous medium such as amino group, ammonium base, sulfonium base, and phosphonium base in the molecule. It is done.
  • an anionic resin composition having a group that can be anionized in an aqueous medium such as a carboxyl group, a sulfonic acid group, and a phosphoric acid group in the molecule.
  • the resin include epoxy resin, acrylic resin, polybutadiene resin, alkyd resin, and polyester resin.
  • the cationic resin composition having an amino group in the molecule has no effect even if it is mixed into the cationic electrodeposition paint as a contaminant, and is coated with the chemical conversion treatment liquid.
  • the coated metal object is also preferred for suppressing rusting while being transferred to the cationic electrodeposition coating tank and for improving the corrosion resistance of the resulting coated article.
  • the cationic resin composition having an amino group is not particularly limited, but an amino group-containing epoxy resin, polyallylamine, Mannich modified aminated phenol resin, and the like are preferable, and these may be used alone or in combination of two. The above can be used in combination.
  • the amine value of the resin is preferably in the range of 30 to 150 mg KOH / g resin solids, and more preferably in the range of 60 to 130 mg KOH / g resin solids.
  • the water-dispersible or water-soluble resin composition (P) can be used for the preparation of a chemical conversion treatment liquid by appropriately adding a neutralizing agent and dispersing in water with deionized water to give an emulsion.
  • a resin or compound containing a hydroxyl group and an oxyethylene chain as a nonionic and highly polar functional group in the molecule, and capable of being dispersed in water or water-soluble in an aqueous medium can be used.
  • resins and compounds include polyvinyl alcohol, polyoxyethylene, polyvinylpyrrolidone, polyoxypropylene, hydroxyethylcellulose, hydroxypropylmethylcellulose, and the like. These may be used alone or in combination of two or more. It can be used in combination.
  • the chemical conversion treatment solution contains the resin composition (P)
  • rusting on the object to be coated can be suppressed during the transfer to the electrodeposition coating tank.
  • Preparation of chemical conversion treatment solution used in the multilayer film forming method of adjusting the invention of the chemical conversion treatment solution is not particularly limited, for example, described below (1) can be carried out by the method to (3).
  • (1) Add metal compound component (M) to deionized water and / or water dispersible or water-soluble resin composition (P), add neutralizer as appropriate, and then add deionized water to adjust. how to.
  • (2) A method of adjusting the metal compound component (M) by adding deionized water and / or water-dispersed or water-soluble resin composition (P).
  • the metal compound component (M) is generally 30 to 20,000 ppm, preferably 50 to 10,000 ppm, more preferably 100 to 5,000 ppm, and even more particularly preferable in terms of the total metal amount (in terms of mass). Is contained in an amount of 150 to 2,000 ppm, and the water-dispersible or water-soluble resin composition (P) is optionally added in an amount of 0.01 to 40% by mass, preferably 0. It can be contained in an amount of 02 to 10% by mass, more preferably 0.03 to 1% by mass.
  • the pH is preferably in the range of 1.0 to 8.0, preferably 3.0 to 7.0.
  • the chemical conversion treatment liquid used in the method for forming a multilayer film of the present invention (step 1), it is preferable that the sodium ion concentration contained in the chemical conversion treatment liquid is usually less than 2,000 ppm on a mass basis. is there. If the sodium ion concentration is higher than 2,000 ppm, the paintability, finish of the coating film, and anticorrosion in electrodeposition coating may be inferior when part or all of the washing step is omitted.
  • the concentration of sodium ions contained in the chemical conversion treatment liquid is usually less than 2,000 ppm, preferably less than 1,000 ppm, more preferably less than 500 ppm, and even more preferably less than 100 ppm on a mass basis. Is preferred.
  • Examples of a route in which sodium ions are contained in the chemical conversion treatment liquid include, for example, water as a raw material, an accelerator (such as sodium nitrite), the above-described metal compound component (M), a neutralizing agent, and a degreasing agent used in the previous step.
  • an accelerator such as sodium nitrite
  • M metal compound component
  • a neutralizing agent such as sodium nitrite
  • a degreasing agent used in the previous step examples of a route in which sodium ions are contained in the chemical conversion treatment liquid.
  • the thing brought in from a liquid and washing water etc. can be considered.
  • the concentration is usually adjusted by adding a replenishment solution as needed.
  • impurity components (Na ions and the like) contained in a trace amount in the replenishing solution or components brought in from the previous process gradually accumulate in the chemical conversion treatment solution, which adversely affects performance.
  • the impurity component adheres or accumulates on the object to be coated at a certain concentration or more and is brought into the electrodeposition paint bath as the next step, the performance is adversely affected.
  • good performance can be obtained by keeping the specific ion concentration of the chemical conversion treatment liquid below a certain level.
  • the potassium ion concentration, calcium ion concentration, and magnesium ion concentration contained in the chemical conversion treatment liquid are also usually less than 2,000 ppm, preferably less than 1,000 ppm, on a mass basis. Yes, more preferably less than 500 ppm, still more preferably less than 100 ppm.
  • the preferable ranges of sodium ion concentration, potassium ion concentration, calcium ion concentration, and magnesium ion concentration contained in the chemical conversion treatment solution are particularly preferable ranges when all water washing steps are omitted.
  • atomic absorption spectrometry using an atomic absorption analyzer (brand name: Zeeman atomic absorption photometer, the product made by HITACHI). It can ask for.
  • the methods for forming the conversion coating of the chemical conversion film is not particularly limited, for example, a metal object to be coated, the chemical conversion treatment tank filled with a chemical conversion treatment liquid, usually 10 to for 360 seconds, preferably 50 to A method (1) of immersing for 300 seconds, more preferably 70 to 240 seconds to form a chemical conversion coating on the metal coating, immersing the metal coating in a chemical conversion bath filled with a chemical conversion solution, Examples include a method (2) in which a metal coating is used as a cathode, and a current is normally applied at 1 to 50 V for 10 to 360 seconds, preferably 2 to 30 V for 30 to 180 seconds.
  • a multilayer film having suppression of appearance unevenness and high anticorrosion properties can be obtained even in the method (1) in which no energization is performed.
  • the metal coating on which the chemical conversion film is formed is appropriately set before electrodeposition coating, and then immersed in a cation electrodeposition paint tank filled with the cation electrodeposition paint to perform electrodeposition coating.
  • An electrodeposition coating film can be formed on the chemical conversion film.
  • a part or all of the water washing process conventionally performed 2 steps or more before electrodeposition coating can be abbreviate
  • a part or all of the water washing step is omitted means that at least one water washing step consisting of industrial water washing and / or clean water washing and pure water can be omitted. This can be appropriately handled according to the required coating film performance. For example, a water washing process in which industrial water washing and clean water washing are omitted and pure water washing is performed only once corresponds to “a part or all of the water washing process is omitted” and is preferable. Therefore, “to omit part or all of the water washing step” means, for example, (i) washing with industrial water washing and / or water washing, and (ii) washing with only pure water, Or (i) indicates that neither of (ii) is performed.
  • the method of the present invention includes a water washing process in order to reduce the time and cost of the water washing process, including facilities and expenses for collecting, filtering, treating, and discarding the wastewater discharged in the water washing process.
  • the chemical conversion liquid has been sufficiently washed away from the object to be coated when the electric conductivity of the water after the water washing in the final water washing step becomes 50 ⁇ S / cm or less. Therefore, the water washing method in which the electric conductivity of the water after the final water washing step is lower than the electric conductivity of the water after the conventional water washing step does not fall under “Omit part or all of the water washing step”. it is obvious.
  • the water washing method there are an immersion method and a spray method (spray spray method, shower spray method), and any method can be suitably used in the present invention. From the viewpoint of reducing waste, a water washing step in which only spray-type water washing is performed is preferable, and a water washing step in which spray-type water washing is performed only once is more preferable.
  • excess chemical conversion treatment liquid can be removed by spraying water on the surface of the coating material subjected to chemical conversion treatment for usually 1 to 120 seconds, preferably 2 to 60 seconds.
  • “a part or all of the water washing step is omitted” includes, for example, a method including a step of spraying water for 120 seconds or less, preferably 60 seconds or less.
  • the above method includes a method in which no water washing is performed.
  • the setting conditions performed before the electrodeposition coating are usually 0 to 80 ° C., preferably 5 to 50 ° C., more preferably 10 to 40 ° C., and usually 10 to 30 minutes, preferably 20 seconds to By applying a setting time of 20 minutes, more preferably 30 seconds to 15 minutes, it is possible to remove excess chemical conversion treatment liquid adhering to the metal object, and as a result, the electrodeposition coating property is good.
  • a multi-layered film having excellent finish and / or anticorrosion properties can be formed.
  • the metal coating object is appropriately subjected to at least one selected from air blow, rocking, and rotation, thereby removing as much as possible the excess chemical conversion treatment liquid deposited and deposited on the metal coating object. be able to.
  • the air pressure on the surface of the object to be coated is usually 0.01 to 1.0 MPa, preferably 0.05 to 0.5 MPa, usually 1 second to 10 minutes, preferably 2 seconds to 3 minutes.
  • the excess chemical conversion treatment liquid on the object to be coated can be removed.
  • the metal coating on which the obtained chemical conversion coating is formed is immersed in a cationic electrodeposition tank filled with a specific cationic electrodeposition coating, and energized to perform electrodeposition coating on the chemical conversion coating. .
  • the electric conductivity of the solution adhering to and / or stagnating on the metal coating immediately before the electrodeposition coating is performed. Is 10,000 ⁇ S / cm or more (for example, 10,000 to 12,000 ⁇ S / cm), it is possible to obtain a multi-layered film having high anticorrosion properties by suppressing uneven appearance.
  • the conductivity of the solution adhering to and / or accumulating on the metal coating immediately before the electrodeposition coating is in a range of less than 10,000 ⁇ S / cm. More preferably, the range is higher than 60 ⁇ S / cm and lower than 7,000 ⁇ S / cm, more preferably higher than 60 ⁇ S / cm and lower than 5,000 ⁇ S / cm, and particularly preferably. The range is preferably higher than 60 ⁇ S / cm and lower than 2,000 ⁇ S / cm.
  • “at the time of electrodeposition coating” means “just before electrodeposition coating”.
  • “immediately before electrodeposition coating” means that after performing the above-mentioned chemical conversion treatment, optionally washing with water, and before immersing the metal coating on which the chemical conversion treatment film is formed in the cationic electrodeposition bath. means.
  • the sodium ion concentration of the solution adhering to and / or staying on the metal coating immediately before electrodeposition coating is usually less than 500 ppm, preferably less than 200 ppm, based on the mass of the solution. More preferably, it is less than 100 ppm, more preferably less than 50 ppm, and still more preferably less than 10 ppm.
  • the potassium ion concentration, calcium ion concentration, and magnesium ion concentration of the solution adhering to and / or accumulating on the metal object immediately before electrodeposition coating are usually less than 500 ppm on a mass basis. It is preferably less than 200 ppm, more preferably less than 100 ppm, even more preferably less than 50 ppm, and even more preferably less than 10 ppm.
  • the cationic electrodeposition paint used in the method for forming a multilayer film of the present invention comprises, as a resin component, an amino group-containing epoxy resin (A), a blocked polyisocyanate (B), and a pigment dispersion resin (C
  • the amino group-containing epoxy resin (A) is usually 40 to 88% by mass, preferably 45 to 80% by mass, more preferably 50 to 75% by mass, based on the total amount of resin solids.
  • the blocked polyisocyanate (B) is usually 10 to 50% by mass, preferably 15 to 45% by mass, more preferably 20 to 40% by mass, and the pigment dispersion resin (C) is usually It is contained in the range of 2 to 40% by mass, preferably 3 to 30% by mass, more preferably 4 to 20% by mass.
  • the concentration of the quaternary ammonium salt in the cationic electrodeposition coating is usually 0.03 mmol / g or less, preferably 0.02 mmol / g or less, based on the resin solid content in the coating. Preferably it is 0.01 mmol / g or less. If this range is exceeded, the quaternary ammonium base and the components of the chemical conversion solution are aggregated, resulting in poor finish and / or anticorrosive properties.
  • Amino group-containing epoxy resin (A) The amino group-containing epoxy resin (A) can be obtained by reacting the epoxy resin (a1), the amine compound (a2), and optionally a modifier, for example, (1) epoxy resin and Adducts with primary amine compounds, secondary amine compounds, or primary and secondary mixed amine compounds (see, for example, US Pat. No. 3,984,299); (2) epoxy resin and ketiminated Adducts with amine compounds (see, for example, US Pat. No. 4,017,438); (3) Reactions obtained by etherification of epoxy resins with hydroxy compounds having primary amino groups ketiminated An amino group-containing epoxy resin such as a product (for example, see JP-A-59-43013) can be mentioned.
  • a modifier for example, (1) epoxy resin and Adducts with primary amine compounds, secondary amine compounds, or primary and secondary mixed amine compounds (see, for example, US Pat. No. 3,984,299); (2) epoxy resin and ketiminated Adducts with amine compounds (see
  • Epoxy resin (a1) The epoxy resin (a1) used for the production of the amino group-containing epoxy resin (A) is a compound having at least one, preferably two or more epoxy groups in one molecule, and its molecular weight is generally at least 300, Preferably a number average molecular weight in the range of 400 to 4,000, more preferably in the range of 800 to 2,500 and an epoxy equivalent weight in the range of at least 160, preferably 180 to 2,500, more preferably 400 to 1,500. What has it is suitable, The epoxy resin obtained by reaction of a polyphenol compound and an epihalohydrin is especially preferable.
  • Examples of the polyphenol compound used for forming the epoxy resin (a1) include bis (4-hydroxyphenyl) -2,2-propane [bisphenol A] and bis (4-hydroxyphenyl) methane [bisphenol F].
  • Bis (4-hydroxycyclohexyl) methane [hydrogenated bisphenol F] 2,2-bis (4-hydroxycyclohexyl) propane [hydrogenated bisphenol A]
  • 4,4′-dihydroxybenzophenone bis (4-hydroxyphenyl) -1,1-ethane, bis (4-hydroxyphenyl) -1,1-isobutane, bis (4-hydroxy-3-tert-butyl-phenyl) -2,2-propane, bis (2-hydroxynaphthyl) methane Tetra (4-hydroxyphenyl) -1,1,2,2-ethane 4,4'-dihydroxydiphenyl sulfone, phenol novolak, and the like can be illustrated cresol novolak, they may be used in combination singly or two or more
  • epoxy resin (a1) obtained by the reaction of the polyphenol compound and epichlorohydrin a resin represented by the following formula derived from bisphenol A is particularly preferable.
  • n 0 to 8 are preferable.
  • Examples of the commercially available epoxy resin (a1) include those sold by Mitsubishi Chemical Corporation under the trade names jER828EL, jER1002, jER1004, and jER1007.
  • the bisphenol type epoxy resin is, for example, a resin obtained by condensing epichlorohydrin and bisphenol up to a high molecular weight in the presence of a catalyst such as an alkali catalyst, and optionally epichlorohydrin and bisphenol. Any of resins obtained by condensing into a low molecular weight epoxy resin in the presence of a catalyst and polyaddition reaction of the low molecular weight epoxy resin and bisphenol may be used.
  • the number average molecular weight and the weight average molecular weight are the retention time (retention capacity) measured using a gel permeation chromatograph (GPC) and the retention time of a standard polystyrene with a known molecular weight measured under the same conditions.
  • (Retention capacity) is a value obtained by converting to the molecular weight of polystyrene.
  • HEC8120GPC (trade name, manufactured by Tosoh Corporation) is used as a gel permeation chromatograph
  • TSKgel G-4000HXL”, “TSKgel G-3000HXL”, “TSKgel G-2500HXL” are used as columns.
  • Amine compound (a2) The amine compound (a2) which is a raw material of the amino group-containing epoxy resin (A) is not particularly limited as long as it is an amine compound having reactivity with the epoxy resin (a1).
  • monomethylamine dimethylamine
  • Mono-alkylamines such as monoethylamine, diethylamine, dipropylamine, dibutylamine, dihexylamine, dioctylamine, monoisopropylamine, diisopropylamine, monobutylamine, monooctylamine, methylbutylamine, dibutylamine;
  • Dipropanolamine monomethylaminoethanol, N- (2-hydroxypropyl) ethylenediamine, 3-methylamine-1,2-propanediol, 3-
  • Polyepoxy-added polyamine obtained by the above-described process; a polyamide resin molecule formed by condensation of the polyamine with an aromatic acid anhydride, cycloaliphatic acid anhydride, aliphatic acid anhydride, halogenated acid anhydride and / or dimer acid 1 or more inside Polyamide polyamines containing the above primary or secondary amines; ketiminated amines obtained by reacting one or more primary or secondary amines in the above polyamines with a ketone compound; Species can be used alone or in combination of two or more.
  • the ketone compound for producing the ketiminated amine is not particularly limited as long as it reacts with the primary or secondary amine of the polyamine to form a ketimine compound and further hydrolyzes in the aqueous coating composition.
  • MIPK methyl isopropyl ketone
  • DIBK diisobutyl ketone
  • MIBK methyl isobutyl ketone
  • DEK diethyl ketone
  • EBK ethyl butyl ketone
  • EPK ethyl propyl
  • the amine value of the amino group-containing epoxy resin (A) is preferably 40 to 80 mgKOH / g, more preferably 45 to 65 mgKOH / g, from the viewpoint of dryness unevenness and anticorrosion of the coating film.
  • the amino group-containing epoxy resin (A) may be optionally modified with a modifier.
  • a modifier is not particularly limited as long as it is a resin or compound having reactivity with the epoxy resin (a1).
  • acetic acid, propionic acid, butyric acid, valeric acid, acrylic acid, oleic acid, glycolic acid, Acidic compounds such as lactic acid, benzoic acid, gallic acid, fatty acid, dibasic acid, methanol, ethanol, n-propanol, isopropanol, n-butanol, 2-butanol, pentanol, hexanol, n-octanol, 2-ethylhexanol, Monohydric alcohols such as dodecyl alcohol, stearyl alcohol, benzyl alcohol, polyols, polyether polyols, polyester polyols, polyamidoamines, polyisocyanate compounds, lactones such as ⁇ -butyrolactone
  • the reaction with the above-mentioned epoxy resin (a1), amine compound (a2), and optional modifier is usually carried out in an appropriate organic solvent at about 80 to about 170 ° C., preferably about 90 to about
  • the reaction can be performed at a temperature of 150 ° C. for about 1 to 6 hours, preferably about 1 to 5 hours.
  • organic solvent examples include hydrocarbons such as toluene, xylene, cyclohexane, and n-hexane; esters such as methyl acetate, ethyl acetate, and butyl acetate; acetone, methyl ethyl ketone, methyl isobutyl ketone, methyl amyl ketone, and the like. Ketones; Amides such as dimethylformamide and dimethylacetamide; Alcohols such as methanol, ethanol, n-propanol and iso-propanol; Ether alcohols such as ethylene glycol monobutyl ether and diethylene glycol monoethyl ether; or these organic solvents Of the mixture.
  • hydrocarbons such as toluene, xylene, cyclohexane, and n-hexane
  • esters such as methyl acetate, ethyl acetate, and butyl acetate
  • acetone
  • amino group-containing A suitable range is 3 to 50% by weight, preferably 5 to 30% by weight, based on the solid content of the epoxy resin (A).
  • the amino group-containing epoxy resin (A) used in the present invention is not particularly limited.
  • an amino group-containing epoxy resin obtained by reacting an amino group-containing compound with an epoxy resin containing an oxazolidone ring for example, JP-A-5-306327
  • an amino group-containing modified epoxy resin obtained by reacting an epoxy resin having an alkylene oxide structure with an amino group-containing compound for example, JP-A-2011-847723
  • a xylene formaldehyde resin-modified amino group-containing epoxy resin for example, JP-A No. 2003-221547) obtained by reacting a xylene formaldehyde resin and an amino group-containing compound can also be optionally used as appropriate.
  • an amino group-containing epoxy resin obtained by reacting an amino group-containing compound with an epoxy resin containing an oxazolidone ring for example, JP-A-5-306327
  • an amino group-containing modified epoxy resin obtained by reacting an epoxy resin having an alkylene oxide structure with an amino group-containing compound for example
  • the blocked polyisocyanate (B) is a product obtained by an addition reaction between a polyisocyanate compound and an isocyanate blocking agent.
  • a polyisocyanate compound used in the blocked polyisocyanate (B) known compounds can be used without any particular limitation.
  • tolylene diisocyanate, xylylene diisocyanate, phenylene diisocyanate, diphenylmethane-2,2'- Aromatic polyisocyanate compounds such as diisocyanate, diphenylmethane-2,4′-diisocyanate, diphenylmethane-4,4′-diisocyanate, crude MDI [polymethylene polyphenylisocyanate]; alicyclic rings such as bis (isocyanatemethyl) cyclohexane, isophorone diisocyanate Polyisocyanate compounds; aliphatic polyisocyanates such as tetramethylene diisocyanate, hexamethylene diisocyanate, and methylene diisocyanate Compound; cyclic polymer or biuret of these polyisocyanate compounds; or combinations thereof.
  • Aromatic polyisocyanate compounds such as diisocyanate, diphenylmethane-2,4′-diis
  • aromatic polyisocyanate compounds such as tolylene diisocyanate, xylylene diisocyanate, phenylene diisocyanate, diphenylmethane-2,4′-diisocyanate, diphenylmethane-4,4′-diisocyanate, crude MDI, and the like. preferable.
  • the isocyanate blocking agent is added and blocked to the isocyanate group of the polyisocyanate compound, and the blocked polyisocyanate compound produced by the addition reaction is stable at room temperature, but the coating baking temperature (usually When heated to about 100 to about 200 ° C.), the blocking agent dissociates to regenerate free isocyanate groups.
  • isocyanate blocking agent used in the blocked polyisocyanate (B) known ones can be used without particular limitation.
  • oxime compounds such as methyl ethyl ketoxime and cyclohexanone oxime; phenol, para-t-butylphenol Phenol compounds such as cresol; alcohol compounds such as n-butanol, 2-ethylhexanol, phenyl carbinol, methyl phenyl carbinol, ethylene glycol monobutyl ether, diethylene glycol monoethyl ether, ethylene glycol, propylene glycol; ⁇ -caprolactam Lactam compounds such as ⁇ -butyrolactam; dimethyl malonate, diethyl malonate, ethyl acetoacetate, methyl acetoacetate, acetylacetone And the like, and these can be used singly or in combination of two or more.
  • At least one resin used as the pigment dispersion resin contains at least one selected from sulfonium base and tertiary ammonium base as a functional group, and the pigment dispersion resin (C).
  • the concentration of quaternary ammonium salt per resin solid content obtained by adding all the resins used as C) is usually 0.7 mmol / g or less, preferably 0.5 mmol / g or less, more preferably 0.3 mmol. If it is / g or less, More preferably, if it is the range of 0.1 mmol / g or less, a well-known thing can be used.
  • An epoxy resin, a quaternary phosphonium base type epoxy resin, etc. are mentioned, These can be used individually by 1 type or in combination of 2 or more types.
  • tertiary ammonium base described in the present invention is a functional group that is tertiary by neutralizing one part or all of the tertiary amino group with an acid.
  • a pigment dispersion paste can be obtained by dispersing the pigment with the pigment dispersion resin (C).
  • the cationic electrodeposition coating of the present invention is optionally made by reacting an epoxy resin with a polyhydric alcohol as a resin component other than the above (A), (B) and (C).
  • a polyhydric alcohol as a resin component other than the above (A), (B) and (C).
  • Known products such as a modified epoxy resin having substantially no amino group and a polyester resin obtained by reacting a polybasic acid and a polyhydric alcohol can be contained.
  • the cationic electrodeposition paint contains a modified epoxy resin and / or a polyester resin, the content is usually 3 based on the total solid content of 100 parts by weight of the components (A), (B) and (C). It is in the range of ⁇ 50 parts by mass, preferably 10 to 45% by mass.
  • the above cationic electrodeposition coating is optionally further obtained by sufficiently mixing various additives such as a surfactant and a surface conditioner, water, an organic solvent, a neutralizing agent, etc., and making it water-soluble or water-dispersed. Can do.
  • neutralizing agent known organic acids and inorganic acids can be used without particular limitation, and formic acid, lactic acid, acetic acid or a mixture thereof is particularly preferable.
  • pigments such as colored pigments, rust preventive pigments and extender pigments are dispersed in advance in fine particles, for example, a pigment dispersion resin (C), a neutralizing agent and pigments are blended.
  • the pigment dispersion paste can be prepared by dispersing in a dispersion mixer such as a ball mill, sand mill, or pebble mill.
  • the pigments can be used without particular limitation, for example, colored pigments such as titanium oxide, carbon black, bengara, etc .; extender pigments such as clay, mica, barita, calcium carbonate, silica; aluminum phosphomolybdate, aluminum tripolyphosphate, And anticorrosive pigments such as zinc oxide (zinc white).
  • colored pigments such as titanium oxide, carbon black, bengara, etc .
  • extender pigments such as clay, mica, barita, calcium carbonate, silica
  • aluminum phosphomolybdate, aluminum tripolyphosphate aluminum phosphomolybdate, aluminum tripolyphosphate
  • anticorrosive pigments such as zinc oxide (zinc white).
  • a bismuth compound can be included for the purpose of inhibiting corrosion.
  • the bismuth compound include bismuth oxide, bismuth hydroxide, basic bismuth carbonate, bismuth nitrate, bismuth silicate, and organic acid bismuth such as bismuth lactate and bismuth salicylate.
  • organic tin compounds such as dibutyltin dibenzoate, dioctyltin oxide, dibutyltin oxide and the like can be used.
  • Electrodeposition coating The cationic electrodeposition paint used in the method for forming a multilayer film according to the present invention (step 2) omits part or all of the water-washing process on the metal coating on which the chemical conversion treatment film has been formed. can do.
  • a cationic electrodeposition paint is diluted with deionized water or the like, and the solid content concentration is about 5 to 40% by mass, preferably 8 to 25% by mass, and the pH is 1.0 to 1.0%.
  • a coating bath in the range of 9.0, preferably 3.0 to 7.0 is prepared, and further, the substrate is energized as a cathode under conditions of a bath temperature of 15 to 35 ° C. and a load voltage of 100 to 400 V. be able to.
  • the film thickness of the electrodeposition coating film obtained by applying the cationic electrodeposition coating is not particularly limited, but is generally 5 to 40 ⁇ m, preferably 10 to 30 ⁇ m, based on the dry coating film. Can be within range.
  • the coating film is baked and dried at a temperature of 110 to 200 ° C., preferably 140 to 180 ° C., on the surface of the coating using a drying facility such as an electric hot air dryer or a gas hot air dryer.
  • the time can be set by heating the electrodeposition coating film for 10 to 180 minutes, preferably 20 to 60 minutes.
  • a cured coating film can be obtained by baking and drying.
  • part means mass part
  • % means mass%
  • ppm means mass ppm
  • the chemical conversion solution X-1 was obtained by adjusting the metal elements to 600 ppm zirconium ions, 120 ppm aluminum ions, 85 ppm sodium ions, 85 ppm potassium ions, 85 ppm calcium ions, and 85 ppm magnesium ions. It was.
  • Production Examples 2-31 Except for the composition shown in Table 1 below, compounding was conducted in the same manner as in Production Example 1 to obtain chemical conversion liquids X-2 to 31.
  • the concentration of the quaternary ammonium salt of the pigment dispersing resin C-4 is 0.78 mmol / g.
  • pigment dispersing resin C-5 containing a quaternary ammonium base having a solid content of 60%.
  • concentration of the quaternary ammonium salt of the pigment dispersing resin C-5 is 0.48 mmol / g.
  • Production and production example 41 of pigment dispersion paste 8.3 parts of pigment dispersion resin C-1 having a solid content of 60% obtained in Production Example 36 (5 parts of solid content), 14.5 parts of titanium oxide, 7.0 parts of purified clay, 0.3 part of carbon black, 1 part of dioctyltin oxide, 1 part of bismuth hydroxide and 20.3 parts of deionized water were added and dispersed in a ball mill for 20 hours to obtain a pigment dispersion paste PP-1 having a solid content of 55%.
  • Production Examples 42 to 53 Except for the composition shown in Table 2 below, blending was conducted in the same manner as in Production Example 41 to produce a pigment dispersion paste, and pigment dispersion pastes PP-2 to 13 having a solid content of 55% were produced.
  • Cationic electrodeposition coating production and production example 54 83.8 parts of amino group-containing epoxy resin A-1 obtained in Production Example 34 (67 parts of solid content) and 35 parts of blocked polyisocyanate B-1 obtained in Production Example 35 (28 parts of solid content) were mixed. Further, 13 parts of 10% acetic acid was blended and stirred uniformly, and then dripped in about 15 minutes with vigorous stirring of deionized water to obtain an emulsion having a solid content of 34%. Next, 294 parts of the emulsion (100 parts of solid content), 52.4 parts of the 55% pigment dispersion paste PP-1 obtained in Production Example 41 (28.8 parts of solid content), and 350 parts of deionized water were added. A cationic electrodeposition paint Y-1 having a solid content of 20% was produced.
  • Production Examples 55-71 Except for the composition shown in Table 3 below, blending was conducted in the same manner as in Production Example 54 to produce a cationic electrodeposition paint, and cationic electrodeposition paints Y-2 to 18 having a solid content of 20% were produced.
  • Test plate production Example 1 The test plate Z-1 was produced by the following steps 1-1 to 2-3.
  • Step 1-1 2.0% by mass of “Fine Cleaner L4460” (manufactured by Nihon Parkerizing Co., Ltd., alkaline degreasing agent) is adjusted to a temperature of 43 ° C., and a cold-rolled steel sheet (70 mm ⁇ 150 mm ⁇ 0.8 mm) is 120 Degreasing was performed by dipping for 2 seconds.
  • Step 1-2 Surface adjustment is performed by immersing the steel sheet in a 0.15% aqueous solution of “preparene 4040N” (manufactured by Nihon Parkerizing Co., Ltd., surface conditioner) for 30 seconds, and then using pure water. For 30 seconds.
  • Step 1-3 The chemical conversion treatment solution X-1 obtained in Production Example 1 was adjusted to a temperature of 43 ° C. and the steel sheet was immersed for 120 seconds to perform chemical conversion treatment.
  • Step 2-1 The steel sheet on which the chemical conversion film obtained in Step 1 was formed was immersed in pure water for 30 seconds and washed with water.
  • Step 2-2 The cationic electrodeposition paint Y-1 obtained in Production Example 54 was adjusted to a temperature of 28 ° C., and the steel sheet was immersed in a bath of the cationic electrodeposition paint, and 250 V, 180 seconds (30 seconds) Electrodeposition coating was carried out under the conditions of the rising voltage).
  • Step 2-3 The steel sheet is washed with water by immersing it for 120 seconds once with clean water and once with pure water, and then baked and dried by an electric dryer at 170 ° C. for 20 minutes. As a result, a test plate Z-1 having a multi-layer coating having a dry film thickness of 24 ⁇ m was obtained.
  • Test plates Z-2 to 66 were obtained in the same manner as in Example 1 except that the chemical conversion treatment liquid, the water washing step and / or the cationic electrodeposition coating composition shown in Table 4 below were used. Moreover, since the evaluation test of the appearance unevenness and the anticorrosion property was performed on the obtained test plate as finish, the evaluation results are also shown in Table 4 below. In addition, the detail of the water washing process used by the Example and the comparative example, the ion concentration measuring method, the electrical conductivity measuring method, and the evaluation method of external appearance nonuniformity and anticorrosion property (560 hours, 840 hours) are shown below.
  • ⁇ Washing process> The water washing step (Step 2-1) used in Examples and Comparative Examples is shown. From the viewpoint of shortening the process, it is preferable that the process is short. From the viewpoint of environment and economy, it is more preferable that the process uses less washing water. In the following water washing steps II to V, part or all of the water washing step is omitted as compared with the conventional water washing step I.
  • Water-washing step I After the chemical conversion treatment, a conventional type in which the article to be coated is subjected to 30-second immersion water washing once using clean water and then once to 30-second immersion water washing using pure water. It is a water washing process (two or more immersion water washings), and the process is the longest.
  • Water washing step II After the chemical conversion treatment, the object to be coated is subjected to a 30-second immersion water washing once using pure water, which is a water washing step rather than a conventional water washing step (two or more immersion water washings). Is partially omitted.
  • Water washing step III After chemical conversion treatment, a process of spraying water for 3 seconds using pure water on the object to be coated, which is a step more than the conventional water washing step (two or more times of immersion type water washing). A part of the process is omitted, and the process is slightly shorter than the one-time immersion water washing in the water washing process II.
  • Water washing step IV After the chemical conversion treatment, there is no water washing step, and then air blowing for 10 seconds (room temperature, air pressure on the surface of the object to be coated: 0.2 MPa) to the object to be coated. Short and no waste water from washing water. Washing process V: After the chemical conversion treatment, there is no washing process, the process is the shortest, and no waste water of washing water is produced.
  • ⁇ Ion concentration> a test plate immediately before electrodeposition coating was prepared separately, put in a container in a vertical state, covered and left for 1 hour. Next, the test plate was taken out, and the ion concentration of the solution accumulated in the lower part of the container was measured. The ion concentration was measured using an atomic absorption analyzer (trade name: Zeeman atomic absorption photometer, manufactured by HITACHI). In addition, when the quantity required for the measurement of electrical conductivity could not be secured with one test plate, the required quantity was secured using a plurality of test plates.
  • ⁇ Anti-corrosion (560 hours)> Cross-cut scratches are made on the multilayer coating with a cutter knife so as to reach the base of the test plate, and this is subjected to a salt spray test at 35 ° C. for 560 hours in accordance with JIS Z-2371. The width was measured. About evaluation, it evaluated by the following references
  • C The maximum width of rust and blisters exceeds 2.5 mm from the cut portion, and is 3.0 mm or less (one side), and the corrosion resistance is slightly good.
  • D The maximum width of rust and blisters exceeds 3.0 mm from the cut portion, and is 3.5 mm or less (one side), and the corrosion resistance is normal (passed level or higher).
  • E The maximum width of rust and blisters exceeds 3.5 mm from the cut part and is 4.0 mm or less (one side), and the corrosion resistance is slightly poor.
  • F The maximum width of rust and blistering exceeds 4.0 mm from the cut part (one side), and the corrosion resistance is poor.
  • ⁇ Anti-corrosion (840 hours)> A cross-cut flaw is made on the multilayer film with a cutter knife so as to reach the substrate of the test plate, and this is subjected to a 35 ° C. salt spray test for 840 hours in accordance with JIS Z-2371. The width was measured. About evaluation, it evaluated by the following references
  • C The maximum width of rust and blisters exceeds 2.5 mm from the cut portion, and is 3.0 mm or less (one side), and the corrosion resistance is slightly good.
  • D The maximum width of rust and blisters exceeds 3.0 mm from the cut portion, and is 3.5 mm or less (one side), and the corrosion resistance is normal (passed level or higher).
  • E The maximum width of rust and blisters exceeds 3.5 mm from the cut part and is 4.0 mm or less (one side), and the corrosion resistance is slightly poor.
  • F The maximum width of rust and blisters exceeds 4.0 mm from the cut part, and is 5.0 mm or less (one side), and the corrosion resistance is poor.
  • G The maximum width of rust and swelling exceeds 5.0 mm from the cut part (one side), and the corrosion resistance is very poor.

Abstract

The present invention addresses the problem of providing: a method for forming a multilayer film that exhibits excellent finishing properties and corrosion resistance without affecting electrodeposition coatability even if part or all of a washing step is omitted after a chemical conversion treatment; and a coated article. The present invention provides a method for forming a multilayer film that comprises the following steps for forming a chemical conversion treatment film and an electrodeposition coating film on a metal object to be coated: a step (1) in which the metal object to be coated is immersed in a chemical conversion treatment liquid in order to form the chemical conversion treatment film; and a step (2) in which a part or all of a washing step is omitted and a cationic electrodeposition paint is used to perform electrodeposition coating of the metal object to be coated in order to form the electrodeposition coating film. The method for forming a multilayer film is characterized in that, when the total amount of resin solids is used as a reference, the cationic electrodeposition paint contains 40-88 mass% of an amino group-containing epoxy resin (A), 10-50 mass% of a blocked polyisocyanate (B), and 2-40 mass% of a pigment dispersion resin (C), and the quaternary ammonium salt concentration in the cationic electrodeposition paint is 0.03 mmol/g or less per resin solid content in the paint.

Description

複層皮膜形成方法Multi-layer coating formation method
 [関連出願の相互参照]
 本出願は、2013年8月30日に出願された、日本国特許出願第2013-180150号明細書及び2014年4月28日に出願された、日本国特許出願第2014-092916号明細書(その開示全体が参照により本明細書中に援用される)に基づく優先権を主張する。
本発明は、化成処理後に水洗工程の一部又は全部を省略したとしても、化成処理後の金属被塗物に付着及び/又は堆積した溶液の影響を受けずに電着塗装が可能で、仕上がり性や防食性に優れた塗装物品が得られる複層皮膜形成方法及び該複層皮膜形成方法を用いた塗装物品に関する。
[Cross-reference of related applications]
This application is filed in Japanese Patent Application No. 2013-180150 filed on August 30, 2013 and in Japanese Patent Application No. 2014-092916 filed on April 28, 2014 ( The entire disclosure of which is incorporated herein by reference).
The present invention is capable of electrodeposition coating without being affected by the solution adhered and / or deposited on the metal coating after chemical conversion treatment, even if a part or all of the water washing step is omitted after chemical conversion treatment. TECHNICAL FIELD The present invention relates to a method for forming a multilayer film that provides a coated article having excellent properties and corrosion resistance, and a coated article using the multilayer film formation method.
 従来、工業用の金属被塗物には、下地処理として防食性や付着性の向上を目的に化成処理が行われている。しかしながら、化成処理液は各種イオン成分を多量に含有しており、かつ形成される化成処理皮膜の性能を向上させるために、亜鉛、ニッケル、マンガン等の重金属成分も多量に含有している。 Conventionally, a chemical conversion treatment is performed on an industrial metal coating for the purpose of improving corrosion resistance and adhesion as a base treatment. However, the chemical conversion liquid contains a large amount of various ion components, and also contains a large amount of heavy metal components such as zinc, nickel, and manganese in order to improve the performance of the chemical conversion treatment film to be formed.
 上記化成処理を行った後、そのままカチオン電着塗料を用いて電着塗装をすると、金属被塗物に付着・堆積した余分な化成処理液が、電着塗装性、仕上がり性、防食性などに悪影響を及ぼすことがわかっている。 After performing the above chemical conversion treatment, if the electrodeposition coating is carried out using the cationic electrodeposition paint as it is, the excess chemical conversion solution that adheres to and deposits on the metal coating will be applied to the electrodeposition paintability, finish, and corrosion resistance. It is known to have an adverse effect.
 そのため、通常の塗装ラインにおいては、下記図1で示す「脱脂~化成処理~第一水洗~第二水洗~純水水洗~電着塗装~第一水洗~第二水洗~純水水洗~焼付乾燥」のように、水洗工程に多くの工数及び時間を要しており、更に水洗工程で出た排水の回収、濾過、処理、廃棄などにも多大な設備や費用が必要となっている。 Therefore, in a normal coating line, as shown in Fig. 1 below, "Degreasing-chemical conversion treatment-first water washing-second water washing-pure water water washing-electrodeposition coating-first water washing-second water washing-pure water water washing-baking drying As described above, a lot of man-hours and time are required for the washing process, and further, a large amount of equipment and costs are required for collecting, filtering, treating, and discarding the wastewater discharged in the washing process.
 特許文献1には、化成処理の後に水洗を施すことなく電着塗装を行うことで、省工程化・省スペース化が可能となる複層皮膜形成方法が開示されており、夾雑物として化成処理液が次工程である電着塗料中に持ち込まれても、電着塗装性や塗膜特性に影響を及ぼさず、仕上がり性と防食性に優れる塗装物品が得られると記載がある。しかし、電着塗料の組成によっては、仮に水洗を行わずに上記電着塗料を使用して電着塗装をした場合、十分な防食性や仕上がり性が確保できない場合があった。 Patent Document 1 discloses a method for forming a multi-layered film that can reduce the process and save space by performing electrodeposition without performing water washing after the chemical conversion treatment. There is a description that even if the liquid is brought into the electrodeposition coating, which is the next step, a coated article having excellent finish and anticorrosion properties can be obtained without affecting the electrodeposition coating properties and coating film properties. However, depending on the composition of the electrodeposition paint, if the electrodeposition paint is used for the electrodeposition without washing with water, sufficient anticorrosion and finish may not be ensured.
 特許文献2には、酸性リン酸亜鉛水溶液を用いて浸漬処理で化成処理する方法において、促進剤として使用する亜硝酸亜鉛水溶液のナトリウムイオン濃度が規定されている。明細書の段落〔0016〕で、化成処理槽内のナトリウムイオン濃度が重量基準で10000ppmであれば良好な化成処理皮膜が得られると記載されているが、このようにナトリウムイオン濃度が高い状態では電導度も高くなり、水洗工程を省略することができず、省工程化・省スペース化は困難である。 Patent Document 2 defines a sodium ion concentration of an aqueous zinc nitrite solution used as an accelerator in a method of chemical conversion treatment by immersion treatment using an acidic zinc phosphate aqueous solution. In the paragraph [0016] of the specification, it is described that if the sodium ion concentration in the chemical conversion treatment tank is 10000 ppm by weight, a good chemical conversion treatment film can be obtained. The electrical conductivity also increases, the water washing process cannot be omitted, and it is difficult to save process and space.
 特許文献3には、高品質の化成皮膜が得られる化成処理方法において、明細書の段落〔0063〕で、化成処理液の電導度を10~200mS/cm(10,000~200,000μS/cm)程度に管理することが記載されているが、このように高い電導度の化成処理液の場合、十分な水洗工程が必須となり、水洗工程を省略することができず、省工程化・省スペース化は困難である。 In Patent Document 3, in the chemical conversion treatment method for obtaining a high-quality chemical conversion film, the electrical conductivity of the chemical conversion treatment liquid is 10 to 200 mS / cm (10,000 to 200,000 μS / cm) in paragraph [0063] of the specification. However, in the case of a chemical conversion treatment liquid with such a high electrical conductivity, a sufficient water washing process is essential, and the water washing process cannot be omitted. Is difficult.
特開2009-149974号公報JP 2009-149974 A 特開2001-323384号公報JP 2001-323384 A 特開平6-2157号公報Japanese Patent Laid-Open No. 6-2157
 本発明の課題は、省工程化・省スペース化が可能となる複層皮膜形成方法を提供することであって、化成処理後に水洗工程の一部又は全部を省略したとしても、電着塗装性に影響を及ぼさず、仕上がり性と防食性に優れる塗装物品を提供することである。 An object of the present invention is to provide a method for forming a multi-layer coating that enables process saving and space saving, and even if a part or all of the water washing process is omitted after the chemical conversion treatment, It is intended to provide a coated article that is excellent in finish and anticorrosion properties without affecting the surface.
 本発明者は、鋭意研究を重ねた結果、金属被塗物に化成処理皮膜を形成し、次いで、電着塗装することを特徴とする複層皮膜形成方法において、カチオン電着塗料中の4級アンモニウム塩濃度を特定範囲内とすることで、省工程化・省スペース化と塗膜性能とを両立できることを見出し、本発明を完成するに至った。 As a result of earnest research, the present inventor has formed a chemical conversion treatment film on a metal object, and then electrodeposited, in a multilayer film forming method characterized by the fourth grade in a cationic electrodeposition paint. It has been found that by making the ammonium salt concentration within a specific range, it is possible to achieve both process saving, space saving and coating film performance, and the present invention has been completed.
 すなわち、本発明は、以下の複層皮膜形成方法及び塗装物品を提供するものである。項1.金属被塗物に化成処理皮膜と電着塗装皮膜を形成する以下の工程、
工程1:金属被塗物を化成処理液に浸漬して化成処理皮膜を形成する工程、
工程2:カチオン電着塗料を用いて上記金属被塗物を電着塗装して電着塗装皮膜を形成する工程
を含む複層皮膜形成方法において、
上記カチオン電着塗料が、樹脂固形分の総量を基準にして、アミノ基含有エポキシ樹脂(A)40~88質量%、ブロック化ポリイソシアネート(B)10~50質量%、顔料分散樹脂(C)2~40質量%を含有し、カチオン電着塗料中の4級アンモニウム塩濃度が、塗料中の樹脂固形分当たり0.03mmol/g以下であることを特徴とする複層皮膜形成方法。
項2.工程2において、電着塗装の前の水洗工程の一部又は全部が省略されている、項1に記載の複層皮膜形成方法。
項3.上記顔料分散樹脂(C)として用いられる少なくとも1種の樹脂が、官能基として、スルホニウム塩基、3級アンモニウム塩基から選ばれる少なくとも1種を含有し、かつ顔料分散樹脂(C)として用いられる全ての樹脂を合計した樹脂固形分当たりの4級アンモニウム塩濃度が、0.7mmol/g以下であることを特徴とする前記項1又は2に記載の複層皮膜形成方法。
項4.上記工程2の電着塗装時において、金属被塗物に付着及び/又は滞積している溶液の電導度が、10,000μS/cm未満であることを特徴とする前記項1~3のいずれか1項に記載の複層皮膜形成方法。
項5.金属被塗物に付着及び/又は滞積している溶液のナトリウムイオン濃度が、該溶液の質量基準で、500ppm未満であることを特徴とする前記項1~4のいずれか1項に記載の複層皮膜形成方法。
項6.金属被塗物に付着及び/又は滞積している溶液のカリウムイオン濃度が、該溶液の質量基準で、500ppm未満であることを特徴とする前記項1~5のいずれか1項に記載の複層皮膜形成方法。
項7.金属被塗物に付着及び/又は滞積している溶液のカルシウムイオン濃度が、該溶液の質量基準で、500ppm未満であることを特徴とする前記項1~6のいずれか1項に記載の複層皮膜形成方法。
項8.金属被塗物に付着及び/又は滞積している溶液のマグネシウムイオン濃度が、該溶液の質量基準で、500ppm未満であることを特徴とする前記項1~7のいずれか1項に記載の複層皮膜形成方法。
項9.化成処理液が、ジルコニウム、チタン、コバルト、アルミニウム、バナジウム、タングステン、モリブデン、銅、亜鉛、インジウム、ビスマス、イットリウム、鉄、ニッケル、マンガン、ガリウム、銀及びランタノイド金属から選ばれる少なくとも1種の金属化合物からなる少なくとも1種の金属化合物成分(M)を合計金属量(質量換算)で30~20,000ppm含有することを特徴とする前記項1~8のいずれか1項に記載の複層皮膜形成方法。
項10.化成処理液がジルコニウム化合物を含む、項1~9のいずれか1項に記載の複層皮膜形成方法。
項11.化成処理液が、水分散性又は水溶性の樹脂組成物(P)を0.01~40質量%含有することを特徴とする前記項1~10のいずれか1項に記載の複層皮膜形成方法。
項12.工程2の電着塗装を施す前に、金属被塗物に対し、エアーブロー、揺動、回転から選ばれる少なくとも1種を行うことを特徴とする前記項1~11のいずれか1項に記載の複層皮膜形成方法。
項13.前記項1~12のいずれか1項に記載の複層皮膜形成方法を用いて複層皮膜を形成した塗装物品。
That is, the present invention provides the following multilayer film forming method and coated article. Item 1. The following processes for forming a chemical conversion treatment film and an electrodeposition coating film on a metal object:
Step 1: a step of immersing a metal coating in a chemical conversion treatment solution to form a chemical conversion treatment film,
Step 2: In a multilayer film forming method including a step of forming an electrodeposition coating film by electrodeposition-coating the metal coating using a cationic electrodeposition coating,
The cationic electrodeposition coating composition is based on the total amount of resin solids, amino group-containing epoxy resin (A) 40 to 88 mass%, blocked polyisocyanate (B) 10 to 50 mass%, pigment dispersion resin (C) A method for forming a multilayer film, comprising 2 to 40% by mass, wherein the quaternary ammonium salt concentration in the cationic electrodeposition coating is 0.03 mmol / g or less per resin solid content in the coating.
Item 2. Item 2. The method for forming a multilayer film according to Item 1, wherein, in Step 2, part or all of the water washing step before electrodeposition coating is omitted.
Item 3. At least one resin used as the pigment dispersion resin (C) contains at least one selected from a sulfonium base and a tertiary ammonium base as a functional group, and is used as the pigment dispersion resin (C). Item 3. The method for forming a multilayer film according to Item 1 or 2, wherein a concentration of the quaternary ammonium salt per resin solid content of the total resin is 0.7 mmol / g or less.
Item 4. Any one of Items 1 to 3 above, wherein the conductivity of the solution adhering to and / or accumulating on the metal object is less than 10,000 μS / cm at the time of electrodeposition coating in Step 2 above. The method for forming a multilayer film according to claim 1.
Item 5. Item 5. The item according to any one of Items 1 to 4, wherein the sodium ion concentration of the solution adhering to and / or stagnating on the metal coating is less than 500 ppm, based on the mass of the solution. A method for forming a multilayer film.
Item 6. Item 6. The item 1-5, wherein the potassium ion concentration of the solution adhering to and / or accumulating on the metal coating is less than 500 ppm, based on the mass of the solution. A method for forming a multilayer film.
Item 7. Item 7. The item according to any one of Items 1 to 6, wherein the calcium ion concentration of the solution adhering to and / or stagnating on the metal coating is less than 500 ppm, based on the mass of the solution. A method for forming a multilayer film.
Item 8. Item 8. The magnesium ion concentration of the solution adhering to and / or stagnating on the metal coating is less than 500 ppm, based on the mass of the solution, A method for forming a multilayer film.
Item 9. The chemical conversion treatment liquid is at least one metal compound selected from zirconium, titanium, cobalt, aluminum, vanadium, tungsten, molybdenum, copper, zinc, indium, bismuth, yttrium, iron, nickel, manganese, gallium, silver, and lanthanoid metal Item 9. The multilayer film formation according to any one of Items 1 to 8, wherein at least one metal compound component (M) comprising 30 to 20,000 ppm in terms of total metal amount (in terms of mass) is contained. Method.
Item 10. Item 10. The method for forming a multilayer film according to any one of Items 1 to 9, wherein the chemical conversion treatment solution contains a zirconium compound.
Item 11. Item 11. The multilayer coating formation according to any one of Items 1 to 10, wherein the chemical conversion treatment solution contains 0.01 to 40% by mass of a water-dispersible or water-soluble resin composition (P). Method.
Item 12. Item 12. The item 1 to item 11 above, wherein at least one selected from air blow, rocking, and rotation is performed on the metal object before the electrodeposition coating in step 2 is performed. A method for forming a multilayer film.
Item 13. 13. A coated article in which a multilayer coating is formed using the multilayer coating formation method according to any one of items 1 to 12.
 本発明の複層皮膜形成方法は、化成処理後に水洗工程の一部又は全部を省略したとしても、電着塗装性に影響を及ぼさず、仕上がり性や防食性に優れた塗装物品が得られる方法である。本発明の複層皮膜形成方法は、水洗工程の一部又は全部を省略することができる為、省工程化・省スペース化が可能となり、また、排水処理の各種設備や廃棄物を削減することができる。 The multilayer film forming method of the present invention is a method by which a coated article having excellent finish and anticorrosion properties can be obtained without affecting the electrodeposition coating properties even if part or all of the washing step is omitted after the chemical conversion treatment. It is. The multilayer film forming method of the present invention can omit part or all of the water washing step, thus enabling process saving and space saving, and reducing various wastewater treatment facilities and waste. Can do.
 本発明において、水洗工程の省略(一部又は全部を省略して省工程化・省スペース化)と仕上がり性及び防食性とを両立できる理由としては、確かなことはわかっていないが、以下の理由が考えられる。 In the present invention, the reason why it is possible to achieve both the omission of the water washing step (part or all of the steps to save the process and save space) and the finish and anticorrosiveness is not sure, but the following The reason can be considered.
 まず、主な理由として、水洗工程の一部又は全部を省略した場合、金属被塗物に付着・堆積している溶液の電導度が高い状態(金属被塗物の表面に高濃度で付着・堆積している状態)で、4級アンモニウム塩基含有化合物を含有するカチオン電着塗料を用いて電着塗装すると、4級アンモニウム塩基と化成処理液の成分とが凝集し、また、電導度の高い成分が複層皮膜に残ることから、仕上がり性及び/又は防食性が劣る結果になると考えられる。特に金属被塗物に付着・堆積している溶液のナトリウムイオン、カリウムイオン、カルシウムイオン及び/又はマグネシウムイオンなどのイオン成分が特定の濃度以上で含まれるとその傾向がより著しい。また、上記以外の理由としては、被塗物に付着、堆積した余分な化成処理液(ナトリウムイオン、カリウムイオン、カルシウムイオン、マグネシウムイオンなどを含む)が電着塗料槽内へ夾雑物として持ち込まれた場合、カチオン電着塗料が含有する4級アンモニウム塩基と上記夾雑物とが凝集して、仕上がり性、防食性が悪化する可能性も考えられる。 First, as a main reason, when part or all of the washing step is omitted, the conductivity of the solution adhering / depositing on the metal coating is high (adhering to the surface of the metal coating at a high concentration) When the electrodeposition coating is carried out using a cationic electrodeposition paint containing a quaternary ammonium base-containing compound in the deposited state), the quaternary ammonium base and components of the chemical conversion liquid are aggregated, and the electrical conductivity is high. Since the component remains in the multilayer film, it is considered that the finish and / or anticorrosion properties are inferior. In particular, when an ionic component such as sodium ion, potassium ion, calcium ion and / or magnesium ion of the solution adhering / depositing on the metal coating is contained at a specific concentration or more, the tendency is more remarkable. In addition, the reason other than the above is that extra chemical conversion treatment liquid (including sodium ions, potassium ions, calcium ions, magnesium ions, etc.) adhering to and deposited on the object to be coated is brought into the electrodeposition paint tank as impurities. In such a case, there is a possibility that the quaternary ammonium base contained in the cationic electrodeposition paint and the above-mentioned contaminants aggregate to deteriorate the finish and anticorrosion properties.
 そのため、本発明の複層皮膜形成方法としては、水洗工程の一部又は全部を省略する場合、少なくとも以下の2点などが効果的であると考えられる。
(1)カチオン電着塗料中には4級アンモニウム塩基を有する化合物をできる限り含有させない。さらに、カチオン電着塗料の構成成分の1つである顔料分散樹脂(C)の官能基としては、スルホニウム塩基、3級アンモニウム塩基から選ばれる少なくとも1種を含有し、かつ4級アンモニウム塩基をできる限り含有させない。
(2)金属被塗物に付着・堆積している溶液に含有するナトリウムイオン、カリウムイオン、カルシウムイオン及び/又はマグネシウムイオンなどの濃度を抑え、電導度を下げる。
Therefore, as a method for forming a multilayer film of the present invention, at least the following two points are considered effective when some or all of the water washing step is omitted.
(1) A compound having a quaternary ammonium base is not contained in the cationic electrodeposition coating as much as possible. Furthermore, the functional group of the pigment dispersion resin (C), which is one of the components of the cationic electrodeposition paint, contains at least one selected from sulfonium bases and tertiary ammonium bases, and can form a quaternary ammonium base. Do not contain as much as possible.
(2) The concentration of sodium ion, potassium ion, calcium ion and / or magnesium ion contained in the solution adhering to and depositing on the metal coating is suppressed to lower the conductivity.
図1は、従来からの複層皮膜形成方法を示した概略図である。FIG. 1 is a schematic view showing a conventional method for forming a multilayer film.
 本発明の1つの好ましい実施形態は以下の通りである。 One preferred embodiment of the present invention is as follows.
 化成処理槽と電着塗料槽とを具備する複層皮膜形成設備において、化成処理液を満たした化成処理槽に金属被塗物を浸漬し、通電を行わずに又は通電して、金属被塗物上に化成処理皮膜を形成する。次いで、水洗工程の一部又は全部を省略し、特定のカチオン電着塗料を満たした電着塗料槽に浸漬して電着塗装する複層皮膜形成方法に関する。
以下、詳細に述べる。
In a multi-layer coating formation facility comprising a chemical conversion treatment tank and an electrodeposition paint tank, a metal coating is immersed in a chemical conversion treatment tank filled with a chemical conversion treatment solution, and the metal coating is performed with or without energization. A chemical conversion film is formed on the object. Next, the present invention relates to a multilayer film forming method in which part or all of the washing step is omitted and the electrodeposition coating is performed by dipping in an electrodeposition coating tank filled with a specific cationic electrodeposition coating.
Details will be described below.
 被塗物
 本発明の複層皮膜形成方法で用いる金属被塗物としては、電着塗装が可能な金属被塗物によるものであれば特に制限はなく、冷延鋼板、合金化溶融亜鉛めっき鋼板、電気亜鉛めっき鋼板、電気亜鉛-鉄二層めっき鋼板、有機複合めっき鋼板、Al素材、Mg素材などの金属被塗物が挙げられ、これらは1種を単独で、若しくは2種以上の金属の合金又は2種以上の金属が組み合わさった被塗物でも好適に用いることができる。
また、上記金属被塗物は任意選択で脱脂、表面調整、水洗等を施したものであっても良い。
The metal coating used in the multilayer film forming method of the present invention is not particularly limited as long as it is a metal coating capable of electrodeposition coating, cold-rolled steel sheet, galvannealed steel sheet Galvanized steel sheet, electrogalvanized steel double-layer plated steel sheet, organic composite plated steel sheet, Al material, Mg material, etc., and these may be used alone or in combination of two or more metals. Alternatively, even an object to be coated in which two or more kinds of metals are combined can be suitably used.
Further, the metal coating may be optionally subjected to degreasing, surface adjustment, water washing and the like.
 化成処理液
 本発明の複層皮膜形成方法で用いる化成処理液の組成としては、以下の金属化合物成分(M)と、任意選択で水分散性又は水溶性の樹脂組成物(P)などが含有される。
Chemical conversion liquid The composition of the chemical conversion liquid used in the method for forming a multilayer film of the present invention includes the following metal compound component (M) and optionally a water-dispersible or water-soluble resin composition (P). Is done.
 金属化合物成分(M)
 本発明の複層皮膜形成方法で用いる化成処理液は、防食性及び仕上がり性の観点から、金属化合物成分(M)を合計金属量(質量換算)で30~20,000ppm含有することが好ましい。
Metal compound component (M)
The chemical conversion treatment liquid used in the method for forming a multilayer film of the present invention preferably contains 30 to 20,000 ppm of the total amount of metal (in terms of mass) of the metal compound component (M) from the viewpoint of corrosion resistance and finish.
 上記金属化合物成分(M)としては、例えば、ジルコニウム化合物、チタン、コバルト、アルミニウム、バナジウム、タングステン、モリブデン、銅、亜鉛、インジウム、ビスマス、イットリウム、鉄、ニッケル、マンガン、ガリウム、銀及びランタノイド金属(ランタン、セリウム、プラセオジム、ネオジウム、サマリウム、ユウロピウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、ルテチウム)などが挙げられる。金属化合物成分(M)がジルコニウム化合物を含むことが好ましい。これらは1種を単独で又は2種以上を併用して用いることができる。 Examples of the metal compound component (M) include zirconium compounds, titanium, cobalt, aluminum, vanadium, tungsten, molybdenum, copper, zinc, indium, bismuth, yttrium, iron, nickel, manganese, gallium, silver, and lanthanoid metals ( Lanthanum, cerium, praseodymium, neodymium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium, lutetium). The metal compound component (M) preferably contains a zirconium compound. These can be used alone or in combination of two or more.
 金属化合物成分(M)において使用されるジルコニウム化合物は、ジルコニウムイオン、オキシジルコニウムイオン、フルオロジルコニウムイオンなどのジルコニウム含有イオンを生じる化合物であり、ジルコニウムイオンを生じる化合物として、例えば、オキシジルコニウムイオンを生じる化合物としては、硝酸ジルコニル、酢酸ジルコニル、硫酸ジルコニルなど;フルオロジルコニウムイオンを生じる化合物としては、ジルコニウムフッ化水素酸、フッ化ジルコニウムナトリウム、フッ化ジルコニウムカリウム、フッ化ジルコニウムリチウム、フッ化ジルコニウムアンモニウムなどが挙げられる。これらのうち、特に、硝酸ジルコニル、フッ化ジルコニウムアンモニウムが好適である。 The zirconium compound used in the metal compound component (M) is a compound that generates a zirconium-containing ion such as a zirconium ion, an oxyzirconium ion, or a fluorozirconium ion. As a compound that generates a zirconium ion, for example, a compound that generates an oxyzirconium ion Zirconyl nitrate, zirconyl acetate, zirconyl sulfate, etc .; examples of compounds that generate fluorozirconium ions include zirconium hydrofluoric acid, sodium zirconium fluoride, potassium zirconium fluoride, lithium zirconium fluoride, and ammonium zirconium fluoride. It is done. Among these, zirconyl nitrate and zirconium ammonium fluoride are particularly preferable.
 チタンイオンを生じる化合物としては、例えば、塩化チタン、硫酸チタン、フルオロチタンイオンを生じる化合物としては、例えば、チタンフッ化水素酸、フッ化チタンナトリウム、フッ化チタンカリウム、フッ化チタンリチウム、フッ化チタンアンモニウムなどが挙げられる。これらのうち、特に、チタンフッ化アンモニウムが好適である。 Examples of compounds that generate titanium ions include titanium chloride, titanium sulfate, and compounds that generate fluorotitanium ions. Examples include titanium hydrofluoric acid, sodium titanium fluoride, potassium titanium fluoride, lithium titanium fluoride, and titanium fluoride. Ammonium etc. are mentioned. Among these, ammonium titanium fluoride is particularly preferable.
 コバルトイオンを生じる化合物としては、例えば、塩化コバルト、臭化コバルト、ヨウ化コバルト、硝酸コバルト、硫酸コバルト、酢酸コバルト、硫酸コバルトアンモニウムなどが挙げられる。これらのうち、特に、硝酸コバルトが好適である。 Examples of the compound that generates cobalt ions include cobalt chloride, cobalt bromide, cobalt iodide, cobalt nitrate, cobalt sulfate, cobalt acetate, and cobalt ammonium sulfate. Of these, cobalt nitrate is particularly preferred.
 アルミニウムイオンを生じる化合物としては、例えば、リン酸アルミニウム、硝酸アルミニウム、炭酸アルミニウム、硫酸アルミニウム、酢酸アルミニウム、蟻酸アルミニウム、シュウ酸アルミニウム、乳酸アルミニウム、マロン酸アルミニウム、酒石酸アルミニウム、アスコルビン酸アルミニウムなどが挙げられる。これらのうち、特に、硫酸アルミニウムが好適である。 Examples of the compound that generates aluminum ions include aluminum phosphate, aluminum nitrate, aluminum carbonate, aluminum sulfate, aluminum acetate, aluminum formate, aluminum oxalate, aluminum lactate, aluminum malonate, aluminum tartrate, and aluminum ascorbate. . Of these, aluminum sulfate is particularly preferred.
 バナジウムイオンを生じる化合物としては、例えば、オルソバナジン酸リチウム、オルソバナジン酸ナトリウム、メタバナジン酸リチウム、メタバナジン酸カリウム、メタバナジン酸ナトリウム、メタバナジン酸アンモニウム、ピロバナジン酸ナトリウム、塩化バナジル、硫酸バナジルなどが挙げられる。これらの中でも、特にメタバナジン酸アンモニウムが好適である。 Examples of the compound that generates vanadium ions include lithium orthovanadate, sodium orthovanadate, lithium metavanadate, potassium metavanadate, sodium metavanadate, ammonium metavanadate, sodium pyrovanadate, vanadyl chloride, and vanadyl sulfate. Among these, ammonium metavanadate is particularly preferable.
 タングステンイオンを生じる化合物としては、例えば、タングステン酸リチウム、タングステン酸ナトリウム、タングステン酸カリウム、タングステン酸アンモニウム、メタタングステン酸ナトリウム、パラタングステン酸ナトリウム、ペンタタングステン酸アンモニウム、ヘプタタングステン酸アンモニウム、リンタングステン酸ナトリウム、ホウタングステン酸バリウムなどが挙げられる。これらの中でも、特に、タングステン酸アンモニウムなどが好適である。 Examples of compounds that generate tungsten ions include lithium tungstate, sodium tungstate, potassium tungstate, ammonium tungstate, sodium metatungstate, sodium paratungstate, ammonium pentatungstate, ammonium heptungstate, sodium phosphotungstate. And barium borotungstate. Among these, ammonium tungstate is particularly preferable.
 モリブデンイオンを生じる化合物としては、例えば、モリブデン酸リチウム、モリブデン酸ナトリウム、モリブデン酸カリウム、ヘプタモリブデン酸アンモニウム、モリブデン酸カルシウム、モリブデン酸マグネシウム、モリブデン酸ストロンチウム、モリブデン酸バリウム、リンモリブデン酸、リンモリブデン酸ナトリウム、リンモリブデン酸亜鉛などが挙げられる。 Examples of compounds that generate molybdenum ions include lithium molybdate, sodium molybdate, potassium molybdate, ammonium heptamolybdate, calcium molybdate, magnesium molybdate, strontium molybdate, barium molybdate, phosphomolybdic acid, and phosphomolybdic acid. Examples thereof include sodium and zinc phosphomolybdate.
 銅イオンを生じる化合物としては、例えば、硫酸銅、硝酸銅(II)三水和物、硫酸銅(II)アンモニウム六水和物、酸化第二銅、リン酸銅などが挙げられる。
亜鉛イオンを生じる化合物としては、例えば、酢酸亜鉛、乳酸亜鉛、酸化亜鉛などが挙げられる。
Examples of compounds that generate copper ions include copper sulfate, copper (II) nitrate trihydrate, copper (II) ammonium sulfate hexahydrate, cupric oxide, and copper phosphate.
Examples of the compound that generates zinc ions include zinc acetate, zinc lactate, and zinc oxide.
 インジウムイオンを生じる化合物としては、例えば、硝酸インジウムアンモニウムなどが挙げられる。 Examples of the compound that generates indium ions include indium ammonium nitrate.
 ビスマスイオンを生じる化合物としては、例えば、塩化ビスマス、オキシ塩化ビスマス、臭化ビスマス、ケイ酸ビスマス、水酸化ビスマス、三酸化ビスマス、硝酸ビスマス、亜硝酸ビスマス、オキシ炭酸ビスマス等の無機系ビスマス含有化合物;乳酸ビスマス、トリフェニルビスマス、没食子酸ビスマス、安息香酸ビスマス、クエン酸ビスマス、メトキシ酢酸ビスマス、酢酸ビスマス、蟻酸ビスマス、2,2-ジメチロールプロピオン酸ビスマスなどが挙げられる。 Examples of compounds that generate bismuth ions include inorganic bismuth-containing compounds such as bismuth chloride, bismuth oxychloride, bismuth bromide, bismuth silicate, bismuth hydroxide, bismuth trioxide, bismuth nitrate, bismuth nitrite, and bismuth oxycarbonate. Bismuth lactate, triphenyl bismuth, bismuth gallate, bismuth benzoate, bismuth citrate, bismuth methoxyacetate, bismuth acetate, bismuth formate, and bismuth 2,2-dimethylolpropionate.
 イットリウムイオンを生じる化合物としては、例えば、硝酸イットリウム、酢酸イットリウム、塩化イットリウム、スルファミン酸イットリウム、乳酸イットリウム、蟻酸イットリウムなどが挙げられる。 Examples of the compound that generates yttrium ions include yttrium nitrate, yttrium acetate, yttrium chloride, yttrium sulfamate, yttrium lactate, and yttrium formate.
 鉄イオンを生じる化合物としては、塩化鉄(II)、塩化鉄(III)、クエン酸鉄(III)アンモニウム、シュウ酸鉄(III)アンモニウム、硝酸鉄(III)、フッ化鉄(III)、硫酸鉄(III)、硫酸アンモニウム鉄(III) などが挙げられる。 Compounds that produce iron ions include iron (II) chloride, iron (III) chloride, iron (III) ammonium citrate, iron (III) ammonium oxalate, iron (III) nitrate, iron (III) fluoride, sulfuric acid Examples thereof include iron (III) and ammonium iron (III) sulfate.
 ニッケルイオンを生じる化合物としては、塩化ニッケル(II)、酢酸ニッケル(II)、クエン酸ニッケル(II)、シュウ酸ニッケル(II)、硝酸ニッケル(II)、スルファミン酸ニッケル(II)、炭酸ニッケル(II)、硫酸ニッケル(II)、フッ化ニッケル(II) などが挙げられる。マンガンイオンを生じる化合物としては、酢酸マンガン(II)、酢酸マンガン(III)、シュウ酸マンガン(II)、硝酸マンガン(II)、炭酸マンガン(II)、硫酸マンガン(II)、硫酸マンガン(II)アンモニウムなどが挙げられる。 Compounds that produce nickel ions include nickel chloride (II), nickel acetate (II), nickel citrate (II), nickel oxalate (II), nickel nitrate (II), nickel sulfamate (II), nickel carbonate ( II), nickel sulfate (II), nickel fluoride (II) soot and the like. Compounds that produce manganese ions include manganese acetate (II), manganese acetate (III), manganese oxalate (II), manganese nitrate (II), manganese carbonate (II), manganese sulfate (II), manganese sulfate (II) Ammonium etc. are mentioned.
 ガリウムイオンを生じる化合物としては、硝酸ガリウムが挙げられる。 Examples of the compound that generates gallium ions include gallium nitrate.
 銀イオンを生じる化合物としては、酢酸銀(I)、塩化銀(I)、硝酸銀(I)、硫酸銀(I)が挙げられる。 Examples of compounds that generate silver ions include silver acetate (I), silver chloride (I), silver nitrate (I), and silver sulfate (I).
 また、ランタノイド金属化合物において、ランタンイオンを生じる化合物としては、例えば、硝酸ランタン、フッ化ランタン、酢酸ランタン、ホウ化ランタン、リン酸ランタン、炭酸ランタンなど;セリウムイオンを生じる化合物としては、例えば、硝酸セリウム(III)、塩化セリウム(III)、酢酸セリウム(III)、シュウ酸セリウム(III)、硝酸アンモニウムセリウム(III)、硝酸二アンモニウムセリウム(IV)など;プラセオジムイオンを生じる化合物としては、例えば、硝酸プラセオジム、硫酸プラセオジム、シュウ酸プラセオジムなど;ネオジムイオンを生じる化合物としては、例えば、硝酸ネオジム、酸化ネオジウムなどが挙げられる。 In the lanthanoid metal compound, examples of the compound that generates lanthanum ions include lanthanum nitrate, lanthanum fluoride, lanthanum acetate, lanthanum boride, lanthanum phosphate, and lanthanum carbonate; Cerium (III), cerium chloride (III), cerium acetate (III), cerium oxalate (III), ammonium cerium nitrate (III), diammonium cerium nitrate (IV), etc .; Examples of compounds that produce praseodymium ions include nitric acid Praseodymium, praseodymium sulfate, praseodymium oxalate and the like; Examples of compounds that generate neodymium ions include neodymium nitrate and neodymium oxide.
 さらに、上記金属化合物成分(M)は、任意選択で、アルカリ金属(リチウム、ナトリウム、カリウム、ルビジウム、セシウム、フランシウム)及びアルカリ土類金属(ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム、ラジウム)から選ばれる少なくとも1種の金属の化合物を含有することもできる。 Further, the metal compound component (M) is optionally selected from alkali metals (lithium, sodium, potassium, rubidium, cesium, francium) and alkaline earth metals (beryllium, magnesium, calcium, strontium, barium, radium). It is also possible to contain at least one metal compound.
 本発明で用いられる金属化合物成分(M)としては、少なくとも1種のジルコニウム化合物及び硝酸アルミニウムを含有することが好ましく、少なくとも1種のジルコニウム化合物を含有することがさらに好ましい。 The metal compound component (M) used in the present invention preferably contains at least one zirconium compound and aluminum nitrate, and more preferably contains at least one zirconium compound.
 水分散性又は水溶性の樹脂組成物(P)
 本発明の複層皮膜形成方法で用いる化成処理液は、任意選択で水分散性又は水溶性の樹脂組成物(P)0.01~40質量%を含有することができる。
Water-dispersible or water-soluble resin composition (P)
The chemical conversion treatment solution used in the multilayer film forming method of the present invention can optionally contain 0.01 to 40% by mass of a water-dispersible or water-soluble resin composition (P).
 該水分散性又は水溶性の樹脂組成物(P)としては、例えば、分子中にアミノ基、アンモニウム塩基、スルホニウム塩基、ホスホニウム塩基などの水性媒体中でカチオン化可能なカチオン性樹脂組成物が挙げられる。 Examples of the water-dispersible or water-soluble resin composition (P) include cationic resin compositions that can be cationized in an aqueous medium such as amino group, ammonium base, sulfonium base, and phosphonium base in the molecule. It is done.
 また、分子中にカルボキシル基、スルホン酸基、リン酸基などの水性媒体中でアニオン化可能な基を有するアニオン性樹脂組成物が挙げられる。該樹脂の種類としては、例えば、エポキシ樹脂系、アクリル樹脂系、ポリブタジエン樹脂系、アルキド樹脂系、ポリエステル樹脂系などが挙げられる。 In addition, an anionic resin composition having a group that can be anionized in an aqueous medium such as a carboxyl group, a sulfonic acid group, and a phosphoric acid group in the molecule. Examples of the resin include epoxy resin, acrylic resin, polybutadiene resin, alkyd resin, and polyester resin.
 これらの官能基の中でも、分子中にアミノ基を有するカチオン性樹脂組成物であることが、夾雑物としてカチオン電着塗料中に混入しても影響を及ぼすことがなく、かつ化成処理液が被覆された金属被塗物が、カチオン電着塗料槽に移送される間に発錆を抑制することや、得られた塗装物品の防食性向上の為にも好ましい。上記アミノ基を有するカチオン性樹脂組成物としては、特に制限はないが、アミノ基含有エポキシ樹脂、ポリアリルアミン、マンニッヒ変性アミノ化フェノール樹脂などが好適であり、これらは1種を単独で又は2種以上を併用して用いることができる。上記樹脂のアミン価としては、30~150mgKOH/g樹脂固形分の範囲であることが好ましく、60~130mgKOH/g樹脂固形分の範囲であることが更に好ましい。 Among these functional groups, the cationic resin composition having an amino group in the molecule has no effect even if it is mixed into the cationic electrodeposition paint as a contaminant, and is coated with the chemical conversion treatment liquid. The coated metal object is also preferred for suppressing rusting while being transferred to the cationic electrodeposition coating tank and for improving the corrosion resistance of the resulting coated article. The cationic resin composition having an amino group is not particularly limited, but an amino group-containing epoxy resin, polyallylamine, Mannich modified aminated phenol resin, and the like are preferable, and these may be used alone or in combination of two. The above can be used in combination. The amine value of the resin is preferably in the range of 30 to 150 mg KOH / g resin solids, and more preferably in the range of 60 to 130 mg KOH / g resin solids.
 上記水分散性又は水溶性の樹脂組成物(P)は、適宜に中和剤を加え、脱イオン水によって水分散してエマルションとすることによって、化成処理液の調製に用いることができる。 The water-dispersible or water-soluble resin composition (P) can be used for the preparation of a chemical conversion treatment liquid by appropriately adding a neutralizing agent and dispersing in water with deionized water to give an emulsion.
 化成処理液の成分として、上記樹脂の他に、分子中に非イオン性且つ高極性の官能基として水酸基及びオキシエチレン鎖などを含み、かつ水性媒体中で水分散又は水溶化可能な樹脂や化合物を用いることができる。このような樹脂や化合物として、具体的には、ポリビニルアルコール、ポリオキシエチレン、ポリビニルピロリドン、ポリオキシプロピレン、ヒドロキシエチルセルロース、ヒドロキシプロピルメチルセルロースなどが挙げられ、これらは1種を単独で又は2種以上を併用して用いることができる。 As a component of the chemical conversion treatment solution, in addition to the above-mentioned resin, a resin or compound containing a hydroxyl group and an oxyethylene chain as a nonionic and highly polar functional group in the molecule, and capable of being dispersed in water or water-soluble in an aqueous medium Can be used. Specific examples of such resins and compounds include polyvinyl alcohol, polyoxyethylene, polyvinylpyrrolidone, polyoxypropylene, hydroxyethylcellulose, hydroxypropylmethylcellulose, and the like. These may be used alone or in combination of two or more. It can be used in combination.
 化成処理液が樹脂組成物(P)を含有することで、電着塗料槽までの移送間において被塗物上の発錆を抑制できる。 When the chemical conversion treatment solution contains the resin composition (P), rusting on the object to be coated can be suppressed during the transfer to the electrodeposition coating tank.
 化成処理液の調整
 本発明の複層皮膜形成方法で用いる化成処理液の調製は、特に限定されないが、例えば、以下に述べる(1)~(3)の方法により行うことができる。
(1)脱イオン水並びに/若しくは水分散性又は水溶性の樹脂組成物(P)に、金属化合物成分(M)を加え、適宜に中和剤を添加し、さらに脱イオン水を加えて調整する方法。
(2)金属化合物成分(M)に、脱イオン水並びに/若しくは水分散化又は水溶化した樹脂組成物(P)を添加して調整する方法。
(3)あらかじめ作製した化成処理液に、金属化合物成分(M)並びに/若しくは水分散化又は水溶化した樹脂組成物(P)を添加し、さらに脱イオン水を加えて調整する方法。
Preparation of chemical conversion treatment solution used in the multilayer film forming method of adjusting the invention of the chemical conversion treatment solution is not particularly limited, for example, described below (1) can be carried out by the method to (3).
(1) Add metal compound component (M) to deionized water and / or water dispersible or water-soluble resin composition (P), add neutralizer as appropriate, and then add deionized water to adjust. how to.
(2) A method of adjusting the metal compound component (M) by adding deionized water and / or water-dispersed or water-soluble resin composition (P).
(3) A method in which a metal compound component (M) and / or a resin composition (P) dispersed in water or water-solubilized is added to a chemical conversion treatment solution prepared in advance, and deionized water is further added thereto for adjustment.
 上記化成処理液は、金属化合物成分(M)を、合計金属量(質量換算)で、通常30~20,000ppm、好ましくは50~10,000ppm、さらに好ましくは100~5,000ppm、さらに特に好ましくは150~2,000ppm含有し、さらに、化成処理液の質量に対し、任意選択で水分散性又は水溶性の樹脂組成物(P)を、通常0.01~40質量%、好ましくは0.02~10質量%、さらに好ましくは0.03~1質量%含有することができる。なお、pHは、1.0~8.0、好ましくは3.0~7.0の範囲内が好適である。 In the chemical conversion treatment liquid, the metal compound component (M) is generally 30 to 20,000 ppm, preferably 50 to 10,000 ppm, more preferably 100 to 5,000 ppm, and even more particularly preferable in terms of the total metal amount (in terms of mass). Is contained in an amount of 150 to 2,000 ppm, and the water-dispersible or water-soluble resin composition (P) is optionally added in an amount of 0.01 to 40% by mass, preferably 0. It can be contained in an amount of 02 to 10% by mass, more preferably 0.03 to 1% by mass. The pH is preferably in the range of 1.0 to 8.0, preferably 3.0 to 7.0.
 また、本発明の複層皮膜形成方法(工程1)で用いる化成処理液としては、該化成処理液中に含有されるナトリウムイオン濃度が、質量基準で通常2,000ppm未満であることが好適である。ナトリウムイオン濃度が2,000ppmよりも高くなると、水洗工程の一部又は全部を省略したときに、電着塗装での塗装性や塗膜の仕上がり性、防食性が劣る結果となることがある。化成処理液中に含有されるナトリウムイオン濃度は、質量基準で、通常2,000ppm未満であり、好ましくは1,000ppm未満であり、より好ましくは500ppm未満であり、更に好ましくは100ppm未満であることが好適である。 In addition, as the chemical conversion treatment liquid used in the method for forming a multilayer film of the present invention (step 1), it is preferable that the sodium ion concentration contained in the chemical conversion treatment liquid is usually less than 2,000 ppm on a mass basis. is there. If the sodium ion concentration is higher than 2,000 ppm, the paintability, finish of the coating film, and anticorrosion in electrodeposition coating may be inferior when part or all of the washing step is omitted. The concentration of sodium ions contained in the chemical conversion treatment liquid is usually less than 2,000 ppm, preferably less than 1,000 ppm, more preferably less than 500 ppm, and even more preferably less than 100 ppm on a mass basis. Is preferred.
 ナトリウムイオンが化成処理液中に含有される経路としては、例えば、原料である水、促進剤(亜硝酸ナトリウムなど)、前述の金属化合物成分(M)、中和剤、前工程で使用する脱脂液や洗浄水から持ち込まれるものなどが考えられる。例えば、製造ラインなどで化成処理液を連続して使用していると、徐々に化成処理成分が薄まるため、通常、随時補給液を添加することにより濃度が調整されている。しかし、補給液に微量に含まれる不純物成分(Naイオンなど)、又は前工程からの持ち込み成分が化成処理液中に徐々に蓄積し、性能に悪影響を及ぼすことになる。また、その不純物成分が被塗物に一定濃度以上付着・堆積し、さらに次工程である電着塗料浴に持ち込まれた場合も性能に悪影響を及ぼすことになる。本願は連続生産をした場合でも、化成処理液の特定のイオン濃度を一定以下に抑えることで良好な性能が得られるものである。 Examples of a route in which sodium ions are contained in the chemical conversion treatment liquid include, for example, water as a raw material, an accelerator (such as sodium nitrite), the above-described metal compound component (M), a neutralizing agent, and a degreasing agent used in the previous step. The thing brought in from a liquid and washing water etc. can be considered. For example, when the chemical conversion treatment solution is continuously used in a production line or the like, the chemical conversion treatment component gradually diminishes. Therefore, the concentration is usually adjusted by adding a replenishment solution as needed. However, impurity components (Na ions and the like) contained in a trace amount in the replenishing solution or components brought in from the previous process gradually accumulate in the chemical conversion treatment solution, which adversely affects performance. Further, when the impurity component adheres or accumulates on the object to be coated at a certain concentration or more and is brought into the electrodeposition paint bath as the next step, the performance is adversely affected. In the present application, even when continuous production is performed, good performance can be obtained by keeping the specific ion concentration of the chemical conversion treatment liquid below a certain level.
 上記と同様の理由で、化成処理液中に含有されるカリウムイオン濃度、カルシウムイオン濃度、及びマグネシウムイオン濃度についても、質量基準で、それぞれ通常2,000ppm未満であり、好ましくは1,000ppm未満であり、より好ましくは500ppm未満であり、更に好ましくは100ppm未満であることが好適である。 For the same reason as described above, the potassium ion concentration, calcium ion concentration, and magnesium ion concentration contained in the chemical conversion treatment liquid are also usually less than 2,000 ppm, preferably less than 1,000 ppm, on a mass basis. Yes, more preferably less than 500 ppm, still more preferably less than 100 ppm.
 上記化成処理液中に含有されるナトリウムイオン濃度、カリウムイオン濃度、カルシウムイオン濃度、及びマグネシウムイオン濃度の好ましい範囲は、全ての水洗工程を省略する場合、特に好適な範囲である。 The preferable ranges of sodium ion concentration, potassium ion concentration, calcium ion concentration, and magnesium ion concentration contained in the chemical conversion treatment solution are particularly preferable ranges when all water washing steps are omitted.
 尚、化成処理液中のナトリウムイオン濃度、カリウムイオン濃度、カルシウムイオン濃度及びマグネシウムイオン濃度については、原子吸光分析装置(商品名:ゼーマン原子吸光光度計、HITACHI社製)を用いて原子吸光分析法により求めることができる。 In addition, about the sodium ion concentration in a chemical conversion liquid, potassium ion concentration, calcium ion concentration, and magnesium ion concentration, atomic absorption spectrometry using an atomic absorption analyzer (brand name: Zeeman atomic absorption photometer, the product made by HITACHI). It can ask for.
 化成処理皮膜の形成方法
 上記化成処理皮膜の形成方法としては、特に限定されないが、例えば、金属被塗物を、化成処理液を満たした化成処理槽に、通常10~360秒間、好ましくは50~300秒間、さらに好ましくは70~240秒間浸漬して、金属被塗物上に化成処理皮膜を形成する方法(1)、金属被塗物を、化成処理液を満たした化成処理槽に浸漬し、金属被塗物を陰極として、通常1~50Vで10~360秒間、好ましくは2~30Vで30~180秒間通電する方法(2)などが挙げられる。本発明の方法においては、通電を行わない方法(1)でも外観ムラの抑制及び高い防食性を有する複層皮膜をえることができる。
The methods for forming the conversion coating of the chemical conversion film is not particularly limited, for example, a metal object to be coated, the chemical conversion treatment tank filled with a chemical conversion treatment liquid, usually 10 to for 360 seconds, preferably 50 to A method (1) of immersing for 300 seconds, more preferably 70 to 240 seconds to form a chemical conversion coating on the metal coating, immersing the metal coating in a chemical conversion bath filled with a chemical conversion solution, Examples include a method (2) in which a metal coating is used as a cathode, and a current is normally applied at 1 to 50 V for 10 to 360 seconds, preferably 2 to 30 V for 30 to 180 seconds. In the method of the present invention, a multilayer film having suppression of appearance unevenness and high anticorrosion properties can be obtained even in the method (1) in which no energization is performed.
 なお、化成処理皮膜の析出機構としては、浸漬又は通電によって、金属被塗物近傍のpH上昇により加水分解反応が起こり、化成処理液中の金属イオン種が難溶性の化成処理皮膜(金属酸化物及び/又は樹脂組成物(P)の一部)として金属被塗物上へ析出することにより、金属化合物成分(M)及び/又は樹脂組成物(P)を含んでなる化成処理皮膜が形成される。 In addition, as a precipitation mechanism of a chemical conversion treatment film, a hydrolysis reaction occurs due to a pH increase in the vicinity of a metal object by immersion or energization, and the metal ion species in the chemical conversion treatment solution is hardly soluble (metal oxide And / or a part of the resin composition (P)) is deposited on the metal article to form a chemical conversion film containing the metal compound component (M) and / or the resin composition (P). The
 また、該化成処理皮膜を形成した金属被塗物は、電着塗装前に適宜セッティングを施し、次いでカチオン電着塗料を満たしたカチオン電着塗料槽に浸漬して電着塗装することによって、該化成処理皮膜上に電着塗装塗膜を形成することができる。その際、本発明においては、電着塗装の前に従来2工程以上行われていた水洗工程の一部又は全部を省略することができる。 In addition, the metal coating on which the chemical conversion film is formed is appropriately set before electrodeposition coating, and then immersed in a cation electrodeposition paint tank filled with the cation electrodeposition paint to perform electrodeposition coating. An electrodeposition coating film can be formed on the chemical conversion film. In that case, in this invention, a part or all of the water washing process conventionally performed 2 steps or more before electrodeposition coating can be abbreviate | omitted.
 なお、本明細書において「水洗工程の一部又は全部を省略」とは、工業用水洗及び/又は上水水洗、並びに純水工程からなる少なくとも1種の水洗工程を省略することが可能であることを意味し、要求される塗膜性能に応じて適宜対応することができる。例えば、工業用水洗、上水水洗を省略し、純水水洗を1回だけ行う水洗工程は「水洗工程の一部又は全部を省略」に該当し、好ましい。従って、「水洗工程の一部又は全部を省略」するとは、例えば、(i)工業用水洗及び/又は上水水洗による水洗、ならびに(ii)純水による水洗の一方のみによる水洗を行うか、又は(i)(ii)のいずれも行わないことを示す。本発明においては、上記(i)及び(ii)の工程を共に行うものの、各工程の水の使用量を低減することにより、水の使用量の合計が上記(i)及び(ii)の工程の少なくとも一方を省略するのと同等になるような方法も、水使用量の観点からは実質的に上記(i)及び(ii)の工程の少なくとも一方を省略するのと同様であるため、「水洗工程の一部又は全部を省略」した方法に包含される。また、前述の通り、本願発明の方法は、水洗工程で出た排水の回収、濾過、処理、廃棄などにかかる設備や費用も含め、水洗工程にかかる時間、費用を低減するために水洗工程の一部又は全部を省略した方法に関するものである。従って、形式的に上記例示に該当する場合、例えば、(i)を行わず(ii)の純水洗浄のみを行う方法であっても、(i)及び(ii)を行うのと同等以上に十分に純水洗浄をする方法は、本発明の趣旨から、「水洗工程の一部を省略」したものに該当しないことは明らかである。また、例えば、従来、化成処理後の被塗物の水洗工程は、化成処理液を洗い流すために行われていたため、化成処理液が被塗物から十分に洗い流されていることを確認するため、最終水洗工程の水洗後の水の電導度を測定することにより管理がされている。例えば、最終水洗工程の水洗後の水の電導度が50μS/cm以下になったときに化成処理液が被塗物から十分に洗い流されたとして管理がされている。従って、最終水洗工程の水洗後の水の電導度が従来の水洗工程後の水の電導度よりも低くなるような水洗方法は、「水洗工程の一部又は全部を省略」に該当しないことは明らかである。 In the present specification, “a part or all of the water washing step is omitted” means that at least one water washing step consisting of industrial water washing and / or clean water washing and pure water can be omitted. This can be appropriately handled according to the required coating film performance. For example, a water washing process in which industrial water washing and clean water washing are omitted and pure water washing is performed only once corresponds to “a part or all of the water washing process is omitted” and is preferable. Therefore, “to omit part or all of the water washing step” means, for example, (i) washing with industrial water washing and / or water washing, and (ii) washing with only pure water, Or (i) indicates that neither of (ii) is performed. In the present invention, although the steps (i) and (ii) are performed together, the amount of water used in each step is reduced so that the total amount of water used is the steps (i) and (ii). The method that is equivalent to omitting at least one of the above is substantially the same as omitting at least one of the steps (i) and (ii) from the viewpoint of the amount of water used. It is included in a method in which part or all of the washing step is omitted. In addition, as described above, the method of the present invention includes a water washing process in order to reduce the time and cost of the water washing process, including facilities and expenses for collecting, filtering, treating, and discarding the wastewater discharged in the water washing process. It relates to a method in which part or all of the method is omitted. Therefore, when the above formally corresponds to the above example, for example, the method of performing only the pure water cleaning of (ii) without performing (i) is equal to or more than performing (i) and (ii). It is clear that the method of sufficiently washing with pure water does not fall under the scope of the present invention and does not correspond to “a part of the washing process is omitted”. In addition, for example, conventionally, the water washing step of the object to be coated after the chemical conversion treatment has been performed in order to wash away the chemical conversion liquid, so that the chemical conversion liquid is sufficiently washed away from the object to be coated, Management is performed by measuring the electrical conductivity of the water after the final water washing step. For example, it is managed that the chemical conversion liquid has been sufficiently washed away from the object to be coated when the electric conductivity of the water after the water washing in the final water washing step becomes 50 μS / cm or less. Therefore, the water washing method in which the electric conductivity of the water after the final water washing step is lower than the electric conductivity of the water after the conventional water washing step does not fall under “Omit part or all of the water washing step”. it is obvious.
 上記水洗方法としては、浸漬式と噴霧式(スプレー噴霧式、シャワー噴霧式)があり、本発明では、いずれの方法も好適に用いることができるが、省工程化・省スペース化、排水処理や廃棄物を削減する観点から、噴霧式水洗のみを行う水洗工程が好ましく、噴霧式水洗を1回のみ行う水洗工程がより好ましい。噴霧式水洗は、化成処理を施した被塗物表面に、水を通常1~120秒間、好ましくは2~60秒間噴霧することで、余分な化成処理液を取り除くことができるものである。上記噴霧式水洗としては、被塗物の形状が複雑な場合(例えば、自動車フレームなど)、全ての表面に直接噴霧することができないため、仕上がり外観が最も重要となる外面のみに噴霧することができる。従って、「水洗工程の一部又は全部を省略」するとしては、例えば、水を120秒間以下の時間、好ましくは60秒間以下の時間噴霧する工程を含む方法が挙げられる。上記方法には水洗を行わない方法も含まれる。 As the water washing method, there are an immersion method and a spray method (spray spray method, shower spray method), and any method can be suitably used in the present invention. From the viewpoint of reducing waste, a water washing step in which only spray-type water washing is performed is preferable, and a water washing step in which spray-type water washing is performed only once is more preferable. In the spray-type water washing, excess chemical conversion treatment liquid can be removed by spraying water on the surface of the coating material subjected to chemical conversion treatment for usually 1 to 120 seconds, preferably 2 to 60 seconds. As the spray-type water washing, when the shape of an object to be coated is complicated (for example, an automobile frame, etc.), it is not possible to spray directly on all surfaces, so that only the outer surface where the finished appearance is most important can be sprayed. it can. Therefore, “a part or all of the water washing step is omitted” includes, for example, a method including a step of spraying water for 120 seconds or less, preferably 60 seconds or less. The above method includes a method in which no water washing is performed.
 また、さらなる省工程化・省スペース化、排水処理や廃棄物を削減する観点から、浸漬式と噴霧式を含む、工業用水洗、上水水洗及び純水水洗などの全ての水洗工程を省略することが、特に好ましい。 Also, from the viewpoint of further process and space saving, wastewater treatment and waste reduction, all water washing processes such as industrial water washing, clean water washing and pure water washing, including immersion type and spray type, are omitted. It is particularly preferred.
 前記の電着塗装前に行うセッティングの条件としては、通常0~80℃、好ましくは5~50℃、さらに好ましくは10~40℃の温度で、通常10秒間~30分間、好ましくは20秒間~20分間、さらに好ましくは30秒間~15分間のセッティング時間を施すことによって、金属被塗物上に付着した余分な化成処理液を除去することができ、その結果、電着塗装性が良好で、仕上がり性及び/又は防食性の優れた複層皮膜を形成することができる。 The setting conditions performed before the electrodeposition coating are usually 0 to 80 ° C., preferably 5 to 50 ° C., more preferably 10 to 40 ° C., and usually 10 to 30 minutes, preferably 20 seconds to By applying a setting time of 20 minutes, more preferably 30 seconds to 15 minutes, it is possible to remove excess chemical conversion treatment liquid adhering to the metal object, and as a result, the electrodeposition coating property is good. A multi-layered film having excellent finish and / or anticorrosion properties can be formed.
 さらにセッティング中に、金属被塗物に対し、エアーブロー、揺動、回転から選ばれる少なくとも1種を適宜行うことにより、金属被塗物上に付着、堆積した余分な化成処理液を極力除去することができる。 Further, during the setting, the metal coating object is appropriately subjected to at least one selected from air blow, rocking, and rotation, thereby removing as much as possible the excess chemical conversion treatment liquid deposited and deposited on the metal coating object. be able to.
 上記エアーブローとしては、被塗物表面でのエアー圧として、通常、0.01~1.0MPa、好ましくは0.05~0.5MPa、通常1秒~10分間、好ましくは2秒~3分間、通常0~80℃、好ましくは10~60℃の温度で、空気を噴霧することで、被塗物上の余分な化成処理液を除くことができる。 As the air blow, the air pressure on the surface of the object to be coated is usually 0.01 to 1.0 MPa, preferably 0.05 to 0.5 MPa, usually 1 second to 10 minutes, preferably 2 seconds to 3 minutes. By spraying air at a temperature of usually 0 to 80 ° C., preferably 10 to 60 ° C., the excess chemical conversion treatment liquid on the object to be coated can be removed.
 続いて、得られた化成処理皮膜を形成した金属被塗物を、特定のカチオン電着塗料を満たしたカチオン電着槽に浸漬し、通電することによって、化成処理皮膜上に電着塗装を行う。 Subsequently, the metal coating on which the obtained chemical conversion coating is formed is immersed in a cationic electrodeposition tank filled with a specific cationic electrodeposition coating, and energized to perform electrodeposition coating on the chemical conversion coating. .
 本発明においては、カチオン電着塗料中の4級アンモニウム塩濃度を前述の範囲としていることにより、電着塗装をする直前の金属被塗物に付着及び/又は滞積している溶液の電導度が10,000μS/cm以上(例えば、10,000~12,000μS/cm)であっても、外観ムラが抑制され、防食性の高い複層皮膜を得ることができる。 In the present invention, by setting the quaternary ammonium salt concentration in the cationic electrodeposition coating within the above range, the electric conductivity of the solution adhering to and / or stagnating on the metal coating immediately before the electrodeposition coating is performed. Is 10,000 μS / cm or more (for example, 10,000 to 12,000 μS / cm), it is possible to obtain a multi-layered film having high anticorrosion properties by suppressing uneven appearance.
 しかし、本発明では、電着塗装をする直前の金属被塗物に付着及び/又は滞積している溶液の電導度が、10,000μS/cm未満の範囲であることが好ましい。また、より好ましくは、60μS/cmより高く、かつ7,000μS/cmより低い範囲であり、さらに好ましくは、60μS/cmより高く、かつ5,000μS/cmより低い範囲であり、さらに特に好ましくは、60μS/cmより高く、かつ2,000μS/cmより低い範囲であることが好適である。本発明において、「電着塗装時において」とは、「電着塗装をする直前において」を意味する。そして、「電着塗装をする直前」とは、前述の化成処理を行い、任意選択で水洗を行った後、かつ化成処理皮膜を形成した金属被塗物をカチオン電着槽に浸漬する前を意味する。 However, in the present invention, it is preferable that the conductivity of the solution adhering to and / or accumulating on the metal coating immediately before the electrodeposition coating is in a range of less than 10,000 μS / cm. More preferably, the range is higher than 60 μS / cm and lower than 7,000 μS / cm, more preferably higher than 60 μS / cm and lower than 5,000 μS / cm, and particularly preferably. The range is preferably higher than 60 μS / cm and lower than 2,000 μS / cm. In the present invention, “at the time of electrodeposition coating” means “just before electrodeposition coating”. And “immediately before electrodeposition coating” means that after performing the above-mentioned chemical conversion treatment, optionally washing with water, and before immersing the metal coating on which the chemical conversion treatment film is formed in the cationic electrodeposition bath. means.
 電導度を低くするためには十分な水洗工程が必要となり、省工程化・省スペース化が難しい。また、上記の範囲を超えて電導度が高い場合には得られる複層皮膜の仕上がり性及び防食性が劣ることとなる。 In order to reduce the electrical conductivity, a sufficient water washing process is required, and it is difficult to save process and space. Moreover, when the electrical conductivity is high beyond the above range, the finish and anticorrosive properties of the resulting multilayer film are inferior.
 また、電着塗装をする直前の金属被塗物に付着及び/又は滞積している溶液のナトリウムイオン濃度としては、該溶液の質量基準で、通常500ppm未満であり、好ましくは200ppm未満であり、より好ましくは100ppm未満であり、更に好ましくは50ppm未満であり、更に特に好ましくは10ppm未満であることが好適である。 The sodium ion concentration of the solution adhering to and / or staying on the metal coating immediately before electrodeposition coating is usually less than 500 ppm, preferably less than 200 ppm, based on the mass of the solution. More preferably, it is less than 100 ppm, more preferably less than 50 ppm, and still more preferably less than 10 ppm.
 同様に電着塗装をする直前の金属被塗物に付着及び/又は滞積している溶液のカリウムイオン濃度、カルシウムイオン濃度、及びマグネシウムイオン濃度についても、質量基準で、それぞれ通常500ppm未満であり、好ましくは200ppm未満であり、より好ましくは100ppm未満であり、更に好ましくは50ppm未満であり、更に特に好ましくは10ppm未満であることが好適である。 Similarly, the potassium ion concentration, calcium ion concentration, and magnesium ion concentration of the solution adhering to and / or accumulating on the metal object immediately before electrodeposition coating are usually less than 500 ppm on a mass basis. It is preferably less than 200 ppm, more preferably less than 100 ppm, even more preferably less than 50 ppm, and even more preferably less than 10 ppm.
 カチオン電着塗料
 本発明の複層皮膜形成方法(工程2)で用いるカチオン電着塗料は、樹脂成分として、アミノ基含有エポキシ樹脂(A)、ブロック化ポリイソシアネート(B)、顔料分散樹脂(C)を含有するものであり、樹脂固形分の総量を基準にして、アミノ基含有エポキシ樹脂(A)を、通常40~88質量%、好ましくは45~80質量%、さらに好ましくは50~75質量%の範囲内、ブロック化ポリイソシアネート(B)を、通常10~50質量%、好ましくは15~45質量%、さらに好ましくは20~40質量%の範囲内、顔料分散樹脂(C)を、通常2~40質量%、好ましくは3~30質量%、さらに好ましくは4~20質量%の範囲内で含有する。また、本発明では、上記カチオン電着塗料中の4級アンモニウム塩濃度が、塗料中の樹脂固形分当たり、通常0.03mmol/g以下であり、好ましくは0.02mmol/g以下であり、より好ましくは0.01mmol/g以下の範囲であることが好適である。この範囲を超えると4級アンモニウム塩基と化成処理液の成分とが凝集し、仕上がり性及び/又は防食性が劣る結果となる。
Cationic electrodeposition paint The cationic electrodeposition paint used in the method for forming a multilayer film of the present invention (step 2) comprises, as a resin component, an amino group-containing epoxy resin (A), a blocked polyisocyanate (B), and a pigment dispersion resin (C The amino group-containing epoxy resin (A) is usually 40 to 88% by mass, preferably 45 to 80% by mass, more preferably 50 to 75% by mass, based on the total amount of resin solids. %, The blocked polyisocyanate (B) is usually 10 to 50% by mass, preferably 15 to 45% by mass, more preferably 20 to 40% by mass, and the pigment dispersion resin (C) is usually It is contained in the range of 2 to 40% by mass, preferably 3 to 30% by mass, more preferably 4 to 20% by mass. In the present invention, the concentration of the quaternary ammonium salt in the cationic electrodeposition coating is usually 0.03 mmol / g or less, preferably 0.02 mmol / g or less, based on the resin solid content in the coating. Preferably it is 0.01 mmol / g or less. If this range is exceeded, the quaternary ammonium base and the components of the chemical conversion solution are aggregated, resulting in poor finish and / or anticorrosive properties.
 アミノ基含有エポキシ樹脂(A)
 上記アミノ基含有エポキシ樹脂(A)は、エポキシ樹脂(a1)と、アミン化合物(a2)と、さらに任意選択で変性剤とを反応せしめて得ることができ、例えば、(1)エポキシ樹脂と第1級アミン化合物、第2級アミン化合物又は第1、2級混合アミン化合物との付加物(例えば、米国特許第3,984,299号明細書参照);(2)エポキシ樹脂とケチミン化されたアミン化合物との付加物(例えば、米国特許第4,017,438号 明細書参照);(3)エポキシ樹脂とケチミン化された第1級アミノ基を有するヒドロキシ化合物とのエーテル化により得られる反応物(例えば、特開昭59-43013号公報参照)等のアミノ基含有エポキシ樹脂を挙げることがでる。
Amino group-containing epoxy resin (A)
The amino group-containing epoxy resin (A) can be obtained by reacting the epoxy resin (a1), the amine compound (a2), and optionally a modifier, for example, (1) epoxy resin and Adducts with primary amine compounds, secondary amine compounds, or primary and secondary mixed amine compounds (see, for example, US Pat. No. 3,984,299); (2) epoxy resin and ketiminated Adducts with amine compounds (see, for example, US Pat. No. 4,017,438); (3) Reactions obtained by etherification of epoxy resins with hydroxy compounds having primary amino groups ketiminated An amino group-containing epoxy resin such as a product (for example, see JP-A-59-43013) can be mentioned.
 エポキシ樹脂(a1)
 上記アミノ基含有エポキシ樹脂(A)の製造に使用されるエポキシ樹脂(a1)は、1分子中にエポキシ基を少なくとも1個、好ましくは2個以上有する化合物であり、その分子量は一般に少なくとも300、好ましくは400~4,000、さらに好ましくは800~2,500の範囲内の数平均分子量及び少なくとも160、好ましくは180~2,500、さらに好ましくは400~1,500の範囲内のエポキシ当量を有するものが適しており、特に、ポリフェノール化合物とエピハロヒドリンとの反応によって得られるエポキシ樹脂が好ましい。
Epoxy resin (a1)
The epoxy resin (a1) used for the production of the amino group-containing epoxy resin (A) is a compound having at least one, preferably two or more epoxy groups in one molecule, and its molecular weight is generally at least 300, Preferably a number average molecular weight in the range of 400 to 4,000, more preferably in the range of 800 to 2,500 and an epoxy equivalent weight in the range of at least 160, preferably 180 to 2,500, more preferably 400 to 1,500. What has it is suitable, The epoxy resin obtained by reaction of a polyphenol compound and an epihalohydrin is especially preferable.
 該エポキシ樹脂(a1)の形成のために用いられるポリフェノール化合物としては、例えば、ビス(4-ヒドロキシフェニル)-2,2-プロパン[ビスフェノールA]、ビス(4-ヒドロキシフェニル)メタン[ビスフェノールF]、ビス(4-ヒドロキシシクロヘキシル)メタン[水添ビスフェノールF]、2,2-ビス(4-ヒドロキシシクロヘキシル)プロパン[水添ビスフェノールA]、4,4’-ジヒドロキシベンゾフェノン、ビス(4-ヒドロキシフェニル)-1,1-エタン、ビス(4-ヒドロキシフェニル)-1,1-イソブタン、ビス(4-ヒドロキシ-3-tert-ブチル-フェニル)-2,2-プロパン、ビス(2-ヒドロキシナフチル)メタン、テトラ(4-ヒドロキシフェニル)-1,1,2,2-エタン、4,4’-ジヒドロキシジフェニルスルホン、フェノールノボラック、クレゾールノボラックなどを挙げることができ、これらは1種を単独で、又は2種以上を組み合わせて用いることができる。 Examples of the polyphenol compound used for forming the epoxy resin (a1) include bis (4-hydroxyphenyl) -2,2-propane [bisphenol A] and bis (4-hydroxyphenyl) methane [bisphenol F]. Bis (4-hydroxycyclohexyl) methane [hydrogenated bisphenol F], 2,2-bis (4-hydroxycyclohexyl) propane [hydrogenated bisphenol A], 4,4′-dihydroxybenzophenone, bis (4-hydroxyphenyl) -1,1-ethane, bis (4-hydroxyphenyl) -1,1-isobutane, bis (4-hydroxy-3-tert-butyl-phenyl) -2,2-propane, bis (2-hydroxynaphthyl) methane Tetra (4-hydroxyphenyl) -1,1,2,2-ethane 4,4'-dihydroxydiphenyl sulfone, phenol novolak, and the like can be illustrated cresol novolak, they may be used in combination singly or two or more.
 また、ポリフェノール化合物とエピクロルヒドリンとの反応によって得られるエポキシ樹脂(a1)としては、中でも、ビスフェノールAから誘導される下記式の樹脂が好適である。 Further, as the epoxy resin (a1) obtained by the reaction of the polyphenol compound and epichlorohydrin, a resin represented by the following formula derived from bisphenol A is particularly preferable.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 ここで、n=0~8で示されるものが好適である。 Here, n = 0 to 8 are preferable.
 かかるエポキシ樹脂(a1)の市販品としては、例えば、三菱化学(株)から、jER828EL、jER1002、jER1004、jER1007なる商品名で販売されているものが挙げられる。 Examples of the commercially available epoxy resin (a1) include those sold by Mitsubishi Chemical Corporation under the trade names jER828EL, jER1002, jER1004, and jER1007.
 また、上記ビスフェノール型エポキシ樹脂は、例えばエピクロルヒドリンとビスフェノールとを、任意選択でアルカリ触媒などの触媒の存在下に高分子量まで縮合させてなる樹脂、エピクロルヒドリンとビスフェノールとを、任意選択でアルカリ触媒などの触媒の存在下に、縮合させて低分子量のエポキシ樹脂とし、この低分子量エポキシ樹脂とビスフェノールとを重付加反応させることにより得られた樹脂のいずれであってもよい。 Further, the bisphenol type epoxy resin is, for example, a resin obtained by condensing epichlorohydrin and bisphenol up to a high molecular weight in the presence of a catalyst such as an alkali catalyst, and optionally epichlorohydrin and bisphenol. Any of resins obtained by condensing into a low molecular weight epoxy resin in the presence of a catalyst and polyaddition reaction of the low molecular weight epoxy resin and bisphenol may be used.
 なお、本明細書において、数平均分子量及び重量平均分子量は、ゲルパーミエーションクロマトグラフ(GPC)を用いて測定した保持時間(保持容量)を、同一条件で測定した分子量既知の標準ポリスチレンの保持時間(保持容量)によりポリスチレンの分子量に換算して求めた値である。具体的には、ゲルパーミュエーションクロマトグラフとして、「HLC8120GPC」(商品名、東ソー社製)を使用し、カラムとして、「TSKgel G-4000HXL」、「TSKgel G-3000HXL」、「TSKgel G-2500HXL」及び「TSKgel G-2000HXL」(商品名、いずれも東ソー社製)の4本を使用し、移動相テトラヒドロフラン、測定温度40℃、流速1mL/min及び検出器RIの条件下で測定することができる。 In this specification, the number average molecular weight and the weight average molecular weight are the retention time (retention capacity) measured using a gel permeation chromatograph (GPC) and the retention time of a standard polystyrene with a known molecular weight measured under the same conditions. (Retention capacity) is a value obtained by converting to the molecular weight of polystyrene. Specifically, “HLC8120GPC” (trade name, manufactured by Tosoh Corporation) is used as a gel permeation chromatograph, and “TSKgel G-4000HXL”, “TSKgel G-3000HXL”, “TSKgel G-2500HXL” are used as columns. ”And“ TSKgel G-2000HXL ”(trade names, all manufactured by Tosoh Corporation), and can be measured under the conditions of mobile phase tetrahydrofuran, measurement temperature 40 ° C., flow rate 1 mL / min, and detector RI. it can.
 アミン化合物(a2)
 上記アミノ基含有エポキシ樹脂(A)の原料であるアミン化合物(a2)としては、上記エポキシ樹脂(a1)との反応性を有するアミン化合物であれば特に限定されず、例えば、モノメチルアミン、ジメチルアミン、モノエチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、ジヘキシルアミン、ジオクチルアミン、モノイソプロピルアミン、ジイソプロピルアミン、モノブチルアミン、モノオクチルアミン、メチルブチルアミン、ジブチルアミンなどのモノ-アルキルアミン又はジ-アルキルアミン;モノエタノールアミン、N-メチルエタノールアミン、N-エチルエタノールアミン、ジエタノールアミン、モノ(2-ヒドロキシプロピル)アミン、ジ(2-ヒドロキシプロピル)アミン、N-ブチルエタノールアミン、ジプロパノールアミン、モノメチルアミノエタノール、N-(2-ヒドロキシプロピル)エチレンジアミン、3-メチルアミン-1,2-プロパンジオール、3-tert-ブチルアミノ-1,2-プロパンジオール、N-メチルグルカミン、N-オクチルグルカミンなどのアルカノールアミン;ポリメチレンジアミン、ポリエーテルジアミン、エチレンジアミン、プロピレンジアミン、ブチレンジアミン、ヘキサメチレンジアミン、トリメチルヘキサメチレンジアミン、ジメチルアミノプロピルアミン、ジエチレントリアミン、ジエチルアミノプロピルアミン、ジプロピレントリアミン、ジブチレントリアミン、ビス(ヘキサメチレン)トリアミン、ビス(4-アミノブチル)アミン、トリエチレンテトラミン、テトラエチレンペンタミン、ペンタエチレンヘキサアミンなどのアルキレンポリアミン;メンセンジアミン、イソホロンジアミン、ビス(4-アミノ-3-メチルシクロヘキシル)メタン、メタキシリレンジアミン、メタフェニレンジアミン、ナフチレンジアミン、ジメチルアミノメチルベンゼンなどの芳香族又は脂環族ポリアミン;ピペラジン、1-メチルピペラジン、3-ピロリジノール、3-ピぺリジノール、4-ピロリジノールなどの複素環を有するポリアミン;上記ポリアミン1モルに対しエポキシ基含有化合物を1~30モル付加させることによって得られるエポキシ付加ポリアミン;上記ポリアミンと芳香族酸無水物、環状脂肪族酸無水物、脂肪族酸無水物、ハロゲン化酸無水物及び/又はダイマー酸との縮合によって生成するポリアミド樹脂の分子中に1個以上の1級又は2級アミンを含有するポリアミドポリアミン;上記ポリアミン中の1個以上の1級又は2級アミンとケトン化合物とを反応せしめたケチミン化アミン;などを挙げることができ、これらは1種を単独で又は2種以上を組み合わせて用いることができる。上記ケチミン化アミンを製造するためのケトン化合物としては、上記ポリアミンの1級又は2級アミンと反応してケチミン化合物となり、さらに水性塗料組成物中で加水分解するものであれば特に制限はなく使用でき、例えば、メチルイソプロピルケトン(MIPK)、ジイソブチルケトン(DIBK)、メチルイソブチルケトン(MIBK)、ジエチルケトン(DEK)、エチルブチルケトン(EBK)、エチルプロピルケトン(EPK)、ジプロピルケトン(DPK)、メチルエチルケトン(MEK)などが挙げられる。中でも、メチルイソブチルケトン(MIBK)が好ましい。これらのケトンは1種を単独で又は2種以上を併用して用いることができる。
Amine compound (a2)
The amine compound (a2) which is a raw material of the amino group-containing epoxy resin (A) is not particularly limited as long as it is an amine compound having reactivity with the epoxy resin (a1). For example, monomethylamine, dimethylamine Mono-alkylamines such as monoethylamine, diethylamine, dipropylamine, dibutylamine, dihexylamine, dioctylamine, monoisopropylamine, diisopropylamine, monobutylamine, monooctylamine, methylbutylamine, dibutylamine; Monoethanolamine, N-methylethanolamine, N-ethylethanolamine, diethanolamine, mono (2-hydroxypropyl) amine, di (2-hydroxypropyl) amine, N-butylethanolamine Dipropanolamine, monomethylaminoethanol, N- (2-hydroxypropyl) ethylenediamine, 3-methylamine-1,2-propanediol, 3-tert-butylamino-1,2-propanediol, N-methylglucamine, Alkanolamines such as N-octylglucamine; polymethylenediamine, polyetherdiamine, ethylenediamine, propylenediamine, butylenediamine, hexamethylenediamine, trimethylhexamethylenediamine, dimethylaminopropylamine, diethylenetriamine, diethylaminopropylamine, dipropylenetriamine, Dibutylene triamine, bis (hexamethylene) triamine, bis (4-aminobutyl) amine, triethylenetetramine, tetraethylenepentamine, pen Alkylene polyamines such as ethylene hexaamine; aromatics such as mensendiamine, isophoronediamine, bis (4-amino-3-methylcyclohexyl) methane, metaxylylenediamine, metaphenylenediamine, naphthylenediamine, dimethylaminomethylbenzene, or Alicyclic polyamines; polyamines having a heterocyclic ring such as piperazine, 1-methylpiperazine, 3-pyrrolidinol, 3-piperidinol, 4-pyrrolidinol; 1 to 30 mol of an epoxy group-containing compound is added to 1 mol of the polyamine. Polyepoxy-added polyamine obtained by the above-described process; a polyamide resin molecule formed by condensation of the polyamine with an aromatic acid anhydride, cycloaliphatic acid anhydride, aliphatic acid anhydride, halogenated acid anhydride and / or dimer acid 1 or more inside Polyamide polyamines containing the above primary or secondary amines; ketiminated amines obtained by reacting one or more primary or secondary amines in the above polyamines with a ketone compound; Species can be used alone or in combination of two or more. The ketone compound for producing the ketiminated amine is not particularly limited as long as it reacts with the primary or secondary amine of the polyamine to form a ketimine compound and further hydrolyzes in the aqueous coating composition. For example, methyl isopropyl ketone (MIPK), diisobutyl ketone (DIBK), methyl isobutyl ketone (MIBK), diethyl ketone (DEK), ethyl butyl ketone (EBK), ethyl propyl ketone (EPK), dipropyl ketone (DPK) And methyl ethyl ketone (MEK). Of these, methyl isobutyl ketone (MIBK) is preferable. These ketones can be used alone or in combination of two or more.
 アミノ基含有エポキシ樹脂(A)のアミン価としては、40~80mgKOH/g、好ましくは45~65mgKOH/gとすることが、塗膜の耐乾きムラ性と防食性の点から好ましい。 The amine value of the amino group-containing epoxy resin (A) is preferably 40 to 80 mgKOH / g, more preferably 45 to 65 mgKOH / g, from the viewpoint of dryness unevenness and anticorrosion of the coating film.
 変性剤
 上記アミノ基含有エポキシ樹脂(A)は、任意選択で、変性剤により変性されたものであってよい。このような変性剤は、エポキシ樹脂(a1)との反応性を有する樹脂や化合物であれば特に限定されず、例えば、酢酸、プロピオン酸、酪酸、吉草酸、アクリル酸、オレイン酸、グリコール酸、乳酸、安息香酸、没食子酸、脂肪酸、二塩基酸などの酸性化合物、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、2-ブタノール、ペンタノール、ヘキサノール、n-オクタノール、2-エチルヘキサノール、ドデシルアルコール、ステアリルアルコール、ベンジルアルコールなどの一価アルコール、ポリオール、ポリエーテルポリオール、ポリエステルポリオール、ポリアミドアミン、ポリイソシアネート化合物、γ-ブチロラクトンやε-カプロラクトンなどのラクトン類、ε-カプロラクトンなどのラクトン類とポリイソシアネート化合物を反応させた化合物、アクリルモノマー、アクリルモノマーを重合反応させた化合物、キシレンホルムアルデヒド化合物などが挙げられ、これらは、1種を単独で又は2種以上を組み合わせて用いることが出来る。
Modifier The amino group-containing epoxy resin (A) may be optionally modified with a modifier. Such a modifier is not particularly limited as long as it is a resin or compound having reactivity with the epoxy resin (a1). For example, acetic acid, propionic acid, butyric acid, valeric acid, acrylic acid, oleic acid, glycolic acid, Acidic compounds such as lactic acid, benzoic acid, gallic acid, fatty acid, dibasic acid, methanol, ethanol, n-propanol, isopropanol, n-butanol, 2-butanol, pentanol, hexanol, n-octanol, 2-ethylhexanol, Monohydric alcohols such as dodecyl alcohol, stearyl alcohol, benzyl alcohol, polyols, polyether polyols, polyester polyols, polyamidoamines, polyisocyanate compounds, lactones such as γ-butyrolactone and ε-caprolactone, lactos such as ε-caprolactone Examples include compounds obtained by reacting polyisocyanates with polyisocyanate compounds, acrylic monomers, compounds obtained by polymerization reaction of acrylic monomers, xylene formaldehyde compounds, etc., and these can be used alone or in combination of two or more. .
 上記のエポキシ樹脂(a1)、アミン化合物(a2)、さらに任意選択で使用される変性剤との反応は、通常、適当な有機溶媒中で、約80~約170℃、好ましくは約90~約150℃の温度で1~6時間程度、好ましくは1~5時間程度で行なうことができる。 The reaction with the above-mentioned epoxy resin (a1), amine compound (a2), and optional modifier is usually carried out in an appropriate organic solvent at about 80 to about 170 ° C., preferably about 90 to about The reaction can be performed at a temperature of 150 ° C. for about 1 to 6 hours, preferably about 1 to 5 hours.
 上記の有機溶媒としては、例えば、トルエン、キシレン、シクロヘキサン、n-ヘキサンなどの炭化水素系;酢酸メチル、酢酸エチル、酢酸ブチルなどのエステル系;アセトン、メチルエチルケトン、メチルイソブチルケトン、メチルアミルケトンなどのケトン系;ジメチルホルムアミド、ジメチルアセトアミドなどのアミド系;メタノール、エタノール、n-プロパノール、iso-プロパノールなどのアルコール系、エチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル等のエーテルアルコール系化合物;あるいはこれらの有機溶媒の混合物が挙げられる。 Examples of the organic solvent include hydrocarbons such as toluene, xylene, cyclohexane, and n-hexane; esters such as methyl acetate, ethyl acetate, and butyl acetate; acetone, methyl ethyl ketone, methyl isobutyl ketone, methyl amyl ketone, and the like. Ketones; Amides such as dimethylformamide and dimethylacetamide; Alcohols such as methanol, ethanol, n-propanol and iso-propanol; Ether alcohols such as ethylene glycol monobutyl ether and diethylene glycol monoethyl ether; or these organic solvents Of the mixture.
 上記の変性剤の使用割合は、厳密に制限されるものではなく、カチオン電着塗料組成物の用途等に応じて適宜変えることができるが、仕上り性や防食性向上の点から、アミノ基含有エポキシ樹脂(A)の固形分質量を基準にして3~50質量%、好ましくは5~30質量%の範囲内が適当である。 The use ratio of the above modifier is not strictly limited, and can be appropriately changed depending on the use of the cationic electrodeposition coating composition, but from the viewpoint of improving finish and anticorrosion properties, amino group-containing A suitable range is 3 to 50% by weight, preferably 5 to 30% by weight, based on the solid content of the epoxy resin (A).
 また、本発明で用いるアミノ基含有エポキシ樹脂(A)としては、特に制限はなく、上記以外に、オキサゾリドン環を含有したエポキシ樹脂に、アミノ基含有化合物を反応させてなるアミノ基含有エポキシ樹脂(例えば、特開平5-306327号公報);アルキレンオキサイド構造を有するエポキシ樹脂にアミノ基含有化合物を反応させてなるアミノ基含有変性エポキシ樹脂(例えば、特開2011-847723号公報);エポキシ樹脂に、キシレンホルムアルデヒド樹脂及びアミノ基含有化合物を反応させてなるキシレンホルムアルデヒド樹脂変性アミノ基含有エポキシ樹脂(例えば、特開2003-221547号公報)なども適宜任意選択で用いることができ、これらは1種を単独で又は2種以上を併用して用いることができる。 The amino group-containing epoxy resin (A) used in the present invention is not particularly limited. In addition to the above, an amino group-containing epoxy resin obtained by reacting an amino group-containing compound with an epoxy resin containing an oxazolidone ring ( For example, JP-A-5-306327); an amino group-containing modified epoxy resin obtained by reacting an epoxy resin having an alkylene oxide structure with an amino group-containing compound (for example, JP-A-2011-847723); A xylene formaldehyde resin-modified amino group-containing epoxy resin (for example, JP-A No. 2003-221547) obtained by reacting a xylene formaldehyde resin and an amino group-containing compound can also be optionally used as appropriate. Or in combination of two or more
 ブロック化ポリイソシアネート(B)
 上記ブロック化ポリイソシアネート(B)は、ポリイソシアネート化合物とイソシアネートブロック剤との付加反応による生成物である。ブロック化ポリイソシアネート(B)で使用されるポリイソシアネート化合物としては、公知のものを特に制限無く使用することができ、例えば、トリレンジイソシアネート、キシリレンジイソシアネート、フェニレンジイソシアネート、ジフェニルメタン-2,2’-ジイソシアネート、ジフェニルメタン-2,4’-ジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート、クルードMDI[ポリメチレンポリフェニルイソシアネート]などの芳香族ポリイソシアネート化合物;ビス(イソシアネートメチル)シクロヘキサン、イソホロンジイソシアネートなどの脂環族ポリイソシアネート化合物;テトラメチレンジイソシアネート、ヘキサメチレンジイソシアネート、メチレンジイソシアネートなどの脂肪族ポリイソシアネート化合物;これらのポリイソシアネート化合物の環化重合体又はビゥレット体;又はこれらの組合せが挙げられる。
Blocked polyisocyanate (B)
The blocked polyisocyanate (B) is a product obtained by an addition reaction between a polyisocyanate compound and an isocyanate blocking agent. As the polyisocyanate compound used in the blocked polyisocyanate (B), known compounds can be used without any particular limitation. For example, tolylene diisocyanate, xylylene diisocyanate, phenylene diisocyanate, diphenylmethane-2,2'- Aromatic polyisocyanate compounds such as diisocyanate, diphenylmethane-2,4′-diisocyanate, diphenylmethane-4,4′-diisocyanate, crude MDI [polymethylene polyphenylisocyanate]; alicyclic rings such as bis (isocyanatemethyl) cyclohexane, isophorone diisocyanate Polyisocyanate compounds; aliphatic polyisocyanates such as tetramethylene diisocyanate, hexamethylene diisocyanate, and methylene diisocyanate Compound; cyclic polymer or biuret of these polyisocyanate compounds; or combinations thereof.
 防食性向上の観点から、特にトリレンジイソシアネート、キシリレンジイソシアネート、フェニレンジイソシアネート、ジフェニルメタン-2,4’-ジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート、クルードMDI等の芳香族ポリイソシアネート化合物を用いることが好ましい。 From the viewpoint of improving anticorrosion properties, it is particularly preferable to use aromatic polyisocyanate compounds such as tolylene diisocyanate, xylylene diisocyanate, phenylene diisocyanate, diphenylmethane-2,4′-diisocyanate, diphenylmethane-4,4′-diisocyanate, crude MDI, and the like. preferable.
 一方、前記イソシアネートブロック剤は、ポリイソシアネート化合物のイソシアネート基に付加してブロックするものであり、付加反応によって生成するブロック化ポリイソシアネート化合物は、常温において安定であるが、塗膜の焼付け温度(通常約100~約200℃)に加熱した際、ブロック剤が解離して遊離のイソシアネート基を再生する。 On the other hand, the isocyanate blocking agent is added and blocked to the isocyanate group of the polyisocyanate compound, and the blocked polyisocyanate compound produced by the addition reaction is stable at room temperature, but the coating baking temperature (usually When heated to about 100 to about 200 ° C.), the blocking agent dissociates to regenerate free isocyanate groups.
 ブロック化ポリイソシアネート(B)で使用されるイソシアネートブロック剤としては、公知のものを特に制限無く使用することができ、例えば、メチルエチルケトオキシム、シクロヘキサノンオキシムなどのオキシム系化合物;フェノール、パラ-t-ブチルフェノール、クレゾールなどのフェノール系化合物;n-ブタノール、2-エチルヘキサノール、フェニルカルビノール、メチルフェニルカルビノール、エチレングリコールモノブチルエーテル、ジエチレングリコールモノエチルエーテル、エチレングリコール、プロピレングリコールなどのアルコール系化合物;ε-カプロラクタム、γ-ブチロラクタムなどのラクタム系化合物;マロン酸ジメチル、マロン酸ジエチル、アセト酢酸エチル、アセト酢酸メチル、アセチルアセトンなどの活性メチレン系化合物等が挙げられ、これらは1種を単独で又は2種以上を組み合わせて用いることができる。 As the isocyanate blocking agent used in the blocked polyisocyanate (B), known ones can be used without particular limitation. For example, oxime compounds such as methyl ethyl ketoxime and cyclohexanone oxime; phenol, para-t-butylphenol Phenol compounds such as cresol; alcohol compounds such as n-butanol, 2-ethylhexanol, phenyl carbinol, methyl phenyl carbinol, ethylene glycol monobutyl ether, diethylene glycol monoethyl ether, ethylene glycol, propylene glycol; ε-caprolactam Lactam compounds such as γ-butyrolactam; dimethyl malonate, diethyl malonate, ethyl acetoacetate, methyl acetoacetate, acetylacetone And the like, and these can be used singly or in combination of two or more.
 顔料分散用樹脂(C)
 上記顔料分散用樹脂(C)は、顔料分散樹脂として用いられる少なくとも1種の樹脂が、官能基として、スルホニウム塩基、3級アンモニウム塩基から選ばれる少なくとも1種を含有し、かつ上記顔料分散樹脂(C)として用いられる全ての樹脂を合計した樹脂固形分当たりの4級アンモニウム塩濃度が、通常0.7mmol/g以下であり、好ましくは0.5mmol/g以下であり、より好ましくは0.3mmol/g以下であり、さらに好ましくは0.1mmol/g以下の範囲であれば、公知のものが使用できる。例えば、水酸基及びカチオン性基を有するエポキシ樹脂やアクリル樹脂、界面活性剤等、又は3級アンモニウム塩型エポキシ樹脂、4級アンモニウム塩型エポキシ樹脂、3級スルホニウム塩型エポキシ樹脂、4級スルホニウム塩型エポキシ樹脂、4級ホスホニウム塩基型エポキシ樹脂などが挙げられ、これらは1種を単独で又は2種以上を組み合わせて使用できる。   
Resin for pigment dispersion (C)
In the pigment dispersion resin (C), at least one resin used as the pigment dispersion resin contains at least one selected from sulfonium base and tertiary ammonium base as a functional group, and the pigment dispersion resin ( The concentration of quaternary ammonium salt per resin solid content obtained by adding all the resins used as C) is usually 0.7 mmol / g or less, preferably 0.5 mmol / g or less, more preferably 0.3 mmol. If it is / g or less, More preferably, if it is the range of 0.1 mmol / g or less, a well-known thing can be used. For example, an epoxy resin or acrylic resin having a hydroxyl group and a cationic group, a surfactant, or a tertiary ammonium salt type epoxy resin, a quaternary ammonium salt type epoxy resin, a tertiary sulfonium salt type epoxy resin, a quaternary sulfonium salt type An epoxy resin, a quaternary phosphonium base type epoxy resin, etc. are mentioned, These can be used individually by 1 type or in combination of 2 or more types.
 なお、本発明に記載の3級アンモニウム塩基とは、3級アミノ基の1部又は全部を酸により中和して3級化した官能基のことである。 In addition, the tertiary ammonium base described in the present invention is a functional group that is tertiary by neutralizing one part or all of the tertiary amino group with an acid.
 上記顔料分散樹脂(C)により、顔料を分散して、顔料分散ペーストを得ることができる。 A pigment dispersion paste can be obtained by dispersing the pigment with the pigment dispersion resin (C).
 カチオン電着塗料のその他の成分
 本発明のカチオン電着塗料は、上記(A)、(B)及び(C)以外の樹脂成分として、任意選択で、エポキシ樹脂と多価アルコールとを反応せしめて得られるアミノ基を実質的に有さない変性エポキシ樹脂、多塩基酸と多価アルコールとを反応せしめて得られるポリエステル樹脂など、公知のものを含有することができる。
上記カチオン電着塗料に変性エポキシ樹脂及び/又はポリエステル樹脂を含有する場合、含有量としては、(A)、(B)及び(C)成分の固形分合計100質量部を基準にして、通常3~50質量部、好ましくは10~45質量%の範囲内である。
Other components of the cationic electrodeposition coating The cationic electrodeposition coating of the present invention is optionally made by reacting an epoxy resin with a polyhydric alcohol as a resin component other than the above (A), (B) and (C). Known products such as a modified epoxy resin having substantially no amino group and a polyester resin obtained by reacting a polybasic acid and a polyhydric alcohol can be contained.
When the cationic electrodeposition paint contains a modified epoxy resin and / or a polyester resin, the content is usually 3 based on the total solid content of 100 parts by weight of the components (A), (B) and (C). It is in the range of ˜50 parts by mass, preferably 10 to 45% by mass.
 上記カチオン電着塗料は、さらに任意選択で、界面活性剤や表面調整剤等の各種添加剤、水や有機溶剤及び中和剤などを十分に混合して、水溶化又は水分散化して得ることができる。 The above cationic electrodeposition coating is optionally further obtained by sufficiently mixing various additives such as a surfactant and a surface conditioner, water, an organic solvent, a neutralizing agent, etc., and making it water-soluble or water-dispersed. Can do.
 上記中和剤としては、公知の有機酸及び無機酸を特に制限なく用いることができ、なかでもギ酸、乳酸、酢酸又はこれらの混合物が好適である。 As the neutralizing agent, known organic acids and inorganic acids can be used without particular limitation, and formic acid, lactic acid, acetic acid or a mixture thereof is particularly preferable.
 上記顔料分散ペーストとしては、着色顔料、防錆顔料及び体質顔料などの顔料をあらかじめ微細粒子に分散したものであって、例えば、顔料分散用樹脂(C)、中和剤及び顔料類を配合し、ボールミル、サンドミル、ペブルミル等の分散混合機中で分散処理して、顔料分散ペーストを調製できる。 As the pigment dispersion paste, pigments such as colored pigments, rust preventive pigments and extender pigments are dispersed in advance in fine particles, for example, a pigment dispersion resin (C), a neutralizing agent and pigments are blended. The pigment dispersion paste can be prepared by dispersing in a dispersion mixer such as a ball mill, sand mill, or pebble mill.
 上記顔料類には、特に制限なく使用でき、例えば、酸化チタン、カーボンブラック、ベンガラ等の着色顔料;クレー、マイカ、バリタ、炭酸カルシウム、シリカなどの体質顔料;リンモリブデン酸アルミニウム、トリポリリン酸アルミニウム、酸化亜鉛(亜鉛華)等の防錆顔料;などが挙げられる。 The pigments can be used without particular limitation, for example, colored pigments such as titanium oxide, carbon black, bengara, etc .; extender pigments such as clay, mica, barita, calcium carbonate, silica; aluminum phosphomolybdate, aluminum tripolyphosphate, And anticorrosive pigments such as zinc oxide (zinc white).
 さらに、腐食抑制などを目的として、ビスマス化合物を含有させることができる。上記ビスマス化合物としては、例えば、酸化ビスマス、水酸化ビスマス、塩基性炭酸ビスマス、硝酸ビスマス、ケイ酸ビスマス、及び乳酸ビスマス、サリチル酸ビスマスなどの有機酸ビスマス等を用いることができる。 Furthermore, a bismuth compound can be included for the purpose of inhibiting corrosion. Examples of the bismuth compound include bismuth oxide, bismuth hydroxide, basic bismuth carbonate, bismuth nitrate, bismuth silicate, and organic acid bismuth such as bismuth lactate and bismuth salicylate.
 また、塗膜硬化性の向上を目的として、例えば、ジブチル錫ジベンゾエート、ジオクチル錫オキサイド、ジブチル錫オキサイト゛等の有機錫化合物を用いることができる。 Also, for the purpose of improving coating film curability, for example, organic tin compounds such as dibutyltin dibenzoate, dioctyltin oxide, dibutyltin oxide and the like can be used.
 電着塗装
 本発明の複層皮膜形成方法(工程2)で用いるカチオン電着塗料は、化成処理皮膜を形成せしめた金属被塗物に、水洗工程の一部又は全部を省略し、電着塗装することができる。上記電着塗装は、一般的には、カチオン電着塗料を脱イオン水等で希釈して、固形分濃度が約5~40質量%、好ましくは8~25質量%、pHが1.0~9.0、好ましくは3.0~7.0の範囲内の塗料浴を準備し、さらに浴温15~35℃、負荷電圧100~400Vの条件で被塗物を陰極として通電することによって行うことができる。
Electrodeposition coating The cationic electrodeposition paint used in the method for forming a multilayer film according to the present invention (step 2) omits part or all of the water-washing process on the metal coating on which the chemical conversion treatment film has been formed. can do. In the electrodeposition coating, generally, a cationic electrodeposition paint is diluted with deionized water or the like, and the solid content concentration is about 5 to 40% by mass, preferably 8 to 25% by mass, and the pH is 1.0 to 1.0%. A coating bath in the range of 9.0, preferably 3.0 to 7.0 is prepared, and further, the substrate is energized as a cathode under conditions of a bath temperature of 15 to 35 ° C. and a load voltage of 100 to 400 V. be able to.
 電着塗装後、通常、被塗物に余分に付着したカチオン電着塗料を除去するために、限外濾過液(UF濾液)、逆浸透透過水(RO水)、工業用水、純水等で十分に水洗される。 After electrodeposition coating, in order to remove the cationic electrodeposition paint that has usually adhered to the object, ultrafiltration (UF filtrate), reverse osmosis permeate (RO water), industrial water, pure water, etc. Thoroughly washed with water.
 カチオン電着塗料を塗装して得られた電着塗膜の膜厚は、特に制限されるものではないが、一般的には、乾燥塗膜に基づいて5~40μm、好ましくは10~30μmの範囲内とすることができる。また、塗膜の焼き付け乾燥は、電着塗膜を電気熱風乾燥機、ガス熱風乾燥機などの乾燥設備を用いて、塗装物表面の温度で110~200℃、好ましくは140~180℃にて、時間としては10~180分間、好ましくは20~60分間、電着塗膜を加熱して行うことができる。上記焼付け乾燥により硬化塗膜を得ることができる。 The film thickness of the electrodeposition coating film obtained by applying the cationic electrodeposition coating is not particularly limited, but is generally 5 to 40 μm, preferably 10 to 30 μm, based on the dry coating film. Can be within range. The coating film is baked and dried at a temperature of 110 to 200 ° C., preferably 140 to 180 ° C., on the surface of the coating using a drying facility such as an electric hot air dryer or a gas hot air dryer. The time can be set by heating the electrodeposition coating film for 10 to 180 minutes, preferably 20 to 60 minutes. A cured coating film can be obtained by baking and drying.
 以下、製造例、実施例及び比較例により、本発明をさらに詳細に説明するが、本発明はこれに限定されるものではない。各例中の「部」は質量部、「%」は質量%、「ppm」は質量ppmを示す。 Hereinafter, the present invention will be described in more detail with reference to production examples, examples and comparative examples, but the present invention is not limited thereto. In each example, “part” means mass part, “%” means mass%, and “ppm” means mass ppm.
 化成処理液の製造
 製造例1
 脱イオン水をディスパーで強撹拌しながら、ヘキサフルオロジルコニウム酸、並びにあらかじめ脱イオン水で希釈した硝酸アルミニウム、硝酸カルシウム及び硝酸カリウムを配合した。
Manufacture example 1 of chemical conversion treatment liquid
While the deionized water was vigorously stirred with a disper, hexafluorozirconic acid and aluminum nitrate, calcium nitrate and potassium nitrate previously diluted with deionized water were blended.
 更に上水及び/又は脱イオン水を用いて希釈を行い、硝酸、硝酸ナトリウム、硝酸アンモニウム、硝酸マグネシウム、フッ化水素酸、アンモニア及び/又は水酸化ナトリウムを配合し、最終的に、pHが3.8、金属元素としてジルコニウムイオンが600ppm、アルミニウムイオンが120ppm、ナトリウムイオンが85ppm、カリウムイオンが85ppm、カルシウムイオンが85ppm、マグネシウムイオンが85ppmとなるように調整して、化成処理液X-1を得た。 Furthermore, it dilutes using clean water and / or deionized water, and mix | blends nitric acid, sodium nitrate, ammonium nitrate, magnesium nitrate, hydrofluoric acid, ammonia, and / or sodium hydroxide, and finally pH is 3. 8. The chemical conversion solution X-1 was obtained by adjusting the metal elements to 600 ppm zirconium ions, 120 ppm aluminum ions, 85 ppm sodium ions, 85 ppm potassium ions, 85 ppm calcium ions, and 85 ppm magnesium ions. It was.
 製造例2~31
下記表1で示す組成とする以外は、製造例1と同様に配合を行い、化成処理液X-2~31を得た。
Production Examples 2-31
Except for the composition shown in Table 1 below, compounding was conducted in the same manner as in Production Example 1 to obtain chemical conversion liquids X-2 to 31.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 尚、表中の配合量は全て質量単位の固形分濃度(ppm)である。
(注1)P-1:PAA-01(商品名、日東紡績社製、ポリアリルアミン、重量平均分子量1,600)
(注2)P-2:マンニッヒ変性アミノ化フェノール樹脂〔撹拌機、温度計、滴下ロートおよび還流冷却器を取付けたフラスコに、マルカリンカーS-2P(商品名、丸善石油化学社製、ポリ-4-ビニルフェノール)120部、エチレングリコールモノブチルエーテル120部を加えて90℃に昇温し、ポリ-4-ビニルフェノールを溶解させた。次いで、モノメチルエタールアミン35部、37%のホルマリン40部、エチレングリコールモノブチルエーテル10部を加え、90℃で4時間反応させた後、さらにエチレングリコールモノブチルエーテルを加え、固形分40%に調整した。〕。
In addition, all the compounding quantities in a table | surface are solid content concentration (ppm) of a mass unit.
(Note 1) P-1: PAA-01 (trade name, manufactured by Nitto Boseki Co., Ltd., polyallylamine, weight average molecular weight 1,600)
(Note 2) P-2: Mannich-modified aminated phenol resin [Into a flask equipped with a stirrer, thermometer, dropping funnel and reflux condenser, Marcalinker S-2P (trade name, manufactured by Maruzen Petrochemical Co., Ltd., Poly- 120 parts of 4-vinylphenol) and 120 parts of ethylene glycol monobutyl ether were added and the temperature was raised to 90 ° C. to dissolve poly-4-vinylphenol. Subsequently, 35 parts of monomethyl ether amine, 40 parts of 37% formalin and 10 parts of ethylene glycol monobutyl ether were added and reacted at 90 ° C. for 4 hours, and then ethylene glycol monobutyl ether was further added to adjust the solid content to 40%. ].
 製造例32
亜鉛イオン:1,500ppm
ニッケルイオン:500ppm
リン酸イオン:13,500ppm
フッ素イオン:500ppm
硝酸イオン:6,000ppm
亜硝酸イオン:100ppm
ナトリウムイオン:85ppm
カルシウムイオン:85ppm
カリウムイオン:85ppm
マグネシウムイオン:85ppm
上記組成の化成処理液X-32を調整した。
Production Example 32
Zinc ion: 1,500ppm
Nickel ion: 500ppm
Phosphate ion: 13,500ppm
Fluorine ion: 500ppm
Nitrate ion: 6,000ppm
Nitrite ion: 100ppm
Sodium ion: 85ppm
Calcium ion: 85ppm
Potassium ion: 85ppm
Magnesium ion: 85ppm
A chemical conversion solution X-32 having the above composition was prepared.
 製造例33
亜鉛イオン:1,500ppm
ニッケルイオン:500ppm
リン酸イオン:13,500ppm
フッ素イオン:500ppm
硝酸イオン:6,000ppm
亜硝酸イオン:100ppm
ナトリウムイオン:300ppm
カルシウムイオン:300ppm
カリウムイオン:300ppm
マグネシウムイオン:300ppm
上記組成の化成処理液X-33を調整した。
Production Example 33
Zinc ion: 1,500ppm
Nickel ion: 500ppm
Phosphate ion: 13,500ppm
Fluorine ion: 500ppm
Nitrate ion: 6,000ppm
Nitrite ion: 100ppm
Sodium ion: 300ppm
Calcium ion: 300ppm
Potassium ion: 300ppm
Magnesium ion: 300ppm
A chemical conversion solution X-33 having the above composition was prepared.
 アミノ基含有エポキシ樹脂(A)の製造
 製造例34
 攪拌機、温度計、窒素導入管および還流冷却器を取りつけたフラスコに、jER828EL(商品名、三菱化学株式会社製、エポキシ樹脂)1200部に、ビスフェノールA 500部及びジメチルベンジルアミン0.2部を加え、130℃でエポキシ当量850になるまで反応させた。
Production and production example 34 of amino group-containing epoxy resin (A)
To a flask equipped with a stirrer, thermometer, nitrogen inlet tube and reflux condenser, add 1200 parts of jER828EL (trade name, manufactured by Mitsubishi Chemical Corporation, epoxy resin), 500 parts of bisphenol A and 0.2 part of dimethylbenzylamine. The reaction was continued at 130 ° C. until the epoxy equivalent was 850.
 次に、ジエタノールアミン160部及びジエチレントリアミンとメチルイソブチルケトンとのケチミン化物65部を加え、120~130℃の温度で3時間反応させた後、エチレングリコールモノブチルエーテル480gを加え、固形分80%のアミノ基含有エポキシ樹脂A-1を得た。 Next, 160 parts of diethanolamine and 65 parts of a ketimine product of diethylenetriamine and methyl isobutyl ketone were added and reacted at a temperature of 120 to 130 ° C. for 3 hours. Then, 480 g of ethylene glycol monobutyl ether was added, and an amino group having a solid content of 80% was added. A contained epoxy resin A-1 was obtained.
 ブロック化ポリイソシアネート(B)の製造
 製造例35
 反応容器中に、コスモネートM-200(商品名、三井化学社製、クルードMDI、NCO基含有率 31.3%)270部、及びメチルイソブチルケトン127部を加え70℃に昇温した。この中にエチレングリコールモノブチルエーテル236部を1時間かけて滴下して加え、その後100℃に昇温し、この温度を保ちながら経時でサンプリングし、赤外線吸収スペクトル測定にて未反応のイソシアネート基の吸収がなくなったことを確認し、樹脂固形分80%のブロック化ポリイソシアネートB-1を得た。
Production and production example 35 of blocked polyisocyanate (B)
In a reaction vessel, 270 parts of Cosmonate M-200 (trade name, manufactured by Mitsui Chemicals, Crude MDI, NCO group content: 31.3%) and 127 parts of methyl isobutyl ketone were added and heated to 70 ° C. In this, 236 parts of ethylene glycol monobutyl ether was added dropwise over 1 hour, and then the temperature was raised to 100 ° C., sampled over time while maintaining this temperature, and absorption of unreacted isocyanate groups by infrared absorption spectrum measurement As a result, it was confirmed that blocked polyisocyanate B-1 having a resin solid content of 80% was obtained.
 顔料分散用樹脂(C)の製造
 製造例36
 撹拌機、温度計、滴下ロートおよび還流冷却器を取り付けたフラスコに、jER828EL(商品名、三菱化学株式会社製、エポキシ樹脂)1010部に、ビスフェノールAを390部、プラクセル212(商品名、ポリカプロラクトンジオール、ダイセル化学工業株式会社、重量平均分子量約1,250)240部及びジメチルベンジルアミン0.2部を加え、130℃でエポキシ当量が約1090になるまで反応させた。次に、エチレングリコールモノブチルエーテル150部、ジエタノールアミン105部およびN-メチルエタノールアミン34部を加え、140℃でエポキシ基が消失するまで反応させた。次いで、エチレングリコールモノブチルエーテルを加えて固形分を調整し、固形分60%の3級アンモニウム塩基を含有する顔料分散用樹脂C-1を得た。
Production and Production Example 36 for Pigment Dispersing Resin (C)
To a flask equipped with a stirrer, thermometer, dropping funnel and reflux condenser, jER828EL (trade name, manufactured by Mitsubishi Chemical Corporation, epoxy resin) 1010 parts, bisphenol A 390 parts, Placcel 212 (trade name, polycaprolactone) Diol, Daicel Chemical Industries, Ltd., 240 parts by weight average molecular weight 1,250) and 0.2 parts dimethylbenzylamine were added and reacted at 130 ° C. until the epoxy equivalent was about 1090. Next, 150 parts of ethylene glycol monobutyl ether, 105 parts of diethanolamine and 34 parts of N-methylethanolamine were added and reacted at 140 ° C. until the epoxy group disappeared. Next, ethylene glycol monobutyl ether was added to adjust the solid content to obtain a pigment-dispersing resin C-1 containing a tertiary ammonium base having a solid content of 60%.
 製造例37
 撹拌機、温度計、滴下ロートおよび還流冷却器を取り付けたフラスコに、ノニルフェノール450部、CNE195LB(商品名、長春ジャパン株式会社製、クレゾール型ノボラックエポキシ樹脂、ノボラック型フェノール樹脂のグリシジルエーテル化物)960部を仕込み、混合撹拌しながら徐々に加熱し、160℃で2時間反応させた。 次に 、ε-カプロラクトン430部を仕込み、170℃に昇温し、2時間反応させた。続いて、エチレングリコールモノブチルエーテル200部、ジエタノールアミン105部およびN-メチルエタノールアミン124部を反応させ、エポキシ基が消失するまで反応させた。次いで、エチレングリコールモノブチルエーテルを加えて固形分を調整し、固形分60%の3級アンモニウム塩基を含有する顔料分散用樹脂C-2を得た。
Production Example 37
In a flask equipped with a stirrer, thermometer, dropping funnel and reflux condenser, 450 parts of nonylphenol, CNE195LB (trade name, manufactured by Changchun Japan Co., Ltd., cresol type novolac epoxy resin, glycidyl etherified product of novolac type phenol resin) 960 parts Was gradually heated with mixing and stirring, and reacted at 160 ° C. for 2 hours. Next, 430 parts of ε-caprolactone was charged, and the temperature was raised to 170 ° C. and reacted for 2 hours. Subsequently, 200 parts of ethylene glycol monobutyl ether, 105 parts of diethanolamine and 124 parts of N-methylethanolamine were reacted until the epoxy group disappeared. Next, ethylene glycol monobutyl ether was added to adjust the solid content to obtain a pigment-dispersing resin C-2 containing a tertiary ammonium base having a solid content of 60%.
 製造例38
 撹拌機、温度計、滴下ロートおよび還流冷却器を取り付けたフラスコに、jER828EL(商品名、三菱化学株式会社製、エポキシ樹脂)1010部に、ビスフェノールAを390部、プラクセル212(商品名、ポリカプロラクトンジオール、ダイセル化学工業株式会社、重量平均分子量約1,250)240部及びジメチルベンジルアミン0.2部を加え、130℃でエポキシ当量が約1090になるまで反応させた。次に、エチレングリコールモノブチルエーテル200部、チオジグリコール122部、ジメチロールプロピオン酸200部及び脱イオン水100部を加え、75℃でエポキシ基が消失するまで反応させた。次いで、プロピレングリコールモノメチルエーテルを加えて固形分を調整し、固形分60%の3級スルホニウム塩基を含有する顔料分散用樹脂C-3を得た。
Production Example 38
To a flask equipped with a stirrer, thermometer, dropping funnel and reflux condenser, jER828EL (trade name, manufactured by Mitsubishi Chemical Corporation, epoxy resin) 1010 parts, bisphenol A 390 parts, Placcel 212 (trade name, polycaprolactone) Diol, Daicel Chemical Industries, Ltd., 240 parts by weight average molecular weight 1,250) and 0.2 parts dimethylbenzylamine were added and reacted at 130 ° C. until the epoxy equivalent was about 1090. Next, 200 parts of ethylene glycol monobutyl ether, 122 parts of thiodiglycol, 200 parts of dimethylolpropionic acid and 100 parts of deionized water were added and reacted at 75 ° C. until the epoxy group disappeared. Next, propylene glycol monomethyl ether was added to adjust the solid content to obtain a pigment-dispersing resin C-3 containing a tertiary sulfonium base having a solid content of 60%.
 製造例39
 撹拌機、温度計、滴下ロートおよび還流冷却器を取り付けたフラスコに、jER828EL(商品名、三菱化学株式会社製、エポキシ樹脂)1010部に、ビスフェノールAを390部、プラクセル212(商品名、ポリカプロラクトンジオール、ダイセル化学工業株式会社、重量平均分子量約1,250)240部及びジメチルベンジルアミン0.2部を加え、130℃でエポキシ当量が約1090になるまで反応させた。次に、ジメチルエタノールアミン134部及び濃度90%の乳酸水溶液150部を加え、90℃でエポキシ基が消失するまで反応させた。次いで、プロピレングリコールモノメチルエーテルを加えて固形分を調整し、固形分60%の4級アンモニウム塩基を含有する顔料分散用樹脂C-4を得た。顔料分散用樹脂C-4の4級アンモニウム塩濃度は0.78mmol/gである。
Production Example 39
To a flask equipped with a stirrer, thermometer, dropping funnel and reflux condenser, jER828EL (trade name, manufactured by Mitsubishi Chemical Corporation, epoxy resin) 1010 parts, bisphenol A 390 parts, Placcel 212 (trade name, polycaprolactone) Diol, Daicel Chemical Industries, Ltd., 240 parts by weight average molecular weight 1,250) and 0.2 parts dimethylbenzylamine were added and reacted at 130 ° C. until the epoxy equivalent was about 1090. Next, 134 parts of dimethylethanolamine and 150 parts of a 90% strength lactic acid aqueous solution were added and reacted at 90 ° C. until the epoxy group disappeared. Next, propylene glycol monomethyl ether was added to adjust the solid content to obtain a pigment dispersion resin C-4 containing a quaternary ammonium base having a solid content of 60%. The concentration of the quaternary ammonium salt of the pigment dispersing resin C-4 is 0.78 mmol / g.
 製造例40
 フラスコにトリレンジイシシアネート(TDI)696部、メチルイソブチルケトオキシム(MIBK) 304部 を加えて60℃に昇温し、2エチルヘキシルアルコール520部を滴下し、NCO価110.5になるまで反応させ、樹脂固形分80%の部分ブロックイソシアネートAを得た。
Production Example 40
To the flask was added 696 parts of tolylene diisocyanate (TDI) and 304 parts of methyl isobutyl ketoxime (MIBK), the temperature was raised to 60 ° C., 520 parts of 2-ethylhexyl alcohol was added dropwise, and the reaction was continued until the NCO value was 110.5. A partially blocked isocyanate A having a resin solid content of 80% was obtained.
 次にこの部分ブロックイソシアネートA 380部を取り、70℃でジメチルエタノールアミン89部を滴下し、実質的にNCOが無くなるまで反応させ、エチレングリコールモノブチルエーテル34.75部で希釈した後、90%の乳酸100部で中和して80%の乳酸中和アミノ基含有ブロックイソシアネートBを得た。
別のフラスコに、jER828EL(商品名、三菱化学株式会社製、エポキシ樹脂 、エポキシ当量188)1125部、ビスフェノールA 456部及びトリフェニルホスホニュウムアイオダイト1.1 部を加え、170℃でエポキシ当量790になるまで反応させたのち、MIBK279部で希釈し、ついで上記部分ブロックイソシアネートA760部を加え実質的にNCOが無くなるまで100℃で反応させた。  
Next, 380 parts of this partially blocked isocyanate A was taken, 89 parts of dimethylethanolamine was added dropwise at 70 ° C., and the reaction was carried out until substantially no NCO was obtained. After dilution with 34.75 parts of ethylene glycol monobutyl ether, 90% Neutralized with 100 parts of lactic acid to obtain 80% lactic acid neutralized amino group-containing blocked isocyanate B.
To another flask, 1125 parts of jER828EL (trade name, manufactured by Mitsubishi Chemical Corporation, epoxy resin, epoxy equivalent 188), 456 parts of bisphenol A and 1.1 parts of triphenylphosphonium iodide are added, and epoxy equivalent at 170 ° C. After reacting to 790, it was diluted with 279 parts of MIBK, then added with 760 parts of the above partially blocked isocyanate A, and reacted at 100 ° C. until substantially no NCO was present.
 次いでエチレングリコールモノブチルエーテル630部を加えて80℃まで冷却し、80%の乳酸中和アミノ基含有ブロックイソシアネートB860部を加え、酸価が1mgKOH/g以下になるまで反応させた後、プロピレングリコールモノメチルエーテルを加えて固形分を調整し、固形分60%の4級アンモニウム塩基を含有する顔料分散用樹脂C-5を得た。顔料分散用樹脂C-5の4級アンモニウム塩濃度は0.48mmol/gである。 Next, 630 parts of ethylene glycol monobutyl ether was added and cooled to 80 ° C., and 860 parts of 80% lactic acid neutralized amino group-containing blocked isocyanate B was added and reacted until the acid value became 1 mg KOH / g or less, and then propylene glycol monomethyl Ether was added to adjust the solid content to obtain pigment dispersing resin C-5 containing a quaternary ammonium base having a solid content of 60%. The concentration of the quaternary ammonium salt of the pigment dispersing resin C-5 is 0.48 mmol / g.
 顔料分散ペーストの製造
 製造例41
 製造例36で得た固形分60%の顔料分散用樹脂C-1 8.3部(固形分5部)、酸化チタン14.5部、精製クレー7.0部、カーボンブラック0.3部、ジオクチル錫オキサイド1部、水酸化ビスマス1部及び脱イオン水20.3部を加え、ボールミルにて20時間分散し、固形分55%の顔料分散ペーストPP-1を得た。
Production and production example 41 of pigment dispersion paste
8.3 parts of pigment dispersion resin C-1 having a solid content of 60% obtained in Production Example 36 (5 parts of solid content), 14.5 parts of titanium oxide, 7.0 parts of purified clay, 0.3 part of carbon black, 1 part of dioctyltin oxide, 1 part of bismuth hydroxide and 20.3 parts of deionized water were added and dispersed in a ball mill for 20 hours to obtain a pigment dispersion paste PP-1 having a solid content of 55%.
 製造例42~53
下記表2で示す組成とする以外は、製造例41と同様に配合を行い、顔料分散ペーストを製造し、固形分55%の顔料分散ペーストPP-2~13を製造した。
Production Examples 42 to 53
Except for the composition shown in Table 2 below, blending was conducted in the same manner as in Production Example 41 to produce a pigment dispersion paste, and pigment dispersion pastes PP-2 to 13 having a solid content of 55% were produced.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 尚、表中の配合量は全て樹脂固形分の値である。 In addition, all the compounding quantities in a table | surface are the values of resin solid content.
 カチオン電着塗料の製造
 製造例54
 製造例34で得たアミノ基含有エポキシ樹脂A-1 83.8部(固形分67部)、製造例35で得たブロック化ポリイソシアネートB-1 35部(固形分28部)を混合し、さらに10%酢酸13部を配合して均一に攪拌した後、脱イオン水を強く攪拌しながら約15分間を要して滴下して固形分34%のエマルションを得た。
次に、上記エマルション294部(固形分100部)、製造例41で得た55%の顔料分散ペーストPP-1 52.4部(固形分28.8部)、脱イオン水350部を加え、固形分20%のカチオン電着塗料Y-1を製造した。
Cationic electrodeposition coating production and production example 54
83.8 parts of amino group-containing epoxy resin A-1 obtained in Production Example 34 (67 parts of solid content) and 35 parts of blocked polyisocyanate B-1 obtained in Production Example 35 (28 parts of solid content) were mixed. Further, 13 parts of 10% acetic acid was blended and stirred uniformly, and then dripped in about 15 minutes with vigorous stirring of deionized water to obtain an emulsion having a solid content of 34%.
Next, 294 parts of the emulsion (100 parts of solid content), 52.4 parts of the 55% pigment dispersion paste PP-1 obtained in Production Example 41 (28.8 parts of solid content), and 350 parts of deionized water were added. A cationic electrodeposition paint Y-1 having a solid content of 20% was produced.
 製造例55~71
下記表3で示す組成とする以外は、製造例54と同様に配合を行い、カチオン電着塗料を製造し、固形分20%のカチオン電着塗料Y-2~18を製造した。
Production Examples 55-71
Except for the composition shown in Table 3 below, blending was conducted in the same manner as in Production Example 54 to produce a cationic electrodeposition paint, and cationic electrodeposition paints Y-2 to 18 having a solid content of 20% were produced.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 尚、表中の配合量は全て固形分の値である。 In addition, all the compounding quantities in a table | surface are the values of solid content.
 試験板の作製
 実施例1
 以下の工程1-1~工程2-3によって、試験板Z-1を作製した。
Test plate production Example 1
The test plate Z-1 was produced by the following steps 1-1 to 2-3.
 工程1(脱脂~表面調整~化成処理)
工程1-1:2.0質量%の「ファインクリーナーL4460」(日本パーカライジング株式会社製、アルカリ脱脂剤)を43℃の温度に調整し、冷延鋼板(70mm×150mm×0.8mm)を120秒間浸漬して脱脂処理を行った。
工程1-2:常温の「プレパレン4040N」(日本パーカライジング(株)製、表面調整剤)の0.15%水溶液に、上記鋼板を30秒間浸漬して表面調整を行い、次いで、純水を用いて30秒間スプレー水洗した。
工程1-3:製造例1で得られた化成処理液X-1を43℃の温度に調整し、上記鋼板を120秒間浸漬して化成処理を行った。
Process 1 (Degreasing-Surface adjustment-Chemical conversion treatment)
Step 1-1: 2.0% by mass of “Fine Cleaner L4460” (manufactured by Nihon Parkerizing Co., Ltd., alkaline degreasing agent) is adjusted to a temperature of 43 ° C., and a cold-rolled steel sheet (70 mm × 150 mm × 0.8 mm) is 120 Degreasing was performed by dipping for 2 seconds.
Step 1-2: Surface adjustment is performed by immersing the steel sheet in a 0.15% aqueous solution of “preparene 4040N” (manufactured by Nihon Parkerizing Co., Ltd., surface conditioner) for 30 seconds, and then using pure water. For 30 seconds.
Step 1-3: The chemical conversion treatment solution X-1 obtained in Production Example 1 was adjusted to a temperature of 43 ° C. and the steel sheet was immersed for 120 seconds to perform chemical conversion treatment.
 工程2(水洗~電着塗装~焼き付け乾燥)
工程2-1:工程1で得られた化成処理皮膜を形成した鋼板を、純水に30秒間浸漬して水洗を行った。(後述する水洗工程IIに相当)
工程2-2:製造例54で得られたカチオン電着塗料Y-1を28℃の温度に調整し、上記鋼板を該カチオン電着塗料の浴に浸漬し、250V、180秒間(30秒にて昇電圧)の条件で電着塗装を行った。
工程2-3:上記鋼板を、上水を用いて1回、純水を用いて1回、それぞれ120秒間浸漬して水洗を行い、次いで、電気乾燥機によって170℃で20分間焼き付け乾燥をして、乾燥膜厚24μmの複層皮膜を形成した試験板Z-1を得た。
Process 2 (Washing-electrodeposition coating-baking drying)
Step 2-1: The steel sheet on which the chemical conversion film obtained in Step 1 was formed was immersed in pure water for 30 seconds and washed with water. (Equivalent to the water washing step II described later)
Step 2-2: The cationic electrodeposition paint Y-1 obtained in Production Example 54 was adjusted to a temperature of 28 ° C., and the steel sheet was immersed in a bath of the cationic electrodeposition paint, and 250 V, 180 seconds (30 seconds) Electrodeposition coating was carried out under the conditions of the rising voltage).
Step 2-3: The steel sheet is washed with water by immersing it for 120 seconds once with clean water and once with pure water, and then baked and dried by an electric dryer at 170 ° C. for 20 minutes. As a result, a test plate Z-1 having a multi-layer coating having a dry film thickness of 24 μm was obtained.
 実施例2~56、比較例1~10
下記表4で示す化成処理液、水洗工程及び/又はカチオン電着塗料とする以外は、実施例1と同様にして、試験板Z-2~66を得た。また、得られた試験板に対して、仕上がり性として外観ムラ性、及び防食性の評価試験を行ったので、その評価結果もあわせて下記表4に記載する。尚、実施例及び比較例で用いた水洗工程の詳細、イオン濃度測定方法、電導度測定方法、並びに外観ムラ性及び防食性(560時間、840時間)の評価方法を以下に示す。
Examples 2 to 56, Comparative Examples 1 to 10
Test plates Z-2 to 66 were obtained in the same manner as in Example 1 except that the chemical conversion treatment liquid, the water washing step and / or the cationic electrodeposition coating composition shown in Table 4 below were used. Moreover, since the evaluation test of the appearance unevenness and the anticorrosion property was performed on the obtained test plate as finish, the evaluation results are also shown in Table 4 below. In addition, the detail of the water washing process used by the Example and the comparative example, the ion concentration measuring method, the electrical conductivity measuring method, and the evaluation method of external appearance nonuniformity and anticorrosion property (560 hours, 840 hours) are shown below.
 <水洗工程>
 実施例及び比較例で用いた水洗工程(工程2-1)を示す。工程短縮の観点から、工程は短いほうが好ましく、また、環境面及び経済的な観点から、使用する洗浄水がより少ない工程である事がさらに好ましい。尚、下記水洗工程II~Vは、従来型の水洗工程Iよりも水洗工程の一部又は全部を省略している。
水洗工程I:化成処理後、被塗物に対して、上水を用いて30秒間の浸漬式水洗を1回行い、次いで純水を用いて30秒間の浸漬式水洗を1回行う従来型の水洗工程(浸漬式水洗2回以上)であり、工程は最も長い。
水洗工程II:化成処理後、被塗物に対して、純水を用いて30秒間の浸漬式水洗を1回行う工程で、従来型の水洗工程(浸漬式水洗2回以上)よりも水洗工程を一部省略している。
水洗工程III:化成処理後、被塗物に対して、純水を用いて3秒間の噴霧式のスプレー水洗を行う工程で、従来型の水洗工程(浸漬式水洗2回以上)よりも工程を一部省略していて、水洗工程IIの浸漬式水洗1回よりも工程がやや短い。
水洗工程IV:化成処理後、水洗工程はなく、次いで被塗物に対して、10秒間のエアーブロー(室温、被塗物表面でのエアー圧力:0.2MPa)を行う工程であり、工程は短く、洗浄水の廃水が出ない。
水洗工程V:化成処理後、水洗工程はなく、工程は最も短く、洗浄水の廃水が出ない。
<Washing process>
The water washing step (Step 2-1) used in Examples and Comparative Examples is shown. From the viewpoint of shortening the process, it is preferable that the process is short. From the viewpoint of environment and economy, it is more preferable that the process uses less washing water. In the following water washing steps II to V, part or all of the water washing step is omitted as compared with the conventional water washing step I.
Water-washing step I: After the chemical conversion treatment, a conventional type in which the article to be coated is subjected to 30-second immersion water washing once using clean water and then once to 30-second immersion water washing using pure water. It is a water washing process (two or more immersion water washings), and the process is the longest.
Water washing step II: After the chemical conversion treatment, the object to be coated is subjected to a 30-second immersion water washing once using pure water, which is a water washing step rather than a conventional water washing step (two or more immersion water washings). Is partially omitted.
Water washing step III: After chemical conversion treatment, a process of spraying water for 3 seconds using pure water on the object to be coated, which is a step more than the conventional water washing step (two or more times of immersion type water washing). A part of the process is omitted, and the process is slightly shorter than the one-time immersion water washing in the water washing process II.
Water washing step IV: After the chemical conversion treatment, there is no water washing step, and then air blowing for 10 seconds (room temperature, air pressure on the surface of the object to be coated: 0.2 MPa) to the object to be coated. Short and no waste water from washing water.
Washing process V: After the chemical conversion treatment, there is no washing process, the process is the shortest, and no waste water of washing water is produced.
 <イオン濃度>
 上記実施例及び比較例において、電着塗装を行う直前の試験板を別に用意して垂直の状態で容器に入れ、蓋をして1時間放置した。次いで試験板を取り出し、容器の下部に溜まっている溶液のイオン濃度を測定した。イオン濃度の測定は原子吸光分析装置(商品名:ゼーマン原子吸光光度計、HITACHI社製)を用いた。尚、試験板1枚で電導度の測定に必要な量が確保できない場合は複数の試験板を用いて必要量を確保した。
<Ion concentration>
In the above examples and comparative examples, a test plate immediately before electrodeposition coating was prepared separately, put in a container in a vertical state, covered and left for 1 hour. Next, the test plate was taken out, and the ion concentration of the solution accumulated in the lower part of the container was measured. The ion concentration was measured using an atomic absorption analyzer (trade name: Zeeman atomic absorption photometer, manufactured by HITACHI). In addition, when the quantity required for the measurement of electrical conductivity could not be secured with one test plate, the required quantity was secured using a plurality of test plates.
 <電導度>
 上記イオン濃度と同様の試料を用いて、電導度(μS/cm)を測定した。電導度の測定はCONDACTIVITY METER DS-12(堀場製作所社製)を用いた。
<Conductivity>
Electrical conductivity (μS / cm) was measured using a sample similar to the above ion concentration. The conductivity was measured using CONACTIVITY METER DS-12 (manufactured by Horiba, Ltd.).
 <外観ムラ性>
 得られた試験板の外観を観察し、複層皮膜の仕上がり性として外観ムラ性を評価した。評価については、A(非常に良好)からF(不良)までの以下の基準で評価した。AからDまでが仕上がり性として合格レベルで、E及びFが不合格である。
A:極めて均一な外観を有している。
B:均一な外観を有している。
C:僅かにムラがあると視認されるものの、ほぼ均一な外観を有している。
D:ムラが視認されるものの、複層皮膜上に上塗り塗料を塗装すれば隠ぺいされるため、合格レベルである。
E:外観が不均一であり、やや不良である。また、複層皮膜上に上塗り塗料を塗装しても隠ぺいされない。
F:外観が明らかに不均一であり、不良である。また、複層皮膜上に上塗り塗料を塗装しても隠ぺいされない。
<Appearance unevenness>
The appearance of the obtained test plate was observed, and the appearance unevenness was evaluated as the finish of the multilayer coating. About evaluation, it evaluated by the following references | standards from A (very good) to F (poor). A to D are acceptable levels as finish, and E and F are unacceptable.
A: It has a very uniform appearance.
B: It has a uniform appearance.
C: Although visually recognized as slightly uneven, it has a substantially uniform appearance.
D: Although unevenness is visually recognized, it is a pass level because it is concealed if a top coat is applied on the multilayer coating.
E: Appearance is uneven and slightly poor. Moreover, even if a top coat is applied on the multilayer film, it is not concealed.
F: Appearance is clearly uneven and defective. Moreover, even if a top coat is applied on the multilayer film, it is not concealed.
 <防食性(560時間)>
 試験板の素地に達するように、複層皮膜上にカッターナイフでクロスカット傷を入れ、これをJIS Z-2371に準じて、35℃ソルトスプレー試験を560時間行い、カット部からの傷、フクレ幅を測定した。評価については、A(非常に良好)からF(不良)までの以下の基準で評価した。AからDまでが防食性(560時間)として合格レベルで、E及びFが不合格である。
A:錆、フクレの最大幅がカット部より2.0mm以下(片側)で防食性が非常に良好である。
B:錆、フクレの最大幅がカット部より2.0mmを超え、かつ2.5mm以下(片側)で、防食性が良好である。
C:錆、フクレの最大幅がカット部より2.5mmを超え、かつ3.0mm以下(片側)で、防食性がやや良好である。
D:錆、フクレの最大幅がカット部より3.0mmを超え、かつ3.5mm以下(片側)で、防食性が普通(合格レベル以上)である。
E:錆、フクレの最大幅がカット部より3.5mmを超え、かつ4.0mm以下(片側)で、防食性がやや不良である。
F:錆、フクレの最大幅がカット部より4.0mmを超え(片側)、防食性が不良である。
<Anti-corrosion (560 hours)>
Cross-cut scratches are made on the multilayer coating with a cutter knife so as to reach the base of the test plate, and this is subjected to a salt spray test at 35 ° C. for 560 hours in accordance with JIS Z-2371. The width was measured. About evaluation, it evaluated by the following references | standards from A (very good) to F (poor). A to D are acceptable levels as corrosion resistance (560 hours), and E and F are unacceptable.
A: The maximum width of rust and swelling is 2.0 mm or less (one side) from the cut part, and the corrosion resistance is very good.
B: The maximum width of rust and blisters exceeds 2.0 mm from the cut part, and is 2.5 mm or less (one side), and the corrosion resistance is good.
C: The maximum width of rust and blisters exceeds 2.5 mm from the cut portion, and is 3.0 mm or less (one side), and the corrosion resistance is slightly good.
D: The maximum width of rust and blisters exceeds 3.0 mm from the cut portion, and is 3.5 mm or less (one side), and the corrosion resistance is normal (passed level or higher).
E: The maximum width of rust and blisters exceeds 3.5 mm from the cut part and is 4.0 mm or less (one side), and the corrosion resistance is slightly poor.
F: The maximum width of rust and blistering exceeds 4.0 mm from the cut part (one side), and the corrosion resistance is poor.
 <防食性(840時間)>
 試験板の素地に達するように、複層皮膜上にカッターナイフでクロスカット傷を入れ、これをJIS Z-2371に準じて、35℃ソルトスプレー試験を840時間行い、カット部からの傷、フクレ幅を測定した。評価については、A(非常に良好)からG(非常に不良)までの以下の基準で評価した。AからEまでが防食性(840時間)として合格レベルで、F及びGが不合格である。
A:錆、フクレの最大幅がカット部より2.0mm以下(片側)で防食性が非常に良好である。
B:錆、フクレの最大幅がカット部より2.0mmを超え、かつ2.5mm以下(片側)で、防食性が良好である。
C:錆、フクレの最大幅がカット部より2.5mmを超え、かつ3.0mm以下(片側)で、防食性がやや良好である。
D:錆、フクレの最大幅がカット部より3.0mmを超え、かつ3.5mm以下(片側)で、防食性が普通(合格レベル以上)である。
E:錆、フクレの最大幅がカット部より3.5mmを超え、かつ4.0mm以下(片側)で、防食性がやや不良である。 
F:錆、フクレの最大幅がカット部より4.0mmを超え、かつ5.0mm以下(片側)、防食性が不良である。
G:錆、フクレの最大幅がカット部より5.0mmを超え(片側)、防食性が非常に不良である。
<Anti-corrosion (840 hours)>
A cross-cut flaw is made on the multilayer film with a cutter knife so as to reach the substrate of the test plate, and this is subjected to a 35 ° C. salt spray test for 840 hours in accordance with JIS Z-2371. The width was measured. About evaluation, it evaluated by the following references | standards from A (very good) to G (very bad). A to E are acceptable levels as corrosion resistance (840 hours), and F and G are unacceptable.
A: The maximum width of rust and swelling is 2.0 mm or less (one side) from the cut part, and the corrosion resistance is very good.
B: The maximum width of rust and blisters exceeds 2.0 mm from the cut part, and is 2.5 mm or less (one side), and the corrosion resistance is good.
C: The maximum width of rust and blisters exceeds 2.5 mm from the cut portion, and is 3.0 mm or less (one side), and the corrosion resistance is slightly good.
D: The maximum width of rust and blisters exceeds 3.0 mm from the cut portion, and is 3.5 mm or less (one side), and the corrosion resistance is normal (passed level or higher).
E: The maximum width of rust and blisters exceeds 3.5 mm from the cut part and is 4.0 mm or less (one side), and the corrosion resistance is slightly poor.
F: The maximum width of rust and blisters exceeds 4.0 mm from the cut part, and is 5.0 mm or less (one side), and the corrosion resistance is poor.
G: The maximum width of rust and swelling exceeds 5.0 mm from the cut part (one side), and the corrosion resistance is very poor.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005

Claims (13)

  1. 金属被塗物に化成処理皮膜と電着塗装皮膜を形成する以下の工程、
    工程1:金属被塗物を化成処理液に浸漬して化成処理皮膜を形成する工程、
    工程2:カチオン電着塗料を用いて上記金属被塗物を電着塗装して電着塗装皮膜を形成する工程
    を含む複層皮膜形成方法において、
    上記カチオン電着塗料が、樹脂固形分の総量を基準にして、アミノ基含有エポキシ樹脂(A)40~88質量%、ブロック化ポリイソシアネート(B)10~50質量%、顔料分散樹脂(C)2~40質量%を含有し、カチオン電着塗料中の4級アンモニウム塩濃度が、塗料中の樹脂固形分当たり0.03mmol/g以下であることを特徴とする複層皮膜形成方法。
    The following processes for forming a chemical conversion treatment film and an electrodeposition coating film on a metal object:
    Step 1: a step of immersing a metal coating in a chemical conversion treatment solution to form a chemical conversion treatment film,
    Step 2: In a multilayer film forming method including a step of forming an electrodeposition coating film by electrodeposition-coating the metal coating using a cationic electrodeposition coating,
    The cationic electrodeposition coating composition is based on the total amount of resin solids, amino group-containing epoxy resin (A) 40 to 88 mass%, blocked polyisocyanate (B) 10 to 50 mass%, pigment dispersion resin (C) A method for forming a multilayer film, comprising 2 to 40% by mass, wherein the quaternary ammonium salt concentration in the cationic electrodeposition coating is 0.03 mmol / g or less per resin solid content in the coating.
  2. 工程2において、電着塗装の前の水洗工程の一部又は全部が省略されている、請求項1に記載の複層皮膜形成方法。 The method for forming a multilayer film according to claim 1, wherein in step 2, part or all of the water washing step before electrodeposition coating is omitted.
  3. 上記顔料分散樹脂(C)として用いられる少なくとも1種の樹脂が、官能基として、スルホニウム塩基、3級アンモニウム塩基から選ばれる少なくとも1種を含有し、かつ顔料分散樹脂(C)として用いられる全ての樹脂を合計した樹脂固形分当たりの4級アンモニウム塩濃度が、0.7mmol/g以下であることを特徴とする請求項1又は2に記載の複層皮膜形成方法。 At least one resin used as the pigment dispersion resin (C) contains at least one selected from a sulfonium base and a tertiary ammonium base as a functional group, and is used as the pigment dispersion resin (C). The method for forming a multilayer film according to claim 1 or 2, wherein the concentration of the quaternary ammonium salt per resin solid content of the total resin is 0.7 mmol / g or less.
  4. 上記工程2の電着塗装時において、金属被塗物に付着及び/又は滞積している溶液の電導度が、10,000μS/cm未満であることを特徴とする請求項1~3のいずれか1項に記載の複層皮膜形成方法。 4. The electric conductivity of the solution adhering to and / or staying on the metal object during the electrodeposition coating in the step 2 is less than 10,000 μS / cm. The method for forming a multilayer film according to claim 1.
  5. 金属被塗物に付着及び/又は滞積している溶液のナトリウムイオン濃度が、該溶液の質量基準で、500ppm未満であることを特徴とする請求項1~4のいずれか1項に記載の複層皮膜形成方法。 The sodium ion concentration of the solution adhering to and / or stagnating on the metal coating is less than 500 ppm, based on the mass of the solution, according to any one of claims 1 to 4. A method for forming a multilayer film.
  6. 金属被塗物に付着及び/又は滞積している溶液のカリウムイオン濃度が、該溶液の質量基準で、500ppm未満であることを特徴とする請求項1~5のいずれか1項に記載の複層皮膜形成方法。 The potassium ion concentration of the solution adhering to and / or stagnating on the metal coating is less than 500 ppm, based on the mass of the solution, according to any one of claims 1 to 5. A method for forming a multilayer film.
  7. 金属被塗物に付着及び/又は滞積している溶液のカルシウムイオン濃度が、該溶液の質量基準で、500ppm未満であることを特徴とする請求項1~6のいずれか1項に記載の複層皮膜形成方法。 The calcium ion concentration of the solution adhering to and / or stagnating on the metal coating object is less than 500 ppm, based on the mass of the solution, according to any one of claims 1 to 6. A method for forming a multilayer film.
  8. 金属被塗物に付着及び/又は滞積している溶液のマグネシウムイオン濃度が、該溶液の質量基準で、500ppm未満であることを特徴とする請求項1~7のいずれか1項に記載の複層皮膜形成方法。 The magnesium ion concentration of the solution adhering to and / or stagnating on the metal coating is less than 500 ppm, based on the mass of the solution, according to any one of claims 1 to 7. A method for forming a multilayer film.
  9. 化成処理液が、ジルコニウム、チタン、コバルト、アルミニウム、バナジウム、タングステン、モリブデン、銅、亜鉛、インジウム、ビスマス、イットリウム、鉄、ニッケル、マンガン、ガリウム、銀及びランタノイド金属から選ばれる少なくとも1種の金属化合物からなる少なくとも1種の金属化合物成分(M)を合計金属量(質量換算)で30~20,000ppm含有することを特徴とする請求項1~8のいずれか1項に記載の複層皮膜形成方法。 The chemical conversion treatment solution is at least one metal compound selected from zirconium, titanium, cobalt, aluminum, vanadium, tungsten, molybdenum, copper, zinc, indium, bismuth, yttrium, iron, nickel, manganese, gallium, silver, and lanthanoid metals. The multilayer film formation according to any one of claims 1 to 8, characterized in that it contains at least one metal compound component (M) consisting of 30 to 20,000 ppm in terms of total metal amount (in terms of mass). Method.
  10. 化成処理液がジルコニウム化合物を含む、請求項1~9のいずれか1項に記載の複層皮膜形成方法。 The method for forming a multilayer film according to any one of claims 1 to 9, wherein the chemical conversion treatment solution contains a zirconium compound.
  11. 化成処理液が、水分散性又は水溶性の樹脂組成物(P)を0.01~40質量%含有することを特徴とする請求項1~10のいずれか1項に記載の複層皮膜形成方法。 The multilayer coating film formation according to any one of claims 1 to 10, wherein the chemical conversion treatment solution contains 0.01 to 40% by mass of a water-dispersible or water-soluble resin composition (P). Method.
  12. 工程2の電着塗装を施す前に、金属被塗物に対し、エアーブロー、揺動、回転から選ばれる少なくとも1種を行うことを特徴とする請求項1~11のいずれか1項に記載の複層皮膜形成方法。 The at least one selected from air blow, rocking, and rotation is performed on the metal object before the electrodeposition coating in the step 2 is performed. A method for forming a multilayer film.
  13. 請求項1~12のいずれか1項に記載の複層皮膜形成方法を用いて複層皮膜を形成した塗装物品。 A coated article formed with a multilayer coating using the multilayer coating formation method according to any one of claims 1 to 12.
PCT/JP2014/071096 2013-08-30 2014-08-08 Method for forming multilayer film WO2015029757A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-180150 2013-08-30
JP2013180150 2013-08-30
JP2014092916 2014-04-28
JP2014-092916 2014-04-28

Publications (1)

Publication Number Publication Date
WO2015029757A1 true WO2015029757A1 (en) 2015-03-05

Family

ID=52586326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071096 WO2015029757A1 (en) 2013-08-30 2014-08-08 Method for forming multilayer film

Country Status (1)

Country Link
WO (1) WO2015029757A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109312188A (en) * 2016-05-31 2019-02-05 日涂汽车涂料有限公司 Cation electric deposition paint composition
JP2019119847A (en) * 2017-12-28 2019-07-22 旭化成株式会社 Polyisocyanate composition, water-based coating composition, and coating substrate

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63302990A (en) * 1987-05-30 1988-12-09 Nippon Kentetsu Co Ltd Method for keeping quality of hot washing water
JP2002356645A (en) * 2001-05-31 2002-12-13 Nippon Paint Co Ltd Lead-less cationic electrodeposition coating composition
JP2002356646A (en) * 2001-05-31 2002-12-13 Nippon Paint Co Ltd Lead-less cationic-electrodeposition paint composition containing crosslinked resin particle
JP2007238999A (en) * 2006-03-07 2007-09-20 Nippon Paint Co Ltd Multilayer coating film deposition method
JP2009149974A (en) * 2007-10-17 2009-07-09 Kansai Paint Co Ltd Method for forming multilayer coating film and coated article

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63302990A (en) * 1987-05-30 1988-12-09 Nippon Kentetsu Co Ltd Method for keeping quality of hot washing water
JP2002356645A (en) * 2001-05-31 2002-12-13 Nippon Paint Co Ltd Lead-less cationic electrodeposition coating composition
JP2002356646A (en) * 2001-05-31 2002-12-13 Nippon Paint Co Ltd Lead-less cationic-electrodeposition paint composition containing crosslinked resin particle
JP2007238999A (en) * 2006-03-07 2007-09-20 Nippon Paint Co Ltd Multilayer coating film deposition method
JP2009149974A (en) * 2007-10-17 2009-07-09 Kansai Paint Co Ltd Method for forming multilayer coating film and coated article

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109312188A (en) * 2016-05-31 2019-02-05 日涂汽车涂料有限公司 Cation electric deposition paint composition
EP3467056A4 (en) * 2016-05-31 2020-01-08 Nippon Paint Automotive Coatings Co., Ltd. Cationic electrodeposition coating composition
CN109312188B (en) * 2016-05-31 2021-01-01 日涂汽车涂料有限公司 Cationic electrodeposition coating composition
JP2019119847A (en) * 2017-12-28 2019-07-22 旭化成株式会社 Polyisocyanate composition, water-based coating composition, and coating substrate

Similar Documents

Publication Publication Date Title
JP5721307B2 (en) Multi-layer coating method and coated article
JP5725757B2 (en) Cationic electrodeposition coating composition
CN101987938B (en) Cationic electrodeposition coating composition
JP5657157B1 (en) Multi-layer coating formation method
JP2008538383A (en) Multi-layer coating formation method
JP6441126B2 (en) Method for preparing cationic electrodeposition coating composition
JP6058113B2 (en) Cationic electrodeposition coating composition
JP5828929B2 (en) Multi-layer coating formation method
WO2016143707A1 (en) Cationic electrodeposition coating composition
WO2015029757A1 (en) Method for forming multilayer film
JP6406848B2 (en) Electrodeposition coating composition
JP6416688B2 (en) Multi-layer coating formation method
JP7333198B2 (en) Method for preparing cationic electrodeposition coating composition
JP6099139B2 (en) Cationic electrodeposition coating composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14840383

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14840383

Country of ref document: EP

Kind code of ref document: A1