WO2015025957A1 - Method for manufacturing cardiac muscle tissue chip used in screening of drug candidate compound - Google Patents

Method for manufacturing cardiac muscle tissue chip used in screening of drug candidate compound Download PDF

Info

Publication number
WO2015025957A1
WO2015025957A1 PCT/JP2014/072029 JP2014072029W WO2015025957A1 WO 2015025957 A1 WO2015025957 A1 WO 2015025957A1 JP 2014072029 W JP2014072029 W JP 2014072029W WO 2015025957 A1 WO2015025957 A1 WO 2015025957A1
Authority
WO
WIPO (PCT)
Prior art keywords
myocardial
cells
myocardial tissue
tissue
cardiomyocytes
Prior art date
Application number
PCT/JP2014/072029
Other languages
French (fr)
Japanese (ja)
Inventor
明石満
松▲崎▼典弥
澤芳樹
宮川繁
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Priority to JP2015532917A priority Critical patent/JP6608281B2/en
Publication of WO2015025957A1 publication Critical patent/WO2015025957A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • C12M23/12Well or multiwell plates
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/20Material Coatings
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M25/00Means for supporting, enclosing or fixing the microorganisms, e.g. immunocoatings
    • C12M25/14Scaffolds; Matrices
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0652Cells of skeletal and connective tissues; Mesenchyme
    • C12N5/0657Cardiomyocytes; Heart cells
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2513/003D culture

Definitions

  • the present disclosure relates to a method for producing a myocardial tissue chip used for screening a drug candidate compound, a myocardial tissue chip, and a method for screening a drug candidate compound using the myocardial tissue chip.
  • a myocardial tissue chip that can be used for drug screening in which a three-dimensional myocardial tissue is formed, a method for manufacturing the myocardial tissue chip, and a drug screening method using the myocardial tissue chip I will provide a.
  • the present disclosure relates to a method for producing a myocardial tissue chip used for drug screening, in which a coated cell whose surface is coated with a coating containing an extracellular matrix component is disposed on a substrate. And forming a myocardial three-dimensional tissue body on the substrate by repeatedly arranging the coated cells, wherein the cells include cardiomyocytes derived from induced pluripotent stem cells
  • the present invention relates to a chip manufacturing method.
  • the present disclosure is a myocardial tissue chip used for drug screening, which includes a base material and a myocardial three-dimensional tissue body formed on the base material, and the myocardial three-dimensional tissue
  • the body relates to a myocardial tissue chip comprising cardiomyocytes derived from induced pluripotent stem cells and an extracellular matrix component, wherein the cardiomyocytes are stacked via the extracellular matrix component.
  • the present disclosure is a method for screening a drug candidate compound using the myocardial tissue chip of the present disclosure, wherein the drug candidate compound is brought into contact with the myocardial tissue chip, and the myocardial tissue of the candidate compound
  • the present invention relates to a screening method including observing the influence of a chip on a myocardial three-dimensional tissue and evaluating a candidate compound based on the observation result.
  • the present disclosure includes a cardiomyocyte derived from an induced pluripotent stem cell, an extracellular matrix component, and a fibroblast, and the cardiomyocyte and the fibroblast are arranged in three dimensions. It is related with the cultured myocardial tissue obtained by culture.
  • a myocardial three-dimensional tissue is formed, and a myocardial tissue chip that can be used for drug screening, a manufacturing method thereof, and a drug screening method using the myocardial tissue chip are provided. it can.
  • FIG. 1 is an example of a micrograph of a myocardial three-dimensional tissue body of a reference example.
  • FIG. 2 is an example of a graph showing changes in the number of pulsations accompanying drug administration of the myocardial three-dimensional tissue body of the reference example.
  • FIG. 3 is an example of a micrograph of a myocardial three-dimensional tissue body in the myocardial tissue chip produced in Example 1.
  • FIG. 4 is an example of a graph showing changes in the number of pulsations accompanying drug administration of a myocardial three-dimensional tissue body in the myocardial tissue chip produced in Example 2.
  • FIG. 1 is an example of a micrograph of a myocardial three-dimensional tissue body of a reference example.
  • FIG. 2 is an example of a graph showing changes in the number of pulsations accompanying drug administration of the myocardial three-dimensional tissue body of the reference example.
  • FIG. 3 is an example of a micrograph of a myocardial three-dimensional
  • FIG. 5 is a tissue section image (HE-stained image) of a myocardial three-dimensional tissue body (after 7 days of culture) in the myocardial tissue chip produced in Example 3.
  • 6 is a phase contrast micrograph of a myocardial three-dimensional tissue body (after 7 days of culture) in the myocardial tissue chip produced in Example 3.
  • FIG. 7 is a confocal laser micrograph of a myocardial three-dimensional tissue body (after 6 days of culture) having a vascular network prepared in Example 8
  • FIG. 7A is a myocardial three-dimensional tissue body prepared in Example 8-1.
  • the “myocardial tissue chip” includes a base material and a myocardial three-dimensional tissue body formed on the base material.
  • the “cardiac myocardial three-dimensional tissue body” includes at least cardiomyocytes derived from induced pluripotent stem cells and an extracellular matrix component, and a cell structure in which cardiomyocytes are stacked via the extracellular matrix component In one or a plurality of embodiments, it is preferable to imitate a myocardial structure in a living body.
  • the induced pluripotent stem cells include disease-specific iPS cells and normal iPS cells in one or a plurality of embodiments.
  • the origin of iPS cells is not particularly limited, and examples include humans and mice, but human-derived iPS cells are preferable from the viewpoint of providing a myocardial tissue chip capable of more accurately evaluating human cardiotoxicity.
  • commercially available ones or self-prepared ones may be used as the cardiomyocytes derived from iPS cells in one or a plurality of embodiments.
  • the myocardial three-dimensional tissue in the present disclosure includes cells and organs (and / or organs) other than cardiomyocytes capable of constituting the myocardium in addition to the myocardial cells derived from iPS cells and extracellular matrix components. Constituent cells) and the like.
  • Examples of cells other than cardiomyocytes include, in one or more embodiments, vascular endothelial cells, myoblasts, fibroblasts, mesenchymal stem cells, hematopoietic stem cells, nerve cells, cancer cells and the like.
  • Examples of the organ include blood vessels, lymphatic vessels, nerves, and the like in one or a plurality of embodiments.
  • Examples of the cells constituting the organ include vascular endothelial cells, myoblasts, fibroblasts, mesenchymal stem cells, hematopoietic stem cells, nerve cells, and cancer cells in one or a plurality of embodiments.
  • the “coated cell” refers to a cell containing a coating containing an extracellular matrix component and a cell, and the cell surface of which is covered with the coating.
  • the cells to be coated include the cells described above.
  • the coated cells can be prepared by the methods and examples described later, and the method disclosed in JP2012-115254A.
  • the “extracellular matrix component” refers to a substance that fills the space outside the cell in a living body and performs a function such as a skeletal role, a role of providing a scaffold, and a role of holding a biological factor.
  • the extracellular matrix component may further contain a substance that can perform functions such as a skeletal role, a role of providing a scaffold, and a role of retaining a biological factor in in vitro cell culture.
  • the present disclosure relates to a method for producing a myocardial tissue chip used for drug screening, wherein a coated cell having a cell surface coated with a coating containing an extracellular matrix component is disposed on a substrate; Cardiomyocytes derived from induced pluripotent stem cells (hereinafter also referred to as “iPS cell-derived cardiomyocytes”), comprising forming a myocardial three-dimensional tissue on the substrate by repeatedly arranging
  • the present invention relates to a method for producing a myocardial tissue chip including the following (hereinafter, also referred to as “production method of the present disclosure”).
  • a myocardial three-dimensional tissue body in which the number of layers and the structure are uniformly controlled is formed in commercially available microwells of various sizes used for drug screening.
  • An improved myocardial tissue chip can be provided.
  • a myocardial three-dimensional tissue can be formed in the microwell within one day at the latest.
  • a myocardial three-dimensional tissue body of at least five layers or more can be provided inside the microwell.
  • the myocardial tissue chip obtained by the production method of the present disclosure can be used for testing / inspection related to safety and pharmacokinetics in the fields of pharmaceuticals, pharmaceuticals, cosmetics, foods, and the environment.
  • the production method of the present disclosure forms a myocardial three-dimensional tissue body on a base material by repeatedly placing the coated cells, the surface of which is coated with a coating containing an extracellular matrix component, on the base material.
  • a three-dimensional myocardial tissue on the base material by culturing.
  • the culture temperature is 4 to 60 ° C., 20 to 40 ° C., or 30 to 37 ° C.
  • the culture time is not particularly limited, and in one or more embodiments, it is 1 to 168 hours, 3 to 24 hours, or 3 to 12 hours.
  • the medium is not particularly limited and can be appropriately determined depending on the cell.
  • the medium may be a medium supplemented with serum or a serum-free medium.
  • the production method of the present disclosure includes disposing fibroblasts on a substrate in one or a plurality of embodiments from the viewpoint of forming a tissue body closer to a living myocardial tissue.
  • the fibroblasts may be mixed with the coated cells containing iPS cell-derived cardiomyocytes or may be disposed separately from the coated cells.
  • the fibroblasts are arranged so that the ratio of cardiomyocytes (cardiomyocytes: fibroblasts, number of cells) is 99: 1 to 1:99.
  • the ratio of cardiomyocytes to fibroblasts is 80:20 to 30:70, 80: from the viewpoint of generating action potentials in cardiomyocytes and realizing more regular pulsations. 20 to 45:55 or 75:25 to 50:50 is preferred.
  • the fibroblast is preferably a cardiac fibroblast in one or more embodiments.
  • the fibroblast may be a cell derived from a human or a cell derived from other than a human.
  • the fibroblast may be a cell derived from an embryonic stem cell, an induced pluripotent stem cell, or the like in one or a plurality of embodiments. Fibroblasts may or may not be coated with a coating containing extracellular matrix components.
  • the manufacturing method according to the present disclosure places a vascular endothelial cell on a base material from the viewpoint that a vascular network is formed in a three-dimensional tissue body to make the tissue body closer to a living body's myocardial tissue.
  • the vascular endothelial cells may be mixed with the coated cells containing the cardiomyocytes derived from iPS cells or may be disposed separately from the coated cells.
  • the vascular endothelial cell is preferably a cardiac microvascular endothelial cell in one or more embodiments.
  • the vascular endothelial cell may be a cell derived from a human or a cell derived from other than a human. In one or a plurality of embodiments, the vascular endothelial cell may be a cell derived from embryonic stem cells, induced pluripotent stem cells and the like in one or a plurality of embodiments. Vascular endothelial cells may or may not be coated with a coating containing an extracellular matrix component.
  • the density of the coated cells at the time of myocardial three-dimensional tissue formation is the size and thickness of the target myocardial three-dimensional tissue, the size of the container to be cultured, the number of cells to be stacked, etc. 1 ⁇ 10 2 pieces / cm 3 to 1 ⁇ 10 9 pieces / cm 3 , 1 ⁇ 10 4 pieces / cm 3 to 1 ⁇ 10 8 pieces / cm 3 in one or a plurality of embodiments. Or 1 ⁇ 10 5 pieces / cm 3 to 1 ⁇ 10 7 pieces / cm 3 .
  • the production method of the present disclosure includes arranging the coated cells such that at least four layers of iPS cell-derived cardiomyocytes are laminated.
  • the number of cell layers to be stacked is not particularly limited, and in one or a plurality of embodiments, 5, 6, 7, 8, 9, or 10 layers or more may be mentioned.
  • the arrangement of the coated cells improves the reproducibility of the myocardial three-dimensional tissue to be formed and improves the production efficiency, and enables faster production and easier control of the number of layers and the structure. In one or a plurality of embodiments, this is preferably performed by discharging the coated cells onto the substrate using a liquid discharge nozzle, and more preferably using an injection device such as an ink jet discharge device.
  • the ejection device is a device capable of ejecting one coated cell per ejection to a predetermined region of the base material, and a piezoelectric drive ink jet ejection device can be preferably employed.
  • discharge of coated cells is preferably performed by discharging one coated cell per discharge.
  • a myocardial tissue pattern by discharging one coated cell per discharge, it is possible to form a myocardial three-dimensional tissue that is more similar to a myocardial tissue in a living body.
  • the arrangement of the coated cells in the production method of the present disclosure is based on a preset pattern, so that the coated cells coated with predetermined cells are arranged at predetermined positions. It is preferable to carry out while moving the nozzle.
  • the manufacturing method of the present disclosure uses coated cells coated with a coating containing an extracellular matrix component, in one or a plurality of embodiments, it is possible to reduce stress on the cells during the placement of the cells by ejection, and Cells can be stacked efficiently.
  • the area of the myocardial three-dimensional tissue body is 1 mm 2 or more, 5 mm 2 or more, 10 mm 2 or more, or 20 mm 2 or more, and 1000 mm 2 or less, 700 mm 2 in one or more embodiments.
  • it is 600 mm 2 or less, or 500 mm 2 or less.
  • a multiwell plate is mentioned in one or some embodiment.
  • the substrate may be a multi-well plate in which a membrane filter is arranged in each well in one or a plurality of embodiments from the viewpoint of easy handling, and preferably includes a housing part and a base part.
  • a multi-well plate in which a container whose base is a membrane filter is arranged.
  • the number of wells in the multi-well plate is not particularly limited, and examples thereof include 24, 96, 384, and 1536 in one or more embodiments.
  • the pore size of the membrane filter is not particularly limited as long as the cultured cells can be retained on the membrane filter, and in one or a plurality of embodiments, it is 0.1 ⁇ m to 2 ⁇ m, or 0.4 ⁇ m to 1.0 ⁇ m. .
  • the material of the membrane includes, for example, polyethylene terephthalate (PET), polycarbonate, or polytetrafluoroethylene (PTFE).
  • the present disclosure is a myocardial tissue chip used for drug screening, including at least a cardiomyocyte derived from an induced pluripotent stem cell and an extracellular matrix component, and the induced pluripotency
  • the present invention relates to a myocardial tissue chip (hereinafter also referred to as “myocardial tissue chip of the present disclosure”), which is a myocardial three-dimensional tissue structure in which stem cells are laminated via the extracellular matrix component.
  • the myocardial tissue chip of the present disclosure can be manufactured by the manufacturing method of the present disclosure.
  • the myocardial tissue chip of the present disclosure in one or a plurality of embodiments, it is possible to perform a test / inspection regarding safety and pharmacokinetics in the fields of medicine, pharmaceuticals, cosmetics, foods, and the environment.
  • the substrate, the extracellular matrix, and the cardiomyocytes are as described above.
  • the iPS cell is preferably a human-derived iPS cell because in one or a plurality of embodiments, human cardiotoxicity evaluation difficult in animal experiments can be more accurately performed.
  • the myocardial three-dimensional tissue body further includes fibroblasts in one or a plurality of embodiments from the viewpoint that the myocardial three-dimensional tissue is a tissue close to a living myocardial tissue.
  • the fibroblast is preferably a cardiac fibroblast in one or more embodiments.
  • the fibroblast may be a cell derived from a human or a cell derived from other than a human.
  • the fibroblast may be a cell derived from an embryonic stem cell, an induced pluripotent stem cell, or the like in one or a plurality of embodiments.
  • the ratio of cardiomyocytes to fibroblasts (cardiomyocytes: fibroblasts, number of cells) in the three-dimensional myocardial tissue is 99: 1 to 1:99 in one or more embodiments. In one or a plurality of embodiments, the ratio of cardiomyocytes to fibroblasts is 80:20 to 30:70, 80: from the viewpoint of generating action potentials in cardiomyocytes and realizing more regular pulsations. 20 to 45:55 or 75:25 to 50:50 is preferred.
  • the myocardial three-dimensional tissue body further includes vascular endothelial cells in one or a plurality of embodiments.
  • the myocardial three-dimensional tissue body preferably includes a vascular network formed of vascular endothelial cells in order to stably maintain the function of the myocardial three-dimensional tissue for a longer period of time.
  • the vascular endothelial cell is preferably a cardiac microvascular endothelial cell in one or more embodiments.
  • the vascular endothelial cell may be a cell derived from a human or a cell derived from other than a human.
  • the vascular endothelial cell may be a cell derived from embryonic stem cells, induced pluripotent stem cells and the like in one or a plurality of embodiments.
  • the myocardial three-dimensional tissue structure preferably includes four or more layers of cardiomyocytes, and more preferably five or more layers of cardiomyocytes. Are stacked with 6, 7, 8, 9, or 10 or more layers.
  • the myocardial three-dimensional tissue is formed in each well of the multi-well plate.
  • the area of the myocardial three-dimensional tissue body in the myocardial tissue chip of the present disclosure is 1 mm 2 or more, 5 mm 2 or more, 10 mm 2 or more, or 20 mm 2 or more, and 1000 mm 2 or less, 700 mm 2. Hereinafter, it is 600 mm 2 or less, or 500 mm 2 or less.
  • the density of cells in the myocardial three-dimensional tissue body is 1 ⁇ 10 5 cells / mm 3 or more, 5 ⁇ 10 5 cells / mm 3 or more, 1 ⁇ 10 6 cells / mm 3 or more, 5 ⁇ 10 6 pieces / mm 3 or more, or 1 ⁇ 10 7 pieces / mm 3 or more, and 1 ⁇ 10 10 pieces / mm 3 or less, 5 ⁇ 10 9 pieces / mm 3 or less, or 1 ⁇ 10 9 pieces / Mm 3 or less.
  • the present disclosure is a method for screening a drug candidate compound using the myocardial tissue chip of the present disclosure, wherein the drug candidate compound is brought into contact with the myocardial tissue chip, and the myocardial tissue of the candidate compound
  • a screening method including observing the effect on the myocardial three-dimensional tissue in the chip and evaluating a candidate compound based on the observation result hereinafter also referred to as “screening method of the present disclosure”.
  • screening method of the present disclosure in one or a plurality of embodiments, it is possible to perform a test / inspection regarding safety and pharmacokinetics in the fields of medicine, pharmaceuticals, cosmetics, foods, and the environment.
  • Examples of drug candidate compounds to be screened in the screening method of the present disclosure include therapeutic agents for heart diseases and the like in one or a plurality of embodiments.
  • the present disclosure is a kit for screening a drug candidate compound, which includes a myocardial tissue chip of the present disclosure, a culture medium, and an instruction manual (hereinafter, “kit of the present disclosure”). Also called).
  • kit of the present disclosure includes the above-mentioned medium.
  • the coated cell includes a cell and an extracellular matrix component, and the surface of the cell is coated with an extracellular matrix component coating.
  • the coating containing the extracellular matrix component preferably includes a membrane containing the substance A and a membrane containing the substance B that interacts with the substance A.
  • a protein or polymer having an RGD sequence hereinafter also referred to as “substance having an RGD sequence” and a protein or polymer having the RGD sequence are used.
  • a combination with a protein or polymer that interacts with the protein hereinafter also referred to as “substance having interaction”
  • a protein or polymer that has a positive charge hereinafter also referred to as “substance with a positive charge”.
  • a protein or polymer having a negative charge hereinafter also referred to as “substance having a negative charge”.
  • the thickness of the coating containing the extracellular matrix component is preferably 1 nm to 1 ⁇ 10 3 nm, or 2 nm to 1 ⁇ 10 2 nm, and the myocardial three-dimensional structure in which the coated cells are stacked more densely. From the reason that a tissue body can be obtained, 3 nm to 1 ⁇ 10 2 nm is more preferable.
  • the thickness of the coating containing the extracellular matrix component can be appropriately controlled by, for example, the number of membranes constituting the coating.
  • the coating containing the extracellular matrix component is not particularly limited, and may be a single layer. In one or a plurality of embodiments, for example, 3, 5, 7, 9, 11, 13, 15 layers or more It may be a multilayer.
  • the production method of the present disclosure may include a step of preparing a coated cell.
  • Coated cells can be prepared by alternately bringing a solution containing substance A and a solution containing substance B into contact with cells such as cardiomyocytes.
  • the combination of the substance A and the substance B includes a combination of a substance having an RGD sequence and a substance having an interaction, or a combination of a substance having a positive charge and a substance having a negative charge. It is done.
  • a substance having an RGD sequence refers to a protein or polymer having an “Arg-Gly-Asp” (RGD) sequence, which is an amino acid sequence responsible for cell adhesion activity.
  • RGD Arg-Gly-Asp
  • having an RGD sequence may originally have an RGD sequence, or may have a RGD sequence chemically bound thereto.
  • the substance having the RGD sequence is preferably biodegradable.
  • Examples of the protein having an RGD sequence include conventionally known adhesive proteins or water-soluble proteins having an RGD sequence in one or a plurality of embodiments.
  • Examples of the adhesive protein include fibronectin, vitronectin, laminin, cadherin, and collagen in one or a plurality of embodiments.
  • Examples of the water-soluble protein having an RGD sequence include, in one or more embodiments, collagen, gelatin, albumin, globulin, proteoglycan, an enzyme, an antibody, or the like to which the RGD sequence is bound.
  • Examples of the polymer having an RGD sequence include a naturally-derived polymer or a synthetic polymer in one or a plurality of embodiments.
  • Examples of the naturally-derived polymer having an RGD sequence include, in one or more embodiments, a water-soluble polypeptide, a low-molecular peptide, a polyamino acid such as ⁇ -polylysine or ⁇ -polylysine, and a sugar such as chitin or chitosan.
  • Examples of the synthetic polymer having an RGD sequence include, in one or more embodiments, a polymer or copolymer having an RGD sequence such as a linear type, graft type, comb type, dendritic type, or star type.
  • the polymer or copolymer may be polyurethane, polycarbonate, polyamide, or a copolymer thereof, polyester, poly (N-isopropylacrylamide-co-polyacrylic acid), polyamide amine dendrimer, polyethylene Examples thereof include oxide, poly ⁇ -caprolactam, polyacrylamide, or poly (methyl methacrylate- ⁇ -polyoxymethacrylate).
  • the substance having the RGD sequence is preferably fibronectin, vitronectin, laminin, cadherin, polylysine, elastin, collagen to which the RGD sequence is bound, gelatin, chitin or chitosan to which the RGD sequence is bound, and more preferably fibronectin.
  • the substance that interacts refers to a protein or polymer that interacts with a substance having an RGD sequence.
  • “interact” means, in one or more embodiments, electrostatic interaction, hydrophobic interaction, hydrogen bond, charge transfer interaction, covalent bond formation, specific interaction between proteins. , And / or a substance that interacts chemically and / or physically with a substance having an RGD sequence by van der Waals force or the like is close enough to allow bonding, adhesion, adsorption, or electron transfer.
  • the interacting substance is preferably biodegradable.
  • Examples of the protein that interacts with a substance having an RGD sequence include collagen, gelatin, proteoglycan, integrin, enzyme, or antibody in one or a plurality of embodiments.
  • Examples of the polymer that interacts with a substance having an RGD sequence include a naturally-derived polymer or a synthetic polymer in one or a plurality of embodiments.
  • the naturally-derived polymer that interacts with a substance having an RGD sequence includes, in one or more embodiments, a water-soluble polypeptide, a low-molecular peptide, a polyamino acid, elastin, heparin, a sugar such as heparan sulfate or dextran sulfate, and Examples include hyaluronic acid.
  • the polyamino acid include, in one or more embodiments, polylysine such as ⁇ -polylysine or ⁇ -polylysine, polyglutamic acid, or polyaspartic acid.
  • the synthetic polymer that interacts with a substance having an RGD sequence include, in one or a plurality of embodiments, synthetic molecules having the RGD sequence described above.
  • the interacting substance is preferably gelatin, dextran sulfate, heparin, hyaluronic acid, globulin, albumin, polyglutamic acid, collagen, or elastin, more preferably gelatin, dextran sulfate, heparin, hyaluronic acid, or collagen, More preferred is gelatin, dextran sulfate, heparin, or hyaluronic acid.
  • the combination of the substance having the RGD sequence and the substance that interacts is not particularly limited as long as it is a combination of different substances that interact with each other, and either one is a polymer or protein containing the RGD sequence, and the other is this. Any polymer or protein that interacts with the protein may be used.
  • the combination of the substance having an RGD sequence and the substance having an interaction includes, in one or more embodiments, fibronectin and gelatin, fibronectin and ⁇ -polylysine, fibronectin and hyaluronic acid, fibronectin and dextran sulfate, fibronectin and heparin, fibronectin And collagen, laminin and gelatin, laminin and collagen, polylysine and elastin, vitronectin and collagen, RGD-bound collagen or RGD-bound gelatin and collagen or gelatin, and the like.
  • fibronectin and gelatin fibronectin and ⁇ -polylysine, fibronectin and hyaluronic acid, fibronectin and dextran sulfate, fibronectin and heparin, or laminin and gelatin are preferable, and fibronectin and gelatin are more preferable.
  • sequence, and the substance which has interaction may be one each, respectively, and may use 2 or more types together in the range which shows interaction, respectively.
  • a substance having a positive charge refers to a protein or polymer having a positive charge.
  • the protein having a positive charge is preferably a water-soluble protein in one or a plurality of embodiments.
  • the water-soluble protein include basic collagen, basic gelatin, lysozyme, cytochrome c, peroxidase, or myoglobin in one or more embodiments.
  • the polymer having a positive charge include naturally-derived polymers and synthetic polymers in one or a plurality of embodiments.
  • Examples of the naturally-derived polymer include, in one or more embodiments, a water-soluble polypeptide, a low-molecular peptide, a polyamino acid, a sugar such as chitin or chitosan, and the like.
  • Examples of the polyamino acid include polylysine such as poly ( ⁇ -lysine) and poly ( ⁇ -lysine), polyarginine, and polyhistidine in one or more embodiments.
  • Examples of the synthetic polymer include, in one or more embodiments, a polymer or copolymer such as a linear type, a graft type, a comb type, a dendritic type, or a star type.
  • the polymer or copolymer may be polyurethane, polyamide, polycarbonate, or a copolymer thereof, polyester, polydiallyldimethylammonium chloride (PDDA), polyallylamine hydrochloride, polyethyleneimine, polyvinyl. Examples thereof include amines and polyamide amine dendrimers.
  • PDDA polydiallyldimethylammonium chloride
  • polyallylamine hydrochloride polyethyleneimine
  • polyvinyl examples thereof include amines and polyamide amine dendrimers.
  • a substance having a negative charge refers to a protein or polymer having a negative charge.
  • the protein having a negative charge is preferably a water-soluble protein in one or a plurality of embodiments.
  • the water-soluble protein include acidic collagen, acidic gelatin, albumin, globulin, catalase, ⁇ -lactoglobulin, thyroglobulin, ⁇ -lactalbumin, or ovalbumin in one or more embodiments.
  • Examples of the negatively charged polymer include naturally derived polymers and synthetic polymers.
  • Examples of the naturally-derived polymer include, in one or more embodiments, water-soluble polypeptides, low-molecular peptides, polyamino acids such as poly ( ⁇ -lysine), dextran sulfate, and the like.
  • Examples of the synthetic polymer include, in one or more embodiments, a polymer or copolymer such as a linear type, a graft type, a comb type, a dendritic type, or a star type.
  • the polymer or copolymer may be polyurethane, polyamide, polycarbonate, and a copolymer thereof, polyester, polyacrylic acid, polymethacrylic acid, polystyrene sulfonic acid, polyacrylamide methylpropane sulfonic acid. , Terminal carboxylated polyethylene glycol, polydiallyldimethylammonium salt, polyallylamine salt, polyethyleneimine, polyvinylamine, or polyamidoamine dendrimer.
  • a combination of a positively charged substance and a negatively charged substance may be ⁇ -polylysine salt and polysulfonate, ⁇ -polylysine and polysulfonate, chitosan and dextran sulfate, poly Examples include allylamine hydrochloride and polystyrene sulfonate, polydiallyldimethylammonium chloride and polystyrene sulfonate, or polydiallyldimethylammonium chloride and polyacrylate, preferably ⁇ -polylysine salt and polysulfonate, or polydiallyl. Dimethylammonium chloride and polyacrylate.
  • polysulfonate examples include sodium polysulfonate (PSS) and the like in one or more embodiments.
  • PPS sodium polysulfonate
  • the substance having a positive charge and the substance having a negative charge may each be one kind, or two or more kinds may be used in combination within a range showing an interaction.
  • a solution is first brought into contact with a solution A containing a substance having an RGD sequence, and then containing a substance having an interaction with the substance having an RGD sequence.
  • a method for preparing coated cells by contacting with B will be described by way of example. However, the present disclosure is not construed as being limited to the following embodiments.
  • the cells are brought into contact with the solution A.
  • a film containing a substance having an RGD sequence is formed on the cell surface, and the cell surface is covered with a film containing a substance having an RGD sequence.
  • the contact between the cells and the solution A is performed by applying or adding the solution A to the cells, immersing the cells in the solution A, dropping or spraying the solution A on the cells, or the like. be able to.
  • the contact condition can be appropriately determined according to a contact method, a substance having an RGD sequence and / or a cell type, a concentration of a contained liquid, and the like.
  • the contact time is preferably 30 seconds to 24 hours, 1 minute to 60 minutes, 1 minute to 15 minutes, 1 minute to 10 minutes, or 1 minute to 5 minutes.
  • the ambient temperature at the time of contact and / or the temperature of the solution A is preferably 4 to 60 ° C., 20 to 40 ° C., or 30 to 37 ° C.
  • Solution A only needs to contain a substance having an RGD sequence, and preferably contains a substance having an RGD sequence and a solvent or dispersion medium (hereinafter also simply referred to as “solvent”).
  • solvent a solvent or dispersion medium
  • the content of the substance having an RGD sequence in the solution A is 0.0001 to 1% by mass, 0.01 to 0.5% by mass, or 0.02 to 0.1% by mass. preferable.
  • the solvent include an aqueous solvent such as water, phosphate buffered saline (PBS), and a buffer solution in one or more embodiments.
  • the buffer includes Tris buffer such as Tris-HCl buffer, phosphate buffer, HEPES buffer, citrate-phosphate buffer, glycylglycine-sodium hydroxide buffer. , Britton-Robinson buffer, GTA buffer, and the like.
  • Tris buffer such as Tris-HCl buffer, phosphate buffer, HEPES buffer, citrate-phosphate buffer, glycylglycine-sodium hydroxide buffer. , Britton-Robinson buffer, GTA buffer, and the like.
  • the pH of the solvent is not particularly limited, and in one or more embodiments, 3 to 11, 6 to 8, or 7.2 to 7.4 is preferable.
  • the solution A may further contain a salt, a cell growth factor, a cytokine, a chemokine, a hormone, a bioactive peptide, a pharmaceutical composition, or the like.
  • a pharmaceutical composition include, in one or a plurality of embodiments, a therapeutic agent, preventive agent, inhibitor, antibacterial agent, or anti-inflammatory agent for diseases.
  • the salt include sodium chloride, calcium chloride, sodium bicarbonate, sodium acetate, sodium citrate, potassium chloride, sodium hydrogen phosphate, magnesium sulfate, and sodium succinate in one or more embodiments.
  • One kind of salt may be contained, or two or more kinds of salts may be contained.
  • Both the solution A and the solution B may contain a salt, or one of them may contain a salt.
  • the salt concentration in the solution A is not particularly limited, but in one or more embodiments, it is 1 ⁇ 10 ⁇ 6 M to 2M, preferably 1 ⁇ 10 ⁇ 4 M to 1M, more preferably 1 ⁇ 10 ⁇ . 4 M to 0.05 M.
  • the removal can be performed by centrifugation or filtration.
  • the removal by centrifugation can be performed by centrifuging in a state where the cells are dispersed in the solution A, and then removing the supernatant. Centrifugation conditions can be appropriately determined depending on the type of cells, the concentration of cells, and the composition of inclusions contained in the solution A.
  • washing can be performed by centrifugation or filtration.
  • washing by centrifugation can be performed by adding a solvent to the cells from which the supernatant has been removed, followed by centrifugation and removal of the supernatant.
  • the solvent used for washing is preferably the same as the solvent of the solution A.
  • the cell covered with the membrane containing the substance having the RGD sequence is brought into contact with the solution B.
  • a membrane containing an interacting substance is formed on the membrane surface containing the substance having the RGD sequence, and the cell surface covered with the membrane containing the substance having the RGD sequence is covered with the membrane containing the interacting substance.
  • the contact with the solution B can be performed in the same manner as the contact with the solution A, except that a substance that interacts instead of the substance having the RGD sequence is used.
  • the extracellular surface in which the membrane containing the substance having the RGD sequence and the membrane containing the interacting substance are alternately laminated on the entire cell surface A coating containing a matrix component can be formed.
  • the number of times that the solution A or the solution B is brought into contact with the cells can be appropriately determined according to the thickness of the coating containing the extracellular matrix component to be formed.
  • the present disclosure is also referred to as a cultured myocardial tissue containing cardiomyocytes derived from induced pluripotent stem cells, an extracellular matrix component, and fibroblasts (hereinafter referred to as “cultured myocardial tissue of the present disclosure”). ) In one or a plurality of embodiments, the cultured myocardial tissue of the present disclosure can be obtained by arranging and culturing iPS cell-derived cardiomyocytes and fibroblasts in three dimensions.
  • the cultured myocardial tissue of the present disclosure is obtained by three-dimensionally arranging and culturing iPS cell-derived cardiomyocytes and fibroblasts coated with a coating containing an extracellular matrix component. Can do.
  • cultured myocardial tissue refers to a structure or aggregate of cells including iPS cell-derived cardiomyocytes, extracellular matrix components, and fibroblasts, and iPS cell-derived cardiomyocytes arranged in three dimensions.
  • the cultured myocardial tissue of the present disclosure can be used as a graft or a therapeutic agent for treating heart failure or the like.
  • the cultured myocardial tissue of the present disclosure can be used in the practice of regenerative medicine in one or more embodiments.
  • the cultured myocardial tissue further includes fibroblasts from the viewpoint that it is a tissue close to a living myocardial tissue.
  • the fibroblast is preferably a cardiac fibroblast in one or more embodiments.
  • the fibroblast may be a cell derived from a human or a cell derived from other than a human.
  • the fibroblast may be a cell derived from an embryonic stem cell, an induced pluripotent stem cell, or the like in one or a plurality of embodiments.
  • the ratio of cardiomyocytes to fibroblasts (cardiomyocytes: fibroblasts, number of cells) in the three-dimensional myocardial tissue is 99: 1 to 1:99 in one or more embodiments. In one or a plurality of embodiments, the ratio of cardiomyocytes to fibroblasts is 80:20 to 30:70, 80: from the viewpoint of generating action potentials in cardiomyocytes and realizing more regular pulsations. 20 to 45:55 or 75:25 to 50:50 is preferred.
  • the cultured myocardial tissue further includes vascular endothelial cells in one or a plurality of embodiments.
  • the cultured myocardial tissue preferably includes a vascular network formed of vascular endothelial cells in order to stably maintain the function for a longer period of time.
  • the vascular endothelial cell is preferably a cardiac microvascular endothelial cell in one or more embodiments.
  • the vascular endothelial cell may be a cell derived from a human or a cell derived from other than a human.
  • the vascular endothelial cell may be a cell derived from embryonic stem cells, induced pluripotent stem cells and the like in one or a plurality of embodiments.
  • the vascular network can be formed by mixing and seeding vascular endothelial cells with iPS-derived cardiomyocytes and fibroblasts and culturing.
  • the area of the cultured myocardial tissue is 20 mm 2 or more, 100 mm 2 or more, 200 mm 2 or more, 500 mm 2 or more, or 1000 mm 2 or more. In one or more embodiments, the thickness of the cultured myocardial tissue is 1 ⁇ m or more, 10 ⁇ m or more, and 10000 ⁇ m or less.
  • the present disclosure may relate to one or more of the following embodiments.
  • a method for producing a myocardial tissue chip used for drug screening Arrangement of coated cells, the surface of which is coated with a coating containing an extracellular matrix component, on the substrate, and forming the myocardial three-dimensional tissue on the substrate by repeatedly arranging the coated cells.
  • Including A method for producing a myocardial tissue chip, wherein the cells include cardiomyocytes derived from induced pluripotent stem cells.
  • the production method according to [1] comprising disposing fibroblasts on the substrate.
  • the manufacturing method of description [4] The production method according to any one of [1] to [3], wherein the cells are arranged such that four or more layers of cells including the cardiomyocytes are laminated. [5] The production method according to any one of [1] to [4], wherein the placement of the coated cells is performed by discharging the coated cells onto a substrate using a liquid discharge nozzle. [6] The production method according to [5], wherein the discharge of the coated cells is performed by discharging one coated cell per discharge.
  • the myocardial tissue chip according to [9], wherein the three-dimensional myocardial tissue further includes fibroblasts.
  • [17] comprising cardiomyocytes derived from induced pluripotent stem cells, extracellular matrix components and fibroblasts, A cultured myocardial tissue obtained by culturing the cardiomyocytes and the fibroblasts in three dimensions.
  • 50 mM Tris-HCl (pH 7.4): 50 mM Tris adjusted to pH 7.4 with HCl (manufactured by Nacalai Tesque) sterilized and filtered with 0.2 ⁇ m ⁇ -raysteryl filter (manufactured by Kurashiki Boseki Co., Ltd.)
  • BFN Fibrectin from bovine plasma (manufactured by SIGMA)
  • BFN solution 0.2 mg BFN / 1 ml 50 mM Tris-HCl (pH 7.4)
  • DMEM Dulbecco's easy's medium (manufactured by SIGMA) including 10% FBS (manufactured by GIBCO)
  • Gelatin solution 0.2 mg Gelatin / 1 ml 50 mM Tris-HCl (pH 7.4) sterilized and filtered with 0.2 ⁇ m ⁇ -ray sterile filter (manufactured by Kurashiki Bose
  • Cardiomyocytes were collected from a newborn rat, and a coated cell was prepared by forming a coating containing fibronectin and gelatin on the collected cell surface.
  • the FN dipping operation and the G dipping operation were each set as a washing operation and one step, and finally, the coated cells were prepared by performing the FN dipping operation 5 times and the G dipping operation 4 times for a total of 9 steps (coating layer) Thickness: 7 nm).
  • FIG. 1 is a photomicrograph of the myocardial three-dimensional tissue after staining. As shown in FIG. 1, it was confirmed that the obtained myocardial three-dimensional tissue had a myocardial tissue structure having a troponin skeleton.
  • a myocardial three-dimensional tissue body was prepared in the same procedure as described above except that the number of coated cells seeded on the membrane filter was 10 ⁇ 10 5 (10 layers, thickness: approximately 60 ⁇ m). The density of cardiomyocytes in the obtained myocardial three-dimensional tissue was 5 ⁇ 10 7 cells / mm 2 . After confirming that the obtained myocardial three-dimensional tissue was beating, 1.0 ⁇ M isoproterenol was added and incubated for 30 minutes. After measuring the number of beats, the medium was changed to DMEM to remove isoproterenol, and after culturing for 41 hours, the number of beats was measured. The result is shown in FIG. The number of beats was measured by observation with a phase contrast microscope.
  • FIG. 2 is an example of a graph showing changes in the number of beats per minute of a three-dimensional myocardial tissue.
  • the number of pulsations of the obtained three-dimensional myocardial tissue significantly increased when isoproterenol, which is a pulsatile promoter, was added.
  • Example 1 Coated cells were prepared in the same manner as described above except that human iPS cell-derived cardiomyocytes were used in place of rat neonatal cardiomyocytes.
  • the human iPS cell used was the 253G1 strain.
  • a myocardial tissue chip containing 10 layers of myocardial 3D tissue was prepared in the same manner as in preparation of myocardial 3D tissue (Part 2).
  • the obtained myocardial three-dimensional tissue was cultured for several days, and a phase contrast micrograph is shown in FIG. It was observed that the prepared myocardial three-dimensional tissue was uniformly driven throughout the tissue even after several days of culture.
  • Example 2 A myocardial tissue chip was produced in the same manner as in Example 1 except that the number of layers in the myocardial three-dimensional tissue was changed to five. After the produced myocardial tissue chip was cultured for 1 day, 1M isoproterenol (pulsation promoter) was added, and the number of pulsations before and after the addition was measured. The result is shown in FIG. As shown in FIG. 4, it was confirmed that the number of beats increased in response to drug stimulation. That is, since the obtained myocardial three-dimensional tissue body has a myocardial function having drug responsiveness, a myocardial tissue chip providing a myocardial three-dimensional tissue body capable of drug evaluation could be produced.
  • 1M isoproterenol pulsation promoter
  • Example 3 A myocardial tissue chip including a myocardial 3D tissue was produced in the same manner as in Example 1 except that the number of layers in the myocardial 3D tissue was changed to 4.
  • FIG. 5 shows a tissue section image (HE-stained image) after culturing the prepared myocardial three-dimensional tissue for 7 days
  • FIG. 6 shows a phase contrast micrograph. The number of beats of the obtained myocardial three-dimensional tissue was 40 times / min.
  • Example 4 Coated cells were prepared using human iPS-derived cardiomyocytes (5 ⁇ 10 5 cells), and myocardial tissue chips (5 layers) were prepared in the same manner as in Example 2.
  • Calcium imaging was performed using the myocardial tissue chips of Examples 4-6. Calcium imaging was performed according to the following procedure. That is, 4 ⁇ M Fluo3AM was added to the myocardial tissue chip after 5 days of culture and incubated for 45 minutes. Thereafter, imaging was performed using a fluorescence microscope under conditions of an excitation wavelength of 508 nm and a fluorescence wavelength of 527 nm.
  • the change of the fluorescence intensity accompanying the pulsation was strong in the order of Example 5 and Example 6, and the pulsation was large in the order of Example 5 and Example 4.
  • Example 4 pulsated, no change in fluorescence intensity due to pulsation was observed. In Example 6, pulsation was hardly observed.
  • Example 8 [Production of myocardial tissue chip having vascular network] A 24-well cell in which human iPS-derived coated cardiomyocytes (1.0 ⁇ 10 6 cells) and coated normal human microvascular endothelial cells (NHCMEC) are mixed so that the ratio of NHCMEC is 10% of the total number of cells. A myocardial tissue chip was prepared by seeding on a culture insert and culturing (Example 8-1).
  • FIG. 7A shows a phase contrast micrograph of the myocardial three-dimensional tissue (after 6 days of culture) in the obtained myocardial tissue chip.
  • Example 8 except that human iPS-derived coated cardiomyocytes (5.0 ⁇ 10 5 cells) and coated fibroblasts (5.0 ⁇ 10 5 cells) were used instead of only human iPS-derived coated cardiomyocytes.
  • FIG. 7B shows a phase contrast micrograph of the myocardial three-dimensional tissue (after 6 days of culture) in the obtained myocardial tissue chip.
  • the myocardial tissue chip of Example 8-2 prepared by mixing coated fibroblasts was compared with the myocardial tissue chip of Example 8-1 that did not contain coated fibroblasts. A finer vascular network was formed.
  • NHCF normal human cardiac fibroblast

Abstract

Provided is a method or the like for manufacturing a cardiac muscle tissue chip in which a 3D structure of cardiac muscle is formed and that can be used in screening of drugs. The present invention pertains to a method for manufacturing a cardiac muscle tissue chip used in screening of drugs, the method for manufacturing a cardiac muscle tissue chip comprising disposing, on a substrate, test cells in which the surface of the cells is coated with a film containing an extracellular matrix component, and forming a cardiac muscle 3D tissue construct on the substrate by repeatedly disposing the test cells, the cells comprising cardiac muscle cells derived from artificial multipotent stem cells.

Description

薬剤候補化合物のスクリーニングに用いる心筋組織チップの製造方法Method for producing myocardial tissue chip used for screening drug candidate compounds
 本開示は、薬剤候補化合物のスクリーニングに用いる心筋組織チップの製造方法、及び心筋組織チップ、及び心筋組織チップを用いた薬剤候補化合物のスクリーニング方法に関する。 The present disclosure relates to a method for producing a myocardial tissue chip used for screening a drug candidate compound, a myocardial tissue chip, and a method for screening a drug candidate compound using the myocardial tissue chip.
 化粧品、医薬品及び医薬部外品等といったヒトに直接適用される物質の研究開発において、薬効試験、薬理試験及び安全性試験等といった物質の評価試験は重要である。これらの試験は、従来、マウスやラット等の動物を用いて行われているが、近年、動物愛護の観点から動物実験の見直しが求められ、動物実験に代わり、細胞を用いたin vitro薬剤評価が提案されている(例えば、特許文献1)。しかしながら、生体組織は三次元体であり、様々な細胞が相互作用することで機能を発現していることから、三次元体である組織や臓器としての薬剤応答は細胞単体での薬剤応答と異なり、細胞単体では正確な評価を行うことが困難である。このため、動物実験に代わる三次元組織体を用いて評価する方法が求められているが、その技術は未だ確立されていないのが現状である。 In the research and development of substances that are directly applied to humans, such as cosmetics, pharmaceuticals, and quasi-drugs, substance evaluation tests such as drug efficacy tests, pharmacological tests, and safety tests are important. These tests are conventionally performed using animals such as mice and rats, but in recent years, animal experiments have been required to be reviewed from the viewpoint of animal welfare, and in vitro drug evaluation using cells instead of animal experiments. Has been proposed (for example, Patent Document 1). However, since the biological tissue is a three-dimensional body and functions are expressed by the interaction of various cells, the drug response as a tissue or organ that is a three-dimensional body is different from the drug response of a single cell. It is difficult to perform accurate evaluation with a single cell. For this reason, there is a demand for a method for evaluation using a three-dimensional tissue body in place of animal experiments, but the technology has not yet been established.
特開2003-33177号公報JP 2003-33177 A
 本開示は、一又は複数の実施形態において、心筋の三次元組織が形成され、薬剤のスクリーニングに利用可能な心筋組織チップ、該心筋組織チップの製造方法及び心筋組織チップを用いた薬剤のスクリーニング方法を提供する。 According to one or more embodiments of the present disclosure, a myocardial tissue chip that can be used for drug screening in which a three-dimensional myocardial tissue is formed, a method for manufacturing the myocardial tissue chip, and a drug screening method using the myocardial tissue chip I will provide a.
 本開示は、一又は複数の実施形態において、薬剤のスクリーニングに用いる心筋組織チップの製造方法であって、細胞の表面が細胞外マトリックス成分を含む被膜で被覆された被覆細胞を基材上に配置すること、及び前記被覆細胞の配置を繰返し行うことによって前記基材上に心筋三次元組織体を形成することを含み、前記細胞が、人工多能性幹細胞に由来する心筋細胞を含む、心筋組織チップの製造方法に関する。 In one or a plurality of embodiments, the present disclosure relates to a method for producing a myocardial tissue chip used for drug screening, in which a coated cell whose surface is coated with a coating containing an extracellular matrix component is disposed on a substrate. And forming a myocardial three-dimensional tissue body on the substrate by repeatedly arranging the coated cells, wherein the cells include cardiomyocytes derived from induced pluripotent stem cells The present invention relates to a chip manufacturing method.
 本開示は、一又は複数の実施形態において、薬剤のスクリーニングに用いる心筋組織チップであって、基材と、前記基材上に形成された心筋三次元組織体とを含み、前記心筋三次元組織体は、人工多能性幹細胞に由来する心筋細胞と、細胞外マトリックス成分とを少なくとも含み、前記心筋細胞が前記細胞外マトリックス成分を介して積層されている、心筋組織チップに関する。 In one or a plurality of embodiments, the present disclosure is a myocardial tissue chip used for drug screening, which includes a base material and a myocardial three-dimensional tissue body formed on the base material, and the myocardial three-dimensional tissue The body relates to a myocardial tissue chip comprising cardiomyocytes derived from induced pluripotent stem cells and an extracellular matrix component, wherein the cardiomyocytes are stacked via the extracellular matrix component.
 本開示は、一又は複数の実施形態において、本開示の心筋組織チップを用いた薬剤候補化合物のスクリーニング方法であって、薬剤候補化合物を前記心筋組織チップに接触させること、候補化合物の前記心筋組織チップにおける心筋三次元組織体への影響を観察すること、及び観察結果に基いて候補化合物を評価することを含む、スクリーニング方法に関する。 In one or a plurality of embodiments, the present disclosure is a method for screening a drug candidate compound using the myocardial tissue chip of the present disclosure, wherein the drug candidate compound is brought into contact with the myocardial tissue chip, and the myocardial tissue of the candidate compound The present invention relates to a screening method including observing the influence of a chip on a myocardial three-dimensional tissue and evaluating a candidate compound based on the observation result.
 本開示は、一又は複数の実施形態において、人工多能性幹細胞に由来する心筋細胞と細胞外マトリックス成分と線維芽細胞とを含み、前記心筋細胞と前記線維芽細胞とを三次元に配置して培養することにより得られた培養心筋組織に関する。 In one or a plurality of embodiments, the present disclosure includes a cardiomyocyte derived from an induced pluripotent stem cell, an extracellular matrix component, and a fibroblast, and the cardiomyocyte and the fibroblast are arranged in three dimensions. It is related with the cultured myocardial tissue obtained by culture.
 本開示によれば、一又は複数の実施形態において、心筋の三次元組織が形成され、薬剤のスクリーニングに利用可能な心筋組織チップ、その製造方法及び心筋組織チップを用いた薬剤のスクリーニング方法を提供できる。 According to the present disclosure, in one or a plurality of embodiments, a myocardial three-dimensional tissue is formed, and a myocardial tissue chip that can be used for drug screening, a manufacturing method thereof, and a drug screening method using the myocardial tissue chip are provided. it can.
図1は、参考例の心筋三次元組織体の顕微鏡写真の一例である。FIG. 1 is an example of a micrograph of a myocardial three-dimensional tissue body of a reference example. 図2は、参考例の心筋三次元組織体の薬剤投与に伴う拍動数の変化を示すグラフの一例である。FIG. 2 is an example of a graph showing changes in the number of pulsations accompanying drug administration of the myocardial three-dimensional tissue body of the reference example. 図3は、実施例1で作製した心筋組織チップにおける心筋三次元組織体の顕微鏡写真の一例である。FIG. 3 is an example of a micrograph of a myocardial three-dimensional tissue body in the myocardial tissue chip produced in Example 1. 図4は、実施例2で作製した心筋組織チップにおける心筋三次元組織体の薬剤投与に伴う拍動数の変化を示すグラフの一例である。FIG. 4 is an example of a graph showing changes in the number of pulsations accompanying drug administration of a myocardial three-dimensional tissue body in the myocardial tissue chip produced in Example 2. 図5は、実施例3で作製した心筋組織チップにおける心筋三次元組織体(7日間培養後)の組織切片画像(HE染色画像)である。FIG. 5 is a tissue section image (HE-stained image) of a myocardial three-dimensional tissue body (after 7 days of culture) in the myocardial tissue chip produced in Example 3. 図6は、実施例3で作製した心筋組織チップにおける心筋三次元組織体(7日間培養後)の位相差顕微鏡写真である。6 is a phase contrast micrograph of a myocardial three-dimensional tissue body (after 7 days of culture) in the myocardial tissue chip produced in Example 3. FIG. 図7は、実施例8で作製した血管網を有する心筋三次元組織体(6日間培養後)の共焦点レーザー顕微鏡写真であり、図7Aは実施例8-1で作製した心筋三次元組織体(ヒトiPS由来被覆心筋細胞:被覆線維芽細胞=100:0)の画像であり、図7Bは実施例8-2で作製した心筋三次元組織体(ヒトiPS由来被覆心筋細胞:被覆線維芽細胞=50:50)の画像である。7 is a confocal laser micrograph of a myocardial three-dimensional tissue body (after 6 days of culture) having a vascular network prepared in Example 8, and FIG. 7A is a myocardial three-dimensional tissue body prepared in Example 8-1. FIG. 7B is an image of (human iPS-derived coated cardiomyocytes: coated fibroblasts = 100: 0), and FIG. 7B is a three-dimensional myocardial tissue (human iPS-derived coated cardiomyocytes: coated fibroblasts) prepared in Example 8-2. = 50: 50).
 本開示において「心筋組織チップ」は、基材と、基材上に形成された心筋三次元組織体とを含む。 In the present disclosure, the “myocardial tissue chip” includes a base material and a myocardial three-dimensional tissue body formed on the base material.
 本開示において「心筋三次元組織体」とは、人工多能性幹細胞に由来する心筋細胞と細胞外マトリックス成分とを少なくとも含み、心筋細胞が細胞外マトリックス成分を介して積層された細胞の構造体のことをいい、一又は複数の実施形態において、生体内における心筋構造を模したものであることが好ましい。本開示において人工多能性幹細胞(以下、「iPS細胞」ともいう)としては、一又は複数の実施形態において、疾患特異的iPS細胞、及び正常iPS細胞が挙げられる。本開示において、iPS細胞の由来は特に限定されず、ヒト及びマウス等が挙げられるが、ヒトの心毒性をより正確に評価可能な心筋組織チップを提供する点から、ヒト由来iPS細胞が好ましい。本開示において、iPS細胞に由来する心筋細胞は、一又は複数の実施形態において、市販のものを使用してもよいし、自家調製したものを使用してもよい。本開示における心筋三次元組織体は、一又は複数の実施形態において、iPS細胞に由来する心筋細胞及び細胞外マトリックス成分以外に、心筋を構成しうる心筋細胞以外の細胞及び器官(及び又はそれを構成する細胞)等を含んでもよい。心筋細胞以外の細胞としては、一又は複数の実施形態において、血管内皮細胞、筋芽細胞、線維芽細胞、間葉系幹細胞、造血幹細胞、神経細胞、癌細胞等が挙げられる。器官としては、一又は複数の実施形態において、血管、リンパ管、神経等が挙げられる。器官を構成する細胞としては、一又は複数の実施形態において、血管内皮細胞、筋芽細胞、線維芽細胞、間葉系幹細胞、造血幹細胞、神経細胞、癌細胞等が挙げられる。 In the present disclosure, the “cardiac myocardial three-dimensional tissue body” includes at least cardiomyocytes derived from induced pluripotent stem cells and an extracellular matrix component, and a cell structure in which cardiomyocytes are stacked via the extracellular matrix component In one or a plurality of embodiments, it is preferable to imitate a myocardial structure in a living body. In the present disclosure, the induced pluripotent stem cells (hereinafter also referred to as “iPS cells”) include disease-specific iPS cells and normal iPS cells in one or a plurality of embodiments. In the present disclosure, the origin of iPS cells is not particularly limited, and examples include humans and mice, but human-derived iPS cells are preferable from the viewpoint of providing a myocardial tissue chip capable of more accurately evaluating human cardiotoxicity. In the present disclosure, commercially available ones or self-prepared ones may be used as the cardiomyocytes derived from iPS cells in one or a plurality of embodiments. In one or a plurality of embodiments, the myocardial three-dimensional tissue in the present disclosure includes cells and organs (and / or organs) other than cardiomyocytes capable of constituting the myocardium in addition to the myocardial cells derived from iPS cells and extracellular matrix components. Constituent cells) and the like. Examples of cells other than cardiomyocytes include, in one or more embodiments, vascular endothelial cells, myoblasts, fibroblasts, mesenchymal stem cells, hematopoietic stem cells, nerve cells, cancer cells and the like. Examples of the organ include blood vessels, lymphatic vessels, nerves, and the like in one or a plurality of embodiments. Examples of the cells constituting the organ include vascular endothelial cells, myoblasts, fibroblasts, mesenchymal stem cells, hematopoietic stem cells, nerve cells, and cancer cells in one or a plurality of embodiments.
 本開示において「被覆細胞」とは、細胞外マトリックス成分を含む被膜と細胞とを含み、その細胞表面が該被膜によって被覆されている細胞をいう。被覆される細胞としては、上述の細胞が挙げられる。被覆細胞は、一又は複数の実施形態において、後述する方法、実施例及び特開2012-115254号公報に開示された方法により作製できる。 In the present disclosure, the “coated cell” refers to a cell containing a coating containing an extracellular matrix component and a cell, and the cell surface of which is covered with the coating. Examples of the cells to be coated include the cells described above. In one or a plurality of embodiments, the coated cells can be prepared by the methods and examples described later, and the method disclosed in JP2012-115254A.
 本開示において「細胞外マトリックス成分」とは、生体内で細胞の外の空間を充填して骨格的役割、足場を提供する役割、及び又は生体因子を保持する役割等の機能を果たす物質をいう。また、細胞外マトリックス成分は、さらに、in vitro細胞培養において骨格的役割、足場を提供する役割及び又は生体因子を保持する役割等の機能を果たしうる物質を含んでいてもよい。 In the present disclosure, the “extracellular matrix component” refers to a substance that fills the space outside the cell in a living body and performs a function such as a skeletal role, a role of providing a scaffold, and a role of holding a biological factor. . In addition, the extracellular matrix component may further contain a substance that can perform functions such as a skeletal role, a role of providing a scaffold, and a role of retaining a biological factor in in vitro cell culture.
 [心筋組織チップの製造方法]
 本開示は、薬剤のスクリーニングに用いる心筋組織チップの製造方法であって、細胞の表面が細胞外マトリックス成分を含む被膜で被覆された被覆細胞を基材上に配置すること、及び前記被覆細胞の配置を繰返し行うことによって前記基材上に心筋三次元組織体を形成することを含み、前記細胞が人工多能性幹細胞に由来する心筋細胞(以下、「iPS細胞由来の心筋細胞」ともいう)を含む心筋組織チップの製造方法(以下、「本開示の製造方法」ともいう)に関する。
[Myocardial tissue chip manufacturing method]
The present disclosure relates to a method for producing a myocardial tissue chip used for drug screening, wherein a coated cell having a cell surface coated with a coating containing an extracellular matrix component is disposed on a substrate; Cardiomyocytes derived from induced pluripotent stem cells (hereinafter also referred to as “iPS cell-derived cardiomyocytes”), comprising forming a myocardial three-dimensional tissue on the substrate by repeatedly arranging The present invention relates to a method for producing a myocardial tissue chip including the following (hereinafter, also referred to as “production method of the present disclosure”).
 本開示の製造方法によれば、一又は複数の実施形態において、薬剤のスクリーニングに用いられる市販の様々なサイズのマイクロウェルに、層数や構造が均一に制御された心筋三次元組織体が形成された心筋組織チップを提供できる。また、本開示の製造方法によれば、一又は複数の実施形態において、マイクロウェルに遅くとも1日以内で心筋三次元組織体を形成することができる。本開示の製造方法によれば、一又は複数の実施形態において、マイクロウェルの内部に少なくとも5層以上の心筋三次元組織体を提供できる。 According to the production method of the present disclosure, in one or a plurality of embodiments, a myocardial three-dimensional tissue body in which the number of layers and the structure are uniformly controlled is formed in commercially available microwells of various sizes used for drug screening. An improved myocardial tissue chip can be provided. Further, according to the manufacturing method of the present disclosure, in one or a plurality of embodiments, a myocardial three-dimensional tissue can be formed in the microwell within one day at the latest. According to the manufacturing method of the present disclosure, in one or a plurality of embodiments, a myocardial three-dimensional tissue body of at least five layers or more can be provided inside the microwell.
 本開示の製造方法により得られる心筋組織チップは、一又は複数の実施形態において、医薬、製薬、化粧品、食品及び環境の分野における安全性や薬物動態に関する試験・検査の用途に用いることができる。 In one or a plurality of embodiments, the myocardial tissue chip obtained by the production method of the present disclosure can be used for testing / inspection related to safety and pharmacokinetics in the fields of pharmaceuticals, pharmaceuticals, cosmetics, foods, and the environment.
 本開示の製造方法は、細胞の表面が細胞外マトリックス成分を含む被膜で被覆された被覆細胞を基材上に配置することを繰返し行うことによって、基材上に心筋三次元組織体を形成することを含み、好ましくは覆細胞を基材上に配置することを繰返し行った後、培養することによって基材上に心筋三次元組織体を形成することを含む。培養温度は、一又は複数の実施形態において、4~60℃、20~40℃、又は30~37℃である。培養時間は、特に限定されるものではなく、一又は複数の実施形態において、1~168時間、3~24時間、又は3~12時間である。培地は、特に制限されず、細胞に応じて適宜決定でき、例えば、Eagle’s MEM培地、Dulbecco’s Modified Eagle培地(DMEM)、Modified Eagle培地(MEM)、Minimum Essential培地、RDMI、GlutaMax培地等が挙げられる。培地は、一又は複数の実施形態において、血清を添加した培地であってもよいし、無血清培地であってもよい。 The production method of the present disclosure forms a myocardial three-dimensional tissue body on a base material by repeatedly placing the coated cells, the surface of which is coated with a coating containing an extracellular matrix component, on the base material. Preferably, after placing the covering cells on the base material repeatedly, forming a three-dimensional myocardial tissue on the base material by culturing. In one or more embodiments, the culture temperature is 4 to 60 ° C., 20 to 40 ° C., or 30 to 37 ° C. The culture time is not particularly limited, and in one or more embodiments, it is 1 to 168 hours, 3 to 24 hours, or 3 to 12 hours. The medium is not particularly limited and can be appropriately determined depending on the cell. For example, Eagle's MEM medium, Dulbecco's Modified Eagle medium (DMEM), Modified Eagle medium (MEM), Minimum Essential medium, RDMI, GlutaMax medium, etc. Is mentioned. In one or more embodiments, the medium may be a medium supplemented with serum or a serum-free medium.
 本開示の製造方法は、生体の心筋組織により近い組織体とする点から、一又は複数の実施形態において、線維芽細胞を基材上に配置することを含む。線維芽細胞は、一又は複数の実施形態において、iPS細胞由来の心筋細胞を含む被覆細胞と混合して配置してもよいし、該被覆細胞と別個に配置してもよい。線維芽細胞は、一又は複数の実施形態において、心筋細胞との比率(心筋細胞:線維芽細胞、細胞数)が99:1~1:99となるように配置する。心筋細胞と線維芽細胞との比率は、一又は複数の実施形態において、心筋細胞に活動電位を発生させ、より規則的な拍動を実現する点から、80:20~30:70、80:20~45:55又は75:25~50:50が好ましい。線維芽細胞は、一又は複数の実施形態において、心臓線維芽細胞であることが好ましい。線維芽細胞は、一又は複数の実施形態において、ヒト由来の細胞であってもよいし、ヒト以外に由来する細胞であってもよい。線維芽細胞は、一又は複数の実施形態において、線維芽細胞は、一又は複数の実施形態において、胚性幹細胞、及び人工多能性幹細胞等の由来の細胞であってもよい。線維芽細胞は、細胞外マトリックス成分を含む被膜で被覆されていてもよいし、被覆されていなくてもよい。 The production method of the present disclosure includes disposing fibroblasts on a substrate in one or a plurality of embodiments from the viewpoint of forming a tissue body closer to a living myocardial tissue. In one or a plurality of embodiments, the fibroblasts may be mixed with the coated cells containing iPS cell-derived cardiomyocytes or may be disposed separately from the coated cells. In one or more embodiments, the fibroblasts are arranged so that the ratio of cardiomyocytes (cardiomyocytes: fibroblasts, number of cells) is 99: 1 to 1:99. In one or a plurality of embodiments, the ratio of cardiomyocytes to fibroblasts is 80:20 to 30:70, 80: from the viewpoint of generating action potentials in cardiomyocytes and realizing more regular pulsations. 20 to 45:55 or 75:25 to 50:50 is preferred. The fibroblast is preferably a cardiac fibroblast in one or more embodiments. In one or a plurality of embodiments, the fibroblast may be a cell derived from a human or a cell derived from other than a human. In one or a plurality of embodiments, the fibroblast may be a cell derived from an embryonic stem cell, an induced pluripotent stem cell, or the like in one or a plurality of embodiments. Fibroblasts may or may not be coated with a coating containing extracellular matrix components.
 本開示の製造方法は、三次元組織体内に血管網を形成させて生体の心筋組織により近い組織体とする点から、一又は複数の実施形態において、血管内皮細胞を基材上に配置することを含む。血管内皮細胞は、一又は複数の実施形態において、iPS細胞由来の心筋細胞を含む被覆細胞と混合して配置してもよいし、該被覆細胞と別個に配置してもよい。血管内皮細胞は、一又は複数の実施形態において、心臓微小血管内皮細胞であることが好ましい。血管内皮細胞は、一又は複数の実施形態において、ヒト由来の細胞であってもよいし、ヒト以外に由来する細胞であってもよい。血管内皮細胞は、一又は複数の実施形態において、血管内皮細胞は、一又は複数の実施形態において、胚性幹細胞、及び人工多能性幹細胞等の由来の細胞であってもよい。血管内皮細胞は、細胞外マトリックス成分を含む被膜で被覆されていてもよいし、被覆されていなくてもよい。 In one or a plurality of embodiments, the manufacturing method according to the present disclosure places a vascular endothelial cell on a base material from the viewpoint that a vascular network is formed in a three-dimensional tissue body to make the tissue body closer to a living body's myocardial tissue. including. In one or a plurality of embodiments, the vascular endothelial cells may be mixed with the coated cells containing the cardiomyocytes derived from iPS cells or may be disposed separately from the coated cells. The vascular endothelial cell is preferably a cardiac microvascular endothelial cell in one or more embodiments. In one or a plurality of embodiments, the vascular endothelial cell may be a cell derived from a human or a cell derived from other than a human. In one or a plurality of embodiments, the vascular endothelial cell may be a cell derived from embryonic stem cells, induced pluripotent stem cells and the like in one or a plurality of embodiments. Vascular endothelial cells may or may not be coated with a coating containing an extracellular matrix component.
 心筋三次元組織体形成時における被覆細胞の密度は、一又は複数の実施形態において、目的とする心筋三次元組織体の大きさ及び厚み、培養する容器の大きさならびに積層される細胞の数等に応じて適宜決定でき、一又は複数の実施形態において、1×102個/cm3~1×109個/cm3、1×104個/cm3~1×108個/cm3、又は1×105個/cm3~1×107個/cm3である。 In one or a plurality of embodiments, the density of the coated cells at the time of myocardial three-dimensional tissue formation is the size and thickness of the target myocardial three-dimensional tissue, the size of the container to be cultured, the number of cells to be stacked, etc. 1 × 10 2 pieces / cm 3 to 1 × 10 9 pieces / cm 3 , 1 × 10 4 pieces / cm 3 to 1 × 10 8 pieces / cm 3 in one or a plurality of embodiments. Or 1 × 10 5 pieces / cm 3 to 1 × 10 7 pieces / cm 3 .
 本開示の製造方法は、一又は複数の実施形態において、iPS細胞由来の心筋細胞を含む細胞が、少なくとも4層以上積層されるように被覆細胞を配置することを含む。積層する細胞層の数は特に限定されないが、一又は複数の実施形態において、5、6、7、8、9、又は10層以上等が挙げられる。 In one or a plurality of embodiments, the production method of the present disclosure includes arranging the coated cells such that at least four layers of iPS cell-derived cardiomyocytes are laminated. The number of cell layers to be stacked is not particularly limited, and in one or a plurality of embodiments, 5, 6, 7, 8, 9, or 10 layers or more may be mentioned.
 被覆細胞の配置は、形成する心筋三次元組織体の再現性の向上、及び製造効率向上の点、また、より高速な製造が可能になり、層数及び構造の制御がより容易になる点から、一又は複数の実施形態において、液吐出ノズルを用いて被覆細胞を基板上に吐出することによって行うことが好ましく、インクジェット式吐出装置などの噴射装置を用いて行うことがより好ましい。噴射装置としては、一又は複数の実施形態において、1吐出あたり1個の被覆細胞を基材の所定の領域に吐出できる装置であって、ピエゾ駆動のインクジェット式吐出装置を好ましく採用できる。 The arrangement of the coated cells improves the reproducibility of the myocardial three-dimensional tissue to be formed and improves the production efficiency, and enables faster production and easier control of the number of layers and the structure. In one or a plurality of embodiments, this is preferably performed by discharging the coated cells onto the substrate using a liquid discharge nozzle, and more preferably using an injection device such as an ink jet discharge device. In one or a plurality of embodiments, the ejection device is a device capable of ejecting one coated cell per ejection to a predetermined region of the base material, and a piezoelectric drive ink jet ejection device can be preferably employed.
 被覆細胞の吐出は、一又は複数の実施形態において、1吐出あたり1個の被覆細胞を吐出することによって行うことが好ましい。1吐出あたり1個の被覆細胞を吐出することによって心筋組織パターンを形成することによって、より生体内の心筋組織に類似した心筋三次元組織体を形成することができる。本開示の製造方法における被覆細胞の配置は、一又は複数の実施形態において、予め設定されたパターンに基き、所定の細胞が被覆された被覆細胞が所定の位置に配置されるように、液吐出ノズルを移動させながら行うことが好ましい。本開示の製造方法は、細胞外マトリックス成分を含む被膜で被覆された被覆細胞を使用することから、一又は複数の実施形態において、吐出による細胞の配置時における細胞へのストレスを軽減でき、かつ効率よく細胞を積層することができる。 In one or a plurality of embodiments, discharge of coated cells is preferably performed by discharging one coated cell per discharge. By forming a myocardial tissue pattern by discharging one coated cell per discharge, it is possible to form a myocardial three-dimensional tissue that is more similar to a myocardial tissue in a living body. In one or a plurality of embodiments, the arrangement of the coated cells in the production method of the present disclosure is based on a preset pattern, so that the coated cells coated with predetermined cells are arranged at predetermined positions. It is preferable to carry out while moving the nozzle. Since the manufacturing method of the present disclosure uses coated cells coated with a coating containing an extracellular matrix component, in one or a plurality of embodiments, it is possible to reduce stress on the cells during the placement of the cells by ejection, and Cells can be stacked efficiently.
 本開示の製造方法において、心筋三次元組織体の面積は、一又は複数の実施形態において、1mm2以上、5mm2以上、10mm2以上、又は20mm2以上であり、また1000mm2以下、700mm2以下、600mm2以下、又は500mm2以下である。 In the production method of the present disclosure, the area of the myocardial three-dimensional tissue body is 1 mm 2 or more, 5 mm 2 or more, 10 mm 2 or more, or 20 mm 2 or more, and 1000 mm 2 or less, 700 mm 2 in one or more embodiments. Hereinafter, it is 600 mm 2 or less, or 500 mm 2 or less.
 本開示の製造方法において、ハイスループットスクリーニングを可能にする点から、一又は複数の実施形態において、心筋三次元組織体を基材上に複数個形成することが好ましい。基材としては、一又は複数の実施形態において、マルチウェルプレートが挙げられる。また、基材は、取り扱いが容易となる点から、一又は複数の実施形態において、各ウェルにメンブレンフィルタが配置されたマルチウェルプレートであってもよく、好ましくはハウジング部と基底部とを備え、基底部がメンブレンフィルタである容器が配置されたマルチウェルプレートが挙げられる。マルチウェルプレートにおけるウェルの数は、特に限定されるものではなく、一又は複数の実施形態において、24、96、384、及び1536等が挙げられる。メンブレンフィルタの孔径は、培養した細胞がメンブレンフィルタ上に保持可能な範囲であれば特に制限されず、一又は複数の実施形態において、0.1μm~2μm、又は0.4μm~1.0μmである。また、メンブレンの材質は、一又は複数の実施形態において、例えば、ポリエチレンテレフタレート(PET)、ポリカーボネート、又はポリテトラフルオロエチレン(PTFE)等が挙げられる。 In the production method of the present disclosure, in order to enable high-throughput screening, in one or a plurality of embodiments, it is preferable to form a plurality of myocardial three-dimensional tissues on a substrate. As a base material, a multiwell plate is mentioned in one or some embodiment. In addition, the substrate may be a multi-well plate in which a membrane filter is arranged in each well in one or a plurality of embodiments from the viewpoint of easy handling, and preferably includes a housing part and a base part. A multi-well plate in which a container whose base is a membrane filter is arranged. The number of wells in the multi-well plate is not particularly limited, and examples thereof include 24, 96, 384, and 1536 in one or more embodiments. The pore size of the membrane filter is not particularly limited as long as the cultured cells can be retained on the membrane filter, and in one or a plurality of embodiments, it is 0.1 μm to 2 μm, or 0.4 μm to 1.0 μm. . In one or a plurality of embodiments, the material of the membrane includes, for example, polyethylene terephthalate (PET), polycarbonate, or polytetrafluoroethylene (PTFE).
 [スクリーニング用心筋組織チップ]
 本開示は、一又は複数の実施形態において、薬剤のスクリーニングに用いる心筋組織チップであって、人工多能性幹細胞に由来する心筋細胞と、細胞外マトリックス成分とを少なくとも含み、前記人工多能性幹細胞が前記細胞外マトリックス成分を介して積層された心筋三次元組織体である心筋組織チップ(以下、「本開示の心筋組織チップ」ともいう)に関する。本開示の心筋組織チップは、本開示の製造方法によって製造できる。本開示の心筋組織チップによれば、一又は複数の実施形態において、医薬、製薬、化粧品、食品及び環境の分野における安全性や薬物動態に関する試験・検査を行うことができる。本開示の心筋組織チップにおいて、基材、細胞外マトリックス、及び心筋細胞は上述の通りである。
[Myocardial tissue chip for screening]
In one or a plurality of embodiments, the present disclosure is a myocardial tissue chip used for drug screening, including at least a cardiomyocyte derived from an induced pluripotent stem cell and an extracellular matrix component, and the induced pluripotency The present invention relates to a myocardial tissue chip (hereinafter also referred to as “myocardial tissue chip of the present disclosure”), which is a myocardial three-dimensional tissue structure in which stem cells are laminated via the extracellular matrix component. The myocardial tissue chip of the present disclosure can be manufactured by the manufacturing method of the present disclosure. According to the myocardial tissue chip of the present disclosure, in one or a plurality of embodiments, it is possible to perform a test / inspection regarding safety and pharmacokinetics in the fields of medicine, pharmaceuticals, cosmetics, foods, and the environment. In the myocardial tissue chip of the present disclosure, the substrate, the extracellular matrix, and the cardiomyocytes are as described above.
 本開示の心筋組織チップにおいて、iPS細胞は、一又は複数の実施形態において、動物実験では困難なヒトの心毒性評価をより正確に行うことができることから、ヒト由来iPS細胞であることが好ましい。 In the myocardial tissue chip of the present disclosure, the iPS cell is preferably a human-derived iPS cell because in one or a plurality of embodiments, human cardiotoxicity evaluation difficult in animal experiments can be more accurately performed.
 本開示の心筋組織チップにおいて、心筋三次元組織体は、生体の心筋組織に近い組織とする点から、一又は複数の実施形態において、さらに線維芽細胞を含む。線維芽細胞は、一又は複数の実施形態において、心臓線維芽細胞であることが好ましい。線維芽細胞は、一又は複数の実施形態において、ヒト由来の細胞であってもよいし、ヒト以外に由来する細胞であってもよい。線維芽細胞は、一又は複数の実施形態において、線維芽細胞は、一又は複数の実施形態において、胚性幹細胞、及び人工多能性幹細胞等の由来の細胞であってもよい。 In the myocardial tissue chip of the present disclosure, the myocardial three-dimensional tissue body further includes fibroblasts in one or a plurality of embodiments from the viewpoint that the myocardial three-dimensional tissue is a tissue close to a living myocardial tissue. The fibroblast is preferably a cardiac fibroblast in one or more embodiments. In one or a plurality of embodiments, the fibroblast may be a cell derived from a human or a cell derived from other than a human. In one or a plurality of embodiments, the fibroblast may be a cell derived from an embryonic stem cell, an induced pluripotent stem cell, or the like in one or a plurality of embodiments.
 心筋三次元組織体における心筋細胞と線維芽細胞との比率(心筋細胞:線維芽細胞、細胞数)は、一又は複数の実施形態において、99:1~1:99である。心筋細胞と線維芽細胞との比率は、一又は複数の実施形態において、心筋細胞に活動電位を発生させ、より規則的な拍動を実現する点から、80:20~30:70、80:20~45:55又は75:25~50:50が好ましい。 The ratio of cardiomyocytes to fibroblasts (cardiomyocytes: fibroblasts, number of cells) in the three-dimensional myocardial tissue is 99: 1 to 1:99 in one or more embodiments. In one or a plurality of embodiments, the ratio of cardiomyocytes to fibroblasts is 80:20 to 30:70, 80: from the viewpoint of generating action potentials in cardiomyocytes and realizing more regular pulsations. 20 to 45:55 or 75:25 to 50:50 is preferred.
 本開示の心筋組織チップにおいて、心筋三次元組織体は、一又は複数の実施形態において、さらに血管内皮細胞を含む。心筋三次元組織体は、心筋三次元組織体の機能をより長期間安定に維持させる点から、一又は複数の実施形態において、血管内皮細胞で形成された血管網を含むことが好ましい。血管内皮細胞は、一又は複数の実施形態において、心臓微小血管内皮細胞であることが好ましい。血管内皮細胞は、一又は複数の実施形態において、ヒト由来の細胞であってもよいし、ヒト以外に由来する細胞であってもよい。血管内皮細胞は、一又は複数の実施形態において、血管内皮細胞は、一又は複数の実施形態において、胚性幹細胞、及び人工多能性幹細胞等の由来の細胞であってもよい。 In the myocardial tissue chip of the present disclosure, the myocardial three-dimensional tissue body further includes vascular endothelial cells in one or a plurality of embodiments. In one or more embodiments, the myocardial three-dimensional tissue body preferably includes a vascular network formed of vascular endothelial cells in order to stably maintain the function of the myocardial three-dimensional tissue for a longer period of time. The vascular endothelial cell is preferably a cardiac microvascular endothelial cell in one or more embodiments. In one or a plurality of embodiments, the vascular endothelial cell may be a cell derived from a human or a cell derived from other than a human. In one or a plurality of embodiments, the vascular endothelial cell may be a cell derived from embryonic stem cells, induced pluripotent stem cells and the like in one or a plurality of embodiments.
 本開示の心筋組織チップにおいて、心筋三次元組織体は、一又は複数の実施形態において、心筋細胞が4層以上積層されており、心筋細胞が5層以上積層されていることが好ましく、より好ましくは6、7、8、9、又は10層以上積層されている。 In one or a plurality of embodiments of the myocardial tissue chip of the present disclosure, the myocardial three-dimensional tissue structure preferably includes four or more layers of cardiomyocytes, and more preferably five or more layers of cardiomyocytes. Are stacked with 6, 7, 8, 9, or 10 or more layers.
 本開示の心筋組織チップにおいて、心筋三次元組織体は、一又は複数の実施形態において、マルチウェルプレートの各ウェルに形成されている。本開示の心筋組織チップにおける心筋三次元組織体の面積は、一又は複数の実施形態において、1mm2以上、5mm2以上、10mm2以上、又は20mm2以上であり、また1000mm2以下、700mm2以下、600mm2以下、又は500mm2以下である。 In one or a plurality of embodiments of the myocardial tissue chip of the present disclosure, the myocardial three-dimensional tissue is formed in each well of the multi-well plate. In one or a plurality of embodiments, the area of the myocardial three-dimensional tissue body in the myocardial tissue chip of the present disclosure is 1 mm 2 or more, 5 mm 2 or more, 10 mm 2 or more, or 20 mm 2 or more, and 1000 mm 2 or less, 700 mm 2. Hereinafter, it is 600 mm 2 or less, or 500 mm 2 or less.
 心筋三次元組織体における細胞の密度は、一又は複数の実施形態において、1×105個/mm3以上、5×105個/mm3以上、1×106個/mm3以上、5×106個/mm3以上、又は1×107個/mm3以上であり、また、1×1010個/mm3以下、5×109個/mm3以下、又は1×109個/mm3以下である。 In one or a plurality of embodiments, the density of cells in the myocardial three-dimensional tissue body is 1 × 10 5 cells / mm 3 or more, 5 × 10 5 cells / mm 3 or more, 1 × 10 6 cells / mm 3 or more, 5 × 10 6 pieces / mm 3 or more, or 1 × 10 7 pieces / mm 3 or more, and 1 × 10 10 pieces / mm 3 or less, 5 × 10 9 pieces / mm 3 or less, or 1 × 10 9 pieces / Mm 3 or less.
 [スクリーニング方法]
 本開示は、一又は複数の実施形態において、本開示の心筋組織チップを用いた薬剤候補化合物のスクリーニング方法であって、薬剤候補化合物を前記心筋組織チップに接触させること、候補化合物の前記心筋組織チップにおける心筋三次元組織体への影響を観察すること、及び観察結果に基いて候補化合物を評価することを含むスクリーニング方法(以下、「本開示のスクリーニング方法」ともいう)。本開示のスクリーニング方法によれば、一又は複数の実施形態において、医薬、製薬、化粧品、食品及び環境の分野における安全性や薬物動態に関する試験・検査を行うことができる。本開示のスクリーニング方法においてスクリーニングする薬剤候補化合物としては、一又は複数の実施形態において、心疾患治療薬等が挙げられる。
[Screening method]
In one or a plurality of embodiments, the present disclosure is a method for screening a drug candidate compound using the myocardial tissue chip of the present disclosure, wherein the drug candidate compound is brought into contact with the myocardial tissue chip, and the myocardial tissue of the candidate compound A screening method including observing the effect on the myocardial three-dimensional tissue in the chip and evaluating a candidate compound based on the observation result (hereinafter also referred to as “screening method of the present disclosure”). According to the screening method of the present disclosure, in one or a plurality of embodiments, it is possible to perform a test / inspection regarding safety and pharmacokinetics in the fields of medicine, pharmaceuticals, cosmetics, foods, and the environment. Examples of drug candidate compounds to be screened in the screening method of the present disclosure include therapeutic agents for heart diseases and the like in one or a plurality of embodiments.
 [スクリーニング用キット]
 本開示は、一又は複数の実施形態において、薬剤候補化合物のスクリーニングのためのキットであって、本開示の心筋組織チップ、培地、及び取扱説明書を含むキット(以下、「本開示のキット」ともいう)に関する。培地は、上述の培地が挙げられる。
[Screening kit]
In one or a plurality of embodiments, the present disclosure is a kit for screening a drug candidate compound, which includes a myocardial tissue chip of the present disclosure, a culture medium, and an instruction manual (hereinafter, “kit of the present disclosure”). Also called). Examples of the medium include the above-mentioned medium.
 以下、本開示の製造方法で用いられうる被覆細胞について説明する。
 被覆細胞は、細胞と細胞外マトリックス成分とを含み、細胞の表面が細胞外マトリックス成分被膜で被覆されている。細胞外マトリックス成分を含む被膜は、物質Aを含む膜と、前記物質Aと相互作用する物質Bを含む膜とを含むことが好ましい。物質Aと物質Bとの組み合わせとしては、一又は複数の実施形態において、RGD配列を有するタンパク質若しくは高分子(以下、「RGD配列を有する物質」ともいう)と前記RGD配列を有するタンパク質若しくは高分子と相互作用するタンパク質若しくは高分子(以下、「相互作用を有する物質」ともいう)との組み合わせ、又は、正の電荷を有するタンパク質若しくは高分子(以下、「正の電荷を有する物質」ともいう)と負の電荷を有するタンパク質若しくは高分子(以下、「負の電荷を有する物質」ともいう)との組み合わせである。
Hereinafter, coated cells that can be used in the production method of the present disclosure will be described.
The coated cell includes a cell and an extracellular matrix component, and the surface of the cell is coated with an extracellular matrix component coating. The coating containing the extracellular matrix component preferably includes a membrane containing the substance A and a membrane containing the substance B that interacts with the substance A. As a combination of the substance A and the substance B, in one or a plurality of embodiments, a protein or polymer having an RGD sequence (hereinafter also referred to as “substance having an RGD sequence”) and a protein or polymer having the RGD sequence are used. A combination with a protein or polymer that interacts with the protein (hereinafter also referred to as “substance having interaction”), or a protein or polymer that has a positive charge (hereinafter also referred to as “substance with a positive charge”). And a protein or polymer having a negative charge (hereinafter also referred to as “substance having a negative charge”).
 細胞外マトリックス成分を含む被膜の厚みは、一又は複数の実施形態において、1nm~1×103nm、又は2nm~1×102nmが好ましく、被覆細胞がより密に積層された心筋三次元組織体が得られるという理由から、3nm~1×102nmがより好ましい。細胞外マトリックス成分を含む被膜の厚みは、例えば、被膜を構成する膜の数によって適宜制御することができる。細胞外マトリックス成分を含む被膜は、特に制限されず、1層であってもよいし、一又は複数の実施形態において、例えば、3、5、7、9、11、13、15層又はそれ以上の多層であってもよい。 In one or a plurality of embodiments, the thickness of the coating containing the extracellular matrix component is preferably 1 nm to 1 × 10 3 nm, or 2 nm to 1 × 10 2 nm, and the myocardial three-dimensional structure in which the coated cells are stacked more densely. From the reason that a tissue body can be obtained, 3 nm to 1 × 10 2 nm is more preferable. The thickness of the coating containing the extracellular matrix component can be appropriately controlled by, for example, the number of membranes constituting the coating. The coating containing the extracellular matrix component is not particularly limited, and may be a single layer. In one or a plurality of embodiments, for example, 3, 5, 7, 9, 11, 13, 15 layers or more It may be a multilayer.
 <被覆細胞の調製>
 本開示の製造方法は、一又は複数の実施形態において、被覆細胞を調製する工程を含んでいてもよい。被覆細胞は、物質Aを含む溶液と、物質Bを含む溶液とを、心筋細胞等の細胞に交互に接触させることにより調製することができる。物質Aと物質Bとの組み合わせとしては、上記の通り、RGD配列を有する物質と相互作用を有する物質との組み合わせ、又は、正の電荷を有する物質と負の電荷を有する物質との組み合わせが挙げられる。
<Preparation of coated cells>
In one or a plurality of embodiments, the production method of the present disclosure may include a step of preparing a coated cell. Coated cells can be prepared by alternately bringing a solution containing substance A and a solution containing substance B into contact with cells such as cardiomyocytes. As described above, the combination of the substance A and the substance B includes a combination of a substance having an RGD sequence and a substance having an interaction, or a combination of a substance having a positive charge and a substance having a negative charge. It is done.
 (RGD配列を有する物質)
 RGD配列を有する物質とは、細胞接着活性を担うアミノ酸配列である「Arg-Gly-Asp」(RGD)配列を有するタンパク質又は高分子をいう。本明細書において「RGD配列を有する」とは、元来RGD配列を有するものでもよいし、RGD配列が化学的に結合されたものでもよい。RGD配列を有する物質は、生分解性であることが好ましい。
(Substance having RGD sequence)
A substance having an RGD sequence refers to a protein or polymer having an “Arg-Gly-Asp” (RGD) sequence, which is an amino acid sequence responsible for cell adhesion activity. In the present specification, “having an RGD sequence” may originally have an RGD sequence, or may have a RGD sequence chemically bound thereto. The substance having the RGD sequence is preferably biodegradable.
 RGD配列を有するタンパク質としては、一又は複数の実施形態において、従来公知の接着性タンパク質、又はRGD配列を有する水溶性タンパク質等が挙げられる。接着性タンパク質としては、一又は複数の実施形態において、フィブロネクチン、ビトロネクチン、ラミニン、カドヘリン、又はコラーゲン等が挙げられる。RGD配列を有する水溶性タンパク質としては、一又は複数の実施形態において、RGD配列を結合させたコラーゲン、ゼラチン、アルブミン、グロブリン、プロテオグリカン、酵素、又は抗体等が挙げられる。 Examples of the protein having an RGD sequence include conventionally known adhesive proteins or water-soluble proteins having an RGD sequence in one or a plurality of embodiments. Examples of the adhesive protein include fibronectin, vitronectin, laminin, cadherin, and collagen in one or a plurality of embodiments. Examples of the water-soluble protein having an RGD sequence include, in one or more embodiments, collagen, gelatin, albumin, globulin, proteoglycan, an enzyme, an antibody, or the like to which the RGD sequence is bound.
 RGD配列を有する高分子としては、一又は複数の実施形態において、天然由来高分子、又は合成高分子が挙げられる。RGD配列を有する天然由来高分子としては、一又は複数の実施形態において、水溶性ポリペプチド、低分子ペプチド、α-ポリリジン又はε-ポリリジン等のポリアミノ酸、キチン又はキトサン等の糖等が挙げられる。RGD配列を有する合成高分子としては、一又は複数の実施形態において、直鎖型、グラフト型、くし型、樹状型、又は星型等のRGD配列を有するポリマー又は共重合体が挙げられる。ポリマー又は共重合体としては、一又は複数の実施形態において、ポリウレタン、ポリカーボネート、ポリアミド、又はこれらの共重合体、ポリエステル、ポリ(N-イソプロピルアクリルアミド-co-ポリアクリル酸)、ポリアミドアミンデンドリマー、ポリエチレンオキサイド、ポリε-カプロラクタム、ポリアクリルアミド、又はポリ(メタクリル酸メチル-γ-ポリメタクリル酸オキシエチレン)等が挙げられる。 Examples of the polymer having an RGD sequence include a naturally-derived polymer or a synthetic polymer in one or a plurality of embodiments. Examples of the naturally-derived polymer having an RGD sequence include, in one or more embodiments, a water-soluble polypeptide, a low-molecular peptide, a polyamino acid such as α-polylysine or ε-polylysine, and a sugar such as chitin or chitosan. . Examples of the synthetic polymer having an RGD sequence include, in one or more embodiments, a polymer or copolymer having an RGD sequence such as a linear type, graft type, comb type, dendritic type, or star type. In one or more embodiments, the polymer or copolymer may be polyurethane, polycarbonate, polyamide, or a copolymer thereof, polyester, poly (N-isopropylacrylamide-co-polyacrylic acid), polyamide amine dendrimer, polyethylene Examples thereof include oxide, polyε-caprolactam, polyacrylamide, or poly (methyl methacrylate-γ-polyoxymethacrylate).
 RGD配列を有する物質は、これらの中でも、フィブロネクチン、ビトロネクチン、ラミニン、カドヘリン、ポリリジン、エラスチン、RGD配列を結合させたコラーゲン、RGD配列を結合させたゼラチン、キチン、又はキトサンが好ましく、より好ましくはフィブロネクチン、ビトロネクチン、ラミニン、ポリリジン、RGD配列を結合させたコラーゲン、又はRGD配列を結合させたゼラチンである。 Among these, the substance having the RGD sequence is preferably fibronectin, vitronectin, laminin, cadherin, polylysine, elastin, collagen to which the RGD sequence is bound, gelatin, chitin or chitosan to which the RGD sequence is bound, and more preferably fibronectin. , Vitronectin, laminin, polylysine, collagen to which RGD sequences are bound, or gelatin to which RGD sequences are bound.
 (相互作用する物質)
 相互作用する物質とは、RGD配列を有する物質と相互作用するタンパク質若しくは高分子をいう。本明細書において「相互作用する」とは、一又は複数の実施形態において、静電的相互作用、疎水性相互作用、水素結合、電荷移動相互作用、共有結合形成、タンパク質間の特異的相互作用、及び又はファンデルワールス力等によって化学的及び又は物理的にRGD配列を有する物質と相互作用する物質とが結合、接着、吸着又は電子の授受が可能な程度に近接することを意味する。相互作用する物質は、生分解性であることが好ましい。
(Interacting substances)
The substance that interacts refers to a protein or polymer that interacts with a substance having an RGD sequence. As used herein, “interact” means, in one or more embodiments, electrostatic interaction, hydrophobic interaction, hydrogen bond, charge transfer interaction, covalent bond formation, specific interaction between proteins. , And / or a substance that interacts chemically and / or physically with a substance having an RGD sequence by van der Waals force or the like is close enough to allow bonding, adhesion, adsorption, or electron transfer. The interacting substance is preferably biodegradable.
 RGD配列を有する物質と相互作用するタンパク質としては、一又は複数の実施形態において、コラーゲン、ゼラチン、プロテオグリカン、インテグリン、酵素、又は抗体等が挙げられる。RGD配列を有する物質と相互作用する高分子としては、一又は複数の実施形態において、天然由来高分子、又は合成高分子が挙げられる。RGD配列を有する物質と相互作用する天然由来高分子としては、一又は複数の実施形態において、水溶性ポリペプチド、低分子ペプチド、ポリアミノ酸、エラスチン、ヘパリン、ヘパラン硫酸又はデキストラン硫酸等の糖、及びヒアルロン酸等が挙げられる。ポリアミノ酸としては、一又は複数の実施形態において、α-ポリリジン又はε-ポリリジン等のポリリジン、ポリグルタミン酸、又はポリアスパラギン酸等が挙げられる。RGD配列を有する物質と相互作用する合成高分子としては、一又は複数の実施形態において、上述のRGD配列を有する合成分子が挙げられる。 Examples of the protein that interacts with a substance having an RGD sequence include collagen, gelatin, proteoglycan, integrin, enzyme, or antibody in one or a plurality of embodiments. Examples of the polymer that interacts with a substance having an RGD sequence include a naturally-derived polymer or a synthetic polymer in one or a plurality of embodiments. In one or more embodiments, the naturally-derived polymer that interacts with a substance having an RGD sequence includes, in one or more embodiments, a water-soluble polypeptide, a low-molecular peptide, a polyamino acid, elastin, heparin, a sugar such as heparan sulfate or dextran sulfate, and Examples include hyaluronic acid. Examples of the polyamino acid include, in one or more embodiments, polylysine such as α-polylysine or ε-polylysine, polyglutamic acid, or polyaspartic acid. Examples of the synthetic polymer that interacts with a substance having an RGD sequence include, in one or a plurality of embodiments, synthetic molecules having the RGD sequence described above.
 相互作用する物質は、これらの中でも、ゼラチン、デキストラン硫酸、ヘパリン、ヒアルロン酸、グロブリン、アルブミン、ポリグルタミン酸、コラーゲン、又はエラスチンが好ましく、より好ましくはゼラチン、デキストラン硫酸、ヘパリン、ヒアルロン酸、又はコラーゲン、さらに好ましくはゼラチン、デキストラン硫酸、ヘパリン、又はヒアルロン酸である。 Among these, the interacting substance is preferably gelatin, dextran sulfate, heparin, hyaluronic acid, globulin, albumin, polyglutamic acid, collagen, or elastin, more preferably gelatin, dextran sulfate, heparin, hyaluronic acid, or collagen, More preferred is gelatin, dextran sulfate, heparin, or hyaluronic acid.
 RGD配列を有する物質と相互作用する物質との組み合わせは、特に制限されず、相互作用する異なる物質の組み合わせであればよく、いずれか一方がRGD配列を含む高分子又はタンパク質であり、他方がこれと相互作用する高分子又はタンパク質であればよい。RGD配列を有する物質と相互作用を有する物質との組み合わせとしては、一又は複数の実施形態において、フィブロネクチンとゼラチン、フィブロネクチンとε-ポリリジン、フィブロネクチンとヒアルロン酸、フィブロネクチンとデキストラン硫酸、フィブロネクチンとヘパリン、フィブロネクチンとコラーゲン、ラミニンとゼラチン、ラミニンとコラーゲン、ポリリジンとエラスチン、ビトロネクチンとコラーゲン、RGD結合コラーゲン又はRGD結合ゼラチンとコラーゲン又はゼラチン等が挙げられる。中でも、フィブロネクチンとゼラチン、フィブロネクチンとε-ポリリジン、フィブロネクチンとヒアルロン酸、フィブロネクチンとデキストラン硫酸、フィブロネクチンとヘパリン、又はラミニンとゼラチンが好ましく、より好ましくはフィブロネクチンとゼラチンである。なお、RGD配列を有する物質及び相互作用を有する物質は、それぞれ一種類ずつでもよいし、相互作用を示す範囲で二種類以上をそれぞれ併用してもよい。 The combination of the substance having the RGD sequence and the substance that interacts is not particularly limited as long as it is a combination of different substances that interact with each other, and either one is a polymer or protein containing the RGD sequence, and the other is this. Any polymer or protein that interacts with the protein may be used. The combination of the substance having an RGD sequence and the substance having an interaction includes, in one or more embodiments, fibronectin and gelatin, fibronectin and ε-polylysine, fibronectin and hyaluronic acid, fibronectin and dextran sulfate, fibronectin and heparin, fibronectin And collagen, laminin and gelatin, laminin and collagen, polylysine and elastin, vitronectin and collagen, RGD-bound collagen or RGD-bound gelatin and collagen or gelatin, and the like. Among these, fibronectin and gelatin, fibronectin and ε-polylysine, fibronectin and hyaluronic acid, fibronectin and dextran sulfate, fibronectin and heparin, or laminin and gelatin are preferable, and fibronectin and gelatin are more preferable. In addition, the substance which has a RGD arrangement | sequence, and the substance which has interaction may be one each, respectively, and may use 2 or more types together in the range which shows interaction, respectively.
 (正の電荷を有する物質)
 正の電荷を有する物質とは、正の電荷を有するタンパク質又は高分子をいう。正の電荷を有するタンパク質としては、一又は複数の実施形態において、水溶性タンパク質が好ましい。水溶性タンパク質としては、一又は複数の実施形態において、塩基性コラーゲン、塩基性ゼラチン、リゾチーム、シトクロムc、ペルオキシダーゼ、又はミオグロビン等が挙げられる。正の電荷を有する高分子としては、一又は複数の実施形態において、天然由来高分子及び合成高分子が挙げられる。天然由来高分子としては、一又は複数の実施形態において、水溶性ポリペプチド、低分子ペプチド、ポリアミノ酸、キチン又はキトサン等の糖等が挙げられる。ポリアミノ酸としては、一又は複数の実施形態において、ポリ(α-リジン)、ポリ(ε-リジン)等のポリリジン、ポリアルギニン、又はポリヒスチジン等が挙げられる。合成高分子としては、一又は複数の実施形態において、直鎖型、グラフト型、くし型、樹状型、又は星型等のポリマー又は共重合体が挙げられる。前記ポリマー又は共重合体としては、一又は複数の実施形態において、ポリウレタン、ポリアミド、ポリカーボネート、又はこれらの共重合体、ポリエステル、ポリジアリルジメチルアンモニウムクロライド(PDDA)、ポリアリルアミンハイドロクロライド、ポリエチレンイミン、ポリビニルアミン、又はポリアミドアミンデンドリマー等が挙げられる。
(Substance with positive charge)
A substance having a positive charge refers to a protein or polymer having a positive charge. The protein having a positive charge is preferably a water-soluble protein in one or a plurality of embodiments. Examples of the water-soluble protein include basic collagen, basic gelatin, lysozyme, cytochrome c, peroxidase, or myoglobin in one or more embodiments. Examples of the polymer having a positive charge include naturally-derived polymers and synthetic polymers in one or a plurality of embodiments. Examples of the naturally-derived polymer include, in one or more embodiments, a water-soluble polypeptide, a low-molecular peptide, a polyamino acid, a sugar such as chitin or chitosan, and the like. Examples of the polyamino acid include polylysine such as poly (α-lysine) and poly (ε-lysine), polyarginine, and polyhistidine in one or more embodiments. Examples of the synthetic polymer include, in one or more embodiments, a polymer or copolymer such as a linear type, a graft type, a comb type, a dendritic type, or a star type. In one or a plurality of embodiments, the polymer or copolymer may be polyurethane, polyamide, polycarbonate, or a copolymer thereof, polyester, polydiallyldimethylammonium chloride (PDDA), polyallylamine hydrochloride, polyethyleneimine, polyvinyl. Examples thereof include amines and polyamide amine dendrimers.
 (負の電荷を有する物質)
 負の電荷を有する物質とは、負の電荷を有するタンパク質又は高分子をいう。負の電荷を有するタンパク質としては、一又は複数の実施形態において、水溶性タンパク質が好ましい。水溶性タンパク質としては、一又は複数の実施形態において、酸性コラーゲン、酸性ゼラチン、アルブミン、グロブリン、カタラーゼ、β-ラクトグロブリン、チログロブリン、α-ラクトアルブミン、又は卵白アルブミン等が挙げられる。負の電荷を有する高分子としては、天然由来高分子及び合成高分子が挙げられる。天然由来高分子としては、一又は複数の実施形態において、水溶性ポリペプチド、低分子ペプチド、ポリ(βリジン)等のポリアミノ酸、又はデキストラン硫酸等が挙げられる。合成高分子としては、一又は複数の実施形態において、直鎖型、グラフト型、くし型、樹状型、又は星型等のポリマー又は共重合体が挙げられる。前記ポリマー又は共重合体としては、一又は複数の実施形態において、ポリウレタン、ポリアミド、ポリカーボネート、及びこれらの共重合体、ポリエステル、ポリアクリル酸、ポリメタクリル酸、ポリスチレンスルホン酸、ポリアクリルアミドメチルプロパンスルホン酸、末端カルボキシ化ポリエチレングリコール、ポリジアリルジメチルアンモニウム塩、ポリアリルアミン塩、ポリエチレンイミン、ポリビニルアミン、又はポリアミドアミンデンドリマー等が挙げられる。
(Substance with negative charge)
A substance having a negative charge refers to a protein or polymer having a negative charge. The protein having a negative charge is preferably a water-soluble protein in one or a plurality of embodiments. Examples of the water-soluble protein include acidic collagen, acidic gelatin, albumin, globulin, catalase, β-lactoglobulin, thyroglobulin, α-lactalbumin, or ovalbumin in one or more embodiments. Examples of the negatively charged polymer include naturally derived polymers and synthetic polymers. Examples of the naturally-derived polymer include, in one or more embodiments, water-soluble polypeptides, low-molecular peptides, polyamino acids such as poly (β-lysine), dextran sulfate, and the like. Examples of the synthetic polymer include, in one or more embodiments, a polymer or copolymer such as a linear type, a graft type, a comb type, a dendritic type, or a star type. In one or a plurality of embodiments, the polymer or copolymer may be polyurethane, polyamide, polycarbonate, and a copolymer thereof, polyester, polyacrylic acid, polymethacrylic acid, polystyrene sulfonic acid, polyacrylamide methylpropane sulfonic acid. , Terminal carboxylated polyethylene glycol, polydiallyldimethylammonium salt, polyallylamine salt, polyethyleneimine, polyvinylamine, or polyamidoamine dendrimer.
 正の電荷を有する物質と負の電荷を有する物質との組み合わせとしては、一又は複数の実施形態において、ε-ポリリジン塩とポリスルホン酸塩、ε-ポリリジンとポリスルホン酸塩、キトサンとデキストラン硫酸、ポリアリルアミンハイドロクロライドとポリスチレンスルホン酸塩、ポリジアリルジメチルアンモニウムクロライドとポリスチレンスルホン酸塩、又はポリジアリルジメチルアンモニウムクロライドとポリアクリル酸塩等が挙げられ、好ましくはε-ポリリジン塩とポリスルホン酸塩、又はポリジアリルジメチルアンモニウムクロライドとポリアクリル酸塩である。ポリスルホン酸塩としては、一又は複数の実施形態において、ポリスルホン酸ナトリウム(PSS)等が挙げられる。なお、正の電荷を有する物質及び負の電荷を有する物質は、それぞれ、一種類ずつでもよいし、相互作用を示す範囲で二種類以上をそれぞれ併用してもよい。 In one or more embodiments, a combination of a positively charged substance and a negatively charged substance may be ε-polylysine salt and polysulfonate, ε-polylysine and polysulfonate, chitosan and dextran sulfate, poly Examples include allylamine hydrochloride and polystyrene sulfonate, polydiallyldimethylammonium chloride and polystyrene sulfonate, or polydiallyldimethylammonium chloride and polyacrylate, preferably ε-polylysine salt and polysulfonate, or polydiallyl. Dimethylammonium chloride and polyacrylate. Examples of the polysulfonate include sodium polysulfonate (PSS) and the like in one or more embodiments. In addition, the substance having a positive charge and the substance having a negative charge may each be one kind, or two or more kinds may be used in combination within a range showing an interaction.
 以下に、被覆細胞の調製方法の好適な実施形態として、細胞に、まずRGD配列を有する物質を含有する溶液Aを接触させた後、RGD配列を有する物質に相互作用を有する物質を含有する溶液Bと接触させることにより被覆細胞を調製する方法を、例にとり説明する。但し、本開示は以下の実施形態に限定して解釈されるものではない。 In the following, as a preferred embodiment of the method for preparing coated cells, a solution is first brought into contact with a solution A containing a substance having an RGD sequence, and then containing a substance having an interaction with the substance having an RGD sequence. A method for preparing coated cells by contacting with B will be described by way of example. However, the present disclosure is not construed as being limited to the following embodiments.
 まず、細胞を溶液Aと接触させる。これにより、細胞表面にRGD配列を有する物質を含む膜が形成され、細胞表面がRGD配列を有する物質を含む膜によって被覆される。細胞と溶液Aとの接触は、一又は複数の実施形態において、溶液Aを細胞に塗布又は添加すること、溶液Aに細胞を浸漬させること、溶液Aを細胞に滴下又は噴霧すること等により行うことができる。中でも、操作が容易であるという理由から、溶液Aに細胞を浸漬させることにより、細胞と接触させることが好ましい。 First, the cells are brought into contact with the solution A. Thereby, a film containing a substance having an RGD sequence is formed on the cell surface, and the cell surface is covered with a film containing a substance having an RGD sequence. In one or a plurality of embodiments, the contact between the cells and the solution A is performed by applying or adding the solution A to the cells, immersing the cells in the solution A, dropping or spraying the solution A on the cells, or the like. be able to. Especially, it is preferable to make a cell contact by immersing a cell in the solution A from the reason that operation is easy.
 接触条件は、一又は複数の実施形態において、接触方法、RGD配列を有する物質及び又は細胞の種類、及び含有液の濃度等に応じて適宜決定できる。接触時間は、一又は複数の実施形態において、30秒~24時間、1分~60分、1分~15分、1分~10分、又は1分~5分が好ましい。接触時の雰囲気温度及び又は溶液Aの温度は、一又は複数の実施形態において、4~60℃、20~40℃、又は30~37℃が好ましい。 In one or a plurality of embodiments, the contact condition can be appropriately determined according to a contact method, a substance having an RGD sequence and / or a cell type, a concentration of a contained liquid, and the like. In one or more embodiments, the contact time is preferably 30 seconds to 24 hours, 1 minute to 60 minutes, 1 minute to 15 minutes, 1 minute to 10 minutes, or 1 minute to 5 minutes. In one or a plurality of embodiments, the ambient temperature at the time of contact and / or the temperature of the solution A is preferably 4 to 60 ° C., 20 to 40 ° C., or 30 to 37 ° C.
 溶液Aは、RGD配列を有する物質を含んでいればよく、好ましくはRGD配列を有する物質と溶媒又は分散媒体(以下、単に「溶媒」ともいう)とを含む。溶液AにおけるRGD配列を有する物質の含有量は、一又は複数の実施形態において、0.0001~1質量%、0.01~0.5質量%、又は0.02~0.1質量%が好ましい。溶媒としては、一又は複数の実施形態において、水、リン酸緩衝生理食塩水(PBS)及び緩衝液等の水性溶媒が挙げられる。緩衝液としては、一又は複数の実施形態において、Tris-HCl緩衝液等のTris緩衝液、リン酸緩衝液、HEPES緩衝液、クエン酸-リン酸緩衝液、グリシルグリシン-水酸化ナトリウム緩衝液、Britton-Robinson緩衝液、又はGTA緩衝液等が挙げられる。溶媒のpHは、特に制限されず、一又は複数の実施形態において、3~11、6~8、又は7.2~7.4が好ましい。 Solution A only needs to contain a substance having an RGD sequence, and preferably contains a substance having an RGD sequence and a solvent or dispersion medium (hereinafter also simply referred to as “solvent”). In one or more embodiments, the content of the substance having an RGD sequence in the solution A is 0.0001 to 1% by mass, 0.01 to 0.5% by mass, or 0.02 to 0.1% by mass. preferable. Examples of the solvent include an aqueous solvent such as water, phosphate buffered saline (PBS), and a buffer solution in one or more embodiments. In one or a plurality of embodiments, the buffer includes Tris buffer such as Tris-HCl buffer, phosphate buffer, HEPES buffer, citrate-phosphate buffer, glycylglycine-sodium hydroxide buffer. , Britton-Robinson buffer, GTA buffer, and the like. The pH of the solvent is not particularly limited, and in one or more embodiments, 3 to 11, 6 to 8, or 7.2 to 7.4 is preferable.
 溶液Aは、一又は複数の実施形態において、塩、細胞成長因子、サイトカイン、ケモカイン、ホルモン、生理活性ペプチド、又は医薬組成物等をさらに含有してもよい。医薬組成物としては、一又は複数の実施形態において、疾患の治療剤、予防剤、抑制剤、抗菌剤、又は抗炎症剤等が挙げられる。塩としては、一又は複数の実施形態において、塩化ナトリウム、塩化カルシウム、炭酸水素ナトリウム、酢酸ナトリウム、クエン酸ナトリウム、塩化カリウム、リン酸水素ナトリウム、硫酸マグネシウム、コハク酸ナトリウム等が挙げられる。塩は、一種類でもよいし二種類以上含有していてもよい。溶液A及び溶液Bの双方が塩を含有していてもよいし、いずれか一方が塩を含有していてもよい。溶液A中の塩濃度は、特に制限されないが、一又は複数の実施形態において、1×10-6M~2Mであり、好ましくは1×10-4M~1M、より好ましくは1×10-4M~0.05Mである。 In one or a plurality of embodiments, the solution A may further contain a salt, a cell growth factor, a cytokine, a chemokine, a hormone, a bioactive peptide, a pharmaceutical composition, or the like. Examples of the pharmaceutical composition include, in one or a plurality of embodiments, a therapeutic agent, preventive agent, inhibitor, antibacterial agent, or anti-inflammatory agent for diseases. Examples of the salt include sodium chloride, calcium chloride, sodium bicarbonate, sodium acetate, sodium citrate, potassium chloride, sodium hydrogen phosphate, magnesium sulfate, and sodium succinate in one or more embodiments. One kind of salt may be contained, or two or more kinds of salts may be contained. Both the solution A and the solution B may contain a salt, or one of them may contain a salt. The salt concentration in the solution A is not particularly limited, but in one or more embodiments, it is 1 × 10 −6 M to 2M, preferably 1 × 10 −4 M to 1M, more preferably 1 × 10 −. 4 M to 0.05 M.
 ついで、RGD配列を有する物質を含む膜の形成に使用されなかった物質を除去する。除去は、一又は複数の実施形態において、遠心分離又は濾過等により行うことができる。遠心分離による除去は、一又は複数の実施形態において、溶液Aに細胞を分散させた状態で遠心分離し、ついで上澄みを除去することにより行うことができる。遠心分離条件は、細胞の種類、細胞の濃度、及び溶液Aに含まれる含有物の組成によって適宜決定できる。 Next, the material that has not been used to form the film including the material having the RGD sequence is removed. In one or a plurality of embodiments, the removal can be performed by centrifugation or filtration. In one or a plurality of embodiments, the removal by centrifugation can be performed by centrifuging in a state where the cells are dispersed in the solution A, and then removing the supernatant. Centrifugation conditions can be appropriately determined depending on the type of cells, the concentration of cells, and the composition of inclusions contained in the solution A.
 上記除去に加えて、洗浄操作を行うことが好ましい。洗浄は、一又は複数の実施形態において、遠心分離又は濾過等により行うことができる。遠心分離による洗浄は、一又は複数の実施形態において、上澄みを除去された細胞に溶媒を添加し、遠心分離及び上澄みの除去をすることにより行うことができる。洗浄に用いる溶媒は、溶液Aの溶媒と同じであることが好ましい。 It is preferable to perform a washing operation in addition to the above removal. In one or more embodiments, washing can be performed by centrifugation or filtration. In one or a plurality of embodiments, washing by centrifugation can be performed by adding a solvent to the cells from which the supernatant has been removed, followed by centrifugation and removal of the supernatant. The solvent used for washing is preferably the same as the solvent of the solution A.
 ついで、RGD配列を有する物質を含む膜で被覆された細胞を溶液Bと接触させる。これにより、RGD配列を有する物質を含む膜表面に相互作用をする物質を含む膜が形成され、RGD配列を有する物質を含む膜で被覆された細胞表面が相互作用をする物質を含む膜によって被覆される。溶液Bとの接触は、RGD配列を有する物質に代えて相互作用する物質を使用する以外は、溶液Aとの接触と同様に行うことができる。 Next, the cell covered with the membrane containing the substance having the RGD sequence is brought into contact with the solution B. As a result, a membrane containing an interacting substance is formed on the membrane surface containing the substance having the RGD sequence, and the cell surface covered with the membrane containing the substance having the RGD sequence is covered with the membrane containing the interacting substance. Is done. The contact with the solution B can be performed in the same manner as the contact with the solution A, except that a substance that interacts instead of the substance having the RGD sequence is used.
 溶液A又は溶液Bと細胞との接触とを交互に繰り返し行うことにより、細胞表面全体に、RGD配列を有する物質を含む膜と相互作用をする物質を含む膜とが交互に積層された細胞外マトリックス成分を含む被膜を形成することができる。溶液A又は溶液Bと細胞との接触を行う回数は、形成する細胞外マトリックス成分を含む被膜の厚み等に応じて適宜決定できる。 By alternately repeating the contact between the solution A or the solution B and the cells, the extracellular surface in which the membrane containing the substance having the RGD sequence and the membrane containing the interacting substance are alternately laminated on the entire cell surface A coating containing a matrix component can be formed. The number of times that the solution A or the solution B is brought into contact with the cells can be appropriately determined according to the thickness of the coating containing the extracellular matrix component to be formed.
 [培養心筋組織]
 本開示は、一又は複数の実施形態において、人工多能性幹細胞に由来する心筋細胞と細胞外マトリックス成分と線維芽細胞とを含む培養心筋組織(以下、「本開示の培養心筋組織」ともいう)に関する。本開示の培養心筋組織は、一又は複数の実施形態において、iPS細胞由来の心筋細胞及び線維芽細胞を三次元に配置して培養することにより得ることができる。本開示の培養心筋組織は、一又は複数の実施形態において、細胞外マトリックス成分を含む被膜で被覆されたiPS細胞由来の心筋細胞及び線維芽細胞を三次元に配置して培養することにより得ることができる。
[Cultivated myocardial tissue]
In one or a plurality of embodiments, the present disclosure is also referred to as a cultured myocardial tissue containing cardiomyocytes derived from induced pluripotent stem cells, an extracellular matrix component, and fibroblasts (hereinafter referred to as “cultured myocardial tissue of the present disclosure”). ) In one or a plurality of embodiments, the cultured myocardial tissue of the present disclosure can be obtained by arranging and culturing iPS cell-derived cardiomyocytes and fibroblasts in three dimensions. In one or a plurality of embodiments, the cultured myocardial tissue of the present disclosure is obtained by three-dimensionally arranging and culturing iPS cell-derived cardiomyocytes and fibroblasts coated with a coating containing an extracellular matrix component. Can do.
 本開示において「培養心筋組織」とは、iPS細胞由来の心筋細胞と細胞外マトリックス成分と線維芽細胞とを含み、iPS細胞由来の心筋細胞が三次元に配置された細胞の構造体又は集合体をいう。本開示の培養心筋組織は、一又は複数の実施形態において、心不全等の治療のための移植片や治療用薬剤として使用できる。本開示の培養心筋組織は、一又は複数の実施形態において、再生医療の実施に用いることができる。 In the present disclosure, “cultured myocardial tissue” refers to a structure or aggregate of cells including iPS cell-derived cardiomyocytes, extracellular matrix components, and fibroblasts, and iPS cell-derived cardiomyocytes arranged in three dimensions. Say. In one or a plurality of embodiments, the cultured myocardial tissue of the present disclosure can be used as a graft or a therapeutic agent for treating heart failure or the like. The cultured myocardial tissue of the present disclosure can be used in the practice of regenerative medicine in one or more embodiments.
 培養心筋組織は、生体の心筋組織に近い組織とする点から、一又は複数の実施形態において、さらに線維芽細胞を含む。線維芽細胞は、一又は複数の実施形態において、心臓線維芽細胞であることが好ましい。線維芽細胞は、一又は複数の実施形態において、ヒト由来の細胞であってもよいし、ヒト以外に由来する細胞であってもよい。線維芽細胞は、一又は複数の実施形態において、線維芽細胞は、一又は複数の実施形態において、胚性幹細胞、及び人工多能性幹細胞等の由来の細胞であってもよい。 In one or a plurality of embodiments, the cultured myocardial tissue further includes fibroblasts from the viewpoint that it is a tissue close to a living myocardial tissue. The fibroblast is preferably a cardiac fibroblast in one or more embodiments. In one or a plurality of embodiments, the fibroblast may be a cell derived from a human or a cell derived from other than a human. In one or a plurality of embodiments, the fibroblast may be a cell derived from an embryonic stem cell, an induced pluripotent stem cell, or the like in one or a plurality of embodiments.
 心筋三次元組織体における心筋細胞と線維芽細胞との比率(心筋細胞:線維芽細胞、細胞数)は、一又は複数の実施形態において、99:1~1:99である。心筋細胞と線維芽細胞との比率は、一又は複数の実施形態において、心筋細胞に活動電位を発生させ、より規則的な拍動を実現する点から、80:20~30:70、80:20~45:55又は75:25~50:50が好ましい。 The ratio of cardiomyocytes to fibroblasts (cardiomyocytes: fibroblasts, number of cells) in the three-dimensional myocardial tissue is 99: 1 to 1:99 in one or more embodiments. In one or a plurality of embodiments, the ratio of cardiomyocytes to fibroblasts is 80:20 to 30:70, 80: from the viewpoint of generating action potentials in cardiomyocytes and realizing more regular pulsations. 20 to 45:55 or 75:25 to 50:50 is preferred.
 培養心筋組織は、一又は複数の実施形態において、さらに血管内皮細胞を含む。培養心筋組織は、機能をより長期間安定に維持させる点から、一又は複数の実施形態において、血管内皮細胞で形成された血管網を含むことが好ましい。血管内皮細胞は、一又は複数の実施形態において、心臓微小血管内皮細胞であることが好ましい。血管内皮細胞は、一又は複数の実施形態において、ヒト由来の細胞であってもよいし、ヒト以外に由来する細胞であってもよい。血管内皮細胞は、一又は複数の実施形態において、血管内皮細胞は、一又は複数の実施形態において、胚性幹細胞、及び人工多能性幹細胞等の由来の細胞であってもよい。血管網は、一又は複数の実施形態において、血管内皮細胞をiPS由来の心筋細胞及び線維芽細胞と混合して播種し、培養することによって形成できる。 The cultured myocardial tissue further includes vascular endothelial cells in one or a plurality of embodiments. In one or more embodiments, the cultured myocardial tissue preferably includes a vascular network formed of vascular endothelial cells in order to stably maintain the function for a longer period of time. The vascular endothelial cell is preferably a cardiac microvascular endothelial cell in one or more embodiments. In one or a plurality of embodiments, the vascular endothelial cell may be a cell derived from a human or a cell derived from other than a human. In one or a plurality of embodiments, the vascular endothelial cell may be a cell derived from embryonic stem cells, induced pluripotent stem cells and the like in one or a plurality of embodiments. In one or more embodiments, the vascular network can be formed by mixing and seeding vascular endothelial cells with iPS-derived cardiomyocytes and fibroblasts and culturing.
 培養心筋組織の面積は、一又は複数の実施形態において、20mm2以上、100mm2以上、200mm2以上、500mm2以上、又は1000mm2以上である。培養心筋組織の厚みは、一又は複数の実施形態において、1μm以上又は10μm以上であり、また10000μm以下である。 In one or more embodiments, the area of the cultured myocardial tissue is 20 mm 2 or more, 100 mm 2 or more, 200 mm 2 or more, 500 mm 2 or more, or 1000 mm 2 or more. In one or more embodiments, the thickness of the cultured myocardial tissue is 1 μm or more, 10 μm or more, and 10000 μm or less.
 本開示は、以下の一又は複数の実施形態に関しうる。
[1] 薬剤のスクリーニングに用いる心筋組織チップの製造方法であって、
 細胞の表面が細胞外マトリックス成分を含む被膜で被覆された被覆細胞を基材上に配置すること、及び
 前記被覆細胞の配置を繰返し行うことによって前記基材上に心筋三次元組織体を形成することを含み、
 前記細胞が、人工多能性幹細胞に由来する心筋細胞を含む、心筋組織チップの製造方法。
[2] 前記基材上に線維芽細胞を配置することを含む、[1]記載の製造方法。
[3] 前記心筋細胞及び線維芽細胞の比(心筋細胞:線維芽細胞)が99:1~1:99となるように、前記心筋細胞及び前記線維芽細胞を配置することを含む、[2]記載の製造方法。
[4] 前記心筋細胞を含む細胞の層が4層以上積層されるように前記細胞を配置する、[1]から[3]のいずれかに記載の製造方法。
[5] 前記被覆細胞の配置は、液吐出ノズルを用いて前記被覆細胞を基板上に吐出することによって行う、[1]から[4]のいずれかに記載の製造方法。
[6] 前記被覆細胞の吐出は、1吐出あたり1個の被覆細胞を吐出することによって行う、[5]記載の製造方法。
[7] 前記基材は、マルチウェルプレートである、[1]から[6]のいずれかに記載の製造方法。
[8] 前記基材上に複数個の心筋三次元組織体を形成することを含む、[1]から[7]のいずれかに記載の製造方法。
[9] 薬剤のスクリーニングに用いる心筋組織チップであって、
 基材と、
 前記基材上に形成された心筋三次元組織体とを含み、
 前記心筋三次元組織体は、人工多能性幹細胞に由来する心筋細胞と、細胞外マトリックス成分とを少なくとも含み、前記心筋細胞が前記細胞外マトリックス成分を介して積層されている心筋組織チップ。
[10] 前記心筋三次元組織体は、さらに線維芽細胞を含む、[9]記載の心筋組織チップ。
[11] 前記心筋細胞と線維芽細胞との比率(心筋細胞:線維芽細胞)が、99:1~1:99である、[10]記載の心筋組織チップ。
[12] 前記心筋細胞が、5層以上積層されている、[9]から[11]のいずれかに記載の心筋組織チップ。
[13] 前記心筋三次元組織体は、さらに血管内皮細胞で形成された血管網を含む、[9]から[12]のいずれかに記載の心筋組織チップ。
[14] [1]から[8]のいずれかに記載の製造方法によって製造される、[9]から[13]のいずれかに記載の心筋組織チップ。
[15] [9]から[14]のいずれかに記載の心筋組織チップを用いた薬剤候補化合物のスクリーニング方法であって、
 薬剤候補化合物を前記心筋組織チップに接触させること、
 候補化合物の前記心筋組織チップにおける心筋三次元組織体への影響を観察すること、及び、
 観察結果に基いて候補化合物を評価することを含む、スクリーニング方法。
[16] 薬剤候補化合物のスクリーニングのためのキットであって、
 [9]から[14]のいずれかに記載の心筋組織チップ、
 培地、及び、
 取扱説明書、を含むキット。
[17] 人工多能性幹細胞に由来する心筋細胞と細胞外マトリックス成分と線維芽細胞とを含み、
 前記心筋細胞と前記線維芽細胞とを三次元に配置して培養することにより得られた、培養心筋組織。
[18] 前記心筋細胞と線維芽細胞との比率(心筋細胞:線維芽細胞)が、99:1~1:99である、[17]記載の培養心筋組織。
[19] 収縮・弛緩機能を有する、[17]又は[18]に記載の培養心筋組織。
[20] さらに、血管内皮細胞で形成された血管網を含む、[17]から[19]のいずれかに記載の培養心筋組織。
The present disclosure may relate to one or more of the following embodiments.
[1] A method for producing a myocardial tissue chip used for drug screening,
Arrangement of coated cells, the surface of which is coated with a coating containing an extracellular matrix component, on the substrate, and forming the myocardial three-dimensional tissue on the substrate by repeatedly arranging the coated cells. Including
A method for producing a myocardial tissue chip, wherein the cells include cardiomyocytes derived from induced pluripotent stem cells.
[2] The production method according to [1], comprising disposing fibroblasts on the substrate.
[3] including arranging the cardiomyocytes and the fibroblasts such that the ratio of the cardiomyocytes and fibroblasts (cardiomyocytes: fibroblasts) is 99: 1 to 1:99 [2] ] The manufacturing method of description.
[4] The production method according to any one of [1] to [3], wherein the cells are arranged such that four or more layers of cells including the cardiomyocytes are laminated.
[5] The production method according to any one of [1] to [4], wherein the placement of the coated cells is performed by discharging the coated cells onto a substrate using a liquid discharge nozzle.
[6] The production method according to [5], wherein the discharge of the coated cells is performed by discharging one coated cell per discharge.
[7] The manufacturing method according to any one of [1] to [6], wherein the substrate is a multi-well plate.
[8] The manufacturing method according to any one of [1] to [7], including forming a plurality of myocardial three-dimensional tissues on the substrate.
[9] A myocardial tissue chip used for drug screening,
A substrate;
Including a three-dimensional myocardial tissue formed on the substrate,
The myocardial three-dimensional tissue body includes a myocardial cell derived from an induced pluripotent stem cell and an extracellular matrix component, and the myocardial cell is laminated via the extracellular matrix component.
[10] The myocardial tissue chip according to [9], wherein the three-dimensional myocardial tissue further includes fibroblasts.
[11] The myocardial tissue chip according to [10], wherein the ratio of cardiomyocytes to fibroblasts (cardiomyocytes: fibroblasts) is 99: 1 to 1:99.
[12] The myocardial tissue chip according to any one of [9] to [11], wherein the cardiomyocytes are laminated in five or more layers.
[13] The myocardial tissue chip according to any one of [9] to [12], wherein the myocardial three-dimensional tissue body further includes a vascular network formed of vascular endothelial cells.
[14] The myocardial tissue chip according to any one of [9] to [13], which is produced by the production method according to any one of [1] to [8].
[15] A screening method for drug candidate compounds using the myocardial tissue chip according to any one of [9] to [14],
Contacting a drug candidate compound with the myocardial tissue chip;
Observing the influence of a candidate compound on the myocardial three-dimensional tissue in the myocardial tissue chip; and
A screening method comprising evaluating candidate compounds based on observation results.
[16] A kit for screening drug candidate compounds,
[9] to [14], the myocardial tissue chip according to any one of
Medium and
A kit containing an instruction manual.
[17] comprising cardiomyocytes derived from induced pluripotent stem cells, extracellular matrix components and fibroblasts,
A cultured myocardial tissue obtained by culturing the cardiomyocytes and the fibroblasts in three dimensions.
[18] The cultured myocardial tissue according to [17], wherein the ratio of cardiomyocytes to fibroblasts (cardiomyocytes: fibroblasts) is 99: 1 to 1:99.
[19] The cultured myocardial tissue according to [17] or [18], which has a contraction / relaxation function.
[20] The cultured myocardial tissue according to any of [17] to [19], further comprising a vascular network formed of vascular endothelial cells.
 なお、本明細書の記載において、以下の略語を使用する。
 50mM Tris-HCl(pH7.4):HCl(Nacalai Tesque社製)でpH7.4に調整した50mM Trisを、0.2μm γ-raysterile filter(倉敷紡績株式会社製)で滅菌濾過したもの
 BFN:Fibronectin from bovine plasma(SIGMA製)
 BFN溶液:0.2mg BFN/1ml 50mM Tris-HCl(pH7.4)
 DMEM:10% FBS(GIBCO社製)を含むDulbecco’s eagle’s medium(SIGMA社製)
 Gelatin溶液:0.2mg Gelatin/1ml 50mM Tris-HCl(pH7.4)を、0.2μm γ-ray sterile filter(倉敷紡績株式会社製)で滅菌濾過したもの
In the description of the present specification, the following abbreviations are used.
50 mM Tris-HCl (pH 7.4): 50 mM Tris adjusted to pH 7.4 with HCl (manufactured by Nacalai Tesque) sterilized and filtered with 0.2 μm γ-raysteryl filter (manufactured by Kurashiki Boseki Co., Ltd.) BFN: Fibrectin from bovine plasma (manufactured by SIGMA)
BFN solution: 0.2 mg BFN / 1 ml 50 mM Tris-HCl (pH 7.4)
DMEM: Dulbecco's easy's medium (manufactured by SIGMA) including 10% FBS (manufactured by GIBCO)
Gelatin solution: 0.2 mg Gelatin / 1 ml 50 mM Tris-HCl (pH 7.4) sterilized and filtered with 0.2 μm γ-ray sterile filter (manufactured by Kurashiki Boseki Co., Ltd.)
 (参考例)
 [被覆細胞の作製]
 ラット新生児より心筋細胞を回収し、回収した細胞表面にフィブロネクチンとゼラチンを含む被膜を形成して被覆細胞を作製した。被膜の形成は以下の手順で行った。ラット由来心筋細胞を1.7×107cell/mlの濃度で0.2mg/mlのフィブロネクチンを含む50mM Tris-HCl(pH=7.4)溶液に分散させ、転倒混和によって緩やかに撹拌しながら1分間分散状態を保った後、2,500rpmの回転数で1分間の遠心分離を行った(FN浸漬操作)。ついで、上澄みを除き、50 mM Tris-HCl(pH=7.4)溶液を加え、細胞を分散させ、転倒混和によって緩やかに撹拌しながら1分間分散状態を保った後、2,500rpmの回転数で1分間の遠心分離を行った(洗浄操作)。上澄みを除き、0.2mg/mlのゼラチンを含む50mM Tris-HCl(pH=7.4)溶液に細胞を分散させ、転倒混和によって緩やかに撹拌しながら、1分間分散状態を保った後、2,500rpmの回転数で1分間の遠心分離を行い(G浸漬操作)、ついで洗浄操作を行った。そして、FN浸漬操作、洗浄操作、G浸漬操作、及び洗浄操作をこの順番で行った。FN浸漬操作及びG浸漬操作は洗浄操作とそれぞれセットで1ステップとし、最終的に、FN浸漬操作を5回、G浸漬操作を4回、計9ステップ行うことによって被覆細胞を作製した(コーティング層の厚み:7nm)。
(Reference example)
[Preparation of coated cells]
Cardiomyocytes were collected from a newborn rat, and a coated cell was prepared by forming a coating containing fibronectin and gelatin on the collected cell surface. The coating was formed according to the following procedure. Rat-derived cardiomyocytes are dispersed in a 50 mM Tris-HCl (pH = 7.4) solution containing 0.2 mg / ml fibronectin at a concentration of 1.7 × 10 7 cells / ml, and gently stirred by inversion mixing. After maintaining the dispersed state for 1 minute, centrifugation was performed at 2,500 rpm for 1 minute (FN immersion operation). Next, the supernatant was removed, a 50 mM Tris-HCl (pH = 7.4) solution was added, the cells were dispersed, and kept dispersed for 1 minute with gentle agitation by inversion mixing. For 1 minute (washing operation). The supernatant was removed, and the cells were dispersed in a 50 mM Tris-HCl (pH = 7.4) solution containing 0.2 mg / ml of gelatin. After gently stirring by inversion, the cells were kept dispersed for 1 minute. , Centrifugation at 500 rpm for 1 minute (G dipping operation), followed by a washing operation. And FN immersion operation, washing | cleaning operation, G immersion operation, and washing | cleaning operation were performed in this order. The FN dipping operation and the G dipping operation were each set as a washing operation and one step, and finally, the coated cells were prepared by performing the FN dipping operation 5 times and the G dipping operation 4 times for a total of 9 steps (coating layer) Thickness: 7 nm).
 [心筋三次元組織体の作製(その1)及び評価]
 24ウェル培養プレートに配置したトランスウェル(コーニング社製;ポアサイズ:0.4μm、表面積:0.33cm2)のメンブレンフィルタ上に5×105個の被覆細胞を播種し、10重量%FBSを含むDMEM培地を添加して37℃で7日培養した。これにより心筋細胞が5層積層された心筋三次元組織体(厚み:およそ30μm)が得られた。得られた心筋三次元組織体における心筋細胞の密度は5×107個/mm2であった。得られた心筋三次元組織体を蛍光染色し、得られた心筋三次元組織体の組織構造の評価を行った。染色はDAPI(核)、Alexa488(トロポニン)、TRITC標識Phalloidin(アクチン)で行った。その結果を図1に示す、図1は染色後の心筋三次元組織体の顕微鏡写真である。図1に示すように、得られた心筋三次元組織体は、トロポニン骨格を有する心筋組織構造が形成されていることが確認できた。
[Production of Myocardial Three-Dimensional Tissue (Part 1) and Evaluation]
5 × 10 5 coated cells are seeded on a membrane filter of a transwell (manufactured by Corning; pore size: 0.4 μm, surface area: 0.33 cm 2 ) placed in a 24-well culture plate, and contains 10 wt% FBS. DMEM medium was added and cultured at 37 ° C. for 7 days. As a result, a myocardial three-dimensional tissue (thickness: approximately 30 μm) in which five layers of cardiomyocytes were laminated was obtained. The density of cardiomyocytes in the obtained myocardial three-dimensional tissue was 5 × 10 7 cells / mm 2 . The obtained myocardial 3D tissue was fluorescently stained, and the tissue structure of the obtained myocardial 3D tissue was evaluated. Staining was performed with DAPI (nucleus), Alexa 488 (troponin), and TRITC-labeled Phalloidin (actin). The results are shown in FIG. 1. FIG. 1 is a photomicrograph of the myocardial three-dimensional tissue after staining. As shown in FIG. 1, it was confirmed that the obtained myocardial three-dimensional tissue had a myocardial tissue structure having a troponin skeleton.
 [心筋三次元組織体の作製(その2)及び評価]
 メンブレンフィルタ上に播種した被覆細胞の数を10×105個とした以外は、上記と同じ手順で心筋三次元組織体を作製した(10層、厚み:およそ60μm)。得られた心筋三次元組織体における心筋細胞の密度は5×107個/mm2であった。得られた心筋三次元組織体が拍動していることを確認した後、1.0μMイソプロテレノールを添加して30分間培養した。拍動数を測定した後、DMEMに培地交換してイソプロテレノールを除去し、41時間培養した後拍動数を測定した。その結果を図2に示す。なお、拍動数の測定は、位相差顕微鏡観察により行った。
[Production of myocardial three-dimensional tissue (Part 2) and evaluation]
A myocardial three-dimensional tissue body was prepared in the same procedure as described above except that the number of coated cells seeded on the membrane filter was 10 × 10 5 (10 layers, thickness: approximately 60 μm). The density of cardiomyocytes in the obtained myocardial three-dimensional tissue was 5 × 10 7 cells / mm 2 . After confirming that the obtained myocardial three-dimensional tissue was beating, 1.0 μM isoproterenol was added and incubated for 30 minutes. After measuring the number of beats, the medium was changed to DMEM to remove isoproterenol, and after culturing for 41 hours, the number of beats was measured. The result is shown in FIG. The number of beats was measured by observation with a phase contrast microscope.
 図2は、心筋三次元組織体の1分間あたりの拍動数の変化を示すグラフの一例である。図2に示すように、得られた心筋三次元組織体は、拍動促進剤であるイソプロテレノールを添加すると拍動数が大幅に上昇した。また、イソプロテレノールを含まない培地に交換して41時間後の拍動数を測定したところ、イソプロテレノールを添加前のレベルまで減少することが確認できた。よって、得られた心筋三次元組織体は、薬剤応答性を有する心筋機能を有していることが確認できた。 FIG. 2 is an example of a graph showing changes in the number of beats per minute of a three-dimensional myocardial tissue. As shown in FIG. 2, the number of pulsations of the obtained three-dimensional myocardial tissue significantly increased when isoproterenol, which is a pulsatile promoter, was added. Moreover, when it replaced | exchanged for the culture medium which does not contain isoproterenol, and measured the pulsation number after 41 hours, it has confirmed that it decreased to the level before addition of isoproterenol. Therefore, it was confirmed that the obtained myocardial three-dimensional tissue had a myocardial function having drug responsiveness.
 (実施例1)
 ラット新生児由来の心筋細胞に替えてヒトiPS細胞由来心筋細胞を使用した以外は、上記と同様にして被覆細胞を作製した。ヒトiPS細胞は253G1株を使用した。作製した被覆細胞を用い、心筋三次元組織体の作製(その2)と同様にして10層の心筋三次元組織体を含む心筋組織チップを作製した。得られた心筋三次元組織体を数日間培養し、その位相差顕微鏡写真を図3に示す。作製した心筋三次元組織体は、数日間培養後においても組織全体で均一には駆動する様子が観察された。
Example 1
Coated cells were prepared in the same manner as described above except that human iPS cell-derived cardiomyocytes were used in place of rat neonatal cardiomyocytes. The human iPS cell used was the 253G1 strain. Using the prepared coated cells, a myocardial tissue chip containing 10 layers of myocardial 3D tissue was prepared in the same manner as in preparation of myocardial 3D tissue (Part 2). The obtained myocardial three-dimensional tissue was cultured for several days, and a phase contrast micrograph is shown in FIG. It was observed that the prepared myocardial three-dimensional tissue was uniformly driven throughout the tissue even after several days of culture.
 (実施例2)
 心筋三次元組織体における層数を5層とした以外は、実施例1と同様にして心筋組織チップを作製した。作製した心筋組織チップを1日間培養した後、1Mイソプロテレノール(拍動促進剤)を添加し、添加前後の拍動数を計測した。その結果を図4に示す。図4に示すように、薬剤刺激に応答して拍動数が増加することが確認された。つまり、得られた心筋三次元組織体は薬剤応答性を有する心筋機能を有することから、薬剤評価が可能な心筋三次元組織体を供える心筋組織チップが作製できた。
(Example 2)
A myocardial tissue chip was produced in the same manner as in Example 1 except that the number of layers in the myocardial three-dimensional tissue was changed to five. After the produced myocardial tissue chip was cultured for 1 day, 1M isoproterenol (pulsation promoter) was added, and the number of pulsations before and after the addition was measured. The result is shown in FIG. As shown in FIG. 4, it was confirmed that the number of beats increased in response to drug stimulation. That is, since the obtained myocardial three-dimensional tissue body has a myocardial function having drug responsiveness, a myocardial tissue chip providing a myocardial three-dimensional tissue body capable of drug evaluation could be produced.
 (実施例3)
 心筋三次元組織体における層数を4層とした以外は、実施例1と同様にして心筋三次元組織体を含む心筋組織チップを作製した。作製した心筋三次元組織体を7日間培養した後の組織切片画像(HE染色画像)を図5に、位相差顕微鏡写真を図6に示す。得られた心筋三次元組織体の拍動数は40回/分であった。
Example 3
A myocardial tissue chip including a myocardial 3D tissue was produced in the same manner as in Example 1 except that the number of layers in the myocardial 3D tissue was changed to 4. FIG. 5 shows a tissue section image (HE-stained image) after culturing the prepared myocardial three-dimensional tissue for 7 days, and FIG. 6 shows a phase contrast micrograph. The number of beats of the obtained myocardial three-dimensional tissue was 40 times / min.
 (実施例4)
 ヒトiPS由来心筋細胞(5×105cells)を用いて被覆細胞を作製し、実施例2と同様にして心筋組織チップ(5層)を作製した。
Example 4
Coated cells were prepared using human iPS-derived cardiomyocytes (5 × 10 5 cells), and myocardial tissue chips (5 layers) were prepared in the same manner as in Example 2.
 (実施例5)
 ヒトiPS由来被覆心筋細胞(3.75×105cells)と被覆線維芽細胞(1.25×105cells)とを用いた以外は実施例4と同様にして心筋組織チップを作製した(ヒトiPS由来被覆心筋細胞:被覆線維芽細胞=75:25)。
(Example 5)
A myocardial tissue chip was prepared in the same manner as in Example 4 except that human iPS-derived coated cardiomyocytes (3.75 × 10 5 cells) and coated fibroblasts (1.25 × 10 5 cells) were used (human) iPS-derived coated cardiomyocytes: coated fibroblasts = 75:25).
 (実施例6)
 ヒトiPS由来被覆心筋細胞(2.5×105cells)と被覆線維芽細胞(2.5×105cells)とを用いた以外は実施例5と同様にして心筋組織チップを作製した(ヒトiPS由来被覆心筋細胞:被覆線維芽細胞=50:50)。
(Example 6)
A myocardial tissue chip was prepared in the same manner as in Example 5 except that human iPS-derived coated cardiomyocytes (2.5 × 10 5 cells) and coated fibroblasts (2.5 × 10 5 cells) were used (human) iPS-derived coated cardiomyocytes: coated fibroblasts = 50: 50).
 (実施例7)
 ヒトiPS由来被覆心筋細胞(1.25×105cells)と被覆線維芽細胞(3.75×105cells)とを用いた以外は実施例5と同様にして心筋組織チップを作製した(ヒトiPS由来被覆心筋細胞:被覆線維芽細胞=25:75)。
(Example 7)
A myocardial tissue chip was prepared in the same manner as in Example 5 except that human iPS-derived coated cardiomyocytes (1.25 × 10 5 cells) and coated fibroblasts (3.75 × 10 5 cells) were used (human) iPS-derived coated cardiomyocytes: coated fibroblasts = 25: 75).
 [カルシウムイメージング]
 実施例4~6の心筋組織チップを用いてカルシウムイメージングを行った。カルシウムイメージングは以下の手順で行った。すなわち、培養5日後の心筋組織チップに4μMのFluo3AMを添加し45分間インキュベートした。その後、励起波長508nm、蛍光波長527nmの条件で蛍光顕微鏡を用いてイメージングを行った。
[Calcium imaging]
Calcium imaging was performed using the myocardial tissue chips of Examples 4-6. Calcium imaging was performed according to the following procedure. That is, 4 μM Fluo3AM was added to the myocardial tissue chip after 5 days of culture and incubated for 45 minutes. Thereafter, imaging was performed using a fluorescence microscope under conditions of an excitation wavelength of 508 nm and a fluorescence wavelength of 527 nm.
 実施例5の心筋組織チップ(ヒトiPS由来被覆心筋細胞:被覆線維芽細胞=75:25)が最も強い蛍光強度を示すと共に、最も大きな拍動を示した。拍動に伴う蛍光強度の変化は実施例5及び実施例6の順番で強く、拍動は実施例5及び実施例4の順番で大きかった。実施例4は拍動したものの、拍動に伴う蛍光強度の変化は見られなかった。また、実施例6は拍動が殆ど観察されなかった。 The myocardial tissue chip of Example 5 (human iPS-derived coated cardiomyocytes: coated fibroblasts = 75: 25) showed the strongest fluorescence intensity and the largest pulsation. The change of the fluorescence intensity accompanying the pulsation was strong in the order of Example 5 and Example 6, and the pulsation was large in the order of Example 5 and Example 4. Although Example 4 pulsated, no change in fluorescence intensity due to pulsation was observed. In Example 6, pulsation was hardly observed.
 (実施例8)
 [血管網を有する心筋組織チップの作製]
 ヒトiPS由来被覆心筋細胞(1.0×106cells)及び被覆正常ヒト微小血管内皮細胞(NHCMEC)を、NHCMECの割合が細胞数全体の10%の比率となるように混合して24ウェルセルカルチャーインサートに播種し、培養して心筋組織チップを作製した(実施例8-1)。得られた心筋組織チップにおける心筋三次元組織体(6日間培養後)の位相差顕微鏡写真を図7Aに示す。
(Example 8)
[Production of myocardial tissue chip having vascular network]
A 24-well cell in which human iPS-derived coated cardiomyocytes (1.0 × 10 6 cells) and coated normal human microvascular endothelial cells (NHCMEC) are mixed so that the ratio of NHCMEC is 10% of the total number of cells. A myocardial tissue chip was prepared by seeding on a culture insert and culturing (Example 8-1). FIG. 7A shows a phase contrast micrograph of the myocardial three-dimensional tissue (after 6 days of culture) in the obtained myocardial tissue chip.
 ヒトiPS由来被覆心筋細胞のみに替えて、ヒトiPS由来被覆心筋細胞(5.0×105cells)と被覆線維芽細胞(5.0×105cells)とを用いた以外は、実施例8-1と同様にして心筋組織チップを作製した(ヒトiPS由来被覆心筋細胞:被覆線維芽細胞=50:50、実施例8-2)。得られた心筋組織チップにおける心筋三次元組織体(6日間培養後)の位相差顕微鏡写真を図7Bに示す。 Example 8 except that human iPS-derived coated cardiomyocytes (5.0 × 10 5 cells) and coated fibroblasts (5.0 × 10 5 cells) were used instead of only human iPS-derived coated cardiomyocytes. -1, a myocardial tissue chip was prepared (human iPS-derived coated cardiomyocytes: coated fibroblasts = 50: 50, Example 8-2). FIG. 7B shows a phase contrast micrograph of the myocardial three-dimensional tissue (after 6 days of culture) in the obtained myocardial tissue chip.
 図7A及びBに示すように、被覆線維芽細胞を混合して作製した実施例8-2の心筋組織チップのほうが被覆線維芽細胞を含まない実施例8-1の心筋組織チップと比較して、より微細な血管網が形成された。 As shown in FIGS. 7A and B, the myocardial tissue chip of Example 8-2 prepared by mixing coated fibroblasts was compared with the myocardial tissue chip of Example 8-1 that did not contain coated fibroblasts. A finer vascular network was formed.
 (実施例9)
 [培養心筋組織の作製]
 ヒトiPS由来被覆心筋細胞6.5×107cellsと正常ヒト心臓線維芽細胞(NHCF)6.5×106cellsとを混合し、100mmディッシュに配置したトランスウェルインサート(メンブレン直径:75mm、培養面積44cm2)に播種し、4日間培養して培養心筋組織(5層、1.3×107cells/layer)を作製した(ヒトiPS由来被覆心筋細胞:線維芽細胞=90:10)。作製した培養心筋組織が拍動することを確認した。
Example 9
[Preparation of cultured myocardial tissue]
Human iPS-derived coated cardiomyocytes 6.5 × 10 7 cells and normal human cardiac fibroblast (NHCF) 6.5 × 10 6 cells were mixed and placed in a 100 mm dish (membrane diameter: 75 mm, culture) It was seeded in an area 44cm 2), and cultured for 4 days cultured cardiac tissue (5 layers, to prepare a 1.3 × 10 7 cells / layer) ( human iPS derived coating cardiomyocytes: fibroblast = 90: 10). It was confirmed that the prepared cultured myocardial tissue pulsated.

Claims (20)

  1.  薬剤のスクリーニングに用いる心筋組織チップの製造方法であって、
     細胞の表面が細胞外マトリックス成分を含む被膜で被覆された被覆細胞を基材上に配置すること、及び
     前記被覆細胞の配置を繰返し行うことによって前記基材上に心筋三次元組織体を形成することを含み、
     前記細胞が、人工多能性幹細胞に由来する心筋細胞を含む、心筋組織チップの製造方法。
    A method of manufacturing a myocardial tissue chip used for drug screening,
    Arrangement of coated cells, the surface of which is coated with a coating containing an extracellular matrix component, on the substrate, and forming the myocardial three-dimensional tissue on the substrate by repeatedly arranging the coated cells. Including
    A method for producing a myocardial tissue chip, wherein the cells include cardiomyocytes derived from induced pluripotent stem cells.
  2.  前記基材上に線維芽細胞を配置することを含む、請求項1記載の製造方法。 The production method according to claim 1, comprising disposing fibroblasts on the substrate.
  3.  前記心筋細胞及び線維芽細胞の比(心筋細胞:線維芽細胞)が99:1~1:99となるように、前記心筋細胞及び前記線維芽細胞を配置することを含む、請求項2記載の製造方法。 The cardiomyocyte and the fibroblast are arranged so that a ratio of the cardiomyocyte and the fibroblast (cardiomyocyte: fibroblast) is 99: 1 to 1:99. Production method.
  4.  前記心筋細胞を含む細胞の層が4層以上積層されるように前記細胞を配置する、請求項1から3のいずれかに記載の製造方法。 The method according to any one of claims 1 to 3, wherein the cells are arranged such that four or more layers of cells containing the cardiomyocytes are laminated.
  5.  前記被覆細胞の配置は、液吐出ノズルを用いて前記被覆細胞を基板上に吐出することによって行う、請求項1から4のいずれかに記載の製造方法。 The manufacturing method according to any one of claims 1 to 4, wherein the placement of the coated cells is performed by discharging the coated cells onto a substrate using a liquid discharge nozzle.
  6.  前記被覆細胞の吐出は、1吐出あたり1個の被覆細胞を吐出することによって行う、請求項5記載の製造方法。 The method according to claim 5, wherein the discharge of the coated cells is performed by discharging one coated cell per discharge.
  7.  前記基材は、マルチウェルプレートである、請求項1から6のいずれかに記載の製造方法。 The manufacturing method according to any one of claims 1 to 6, wherein the substrate is a multi-well plate.
  8.  前記基材上に複数個の心筋三次元組織体を形成することを含む、請求項1から7のいずれかに記載の製造方法。 The manufacturing method according to any one of claims 1 to 7, comprising forming a plurality of myocardial three-dimensional tissues on the substrate.
  9.  薬剤のスクリーニングに用いる心筋組織チップであって、
     基材と、
     前記基材上に形成された心筋三次元組織体とを含み、
     前記心筋三次元組織体は、人工多能性幹細胞に由来する心筋細胞と、細胞外マトリックス成分とを少なくとも含み、前記心筋細胞が前記細胞外マトリックス成分を介して積層されている、心筋組織チップ。
    A myocardial tissue chip used for drug screening,
    A substrate;
    Including a three-dimensional myocardial tissue formed on the substrate,
    The myocardial three-dimensional tissue body includes a cardiomyocyte derived from an induced pluripotent stem cell and an extracellular matrix component, and the myocardial cell is laminated via the extracellular matrix component.
  10.  前記心筋三次元組織体は、さらに線維芽細胞を含む、請求項9記載の心筋組織チップ。 The myocardial tissue chip according to claim 9, wherein the myocardial three-dimensional tissue further includes fibroblasts.
  11.  前記心筋細胞と線維芽細胞との比率(心筋細胞:線維芽細胞)が、99:1~1:99である、請求項10記載の心筋組織チップ。 The myocardial tissue chip according to claim 10, wherein the ratio of cardiomyocytes to fibroblasts (cardiomyocytes: fibroblasts) is 99: 1 to 1:99.
  12.  前記心筋細胞が、5層以上積層されている、請求項9から11のいずれかに記載の心筋組織チップ。 The myocardial tissue chip according to any one of claims 9 to 11, wherein five or more layers of the myocardial cells are laminated.
  13.  前記心筋三次元組織体は、さらに血管内皮細胞で形成された血管網を含む、請求項9から12のいずれかに記載の心筋組織チップ。 The myocardial tissue chip according to any one of claims 9 to 12, wherein the myocardial three-dimensional tissue further includes a vascular network formed of vascular endothelial cells.
  14.  請求項1から8のいずれかに記載の製造方法によって製造される、請求項9から13のいずれかに記載の心筋組織チップ。 The myocardial tissue chip according to any one of claims 9 to 13, which is produced by the production method according to any one of claims 1 to 8.
  15.  請求項9から14のいずれかに記載の心筋組織チップを用いた薬剤候補化合物のスクリーニング方法であって、
     薬剤候補化合物を前記心筋組織チップに接触させること、
     候補化合物の前記心筋組織チップにおける心筋三次元組織体への影響を観察すること、及び、
     観察結果に基いて候補化合物を評価することを含む、スクリーニング方法。
    A method for screening a drug candidate compound using the myocardial tissue chip according to any one of claims 9 to 14,
    Contacting a drug candidate compound with the myocardial tissue chip;
    Observing the influence of a candidate compound on the myocardial three-dimensional tissue in the myocardial tissue chip; and
    A screening method comprising evaluating candidate compounds based on observation results.
  16.  薬剤候補化合物のスクリーニングのためのキットであって、
     請求項9から14のいずれかに記載の心筋組織チップ、
     培地、及び、
     取扱説明書、を含むキット。
    A kit for screening drug candidate compounds,
    The myocardial tissue chip according to any one of claims 9 to 14,
    Medium and
    A kit containing an instruction manual.
  17.  人工多能性幹細胞に由来する心筋細胞と細胞外マトリックス成分と線維芽細胞とを含み、
     前記心筋細胞と前記線維芽細胞とを三次元に配置して培養することにより得られた、培養心筋組織。
    Including cardiomyocytes derived from induced pluripotent stem cells, extracellular matrix components and fibroblasts,
    A cultured myocardial tissue obtained by culturing the cardiomyocytes and the fibroblasts in three dimensions.
  18.  前記心筋細胞と線維芽細胞との比率(心筋細胞:線維芽細胞)が、99:1~1:99である、請求項17記載の培養心筋組織。 18. The cultured myocardial tissue according to claim 17, wherein the ratio of cardiomyocytes to fibroblasts (cardiomyocytes: fibroblasts) is 99: 1 to 1:99.
  19.  収縮・弛緩機能を有する、請求項17又は18に記載の培養心筋組織。 The cultured myocardial tissue according to claim 17 or 18, which has a contraction / relaxation function.
  20.  さらに、血管内皮細胞で形成された血管網を含む、請求項17から19のいずれかに記載の培養心筋組織。 The cultured myocardial tissue according to any one of claims 17 to 19, further comprising a vascular network formed of vascular endothelial cells.
PCT/JP2014/072029 2013-08-23 2014-08-22 Method for manufacturing cardiac muscle tissue chip used in screening of drug candidate compound WO2015025957A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015532917A JP6608281B2 (en) 2013-08-23 2014-08-22 Method for producing myocardial tissue chip used for screening drug candidate compounds

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-173745 2013-08-23
JP2013173745 2013-08-23
JP2014097104 2014-05-08
JP2014-097104 2014-05-08

Publications (1)

Publication Number Publication Date
WO2015025957A1 true WO2015025957A1 (en) 2015-02-26

Family

ID=52483727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072029 WO2015025957A1 (en) 2013-08-23 2014-08-22 Method for manufacturing cardiac muscle tissue chip used in screening of drug candidate compound

Country Status (2)

Country Link
JP (1) JP6608281B2 (en)
WO (1) WO2015025957A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017073794A1 (en) * 2015-10-30 2018-08-16 国立大学法人京都大学 Method for producing three-dimensional myocardial tissue from pluripotent stem cells
WO2018164098A1 (en) * 2017-03-06 2018-09-13 国立大学法人大阪大学 Cell population to be used as heart fiberization model, method for producing same, screening method using same, method for evaluating heart fiberization model using same, and system for evaluating heart fiberization model
JP2019034126A (en) * 2017-08-10 2019-03-07 国立大学法人大阪大学 Self-movable film of myocardial tissue-collagen
WO2019088224A1 (en) * 2017-11-02 2019-05-09 国立大学法人大阪大学 Cell chip and three-dimensional tissue chip, and method for producing same
JPWO2018164098A1 (en) * 2017-03-16 2020-01-16 国立大学法人大阪大学 Cell population used as heart fibrosis model, method for producing the same, screening method using the same, evaluation method for heart fibrosis model, and evaluation system for heart fibrosis model
CN111051501A (en) * 2017-09-04 2020-04-21 凸版印刷株式会社 Abnormal beating myocardial model and method for producing same, molding agent for abnormal beating myocardial model, and method for evaluating drug efficacy of heart disease therapeutic agent
WO2020129774A1 (en) * 2018-12-20 2020-06-25 日本ゼオン株式会社 Method for evaluating cardio-toxicity
WO2020179929A1 (en) * 2019-03-06 2020-09-10 国立大学法人大阪大学 Cell tissue production method, cell tissue production set, and cultivation container containing cell tissue produced by said production method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012115254A (en) * 2010-11-11 2012-06-21 Osaka Univ Three-dimensional structural body of cell and method for producing the same
WO2012108444A1 (en) * 2011-02-07 2012-08-16 国立大学法人京都大学 Cardiomyopathy-specific pluripotent stem cell and use thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140072599A1 (en) * 2011-02-28 2014-03-13 Osaka University Cytokine-producing cell sheet and method for using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012115254A (en) * 2010-11-11 2012-06-21 Osaka Univ Three-dimensional structural body of cell and method for producing the same
WO2012108444A1 (en) * 2011-02-07 2012-08-16 国立大学法人京都大学 Cardiomyopathy-specific pluripotent stem cell and use thereof

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
AYUMI KOJIMA: "Seitai ni Chikai San Jigen Kozo Soshiki no Kochiku ni Muke, Saibo no Sekiso ya Shuseki o Seigyo suru", NATURE JAPAN, 28 March 2013 (2013-03-28), Retrieved from the Internet <URL:http://www.natureasia.com/ja-jp/jobs/tok> [retrieved on 20141112] *
MICHIYA MATSUSAKI ET AL.: "Layer-by-Layer Assembly Through Weak Interactions and Their Biomedical Applications", ADVANCED MATERIALS, vol. 24, no. 4, 24 January 2012 (2012-01-24), pages 454 - 474, XP055074886, doi:10.1002/adma.201103698 *
SHINTARO IWANAGA ET AL.: "Shinkin Saibo o Mochiita Saibo Array Jo ni Okeru Oligo Saibogun no Kino Hyoka", DAI 14 KAI INTELLIGENT MATERIALS/SYMPOSIUM ASIA WORKSHOP KOEN YOSHISHU, vol. 14, 2005, pages 48 - 49 *
TAKUYA IGARASHI: "Saibo Hyomen eno Tanpakushitsu Nano Hakumaku Keisei ni yoru ES Saibo Yurai San Jigen Hito Pacemaker Soshiki no Kochiku to Ishoku", SCIENCE INTERCOLLEGIATE, vol. 3, 1 March 2014 (2014-03-01) *
YUTO AMANO ET AL.: "Hito iPS Saibo Yurai Shinkin Saibo Hyomen eno Kobunshi Nano Hakumaku Coating no Tameno Atarashii Kogo Sekisoho no Kaihatsu to San Jigen Shinkin Soshikitai no Kochiku", POLYMER PREPRINTS, JAPAN, vol. 63, no. 2, 3 September 2014 (2014-09-03), pages 7307 *

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017073794A1 (en) * 2015-10-30 2018-08-16 国立大学法人京都大学 Method for producing three-dimensional myocardial tissue from pluripotent stem cells
WO2018164098A1 (en) * 2017-03-06 2018-09-13 国立大学法人大阪大学 Cell population to be used as heart fiberization model, method for producing same, screening method using same, method for evaluating heart fiberization model using same, and system for evaluating heart fiberization model
JPWO2018164098A1 (en) * 2017-03-16 2020-01-16 国立大学法人大阪大学 Cell population used as heart fibrosis model, method for producing the same, screening method using the same, evaluation method for heart fibrosis model, and evaluation system for heart fibrosis model
JP2019034126A (en) * 2017-08-10 2019-03-07 国立大学法人大阪大学 Self-movable film of myocardial tissue-collagen
JP7133172B2 (en) 2017-08-10 2022-09-08 国立大学法人大阪大学 Myocardial tissue - self-movable membranes of collagen
EP3680327A4 (en) * 2017-09-04 2021-04-14 Toppan Printing Co., Ltd. Abnormal cardiac rhythm myocardial model and method for producing same, agent for forming abnormal cardiac rhythm myocardial model, and method for evaluating drug efficacy of heart disease therapeutic
CN111051501A (en) * 2017-09-04 2020-04-21 凸版印刷株式会社 Abnormal beating myocardial model and method for producing same, molding agent for abnormal beating myocardial model, and method for evaluating drug efficacy of heart disease therapeutic agent
WO2019088224A1 (en) * 2017-11-02 2019-05-09 国立大学法人大阪大学 Cell chip and three-dimensional tissue chip, and method for producing same
JP2020072691A (en) * 2017-11-02 2020-05-14 国立大学法人大阪大学 Cell chip, three-dimensional tissue chip and production method thereof
JPWO2019088224A1 (en) * 2017-11-02 2019-11-14 国立大学法人大阪大学 Cell chip, three-dimensional tissue chip, and manufacturing method thereof
JP7333543B2 (en) 2017-11-02 2023-08-25 国立大学法人大阪大学 Cell chip, three-dimensional tissue chip, and manufacturing method thereof
WO2020129774A1 (en) * 2018-12-20 2020-06-25 日本ゼオン株式会社 Method for evaluating cardio-toxicity
WO2020179929A1 (en) * 2019-03-06 2020-09-10 国立大学法人大阪大学 Cell tissue production method, cell tissue production set, and cultivation container containing cell tissue produced by said production method

Also Published As

Publication number Publication date
JP6608281B2 (en) 2019-11-20
JPWO2015025957A1 (en) 2017-03-02

Similar Documents

Publication Publication Date Title
JP6608281B2 (en) Method for producing myocardial tissue chip used for screening drug candidate compounds
Carson et al. Nanotopography-induced structural anisotropy and sarcomere development in human cardiomyocytes derived from induced pluripotent stem cells
Manchineella et al. Surface-functionalized silk fibroin films as a platform to guide neuron-like differentiation of human mesenchymal stem cells
Gribova et al. Polyelectrolyte multilayer assemblies on materials surfaces: from cell adhesion to tissue engineering
WO2012133629A1 (en) Method for producing artificial skin model, and artificial skin model
Boateng et al. RGD and YIGSR synthetic peptides facilitate cellular adhesion identical to that of laminin and fibronectin but alter the physiology of neonatal cardiac myocytes
JP5850419B2 (en) Cell three-dimensional structure and method for producing the same
Landry et al. Layers and multilayers of self-assembled polymers: tunable engineered extracellular matrix coatings for neural cell growth
WO2017019799A1 (en) Systems and methods for immobilizing extracellular matrix material on organ on chip, multilayer microfluidics microdevices, and three-dimensional cell culture systems
JP6519050B2 (en) Artificial skin tissue, artificial skin model and method for producing them
Ito Growth factor engineering for biomaterials
WO2014117146A1 (en) Growth matrices for stem cell propagation in vitro and in tissue regeneration
Yu et al. Preparation of gelatin density gradient on poly (ε-caprolactone) membrane and its influence on adhesion and migration of endothelial cells
JP6341553B2 (en) Three-dimensional tissue body and manufacturing method thereof
Svetlova et al. Composite lipid bilayers from cell membrane extracts and artificial mixes as a cell culture platform
Millesi et al. Systematic comparison of commercial hydrogels revealed that a synergy of laminin and strain-stiffening promotes directed migration of neural cells
Sandhurst et al. Nanoarchitectonics of a microsphere-based scaffold for modeling neurodevelopment and neurological disease
WO2015025958A1 (en) Method for producing pacemaker tissue fragment
JP6355212B2 (en) Three-dimensional tissue body and manufacturing method thereof
JP5920749B2 (en) Method for manufacturing artificial skin model and artificial skin model
Park et al. Neuronal differentiation of PC12 cells cultured on growth factor-loaded nanoparticles coated on PLGA microspheres
Zhang et al. Designer self-assembling peptide nanofiber scaffolds
Han et al. Nano-structure of vitronectin/heparin on cell membrane for stimulating single cell in iPSC-derived embryoid body
JP6315604B2 (en) Method for manufacturing artificial skin model and artificial skin model
Gu Functional tissues from intelligent materials, 3D printing and stem cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14838197

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2015532917

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14838197

Country of ref document: EP

Kind code of ref document: A1