WO2015027887A1 - 一种光通信网络中光纤传输时延的在线监测方法 - Google Patents

一种光通信网络中光纤传输时延的在线监测方法 Download PDF

Info

Publication number
WO2015027887A1
WO2015027887A1 PCT/CN2014/085139 CN2014085139W WO2015027887A1 WO 2015027887 A1 WO2015027887 A1 WO 2015027887A1 CN 2014085139 W CN2014085139 W CN 2014085139W WO 2015027887 A1 WO2015027887 A1 WO 2015027887A1
Authority
WO
WIPO (PCT)
Prior art keywords
station
optical fiber
transmission
optical
transmission delay
Prior art date
Application number
PCT/CN2014/085139
Other languages
English (en)
French (fr)
Inventor
李高峰
李琦
孟志才
李有生
李忠文
彭良福
Original Assignee
成都泰富通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都泰富通信有限公司 filed Critical 成都泰富通信有限公司
Publication of WO2015027887A1 publication Critical patent/WO2015027887A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/07Arrangements for monitoring or testing transmission systems; Arrangements for fault measurement of transmission systems

Definitions

  • the invention belongs to the technical field of optical fiber communication, and relates to an online monitoring method for optical fiber transmission delay in an optical communication network.
  • the time delay of optical fiber transmission in optical communication networks is related to the length of the optical cable, and also related to the fiber length fluctuation caused by factors such as aging of the optical fiber and changes in ambient temperature.
  • Fiber length fluctuation is an extremely slow change, which causes a slow change in the fiber transmission delay. It will cause drift error and cumulative drift error in the optical transmission network carrying the time synchronization support network (extra high-precision time-frequency reference). Slip code and bit error that cause data transmission.
  • the off-line delay measurement and compensation method provides high-accuracy (better than ⁇ 100 ns) delay test by intrusive measurement of the transmission optical path (which needs to occupy the transmission optical path during the test and interrupt the real-time in-network service)
  • the time synchronization server is used as the reference delay parameter to perform delay correction, and the network service can be restored after the modification process is completed.
  • the invention discloses a method for applying online measurement technology to optical fiber transmission time delay measurement, and utilizes the excellent performance of the master-slave synchronous clock itself, and can accurately measure the time between the master and the slave by comparing the time comparison of the data stream with the round-trip comparison measurement.
  • Optical fiber transmission delay value online monitoring of fiber delay.
  • the purpose of the present invention is to solve the current implementation and maintenance of optical communication networks, and to adopt offline one-time measurement and one-time compensation technology for optical fiber transmission delay measurement, which requires temporary interruption of services and periodic repeated measurement and compensation.
  • the problem of large workload and time consuming provides a more accurate and convenient online monitoring method for optical fiber transmission delay in optical communication networks.
  • the optical fiber transmission delay online monitoring method proposed by the invention does not need to add a dedicated precision test instrument in the existing optical fiber transmission equipment SDH system, and only needs to be between the master and the slave stations (ie, between the two stations to be tested) Increase one A dual-fiber single-fiber transmission multiplexing device is added, and a time-delay online monitoring algorithm is added to the time server of the primary station and the secondary station to complete online monitoring of the fiber delay.
  • An online monitoring method for optical fiber transmission delay in an optical communication network which is used for online monitoring of optical fiber transmission delay between two adjacent stations in an optical communication network; two adjacent stations in an optical communication network are respectively defined as main
  • the station and the slave station first add a dual-fibre single-fiber transmission multiplexing device between the optical fiber transmission equipment of the primary station and the secondary station and the optical cable connecting the primary station and the secondary station, and then perform on-line monitoring of the optical fiber transmission delay.
  • Step 1 master transmission device, respectively, and the self-test device from the station transmission delay, transmission delay measured from the master transmission device T correction value from the main station and the transmission delay correction value from the transmission device T from .
  • the primary station transmission device includes a primary station clock device, a primary station optical transmission device, and a primary station dual fiber variable single fiber transmission multiplexing device
  • the secondary station transmission device includes a slave station clock device, a slave station optical transmission device, and a slave station. Dual fiber single fiber transmission multiplexing device.
  • Step 2 Perform loopback measurement of the transmission delay value TIE(t) of the optical fiber link in which the measurement data stream is reciprocated between the primary station and the secondary station. That is, the measurement data stream is measured from the origin of the primary station, and sequentially passes through the optical link of the primary station transmission device, the optical fiber to be tested, the secondary transmission device, the optical fiber to be tested, and the primary transmission device, and then returns to the origin of the primary station.
  • the transmission delay value is recorded as TIE(t).
  • the optical fiber to be tested is an optical fiber to be tested for transmission delay, and the optical fiber to be tested and the measurement data stream that passes through the measurement data stream from the primary station to the secondary station are connected to the optical fiber to be tested when returning from the secondary station to the primary station. The same fiber in the fiber optic cable of the station and the slave station.
  • Step 3 Repeat step 2 multiple times to perform a statistical average value Tao of the transmission delay value TIE(t) of the optical fiber link that measures the data stream back and forth between the primary station and the secondary station.
  • N is the number of loopback measurements of the transmission delay value TIE(t) of the fiber link that measures the data stream back and forth between the primary station and the secondary station.
  • Step 4 Calculate the transmission delay T of the optical fiber connecting the transmission delay of the optical cable connected to the primary station and the secondary station,
  • the loopback measurement of the transmission delay value TIE(t) of the optical fiber link that measures the data stream in the first step and the secondary station in step 3 is measured.
  • the number of times N is preferably 10,000 or more, that is, the average value Tao is taken after repeating the measurement at least 10,000 times or more.
  • the invention solves the problem that the current optical fiber delay measurement adopts offline measurement and has a large workload in engineering implementation and maintenance. Time and other issues enhance the real-time and accuracy of fiber transmission delay measurement, and provide a more accurate and convenient online monitoring method for fiber transmission delay.
  • the present invention can measure the current time and current operation of each fiber (between the main station and the slave station) of the optical fiber cable running in the optical communication network in real time and accurately.
  • the slave clock correctly and accurately tracks the time-frequency reference locked to the master clock, using the superior performance of the master-slave synchronous clock itself, the time comparison of the data stream to the round-trip comparison measurement data can be made between the master and slave stations.
  • the measurement accuracy of the delay value is ⁇ 1 ns.
  • the method is integrated with the fiber delay automatic locking and equalization compensation technology, and the delay variation of the optical fiber transmission can be firmly controlled within the range of 1 ns/day to 10 ns/day.
  • the optical transmission equipment to which the method is applicable includes, but not limited to, SDH (Synchronous Digital Hierarchy) and SONET (Synchronous Optical Network).
  • FIG. 1 is a schematic diagram of an optical transmission link in an embodiment of an optical fiber delay online monitoring method provided by the present invention.
  • FIG. 2 is a schematic flow chart of an online monitoring method for optical fiber transmission delay in an optical communication network provided by the present invention.
  • the present invention relates to an optical fiber delay online monitoring method.
  • SDH system existing optical fiber transmission system
  • the fiber transmission multiplexing device while adding the delay online monitoring algorithm to the time server of the primary station and the secondary station, can complete the online monitoring of the fiber delay.
  • the optical fiber transmission distance (optical cable length) according to this embodiment is 50 km, but the present invention is not limited by the above embodiments, and the present invention is suitable for optical fiber transmission distances of various lengths.
  • the optical fiber delay online monitoring device involved in this embodiment includes a primary station clock device, a primary station optical transmission device, a primary station dual fiber variable single fiber transmission multiplexing device, a slave station clock device, a slave station optical transmission device, and a slave station dual fiber. Variable single fiber transmission multiplexing device.
  • A1 the master clock device (FE-5650A US FEI Company rubidium atomic clock): a high level of the clock (Cesium or rubidium atomic clock), traceable to UTC time reference, time keeping performance is better than 10 times the clock slave;
  • X 11 is Frequency synchronization output interface (satisfying E1 transmission, 2MHz standard);
  • X 12 is a round-trip comparison measurement data stream output interface (satisfying E1 transmission, 2MBits standard);
  • Y 13 is a round-trip comparison measurement data stream input interface (satisfying E1 transmission, 2MBits standard).
  • A2 Optical transmission equipment of the main station (TranSmart-SCT600 of Datang Telecom SDH optical transmission equipment): SDH or other optical transmission equipment, which can transparently transmit data stream.
  • Y 11 is the frequency synchronization input interface (E1 transmission, 2MHz standard);
  • Y 12 is the round-trip comparison measurement data stream input interface (satisfying E1 transmission, 2MBits standard);
  • X 13 is the round-trip comparison measurement data stream sent by the slave.
  • Output interface (satisfying E1 transmission, 2MBits standard);
  • X 21 is the optical output interface, and Y 22 is the optical input interface.
  • A3 Main station dual-fibre single-fiber transmission multiplexing equipment (Chengdu Taifu Communication Company wavelength division multiplexing equipment TFDX-1): Y 21 is the dual-fiber side optical input interface, X 22 is the dual-fiber side optical output interface; X 31 It is an optical path output (input) interface on the single fiber side.
  • TFDX-1 Main station dual-fibre single-fiber transmission multiplexing equipment
  • A4 Slave dual-fiber single-fiber transmission multiplexing device (same as the main station model): Y 31 is the optical path output (input) interface on the single-fiber side; X 41 is the dual-fiber-side optical output interface; Y 42 is dual-fiber Side light path input interface.
  • A5 (same as the master model) slave optical transmission equipment, X 42 is an optical path output interface; Y 41 is an optical path input interface; X 51 is T4 derive frequency output interface (meet E1 transmission, 2MHz standard); X 52 mainly The station passes through the optical fiber to transmit the round-trip comparison measurement data stream output interface (meeting E1 transmission, 2MBits standard); Y 53 is the round-trip comparison measurement data stream output interface sent by the slave station (meeting E1 transmission, 2MBits standard).
  • A6 Slave clock device (Datang Telecom SDH TranSmart-SCT600 network element clock), generally selects a controlled clock device with a lower clock level than the master station;
  • Y 51 is a T4 derived frequency input interface (for E1 transmission, 2MHz standard)
  • Y 52 is the round-trip comparison measurement data stream input interface of the primary station to the slave station (satisfying E1 transmission, 2MBits standard).
  • X 53 is the round-trip comparison measurement data stream input interface sent by the slave station (meeting E1 transmission, 2MBits standard) ).
  • A3 ⁇ A4 The primary station and the secondary station communicate via a single fiber with a length of 50Km.
  • X 11 ⁇ Y 11 , X 12 ⁇ Y 12 , X 13 ⁇ Y 13 , X 51 ⁇ Y 51 , X 52 ⁇ Y 52 , and X 53 ⁇ Y 53 are connected by a cable.
  • Two adjacent stations in the optical communication network are respectively defined as the master station and the slave station, firstly adding a double fiber variable single fiber transmission between the optical fiber transmission equipment of the primary station and the secondary station and the optical cable connecting the primary station and the secondary station respectively.
  • Multiplexing the device and then performing online monitoring of the fiber transmission delay including the following steps:
  • Step 1 master transmission device, respectively, and the self-test device from the station transmission delay, transmission delay measured from the master transmission device T correction value from the main station and the transmission delay correction value from the transmission device T from .
  • the A1, A2, and A3 devices in the base station (or the equipment room) where the primary station is located and the A6, A5, and A4 devices in the base station (or the equipment room) perform their own self-checking, that is, the transmission of A1 ⁇ A3 is accurately measured.
  • Step 2 Perform loopback measurement of the transmission delay value TIE(t) of the optical fiber link in which the measurement data stream is reciprocated between the primary station and the secondary station. From the primary station, the measurement data stream is triggered from the origin, and sequentially passes through X 12 of A1 ⁇ Y 12 of A2 ⁇ X 21 of A2 ⁇ Y 21 of A3 ⁇ A 31 ⁇ A 31 ⁇ 50 km of optical cable ⁇ Y 31 of A4 ⁇ X 41 of A4 ⁇ Y 41 of A5 ⁇ X 52 of A5 ⁇ Y 52 of A6 ⁇ Round-trip comparison measurement data stream time comparison point ⁇ X 53 of A6 ⁇ Y 53 of A5 ⁇ X 42 of A5 ⁇ Y 42 of A4 ⁇ A4 of the Y 31 ⁇ 50 km cable ⁇ A3 of X 31 ⁇ A3 of X Y 22 ⁇ A2 of X 22 ⁇ A2 of 13 ⁇ A1 to Y 13 ⁇ return to and from Comparative master measurement data
  • Step 3 Repeat step 2 multiple times to perform a statistical average value Tao of the transmission delay value TIE(t) of the optical fiber link of the measured data stream between the primary station and the secondary station; Where N is the number of loopback measurements of the transmission delay value TIE(t) of the optical fiber link in which the measurement data stream is reciprocated between the primary station and the secondary station;
  • Step 4 Calculate the transmission delay T of the optical fiber to be tested (50km optical fiber) in the optical cable connecting the primary station and the secondary station, Under normal circumstances, the 50Km fiber delay value measured and calculated through the above steps 1 to 3 is ⁇ 1 ns.
  • the loopback measurement of the transmission delay value TIE(t) of the optical fiber link that measures the data stream in the first step and the secondary station in step 3 is measured.
  • the number of times N is preferably 10,000 or more, that is, the average value Tao is taken after repeating the measurement at least 10,000 times or more.
  • This embodiment realizes the on-line monitoring of the fiber delay through a series of measures, and solves the problems of large workload and time consuming in the implementation and maintenance of the optical fiber delay measurement by using offline measurement, and improves the transmission delay value of the optical fiber.
  • the real-time and accuracy of the measurements are the real-time and accuracy of the measurements.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)

Abstract

一种光通信网络中光纤传输时延的在线监测方法,属于光纤通信技术领域。本发明在现有的光纤传输设备下,在主从站之间增加一组双纤变单纤传输复用设备,同时在主站和从站的时间服务器中加入时延在线监测算法,即可实现对光纤传输时延的在线监测。首先对主、从站设备的时延值进行检测,然后进行主站和从站之间的往返环回测量,再进行光纤传输链路时延值的多次重复测量和统计平均,最后计算光纤传输时延值。本发明能够使主从站之间的光纤时延值的测量精度≤1ns,与光纤时延自动锁定及均衡补偿技术集成应用,能够将光纤传输的时延变化控制在1ns/天~10ns/天的范围之内,可以广泛应用于高精度的光纤时间传递和光纤时延补偿。

Description

一种光通信网络中光纤传输时延的在线监测方法 技术领域
本发明属于光纤通信技术领域,涉及光通信网络中光纤传输时延的在线监测方法。
背景技术
光通信网络中光纤传输的时间延迟除了与光缆长度有关,还与光纤自身老化、环境温度变化等因素导致的光纤长度波动相关。光纤长度波动是一种极其缓慢的变化,致使光纤传输时延产生缓慢的变化,它将导致承载时间同步支撑网(特高精度时间频率基准)的光传输网络产生漂移误差和累积漂移误差,可能引起数据传输的滑码、误码。
针对光通信网络中光纤传输时延的测量和修正,目前在工程实施和工程维护中的做法大部分采用离线一次性测量和离线一次性补偿及修正。例如Time Rule GPS共视测量系统。该离线的时延测量和补偿方法,通过对传输光路的侵入式测量(测试期间需要占用传输光路,中断实时在网业务),实现较高精度(优于±100ns)的时延测试,从而提供给时间同步服务器,作为参考时延参数进行时延修正,待修正过程完成后在网业务才能恢复。该离线测量和补偿光纤传输时延的方式主要有两个弊端:第一、测量过程需要中断在网业务,原因在于测量光纤时延所使用的是离线单体设备;第二、每1~3月需要重复进行时延测试和补偿操作,原因在于测试过程是对较短时间内的时延变化检测和一次性补偿,长期的时延波动变化依然存在。该种光纤传输时延测量和补偿技术,单一地调整了短期光纤时延,没有从本质上对光纤传输时延的长期波动变化进行检测和补偿。此外,工程的维护费用也会随着重复测量和重新修正补偿而不断增加。
迄今为止,尚未见到将在线测量技术直接应用于光纤传输时延测量的报道。本发明公开了一种将在线测量技术应用于光纤传输时延测量的方法,利用主从同步时钟自身的优异性能,通过往返对比测量数据码流的时间对比,可以精确测量主从站之间的光纤传输时延值,实现光纤时延的在线监测。
发明内容
本发明的目的是为了解决目前在光通信网络的工程实施和维护中,针对光纤传输时延测量采用离线一次性测量和一次性补偿技术,存在着需要暂时中断业务、需要定期重复测量和补偿、工作量大且费时等问题,提供一种更精准、更方便的光通信网络中光纤传输时延的在线监测方法。本发明提出的光纤传输时延在线监测方法,在现有的光纤传输设备SDH体系下,不需要额外增加专用的精密测试仪表,只需要在主从站之间(即两个待测站点之间)增加一 组双纤变单纤传输复用设备,同时在主站和从站的时间服务器中加入时延在线监测算法,便可以完成对光纤时延的在线监测。
为了达到上述目的,本发明采用如下的技术方案:
一种光通信网络中光纤传输时延的在线监测方法,用于在线监测光通信网络中两个相邻站点之间的光纤传输时延;将光通信网络中两个相邻站点分别定义为主站和从站,首先在主站和从站的光纤传输设备和连接主站和从站的光缆之间分别增加一个双纤变单纤传输复用设备,然后进行光纤传输时延的在线监测,包括以下步骤:
步骤1:分别对主站传输设备和从站传输设备的时延进行自检,测量出主站传输设备的传输时延自校值T和从站传输设备的传输时延自校值T。所述主站传输设备包括主站时钟设备、主站光传输设备、主站双纤变单纤传输复用设备,所述从站传输设备包括从站时钟设备、从站光传输设备、从站双纤变单纤传输复用设备。
步骤2:进行测量数据码流在主站和从站之间往返一次的光纤链路的传输时延值TIE(t)的环回测量。即测出测量数据码流从主站原点出发,顺序经过主站传输设备、待测光纤、从站传输设备、待测光纤和主站传输设备,再回到主站原点所经过的光纤链路的传输时延值,记为TIE(t)。所述待测光纤为待测传输时延的光纤,测量数据码流从主站到从站时经过的待测光纤与测量数据码流从从站返回主站时经过的待测光纤为连接主站和从站的光缆中的同一根光纤。
步骤3:重复执行步骤2多次,进行测量数据码流在主站和从站之间往返多次的光纤链路的传输时延值TIE(t)的统计平均值Tao。
Figure PCTCN2014085139-appb-000001
其中N为测量数据码流在主站和从站之间往返一次的光纤链路的传输时延值TIE(t)的环回测量次数。
步骤4:计算连接主站和从站的光缆中待测传输时延的光纤的传输时延T,
Figure PCTCN2014085139-appb-000002
需要进一步说明的是,为了提高光纤传输时延的测量精度,步骤3中测量数据码流在主站和从站之间往返一次的光纤链路的传输时延值TIE(t)的环回测量次数N最好大于等于10000,即至少进行10000次以上的重复测量后取平均值Tao。
本发明的有益效果是:
本发明解决了目前光纤时延测量采用离线测量在工程实施和维护中存在的工作量大且费 时等问题,增强了光纤传输时延测量的实时性和准确性,提供了一种更精准、更方便的光纤传输时延在线监测方法。
与现有的光纤时延测量技术相比,本发明可以实时地、准确地测量出光通信网中运行的光缆的每一根光纤(主站→从站之间)的在当前时刻段、当前运行环境下的实际时延值T。当从站时钟正确准确地跟踪锁定到主站时钟的时间频率基准后,利用主从同步时钟自身的优异性能,进行往返对比测量数据码流的时间对比,可以使主从站之间的光纤时延值的测量精准度≤1ns。该方法与光纤时延自动锁定及均衡补偿技术集成应用,可以将光纤传输的时延变化牢牢地控制在1ns/天~10ns/天的范围之内。该方法适用的光传输设备包括但不限于SDH(Synchronous Digital Hierarchy,光同步数字体系)和SONET(Synchronous Optical Network,同步光纤网络)。
附图说明
图1是本发明提供的光纤时延在线监测方法实施例中光传输链路示意图。
图2是本发明提供的光通信网络中光纤传输时延在线监测方法的流程示意图。
具体实施方式
下面结合附图对本发明的具体实施方式做进一步的详细说明:本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作步骤,但本发明的保护范围不限于下述的实施例。
实施例
参见图1,本发明涉及的光纤时延在线监测方法,在现有的光纤传输系统SDH体系下,不需要额外增加专用的测试仪表,只需要在主从站之间增加一组双纤变单纤传输复用设备,同时在主站和从站的时间服务器中加入时延在线监测算法,便可以完成对光纤时延的在线监测。
本实施例涉及的光纤传输距离(光缆长度)为50km,但本发明不受上述实施例的限制,本发明适于各种长度的光纤传输距离。本实施例涉及的光纤时延在线监测设备包括主站时钟设备、主站光传输设备、主站双纤变单纤传输复用设备、从站时钟设备、从站光传输设备、从站双纤变单纤传输复用设备。
参见图1,各设备说明如下:
A1:主站时钟设备(美国FEI公司FE-5650A铷原子钟):具备高等级时钟(铯钟或铷原子钟),溯源至UTC时间基准,守时性能优于从站时钟10倍以上;X11是频率同步输出接口(满足E1传输,2MHz标准);X12是往返对比测量数据码流输出接口(满足E1传输,2MBits标准); Y13是往返对比测量数据码流输入接口(满足E1传输,2MBits标准)。
A2:主站光传输设备(大唐电信公司SDH光传输设备TranSmart-SCT600):SDH或其它光传输设备,能进行数据码流的透明传递。Y11是频率同步输入接口(满足E1传输,2MHz标准);Y12是往返对比测量数据码流输入接口(满足E1传输,2MBits标准);X13是从站返回发送的往返对比测量数据码流输出接口(满足E1传输,2MBits标准);X21为光路输出接口、Y22是光路输入接口。
A3:主站双纤变单纤传输复用设备(成都泰富通信公司波分复用设备TFDX-1):Y21为双纤侧光路输入接口、X22是双纤侧光路输出接口;X31为单纤侧的光路输出(输入)接口。
A4:从站双纤变单纤传输复用设备(与主站型号相同):Y31为单纤侧的光路输出(输入)接口;X41为双纤侧光路输出接口;Y42为双纤侧光路输入接口。
A5:从站光传输设备(与主站型号相同),X42为光路输出接口;Y41是光路输入接口;X51是T4导出频率输出接口(满足E1传输,2MHz标准);X52为主站经过光纤传递后的往返对比测量数据码流输出接口(满足E1传输,2MBits标准);Y53是从站返回发送的往返对比测量数据码流输出接口(满足E1传输,2MBits标准)。
A6:从站时钟设备(大唐电信公司SDH TranSmart-SCT600网元时钟),一般选用比主站时钟等级低的受控时钟设备;Y51为T4导出频率输入接口(满足E1传输,2MHz标准);Y52是主站传递到从站的往返对比测量数据码流输入接口(满足E1传输,2MBits标准)X53是从站返回发送的往返对比测量数据码流输入接口(满足E1传输,2MBits标准)。
参见图1,各设备之间的连接说明如下:
A3→A4:主站与从站通过长度为50Km的单根光纤进行通信连接。
X11→Y11,X12→Y12,X13→Y13,X51→Y51,X52→Y52,X53→Y53采用电缆线连接。
X21→Y21,X22→Y22,X41→Y41,X42→Y42,采用室内光纤接头光缆连接。
将光通信网络中两个相邻站点分别定义为主站和从站,首先在主站和从站的光纤传输设备和连接主站和从站的光缆之间分别增加一个双纤变单纤传输复用设备,然后进行光纤传输时延的在线监测,包括以下步骤:
步骤1:分别对主站传输设备和从站传输设备的时延进行自检,测量出主站传输设备的传输时延自校值T和从站传输设备的传输时延自校值T。主站所在基站(或机房)内的A1、A2、A3设备和从站基站(或机房)内的A6、A5、A4设备进行各自的自我校验,即各自精准地测量出A1→A3的传输时延自校值T、A6→A4的传输时延自校值T
步骤2:进行测量数据码流在主站和从站之间往返一次的光纤链路的传输时延值TIE(t)的环回测量。从主站往返对比测量数据码流从原点触发,顺序经过A1的X12→A2的Y12→A2的X21→A3的Y21→A3的→X31→50公里光缆→A4的Y31→A4的X41→A5的Y41→A5的X52→A6的Y52→往返对比测量数据码流的时间对比点→A6的X53→A5的Y53→A5的X42→A4的Y42→A4的Y31→50公里光缆→A3的X31→A3的X22→A2的Y22→A2的X13→A1的Y13→返回到主站往返对比测量数据码流的时间对比原点,通过对比得到整个光纤传输链路上的时延值TIE(t)。
步骤3:重复执行步骤2多次,进行测量数据码流在主站和从站之间往返多次的光纤链路的传输时延值TIE(t)的统计平均值Tao;
Figure PCTCN2014085139-appb-000003
其中N为测量数据码流在主站和从站之间往返一次的光纤链路的传输时延值TIE(t)的环回测量次数;
步骤4:计算连接主站和从站的光缆中待测传输时延(50km光纤)的光纤的传输时延T,
Figure PCTCN2014085139-appb-000004
正常情况下,经过上述步骤一至步骤三测量和计算得到的50Km光纤时延值≤1ns。
需要进一步说明的是,为了提高光纤传输时延的测量精度,步骤3中测量数据码流在主站和从站之间往返一次的光纤链路的传输时延值TIE(t)的环回测量次数N最好大于等于10000,即至少进行10000次以上的重复测量后取平均值Tao。
此实施例通过一系列的措施实现了光纤时延的在线监测,解决了目前光纤时延测量采用离线测量在工程实施和维护中存在的工作量大且费时等问题,提高了光纤传输时延值测量的实时性和准确性。
以上显示和说明了本发明的基本原理、主要特征和本发明的优点,但本发明不受上述实施例的限制。上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,熟悉本行业的技术人员还可以做出各种等同的变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。

Claims (2)

  1. 一种光通信网络中光纤传输时延的在线监测方法,用于在线监测光通信网络中两个相邻站点之间的光纤传输时延;将光通信网络中两个相邻站点分别定义为主站和从站,首先在主站和从站的光纤传输设备和连接主站和从站的光缆之间分别增加一个双纤变单纤传输复用设备,然后进行光纤传输时延的在线监测,包括以下步骤:
    步骤1:分别对主站传输设备和从站传输设备的时延进行自检,测量出主站传输设备的传输时延自校值T和从站传输设备的传输时延自校值T;所述主站传输设备包括主站时钟设备、主站光传输设备、主站双纤变单纤传输复用设备,所述从站传输设备包括从站时钟设备、从站光传输设备、从站双纤变单纤传输复用设备;
    步骤2:进行测量数据码流在主站和从站之间往返一次的光纤链路的传输时延值TIE(t)的环回测量;即测出测量数据码流从主站原点出发,顺序经过主站传输设备、待测光纤、从站传输设备、待测光纤和主站传输设备,再回到主站原点所经过的光纤链路的传输时延值,记为TIE(t);所述待测光纤为待测传输时延的光纤,测量数据码流从主站到从站时经过的待测光纤与测量数据码流从从站返回主站时经过的待测光纤为连接主站和从站的光缆中的同一根光纤;
    步骤3:重复执行步骤2多次,进行测量数据码流在主站和从站之间往返多次的光纤链路的传输时延值TIE(t)的统计平均值Tao;
    Figure PCTCN2014085139-appb-100001
    其中N为测量数据码流在主站和从站之间往返一次的光纤链路的传输时延值TIE(t)的环回测量次数;
    步骤4:计算连接主站和从站的光缆中待测传输时延的光纤的传输时延T,
    Figure PCTCN2014085139-appb-100002
  2. 根据权利要求1所述的光通信网络中光纤传输时延的在线监测方法,其特征在于,步骤3中测量数据码流在主站和从站之间往返一次的光纤链路的传输时延值TIE(t)的环回测量次数N大于等于10000。
PCT/CN2014/085139 2013-08-29 2014-08-26 一种光通信网络中光纤传输时延的在线监测方法 WO2015027887A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310384396.X 2013-08-29
CN201310384396XA CN103441795A (zh) 2013-08-29 2013-08-29 一种光通信网络中光纤传输时延的在线监测方法

Publications (1)

Publication Number Publication Date
WO2015027887A1 true WO2015027887A1 (zh) 2015-03-05

Family

ID=49695470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/085139 WO2015027887A1 (zh) 2013-08-29 2014-08-26 一种光通信网络中光纤传输时延的在线监测方法

Country Status (2)

Country Link
CN (1) CN103441795A (zh)
WO (1) WO2015027887A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110649964A (zh) * 2019-11-14 2020-01-03 桂林聚联科技有限公司 一种光纤时延测量装置和测量方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103441795A (zh) * 2013-08-29 2013-12-11 成都泰富通信有限公司 一种光通信网络中光纤传输时延的在线监测方法
CN104038302B (zh) * 2014-05-29 2016-09-21 成都泰富通信有限公司 适用于dwdm光传输系统的超精密时间频率传递方法
CN108768506B (zh) * 2018-04-08 2021-06-01 四川泰富地面北斗科技股份有限公司 一种基于共同门限的多元多频共视比对授时方法
CN110247722B (zh) * 2019-04-27 2021-03-30 中国人民解放军海军工程大学 一种时间传递中的多项随机变化寄生噪声的测量方法
CN112636825A (zh) * 2020-12-29 2021-04-09 北京格林威尔科技发展有限公司 一种光传送网中延时测量方法、装置和系统
CN114427922A (zh) * 2021-12-20 2022-05-03 九江学院 一种光纤链路实时温度的测量方法
CN116566491B (zh) * 2023-07-11 2024-01-12 南京典格通信科技有限公司 一种光纤直放站自适应时延调整方法和装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1490942A (zh) * 2003-07-18 2004-04-21 清华大学 光信号在传输链路中传输延时测量方法及其装置
CN1897475A (zh) * 2006-06-23 2007-01-17 京信通信技术(广州)有限公司 数字直放站系统中的光纤时延测量方法及电路
CN102742190A (zh) * 2012-02-01 2012-10-17 华为技术有限公司 时间同步方法和设备及系统
CN103441795A (zh) * 2013-08-29 2013-12-11 成都泰富通信有限公司 一种光通信网络中光纤传输时延的在线监测方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100490415C (zh) * 2002-11-06 2009-05-20 武汉烽火网络有限责任公司 基于多个fe、ge和10ge的n-子环结构的多业务环
FR2965686A1 (fr) * 2010-10-05 2012-04-06 France Telecom Technique de determination d'un temps de propagation d'un signal optique entre deux equipements optiques au moyen d'une liaison optique

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1490942A (zh) * 2003-07-18 2004-04-21 清华大学 光信号在传输链路中传输延时测量方法及其装置
CN1897475A (zh) * 2006-06-23 2007-01-17 京信通信技术(广州)有限公司 数字直放站系统中的光纤时延测量方法及电路
CN102742190A (zh) * 2012-02-01 2012-10-17 华为技术有限公司 时间同步方法和设备及系统
CN103441795A (zh) * 2013-08-29 2013-12-11 成都泰富通信有限公司 一种光通信网络中光纤传输时延的在线监测方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110649964A (zh) * 2019-11-14 2020-01-03 桂林聚联科技有限公司 一种光纤时延测量装置和测量方法
CN110649964B (zh) * 2019-11-14 2024-01-16 桂林聚联科技有限公司 一种光纤时延测量的方法

Also Published As

Publication number Publication date
CN103441795A (zh) 2013-12-11

Similar Documents

Publication Publication Date Title
WO2015027887A1 (zh) 一种光通信网络中光纤传输时延的在线监测方法
CN104038302B (zh) 适用于dwdm光传输系统的超精密时间频率传递方法
CN102271019B (zh) 通过光纤进行的精密时间传递
CN104954093B (zh) 一种基于光纤的高精度远程时间传递系统及方法
CN103546224B (zh) 单纤特高精度时间传递方法
CN105933085B (zh) 测量非对称光纤链路传输时延的方法
CN104836630B (zh) Ieee1588时钟同步系统及其实现方法
CN102801469B (zh) 一种光纤时间频率混合传递方法
CN102638324B (zh) 一种实现精确时间同步的方法和装置
US20100290572A1 (en) Network synchronization method and apparatus for performing time synchronization between nodes
CN104426600B (zh) 光纤传输时延自动锁定及均衡补偿方法
CN112202523B (zh) 一种双纤双波时间传递系统及瞬时钟差估算方法
CN104993896A (zh) 一种由专用光路由组成的授时系统及其实现方法
CN104168077A (zh) 高精度光纤双向时间比对方法与系统
CN103516508A (zh) 一种单向和双向时延抖动测量中修正时钟漂移的方法及系统
CN109150357A (zh) 基于rs485和以太网的混合总线的时间同步方法
CN105991205A (zh) 一种可验证可校准的全同步通信网及其实现方法
Ronen et al. Enhanced synchronization accuracy in IEEE1588
CN108616309A (zh) 采用偏振光在光纤中传递时间频率信号的方法
US20130132554A1 (en) Method and device for processing data on a connection between two nodes of a communication network
CN112751639B (zh) 时间同步的方法、通信设备和系统
CN102710359B (zh) 一种基于ieee1588的精确时钟频率同步方法及装置
CN112187346B (zh) 一种温度变化下光纤时间传递的往返时延差估算方法
Schwartz et al. The evolution of time-frequency provision systems for communication networks and their requirements
CN208971520U (zh) 一种传输光纤延时的测量系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14839835

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14839835

Country of ref document: EP

Kind code of ref document: A1