WO2015029146A1 - Gas reservoir for aerospace vehicle, and aerospace vehicle - Google Patents

Gas reservoir for aerospace vehicle, and aerospace vehicle Download PDF

Info

Publication number
WO2015029146A1
WO2015029146A1 PCT/JP2013/072921 JP2013072921W WO2015029146A1 WO 2015029146 A1 WO2015029146 A1 WO 2015029146A1 JP 2013072921 W JP2013072921 W JP 2013072921W WO 2015029146 A1 WO2015029146 A1 WO 2015029146A1
Authority
WO
WIPO (PCT)
Prior art keywords
strength member
air
working gas
spacecraft
strength
Prior art date
Application number
PCT/JP2013/072921
Other languages
French (fr)
Japanese (ja)
Inventor
尚喜 草場
晃浩 佐藤
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to PCT/JP2013/072921 priority Critical patent/WO2015029146A1/en
Priority to JP2015533832A priority patent/JP6121541B2/en
Publication of WO2015029146A1 publication Critical patent/WO2015029146A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64GCOSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
    • B64G1/00Cosmonautic vehicles
    • B64G1/22Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
    • B64G1/40Arrangements or adaptations of propulsion systems
    • B64G1/402Propellant tanks; Feeding propellants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2205/00Vessel construction, in particular mounting arrangements, attachments or identifications means
    • F17C2205/01Mounting arrangements
    • F17C2205/0153Details of mounting arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/011Oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/012Hydrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/014Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/016Noble gases (Ar, Kr, Xe)
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2221/00Handled fluid, in particular type of fluid
    • F17C2221/01Pure fluids
    • F17C2221/016Noble gases (Ar, Kr, Xe)
    • F17C2221/017Helium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/01Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the phase
    • F17C2223/0146Two-phase
    • F17C2223/0153Liquefied gas, e.g. LPG, GPL
    • F17C2223/0161Liquefied gas, e.g. LPG, GPL cryogenic, e.g. LNG, GNL, PLNG
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2223/00Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel
    • F17C2223/03Handled fluid before transfer, i.e. state of fluid when stored in the vessel or before transfer from the vessel characterised by the pressure level
    • F17C2223/033Small pressure, e.g. for liquefied gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0186Applications for fluid transport or storage in the air or in space
    • F17C2270/0194Applications for fluid transport or storage in the air or in space for use under microgravity conditions, e.g. space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C2270/00Applications
    • F17C2270/01Applications for fluid transport or storage
    • F17C2270/0186Applications for fluid transport or storage in the air or in space
    • F17C2270/0197Rockets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Definitions

  • the present invention relates to an air accumulator for a spacecraft that accumulates working gas and a spacecraft.
  • a tank that is provided in the upper stage of a rocket and stores fuel is known (for example, see Patent Document 1).
  • the tank is provided with a gas supply and extraction device, and the fuel in the tank is extracted by supplying gas into the tank.
  • the gas supplied to the inside of the tank is accumulated in an air accumulator provided in the rocket.
  • a spacecraft such as a rocket or an artificial satellite is as light as possible.
  • the weight of the gas accumulator filled with gas is as heavy as, for example, about 25 kg per piece, it is an obstacle to reducing the weight of the rocket.
  • the navigation period of the spacecraft is long, it is difficult to reduce the weight of the rocket because it is necessary to mount a large number of air reservoirs.
  • an object of the present invention is to provide an air accumulator for a spacecraft and a spacecraft capable of accumulating working gas and reducing the weight.
  • An air accumulator for a spacecraft is an air accumulator for a spacecraft provided in a spacecraft including a frame configured using a hollow cylindrical strength member, It has an air storage structure capable of accumulating working gas inside.
  • the spacecraft of the present invention includes a frame configured using a hollow cylindrical strength member, and an air accumulator having an air storage structure capable of accumulating working gas inside the strength member. It is characterized by that.
  • the strength member can be used as part of the container of the air accumulator by providing the strength member with the air storage structure. For this reason, since the strength member can function as an air reservoir, it is not necessary to provide a dedicated air reservoir, and the weight of the spacecraft can be reduced. Moreover, the rigidity of the strength member is higher than that of a dedicated air reservoir. At this time, in order to reduce the weight, the dedicated air reservoir reduces the wall thickness while increasing the internal gas pressure. Must be carried out in a highly safe working environment. On the other hand, in the present invention, since a highly rigid strength member can be used as a part of the container of the air accumulator, the filling operation can be performed without evacuating the worker. Compared to this, the working gas can be filled safely.
  • the working gas is accumulated in the strength member having the air storage structure after internal cleaning.
  • the working gas can be filled into the strength member after the strength member is cleaned, so that dust can be prevented from being mixed into the strength member. For this reason, generation
  • the air storage structure includes a pair of opposing tube plates provided inside the strength member, and the inside and outside of the strength member provided on the one tube plate and partitioned by the pair of tube plates. It is preferable to have a joint to which a pipe for circulating the working gas is connected.
  • the air storage structure can be simplified by a pair of tube sheets and joints. Moreover, the working gas filled in the strength member partitioned by the pair of tube plates can be filled through the joint, or the working gas accumulated in the strength member can be discharged through the joint. .
  • a plurality of the strength members are provided over the entire circumference, and further provided with a communication pipe that communicates the inside of one of the strength members and the inside of the other strength member.
  • the insides of the plurality of strength members can be connected by the communication pipe.
  • strength member which has an air storage structure can be used as a single air accumulator.
  • the strength member is provided in a plurality over the entire circumference, and further includes equipment for using the working gas, and the strength member closest to the equipment is provided with the air storage structure, and the strength member And the equipment are preferably connected by piping.
  • the air storage structure can be provided in the strength member closest to the facility, the length of the pipe connecting the strength member and the facility can be shortened. For this reason, since the length of the piping can be shortened, the weight of the piping can be reduced, and thereby the weight of the spacecraft can be reduced.
  • FIG. 1 is a schematic configuration diagram schematically showing a rocket as a spacecraft according to the present embodiment.
  • FIG. 2 is a schematic configuration diagram schematically illustrating the air accumulator.
  • FIG. 1 is a schematic configuration diagram schematically showing a part of a rocket as a spacecraft according to the present embodiment
  • FIG. 2 is a schematic configuration diagram schematically showing an air reservoir.
  • the air accumulator 10 of a present Example is provided in a spacecraft, and accumulates the working gas used with a spacecraft.
  • the spacecraft includes a flying object such as a rocket, an artificial satellite or a space base, and the air reservoir 10 of this embodiment is applied to a rocket.
  • the air accumulator 10 is described as applied to the second stage rocket of the multistage rocket, but the air accumulator 10 can be applied to any number of stages of the rocket, Further, the present invention may be applied to a space navigation body such as an artificial satellite or a space base, and is not particularly limited.
  • a space navigation body such as an artificial satellite or a space base, and is not particularly limited.
  • the rocket 1 is propelled by burning a fuel with a frame 5, a fuel tank 6 supported on one side of the frame 5, an oxidant tank 7 supported on the other side of the frame 5.
  • a rocket engine 8 that generates force and an air reservoir 10 are provided.
  • the frame 5 has a truss structure, and a first support member 11 provided on the fuel tank 6 side (one side: upper side in the figure) and a second support member provided on the oxidant tank 7 side (the other side: the lower side in the figure). It has a support member 12 and a plurality of strength members 13 provided between the first support member 11 and the second support member 12.
  • the first support member 11 is provided in an annular shape over the entire outer periphery of the fuel tank 6.
  • One end of a strength member 13 is connected to the first support member 11.
  • the second support member 12 is provided in an annular shape over the entire outer periphery of the oxidant tank 7.
  • the other end of the strength member 13 is connected to the second support member 12.
  • the plurality of strength members 13 are provided between the first support member 11 and the second support member 12.
  • the plurality of strength members 13 are arranged over the entire circumference so that the plurality of strength members 13, the first support member 11, and the second support member 12 form a triangular shape.
  • Each strength member 13 is formed in a cylindrical shape whose inside is hollow.
  • the fuel tank 6 is, for example, a liquid hydrogen tank that stores liquid hydrogen as a fuel, and is formed in a cylindrical shape.
  • the fuel tank 6 can supply liquid hydrogen to the rocket engine 8 by supplying the working gas from the gas accumulator 10.
  • the oxidant tank 7 is, for example, a liquid oxygen tank that stores liquid oxygen as an oxidant, and is formed in a cylindrical shape.
  • the oxidant tank 7 can supply liquid oxygen toward the rocket engine 8 by supplying the working gas from the gas accumulator 10.
  • the fuel tank 6 and the oxidant tank 7 are disposed to face each other with the frame 5 interposed therebetween.
  • the rocket engine 8 is provided on the other side (the lower side in the drawing) of the oxidant tank 7, that is, on the opposite side of the fuel tank 6 with the oxidant tank 7 interposed therebetween.
  • the rocket engine 8 mixes the liquid hydrogen supplied from the fuel tank 6 and the liquid oxygen supplied from the oxidant tank 7 and burns them to generate a propulsive force.
  • the air accumulator 10 is capable of accumulating working gas by providing an air accumulating structure 20 inside a hollow cylindrical strength member 13.
  • the gas accumulator 10 can supply the accumulated working gas toward the fuel tank 6 and the oxidant tank 7.
  • the air accumulator 10 is directed to various valves for controlling the airframe system provided in the rocket engine 8 and the rocket 1, attitude control, and a thruster for correcting the trajectory.
  • the accumulated working gas can be supplied. That is, the fuel tank 6, the oxidant tank 7, the thruster, and the like are facilities that use working gas.
  • helium gas is used as the working gas accumulated in the air accumulator 10.
  • the working gas is not limited to helium gas, and any working gas may be used.
  • nitrogen gas or argon gas may be used.
  • the air reservoir 10 uses the strength member 13 as a part of the container.
  • the thickness of the strength member 13 is, for example, 10 mm to 20 mm.
  • the thickness of the dedicated air reservoir mounted on the rocket 1 is, for example, about 3 mm.
  • the rigidity of the air reservoir 10 of the present embodiment is equal to the rigidity of the dedicated air reservoir. It is higher than that.
  • the strength member 13 has an outer diameter of about 100 mm and a length in the longitudinal direction (axial direction) of about 1000 mm to 2000 mm.
  • the air storage structure 20 provided inside the predetermined strength member 13 has a pair of tube sheets 21, 22, a filling joint 23, and a discharge joint 24.
  • one tube plate 21 is provided on one side (the upper side in the drawing) of the strength member 13, and the other tube plate 22 is the other side of the strength member 13 in the axial direction. (Lower side in the figure).
  • the inside of the strength member 13 is partitioned by the pair of tube plates 21 and 22.
  • the pair of tube plates 21 and 22 are joined to the inside of the strength member 13 by welding or the like, the structure between the strength member 13 and the tube plates 21 and 22 is hermetically sealed. ing. For this reason, it is possible to suppress leakage of the working gas from the inside of the strength member 13.
  • the filling joint 23 is provided on one tube plate 21 and is used when filling the working gas.
  • the filling joint 23 is connected to a gas filling pipe when the working gas is filled in the strength member 13.
  • the working gas is supplied into the strength member 13 through the filling joint 23.
  • the gas filling tube is removed when the working gas filling is completed.
  • the discharge joint 24 is provided on one tube plate 21 and is used when the working gas is discharged.
  • the discharge joint 24 is connected to facilities such as the fuel tank 6, the oxidant tank 7, and the thruster via a discharge pipe 25.
  • the working gas filled in the strength member 13 is supplied to facilities such as the fuel tank 6, the oxidant tank 7, and the thruster via the discharge joint 24 and the discharge pipe 25.
  • the air reservoir 10 configured as described above discharges dust adhering to the inside of the strength member 13 partitioned by the pair of tube plates 21 and 22 by performing internal cleaning before filling with the working gas. To do.
  • the strength member 13 can be used as a part of the container of the air reservoir 10 by providing the air storage structure 20 inside the strength member 13. For this reason, since the strength member 13 can function as the air accumulator 10, there is no need to provide a dedicated air accumulator, and the weight of the rocket 1 can be reduced. Moreover, the rigidity of the strength member 13 is higher than that of a dedicated air reservoir. At this time, in order to reduce the weight, the dedicated air reservoir reduces the wall thickness while increasing the internal gas pressure. Must be carried out in a highly safe working environment.
  • the highly rigid strength member 13 can be used as a part of the container of the air accumulator 10, the filling operation is performed without retracting the worker. Therefore, the working gas can be filled more safely than a dedicated air accumulator.
  • the working gas can be filled into the strength member 13 after the strength member 13 is internally cleaned, so that dust can be prevented from being mixed into the strength member 13. For this reason, generation
  • the air storage structure 20 can be simplified by the pair of tube sheets 21 and 22 and the various joints 23 and 24. Further, the inside of the strength member 13 partitioned by the pair of tube plates 21 and 22 is filled with the working gas via the filling joint 23, or the working gas accumulated in the strength member 13 is discharged into the joint for discharging. 24 can be discharged.
  • the air accumulator 10 may be configured by a single strength member 13 having the air storage structure 20 or may be configured by providing a plurality of strength members 13 having the air storage structure 20.
  • the air accumulator 10 may be configured by a single strength member 13 having the air storage structure 20 or may be configured by providing a plurality of strength members 13 having the air storage structure 20.
  • the inside of the plurality of strength members 13 may be connected using a communication pipe.
  • a plurality of strength members 13 having the air storage structure 20 can be used as a single air storage device 10.
  • the air storage structure 10 when configured by providing the air storage structures 20 on the plurality of strength members 13, the air storage structure 20 May be provided.
  • the discharge pipe 25 connecting the discharge joint 24 of the strength member 13 and each facility can be shortened.
  • the weight of the discharge pipe 25 can be reduced, and thus the weight of the rocket 1 can be reduced.
  • the insides of the plurality of strength members 13 may be connected using communication pipes, or may not be connected.

Abstract

A gas reservoir (10) for a rocket is provided to a rocket provided with a frame configured using a hollow cylindrical strength member. The gas reservoir (10) is provided with a gas-reservoir structure (20) which is capable of accumulating a working gas inside the strength member (13). The gas-reservoir structure (20) is provided with: a pair of tube plates (21, 22) which are provided inside the strength member (13), and which face each other; and a filling fitting (23) and a discharge fitting (23) which are provided to one of the tube plates (21), and which have, connected thereto, piping for causing the working gas to circulate in and out of the strength member (13) partitioned by the pair of tube plates (21, 22).

Description

宇宙航行体用の気蓄器及び宇宙航行体Air accumulator and spacecraft for spacecraft
 本発明は、作動ガスを蓄圧する宇宙航行体用の気蓄器及び宇宙航行体に関するものである。 The present invention relates to an air accumulator for a spacecraft that accumulates working gas and a spacecraft.
 従来、ロケット上段に設けられ、燃料を貯蔵するタンクが知られている(例えば、特許文献1参照)。このタンクには、ガス供給及び取り出し装置が設けられており、タンク内にガスを供給することで、タンク内の燃料を取り出している。 Conventionally, a tank that is provided in the upper stage of a rocket and stores fuel is known (for example, see Patent Document 1). The tank is provided with a gas supply and extraction device, and the fuel in the tank is extracted by supplying gas into the tank.
特開2008-189304号公報JP 2008-189304 A
 ここで、タンクの内部に供給されるガスは、ロケットに設けられる気蓄器に蓄圧されている。ところで、ロケットまたは人工衛星等の宇宙航行体は、その重量が出来るだけ軽いことが望ましい。一方で、ガスが充填される気蓄器は、その重量が、例えば1個当たり25kg前後と重いことから、ロケットの軽量化を図る上で妨げとなっている。特に、宇宙航行体の宇宙空間内の航行期間が長くなる場合には、気蓄器を多く搭載する必要があることから、ロケットの軽量化を図ることが困難となる。 Here, the gas supplied to the inside of the tank is accumulated in an air accumulator provided in the rocket. By the way, it is desirable that a spacecraft such as a rocket or an artificial satellite is as light as possible. On the other hand, since the weight of the gas accumulator filled with gas is as heavy as, for example, about 25 kg per piece, it is an obstacle to reducing the weight of the rocket. In particular, when the navigation period of the spacecraft is long, it is difficult to reduce the weight of the rocket because it is necessary to mount a large number of air reservoirs.
 そこで、本発明は、作動ガスを蓄圧すると共に、重量を軽減することができる宇宙航行体用の気蓄器及び宇宙航行体を提供することを課題とする。 Therefore, an object of the present invention is to provide an air accumulator for a spacecraft and a spacecraft capable of accumulating working gas and reducing the weight.
 本発明の宇宙航行体用の気蓄器は、中空円筒状の強度部材を用いて構成されるフレームを備える宇宙航行体に設けられる宇宙航行体用の気蓄器であって、前記強度部材の内部に、作動ガスを蓄圧可能な気蓄構造を有することを特徴とする。 An air accumulator for a spacecraft according to the present invention is an air accumulator for a spacecraft provided in a spacecraft including a frame configured using a hollow cylindrical strength member, It has an air storage structure capable of accumulating working gas inside.
 また、本発明の宇宙航行体は、中空円筒状の強度部材を用いて構成されるフレームと、前記強度部材の内部に、作動ガスを蓄圧可能な気蓄構造を有する気蓄器と、を備えることを特徴とする。 The spacecraft of the present invention includes a frame configured using a hollow cylindrical strength member, and an air accumulator having an air storage structure capable of accumulating working gas inside the strength member. It is characterized by that.
 この構成によれば、強度部材に気蓄構造を設けることで、強度部材を気蓄器の容器の一部として利用することができる。このため、強度部材を気蓄器として機能させることができることから、専用の気蓄器を設ける必要がなく、宇宙航行体の重量を軽減することができる。また、強度部材の剛性は、専用の気蓄器に比して高くなっている。このとき、専用の気蓄器は、重量を軽減するために、肉厚を薄くしつつ内部のガス圧を高圧にすることから、専用の気蓄器への作動ガスの充填作業は、作業員を退避させ、安全性の高い作業環境で行う必要がある。一方で、本発明では、剛性の高い強度部材を気蓄器の容器の一部として利用することができるため、作業員を退避させることなく、充填作業を行うことができ、専用の気蓄器に比して作動ガスの充填作業を安全に行うことができる。 According to this configuration, the strength member can be used as part of the container of the air accumulator by providing the strength member with the air storage structure. For this reason, since the strength member can function as an air reservoir, it is not necessary to provide a dedicated air reservoir, and the weight of the spacecraft can be reduced. Moreover, the rigidity of the strength member is higher than that of a dedicated air reservoir. At this time, in order to reduce the weight, the dedicated air reservoir reduces the wall thickness while increasing the internal gas pressure. Must be carried out in a highly safe working environment. On the other hand, in the present invention, since a highly rigid strength member can be used as a part of the container of the air accumulator, the filling operation can be performed without evacuating the worker. Compared to this, the working gas can be filled safely.
 また、前記気蓄構造を有する前記強度部材は、内部洗浄後に前記作動ガスが蓄圧されることが好ましい。 Moreover, it is preferable that the working gas is accumulated in the strength member having the air storage structure after internal cleaning.
 この構成によれば、強度部材の内部洗浄後に、作動ガスを強度部材内に充填することができるため、強度部材内へのダストの混入を抑制することができる。このため、ダストによる詰まり、またはダストによる機器の作動不良等の発生を抑制することができる。 According to this configuration, the working gas can be filled into the strength member after the strength member is cleaned, so that dust can be prevented from being mixed into the strength member. For this reason, generation | occurrence | production of the clogging by dust or the malfunctioning of the apparatus by dust, etc. can be suppressed.
 また、前記気蓄構造は、前記強度部材の内部に設けられる対向する一対の管板と、前記一方の管板に設けられ、前記一対の管板により区画された前記強度部材の内外において、前記作動ガスを流通させるための配管が接続される継手と、を有することが好ましい。 The air storage structure includes a pair of opposing tube plates provided inside the strength member, and the inside and outside of the strength member provided on the one tube plate and partitioned by the pair of tube plates. It is preferable to have a joint to which a pipe for circulating the working gas is connected.
 この構成によれば、気蓄構造を、一対の管板と継手とにより簡易な構成にすることができる。また、一対の管板により区画された強度部材の内部に、継手を介して作動ガスを充填したり、強度部材の内部に蓄圧された作動ガスを、継手を介して排出したりすることができる。 According to this configuration, the air storage structure can be simplified by a pair of tube sheets and joints. Moreover, the working gas filled in the strength member partitioned by the pair of tube plates can be filled through the joint, or the working gas accumulated in the strength member can be discharged through the joint. .
 また、前記強度部材は、全周に亘って複数設けられ、一方の前記強度部材の内部と、他方の前記強度部材の内部とを連通する連通管を、さらに備えることが好ましい。 Further, it is preferable that a plurality of the strength members are provided over the entire circumference, and further provided with a communication pipe that communicates the inside of one of the strength members and the inside of the other strength member.
 この構成によれば、気蓄構造を有する強度部材を複数設ける場合、連通管により複数の強度部材の内部を接続することができる。このため、気蓄構造を有する複数の強度部材を、単一の気蓄器として使用することができる。 According to this configuration, when a plurality of strength members having an air storage structure are provided, the insides of the plurality of strength members can be connected by the communication pipe. For this reason, the several intensity | strength member which has an air storage structure can be used as a single air accumulator.
 また、前記強度部材は、全周に亘って複数設けられ、前記作動ガスが使用される設備を、さらに備え、前記設備に最も近い前記強度部材に、前記気蓄構造を設けると共に、前記強度部材と前記設備とを配管により接続することが好ましい。 In addition, the strength member is provided in a plurality over the entire circumference, and further includes equipment for using the working gas, and the strength member closest to the equipment is provided with the air storage structure, and the strength member And the equipment are preferably connected by piping.
 この構成によれば、設備に最も近い強度部材に気蓄構造を設けることができるため、強度部材と設備とを接続する配管の長さを短くすることができる。このため、配管の長さを短くすることができる分、配管の重量を軽減することができ、これにより、宇宙航行体の重量の軽減を図ることができる。 According to this configuration, since the air storage structure can be provided in the strength member closest to the facility, the length of the pipe connecting the strength member and the facility can be shortened. For this reason, since the length of the piping can be shortened, the weight of the piping can be reduced, and thereby the weight of the spacecraft can be reduced.
図1は、本実施例に係る宇宙航行体としてのロケットを模式的に表した概略構成図である。FIG. 1 is a schematic configuration diagram schematically showing a rocket as a spacecraft according to the present embodiment. 図2は、気蓄器を模式的に表した概略構成図である。FIG. 2 is a schematic configuration diagram schematically illustrating the air accumulator.
 以下に、本発明に係る実施例を図面に基づいて詳細に説明する。なお、この実施例によりこの発明が限定されるものではない。また、下記実施例における構成要素には、当業者が置換可能かつ容易なもの、あるいは実質的に同一のものが含まれる。 Embodiments according to the present invention will be described below in detail with reference to the drawings. Note that the present invention is not limited to the embodiments. In addition, constituent elements in the following embodiments include those that can be easily replaced by those skilled in the art or those that are substantially the same.
 図1は、本実施例に係る宇宙航行体としてのロケットの一部を模式的に表した概略構成図であり、図2は、気蓄器を模式的に表した概略構成図である。図1及び図2に示すように、本実施例の気蓄器10は、宇宙航行体に設けられ、宇宙航行体で使用される作動ガスを蓄圧するものである。ここで、宇宙航行体としては、ロケット等の飛翔体、人工衛星または宇宙基地等があり、本実施例の気蓄器10は、ロケットに適用されている。なお、本実施例では、気蓄器10を多段式ロケットの2段目のロケットに適用して説明するが、気蓄器10は、ロケットのいずれの段数であっても適用が可能であり、また、人工衛星または宇宙基地等の宇宙航行体に適用してもよく、特に限定されない。先ず、図1を参照して、気蓄器10が設けられる2段目のロケット1(以下、単にロケットという)について説明する。
FIG. 1 is a schematic configuration diagram schematically showing a part of a rocket as a spacecraft according to the present embodiment, and FIG. 2 is a schematic configuration diagram schematically showing an air reservoir. As shown in FIG.1 and FIG.2, the air accumulator 10 of a present Example is provided in a spacecraft, and accumulates the working gas used with a spacecraft. Here, the spacecraft includes a flying object such as a rocket, an artificial satellite or a space base, and the air reservoir 10 of this embodiment is applied to a rocket. In this embodiment, the air accumulator 10 is described as applied to the second stage rocket of the multistage rocket, but the air accumulator 10 can be applied to any number of stages of the rocket, Further, the present invention may be applied to a space navigation body such as an artificial satellite or a space base, and is not particularly limited. First, with reference to FIG. 1, the 2nd stage rocket 1 (henceforth only a rocket) provided with the air accumulator 10 is demonstrated.
 図1に示すように、ロケット1は、フレーム5と、フレーム5の一方側に支持される燃料タンク6と、フレーム5の他方側に支持される酸化剤タンク7と、燃料を燃焼させて推進力を発生させるロケットエンジン8と、気蓄器10とを備えている。 As shown in FIG. 1, the rocket 1 is propelled by burning a fuel with a frame 5, a fuel tank 6 supported on one side of the frame 5, an oxidant tank 7 supported on the other side of the frame 5. A rocket engine 8 that generates force and an air reservoir 10 are provided.
 フレーム5は、トラス構造となっており、燃料タンク6側(一方側:図示上側)に設けられる第1支持部材11と、酸化剤タンク7側(他方側:図示下側)に設けられる第2支持部材12と、第1支持部材11と第2支持部材12との間に設けられる複数の強度部材13とを有している。 The frame 5 has a truss structure, and a first support member 11 provided on the fuel tank 6 side (one side: upper side in the figure) and a second support member provided on the oxidant tank 7 side (the other side: the lower side in the figure). It has a support member 12 and a plurality of strength members 13 provided between the first support member 11 and the second support member 12.
 第1支持部材11は、燃料タンク6の外側の全周に亘って環状に設けられている。この第1支持部材11には、強度部材13の一端が接続される。第2支持部材12は、酸化剤タンク7の外側の全周に亘って環状に設けられている。この第2支持部材12には、強度部材13の他端が接続される。複数の強度部材13は、第1支持部材11と第2支持部材12との間に設けられている。そして、複数の強度部材13は、複数の強度部材13、第1支持部材11及び第2支持部材12で三角形状を形成するように、全周に亘って配置されている。各強度部材13は、内部が中空となる円筒形状に形成されている。なお、詳細は後述するが、この強度部材13の内部には、作動ガスを蓄圧可能な気蓄構造20が設けられている。 The first support member 11 is provided in an annular shape over the entire outer periphery of the fuel tank 6. One end of a strength member 13 is connected to the first support member 11. The second support member 12 is provided in an annular shape over the entire outer periphery of the oxidant tank 7. The other end of the strength member 13 is connected to the second support member 12. The plurality of strength members 13 are provided between the first support member 11 and the second support member 12. The plurality of strength members 13 are arranged over the entire circumference so that the plurality of strength members 13, the first support member 11, and the second support member 12 form a triangular shape. Each strength member 13 is formed in a cylindrical shape whose inside is hollow. Although details will be described later, an air storage structure 20 capable of accumulating working gas is provided inside the strength member 13.
 燃料タンク6は、例えば、燃料として液体水素を溜める液体水素タンクとなっており、円筒形状に形成されている。燃料タンク6は、気蓄器10から作動ガスが供給されることで、ロケットエンジン8へ向けて液体水素を供給可能となっている。酸化剤タンク7は、例えば、酸化剤として液体酸素を溜める液体酸素タンクとなっており、円筒形状に形成されている。酸化剤タンク7は、気蓄器10から作動ガスが供給されることで、ロケットエンジン8へ向けて液体酸素を供給可能となっている。そして、燃料タンク6及び酸化剤タンク7は、フレーム5を挟んで対向して配置されている。 The fuel tank 6 is, for example, a liquid hydrogen tank that stores liquid hydrogen as a fuel, and is formed in a cylindrical shape. The fuel tank 6 can supply liquid hydrogen to the rocket engine 8 by supplying the working gas from the gas accumulator 10. The oxidant tank 7 is, for example, a liquid oxygen tank that stores liquid oxygen as an oxidant, and is formed in a cylindrical shape. The oxidant tank 7 can supply liquid oxygen toward the rocket engine 8 by supplying the working gas from the gas accumulator 10. The fuel tank 6 and the oxidant tank 7 are disposed to face each other with the frame 5 interposed therebetween.
 ロケットエンジン8は、酸化剤タンク7の他方側(図示下側)、つまり、酸化剤タンク7を挟んで、燃料タンク6の反対側に設けられている。ロケットエンジン8は、燃料タンク6から供給された液体水素及び酸化剤タンク7から供給された液体酸素を混合して燃焼させることで、推進力を発生させる。 The rocket engine 8 is provided on the other side (the lower side in the drawing) of the oxidant tank 7, that is, on the opposite side of the fuel tank 6 with the oxidant tank 7 interposed therebetween. The rocket engine 8 mixes the liquid hydrogen supplied from the fuel tank 6 and the liquid oxygen supplied from the oxidant tank 7 and burns them to generate a propulsive force.
 次に、図2を参照して、気蓄器10について説明する。図2に示すように、気蓄器10は、中空円筒状の強度部材13の内部に、気蓄構造20を設けることで、作動ガスを蓄圧可能となっている。気蓄器10は、蓄圧した作動ガスを、燃料タンク6及び酸化剤タンク7へ向けて供給可能となっている。また、気蓄器10は、燃料タンク6及び酸化剤タンク7の他、ロケットエンジン8、ロケット1に設けられる機体システムを制御するための各種バルブ、姿勢制御及び軌道を修正するスラスタ等へ向けて、蓄圧した作動ガスを供給可能となっている。つまり、燃料タンク6、酸化剤タンク7及びスラスタ等は、作動ガスが使用される設備となっている。 Next, the air accumulator 10 will be described with reference to FIG. As shown in FIG. 2, the air accumulator 10 is capable of accumulating working gas by providing an air accumulating structure 20 inside a hollow cylindrical strength member 13. The gas accumulator 10 can supply the accumulated working gas toward the fuel tank 6 and the oxidant tank 7. In addition to the fuel tank 6 and the oxidant tank 7, the air accumulator 10 is directed to various valves for controlling the airframe system provided in the rocket engine 8 and the rocket 1, attitude control, and a thruster for correcting the trajectory. The accumulated working gas can be supplied. That is, the fuel tank 6, the oxidant tank 7, the thruster, and the like are facilities that use working gas.
 ここで、気蓄器10に蓄圧される作動ガスとしては、例えば、ヘリウムガスが用いられる。なお、作動ガスは、ヘリウムガスに限定されず、不活性ガスであればいずれであってもよく、例えば、窒素ガスまたはアルゴンガス等を用いてもよい。 Here, for example, helium gas is used as the working gas accumulated in the air accumulator 10. Note that the working gas is not limited to helium gas, and any working gas may be used. For example, nitrogen gas or argon gas may be used.
 気蓄器10は、強度部材13を容器の一部として利用している。このとき、強度部材13の肉厚は、例えば、10mm~20mmとなっている。これに対し、ロケット1に搭載される専用の気蓄器の肉厚は、例えば、約3mmとなっている。このため、強度部材13の肉厚は、専用の気蓄器の肉厚に比して厚くなっていることから、本実施例の気蓄器10の剛性は、専用の気蓄器の剛性に比して高くなっている。また、強度部材13は、その外径が、約100mm前後となっており、その長手方向(軸方向)における長さが、約1000mm~2000mmとなっている。 The air reservoir 10 uses the strength member 13 as a part of the container. At this time, the thickness of the strength member 13 is, for example, 10 mm to 20 mm. On the other hand, the thickness of the dedicated air reservoir mounted on the rocket 1 is, for example, about 3 mm. For this reason, since the thickness of the strength member 13 is larger than the thickness of the dedicated air reservoir, the rigidity of the air reservoir 10 of the present embodiment is equal to the rigidity of the dedicated air reservoir. It is higher than that. The strength member 13 has an outer diameter of about 100 mm and a length in the longitudinal direction (axial direction) of about 1000 mm to 2000 mm.
 所定の強度部材13の内部に設けられる気蓄構造20は、一対の管板21,22と、充填用継手23と、排出用継手24と、を有している。一対の管板21,22のうち、一方の管板21は、強度部材13の軸方向の一方側(図示上側)に設けられ、他方の管板22は、強度部材13の軸方向の他方側(図示下側)に設けられている。このため、強度部材13の内部は、一対の管板21,22により区画される。また、一対の管板21,22は、溶接等により強度部材13の内部へ接合されていることから、強度部材13と管板21,22との間は、気密に封止された構造となっている。このため、強度部材13の内部から、作動ガスが漏出することを抑制することができる。 The air storage structure 20 provided inside the predetermined strength member 13 has a pair of tube sheets 21, 22, a filling joint 23, and a discharge joint 24. Of the pair of tube plates 21, 22, one tube plate 21 is provided on one side (the upper side in the drawing) of the strength member 13, and the other tube plate 22 is the other side of the strength member 13 in the axial direction. (Lower side in the figure). For this reason, the inside of the strength member 13 is partitioned by the pair of tube plates 21 and 22. Further, since the pair of tube plates 21 and 22 are joined to the inside of the strength member 13 by welding or the like, the structure between the strength member 13 and the tube plates 21 and 22 is hermetically sealed. ing. For this reason, it is possible to suppress leakage of the working gas from the inside of the strength member 13.
 充填用継手23は、一方の管板21に設けられ、作動ガスの充填時に使用される。充填用継手23は、強度部材13の内部に作動ガスを充填する場合に、ガス充填管が接続される。作動ガスは、充填用継手23を介して、強度部材13の内部に供給される。なお、ガス充填管は、作動ガスの充填が終了すると取り外される。 The filling joint 23 is provided on one tube plate 21 and is used when filling the working gas. The filling joint 23 is connected to a gas filling pipe when the working gas is filled in the strength member 13. The working gas is supplied into the strength member 13 through the filling joint 23. The gas filling tube is removed when the working gas filling is completed.
 排出用継手24は、一方の管板21に設けられ、作動ガスの排出時に使用される。排出用継手24は、燃料タンク6、酸化剤タンク7及びスラスタ等の設備に、排出配管25を介して接続されている。強度部材13の内部に充填された作動ガスは、排出用継手24及び排出配管25を介して、燃料タンク6、酸化剤タンク7及びスラスタ等の設備へ向けて供給される。 The discharge joint 24 is provided on one tube plate 21 and is used when the working gas is discharged. The discharge joint 24 is connected to facilities such as the fuel tank 6, the oxidant tank 7, and the thruster via a discharge pipe 25. The working gas filled in the strength member 13 is supplied to facilities such as the fuel tank 6, the oxidant tank 7, and the thruster via the discharge joint 24 and the discharge pipe 25.
 上記のように構成された気蓄器10は、作動ガスの充填前に、内部洗浄が行われることで、一対の管板21,22により区画された強度部材13の内部に付着するダストを排出する。 The air reservoir 10 configured as described above discharges dust adhering to the inside of the strength member 13 partitioned by the pair of tube plates 21 and 22 by performing internal cleaning before filling with the working gas. To do.
 以上のように、本実施例の構成によれば、強度部材13の内部に気蓄構造20を設けることで、強度部材13を気蓄器10の容器の一部として利用することができる。このため、強度部材13を気蓄器10として機能させることができることから、専用の気蓄器を設ける必要がなく、ロケット1の重量を軽減することができる。また、強度部材13の剛性は、専用の気蓄器に比して高くなっている。このとき、専用の気蓄器は、重量を軽減するために、肉厚を薄くしつつ内部のガス圧を高圧にすることから、専用の気蓄器への作動ガスの充填作業は、作業員を退避させ、安全性の高い作業環境で行う必要がある。一方で、本実施例の気蓄器10では、剛性の高い強度部材13を気蓄器10の容器の一部として利用することができるため、作業員を退避させることなく、充填作業を行うことができ、専用の気蓄器に比して作動ガスの充填作業を安全に行うことができる。 As described above, according to the configuration of this embodiment, the strength member 13 can be used as a part of the container of the air reservoir 10 by providing the air storage structure 20 inside the strength member 13. For this reason, since the strength member 13 can function as the air accumulator 10, there is no need to provide a dedicated air accumulator, and the weight of the rocket 1 can be reduced. Moreover, the rigidity of the strength member 13 is higher than that of a dedicated air reservoir. At this time, in order to reduce the weight, the dedicated air reservoir reduces the wall thickness while increasing the internal gas pressure. Must be carried out in a highly safe working environment. On the other hand, in the air reservoir 10 of the present embodiment, since the highly rigid strength member 13 can be used as a part of the container of the air accumulator 10, the filling operation is performed without retracting the worker. Therefore, the working gas can be filled more safely than a dedicated air accumulator.
 また、本実施例の構成によれば、強度部材13の内部洗浄後に、作動ガスを強度部材13内に充填することができるため、強度部材13内へのダストの混入を抑制することができる。このため、ダストによる詰まり、またはダストによる機器の作動不良等の発生を抑制することができる。 Further, according to the configuration of the present embodiment, the working gas can be filled into the strength member 13 after the strength member 13 is internally cleaned, so that dust can be prevented from being mixed into the strength member 13. For this reason, generation | occurrence | production of the clogging by dust or the malfunctioning of the apparatus by dust, etc. can be suppressed.
 また、本実施例の構成によれば、気蓄構造20を、一対の管板21,22と各種継手23,24とにより簡易な構成にすることができる。また、一対の管板21,22により区画された強度部材13の内部に、充填用継手23を介して作動ガスを充填したり、強度部材13の内部に蓄圧された作動ガスを、排出用継手24を介して排出したりすることができる。 Further, according to the configuration of the present embodiment, the air storage structure 20 can be simplified by the pair of tube sheets 21 and 22 and the various joints 23 and 24. Further, the inside of the strength member 13 partitioned by the pair of tube plates 21 and 22 is filled with the working gas via the filling joint 23, or the working gas accumulated in the strength member 13 is discharged into the joint for discharging. 24 can be discharged.
 なお、本実施例において、気蓄器10は、気蓄構造20を有する強度部材13を単体により構成してもよいし、気蓄構造20を有する強度部材13を複数設けて構成してもよい。ここで、複数の強度部材13に気蓄構造20をそれぞれ設けて気蓄器10を構成する場合、複数の強度部材13の内部を、連通管を用いて接続してもよい。この構成によれば、気蓄構造20を有する複数の強度部材13を、単一の気蓄器10として使用することができる。 In the present embodiment, the air accumulator 10 may be configured by a single strength member 13 having the air storage structure 20 or may be configured by providing a plurality of strength members 13 having the air storage structure 20. . Here, when each of the strength members 13 is provided with the air storage structure 20 to constitute the air reservoir 10, the inside of the plurality of strength members 13 may be connected using a communication pipe. According to this configuration, a plurality of strength members 13 having the air storage structure 20 can be used as a single air storage device 10.
 また、複数の強度部材13に気蓄構造20をそれぞれ設けて気蓄器10を構成する場合、燃料タンク6、酸化剤タンク7及びスラスタ等の設備に最も近い強度部材13に、気蓄構造20を設けてもよい。この構成によれば、強度部材13の排出用継手24と各設備とを接続する排出配管25を短くすることができる。このため、排出配管25の長さを短くすることができる分、排出配管25の重量を軽減することができ、これにより、ロケット1の重量の軽減を図ることができる。この場合、複数の強度部材13の内部を、連通管を用いて接続してもよいし、接続しなくてもよい。 Further, when the air storage structure 10 is configured by providing the air storage structures 20 on the plurality of strength members 13, the air storage structure 20 May be provided. According to this configuration, the discharge pipe 25 connecting the discharge joint 24 of the strength member 13 and each facility can be shortened. For this reason, since the length of the discharge pipe 25 can be shortened, the weight of the discharge pipe 25 can be reduced, and thus the weight of the rocket 1 can be reduced. In this case, the insides of the plurality of strength members 13 may be connected using communication pipes, or may not be connected.
1 ロケット
5 フレーム
6 燃料タンク
7 酸化剤タンク
8 ロケットエンジン
10 気蓄器
11 第1支持部材
12 第2支持部材
13 強度部材
20 気蓄構造
21,22 管板
23 充填用継手
24 排出用継手
25 排出配管
DESCRIPTION OF SYMBOLS 1 Rocket 5 Frame 6 Fuel tank 7 Oxidant tank 8 Rocket engine 10 Air reservoir 11 First support member 12 Second support member 13 Strength member 20 Air storage structures 21 and 22 Tube plate 23 Filling joint 24 Discharge joint 25 Discharge Piping

Claims (6)

  1.  中空円筒状の強度部材を用いて構成されるフレームを備える宇宙航行体に設けられる宇宙航行体用の気蓄器であって、
     前記強度部材の内部に、作動ガスを蓄圧可能な気蓄構造を有することを特徴とする宇宙航行体用の気蓄器。
    An air reservoir for a spacecraft provided in a spacecraft including a frame configured using a hollow cylindrical strength member,
    An air accumulator for a spacecraft having an air accumulating structure capable of accumulating working gas inside the strength member.
  2.  前記気蓄構造を有する前記強度部材は、内部洗浄後に前記作動ガスが蓄圧されることを特徴とする請求項1に記載の宇宙航行体用の気蓄器。 2. The space accumulator according to claim 1, wherein the strength member having the air accumulating structure accumulates the working gas after internal cleaning. 3.
  3.  前記気蓄構造は、
     前記強度部材の内部に設けられる対向する一対の管板と、
     前記一方の管板に設けられ、前記一対の管板により区画された前記強度部材の内外において、前記作動ガスを流通させるための配管が接続される継手と、を有することを特徴とする請求項1または2に記載の宇宙航行体用の気蓄器。
    The air storage structure is
    A pair of opposing tube plates provided inside the strength member;
    And a joint to which a pipe for circulating the working gas is connected inside and outside the strength member provided on the one tube sheet and partitioned by the pair of tube sheets. An air reservoir for a spacecraft according to 1 or 2.
  4.  前記強度部材は、全周に亘って複数設けられ、
     一方の前記強度部材の内部と、他方の前記強度部材の内部とを連通する連通管を、さらに備えることを特徴とする請求項1から3のいずれか1項に記載の宇宙航行体用の気蓄器。
    A plurality of the strength members are provided over the entire circumference,
    The space navigation vehicle according to any one of claims 1 to 3, further comprising a communication pipe that communicates the inside of the one strength member and the inside of the other strength member. Accumulator.
  5.  前記強度部材は、全周に亘って複数設けられ、
     前記作動ガスが使用される設備を、さらに備え、
     前記設備に最も近い前記強度部材に、前記気蓄構造を設けると共に、前記強度部材と前記設備とを配管により接続することを特徴とする請求項1から4のいずれか1項に記載の宇宙航行体用の気蓄器。
    A plurality of the strength members are provided over the entire circumference,
    A facility for using the working gas;
    The space navigation according to any one of claims 1 to 4, wherein the strength member closest to the facility is provided with the air storage structure, and the strength member and the facility are connected by a pipe. Air reservoir for the body.
  6.  中空円筒状の強度部材を用いて構成されるフレームと、
     前記強度部材の内部に、作動ガスを蓄圧可能な気蓄構造を有する気蓄器と、を備えることを特徴とする宇宙航行体。
    A frame configured using a hollow cylindrical strength member;
    A spacecraft comprising an air reservoir having an air storage structure capable of accumulating working gas inside the strength member.
PCT/JP2013/072921 2013-08-27 2013-08-27 Gas reservoir for aerospace vehicle, and aerospace vehicle WO2015029146A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2013/072921 WO2015029146A1 (en) 2013-08-27 2013-08-27 Gas reservoir for aerospace vehicle, and aerospace vehicle
JP2015533832A JP6121541B2 (en) 2013-08-27 2013-08-27 Air accumulator and spacecraft for spacecraft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/072921 WO2015029146A1 (en) 2013-08-27 2013-08-27 Gas reservoir for aerospace vehicle, and aerospace vehicle

Publications (1)

Publication Number Publication Date
WO2015029146A1 true WO2015029146A1 (en) 2015-03-05

Family

ID=52585765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072921 WO2015029146A1 (en) 2013-08-27 2013-08-27 Gas reservoir for aerospace vehicle, and aerospace vehicle

Country Status (2)

Country Link
JP (1) JP6121541B2 (en)
WO (1) WO2015029146A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02500100A (en) * 1987-06-24 1990-01-18 エーリコン―コントラベス・アクチェンゲゼルシャフト Expandable folding structure and method for manufacturing folding structure
JPH0381551A (en) * 1989-08-25 1991-04-05 Nissan Motor Co Ltd Apparatus for monitoring hydraulic oil of hydraulic oil pressure supply source for rocket
JP2000220795A (en) * 1999-02-01 2000-08-08 Mitsubishi Heavy Ind Ltd Gas replacement device for gas accumulator
JP2008189304A (en) * 2007-02-03 2008-08-21 Astrium Gmbh Cryogenic liquid and tank for storing storable fuel
US20100012788A1 (en) * 2005-09-07 2010-01-21 The Boeing Company Exchangeable Propellant Cartridge System

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02500100A (en) * 1987-06-24 1990-01-18 エーリコン―コントラベス・アクチェンゲゼルシャフト Expandable folding structure and method for manufacturing folding structure
JPH0381551A (en) * 1989-08-25 1991-04-05 Nissan Motor Co Ltd Apparatus for monitoring hydraulic oil of hydraulic oil pressure supply source for rocket
JP2000220795A (en) * 1999-02-01 2000-08-08 Mitsubishi Heavy Ind Ltd Gas replacement device for gas accumulator
US20100012788A1 (en) * 2005-09-07 2010-01-21 The Boeing Company Exchangeable Propellant Cartridge System
JP2008189304A (en) * 2007-02-03 2008-08-21 Astrium Gmbh Cryogenic liquid and tank for storing storable fuel

Also Published As

Publication number Publication date
JP6121541B2 (en) 2017-04-26
JPWO2015029146A1 (en) 2017-03-02

Similar Documents

Publication Publication Date Title
US20160207641A1 (en) Fuel depot in space
US8973873B2 (en) Spacecraft propellant tank mount
CN104260903B (en) Possesses the propelling module structure of independent high rail satellite platform function
US9796486B1 (en) Integrated propulsion and primary structure module for microsatellites
CN107972894B (en) A kind of Control System for Reusable Launch Vehicle landing and buffering device
US7156348B1 (en) Platform and system for propellant tank storage and transfer in space
CN107327355A (en) A kind of spacecraft propulsion agent management method
CN104648697B (en) A kind of double bulkhead formula inflation cabin body
JP2008539131A (en) Supersonic light flight vehicle
CN103241392B (en) Deep space weak gravitation celestial body attachment device and construction method thereof
CN104554822A (en) Multilayer hollow interlayer inflated cabin
CN102358438B (en) Increased resistance type device applicable to low-orbit post-task spacecraft deorbit
TWI720112B (en) Structural propellant for ion rockets (spir)
JP6121541B2 (en) Air accumulator and spacecraft for spacecraft
CN104443445A (en) Damping pipe support type damping adapter
JP2007239448A (en) Scaffold device and mounting method of heat insulating system using the same
RU2695155C1 (en) Space system for recycling large-size space debris
CN110525695B (en) Spacecraft propellant storage and management split system
CN110816901A (en) Rocket cabin section separation system and rocket
CN107264839B (en) Satellite booster pipe-line layout method
CN211223936U (en) Rocket cabin section separation system and rocket
CN109264036A (en) Spacecraft leaves the right or normal track electric power rope system
CN113390007A (en) Gas cylinder bearing structure and gas supply device
US20200307461A1 (en) Spacecraft with increased cargo capacities, and associated systems and methods
US9242746B2 (en) Augmentation of a monopropellant propulsion system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13892521

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015533832

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13892521

Country of ref document: EP

Kind code of ref document: A1