WO2015026116A1 - Insulation sheet, manufacturing method therefor, and insulation panel using same - Google Patents

Insulation sheet, manufacturing method therefor, and insulation panel using same Download PDF

Info

Publication number
WO2015026116A1
WO2015026116A1 PCT/KR2014/007638 KR2014007638W WO2015026116A1 WO 2015026116 A1 WO2015026116 A1 WO 2015026116A1 KR 2014007638 W KR2014007638 W KR 2014007638W WO 2015026116 A1 WO2015026116 A1 WO 2015026116A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
nanofiber web
phase change
nanofiber
sheet
Prior art date
Application number
PCT/KR2014/007638
Other languages
French (fr)
Korean (ko)
Inventor
황승재
Original Assignee
주식회사 아모그린텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아모그린텍 filed Critical 주식회사 아모그린텍
Priority claimed from KR1020140106940A external-priority patent/KR101601170B1/en
Publication of WO2015026116A1 publication Critical patent/WO2015026116A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/78Heat insulating elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/105Ceramic fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/108Rockwool fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/302Conductive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/304Insulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2419/00Buildings or parts thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2509/00Household appliances
    • B32B2509/10Refrigerators or refrigerating equipment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2607/00Walls, panels
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • E04B1/78Heat insulating elements
    • E04B1/80Heat insulating elements slab-shaped
    • E04B1/803Heat insulating elements slab-shaped with vacuum spaces included in the slab
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B2001/742Use of special materials; Materials having special structures or shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • F16L59/026Mattresses, mats, blankets or the like
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L59/00Thermal insulation in general
    • F16L59/02Shape or form of insulating materials, with or without coverings integral with the insulating materials
    • F16L59/029Shape or form of insulating materials, with or without coverings integral with the insulating materials layered
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat

Definitions

  • the present invention relates to a heat insulating sheet, and more particularly, a heat insulating sheet which can improve heat insulating efficiency by implementing a heat insulating sheet having a nanofiber web in which phase change material particles capable of absorbing heat are dispersed therein. And it relates to a manufacturing method and a heat insulating panel using the same.
  • Refrigerators consume high power consumption among household appliances, and reducing power consumption of the refrigerator is indispensable as a global warming measure.
  • the power consumption of the refrigerator is largely determined by the heat insulating performance of the heat insulating material related to the efficiency of the cooling compressor and the amount of heat leakage.
  • Insulation materials for energy saving of buildings are traditionally used as heat insulating materials such as mineral wool and polyurethane.
  • VIP Vauum Insulation Panel
  • aerogels have attracted attention
  • VIM Vauum Insulation Material
  • DIM Dynamic Insulation
  • VIP and aerogels which have very low thermal conductivity, can reduce energy consumption compared to conventional insulation materials, which can greatly increase the residential area.
  • aerogels can be made of translucent and transparent materials, which can be applied to buildings. Very large.
  • Korean Laid-Open Patent Publication No. 10-2011-77859 includes a core portion including a core material; And a vacuum insulator having an outer covering covering the core portion, wherein the core portion is formed in a reduced pressure state, wherein the outer insulating material includes at least one nonwoven fabric layer.
  • the core material of the vacuum insulator is glass fiber, polyurethane, polyester, polypropylene and polyethylene, but the pore size inside the glass fiber aggregate does not have a size suitable for trapping air, so the heat insulation effect is low. And, glass fiber has a complicated and difficult problem in the manufacturing process.
  • Korean Patent Laid-Open Publication No. 10-2011-15326 has been proposed as a core located inside the outer shell of the vacuum insulation material, wherein the cores of the vacuum insulation material are characterized in that the cores are bonded to each other by heat-sealing synthetic resin fibers, Since the fibers are thermally fused to each other by heating the ash fibers to a temperature of the melting point, there is a limit in improving the thermal insulation efficiency because the synthetic resin fibers become inorganic pores with almost no pores.
  • the present inventors continue to research to improve the thermal insulation efficiency by deriving and inventing the structural features of the thermal insulation sheet that can maximize the thermal insulation efficiency, and at the same time save energy, eco-friendly, more economical, and available
  • the present invention has been completed.
  • the present invention has been made in view of the problems of the prior art, the object of which consists of a nanofiber web is provided with a plurality of pores trapping the air to suppress the convection of the air is insulated, heat is applied to the nanofiber web
  • An embodiment of the present invention provides a heat insulating sheet capable of improving heat insulation efficiency by implementing a heat insulating sheet containing phase-absorbing material particles that can be absorbed.
  • Another object of the present invention is to provide a heat insulating sheet and a method of manufacturing the same that can maximize the heat blocking efficiency in a structure capable of performing heat blocking and heat absorption at the same time.
  • Still another object of the present invention is to provide a heat insulation panel which can improve heat insulation properties by applying a heat insulation sheet capable of sequentially performing heat blocking and heat absorption as a core.
  • a hybrid insulating sheet according to an embodiment of the present invention, porous nanofiber web accumulated by the nanofibers having a microporous structure; And phase change material (PCM) particles dispersed in the nanofibers.
  • PCM phase change material
  • the manufacturing method of the insulating sheet for achieving the object of the present invention the step of preparing a spinning solution by mixing a high thermal conductivity polymer material, phase change material particles and a solvent; And electrospinning the spinning solution to form a porous nanofiber web having a fine pore structure and in which phase change material particles are dispersed inside the nanofiber.
  • the heat insulation panel for achieving another object of the present invention, the outer space provided with an outer material; And an insulation sheet disposed inside the envelope to support the envelope, wherein the insulation sheet is a porous nanofiber web having a fine pore structure and in which phase change material particles are dispersed in the nanofiber. do.
  • an insulating sheet including a nanofiber web containing the phase change material particles by applying an insulating sheet including a nanofiber web containing the phase change material particles, the heat is blocked in the nanofiber web, and heat is applied to the phase change material particles included in the nanofiber web.
  • heat shielding and heat absorption may be performed at the same time, thereby providing a thermal insulation technology capable of maximizing thermal insulation efficiency per unit area.
  • the thermal insulation sheet is achieved by the lamination structure of the nanofiber web including the phase change material particles, or the lamination structure of the nanofiber web and the nonwoven fabric, thereby improving the strength, and simultaneously performing multiple heat shielding and heat absorption to insulate the insulation. It can provide a technique that can increase the.
  • a vacuum insulation panel (Vacuum Insulation Panel, VIP) as a core of the insulation sheet embedded in the nanofiber web of the phase change material can provide a vacuum insulation technology that can maximize the insulation properties.
  • VIP Vauum Insulation Panel
  • FIG. 1 is a conceptual cross-sectional view for explaining an insulating sheet according to a first embodiment of the present invention
  • FIG. 2 is a conceptual view for explaining the nanofiber of the insulating sheet according to the first embodiment of the present invention
  • FIG. 3 is a conceptual cross-sectional view for explaining an insulating sheet according to a second embodiment of the present invention.
  • FIG. 4 is a conceptual cross-sectional view for explaining an insulating sheet according to a third embodiment of the present invention.
  • FIG. 5 is a conceptual cross-sectional view for explaining an insulating sheet according to a fourth embodiment of the present invention.
  • 6a to 6c is a conceptual cross-sectional view for explaining an insulating sheet according to a fifth embodiment of the present invention.
  • FIG. 7 is a conceptual cross-sectional view for explaining an insulating sheet according to a sixth embodiment of the present invention.
  • FIG. 8 is a conceptual cross-sectional view for explaining an insulating sheet according to a seventh embodiment of the present invention.
  • FIG. 9 is a conceptual cross-sectional view showing a vacuum insulation panel (Vacuum Insulation Panel, VIP) according to an embodiment of the present invention.
  • VIP Vauum Insulation Panel
  • FIG. 10 is a schematic cross-sectional view showing the electrospinning to form a nanofiber web applied to the heat insulating sheet according to an embodiment of the present invention.
  • phase change material (PCM) particles are contained in the nanofibers of the nanofiber web as an embodiment of the heat insulating sheet and the heat insulation panel according to the present invention, and transfer the transferred heat by blocking the nanofiber web. At the same time to reduce the amount of heat to be absorbed from the phase change material particles, to realize a structure that can maximize the thermal insulation efficiency.
  • thermal insulation sheet and the thermal insulation panel of the present invention described below may be applied to refrigerators, buildings, and electronic devices, but the present invention is not limited thereto, and the same may be applied to thermal insulation materials used in other industrial fields.
  • the heat insulation sheet of the present invention can provide a heat insulation sheet that can perform heat shielding and heat absorption at the same time to maximize the heat insulation efficiency per unit area.
  • Nanofiber webs are arranged in a three-dimensional network structure with irregularly stacked electrospun nanofibers.
  • the nanofibers form irregularly distributed nano-sized micropores in the nanofiber web, and the micropore increases the heat shielding ability of the nanofiber web, thereby providing excellent thermal insulation performance.
  • the insulating sheet 100 according to the first embodiment of the present invention is implemented as a web of nanofibers 100a containing the phase change material particles 121.
  • the heat transferred to the thermal insulation sheet 100 is blocked at the nano-sized micropores of the nanofiber web, and absorbed by the phase change material particles 121 to improve the heat shielding efficiency.
  • the phase change material particle 121 absorbs heat transferred and has excellent heat blocking performance. That is, the phase change material particle 121 absorbs heat while changing from a solid phase to a liquid phase by endothermic reaction when heat is transferred. In addition, the phase change material particles 121 are changed into solid phases when the ambient temperature drops.
  • nanofiber webs 115 containing no phase change material particles may be laminated on one or both surfaces of the nanofiber webs 105 containing phase change material particles, and thus may be implemented as a heat insulating sheet of a second embodiment.
  • the nanofiber web 115 may serve as a support and a heat shield. Then, heat transferred to the heat insulating sheet of the second embodiment is first contacted and transferred to the nanofiber web 115 to block heat in the plurality of micropores. The amount of heat reduced by the amount of heat blocked in the micropores of the nanofiber web 115 is transferred to the nanofiber web 105 containing the phase change material particles.
  • the nanofiber web 105 containing the phase change material particles can block heat in the micropores and at the same time absorb heat from the phase change material particles 121, thereby substantially increasing the thermal insulation efficiency of the thermal insulation sheet.
  • the insulating sheet of the third embodiment has a structure in which a phase change material layer 120 is interposed between the first and second nanofiber webs 110 and 130 containing phase change material particles.
  • the heat transferred to the heat insulating sheet is primarily blocked by heat in the first nanofiber web 110 and absorbed heat, and heat is absorbed by the phase change material layer 120 to decrease heat by secondary. do. Therefore, the amount of heat delivered to the second nanofiber web 130 is further reduced.
  • the thermal insulation sheet of the third embodiment is inevitably increased thermal insulation efficiency.
  • the spinning solution in which the polymer material, the phase change material particles and the solvent are mixed is spun to form the first nanofiber web 110, and the injection solution in which the phase change material particles and the solvent are mixed is sprayed to form the first nanofiber web 110.
  • a phase change material layer 120 in which phase change material particles are dispersed in the nanofiber web 110 is formed.
  • the second nanofiber web 130 is formed by surrounding the phase change material layer 120 and spinning the spinning solution in which the polymer material, the phase change material particles, and the solvent are mixed on the first nanofiber web 110. Prepare the sheet.
  • the insulating sheet of the fourth embodiment is structurally configured as the first and second nanofibers.
  • the phase change material layer 120 is disposed at the interface of the fibrous webs 110 and 130.
  • the nanofiber web is a spinning solution by mixing a polymer material and a solvent having a low thermal conductivity and a low thermal conductivity in a predetermined ratio to form a spinning solution, and the spinning solution is electrospun to form a nanofiber, and the nanofibers are accumulated It is formed in the form of a nanofiber web having pores.
  • the spun nanofibers include phase change material particles, and when the nanofibers are accumulated, a nanofiber web is formed.
  • Phase change material particles are located inside the spun nanofibers.
  • the particle diameter of the phase change material particles is preferably smaller than the diameter of the nanofibers.
  • the nanofibers have a smaller diameter, the specific surface area of the nanofibers increases, and the thermal barrier ability of the nanofiber web including a plurality of micropores increases, thereby improving thermal insulation performance.
  • the nanofibers have a diameter of, for example, 5 ⁇ m or less, preferably 1 ⁇ m or less, and the nanofiber web made of nanofibers traps air inside the micropores as it has a plurality of micropores, and traps the micropores. Condensation of trapped air is suppressed and heat transfer performance is excellent.
  • Fine pores formed in the nanofiber web is preferably set to several nm to 10um or less, preferably 5um or less, it can be implemented by adjusting the diameter of the nanofibers.
  • the radiation method applied to the present invention is a general electrospinning, air electrospinning (AES: Air-Electrospinning), electrospray (electrospray), electrobrown spinning, centrifugal electrospinning Flash-electrospinning can be used.
  • AES Air-Electrospinning
  • electrospray electrospray
  • electrobrown spinning electrobrown spinning
  • centrifugal electrospinning Flash-electrospinning Flash-electrospinning Flash-electrospinning Flash-electrospinning Flash-electrospinning can be used.
  • Nanofiber webs for the purpose of improving the heat resistance of the nanofiber web of the insulating sheet obtained by electrospinning a low thermal conductivity and a mixture of a polymer having a high heat resistance alone or a mixture of a predetermined amount of a polymer having a low thermal conductivity and a high heat resistance polymer Nanofiber webs can be applied.
  • the polymer that can be used in the present invention is preferably dissolved in an organic solvent and capable of spinning and at the same time low in thermal conductivity, and more preferably in excellent heat resistance.
  • Polymers capable of spinning and low thermal conductivity are, for example, polyurethane (PU), polystyrene, polyvinylchloride, cellulose acetate, polyvinylidene fluoride (PVDF), polyacrylonitrile (PAN), polymethylmethacrylate. , Polyvinylacetate, polyvinyl alcohol, polyimide and the like.
  • the polymer having excellent heat resistance may be dissolved in an organic solvent for electrospinning and has a melting point of 180 ° C. or higher, for example, polyacrylonitrile (PAN), polyamide, polyimide, polyamideimide, poly ( Meta-phenylene isophthalamide), polysulfone, polyetherketone, polyethylene terephthalate, polytrimethylene terephthalate, polyethylene naphthalate, and aromatic polyesters such as polytetrafluoroethylene, polydiphenoxyphosphazene, poly Polyphosphazenes such as ⁇ bis [2- (2-methoxyethoxy) phosphazene] ⁇ , polyurethane copolymers including polyurethanes and polyetherurethanes, cellulose acetates, cellulose acetate butyrates, cellulose acetate propionates Etc. can be used.
  • PAN polyacrylonitrile
  • polyamide polyimide
  • polyamideimide poly ( Meta-phenylene isophthalamide
  • the thermal conductivity of the polymer is preferably set to less than 0.1W / mK.
  • Polyurethane (PU) of the above polymers has a thermal conductivity of 0.016 to 0.040 W / mK, and polystyrene and polyvinyl chloride are known to have a thermal conductivity of 0.033 to 0.040 W / mK.
  • the nanofiber web obtained by spinning them also has a low thermal conductivity. It will have thermal insulation properties.
  • the thickness of the nanofiber web may be set to 5um to 50um, preferably 10um to 30um.
  • the nanofiber web may be manufactured to have various thicknesses by laminating them in multiple layers. That is, the heat insulating sheet of the nanofiber web applied to the present invention can be manufactured in an ultra-thin structure and at the same time have a high heat insulating performance.
  • Solvents are dimethyl (dimethyl acetamide), DMF (N, N-dimethylformamide), NMP (N-methyl-2-pyrrolidinone), DMSO (dimethyl sulfoxide), THF (tetra-hydrofuran), DMAc (di-methylacetamide), EC ( At least one selected from the group consisting of ethylene carbonate, DEC (diethyl carbonate), DMC (dimethyl carbonate), EMC (ethyl methyl carbonate), PC (propylene carbonate), water, acetic acid and acetone can be used. have.
  • the thickness is determined by the amount of spinning solution. Therefore, there is an advantage that it is easy to make the thickness of the nanofiber web to the desired thickness.
  • the nanofibers are formed in the form of nanofiber webs accumulated by the spinning method, the nanofibers may be formed in a form having a plurality of pores without a separate process, and the pore size may be adjusted according to the spinning amount of the spinning solution. Therefore, the nanofiber web can make a large number of pores in accordance with the spinning method is excellent in heat shielding performance and thus can improve the thermal insulation performance.
  • the inorganic particles which are heat insulating fillers for blocking heat transfer may be contained in the spinning solution for forming the nanofiber web.
  • the nanofiber web of the nanofiber web may contain inorganic particles.
  • the inorganic particles may be located inside the spun nanofibers or may be partially exposed to the nanofiber surface to block heat transfer.
  • the inorganic particles may improve the strength of the nanofiber web with a heat insulating filler.
  • the inorganic particles are SiO 2 , SiON, Si 3 N 4 , HfO 2 , ZrO 2 , Al 2 O 3 , TiO 2 , Ta 2 O 5 , MgO, Y 2 O 3 , BaTiO 3 , ZrSiO 4 , HfO
  • One or more particles selected from the group consisting of 2 or one or more particles selected from the group consisting of glass fibers, graphite, rock wool, and clay are preferred, but are not necessarily limited to these, alone or in combination of two or more. It can be included in the spinning solution.
  • a fumed silica may be included in the spinning solution for forming the nanofiber web.
  • FIGS. 6A to 6C are conceptual cross-sectional views for explaining a heat insulating sheet according to a fifth embodiment of the present invention.
  • 7 is a conceptual cross-sectional view for explaining a heat insulating sheet according to a sixth embodiment of the present invention
  • Figure 8 is a conceptual cross-sectional view for explaining a heat insulating sheet according to a seventh embodiment of the present invention.
  • a non-woven fabric or a woven fabric may be combined with a nanofiber web containing phase change material particles to implement a high-strength insulating sheet. That is, in FIG. 5, the support 150 is composited on one surface or both surfaces of the nanofiber web 105 containing the phase change material particles.
  • the nonwoven fabric or woven fabric may be formed as long as it can form a double structure with the nanofiber web, and the compounding method is not limited to special methods such as hot plate calendering, hot melt bonding, ultrasonic bonding, and laminating. What is necessary is just the method which can be compounded with a raw material.
  • nonwoven fabrics that can be used are commercially available two- or three-layered polyolefin-based porous membranes, such as PP / PE or PP / PE / PP membranes or single-layered PP or PE membranes, but the outer periphery of PP fibers as a core. It is also possible to use a nonwoven fabric made of double coated PP / PE fibers coated with PE, or a PET nonwoven fabric made of polyethylene terephthalate (PET) fibers.
  • PET polyethylene terephthalate
  • a nonwoven fabric containing phase change material particles in a fiber and a nanofiber web containing phase change material particles or a nanofiber web containing no phase change material particles are combined.
  • a heat insulating sheet capable of multi-stage heat blocking and heat absorption. Since the manufacturing method of the nonwoven fabric is already known, a detailed description thereof will be omitted.
  • the nonwoven fabric is defined as having a fabric shape in which the fiber aggregates are bonded to each other by chemical or mechanical action or appropriate moisture and heat treatment without a process of spinning, weaving, and knitting, and are composed of fiber aggregates using short fibers or filament fibers.
  • the thin sheet of the web is manufactured to form stability by the method of bonding the fibers themselves without the spinning process which is a yarn forming process.
  • the nonwoven fabric can be made of any fibrous material.
  • the nonwoven fabric can be made of natural fibers, synthetic fibers, glass fibers, and carbon fibers.
  • Nonwoven fabrics can be produced using short fibers with lengths of several millimeters to hundreds of millimeters and long fibers with infinite lengths.
  • Insulating sheet of the fifth embodiment first, the phase change material particles on one side (FIG. 6A), or both sides (FIG. 6B) of the nonwoven fabric 200 having fibers containing the phase change material particles and having a predetermined porosity. It can be implemented in a structure that forms the nanofiber web (101,102) that does not contain. In addition, the insulating sheet may be implemented with a structure in which nanofiber webs 110 and 130 containing phase change material particles are formed on one surface or both surfaces of the nonwoven fabric 200 (FIG. 6C).
  • the fiber diameter of the nonwoven fabric 200 is larger than the fiber diameter of the nanofiber webs 101 and 102, and the nanofibers are directly spun or compounded on the nonwoven fabric 200 to implement the heat insulating sheet of the fifth embodiment.
  • the insulating sheet of the sixth embodiment in which the non-woven fabric 210 having a fiber containing the phase change material particles is laminated on the nanofiber web 110 of the insulating sheet structure of Figure 6c Can be implemented.
  • the inorganic porous film 250 may be laminated or covered on part or all of the outer circumferential surface of the insulating sheet 100 of the above-described embodiment.
  • the non-porous film 250 serves to block the heat transmitted to the heat insulation sheet 100 first.
  • the inorganic porous film 250 is preferably applied as an inorganic porous polymer film made of a polymer material, and the inorganic porous polymer film may be formed using a nanofiber web for film made of nanofibers by electrospinning a spinning solution in which a polymer material and a solvent are mixed. It is possible to produce a polymer film of inorganic pores by forming and calendering or heat-treating the nanofiber web for film at a temperature lower than the melting point of the polymer (eg PVDF).
  • a polymer film of inorganic pores by forming and calendering or heat-treating the nanofiber web for film at a temperature lower than the melting point of the polymer (eg PVDF).
  • the heat treatment temperature may be performed at a temperature slightly lower than the melting point of the polymer because the solvent remains in the nanofiber web, and the inorganic fiber film is formed to prevent the nanofiber web from completely melting by the heat treatment. To do this.
  • the heat insulating sheet of the above-described embodiments is provided with a flexible nanofiber web, a folded structure in a plate shape is possible due to excellent bendability.
  • the present invention may further include at least one reinforcing sheet hybridized to one surface, both surfaces, and the entirety of the heat insulating sheets according to the first to seventh embodiments described above.
  • hybridization means a bonding relationship of adhesion, adhesion, lamination, contact, fixing, and the like.
  • the reinforcing sheet may be a heat insulating member or a heat radiating member, and the heat insulating sheet and the reinforcing sheet may be bonded to each other by an adhesive interposed between the heat insulating sheet and the reinforcing sheet.
  • the adhesive may be any of acrylic, epoxy, aramid, urethane, polyamide, polyethylene, EVA, polyester, and PVC.
  • One adhesive, hot melt web and hot melt powder having a plurality of pores formed by accumulation of heat-adhesive fibers may be one.
  • the adhesive may include a conductive filler for thermal diffusion having an aspect ratio of 1: 100 and a conductive filler for heat transfer in a spherical shape.
  • VIP vacuum insulation panel
  • a vacuum insulation panel is mainly exemplified as a kind of insulation panel, but is not limited thereto, and an insulation panel structure in which an internal space is not vacuumed or reduced in pressure is also included in the present invention.
  • the vacuum insulation panel 300 has a gas barrier property, and preferably includes an outer shell material 310 and an outer shell material 310, which form a predetermined decompression space therein. It is disposed to include an insulating sheet 100 for supporting the outer shell material 310.
  • the insulation sheet 100 applied as the core to the vacuum insulation panel 300 includes a porous nanofiber web
  • the insulation sheet 100 includes a plurality of micropores that can trap air, and the air trapped in the micropores falls out by itself. Since it is difficult to exit, the outer shell material 310 exhibits excellent thermal insulation performance even when the inside of the outer shell material 310 is not a vacuum or a reduced pressure space. Therefore, there are many advantages when applied as a building insulation.
  • the decompression space means a space where the pressure inside the pressure is reduced to be lower than the atmospheric pressure.
  • the inside of the envelope 310 when the inside of the envelope 310 is made of a vacuum or reduced pressure space, the inside of the envelope 310 or the insulation sheet 100 may be moisture or gas. It may be configured to include a getter material (not shown) for adsorbing.
  • the getter material may include, for example, an absorbent and a gas absorbent in powder form, and may be made of PP or PE nonwoven fabric.
  • the getter material preferably includes at least one selected from the group consisting of silica gel, zeolite, activated carbon, zirconium, barium compound, lithium compound, magnesium compound, calcium compound and quicklime.
  • the type of getter material that can be used in the present invention is not particularly limited, and materials commonly used in the field of manufacturing vacuum insulators can be used.
  • the outer cover material 310 serves to cover the heat insulating sheet 100 as a core and to maintain the inside of the core under reduced pressure or vacuum.
  • the outer shell material 310 is formed in an envelope in advance, and after the insulating sheet 100 is inserted, sealing is performed by thermo-compressing the inlet portion in a vacuum atmosphere. Accordingly, the envelope 310 is used after sealing the outer portions of three sides of the upper envelope 310a and the lower envelope 310b having a quadrangular shape first to form an envelope.
  • the kind of the outer cover material 310 that can be used in the present invention is not particularly limited, and a material commonly used in the field of manufacturing a vacuum insulator may be used.
  • the envelope material 310 used in the present invention may include, for example, a sealing layer surrounding the heat insulation sheet 100; A barrier layer surrounding the sealing layer; And a nonwoven fabric layer or a protective layer surrounding the barrier layer.
  • the sealing layer coats the built-in insulation sheet 100 as the sealing (compression) is made by thermocompression bonding, and adheres to the core to maintain the panel form.
  • the material of the sealing layer that can be used in the present invention is not particularly limited and the film can be bonded by thermocompression bonding.
  • the thermocompression layer is a linear low density polyethylene (LLDPE), low density polyethylene (LDPE), ultra low density Polyolefin resins such as polyethylene (VLDPE) and high density polyethylene (HDPE), and thermocompression bonding such as polypropylene (PP), polyacrylonitrile film, polyethylene terephthalate film, or ethylene-vinyl alcohol copolymer film, in addition to the above resins Possible resins, or mixtures thereof.
  • LLDPE linear low density polyethylene
  • LDPE low density polyethylene
  • VLDPE ultra low density Polyolefin resins
  • HDPE high density polyethylene
  • thermocompression bonding such as polypropylene (PP), polyacrylonitrile film, polyethylene terephthalate film, or ethylene-vinyl alcohol copolymer film, in addition to the above resins Possible resins, or mixtures thereof.
  • the barrier layer surrounds the sealing layer, maintains the degree of vacuum inside, and serves to block external gas and water vapor.
  • the material of the barrier layer is not particularly limited, and a laminated film (deposited film film) or the like on which metal is deposited on a metal foil or a resin film may be used.
  • a laminated film (deposited film film) or the like on which metal is deposited on a metal foil or a resin film may be used.
  • the metal aluminum, copper, stainless steel, or iron may be used, but is not limited thereto.
  • the deposited film may be formed by depositing a metal such as aluminum, stainless steel, cobalt or nickel, silica, alumina, or carbon by a deposition method or a sputtering method, and the resin film serving as a substrate.
  • a metal such as aluminum, stainless steel, cobalt or nickel, silica, alumina, or carbon
  • the resin film serving as a substrate.
  • the general resin film used in the art can be used.
  • the nonwoven layer surrounds the barrier layer and serves as a protective layer that primarily protects the vacuum insulation from external shock.
  • the nonwoven fabric layer can solve the problem that the thermal performance of the heat insulating material is lowered by the high thermal conductivity of the barrier layer.
  • the material of the nonwoven fabric layer may be PP, PTFE.
  • a protective layer consisting of one or two layers may be used to protect the barrier layer.
  • This protective layer may be made of one or more resins selected from the group consisting of polyamide, polypropylene, polyethylene terephthalate, polyacrylonitrile, polyvinyl alcohol, nylon, PET, K-PET and ethylene vinyl alcohol.
  • FIG. 10 is a schematic cross-sectional view showing the electrospinning to form a nanofiber web applied to the heat insulating sheet according to an embodiment of the present invention.
  • the electrospinning apparatus includes a stirrer (2) using a mixing motor (2a) using pneumatic pressure as a driving source to prevent phase separation until polymer particles having low thermal conductivity, phase change material particles, and a solvent are mixed and radiated. It includes a mixing tank (Mixing Tank) (1) and a plurality of spinning nozzle (4) connected to a high voltage generator.
  • nanofibers 5 accumulate on a grounded collector 6 in the form of a conveyor which is discharged at a constant speed and moves at a constant speed to form a porous nanofiber web 7.
  • the spinning solution is prepared by mixing a polymer material having low thermal conductivity, particles of a phase change material, and a solvent, and then electrospinning the spinning solution to form a porous nanofiber web having a fine pore structure.
  • the particles form a nanofiber web in which the nanofibers are dispersed.
  • the porous nanofiber web is an air electrospinning method in which an air 4a is injected to each spinning nozzle 4 using a multi-hole spinning pack. (7) is produced.
  • the electrospinning when the electrospinning is made by air electrospinning, the air is sprayed from the outer circumference of the spinning nozzle to play a dominant role in blocking and accumulating the air made of a polymer having high volatile polymer.
  • This high nanofiber web can be produced, minimizing the radiation problems that can occur as the fibers fly around.
  • a mixed spinning solution by adding to a two-component solvent.
  • the obtained porous nanofiber web 7 is then calendered at a temperature below the melting point of the polymer in the calender device 9 to obtain a thin nanofiber web 10 used as a core material.
  • the porous nanofiber web 7 obtained as described above remains on the surface of the nanofiber web 7 while passing through a pre-air dry zone by the preheater 8. It is also possible to go through a calendaring process after adjusting the amount of solvent and water.
  • Pre-Air Dry Zone by Preheater (8) is applied to the web by using a fan of 20 ⁇ 40 °C air and the solvent remaining on the surface of the nanofiber web (7)
  • a fan of 20 ⁇ 40 °C air By controlling the amount of water to control the bulk of the nanofiber web 7 (bulky) to increase the strength of the membrane and at the same time it is possible to control the porosity (Porosity).
  • the method of forming the porous nanofiber web 10 by using the electrospinning device of FIG. 10 is a spinning solution by first dissolving a polymer material having a low thermal conductivity alone or a mixture of a polymer material having a low thermal conductivity and a heat resistant polymer material in a solvent. Prepare. In this case, in order to reinforce heat resistance, a predetermined amount of inorganic particles may be added to the spinning solution.
  • a polymer material having low thermal conductivity and excellent heat resistance for example, polyurethane (PU), it has both thermal insulation and heat resistance.
  • the spinning solution is directly spun onto the collector 6 using an electrospinning device or spun onto a porous substrate such as a nonwoven fabric so as to form a porous nanofiber web 10 having a single layer structure or a multilayer composed of a porous nanofiber web and a porous substrate. Fabricate a nanofiber web sheet of structure.
  • the obtained nanofiber web sheet is wide, it is cut into a desired width, and then it is folded into a plate shape several times or wound into a plate shape by a winding machine to have a desired thickness, or a plurality of core sheets are cut into a desired shape. It is then laminated in multiple layers. In addition, after laminating in multiple layers, it can be cut into a desired shape.
  • the nanofiber web when forming a nanofiber web, porous nanofibers by spinning a spinning solution on a transfer sheet made of one of a nonwoven fabric and a polyolefin-based film made of paper, a polymer material which is not dissolved by a solvent contained in a spinning solution.
  • the nanofiber web sheet After the web is formed, the nanofiber web sheet can be produced by laminating with the nonwoven fabric while separating the nanofiber web from the transfer sheet, and the obtained sheet can be laminated in multiple stages.
  • the present invention blocks the heat in the nanofiber web, absorbs heat from the particles of the phase change material included in the nanofiber web, and at the same time perform heat blocking and heat absorption to provide an insulating sheet that can maximize the thermal insulation efficiency per unit area to provide.

Abstract

The present invention relates to an insulation sheet, a manufacturing method therefor, and an insulation panel, wherein the insulation sheet is implemented by applying a nanofiber web structure having phase change material particles so as to shield heat in the nanofiber web structure and to absorb heat from the phase change material particles, such that the insulation efficiency per unit area can be maximized since heat shielding and heat absorption can be carried out simultaneously.

Description

단열 시트 및 그 제조 방법과 이를 이용한 단열 패널Insulation sheet, manufacturing method thereof and insulation panel using same
본 발명은 단열 시트에 관한 것으로, 더욱 상세하게는, 열을 흡수할 수 있는 상변화 물질 입자가 내부에 분산되어 있는 나노 섬유 웹이 구비된 단열 시트를 구현함으로써 단열 효율을 향상시킬 수 있는 단열 시트 및 그 제조 방법과 이를 이용한 단열 패널에 관한 것이다.The present invention relates to a heat insulating sheet, and more particularly, a heat insulating sheet which can improve heat insulating efficiency by implementing a heat insulating sheet having a nanofiber web in which phase change material particles capable of absorbing heat are dispersed therein. And it relates to a manufacturing method and a heat insulating panel using the same.
최근, 에너지 효율적 친환경 산업이 대두되어 전세계적으로 에너지 문제와 환경 문제를 동시에 해결하기 위한 각종 연구가 진행되고 있다.Recently, energy-efficient eco-friendly industry has emerged, and various studies have been conducted to solve energy and environmental problems at the same time all over the world.
특히, 지구 온난화에 대한 관점에서 냉장고의 소비 전력량을 줄일 수 있고, 건축물의 에너지를 절감하기 위하여 단열재에 대한 기술 개발이 다양하게 시도되고 있는 중이다.In particular, in terms of global warming, it is possible to reduce the amount of power consumed by the refrigerator, and various technologies are being developed for insulation to reduce energy in buildings.
냉장고는 가전 제품 중에서 높은 소비 전력량을 소비하는 제품으로, 냉장고의 소비 전력량 절감은 지구 온난화 대책으로서 필요 불가결한 상황에 있다. 냉장고의 소비 전력은 냉각용 압축기의 효율과 열누설량에 관계되는 단열재의 단열 성능에 의해 대부분 결정된다.Refrigerators consume high power consumption among household appliances, and reducing power consumption of the refrigerator is indispensable as a global warming measure. The power consumption of the refrigerator is largely determined by the heat insulating performance of the heat insulating material related to the efficiency of the cooling compressor and the amount of heat leakage.
그리고, 건축물의 에너지 절감을 위한 단열재는 전통적으로 미네랄울, 폴리우레탄 등의 단열재가 사용되었고, 최근에는 VIP (Vacuum Insulation Panel), 에어로젤이 주목받고 있으며, VIM (Vacuum Insulation Material), DIM (Dynamic Insulation Material) 등이 미래기술로 연구되고 있다.Insulation materials for energy saving of buildings are traditionally used as heat insulating materials such as mineral wool and polyurethane. Recently, VIP (Vacuum Insulation Panel) and aerogels have attracted attention, and VIM (Vacuum Insulation Material) and DIM (Dynamic Insulation) Materials) are being researched as future technologies.
매우 낮은 열전도율을 지닌 VIP 및 에어로젤은 기존 단열재에 비해 에너지 소모를 줄일 수 있으므로 주거면적을 크게 확대할 수 있는 장점이 있으며, 특히 에어로젤은 반투명 및 투명재질로 만들 수 있어 건물에 응용될 수 있는 가능성이 매우 크다. VIP and aerogels, which have very low thermal conductivity, can reduce energy consumption compared to conventional insulation materials, which can greatly increase the residential area. Especially, aerogels can be made of translucent and transparent materials, which can be applied to buildings. Very large.
한국 공개특허공보 제10-2011-77859호에는 심재를 포함하는 코어부; 및 상기 코어부를 피복하고 있는 외피재를 가지고, 상기 코어부가 감압상태로 형성된 진공 단열재에 있어서, 상기 외피재가 하나 이상의 부직포층을 포함하는 진공 단열재가 제안되어 있다. 이 경우, 상기 진공 단열재의 심재는 유리 섬유, 폴리우레탄, 폴리에스테르, 폴리프로필렌 및 폴리에틸렌을 사용하고 있으나, 유리 섬유 집합체 내부의 기공 사이즈는 공기를 트랩핑하는 데 적합한 크기를 갖지 못하여 단열 효과가 낮으며, 유리 섬유는 제조공정이 복잡하고 어려운 문제가 있다.Korean Laid-Open Patent Publication No. 10-2011-77859 includes a core portion including a core material; And a vacuum insulator having an outer covering covering the core portion, wherein the core portion is formed in a reduced pressure state, wherein the outer insulating material includes at least one nonwoven fabric layer. In this case, the core material of the vacuum insulator is glass fiber, polyurethane, polyester, polypropylene and polyethylene, but the pore size inside the glass fiber aggregate does not have a size suitable for trapping air, so the heat insulation effect is low. And, glass fiber has a complicated and difficult problem in the manufacturing process.
한국 공개특허공보 제10-2011-15326호에는 진공단열재의 외피 내부에 위치하는 코어로서, 상기 코어는 합성수지재 섬유를 열융착하여 서로 접합시킨 것을 특징으로 하는 진공단열재의 코어가 제안되어 있으나, 합성수지재 섬유를 융점 정도의 온도로 가열하여 섬유들이 서로 열융착되 있어, 합성수지재 섬유에는 거의 기공이 없는 무기공 상태가 되어 단열 효율을 향상시키는데는 한계가 있다.Korean Patent Laid-Open Publication No. 10-2011-15326 has been proposed as a core located inside the outer shell of the vacuum insulation material, wherein the cores of the vacuum insulation material are characterized in that the cores are bonded to each other by heat-sealing synthetic resin fibers, Since the fibers are thermally fused to each other by heating the ash fibers to a temperature of the melting point, there is a limit in improving the thermal insulation efficiency because the synthetic resin fibers become inorganic pores with almost no pores.
그러므로, 본 발명자들은 단열 효율을 향상시키기 위한 연구를 지속적으로 진행하여 단열 효율을 극대화시킬 수 있는 단열 시트의 구조적인 특징을 도출하여 발명함으로써, 에너지 절감과 동시에 친환경적이고, 보다 경제적이고, 활용 가능하고 경쟁력있는 본 발명을 완성하였다.Therefore, the present inventors continue to research to improve the thermal insulation efficiency by deriving and inventing the structural features of the thermal insulation sheet that can maximize the thermal insulation efficiency, and at the same time save energy, eco-friendly, more economical, and available The present invention has been completed.
본 발명은 종래기술의 문제점을 감안하여 안출된 것으로, 그 목적은 공기를 트랩핑하여 공기의 대류를 억제하여 단열하는 다수의 기공이 구비된 나노 섬유 웹으로 이루어지고, 그 나노 섬유 웹에 열을 흡수할 수 있는 상변화 물질 입자가 포함되어 있는 단열 시트를 구현하여 단열 효율을 향상시킬 수 있는 단열 시트 및 그 제조 방법을 제공하는 데 있다.The present invention has been made in view of the problems of the prior art, the object of which consists of a nanofiber web is provided with a plurality of pores trapping the air to suppress the convection of the air is insulated, heat is applied to the nanofiber web An embodiment of the present invention provides a heat insulating sheet capable of improving heat insulation efficiency by implementing a heat insulating sheet containing phase-absorbing material particles that can be absorbed.
본 발명의 다른 목적은 열 차단 및 열 흡수를 동시에 수행할 수 있는 구조로 열 차단 효율을 극대화시킬 수 있는 단열 시트 및 그 제조 방법을 제공하는 데 있다.Another object of the present invention is to provide a heat insulating sheet and a method of manufacturing the same that can maximize the heat blocking efficiency in a structure capable of performing heat blocking and heat absorption at the same time.
본 발명의 또 다른 목적은 열 차단 및 열 흡수를 순차적으로 수행할 수 있는 단열 시트를 코어로 적용하여 단열 특성을 개선될 수 있는 단열 패널을 제공하는 데 있다.Still another object of the present invention is to provide a heat insulation panel which can improve heat insulation properties by applying a heat insulation sheet capable of sequentially performing heat blocking and heat absorption as a core.
상술된 목적을 달성하기 위한, 본 발명의 일 실시예에 의한 하이브리드 단열 시트는, 나노 섬유에 의해 축적되어 미세 기공 구조를 갖는 다공성 나노 섬유 웹; 및 상기 나노 섬유 내부에 분산되어 있는 상변화 물질(PCM, Phase Change Material) 입자;를 포함하는 것을 특징으로 한다.In order to achieve the above object, a hybrid insulating sheet according to an embodiment of the present invention, porous nanofiber web accumulated by the nanofibers having a microporous structure; And phase change material (PCM) particles dispersed in the nanofibers.
또한, 본 발명의 목적을 달성하기 위한 단열 시트의 제조 방법은, 열전도율이 낮은 고분자 물질, 상변화 물질 입자와 용매를 혼합하여 방사용액을 제조하는 단계; 및 상기 방사용액을 전기 방사하여 미세 기공 구조를 갖고, 상변화 물질 입자가 나노 섬유 내부에 분산되어 있는 다공성 나노 섬유 웹을 형성하는 단계;를 포함하는 것을 특징으로 한다.In addition, the manufacturing method of the insulating sheet for achieving the object of the present invention, the step of preparing a spinning solution by mixing a high thermal conductivity polymer material, phase change material particles and a solvent; And electrospinning the spinning solution to form a porous nanofiber web having a fine pore structure and in which phase change material particles are dispersed inside the nanofiber.
아울러, 본 발명의 다른 목적을 달성하기 위한 단열 패널은, 내부 공간이 구비된 외피재; 및 상기 외피재 내부에 배치되어 상기 외피재를 지지하는 단열 시트를 포함하며, 상기 단열 시트는, 미세 기공 구조를 갖고, 상변화 물질 입자가 나노 섬유 내부에 분산되어 있는 다공성 나노 섬유 웹인 것을 특징으로 한다.In addition, the heat insulation panel for achieving another object of the present invention, the outer space provided with an outer material; And an insulation sheet disposed inside the envelope to support the envelope, wherein the insulation sheet is a porous nanofiber web having a fine pore structure and in which phase change material particles are dispersed in the nanofiber. do.
상기한 바와 같이, 본 발명에서는 상변화 물질 입자가 함유되어 있는 나노 섬유 웹이 포함된 단열 시트를 적용함으로써, 나노 섬유 웹에서 열을 차단하고, 나노 섬유 웹에 포함된 상변화 물질 입자에서 열을 흡수하여, 열 차단과 열 흡수를 동시에 수행하게 되어 단위 면적당 단열 효율을 극대화시킬 수 있는 단열 기술을 제공할 수 있다.As described above, in the present invention, by applying an insulating sheet including a nanofiber web containing the phase change material particles, the heat is blocked in the nanofiber web, and heat is applied to the phase change material particles included in the nanofiber web. By absorbing, heat shielding and heat absorption may be performed at the same time, thereby providing a thermal insulation technology capable of maximizing thermal insulation efficiency per unit area.
본 발명에서는 전기 방사된 나노 섬유가 3차원 네트워크 구조로 배열된 나노 섬유 웹의 단열 시트를 채택하여, 열 차단 능력이 큰 나노 섬유 웹의 나노 크기의 미세 기공으로 단열 성능을 향상시킬 수 있는 기술을 제공할 수 있다. In the present invention, by adopting an insulating sheet of a nanofiber web in which the electrospun nanofibers are arranged in a three-dimensional network structure, a technique for improving thermal insulation performance by nano-sized micropores of a nanofiber web having a high thermal barrier ability is provided. Can provide.
본 발명에서는 상변화 물질 입자가 포함된 나노 섬유 웹의 적층 구조, 또는 나노 섬유 웹과 부직포 적층 구조로 단열 시트를 달성하여, 강도를 향상시킴과 동시에 다중의 열 차단과 열 흡수를 수행하여 단열 효율을 증가시킬 수 있는 기술을 제공할 수 있다.In the present invention, the thermal insulation sheet is achieved by the lamination structure of the nanofiber web including the phase change material particles, or the lamination structure of the nanofiber web and the nonwoven fabric, thereby improving the strength, and simultaneously performing multiple heat shielding and heat absorption to insulate the insulation. It can provide a technique that can increase the.
본 발명에서는 상변화 물질이 나노 섬유 웹에 내장된 단열 시트를 코어로 하는 진공 단열 패널(Vacuum Insulation Panel, VIP)을 제공하여 단열 특성을 극대화시킬 수 있는 진공 단열 기술을 제공할 수 있다.In the present invention, by providing a vacuum insulation panel (Vacuum Insulation Panel, VIP) as a core of the insulation sheet embedded in the nanofiber web of the phase change material can provide a vacuum insulation technology that can maximize the insulation properties.
본 발명에서는 나노 섬유 웹을 적용하여 초박막 단열 시트 및 단열 패널을 제공할 수 있어, 단열특성이 우수하여 냉장고 및 건축물의 내부 공간을 확장시킬 수 있는 기술을 제공할 수 있다.In the present invention, it is possible to provide an ultra-thin thermal insulation sheet and a thermal insulation panel by applying a nanofiber web, it is possible to provide a technology that can expand the internal space of the refrigerator and the building excellent in thermal insulation characteristics.
도 1은 본 발명의 제1실시예에 따른 단열 시트를 설명하기 위한 개념적인 단면도, 1 is a conceptual cross-sectional view for explaining an insulating sheet according to a first embodiment of the present invention,
도 2는 본 발명의 제1실시예에 따른 단열 시트의 나노 섬유를 설명하기 위한 개념적인 도면, 2 is a conceptual view for explaining the nanofiber of the insulating sheet according to the first embodiment of the present invention,
도 3은 본 발명의 제2실시예에 따른 단열 시트를 설명하기 위한 개념적인 단면도, 3 is a conceptual cross-sectional view for explaining an insulating sheet according to a second embodiment of the present invention;
도 4는 본 발명의 제3실시예에 따른 단열 시트를 설명하기 위한 개념적인 단면도, 4 is a conceptual cross-sectional view for explaining an insulating sheet according to a third embodiment of the present invention;
도 5는 본 발명의 제4실시예에 따른 단열 시트를 설명하기 위한 개념적인 단면도, 5 is a conceptual cross-sectional view for explaining an insulating sheet according to a fourth embodiment of the present invention;
도 6a 내지 도 6c는 본 발명의 제5실시예에 따른 단열 시트를 설명하기 위한 개념적인 단면도, 6a to 6c is a conceptual cross-sectional view for explaining an insulating sheet according to a fifth embodiment of the present invention,
도 7은 본 발명의 제6실시예에 따른 단열 시트를 설명하기 위한 개념적인 단면도, 7 is a conceptual cross-sectional view for explaining an insulating sheet according to a sixth embodiment of the present invention;
도 8은 본 발명의 제7실시예에 따른 단열 시트를 설명하기 위한 개념적인 단면도, 8 is a conceptual cross-sectional view for explaining an insulating sheet according to a seventh embodiment of the present invention;
도 9는 본 발명의 일실시예에 따른 진공 단열 패널(Vacuum Insulation Panel, VIP)를 도시한 개념적인 단면도,9 is a conceptual cross-sectional view showing a vacuum insulation panel (Vacuum Insulation Panel, VIP) according to an embodiment of the present invention,
도 10은 본 발명의 일실시예에 따른 단열 시트에 적용된 나노 섬유 웹을 형성하는 전기방사장치를 나타내는 개략 단면도이다.10 is a schematic cross-sectional view showing the electrospinning to form a nanofiber web applied to the heat insulating sheet according to an embodiment of the present invention.
이하, 첨부된 도면들을 참조하여 본 발명의 실시를 위한 구체적인 내용을 설명하도록 한다.Hereinafter, with reference to the accompanying drawings will be described in detail for the practice of the present invention.
이하의 설명에서는 본 발명에 따른 단열 시트 및 단열 패널의 실시예로 상변화 물질(PCM, Phase Change Material) 입자가 나노 섬유 웹의 나노 섬유에 함유되어, 전달된 열을 나노 섬유 웹에서 차단하여 전달되는 열량을 낮춤과 동시에, 상변화 물질 입자에서 열을 흡수하여, 단열 효율을 극대화시킬 수 있는 구조를 구현한다.In the following description, the phase change material (PCM) particles are contained in the nanofibers of the nanofiber web as an embodiment of the heat insulating sheet and the heat insulation panel according to the present invention, and transfer the transferred heat by blocking the nanofiber web. At the same time to reduce the amount of heat to be absorbed from the phase change material particles, to realize a structure that can maximize the thermal insulation efficiency.
후술하는 본 발명의 단열 시트 및 단열 패널은 냉장고, 건축물 및 전자기기에 적용할 수 있으나, 본 발명은 이에 한정하지 않고 다른 산업 분야에 사용되는 단열재에도 이와 동일하게 적용될 수 있다.The thermal insulation sheet and the thermal insulation panel of the present invention described below may be applied to refrigerators, buildings, and electronic devices, but the present invention is not limited thereto, and the same may be applied to thermal insulation materials used in other industrial fields.
본 발명에서는 나노 섬유 웹에 상변화 물질 입자가 포함되어 있는 단열 시트를 적용하는 것으로, 나노 섬유 웹은 열을 차단하고, 나노 섬유 웹에 포함된 상변화 물질 입자에서 열을 흡수한다. 그러므로, 본 발명의 단열 시트는 열 차단과 열 흡수를 동시에 수행할 수 있어 단위 면적당 단열 효율을 극대화시킬 수 있는 단열 시트를 제공할 수 있다.In the present invention, by applying an insulating sheet containing a phase change material particle to the nanofiber web, the nanofiber web blocks heat and absorbs heat from the phase change material particles included in the nanofiber web. Therefore, the heat insulation sheet of the present invention can provide a heat insulation sheet that can perform heat shielding and heat absorption at the same time to maximize the heat insulation efficiency per unit area.
나노 섬유 웹은 전기 방사된 나노 섬유가 불규칙하게 적층되어 3차원 네트워크 구조로 배열되어 있다. 그 나노 섬유에 의해 나노 섬유 웹에는 불규칙하게 분포된 나노 크기의 미세 기공이 형성되고, 미세 기공에 의해 나노섬유 웹의 열 차단 능력이 커지게 되어 우수한 단열 성능을 갖게된다.Nanofiber webs are arranged in a three-dimensional network structure with irregularly stacked electrospun nanofibers. The nanofibers form irregularly distributed nano-sized micropores in the nanofiber web, and the micropore increases the heat shielding ability of the nanofiber web, thereby providing excellent thermal insulation performance.
도 1 및 도 2를 참고하면, 본 발명의 제1실시예에 따른 단열 시트(100)는 상변화 물질 입자(121)가 함유된 나노 섬유(100a)의 웹으로 구현한다. 이때, 단열 시트(100)로 전달된 열은 나노 섬유 웹의 나노 크기의 미세 기공에서 차단됨과 동시에, 상변화 물질 입자(121)에서 흡수되어 열 차단 효율이 향상된다.1 and 2, the insulating sheet 100 according to the first embodiment of the present invention is implemented as a web of nanofibers 100a containing the phase change material particles 121. At this time, the heat transferred to the thermal insulation sheet 100 is blocked at the nano-sized micropores of the nanofiber web, and absorbed by the phase change material particles 121 to improve the heat shielding efficiency.
상변화 물질 입자(121)는 전달되는 열을 흡수하여 열 차단 성능이 우수하다. 즉, 상변화 물질 입자(121)는 열이 전달되면 흡열반응하여 고상에서 액상으로 변화되면서 열을 흡수한다. 그리고 상변화 물질 입자(121)은 주변 온도가 떨어지면 다시 고상으로 변화된다.The phase change material particle 121 absorbs heat transferred and has excellent heat blocking performance. That is, the phase change material particle 121 absorbs heat while changing from a solid phase to a liquid phase by endothermic reaction when heat is transferred. In addition, the phase change material particles 121 are changed into solid phases when the ambient temperature drops.
도 3을 참고하면, 상변화 물질 입자가 함유된 나노 섬유 웹(105) 일면 또는 양면에 상변화 물질 입자가 함유되어 있지 않은 나노 섬유 웹(115)을 적층하여 제2실시예의 단열 시트로 구현할 수 있으며, 이 경우, 나노 섬유 웹(115)은 지지체 및 열 차단의 역할을 수행할 수 있다. 그리고, 제2실시예의 단열 시트로 전달되는 열은 나노 섬유 웹(115)에 먼저 접촉 및 전달되어, 다수의 미세 기공에서 열을 차단한다. 나노 섬유 웹(115)의 미세 기공에서 차단된 열량만큼 감소된 열량이 상변화 물질 입자가 함유된 나노 섬유 웹(105)으로 전달된다. 상변화 물질 입자가 함유된 나노 섬유 웹(105)은 미세 기공에서 열을 차단할 수 있음과 동시에, 상변화 물질 입자(121)에서 열을 흡수함으로써, 단열 시트의 단열 효율은 실질적으로 더 증가된다.Referring to FIG. 3, nanofiber webs 115 containing no phase change material particles may be laminated on one or both surfaces of the nanofiber webs 105 containing phase change material particles, and thus may be implemented as a heat insulating sheet of a second embodiment. In this case, the nanofiber web 115 may serve as a support and a heat shield. Then, heat transferred to the heat insulating sheet of the second embodiment is first contacted and transferred to the nanofiber web 115 to block heat in the plurality of micropores. The amount of heat reduced by the amount of heat blocked in the micropores of the nanofiber web 115 is transferred to the nanofiber web 105 containing the phase change material particles. The nanofiber web 105 containing the phase change material particles can block heat in the micropores and at the same time absorb heat from the phase change material particles 121, thereby substantially increasing the thermal insulation efficiency of the thermal insulation sheet.
도 4를 참고하면, 제3실시예의 단열 시트는 상변화 물질 입자가 함유된 제1 및 제2 나노 섬유 웹(110,130) 사이에 상변화 물질층(120)이 개재된 구조이다. 이 단열 시트로 전달된 열은 제1 나노 섬유 웹(110)에서 열이 차단 및 열 흡수되어 1차적으로 열량이 감소되고, 상변화 물질층(120)에서 열이 흡수되어 2차적으로 열량이 감소된다. 그러므로, 제2 나노 섬유 웹(130)로 전달되는 열량은 더욱 줄어든다. 제2 나노 섬유 웹(130)에서도 열 차단 및 열 흡수함으로써, 제3실시예의 단열 시트는 구조적으로 단열 효율이 증가될 수 밖에 없다.Referring to FIG. 4, the insulating sheet of the third embodiment has a structure in which a phase change material layer 120 is interposed between the first and second nanofiber webs 110 and 130 containing phase change material particles. The heat transferred to the heat insulating sheet is primarily blocked by heat in the first nanofiber web 110 and absorbed heat, and heat is absorbed by the phase change material layer 120 to decrease heat by secondary. do. Therefore, the amount of heat delivered to the second nanofiber web 130 is further reduced. By heat shielding and heat absorption in the second nanofiber web 130, the thermal insulation sheet of the third embodiment is inevitably increased thermal insulation efficiency.
제3실시예에서는 고분자 물질, 상변화 물질 입자와 용매가 혼합된 방사용액을 방사하여 제1 나노 섬유 웹(110)을 형성하고, 상변화 물질 입자와 용매가 혼합된 분사용액을 분사하여 제1 나노 섬유 웹(110)에 상변화 물질 입자가 분산된 상변화 물질층(120)을 형성한다. 그 후, 상변화 물질층(120)을 감싸며 제1 나노 섬유 웹(110)에 고분자 물질, 상변화 물질 입자와 용매가 혼합된 방사용액을 방사하여 제2 나노 섬유 웹(130)을 형성하여 단열 시트를 제조한다.In the third embodiment, the spinning solution in which the polymer material, the phase change material particles and the solvent are mixed is spun to form the first nanofiber web 110, and the injection solution in which the phase change material particles and the solvent are mixed is sprayed to form the first nanofiber web 110. A phase change material layer 120 in which phase change material particles are dispersed in the nanofiber web 110 is formed. Subsequently, the second nanofiber web 130 is formed by surrounding the phase change material layer 120 and spinning the spinning solution in which the polymer material, the phase change material particles, and the solvent are mixed on the first nanofiber web 110. Prepare the sheet.
제1 나노 섬유 웹(110)측에 상변화 물질층(120)이 형성되어 있는 상태에서 제2 나노 섬유 웹(130)이 적층됨으로써, 제4실시예의 단열 시트는 구조적으로 제1 및 제2 나노 섬유 웹(110,130)의 경계면에 상변화 물질층(120)이 배치된다.By stacking the second nanofiber web 130 in a state where the phase change material layer 120 is formed on the first nanofiber web 110 side, the insulating sheet of the fourth embodiment is structurally configured as the first and second nanofibers. The phase change material layer 120 is disposed at the interface of the fibrous webs 110 and 130.
한편, 나노 섬유 웹은 전기 방사가 가능하고 열전도율이 낮은 고분자 물질과 용매를 일정 비율로 혼합하여 방사용액을 만들고, 이 방사용액을 전기 방사하여 나노 섬유를 형성하고, 이 나노 섬유가 축적되어 다수의 기공을 갖는 나노섬유 웹(nano web) 형태로 형성된다. On the other hand, the nanofiber web is a spinning solution by mixing a polymer material and a solvent having a low thermal conductivity and a low thermal conductivity in a predetermined ratio to form a spinning solution, and the spinning solution is electrospun to form a nanofiber, and the nanofibers are accumulated It is formed in the form of a nanofiber web having pores.
본 발명에서는, 고분자 물질, 상변화 물질 입자와 용매가 혼합된 방사용액을 방사하여 상변화 물질 입자가 포함된 나노 섬유 웹을 형성한다. 이때, 방사된 나노 섬유는 상변화 물질 입자가 포함되고, 그 나노 섬유를 축적시키면 나노 섬유 웹이 형성된다. 상변화 물질 입자는 방사된 나노 섬유 내부에 위치된다. 여기서, 상변화 물질 입자의 입경은 나노 섬유의 직경보다 작은 것이 바람직하다.In the present invention, spinning the spinning solution in which the polymer material, the phase change material particles and the solvent are mixed to form a nanofiber web containing the phase change material particles. At this time, the spun nanofibers include phase change material particles, and when the nanofibers are accumulated, a nanofiber web is formed. Phase change material particles are located inside the spun nanofibers. Here, the particle diameter of the phase change material particles is preferably smaller than the diameter of the nanofibers.
이와 같은 나노 섬유는 직경이 작을수록 나노 섬유의 비표면적이 증대되고 다수의 미세 기공을 구비하는 나노 섬유 웹의 열 차단 능력이 커지게 되어 단열 성능이 향상된다. As the nanofibers have a smaller diameter, the specific surface area of the nanofibers increases, and the thermal barrier ability of the nanofiber web including a plurality of micropores increases, thereby improving thermal insulation performance.
나노 섬유는 예를 들어, 5um 이하, 바람직하게는 1um 이하의 직경으로 이루어지며, 나노 섬유로 이루어진 나노 섬유 웹은 다수의 미세 기공을 구비함에 따라 미세 기공 내부에 공기를 트랩하고, 미세 기공에 트랩되어 갇힌 공기의 대류가 억제되어 전달된 열의 차단 성능이 우수하다.The nanofibers have a diameter of, for example, 5 μm or less, preferably 1 μm or less, and the nanofiber web made of nanofibers traps air inside the micropores as it has a plurality of micropores, and traps the micropores. Condensation of trapped air is suppressed and heat transfer performance is excellent.
상기 나노 섬유 웹에 형성되는 미세 기공은 수nm 내지 10um 이하, 바람직하게는 5um 이하로 설정되는 것이 좋으며, 나노 섬유의 직경을 조절하여 구현될 수 있다.Fine pores formed in the nanofiber web is preferably set to several nm to 10um or less, preferably 5um or less, it can be implemented by adjusting the diameter of the nanofibers.
여기에서, 본 발명에 적용되는 방사 방법은 일반적인 전기방사(electrospinning), 에어 전기방사(AES: Air-Electrospinning), 전기분사(electrospray), 전기분사방사(electrobrown spinning), 원심전기방사(centrifugal electrospinning), 플래쉬 전기방사(flash-electrospinning) 중 어느 하나를 사용할 수 있다. Here, the radiation method applied to the present invention is a general electrospinning, air electrospinning (AES: Air-Electrospinning), electrospray (electrospray), electrobrown spinning, centrifugal electrospinning Flash-electrospinning can be used.
본 발명에서는 단열 시트의 나노 섬유 웹의 내열성 향상을 도모하기 위한 목적으로 열전도율이 낮음과 동시에 내열성이 우수한 고분자 단독 또는 열전도율이 낮은 고분자와 내열성이 우수한 고분자를 소정량 혼합한 혼합 고분자를 전기 방사하여 얻어진 나노 섬유 웹을 적용할 수 있다.In the present invention, for the purpose of improving the heat resistance of the nanofiber web of the insulating sheet obtained by electrospinning a low thermal conductivity and a mixture of a polymer having a high heat resistance alone or a mixture of a predetermined amount of a polymer having a low thermal conductivity and a high heat resistance polymer Nanofiber webs can be applied.
이때, 본 발명에서 사용 가능한 고분자는 유기용매에 용해되어 방사가 가능함과 동시에 열전도율이 낮은 것이 바람직하며, 또한 내열성이 우수한 것이 더욱 바람직하다.In this case, the polymer that can be used in the present invention is preferably dissolved in an organic solvent and capable of spinning and at the same time low in thermal conductivity, and more preferably in excellent heat resistance.
방사가 가능하고 열전도율이 낮은 폴리머는 예를 들어, 폴리우레탄(PU), 폴리스티렌, 폴리비닐클로라이드, 셀룰로오스 아세테이트, 폴리비닐리덴플루오라이드(PVDF), 폴리아크릴로니트릴(PAN), 폴리메틸메타크릴레이트, 폴리비닐아세테이트, 폴리비닐알콜, 폴리이미드 등을 들 수 있다.Polymers capable of spinning and low thermal conductivity are, for example, polyurethane (PU), polystyrene, polyvinylchloride, cellulose acetate, polyvinylidene fluoride (PVDF), polyacrylonitrile (PAN), polymethylmethacrylate. , Polyvinylacetate, polyvinyl alcohol, polyimide and the like.
또한, 내열성이 우수한 폴리머는 전기방사를 위해 유기용매에 용해될 수 있고 융점이 180℃ 이상인 수지로서, 예를 들어, 폴리아크릴로니트릴(PAN), 폴리아마이드, 폴리이미드, 폴리아마이드이미드, 폴리(메타-페닐렌 이소프탈아미이드), 폴리설폰, 폴리에테르케톤, 폴리에틸렌텔레프탈레이트, 폴리트리메틸렌텔레프탈레이트, 폴리에틸렌 나프탈레이트 등과 같은 방향족 폴리에스터, 폴리테트라플루오로에틸렌, 폴리디페녹시포스파젠, 폴리{비스[2-(2-메톡시에톡시)포스파젠]} 같은 폴리포스파젠류, 폴리우레탄 및 폴리에테르우레탄을 포함하는 폴리우레탄공중합체, 셀룰로오스 아세테이트, 셀룰로오스 아세테이트 부틸레이트, 셀룰로오스 아세테이트 프로피오네이트 등을 사용할 수 있다. In addition, the polymer having excellent heat resistance may be dissolved in an organic solvent for electrospinning and has a melting point of 180 ° C. or higher, for example, polyacrylonitrile (PAN), polyamide, polyimide, polyamideimide, poly ( Meta-phenylene isophthalamide), polysulfone, polyetherketone, polyethylene terephthalate, polytrimethylene terephthalate, polyethylene naphthalate, and aromatic polyesters such as polytetrafluoroethylene, polydiphenoxyphosphazene, poly Polyphosphazenes such as {bis [2- (2-methoxyethoxy) phosphazene]}, polyurethane copolymers including polyurethanes and polyetherurethanes, cellulose acetates, cellulose acetate butyrates, cellulose acetate propionates Etc. can be used.
상기 고분자의 열전도율은 0.1W/mK 미만으로 설정되는 것이 바람직하다.The thermal conductivity of the polymer is preferably set to less than 0.1W / mK.
상기한 고분자 중 폴리우레탄(PU)은 열전도율이 0.016~0.040W/mK이고, 폴리스티렌과 폴리비닐클로라이드는 열전도율이 0.033~0.040W/mK로 알려져 있어, 이를 방사하여 얻어지는 나노 섬유 웹 또한, 열전도율이 낮아 단열 특성을 갖게 된다. Polyurethane (PU) of the above polymers has a thermal conductivity of 0.016 to 0.040 W / mK, and polystyrene and polyvinyl chloride are known to have a thermal conductivity of 0.033 to 0.040 W / mK. The nanofiber web obtained by spinning them also has a low thermal conductivity. It will have thermal insulation properties.
나노 섬유 웹의 두께는 5um 내지 50um, 바람직하게는 10um 내지 30um로 설정될 수 있다.The thickness of the nanofiber web may be set to 5um to 50um, preferably 10um to 30um.
또한, 나노 섬유 웹을 다층으로 적층하여 다양한 두께를 갖도록 제작될 수 있다. 즉, 본 발명에 적용된 나노 섬유 웹의 단열 시트는 초박막 구조로 제작이 가능함과 동시에 높은 단열 성능을 가질 수 있다.In addition, the nanofiber web may be manufactured to have various thicknesses by laminating them in multiple layers. That is, the heat insulating sheet of the nanofiber web applied to the present invention can be manufactured in an ultra-thin structure and at the same time have a high heat insulating performance.
용매는 DMA(dimethyl acetamide), DMF(N,N-dimethylformamide), NMP(N-methyl-2-pyrrolidinone), DMSO(dimethyl sulfoxide), THF(tetra-hydrofuran), DMAc(di-methylacetamide), EC(ethylene carbonate), DEC(diethyl carbonate), DMC(dimethyl carbonate), EMC(ethyl methyl carbonate), PC(propylene carbonate), 물, 초산(acetic acid) 및 아세톤으로 이루어진 군으로부터 선택되는 어느 하나 이상을 사용할 수 있다. Solvents are dimethyl (dimethyl acetamide), DMF (N, N-dimethylformamide), NMP (N-methyl-2-pyrrolidinone), DMSO (dimethyl sulfoxide), THF (tetra-hydrofuran), DMAc (di-methylacetamide), EC ( At least one selected from the group consisting of ethylene carbonate, DEC (diethyl carbonate), DMC (dimethyl carbonate), EMC (ethyl methyl carbonate), PC (propylene carbonate), water, acetic acid and acetone can be used. have.
나노 섬유 웹은 전기방사 방법으로 제조되므로 방사용액의 방사량에 따라 두께가 결정된다. 따라서, 나노 섬유 웹의 두께를 원하는 두께로 만들기가 쉬운 장점이 있다. Since the nanofiber web is produced by the electrospinning method, the thickness is determined by the amount of spinning solution. Therefore, there is an advantage that it is easy to make the thickness of the nanofiber web to the desired thickness.
이와 같이, 방사 방법에 의해 나노 섬유가 축적된 나노섬유 웹 형태로 형성되므로 별도의 공정없이 복수의 기공을 갖는 형태로 만들 수 있고, 방사용액의 방사량에 따라 기공의 크기를 조절하는 것도 가능하다. 따라서, 나노 섬유 웹은 방사 방법에 따라 기공을 미세하게 다수로 만들 수 있어 열 차단 성능이 뛰어나고 이에 따라 단열 성능을 향상시킬 수 있다. As such, since the nanofibers are formed in the form of nanofiber webs accumulated by the spinning method, the nanofibers may be formed in a form having a plurality of pores without a separate process, and the pore size may be adjusted according to the spinning amount of the spinning solution. Therefore, the nanofiber web can make a large number of pores in accordance with the spinning method is excellent in heat shielding performance and thus can improve the thermal insulation performance.
본 발명에서는 나노 섬유 웹을 형성하기 위한 방사용액에 열전달을 차단하기 위한 단열성 필러인 무기물 입자가 함유될 수 있다. 이 경우, 나노 섬유 웹의 나노 웹에는 무기물 입자가 포함되어 있을 수 있다. 무기물 입자는 방사된 나노 섬유의 내부에 위치되어 있거나, 나노 섬유 표면에 일부가 노출되어 열전달을 차단하게 된다. 또한, 무기물 입자는 단열성 필러로 나노 섬유 웹의 강도를 향상시킬 수 있다.In the present invention, the inorganic particles which are heat insulating fillers for blocking heat transfer may be contained in the spinning solution for forming the nanofiber web. In this case, the nanofiber web of the nanofiber web may contain inorganic particles. The inorganic particles may be located inside the spun nanofibers or may be partially exposed to the nanofiber surface to block heat transfer. In addition, the inorganic particles may improve the strength of the nanofiber web with a heat insulating filler.
바람직하게는, 무기물 입자는 SiO2, SiON, Si3N4, HfO2, ZrO2, Al2O3, TiO2, Ta2O5, MgO, Y2O3, BaTiO3, ZrSiO4, HfO2로 이루어진 군으로부터 선택된 1종 이상의 입자, 또는 유리 섬유, 흑연, 암면, 클레이(clay)로 이루어진 군으로부터 선택된 1종 이상의 입자가 바람직하나, 반드시 이에 제한되는 것은 아니고, 이들을 단독 또는 2종 이상 혼합하여 방사 용액에 포함될 수 있다.Preferably, the inorganic particles are SiO 2 , SiON, Si 3 N 4 , HfO 2 , ZrO 2 , Al 2 O 3 , TiO 2 , Ta 2 O 5 , MgO, Y 2 O 3 , BaTiO 3 , ZrSiO 4 , HfO One or more particles selected from the group consisting of 2 or one or more particles selected from the group consisting of glass fibers, graphite, rock wool, and clay are preferred, but are not necessarily limited to these, alone or in combination of two or more. It can be included in the spinning solution.
또한, 나노 섬유 웹을 형성하기 위한 방사용액에 흄드 실리카(Fumed Silica)가 포함될 수 있다.In addition, a fumed silica may be included in the spinning solution for forming the nanofiber web.
도 5는 본 발명의 제4실시예에 따른 단열 시트를 설명하기 위한 개념적인 단면도이고, 도 6a 내지 도 6c는 본 발명의 제5실시예에 따른 단열 시트를 설명하기 위한 개념적인 단면도이고, 도 7은 본 발명의 제6실시예에 따른 단열 시트를 설명하기 위한 개념적인 단면도이며, 도 8은 본 발명의 제7실시예에 따른 단열 시트를 설명하기 위한 개념적인 단면도이다.5 is a conceptual cross-sectional view for explaining a heat insulating sheet according to a fourth embodiment of the present invention, and FIGS. 6A to 6C are conceptual cross-sectional views for explaining a heat insulating sheet according to a fifth embodiment of the present invention. 7 is a conceptual cross-sectional view for explaining a heat insulating sheet according to a sixth embodiment of the present invention, Figure 8 is a conceptual cross-sectional view for explaining a heat insulating sheet according to a seventh embodiment of the present invention.
본 발명의 제4실시예에서는 상변화 물질 입자가 함유된 나노 섬유 웹에 부직포나 직포 등을 복합화하여 강도가 높은 단열 시트를 구현할 수 있다. 즉, 도 5에는 상변화 물질 입자가 함유된 나노 섬유 웹(105) 일면 또는 양면에 지지체(150)를 복합화한 것이다. 지지체인 부직포나 직포는 나노 섬유 웹과 2중 구조를 형성할 수 있는 것이면 가능하며, 복합화 방법으로는 열판 캘린더링, 핫멜트 본딩, 초음파 본딩, 라미네이팅 등 특별한 방법에 한정하지는 않으며, 나노 섬유 웹과 기존 소재와의 복합화가 가능한 방법이면 좋다. In the fourth exemplary embodiment of the present invention, a non-woven fabric or a woven fabric may be combined with a nanofiber web containing phase change material particles to implement a high-strength insulating sheet. That is, in FIG. 5, the support 150 is composited on one surface or both surfaces of the nanofiber web 105 containing the phase change material particles. The nonwoven fabric or woven fabric may be formed as long as it can form a double structure with the nanofiber web, and the compounding method is not limited to special methods such as hot plate calendering, hot melt bonding, ultrasonic bonding, and laminating. What is necessary is just the method which can be compounded with a raw material.
특히, 사용 가능한 부직포는 상용화된 2층 또는 3층 구조의 폴리올레핀계 다공성 멤브레인, 예를 들어, PP/PE나 PP/PE/PP 멤브레인 또는 단층 구조의 PP 또는 PE 멤브레인이나, 코어로서 PP 섬유의 외주에 PE가 코팅된 이중 구조의 PP/PE 섬유로 이루어진 부직포, 또는 폴리에틸렌테레프탈레이트(PET) 섬유로 이루어진 PET 부직포를 사용하는 것도 가능하다.In particular, nonwoven fabrics that can be used are commercially available two- or three-layered polyolefin-based porous membranes, such as PP / PE or PP / PE / PP membranes or single-layered PP or PE membranes, but the outer periphery of PP fibers as a core. It is also possible to use a nonwoven fabric made of double coated PP / PE fibers coated with PE, or a PET nonwoven fabric made of polyethylene terephthalate (PET) fibers.
또한, 본 발명의 제5와 제6실시예에서는 섬유 내에 상변화 물질 입자가 함유된 부직포와, 상변화 물질 입자가 함유된 나노 섬유 웹 또는 상변화 물질 입자가 함유되어 있지 않은 나노 섬유 웹을 복합화하여 강도를 높이고, 다단 열 차단 및 열 흡수가 가능한 단열 시트를 구현할 수 있다. 부직포의 제조 방법은 이미 알려진 것이므로 구체적인 설명은 생략한다.In addition, in the fifth and sixth embodiments of the present invention, a nonwoven fabric containing phase change material particles in a fiber and a nanofiber web containing phase change material particles or a nanofiber web containing no phase change material particles are combined. By increasing the strength, it is possible to implement a heat insulating sheet capable of multi-stage heat blocking and heat absorption. Since the manufacturing method of the nonwoven fabric is already known, a detailed description thereof will be omitted.
여기서, 부직포는 방적, 제직, 편성에 의한 공정없이 섬유집합체를 화학적 작용이나 기계적 작용 또는 적당한 수분과 열처리에 의해 섬유 상호간을 결합한 포 형상을 갖는 것으로 정의되며, 단섬유 또는 필라멘트 섬유를 이용하여 섬유 집합체의 얇은 시트 상태의 웹을 제조하여 실 형성 공정인 방적 공정없이 섬유 자체의 결합방법으로 형태 안정성을 부여한 것이다.Here, the nonwoven fabric is defined as having a fabric shape in which the fiber aggregates are bonded to each other by chemical or mechanical action or appropriate moisture and heat treatment without a process of spinning, weaving, and knitting, and are composed of fiber aggregates using short fibers or filament fibers. The thin sheet of the web is manufactured to form stability by the method of bonding the fibers themselves without the spinning process which is a yarn forming process.
부직포는 섬유상으로 만들 수 있는 원료는 무엇이든 가능하며, 특히 부직포의 원료로 천연섬유, 합성섬유, 유리섬유, 탄소섬유 등이 가능하다. 수mm에서 수백mm 정도의 길이를 갖는 단섬유와 무한한 길이를 갖는 장섬유를 사용하여 부직포를 제조할 수 있다.The nonwoven fabric can be made of any fibrous material. In particular, the nonwoven fabric can be made of natural fibers, synthetic fibers, glass fibers, and carbon fibers. Nonwoven fabrics can be produced using short fibers with lengths of several millimeters to hundreds of millimeters and long fibers with infinite lengths.
제5실시예의 단열 시트는 먼저, 상변화 물질 입자가 함유된 섬유를 구비하고 소정의 다공성(porosity)을 가지는 부직포(200)의 일면(도 6a), 또는 양면(도 6b)에 상변화 물질 입자가 함유되어 있지 않은 나노 섬유 웹(101,102)을 형성한 구조로 구현될 수 있다. 그리고, 부직포(200)의 일면, 또는 양면(도 6c)에 상변화 물질 입자가 함유되어 있는 나노 섬유 웹(110,130)을 형성한 구조로 단열 시트를 구현할 수 있다. Insulating sheet of the fifth embodiment, first, the phase change material particles on one side (FIG. 6A), or both sides (FIG. 6B) of the nonwoven fabric 200 having fibers containing the phase change material particles and having a predetermined porosity. It can be implemented in a structure that forms the nanofiber web (101,102) that does not contain. In addition, the insulating sheet may be implemented with a structure in which nanofiber webs 110 and 130 containing phase change material particles are formed on one surface or both surfaces of the nonwoven fabric 200 (FIG. 6C).
여기서, 부직포(200)의 섬유 직경은 나노 섬유 웹(101,102)의 섬유 직경보다 크고, 부직포(200)에 나노 섬유를 직접 방사 또는 복합화하여 제5실시예의 단열 시트를 구현한다. Here, the fiber diameter of the nonwoven fabric 200 is larger than the fiber diameter of the nanofiber webs 101 and 102, and the nanofibers are directly spun or compounded on the nonwoven fabric 200 to implement the heat insulating sheet of the fifth embodiment.
또한, 도 7에 도시된 바와 같이, 도 6c의 단열 시트 구조의 나노 섬유 웹(110)에, 상변화 물질 입자가 함유된 섬유를 구비한 부직포(210)을 적층한 제6실시예의 단열 시트를 구현할 수 있다.In addition, as shown in Figure 7, the insulating sheet of the sixth embodiment in which the non-woven fabric 210 having a fiber containing the phase change material particles is laminated on the nanofiber web 110 of the insulating sheet structure of Figure 6c Can be implemented.
도 8을 참고하면, 전술된 실시예의 단열 시트(100)의 외주면의 일부 또는 전부에 무기공 필름(250)을 적층 또는 커버할 수 있다. 무기공 필름(250)은 단열 시트(100)로 전달되는 열을 가장 먼저 차단하는 역할을 수행한다.Referring to FIG. 8, the inorganic porous film 250 may be laminated or covered on part or all of the outer circumferential surface of the insulating sheet 100 of the above-described embodiment. The non-porous film 250 serves to block the heat transmitted to the heat insulation sheet 100 first.
무기공 필름(250)은 고분자 물질로 이루어진 무기공 고분자 필름으로 적용하는 것이 바람직하며, 무기공 고분자 필름은 고분자 물질과 용매가 혼합된 방사용액을 전기방사하여 나노 섬유로 이루어진 필름용 나노 섬유 웹을 형성하고, 고분자(예를 들어, PVDF)의 융점 보다 낮은 온도에서 필름용 나노 섬유 웹을 캘린더링하거나 또는 열처리를 실시함에 의해 무기공의 고분자 필름을 제조할 수 있다. 여기서, 열처리 공정에서 열처리 온도가 고분자의 융점보다 다소 낮은 온도에서 실시할 수 있는 것은 나노 섬유 웹에 용매가 잔존하고 있기 때문이며, 열처리에 의해 나노 섬유 웹이 완전히 녹는 것을 막으면서 무기공 필름을 형성하도록 하기 위함이다.The inorganic porous film 250 is preferably applied as an inorganic porous polymer film made of a polymer material, and the inorganic porous polymer film may be formed using a nanofiber web for film made of nanofibers by electrospinning a spinning solution in which a polymer material and a solvent are mixed. It is possible to produce a polymer film of inorganic pores by forming and calendering or heat-treating the nanofiber web for film at a temperature lower than the melting point of the polymer (eg PVDF). Here, in the heat treatment process, the heat treatment temperature may be performed at a temperature slightly lower than the melting point of the polymer because the solvent remains in the nanofiber web, and the inorganic fiber film is formed to prevent the nanofiber web from completely melting by the heat treatment. To do this.
이상 상술된 실시예들의 단열 시트는 가요성 있는 나노 섬유 웹을 구비하고 있으므로, 우수한 굽힘성으로 인하여 판상형으로 절첩한 구조가 가능하다.Since the heat insulating sheet of the above-described embodiments is provided with a flexible nanofiber web, a folded structure in a plate shape is possible due to excellent bendability.
본 발명에서는 상술된 제1 내지 제7실시예에 따른 단열 시트의 일면, 양면 및 전체에 하이브리드한 적어도 하나의 보강 시트를 더 포함할 수 있다. 여기서, 하이브리드하는 것은 접착, 점착, 적층, 접촉, 고정 등의 결합 관계를 의미하는 것이다. The present invention may further include at least one reinforcing sheet hybridized to one surface, both surfaces, and the entirety of the heat insulating sheets according to the first to seventh embodiments described above. Here, hybridization means a bonding relationship of adhesion, adhesion, lamination, contact, fixing, and the like.
이 보강 시트는 단열 부재 또는 방열 부재일 수 있고, 상기 단열 시트와 상기 보강 시트 사이에 개재된 접착제로 상기 단열 시트와 상기 보강 시트가 접착되어 있을 수 있다.The reinforcing sheet may be a heat insulating member or a heat radiating member, and the heat insulating sheet and the reinforcing sheet may be bonded to each other by an adhesive interposed between the heat insulating sheet and the reinforcing sheet.
이때, 상기 접착제는 아크릴계, 에폭시계, 아라미드(aramid)계, 우레탄(urethane)계, 폴리아미드(polyamide)계, 폴리에틸렌(polyethylene)계, E.V.A.계, 폴리에스테르(polyester)계, 및 P.V.C.계 중 어느 하나의 접착제, 열접착이 가능한 섬유가 축적되어 형성된 다수의 기공을 갖는 핫 멜트 웹 및 핫 멜트 파우더 중 하나일 수 있다.In this case, the adhesive may be any of acrylic, epoxy, aramid, urethane, polyamide, polyethylene, EVA, polyester, and PVC. One adhesive, hot melt web and hot melt powder having a plurality of pores formed by accumulation of heat-adhesive fibers may be one.
그리고, 상기 접착제는 종횡비 1:100의 열확산용 전도성 필러 및 구 형상의 열전달용 전도성 필러를 포함할 수 있다.In addition, the adhesive may include a conductive filler for thermal diffusion having an aspect ratio of 1: 100 and a conductive filler for heat transfer in a spherical shape.
도 9는 본 발명의 일실시예에 따른 진공 단열 패널(Vacuum Insulation Panel, VIP)를 도시한 개념적인 단면도이다.9 is a conceptual cross-sectional view showing a vacuum insulation panel (VIP) according to an embodiment of the present invention.
전술된 단열 시트는 단열 패널 내부에 내장되어 단열 성능을 발휘할 수 있다. 이하 설명에서는 단열 패널의 일종으로 진공 단열 패널을 주로 예시하였으나, 이에 한정되지 않고, 내부 공간을 진공 또는 감압하지 않은 단열 패널 구조도 본 발명에 포함된다. The above-described insulation sheet may be embedded inside the insulation panel to exhibit insulation performance. In the following description, a vacuum insulation panel is mainly exemplified as a kind of insulation panel, but is not limited thereto, and an insulation panel structure in which an internal space is not vacuumed or reduced in pressure is also included in the present invention.
도 9를 참고하면, 본 발명의 일실시예에 따른 진공 단열 패널(300)은 가스 배리어성을 가지고 내부에 바람직하게는 소정의 감압 공간을 형성하는 외피재(310) 및 외피재(310) 내부에 배치되어 외피재(310)를 지지하는 단열 시트(100)를 포함한다. Referring to FIG. 9, the vacuum insulation panel 300 according to an embodiment of the present invention has a gas barrier property, and preferably includes an outer shell material 310 and an outer shell material 310, which form a predetermined decompression space therein. It is disposed to include an insulating sheet 100 for supporting the outer shell material 310.
진공 단열 패널(300)에 코어로 적용된 단열 시트(100)는, 다공성 나노 섬유 웹을 포함하고 있으므로, 공기를 트랩핑할 수 있는 다수의 미세 기공을 구비하여, 미세 기공에 트랩된 공기가 스스로 빠져나가기 어렵기 때문에 외피재(310) 내부가 진공 또는 감압공간이 아닌 경우에도 우수한 단열 성능을 발휘한다. 따라서, 건축용 단열재로 적용하면 이점이 많다.Since the insulation sheet 100 applied as the core to the vacuum insulation panel 300 includes a porous nanofiber web, the insulation sheet 100 includes a plurality of micropores that can trap air, and the air trapped in the micropores falls out by itself. Since it is difficult to exit, the outer shell material 310 exhibits excellent thermal insulation performance even when the inside of the outer shell material 310 is not a vacuum or a reduced pressure space. Therefore, there are many advantages when applied as a building insulation.
여기서, 감압 공간은 내부의 압력이 대기압보다 낮아지게 감압된 공간을 의미한다.Here, the decompression space means a space where the pressure inside the pressure is reduced to be lower than the atmospheric pressure.
또한, 본 발명의 일실시예에 따른 진공 단열 패널(300)에서 외피재(310) 내부가 진공 또는 감압 공간으로 이루어지는 경우, 외피재(310) 또는 단열 시트(100)의 내부에는 수분이나 가스 등을 흡착하는 게터재(미도시)를 포함하여 구성될 수 있다. 게터재는 예를 들어, 분말형태로 이루어진 흡습제와 가스흡착제를 포함하며, PP 또는 PE 부직포로 패킹이 이루어질 수 있다.In addition, in the vacuum insulation panel 300 according to an embodiment of the present invention, when the inside of the envelope 310 is made of a vacuum or reduced pressure space, the inside of the envelope 310 or the insulation sheet 100 may be moisture or gas. It may be configured to include a getter material (not shown) for adsorbing. The getter material may include, for example, an absorbent and a gas absorbent in powder form, and may be made of PP or PE nonwoven fabric.
또한, 게터재는 실리카겔, 제올라이트, 활성탄, 지르코늄, 바륨 화합물, 리튬 화합물, 마그네슘 화합물, 칼슘 화합물 및 생석회로 이루어진 군으로부터 선택된 하나 이상을 포함하는 것이 바람직하다.In addition, the getter material preferably includes at least one selected from the group consisting of silica gel, zeolite, activated carbon, zirconium, barium compound, lithium compound, magnesium compound, calcium compound and quicklime.
본 발명에서 사용할 수 있는 게터재의 종류는 특별히 제한되지 않으며, 진공 단열재의 제조 분야에서 통상적으로 사용되는 소재를 사용할 수 있다. The type of getter material that can be used in the present invention is not particularly limited, and materials commonly used in the field of manufacturing vacuum insulators can be used.
그리고, 외피재(310)는 코어인 단열 시트(100)를 피복하고, 그 내부를 감압 또는 진공 상태로 유지하는 역할을 한다. 외피재(310)는 미리 봉투 형태로 이루어지며, 단열 시트(100)를 삽입한 후, 진공분위기에서 입구 부분을 열압착하여 실링이 이루어진다. 이에 따라 외피재(310)는 4각 형상의 상부 외피재(310a)와 하부 외피재(310b)의 3변의 외곽 부분을 먼저 실링하여 봉투 형태로 제작된 후 사용된다.In addition, the outer cover material 310 serves to cover the heat insulating sheet 100 as a core and to maintain the inside of the core under reduced pressure or vacuum. The outer shell material 310 is formed in an envelope in advance, and after the insulating sheet 100 is inserted, sealing is performed by thermo-compressing the inlet portion in a vacuum atmosphere. Accordingly, the envelope 310 is used after sealing the outer portions of three sides of the upper envelope 310a and the lower envelope 310b having a quadrangular shape first to form an envelope.
본 발명에서 사용할 수 있는 외피재(310)의 종류는 특별히 제한되지 않으며, 진공 단열재의 제조 분야에서 통상적으로 사용되는 소재를 사용할 수 있다. 본 발명에서 사용하는 외피재(310)는, 예를 들어, 단열 시트(100)를 둘러싸고 있는 실링층(sealing layer); 실링층을 둘러싸고 있는 베리어층(barrier layer); 및 베리어층을 둘러싸는 부직포층 또는 보호층을 포함할 수 있다.The kind of the outer cover material 310 that can be used in the present invention is not particularly limited, and a material commonly used in the field of manufacturing a vacuum insulator may be used. The envelope material 310 used in the present invention may include, for example, a sealing layer surrounding the heat insulation sheet 100; A barrier layer surrounding the sealing layer; And a nonwoven fabric layer or a protective layer surrounding the barrier layer.
전술된 실링층은 열압착방식으로 실링(압착)이 이루어짐에 따라 내장된 단열 시트(100)를 피복하고, 코어에 밀착되어 패널 형태를 유지할 수 있게 한다. 본 발명에서 사용할 수 있는 실링층의 소재는 특별히 제한되지 않고 열압착에 의해 접착이 이루어질 수 있는 필름으로서, 예를 들면, 열압착층은 선형 저밀도 폴리에틸렌(LLDPE), 저밀도 폴리에틸렌(LDPE), 초저밀도폴리에틸렌(VLDPE), 고밀도 폴리에틸렌(HDPE)과 같은 폴리올레핀 계열의 수지, 상기 수지 이외에 폴리프로필렌(PP), 폴리아크릴로니트릴 필름, 폴리에틸렌테레프탈레이트 필름, 또는 에틸렌-비닐알코올 공중합체 필름 등과 같은 열압착이 가능한 수지, 또는 이들의 혼합물로 이루어질 수 있다.As described above, the sealing layer coats the built-in insulation sheet 100 as the sealing (compression) is made by thermocompression bonding, and adheres to the core to maintain the panel form. The material of the sealing layer that can be used in the present invention is not particularly limited and the film can be bonded by thermocompression bonding. For example, the thermocompression layer is a linear low density polyethylene (LLDPE), low density polyethylene (LDPE), ultra low density Polyolefin resins such as polyethylene (VLDPE) and high density polyethylene (HDPE), and thermocompression bonding such as polypropylene (PP), polyacrylonitrile film, polyethylene terephthalate film, or ethylene-vinyl alcohol copolymer film, in addition to the above resins Possible resins, or mixtures thereof.
그리고, 베리어층은 실링층을 둘러싸고, 내부의 진공도를 유지하며, 외부의 가스 및 수증기를 차단하는 역할을 할 수 있다. 본 발명에서 베리어층의 소재는 특별히 제한되지 않으며, 금속박 또는 수지 필름 상에 금속을 증착을 한 적층 필름(증착막 필름) 등을 사용할 수 있다. 금속으로는 알루미늄, 동, 스테인레스 또는 철 등을 사용할 수 있으나, 이에 제한되는 것은 아니다.The barrier layer surrounds the sealing layer, maintains the degree of vacuum inside, and serves to block external gas and water vapor. In the present invention, the material of the barrier layer is not particularly limited, and a laminated film (deposited film film) or the like on which metal is deposited on a metal foil or a resin film may be used. As the metal, aluminum, copper, stainless steel, or iron may be used, but is not limited thereto.
또한, 상기에서 증착막은 증착법(deposition method) 또는 스퍼터링법(sputtering method) 등에 의하여 알루미늄, 스테인리스, 코발트 또는 니켈 등의 금속, 실리카, 알루미나 또는 탄소 등을 증착시켜 형성할 수 있으며, 기재가 되는 수지 필름으로는 당 업계에서 사용되는 일반적인 수지 필름을 사용할 수 있다. 본 발명에서는 상기 베리어층으로 알루미늄 증착 필름 또는 알루미늄 박을 사용하는 것이 바람직하다.In addition, the deposited film may be formed by depositing a metal such as aluminum, stainless steel, cobalt or nickel, silica, alumina, or carbon by a deposition method or a sputtering method, and the resin film serving as a substrate. As the general resin film used in the art can be used. In the present invention, it is preferable to use an aluminum deposition film or aluminum foil as the barrier layer.
아울러, 부직포층은 베리어층을 둘러싸며, 진공 단열재를 외부 충격으로부터 1차적으로 보호하는 보호층 역할을 한다. 또한, 상기 부직포층은 베리어층의 높은 열전도율에 의해 단열재의 열 성능이 저하되는 문제를 해결할 수 있다. 상기 부직포층의 재료는 PP, PTFE를 사용할 수 있다. In addition, the nonwoven layer surrounds the barrier layer and serves as a protective layer that primarily protects the vacuum insulation from external shock. In addition, the nonwoven fabric layer can solve the problem that the thermal performance of the heat insulating material is lowered by the high thermal conductivity of the barrier layer. The material of the nonwoven fabric layer may be PP, PTFE.
또한, 부직포층 대신에 베리어층을 보호하는 1층 또는 2층으로 이루어진 보호층을 사용할 수 있다. 이러한 보호층은 폴리아미드, 폴리프로필렌, 폴리에틸렌테레프탈레이트, 폴리아크릴로니트릴, 폴리비닐알코올, 나일론, PET, K-PET 및 에틸렌비닐알코올로 이루어지는 군으로부터 선택되는 하나 이상의 수지로 이루어질 수 있다.In addition, instead of the nonwoven fabric layer, a protective layer consisting of one or two layers may be used to protect the barrier layer. This protective layer may be made of one or more resins selected from the group consisting of polyamide, polypropylene, polyethylene terephthalate, polyacrylonitrile, polyvinyl alcohol, nylon, PET, K-PET and ethylene vinyl alcohol.
도 10은 본 발명의 일실시예에 따른 단열 시트에 적용된 나노 섬유 웹을 형성하는 전기방사장치를 나타내는 개략 단면도이다.10 is a schematic cross-sectional view showing the electrospinning to form a nanofiber web applied to the heat insulating sheet according to an embodiment of the present invention.
도 10을 참고하면, 전기방사장치는 열전도율이 낮은 고분자 물질, 상변화 물질 입자와 용매가 혼합되어 방사가 이루어질 때까지 상분리를 방지하도록 공압을 이용한 믹싱 모터(2a)를 구동원으로 사용하는 교반기(2)를 내장한 믹싱 탱크(Mixing Tank)(1)와, 고전압 발생기가 연결된 다수의 방사노즐(4)을 포함한다. 믹싱 탱크(1)로부터 도시되지 않은 정량 펌프와 이송관(3)을 통하여 연결된 다수의 방사노즐(4)로 토출되는 고분자 용액은 고전압 발생기에 의하여 하전된 방사노즐(4)을 통과하면서 나노 섬유(5)로 방출되고, 일정 속도로 이동하는 컨베이어 형태의 접지된 콜렉터(6) 위에 나노 섬유(5)가 축적되어 다공성 나노 섬유 웹(7)을 형성한다. Referring to FIG. 10, the electrospinning apparatus includes a stirrer (2) using a mixing motor (2a) using pneumatic pressure as a driving source to prevent phase separation until polymer particles having low thermal conductivity, phase change material particles, and a solvent are mixed and radiated. It includes a mixing tank (Mixing Tank) (1) and a plurality of spinning nozzle (4) connected to a high voltage generator. The polymer solution discharged from the mixing tank 1 to a plurality of spinning nozzles 4 connected through a metering pump (not shown) and a transfer pipe 3 is passed through the spinning nozzles 4 charged by a high voltage generator, 5) nanofibers 5 accumulate on a grounded collector 6 in the form of a conveyor which is discharged at a constant speed and moves at a constant speed to form a porous nanofiber web 7.
즉, 본 발명에서는 열전도율이 낮은 고분자 물질, 상변화 물질 입자와 용매를 혼합하여 방사용액을 제조한 후, 이 방사용액을 전기 방사하여 미세 기공 구조를 갖는 다공성 나노 섬유 웹으로 이루어지고, 상변화 물질 입자가 나노 섬유에 분산되어 있는 나노 섬유 웹을 형성하는 것이다.That is, in the present invention, the spinning solution is prepared by mixing a polymer material having low thermal conductivity, particles of a phase change material, and a solvent, and then electrospinning the spinning solution to form a porous nanofiber web having a fine pore structure. The particles form a nanofiber web in which the nanofibers are dispersed.
일반적으로 대량생산을 위해 멀티-홀(multi-hole) 방사팩(예를 들어, 245mm/61홀)을 적용하면 멀티홀간의 상호 간섭이 발생하여 섬유가 날려 다니면서 차단이 이루어지지 않게 된다. 그 결과, 멀티-홀(multi-hole) 방사팩을 사용하여 얻어지는 분리막은 너무 벌키(bulky)해짐에 따라 분리막 형성이 어려워지며, 방사의 트러블(trouble) 원인으로 작용한다. In general, when a multi-hole spin pack (for example, 245 mm / 61 holes) is applied for mass production, mutual interference occurs between the multi-holes, so that the fibers are blown off and blocking is not achieved. As a result, the separator obtained by using a multi-hole spinning pack becomes too bulky, making it difficult to form the separator, and acts as a trouble source of radiation.
이를 고려하여 본 발명에서는 도 10에 도시된 바와 같이, 멀티-홀(multi-hole) 방사팩을 사용하여 각 방사노즐(4)마다 에어(4a) 분사가 이루어지는 에어 전기방사 방법으로 다공성 나노 섬유 웹(7)을 제작한다. In consideration of this, in the present invention, as shown in FIG. 10, the porous nanofiber web is an air electrospinning method in which an air 4a is injected to each spinning nozzle 4 using a multi-hole spinning pack. (7) is produced.
즉, 본 발명에서는 에어 전기방사에 의해 전기방사가 이루어질 때 방사노즐의 외주로부터 에어(Air) 분사가 이루어져서 휘발성이 빠른 고분자로 이루어진 섬유를 에어가 차단하고 축적시키는 데 지배적인 역할을 해 줌으로써 보다 강성이 높은 나노 섬유 웹을 생산할 수 있으며, 섬유(fiber)가 날아다니면서 발생할 수 있는 방사 트러블(trouble)을 최소화 할 수 있게 된다.That is, in the present invention, when the electrospinning is made by air electrospinning, the air is sprayed from the outer circumference of the spinning nozzle to play a dominant role in blocking and accumulating the air made of a polymer having high volatile polymer. This high nanofiber web can be produced, minimizing the radiation problems that can occur as the fibers fly around.
본 발명에서는 열전도율이 낮은 고분자 물질과 내열성 고분자 물질을 혼합하여 방사하는 경우 2성분계 용매에 첨가하여 혼합방사용액을 제조하는 것이 바람직하다.In the present invention, when a high thermal conductivity polymer material and a heat resistant polymer material are mixed and spun, it is preferable to prepare a mixed spinning solution by adding to a two-component solvent.
상기 얻어진 다공성 나노 섬유 웹(7)은 그 후 캘린더 장치(9)에서 고분자의 융점 이하의 온도에서 캘린더링하면 코어재로 사용되는 박막의 나노 섬유 웹(10)이 얻어진다.The obtained porous nanofiber web 7 is then calendered at a temperature below the melting point of the polymer in the calender device 9 to obtain a thin nanofiber web 10 used as a core material.
본 발명에서는 필요에 따라 상기와 같이 얻어진 다공성 나노 섬유 웹(7)을 프리히터(8)에 의한 선 건조구간(Pre-air Dry Zone)을 통과하면서 나노 섬유 웹(7)의 표면에 잔존해 있는 용매와 수분의 양을 조절하는 공정을 거친 후 캘린더링 공정을 거치는 것도 가능하다. In the present invention, the porous nanofiber web 7 obtained as described above remains on the surface of the nanofiber web 7 while passing through a pre-air dry zone by the preheater 8. It is also possible to go through a calendaring process after adjusting the amount of solvent and water.
프리히터(8)에 의한 선 건조구간(Pre-Air Dry Zone)은 20~40℃의 에어를 팬(fan)을 이용하여 웹에 인가하여 나노 섬유 웹(7)의 표면에 잔존해 있는 용매와 수분의 양을 조절함에 의해 나노 섬유 웹(7)이 벌키(bulky)해지는 것을 조절하여 분리막의 강도를 증가시켜주는 역할과 동시에 다공성(Porosity)을 조절할 수 있게 된다. Pre-Air Dry Zone by Preheater (8) is applied to the web by using a fan of 20 ~ 40 ℃ air and the solvent remaining on the surface of the nanofiber web (7) By controlling the amount of water to control the bulk of the nanofiber web 7 (bulky) to increase the strength of the membrane and at the same time it is possible to control the porosity (Porosity).
이 경우, 용매의 휘발이 지나치게 된 상태에서 캘린더링이 이루어지면 다공성은 증가하나 나노 섬유 웹의 강도가 약해지고, 반대로 용매의 휘발이 적게 되면 나노 섬유 웹이 녹는 현상이 발생하게 된다.In this case, if calendering is performed in a state in which the volatilization of the solvent is excessive, the porosity increases but the strength of the nanofiber web is weakened. On the contrary, when the volatilization of the solvent is reduced, the nanofiber web melts.
상기한 도 10의 전기방사장치를 사용하여 다공성 나노 섬유 웹(10)을 형성하는 방법은 먼저 열전도율이 낮은 고분자 물질 단독, 또는 열전도율이 낮은 고분자 물질과 내열성 고분자 물질의 혼합물을 용매에 용해시켜서 방사용액을 준비한다. 이 경우 필요에 따라 내열성을 보강하기 위해 소정량의 무기물 입자를 방사용액에 첨가할 수 있다. 또한, 바람직하게는 열전도율이 낮으면서 내열성이 우수한 고분자 물질, 예를 들어 폴리우레탄(PU)을 사용하여 나노 섬유 웹을 형성하는 경우 단열 특성과 내열 특성을 동시에 갖게 된다.The method of forming the porous nanofiber web 10 by using the electrospinning device of FIG. 10 is a spinning solution by first dissolving a polymer material having a low thermal conductivity alone or a mixture of a polymer material having a low thermal conductivity and a heat resistant polymer material in a solvent. Prepare. In this case, in order to reinforce heat resistance, a predetermined amount of inorganic particles may be added to the spinning solution. In addition, when the nanofiber web is formed using a polymer material having low thermal conductivity and excellent heat resistance, for example, polyurethane (PU), it has both thermal insulation and heat resistance.
그 후, 방사용액을 전기방사장치를 사용하여 콜렉터(6)에 직접 방사하거나 또는 부직포와 같은 다공성 기재에 방사하여 단층 구조의 다공성 나노 섬유 웹(10) 또는 다공성 나노 섬유 웹과 다공성 기재로 이루어진 다층 구조의 나노 섬유 웹 시트를 제작한다.Thereafter, the spinning solution is directly spun onto the collector 6 using an electrospinning device or spun onto a porous substrate such as a nonwoven fabric so as to form a porous nanofiber web 10 having a single layer structure or a multilayer composed of a porous nanofiber web and a porous substrate. Fabricate a nanofiber web sheet of structure.
이어서, 얻어진 나노 섬유 웹 시트가 광폭인 경우 원하는 폭으로 제단한 후, 이를 원하는 두께를 갖도록 판형상으로 다수회 절첩하거나 권선기에 의해 판형상으로 권선하거나, 원하는 형상으로 다수의 코어용 시트를 절단한 후 이를 다수층 적층한다. 또한, 다수층으로 적층한 후, 이를 원하는 형상으로 절단할 수 있다.Subsequently, in the case where the obtained nanofiber web sheet is wide, it is cut into a desired width, and then it is folded into a plate shape several times or wound into a plate shape by a winding machine to have a desired thickness, or a plurality of core sheets are cut into a desired shape. It is then laminated in multiple layers. In addition, after laminating in multiple layers, it can be cut into a desired shape.
필요에 따라 적층된 다수의 나노 섬유 웹 시트를 열간 또는 냉간 압착하여 적층 밀도를 높이는 것이 바람직하다.It is desirable to increase the lamination density by hot or cold pressing a plurality of laminated nanofiber web sheets as needed.
본 발명에서는 대면적의 나노 섬유 웹 시트를 제작한 후, 건축용 또는 냉장고용 단열재와 같이 사용되는 용도에 따라 소정의 형상으로 제단하여 사용하는 것도 가능하다. In the present invention, after producing a large-area nanofiber web sheet, it is also possible to cut and use in a predetermined shape depending on the purpose of use, such as heat insulating material for construction or refrigerator.
한편, 본 발명에서는 나노 섬유 웹을 형성할 때 종이, 방사용액에 포함된 용매에 의해 용해가 이루어지지 않는 고분자 재료로 이루어진 부직포, 폴리올레핀계 필름 중 하나로 이루어지는 트랜스퍼 시트 위에 방사용액을 방사하여 다공성 나노 섬유 웹을 형성한 후, 나노 섬유 웹을 트랜스퍼 시트와 분리하면서 부직포와 합지하는 방식으로 나노 섬유 웹 시트를 제작하고, 얻어진 시트를 다단 적층할 수 있다. 상기한 트랜스퍼 시트를 사용하여 나노 섬유 웹을 생산함에 따라 양산공정에서 생산성 향상을 도모할 수 있다.Meanwhile, in the present invention, when forming a nanofiber web, porous nanofibers by spinning a spinning solution on a transfer sheet made of one of a nonwoven fabric and a polyolefin-based film made of paper, a polymer material which is not dissolved by a solvent contained in a spinning solution. After the web is formed, the nanofiber web sheet can be produced by laminating with the nonwoven fabric while separating the nanofiber web from the transfer sheet, and the obtained sheet can be laminated in multiple stages. By producing a nanofiber web using the transfer sheet described above it is possible to improve the productivity in the mass production process.
이상에서는 본 발명을 특정의 바람직한 실시예를 예를 들어 도시하고 설명하였으나, 본 발명은 상기한 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위 내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 다양한 변경과 수정이 가능할 것이다.In the above, the present invention has been illustrated and described with reference to specific preferred embodiments, but the present invention is not limited to the above-described embodiments, and the present invention is not limited to the spirit of the present invention. Various changes and modifications will be possible by those who have the same.
본 발명은 나노 섬유 웹에서 열을 차단하고, 나노 섬유 웹에 포함된 상변화 물질 입자에서 열을 흡수하여, 열 차단과 열 흡수를 동시에 수행하게 되어 단위 면적당 단열 효율을 극대화시킬 수 있는 단열 시트를 제공한다.The present invention blocks the heat in the nanofiber web, absorbs heat from the particles of the phase change material included in the nanofiber web, and at the same time perform heat blocking and heat absorption to provide an insulating sheet that can maximize the thermal insulation efficiency per unit area to provide.

Claims (19)

  1. 나노 섬유에 의해 축적되어 미세 기공 구조를 갖는 다공성 나노 섬유 웹; 및Porous nanofiber webs accumulated by the nanofibers and having a microporous structure; And
    상기 나노 섬유 내부에 분산되어 있는 상변화 물질(PCM, Phase Change Material) 입자를 포함하는 단열 시트.Thermal insulation sheet comprising a phase change material (PCM) particles dispersed in the nanofibers.
  2. 제1항에 있어서, 상기 나노 섬유 웹의 일면 또는 양면에 적층된 나노 섬유 웹을 더 포함하는 단열 시트.The heat insulating sheet of claim 1, further comprising nanofiber webs laminated on one or both surfaces of the nanofiber webs.
  3. 제1항에 있어서, 상기 나노 섬유 웹과 복합화되어 있는 부직포 또는 직포를 더 포함하는 단열 시트.The heat insulating sheet according to claim 1, further comprising a nonwoven fabric or a woven fabric composited with the nanofiber web.
  4. 제1항에 있어서, 상기 나노 섬유 웹에 적층되어 있으며, 상변화 물질 입자가 함유된 섬유를 구비하고 소정의 다공성(porosity)을 가지는 부직포를 더 포함하는 단열 시트.The heat insulating sheet according to claim 1, further comprising a nonwoven fabric laminated on the nanofiber web and having fibers containing phase change material particles and having a predetermined porosity.
  5. 제4항에 있어서, 상기 섬유는 천연섬유, 합성섬유, 유리섬유, 탄소섬유 중 하나인 단열 시트.The heat insulating sheet according to claim 4, wherein the fiber is one of natural fiber, synthetic fiber, glass fiber, and carbon fiber.
  6. 제4항에 있어서, 상기 부직포의 일면에 상기 나노 섬유 웹이 적층되어 있고, The method of claim 4, wherein the nanofiber web is laminated on one surface of the nonwoven fabric,
    상기 부직포의 타면에 적층되고, 미세 기공 구조를 갖으며, 상변화 물질 입자가 나노 섬유 내부에 분산되어 있는 다공성 나노 섬유 웹을 더 포함하는 단열 시트.The insulating sheet further comprises a porous nanofiber web laminated on the other surface of the nonwoven fabric, having a microporous structure, and in which phase change material particles are dispersed inside the nanofiber.
  7. 제1항에 있어서, 상기 나노 섬유에 무기물 입자를 더 포함하는 단열 시트.The heat insulating sheet of claim 1, further comprising inorganic particles in the nanofibers.
  8. 제7항에 있어서, 상기 무기물 입자는 SiO2, SiON, Si3N4, HfO2, ZrO2, Al2O3, TiO2, Ta2O5, MgO, Y2O3, BaTiO3, ZrSiO4, HfO2로 이루어진 군으로부터 선택된 1종 이상의 입자, 또는 유리 섬유, 흑연, 암면, 클레이(clay)로 이루어진 군으로부터 선택된 1종 이상의 입자인 단열 시트.The method of claim 7, wherein the inorganic particles are SiO 2 , SiON, Si 3 N 4 , HfO 2 , ZrO 2 , Al 2 O 3 , TiO 2 , Ta 2 O 5 , MgO, Y 2 O 3 , BaTiO 3 , ZrSiO 4 , at least one particle selected from the group consisting of HfO 2 or at least one particle selected from the group consisting of glass fibers, graphite, rock wool, and clay.
  9. 제1항에 있어서, 상기 나노 섬유는 열전도율이 낮은 폴리머로 이루어진 단열 시트.The heat insulating sheet of claim 1, wherein the nanofibers are made of a polymer having low thermal conductivity.
  10. 제1항에 있어서, 상기 나노 섬유의 직경은 1um 이하인 단열 시트.The heat insulation sheet of Claim 1 whose diameter of the said nanofiber is 1 micrometer or less.
  11. 제1항에 있어서, 상기 단열 시트의 외주면의 일부 또는 전부에 적층된 무기공 필름 또는 보강 시트를 더 포함하는 단열 시트.The insulating sheet according to claim 1, further comprising an inorganic porous film or a reinforcing sheet laminated on part or all of an outer circumferential surface of the insulating sheet.
  12. 제11항에 있어서, 상기 보강 시트는 단열 부재 또는 방열 부재인 단열 시트.The heat insulating sheet according to claim 11, wherein the reinforcing sheet is a heat insulating member or a heat radiating member.
  13. 열전도율이 낮은 고분자 물질, 상변화 물질 입자와 용매를 혼합하여 방사용액을 제조하는 단계; 및Preparing a spinning solution by mixing a polymer material having low thermal conductivity, particles of a phase change material, and a solvent; And
    상기 방사용액을 전기 방사하여, 미세 기공 구조를 갖고 상변화 물질 입자가 나노 섬유 내부에 분산되어 있는 다공성 나노 섬유 웹을 형성하는 단계;를 포함하는 단열 시트의 제조 방법.Electrospinning the spinning solution to form a porous nanofiber web having a fine pore structure and having phase change material particles dispersed inside the nanofiber;
  14. 내부 공간이 구비된 외피재; 및An outer shell material having an inner space; And
    상기 외피재 내부에 배치되어 상기 외피재를 지지하는 단열 시트를 포함하며,A heat insulation sheet disposed inside the shell material to support the shell material,
    상기 단열 시트는,The heat insulation sheet,
    미세 기공 구조를 갖고, 상변화 물질 입자가 나노 섬유 내부에 분산되어 있는 다공성 나노 섬유 웹인 단열 패널.An insulation panel having a microporous structure and a porous nanofiber web in which phase change material particles are dispersed inside a nanofiber.
  15. 제14항에 있어서, 상변화 물질 입자가 함유된 섬유를 구비하고, 소정의 다공성(porosity)을 가지고, 상기 나노 섬유 웹에 적층되어 있는 부직포를 더 포함하는 단열 패널.15. The thermal insulation panel according to claim 14, further comprising a nonwoven fabric having fibers containing phase change material particles, having a predetermined porosity, and laminated to the nanofiber web.
  16. 제14항에 있어서, 상기 나노 섬유는 열전도율이 0.1W/mK 미만인 고분자로 이루어진 단열 패널.The heat insulation panel according to claim 14, wherein the nanofibers are made of a polymer having a thermal conductivity of less than 0.1 W / mK.
  17. 제14항에 있어서, 상기 단열 시트의 외주면의 일부 또는 전부에 적층된 무기공 필름 또는 보강 시트를 더 포함하는 단열 패널.The heat insulation panel according to claim 14, further comprising an inorganic porous film or a reinforcement sheet laminated on part or all of an outer circumferential surface of the heat insulation sheet.
  18. 제14항에 있어서, 상기 외피재는 금속 물질로 구성하는 단열 패널.15. The thermal insulation panel according to claim 14, wherein the envelope is made of a metallic material.
  19. 제14항에 있어서, 상기 외피재의 내부 공간은 진공 또는 감압되어 있는 단열 패널.The heat insulation panel according to claim 14, wherein the inner space of the envelope material is vacuum or depressurized.
PCT/KR2014/007638 2013-08-19 2014-08-18 Insulation sheet, manufacturing method therefor, and insulation panel using same WO2015026116A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2013-0097857 2013-08-19
KR20130097857 2013-08-19
KR1020140106940A KR101601170B1 (en) 2013-08-19 2014-08-18 Heat Insulation Sheet, Method for Manufacturing the Same and Heat Insulating Panel using the same
KR10-2014-0106940 2014-08-18

Publications (1)

Publication Number Publication Date
WO2015026116A1 true WO2015026116A1 (en) 2015-02-26

Family

ID=52483848

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/007638 WO2015026116A1 (en) 2013-08-19 2014-08-18 Insulation sheet, manufacturing method therefor, and insulation panel using same

Country Status (1)

Country Link
WO (1) WO2015026116A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101730952B1 (en) * 2015-11-10 2017-04-27 계명대학교 산학협력단 Sheet for insulation and method of fabricating the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080096032A (en) * 2007-04-26 2008-10-30 주식회사 티앤엘 Conjugated fiber capable of controlling temperature and process thereof
KR20090084208A (en) * 2008-01-31 2009-08-05 연세대학교 산학협력단 A method for preparing polymer fibers comprising a phase change material and use thereof
KR20110097252A (en) * 2010-02-25 2011-08-31 이철태 Heat insulation articles without segregation of insulating nano-powder and its manufacturing method
KR20110139133A (en) * 2010-06-21 2011-12-28 코오롱인더스트리 주식회사 Porous nanoweb and method for manufacturing the same
KR20120094807A (en) * 2011-02-17 2012-08-27 현대자동차주식회사 Manufacturing method of nanofiber for auto-controlling temperature and humidity

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080096032A (en) * 2007-04-26 2008-10-30 주식회사 티앤엘 Conjugated fiber capable of controlling temperature and process thereof
KR20090084208A (en) * 2008-01-31 2009-08-05 연세대학교 산학협력단 A method for preparing polymer fibers comprising a phase change material and use thereof
KR20110097252A (en) * 2010-02-25 2011-08-31 이철태 Heat insulation articles without segregation of insulating nano-powder and its manufacturing method
KR20110139133A (en) * 2010-06-21 2011-12-28 코오롱인더스트리 주식회사 Porous nanoweb and method for manufacturing the same
KR20120094807A (en) * 2011-02-17 2012-08-27 현대자동차주식회사 Manufacturing method of nanofiber for auto-controlling temperature and humidity

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101730952B1 (en) * 2015-11-10 2017-04-27 계명대학교 산학협력단 Sheet for insulation and method of fabricating the same

Similar Documents

Publication Publication Date Title
US10088092B2 (en) Thermal insulation sheet, hybrid thermal insulation sheet, and thermal insulation panel
WO2014137110A1 (en) Core for insulation material, manufacturing method therefor, and slim insulating material using same
KR101601170B1 (en) Heat Insulation Sheet, Method for Manufacturing the Same and Heat Insulating Panel using the same
Huang Separator technologies for lithium-ion batteries
WO2012023705A2 (en) Composite core material for vacuum insulation panel, preparation method thereof, and vacuum insulation panel using same
CN104766938A (en) Composite lithium ion battery diaphragm and preparation method thereof
WO2011083948A2 (en) Vacuum insulation panel and method for manufacturing same
KR102109723B1 (en) Hybrid Heat Insulation Sheet and Manufacturing Method thereof
KR101601145B1 (en) Separator comprising porous non-woven fabric base film consisting of core-sheath composite fibers, and electrochemical device comprising same
WO2014010983A1 (en) Vacuum insulation panel including annealed binderless glass fiber
KR101619225B1 (en) Heat insulation sheet, method for manufacturing the same and heat insulating panel
KR102109722B1 (en) Hybrid Heat Insulation Sheet and Manufacturing Method thereof
WO2015026116A1 (en) Insulation sheet, manufacturing method therefor, and insulation panel using same
KR101576158B1 (en) Heat insulation sheet, hybrid heat insulation sheet, method for manufacturing the same and heat insulating panel
WO2015002505A1 (en) Thermal insulation sheet, hybrid thermal insulation sheet, and thermal insulation panel
WO2011152610A1 (en) Vacuum insulation panel, and preparation method thereof
KR20160054437A (en) Hybrid Heat Insulation Sheet, Method for Manufacturing the Same and Heat Insulating Panel
WO2015053493A1 (en) Heat-insulating and heat-radiating sheet, mobile terminal and display using same
KR102043942B1 (en) Sheet for Heat Insulation and Heat Dissipation, and portable terminal having the same
WO2014025152A1 (en) Heat insulation sheet and method for manufacturing same
KR102109721B1 (en) Hybrid Heat Insulation Sheet
KR102135445B1 (en) Heat insulating panel and cooling apparatus having the same
CN105514326B (en) A kind of composite diaphragm and the power lithium titanate battery containing the composite diaphragm
KR101990106B1 (en) Hybrid Heat Insulation Sheet and Manufacturing Method thereof
WO2023224405A1 (en) Composite sound-absorbing material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14838440

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14838440

Country of ref document: EP

Kind code of ref document: A1