WO2015026085A1 - Energy storage device having gas release part - Google Patents

Energy storage device having gas release part Download PDF

Info

Publication number
WO2015026085A1
WO2015026085A1 PCT/KR2014/007374 KR2014007374W WO2015026085A1 WO 2015026085 A1 WO2015026085 A1 WO 2015026085A1 KR 2014007374 W KR2014007374 W KR 2014007374W WO 2015026085 A1 WO2015026085 A1 WO 2015026085A1
Authority
WO
WIPO (PCT)
Prior art keywords
case body
gas release
energy storage
cell
storage device
Prior art date
Application number
PCT/KR2014/007374
Other languages
French (fr)
Korean (ko)
Inventor
이동열
유육성
Original Assignee
비나텍 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 비나텍 주식회사 filed Critical 비나텍 주식회사
Publication of WO2015026085A1 publication Critical patent/WO2015026085A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/14Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
    • H01G11/18Arrangements or processes for adjusting or protecting hybrid or EDL capacitors against thermal overloads, e.g. heating, cooling or ventilating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to an energy storage device, and more particularly to an energy storage device having a gas release unit for discharging the gas generated in the case to the outside.
  • Such energy storage devices include Ni-MH batteries, Secondary batteries, such as Ni-Cd batteries, lead acid batteries, and lithium secondary batteries, and supercapacitors, aluminum electrolytic capacitors, and ceramic capacitors having high output density and almost unlimited charge / discharge lifetimes are used.
  • the supercapacitor includes an electric double layer capacitor (EDLC), a pseudo capacitor, and a hybrid capacitor such as a lithium ion capacitor.
  • EDLC electric double layer capacitor
  • pseudo capacitor a pseudo capacitor
  • hybrid capacitor such as a lithium ion capacitor
  • the electric double layer capacitor is a capacitor using the electrostatic charge generated in the electric double layer formed at the interface of the different phases, and has a faster charge / discharge rate, higher charge / discharge efficiency, and excellent cycle characteristics than a battery whose energy storage mechanism depends on chemical reaction. It is widely used for backup power supply, and the potential as an auxiliary power source for electric vehicles in the future is also infinite.
  • a pseudo capacitor is a capacitor that converts and stores a chemical reaction into electrical energy by using a redox reaction of an electrode and an electrochemical oxide.
  • the pseudocapacitor can store charge up to near the surface of the electrode material as compared to the double layer formed on the surface of the electrochemical double layer electrode, so that the storage capacity is about five times larger than that of the double layer capacitor.
  • RuOx, IrOx, MnOx and the like are used as the metal oxide electrode materials.
  • the lithium ion capacitor is a new concept of a secondary battery system that combines the high power and long life characteristics of a conventional electric double layer capacitor with the high energy density of a lithium ion battery.
  • the electric double layer capacitor using the physical adsorption reaction of the electric charge in the electric double layer is limited to various applications due to the low energy density despite the excellent output characteristics and lifetime characteristics.
  • a lithium ion capacitor using a carbon-based material capable of inserting and desorbing lithium ions as a negative electrode active material has been proposed, and the lithium ion capacitor is previously doped with lithium ions having a high tendency to ionize the cathode.
  • the potential of the cathode can be significantly lowered, and the cell voltage can be realized at a high voltage of 3.8 V or more, which is significantly improved compared to the 2.5 V of the conventional electric double layer capacitor, and can express high energy density.
  • the basic structure of such a supercapacitor is composed of an electrode having a relatively large surface area, such as a porous electrode, an electrolyte, a current collector, and a soft separator, and a voltage of several volts is applied to both ends of the unit cell electrode to apply the electrolyte.
  • the principle of operation is based on the electrochemical mechanism generated by ions moving in the electric field and adsorbed on the electrode surface.
  • the cell is sealed in a metal or plastic case, and has a structure in which the positive and negative terminals are exposed to the outside.
  • Such energy storage devices may inevitably generate gas during operation.
  • Super capacitors in particular, occur slowly over long periods of time.
  • This gas generation increases the internal pressure of the energy storage device. Therefore, in order to increase the internal pressure of the energy storage device, a method of making the case rigid or arranging a free space in the case so that the internal pressure does not rise above a certain value is used.
  • the gas generated inside is present on the surface of the electrolyte and the active material, thereby reducing the available area and acting as an obstacle in the electrolyte, thereby increasing the resistance of the energy storage device. It may lower the reliability.
  • a hydrogen permeable membrane is formed in the vent hole on the upper side of the case body disclosed in Japanese Patent Laid-Open No. 2005-149732, and the gas generated in the cell embedded in the case body, that is, hydrogen is formed into a hydrogen permeable membrane. It can be considered to discharge to the outside.
  • the fuel cell disclosed in Japanese Patent Laid-Open No. 2005-149732 is formed such that a hydrogen permeable membrane covers the ventilation hole in the upper part of the case body. Therefore, when the fuel cell is installed so that the portion where the hydrogen permeable membrane is formed is located above, the gas can be smoothly discharged to the outside.
  • the portion where the hydrogen permeable membrane is formed is disposed below, that is, an energy storage device such as a super capacitor is installed on the substrate with the portion where the hydrogen permeable membrane is formed downwards, the electrolyte solution present in the energy storage device is used for the hydrogen permeable membrane. You can stop it. In this case, the gas generated from the case body may not be smoothly discharged to the outside through the hydrogen permeable membrane.
  • an object of the present invention to provide an energy storage device having a gas release part capable of quickly discharging gas generated in a case to the outside regardless of the position installed on the substrate.
  • Another object of the present invention is to provide an energy storage device having a gas release part that can solve the problem that the gas passage membrane is blocked by the electrolyte solution present in the case in the process of discharging the gas generated in the case to the outside.
  • the energy storage device includes a cell, a case body, a gas release portion and a terminal plate.
  • the cell is impregnated with an electrolyte and stores electrical energy.
  • the case main body has an opening formed at an upper portion thereof, and an accommodation space for accommodating the cell is formed through the opening.
  • the gas release part is formed in the case body to cover the plurality of through holes formed on the outer circumferential surface spaced apart from the upper end of the opening of the case body by a predetermined interval and the plurality of through holes, and occurs when the cell is driven.
  • a gas passage membrane for releasing the gas to the outside and preventing leakage of the electrolyte of the cell.
  • the terminal plate is electrically connected to the cell and seals the opening of the case body.
  • the gas release part may be formed at a side close to the opening part from the center of the case body, and may be formed at a position spaced at least 1 cm from an upper end of the opening part.
  • the case body is formed in a tubular shape, and as the length increases in the same cross-sectional area, the position of the gas release portion at the upper end of the opening portion is farther away.
  • the gas passage membrane of the gas release unit is attached to the case body via a ring-type adhesive layer attached to an outer side of the plurality of through holes so as to surround the plurality of through holes.
  • the adhesive layer is made of polyethylene (PE).
  • the gas passage membrane is made of fluorine resin, PET (Polyethylene Terephthalate), PVDC (Polyvinylidene Chloride), PE, PP (Polypropylene), PPS (Polyphenylene Sulfide), PEEK (Polyether Ether Ketone) and PI (Polyimide) It may be a plastic film.
  • the through hole of the gas release portion is formed by drilling from the inside of the case body to the outside.
  • the gas release portion formed on the outer circumferential surface of the case body is formed to be spaced apart by a predetermined distance from the portion where the terminal plate is coupled, thereby quickly generating gas generated in the case regardless of the position where the energy storage device is installed on the substrate. It can be discharged to the outside through the gas release part.
  • the electrolyte from the cell moves to the lower side of the case opposite to the side where the terminal plate is installed, so that the gas generated in the case passes through the gas release part. It can be discharged to the outside smoothly.
  • the electrolyte flowing out of the cell of the energy storage device may move to the inner side of the terminal plate.
  • the gas release part is formed to be spaced apart by a predetermined distance from the portion where the terminal plate is coupled, the gas passage membrane of the gas release part may be blocked by the electrolyte solution flowing out of the cell of the energy storage device. That is, since the gas release part is designed in the case body in consideration of the amount of electrolyte that can flow out of the cell of the energy storage device, the gas passage membrane of the gas release part is blocked by the electrolyte solution flowing out of the cell of the energy storage device. have. Therefore, even if the energy storage device is installed upside down on the substrate, it is possible to smoothly discharge the gas generated in the case to the outside through the gas release unit.
  • FIG. 1 is a perspective view showing an energy storage device having a gas release unit according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of FIG. 1.
  • FIG. 3 is an exploded perspective view illustrating the gas release part of FIG. 1.
  • FIG. 4 is a perspective view illustrating a gas release part of FIG. 3.
  • FIG. 5 and 6 are views illustrating a process of forming a plurality of through holes of the gas release unit of FIG. 1.
  • FIG. 7 is a cross-sectional view taken along the line 7-7 of FIG.
  • FIG. 8 is a perspective view illustrating an energy storage device having a gas release unit according to a second exemplary embodiment of the present invention.
  • FIG. 1 is a perspective view showing an energy storage device having a gas release unit according to a first embodiment of the present invention.
  • 2 is a cross-sectional view of FIG. 1.
  • the energy storage device 100 includes a cell assembly 10, a case 20, and a gas release part 40.
  • the cell assembly 10 stores electrical energy.
  • the case 20 includes a case body 21 and terminal plates 23 and 24, and the cell assembly 10 accommodated in the storage space 29 formed by the case body 21 and the terminal plates 23 and 24. Suture from the external environment.
  • the gas release part 40 is installed in the case body 21 to prevent the leakage of the electrolyte contained in the cell assembly 10 while discharging the gas generated in the case 20 to the outside.
  • the cell assembly 10 here comprises a winding core 12 and a cell 14 wound around the core 12.
  • the cell 14 here comprises an anode, a cathode, a separator and an electrolyte.
  • the anode generates electrons by an oxidation reaction.
  • the cathode absorbs the generated electrons to cause a reduction reaction.
  • the separator is interposed between the negative electrode and the positive electrode to physically separate the negative electrode and the positive electrode to isolate the place where the oxidation reaction and the reduction reaction takes place to distinguish from each other.
  • the electrolyte is a mobile medium of ions for storing electrical energy in the positive electrode and the negative electrode, and is impregnated in the positive electrode and the negative electrode.
  • the anode, the cathode, and the separator are wound in turn around the core 12 to form an overall cylindrical shape.
  • the cell assembly 10 according to the first embodiment has been described an example having a core 12, but may not have a core 12.
  • the case 20 is to isolate the cell assembly 20 from the outside, and may be manufactured in various materials and shapes according to the type of the cell assembly 10.
  • the case 20 includes a case body 21 and a pair of terminal plates 23 and 24.
  • the case body 21 is a tubular shape in which openings 22a and 22b are formed at both sides thereof, and the cell assembly 10 is accommodated therein.
  • the gas release part 40 is installed inside the case body 21.
  • a metal material such as aluminum, stainless steel, or tinned steel is used, or polyethylene (PE), polypropylene (PP), polyphenylene sulfide (PPS), polyetherether ketone (PEEK), or polytetrafluoroethylene (PTFE) Plastic material such as) may be used.
  • PE polyethylene
  • PP polypropylene
  • PPS polyphenylene sulfide
  • PEEK polyetherether ketone
  • PTFE polytetrafluoroethylene
  • the pair of terminal plates 23 and 24 cover the openings 22a and 22b on both sides of the case body 21 to seal the space in which the cell assembly 10 is stored, and are electrically connected to the cells 14.
  • the pair of terminal plates 23 and 24 may include an upper terminal plate 23 covering the first opening 22a of the case body 21 and a lower terminal plate covering the second opening 22b of the case body 21. 24).
  • the pair of terminal plates 23 and 24 are formed with electrode terminals 23a and 24a so as to protrude from the center portion to the outside, respectively.
  • the pair of terminal plates 23 and 24 are electrically connected to the positive electrode and the negative electrode of the cell assembly 10 via the pair of connecting plates 31 and 33, respectively.
  • the first connecting plate 31 is connected to the upper terminal plate 23, and the second connecting plate 33 is connected to the lower terminal plate 24.
  • the pair of terminal plates 23 and 24 are provided with projections 23b and 24b on the opposite side of the surface on which the electrode terminals 23a and 24a are formed.
  • the protrusions 23b and 24b are formed at the central portion of the terminal plates 23 and 24, and are inserted into the core 12 when the energy storage device 100 is assembled to position the first and second connecting plates 31 and 33. Hold it.
  • the pair of terminal plates 23 and 24 include an upper terminal plate 23 and a lower terminal plate 24.
  • the upper terminal plate 23 covers and seals the first opening 22a of the case body 21, and the electrode terminal 23a is electrically connected to the anode of the cell assembly 10 via the first connecting plate 31. Connected.
  • the lower terminal plate 24 covers and seals the second opening 22b of the case body 21, and the electrode terminal 24a is electrically connected to the negative electrode of the cell assembly 10 via the second connecting plate 33. Is connected. At this time, the outer periphery of the lower terminal plate 24 and the outer periphery of the second connecting plate 33 may be joined to the case body 21 by welding.
  • the upper terminal plate 23 may include a first terminal plate 91, a second terminal plate 93, a first sealing member 95, and a second sealing member 97.
  • the first terminal plate 91 has an electrode terminal 23a formed to protrude from one surface thereof.
  • the second terminal plate 93 is positioned on one surface of the first terminal plate 91, and has an outer shape covering the edge portion of the first terminal plate 91.
  • the first sealing member 95 is interposed between the first and second terminal plates 91 and 93 to bond the first and second terminal plates 91 and 93 to be spaced apart from each other.
  • the second sealing member 97 is coupled to the edge surface of the first terminal plate 91 under the second terminal plate 93.
  • the upper terminal plate 23 may further include a spacer 99 interposed between the first and second terminal plates 91 and 93 inside the second sealing member 97.
  • the first terminal plate 91 has an electrode terminal 23a formed to protrude from a central portion of one surface thereof, and a protrusion 23b coupled to the core 12 of the cell assembly 10 at a central portion of the other surface opposite to the one surface thereof. Is formed.
  • the first terminal plate 91 is provided with an installation groove 91a in which a ring-shaped second terminal plate 93 is inserted and positioned at an edge portion of one surface thereof.
  • the first connection plate 31 may be joined to the other surface of the first terminal plate 91 by welding.
  • the first connecting plate 31 is bonded to the first terminal plate 91 so as to be spaced apart from the inner side surface of the case body 21.
  • the first connecting plate 31 is formed with a hole through which the protrusion 23b of the first terminal plate 91 can pass.
  • the second terminal plate 93 is inserted into the installation groove provided in the first terminal plate 91 via the first sealing member 95.
  • the second terminal plate 93 is mounted on the upper end to cover the first opening portion 22a of the case body 21, and an edge portion thereof may be joined to the case body 21 by welding.
  • the first and second terminal plates 91 and 93 may be made of a metal material having electrical conductivity.
  • the same material as that of the case body 21 may be used as the material of the first and second terminal plates 91 and 93.
  • An insulating material capable of electrically separating the first and second terminal plates 91 and 93 may be used as a material of the first sealing member 95, the second sealing member 97, and the spacer 99.
  • a material of the first sealing member 95, the second sealing member 97, and the spacer 99 may be used as a material of the first sealing member 95, the second sealing member 97, and the spacer 99.
  • PE polyethylene
  • PPS polyphenylene sulfide
  • the first sealing member 95 mediates the physical coupling of the first and second terminal plates 91 and 93, and electrically separates the first and second terminal plates 91 and 93 from each other.
  • the spacer 99 electrically separates the first and second terminal plates 91 and 93 together with the first sealing member 95.
  • the spacer 99 may have a ring shape. Insertion grooves in which the spacers 99 can be inserted are provided at portions of the edge portions of the first and second terminal plates 91 and 93 facing each other.
  • the second sealing member 97 mediates the bonding between the case body 21 and the upper terminal plate 23.
  • the second sealing member 97 can join the case body 21 and the upper terminal plate 23 to each other by heating.
  • a high frequency induction heating method may be used as the heating method of the second sealing member 97.
  • heating of the second sealing member 97 inserts the upper terminal plate 23 into the first opening 22a of the case body 21 to mount the second terminal plate 93 on the upper end of the case body 21. May be carried out after.
  • first and second terminal plates 91 and 93 are electrically separated from each other by the first sealing member 95, the second sealing member 97, and the spacer 99.
  • the first terminal plate 91 may be electrically connected to the positive electrode of the cell assembly 10 via the first connecting plate 31.
  • the second terminal plate 93 may be bonded to the case body 21 and electrically connected to the negative electrode of the cell assembly 10.
  • the upper terminal plate 23 has a structure in which the first and second terminal plates 91 and 93 are joined to each other via the first sealing member 95, and the first and second terminal plates 91, Since it has a double sealing structure joined to the case body 21 via the second sealing member 97 interposed outside the 93, the upper terminal plate (between the first and second terminal plates 91 and 93) The problem of leakage of the liquid electrolyte solution can be suppressed through the interface between 23 and the case body 21.
  • leakage may be generated through an interface between the case body and the terminal plate, or the electrolyte may be leaked through the terminal plate itself.
  • the second terminal plate 93 is joined between the case body 21 and the upper terminal plate 23 together with the second sealing member 97 by welding to the case body 21, Leakage can be suppressed.
  • a first sealing member 95 is interposed between the first and second terminal plates 91 and 93, and a second sealing member 97 is interposed between the first and second terminal plates 91 and 93.
  • the case 20 is described with the case main body 21 and a pair of terminal plates 23 and 24, but the present invention is not limited thereto.
  • the case body may have a structure in which only one side of the case is formed, and a structure in which electrode terminals connected to the positive electrode and the negative electrode are respectively formed on the terminal plate sealing the opening.
  • case 20 is disclosed as an example of a cylindrical structure, but may be implemented in the form of a square pillar.
  • the gas release part 40 is installed in the case body 21 to prevent the leakage of the electrolyte contained in the cell assembly 10 while discharging the gas generated in the case 20 to the outside.
  • 3 is an exploded perspective view illustrating the gas release part 40 of FIG. 1.
  • 4 is a perspective view illustrating the gas release part 40 of FIG. 3.
  • 5 and 6 illustrate a process of forming a plurality of through holes 41 of the gas release part 40 of FIG. 1.
  • 7 is a cross-sectional view taken along line 7-7 of FIG.
  • the gas release part 40 includes a plurality of through holes 41 and a plurality of through holes 41 formed on the outer circumferential surface spaced apart from the upper end of the first opening part 22a of the case body 21 by a predetermined interval. It is formed inside the case body 21 so as to cover, and is provided with a gas passage membrane 45 for discharging the gas generated when the cell 14 is driven to the outside, and prevents leakage of the electrolyte solution of the cell 14.
  • the gas passage membrane 45 is attached to the case body 21 via a ring-type adhesive layer 43 attached to the outer side of the plurality of through holes 41 so as to surround the plurality of through holes 41.
  • the plurality of through holes 41 may be formed in the case body 21 by using the puncher 50.
  • the through hole 41 is formed by drilling out of the inside of the case main body 21 using the perforator 50 as shown in FIG. 5 and FIG.
  • the reason for forming the through hole 41 in this way is as follows.
  • burrs 42 are generated in the direction of punching.
  • the burr 42 is formed toward the outside of the outer circumferential surface of the case main body 21 because it perforates out of the case main body 21.
  • the burr in the case of drilling inward from the outside of the case body 21, the burr is formed toward the inside of the case body 21.
  • the through-hole is formed in the case body 21 by using the puncher 50, it is formed by drilling inward from the outside of the case body 21.
  • the gas passage membrane is attached to cover the plurality of through holes formed as described above, a problem may occur in that the gas passage membrane is damaged by a burr formed around the through hole.
  • the burr 42 is formed toward the outside of the outer circumferential surface of the case body 21, the burr 42 is attached even if the gas passage membrane 45 is attached to cover the plurality of through holes 41. This does not cause a problem that the gas passage membrane 45 is damaged.
  • the burr 42 according to the first embodiment is formed outside the outer circumferential surface of the case body 21, the burr 42 can be easily removed using a polishing machine. In addition, the operator can easily check whether the burr 42 has been removed cleanly.
  • the burr when the burr is formed to face the inside of the case body, it is not easy because the burr needs to be removed by inserting the grinder into the case body. After removing the burr, there is a problem that it is not easy for the operator to visually check whether the burr is properly controlled.
  • the number of through holes 41 is determined by the capacity of the energy storage device and increases in proportion to the capacity. This is because gas is generated in proportion to the capacity of the energy storage device.
  • the through hole 41 is preferably formed to have a diameter of 0.5mm to 1.5mm. The reason is that when the diameter of the through hole 41 is 0.5 mm or less, there is a problem that the gas is not discharged smoothly. On the other hand, when the diameter of the through hole 41 is 1.5 mm or more, a problem arises in that the burst pressure of the gas passage membrane 45 is lowered.
  • the number of the through-holes 41 is formed in an appropriate number in consideration of the smooth discharge of the gas through the gas passage membrane 45 and the burst pressure of the gas passage membrane.
  • the number of through holes 41 is added or subtracted in proportion to the capacity of the energy storage device.
  • the gas passage membrane 45 a film made of a plastic material having a certain level of permeability to gas generated in the cell 14 and not causing a chemical reaction with the electrolyte of the cell 14 is used.
  • the gas passage membrane 45 may include fluorine resin, polyethylene terephthalate (PET), polyvinylidene chloride (PVDC), polypropylene (PE), polyphenylene sulfate (PPS), polyether ether ketone (PEEK), and polyimide (PI).
  • PET polyethylene terephthalate
  • PVDC polyvinylidene chloride
  • PE polypropylene
  • PPS polyphenylene sulfate
  • PEEK polyether ether ketone
  • PI polyimide
  • an adhesive material which does not cause a chemical reaction with the electrolyte solution of the cell 14 may be used.
  • a film made of polyethylene (PE) material may be used as the material of the adhesive layer 43.
  • a high frequency induction heating method may be used as the method of attaching the gas passage membrane 45 through the adhesive layer 43.
  • the gas release part 40 is formed at a side close to the first opening part 22a at the center of the case body 21, and is formed at a position spaced at least 1 cm from an upper end of the first opening part 22a.
  • the gas release part 40 assumes that the case body 21 has the same cross-sectional area and has a different length from each other, so that the gas release part 40 at the upper end of the first opening part 22a increases as the length increases. It is preferable to form the position away from.
  • the reason why the gas release part 40 is formed to be spaced apart from the upper end of the first opening part 22a by a predetermined distance a is as follows.
  • the gas release part 40 formed on the outer circumferential surface of the case body 21 is formed to be spaced apart by a predetermined distance (a) based on the portion where the upper terminal plate 23 is coupled, whereby the energy storage device 100 is installed on the substrate. This is because the gas generated in the case 20 can be quickly discharged to the outside through the gas release part 40 regardless of the position.
  • the cell 14 embedded in the case 20 may include an electrolyte, and some electrolyte may escape from the cell 14 into the storage space 29 of the case 20.
  • the electrolyte solution exiting the cell 14 may move toward the upper terminal plate 23 or the lower terminal plate 24, depending on how it is mounted on the substrate of the energy storage device 100.
  • the energy storage device 100 is installed on the substrate, the upper terminal plate 23 of the energy storage device 100 is located upward, the electrolyte from the cell 14 to move to the lower side of the case 20 Therefore, the gas generated in the case 20 may be smoothly discharged to the outside through the gas release part 40.
  • the gas release part 40 is formed to be spaced a predetermined distance (a) from the portion where the upper terminal plate 23 is coupled, the gas passes through the gas release part 40 by the electrolyte flowing out of the cell 14.
  • the problem that the membrane 45 is clogged can be solved. That is, since the gas release part 40 is designed in the case 20 in consideration of the amount of electrolyte that can flow out of the cell 14, the gas of the gas release part 40 is caused by the electrolyte solution flowing out of the cell 14. The problem that the passage membrane 45 is blocked can be solved. Therefore, even when the energy storage device 100 is installed upside down on the substrate, the gas generated in the case 20 can be smoothly discharged to the outside through the gas release part 40.
  • the gas release part 40 (referred to as 'first gas release part') is formed in the case main body 21 close to the upper terminal plate 23 is disclosed, but is not limited thereto.
  • the gas release part (referred to as a 'second gas release part' to distinguish it from the first gas release part) may be formed in the case body 21 close to the lower terminal plate 24.
  • the second gas release part is formed in the case main body 21 spaced apart from the second opening part 22b to which the lower terminal plate 24 is sealed.
  • the distance between the second gas release part and the second opening part 22b may be equal to the distance a between the first gas release part 40 and the first opening part 22a.
  • the first and second gas release parts may be formed together in the case body 21.
  • FIG. 8 is a perspective view illustrating an energy storage device 200 having a gas release unit 140 according to a second embodiment of the present invention.
  • the energy storage device 100 includes a case 20 in which a cell assembly is embedded and a gas release unit 140.
  • the energy storage device 200 according to the second embodiment has the same structure as the energy storage device 100 according to the first embodiment, but the length h2> h1 of the case 20 is longer.
  • the energy storage device 200 according to the second embodiment has a larger capacity than the energy storage device 100 according to the first embodiment, and as a result, a cell ( 14, the amount of electrolyte that can flow out may be higher, and the amount of gas generated may also be higher.
  • the gas release part 140 of the energy storage device 200 according to the second embodiment is positioned below the gas release part 40 of the energy storage device 100 according to the first embodiment (b> a).
  • the number of through holes 141 is also greater.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

The present invention relates to an energy storage device having a gas release part, which quickly discharges gas generated within a case to the outside regardless of a position at which the device is provided on a substrate. The energy storage device, according to the present invention, comprises a cell, a case body, the gas release part, and a terminal plate. The cell is impregnated with an electrolyte and stores electric energy. The case body has an upper open portion, and an accommodating space in which the cell is accommodated through the open portion. The gas release part comprises: a plurality of through-holes formed on the outer peripheral surface thereof separated at certain intervals from an upper end of the open portion of the case body toward the lower side thereof; and a gas permeable membrane which is formed inside the case body so as to cover the plurality of through-holes, discharges, to the outside, the gas generated when the cell is driven, and blocks the leakage of the electrolyte of the cell. In addition, the terminal plate is electrically connected with the cell and seals the open portion of the case body.

Description

가스 릴리즈부를 갖는 에너지 저장 장치Energy storage device with gas release
본 발명은 에너지 저장 장치에 관한 것으로, 더욱 상세하게는 케이스 내에서 발생되는 가스를 외부로 배출시키는 가스 릴리즈부를 갖는 에너지 저장 장치에 관한 것이다.The present invention relates to an energy storage device, and more particularly to an energy storage device having a gas release unit for discharging the gas generated in the case to the outside.
각종 휴대용 전자기기를 비롯하여 전기자동차 등은 전원 공급 장치가 요구되는 시스템이나, 순간적으로 발생하는 과부하를 조절 또는 공급하는 시스템을 위한 에너지 저장 장치도 요구되고 있으며, 이러한 에너지 저장 장치로 Ni-MH 전지, Ni-Cd 전지, 납축전지 및 리튬이차전지와 같은 이차전지와, 높은 출력 밀도를 가지면서 충방전 수명이 무제한에 가까운 슈퍼 커패시터, 알루미늄 전해 커패시터 및 세라믹 커패시터 등이 사용되고 있다.In addition to various portable electronic devices, electric vehicles, etc., require a power supply device, or an energy storage device for a system for regulating or supplying an overload occurring momentarily. Such energy storage devices include Ni-MH batteries, Secondary batteries, such as Ni-Cd batteries, lead acid batteries, and lithium secondary batteries, and supercapacitors, aluminum electrolytic capacitors, and ceramic capacitors having high output density and almost unlimited charge / discharge lifetimes are used.
특히 슈퍼 커패시터는 전기이중층 커패시터(EDLC; Electric Double Layer Capacitor), 유사 커패시터(pseudo capacitor), 리튬 이온 커패시터와 같은 하이브리드 커패시터(hybrid capacitor) 등이 있다.In particular, the supercapacitor includes an electric double layer capacitor (EDLC), a pseudo capacitor, and a hybrid capacitor such as a lithium ion capacitor.
여기서 전기이중층 커패시터는 서로 다른 상의 계면에 형성된 전기이중층에서 발생하는 정전하현상을 이용한 커패시터로서, 에너지 저장 메커니즘이 화학반응에 의존하는 배터리에 비하여 충방전 속도가 빠르고 충방전 효율이 높으며 사이클 특성이 월등하여 백업 전원에 광범위하게 사용되며, 향후 전기자동차의 보조전원으로서의 가능성도 무한하다.Here, the electric double layer capacitor is a capacitor using the electrostatic charge generated in the electric double layer formed at the interface of the different phases, and has a faster charge / discharge rate, higher charge / discharge efficiency, and excellent cycle characteristics than a battery whose energy storage mechanism depends on chemical reaction. It is widely used for backup power supply, and the potential as an auxiliary power source for electric vehicles in the future is also infinite.
유사 커패시터는 전극과 전기화학 산화물의 산화-환원 반응을 이용하여 화학 반응을 전기적 에너지로 전환하여 저장하는 커패시터이다. 유사 커패시터는 전기이중층 커패시터가 전기화학 이중층형 전극 표면에 형성된 이중층에만 전하를 저장하는 데 비하여 전극 재료의 표면 근처까지 전하를 저장 할 수 있어 저장 용량이 전기이중층 커패시터에 비하여 약 5배정도 크다. 금속산화물 전극재료로는 RuOx, IrOx, MnOx 등이 사용되고 있다.A pseudo capacitor is a capacitor that converts and stores a chemical reaction into electrical energy by using a redox reaction of an electrode and an electrochemical oxide. The pseudocapacitor can store charge up to near the surface of the electrode material as compared to the double layer formed on the surface of the electrochemical double layer electrode, so that the storage capacity is about five times larger than that of the double layer capacitor. RuOx, IrOx, MnOx and the like are used as the metal oxide electrode materials.
그리고 리튬 이온 커패시터는 기존 전기이중층 커패시터의 고출력 및 장수명 특성과, 리튬 이온 전지의 고에너지밀도를 결합한 새로운 개념의 이차전지 시스템이다. 전기이중층 내 전하의 물리적 흡착반응을 이용하는 전기이중층 커패시터는 우수한 출력특성 및 수명특성에도 불구하고 낮은 에너지밀도 때문에 다양한 응용분야에 적용이 제한되고 있다. 이러한 전기이중층 커패시터의 문제점을 해결하는 수단으로서 음극 활물질로서 리튬 이온을 삽입 및 탈리할 수 있는 탄소계 소재를 이용하는 리튬 이온 커패시터가 제안되었으며, 리튬 이온 커패시터는 이온화 경향이 큰 리튬 이온을 음극에 미리 도핑하여 음극의 전위를 대폭적으로 낮출 수 있고, 셀 전압도 종래의 전기이중층 커패시터의 2.5 V 대비 크게 향상된 3.8 V 이상의 고전압 구현이 가능하며 높은 에너지 밀도를 발현할 수 있다.The lithium ion capacitor is a new concept of a secondary battery system that combines the high power and long life characteristics of a conventional electric double layer capacitor with the high energy density of a lithium ion battery. The electric double layer capacitor using the physical adsorption reaction of the electric charge in the electric double layer is limited to various applications due to the low energy density despite the excellent output characteristics and lifetime characteristics. As a means of solving the problems of the electric double layer capacitor, a lithium ion capacitor using a carbon-based material capable of inserting and desorbing lithium ions as a negative electrode active material has been proposed, and the lithium ion capacitor is previously doped with lithium ions having a high tendency to ionize the cathode. Thus, the potential of the cathode can be significantly lowered, and the cell voltage can be realized at a high voltage of 3.8 V or more, which is significantly improved compared to the 2.5 V of the conventional electric double layer capacitor, and can express high energy density.
이러한 슈퍼 커패시터의 기본적인 구조는 다공성 전극과 같이 표면적이 상대적으로 큰 전극, 전해질, 집전체(current collector), 연질의 분리막(separator)으로 이루어져 있으며, 단위 셀 전극의 양단에 수 볼트의 전압을 가해 전해질 내의 이온들이 전기장을 따라 이동하여 전극 표면에 흡착되어 발생되는 전기 화학적 메카니즘을 작동원리로 한다. 이러한 셀은 금속 또는 플라스틱 재질의 케이스에 봉합되고, 외부에 양극 및 음극 단자가 노출된 구조를 갖는다.The basic structure of such a supercapacitor is composed of an electrode having a relatively large surface area, such as a porous electrode, an electrolyte, a current collector, and a soft separator, and a voltage of several volts is applied to both ends of the unit cell electrode to apply the electrolyte. The principle of operation is based on the electrochemical mechanism generated by ions moving in the electric field and adsorbed on the electrode surface. The cell is sealed in a metal or plastic case, and has a structure in which the positive and negative terminals are exposed to the outside.
이러한 에너지 저장 장치는 동작 중에 불가피하게 가스가 발생할 수 있다. 특히 슈퍼 커패시터의 경우 장기간에 걸쳐 서서히 발생한다.Such energy storage devices may inevitably generate gas during operation. Super capacitors, in particular, occur slowly over long periods of time.
이러한 가스 발생은 에너지 저장 장치의 내부 압력을 증가시킨다. 따라서 에너지 저장 장치의 내부 압력 증가를 감안하여 케이스를 견고하게 만들거나, 케이스 내부에 여유 공간을 배치하여 내부 압력이 일정 값 이상으로 상승하지 않도록 하는 방법들이 사용되고 있다.This gas generation increases the internal pressure of the energy storage device. Therefore, in order to increase the internal pressure of the energy storage device, a method of making the case rigid or arranging a free space in the case so that the internal pressure does not rise above a certain value is used.
하지만 이러한 방법들은 케이스의 중량과 부피를 증가시켜 에너지 저장 장치의 성능을 저하시키고, 가격을 상승시키는 요인으로 작용한다.However, these methods increase the weight and volume of the case, causing the performance of the energy storage device to degrade and increase the price.
특히 슈퍼 커패시터와 같이 액체 전해질을 사용하는 에너지 저장 장치에서 내부에서 발생한 가스는 전해액 및 활물질의 표면에 존재하게 되므로 가용 면적을 감소시키고 전해액 속에서 장애물로 작용하게 되어, 저항을 증가시켜 에너지 저장 장치의 신뢰성을 저하시킬 수 있다.In particular, in an energy storage device using a liquid electrolyte such as a super capacitor, the gas generated inside is present on the surface of the electrolyte and the active material, thereby reducing the available area and acting as an obstacle in the electrolyte, thereby increasing the resistance of the energy storage device. It may lower the reliability.
이러한 문제를 해소하기 위해서, 일본공개특허공보 특개2005-149732호에 개시된, 케이스 본체의 상부의 환기공 쪽에 수소 투과막을 형성하여, 케이스 본체에 내장된 셀에서 발생되는 가스, 즉 수소를 수소 투과막을 통하여 외부로 배출시키는 방안을 고려해 볼 수 있다.In order to solve such a problem, a hydrogen permeable membrane is formed in the vent hole on the upper side of the case body disclosed in Japanese Patent Laid-Open No. 2005-149732, and the gas generated in the cell embedded in the case body, that is, hydrogen is formed into a hydrogen permeable membrane. It can be considered to discharge to the outside.
이와 같은 일본공개특허공보 특개2005-149732호에 개시된 연료 전지는, 수소 투과막이 케이스 본체의 상부의 환기공을 덮도록 형성된다. 따라서 수소 투과막이 형성된 부분이 위쪽에 위치하게 연료 전지가 설치될 경우에는 가스가 외부로 원활히 배출될 수 있다.The fuel cell disclosed in Japanese Patent Laid-Open No. 2005-149732 is formed such that a hydrogen permeable membrane covers the ventilation hole in the upper part of the case body. Therefore, when the fuel cell is installed so that the portion where the hydrogen permeable membrane is formed is located above, the gas can be smoothly discharged to the outside.
하지만 수소 투과막이 형성된 부분이 아래쪽에 위치하세 설치될 경우, 즉 슈퍼 커패시터와 같은 에너지 저장 장치는 수소 투과막이 형성된 부분이 아래를 향하게 기판에 설치되기 때문에, 에너지 저장 장치에 존재하는 전해액이 수소 투과막을 막을 수 있다. 이 경우 수소 투과막을 통하여 케이스 본체에서 발생된 가스가 외부로 원활히 배출되지 못하는 문제가 발생될 수 있다.However, when the portion where the hydrogen permeable membrane is formed is disposed below, that is, an energy storage device such as a super capacitor is installed on the substrate with the portion where the hydrogen permeable membrane is formed downwards, the electrolyte solution present in the energy storage device is used for the hydrogen permeable membrane. You can stop it. In this case, the gas generated from the case body may not be smoothly discharged to the outside through the hydrogen permeable membrane.
[선행기술문헌][Preceding technical literature]
[특허문헌][Patent Documents]
일본공개특허 특개2005-149732호(2005.06.09.)Japanese Patent Laid-Open No. 2005-149732 (2005.06.09.)
따라서 본 발명의 목적은 기판에 설치되는 위치에 무관하게 케이스 내에서 발생된 가스를 신속하게 외부로 배출시킬 수 있는 가스 릴리즈부를 갖는 에너지 저장 장치를 제공하는 데 있다.Accordingly, it is an object of the present invention to provide an energy storage device having a gas release part capable of quickly discharging gas generated in a case to the outside regardless of the position installed on the substrate.
본 발명의 다른 목적은 케이스 내에서 발생된 가스를 외부로 배출시키는 과정에서 케이스 내에 존재하는 전해액에 의해 가스 통과막이 막히는 문제를 해소할 수 있는 가스 릴리즈부를 갖는 에너지 저장 장치를 제공하는 데 있다.Another object of the present invention is to provide an energy storage device having a gas release part that can solve the problem that the gas passage membrane is blocked by the electrolyte solution present in the case in the process of discharging the gas generated in the case to the outside.
상기 목적을 달성하기 위하여, 본 발명에 따른 에너지 저장 장치는 셀, 케이스 본체, 가스 릴리즈부 및 단자판을 포함한다. 상기 셀은 전해액이 함침되어 있으며, 전기 에너지를 저장한다. 상기 케이스 본체는 상부에 개방부가 형성되어 있으며, 상기 개방부를 통하여 상기 셀이 수납되는 수납 공간이 형성되어 있다. 상기 가스 릴리즈부는 상기 케이스 본체의 개방부의 상단에서 아래로 일정 간격 이격된 외주면 상에 형성된 복수의 관통공과, 상기 복수의 관통공을 덮도록 상기 케이스 본체의 내부에 형성되며, 상기 셀의 구동 시 발생되는 가스를 외부로 방출하고, 상기 셀의 전해액의 누출을 막는 가스 통과막을 구비한다. 그리고 상기 단자판은 상기 셀과 전기적으로 연결되며, 상기 케이스 본체의 개방부를 봉합한다.In order to achieve the above object, the energy storage device according to the present invention includes a cell, a case body, a gas release portion and a terminal plate. The cell is impregnated with an electrolyte and stores electrical energy. The case main body has an opening formed at an upper portion thereof, and an accommodation space for accommodating the cell is formed through the opening. The gas release part is formed in the case body to cover the plurality of through holes formed on the outer circumferential surface spaced apart from the upper end of the opening of the case body by a predetermined interval and the plurality of through holes, and occurs when the cell is driven. And a gas passage membrane for releasing the gas to the outside and preventing leakage of the electrolyte of the cell. The terminal plate is electrically connected to the cell and seals the opening of the case body.
본 발명에 따른 에너지 저장 장치에 있어서, 상기 가스 릴리즈부는 상기 케이스 본체의 중심에서 상기 개방부에 가까운 쪽에 형성되며, 상기 개방부의 상단에서 1cm 이상 이격된 위치에 형성될 수 있다.In the energy storage device according to the present invention, the gas release part may be formed at a side close to the opening part from the center of the case body, and may be formed at a position spaced at least 1 cm from an upper end of the opening part.
본 발명에 따른 에너지 저장 장치에 있어서, 상기 케이스 본체는 관형으로 형성되며, 동일 단면적에서 길이가 증가할수록 상기 개방부의 상단에서의 상기 가스 릴리즈부의 위치가 멀어진다.In the energy storage device according to the present invention, the case body is formed in a tubular shape, and as the length increases in the same cross-sectional area, the position of the gas release portion at the upper end of the opening portion is farther away.
본 발명에 따른 에너지 저장 장치에 있어서, 상기 가스 릴리즈부의 가스 통과막은, 상기 복수의 관통공을 둘러싸도록 상기 복수의 관통공의 외곽에 부착되는 링 타입의 접착층을 매개로 상기 케이스 본체에 부착된다.In the energy storage device according to the present invention, the gas passage membrane of the gas release unit is attached to the case body via a ring-type adhesive layer attached to an outer side of the plurality of through holes so as to surround the plurality of through holes.
본 발명에 따른 에너지 저장 장치에 있어서, 상기 접착층의 소재는 PE(Polyethylene)이다. 상기 가스 통과막은 불소수지, PET(Polyethylene Terephthalate), PVDC(Polyvinylidene Chloride), PE, PP(Polypropylene), PPS(Polyphenylene Sulfide), PEEK(Polyether Ether Ketone) 및 PI(Polyimide) 중 하나의 소재로 제조된 플라스틱 필름일 수 있다.In the energy storage device according to the present invention, the adhesive layer is made of polyethylene (PE). The gas passage membrane is made of fluorine resin, PET (Polyethylene Terephthalate), PVDC (Polyvinylidene Chloride), PE, PP (Polypropylene), PPS (Polyphenylene Sulfide), PEEK (Polyether Ether Ketone) and PI (Polyimide) It may be a plastic film.
그리고 본 발명에 따른 에너지 저장 장치에 있어서, 상기 가스 릴리즈부의 관통공은 상기 케이스 본체의 안쪽에서 외측으로 천공하여 형성된다.And in the energy storage device according to the invention, the through hole of the gas release portion is formed by drilling from the inside of the case body to the outside.
본 발명에 따르면, 케이스 본체의 외주면에 형성된 가스 릴리즈부는 단자판이 결합되는 부분을 기준으로 일정 거리 이격되게 형성함으로써, 에너지 저장 장치가 기판에 설치되는 위치에 무관하게 케이스 내에서 발생된 가스를 신속하게 가스 릴리즈부를 통하여 외부로 배출시킬 수 있다. According to the present invention, the gas release portion formed on the outer circumferential surface of the case body is formed to be spaced apart by a predetermined distance from the portion where the terminal plate is coupled, thereby quickly generating gas generated in the case regardless of the position where the energy storage device is installed on the substrate. It can be discharged to the outside through the gas release part.
즉 에너지 저장 장치가 기판에 설치되되, 단자판이 위쪽을 향하게 위치하는 경우, 셀에서 나온 전해액은 단자판이 설치된 쪽의 반대쪽인 케이스의 하부쪽으로 이동하기 때문에, 케이스 내에서 발생된 가스는 가스 릴리즈부를 통하여 외부로 원활히 배출될 수 있다.That is, when the energy storage device is installed on the substrate and the terminal plate is located upward, the electrolyte from the cell moves to the lower side of the case opposite to the side where the terminal plate is installed, so that the gas generated in the case passes through the gas release part. It can be discharged to the outside smoothly.
반대로 에너지 저장 장치가 기판에 설치되되, 단자판이 아래쪽을 향하게 위치하는 경우에, 에너지 저장 장치의 셀에서 흘러나온 전해액은 단자판의 안쪽면으로 이동할 수 있다. 하지만 가스 릴리즈부가 단자판이 결합되는 부분을 기준으로 일정 거리 이격되게 형성되기 때문에, 에너지 저장 장치의 셀에서 흘러나온 전해액에 의해 가스 릴리즈부의 가스 통과막이 막히는 문제를 해소할 수 있다. 즉 가스 릴리즈부는 에너지 저장 장치의 셀에서 흘러나올 수 있는 전해액의 양을 고려하여 케이스 본체에 설계되기 때문에, 에너지 저장 장치의 셀에서 흘러나온 전해액에 의해 가스 릴리즈부의 가스 통과막이 막히는 문제를 해소할 수 있다. 따라서 에너지 저장 장치가 기판에 거꾸로 설치되더라도, 케이스 내에서 발생된 가스를 가스 릴리즈부를 통하여 외부로 원활히 배출시킬 수 있다.On the contrary, when the energy storage device is installed on the substrate and the terminal plate is positioned downward, the electrolyte flowing out of the cell of the energy storage device may move to the inner side of the terminal plate. However, since the gas release part is formed to be spaced apart by a predetermined distance from the portion where the terminal plate is coupled, the gas passage membrane of the gas release part may be blocked by the electrolyte solution flowing out of the cell of the energy storage device. That is, since the gas release part is designed in the case body in consideration of the amount of electrolyte that can flow out of the cell of the energy storage device, the gas passage membrane of the gas release part is blocked by the electrolyte solution flowing out of the cell of the energy storage device. have. Therefore, even if the energy storage device is installed upside down on the substrate, it is possible to smoothly discharge the gas generated in the case to the outside through the gas release unit.
도 1은 본 발명의 제1 실시예에 따른 가스 릴리즈부를 갖는 에너지 저장 장치를 보여주는 사시도이다.1 is a perspective view showing an energy storage device having a gas release unit according to a first embodiment of the present invention.
도 2는 도 1의 단면도이다.2 is a cross-sectional view of FIG. 1.
도 3은 도 1의 가스 릴리즈부를 보여주는 분해 사시도이다.3 is an exploded perspective view illustrating the gas release part of FIG. 1.
도 4는 도 3의 가스 릴리즈부를 보여주는 사시도이다.4 is a perspective view illustrating a gas release part of FIG. 3.
도 5 및 도 6는 도 1의 가스 릴리즈부의 복수의 관통공을 형성하는 과정을 보여주는 도면들이다.5 and 6 are views illustrating a process of forming a plurality of through holes of the gas release unit of FIG. 1.
도 7은 도 4의 7-7선 단면도이다.7 is a cross-sectional view taken along the line 7-7 of FIG.
도 8은 본 발명의 제2 실시예에 따른 가스 릴리즈부를 갖는 에너지 저장 장치를 보여주는 사시도이다.8 is a perspective view illustrating an energy storage device having a gas release unit according to a second exemplary embodiment of the present invention.
하기의 설명에서는 본 발명의 실시예를 이해하는데 필요한 부분만이 설명되며, 그 이외 부분의 설명은 본 발명의 요지를 흩트리지 않도록 생략될 것이라는 것을 유의하여야 한다.In the following description, only parts necessary for understanding the embodiments of the present invention will be described, it should be noted that the description of other parts will be omitted so as not to distract from the gist of the present invention.
이하에서 설명되는 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념으로 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 바람직한 실시예에 불과할 뿐이고, 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.The terms or words used in the specification and claims described below should not be construed as being limited to the ordinary or dictionary meanings, and the inventors are appropriate to the concept of terms in order to explain their invention in the best way. It should be interpreted as meanings and concepts in accordance with the technical spirit of the present invention based on the principle that it can be defined. Therefore, the embodiments described in the present specification and the configuration shown in the drawings are only preferred embodiments of the present invention, and do not represent all of the technical idea of the present invention, and various equivalents may be substituted for them at the time of the present application. It should be understood that there may be variations and variations.
이하, 첨부된 도면을 참조하여 본 발명의 실시예를 보다 상세하게 설명하고자 한다.Hereinafter, with reference to the accompanying drawings will be described in detail an embodiment of the present invention.
제1 실시예First embodiment
도 1은 본 발명의 제1 실시예에 따른 가스 릴리즈부를 갖는 에너지 저장 장치를 보여주는 사시도이다. 도 2는 도 1의 단면도이다.1 is a perspective view showing an energy storage device having a gas release unit according to a first embodiment of the present invention. 2 is a cross-sectional view of FIG. 1.
도 1 및 도 2를 참조하면, 제1 실시예에 따른 에너지 저장 장치(100)는 셀 조립체(10), 케이스(20) 및 가스 릴리즈부(40)를 포함한다. 셀 조립체(10)는 전기 에너지를 저장한다. 케이스(20)는 케이스 본체(21)와 단자판(23,24)을 포함하며, 케이스 본체(21)와 단자판(23,24)이 형성하는 수납 공간(29)에 수납되는 셀 조립체(10)를 외부 환경으로부터 봉합한다. 그리고 가스 릴리즈부(40)는 케이스 본체(21)에 설치되어 셀 조립체(10)에 포함된 전해액의 누출은 막으면서 케이스(20) 내에서 발생되는 가스는 외부로 배출시킨다.1 and 2, the energy storage device 100 according to the first embodiment includes a cell assembly 10, a case 20, and a gas release part 40. The cell assembly 10 stores electrical energy. The case 20 includes a case body 21 and terminal plates 23 and 24, and the cell assembly 10 accommodated in the storage space 29 formed by the case body 21 and the terminal plates 23 and 24. Suture from the external environment. In addition, the gas release part 40 is installed in the case body 21 to prevent the leakage of the electrolyte contained in the cell assembly 10 while discharging the gas generated in the case 20 to the outside.
여기서 셀 조립체(10)는 권심(12; winding core)과, 권심(12)에 권취된 셀(14)을 포함한다. 여기서 셀(14)은 양극, 음극, 분리막 및 전해질을 포함한다. 양극은 산화 반응에 의해 전자를 생성한다. 음극은 생성된 전자를 흡수하여 환원반응이 일어난다. 분리막은 음극과 양극 사이에 개재되어 음극과 양극을 물리적으로 분리시켜 산화반응과 환원반응이 일어나는 장소를 격리하여 서로 구분한다. 전해액은 양극 및 음극에 전기 에너지를 저장시키는 이온의 이동매개체이며, 양극 및 음극에 함침되어 있다. 이러한 셀 조립체(10)는 양극, 음극 및 분리막이 권심(12)을 중심으로 차례로 권취되어 전체적으로 원통 형상을 이룬다.The cell assembly 10 here comprises a winding core 12 and a cell 14 wound around the core 12. The cell 14 here comprises an anode, a cathode, a separator and an electrolyte. The anode generates electrons by an oxidation reaction. The cathode absorbs the generated electrons to cause a reduction reaction. The separator is interposed between the negative electrode and the positive electrode to physically separate the negative electrode and the positive electrode to isolate the place where the oxidation reaction and the reduction reaction takes place to distinguish from each other. The electrolyte is a mobile medium of ions for storing electrical energy in the positive electrode and the negative electrode, and is impregnated in the positive electrode and the negative electrode. In the cell assembly 10, the anode, the cathode, and the separator are wound in turn around the core 12 to form an overall cylindrical shape.
한편 제1 실시예에 따른 셀 조립체(10)는 권심(12)을 구비하는 예를 개시하였지만, 권심(12)을 구비하지 않을 수도 있다.On the other hand, the cell assembly 10 according to the first embodiment has been described an example having a core 12, but may not have a core 12.
케이스(20)는 셀 조립체(20)를 외부와 격리시키기 위한 것으로, 셀 조립체(10)의 종류에 따라 다양한 소재와 형상으로 제조될 수 있다. 이러한 케이스(20)는 케이스 본체(21)와, 한 쌍의 단자판(23,24)을 포함한다.The case 20 is to isolate the cell assembly 20 from the outside, and may be manufactured in various materials and shapes according to the type of the cell assembly 10. The case 20 includes a case body 21 and a pair of terminal plates 23 and 24.
케이스 본체(21)는 양쪽에 개방부(22a,22b)가 형성된 관형으로, 셀 조립체(10)가 수납된다. 케이스 본체(21)의 안쪽에 가스 릴리즈부(40)가 설치된다. 케이스 본체(21)의 소재로는 알루미늄, 스테인리스 스틸 또는 주석 도금강 등의 금속 소재를 사용하거나, PE(Polyethylene), PP(Polypropylene), PPS(polyphenylene sulfide), PEEK(polyetherether ketone) 또는 PTFE(polytetrafluoroethylene) 등과 같은 플라스틱 소재를 사용할 수 있다. 제1 실시예에서는 케이스 본체(21)의 소재로 금속 소재가 사용된 예를 개시하였다.The case body 21 is a tubular shape in which openings 22a and 22b are formed at both sides thereof, and the cell assembly 10 is accommodated therein. The gas release part 40 is installed inside the case body 21. As the material of the case body 21, a metal material such as aluminum, stainless steel, or tinned steel is used, or polyethylene (PE), polypropylene (PP), polyphenylene sulfide (PPS), polyetherether ketone (PEEK), or polytetrafluoroethylene (PTFE) Plastic material such as) may be used. In the first embodiment, an example in which a metal material is used as the material of the case body 21 is disclosed.
한 쌍의 단자판(23,24)은 케이스 본체(21)의 양쪽의 개방부(22a,22b)를 덮어 셀 조립체(10)가 수납된 공간을 봉합하며, 셀(14)과 전기적으로 연결된다. 한 쌍의 단자판(23,24)은 케이스 본체(21)의 제1 개방부(22a)를 덮는 상부 단자판(23)과, 케이스 본체(21)의 제2 개방부(22b)를 덮는 하부 단자판(24)을 포함한다. 한 쌍의 단자판(23,24)은 각각 중심 부분에서 외부로 돌출되게 전극 단자(23a,24a)가 형성되어 있다. 한 쌍의 단자판(23,24)은 각각 한 쌍의 연결판(31,33)을 매개로 셀 조립체(10)의 양극 및 음극에 각각 전기적으로 연결된다. 한 쌍의 연결판(31,33) 중 제1 연결판(31)은 상부 단자판(23)에 연결되고, 제2 연결판(33)은 하부 단자판(24)에 연결된다.The pair of terminal plates 23 and 24 cover the openings 22a and 22b on both sides of the case body 21 to seal the space in which the cell assembly 10 is stored, and are electrically connected to the cells 14. The pair of terminal plates 23 and 24 may include an upper terminal plate 23 covering the first opening 22a of the case body 21 and a lower terminal plate covering the second opening 22b of the case body 21. 24). The pair of terminal plates 23 and 24 are formed with electrode terminals 23a and 24a so as to protrude from the center portion to the outside, respectively. The pair of terminal plates 23 and 24 are electrically connected to the positive electrode and the negative electrode of the cell assembly 10 via the pair of connecting plates 31 and 33, respectively. Among the pair of connecting plates 31 and 33, the first connecting plate 31 is connected to the upper terminal plate 23, and the second connecting plate 33 is connected to the lower terminal plate 24.
한 쌍의 단자판(23,24)는 전극 단자(23a,24a)가 형성된 면의 반대쪽에 돌기(23b,24b)가 형성되어 있다. 돌기(23b,24b)는 단자판(23,24)의 중심 부분에 형성되어, 에너지 저장 장치(100)의 조립 시 권심(12)에 삽입되어 제1 및 제2 연결판(31,33)의 위치를 잡아준다.The pair of terminal plates 23 and 24 are provided with projections 23b and 24b on the opposite side of the surface on which the electrode terminals 23a and 24a are formed. The protrusions 23b and 24b are formed at the central portion of the terminal plates 23 and 24, and are inserted into the core 12 when the energy storage device 100 is assembled to position the first and second connecting plates 31 and 33. Hold it.
이러한 한 쌍의 단자판(23,24)은 상부 단자판(23)과 하부 단자판(24)을 포함한다.The pair of terminal plates 23 and 24 include an upper terminal plate 23 and a lower terminal plate 24.
상부 단자판(23)은 케이스 본체(21)의 제1 개방부(22a)를 덮어 봉합하며, 전극 단자(23a)가 제1 연결판(31)을 매개로 셀 조립체(10)의 양극에 전기적으로 연결된다.The upper terminal plate 23 covers and seals the first opening 22a of the case body 21, and the electrode terminal 23a is electrically connected to the anode of the cell assembly 10 via the first connecting plate 31. Connected.
그리고 하부 단자판(24)은 케이스 본체(21)의 제2 개방부(22b)를 덮어 봉합하며, 전극 단자(24a)가 제2 연결판(33)을 매개로 셀 조립체(10)의 음극에 전기적으로 연결된다. 이때 하부 단자판(24)의 외곽과 제2 연결판(33)의 외곽은 용접에 의해 케이스 본체(21)에 접합될 수 있다.The lower terminal plate 24 covers and seals the second opening 22b of the case body 21, and the electrode terminal 24a is electrically connected to the negative electrode of the cell assembly 10 via the second connecting plate 33. Is connected. At this time, the outer periphery of the lower terminal plate 24 and the outer periphery of the second connecting plate 33 may be joined to the case body 21 by welding.
여기서 상부 단자판(23)은 제1 단자판(91), 제2 단자판(93), 제1 봉합 부재(95) 및 제2 봉합 부재(97)를 포함한다. 제1 단자판(91)은 일면에서 돌출되게 전극 단자(23a)가 형성되어 있다. 제2 단자판(93)은 제1 단자판(91)의 일면 위에 위치하며, 외곽이 제1 단자판(91)의 가장자리 부분을 덮는 링 형태를 갖는다. 제1 봉합 부재(95)는 제1 및 제2 단자판(91,93) 사이에 개재되어 제1 및 제2 단자판(91,93)을 서로 이격되게 접합시킨다. 그리고 제2 봉합 부재(97)는 제2 단자판(93) 아래의 제1 단자판(91)의 테두리면에 결합된다. 이때 상부 단자판(23)는 제2 봉합 부재(97) 안쪽의 제1 및 제2 단자판(91,93) 사이에 개재되는 스페이서(99; spacer)를 더 포함할 수 있다. The upper terminal plate 23 may include a first terminal plate 91, a second terminal plate 93, a first sealing member 95, and a second sealing member 97. The first terminal plate 91 has an electrode terminal 23a formed to protrude from one surface thereof. The second terminal plate 93 is positioned on one surface of the first terminal plate 91, and has an outer shape covering the edge portion of the first terminal plate 91. The first sealing member 95 is interposed between the first and second terminal plates 91 and 93 to bond the first and second terminal plates 91 and 93 to be spaced apart from each other. The second sealing member 97 is coupled to the edge surface of the first terminal plate 91 under the second terminal plate 93. In this case, the upper terminal plate 23 may further include a spacer 99 interposed between the first and second terminal plates 91 and 93 inside the second sealing member 97.
제1 단자판(91)은 일면의 중심 부분에서 돌출되게 전극 단자(23a)가 형성되어 있고, 일면에 반대되는 타면의 중심 부분에 셀 조립체(10)의 권심(12)에 결합되는 돌기(23b)가 형성되어 있다. 제1 단자판(91)은 일면의 가장자리 부분에 링 형태의 제2 단자판(93)이 삽입되어 위치할 수 있는 설치홈(91a)이 마련되어 있다. 제1 단자판(91)의 타면에는 제1 연결판(31)이 용접에 의해 접합될 수 있다. 제1 연결판(31)은 케이스 본체(21)의 내측면에서 이격되게 제1 단자판(91)에 접합된다. 제1 연결판(31)에는 제1 단자판(91)의 돌기(23b)가 통과할 수 있는 구멍이 형성되어 있다.The first terminal plate 91 has an electrode terminal 23a formed to protrude from a central portion of one surface thereof, and a protrusion 23b coupled to the core 12 of the cell assembly 10 at a central portion of the other surface opposite to the one surface thereof. Is formed. The first terminal plate 91 is provided with an installation groove 91a in which a ring-shaped second terminal plate 93 is inserted and positioned at an edge portion of one surface thereof. The first connection plate 31 may be joined to the other surface of the first terminal plate 91 by welding. The first connecting plate 31 is bonded to the first terminal plate 91 so as to be spaced apart from the inner side surface of the case body 21. The first connecting plate 31 is formed with a hole through which the protrusion 23b of the first terminal plate 91 can pass.
제2 단자판(93)은 제1 단자판(91)에 마련된 설치홈에 제1 봉합 부재(95)를 매개로 삽입된다. 제2 단자판(93)은 케이스 본체(21)의 제1 개방부(22a)를 덮도록 상단에 탑재되며, 가장자리 부분은 용접에 의해 케이스 본체(21)에 접합될 수 있다.The second terminal plate 93 is inserted into the installation groove provided in the first terminal plate 91 via the first sealing member 95. The second terminal plate 93 is mounted on the upper end to cover the first opening portion 22a of the case body 21, and an edge portion thereof may be joined to the case body 21 by welding.
여기서 제1 및 제2 단자판(91,93)은 전기전도성을 갖는 금속 소재로 제조될 수 있다. 예컨대 제1 및 제2 단자판(91,93)의 소재로는 케이스 본체(21)와 동일한 소재가 사용될 수 있다.The first and second terminal plates 91 and 93 may be made of a metal material having electrical conductivity. For example, the same material as that of the case body 21 may be used as the material of the first and second terminal plates 91 and 93.
그리고 제1 봉합 부재(95), 제2 봉합 부재(97) 및 스페이서(99)의 소재로는 제1 및 제2 단자판(91,93)을 전기적으로 분리할 수 있는 절연성 소재가 사용될 수 있다. 예컨대 제1 및 제2 봉합 부재(95,97)의 소재로는 PE(Polyethylene)가 사용될 수 있다. 스페이서(99)의 소재로는 PPS(Polyphenylene Sulfide)가 사용될 수 있다.An insulating material capable of electrically separating the first and second terminal plates 91 and 93 may be used as a material of the first sealing member 95, the second sealing member 97, and the spacer 99. For example, polyethylene (PE) may be used as a material of the first and second sealing members 95 and 97. Polyphenylene sulfide (PPS) may be used as a material of the spacer 99.
제1 봉합 부재(95)는 제1 및 제2 단자판(91,93)의 물리적인 결합을 매개하며, 제1 및 제2 단자판(91,93)을 서로 이격시켜 전기적으로 분리한다.The first sealing member 95 mediates the physical coupling of the first and second terminal plates 91 and 93, and electrically separates the first and second terminal plates 91 and 93 from each other.
스페이서(99)는 제1 봉합 부재(95)와 함께 제1 및 제2 단자판(91,93)을 서로 이격시켜 전기적으로 분리한다. 스페이서(99)는 링 형태를 가질 수 있다. 제1 및 제2 단자판(91,93)의 가장자리 부분의 서로 마주보는 부분에 스페이서(99)가 삽입될 수 있는 삽입홈이 마련되어 있다.The spacer 99 electrically separates the first and second terminal plates 91 and 93 together with the first sealing member 95. The spacer 99 may have a ring shape. Insertion grooves in which the spacers 99 can be inserted are provided at portions of the edge portions of the first and second terminal plates 91 and 93 facing each other.
제2 봉합 부재(97)은 케이스 본체(21)와 상부 단자판(23) 사이의 접합을 매개한다. 제2 봉합 부재(97)는 가열에 의해 케이스 본체(21)와 상부 단자판(23)을 서로 접합시킬 수 있다. 제2 봉합 부재(97)의 가열 방법으로는 고주파 유도 가열 방법이 사용될 수 있다. 이때 제2 봉합 부재(97)에 대한 가열은 상부 단자판(23)을 케이스 본체(21)의 제1 개방부(22a)에 삽입하여 제2 단자판(93)을 케이스 본체(21)의 상단에 탑재시킨 이후에 수행될 수 있다.The second sealing member 97 mediates the bonding between the case body 21 and the upper terminal plate 23. The second sealing member 97 can join the case body 21 and the upper terminal plate 23 to each other by heating. A high frequency induction heating method may be used as the heating method of the second sealing member 97. In this case, heating of the second sealing member 97 inserts the upper terminal plate 23 into the first opening 22a of the case body 21 to mount the second terminal plate 93 on the upper end of the case body 21. May be carried out after.
이와 같이 제1 및 제2 단자판(91,93)은 서로 제1 봉합 부재(95), 제2 봉합 부재(97) 및 스페이서(99)에 의해 전기적으로 분리된다. 제1 단자판(91)은 제1 연결판(31)을 매개로 셀 조립체(10)의 양극에 전기적으로 연결될 수 있다. 제2 단자판(93)은 케이스 본체(21)에 접합되어 셀 조립체(10)의 음극에 전기적으로 연결될 수 있다.As described above, the first and second terminal plates 91 and 93 are electrically separated from each other by the first sealing member 95, the second sealing member 97, and the spacer 99. The first terminal plate 91 may be electrically connected to the positive electrode of the cell assembly 10 via the first connecting plate 31. The second terminal plate 93 may be bonded to the case body 21 and electrically connected to the negative electrode of the cell assembly 10.
또한 제1 실시예에 따른 상부 단자판(23)은 제1 봉합 부재(95)를 매개로 제1 및 제2 단자판(91,93)이 접합된 구조를 갖고, 제1 및 제2 단자판(91,93)의 외곽에 개재된 제2 봉합 부재(97)를 매개로 케이스 본체(21)에 접합된 이중 봉합 구조를 갖기 때문에, 제1 및 제2 단자판(91,93)의 사이와, 상부 단자판(23)과 케이스 본체(21)의 계면을 통하여 액상의 전해액이 누액되는 문제를 억제할 수 있다.In addition, the upper terminal plate 23 according to the first embodiment has a structure in which the first and second terminal plates 91 and 93 are joined to each other via the first sealing member 95, and the first and second terminal plates 91, Since it has a double sealing structure joined to the case body 21 via the second sealing member 97 interposed outside the 93, the upper terminal plate (between the first and second terminal plates 91 and 93) The problem of leakage of the liquid electrolyte solution can be suppressed through the interface between 23 and the case body 21.
즉 종래의 에너지 저장 장치의 경우 케이스 본체와 단자판 사이의 계면을 통하여 누액이 발생되거나, 케이스 본체에 내장된 전해액은 단자판 자체를 통하여 누액이 발생될 수 있다. 하지만 제1 실시예의 경우 케이스 본체(21)와 상부 단자판(23) 사이에는 제2 봉합 부재(97)와 더불어 제2 단자판(93)이 케이스 본체(21)에 용접에 의해 접합되기 때문에, 전해액의 누액 발생을 억제할 수 있다. 또한 제1 및 제2 단자판(91,93) 사이에는 제1 봉합 부재(95)가 개재되어 있고, 제1 및 제2 단자판(91,93)의 외곽에는 제2 봉합 부재(97)가 개재되어 있기 때문에, 제1 및 제2 단자판(91,93)의 사이를 통하여 전해액의 누액이 발생하는 것을 억제할 수 있다.That is, in the conventional energy storage device, leakage may be generated through an interface between the case body and the terminal plate, or the electrolyte may be leaked through the terminal plate itself. However, in the first embodiment, since the second terminal plate 93 is joined between the case body 21 and the upper terminal plate 23 together with the second sealing member 97 by welding to the case body 21, Leakage can be suppressed. In addition, a first sealing member 95 is interposed between the first and second terminal plates 91 and 93, and a second sealing member 97 is interposed between the first and second terminal plates 91 and 93. As a result, leakage of the electrolyte can be suppressed between the first and second terminal plates 91 and 93.
한편 제1 실시예에서는 스페이서(99)와 제2 봉합 부재(97)를 별도로 형성된 예를 개시하였지만, 일체로 형성될 수도 있다.Meanwhile, in the first embodiment, an example in which the spacer 99 and the second sealing member 97 are separately formed is disclosed, but may be integrally formed.
또한 제1 실시예에서는 케이스(20)가 케이스 본체(21)와, 한 쌍의 단자판(23,24)으로 구성된 예를 개시하였지만 이것에 한정되는 것은 아니다. 케이스 본체는 한 쪽만 개방부가 형성된 구조를 갖고, 그 개방부를 봉합하는 단자판에 양극 및 음극에 각각 연결된 전극 단자가 형성된 구조를 가질 수 있다.In the first embodiment, the case 20 is described with the case main body 21 and a pair of terminal plates 23 and 24, but the present invention is not limited thereto. The case body may have a structure in which only one side of the case is formed, and a structure in which electrode terminals connected to the positive electrode and the negative electrode are respectively formed on the terminal plate sealing the opening.
또한 제1 실시예에서는 케이스(20)가 원통형 구조로 구현된 예를 개시하였지만, 사각기둥의 형태로 구현될 수 있다.In addition, in the first embodiment, the case 20 is disclosed as an example of a cylindrical structure, but may be implemented in the form of a square pillar.
그리고 가스 릴리즈부(40)는 케이스 본체(21)에 설치되어 셀 조립체(10)에 포함된 전해액의 누출은 막으면서 케이스(20) 내에서 발생되는 가스는 외부로 배출시킨다.In addition, the gas release part 40 is installed in the case body 21 to prevent the leakage of the electrolyte contained in the cell assembly 10 while discharging the gas generated in the case 20 to the outside.
이러한 가스 릴리즈부(40)에 대해서, 도 3 내지 도 7을 참조하여 설명하면 다음과 같다. 여기서 도 3은 도 1의 가스 릴리즈부(40)를 보여주는 분해 사시도이다. 도 4는 도 3의 가스 릴리즈부(40)를 보여주는 사시도이다. 도 5 및 도 6는 도 1의 가스 릴리즈부(40)의 복수의 관통공(41)을 형성하는 과정을 보여주는 도면들이다. 그리고 도 7은 도 4의 7-7선 단면도이다.The gas release unit 40 will be described below with reference to FIGS. 3 to 7. 3 is an exploded perspective view illustrating the gas release part 40 of FIG. 1. 4 is a perspective view illustrating the gas release part 40 of FIG. 3. 5 and 6 illustrate a process of forming a plurality of through holes 41 of the gas release part 40 of FIG. 1. 7 is a cross-sectional view taken along line 7-7 of FIG.
가스 릴리즈부(40)는 케이스 본체(21)의 제1 개방부(22a)의 상단에서 아래로 일정 간격 이격된 외주면 상에 형성된 복수의 관통공(41)과, 복수의 관통공(41)을 덮도록 케이스 본체(21)의 내부에 형성되며, 셀(14)의 구동 시 발생되는 가스를 외부로 방출하고, 셀(14)의 전해액의 누출을 막는 가스 통과막(45)을 구비한다. 가스 통과막(45)은 복수의 관통공(41)을 둘러싸도록 복수의 관통공(41)의 외곽에 부착되는 링 타입의 접착층(43)을 매개로 케이스 본체(21)에 부착된다.The gas release part 40 includes a plurality of through holes 41 and a plurality of through holes 41 formed on the outer circumferential surface spaced apart from the upper end of the first opening part 22a of the case body 21 by a predetermined interval. It is formed inside the case body 21 so as to cover, and is provided with a gas passage membrane 45 for discharging the gas generated when the cell 14 is driven to the outside, and prevents leakage of the electrolyte solution of the cell 14. The gas passage membrane 45 is attached to the case body 21 via a ring-type adhesive layer 43 attached to the outer side of the plurality of through holes 41 so as to surround the plurality of through holes 41.
이때 복수의 관통공(41)은 천공기(50)를 이용하여 케이스 본체(21)에 형성할 수 있다. 관통공(41)은, 도 5 및 도 6에 도시된 바와 같이, 천공기(50)를 이용하여 케이스 본체(21)의 안에서 밖으로 천공하여 형성한다.In this case, the plurality of through holes 41 may be formed in the case body 21 by using the puncher 50. The through hole 41 is formed by drilling out of the inside of the case main body 21 using the perforator 50 as shown in FIG. 5 and FIG.
이와 같이 관통공(41)을 형성하는 이유는 다음과 같다. 천공기(50)로 케이스 본체(21)에 천공을 수행하는 경우, 천공되는 방향으로 버어(42; burr)가 발생된다. 제1 실시예의 경우, 케이스 본체(21)의 안에서 밖으로 천공하기 때문에, 버어(42)는 케이스 본체(21)의 외주면 밖을 향하여 형성된다.The reason for forming the through hole 41 in this way is as follows. When punching the case body 21 with the punching machine 50, burrs 42 are generated in the direction of punching. In the case of the first embodiment, the burr 42 is formed toward the outside of the outer circumferential surface of the case main body 21 because it perforates out of the case main body 21.
하지만 제1 실시예와는 반대로, 케이스 본체(21)의 밖에서 안으로 천공하는 경우, 버어는 케이스 본체(21)의 안쪽을 향하여 형성된다. 일반적인 경우 천공기(50)를 이용하여 케이스 본체(21)에 관통공을 형성하는 경우에, 케이스 본체(21)의 밖에서 안으로 천공하여 형성한다. 이와 같이 형성된 복수의 관통공을 덮도록 가스 통과막을 부착할 경우, 관통공의 주위에 형성된 버어에 의해 가스 통과막이 손상되는 문제가 발생될 수 있다.However, in contrast to the first embodiment, in the case of drilling inward from the outside of the case body 21, the burr is formed toward the inside of the case body 21. In general, when the through-hole is formed in the case body 21 by using the puncher 50, it is formed by drilling inward from the outside of the case body 21. When the gas passage membrane is attached to cover the plurality of through holes formed as described above, a problem may occur in that the gas passage membrane is damaged by a burr formed around the through hole.
반면에 제1 실시예의 경우, 버어(42)는 케이스 본체(21)의 외주면 밖을 향하여 형성되기 때문에, 복수의 관통공(41)을 덮도록 가스 통과막(45)을 부착하더라도 버어(42)에 의해 가스 통과막(45)이 손상되는 문제를 발생하지 않는다.On the other hand, in the case of the first embodiment, since the burr 42 is formed toward the outside of the outer circumferential surface of the case body 21, the burr 42 is attached even if the gas passage membrane 45 is attached to cover the plurality of through holes 41. This does not cause a problem that the gas passage membrane 45 is damaged.
또한 제1 실시예에 따른 버어(42)는 케이스 본체(21)의 외주면 밖에 형성되기 때문에, 연마기를 사용하여 쉽게 버어(42)를 제거할 수 있다. 또한 버어(42)가 깨끗하게 제거되었는 지의 여부를 작업자가 쉽게 확인할 수 있다.In addition, since the burr 42 according to the first embodiment is formed outside the outer circumferential surface of the case body 21, the burr 42 can be easily removed using a polishing machine. In addition, the operator can easily check whether the burr 42 has been removed cleanly.
하지만 버아가 케이스 본체의 안쪽을 향하게 형성되는 경우, 케이스 본체 안으로 연마기를 집어넣어 버어를 제거해 주어야 하기 때문에 쉽지 않다. 버어를 제거한 이후에, 버어가 제대로 제어되었는 지의 여부를 작업자가 육안으로 확인하기가 쉽지 않은 문제점을 안고 있다.However, when the burr is formed to face the inside of the case body, it is not easy because the burr needs to be removed by inserting the grinder into the case body. After removing the burr, there is a problem that it is not easy for the operator to visually check whether the burr is properly controlled.
관통공(41)의 수는 에너지 저장 장치의 용량에 따라 결정되며, 용량에 비례하여 증가한다. 이유는 에너지 저장 장치의 용량에 비례하여 가스가 발생하기 때문이다.The number of through holes 41 is determined by the capacity of the energy storage device and increases in proportion to the capacity. This is because gas is generated in proportion to the capacity of the energy storage device.
관통공(41)은 직경 0.5mm 내지 1.5mm를 갖도록 형성하는 것이 바람직하다. 이유는 관통공(41)의 직경이 0.5mm 이하인 경우, 가스가 원활히 배출되지 못하는 문제가 발생한다. 반면에 관통공(41)의 직경이 1.5mm 이상인 경우, 가스 통과막(45)의 파열 압력이 낮아지는 문제가 발생하기 때문이다.The through hole 41 is preferably formed to have a diameter of 0.5mm to 1.5mm. The reason is that when the diameter of the through hole 41 is 0.5 mm or less, there is a problem that the gas is not discharged smoothly. On the other hand, when the diameter of the through hole 41 is 1.5 mm or more, a problem arises in that the burst pressure of the gas passage membrane 45 is lowered.
또한 관통공(41)의 수는 가스 통과막(45)을 통한 가스의 원활한 배출과 가스 통과막의 파열 압력을 고려하여 적정수로 형성한다. 관통공(41)의 수는 에너지 저장 장치의 용량에 비례하여 가감된다.In addition, the number of the through-holes 41 is formed in an appropriate number in consideration of the smooth discharge of the gas through the gas passage membrane 45 and the burst pressure of the gas passage membrane. The number of through holes 41 is added or subtracted in proportion to the capacity of the energy storage device.
가스 통과막(45)으로는 셀(14)에서 발생되는 가스에 대한 일정 수준의 투과도를 가지며, 셀(14)의 전해액과의 화학반응을 일으키지 않는 플라스틱 소재의 필름을 사용한다. 예컨대 가스 통과막(45)으로는 불소수지, PET(Polyethylene Terephthalate), PVDC(Polyvinylidene Chloride), PE, PP(Polypropylene), PPS(Polyphenylene Sulfide), PEEK(Polyether Ether Ketone) 및 PI(Polyimide) 중 하나의 소재로 제조된 플라스틱 필름이 사용될 수 있다.As the gas passage membrane 45, a film made of a plastic material having a certain level of permeability to gas generated in the cell 14 and not causing a chemical reaction with the electrolyte of the cell 14 is used. For example, the gas passage membrane 45 may include fluorine resin, polyethylene terephthalate (PET), polyvinylidene chloride (PVDC), polypropylene (PE), polyphenylene sulfate (PPS), polyether ether ketone (PEEK), and polyimide (PI). Plastic film made of the material of can be used.
그리고 접착층(43)의 소재로는 셀(14)의 전해액과의 화학반응을 일으키지 않는 접착 소재가 사용될 수 있다. 예컨대 접착층(43)의 소재로는 PE(Polyethylene) 소재의 필름이 사용될 수 있다. 접착층(43)을 매개로 한 가스 통과막(45)의 부착 방식으로는 고주파 유도 가열 방식이 사용될 수 있다.As the material of the adhesive layer 43, an adhesive material which does not cause a chemical reaction with the electrolyte solution of the cell 14 may be used. For example, a film made of polyethylene (PE) material may be used as the material of the adhesive layer 43. A high frequency induction heating method may be used as the method of attaching the gas passage membrane 45 through the adhesive layer 43.
이러한 가스 릴리즈부(40)는 케이스 본체(21)의 중심에서 제1 개방부(22a)에 가까운 쪽에 형성되며, 제1 개방부(22a)의 상단에서 1cm 이상 이격된 위치에 형성된다. 또한 가스 릴리즈부(40)는, 케이스 본체(21)가 동일 단면적을 갖고 서로 상이한 길이를 갖는다고 가정할 때, 길이가 증가할수록 제1 개방부(22a)의 상단에서의 가스 릴리즈부(40)의 위치가 멀어지게 형성하는 것이 바람직하다.The gas release part 40 is formed at a side close to the first opening part 22a at the center of the case body 21, and is formed at a position spaced at least 1 cm from an upper end of the first opening part 22a. In addition, the gas release part 40 assumes that the case body 21 has the same cross-sectional area and has a different length from each other, so that the gas release part 40 at the upper end of the first opening part 22a increases as the length increases. It is preferable to form the position away from.
먼저 가스 릴리즈부(40)를 제1 개방부(22a)의 상단에서 일정 거리(a) 이격되게 형성하는 이유는 다음과 같다.First, the reason why the gas release part 40 is formed to be spaced apart from the upper end of the first opening part 22a by a predetermined distance a is as follows.
즉 케이스 본체(21)의 외주면에 형성된 가스 릴리즈부(40)는 상부 단자판(23)가 결합되는 부분을 기준으로 일정 거리(a) 이격되게 형성함으로써, 에너지 저장 장치(100)가 기판에 설치되는 위치에 무관하게 케이스(20) 내에서 발생된 가스를 신속하게 가스 릴리즈부(40)를 통하여 외부로 배출시킬 수 있기 때문이다.That is, the gas release part 40 formed on the outer circumferential surface of the case body 21 is formed to be spaced apart by a predetermined distance (a) based on the portion where the upper terminal plate 23 is coupled, whereby the energy storage device 100 is installed on the substrate. This is because the gas generated in the case 20 can be quickly discharged to the outside through the gas release part 40 regardless of the position.
좀 더 구체적으로 설명하면, 케이스(20)에 내장된 셀(14)에는 전해액이 포함되어 있으며, 셀(14)에서 일부 전해액이 케이스(20)의 수납 공간(29)으로 빠져나올 수 있다. 셀(14)에서 빠져 나온 전해액은 에너지 저장 장치(100)의 기판에 실장되는 방식에 따라서 상부 단자판(23) 또는 하부 단자판(24) 쪽으로 이동할 수 있다.In more detail, the cell 14 embedded in the case 20 may include an electrolyte, and some electrolyte may escape from the cell 14 into the storage space 29 of the case 20. The electrolyte solution exiting the cell 14 may move toward the upper terminal plate 23 or the lower terminal plate 24, depending on how it is mounted on the substrate of the energy storage device 100.
이때 에너지 저장 장치(100)가 기판에 설치되되, 에너지 저장 장치(100)의 상부 단자판(23)이 위쪽을 향하게 위치하는 경우, 셀(14)에서 나온 전해액은 케이스(20)의 하부쪽으로 이동하기 때문에, 케이스(20) 내에서 발생된 가스는 가스 릴리즈부(40)를 통하여 외부로 원활히 배출될 수 있다.At this time, if the energy storage device 100 is installed on the substrate, the upper terminal plate 23 of the energy storage device 100 is located upward, the electrolyte from the cell 14 to move to the lower side of the case 20 Therefore, the gas generated in the case 20 may be smoothly discharged to the outside through the gas release part 40.
반대로 에너지 저장 장치(100)가 기판에 설치되되, 에너지 저장 장치(100)의 상부 단자판(23)이 아래쪽을 향하게 위치하는 경우에, 셀(14)에서 흘러나온 전해액은 상부 단자판(23)의 안쪽면으로 이동할 수 있다. 하지만 가스 릴리즈부(40)가 상부 단자판(23)이 결합되는 부분을 기준으로 일정 거리(a) 이격되게 형성되기 때문에, 셀(14)에서 흘러나온 전해액에 의해 가스 릴리즈부(40)의 가스 통과막(45)이 막히는 문제를 해소할 수 있다. 즉 가스 릴리즈부(40)는 셀(14)에서 흘러나올 수 있는 전해액의 양을 고려하여 케이스(20)에 설계되기 때문에, 셀(14)에서 흘러나온 전해액에 의해 가스 릴리즈부(40)의 가스 통과막(45)이 막히는 문제를 해소할 수 있다. 따라서 에너지 저장 장치(100)가 기판에 거꾸로 설치되더라도, 케이스(20) 내에서 발생된 가스를 가스 릴리즈부(40)를 통하여 외부로 원활히 배출시킬 수 있다.On the contrary, when the energy storage device 100 is installed on the substrate, and the upper terminal plate 23 of the energy storage device 100 is positioned downward, the electrolyte solution flowing out of the cell 14 is inside the upper terminal plate 23. Can move to face However, since the gas release part 40 is formed to be spaced a predetermined distance (a) from the portion where the upper terminal plate 23 is coupled, the gas passes through the gas release part 40 by the electrolyte flowing out of the cell 14. The problem that the membrane 45 is clogged can be solved. That is, since the gas release part 40 is designed in the case 20 in consideration of the amount of electrolyte that can flow out of the cell 14, the gas of the gas release part 40 is caused by the electrolyte solution flowing out of the cell 14. The problem that the passage membrane 45 is blocked can be solved. Therefore, even when the energy storage device 100 is installed upside down on the substrate, the gas generated in the case 20 can be smoothly discharged to the outside through the gas release part 40.
한편 제1 실시예에서는 가스 릴리즈부(40; '제1 가스 릴리즈부'라 함)가 상부 단자판(23) 쪽에 가까운 케이스 본체(21)에 형성된 예를 개시하였지만 이것에 한정되는 것은 아니다. 예컨대 가스 릴리즈부(제1 가스 릴리즈부와 구분하기 위해서 '제2 가스 릴리즈부'라 함)는 하부 단자판(24) 쪽에 가까운 케이스 본체(21)에 형성될 수 있다. 이때 제2 가스 릴리즈부는 하부 단자판(24)이 봉합하는 제2 개방부(22b)에서 일정 간격 이격된 케이스 본체(21)에 형성된다. 제2 가스 릴리즈부와 제2 개방부(22b) 간의 거리는 제1 가스 릴리즈부(40)와 제1 개방부(22a) 간의 거리(a)와 동일할 수 있다. 또는 케이스 본체(21)에 제1 및 제2 가스 릴리즈부가 함께 형성될 수도 있다.Meanwhile, in the first embodiment, an example in which the gas release part 40 (referred to as 'first gas release part') is formed in the case main body 21 close to the upper terminal plate 23 is disclosed, but is not limited thereto. For example, the gas release part (referred to as a 'second gas release part' to distinguish it from the first gas release part) may be formed in the case body 21 close to the lower terminal plate 24. In this case, the second gas release part is formed in the case main body 21 spaced apart from the second opening part 22b to which the lower terminal plate 24 is sealed. The distance between the second gas release part and the second opening part 22b may be equal to the distance a between the first gas release part 40 and the first opening part 22a. Alternatively, the first and second gas release parts may be formed together in the case body 21.
제2 실시예Second embodiment
도 8은 본 발명의 제2 실시예에 따른 가스 릴리즈부(140)를 갖는 에너지 저장 장치(200)를 보여주는 사시도이다.8 is a perspective view illustrating an energy storage device 200 having a gas release unit 140 according to a second embodiment of the present invention.
도 1 및 도 8을 참조하면, 제2 실시예에 따른 에너지 저장 장치(100)는 셀 조립체가 내장된 케이스(20) 및 가스 릴리즈부(140)를 포함한다. 1 and 8, the energy storage device 100 according to the second embodiment includes a case 20 in which a cell assembly is embedded and a gas release unit 140.
제2 실시예에 따른 에너지 저장 장치(200)는 제1 실시예에 따른 에너지 저장 장치(100)와 동일한 구조를 가지되, 케이스(20)의 길이(h2>h1)가 더 길다.The energy storage device 200 according to the second embodiment has the same structure as the energy storage device 100 according to the first embodiment, but the length h2> h1 of the case 20 is longer.
제2 실시예에 따른 에너지 저장 장치(200)는 제1 실시예에 따른 에너지 저장 장치(100)에 비해서 용량이 더 크며, 이로 인해 제1 실시예에 따른 에너지 저장 장치(100)에 비해서 셀(14)에서 흘러나올 수 있는 전해액의 양이 더 많고, 발생되는 가스의 양 또한 더 많을 수 있다.The energy storage device 200 according to the second embodiment has a larger capacity than the energy storage device 100 according to the first embodiment, and as a result, a cell ( 14, the amount of electrolyte that can flow out may be higher, and the amount of gas generated may also be higher.
따라서 제2 실시예에 따른 에너지 저장 장치(200)의 가스 릴리즈부(140)는 제1 실시예에 따른 에너지 저장 장치(100)의 가스 릴리즈부(40)에 비해서 아래쪽에 위치(b>a)하며, 관통공(141)의 개수 또한 더 많다.Therefore, the gas release part 140 of the energy storage device 200 according to the second embodiment is positioned below the gas release part 40 of the energy storage device 100 according to the first embodiment (b> a). The number of through holes 141 is also greater.
한편, 본 명세서와 도면에 개시된 실시예들은 이해를 돕기 위해 특정 예를 제시한 것에 지나지 않으며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시예들 이외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형예들이 실시 가능하다는 것은, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게는 자명한 것이다.On the other hand, the embodiments disclosed in the specification and drawings are merely presented specific examples to aid understanding, and are not intended to limit the scope of the present invention. It is apparent to those skilled in the art that other modifications based on the technical idea of the present invention can be carried out in addition to the embodiments disclosed herein.

Claims (6)

  1. 전해액이 함침되어 있으며, 전기 에너지를 저장하는 셀;A cell impregnated with an electrolyte and storing electrical energy;
    상부에 개방부가 형성되어 있으며, 상기 개방부를 통하여 상기 셀이 수납되는 수납 공간이 형성되어 있는 케이스 본체;An opening part formed at an upper part of the case body in which an accommodation space for accommodating the cell is formed through the opening part;
    상기 케이스 본체의 개방부의 상단에서 아래로 일정 간격 이격된 외주면 상에 형성된 복수의 관통공과, 상기 복수의 관통공을 덮도록 상기 케이스 본체의 내부에 형성되며, 상기 셀의 구동 시 발생되는 가스를 외부로 방출하고, 상기 셀의 전해액의 누출을 막는 가스 통과막을 구비하는 가스 릴리즈부;A plurality of through holes formed on the outer circumferential surface spaced apart from the upper end of the opening of the case body by a predetermined interval, and formed inside the case body to cover the plurality of through holes, and generate gas generated when the cell is driven; A gas release part having a gas passage membrane for releasing the gas into the cell and preventing leakage of the electrolyte of the cell;
    상기 셀과 전기적으로 연결되며, 상기 케이스 본체의 개방부를 봉합하는 단자판;A terminal plate electrically connected to the cell and sealing an opening of the case body;
    을 포함하는 것을 특징으로 하는 가스 릴리즈부를 갖는 에너지 저장 장치.Energy storage device having a gas release portion comprising a.
  2. 제1항에 있어서, 상기 가스 릴리즈부는,The gas release unit of claim 1,
    상기 케이스 본체의 중심에서 상기 개방부에 가까운 쪽에 형성되며, 상기 개방부의 상단에서 1cm 이상 이격된 위치에 형성된 것을 특징으로 하는 가스 릴리즈부를 갖는 에너지 저장 장치.The energy storage device having a gas release portion, characterized in that formed in a position close to the opening portion in the center of the case body, spaced apart by more than 1cm from the upper end of the opening portion.
  3. 제2항에 있어서,The method of claim 2,
    상기 케이스 본체는 관형으로 형성되며, 동일 단면적에서 길이가 증가할수록 상기 개방부의 상단에서의 상기 가스 릴리즈부의 위치가 멀어지는 것을 특징으로 하는 가스 릴리즈부를 갖는 에너지 저장 장치.The case body is formed in a tubular shape, the energy storage device having a gas release portion, characterized in that the position of the gas release portion at the upper end of the opening as the length increases in the same cross-sectional area.
  4. 제2항에 있어서, 상기 가스 릴리즈부의 가스 통과막은,The gas passage membrane of claim 2, wherein
    상기 복수의 관통공을 둘러싸도록 상기 복수의 관통공의 외곽에 부착되는 링 타입의 접착층을 매개로 상기 케이스 본체에 부착되는 것을 특징으로 하는 가스 릴리즈부를 갖는 에너지 저장 장치.Energy storage device having a gas release portion, characterized in that attached to the case body via a ring-type adhesive layer attached to the outer periphery of the plurality of through holes to surround the plurality of through holes.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 접착층의 소재는 PE(Polyethylene)이고,The material of the adhesive layer is PE (polyethylene),
    상기 가스 통과막은 불소수지, PET(Polyethylene Terephthalate), PVDC(Polyvinylidene Chloride), PE, PP(Polypropylene), PPS(Polyphenylene Sulfide), PEEK(Polyether Ether Ketone) 및 PI(Polyimide) 중 하나의 소재로 제조된 플라스틱 필름인 것을 특징으로 하는 가스 릴리즈부를 갖는 에너지 저장 장치.The gas passage membrane is made of fluorine resin, PET (Polyethylene Terephthalate), PVDC (Polyvinylidene Chloride), PE, PP (Polypropylene), PPS (Polyphenylene Sulfide), PEEK (Polyether Ether Ketone) and PI (Polyimide) Energy storage device having a gas release portion, characterized in that the plastic film.
  6. 제2항에 있어서, 상기 가스 릴리즈부의 관통공은,According to claim 2, The through hole of the gas release portion,
    상기 케이스 본체의 안쪽에서 외측으로 천공하여 형성된 것을 특징으로 하는 가스 릴리즈부를 갖는 에너지 저장 장치.Energy storage device having a gas release portion formed by puncturing from the inside of the case body to the outside.
PCT/KR2014/007374 2013-08-20 2014-08-08 Energy storage device having gas release part WO2015026085A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130098620A KR101525878B1 (en) 2013-08-20 2013-08-20 Energy storage device having gas release unit
KR10-2013-0098620 2013-08-20

Publications (1)

Publication Number Publication Date
WO2015026085A1 true WO2015026085A1 (en) 2015-02-26

Family

ID=52483823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/007374 WO2015026085A1 (en) 2013-08-20 2014-08-08 Energy storage device having gas release part

Country Status (2)

Country Link
KR (1) KR101525878B1 (en)
WO (1) WO2015026085A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980023226A (en) * 1996-09-25 1998-07-06 손욱 Cap assembly of battery
JP2002299168A (en) * 2001-03-30 2002-10-11 Nissan Diesel Motor Co Ltd Electric double-layer capacitor and its manufacturing method
KR20100109341A (en) * 2009-03-30 2010-10-08 킴스테크날리지 주식회사 Electrochemical cell with gas permeable membrane

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19980023226A (en) * 1996-09-25 1998-07-06 손욱 Cap assembly of battery
JP2002299168A (en) * 2001-03-30 2002-10-11 Nissan Diesel Motor Co Ltd Electric double-layer capacitor and its manufacturing method
KR20100109341A (en) * 2009-03-30 2010-10-08 킴스테크날리지 주식회사 Electrochemical cell with gas permeable membrane

Also Published As

Publication number Publication date
KR101525878B1 (en) 2015-06-03
KR20150021360A (en) 2015-03-02

Similar Documents

Publication Publication Date Title
WO2010114240A2 (en) Electrochemical cell with a gas permeable membrane
KR20090037619A (en) Electrochemical cell having quasi-bipolar structure
WO2013027935A1 (en) Battery module
US9190221B2 (en) Aqueous-based electric double-layer capacitor
KR101416808B1 (en) Case having safety vent, method of manufacturing thereof and energy storage device using the case
WO2012177083A2 (en) Pouch and pouch type secondary battery
KR100953890B1 (en) Electrochemical Cell Having Quasi-Bipolar Structure
WO2015005652A1 (en) Electrode assembly, and battery and device comprising same
RU2686841C1 (en) Bipolar battery
US9330855B2 (en) Aqueous-based electric double-layer capacitor
WO2013100493A1 (en) Surface mounted super capacitor
WO2011122814A2 (en) Electrochemical cell having a gas-permeable membrane
WO2015026085A1 (en) Energy storage device having gas release part
CN114039173B (en) Electrochemical device, battery module and electric equipment
KR101416805B1 (en) Folding cell and super capacitor folding type having the same
KR101757527B1 (en) Electro-chemical energy storage having gas permeable membrane disposed within multiple case
JP2011146668A (en) Electric double layer capacitor
KR20120083681A (en) A gas venting structure for energy storage device and energy storage device including the same
WO2010093160A2 (en) Electrochemical cell having quasi-bipolar structure
WO2023090887A1 (en) Pouch-type lithium secondary battery
KR101416809B1 (en) Terminal plate and energy storage device using the same
KR101296253B1 (en) Electrochemical Cell with Gas Permeable Membrane
KR101416806B1 (en) Folding cell and super capacitor folding type having the same
WO2016163647A1 (en) Electric double-layer device
CN214753411U (en) Super capacitor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14837933

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14837933

Country of ref document: EP

Kind code of ref document: A1