WO2015025993A1 - System and method for analyzing molecular sequence in real time using stacked nano-ribbon - Google Patents

System and method for analyzing molecular sequence in real time using stacked nano-ribbon Download PDF

Info

Publication number
WO2015025993A1
WO2015025993A1 PCT/KR2013/007477 KR2013007477W WO2015025993A1 WO 2015025993 A1 WO2015025993 A1 WO 2015025993A1 KR 2013007477 W KR2013007477 W KR 2013007477W WO 2015025993 A1 WO2015025993 A1 WO 2015025993A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanoribbons
nanoribbon
real
sequence analysis
nanopores
Prior art date
Application number
PCT/KR2013/007477
Other languages
French (fr)
Korean (ko)
Inventor
최중범
Original Assignee
나노칩스(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 나노칩스(주) filed Critical 나노칩스(주)
Priority to PCT/KR2013/007477 priority Critical patent/WO2015025993A1/en
Publication of WO2015025993A1 publication Critical patent/WO2015025993A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6869Methods for sequencing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/48707Physical analysis of biological material of liquid biological material by electrical means
    • G01N33/48721Investigating individual macromolecules, e.g. by translocation through nanopores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors

Definitions

  • the present invention relates to a real-time molecular sequence analysis system using stacked nanoribbons, and more particularly, at least four nanoribbons are stacked on a substrate with an insulating layer interposed therebetween, the substrate, the insulating layer and the nano
  • a nanopore is formed penetrating the center of the ribbon in a vertical direction, and the nanoribbons are formed by the interaction between the unit molecules and the nanoribbons constituting the biopolymer while the biopolymer passes through the nanopore.
  • a molecular sequence analysis system that detects the change of the unit spherical component in real-time by sensing the current flowing through the measured and measured change through a measurement electrode formed at each end of the longitudinal length of the nanoribbon, and It's about how.
  • Decoding the unit molecule sequence (amino acid molecule sequence of the protein, DNA base molecule sequence) constituting the biological polymer means decoding the biometric information, the molecular genetic understanding can make early diagnosis of human disease It is very important in that it is.
  • DNA is composed of nucleotide units, and each nucleotide has the same one deoxyribose and phosphate group and has four different bases: adenine (A), guanine (G), and cytosine (C). ), Thymine (T) is present, and A and G are Purine series having two cyclic structures, and C and T are Pyrimidine series having one cyclic structure.
  • mRNA messenger RNA
  • proteins are synthesized through the binding of amino-acids in ribosomes. If there is a mutated nucleotide sequence different from the original nucleotide sequence, protein synthesis may not be possible or abnormal proteins may be synthesized and expressed, resulting in physiological problems. For this reason, the meaning of deciphering the information possessed by DNA is very important from a pathological point of view for the early diagnosis and treatment of diseases.
  • the present invention has been made to solve the conventional problems as described above, according to an embodiment of the present invention, to solve the problems of the conventional unit molecular sequence analysis system using nanotechnology, molecular sequence analysis It reduces excessive time and harmful chemicals that are invested in preliminary work, and enables real-time unit molecular analysis at high speed using semi-permanent solid elements, unlike conventional methods, which provides a cheaper molecular sequence analysis system.
  • the movement means having a piezoelectric element inherent electricity of different unit molecules constituting the biopolymer while controlling the movement speed of the biopolymer (biological polymer) passing through the nanopore
  • the movement means having a piezoelectric element inherent electricity of different unit molecules constituting the biopolymer while controlling the movement speed of the biopolymer (biological polymer) passing through the nanopore
  • An object of the present invention is a nanoribbon having a specific width in which a current change is induced by interaction with the nearest unit molecules of the biomolecules; Measuring electrodes formed at each of both ends of the longitudinal direction of the nanoribbon to measure a change in current; An insulating layer formed on the upper and lower surfaces of the nanoribbons to electrically insulate the nanoribbons from each other; And nanopores that penetrate the insulating layer and the nanoribbons in the vertical direction and allow unit molecules forming the biopolymer to pass through.
  • the real-time molecular sequence analysis system using the stacked nanoribbons may include the nanopores.
  • the apparatus may further include a substrate for supporting the nanoribbons, the measuring electrode, and the insulating layer, and the nanopores may be formed by penetrating the substrate, the insulating layer, and each of the nanoribbons in a vertical direction.
  • Four or more nanoribbons may be configured to be stacked on a substrate with an insulating layer interposed therebetween.
  • Each nanoribbon may have a unit molecule coating part coated with different unit molecules at a position where the nanopores are formed to induce complementary bonding between the unit molecule and the coating part passing through the nanopores.
  • Nanoribbons include zig-zag graphene or two-dimensional topological insulators, so the inside of the nanoribbon is characterized by being electrically insulating and having edges that are conductive. Can be.
  • the measuring electrode may be made of a conductor including at least one of gold, silver, copper, platinum, palladium, titanium, nickel, and cobalt, and may be electrically connected to the nanoribbon.
  • the insulating layer consists of an electrical insulator comprising at least one of a silicon oxide film, a silicon nitride film, an aluminum oxide film, a silver oxide film, a zinc oxide film, and a hafnium oxide film, and insulates the nanoribbons from the electrolyte and other nanoribbons. It can be characterized.
  • a hydrogen atom or a nitrogen atom may be bonded to a carbon atom having a dangling bond.
  • the thickness of the nanoribbons may be characterized in that less than 5 kPa.
  • the width of the nanoribbons may be characterized in that less than 10nm.
  • the diameter of the nanopores may be characterized in that less than 10nm.
  • the method may further include a voltage applying unit for applying a voltage to the measurement electrode.
  • the method may further include analyzing means for acquiring the current change data based on the current measured by the measuring electrode, and determining the sequence of the unit molecules of the biopolymer based on the current change data.
  • an object of the present invention is to apply a voltage to a measurement electrode connected to both ends of a length of each nanoribbon such that a current flows through the nanoribbon; Applying a voltage difference or a fluid pressure difference between one side and the other side of the substrate to allow the biopolymer to pass through the nanopores; Changing the current flowing through the nanoribbons by interacting with the nanoribbons of the unit molecules forming the biopolymer; Detecting a change in current flowing through the nanoribbon; And determining the sequence of unit molecules by combining and analyzing the current change flowing through each nanoribbon. This may be achieved as a real-time molecular sequence analysis method using stacked nanoribbons.
  • the current flowing through the nanoribbon may be characterized as including an edge current.
  • the nanoribbons are stacked on the substrate with four or more insulating layers interposed therebetween, and each nanoribbon is provided with unit molecular coatings coated with different unit molecules at positions where nanopores are formed.
  • Complementary bonding of the unit molecule and the coating portion passing through the nanopores may be characterized in that the current flowing through the nanoribbons is changed.
  • the detecting and determining may be based on a change in current flowing through the nanoribbons detected by the measuring electrode, and the analysis means may identify the sequence of unit molecules by combining and analyzing the change in current flowing through the nanoribbons. Can be.
  • nanoribbons are stacked on a substrate with an insulating layer interposed therebetween, and each unit molecule of a biopolymer that moves nanopores vertically penetrating the center of the substrate, the insulating layer, and the nanoribbons
  • each unit molecule of a biopolymer that moves nanopores vertically penetrating the center of the substrate, the insulating layer, and the nanoribbons
  • T, C can be maximized the detection efficiency and reliability by maximizing the current change of the nanoribbon through complementary bonding with base molecules moving into the nanopore, and through a single ss-DNA movement 4 All nucleotide sequences consisting of two base molecules can be analyzed.
  • ss-DNA which is an example of a biopolymer
  • the probe to pass through the nanochannel by driving the moving unit and the tension, compression of the piezoelectric element.
  • FIG. 1 is a perspective view of a real-time molecular sequence analysis system using stacked nanoribbons applied to DNA base molecule sequence decoding according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view taken along line A-A of FIG.
  • FIG. 3 is a partial cross-sectional view of a real-time molecular sequence analysis system using a laminated nanoribbon having a piezoelectric element according to an embodiment of the present invention
  • FIG. 4 is a flowchart of a method for real-time molecular sequence analysis using stacked nanoribbons according to an embodiment of the present invention
  • FIG. 5 is a graph showing current change data measured using nanoribbons coated with four different bases applicable according to one embodiment of the present invention
  • FIG. 6 is a flowchart illustrating a real-time molecular sequence analysis method using stacked nanoribbons having piezoelectric elements according to an embodiment of the present invention.
  • nanoribbon 200A A-coated nanoribbon
  • the real-time molecular sequence analysis system using the stacked nanoribbons according to the present invention decodes the unit molecule sequence (for example, amino acid molecules of proteins, or base molecule sequences of DNA, etc.) constituting various biopolymers such as proteins or DNA. It can be used to As a specific example, specific contents applied to DNA nucleotide sequence analysis will be described below.
  • FIG. 1 illustrates a perspective view of a real-time molecular sequence analysis system using stacked nanoribbons applied to DNA base molecule sequence decoding according to an embodiment of the present invention
  • FIG. 2 is a cross-sectional view of FIG.
  • the real-time molecular sequence analysis system using a stacked nanoribbon is largely nanopore 100, nanoribbon (200: 200A, 200G, 200T, 200C) ,
  • the measurement electrode 300, the insulating layer 400, the substrate 500, and the like, may be included.
  • a predetermined voltage is applied to the measurement electrode 300 to flow a predetermined current through the nanoribbons 200, and the other side of the substrate 500 Single-stranded DNA (hereinafter referred to as ss-DNA) by a voltage difference or a fluid pressure difference applied between (between the upper side and the lower side of the substrate 500 as shown in FIGS. 1 and 2), 10 passes through the nanopores (100).
  • the sequence of nucleotides constituting the ss-DNA 10 may be analyzed by analyzing a change in edge current flowing through the edge of the ribbon 200.
  • each of the nanoribbon 200 at the position where the nanopore 100 is formed is coated with any one of the different bases A, G, T, C through the nanopore 100
  • the complementary bond AT or GC nucleotides ss-DNA (10) to maximize the current change flowing through the edge of the nanoribbons (200).
  • the nanopores 100 are formed to vertically penetrate through the centers of the substrate 500, the plurality of insulating layers 400, and the plurality of nanoribbons 200.
  • ss-DNA (10) has a diameter that can pass without twisting or overlapping, usually in the range of 2nm or less.
  • the ss-DNA 10 passes the nanopores 100 by a voltage difference or a fluid pressure difference applied between one side and the other side of the substrate 500.
  • ss-DNA (10) is used to induce a change in the charge distribution of the nanoribbons 200 from the electric dipoles of different nucleotides by exposing the base to the outside, DNA is a double helix structure for one strand Since the other strand has a complementary sequence, it is possible to grasp the entire DNA structure by analyzing the nucleotide sequence with one ss-DNA (10).
  • the nanoribbons 200 are used to detect the actual nucleotides. Since the distance between the different bases forming the ss-DNA 10 is 5 m or less, the thickness of the nanoribbons 200 should also be 5 m or less. When analyzing nucleotides it is possible not to be greatly interfered with other adjacent nucleotides.
  • nanoribbons 200 in order to induce a change in the effective current of the nanoribbons 200 from the base electric dipole should have a width of less than 10nm.
  • zig-zag graphene or two-dimensional topological insulators satisfying the above conditions may serve as the nanoribbons 200.
  • 200A is coated with deoxyribonucleotide (dATP) having adenine or adenine as a base on the nanopore 100
  • 200G is similarly deoxyribonucleotide having a guanine or guanine as a base.
  • dGTP is coated with thymine or deoxyribonucleotide (dTTP) with thymine as base
  • dCTP deoxyribonucleotide
  • the nanoribbons through the complementary bond (AT or CG) of the base constituting the ss-DNA 10 and the base coated on the nanoribbons 200.
  • the change of the charge distribution is maximized, and thus the change of the edge current of the nanoribbon is maximized.
  • the measuring electrode 300 may be composed of a conductor including gold, silver, copper, platinum, palladium, titanium, nickel, cobalt, the longitudinal direction of the nanoribbon 200 It is electrically connected to both ends, and the voltage is applied by the voltage applying unit.
  • the stacked nanoribbons 200 are formed on the upper and lower surfaces of the nanoribbons 200 for the analysis of each nucleotide, and an insulating layer 400, which is an electrical non-conductor, is formed in a length direction with one nanoribbon 200.
  • the measuring electrodes 300 formed at both ends are electrically insulated from an external electrolyte or other nanoribbons 200.
  • the substrate 500 is mechanically supported by the nanoribbons 200 on which the insulating layer 400 and the measurement electrode 300 are formed.
  • the real-time molecular sequence analysis system using a laminated nanoribbon includes an electrode element 5, a probe 70, a piezoelectric element 60, a moving unit 50, a control means, The movement speed of the ss-DNA 10 passing through the nanopores can be controlled.
  • Figure 3 shows a cross-sectional view of a real-time molecular sequence analysis system using a stacked nanoribbons having a piezoelectric element according to an embodiment of the present invention.
  • the substrate 500 serves as a separation wall separating both ends of the measuring tank 4 in which the electrolyte for maintaining the ss-DNA 10 is maintained therein.
  • the electrode elements 5 are installed at both sides of the substrate at specific intervals to form a potential difference at both ends of the substrate 500 so that the ss-DNA 10 can be supplied to move the nanopores 100. do. That is, the electrode elements 5 are provided in pairs and installed at the upper end and the lower end of the measuring bath 4, respectively. Then, the voltage is supplied to the electrode element 5 so that the lower end has a + pole and the upper end has a-pole, thereby forming a potential difference between the upper end and the lower end of the substrate 500. Therefore, since the ss-DNA 10 is basically -charged, the ss-DNA 10 can be moved from the upper end to the lower end through the nanopores 100 by this potential difference.
  • the real-time molecular sequence analysis system using the stacked nanoribbons having the piezoelectric element 60 further includes a moving means.
  • the moving means includes a head 40 installed on one side of the measuring tank 4 and a moving part 50 moving in the x, y, and z axis directions with respect to the head, and a piezoelectric element 60 that is tensioned or compressed by an applied voltage. And, it may be provided as a control means (not shown) for controlling the driving of the piezoelectric element 60 and the moving unit 50.
  • the moving unit 50 moves the piezoelectric element 60 and the probe 70 in the x-axis, the y-axis, and the z-axis in the vertical direction with respect to the head 40 at a level of 0.1 to several tens of micrometers.
  • the moving unit 50 may be composed of a piezo motor or the like.
  • the piezoelectric element 60 is tensioned or compressed in the z-axis, x-axis, and y-axis directions in the range of 0.1 to 10 ⁇ m by the applied voltage.
  • the ss-DNA 10 is nanopored by driving the piezoelectric element 60 and the moving unit 50 by bonding the end of the ss-DNA 10 to the end surface of the probe 70. It is possible to adjust the moving speed passing through (100).
  • FIG. 4 is a flowchart illustrating a real-time molecular sequence analysis method using stacked nanoribbons according to an embodiment of the present invention.
  • a voltage is applied to the measurement electrodes 300 provided at both ends of each nanoribbon 200 by a voltage applying unit so that a predetermined current flows through the nanoribbon 200 (S10). Then, a voltage difference or a fluid pressure difference is applied between one surface and the other surface of the substrate 500 to allow the biopolymer to pass through the nanopores 100 (S20).
  • the unit molecules forming the biopolymer interact with each nanoribbon 200 to change a current flowing through the nanoribbon 200.
  • most of the current flowing through the nanoribbons 200 corresponds to an edge current.
  • the change of the current flowing through the nanoribbons 200 is sensed by the measuring electrodes 300 provided at both ends of each of the nanoribbons 200 (S30).
  • the nanoribbons 200 are stacked on the substrate 500 with four or more insulating layers 400 interposed therebetween, and each of the nanoribbons 200 has different units at positions where the nanopores 100 are formed. Comprising a unit molecule coating unit coated with a molecule, the complementary bonding of the unit molecule and the base coating portion passing through the nanopores 100 can be induced to maximize the current change flowing through the nanoribbons 200.
  • the analysis means obtains the current change data by the unit molecules constituting the biopolymer passing through the nano-pores (100) (S40). In addition, the analyzing means may determine the sequence of the unit molecules by combining and analyzing the obtained current change data (S50).
  • the analysis means based on the current change flowing through the nanoribbons 200 sensed by the measuring electrode 300, the analysis means identifies the sequence of unit molecules by combining and analyzing the current change data flowing through the nanoribbons 200. Done.
  • FIG. 5 is a graph showing current change data measured in real-time using nanoribbons 200 coated with four different bases applicable according to an embodiment of the present invention. That is, FIG. 5 shows four independent nanoribbons 200 coated with ss-DNA 10 having the same base sequence CTGACTGA ... as in FIG. 2 passing through the nanopore 100 with each other base. Shows the measured data in real time that can be predicted by edge current modulation.
  • the graph shown at the top left in FIG. 5 is the current change data measured in the nanoribbons 200A coated with base A, and the graph shown at the top right is the current change measured in the nanoribbons 200G coated with base G.
  • Data, the graph shown at the bottom left is a base T coated nanoribbons 200T, and the graph shown at the bottom right is a base C coated nanoribbons 200C.
  • the analytical means can analyze the base sequence of the ss-DNA 10 that passed through the nanochannel by combining-analyzing these four data in real time, and if the analysis of the graph shown in FIG. It can be read that the sequence becomes CTGACTGA ... in real time as in FIG. 2.
  • the real-time molecular sequence analysis system using the stacked nanoribbons according to an embodiment of the present invention, the electrode element 5, the probe 70, the piezoelectric element 60, the moving part 50, Including the control means, it is possible to adjust the moving speed of the ss-DNA 10 passing through the nanopores.
  • FIG. 6 illustrates a flowchart of a real-time molecular sequence analysis method using stacked nanoribbons having piezoelectric elements.
  • control means drives the moving part 50 of the moving means to attach the end of the ss-DNA 10 to the end surface of the probe 70 while moving the moving part 50 in the x, y and z axis directions. It becomes (S100).
  • the control means drives the moving unit 50 to adjust the direction and position the end of the probe 70 close to the nano-pores (100) (S200).
  • the step of attaching the end of the ss-DNA (10) to the end surface of the probe 70 (S100) and the position of the ss-DNA (10) in close proximity to the nanopore 100 (S200) For easy identification, labeling DNA stained with fluorescent material at the end of the ss-DNA 10 to be analyzed can be conjugated (ligation) using a lyase.
  • the position of the ss-DNA 10 can be more easily identified, and the moving part 50 is moved to probe the upper end of the labeling DNA 70. ) It will be attached to the end surface.
  • a voltage is applied to the measurement electrodes 300 provided at both ends of each nanoribbon 200 by a voltage applying unit so that a predetermined current flows through the nanoribbon 200 (S300). Then, a voltage difference or a fluid pressure difference is applied between one surface and the other surface of the substrate 500 to allow the biopolymer to pass through the nanopores 100 (S400).
  • a voltage is applied to the electrode element 5.
  • the electrode element 5 located at the upper end of the measuring tank 4 has a positive pole, and the electrode element 5 located at the lower part has a negative pole. Therefore, a potential difference is formed between both ends of the substrate 500 such that the ss-DNA 10 attached to the end surface of the probe 70 passes through the nanopores 100 (S400).
  • the control means moves the ss-DNA 100 attached to the probe 70 in the longitudinal direction of the nanopores while controlling the piezoelectric element 60 and the moving unit 50 (S500).
  • the unit molecules constituting the biopolymer interact with each nanoribbon 200 to change a current flowing through the nanoribbon 200 (S600). At this time, most of the current flowing through the nanoribbons 200 corresponds to an edge current.
  • the current flowing through the nanoribbons 200 is sensed by the measuring electrodes 300 provided at both ends of the nanoribbons 200.
  • the nanoribbons 200 are stacked on the substrate 500 with four or more insulating layers 400 interposed therebetween, and each of the nanoribbons 200 has different units at positions where the nanopores 100 are formed. Comprising a unit molecule coating unit coated with a molecule, the complementary bonding of the unit molecule and the base coating portion passing through the nanopores 100 can be induced to maximize the current change flowing through the nanoribbons 200.
  • the analyzing means obtains the current change data by the unit molecules forming the biopolymers passing through the nanopores 100 (S700). In addition, the analyzing means may determine the sequence of the unit molecules by combining and analyzing the obtained current change data (S800).
  • the analysis means based on the current change flowing through the nanoribbons 200 sensed by the measuring electrode 300, the analysis means identifies the sequence of unit molecules by combining and analyzing the current change data flowing through the nanoribbons 200. Done.

Abstract

The present invention relates to a system for analyzing a molecular sequence which enables the analysis in real time of a unit molecular sequence forming a bio-polymer by using a stacked nano-ribbon, and is comprised of nanopores, a nano-ribbon, measuring electrodes, an insulation layer, and a substrate. The measuring electrodes are electrically connected to the nano-ribbon at both ends in a lengthwise direction of the nano-ribbon, a current made to flow in the nano-ribbon by means of a predetermined voltage applied through the measuring electrodes is changed by the respectively different inherent electric dipoles of unit molecules of bio-polymer which passes nanopores formed in the middle of the nano-ribbon, and the degrees of the changes are detected, so that the sequences of the unit molecules forming the bio-polymer can be analyzed in real time.

Description

적층 나노리본을 이용한 실시간 분자서열 분석시스템 및 분석방법Real-Time Molecular Sequence Analysis System and Analysis Method Using Stacked Nanoribbons
본 발명은 적층 나노리본(stacked nanoribbon)을 이용한 실시간 분자서열 분석시스템에 관한 것으로서, 더욱 상세하게는 적어도 네 개 이상의 나노리본이 절연층을 사이에 두고 기판 위에 적층되어 있고, 기판, 절연층 및 나노리본의 중심을 수직 방향으로 관통하는 나노포어(nanopore)가 형성되어 있으며, 생체고분자(biological polymer)가 나노포어를 통과하는 동안 생체고분자를 구성하는 단위분자와 나노리본 사이의 상호작용에 의해 나노리본을 통해 흐르는 전류가 변화되고, 그 변화를 나노리본의 길이 방향 양 끝에 각각 형성된 측정전극(measurement electrode)을 통해 감지하여 단위구성분자의 정체를 실시간(real-time)으로 분석하는 분자서열 분석시스템 및 그 방법에 관한 것이다.The present invention relates to a real-time molecular sequence analysis system using stacked nanoribbons, and more particularly, at least four nanoribbons are stacked on a substrate with an insulating layer interposed therebetween, the substrate, the insulating layer and the nano A nanopore is formed penetrating the center of the ribbon in a vertical direction, and the nanoribbons are formed by the interaction between the unit molecules and the nanoribbons constituting the biopolymer while the biopolymer passes through the nanopore. A molecular sequence analysis system that detects the change of the unit spherical component in real-time by sensing the current flowing through the measured and measured change through a measurement electrode formed at each end of the longitudinal length of the nanoribbon, and It's about how.
생체고분자(biological polymer)를 구성하는 단위분자서열(단백질의 아미노산 분자서열, DNA 염기분자 서열)을 해독하는 것은 생체 정보를 해독한다는 의미로, 분자 유전학적 이해를 통해 인체 질환의 조기 진단을 이룰 수 있다는 점에서 매우 중요하다. Decoding the unit molecule sequence (amino acid molecule sequence of the protein, DNA base molecule sequence) constituting the biological polymer means decoding the biometric information, the molecular genetic understanding can make early diagnosis of human disease It is very important in that it is.
예를 들어 DNA는 뉴클레오티드 단위체로 구성되며 각각의 뉴클레오티드는 동일한 하나의 디옥시리보오스 및 인산기를 갖으며 서로 다른 네 종류의 염기인 아데닌(Adenine; A), 구아닌(Guanine; G), 시토신(Cytosine; C), 티민(Thymine; T)이 존재하며 A,G는 두 개의 고리형 구조를 갖는 퓨린(Purine) 계열이며, C, T는 하나의 고리형 구조를 갖는 피리미딘(Pyrimidine)계열이다. For example, DNA is composed of nucleotide units, and each nucleotide has the same one deoxyribose and phosphate group and has four different bases: adenine (A), guanine (G), and cytosine (C). ), Thymine (T) is present, and A and G are Purine series having two cyclic structures, and C and T are Pyrimidine series having one cyclic structure.
디옥시리보핵산에 기록되어 있는 뉴클레오티드를 바탕으로 메신저알엔에이(messenger RNA:mRNA)가 전사되며 리보솜(ribosome) 내에서 아미노산(amino-acid)의 결합을 통해 단백질이 합성된다. 만일 본래의 염기서열과 다른 변이된 염기서열이 존재할 경우 단백질 합성이 불가능하거나 이상 단백질이 합성, 발현되어 생리적 문제를 초래할 수 있다. 이러한 이유로 DNA가 가진 정보를 해독한다는 의미는 질병의 조기 진단과 치료에 대한 병리학적 관점에서 매우 중요하다. Based on the nucleotides recorded in the deoxyribonucleic acid, messenger RNA (mRNA) is transcribed and proteins are synthesized through the binding of amino-acids in ribosomes. If there is a mutated nucleotide sequence different from the original nucleotide sequence, protein synthesis may not be possible or abnormal proteins may be synthesized and expressed, resulting in physiological problems. For this reason, the meaning of deciphering the information possessed by DNA is very important from a pathological point of view for the early diagnosis and treatment of diseases.
DNA 염기 서열의 분석 방법은 초기 Maxam-Gilbert sequencing에서부터 Dye-Terminator sequencing에 이르기까지 다양한 방법들이 개발되었다. 그러나 이러한 방법들은 단위 시간당 분석 할 수 있는 DNA 길 제한되며 정확한 분석을 위한 DNA의 증폭, 방사성 동위원소의 치환 및 염색 과정을 반복하는 등의 오랜 준비 과정이 소요 된다. Various methods have been developed for DNA sequencing, ranging from early Maxam-Gilbert sequencing to Dye-Terminator sequencing. However, these methods limit the length of DNA that can be analyzed per unit time, and require a long preparation process such as repeating DNA amplification, radioisotope substitution and staining for accurate analysis.
또한, DNA의 조각들을 통한 전체 DNA의 분석은 많은 데이터의 처리를 통해 이루어지며 소요되는 시간과 분석에 필요한 약품 등의 이유로 많은 비용이 필요하다. 이와 같은 분석 방법이 당면한 문제점은 급속도로 발전한 나노기술과 바이오 기술의 융합을 통해 다양한 해법들이 제시되고 있으며, 무한한 잠재적 기술을 제공할 수 있다. In addition, the analysis of the entire DNA through the pieces of DNA is done through the processing of a lot of data, and requires a lot of money because of the time required and the chemicals required for analysis. The problem faced by this analytical method is that various solutions have been proposed through the convergence of rapidly developed nanotechnology and biotechnology, and can provide infinite potential technology.
대표적인 예로 기존의 화학적 반응에 의한 분석방법에서 탈피하여 반영구적으로 사용할 수 있는 고체 소자를 응용하여 전기적 분석 방법들이 제시되고 있다. 이러한 기술들이 구현에 성공할 경우 준비과정 및 분석과정에 소요되는 시간을 단축할 수 있고 소모되는 화학약품들을 줄임으로써 폐기물을 줄일 수 있으며, 보다 간편하고 정확한 분석이 가능할 것으로 기대된다. As a representative example, electrical analysis methods have been proposed by applying a solid element that can be used semi-permanently by breaking away from conventional chemical reaction methods. Successful implementation of these technologies can reduce the time required for preparation and analysis, reduce waste by reducing chemicals, and enable simpler and more accurate analysis.
따라서 본 발명은 상기와 같은 종래의 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 일실시예에 따르면, 나노기술을 이용하여 기존의 단위분자서열 분석시스템의 문제점을 해결하기 위한 것으로, 분자서열 분석을 위한 사전작업에 투자되는 과다한 시간 및 유해한 화학물질의 배출을 줄이며, 소모적인 기존 방식과는 달리 반영구적인 고체소자를 이용하여 고속으로 실시간 단위분자 분석이 가능하며 보다 저렴한 분자서열분석시스템을 제공하는 것을 목적으로 한다.Therefore, the present invention has been made to solve the conventional problems as described above, according to an embodiment of the present invention, to solve the problems of the conventional unit molecular sequence analysis system using nanotechnology, molecular sequence analysis It reduces excessive time and harmful chemicals that are invested in preliminary work, and enables real-time unit molecular analysis at high speed using semi-permanent solid elements, unlike conventional methods, which provides a cheaper molecular sequence analysis system. For the purpose of
또한, 본 발명의 일실시예에 따르면, 압전소자를 갖는 이동수단을 포함하여 나노포어를 통과하는 생체고분자(biological polymer)의 이동속도를 제어하면서 생체고분자를 구성하는 각기 다른 단위분자들의 고유한 전기쌍극자 또는 고유에너지궤도로부터 유도되는 전하분포 및 전류의 변화를 감지하여 단위구성분자의 정체를 나노채널을 통과하는 동안 실시간으로 해독하는 압전소자를 갖는 적층나노리본을 이용한 실시간 분자서열 분석 시스템 및 방법을 제공하는 것을 목적으로 한다. In addition, according to one embodiment of the present invention, including the movement means having a piezoelectric element inherent electricity of different unit molecules constituting the biopolymer while controlling the movement speed of the biopolymer (biological polymer) passing through the nanopore A real-time molecular sequence analysis system and method using stacked nanoribbons with piezoelectric elements that sense the change in charge distribution and current induced from dipoles or intrinsic energy orbits and decode the identity of unit spherical components in real time through nanochannels. It aims to provide.
본 발명의 그 밖에 목적, 특정한 장점들 및 신규한 특징들은 첨부된 도면들과 관련되어 이하의 상세한 설명과 바람직한 실시예로부터 더욱 명확해질 것이다. Other objects, specific advantages and novel features of the present invention will become more apparent from the following detailed description and preferred embodiments in conjunction with the accompanying drawings.
본 발명의 목적은 생체고분자를 이루는 단위분자들 중 가장 인접한 단위분자와의 상호작용에 의해 전류 변화가 유도되는 특정 폭을 갖는 나노리본; 나노리본의 길이 방향 양끝 각각에 형성되어 있어 전류 변화를 측정하는 측정 전극; 나노리본의 상부면과 하부면에 형성되어 나노리본을 서로 전기적으로 절연하는 절연층; 및 절연층 및 나노리본을 수직방향으로 관통하고 생체고분자를 이루는 단위분자들이 통과되는 나노포어;를 포함하는 것을 특징으로 하는 적층 나노리본을 이용한 실시간 분자서열 분석시스템으로서 달성될 수 있다. An object of the present invention is a nanoribbon having a specific width in which a current change is induced by interaction with the nearest unit molecules of the biomolecules; Measuring electrodes formed at each of both ends of the longitudinal direction of the nanoribbon to measure a change in current; An insulating layer formed on the upper and lower surfaces of the nanoribbons to electrically insulate the nanoribbons from each other; And nanopores that penetrate the insulating layer and the nanoribbons in the vertical direction and allow unit molecules forming the biopolymer to pass through. The real-time molecular sequence analysis system using the stacked nanoribbons may include the nanopores.
나노리본, 측정 전극 및 절연층을 지지하기 위한 기판을 더 포함하고, 나노포어는 기판, 절연층 및 각각의 나노리본을 수직 방향으로 관통하여 형성되는 것을 특징으로 할 수 있다. The apparatus may further include a substrate for supporting the nanoribbons, the measuring electrode, and the insulating layer, and the nanopores may be formed by penetrating the substrate, the insulating layer, and each of the nanoribbons in a vertical direction.
나노 리본은 네 개 이상이 절연층을 사이에 두고 기판 위에 적층되어 구성되는 것을 특징으로 할 수 있다. Four or more nanoribbons may be configured to be stacked on a substrate with an insulating layer interposed therebetween.
각각의 나노리본은 나노포어가 형성된 위치에 서로 다른 단위분자로 코팅된 단위 분자 코팅부를 구비하여 나노포어를 통과하는 단위분자와 코팅부의 상보적 결합을 유도하는 것을 특징으로 할 수 있다. Each nanoribbon may have a unit molecule coating part coated with different unit molecules at a position where the nanopores are formed to induce complementary bonding between the unit molecule and the coating part passing through the nanopores.
나노리본은 지그재그 그래핀(zig-zag graphene) 또는 2차원 위상기하학적 부도체(Two-dimensional Topological Insulator)를 포함하여, 나노리본 내부는 절연성(nearly insulating)을 지니고 가장자리는 전도성을 지닌 특성을 특징으로 할 수 있다. Nanoribbons include zig-zag graphene or two-dimensional topological insulators, so the inside of the nanoribbon is characterized by being electrically insulating and having edges that are conductive. Can be.
측정 전극은 금, 은, 구리, 백금, 팔라듐, 티타늄, 니켈 및 코발트 중 적어도 어느 하나를 포함하는 도체로 이루어지고, 나노리본과 전기적으로 연결되어 있는 것을 특징으로 할 수 있다. The measuring electrode may be made of a conductor including at least one of gold, silver, copper, platinum, palladium, titanium, nickel, and cobalt, and may be electrically connected to the nanoribbon.
절연 층은 실리콘 산화 막, 질화 규소 막, 알루미늄 산화 막, 산화 은막, 산화아연 막 및 하프늄 산화 막 중 적어도 어느 하나를 포함하는 전기적 부도체로 이루어지며, 나노리본을 전해질 및 다른 나노리본과 절연시키는 것을 특징으로 할 수 있다. The insulating layer consists of an electrical insulator comprising at least one of a silicon oxide film, a silicon nitride film, an aluminum oxide film, a silver oxide film, a zinc oxide film, and a hafnium oxide film, and insulates the nanoribbons from the electrolyte and other nanoribbons. It can be characterized.
나노포어가 형성된 나노리본의 가장자리에, 매달린 결합(dangling bond)을 갖는 탄소 원자에 수소 원자 또는 질소 원자를 결합시키는 것을 특징으로 할 수 있다. At the edge of the nanoribbon in which the nanopores are formed, a hydrogen atom or a nitrogen atom may be bonded to a carbon atom having a dangling bond.
나노리본의 두께는 5Å 이하인 것을 특징으로 할 수 있다. The thickness of the nanoribbons may be characterized in that less than 5 kPa.
나노리본의 폭은 10nm이하 인 것을 특징으로 할 수 있다. The width of the nanoribbons may be characterized in that less than 10nm.
나노포어의 지름은 10nm이하인 것을 특징으로 할 수 있다. The diameter of the nanopores may be characterized in that less than 10nm.
측정전극에 전압을 인가하는 전압인가부를 더 포함하는 것을 특징으로 할 수 있다. The method may further include a voltage applying unit for applying a voltage to the measurement electrode.
측정전극에서 측정된 전류를 기반으로 전류 변화데이터를 획득하고, 전류 변화데이터를 기반으로 생체고분자의 단위분자들의 서열을 파악하는 분석수단을 더 포함하는 것을 특징으로 할 수 있다. The method may further include analyzing means for acquiring the current change data based on the current measured by the measuring electrode, and determining the sequence of the unit molecules of the biopolymer based on the current change data.
또 다른 카테고리로서 본 발명의 목적은 각 나노리본의 길이방향 양끝단에 연결되어 있는 측정 전극에 전압을 인가하여 나노리본을 통해 전류가 흐르도록 하는 단계; 기판의 한 면과 다른 면 사이에 전압차 또는 유체압력차를 가하여 생체고분자가 나노포어를 통과하도록 하는 단계; 생체고분자를 이루는 단위분자가 나노리본과 상호작용하여 나노리본을 통해 흐르는 전류가 변화되는 단계; 나노리본을 통해 흐르는 전류 변화를 감지하는 단계; 및 각각의 나노리본을 통해 흐른 전류변화를 조합 및 분석하여 단위분자들의 서열을 파악하는 단계;를 포함하는 것을 특징으로 하는 적층 나노리본을 이용한 실시간 분자서열 분석방법으로서 달성될 수 있다. In another category, an object of the present invention is to apply a voltage to a measurement electrode connected to both ends of a length of each nanoribbon such that a current flows through the nanoribbon; Applying a voltage difference or a fluid pressure difference between one side and the other side of the substrate to allow the biopolymer to pass through the nanopores; Changing the current flowing through the nanoribbons by interacting with the nanoribbons of the unit molecules forming the biopolymer; Detecting a change in current flowing through the nanoribbon; And determining the sequence of unit molecules by combining and analyzing the current change flowing through each nanoribbon. This may be achieved as a real-time molecular sequence analysis method using stacked nanoribbons.
나노리본을 통해 흐르는 전류는 가장자리 전류(edge current)를 포함하는 것을 특징으로 할 수 있다. The current flowing through the nanoribbon may be characterized as including an edge current.
전류를 변화시키는 단계는 나노리본은 네 개 이상의 절연층을 사이에 두고 기판 상에 적층되어 구성되며, 각각의 나노리본은 나노포어가 형성된 위치에 서로 다른 단위분자로 코팅된 단위 분자 코팅부를 구비하여, 나노포어 내부를 통과하는 단위분자와 코팅부의 상보적 결합이 유도되어 나노리본을 통해 흐르는 전류가 변화되는 것을 특징으로 할 수 있다. In the step of changing the current, the nanoribbons are stacked on the substrate with four or more insulating layers interposed therebetween, and each nanoribbon is provided with unit molecular coatings coated with different unit molecules at positions where nanopores are formed. , Complementary bonding of the unit molecule and the coating portion passing through the nanopores may be characterized in that the current flowing through the nanoribbons is changed.
감지하는 단계 및 파악하는 단계는 측정전극이 감지한 나노리본을 통해 흐르는 전류 변화를 기반으로, 분석수단이 나노리본을 통해 흐른 전류변화를 조합 및 분석하여 단위분자들의 서열을 파악하는 것을 특징으로 할 수 있다. The detecting and determining may be based on a change in current flowing through the nanoribbons detected by the measuring electrode, and the analysis means may identify the sequence of unit molecules by combining and analyzing the change in current flowing through the nanoribbons. Can be.
본 발명의 일실시예에 따르면 나노리본이 절연 층을 사이에 두고 기판 위에 적층되어 있으며 기판, 절연 층 및 나노리본의 중심을 수직으로 관통하는 나노포어를 이동하는 생체고분자의 각 단위분자 고유의 전기쌍극자로부터 나노리본의 전류변화를 나노리본과 전기적으로 연결된 측정 전극을 통해 실시간으로 감지하여 각각의 단위분자의 정체를 분석함으로써, 기존 화학적인 방법으로부터 탈피한 고체소자를 이용하여 소요되는 시간 및 화학약품들의 사용을 큰 폭으로 줄일 수 있으며 고속으로 정밀하게 단위분자서열을 분석할 수 있다는 장점을 가진다. According to an embodiment of the present invention, nanoribbons are stacked on a substrate with an insulating layer interposed therebetween, and each unit molecule of a biopolymer that moves nanopores vertically penetrating the center of the substrate, the insulating layer, and the nanoribbons By detecting the change in current of the nanoribbon from the dipole in real time through the measuring electrode electrically connected to the nanoribbon, it analyzes the identity of each unit molecule. The use of these molecules can be greatly reduced, and the unit molecular sequence can be analyzed at high speed and precision.
특히 ss-DNA의 염기서열을 분석하기 위해 적어도 4층 이상의 나노리본이 절연 층을 사이에 둔 구조, 그리고 그 중심에 형성된 나노포어의 각 나노리본에 서로 다른 4종류의 DNA 염기분자(A, G, T, C)를 코팅시켜 나노포어 내로 이동하는 염기분자와의 상보적 결합을 통해 나노리본의 전류변화를 극대화하여 감지효율 및 신뢰도를 극대화시킬 수 있으며, 한 번의 ss-DNA의 이동을 통해서 4개의 염기 분자로 구성된 모든 염기서열을 분석할 수 있다.In particular, in order to analyze the sequence of ss-DNA, at least four layers of nanoribbons are sandwiched between insulating layers, and four different DNA base molecules (A and G) are present in each nanoribbon of nanopores formed at the center thereof. , T, C) can be maximized the detection efficiency and reliability by maximizing the current change of the nanoribbon through complementary bonding with base molecules moving into the nanopore, and through a single ss-DNA movement 4 All nucleotide sequences consisting of two base molecules can be analyzed.
또한, 본 발명의 일실시예에 따르면, 압전소자를 갖는 이동수단을 포함하여, 프루브에 생체고분자의 일 예인 ss-DNA를 부착시켜 이동부의 구동과 압전소자의 인장, 압축에 의해 나노채널을 통과하는 ss-DNA의 이동속도를 제어하여 보다 정확하게 ss-DNA의 염기서열을 해독할 수 있는 효과를 갖는다. In addition, according to an embodiment of the present invention, including a moving means having a piezoelectric element, by attaching ss-DNA which is an example of a biopolymer to the probe to pass through the nanochannel by driving the moving unit and the tension, compression of the piezoelectric element. By controlling the moving speed of the ss-DNA has an effect that can more accurately decode the ss-DNA base sequence.
비록 본 발명이 상기에서 언급한 바람직한 실시예와 관련하여 설명되어 졌지만, 본 발명의 요지와 범위로부터 벗어남이 없이 다른 다양한 수정 및 변형이 가능한 것은 당업자라면 용이하게 인식할 수 있을 것이며, 이러한 변경 및 수정은 모두 첨부된 특허 청구 범위에 속함은 자명하다.Although the present invention has been described in connection with the above-mentioned preferred embodiments, it will be readily apparent to those skilled in the art that various other modifications and variations are possible without departing from the spirit and scope of the present invention. Are all within the scope of the appended claims.
도 1은 본 발명의 일실시예에 따른 DNA 염기분자서열 해독에 적용한 적층 나노리본을 이용한 실시간 분자서열 분석시스템의 사시도, 1 is a perspective view of a real-time molecular sequence analysis system using stacked nanoribbons applied to DNA base molecule sequence decoding according to an embodiment of the present invention,
도 2는 도 1의 A-A 단면도,2 is a cross-sectional view taken along line A-A of FIG.
도 3은 본 발명의 일실시예에 따른 압전소자를 갖는 적층나노리본을 이용한 실시간 분자서열분석시스템의 부분 단면도, 3 is a partial cross-sectional view of a real-time molecular sequence analysis system using a laminated nanoribbon having a piezoelectric element according to an embodiment of the present invention;
도 4는 본 발명의 일실시예에 따른 적층 나노리본을 이용한 실시간 분자서열 분석방법의 흐름도,4 is a flowchart of a method for real-time molecular sequence analysis using stacked nanoribbons according to an embodiment of the present invention;
도 5는 본 발명의 일실시예에 따라 적용 가능한 서로 다른 4개의 염기로 코팅된 나노리본을 이용하여 측정된 전류변화 데이터를 나타낸 그래프,FIG. 5 is a graph showing current change data measured using nanoribbons coated with four different bases applicable according to one embodiment of the present invention; FIG.
도 6은 본 발명의 일실시예에 따른 압전소자를 갖는 적층 나노리본을 이용한 실시간 분자서열 분석방법의 흐름도를 도시한 것이다. 6 is a flowchart illustrating a real-time molecular sequence analysis method using stacked nanoribbons having piezoelectric elements according to an embodiment of the present invention.
<부호의 설명><Description of the code>
4: 측정조 5: 전극소자4: measuring tank 5: electrode element
10: ss-DNA 40: 헤드10: ss-DNA 40: Head
50: 이동부 50: 이동부50: moving part 50: moving part
60: 압전소자 70: 프루브60: piezoelectric element 70: probe
100: 나노포어100: nanopores
200: 나노리본 200A: A가 코팅된 나노리본200: nanoribbon 200A: A-coated nanoribbon
200G: G가 코팅된 나노리본 200T: T가 코팅된 나노리본200G: G-coated nanoribbons 200T: T-coated nanoribbons
200C: C가 코팅된 나노리본 300: 측정전극200C: C coated nanoribbons 300: measuring electrode
400: 절연층 500: 기판400: insulating layer 500: substrate
이하 첨부된 도면을 참조하여 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명을 쉽게 실시할 수 있는 실시예를 상세히 설명한다. 다만, 본 발명의 바람직한 실시예에 대한 동작 원리를 상세하게 설명함에 있어 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다. DETAILED DESCRIPTION Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, in describing in detail the operating principle of the preferred embodiment of the present invention, if it is determined that the detailed description of the related known functions or configurations may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted.
또한, 도면 전체에 걸쳐 유사한 기능 및 작용을 하는 부분에 대해서는 동일한 도면 부호를 사용한다. 명세서 전체에서, 어떤 부분이 다른 부분과 연결되어 있다고 할 때, 이는 직접적으로 연결되어 있는 경우뿐만 아니라, 그 중간에 다른 소자를 사이에 두고, 간접적으로 연결되어 있는 경우도 포함한다. 또한, 어떤 구성요소를 포함한다는 것은 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라, 다른 구성요소를 더 포함할 수 있는 것을 의미한다.In addition, the same reference numerals are used for parts having similar functions and functions throughout the drawings. Throughout the specification, when a part is connected to another part, this includes not only the case where it is directly connected, but also the case where it is indirectly connected with another element in between. In addition, the inclusion of any component does not exclude other components unless specifically stated otherwise, it means that may further include other components.
본 발명의 실시 예를 설명함에 있어서 당업자라면 자명하게 이해할 수 있는 공지의 구성에 대한 설명은 본 발명의 요지를 흐리지 않도록 생략될 것이다. 또한, 도면을 참조할 때에는 도면에 도시된 선들의 두께나 구성요소의 크기 등이 설명의 명료성과 편의상 과장되게 도시되어 있을 수 있음을 고려하여야 하며, 상대적인 위치를 지시하는 전후나 상하좌우, 내외 등의 용어는 특별한 언급이 없는 한 도면에 도시된 방향을 기준으로 한다.In describing the embodiments of the present invention, descriptions of well-known configurations that will be obvious to those skilled in the art will be omitted so as not to obscure the subject matter of the present invention. In addition, when referring to the drawings, it should be considered that the thickness of the lines shown in the drawings, the size of the components, etc. may be exaggerated for the sake of clarity and convenience of the description. The term is based on the direction shown in the drawings unless otherwise noted.
본 발명에 따른 적층 나노리본을 이용한 실시간 분자서열 분석시스템은 단백질 혹은 DNA 등과 같은 다양한 생체고분자들을 구성하고 있는 단위분자서열 (예를 들어, 단백질의 아미노산 분자, 혹은 DNA의 염기분자 서열 등)을 해독하는데 이용될 수 있다. 구체적인 실시 예로서 DNA 염기분자서열 분석에 적용하는 구체적인 내용을 아래에 기술한다. The real-time molecular sequence analysis system using the stacked nanoribbons according to the present invention decodes the unit molecule sequence (for example, amino acid molecules of proteins, or base molecule sequences of DNA, etc.) constituting various biopolymers such as proteins or DNA. It can be used to As a specific example, specific contents applied to DNA nucleotide sequence analysis will be described below.
이하에서는 본 발명의 일실시예에 따른 적층 나노리본을 이용한 실시간 분자서열 분석시스템의 구성 및 기능에 대해 설명하도록 한다. 먼저, 도 1은 본 발명의 일실시예에 따른 DNA 염기분자서열 해독에 적용한 적층 나노리본을 이용한 실시간 분자서열 분석시스템의 사시도를 도시한 것이고, 도 2는 도 1의 A-A 단면도를 도시한 것이다. Hereinafter will be described the configuration and function of a real-time molecular sequence analysis system using a laminated nanoribbon according to an embodiment of the present invention. First, FIG. 1 illustrates a perspective view of a real-time molecular sequence analysis system using stacked nanoribbons applied to DNA base molecule sequence decoding according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view of FIG.
도 1 및 도 2에 도시된 바와 같이, 본 발명의 일실시예에 따른 적층 나노리본을 이용한 실시간 분자서열 분석시스템은 크게 나노포어(100), 나노리본(200 : 200A, 200G, 200T, 200C), 측정 전극(300), 절연 층(400) 및 기판(500) 등을 포함하고 있음을 알 수 있다. As shown in Figure 1 and 2, the real-time molecular sequence analysis system using a stacked nanoribbon according to an embodiment of the present invention is largely nanopore 100, nanoribbon (200: 200A, 200G, 200T, 200C) , The measurement electrode 300, the insulating layer 400, the substrate 500, and the like, may be included.
위와 같은 구성을 가진 본 발명의 기본적인 기능을 설명하면, 측정 전극(300)에 소정의 전압을 가하여 나노리본(200)을 통해 소정의 전류가 흐르도록 하고, 기판(500)의 한 면과 다른 면 사이(도 1 및 도 2에 도시된 것을 기준으로 기판(500)의 상부측과 하부측 사이)에 가해지는 전압차 또는 유체 압력차에 의해 외가닥 DNA(single-stranded DNA; 이하 ss-DNA), 10)가 나노포어(100)를 통과하게 된다. Referring to the basic function of the present invention having the above configuration, a predetermined voltage is applied to the measurement electrode 300 to flow a predetermined current through the nanoribbons 200, and the other side of the substrate 500 Single-stranded DNA (hereinafter referred to as ss-DNA) by a voltage difference or a fluid pressure difference applied between (between the upper side and the lower side of the substrate 500 as shown in FIGS. 1 and 2), 10 passes through the nanopores (100).
나노포어(100)를 통과하는 ss-DNA(10)를 이루는 서로 다른 뉴클레오티드 고유의 전기쌍극자로부터 나노포어(100) 주변의 나노리본(200)의 전하분포를 유도하고 이러한 전하분포의 변화로부터, 나노리본(200)의 가장자리를 통해 흐르는 전류(edge current)의 변화를 분석함으로써 ss-DNA(10)를 구성하는 뉴클레오티드의 서열을 분석할 수 있다. From the different nucleotide-specific electric dipoles that make up the ss-DNA 10 passing through the nanopores 100, the charge distribution of the nanoribbons 200 around the nanopores 100 is induced and from these changes in charge distribution, The sequence of nucleotides constituting the ss-DNA 10 may be analyzed by analyzing a change in edge current flowing through the edge of the ribbon 200.
또한, 도 2에 도시된 바와 같이, 나노포어(100)가 형성된 위치에 나노리본(200) 각각의 가장자리에는 서로 다른 염기 A, G, T, C 중 어느 하나로 코팅하여 나노포어(100)를 통과하는 ss-DNA(10)를 이루는 뉴클레오티드와 상보적인 결합(A-T 또는 G-C)을 통해 나노리본(200)과의 상호작용을 극대화함으로써 나노리본(200)의 가장자리를 통해 흐르는 전류 변화를 극대화하게 된다.In addition, as shown in Figure 2, at the edge of each of the nanoribbon 200 at the position where the nanopore 100 is formed is coated with any one of the different bases A, G, T, C through the nanopore 100 By maximizing the interaction with the nanoribbons 200 through the complementary bond (AT or GC) nucleotides ss-DNA (10) to maximize the current change flowing through the edge of the nanoribbons (200).
즉, 도 2에 도시된 바와 같이, 본 발명의 일실시예에 따른 적층 나노리본을 이용한 실시간 분자서열 분석시스템은 4개의 나노리본(200)이 절연층(400)을 사이에 두고 기판(500) 상에 적층되어 구성됨을 알 수 있고, 이러한 도 2에 도시된 것을 기준으로 최상단에 위치한 나노리본(200)에서 나노포어(100)가 위치하는 가장자리 양 끝단에 A염기가 코팅된 나노리본(200A)이 구비되고, 상단에서 두번째는 G 염기가 코팅된 나노리본(200G)이 구비되며, 상단에서 세번째는 T 염기가 코팅된 나노리본(200T)이, 상단에서 네번째는 C 염기가 코팅된 나노리본(200C)이 구비됨을 알 수 있다. That is, as shown in Figure 2, in the real-time molecular sequence analysis system using a laminated nanoribbon according to an embodiment of the present invention, four nanoribbons 200, the insulating layer 400 between the substrate 500 It can be seen that it is stacked on the configuration, based on the shown in Figure 2 based on the nanoribbon (200) located at the top of the nanopore 100 is located on both ends of the edge of the nanoribbon coated nanoribbon (200A) This is provided, the second from the top is G nano-coated nanoribbons (200G) is provided, the third from the top T-coated nanoribbons (200T), the fourth from the top is the C-base coated nanoribbons ( It can be seen that 200C) is provided.
이러한 서로 다른 염기가 코팅되는 구조 및 나노리본의 개수는 설명된 본 발명의 일실시예, 도면에 한정되는 것은 아니고 더 많은 나노리본으로 구성될 수 있고, 본 발명의 기술적 사상을 포함하는 범위 내에서 통상의 기술자가 용이하게 치환, 변경할 수 있는 범위라면 모두 본 발명의 권리범위 내로 해석하여야 할 것이다.The number of structures and nanoribbons coated with these different bases is not limited to the exemplary embodiments of the present invention and drawings, but may be composed of more nanoribbons, within the range including the technical spirit of the present invention. As long as a person skilled in the art can easily substitute and change, it should be interpreted within the scope of the present invention.
또한, 위와 같은 본 발명의 일실시예에 따른 적층 나노리본을 이용한 실시간 분자서열 분석시스템의 구성을 각 구성요소별로 차례로 상세히 설명하면 다음과 같다. In addition, the configuration of the real-time molecular sequence analysis system using the stacked nanoribbons according to an embodiment of the present invention as described above in detail for each component as follows.
먼저, 나노포어(100)는 도 1 및 도 2에 도시된 바와 같이, 기판(500), 복수의 절연 층(400), 및 복수의 나노리본(200)의 중심을 수직, 관통하여 형성되어 있으며, ss-DNA(10)가 꼬임이나 겹쳐짐 없이 지나갈 수 있는 지름을 가지는데 통상 2nm 이하의 범위를 갖는다. 또한, ss-DNA(10)는 기판(500)의 한 면과 다른 면 사이에 가해지는 전압차 또는 유체압력차에 의해 나노포어(100)를 통과시키게 된다. First, as shown in FIGS. 1 and 2, the nanopores 100 are formed to vertically penetrate through the centers of the substrate 500, the plurality of insulating layers 400, and the plurality of nanoribbons 200. , ss-DNA (10) has a diameter that can pass without twisting or overlapping, usually in the range of 2nm or less. In addition, the ss-DNA 10 passes the nanopores 100 by a voltage difference or a fluid pressure difference applied between one side and the other side of the substrate 500.
여기서 ss-DNA(10)를 사용하는 것은 염기를 외부로 노출시켜 서로 다른 뉴클레오티드의 전기쌍극자로부터 나노리본(200)의 전하분포의 변화를 유도하기 위해서이며, DNA는 이중나선구조로 한 가닥에 대한 다른 한 가닥은 상보적인 서열을 가지므로 하나의 ss-DNA(10)로 염기서열을 분석함으로써 전체 DNA 구조를 파악하는 것이 가능하다.Here, ss-DNA (10) is used to induce a change in the charge distribution of the nanoribbons 200 from the electric dipoles of different nucleotides by exposing the base to the outside, DNA is a double helix structure for one strand Since the other strand has a complementary sequence, it is possible to grasp the entire DNA structure by analyzing the nucleotide sequence with one ss-DNA (10).
실질적인 뉴클레오티드를 감지하기 위해 나노리본(200)이 사용되는데 이는 ss-DNA(10)를 이루고 있는 서로 다른 염기가 이격되어 있는 거리가 5Å 이하이기 때문에, 나노리본(200)의 두께 역시 5Å 이하가 되어야 뉴클레오티드를 분석할 때 다른 인접한 뉴클레오티드에 대해 큰 간섭을 받지 않는 것이 가능하다. The nanoribbons 200 are used to detect the actual nucleotides. Since the distance between the different bases forming the ss-DNA 10 is 5 m or less, the thickness of the nanoribbons 200 should also be 5 m or less. When analyzing nucleotides it is possible not to be greatly interfered with other adjacent nucleotides.
또한, 염기의 전기쌍극자로부터 나노리본(200)의 효과적인 전류의 변화를 유도하기 위해서는 10nm 이하의 너비를 가져야한다. 또한, 위의 조건을 만족하는, 지그재그 그래핀(zig-zag graphene) 또는 2차원 위상기하학적 부도체(Two-dimensional Topological Insulator)가 나노리본(200)의 역할을 할 수 있다. In addition, in order to induce a change in the effective current of the nanoribbons 200 from the base electric dipole should have a width of less than 10nm. In addition, zig-zag graphene or two-dimensional topological insulators satisfying the above conditions may serve as the nanoribbons 200.
도 1 및 도 2에 도시되어있는 나노리본 중 200A는 나노포어(100)에 아데닌 또는 아데닌을 염기로 갖는 디옥시리보뉴클레오티드(dATP)가 코팅되어있으며, 200G는 마찬가지로 구아닌 또는 구아닌을 염기로 갖는 디옥시리보뉴클레오티드(dGTP)가, 200T는 티민 또는 티민을 염기로 갖는 디옥시리보뉴클레오티드(dTTP)가, 200C는 시토신 또는 시토신을 염기로 갖는 디옥시리보뉴클레오티드(dCTP)가 코팅되어 있다. In the nanoribbons shown in FIGS. 1 and 2, 200A is coated with deoxyribonucleotide (dATP) having adenine or adenine as a base on the nanopore 100, and 200G is similarly deoxyribonucleotide having a guanine or guanine as a base. dGTP) is coated with thymine or deoxyribonucleotide (dTTP) with thymine as base, and 200C is coated with deoxyribonucleotide (dCTP) with cytosine or cytosine as base.
여기서 ss-DNA(10)가 나노포어(100)를 통과할 때 ss-DNA(10)를 구성하는 염기와 나노리본(200)에 코팅된 염기의 상보적인 결합(A-T 또는 C-G)을 통해 나노리본의 전하분포 변화가 극대화되고, 그에 따른 나노리본의 가장자리 전류의 변화가 극대화되게 된다. 또한, 뉴클레오티드의 코팅 이외에 나노포어(100) 및 나노리본(200)의 가장자리의 “매달린 결합(dangling bond)”을 갖는 탄소 원자에 수소 원자 또는 질소 원자를 결합시킴으로써 생체고분자의 구성단위분자와 나노리본의 상호작용을 극대화할 수도 있다.Here, when the ss-DNA 10 passes through the nanopores 100, the nanoribbons through the complementary bond (AT or CG) of the base constituting the ss-DNA 10 and the base coated on the nanoribbons 200. The change of the charge distribution is maximized, and thus the change of the edge current of the nanoribbon is maximized. In addition, by combining hydrogen atoms or nitrogen atoms with carbon atoms having “dangling bonds” at the edges of the nanopores 100 and nanoribbons 200 in addition to the coating of nucleotides, constituent unit molecules and nanoribbons of biopolymers You can also maximize your interaction.
또한, 본 발명의 일실시예에 따른 측정 전극(300)은 금, 은, 구리, 백금, 팔라듐, 티타늄, 니켈, 코발트를 포함하는 도체로 구성되어 질 수 있으며, 나노리본(200)의 길이 방향 양끝과 전기적으로 연결되어 있고 전압인가부에 의해 전압이 인가되게 된다. In addition, the measuring electrode 300 according to an embodiment of the present invention may be composed of a conductor including gold, silver, copper, platinum, palladium, titanium, nickel, cobalt, the longitudinal direction of the nanoribbon 200 It is electrically connected to both ends, and the voltage is applied by the voltage applying unit.
또한, 적층된 나노리본(200)이 각각의 뉴클레오티드의 분석을 위해서는 나노리본(200)의 윗면과 아랫면에 전기적 부도체인 절연 층(400)이 형성되어 있으며 하나의 나노리본(200)과 길이 방향으로 양끝에 형성된 측정 전극(300)을 외부의 전해질 또는 다른 나노리본(200)으로부터 전기적으로 절연하게 된다. 또한, 이러한 절연 층(400), 측정 전극(300)이 형성된 나노리본(200)은 기계적으로 기판(500)이 지지하고 있다.In addition, the stacked nanoribbons 200 are formed on the upper and lower surfaces of the nanoribbons 200 for the analysis of each nucleotide, and an insulating layer 400, which is an electrical non-conductor, is formed in a length direction with one nanoribbon 200. The measuring electrodes 300 formed at both ends are electrically insulated from an external electrolyte or other nanoribbons 200. In addition, the substrate 500 is mechanically supported by the nanoribbons 200 on which the insulating layer 400 and the measurement electrode 300 are formed.
또한, 본 발명의 일실시예에 따른 적층 나노리본을 이용한 실시간 분자서열 분석시스템은 전극소자(5), 프루브(70), 압전소자(60), 이동부(50), 제어수단을 포함하여, 나노포어를 통과하는 ss-DNA(10)의 이동속도를 조절할 수 있다. In addition, the real-time molecular sequence analysis system using a laminated nanoribbon according to an embodiment of the present invention includes an electrode element 5, a probe 70, a piezoelectric element 60, a moving unit 50, a control means, The movement speed of the ss-DNA 10 passing through the nanopores can be controlled.
도 3은 본 발명의 일실시예에 따른 압전소자를 갖는 적층 나노리본을 이용한 실시간 분자서열 분석시스템의 단면도를 도시한 것이다. 도 3에 도시된 바와 같이, 상기 기판(500)은, 내부에 ss-DNA(10)가 유지되도록 하는 전해질이 저장된 측정조(4)의 양단부를 분리하는 분리벽이됨을 알 수 있다. Figure 3 shows a cross-sectional view of a real-time molecular sequence analysis system using a stacked nanoribbons having a piezoelectric element according to an embodiment of the present invention. As shown in FIG. 3, it can be seen that the substrate 500 serves as a separation wall separating both ends of the measuring tank 4 in which the electrolyte for maintaining the ss-DNA 10 is maintained therein.
전극소자(5)는 기판의 양측 각각에 특정간격 이격되어 설치되어 기판(500)의 양단부에 전위차를 형성시켜 ss-DNA(10)가 나노포어(100)를 통해 이동될 수 있는 힘을 공급하게 된다. 즉, 전극소자(5)는 한 쌍을 이루어 측정조(4)의 상단부와 하단부 각각에 설치된다. 그리고, 이러한 전극소자(5)에 전압을 공급하여 하단부는 +극, 상단부는 -극을 띠도록 하여 기판(500)의 상단부와 하단부 사이에 전위차를 형성시키게 된다. 따라서, ss-DNA(10)는 기본적으로 -전하를 띠고 있기 때문에 이러한 전위차에 의해 ss-DNA(10)가 나노포어(100)를 통해 상측단부에서 하측단부로 이동될 수 있게 된다. The electrode elements 5 are installed at both sides of the substrate at specific intervals to form a potential difference at both ends of the substrate 500 so that the ss-DNA 10 can be supplied to move the nanopores 100. do. That is, the electrode elements 5 are provided in pairs and installed at the upper end and the lower end of the measuring bath 4, respectively. Then, the voltage is supplied to the electrode element 5 so that the lower end has a + pole and the upper end has a-pole, thereby forming a potential difference between the upper end and the lower end of the substrate 500. Therefore, since the ss-DNA 10 is basically -charged, the ss-DNA 10 can be moved from the upper end to the lower end through the nanopores 100 by this potential difference.
본 발명의 일실시예에 따른 압전소자(60)를 갖는 적층 나노리본을 이용한 실시간 분자서열 분석 시스템은 도 3에 도시된 바와 같이, 이동수단을 더 포함하고 있다. 이러한 이동수단은 측정조(4) 일측에 설치된 헤드(40)와 헤드를 기준으로 x, y, z축 방향으로 이동되는 이동부(50), 인가되는 전압에 의해 인장 또는 압축되는 압전소자(60) 그리고, 압전소자(60)와 이동부(50)의 구동을 제어하는 제어수단(미도시) 등으로 구비될 수 있다. The real-time molecular sequence analysis system using the stacked nanoribbons having the piezoelectric element 60 according to the embodiment of the present invention further includes a moving means. The moving means includes a head 40 installed on one side of the measuring tank 4 and a moving part 50 moving in the x, y, and z axis directions with respect to the head, and a piezoelectric element 60 that is tensioned or compressed by an applied voltage. And, it may be provided as a control means (not shown) for controlling the driving of the piezoelectric element 60 and the moving unit 50.
이동부(50)는 0.1 ~ 수십 ㎛레벨에서 헤드(40)를 기준으로 평면방향인 x축, y축 그리고, 수직방향인 z축으로 압전소자(60)와 프루브(70)를 이동시키게 된다. 이러한 이동부(50)는 피에조(piezo) 모터 등으로 구성될 수 있다. 또한, 압전소자(60)는 인가되는 전압에 의해 0.1 ~ 10㎛범위에서 z축, x축, y축 방향으로 인장되거나 압축되게 된다. The moving unit 50 moves the piezoelectric element 60 and the probe 70 in the x-axis, the y-axis, and the z-axis in the vertical direction with respect to the head 40 at a level of 0.1 to several tens of micrometers. The moving unit 50 may be composed of a piezo motor or the like. In addition, the piezoelectric element 60 is tensioned or compressed in the z-axis, x-axis, and y-axis directions in the range of 0.1 to 10 μm by the applied voltage.
따라서, 이러한 이동수단을 구비하게 됨으로써 프루브(70) 끝단면에 ss-DNA(10) 끝단을 접합시켜 압전소자(60)와 이동부(50)의 구동에 의해 ss-DNA(10)가 나노포어(100)을 통과하는 이동속도를 조절할 수 있게 된다. Accordingly, the ss-DNA 10 is nanopored by driving the piezoelectric element 60 and the moving unit 50 by bonding the end of the ss-DNA 10 to the end surface of the probe 70. It is possible to adjust the moving speed passing through (100).
이하에서는 본 발명의 일실시예에 따른 적층 나노리본(200)을 이용한 실시간 분자서열 분석방법에 대해 간략히 설명하도록 한다. 이러한 분석방법은 앞서 언급한 적층 나노리본을 이용한 실시간 분자서열 분석 시스템을 이용한 것이다. 도 4는 본 발명의 일실시예에 따른 적층 나노리본을 이용한 실시간 분자서열 분석방법의 흐름도를 도시한 것이다. Hereinafter, a brief description of a real-time molecular sequence analysis method using the stacked nanoribbons 200 according to an embodiment of the present invention. This analysis method uses a real-time molecular sequence analysis system using the stacked nanoribbons mentioned above. 4 is a flowchart illustrating a real-time molecular sequence analysis method using stacked nanoribbons according to an embodiment of the present invention.
먼저, 각 나노리본(200)의 양 끝단에 구비되어 있는 측정 전극(300)에 전압인가부에 의해 전압을 인가하여 나노리본(200)을 통해 소정의 전류가 흐르도록 한다(S10). 그리고, 기판(500)의 한 면과 다른 면 사이에 전압차 또는 유체압력차를 가하여 생체고분자가 나노포어(100)를 통과하도록 한다(S20). First, a voltage is applied to the measurement electrodes 300 provided at both ends of each nanoribbon 200 by a voltage applying unit so that a predetermined current flows through the nanoribbon 200 (S10). Then, a voltage difference or a fluid pressure difference is applied between one surface and the other surface of the substrate 500 to allow the biopolymer to pass through the nanopores 100 (S20).
그리고, 생체고분자를 이루는 단위분자가 각 나노리본(200)과 상호작용하여 나노리본(200)을 통해 흐르는 전류를 변화되게 된다. 이때 나노리본(200)을 통해 흐르는 전류 대부분은 가장자리 전류(edge current)에 해당한다. 또한, 나노리본(200) 각각의 양끝단에 구비된 측정전극(300)에 의하여 나노리본(200)을 통해 흐르는 전류 변화를 감지하게 된다(S30). 이때 나노리본(200)은 네 개 이상의 절연층(400)을 사이에 두고 기판(500) 상에 적층되어 구성되며, 각각의 나노리본(200)은 나노포어(100)가 형성된 위치에 서로 다른 단위분자로 코팅된 단위 분자 코팅부를 구비하여, 나노포어(100) 내부를 통과하는 단위분자와 염기 코팅부의 상보적 결합이 유도되어 나노리본(200)을 통해 흐르는 전류변화를 극대화시킬 수 있다.In addition, the unit molecules forming the biopolymer interact with each nanoribbon 200 to change a current flowing through the nanoribbon 200. At this time, most of the current flowing through the nanoribbons 200 corresponds to an edge current. In addition, the change of the current flowing through the nanoribbons 200 is sensed by the measuring electrodes 300 provided at both ends of each of the nanoribbons 200 (S30). In this case, the nanoribbons 200 are stacked on the substrate 500 with four or more insulating layers 400 interposed therebetween, and each of the nanoribbons 200 has different units at positions where the nanopores 100 are formed. Comprising a unit molecule coating unit coated with a molecule, the complementary bonding of the unit molecule and the base coating portion passing through the nanopores 100 can be induced to maximize the current change flowing through the nanoribbons 200.
그리고, 분석수단은 이러한 나노포어(100)를 통과하는 생체고분자를 이루는 단위분자에 의한 전류변화데이터를 획득하게 된다(S40). 그리고, 분석수단은 획득된 전류변화 데이터를 조합 및 분석하여 단위분자들의 서열을 파악하게 된다(S50). In addition, the analysis means obtains the current change data by the unit molecules constituting the biopolymer passing through the nano-pores (100) (S40). In addition, the analyzing means may determine the sequence of the unit molecules by combining and analyzing the obtained current change data (S50).
즉, 측정전극(300)이 감지한 나노리본(200)을 통해 흐르는 전류 변화를 기반으로, 분석수단이 나노리본(200)을 통과하며 흐른 전류변화 데이터를 조합 및 분석하여 단위분자들의 서열을 파악하게 된다. That is, based on the current change flowing through the nanoribbons 200 sensed by the measuring electrode 300, the analysis means identifies the sequence of unit molecules by combining and analyzing the current change data flowing through the nanoribbons 200. Done.
도 5는 본 발명의 일실시예에 따라 적용 가능한 서로 다른 4개의 염기로 코팅된 나노리본(200)을 이용하여 실시간(real-time)으로 측정된 전류변화 데이터를 나타낸 그래프를 도시한 것이다. 즉, 도 5는 나노포어(100)를 통과하는 도 2에서와 같은 일예의 염기서열 CTGACTGA...를 지닌 ss-DNA(10)를 각각의 다른 염기로 코팅된 4개의 독립적인 나노리본(200)의 가장자리 전류 변조를 통해 예측할 수 있는 측정 데이터를 실시간으로 보여준다. FIG. 5 is a graph showing current change data measured in real-time using nanoribbons 200 coated with four different bases applicable according to an embodiment of the present invention. That is, FIG. 5 shows four independent nanoribbons 200 coated with ss-DNA 10 having the same base sequence CTGACTGA ... as in FIG. 2 passing through the nanopore 100 with each other base. Shows the measured data in real time that can be predicted by edge current modulation.
도 5에 상단 좌측에 도시된 그래프는 염기 A로 코팅된 나노리본(200A)에서 측정되는 전류변화데이터이고, 상단 우측에 도시된 그래프는 염기 G로 코팅된 나노리본(200G)에서 측정되는 전류변화데이터, 하단 좌측에 도시된 그래프는 염기 T 코팅된 나노리본(200T)이며, 하단 우측에 도시된 그래프는 염기 C 코팅된 나노리본(200C)에 해당한다. The graph shown at the top left in FIG. 5 is the current change data measured in the nanoribbons 200A coated with base A, and the graph shown at the top right is the current change measured in the nanoribbons 200G coated with base G. Data, the graph shown at the bottom left is a base T coated nanoribbons 200T, and the graph shown at the bottom right is a base C coated nanoribbons 200C.
따라서 분석수단은 이들 4개의 데이터를 실시간으로 조합-분석하여 나노채널을 통과한 ss-DNA(10)의 염기서열을 분석할 수 있고, 도 5에 도시된 그래프를 분석하면 나노포어를 관통하는 염기서열이 도 2에서와 같이 실시간으로 CTGACTGA...가 됨을 판독할 수 있다. Therefore, the analytical means can analyze the base sequence of the ss-DNA 10 that passed through the nanochannel by combining-analyzing these four data in real time, and if the analysis of the graph shown in FIG. It can be read that the sequence becomes CTGACTGA ... in real time as in FIG. 2.
또한, 앞서 언급한 바와 같이, 본 발명의 일실시예에 따른 적층 나노리본을 이용한 실시간 분자서열 분석시스템은 전극소자(5), 프루브(70), 압전소자(60), 이동부(50), 제어수단을 포함하여, 나노포어를 통과하는 ss-DNA(10)의 이동속도를 조절할 수 있다. In addition, as mentioned above, the real-time molecular sequence analysis system using the stacked nanoribbons according to an embodiment of the present invention, the electrode element 5, the probe 70, the piezoelectric element 60, the moving part 50, Including the control means, it is possible to adjust the moving speed of the ss-DNA 10 passing through the nanopores.
이하에서는 이러한 압전소자를 갖는 적층 나노리본을 이용한 실시간 분자서열 분석방법에 대해 설명하도록 한다. 먼저, 도 6은 압전소자를 갖는 적층 나노리본을 이용한 실시간 분자서열 분석방법의 흐름도를 도시한 것이다. Hereinafter, a real-time molecular sequence analysis method using the stacked nanoribbons having such piezoelectric elements will be described. First, FIG. 6 illustrates a flowchart of a real-time molecular sequence analysis method using stacked nanoribbons having piezoelectric elements.
먼저, 제어수단이 이동수단의 이동부(50)를 구동시켜 이동부(50)를 x, y 및 z축 방향으로 이동시키면서 ss-DNA(10) 끝단을 프루브(70)의 끝단면에 부착시키게 된다(S100). First, the control means drives the moving part 50 of the moving means to attach the end of the ss-DNA 10 to the end surface of the probe 70 while moving the moving part 50 in the x, y and z axis directions. It becomes (S100).
그리고, 제어수단이 이동부(50)를 구동시켜 방향을 조절하며 프루브(70) 끝단을 나노포어(100)에 근접하게 위치시키게 된다(S200). 또한, 이러한 ss-DNA(10) 끝단을 프루브(70)의 끝단면에 부착시키는 단계(S100)와 나노포어(100)에 근접하게 위치시키는 단계(S200)에서 ss-DNA(10)의 위치를 용이하게 파악하기 위해 분석하고자 하는 ss-DNA(10)의 끝단에 형광물질로 염색된 라벨링 DNA를 리아아제를 이용하여 접합(리게이션, ligation)시킬 수 있다. 이러한 라벨링 DNA를 ss-DNA(10)의 끝단에 접합시키는 경우, ss-DNA(10)의 위치를 보다 용이하게 파악할 수 있고, 이동부(50)를 이동시켜 라벨링 DNA의 상부 끝단을 프루브(70) 끝단면에 부착시키게 된다. Then, the control means drives the moving unit 50 to adjust the direction and position the end of the probe 70 close to the nano-pores (100) (S200). In addition, the step of attaching the end of the ss-DNA (10) to the end surface of the probe 70 (S100) and the position of the ss-DNA (10) in close proximity to the nanopore 100 (S200) For easy identification, labeling DNA stained with fluorescent material at the end of the ss-DNA 10 to be analyzed can be conjugated (ligation) using a lyase. When the labeling DNA is conjugated to the end of the ss-DNA 10, the position of the ss-DNA 10 can be more easily identified, and the moving part 50 is moved to probe the upper end of the labeling DNA 70. ) It will be attached to the end surface.
그리고, 각 나노리본(200)의 양 끝단에 구비되어 있는 측정 전극(300)에 전압인가부에 의해 전압을 인가하여 나노리본(200)을 통해 소정의 전류가 흐르도록 한다(S300). 그리고, 기판(500)의 한 면과 다른 면 사이에 전압차 또는 유체압력차를 가하여 생체고분자가 나노포어(100)를 통과하도록 한다(S400). Then, a voltage is applied to the measurement electrodes 300 provided at both ends of each nanoribbon 200 by a voltage applying unit so that a predetermined current flows through the nanoribbon 200 (S300). Then, a voltage difference or a fluid pressure difference is applied between one surface and the other surface of the substrate 500 to allow the biopolymer to pass through the nanopores 100 (S400).
그리고, 전극소자(5)에 전압을 인가하게 된다. 전극소자(5)에 전압을 인가하게 되면, 측정조(4)의 상측단부에 위치한 전극소자(5)는 +극을 띠게 되고, 하측부에 위치한 전극소자(5)는 -극을 띠게 된다. 따라서 기판(500)의 양단부 사이에 전위차가 형성되어 프루브(70) 끝단면에 부착된 ss-DNA(10)가 나노포어(100)를 통과하게 된다(S400). Then, a voltage is applied to the electrode element 5. When a voltage is applied to the electrode element 5, the electrode element 5 located at the upper end of the measuring tank 4 has a positive pole, and the electrode element 5 located at the lower part has a negative pole. Therefore, a potential difference is formed between both ends of the substrate 500 such that the ss-DNA 10 attached to the end surface of the probe 70 passes through the nanopores 100 (S400).
그리고, 제어수단이 압전소자(60)와 이동부(50)를 제어하면서 프루브(70)에 부착된 ss-DNA(100)를 나노포어의 길이방향으로 이동시키게 된다(S500). The control means moves the ss-DNA 100 attached to the probe 70 in the longitudinal direction of the nanopores while controlling the piezoelectric element 60 and the moving unit 50 (S500).
그리고, 생체고분자를 이루는 단위분자가 각 나노리본(200)과 상호작용하여 나노리본(200)을 통해 흐르는 전류를 변화되게 된다(S600). 이때 나노리본(200)을 통해 흐르는 전류 대부분은 가장자리 전류(edge current)에 해당한다. 또한, 나노리본(200) 각각의 양끝단에 구비된 측정전극(300)에 의하여 나노리본(200)을 통해 흐르는 전류 변화를 감지하게 된다. 이때 나노리본(200)은 네 개 이상의 절연층(400)을 사이에 두고 기판(500) 상에 적층되어 구성되며, 각각의 나노리본(200)은 나노포어(100)가 형성된 위치에 서로 다른 단위분자로 코팅된 단위 분자 코팅부를 구비하여, 나노포어(100) 내부를 통과하는 단위분자와 염기 코팅부의 상보적 결합이 유도되어 나노리본(200)을 통해 흐르는 전류변화를 극대화시킬 수 있다.In addition, the unit molecules constituting the biopolymer interact with each nanoribbon 200 to change a current flowing through the nanoribbon 200 (S600). At this time, most of the current flowing through the nanoribbons 200 corresponds to an edge current. In addition, the current flowing through the nanoribbons 200 is sensed by the measuring electrodes 300 provided at both ends of the nanoribbons 200. In this case, the nanoribbons 200 are stacked on the substrate 500 with four or more insulating layers 400 interposed therebetween, and each of the nanoribbons 200 has different units at positions where the nanopores 100 are formed. Comprising a unit molecule coating unit coated with a molecule, the complementary bonding of the unit molecule and the base coating portion passing through the nanopores 100 can be induced to maximize the current change flowing through the nanoribbons 200.
그리고, 분석수단은 이러한 나노포어(100)를 통과하는 생체고분자를 이루는 단위분자에 의한 전류변화데이터를 획득하게 된다(S700). 그리고, 분석수단은 획득된 전류변화 데이터를 조합 및 분석하여 단위분자들의 서열을 파악하게 된다(S800). In addition, the analyzing means obtains the current change data by the unit molecules forming the biopolymers passing through the nanopores 100 (S700). In addition, the analyzing means may determine the sequence of the unit molecules by combining and analyzing the obtained current change data (S800).
즉, 측정전극(300)이 감지한 나노리본(200)을 통해 흐르는 전류 변화를 기반으로, 분석수단이 나노리본(200)을 통과하며 흐른 전류변화 데이터를 조합 및 분석하여 단위분자들의 서열을 파악하게 된다. That is, based on the current change flowing through the nanoribbons 200 sensed by the measuring electrode 300, the analysis means identifies the sequence of unit molecules by combining and analyzing the current change data flowing through the nanoribbons 200. Done.

Claims (19)

  1. 생체고분자를 이루는 단위분자들 중 가장 인접한 단위분자와의 상호작용에 의해 전류 변화가 유도되는 특정 폭을 갖는 나노리본;Nanoribbons having a specific width inducing a change in current by interaction with the closest unit molecules of the biomolecules;
    상기 나노리본의 길이 방향 양끝 각각에 형성되어 있어 상기 전류 변화를 측정하는 측정 전극;Measurement electrodes formed at each of both ends of the nanoribbon in the longitudinal direction to measure the current change;
    상기 나노리본의 상부면과 하부면에 형성되어 상기 나노리본을 서로 전기적으로 절연하는 절연층; 및An insulating layer formed on the top and bottom surfaces of the nanoribbons to electrically insulate the nanoribbons from each other; And
    상기 절연층 및 상기 나노리본을 수직방향으로 관통하고 상기 생체고분자를 이루는 단위분자들이 통과되는 나노포어;를 포함하는 것을 특징으로 하는 적층 나노리본을 이용한 실시간 분자서열 분석시스템.Real-time molecular sequence analysis system using a stacked nanoribbon, characterized in that it comprises a; nanopores penetrating the insulating layer and the nanoribbons in the vertical direction and the unit molecules forming the biopolymer.
  2. 제 1항에 있어서, The method of claim 1,
    상기 나노리본, 상기 측정 전극 및 상기 절연층을 지지하기 위한 기판을 더 포함하고, Further comprising a substrate for supporting the nanoribbon, the measuring electrode and the insulating layer,
    상기 나노포어는 상기 기판, 상기 절연층 및 각각의 상기 나노리본을 수직 방향으로 관통하여 형성되는 것을 특징으로 하는 적층 나노리본을 이용한 실시간 분자서열 분석시스템.The nanopores are formed by penetrating the substrate, the insulating layer and each of the nanoribbons in a vertical direction.
  3. 제 2항에 있어서,The method of claim 2,
    상기 나노 리본은 네 개 이상이 상기 절연층을 사이에 두고 상기 기판 위에 적층되어 구성되는 것을 특징으로 하는 적층 나노리본을 이용한 실시간 분자서열 분석시스템.The nano- ribbon is a real-time molecular sequence analysis system using a laminated nanoribbon, characterized in that four or more are laminated on the substrate with the insulating layer therebetween.
  4. 제 3항에 있어서,The method of claim 3, wherein
    각각의 상기 나노리본은Each of the nanoribbons
    상기 나노포어가 형성된 위치에 서로 다른 단위분자로 코팅된 단위 분자 코팅부를 구비하여 With unit molecular coatings coated with different unit molecules at the position where the nanopores are formed
    상기 나노포어를 통과하는 단위분자와 상기 코팅부의 상보적 결합을 유도하는 것을 특징으로 하는 적층 나노리본을 이용한 실시간 분자서열 분석시스템.Real-time molecular sequence analysis system using laminated nanoribbons, characterized in that to induce complementary bonding of the unit molecule and the coating portion passing through the nanopores.
  5. 제 1항에 있어서,The method of claim 1,
    상기 나노리본은 지그재그 그래핀(zig-zag graphene) 또는 2차원 위상기하학적 부도체(Two-dimensional Topological Insulator)를 포함하여, The nanoribbons include zig-zag graphene or two-dimensional topological insulators.
    상기 나노리본 내부는 절연성(nearly insulating)을 지니고 가장자리는 전도성을 지닌 특성을 특징으로 하는 적층 나노리본을 이용한 실시간 분자서열 분석시스템.The inside of the nanoribbon has a insulating (nearly insulating) and the edge is a real-time molecular sequence analysis system using a laminated nanoribbon characterized in that the conductive properties.
  6. 제 1항에 있어서,The method of claim 1,
    상기 측정 전극은 금, 은, 구리, 백금, 팔라듐, 티타늄, 니켈 및 코발트 중 적어도 어느 하나를 포함하는 도체로 이루어지고, 상기 나노리본과 전기적으로 연결되어 있는 것을 특징으로 하는 적층 나노리본을 이용한 실시간 분자서열 분석시스템.The measuring electrode is made of a conductor including at least one of gold, silver, copper, platinum, palladium, titanium, nickel, and cobalt, and is electrically connected to the nanoribbon. Molecular Sequence Analysis System.
  7. 제 1항에 있어서,The method of claim 1,
    상기 절연 층은 실리콘 산화 막, 질화 규소 막, 알루미늄 산화 막, 산화 은막, 산화아연 막 및 하프늄 산화 막 중 적어도 어느 하나를 포함하는 전기적 부도체로 이루어지며, 상기 나노리본을 전해질 및 다른 나노리본과 절연시키는 것을 특징으로 하는 적층 나노리본을 이용한 실시간 분자서열 분석시스템.The insulating layer is formed of an electrical insulator including at least one of a silicon oxide film, a silicon nitride film, an aluminum oxide film, a silver oxide film, a zinc oxide film, and a hafnium oxide film, and insulates the nanorib from an electrolyte and other nanoribbons. Real-time molecular sequence analysis system using a laminated nanoribbon, characterized in that.
  8. 제 1항에 있어서The method of claim 1
    상기 나노포어가 형성된 상기 나노리본의 가장자리에, At the edge of the nanoribbon where the nanopores are formed,
    매달린 결합(dangling bond)을 갖는 탄소 원자에 수소 원자 또는 질소 원자를 결합시키는 것을 특징으로 하는 적층 나노리본을 이용한 실시간 분자서열 분석시스템.A real-time molecular sequence analysis system using laminated nanoribbons, characterized in that for bonding a hydrogen atom or a nitrogen atom to a carbon atom having a dangling bond.
  9. 제 1항에 있어서,The method of claim 1,
    상기 나노리본의 두께는 5Å 이하인 것을 특징으로 하는 적층 나노리본을 이용한 실시간 분자서열 분석시스템.Real-time molecular sequence analysis system using the laminated nanoribbon, characterized in that the thickness of the nanoribbon is 5Å or less.
  10. 제 1항에 있어서,The method of claim 1,
    상기 나노포어의 지름은 10nm이하인 것을 특징으로 하는 적층 나노리본을 이용한 실시간 분자서열 분석시스템.Real-time molecular sequence analysis system using laminated nanoribbons, characterized in that the diameter of the nanopores is less than 10nm.
  11. 제 1항에 있어서, The method of claim 1,
    상기 측정전극에 전압을 인가하는 전압인가부를 더 포함하는 것을 특징으로 하는 적층 나노리본을 이용한 실시간 분자서열 분석시스템.Real-time molecular sequence analysis system using a stacked nanoribbon, characterized in that it further comprises a voltage applying unit for applying a voltage to the measuring electrode.
  12. 제 11항에 있어서, The method of claim 11,
    상기 측정전극에서 측정된 전류를 기반으로 전류 변화데이터를 획득하고, 상기 전류 변화데이터를 기반으로 상기 생체고분자의 단위분자들의 서열을 파악하는 분석수단을 더 포함하는 것을 특징으로 하는 적층 나노리본을 이용한 실시간 분자서열 분석시스템.Acquiring current change data based on the current measured by the measuring electrode, and analyzing means for identifying the sequence of the unit molecules of the biopolymer based on the current change data using a stacked nanoribbon Real time molecular sequence analysis system.
  13. 제 1항에 있어서, The method of claim 1,
    상기 기판은, 내부에 상기 생체고분자가 유지되도록 하는 전해질이 저장된 측정조의 양단부를 분리하는 분리벽이고, The substrate is a separation wall that separates both ends of the measuring tank in which the electrolyte is maintained to maintain the biopolymer therein,
    상기 기판의 양측 각각에 특정간격 이격되어 설치되어 상기 기판의 양단부에 전위차를 형성시켜 상기 생체고분자가 상기 나노포어를 통해 이동될 수 있는 힘을 공급하는 전극소자; 및An electrode element disposed at each of both sides of the substrate to be spaced apart from each other at a predetermined interval to form a potential difference at both ends of the substrate to supply a force to move the biopolymer through the nanopores; And
    일측 끝단면이 상기 생체고분자의 일측 끝단과 결합되는 프루브, 일측이 상기 프루브의 타측에 연결되고 인가되는 전류에 의해 인장 또는 압축되는 압전소자를 구비하여 상기 생체고분자가 상기 나노포어를 통과하는 이동속도를 조절하는 것을 특징으로 하는 적층 나노리본을 이용한 실시간 분자서열 분석시스템.A probe having one end surface coupled to one end of the biopolymer, and having one side connected to the other side of the probe and having a piezoelectric element tensioned or compressed by an applied current, the biopolymer passing through the nanopores Real-time molecular sequence analysis system using laminated nanoribbons, characterized in that to control the.
  14. 제 13항에 있어서,The method of claim 13,
    상기 압전소자에 연결되어 상기 압전소자와 상기 프루브를 일체로 x,y 및 z축 방향으로 이동시키는 이동부; 및A moving part connected to the piezoelectric element to move the piezoelectric element and the probe integrally in x, y and z axis directions; And
    상기 이동부와 상기 압전소자를 제어하는 제어수단을 더 포함하는 것을 특징으로 하는 적층 나노리본을 이용한 실시간 분자서열 분석시스템.Real-time molecular sequence analysis system using the stacked nanoribbon further comprising a control means for controlling the moving unit and the piezoelectric element.
  15. 각 나노리본의 길이방향 양끝단에 연결되어 있는 측정 전극에 전압을 인가하여 나노리본을 통해 전류가 흐르도록 하는 단계;Applying a voltage to a measurement electrode connected to both longitudinal ends of each nanoribbon such that a current flows through the nanoribbon;
    기판의 한 면과 다른 면 사이에 전압차 또는 유체압력차를 가하여 생체고분자가 나노포어를 통과하도록 하는 단계;Applying a voltage difference or a fluid pressure difference between one side and the other side of the substrate to allow the biopolymer to pass through the nanopores;
    생체고분자를 이루는 단위분자가 상기 나노리본과 상호작용하여 나노리본을 통해 흐르는 전류가 변화되는 단계;Changing the current flowing through the nanoribbons by interacting with the nanoribbons unit molecules forming the biopolymer;
    상기 나노리본을 통해 흐르는 전류 변화를 감지하는 단계; 및Sensing a change in current flowing through the nanoribbon; And
    각각의 상기 나노리본을 통해 흐른 전류변화를 조합 및 분석하여 단위분자들의 서열을 파악하는 단계;를 포함하는 것을 특징으로 하는 적층 나노리본을 이용한 실시간 분자서열 분석방법.Real-time molecular sequence analysis method using the stacked nanoribbons, comprising the step of: combining and analyzing the current changes flowing through each of the nanoribbons to determine the sequence of the unit molecules.
  16. 제 15항에 있어서,The method of claim 15,
    상기 나노리본을 통해 흐르는 전류는 가장자리 전류(edge current)를 포함하는 것을 특징으로 하는 적층 나노리본을 이용한 실시간 분자서열 분석방법.The current flowing through the nanoribbon is a real-time molecular sequence analysis method using a stacked nanoribbon, characterized in that it comprises an edge current (edge current).
  17. 제 15항에 있어서, The method of claim 15,
    상기 전류가 변화되는 단계는The step of changing the current
    상기 나노리본은 네 개 이상의 절연층을 사이에 두고 기판 상에 적층되어 구성되며, 각각의 상기 나노리본은 상기 나노포어가 형성된 위치에 서로 다른 단위분자로 코팅된 단위 분자 코팅부를 구비하여,The nanoribbons are laminated on a substrate with four or more insulating layers interposed therebetween, and each of the nanoribbons includes unit molecular coatings coated with different unit molecules at positions where the nanopores are formed.
    상기 나노포어 내부를 통과하는 단위분자와 상기 코팅부의 상보적 결합이 유도되어 상기 나노리본을 통해 흐르는 전류가 변화되는 것을 특징으로 하는 적층 나노리본을 이용한 실시간 분자서열 분석방법.Real-time molecular sequence analysis method using a laminated nanoribbon, characterized in that the complementary bond between the unit molecule and the coating portion passing through the nanopore is induced to change the current flowing through the nanoribbon.
  18. 제 15항에 있어서, The method of claim 15,
    상기 감지하는 단계 및 상기 파악하는 단계는The detecting step and the determining step
    측정전극이 감지한 상기 나노리본을 통해 흐르는 전류 변화를 기반으로, 분석수단이 상기 나노리본을 통해 흐른 전류변화를 조합 및 분석하여 단위분자들의 서열을 파악하는 것을 특징으로 하는 적층 나노리본을 이용한 실시간 분자서열 분석방법.Based on the change in current flowing through the nanoribbons sensed by the measuring electrode, the analysis means combines and analyzes the change in current flowing through the nanoribbon to determine the sequence of unit molecules. Molecular sequence analysis method.
  19. 제 15항에 있어서, The method of claim 15,
    이동부를 구동시켜 프루브를 나노포어에 근접하게 위치시키는 단계; Driving the moving part to position the probe close to the nanopores;
    전극소자에 전압을 인가하여 상기 측정조를 구획하는 기판을 기준으로 양단에 전위차를 형성시켜 상기 생체고분자가 상기 나노포어를 통과하는 단계; 및Applying a voltage to an electrode element so as to form a potential difference at both ends with respect to a substrate partitioning the measurement tank, wherein the biopolymer passes through the nanopores; And
    제어수단이 이동수단의 압전소자와 상기 이동부를 제어하여 상기 생체고분자의 이동속도를 조절하며 상기 생체고분자를 이동시키는 단계를 더 포함하는 것을 특징으로 하는 적층 나노리본을 이용한 실시간 분자서열 분석방법.And controlling the piezoelectric element and the moving unit of the moving means to adjust the moving speed of the biopolymer and to move the biopolymer.
PCT/KR2013/007477 2013-08-21 2013-08-21 System and method for analyzing molecular sequence in real time using stacked nano-ribbon WO2015025993A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2013/007477 WO2015025993A1 (en) 2013-08-21 2013-08-21 System and method for analyzing molecular sequence in real time using stacked nano-ribbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2013/007477 WO2015025993A1 (en) 2013-08-21 2013-08-21 System and method for analyzing molecular sequence in real time using stacked nano-ribbon

Publications (1)

Publication Number Publication Date
WO2015025993A1 true WO2015025993A1 (en) 2015-02-26

Family

ID=52483760

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/007477 WO2015025993A1 (en) 2013-08-21 2013-08-21 System and method for analyzing molecular sequence in real time using stacked nano-ribbon

Country Status (1)

Country Link
WO (1) WO2015025993A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2221874A1 (en) * 2009-02-24 2010-08-25 S.a.r.l. FIRMUS Method for manufacturing nano electronic devices made from 2D carbon crystals like graphene and devices obtained with this method
KR101118461B1 (en) * 2008-10-10 2012-03-06 나노칩스 (주) Ultrafast dna structures analyzing system with high detectivity
KR20120125159A (en) * 2011-05-04 2012-11-14 충북대학교 산학협력단 Method and Analysis System for Real-Time Molecular Sequencing with Nanochannel
WO2013016486A1 (en) * 2011-07-27 2013-01-31 The Board Of Trustees Of The University Of Illinois Nanopore sensors for biomolecular characterization
US20130186758A1 (en) * 2011-12-09 2013-07-25 University Of Delaware Current-carrying nanowire having a nanopore for high-sensitivity detection and analysis of biomolecules

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101118461B1 (en) * 2008-10-10 2012-03-06 나노칩스 (주) Ultrafast dna structures analyzing system with high detectivity
EP2221874A1 (en) * 2009-02-24 2010-08-25 S.a.r.l. FIRMUS Method for manufacturing nano electronic devices made from 2D carbon crystals like graphene and devices obtained with this method
KR20120125159A (en) * 2011-05-04 2012-11-14 충북대학교 산학협력단 Method and Analysis System for Real-Time Molecular Sequencing with Nanochannel
WO2013016486A1 (en) * 2011-07-27 2013-01-31 The Board Of Trustees Of The University Of Illinois Nanopore sensors for biomolecular characterization
US20130186758A1 (en) * 2011-12-09 2013-07-25 University Of Delaware Current-carrying nanowire having a nanopore for high-sensitivity detection and analysis of biomolecules

Similar Documents

Publication Publication Date Title
CN104774757B (en) Dual-pore device
US8882980B2 (en) Use of longitudinally displaced nanoscale electrodes for voltage sensing of biomolecules and other analytes in fluidic channels
US8628649B2 (en) Nanopore and carbon nanotube based DNA sequencer and a serial recognition sequencer
EP2994751B1 (en) A method of biological target detection using a nanopore and a fusion protein binding agent
KR102023754B1 (en) Nanopore sensors for biomolecular characterization
US8961757B2 (en) Nanopore and carbon nanotube based DNA sequencer
AU2007227415B2 (en) Apparatus for microarray binding sensors having biological probe materials using carbon nanotube transistors
US20150211059A1 (en) Trans-base tunnel reader for sequencing
WO2016129894A1 (en) Biomolecule concentration function-integrated sensor and manufacturing method therefor
CN106497774A (en) Gene sequencing chip, gene sequencing equipment and gene order surveying method
US9377432B2 (en) Heterojunction nanopore for sequencing
US20140099726A1 (en) Device for characterizing polymers
US9250202B2 (en) Nanopore molecule detection system and molecule detection method based on potential measurement of insulated conductive thin layer
WO2013151203A1 (en) System and method for real-time analysis of molecular sequences using nanochannels
WO2013170641A1 (en) Single-cell array microchip, and manufacturing method, electrical measurement and electroporation method therefor
US9650668B2 (en) Use of longitudinally displaced nanoscale electrodes for voltage sensing of biomolecules and other analytes in fluidic channels
US9804146B2 (en) Assembly for nucleic acid sequencing by means of tunnel current analysis
WO2015025993A1 (en) System and method for analyzing molecular sequence in real time using stacked nano-ribbon
WO2012060595A2 (en) Structure with nanopore and apparatus for determining sequences of nucleic acids including the same
BR112020015942A2 (en) SENSOR FOR IMPEDANCE MEASUREMENTS OF THE BIOLOGICAL OR CHEMICAL FACTOR SAMPLE AND METHOD FOR DETECTING THE BIOLOGICAL OR CHEMICAL FACTOR IN THE SAMPLE WITH THE USE OF THAT SENSOR
WO2014014268A1 (en) Real-time polymerase chain reaction apparatus for detecting electrochemical signal using metallic nano particles
KR20130118573A (en) Method and analysis system for real-time molecular sequencing with stacked nanoribbon
US20220260550A1 (en) Sequencing of Biopolymers By Motion-Controlled Electron Tunneling
KR20130056756A (en) Analysis system and method for real-time molecular sequencing using piezoelectric element
AU2023202006B1 (en) System, Apparatus and Process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13891806

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13891806

Country of ref document: EP

Kind code of ref document: A1