WO2015027851A1 - 一种高效并束型激光光纤拉制方法及光纤 - Google Patents

一种高效并束型激光光纤拉制方法及光纤 Download PDF

Info

Publication number
WO2015027851A1
WO2015027851A1 PCT/CN2014/084879 CN2014084879W WO2015027851A1 WO 2015027851 A1 WO2015027851 A1 WO 2015027851A1 CN 2014084879 W CN2014084879 W CN 2014084879W WO 2015027851 A1 WO2015027851 A1 WO 2015027851A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
fiber preform
pump
optical fiber
gain
Prior art date
Application number
PCT/CN2014/084879
Other languages
English (en)
French (fr)
Inventor
杜城
陈伟
李诗愈
柯一礼
莫琦
张涛
罗文勇
杜琨
但融
Original Assignee
烽火通信科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 烽火通信科技股份有限公司 filed Critical 烽火通信科技股份有限公司
Priority to RU2015156800A priority Critical patent/RU2638906C2/ru
Priority to JP2016535326A priority patent/JP6298533B2/ja
Priority to AU2014314785A priority patent/AU2014314785B2/en
Priority to US14/909,441 priority patent/US9647413B2/en
Publication of WO2015027851A1 publication Critical patent/WO2015027851A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • H01S3/094019Side pumped fibre, whereby pump light is coupled laterally into the fibre via an optical component like a prism, or a grating, or via V-groove coupling
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/01205Manufacture of preforms for drawing fibres or filaments starting from tubes, rods, fibres or filaments
    • C03B37/01225Means for changing or stabilising the shape, e.g. diameter, of tubes or rods in general, e.g. collapsing
    • C03B37/01228Removal of preform material
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/0253Controlling or regulating
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/02Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
    • C03B37/025Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
    • C03B37/027Fibres composed of different sorts of glass, e.g. glass optical fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06729Peculiar transverse fibre profile
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06729Peculiar transverse fibre profile
    • H01S3/06737Fibre having multiple non-coaxial cores, e.g. multiple active cores or separate cores for pump and gain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094049Guiding of the pump light
    • H01S3/094053Fibre coupled pump, e.g. delivering pump light using a fibre or a fibre bundle
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/34Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with rare earth metals, i.e. with Sc, Y or lanthanides, e.g. for laser-amplifiers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/02External structure or shape details
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/10Internal structure or shape details
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/32Eccentric core or cladding
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2203/00Fibre product details, e.g. structure, shape
    • C03B2203/40Multifibres or fibre bundles, e.g. for making image fibres
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2205/00Fibre drawing or extruding details
    • C03B2205/40Monitoring or regulating the draw tension or draw rate
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating

Definitions

  • the invention relates to the field of fiber laser transmission and amplification technology, in particular to an efficient beam-type laser fiber drawing method and an optical fiber. Background technique
  • Fiber lasers essentially convert low-quality pump lasers into higher-quality laser outputs. Due to the expanding application field, the demand for fiber laser output power is also increasing.
  • high-power fiber lasers and fiber amplifiers are mainly used. It is a double-clad doped fiber, and the double-clad doped fiber has a small inner cladding diameter compared to the divergence angle of the multimode pump beam emitted by the semiconductor pump laser, so how to efficiently couple the pump light to the double
  • the inner cladding of the cladding fiber is the core technology for obtaining high power fiber laser output.
  • Pump coupling technology is currently broadly classified into end-pump coupling technology and side pump coupling technology.
  • the end-pump coupling technique is to couple pump light to the inner cladding of a double-clad fiber from one or both end faces of a double-clad fiber.
  • the side pump coupling technology couples the pump light from the side of the double-clad fiber to the inner cladding. It does not occupy the two ends of the fiber, making the distribution of pump light in the fiber more uniform, facilitating signal light input and output, and fiber. Welding, signal measurement, etc.
  • Typical side pumping techniques include V-groove, embedded mirror, angular grinding, diffraction grating pump coupling, and GTWave technology.
  • GTWave technology utilizes the unique structure of a bundled laser fiber drawn from an active and passive fiber preform.
  • the pump light is coupled to the gain fiber along the axial component of the fiber, with a small outer diameter or a low numerical aperture.
  • multi-point partial pumping along the length of the fiber can be realized to avoid the problem of excessive thermal load caused by the concentration of incident power, and a high-power laser output with stable gain fiber can be obtained. As shown in FIG.
  • the structure diagram of the bundled fiber is arranged side by side by a gain fiber a1 containing a quartz component and at least one pump fiber a2, and physically fused at the contact portion, wrapping the gain fiber a and
  • the outer layer of the pump fiber a2 is a low refractive index coating a3, and the outermost layer is a protective coating a4.
  • the core all of the gain fiber a1 is doped with a rare earth element, and when the pump light passes through the core all, the laser energy level "particle number inversion" of the rare earth element is induced, and the gain fiber cladding is used as a resonant cavity. A laser oscillation output is formed.
  • the pump light is injected from the pump fiber a2 end which is stripped from the beam-type laser fiber, and the pump light is coupled to the gain fiber a1 through the connection between the pump fiber a2 and the gain fiber a1, which can greatly enhance the pump. Coupling efficiency and avoiding local thermal management problems caused by point contact in conventional side pumping methods.
  • the existing optical fiber manufacturing process similar to the bundled fiber structure mainly adopts a low-speed parallel beam drawing method, which uses a gain fiber preform and at least one pump fiber preform to fix the preforms in a certain arrangement to the fiber drawing tower.
  • the fiber preform is stretched at a certain stretching speed and tension simultaneously, and the stretching speed and the pulling force are such that two adjacent fibers contact each other to allow light energy to penetrate into the adjacent fiber.
  • the single fiber drawing technology is mature at present, there are still many difficulties in simultaneous drawing of multiple fibers. For example, the drawing tension, temperature, and corresponding fiber of each preform are drawn during the combined drawing process of multiple optical fiber preforms. There are differences in the coating pressures that are applied, and it is difficult to effectively control the adjustment.
  • the current method of drawing combined preforms is based on the combination of a plurality of columnar preforms, and in order to ensure efficient fusion of the fibers, the conditions of low speed and high tension are used, and the optical fiber preforms are melted and bonded to each other, so that the drawn The fiber-optic quartz parts are melted and tightly bonded to each other and cannot be peeled off as required, so multi-point pump light injection in the longitudinal direction cannot be realized.
  • the beam-type laser fiber needs to be selected along the length of the fiber.
  • the pump fiber is in close contact (or fusion) with the gain fiber, and at the same time, the pump fiber can be stripped.
  • the object of the present invention is to provide an efficient beam-type laser fiber drawing method and an optical fiber, which has a significantly reduced difficulty in preform assembly and high process repeatability;
  • the laser fiber structure is stable, and the strippability of the pump fiber in the set region can be realized, and the multi-point pump light injection along the length direction of the beam-type laser fiber can be realized.
  • the present invention provides an efficient beam-type laser fiber drawing method, including the steps: S1.
  • a base plane is disposed on the sides of the gain fiber preform and the pump fiber preform, and the gain fiber preform is used. After the base plane is processed inwardly, a plurality of ribs are protruded, and a plane on each side of each rib is a machined surface, and a plurality of grooves are disposed inward in a base plane of the pump fiber preform, and the ribs are Matching with the groove; S2. Embedging the rib of the gain fiber preform into the groove of the pump fiber preform, and combining the two ends, the integral one end taper is fixed to form a beam-type laser fiber preform S3.
  • the combined beam type laser fiber preform is drawn into a beam type laser fiber by wire drawing.
  • the rib is a rectangular prism, and the center of the rib cross section is in the same plane as the axis of the gain fiber preform.
  • the groove is a rectangular groove, and the center of the groove cross section is in the same plane as the axis of the pump fiber preform.
  • the core of the gain optical fiber preform is located outside the rib, and the distance from the core to the base plane is greater than the working surface to the basic plane. The distance of the face.
  • the central axis of the core is in the same plane as the central axis of the pump fiber, and the center of the rib cross section, the center of the groove cross section, and the center of the core cross section are all in the same straight line.
  • the gain fiber preform length is
  • the rib length of the rib along the axial direction of the fiber is 10 ⁇ 300mm, and the distance between the centers of two adjacent ribs is 12 ⁇ 420mm.
  • the height of the ribs above the processing surface is the same as the depth of the grooves, both of which are 0.5 ⁇ 35.0 mm ; the width of the ribs is the same as the width of the grooves, both are 1.0 ⁇ 70.0 Mm ; the width of the processing surface on each side of each rib is the same, the width of the base plane on both sides of each groove is the same, and the width of the processing surface and the base plane are both 1.0 ⁇ 35.0 mm.
  • the bundled laser optical fiber preform is loaded into the temperature adaptive drawing device, and the wire drawing speed is controlled at 1800 to 2200 ° C, and the drawing speed is controlled at 5 to 200 m/min, and According to the combination of the gain fiber and the pump fiber measured online, the tension of the wire is adjusted in the range of 20 to 150 g, and the beam type laser fiber is drawn.
  • the present invention also provides an efficient beam-type laser fiber comprising a gain fiber, a pump fiber, a low refractive index coating and a protective coating, the gain fiber comprising a core, a bonding surface of the gain fiber and the pump fiber.
  • the fusion bonding portion and the close contact portion are disposed, and the fusion bonding portion and the close contact portion are spaced apart, the close contact portion is in the same plane as the axis of the high efficiency parallel beam type laser fiber, and the plane of the fusion bonding portion is located at the close contact portion One side of the plane.
  • Forming ribs on the base plane of the gain fiber preform, and forming grooves on the base plane of the pump fiber preform, can be processed by CNC machine tools without high precision
  • the mechanical finishing equipment forms a rib structure outer surface and a grooved inner surface smoothness treatment process with low difficulty, high smoothness, high processing efficiency, low cost and short time, and is suitable for large-scale production.
  • the processing surface of the gain fiber is bonded to the base plane of the pump fiber in the longitudinal direction, and the two form a close contact portion which is disposed at intervals, and has a peelable structure, which can realize the pump fiber in the case of peeling off the outer coating layer. Separated from the gain fiber to meet the application requirements of multi-point injection.
  • the gain fiber preform ribs are matched with the pump fiber preform groove, which makes the prefabricated rod combination simple and more robust than the conventional parallel arrangement of preforms, which can ensure the relative fixation of the preform position in the drawing.
  • the fit part can be fully fused under the action of the molten state of the glass, so as to avoid the conventional method of the pump fiber and the gain fiber contact surface being squeezed by the paint, and the pump light cannot be coupled. The technical risk of entering the gain fiber.
  • the beam-type laser fiber of the invention has good optical performance and reliability, has excellent pumping light coupling performance, and can realize high-efficiency coupling of multi-point pumping and pumping light along the optical fiber axis, 5m fiber
  • the coupling efficiency is greater than 80%.
  • FIG. 1 is a structural view of a bundled optical fiber in the background art
  • FIG. 2 is a flow chart of a method for drawing an efficient beam-type laser fiber according to the present invention
  • FIG. 3 is a perspective view of a gain optical fiber preform according to an embodiment of the present invention.
  • FIG. 4 is a perspective view of a pumped optical fiber preform according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural view of a beam type laser fiber preform according to an embodiment of the present invention
  • FIG. 6 is a cross-sectional view showing a close contact portion of a beam type laser fiber according to an embodiment of the present invention
  • Figure 7 is a cross-sectional view showing a fusion bonded portion of a beam type laser fiber according to an embodiment of the present invention. Intention.
  • Gain fiber al core all, pump fiber a2, low refractive index coating a3, protective coating a4.
  • Gain fiber preform 1 rib 11, core 12, base plane 13; pumped fiber preform 2, groove 21; machined surface 3;
  • Gain fiber M pump fiber b2, low refractive index coating b3, protective coating b4, fusion bond b5, close contact b6.
  • the high efficiency beam-type laser fiber drawing method of the present invention comprises the following steps:
  • a rectangular base plane 13 is provided on both sides of the gain fiber preform 1 and the pump fiber preform 2. After the plurality of identical rectangular grooves are machined inwardly from the base plane 13, a plurality of ribs 11 are protruded, and the plane on both sides of each rib 11 (i.e., the bottom surface of the square groove) is the machined surface 3.
  • the gain fiber preform 1 has a length of 30 to 720 mm, the edge of the rib 11 along the axial direction of the fiber is 10 to 300 mm, and the distance between the centers of two adjacent ribs is 12 to 420 mm.
  • the rib 11 is a prismatic column, and the center of the rib cross section is in the same plane as the axis of the gain fiber preform 1.
  • the base plane 13 of the pump fiber preform 2 is grooved at equal intervals to form a groove 21 matching the rib 11, the groove 21 being a rectangular groove, the center of the groove cross section and the pump
  • the axes of the optical fiber preform 2 are on the same plane.
  • the gain fiber preform 1 has a core 12, the core 12 is located outside the rib 11, and the distance from the core 12 to the base plane 13 is greater than that of the processing surface 3 to the base plane 13. Distance.
  • the core 12 is on the same plane as the central axis of the pump fiber preform 2, the central axis of the core being in the same plane as the central axis of the pump fiber preform 2, the center of the rib cross section, the groove cross section
  • the center of the core 12, the center of the cross section of the core 12 (not shown), is located on the same line.
  • the height of the rib 11 is higher than the depth of the groove 21, and is 0.5 to 35.0 mm ; the width of the rib 11 is the same as the width of the groove 21, and both are 1.0 to 70.0 mm;
  • the processing surfaces 3 on both sides of each rib 11 have the same width, and the base plane 13 on both sides of each groove 21 has the same width, and the widths of the processing surface 3 and the base plane 13 are both 1.0 to 35.0 mm.
  • the processing of the gain fiber preform 1 and the pump fiber preform 2 can be performed simultaneously or in any order.
  • the rib 11 of the gain fiber preform 1 is embedded in the groove 21 of the pump fiber preform 2, and the combined end is melted at one end. , forming a beam-type laser fiber preform.
  • a tight fit is formed between the gain fiber preform 1 and the pump fiber preform 2, and the dimensional deviation between the mating bodies is less than 0.25 mm.
  • the bundled laser optical fiber preform is loaded into a temperature adaptive drawing device, and is subjected to high temperature melting drawing at 1800 to 2200 ° C, and the drawing speed is controlled at 5 to 200 m/min, and the gain fiber and the pump are determined according to the line.
  • the tension of the wire is adjusted in the range of 20 to 150 g to form a desired beam-type laser fiber.
  • the parallel beam type laser fiber, the base plane 13 of the rib 11 of the original gain fiber preform 1, is fused with the bottom surface of the groove 21 of the pump fiber preform 2, and the processing surface of the original gain fiber preform 1 3 and the base plane 13 of the pumped fiber preform 2 are only closely attached and are not fused.
  • the parallel beam type laser fiber has a coupling efficiency of more than 80% through a 5m transmission fiber, an effective absorption coefficient of the side pump of more than 3dB/m, and a carrying power of more than 500W.
  • the high efficiency beam-type laser fiber of the present invention comprises a gain fiber bl, a pump fiber b2, a low refractive index coating b3 and a protective coating b4, the gain fiber
  • the bl includes a core 12, a bonding surface of the gain fiber bl and the pump fiber b2, and includes a fusion bonding portion b5 and a close contact portion b6, and the fusion bonding portion b5 and the close contact portion b6 are spaced apart because the beam is efficiently bundled.
  • the base plane 13 of the original rib 11 is fused with the inner surface of the groove 21 to form a plurality of fusion bonded portions b5, and the processed surface 3 of the original gain optical fiber preform 1 and the pump fiber are formed.
  • the base plane 13 of the preform 2 is only tightly fitted together to form a plurality of close contact portions b6.
  • the close contact portion b6 is in the same plane as the axis of the high efficiency beam-type laser fiber, that is, the close contact portion b6 is a plurality of facets disposed at equal intervals, and the axis of the efficient beam-type laser fiber passes through these small holes
  • the center of the plane, and all of the fusion bonded portions b5 are located in one plane, and the plane is located on one side of the plane in which the plurality of close contact portions b6 are located. Therefore, the interior of the high-efficiency beam-type laser fiber is periodically spaced to form different light structures, and the close contact portion b6 forms a strippable beam-type laser fiber structure, which can perform optical coupling and is easy to separate.
  • the molten bonded portion b5 has a large contact area, and is subjected to a combination of temperature and tension in the high-temperature melt drawing process, and can be efficiently coupled and difficult to separate after melting. Therefore, the high-efficiency beam-type laser fiber can realize the different requirements of the fiber-optic structure characteristics of the beam-type laser fiber high-efficiency coupling and multi-point pumping application, and can be closely coupled according to the injection point requirement of the gain fiber M absorption characteristic. .
  • the core rare earth doped gain fiber preform 1 is machined inwardly from the base plane 13 to form 25 ribs 11, the height of the ribs 11 (i.e., the machined surface 3 to the base plane 13).
  • the distance is 1.5 mm
  • the rib 11 has a length of 10 mm along the axial direction of the optical fiber, and the distance between the centers of the adjacent two ribs 11 is 12 mm.
  • the pump fiber preform 2 of the quartz component is processed inward from the base plane 13 and processed at a position corresponding to the rib 11 of the gain fiber preform 1 to form a plurality of rectangular grooves 21, which are processed by the grooves 21. Depth is 1.5mm.
  • the processed core layer rare earth doped with a diameter of 1.7 mm, a cladding 17.3 mm gain optical fiber preform 1 is combined with a slotted cladding 17.3 mm pump optical fiber preform 2, that is, the convex of the gain optical fiber preform 1
  • the rib 11 is embedded in the groove 21 of the pumped optical fiber preform 2 with a fitting error of 0.15 mm, the center line of the rib 11 and the groove 21, and the axes of the gain fiber preform 1 and the pump fiber preform 2 Located on the same plane.
  • the combined integral preform is melted at one end and combined to form a bundled laser fiber preform as shown in FIG.
  • the bundled laser optical fiber preform is placed on the drawing tower, and the wire is pulled down at a temperature of about 1950 ° C, and the drawing tension and the drawing speed are controlled at the same time, so that the two optical fibers are formed into a tight fusion and contact separable according to the processing design.
  • the structure is drawn into a fiber-optic gain fiber with a diameter of 201 ⁇ m, a pump fiber diameter of 199 ⁇ m, and a coated beam diameter of 562 ⁇ m.
  • the main indicators of the fiber test are shown in Table 1.
  • the core rare earth doped gain optical fiber preform 1 is processed inward from the base plane 13 to form four ribs 11 and the height of the ribs 11 (ie, the processed surface 3 is The distance of the base plane 13 is 4 mm, the rib length of the rib 11 in the axial direction of the optical fiber is 50 mm, and the distance between the centers of the adjacent two ribs 11 is 120 mm.
  • the pump fiber preform 2 of the quartz component is processed inward from the base plane 13 and processed at a position corresponding to the rib 11 of the gain fiber preform 1 to form a plurality of rectangular grooves 21, which are processed by the grooves 21.
  • the depth is 4mm.
  • the processed core layer is doped with a rare earth doping diameter of 3.6 mm, and a 36 mm thick fiber preform 2 is combined with a slotted 36 mm pump fiber preform 2, that is, the rib 11 of the gain fiber preform 1.
  • a 36 mm thick fiber preform 2 is combined with a slotted 36 mm pump fiber preform 2, that is, the rib 11 of the gain fiber preform 1.
  • the center lines of the ribs 11 and the grooves 21 are identical to the axes of the gain fiber preform 1 and the pump fiber preform 2 flat.
  • the combined integral preforms are melted at one end and combined to form a bundled laser fiber preform as shown in FIG.
  • the bundled laser optical fiber preform is placed on the drawing tower, and the wire is pulled down at a temperature of about 2000 °C, and the drawing tension and the drawing speed are controlled at the same time, so that the two optical fibers are formed into a tight fusion and a contact separable according to the processing design.
  • the structure is drawn into a fiber-optic gain fiber with a diameter of 201 ⁇ m, a pump fiber diameter of 200 ⁇ m, and a coated beam diameter of 564 ⁇ m.
  • the main indicators of the fiber test are shown in Table 2.
  • the core rare earth doped gain fiber preform 1 is machined inward from the base plane 13 to form three ribs 11, the height of the ribs 11 (i.e., the machined surface 3 to the base plane 13).
  • the distance is 35 mm
  • the rib 11 has a length of 300 mm along the axial direction of the optical fiber, and the distance between the centers of the adjacent two ribs 11 is 420 mm.
  • the pump fiber preform 2 of the quartz component is processed inward from the base plane 13 and processed at a position corresponding to the rib 11 of the gain fiber preform 1 to form a plurality of rectangular grooves 21, which are processed by the grooves 21.
  • the depth is 35mm.
  • the groove 21 of the pumped optical fiber preform 2 has a matching error of 0.25 mm, and the center lines of the rib 11 and the groove 21 are in the same plane as the axes of the gain fiber preform 1 and the pump fiber preform 2. .
  • the combined integral preform is melted at one end and combined to form a bundled laser fiber preform as shown in FIG.
  • the bundled laser optical fiber preform is placed on the drawing tower, and the wire is pulled down at a temperature of about 2100 ° C, and the drawing tension and the drawing speed are controlled at the same time, so that the two optical fibers are formed into a tight fusion and a contact separable according to the processing design.
  • the structure is drawn into a fiber-optic gain fiber with a diameter of 201 ⁇ m, a pump fiber diameter of 201 ⁇ m, and a coated beam diameter of 564 ⁇ m.
  • the main indicators of the fiber test are shown in Table 3.
  • Coating diameter 564 awake The present invention is not limited to the above embodiments, and those skilled in the art can also make several improvements and retouchings without departing from the principles of the present invention. These improvements and retouchings are also considered. It is within the scope of protection of the present invention. The details that are not described in detail in this specification are prior art known to those skilled in the art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

一种高效并束型激光光纤拉制方法,涉及光纤激光传输与放大技术领域,包括步骤:S1.在增益光纤预制棒和泵浦光纤预制棒的侧面均设置一个基础平面,将增益光纤预制棒的基础平面向内加工后,凸显出多个凸棱,且每个凸棱两侧的平面为加工面,在泵浦光纤预制棒的基础平面向内设置多个凹槽,且所述凸棱与所述凹槽匹配设置;S2.将增益光纤预制棒的凸棱嵌入泵浦光纤预制棒的凹槽内,二者组合后,将整体的一端拉锥固定,形成并束型激光光纤预制棒;S3.通过拉丝,将所述并束型激光光纤预制棒拉制成并束型激光光纤。本发明工艺重复性较高;获得的并束型激光能够实现设定区域泵浦光纤可剥离性,便于实现沿并束型激光光纤长度方向多点泵浦光注入。

Description

一种高效并束型激光光纤拉制方法及光纤 技术领域
本发明涉及光纤激光传输与放大技术领域,具体来讲是一种高效 并束型激光光纤拉制方法及光纤。 背景技术
光纤激光器本质上是把低质量的泵浦激光转换为更高质量的激 光输出, 由于应用领域的不断扩展, 对于光纤激光器输出功率的需求 也不断提升, 现在大功率光纤激光器、光纤放大器主要采用的是双包 层掺杂光纤,而与半导体泵浦激光器发出的多模泵浦光束的发散角相 比, 双包层掺杂光纤内包层直径很小, 因此如何把泵浦光高效地耦合 到双包层光纤的内包层, 是获得高功率光纤激光输出的核心技术。
泵浦耦合技术目前大致可分为端面泵浦耦合技术和侧面泵浦耦 合技术。端面泵浦耦合技术是从双包层光纤的一个或者两个端面, 将 泵浦光耦合到双包层光纤的内包层。侧面泵浦耦合技术是从双包层光 纤的侧面将泵浦光耦合到内包层, 它不占用光纤的两端, 使泵浦光在 光纤中的分布更趋均匀, 方便信号光输入输出、 光纤熔接、 信号测量 等操作。 典型的侧面泵浦技术包括 V型槽法、 嵌入反射镜法、 角度磨 抛法、衍射光栅泵浦耦合和 GTWave技术等。 GTWave技术利用有源 与无源光纤预制棒组合拉制的并束型激光光纤的独特结构,泵浦光沿 着光纤轴向组件耦合到增益光纤线,在光纤外径较小或数值孔径较低 的情况下,也能够实现将无源光纤中的多模泵浦光高效耦合到有源光 纤中, 并且通过间断性的剥离无源光纤进行泵浦光注入, 在光纤无损 伤或形变的情况下实现沿光纤长度上的多点分部泵浦,避免入射功率 集中而造成的热负荷过高难题,能够获得增益光纤稳定的高功率激光 输出。 如附图 1所示, 为并束型光纤的结构图, 由含有石英组分的增 益光纤 al和至少一根泵浦光纤 a2并列设置,并在相接触的部分物理 融合,包裹增益光纤 al和泵浦光纤 a2外层的是低折射率涂层 a3,最 外层是保护涂层 a4。 其中, 增益光纤 al的纤芯 all中掺杂有稀土元 素, 当泵浦光穿过纤芯 all时, 将引发稀土元素激光能级 "粒子数反 转" , 并以增益光纤包层为谐振腔形成激光振荡输出。将泵浦光从并 束型激光光纤中剥离的泵浦光纤 a2—端注入, 泵浦光将通过泵浦光 纤 a2与增益光纤 al的连接处耦合到增益光纤 al中, 能够极大提升 泵浦耦合效率,并避免常规侧面泵浦方式由于点接触而造成的局部热 管理难题。
现有类似并束型光纤结构的光纤制造工艺,主要采用低速并束拉 丝法, 是采用增益光纤预制棒和至少一个泵浦光纤预制棒, 将这些预 制棒以一定的排列方式固定在光纤拉丝塔上,以一定的拉伸速度和拉 力同时拉伸这束光纤预制棒,其拉伸速度和拉力大小要能够使得两根 相邻光纤互相接触, 使光能穿透到相邻光纤中。虽然目前单根光纤拉 制技术很成熟, 但是多根光纤的同时拉制还存在诸多难点, 例如多根 光纤预制棒组合拉丝过程中, 每根预制棒所受到的拉丝张力、 温度, 及对应光纤所受的涂覆压力都存在差异, 难以有效控制调节。且目前 的预制棒组合拉丝方法, 由于是采用多根柱状预制棒组合后拉丝, 且 为了保证光纤能够有效融合, 采用低速、 高张力的条件, 光纤预制棒 会相互熔融结合,因此所拉制的光纤石英部分都是相互熔融紧密结合 在一起, 无法按需求进行剥离, 所以也无法实现长度方向上的多点泵 浦光注入。而并束型激光光纤在实际使用中, 需要沿光纤长度方向选 取多点进行泵浦光纤的剥离,以实现沿增益光纤长度方向的多点泵浦, 泵浦光纤与增益光纤紧密接触 (或融合), 同时能够实现泵浦光纤可 剥离特性, 是实现并束型激光光纤应用性能的关键。 发明内容
针对现有技术中存在的缺陷,本发明的目的在于提供一种高效并 束型激光光纤拉制方法及光纤,制备过程中预制棒组合难度明显降低, 工艺重复性较高; 获得的并束型激光光纤结构稳定, 能够实现设定区 域泵浦光纤可剥离性,便于实现沿并束型激光光纤长度方向多点泵浦 光注入。
为达到以上目的,本发明提供一种高效并束型激光光纤拉制方法, 包括歩骤: S1.在增益光纤预制棒和泵浦光纤预制棒的侧面均设置一 个基础平面, 将增益光纤预制棒的基础平面向内加工后, 凸显出多个 凸棱, 且每个凸棱两侧的平面为加工面, 在泵浦光纤预制棒的基础平 面向内设置多个凹槽, 且所述凸棱与所述凹槽匹配设置; S2.将增益 光纤预制棒的凸棱嵌入泵浦光纤预制棒的凹槽内, 二者组合后, 将整 体的一端拉锥固定, 形成并束型激光光纤预制棒; S3.通过拉丝, 将 所述并束型激光光纤预制棒拉制成并束型激光光纤。
在上述技术方案的基础上, 所述凸棱为矩形棱柱, 凸棱横截面的 中心与增益光纤预制棒的轴线位于同一平面。
在上述技术方案的基础上, 所述凹槽为矩形槽, 凹槽横截面的中 心与泵浦光纤预制棒的轴线位于同一平面。
在上述技术方案的基础上,所述增益光纤预制棒与泵浦光纤预制 棒之间形成紧配合, 配合体之间的尺寸偏差小于 0.25mm。
在上述技术方案的基础上,所述增益光纤预制棒的纤芯位于所述 凸棱外, 所述纤芯到所述基础平面的距离, 大于加工面到所述基础平 面的距离。
在上述技术方案的基础上,所述纤芯的中轴线与泵浦光纤的中轴 线在同一平面, 凸棱横截面的中心、 凹槽横截面的中心、 纤芯横截面 的圆心, 均位于同一直线。
在上述技术方案的基础上, 所述增益光纤预制棒长度为
30~720mm, 凸棱沿光纤轴向的棱长为 10~300mm, 相邻两个凸棱中 心之间的距离为 12~420mm。
在上述技术方案的基础上,所述凸棱高出加工面的高度与凹槽的 深度相同, 均为 0.5~35.0mm; 所述凸棱的宽度和凹槽的宽度相同, 均为 1.0~70.0mm; 所述每个凸棱两侧的加工面宽度相同, 每个凹槽 两侧的基础平面宽度相同, 所述加工面和基础平面的宽度均为 1.0~35.0mm。
在上述技术方案的基础上, 所述 S3中, 将并束型激光光纤预制 棒装入温度自适应拉丝设备, 通过 1800~2200°C高温熔融拉丝, 拉丝 速度控制在 5~200m/min, 并根据在线测定的增益光纤与泵浦光纤结 合情况,在 20~150g 范围内调节拉丝张力,拉制成并束型激光光纤。
本发明还提供一种高效并束型激光光纤, 包括增益光纤、泵浦光 纤、 低折射率涂层和保护涂层, 所述增益光纤包括纤芯, 所述增益光 纤和泵浦光纤的结合面中, 包括熔融结合部分和紧密接触部分, 且熔 融结合部分和紧密接触部分间隔设置,紧密接触部分与所述高效并束 型激光光纤的轴线位于同一平面,熔融结合部分所在平面位于紧密接 触部分所在平面的一侧。
本发明的有益效果在于:
1、 在增益光纤预制棒基础平面加工形成凸棱, 在泵浦光纤预制 棒的基础平面加工形成凹槽, 均可利用数控机床加工, 不需要高精度 的机械精加工设备,形成的凸棱结构外表面和开槽内表面光洁度处理 工艺难度低, 光洁度高, 加工效率高, 成本低, 时间短, 适合规模化 生产。
2、增益光纤的加工面与泵浦光纤的基础平面在长度方向上贴合, 二者形成间隔设置的紧密接触部分, 具备可剥离结构, 能够在剥去外 涂层情况下, 实现泵浦光纤与增益光纤分离, 满足多点注入的应用需 求。
3、 增益光纤预制棒凸棱与泵浦光纤预制棒凹槽相契合, 使预制 棒组合简便, 且比常规并行排布的预制棒组合方式更牢固, 能够保障 拉丝中预制棒位置的相对固定。
4、 组合后预制棒在拉丝工序中, 契合部分在玻璃熔融态张力作 用下能够充分融合,避免常规方法易出现的泵浦光纤与增益光纤接触 面被涂料挤入, 而造成泵浦光无法耦合进入增益光纤的技术风险。
5、 本发明所述的并束型激光光纤, 具备良好的光学性能与可靠 性, 具备优良的泵浦光耦合性能, 能够实现沿光纤轴向多点泵浦与泵 浦光高效耦合, 5m光纤耦合效率大于 80%。
附图说明
图 1为背景技术中并束型光纤的结构图;
图 2为本发明高效并束型激光光纤拉制方法流程图;
图 3为本发明实施例增益光纤预制棒的立体视图;
图 4为本发明实施例泵浦光纤预制棒的立体视图;
图 5为本发明实施例并束型激光光纤预制棒的结构示意图; 图 6 为本发明实施例并束型激光光纤的紧密接触部分横截面示 意图;
图 7 为本发明实施例并束型激光光纤的熔融结合部分横截面示 意图。
背景技术附图标记:
增益光纤 al, 纤芯 all , 泵浦光纤 a2, 低折射率涂层 a3, 保护 涂层 a4。
实施方式附图标记:
增益光纤预制棒 1, 凸棱 11, 纤芯 12, 基础平面 13; 泵浦光纤 预制棒 2, 凹槽 21 ; 加工面 3 ;
增益光纤 M, 泵浦光纤 b2, 低折射率涂层 b3, 保护涂层 b4, 熔 融结合部分 b5, 紧密接触部分 b6。
具体实施方式
以下结合附图对本发明作进一歩详细说明。
如图 2至图 5所示, 本发明高效并束型激光光纤拉制方法, 包括 如下歩骤:
S1.如在增益光纤预制棒 1和泵浦光纤预制棒 2的侧面均设置一 个矩形的基础平面 13。 由基础平面 13向内等间距加工多个相同的矩 形槽后, 凸显出多个凸棱 11, 且每个凸棱 11两侧的平面 (即方形槽 的底面) 为加工面 3。 所述增益光纤预制棒 1长度为 30~720mm, 凸 棱 11沿光纤轴向的棱长为 10~300mm, 相邻两个凸棱中心之间的距 离为 12~420mm。 所述凸棱 11为棱形柱, 凸棱横截面的中心与增益 光纤预制棒 1的轴线位于同一平面。将泵浦光纤预制棒 2的基础平面 13多处等间距开槽, 形成与所述凸棱 11相匹配的凹槽 21, 所述凹槽 21为矩形槽, 凹槽横截面的中心与泵浦光纤预制棒 2的轴线位于同 一平面。
所述增益光纤预制棒 1具有纤芯 12, 纤芯 12位于所述凸棱 11 外, 纤芯 12到基础平面 13的距离, 大于加工面 3到基础平面 13的 距离。 纤芯 12与泵浦光纤预制棒 2的中轴线在同一平面上, 所述纤 芯的中轴线与泵浦光纤预制棒 2的中轴线在同一平面,凸棱横截面的 中心、 凹槽横截面的中心、 纤芯 12横截面的圆心(图未示), 均位于 同一直线。 所述凸棱 11高出加工面 3的高度与凹槽 21的深度相同, 均为 0.5~35.0mm; 所述凸棱 11的宽度和凹槽 21的宽度相同, 均为 1.0~70.0mm; 所述每个凸棱 11两侧的加工面 3宽度相同, 每个凹槽 21两侧的基础平面 13宽度相同, 所述加工面 3和基础平面 13的宽 度均为 1.0~35.0mm。 所述增益光纤预制棒 1和泵浦光纤预制棒 2的 加工可同时进行, 也可任意顺序进行。
52.将所述增益光纤预制棒 1与泵浦光纤预制棒 2组合, 增益光 纤预制棒 1的凸棱 11嵌入泵浦光纤预制棒 2的凹槽 21内,将组合后 整体的一端熔融拉锥, 形成并束型激光光纤预制棒。所述增益光纤预 制棒 1与泵浦光纤预制棒 2之间形成紧配合,配合体之间的尺寸偏差 小于 0.25mm。
53.将所述并束型激光光纤预制棒, 装入温度自适应拉丝设备, 通过 1800~2200°C高温熔融拉丝, 拉丝速度控制在 5~200m/min, 并 根据在线测定的增益光纤与泵浦光纤结合情况, 在 20~150g 范围内 调节拉丝张力, 形成需求的并束型激光光纤。 所述并束型激光光纤, 原增益光纤预制棒 1的凸棱 11的基础平面 13, 与泵浦光纤预制棒 2 的凹槽 21内底面熔融在一起, 而原增益光纤预制棒 1的加工面 3和 泵浦光纤预制棒 2的基础平面 13只是紧密贴合在一起,并没有融合。 所述并束型激光光纤, 经过 5m传输光纤耦合效率大于 80%, 侧面泵 浦有效吸收系数大于 3dB/m, 承载功率大于 500W。
如图 5和图 7所示, 本发明高效并束型激光光纤包括增益光纤 bl、 泵浦光纤 b2、 低折射率涂层 b3和保护涂层 b4, 所述增益光纤 bl包括纤芯 12, 增益光纤 bl和泵浦光纤 b2的结合面中, 包括熔融 结合部分 b5和紧密接触部分 b6, 且熔融结合部分 b5和紧密接触部 分 b6间隔设置, 这是因为在高效并束型激光光纤预制棒拉制后, 原 凸棱 11的基础平面 13与凹槽 21内表面熔融在一起, 形成多个熔融 结合部分 b5,而原增益光纤预制棒 1的加工面 3和泵浦光纤预制棒 2 的基础平面 13只是紧密贴合在一起, 形成多个紧密接触部分 b6。 紧 密接触部分 b6与所述高效并束型激光光纤的轴线位于同一平面, 也 就是说, 紧密接触部分 b6是等间隔设置的多个小平面, 而高效并束 型激光光纤的轴线穿过这些小平面的中心, 而所有熔融结合部分 b5 均位于一个平面内, 且所在平面位于多个紧密接触部分 b6所在平面 的一侧。 因此高效并束型激光光纤内部, 周期性间隔形成不同光线结 构, 紧密接触部分 b6形成可剥离并束型激光光纤结构, 可进行光耦 合, 同时易于分离。 熔融结合部分 b5由于具有较大的接触面积, 在 高温熔融拉丝工艺中, 受到温度与张力的共同作用, 且熔融后可高效 耦合且难以分离。因此高效并束型激光光纤能够实现并束型激光光纤 高效耦合与多点泵浦应用对于光纤结构特性的不同需求,且可根据增 益光纤 M吸收特性对应的注入点需求进行紧密耦合结构分布设定。
下面通过具体实施例对本发明进行详细描述。
实施例 1
如图 3至 7所示,将芯区稀土掺杂的增益光纤预制棒 1由基础平 面 13向内加工, 形成 25个凸棱 11, 凸棱 11的高度 (即加工面 3到 基础平面 13的距离)为 1.5mm,凸棱 11沿光纤轴向的棱长为 10mm, 相邻两个凸棱 11 中心之间的距离为 12mm。 将石英组分的泵浦光纤 预制棒 2由基础平面 13向内加工, 并在与增益光纤预制棒 1凸棱 11 的相对应位置, 加工形成多个矩形的凹槽 21, 凹槽 21的加工深度为 1.5mm。
将加工后的芯层稀土掺杂直径为 1.7mm,包层 17.3mm的增益光 纤预制棒 1与开槽后的包层 17.3mm的泵浦光纤预制棒 2组合, 即增 益光纤预制棒 1的凸棱 11嵌入泵浦光纤预制棒 2的凹槽 21内,配合 误差为 0.15mm, 所述凸棱 11和凹槽 21的中心线, 与增益光纤预制 棒 1和泵浦光纤预制棒 2的轴线均位于同一平面。将组合后的整体预 制棒一端熔融拉锥, 组合成如图 5所示的并束型激光光纤预制棒。
最后将所述并束型激光光纤预制棒置于拉丝塔上, 在 1950°C左 右温度下拉丝, 同时控制拉丝张力与拉丝速度, 实现两种光纤按照加 工设计形成紧密融合与接触可分离的两种结构形态,拉丝成光纤增益 光纤直径为 201微米, 泵浦光纤直径为 199微米, 涂层直径为 562微 米的并束型激光光纤, 该光纤测试的主要指标见表 1所示。
表 1 并束型激光光纤性能指标
Figure imgf000011_0001
实施例 2
如图 3至 7所示,将芯区稀土掺杂的增益光纤预制棒 1由基础平 面 13向内加工, 形成 4个凸棱 11, 凸棱 11的高度 (即加工面 3到 基础平面 13的距离) 为 4mm, 凸棱 11沿光纤轴向的棱长为 50mm, 相邻两个凸棱 11中心之间的距离为 120mm。 将石英组分的泵浦光纤 预制棒 2由基础平面 13向内加工, 并在与增益光纤预制棒 1凸棱 11 的相对应位置, 加工形成多个矩形的凹槽 21, 凹槽 21的加工深度为 4mm。
将加工后的芯层稀土掺杂直径为 3.6mm,包层 36mm的增益光纤 预制棒 1与开槽后的包层 36mm的泵浦光纤预制棒 2组合,即增益光 纤预制棒 1的凸棱 11嵌入泵浦光纤预制棒 2的凹槽 21内,配合误差 为 0.15mm, 所述凸棱 11和凹槽 21的中心线, 与增益光纤预制棒 1 和泵浦光纤预制棒 2的轴线均位于同一平面。将组合后的整体预制棒 一端熔融拉锥, 组合成如图 5所示的并束型激光光纤预制棒。
最后将所述并束型激光光纤预制棒置于拉丝塔上, 在 2000 °C左 右温度下拉丝, 同时控制拉丝张力与拉丝速度, 实现两种光纤按照加 工设计形成紧密融合与接触可分离的两种结构形态,拉丝成光纤增益 光纤直径为 201微米, 泵浦光纤直径为 200微米, 涂层直径为 564微 米的并束型激光光纤, 该光纤测试的主要指标见表 2所示。
表 2并束型激光光纤性能指标
Figure imgf000012_0001
实施例 2
如图 3至 7所示,将芯区稀土掺杂的增益光纤预制棒 1由基础平 面 13向内加工, 形成 3个凸棱 11, 凸棱 11的高度 (即加工面 3到 基础平面 13的距离) 为 35mm, 凸棱 11沿光纤轴向的棱长 300mm, 相邻两个凸棱 11中心之间的距离为 420mm。 将石英组分的泵浦光纤 预制棒 2由基础平面 13向内加工, 并在与增益光纤预制棒 1凸棱 11 的相对应位置, 加工形成多个矩形的凹槽 21, 凹槽 21的加工深度为 35mm。
将加工后的芯层稀土掺杂直径为 18mm, 包层 180mm的增益光 纤预制棒 1与开槽后的包层 180mm的泵浦光纤预制棒 2组合, 即增 益光纤预制棒 1的凸棱 11嵌入泵浦光纤预制棒 2的凹槽 21内,配合 误差为 0.25mm, 所述凸棱 11和凹槽 21的中心线, 与增益光纤预制 棒 1和泵浦光纤预制棒 2的轴线均位于同一平面。将组合后的整体预 制棒一端熔融拉锥, 组合成如图 5所示的并束型激光光纤预制棒。
最后将所述并束型激光光纤预制棒置于拉丝塔上, 在 2100°C左 右温度下拉丝, 同时控制拉丝张力与拉丝速度, 实现两种光纤按照加 工设计形成紧密融合与接触可分离的两种结构形态,拉丝成光纤增益 光纤直径为 201微米, 泵浦光纤直径为 201微米, 涂层直径为 564微 米的并束型激光光纤, 该光纤测试的主要指标见表 3所示。
表 3并束型激光光纤性能指标
Figure imgf000013_0001
增益光纤纤芯直径 20.1 醒
增益光纤石英包层直径 202 urn
泵浦光纤石英包层直径 201 urn
涂层直径 564醒 本发明不局限于上述实施方式,对于本技术领域的普通技术人员 来说, 在不脱离本发明原理的前提下, 还可以做出若干改进和润饰, 这些改进和润饰也视为本发明的保护范围之内。本说明书中未作详细 描述的内容属于本领域专业技术人员公知的现有技术。

Claims

权 利 要 求 书
1.一种高效并束型激光光纤拉制方法,其特征在于,包括歩骤:
51.在增益光纤预制棒和泵浦光纤预制棒的侧面均设置一个基础 平面, 将增益光纤预制棒的基础平面向内加工后, 凸显出多个凸棱, 且每个凸棱两侧的平面为加工面,在泵浦光纤预制棒的基础平面向内 设置多个凹槽, 且所述凸棱与所述凹槽匹配设置;
52.将增益光纤预制棒的凸棱嵌入泵浦光纤预制棒的凹槽内, 二 者组合后, 将整体的一端拉锥固定, 形成并束型激光光纤预制棒;
53.通过拉丝, 将所述并束型激光光纤预制棒拉制成并束型激光 光纤。
2. 如权利要求 1所述的高效并束型激光光纤拉制方法, 其特征 在于: 所述凸棱为矩形棱柱, 凸棱横截面的中心与增益光纤预制棒的 轴线位于同一平面。
3. 如权利要求 1所述的高效并束型激光光纤拉制方法, 其特征 在于: 所述凹槽为矩形槽, 凹槽横截面的中心与泵浦光纤预制棒的轴 线位于同一平面。
4. 如权利要求 1所述的高效并束型激光光纤拉制方法, 其特征 在于: 所述增益光纤预制棒与泵浦光纤预制棒之间形成紧配合, 配合 体之间的尺寸偏差小于 0.25mm。
5. 如权利要求 1所述的高效并束型激光光纤拉制方法, 其特征 在于: 所述增益光纤预制棒的纤芯位于所述凸棱外, 所述纤芯到所述 基础平面的距离, 大于加工面到所述基础平面的距离。
6. 如权利要求 5所述的高效并束型激光光纤拉制方法, 其特征 在于: 所述纤芯的中轴线与泵浦光纤的中轴线在同一平面, 凸棱横截 面的中心、凹槽横截面的中心、纤芯横截面的圆心,均位于同一直线。
7. 如权利要求 1所述的高效并束型激光光纤拉制方法, 其特征 在于: 所述增益光纤预制棒长度为 30~720mm, 凸棱沿光纤轴向的棱 长为 10~300mm, 相邻两个凸棱中心之间的距离为 12~420mm。
8. 如权利要求 1所述的高效并束型激光光纤拉制方法, 其特征 在于: 所述凸棱高出加工面的高度与凹槽的深度相同, 均为 0.5~35.0mm;所述凸棱的宽度和凹槽的宽度相同,均为 1.0~70.0mm; 所述每个凸棱两侧的加工面宽度相同,每个凹槽两侧的基础平面宽度 相同, 所述加工面和基础平面的宽度均为 1.0~35.0mm。
9. 如权利要求 1所述的高效并束型激光光纤拉制方法, 其特征 在于: 所述 S3中, 将并束型激光光纤预制棒装入温度自适应拉丝设 备,通过 1800~2200°C高温熔融拉丝,拉丝速度控制在 5~200m/min, 并根据在线测定的增益光纤与泵浦光纤结合情况, 在 20~150g 范围 内调节拉丝张力, 拉制成并束型激光光纤。
10. 一种基于权利要求 1所述方法的高效并束型激光光纤, 包括 增益光纤、 泵浦光纤、 低折射率涂层和保护涂层, 所述增益光纤包括 纤芯, 其特征在于: 所述增益光纤和泵浦光纤的结合面中, 包括熔融 结合部分和紧密接触部分,且熔融结合部分和紧密接触部分间隔设置, 紧密接触部分与所述高效并束型激光光纤的轴线位于同一平面,熔融 结合部分所在平面位于紧密接触部分所在平面的一侧。
PCT/CN2014/084879 2013-08-29 2014-08-21 一种高效并束型激光光纤拉制方法及光纤 WO2015027851A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
RU2015156800A RU2638906C2 (ru) 2013-08-29 2014-08-21 Способ вытягивания высокоэффективного сдвоенного лазерного волокна и полученное по нему волокно
JP2016535326A JP6298533B2 (ja) 2013-08-29 2014-08-21 ビーム結合型レーザ光ファイバー引き抜き方法及びビーム結合型光ファイバー
AU2014314785A AU2014314785B2 (en) 2013-08-29 2014-08-21 High-efficiency parallel-beam laser optical fiber drawing method and optical fiber
US14/909,441 US9647413B2 (en) 2013-08-29 2014-08-21 High-efficiency parallel-beam laser optical fibre drawing method and optical fibre

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310384515.1A CN103466934B (zh) 2013-08-29 2013-08-29 一种高效并束型激光光纤拉制方法及光纤
CN201310384515.1 2013-08-29

Publications (1)

Publication Number Publication Date
WO2015027851A1 true WO2015027851A1 (zh) 2015-03-05

Family

ID=49792021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/084879 WO2015027851A1 (zh) 2013-08-29 2014-08-21 一种高效并束型激光光纤拉制方法及光纤

Country Status (6)

Country Link
US (1) US9647413B2 (zh)
JP (1) JP6298533B2 (zh)
CN (1) CN103466934B (zh)
AU (1) AU2014314785B2 (zh)
RU (1) RU2638906C2 (zh)
WO (1) WO2015027851A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103466934B (zh) * 2013-08-29 2015-07-01 烽火通信科技股份有限公司 一种高效并束型激光光纤拉制方法及光纤
CN107870392A (zh) * 2016-09-27 2018-04-03 福州高意光学有限公司 一种光纤耦合器的制备方法
CN109061801B (zh) * 2018-10-12 2024-02-20 广东国志激光技术有限公司 一种高功率信号合束器及其制作方法
CN115327700B (zh) * 2022-09-09 2023-06-06 中国建筑材料科学研究总院有限公司 光学纤维丝的排列方法和光学纤维元器件的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0801827B1 (en) * 1994-12-28 1998-10-21 ITALTEL SOCIETA ITALIANA TELECOMUNICAZIONI s.p.a. A coupling arrangement between a multi-mode light source and an optical fiber through an intermediate optical fiber length
CN1776474A (zh) * 2004-11-16 2006-05-24 亚洲光学股份有限公司 光学镜头及其组装方法
CN102436036A (zh) * 2011-12-16 2012-05-02 烽火通信科技股份有限公司 光纤合束器及其制造方法
CN103466934A (zh) * 2013-08-29 2013-12-25 烽火通信科技股份有限公司 一种高效并束型激光光纤拉制方法及光纤

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003201140A (ja) * 2001-12-28 2003-07-15 Sumitomo Electric Ind Ltd マルチコア光ファイバの製造方法および光ファイバ母材ならびにマルチコア光ファイバ
US7038844B2 (en) * 2003-09-29 2006-05-02 The Regents Of The University Of California High power 938 nanometer fiber laser and amplifier
WO2005082225A1 (en) * 2004-02-27 2005-09-09 Optiscan Pty Ltd Optical element
US7787729B2 (en) * 2005-05-20 2010-08-31 Imra America, Inc. Single mode propagation in fibers and rods with large leakage channels
JP2012212763A (ja) * 2011-03-31 2012-11-01 Fujikura Ltd 光増幅部品、及び、それを用いた光ファイバ増幅器及びファイバレーザ装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0801827B1 (en) * 1994-12-28 1998-10-21 ITALTEL SOCIETA ITALIANA TELECOMUNICAZIONI s.p.a. A coupling arrangement between a multi-mode light source and an optical fiber through an intermediate optical fiber length
CN1776474A (zh) * 2004-11-16 2006-05-24 亚洲光学股份有限公司 光学镜头及其组装方法
CN102436036A (zh) * 2011-12-16 2012-05-02 烽火通信科技股份有限公司 光纤合束器及其制造方法
CN103466934A (zh) * 2013-08-29 2013-12-25 烽火通信科技股份有限公司 一种高效并束型激光光纤拉制方法及光纤

Also Published As

Publication number Publication date
CN103466934B (zh) 2015-07-01
US9647413B2 (en) 2017-05-09
CN103466934A (zh) 2013-12-25
JP2016533036A (ja) 2016-10-20
AU2014314785A1 (en) 2016-01-28
RU2015156800A (ru) 2017-10-04
RU2638906C2 (ru) 2017-12-18
AU2014314785B2 (en) 2016-09-15
US20160181758A1 (en) 2016-06-23
JP6298533B2 (ja) 2018-03-20

Similar Documents

Publication Publication Date Title
US8040926B2 (en) Multi-core fiber for optical pumping device and manufacturing method thereof, optical pumping device, fiber laser and fiber amplifier
US8515220B1 (en) Optical fiber coupler for coupling signal beams into a non-circularly shaped optical beam
CN102298173B (zh) 侧向泵浦光纤结构及其制造方法
EP2071376A1 (en) Optical fibre combiner with a preform comprising capillary bores and method of manufacturing thereof
WO2015027851A1 (zh) 一种高效并束型激光光纤拉制方法及光纤
WO2012088267A2 (en) Rough-clad optical fibers
CN102436036A (zh) 光纤合束器及其制造方法
JP3917033B2 (ja) 光通信用ファイバアレイおよびその製造方法
JP3917034B2 (ja) 光コネクタおよびその製造方法
EP2618191B1 (en) Coupling arrangement for non-axial transfer of electromagnetic radiation
CN203025420U (zh) 光纤合束器
CN111039559B (zh) 一种多光纤高速旋转拉丝侧面熔融合束装置及方法
Guan et al. Supermodes analysis for linear-core-array microstructured fiber
Yang et al. An optimum approach for fabrication of tapered hemispherical-end fiber for laser module packaging
CN105785523A (zh) 一种泵浦信号耦合器及其工艺方法
CN112666659B (zh) 一种致密排列布置的光纤合束器及其制作方法
CN203312620U (zh) 一种高功率激光光纤的端面保护结构
CN112987199B (zh) 一种高功率激光合束及激光合束的生产方法
CN102162875A (zh) 带有增透层的光纤结构
TW202016589A (zh) 光纖合束結構及其製作方法
CN113534330A (zh) 一种增益泵浦一体化掺铥光纤及其制作方法
CN103048788A (zh) 光纤合束器及其制作方法
Liu et al. Splicing and end facet optimization of large-mode-area photonic crystal fiber for high power application
CN114865434A (zh) 光纤一体化端帽及其制备方法
CN202059041U (zh) 带有增透层结构的分布式侧面泵浦光纤激光器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14839684

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014314785

Country of ref document: AU

Date of ref document: 20140821

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14909441

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2016535326

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015156800

Country of ref document: RU

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14839684

Country of ref document: EP

Kind code of ref document: A1