WO2015025956A1 - Pharmaceutical composition for treating myocardial damage, pharmaceutical composition for preventing myocardial damage, pharmaceutical composition for treating heart failure, pharmaceutical composition for preventing heart failure, method for treating or preventing myocardial damage or heart failure, mfg-e8, uses of mfg-e8, and method for screening compounds for treating or preventing myocardial damage or heart failure - Google Patents

Pharmaceutical composition for treating myocardial damage, pharmaceutical composition for preventing myocardial damage, pharmaceutical composition for treating heart failure, pharmaceutical composition for preventing heart failure, method for treating or preventing myocardial damage or heart failure, mfg-e8, uses of mfg-e8, and method for screening compounds for treating or preventing myocardial damage or heart failure Download PDF

Info

Publication number
WO2015025956A1
WO2015025956A1 PCT/JP2014/072028 JP2014072028W WO2015025956A1 WO 2015025956 A1 WO2015025956 A1 WO 2015025956A1 JP 2014072028 W JP2014072028 W JP 2014072028W WO 2015025956 A1 WO2015025956 A1 WO 2015025956A1
Authority
WO
WIPO (PCT)
Prior art keywords
mfg
myocardial infarction
heart failure
cells
treating
Prior art date
Application number
PCT/JP2014/072028
Other languages
French (fr)
Japanese (ja)
Inventor
道雄 仲矢
等 黒瀬
雅彦 黒田
Original Assignee
国立大学法人九州大学
学校法人東京医科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人九州大学, 学校法人東京医科大学 filed Critical 国立大学法人九州大学
Publication of WO2015025956A1 publication Critical patent/WO2015025956A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/5044Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
    • G01N33/5061Muscle cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/18Growth factors; Growth regulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/04Inotropic agents, i.e. stimulants of cardiac contraction; Drugs for heart failure

Definitions

  • the present invention relates to a pharmaceutical composition for treating or preventing myocardial injury or heart failure, a method for treating or preventing myocardial injury or heart failure, MFG-E8, MFG for the manufacture of a medicament for treating or preventing myocardial injury or heart failure.
  • MFG-E8 MFG for the manufacture of a medicament for treating or preventing myocardial injury or heart failure.
  • the heart contributes to blood circulation throughout the body by constantly contracting and expanding. In addition, the heart supplies itself with blood through the coronary arteries.
  • Myocardial infarction is a state in which blood is not supplied downstream because the coronary artery is occluded by arteriosclerosis or the like. Lifestyle-related diseases such as diabetes and hyperlipidemia are known as risk factors for myocardial infarction, and the number of patients is expected to increase with an aging society in the future.
  • the first treatment of myocardial infarction is reopening of the coronary artery by surgery, and at the same time, a method of removing the thrombus caused by the thrombolytic agent is used. Patients will continue to take antiplatelet drugs to prevent reocclusion.
  • an inflammatory reaction is first caused with myocardial necrosis.
  • events such as leukocyte migration, extracellular matrix protein degradation, and dead cell removal occur.
  • the period from the onset of myocardial infarction to about the fourth day is regarded as the inflammatory stage.
  • the repair reaction is promoted as the inflammatory response is attenuated.
  • events such as fibroblast development, tissue fibrosis, and angiogenesis occur.
  • the repair period is about 2 weeks after the onset of myocardial infarction in humans.
  • Non-Patent Document 2 Cardiac rupture is thought to occur frequently 1 to 4 days after the onset of myocardial infarction, and there are many reports of relationships with inflammatory and repair responses, so understanding of inflammatory and repair responses after myocardial infarction is important. It is considered important in treatment (see Non-Patent Document 2).
  • TSP-1 Thrombopondin1
  • TSP-1 Thrombopondin1
  • Periostin produced from the early stage to the late stage after myocardial infarction has a delayed development of myofibroblasts after infarction and a high mortality in the deficient mice compared to wild-type mice (see Non-Patent Documents 5 and 6).
  • Periostin contributes to the repair reaction via myofibroblasts.
  • various proteins involved in inflammation and repair are produced after myocardial infarction, but how each protein is involved in inflammation or the response to which protein is fibrosis or angiogenesis There is still insufficient understanding as to whether this is causing a repair response.
  • Milk fat global epidermal growth factor 8 (hereinafter referred to as “MFG-E8”) is a secreted protein that is produced by macrophages of several tissues (see Non-Patent Document 7). Recently, it has been reported that MFG-E8 is an important molecule that promotes phagocytosis of apoptotic cells by macrophages (see Non-Patent Document 8). It is known that apoptotic cells expose phosphatidylserine (PS) on their surface (see Non-Patent Documents 9 and 10). MFG-E8 is considered to promote phagocytosis by binding this PS to integrin ⁇ v ⁇ 3 or ⁇ v ⁇ 5 present on the surface of phagocytic cells and bridging them (see Non-Patent Document 8).
  • PS phosphatidylserine
  • Apoptotic cells are normally phagocytically removed. However, if it remains without being removed for some reason, the membrane structure that has been maintained until then collapses and shifts to a state called late necrosis. In late-stage necrotic cells, various factors present in the cells are released to the outside of the cells to cause inflammation. From these, antibodies against self are produced (see Non-Patent Documents 9 to 11). Very recently, not only immunocompetent cells such as macrophages and microglia, but also cells that were previously thought to have no phagocytic ability, are responsible for the phagocytosis of dead cells under certain circumstances. It has become clear that it contributes to maintaining homeostasis.
  • Non-Patent Document 12 it has been reported that Sertoli cells that exist as a support for sperm cells in the testis phagocytose sperm cells that have undergone apoptosis. Inhibition of phagocytosis of dead cells by Sertoli cells was observed to cause abnormal spermatogenesis, and phagocytosis by Sertoli cells was considered important in the testis. It has also been reported that phagocytosis of apoptotic neuron progenitor cells by neuronal progenitor cells is involved in the progression of neurogenesis in the brain (see Non-Patent Document 13).
  • the present invention has been made in view of the above circumstances, and is a pharmaceutical composition for treating or preventing myocardial injury or heart failure, a method for treating or preventing myocardial injury or heart failure, MFG-E8, treating or preventing myocardial injury or heart failure. It is an object of the present invention to provide a method for screening a compound for treating or preventing myocardial injury or heart failure, and the use of MFG-E8 for the manufacture of a medicament for prevention.
  • MFG-E8 which has been reported to be involved in the mechanism of removing phagocytosis of apoptotic cells, and involved the involvement of MFG-E8 in phagocytosis of dead cells during myocardial infarction.
  • MFG-E8 expressed by resident fibroblast-derived myofibroblasts is involved in phagocytosis of dead cells. I found it.
  • administration of MFG-E8 contributes to the improvement of cardiac function after myocardial infarction, and the present invention has been completed.
  • the pharmaceutical composition for treating or preventing myocardial injury or heart failure according to the present invention, the method for treating or preventing myocardial injury or heart failure, MFG-E8, and the manufacture of a medicament for treating or preventing myocardial injury or heart failure
  • the method of screening for a compound for treating or preventing myocardial injury or heart failure and the use of MFG-E8 are [1] to [11] below.
  • a pharmaceutical composition for preventing myocardial injury, comprising MFG-E8 as an active ingredient [3] A pharmaceutical composition for treating heart failure, comprising MFG-E8 as an active ingredient.
  • a pharmaceutical composition for preventing heart failure comprising MFG-E8 as an active ingredient.
  • a method for treating or preventing myocardial injury or heart failure comprising a step of administering MFG-E8.
  • MFG-E8 for use as a therapeutic or prophylactic agent for myocardial injury or heart failure.
  • a method for screening a compound for preventing myocardial injury or heart failure using MFG-E8 expression induction as an index is provided.
  • [10] A method for screening a compound for treating myocardial injury or heart failure using the MFG-E8 bioassay system.
  • [11] A method for screening a compound for preventing myocardial injury or heart failure using the MFG-E8 bioassay system.
  • MFG-E8 can be used to effectively treat or prevent myocardial injury such as myocardial infarction or heart failure caused by myocardial infarction.
  • Experimental Example 1 it is the figure which showed the expression level of MFG-E8 protein computed from the result of the Western blot.
  • Experimental Example 2 it is the fluorescence-staining photograph figure which examined the expression of MFG-E8 in an immune cell in a mouse
  • Experimental Example 2 it is the fluorescence-staining photograph figure which confirmed the expression of MFG-E8 in the fibroblast (vimentin positive) in a mouse
  • Experimental Example 2 it is the fluorescence-staining photograph figure which confirmed the expression of MFG-E8 in the myofibroblast in a mouse
  • FIG. 4 it is a photograph figure which shows the fluorescence staining result of MFG-E8 in the infarct area
  • Experimental Example 5 it is a photograph figure which shows the fluorescence dyeing
  • Experimental Example 6 it is a figure which shows the result of having measured the expression level of MFG-E8 etc. after TGF- ⁇ 1 stimulation over time in rat fibroblasts.
  • Experimental Example 6 it is a figure which shows the result of having measured the expression level of MFG-E8 etc. when TGF- ⁇ 1 and CCG1423 are used in rat fibroblasts.
  • Experimental Example 6 it is a figure which shows the result of having measured the expression level of MFG-E8 etc. when TGF- ⁇ 2 and siSRF are used in a human cell line.
  • Experimental Example 7 it is a figure which shows the result of having measured the expression level of MFG-E8 etc. in a mouse
  • Experimental Example 7 it is a figure which shows the result of having measured the expression level of MFG-E8 etc. in a mouse
  • Experimental Example 8 it is a figure which shows the result of having confirmed the peripheral blood component after bone marrow transplantation.
  • Experimental Example 8 it is a figure which shows the result of having examined the expression of MFG-E8 in the bone marrow origin myofibroblast by fluorescent staining.
  • Experimental Example 8 it is a figure which shows the result of having confirmed the peripheral blood component after bone marrow transplantation.
  • Experimental Example 8 it is a figure which shows the result of having examined the expression of MFG-E8 in the bone marrow origin myofibroblast by fluorescent staining.
  • Experimental Example 8 it is a figure which shows the result of having examined the expression of MFG-E8 in a FSP-1 (S100A4) positive myofibroblast by fluorescent staining.
  • Experimental example 9 it is a figure which shows the 28-day survival rate in the wild type mouse
  • Experimental example 10 it is a figure which shows the HE dyeing
  • FIG. 10 is a graph showing the thickness of the left ventricular wall after myocardial infarction in MFG-E8-deficient mice in Experimental Example 10.
  • Experimental example 10 it is a figure which shows the picrosirius red dyeing
  • Experimental Example 10 it is a figure which shows the amount of collagen deposition in the heart tissue after myocardial infarction in an MFG-E8 deficient mouse.
  • Experimental Example 11 it is a figure which shows the fluorescence dyeing
  • Experimental Example 11 it is a figure which shows the amount of myofibroblasts of the heart tissue after myocardial infarction in the MFG-E8 deficient mouse.
  • Experimental example 12 it is a figure which shows the echocardiographic evaluation result of the 3rd day after myocardial infarction operation.
  • Experimental Example 12 it is a figure which shows the echocardiographic evaluation result of the 28th day after myocardial infarction operation.
  • Experimental example 12 it is a figure which shows the cardiac hemodynamic evaluation result on the 3rd day after myocardial infarction operation.
  • Experimental Example 12 it is a figure which shows the cardiac hemodynamic evaluation result of the 28th day after myocardial infarction operation.
  • Experimental example 12 it is a figure which shows the organ weight and the body weight measurement result on the 3rd day after myocardial infarction operation.
  • Experimental example 12 it is a figure which shows the organ weight and the body weight measurement result on the 28th day after myocardial infarction operation.
  • Experimental example 13 it is the figure which carried out the fluorescence observation of the apoptotic cell taken in into the myofibroblast of a wild type mouse after myocardial infarction.
  • fluorescence observation was performed on apoptotic cells incorporated into myofibroblasts of MFG-E8-deficient mice after myocardial infarction.
  • Experimental Example 13 it is a figure which shows the relationship examination result of recombinant MFG-E8 addition amount and myofibroblast phagocytic ability.
  • Experimental example 14 it is a figure which shows the fraction of a macrophage or a non-white blood cell.
  • it is the result of having confirmed the integrin alpha v expression in a macrophage or a non-white blood cell.
  • it is the fluorescence-staining photograph figure which confirmed the integrin (beta) 5 expression in a macrophage.
  • experimental example 14 it is the result of confirming integrin ⁇ v ⁇ 3 expression in the CD11b positive fraction.
  • mice 14 it is the result of having confirmed the integrin ⁇ v ⁇ 3 expression in the CD11b negative fraction. In Experimental example 14, it is the result of confirming integrin ⁇ v ⁇ 3 expression in the F4 / 80 positive fraction. In Experimental example 14, it is the result of confirming integrin ⁇ v ⁇ 3 expression in the ⁇ SMA positive fraction.
  • the ratio of macrophages was confirmed in wild-type mice or MFG-E8-deficient mice after myocardial infarction. In Experimental Example 15, the ratio of leukocytes, granulocytes, monocytes or macrophages was confirmed in wild-type mice or MFG-E8-deficient mice after myocardial infarction.
  • mice In Experimental Example 15, the ratios of macrophages and neutrophils were confirmed in wild-type mice or MFG-E8-deficient mice after myocardial infarction.
  • Experimental Example 16 it is a figure which shows the result of having investigated the expression change of the inflammation related factor after a myocardial infarction treatment, and the fibrosis related factor in a wild type mouse
  • Experimental example 17 it is a figure which shows the IL-6 production amount change of a myofibroblast by an apoptotic cell phagocytosis.
  • Experimental Example 18 MFG-E8 positive myofibroblasts were confirmed in the infarct region of a human myocardial infarction patient.
  • Experimental Example 19 it is a figure which shows the administration site
  • Experimental Example 19 it is a figure which shows the infarct area
  • the pharmaceutical composition for treating myocardial injury the pharmaceutical composition for preventing myocardial injury
  • the pharmaceutical composition for treating heart failure the pharmaceutical composition for preventing heart failure
  • treatment of myocardial injury or heart failure sometimes referred to as “preventive pharmaceutical composition”.
  • the pharmaceutical composition for treating or preventing myocardial injury or heart failure of the present invention contains MFG-E8 as an active ingredient. That is, the pharmaceutical composition of the present invention containing MFG-E8 as an active ingredient can be administered orally or parenterally (eg, nasal, pulmonary, intestinal, transdermal, subcutaneous, intravenous, intramuscular). Or myocardial injury or heart failure can be treated or prevented by administration to animals other than humans.
  • the amount of MFG-E8 contained in the pharmaceutical composition as an active ingredient is not particularly limited as long as it is an effective amount capable of producing an effect, and the target disease type and condition; target animal species and their age , Sex, body weight; can be determined appropriately according to the dosage form described below. For example, in the range of 0.001 to 10 mg / kg, preferably 0.05 to 1 mg / kg, more preferably 0.05 to 0.5 mg / kg, this is divided into once or several times a day. Can be appropriately determined according to the use form and dosage form.
  • a therapeutic effect can be achieved.
  • a prophylactic effect can be produced by using the pharmaceutical composition of the present invention for a subject who has not developed myocardial injury or heart failure, particularly a subject who has a risk of myocardial injury or heart failure.
  • the pharmaceutical composition of the present invention can be used after preparing an appropriate dosage form according to the administration route.
  • Specific examples of the dosage form include injections, transdermal preparations, suppositories, powders, tablets, capsules, granules, capsules, patches, ointments, haptics, aerosols, and the like.
  • the pharmaceutical composition of the present invention can contain MFG-E8, which is an active ingredient, and other additives and drugs.
  • the other additive include one or more known and commonly used excipients, binders, disintegrants, lubricants and the like.
  • the other drug is not particularly limited as long as it does not inhibit the action of the active ingredient of the present invention.
  • the method for treating or preventing myocardial injury or heart failure of the present invention comprises the step of administering MFG-E8.
  • the subject to which MFG-E8 is administered is not particularly limited as long as it is a subject requiring treatment or prevention. Specifically, humans or non-human animals can be mentioned.
  • the timing of administration of MFG-E8 is not particularly limited, and if it is intended for therapeutic effect, it is preferably performed after the onset of myocardial injury or heart failure, with the aim of preventing effect. If so, it is preferably performed at any time before the onset of myocardial injury or heart failure.
  • MFG-E8 contributes to the recovery of cardiac function by contributing to phagocytosis of dead cells after myocardial infarction, and therefore, as a treatment after myocardial injury such as myocardial infarction, and prevention of heart failure related to myocardial infarction. It is preferably used after the onset of myocardial infarction.
  • the method for administering MFG-E8 is not particularly limited and may be oral or parenteral (for example, nasal, pulmonary, enteral, transdermal, subcutaneous, intravenous) , Intramuscular).
  • MFG-E8 may be administered alone or in any dosage form together with other additives and drugs.
  • the additive, drug, and dosage form include those described above.
  • the dose of MFG-E8 is not particularly limited as long as it is an effective amount capable of exerting an effect.
  • the MFG-E8 of the present invention is for use as a therapeutic or prophylactic agent for myocardial injury or heart failure.
  • the method of using (administering) MFG-E8 is the same as in the above embodiment.
  • MFG-E8 of the present invention is for the manufacture of a medicament for treating or preventing myocardial injury or heart failure.
  • examples of the medicament for treating or preventing myocardial injury or heart failure include the aforementioned pharmaceutical composition.
  • the compound screening method for treating or preventing myocardial injury or heart failure uses a system for examining the induction of MFG-E8 expression or a bioassay system for MFG-E8. There are no particular limitations on the system for examining the induction of MFG-E8 expression or the bioassay system for MFG-E8, and the methods used in the examples described later can be used.
  • an assay relating to cardiac findings, cardiac function or prognosis after the occurrence of myocardial infarction an assay relating to cardiac findings, cardiac function or prognosis after the occurrence of myocardial infarction; Assay for changes in apoptotic cell phagocytosis of myofibroblasts when a purified or artificially produced candidate substance is added; in a myocardial infarction animal model, cardiac findings after administration of a candidate substance after the occurrence of myocardial infarction; Assay for cardiac function or prognosis; Binding assay between candidate substance and apoptotic cells; Binding assay between candidate substance and cells expressing ⁇ v ⁇ 3 integrin; Promoter region of MFG-E8 gene was isolated, and Luciferase gene was linked downstream Examples include a reporter and a Luciferase assay using the reporter.
  • Wild-type C57BL / 6J mouse obtained from Nippon Claire Co., Ltd.
  • MFG-E8 gene knockout (deficient) mice Individuals assigned by Professor Shigekazu Nagata (Kyoto University graduate School of Medicine, Department of Biomedical Sciences, Department of Biomedical Chemistry) were bred in the animal breeding room (SPF). A thing was used.
  • Anti-MFG-E8 antibody MBL Anti-GAPDH antibody: Santacruz Anti- ⁇ SMA antibody: Thermo Fisher Scientific Anti-CD68 antibody: Serotec Anti-Gr-1 antibody: BioLegend Anti-vimentin antibody: BD Biosciences PE-conjugated anti-integrin ⁇ v antibody: BioLegend FITC-conjugated anti-integrin ⁇ 3 antibody: BioLegend FITC-conjugated anti-integrin ⁇ 5 antibody: eBioscience Anti-CD45 antibody: BioLegend FITC-conjugated anti-CD45.1 antibody: BioLegend APC-conjugated anti-CD45.2 antibody: BioLegend Alexa fluor 488-conjugated anti-CD45.2 antibody: BioLegend APC-conjugated anti-CD11b antibobdy: BioLegend FITC-conjugated anti-CD11b antibobdy: BioLegend PerCP / Cy5.5-conjugated anti-F4
  • results are based on experiments conducted under the same independent condition of at least 3 cases, and all are expressed as mean value ⁇ standard error.
  • a comparison between two groups is performed using unpaired t test, and a comparison between multiple groups is performed using Student-Newman-Keuls test by One way-ANOVA. There is a significant difference when the P value is less than 5%. It was judged.
  • the myocardial infarction model mouse used in the present specification was prepared as follows. First, 8-10 week old male wild-type C57BL / 6J mice or MFG-E8 gene knockout mice (hereinafter referred to as “MFG-E8 deficient mice”, “MFG-E8 KO mice”, and “KO mice”) Prepared.) To this mouse, somnopentyl injection (50 mg / kg sodium pentobarbital) was intraperitoneally administered and then fixed to the operating table in the supine position. After shaving the neck and chest, the midline of the neck was incised under a surgical microscope to expose the trachea.
  • the cannula was inserted into the trachea, and artificial respiration was performed at a tidal volume of 0.5 cc and a respiration rate of 120 times / min.
  • the myocardial infarction was performed by exposing the heart through an incision between the second ribs on the left side of the radius and ligating the left anterior descending coronary artery with a 6 mm silk blade suture. Thereafter, the incision site was sutured with a suture.
  • Mice subjected to the above treatment were designated as a myocardial infarction (MI) group, and mice treated similarly except for ligation of the coronary artery were designated as a sham treatment (control) group.
  • MI myocardial infarction
  • mice treated similarly except for ligation of the coronary artery were designated as a sham treatment (control) group.
  • mice heart tissue and the like were collected after a predetermined number of days, and various examinations shown below were performed.
  • the supernatant obtained by centrifuging the homogenized solution was subjected to protein quantification using BIO-RAD Protein Assay (manufactured by BIO-RAD), followed by 2 ⁇ SDS sample buffer (100 mM Tris-Cl pH 6.8, 20%). Glycerol, 2% SDS, 0.04% Bromophenol Blue) and boiled at 95 ° C. for 5 minutes.
  • the obtained sample was electrophoresed by SDS PAGE Gel at 20-30 ⁇ g per well, and then transferred to a PVDF membrane (Amersham Hybond-P).
  • Example 2 Identification of cells producing MFG-E8 Using mouse heart tissue collected 3 days after myocardial infarction, identification of cells producing MFG-E8 was attempted by fluorescent staining. Specifically, the extracted mouse heart was embedded in Surgipath FSC 22 (manufactured by Leica) and frozen in liquid nitrogen to obtain a frozen specimen. The frozen specimen was sliced to 4 ⁇ m with a cryostat (model CM1100; manufactured by Leica) and air-dried for 1 hour. The frozen sections were fixed with -20 ° C Cold-acetone or 4% PFA for 10 minutes and incubated with 5% BSA / PBS for 1 hour. Then, it was left overnight at 4 ° C.
  • Surgipath FSC 22 manufactured by Leica
  • FIG. 2 shows the results of examining the expression of MFG-E8 in immune cells by co-staining of immune cell markers (CD68, Gr-1) and MFG-E8.
  • CD68 is a marker for monocytes or macrophages
  • Gr-1 is a marker for granulocytes such as neutrophils.
  • FIG. 3A and 3B show the results of examining the expression of MFG-E8 in myofibroblasts by co-staining with myofibroblast markers and MFG-E8.
  • Vimentin (FIG. 3A) or ⁇ SMA ( ⁇ -smooth muscle actin; FIG. 3B) was used as a fibroblast marker.
  • FIG. 3A Vimentin
  • ⁇ SMA ⁇ -smooth muscle actin
  • Example 3 Examination of the origin of myofibroblasts producing MFG-E8 Using mouse heart tissue collected on the first day after myocardial infarction, myofibroblasts producing MFG-E8 by fluorescence staining The origin was examined. Specifically, the frozen section was fluorescently stained in the same manner as in Experimental Example 2 except that the tissue on the first day after the procedure was used and the antibody was changed, and observation and imaging were performed with a fluorescent microscope. The results are shown in FIG. In FIG. 4, the upper row shows the results of co-staining with Vimentin and MFG-E8, which are fibroblast markers including undifferentiated fibroblasts, and the lower row shows ⁇ SMA and MFG, which are markers of differentiated myofibroblasts.
  • Example 4 Examination of expression distribution of MFG-E8 around the infarct site Examination of MFG-E8 expression distribution around the myocardial infarction site using mouse heart tissue collected 3 days after myocardial infarction went. Specifically, the frozen section was fluorescently stained and observed and imaged with a fluorescence microscope in the same manner as in Experimental Example 2 except that the preparation method of the specimen and the section was changed. In this examination, the cut surface of the section is as shown in FIG. FIG. 6 shows the result of co-staining of MFG-E8 and nucleus, and FIG. 7 shows the result of staining or co-staining of MFG-E8, ⁇ SMA, and nucleus. From the results of FIGS. 6 to 7, it was confirmed that MFG-E8 was highly expressed in myofibroblasts in the infarct region.
  • Example 5 Examination of expression distribution of MFG-E8 before and after myocardial infarction operation Using mouse heart tissue before myocardial infarction operation and mouse heart tissue collected on the 3rd day after myocardial infarction operation, The expression distribution was examined. Specifically, in the same manner as in Experimental Example 2, frozen sections were prepared and MFG-E8 and ⁇ SMA were fluorescently stained, and observed and imaged with a fluorescence microscope. The results are shown in FIG. In FIG. 8, the upper part shows the result in the mouse heart tissue before the myocardial infarction operation, and the lower part shows the result in the mouse heart tissue on the third day after the myocardial infarction operation. As is clear from the results of FIG.
  • MFG-E8 is hardly expressed in the mouse heart tissue before the myocardial infarction, whereas MFG-E8 is highly expressed in the mouse heart tissue after the myocardial infarction. I found out. In the mouse heart tissue after myocardial infarction, high expression of MFG-E8 was observed particularly at the infarct site.
  • serum response factor SRF
  • MRTF myocardin-related transcription factor
  • ⁇ SMA myofibroblasts
  • CCG1423 an inhibitor of SRF and MRTF, changes in the expression level of MFG-E8 and the like by TGF- ⁇ stimulation, and expression of MFG-E8 and the like by TGF- ⁇ stimulation when siRNA for SRF is used. The amount change was also examined.
  • TGF- ⁇ 1 Induction of expression of MFG-E8 and the like in rat cardiac fibroblasts by stimulation with TGF- ⁇ 1 Specifically, 10 ng / mL TGF was isolated from resident fibroblasts isolated from rat neonatal heart. Stimulation was performed by adding - ⁇ 1 to the medium. After stimulation, fibroblasts at 24 hours, 48 hours, and 72 hours were collected. In some samples, CCG1423 was added to the medium at a concentration of 1 ⁇ M or 10 ⁇ M immediately before stimulation with 10 ng / mL of TGF- ⁇ 1, and collected by culturing for 24 hours.
  • the primers and TaqMan probe used for quantification of the sample mRNA were those designed by Primer Express Software (manufactured by Applied Biosystems). For the measurement, based on the protocol of One-Step PrimeScript TM RT-PCR Kit (manufactured by TAKARA), a reverse transcription reaction was performed at 42 ° C. for 10 minutes. After denaturation of the reverse transcriptase at 95 ° C. for 10 seconds, the reaction was performed at 60 ° C. for 35 seconds. The extension reaction was performed 40 cycles. Analysis was performed using 18S rRNA as an internal standard.
  • FIG. 9A shows the results of examining the temporal changes in the expression levels of Acta2, Adam12 and Mfg-e8 by TGF- ⁇ 1.
  • FIG. 9B shows the results relating to the expression level of MFG-E8 when CCG1423 was used in combination with TGF- ⁇ 1 expression induction for 24 hours (24 hours).
  • the result shown in the figure is each expression level corrected by 18S rRNA which is an internal standard.
  • Acta2 is Smooth Muscle Actin
  • Adam12 is a protease having a disintegrin domain and a metalloprotease domain, and is a protease that is considered to be involved in the TGF- ⁇ signal, and is a marker molecule for myofibroblasts.
  • MFG-E8 and the like is enhanced by differentiating fibroblasts into myofibroblasts by the action of TGF- ⁇ , and MFG-E8 and the like in myofibroblasts and human cell lines. It was suggested that expression is dependent on downstream factors and / or cofactors of TGF- ⁇ .
  • Myofibroblasts were isolated. The isolated cells were cultured overnight in DMEM (10% FBS, 50 U / ml penicillin / streptomycin), and those stuck to the plate were used as isolated myofibroblasts. The isolated myofibroblasts were collected for 24 hours in the presence or absence of CCG1423 and then collected by a conventional method. Using the recovered myofibroblasts, the expression levels of Acta2 and Mfg-e8 were measured by real-time PCR in the same manner as in Experimental Example 6. The results are shown in FIG. 10A.
  • mice having haplotypes different from Ly5 (CD45) antigen were used (obtained from Sankyo Lab Service).
  • ⁇ -ray irradiation (10 Gy) was performed using a gamma cell 40 on MFG-E8 KO mice having a haplotype of Ly5.2, and this was used as a recipient.
  • a wild-type mouse having a Ly5.1 haplotype was used as a donor, and bone marrow from which bone marrow fluid was collected from the tibia and femur of the donor mouse was subjected to bone marrow transplantation by intravenous injection through the recipient's fundus vein.
  • FIG. 11A shows the result of co-staining using mouse heart tissue collected on the third day after myocardial infarction in the same manner as in Experimental Example 2.
  • bone marrow-derived cells expressing CD45 (CD45.1) were found in the mouse heart tissue 3 days after myocardial infarction. However, almost no expression of MFG-E8 was observed in these bone marrow-derived cells expressing CD45.
  • the bone marrow of MFG-E8 KO mice having Ly5.2 haplotype was transplanted to wild-type mice having Ly5.1 haplotype by a conventional method, and myocardial infarction was performed.
  • bone marrow-derived cells were confirmed using peripheral blood of bone marrow transplanted mice, 99.61% of all bone marrow cells present in peripheral blood vessels were occupied by donor-derived cells in bone marrow transplanted mice. This was confirmed (FIG. 12A).
  • Co-staining was performed in the same manner as in Experimental Example 2 using mouse heart tissue collected on the third day after myocardial infarction. The result is shown in FIG. 12B.
  • bone marrow-derived cells expressing CD45 (CD45.2) were found in the mouse heart tissue 3 days after myocardial infarction.
  • CD45 expression and MFG-E8 expression were not colocalized.
  • myofibroblasts expressing vimentin express MFG-E8.
  • myofibroblasts derived from endothelial-mesenchymal transition cells that express FSP-1 did not express MFG-E8.
  • FIG. 15A the left ventricular wall of the MFG-E8 KO mouse (KO MI) after the myocardial infarction was compared with the left ventricular wall of the wild type mouse. Its thickness was significantly reduced.
  • FIG. 15B is a graph in which the thickness of the left ventricular wall is digitized. As is clear from FIG.
  • the left ventricular wall thickness is significantly thinner in the myocardial infarction group (MI) than in the non-surgery group (sham), and the MFG-E8 KO mouse is treated.
  • the group had thinner walls than the wild-type mouse treatment group.
  • the transducer was moved and an M-mode image was recorded from a short-axis image with the largest left ventricular cavity.
  • the left ventricular end diastolic diameter (LVIDd) and end systolic diameter (LVIDs) were measured according to the M-mode method according to the American College of Echocardiography leading-edge to leading-edge.
  • the end diastole was when the left ventricular expansion diameter was the largest, and the end systolic diameter was when the movement of the left ventricular rear wall was the largest.
  • the ejection fraction (EF) was calculated using the Pombo method.
  • FIG. 20A The result of the wild type mouse is shown in FIG. 20A, and the result of the MFG-E8 KO mouse is shown in FIG. 20B.
  • FIGS. 20A and 20B in the wild type, TUNEL-positive apoptotic cells were incorporated into ⁇ SMA-positive myofibroblasts (FIG. 20A).
  • ANTI-FLAG M2-Affinity Gel was buffer-substituted 3 times with PBS and then packed in a Poly-Prep chromatography column (BIO-RAD) to prepare a column bed. After washing the column with PBS, the collected cell supernatant was added to adsorb FLAG-MFG-E8. After washing with PBS, an eluate (10 mM Tris pH 7.5, 5M LiCl) was added to elute FLAG-MFG-E8. In order to concentrate the eluted fraction, it was added to Amicon Ultra-4 (MILLIPORE), centrifuged at 3500 rpm at 4 ° C., PBS was added for buffer exchange, and the mixture was centrifuged again. The concentrated protein solution was finally sterilized by filtration using ULTRA FREE-MC (MILLIPORE).
  • MILLIPORE Amicon Ultra-4
  • F4 / 80-positive macrophage cells (FIG. 24A, upper part) and CD11b-negative non-white blood cells (FIG. 24A, lower part) were fractionated, and integrin expression was confirmed. As a result, it was confirmed that integrin ⁇ v was expressed in both macrophages and non-white blood cells (FIG. 24B).
  • the integrin expression of the F4 / 80 positive fraction which is a macrophage marker, was observed, but the integrin ⁇ v expression was also observed in the macrophage, but the integrin ⁇ 3 and ⁇ 5 expression could not be confirmed.
  • FIG. 25C Examples of CD11b negative cells present in the heart after myocardial infarction include myofibroblasts.
  • the action point of MFG-E8 is not leukocytes such as macrophages but myofibroblasts.
  • fibroblasts collected from the heart were induced to differentiate by culturing for 48 hours in the presence of TGF- ⁇ 1 (1 ng / ml) to obtain myofibroblasts.
  • the obtained myofibroblasts were seeded on a 6-well plate, apoptotic thymocytes were added at a ratio of 10 to myofibroblasts 1, and incubated at 37 ° C. for 2 hours. Thereafter, the cells were washed with PBS to remove apoptotic cells that were not phagocytosed.
  • this myofibroblast is more likely to produce anti-inflammatory cytokine TGF- ⁇ by phagocytosis of apoptotic cells (FIG. 28B).
  • TNF- ⁇ , IL-1 ⁇ and IL-6 which are inflammatory cytokines, are more difficult to produce (FIG. 28B; the results of TNF- ⁇ and IL-1 ⁇ are not shown).
  • MFG-E8 used for administration was obtained by sterilizing the recombinant MFG-E8 produced in Experimental Example 13 using ULTRA FREE-MC (manufactured by Millipore).
  • ULTRA FREE-MC manufactured by Millipore
  • a 29G needle (BD Rhodos TM; 326631) was used. After administration, it was confirmed that there was no bleeding or solution leakage, and the incision was sutured with a suture.
  • FIG. 30A shows a schematic diagram of the treatment. The ligation point is ⁇ , and the MFG-E8 administration point is ⁇ .
  • FIG. 30B shows a photograph of the heart after TTC staining.
  • the Evans blue non-stained part corresponds to a risk area (AAR), and the TTC stained part corresponds to an infarcted area.
  • FIG. 30C shows the result of measuring the size of the infarct region and the size of the risk region, and quantifying the ratio of the infarct region to the risk region or the ratio of the risk region to the left ventricle. As a result of FIGS. 30B to 30C, no difference was observed between the MFG-E8 administration group and the non-administration group.
  • FIG. 31A shows the results of the expression levels of IL-1 ⁇ and MIP-2 when 1.6 ⁇ g of MFG-E8 was administered, corrected by GAPDH. As a result, increased expression levels of IL-1 ⁇ and MIP-2 were observed at the infarct site. It was also found that this increase in expression was significantly suppressed in the MFG-E8 administration group.
  • FIG. 31B shows the results of the expression levels of IL-1 ⁇ and MIP-2 when 1.6 ⁇ g or 3.2 ⁇ g of MFG-E8 was corrected with 18S rRNA. As a result, it became clear that the inflammation after the infarction was suppressed depending on the concentration of MFG-E8 to be administered.
  • HW heart weight
  • BW body weight
  • MFG-E8 is considered to have a high possibility of becoming a new treatment method including the combined use with an existing treatment method.
  • the preventive pharmaceutical composition and the method for treating or preventing myocardial injury or heart failure according to the present invention are very useful for the prevention or treatment of myocardial injury or heart failure, and can be used in the pharmaceutical or medical industry.

Abstract

MFG-E8 is produced by myofibroblasts appearing in an infarct region. The production of MFG-E8 is regulated by TGF-β/SRF signals. Myofibroblasts ingest dead cells through MFG-E8, inducing an anti-inflammatory response due to phagocytosis by such macrophages. Consequently, in MFG-E8-deficient mice, many more apoptotic cells remain in an infarct region of the heart without undergoing phagocytosis, causing excessive inflammation in said region. As a result, the survival rate of MFG-E8-deficient mice after myocardial infarction decreases significantly. Conversely, the removal of apoptotic cells is facilitated by injecting MFG-E8 into the infarct region, alleviating inflammation in the infarct region, resulting in a marked improvement in cardiac function after a myocardial infarction. These findings indicate that MFG-E8 may provide a novel treatment target for the treatment of myocardial infarctions.

Description

心筋障害治療用薬剤組成物、心筋障害予防用薬剤組成物、心不全治療用薬剤組成物、心不全予防用薬剤組成物、心筋障害又は心不全を治療又は予防する方法、MFG-E8、MFG-E8の使用、及び心筋障害又は心不全を治療又は予防する化合物のスクリーニング方法Pharmaceutical composition for treating myocardial disorder, pharmaceutical composition for preventing myocardial disorder, pharmaceutical composition for treating heart failure, pharmaceutical composition for preventing heart failure, method for treating or preventing myocardial disorder or heart failure, use of MFG-E8, MFG-E8 And a method for screening a compound for treating or preventing myocardial injury or heart failure
 本発明は、心筋障害又は心不全の治療又は予防用薬剤組成物、心筋障害又は心不全を治療又は予防する方法、MFG-E8、心筋障害又は心不全を治療又は予防するための医薬の製造のためのMFG-E8の使用、及び、心筋障害又は心不全を治療又は予防する化合物のスクリーニング方法に関する。
 本願は、2013年8月22日に米国に出願された、米国仮出願第61/868,599号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a pharmaceutical composition for treating or preventing myocardial injury or heart failure, a method for treating or preventing myocardial injury or heart failure, MFG-E8, MFG for the manufacture of a medicament for treating or preventing myocardial injury or heart failure. -Use of E8 and methods of screening for compounds that treat or prevent myocardial injury or heart failure.
This application claims priority based on US Provisional Application No. 61 / 868,599 filed in the United States on August 22, 2013, the contents of which are incorporated herein by reference.
 心臓は絶えず収縮と拡張を繰り返すことで全身の血液循環に貢献している。さらに心臓は自身にも冠状動脈を通じて血液を供給している。この冠状動脈が動脈硬化などで閉塞することで下流に血液が供給されなった状態が心筋梗塞である。心筋梗塞のリスクファクターとして糖尿病や高脂血症などの生活習慣病が知られており、今後の高齢社会に伴って患者数が増加していくことが予想される。心筋梗塞治療の第一は外科手術による冠状動脈の再開通であり、それと同時に血栓溶解剤で原因となった血栓を除去する方法が用いられる。その後も患者は再閉塞を防ぐために抗血小板薬を服用する。しかしながらその後3~10%の患者は左室自由壁の破裂を生じ、その多くの場合は死に至る。心破裂は心筋梗塞後の死因全体に対する割合としては15%程度に過ぎないが、心破裂を治療および予防する医薬品は未だ存在せず、心筋梗塞の治療法が十分に確立しているとは言い難い(非特許文献1参照)。 The heart contributes to blood circulation throughout the body by constantly contracting and expanding. In addition, the heart supplies itself with blood through the coronary arteries. Myocardial infarction is a state in which blood is not supplied downstream because the coronary artery is occluded by arteriosclerosis or the like. Lifestyle-related diseases such as diabetes and hyperlipidemia are known as risk factors for myocardial infarction, and the number of patients is expected to increase with an aging society in the future. The first treatment of myocardial infarction is reopening of the coronary artery by surgery, and at the same time, a method of removing the thrombus caused by the thrombolytic agent is used. Patients will continue to take antiplatelet drugs to prevent reocclusion. However, 3-10% of patients subsequently develop a rupture of the left ventricular free wall, often death. Heart rupture is only about 15% of the total cause of death after myocardial infarction, but there are no drugs to treat and prevent heart rupture, and it is said that the treatment of myocardial infarction is well established. It is difficult (see Non-Patent Document 1).
 心筋梗塞後、心筋の壊死に伴ってまず炎症反応が引き起こされる。炎症期においては、白血球の遊走、細胞外基質タンパク質の分解、死細胞の除去などのイベントが起こる。ヒトの場合、心筋梗塞発症からおよそ4日目までが炎症期とされている。その後、炎症反応の減弱とともに修復反応が促進される。修復期では、線維芽細胞の発達、組織の線維化、血管新生などのイベントが起こる。修復期はヒトの場合でおよそ心筋梗塞発症後から2週間後程度までである。心破裂は心筋梗塞発症後1~4日後の発症が多いとされ、さらに炎症反応や修復反応との関わりも多く報告されていることから、心筋梗塞後の炎症反応および修復反応の理解が心筋梗塞治療において重要であると考えられる(非特許文献2参照)。 After myocardial infarction, an inflammatory reaction is first caused with myocardial necrosis. In the inflammatory phase, events such as leukocyte migration, extracellular matrix protein degradation, and dead cell removal occur. In the case of humans, the period from the onset of myocardial infarction to about the fourth day is regarded as the inflammatory stage. Thereafter, the repair reaction is promoted as the inflammatory response is attenuated. In the repair phase, events such as fibroblast development, tissue fibrosis, and angiogenesis occur. The repair period is about 2 weeks after the onset of myocardial infarction in humans. Cardiac rupture is thought to occur frequently 1 to 4 days after the onset of myocardial infarction, and there are many reports of relationships with inflammatory and repair responses, so understanding of inflammatory and repair responses after myocardial infarction is important. It is considered important in treatment (see Non-Patent Document 2).
 心筋梗塞後は様々なタンパク質が産生され、それらは炎症反応および修復反応に深く関与している(非特許文献3参照)。分泌タンパク質に注目した場合、例えば、心筋梗塞後初期に産生が見られるThrombospondin1(TSP-1)は、その欠損マウスでは野生型マウスと比較して梗塞後の炎症が増強され、死亡率も高い(非特許文献4参照)。このことから、TSP-1は炎症を減弱する作用があると考えられる。
また、心筋梗塞後初期から後期に産生されるPeriostinは、その欠損マウスでは野生型マウスと比較して梗塞後の筋線維芽細胞の発達が遅れ、死亡率も高い(非特許文献5、6参照)。このことから、Periostinは筋線維芽細胞を介した修復反応に寄与していると考えられる。
このように、心筋梗塞後は炎症や修復に関与する様々なタンパク質が産生されていると考えられるが、それぞれのタンパク質がどのように炎症に関わるか、あるいはどのタンパク質に対する応答が線維化や血管新生といった修復の応答を引き起こしているかといったことに関しては未だ理解が不十分である。
Various proteins are produced after myocardial infarction, and they are deeply involved in inflammatory and repair reactions (see Non-Patent Document 3). When focusing on the secreted protein, for example, Thrombopondin1 (TSP-1), which is observed in the early stage after myocardial infarction, has enhanced inflammation after infarction and higher mortality in the deficient mice than in wild-type mice ( Non-patent document 4). From this, it is considered that TSP-1 has an action of reducing inflammation.
In addition, Periostin produced from the early stage to the late stage after myocardial infarction has a delayed development of myofibroblasts after infarction and a high mortality in the deficient mice compared to wild-type mice (see Non-Patent Documents 5 and 6). ). From this, it is considered that Periostin contributes to the repair reaction via myofibroblasts.
Thus, it is thought that various proteins involved in inflammation and repair are produced after myocardial infarction, but how each protein is involved in inflammation or the response to which protein is fibrosis or angiogenesis There is still insufficient understanding as to whether this is causing a repair response.
 Milk fat globule epidermal growth factor 8(以下、「MFG-E8」という。)は分泌タンパクのひとつであり、いくつかの組織のマクロファージが産生する(非特許文献7参照)。近年、MFG-E8がマクロファージによるアポトーシス細胞の貪食を促進する重要な分子であることが報告された(非特許文献8参照)。アポトーシスを起こした細胞は自身の表面にホスファチジルセリン(PS)を露出することが知られている(非特許文献9、10参照)。MFG-E8はこのPSと、貪食細胞表面に存在するインテグリンαvβ3あるいはαvβ5と結合し、両者の橋渡しをすることで貪食を促進すると考えられている(非特許文献8参照)。 Milk fat global epidermal growth factor 8 (hereinafter referred to as “MFG-E8”) is a secreted protein that is produced by macrophages of several tissues (see Non-Patent Document 7). Recently, it has been reported that MFG-E8 is an important molecule that promotes phagocytosis of apoptotic cells by macrophages (see Non-Patent Document 8). It is known that apoptotic cells expose phosphatidylserine (PS) on their surface (see Non-Patent Documents 9 and 10). MFG-E8 is considered to promote phagocytosis by binding this PS to integrin αvβ3 or αvβ5 present on the surface of phagocytic cells and bridging them (see Non-Patent Document 8).
アポトーシスを起こした細胞は本来、速やかに貪食除去される。しかし何らかの理由で除去されずに残留すると、それまで保たれていた膜構造が崩壊し、後期ネクローシスと呼ばれる状態に移行する。後期ネクローシス細胞では細胞内に存在する様々な因子が細胞外に放出されることで炎症を惹起する。これらを発端として自己に対する抗体が産生される(非特許文献9~11参照)。
ごく最近になって、マクロファージやミクログリアといった免疫担当細胞のみならず、それまで貪食能を持たないと思われていた細胞が特定の環境下では死細胞貪食のメインを担っており、それが生体の恒常性維持に貢献しているということが明らかになってきた。例えば、精巣において精細胞の支持体として存在するセルトリ細胞が、アポトーシスを起こした精細胞を貪食するという報告がなされた(非特許文献12参照)。このセルトリ細胞による死細胞の貪食を阻害すると、精子形成に異常をきたすという現象が観察され、精巣においてはセルトリ細胞による貪食が重要であると考えられた。また、脳におけるニューロジェネシスの進行に、ニューロン前駆細胞によるアポトーシスニューロン前駆細胞の貪食が関与しているという報告もなされた(非特許文献13参照)。この報告においてはニューロン前駆細胞による貪食を阻害すると、正常なニューロジェネシスが進行しないという現象が観察されている。
心筋梗塞時は、梗塞領域での心筋細胞のネクローシスだけではなく、梗塞領域の周辺でアポトーシスが生じることが知られている(非特許文献14~16参照)。
Apoptotic cells are normally phagocytically removed. However, if it remains without being removed for some reason, the membrane structure that has been maintained until then collapses and shifts to a state called late necrosis. In late-stage necrotic cells, various factors present in the cells are released to the outside of the cells to cause inflammation. From these, antibodies against self are produced (see Non-Patent Documents 9 to 11).
Very recently, not only immunocompetent cells such as macrophages and microglia, but also cells that were previously thought to have no phagocytic ability, are responsible for the phagocytosis of dead cells under certain circumstances. It has become clear that it contributes to maintaining homeostasis. For example, it has been reported that Sertoli cells that exist as a support for sperm cells in the testis phagocytose sperm cells that have undergone apoptosis (see Non-Patent Document 12). Inhibition of phagocytosis of dead cells by Sertoli cells was observed to cause abnormal spermatogenesis, and phagocytosis by Sertoli cells was considered important in the testis. It has also been reported that phagocytosis of apoptotic neuron progenitor cells by neuronal progenitor cells is involved in the progression of neurogenesis in the brain (see Non-Patent Document 13). In this report, it has been observed that normal neurogenesis does not progress when phagocytosis by neuronal progenitor cells is inhibited.
During myocardial infarction, it is known that apoptosis occurs not only in cardiomyocyte necrosis in the infarcted area but also in the vicinity of the infarcted area (see Non-Patent Documents 14 to 16).
上述のように、心筋梗塞の治療法は未だ十分に確立されておらず、有効な治療法が求められている。
 本発明は上記事情に鑑みてなされたものであって、心筋障害又は心不全の治療又は予防用薬剤組成物、心筋障害又は心不全を治療又は予防する方法、MFG-E8、心筋障害又は心不全を治療又は予防するための医薬の製造のためのMFG-E8の使用、及び心筋障害又は心不全を治療又は予防する化合物のスクリーニング方法を提供することを目的とする。
As described above, a treatment method for myocardial infarction has not been established yet, and an effective treatment method is required.
The present invention has been made in view of the above circumstances, and is a pharmaceutical composition for treating or preventing myocardial injury or heart failure, a method for treating or preventing myocardial injury or heart failure, MFG-E8, treating or preventing myocardial injury or heart failure. It is an object of the present invention to provide a method for screening a compound for treating or preventing myocardial injury or heart failure, and the use of MFG-E8 for the manufacture of a medicament for prevention.
 心筋梗塞領域周辺で多くの細胞死が起こることは知られているが、それら死細胞の除去については報告がほとんどない。そこで本発明者らは、アポトーシス細胞の貪食除去メカニズムへの関与が報告されているMFG-E8に着目し、MFG-E8の心筋梗塞時における死細胞の貪食への関与、及び、心筋梗塞後の心臓病態への関与について検討を行った。その結果、心筋梗塞時に筋線維芽細胞が死細胞を貪食すること、及び、常在性線維芽細胞由来の筋線維芽細胞が発現するMFG-E8が、死細胞の貪食に関与することを新たに見出した。また、MFG-E8の投与により、心筋梗塞後の心臓機能の改善に寄与することを見出し、本発明を完成するに至った。 Although it is known that many cell deaths occur around the myocardial infarction region, there are few reports on the removal of these dead cells. Therefore, the present inventors focused on MFG-E8, which has been reported to be involved in the mechanism of removing phagocytosis of apoptotic cells, and involved the involvement of MFG-E8 in phagocytosis of dead cells during myocardial infarction, We examined the involvement in heart conditions. As a result, it was newly found that myofibroblasts phagocytose dead cells during myocardial infarction, and that MFG-E8 expressed by resident fibroblast-derived myofibroblasts is involved in phagocytosis of dead cells. I found it. Further, it has been found that administration of MFG-E8 contributes to the improvement of cardiac function after myocardial infarction, and the present invention has been completed.
 すなわち、本発明に係る心筋障害又は心不全の治療又は予防用薬剤組成物、心筋障害又は心不全を治療又は予防する方法、MFG-E8、心筋障害又は心不全を治療又は予防するための医薬の製造のためのMFG-E8の使用、及び心筋障害又は心不全を治療又は予防する化合物のスクリーニング方法は、下記[1]~[11]である。
[1]MFG-E8を有効成分として含有することを特徴とする心筋障害治療用薬剤組成物。
[2]MFG-E8を有効成分として含有することを特徴とする心筋障害予防用薬剤組成物。
[3]MFG-E8を有効成分として含有することを特徴とする心不全治療用薬剤組成物。
[4]MFG-E8を有効成分として含有することを特徴とする心不全予防用薬剤組成物。
[5]MFG-E8を投与する工程を含むことを特徴とする、心筋障害又は心不全を治療又は予防する方法。
[6]心筋障害又は心不全の治療薬又は予防薬としての使用のための、MFG-E8。
[7]心筋障害又は心不全を治療又は予防するための医薬の製造のためのMFG-E8の使用。
[8]MFG-E8の発現誘導を指標にした、心筋障害又は心不全を治療する化合物のスクリーニング方法。
[9]MFG-E8の発現誘導を指標にした、心筋障害又は心不全を予防する化合物のスクリーニング方法。
[10]MFG-E8のバイオアッセイ系を用いた、心筋障害又は心不全を治療する化合物のスクリーニング方法。
[11]MFG-E8のバイオアッセイ系を用いた、心筋障害又は心不全を予防する化合物のスクリーニング方法。
That is, the pharmaceutical composition for treating or preventing myocardial injury or heart failure according to the present invention, the method for treating or preventing myocardial injury or heart failure, MFG-E8, and the manufacture of a medicament for treating or preventing myocardial injury or heart failure The method of screening for a compound for treating or preventing myocardial injury or heart failure and the use of MFG-E8 are [1] to [11] below.
[1] A pharmaceutical composition for treating myocardial injury, comprising MFG-E8 as an active ingredient.
[2] A pharmaceutical composition for preventing myocardial injury, comprising MFG-E8 as an active ingredient.
[3] A pharmaceutical composition for treating heart failure, comprising MFG-E8 as an active ingredient.
[4] A pharmaceutical composition for preventing heart failure, comprising MFG-E8 as an active ingredient.
[5] A method for treating or preventing myocardial injury or heart failure, comprising a step of administering MFG-E8.
[6] MFG-E8 for use as a therapeutic or prophylactic agent for myocardial injury or heart failure.
[7] Use of MFG-E8 for the manufacture of a medicament for treating or preventing myocardial injury or heart failure.
[8] A screening method for a compound for treating myocardial injury or heart failure, using MFG-E8 expression induction as an index.
[9] A method for screening a compound for preventing myocardial injury or heart failure using MFG-E8 expression induction as an index.
[10] A method for screening a compound for treating myocardial injury or heart failure using the MFG-E8 bioassay system.
[11] A method for screening a compound for preventing myocardial injury or heart failure using the MFG-E8 bioassay system.
 本発明によれば、MFG-E8を用いて、心筋梗塞等の心筋障害、又は心筋梗塞等に起因する心不全を効果的に治療又は予防することができる。 According to the present invention, MFG-E8 can be used to effectively treat or prevent myocardial injury such as myocardial infarction or heart failure caused by myocardial infarction.
実験例1において、ウエスタンブロットの結果から算出されたMFG-E8タンパク発現量を示した図である。In Experimental Example 1, it is the figure which showed the expression level of MFG-E8 protein computed from the result of the Western blot. 実験例2において、マウス心臓組織中の、免疫細胞におけるMFG-E8の発現を検討した蛍光染色写真図である。In Experimental Example 2, it is the fluorescence-staining photograph figure which examined the expression of MFG-E8 in an immune cell in a mouse | mouth heart tissue. 実験例2において、マウス心臓組織中の線維芽細胞(vimentin陽性)におけるMFG-E8の発現を確認した蛍光染色写真図である。In Experimental Example 2, it is the fluorescence-staining photograph figure which confirmed the expression of MFG-E8 in the fibroblast (vimentin positive) in a mouse | mouth heart tissue. 実験例2において、マウス心臓組織中の筋線維芽細胞(alphaSMA陽性)におけるMFG-E8の発現を確認した蛍光染色写真図である。In Experimental Example 2, it is a fluorescence-stained photograph figure which confirmed the expression of MFG-E8 in the myofibroblast (alpha SMA positive) in a mouse | mouth heart tissue. 実験例2において、マウス心臓組織中の、筋線維芽細胞におけるMFG-E8の発現を確認した蛍光染色写真図である。In Experimental Example 2, it is the fluorescence-staining photograph figure which confirmed the expression of MFG-E8 in the myofibroblast in a mouse | mouth heart tissue. 実験例4における、梗塞領域周辺切片を作製する際の切断面を示す模式図である。It is a schematic diagram which shows the cut surface at the time of producing the infarct area | region periphery section | slice in Experimental example 4. FIG. 実験例4において、マウス心臓組織の梗塞領域周辺組織におけるMFG-E8の蛍光染色結果を示す写真図である。In Experimental Example 4, it is a photograph figure which shows the fluorescence staining result of MFG-E8 in the infarct area | region surrounding tissue of a mouse | mouth heart tissue. 実験例4において、マウス心臓組織の梗塞領域周辺組織におけるMFG-E8等の蛍光染色結果を示す写真図である。In Experimental Example 4, it is a photograph figure which shows the fluorescence dyeing | staining result of MFG-E8 etc. in the infarction area | region surrounding mouse heart tissue. 実験例5において、心筋梗塞前後のマウス心臓組織における蛍光染色結果を示す写真図である。In Experimental Example 5, it is a photograph figure which shows the fluorescence dyeing | staining result in the mouse | mouth heart tissue before and behind myocardial infarction. 実験例6において、ラット線維芽細胞で、TGF-β1刺激後のMFG-E8等の発現量を経時的に測定した結果を示す図である。In Experimental Example 6, it is a figure which shows the result of having measured the expression level of MFG-E8 etc. after TGF-β1 stimulation over time in rat fibroblasts. 実験例6において、ラット線維芽細胞で、TGF-β1とCCG1423とを用いた場合の、MFG-E8等の発現量を測定した結果を示す図である。In Experimental Example 6, it is a figure which shows the result of having measured the expression level of MFG-E8 etc. when TGF-β1 and CCG1423 are used in rat fibroblasts. 実験例6において、ヒト細胞株で、TGF-β2とsiSRFとを用いた場合の、MFG-E8等の発現量を測定した結果を示す図である。In Experimental Example 6, it is a figure which shows the result of having measured the expression level of MFG-E8 etc. when TGF-β2 and siSRF are used in a human cell line. 実験例7において、CCG-1423を用いた場合の、マウス筋線維芽細胞におけるMFG-E8等の発現量を測定した結果を示す図である。In Experimental Example 7, it is a figure which shows the result of having measured the expression level of MFG-E8 etc. in a mouse | mouth myofibroblast when CCG-1423 is used. 実験例7において、siRNAを用いた場合の、マウス筋線維芽細胞におけるMFG-E8等の発現量を測定した結果を示す図である。In Experimental Example 7, it is a figure which shows the result of having measured the expression level of MFG-E8 etc. in a mouse | mouth myofibroblast when siRNA is used. 実験例8において、骨髄移植後の末梢血成分を確認した結果を示す図である。In Experimental Example 8, it is a figure which shows the result of having confirmed the peripheral blood component after bone marrow transplantation. 実験例8において、骨髄由来筋線維芽細胞におけるMFG-E8の発現を蛍光染色で検討した結果を示す図である。In Experimental Example 8, it is a figure which shows the result of having examined the expression of MFG-E8 in the bone marrow origin myofibroblast by fluorescent staining. 実験例8において、骨髄移植後の末梢血成分を確認した結果を示す図である。In Experimental Example 8, it is a figure which shows the result of having confirmed the peripheral blood component after bone marrow transplantation. 実験例8において、骨髄由来筋線維芽細胞におけるMFG-E8の発現を蛍光染色で検討した結果を示す図である。In Experimental Example 8, it is a figure which shows the result of having examined the expression of MFG-E8 in the bone marrow origin myofibroblast by fluorescent staining. 実験例8において、FSP-1(S100A4)陽性筋線維芽細胞におけるMFG-E8の発現を、蛍光染色で検討した結果を示す図である。In Experimental Example 8, it is a figure which shows the result of having examined the expression of MFG-E8 in a FSP-1 (S100A4) positive myofibroblast by fluorescent staining. 実験例9において、心筋梗塞施術後の野生型マウス又はMFG-E8欠損マウスにおける28日生存率を示す図である。In Experimental example 9, it is a figure which shows the 28-day survival rate in the wild type mouse | mouth or MFG-E8 deficient mouse | mouth after a myocardial infarction operation. 実験例10において、MFG-E8欠損マウスにおける、心筋梗塞後心臓組織のHE染色切片を示す図である。In Experimental example 10, it is a figure which shows the HE dyeing | staining section | slice of the heart tissue after a myocardial infarction in a MFG-E8 deficient mouse. 実験例10において、MFG-E8欠損マウスにおける、心筋梗塞後左室壁の厚さを示す図である。FIG. 10 is a graph showing the thickness of the left ventricular wall after myocardial infarction in MFG-E8-deficient mice in Experimental Example 10. 実験例10において、MFG-E8欠損マウスにおける、心筋梗塞後心臓組織のピクロシリウスレッド染色切片を示す図である。In Experimental example 10, it is a figure which shows the picrosirius red dyeing | staining section | slice of the heart tissue after a myocardial infarction in a MFG-E8 deficient mouse. 実験例10において、MFG-E8欠損マウスにおける心筋梗塞後心臓組織中のコラーゲン沈着量を示す図である。In Experimental Example 10, it is a figure which shows the amount of collagen deposition in the heart tissue after myocardial infarction in an MFG-E8 deficient mouse. 実験例11において、MFG-E8欠損マウスにおける心筋梗塞後心臓組織の、蛍光染色を示す図である。In Experimental Example 11, it is a figure which shows the fluorescence dyeing | staining of the heart tissue after the myocardial infarction in a MFG-E8 deficient mouse. 実験例11において、MFG-E8欠損マウスにおける心筋梗塞後心臓組織の、筋線維芽細胞量を示す図である。In Experimental Example 11, it is a figure which shows the amount of myofibroblasts of the heart tissue after myocardial infarction in the MFG-E8 deficient mouse. 実験例12において、心筋梗塞施術後3日目の、心エコー評価結果を示す図である。In Experimental example 12, it is a figure which shows the echocardiographic evaluation result of the 3rd day after myocardial infarction operation. 実験例12において、心筋梗塞施術後28日目の、心エコー評価結果を示す図である。In Experimental Example 12, it is a figure which shows the echocardiographic evaluation result of the 28th day after myocardial infarction operation. 実験例12において、心筋梗塞施術後3日目の、心臓血行動態評価結果を示す図である。In Experimental example 12, it is a figure which shows the cardiac hemodynamic evaluation result on the 3rd day after myocardial infarction operation. 実験例12において、心筋梗塞施術後28日目の、心臓血行動態評価結果を示す図である。In Experimental Example 12, it is a figure which shows the cardiac hemodynamic evaluation result of the 28th day after myocardial infarction operation. 実験例12において、心筋梗塞施術後3日目の、臓器重量及び体重測定結果を示す図である。In Experimental example 12, it is a figure which shows the organ weight and the body weight measurement result on the 3rd day after myocardial infarction operation. 実験例12において、心筋梗塞施術後28日目の、臓器重量及び体重測定結果を示す図である。In Experimental example 12, it is a figure which shows the organ weight and the body weight measurement result on the 28th day after myocardial infarction operation. 実験例13において、心筋梗塞後における、野生型マウスの筋線維芽細胞内に取り込まれたアポトーシス細胞を蛍光観察した図である。In Experimental example 13, it is the figure which carried out the fluorescence observation of the apoptotic cell taken in into the myofibroblast of a wild type mouse after myocardial infarction. 実験例13において、心筋梗塞後における、MFG-E8欠損マウスの筋線維芽細胞内に取り込まれたアポトーシス細胞を蛍光観察した図である。In Experimental Example 13, fluorescence observation was performed on apoptotic cells incorporated into myofibroblasts of MFG-E8-deficient mice after myocardial infarction. 実験例13において、心筋梗塞後における、野生型マウス又はMFG-E8欠損マウスの、心臓組織のアポトーシス細胞を蛍光観察した図である。In Experimental Example 13, fluorescence observation of apoptotic cells in heart tissue of wild-type mice or MFG-E8-deficient mice after myocardial infarction was performed. 実験例13において、心筋梗塞後における、視野中総細胞数あたりのアポトーシス細胞の割合を算出した結果を示す図である。In Experimental example 13, it is a figure which shows the result of having calculated the ratio of the apoptotic cell per total number of cells in a visual field after myocardial infarction. 実験例13において、筋線維芽細胞がアポトーシス細胞を取り込んでいる様子を示す図である。In Experimental example 13, it is a figure which shows a mode that the myofibroblast has taken in the apoptotic cell. 実験例13において、野生型又はMFG-E8欠損マウスの筋線維芽細胞が、アポトーシス細胞を取り込む様子を示した図である。In Experimental example 13, it is the figure which showed a mode that the myofibroblast of a wild type or MFG-E8 deficient mouse took in an apoptotic cell. 実験例13において、リコンビナントMFG-E8添加量と筋線維芽細胞貪食能との関係性検討結果を示す図である。In Experimental Example 13, it is a figure which shows the relationship examination result of recombinant MFG-E8 addition amount and myofibroblast phagocytic ability. 実験例14において、マクロファージ又は非白血球細胞の分画を示す図である。In Experimental example 14, it is a figure which shows the fraction of a macrophage or a non-white blood cell. 実験例14において、マクロファージ又は非白血球細胞における、インテグリンαv発現を確認した結果である。In Experimental example 14, it is the result of having confirmed the integrin alpha v expression in a macrophage or a non-white blood cell. 実験例14において、マクロファージにおける、インテグリンβ5発現を確認した蛍光染色写真図である。In Experimental example 14, it is the fluorescence-staining photograph figure which confirmed the integrin (beta) 5 expression in a macrophage. 実験例14において、CD11b陽性画分における、インテグリンαvβ3発現を確認した結果である。In Experimental example 14, it is the result of confirming integrin αvβ3 expression in the CD11b positive fraction. 実験例14において、CD11b陰性画分における、インテグリンαvβ3発現を確認した結果である。In Experimental example 14, it is the result of having confirmed the integrin αvβ3 expression in the CD11b negative fraction. 実験例14において、F4/80陽性画分における、インテグリンαvβ3発現を確認した結果である。In Experimental example 14, it is the result of confirming integrin αvβ3 expression in the F4 / 80 positive fraction. 実験例14において、αSMA陽性画分における、インテグリンαvβ3発現を確認した結果である。In Experimental example 14, it is the result of confirming integrin αvβ3 expression in the αSMA positive fraction. 実験例15において、マクロファージの割合を、心筋梗塞施術後野生型マウス又はMFG-E8欠損マウスで確認した結果を示す図である。In Experimental Example 15, the ratio of macrophages was confirmed in wild-type mice or MFG-E8-deficient mice after myocardial infarction. 実験例15において、白血球、顆粒球、単球又はマクロファージの割合を、心筋梗塞施術後野生型マウス又はMFG-E8欠損マウスで確認した結果を示す図である。In Experimental Example 15, the ratio of leukocytes, granulocytes, monocytes or macrophages was confirmed in wild-type mice or MFG-E8-deficient mice after myocardial infarction. 実験例15において、マクロファージ及び好中球の割合を、心筋梗塞施術後野生型マウス又はMFG-E8欠損マウスで確認した結果を示す図である。In Experimental Example 15, the ratios of macrophages and neutrophils were confirmed in wild-type mice or MFG-E8-deficient mice after myocardial infarction. 実験例16において、野生型マウス及びMFG-E8欠損マウスにおける、心筋梗塞処置後の炎症関連因子、線維化関連因子の発現変化を調べた結果を示す図である。In Experimental Example 16, it is a figure which shows the result of having investigated the expression change of the inflammation related factor after a myocardial infarction treatment, and the fibrosis related factor in a wild type mouse | mouth and a MFG-E8 deficient mouse. 実験例17において、アポトーシス細胞貪食による、筋線維芽細胞のIL-6産生量変化を示す図である。In Experimental example 17, it is a figure which shows the IL-6 production amount change of a myofibroblast by an apoptotic cell phagocytosis. 実験例17において、アポトーシス細胞貪食による、筋線維芽細胞のTGF-β産生量変化を示す図である。In Experimental example 17, it is a figure which shows the TGF- (beta) production amount change of a myofibroblast by an apoptotic cell phagocytosis. 実験例18において、ヒト心筋梗塞患者の梗塞領域における、MFG-E8陽性筋線維芽細胞を確認した図である。In Experimental Example 18, MFG-E8 positive myofibroblasts were confirmed in the infarct region of a human myocardial infarction patient. 実験例19において、心筋梗塞後の心臓に対するMFG-E8投与における、投与部位を示す図である。In Experimental Example 19, it is a figure which shows the administration site | part in MFG-E8 administration with respect to the heart after a myocardial infarction. 実験例19において、心筋梗塞後のMFG-E8投与後の梗塞領域及びリスク領域を示す図である。In Experimental Example 19, it is a figure which shows the infarct area | region and risk area | region after MFG-E8 administration after myocardial infarction. 実験例19において、心筋梗塞後のMFG-E8投与による、梗塞領域及びリスク領域の違いを定量した図である。In Experimental example 19, it is the figure which quantified the difference of the infarction area | region and risk area | region by MFG-E8 administration after myocardial infarction. 実験例20において、心筋梗塞後の梗塞部位の炎症に対する、MFG-E8投与の影響を、IL-1β及びMIP-2の発現量から調べた図である。In Experimental Example 20, the effect of MFG-E8 administration on the inflammation at the infarct site after myocardial infarction was examined from the expression levels of IL-1β and MIP-2. 実験例20において、心筋梗塞後の梗塞部位の炎症に対する、MFG-E8投与量による影響を、IL-1β及びMIP-2の発現量から調べた図である。In Experimental Example 20, the influence of the dose of MFG-E8 on the inflammation at the infarct site after myocardial infarction was examined from the expression levels of IL-1β and MIP-2. 実験例21において、心臓組織のアポトーシス細胞数に対する、MFG-E8投与の影響を、蛍光染色を用いて確認した写真図である。In Experimental example 21, it is the photograph figure which confirmed the influence of MFG-E8 administration with respect to the number of apoptotic cells of a heart tissue using fluorescent staining. 実験例21において、心筋梗塞後のアポトーシス細胞数に対する、MFG-E8投与の影響を、写真図に基づき数値化した結果である。In Experimental Example 21, the effect of MFG-E8 administration on the number of apoptotic cells after myocardial infarction was quantified based on a photograph. 実験例22において、心筋梗塞後の心機能に対する、MFG-E8投与の影響を、経時的に調べた結果である。In Experimental Example 22, the effect of MFG-E8 administration on cardiac function after myocardial infarction was examined over time. 実験例22において、心筋梗塞後の心機能および心重量等に対する、MFG-E8投与の影響を、投与後10週目に調べた結果である。In Experimental Example 22, the effect of MFG-E8 administration on cardiac function and heart weight after myocardial infarction was examined 10 weeks after administration. 実験例23において、心筋梗塞後の心臓の線維化に対する、MFG-E8投与の影響を、投与後10週目に調べた組織染色写真図である。In Experimental Example 23, it is the tissue-stained photograph figure which examined the influence of MFG-E8 administration with respect to the fibrosis of the heart after a myocardial infarction 10 weeks after administration. 実験例23において、心筋梗塞後の心臓の線維化に対する、MFG-E8投与の影響を、写真図に基づき数値化した結果である。In Experimental Example 23, the effect of MFG-E8 administration on the fibrosis of the heart after myocardial infarction is quantified based on a photograph.
 本発明について、以下詳細に説明する。なお、本明細書内では、心筋障害治療用薬剤組成物、心筋障害予防用薬剤組成物、心不全治療用薬剤組成物及び心不全予防用薬剤組成物を総称して、「心筋障害又は心不全の治療又は予防用薬剤組成物」ということがある。 The present invention will be described in detail below. In the present specification, the pharmaceutical composition for treating myocardial injury, the pharmaceutical composition for preventing myocardial injury, the pharmaceutical composition for treating heart failure and the pharmaceutical composition for preventing heart failure are collectively referred to as “treatment of myocardial injury or heart failure or Sometimes referred to as “preventive pharmaceutical composition”.
<心筋障害又は心不全の治療又は予防用薬剤組成物>
本発明の心筋障害又は心不全の治療又は予防用薬剤組成物は、MFG-E8を有効成分として含有する。
すなわち、MFG-E8を有効成分として含有する本発明の薬剤組成物は、経口、又は非経口(例えば、経鼻、経肺、腸内、経皮、皮下、静脈内、筋肉内)によって、ヒト又はヒト以外の動物に投与することにより、心筋障害又は心不全を治療又は予防することができるものである。
<Pharmaceutical composition for treatment or prevention of myocardial injury or heart failure>
The pharmaceutical composition for treating or preventing myocardial injury or heart failure of the present invention contains MFG-E8 as an active ingredient.
That is, the pharmaceutical composition of the present invention containing MFG-E8 as an active ingredient can be administered orally or parenterally (eg, nasal, pulmonary, intestinal, transdermal, subcutaneous, intravenous, intramuscular). Or myocardial injury or heart failure can be treated or prevented by administration to animals other than humans.
薬剤組成物が有効成分として含有するMFG-E8の量は、効果を奏し得る有効量であれば特に限定されるものではなく、目的とする疾患の種類や状態;対象となる動物種やその年齢、性別、体重;後述する剤形等に応じて適宜決定することができる。例えば、0.001~10mg/kg、好ましくは、0.05~1 mg/kg、より好ましくは、0.05~0.5mg/kgの範囲で、これを1日1回または数回に分けて投与することが可能となるように、使用形態や剤形に応じて適宜決定することができる。 The amount of MFG-E8 contained in the pharmaceutical composition as an active ingredient is not particularly limited as long as it is an effective amount capable of producing an effect, and the target disease type and condition; target animal species and their age , Sex, body weight; can be determined appropriately according to the dosage form described below. For example, in the range of 0.001 to 10 mg / kg, preferably 0.05 to 1 mg / kg, more preferably 0.05 to 0.5 mg / kg, this is divided into once or several times a day. Can be appropriately determined according to the use form and dosage form.
本発明の薬剤組成物を、心筋障害又は心不全発症後の患者に用いることにより、治療的効果を奏することができる。また、本発明の薬剤組成物を、心筋障害又は心不全を発症していない対象、特に、心筋障害又は心不全のリスクを有する対象に対して用いることにより、予防的効果を奏することができる。 By using the pharmaceutical composition of the present invention for patients after the onset of myocardial injury or heart failure, a therapeutic effect can be achieved. Moreover, a prophylactic effect can be produced by using the pharmaceutical composition of the present invention for a subject who has not developed myocardial injury or heart failure, particularly a subject who has a risk of myocardial injury or heart failure.
本発明の薬剤組成物は、投与経路に応じて、適切な剤形とした上で用いることができる。剤形として具体的には、注射剤、経皮吸収型製剤、坐剤、散剤、錠剤、カプセル剤、顆粒剤、カプセル剤、貼付剤、軟膏剤、ハップ剤、エアゾール剤等が挙げられる。 The pharmaceutical composition of the present invention can be used after preparing an appropriate dosage form according to the administration route. Specific examples of the dosage form include injections, transdermal preparations, suppositories, powders, tablets, capsules, granules, capsules, patches, ointments, haptics, aerosols, and the like.
本発明の薬剤組成物は、有効成分であるMFG-E8と、他の添加剤や薬剤を含有することができる。他の添加剤として具体的には、公知慣用の賦形剤、結合剤、崩壊剤、滑沢剤等の1種又は2種以上が挙げられる。他の薬剤としては、本発明の有効成分の作用を阻害しないものであれば特に限定されるものではなく、心筋障害又は心不全の治療又は予防に用いることができる公知の薬剤の1種又は2種以上を適宜選択することができる。 The pharmaceutical composition of the present invention can contain MFG-E8, which is an active ingredient, and other additives and drugs. Specific examples of the other additive include one or more known and commonly used excipients, binders, disintegrants, lubricants and the like. The other drug is not particularly limited as long as it does not inhibit the action of the active ingredient of the present invention. One or two kinds of known drugs that can be used for treatment or prevention of myocardial injury or heart failure. The above can be selected as appropriate.
<心筋障害又は心不全を治療又は予防する方法>
 本発明の心筋障害又は心不全を治療又は予防する方法は、MFG-E8を投与する工程を含む。
本発明の方法において、MFG-E8を投与する対象は特に限定されるものではなく、治療又は予防を必要とする対象であればよい。具体的には、ヒト又はヒト以外の動物が挙げられる。
本発明の方法において、MFG-E8を投与する時期は特に限定されるものではなく、治療効果を目的とする場合であれば、心筋障害又は心不全の発症後に行うことが好ましく、予防効果を目的とする場合であれば、心筋障害又は心不全の発症前の任意の時期に行うことが好ましい。なかでも、MFG-E8は心筋梗塞後の死細胞の貪食に貢献する事で心機能回復に寄与することから、心筋梗塞等の心筋障害後の治療、及び、心筋梗塞に関連する心不全の予防として、心筋梗塞発症後に用いられることが好ましい。
<Method for treating or preventing myocardial injury or heart failure>
The method for treating or preventing myocardial injury or heart failure of the present invention comprises the step of administering MFG-E8.
In the method of the present invention, the subject to which MFG-E8 is administered is not particularly limited as long as it is a subject requiring treatment or prevention. Specifically, humans or non-human animals can be mentioned.
In the method of the present invention, the timing of administration of MFG-E8 is not particularly limited, and if it is intended for therapeutic effect, it is preferably performed after the onset of myocardial injury or heart failure, with the aim of preventing effect. If so, it is preferably performed at any time before the onset of myocardial injury or heart failure. In particular, MFG-E8 contributes to the recovery of cardiac function by contributing to phagocytosis of dead cells after myocardial infarction, and therefore, as a treatment after myocardial injury such as myocardial infarction, and prevention of heart failure related to myocardial infarction. It is preferably used after the onset of myocardial infarction.
 本発明の方法において、MFG-E8を投与する方法は特に限定されるものではなく、経口であってもよく、非経口(例えば、経鼻、経肺、腸内、経皮、皮下、静脈内、筋肉内)であってもよい。 In the method of the present invention, the method for administering MFG-E8 is not particularly limited and may be oral or parenteral (for example, nasal, pulmonary, enteral, transdermal, subcutaneous, intravenous) , Intramuscular).
 本発明の方法において、MFG-E8は、単独で投与してもよく、他の添加剤や薬剤と共に任意の剤形とした上で投与してもよい。添加剤、薬剤、剤形としては上記同様のものが挙げられる。
MFG-E8の投与量は、効果を奏し得る有効量であれば特に限定されるものではなく、目的とする疾患の種類や状態;対象となる動物種やその年齢、性別、体重;後述する剤形等に応じて適宜決定することができる。例えば、0.001~10mg/kg、好ましくは、0.05~1 mg/kg、より好ましくは、0.05~0.5mg/kgの範囲で、これを1日1回または数回に分けて投与することが好ましい。
In the method of the present invention, MFG-E8 may be administered alone or in any dosage form together with other additives and drugs. Examples of the additive, drug, and dosage form include those described above.
The dose of MFG-E8 is not particularly limited as long as it is an effective amount capable of exerting an effect. The type and condition of the target disease; the target animal species, its age, sex, and body weight; It can be determined appropriately according to the shape and the like. For example, in the range of 0.001 to 10 mg / kg, preferably 0.05 to 1 mg / kg, more preferably 0.05 to 0.5 mg / kg, this is divided into once or several times a day. Are preferably administered.
<MFG-E8>
本発明のMFG-E8は、心筋障害又は心不全の治療薬又は予防薬としての使用のためものである。
MFG-E8の使用(投与)方法等は上記実施形態と同様である。
<MFG-E8>
The MFG-E8 of the present invention is for use as a therapeutic or prophylactic agent for myocardial injury or heart failure.
The method of using (administering) MFG-E8 is the same as in the above embodiment.
<MFG-E8の使用>
本発明のMFG-E8の使用は、心筋障害又は心不全を治療又は予防するための医薬の製造のためのものである。
心筋障害又は心不全を治療又は予防するための医薬としては、例えば、上述した薬剤組成物が挙げられる。
<Use of MFG-E8>
The use of MFG-E8 of the present invention is for the manufacture of a medicament for treating or preventing myocardial injury or heart failure.
Examples of the medicament for treating or preventing myocardial injury or heart failure include the aforementioned pharmaceutical composition.
<心筋障害又は心不全を治療又は予防する化合物のスクリーニング方法>
 本発明の心筋障害又は心不全を、治療又は予防する化合物のスクリーニング方法は、MFG-E8の発現誘導を調べる系、又は、MFG-E8のバイオアッセイ系を用いるものである。MFG-E8の発現誘導を調べる系、又はMFG-E8のバイオアッセイ系としては特に限定はなく、後述する実施例において用いている方法等を用いることができる。
具体的には例えば、候補物質をノックアウトした動物又は野生型動物において、心筋梗塞を発生させた後の、心所見、心機能又は予後に関するアッセイ;候補物質をノックアウトした筋線維芽細胞に対して、精製又は人工的に製造した候補物質を添加した場合の、筋線維芽細胞のアポトーシス細胞貪食能の変化に関するアッセイ;心筋梗塞動物モデルにおいて、心筋梗塞発生後に候補物質を投与した後の、心所見、心機能又は予後に関するアッセイ;候補物質とアポトーシス細胞とのバインディングアッセイ;候補物質とαvβ3インテグリンを発現する細胞とのバインディングアッセイ;MFG-E8遺伝子のpromoter領域を単離し、その下流にLuciferase遺伝子を連結したレポーターを作製し、それを用いたLuciferaseアッセイ等が挙げられる。
<Method of screening for compound for treating or preventing myocardial injury or heart failure>
The compound screening method for treating or preventing myocardial injury or heart failure according to the present invention uses a system for examining the induction of MFG-E8 expression or a bioassay system for MFG-E8. There are no particular limitations on the system for examining the induction of MFG-E8 expression or the bioassay system for MFG-E8, and the methods used in the examples described later can be used.
Specifically, for example, in an animal or wild-type animal in which a candidate substance is knocked out, an assay relating to cardiac findings, cardiac function or prognosis after the occurrence of myocardial infarction; Assay for changes in apoptotic cell phagocytosis of myofibroblasts when a purified or artificially produced candidate substance is added; in a myocardial infarction animal model, cardiac findings after administration of a candidate substance after the occurrence of myocardial infarction; Assay for cardiac function or prognosis; Binding assay between candidate substance and apoptotic cells; Binding assay between candidate substance and cells expressing αvβ3 integrin; Promoter region of MFG-E8 gene was isolated, and Luciferase gene was linked downstream Examples include a reporter and a Luciferase assay using the reporter.
 次に、実施例等により本発明をさらに詳細に説明するが、本発明はこれらの例によって限定されるものではない。また、以下の全ての動物実験は、国立大学法人九州大学における動物実験の各種ガイドラインに従って行われた。 Next, the present invention will be described in more detail with reference to examples and the like, but the present invention is not limited to these examples. All animal experiments below were conducted according to various animal experiment guidelines at Kyushu University.
 以下の検討において用いた試薬及び抗体、並びにそれらの購入元を以下に示す。
野生型C57BL/6Jマウス:日本クレア株式会社より入手。
MFG-E8遺伝子ノックアウト(欠損)マウス:長田重一教授(京都大学大学院医学研究 医学専攻 分子生体統御学講座 医化学分野)より譲渡を受けた個体を、動物飼育室(SPF)において自家繁殖させたものを用いた。
Anti-MFG-E8 antibody:MBL社製
Anti-GAPDH antibody:Santacruz社製
Anti-αSMA antibody:Thermo Fisher Scientific社製
Anti-CD68 antibody:Serotec社製
Anti-Gr-1 antibody:BioLegend社製
Anti-vimentin antibody:BD Biosciences社製
PE-conjugated anti-integrin αv antibody:BioLegend社製
FITC-conjugated anti-integrin β3 antibody:BioLegend社製
FITC-conjugated anti-integrin β5 antibody:eBioscience社製
Anti-CD45 antibody:BioLegend社製
FITC-conjugated anti-CD45.1 antibody:BioLegend社製
APC-conjugated anti-CD45.2 antibody:BioLegend社製
Alexa fluor 488-conjugated anti-CD45.2 antibody:BioLegend社製
APC-conjugated anti-CD11b antibobdy:BioLegend社製
FITC-conjugated anti-CD11b antibobdy:BioLegend社製
PerCP/Cy5.5-conjugated anti-F4/80 antibody:BioLegend社製
APC-conjugated anti-Ly-6G antibody:BioLegend社製
APC-conjugated anti-CD86 antibody:BioLegend社製
FITC-conjugated anti-CD206 antibody:BioLegend社製
HRP-conjugated anti-hamster IgG:Immuno Research Laboratoties社製
Cy3-conjugated anti-hamster IgG:Immuno Research Laboratoties社製
Alexa fluor 488-conjugated anti-mouse IgG:invitrogen社製
Alexa fluor 488-conjugated anti-rat IgG:invitrogen社製
Alexa fluor 488-conjugated anti-rabbit IgG:invitrogen社製
Alexa fluor 647-conjugated anti-mouse IgG:invitrogen社製
CF405S-conjugated anti-mouse IgG:Biotium社製
Rat MFG-E8 Probe:Assay ID Rn00563082_m1;Applied Biosystems社製
Mouse MFG-E8 Probe:Assay ID Mm00500549_m1;Applied Biosystems社製
Mouse Acta2_Probe:Assay ID Hs00426835_g1;Applied Biosystems社製
Rat Acta2_Probe:Assay ID Rn01759928_g1;Applied Biosystems社製
Rat Adam12_Probe:Assay ID Rn01759928_g1;Applied Biosystems社製
Mouse Srf_Probe:Assay ID Mm00491032_m1;Applied Biosystems社製
Eukaryotic 18S-rRNA_probe:Assay ID Hs03003631_g1;Applied Biosystems社製
The reagents and antibodies used in the following studies, and their suppliers are shown below.
Wild-type C57BL / 6J mouse: obtained from Nippon Claire Co., Ltd.
MFG-E8 gene knockout (deficient) mice: Individuals assigned by Professor Shigekazu Nagata (Kyoto University Graduate School of Medicine, Department of Biomedical Sciences, Department of Biomedical Chemistry) were bred in the animal breeding room (SPF). A thing was used.
Anti-MFG-E8 antibody: MBL
Anti-GAPDH antibody: Santacruz
Anti-αSMA antibody: Thermo Fisher Scientific
Anti-CD68 antibody: Serotec
Anti-Gr-1 antibody: BioLegend
Anti-vimentin antibody: BD Biosciences
PE-conjugated anti-integrin αv antibody: BioLegend
FITC-conjugated anti-integrin β3 antibody: BioLegend
FITC-conjugated anti-integrin β5 antibody: eBioscience
Anti-CD45 antibody: BioLegend
FITC-conjugated anti-CD45.1 antibody: BioLegend
APC-conjugated anti-CD45.2 antibody: BioLegend
Alexa fluor 488-conjugated anti-CD45.2 antibody: BioLegend
APC-conjugated anti-CD11b antibobdy: BioLegend
FITC-conjugated anti-CD11b antibobdy: BioLegend
PerCP / Cy5.5-conjugated anti-F4 / 80 antibody: BioLegend
APC-conjugated anti-Ly-6G antibody: BioLegend
APC-conjugated anti-CD86 antibody: BioLegend
FITC-conjugated anti-CD206 antibody: BioLegend
HRP-conjugated anti-hamster IgG: manufactured by Immuno Research Laboratoties
Cy3-conjugated anti-hamster IgG: manufactured by Immuno Research Laboratoties
Alexa fluor 488-conjugated anti-mouse IgG: manufactured by invitrogen
Alexa fluor 488-conjugated anti-rat IgG: manufactured by invitrogen
Alexa fluor 488-conjugated anti-rabbit IgG: manufactured by invitrogen
Alexa fluor 647-conjugated anti-mouse IgG: manufactured by invitrogen
CF405S-conjugated anti-mouse IgG: Biotium
Rat MFG-E8 Probe: Assay ID Rn00563082_m1; manufactured by Applied Biosystems
Mouse MFG-E8 Probe: Assay ID Mm00500549_m1; manufactured by Applied Biosystems
Mouse Acta2_Probe: Assay ID Hs00426835_g1; manufactured by Applied Biosystems
Rat Acta2_Probe: Assay ID Rn01759928_g1; Applied Biosystems
Rat Adam12_Probe: Assay ID Rn01759928_g1; manufactured by Applied Biosystems
Mouse Srf_Probe: Assay ID Mm00491032_m1; manufactured by Applied Biosystems
Eukaryotic 18S-rRNA_probe: Assay ID Hs03003631_g1; manufactured by Applied Biosystems
以下の実験例において、結果は少なくとも3例以上の独立した同一条件下で行った実験によるものであり、全て平均値±標準誤差で表した。二群間の比較にはunpaired t testを、多群間の比較にはOne way-ANOVAによるStudent-Newman-Keuls testを用いて検定を行い、P値が5%未満の場合に有意差があると判断した。 In the following experimental examples, the results are based on experiments conducted under the same independent condition of at least 3 cases, and all are expressed as mean value ± standard error. A comparison between two groups is performed using unpaired t test, and a comparison between multiple groups is performed using Student-Newman-Keuls test by One way-ANOVA. There is a significant difference when the P value is less than 5%. It was judged.
[参考例1]心筋梗塞モデルマウスの作製
 本明細書内で使用した心筋梗塞モデルマウスは以下のようにして作製した。
まず、8-10週齢の雄の野生型C57BL/6Jマウス又はMFG-E8遺伝子ノックアウトマウス(以下、「MFG-E8欠損マウス」、「MFG-E8 KOマウス」、「KOマウス」ということがある。)を準備した。このマウスに対し、ソムノペンチル注射液(50mg/kgペントバルビタールナトリウム)を腹腔内投与後、仰臥位にて手術台に固定した。頚部及び胸部を剪毛後、手術用顕微鏡観察下で頚部の正中を切開し、気管を露出させた。カニューレを気管に挿入し、一回呼吸量0.5cc、呼吸回数120回/分にて人工呼吸を行った。心筋梗塞施術は肋骨左側の第二肋間の切開によって心臓を露出させ、左冠動脈前下行枝を6mm絹ブレード縫合糸で結紮することにより行った。その後縫合糸で切開箇所を縫合した。以上の処置を施したマウスを心筋梗塞(MI)群とし、冠状動脈の結紮以外は同様の処置を施したマウスを偽処置(コントロール;sham)群とした。
 心筋梗塞施術の後、所定日数経過後にマウス心臓組織等を採取し、以下に示す各種の検討を行った。
[Reference Example 1] Preparation of myocardial infarction model mouse The myocardial infarction model mouse used in the present specification was prepared as follows.
First, 8-10 week old male wild-type C57BL / 6J mice or MFG-E8 gene knockout mice (hereinafter referred to as “MFG-E8 deficient mice”, “MFG-E8 KO mice”, and “KO mice”) Prepared.) To this mouse, somnopentyl injection (50 mg / kg sodium pentobarbital) was intraperitoneally administered and then fixed to the operating table in the supine position. After shaving the neck and chest, the midline of the neck was incised under a surgical microscope to expose the trachea. The cannula was inserted into the trachea, and artificial respiration was performed at a tidal volume of 0.5 cc and a respiration rate of 120 times / min. The myocardial infarction was performed by exposing the heart through an incision between the second ribs on the left side of the radius and ligating the left anterior descending coronary artery with a 6 mm silk blade suture. Thereafter, the incision site was sutured with a suture. Mice subjected to the above treatment were designated as a myocardial infarction (MI) group, and mice treated similarly except for ligation of the coronary artery were designated as a sham treatment (control) group.
After the myocardial infarction operation, mouse heart tissue and the like were collected after a predetermined number of days, and various examinations shown below were performed.
[実験例1]MFG-E8タンパク発現量の測定
 心筋梗塞施術後0日目、2日目、4日目、7日目及び28日目に採取したマウス心臓を用いて、ウエスタンブロット法を用いてMFG-E8タンパク発現量の測定を行った。
具体的には、-80℃に保存していたマウス心臓1mlのRIPA buffer(50mM Tris-Cl pH8.0,150mM NaCl,1.0%NonidetP-40,0.5% sodium deoxycholate)及びプロテアーゼ阻害カクテル(nacalai tesque社製)と共に組織が均一になるまでホモジナイズした。ホモジナイズ溶液を遠心分離して得られた上清は、BIO-RAD Protein Assay(BIO-RAD社製)を用いてタンパク定量後、2×SDS sample buffer(100 mM Tris-Cl pH6.8,20% Glycerol,2%SDS,0.04%Bromophenol Blue)と混合し、95℃で5分間煮沸した。得られたサンプルを1well当たり20-30μgでSDS PAGE Gelにて電気泳動した後、PVDF膜(Amersham Hybond-P)に転写した。PVDF膜を5%BSA/TBS-T(20mM Tris-Cl pH7.4,137mM NaCl,0.2%Tween-20)溶液中で1時間インキュベートした後、各種抗体を含むTBS-T溶液中でPVDF膜を4℃で一晩静置した。翌日、TBS-T溶液で10分間3回の洗浄を行い、各種HRP標識二次抗体を含むTBS-T溶液中で1時間インキュベートした。その後TBS-T溶液で10分間3回の洗浄を行い、Western Lightening Plus(PerkinElmer社製)もしくはSupersignal West Pico(Thermo Scientific 社製)を用いて発光させた。FUJI Medical X-ray film(FUJIFILM社製)に露光、現像の後、画像を取り込み、Scion Imageを用いてバンドの濃さを定量的に測定した。
その後、GAPDHタンパクを内部標準としてMFG-E8タンパクの発現量を補正及び算出した結果を図1に示す。図1中、エラーバーは標準誤差(SEM)を示し、n=3である。
 なお、MFG-E8にはスプライシングバリアントが2種類存在し、そのうちlong formのみが死細胞の貪食促進に関与することが報告されている(非特許文献8参照)。そこで、本検討ではMFG-E8のlong formに相当するバンド(L)のみを対象として定量を行った。
[Experimental Example 1] Measurement of MFG-E8 protein expression level Western blotting was performed using mouse hearts collected on days 0, 2, 4, 7 and 28 after myocardial infarction. Then, the expression level of MFG-E8 protein was measured.
Specifically, 1 ml of RIPA buffer (50 mM Tris-Cl pH 8.0, 150 mM NaCl, 1.0% Nonidet P-40, 0.5% sodium deoxycholate) and protease inhibition cocktail stored at −80 ° C. Homogenization was performed until the tissue became uniform (Nacalai tesque). The supernatant obtained by centrifuging the homogenized solution was subjected to protein quantification using BIO-RAD Protein Assay (manufactured by BIO-RAD), followed by 2 × SDS sample buffer (100 mM Tris-Cl pH 6.8, 20%). Glycerol, 2% SDS, 0.04% Bromophenol Blue) and boiled at 95 ° C. for 5 minutes. The obtained sample was electrophoresed by SDS PAGE Gel at 20-30 μg per well, and then transferred to a PVDF membrane (Amersham Hybond-P). After incubating the PVDF membrane in a 5% BSA / TBS-T (20 mM Tris-Cl pH 7.4, 137 mM NaCl, 0.2% Tween-20) solution for 1 hour, PVDF membrane in various TBS-T solutions containing antibodies The membrane was left at 4 ° C. overnight. The next day, the plate was washed 3 times for 10 minutes with the TBS-T solution, and incubated for 1 hour in the TBS-T solution containing various HRP-labeled secondary antibodies. Thereafter, the plate was washed with TBS-T solution three times for 10 minutes, and Western Lightening Plus (manufactured by PerkinElmer) or Supersignal West Pico (Thermo Scientific).   The product was made to emit light. After exposure and development on a FUJI Medical X-ray film (manufactured by FUJIFILM), the image was captured, and the density of the band was quantitatively measured using a Scion Image.
Thereafter, the results of correcting and calculating the expression level of MFG-E8 protein using GAPDH protein as an internal standard are shown in FIG. In FIG. 1, error bars indicate standard errors (SEM), and n = 3.
MFG-E8 has two types of splicing variants, and it has been reported that only long form is involved in promoting phagocytosis of dead cells (see Non-Patent Document 8). Therefore, in this study, quantification was performed only for the band (L) corresponding to the long form of MFG-E8.
 図1に示す結果から明らかなように、心筋梗塞(MI)施術群では、コントロール(sham)群に比して、施術後2日目に顕著なMFG-E8タンパクの発現上昇が認められ、4日目に最も発現が上昇していた。また、MI施術群、sham群共に、急性炎症期(施術後0日目~4日目程度)の後の慢性炎症期(施術後25日目以降程度)においても、MFG-E8の発現が認められた。よって、心筋梗塞後の心臓においてMFG-E8タンパクの発現量が増加することが明らかとなった。 As is apparent from the results shown in FIG. 1, in the myocardial infarction (MI) treatment group, a marked increase in the expression of MFG-E8 protein was observed on the second day after the treatment, compared with the control (sham) group. Expression was highest on day. In both the MI and sham groups, expression of MFG-E8 was also observed in the chronic inflammatory phase (about 25 days after the treatment) after the acute inflammatory phase (about 0 to 4 days after the treatment). It was. Therefore, it was revealed that the expression level of MFG-E8 protein increases in the heart after myocardial infarction.
[実験例2]MFG-E8を産生する細胞の同定
 心筋梗塞施術後3日目に採取したマウス心臓組織を用いて、蛍光染色によりMFG-E8を産生する細胞の同定を試みた。
 具体的には、摘出したマウス心臓をSurgipath FSC 22(Leica社製)にて包埋し、液体窒素にて凍結したものを凍結標本とした。凍結標本は、クライオスタット(モデルCM1100;Leica社製)で4μmに薄切後1時間風乾させた。凍結切片は-20℃ Cold-acetoneもしくは4%PFAにて10分間固定し、5%BSA/PBSで1時間インキュベートした。その後、各種タンパクに対する後述する一次抗体を含む5%BSA/PBS中で4℃で一晩静置した。翌日、一次抗体に対する各種蛍光標識二次抗体を含む5%BSA/PBS中で1時間インキュベートした。その後Vectashield Hard Set Mounting Medium with DAPI(Vector Laboratories社製)もしくはFluorSaveTM Reagent(Calbiochem社製)により封入し、蛍光顕微鏡で観察及び撮像を行った。結果を図2、3A及び3Bに示す。なお、本検討ではコントロール群(偽処置群)は用いていない。
[Experimental Example 2] Identification of cells producing MFG-E8 Using mouse heart tissue collected 3 days after myocardial infarction, identification of cells producing MFG-E8 was attempted by fluorescent staining.
Specifically, the extracted mouse heart was embedded in Surgipath FSC 22 (manufactured by Leica) and frozen in liquid nitrogen to obtain a frozen specimen. The frozen specimen was sliced to 4 μm with a cryostat (model CM1100; manufactured by Leica) and air-dried for 1 hour. The frozen sections were fixed with -20 ° C Cold-acetone or 4% PFA for 10 minutes and incubated with 5% BSA / PBS for 1 hour. Then, it was left overnight at 4 ° C. in 5% BSA / PBS containing a primary antibody described later against various proteins. The next day, the cells were incubated for 1 hour in 5% BSA / PBS containing various fluorescently labeled secondary antibodies against the primary antibody. Then, it was sealed with a Vectashield Hard Set Mounting Medium with DAPI (manufactured by Vector Laboratories) or FluorSave Reagent (manufactured by Calbiochem), and observed and imaged with a fluorescence microscope. The results are shown in FIGS. 2, 3A and 3B. In this study, the control group (sham treatment group) is not used.
 図2は、免疫細胞におけるMFG-E8の発現を、免疫細胞のマーカー(CD68、Gr-1)とMFG-E8との共染色により検討した結果である。CD68は単球又はマクロファージのマーカーであり、Gr-1は好中球等の顆粒球のマーカーである。共染色(Overlay)の結果、CD68やGr-1を発現する免疫細胞は、MFG-E8をほとんど発現していないことが分かった。
一方、図3A、Bは、筋線維芽細胞におけるMFG-E8の発現を、筋線維芽細胞のマーカーとMFG-E8との共染色により検討した結果である。線維芽細胞のマーカーとしては、vimentin(図3A)又はαSMA(α-smooth muscle actin;図3B)を用いた。共染色(Overlay)の結果、vimentin陽性の線維芽細胞、及びαSMA陽性の線維芽細胞は共に、MFG-E8を発現及び産生していることが分かった。
FIG. 2 shows the results of examining the expression of MFG-E8 in immune cells by co-staining of immune cell markers (CD68, Gr-1) and MFG-E8. CD68 is a marker for monocytes or macrophages, and Gr-1 is a marker for granulocytes such as neutrophils. As a result of co-staining (Overlay), it was found that immune cells expressing CD68 and Gr-1 hardly express MFG-E8.
3A and 3B show the results of examining the expression of MFG-E8 in myofibroblasts by co-staining with myofibroblast markers and MFG-E8. Vimentin (FIG. 3A) or αSMA (α-smooth muscle actin; FIG. 3B) was used as a fibroblast marker. As a result of co-staining (Overlay), it was found that both vimentin-positive fibroblasts and αSMA-positive fibroblasts expressed and produced MFG-E8.
[実験例3]MFG-E8を産生する筋線維芽細胞の由来の検討
 心筋梗塞施術後1日目に採取したマウス心臓組織を用いて、蛍光染色によりMFG-E8を産生する筋線維芽細胞の由来について検討を行った。
 具体的には、施術後1日目の組織を用い、且つ、抗体を変更した以外は上記実験例2と同様にして凍結切片の蛍光染色を行い、蛍光顕微鏡で観察及び撮像を行った。結果を図4に示す。
 図4中、上段は未分化線維芽細胞を含む線維芽細胞のマーカーであるVimentinとMFG-E8との共染色を行った結果であり、下段は分化筋線維芽細胞のマーカーであるαSMAとMFG-E8との共染色を行った結果である。上段、下段共に右端列はこれらマーカーの共染色に加え、さらに核マーカーであるDAPIを加えて三重染色した結果である。
 この結果から、αSMAを発現する筋線維芽細胞のみならず、Vimentinを発現する、筋線維芽細胞への分化の途中と思われる線維芽細胞の一部も、MFG-E8を発現することが確認できた。
筋線維芽細胞には、骨髄由来、内皮細胞由来(内皮間葉転換)、常在性線維芽細胞由来(分化)の、少なくとも3種の由来の筋線維芽細胞が存在する。図4の結果から、少なくとも、心臓常在性の線維芽細胞由来の筋線維芽細胞が、MFG-E8を発現及び産生することが確認できた。
[Experimental Example 3] Examination of the origin of myofibroblasts producing MFG-E8 Using mouse heart tissue collected on the first day after myocardial infarction, myofibroblasts producing MFG-E8 by fluorescence staining The origin was examined.
Specifically, the frozen section was fluorescently stained in the same manner as in Experimental Example 2 except that the tissue on the first day after the procedure was used and the antibody was changed, and observation and imaging were performed with a fluorescent microscope. The results are shown in FIG.
In FIG. 4, the upper row shows the results of co-staining with Vimentin and MFG-E8, which are fibroblast markers including undifferentiated fibroblasts, and the lower row shows αSMA and MFG, which are markers of differentiated myofibroblasts. -Results of co-staining with E8. In both the upper and lower rows, the rightmost row shows the result of triple staining by adding DAPI as a nuclear marker in addition to co-staining of these markers.
From this result, it was confirmed that not only myoma fibroblasts expressing αSMA but also a part of fibroblasts expressing Vimentin, which seems to be in the process of differentiation into myofibroblasts, express MFG-E8. did it.
There are at least three types of myofibroblasts derived from bone marrow, endothelial cells (endothelial-mesenchymal transition), and resident fibroblasts (differentiation). From the results shown in FIG. 4, it was confirmed that at least cardiac resident fibroblast-derived myofibroblasts express and produce MFG-E8.
[実験例4]梗塞部位周辺における、MFG-E8の発現分布の検討
 心筋梗塞施術後3日目に採取したマウス心臓組織を用いて、心筋梗塞部位周辺における、MFG-E8の発現分布について検討を行った。
 具体的には、標本及び切片の作製方法を変更した以外は上記実験例2と同様にして、凍結切片の蛍光染色を行い、蛍光顕微鏡で観察及び撮像を行った。本検討において、切片の切断面は図5に示す通りである。MFG-E8及び核の共染色を行った結果を図6に、MFG-E8、αSMA、核の染色又は共染色を行った結果を図7に示す。
 図6~7の結果から、MFG-E8は梗塞領域の筋線維芽細胞において多く発現していることが確認できた。
[Experimental Example 4] Examination of expression distribution of MFG-E8 around the infarct site Examination of MFG-E8 expression distribution around the myocardial infarction site using mouse heart tissue collected 3 days after myocardial infarction went.
Specifically, the frozen section was fluorescently stained and observed and imaged with a fluorescence microscope in the same manner as in Experimental Example 2 except that the preparation method of the specimen and the section was changed. In this examination, the cut surface of the section is as shown in FIG. FIG. 6 shows the result of co-staining of MFG-E8 and nucleus, and FIG. 7 shows the result of staining or co-staining of MFG-E8, αSMA, and nucleus.
From the results of FIGS. 6 to 7, it was confirmed that MFG-E8 was highly expressed in myofibroblasts in the infarct region.
[実験例5]心筋梗塞施術前後における、MFG-E8の発現分布の検討
 心筋梗塞施術前のマウス心臓組織、及び心筋梗塞施術後3日目に採取したマウス心臓組織を用いて、MFG-E8の発現分布について検討を行った。
 具体的には、上記実験例2と同様にして、凍結切片作製、及びMFG-E8及びαSMAの蛍光染色を行い、蛍光顕微鏡で観察及び撮像を行った。結果を図8に示す。
 図8中、上段は心筋梗塞施術前のマウス心臓組織における結果であり、下段は心筋梗塞施術後3日目のマウス心臓組織における結果である。図8の結果から明らかなように、心筋梗塞施術前のマウス心臓組織では、MFG-E8がほとんど発現していない一方で、心筋梗塞施術後のマウス心臓組織では、MFG-E8が高発現していることがわかった。心筋梗塞施術後のマウス心臓組織では、特に、梗塞部位においてMFG-E8の高発現が認められた。
[Experimental Example 5] Examination of expression distribution of MFG-E8 before and after myocardial infarction operation Using mouse heart tissue before myocardial infarction operation and mouse heart tissue collected on the 3rd day after myocardial infarction operation, The expression distribution was examined.
Specifically, in the same manner as in Experimental Example 2, frozen sections were prepared and MFG-E8 and αSMA were fluorescently stained, and observed and imaged with a fluorescence microscope. The results are shown in FIG.
In FIG. 8, the upper part shows the result in the mouse heart tissue before the myocardial infarction operation, and the lower part shows the result in the mouse heart tissue on the third day after the myocardial infarction operation. As is clear from the results of FIG. 8, MFG-E8 is hardly expressed in the mouse heart tissue before the myocardial infarction, whereas MFG-E8 is highly expressed in the mouse heart tissue after the myocardial infarction. I found out. In the mouse heart tissue after myocardial infarction, high expression of MFG-E8 was observed particularly at the infarct site.
[実験例6]TGF-βを用いたMFG-E8等の発現誘導に関する検討
上述した実験例により、MFG-E8を産生する筋線維芽細胞は、常在する線維芽細胞を起源にする可能性が高いと考えられた。常在性の線維芽細胞はMFG-E8を発現しないことから、筋線維芽細胞への分化に伴ってMFG-E8を発現すると考えられる。そこで、線維芽細胞から筋線維芽細胞への分化誘導に関与することが知られているTGF-βを用いて、MFG-E8等の発現量変化について検討した。
また、TGF-βの下流の転写因子であるserum response factor(SRF)、SRFのコファクターであるmyocardin-related transcription factor(MRTF)も、αSMA等の筋線維芽細胞に特徴的な遺伝子の発現に関わることが知られている。そこで、SRF及びMRTFの阻害剤であるCCG1423の存在下における、TGF-β刺激によるMFG-E8等の発現量変化、及びSRFに対するsiRNAを用いた場合のTGF-β刺激によるMFG-E8等の発現量変化についても検討を行った。
[Experimental Example 6] Examination on induction of expression of MFG-E8 and the like using TGF-β According to the experimental example described above, myofibroblasts producing MFG-E8 may originate from resident fibroblasts. Was considered high. Since resident fibroblasts do not express MFG-E8, it is considered that MFG-E8 is expressed along with differentiation into myofibroblasts. Thus, changes in the expression level of MFG-E8 and the like were examined using TGF-β, which is known to be involved in the induction of differentiation from fibroblasts to myofibroblasts.
In addition, serum response factor (SRF), a transcription factor downstream of TGF-β, and myocardin-related transcription factor (MRTF), a cofactor of SRF, are also used to express genes characteristic of myofibroblasts such as αSMA. It is known to be involved. Therefore, in the presence of CCG1423, an inhibitor of SRF and MRTF, changes in the expression level of MFG-E8 and the like by TGF-β stimulation, and expression of MFG-E8 and the like by TGF-β stimulation when siRNA for SRF is used. The amount change was also examined.
(1)ラット心線維芽細胞における、TGF-β1刺激によるMFG-E8等の発現誘導
具体的には、ラット新生児の心臓から単離した常在性の線維芽細胞に対し、10ng/mLのTGF-β1を培地に添加して刺激を行った。刺激後、24時間、48時間、72時間の線維芽細胞を回収した。
また、一部のサンプルでは、10ng/mLのTGF-β1刺激の直前に、CCG1423を1μM又は10μMの濃度で培地に添加し、24時間培養して回収を行った。
(1) Induction of expression of MFG-E8 and the like in rat cardiac fibroblasts by stimulation with TGF-β1 Specifically, 10 ng / mL TGF was isolated from resident fibroblasts isolated from rat neonatal heart. Stimulation was performed by adding -β1 to the medium. After stimulation, fibroblasts at 24 hours, 48 hours, and 72 hours were collected.
In some samples, CCG1423 was added to the medium at a concentration of 1 μM or 10 μM immediately before stimulation with 10 ng / mL of TGF-β1, and collected by culturing for 24 hours.
回収した細胞からRNeasy Micro Kit(Qiagen製)およびRNeasy Mini Kit(Qiagen製)を用いてRNAを精製した。得られたRNAは吸光度測定により濃度を決定し、リアルタイムPCRに用いた。
サンプルmRNAの定量に用いたプライマーおよびTaqManプローブはPrimer Express Software(Applied Biosystems製)により設計されたものを用いた。測定には、One-Step PrimeScriptTM RT-PCR Kit(TAKARA製)のプロトコールをベースにし、42℃で逆転写反応を10分行い、95℃10秒による逆転写酵素の変性後、60℃35秒の伸長反応を40サイクル行った。内部標準として18S rRNAを用いて解析を行った。
RNA was purified from the collected cells using RNeasy Micro Kit (Qiagen) and RNeasy Mini Kit (Qiagen). The concentration of the obtained RNA was determined by measuring absorbance and used for real-time PCR.
The primers and TaqMan probe used for quantification of the sample mRNA were those designed by Primer Express Software (manufactured by Applied Biosystems). For the measurement, based on the protocol of One-Step PrimeScript ™ RT-PCR Kit (manufactured by TAKARA), a reverse transcription reaction was performed at 42 ° C. for 10 minutes. After denaturation of the reverse transcriptase at 95 ° C. for 10 seconds, the reaction was performed at 60 ° C. for 35 seconds. The extension reaction was performed 40 cycles. Analysis was performed using 18S rRNA as an internal standard.
 TGF-β1による、Acta2、Adam12及びMfg-e8の発現量経時変化を調べた結果を、図9Aに示す。また、TGF-β1による24時間の発現誘導(24時間)と併せてCCG1423を用いた場合の、MFG-E8の発現量に関する結果を、図9Bに示す。図中に示す結果は、内部標準である18S rRNAにより補正を行った各発現量である。なお、Acta2はSmooth Muscle Actinであり、Adam12はジスインテグリンドメインとメタロプロテアーゼドメインとを有するプロテアーゼであって、TGF-βシグナルに関与するとされているプロテアーゼであり、筋線維芽細胞のマーカー分子ある。
 図9Aの結果から、Acta2、Adam12及びMfg-e8はTGF-β1によって発現誘導されることがわかった。なお、同様にmonosodium urate(MSU)、peroxiredoxin(Prx),high mobility group box protein-1(HMGB1)、ATP等を用いて線維芽細胞に刺激を行った場合には、MFG-E8の発現誘導は認められなかった(図示せず)。MSU、Prx、HMGB1はいずれも、心筋梗塞時等の組織傷害に伴って細胞から放出される、代表的なダメージ関連分子(Damage-associated molecular patterns:DAMPs)であることが知られている。
FIG. 9A shows the results of examining the temporal changes in the expression levels of Acta2, Adam12 and Mfg-e8 by TGF-β1. In addition, FIG. 9B shows the results relating to the expression level of MFG-E8 when CCG1423 was used in combination with TGF-β1 expression induction for 24 hours (24 hours). The result shown in the figure is each expression level corrected by 18S rRNA which is an internal standard. Acta2 is Smooth Muscle Actin, and Adam12 is a protease having a disintegrin domain and a metalloprotease domain, and is a protease that is considered to be involved in the TGF-β signal, and is a marker molecule for myofibroblasts.
From the results of FIG. 9A, it was found that Acta2, Adam12, and Mfg-e8 are induced to be expressed by TGF-β1. Similarly, when the fibroblasts were stimulated using monosodium ureate (MSU), peroxyredoxin (Prx), high mobility group box protein-1 (HMGB1), ATP, etc., the induction of MFG-E8 expression was induced. Not recognized (not shown). MSU, Prx, and HMGB1 are all known to be representative damage-related molecular patterns (DAMPs) released from cells due to tissue injury such as during myocardial infarction.
 また、図9Bの結果から、TGF-β1刺激によるActa2、Mfg-e8の発現誘導は、CCG1423の処置によってその濃度依存的に解除され、Acta2、MFG-E8の発現量が顕著に低下することが確認できた。 Further, from the results of FIG. 9B, the expression induction of Acta2 and Mfg-e8 by stimulation with TGF-β1 is canceled depending on its concentration by treatment with CCG1423, and the expression levels of Acta2 and MFG-E8 are significantly reduced. It could be confirmed.
(2)ヒト臍帯静脈内皮細胞株における、TGF-β2刺激によるMFG-E8等の発現誘導
具体的には、ヒト臍帯静脈内皮細胞(HUVEC)に対し、10ng/mLのTGF-β2を培地に添加して刺激を行った。刺激後72時間の細胞を回収し、上記(1)と同様にリアルタイムPCRを行った。また、一部のサンプルでは、TGF-β2刺激前のHUVECに対し、siRNAを用いてSRF遺伝子の発現をサイレンシングした。結果を、図9Cに示す。図中に示す結果は、内部標準である18S rRNAにより補正を行った各発現量である。
図9Cの結果から、TGF-β2刺激によるActa2、Mfg-e8、Srfの発現誘導は、siSRFによって解除され、Acta2、Mfg-e8、SRFの発現量が低下することが確認できた。
(2) Induction of expression of MFG-E8 etc. by stimulation with TGF-β2 in human umbilical vein endothelial cell line Specifically, 10 ng / mL TGF-β2 was added to the medium for human umbilical vein endothelial cells (HUVEC) And stimulated. Cells were collected 72 hours after stimulation, and real-time PCR was performed in the same manner as in (1) above. In some samples, siRNA was used to silence the expression of the SRF gene with respect to HUVEC before TGF-β2 stimulation. The results are shown in FIG. 9C. The result shown in the figure is each expression level corrected by 18S rRNA which is an internal standard.
From the results of FIG. 9C, it was confirmed that the expression induction of Acta2, Mfg-e8 and Srf by TGF-β2 stimulation was canceled by siSRF, and the expression levels of Acta2, Mfg-e8 and SRF were reduced.
 上記の結果から、TGF-βの作用によって線維芽細胞を筋線維芽細胞へ分化させることで、MFG-E8等の発現が亢進すること、筋線維芽細胞やヒト細胞株におけるMFG-E8等の発現は、TGF-βの下流因子及び/又はコファクターに依存的であること、が示唆された。 From the above results, the expression of MFG-E8 and the like is enhanced by differentiating fibroblasts into myofibroblasts by the action of TGF-β, and MFG-E8 and the like in myofibroblasts and human cell lines. It was suggested that expression is dependent on downstream factors and / or cofactors of TGF-β.
[実験例7]心筋梗塞マウス由来の筋線維芽細胞における、MFG-E8等の発現量に関する検討
(1)CCG1423を用いた検討
 心筋梗塞モデルマウスの筋線維芽細胞を用い、CCG1423の有無による、MFG-E8等の各種因子の発現量変化について検討した。
 具体的には、まず、心筋梗塞施術後3日目に摘出したマウス心臓において、心房を取り除いた後5-6片に分割した。その後、それら心臓片をCollagenase A溶液(0.1%Collagenase A, 0.1%BSA, 0.1%4-hydrobutylic acid/PBS)中で37℃10分間の振とうを3回~5回行うことにより筋線維芽細胞を単離した。単離した細胞をDMEM(10%FBS,50U/ml penicillin/streptomycin)中で一晩培養し、プレートにはりついたものを単離筋線維芽細胞として用いた。
単離した筋線維芽細胞は、CCG1423の存在下又は非存在下で24時間倍用を行った後、常法により回収した。
回収後の筋線維芽細胞を用い、上記実験例6と同様にしてActa2及びMfg-e8の発現量をリアルタイムPCRにより測定した。結果を図10Aに示す。
[Experimental Example 7] Examination of expression level of MFG-E8 and the like in myofibroblasts derived from myocardial infarction mice (1) Examination using CCG1423 Using myofibroblasts from myocardial infarction model mice, depending on the presence or absence of CCG1423, Changes in the expression levels of various factors such as MFG-E8 were examined.
Specifically, first, the mouse heart extracted on the third day after the myocardial infarction operation was divided into 5-6 pieces after removing the atrium. Thereafter, the heart pieces are shaken at 37 ° C. for 10 minutes in Collagenase A solution (0.1% Collagenase A, 0.1% BSA, 0.1% 4-hydroxylic acid / PBS) 3 to 5 times. Myofibroblasts were isolated. The isolated cells were cultured overnight in DMEM (10% FBS, 50 U / ml penicillin / streptomycin), and those stuck to the plate were used as isolated myofibroblasts.
The isolated myofibroblasts were collected for 24 hours in the presence or absence of CCG1423 and then collected by a conventional method.
Using the recovered myofibroblasts, the expression levels of Acta2 and Mfg-e8 were measured by real-time PCR in the same manner as in Experimental Example 6. The results are shown in FIG. 10A.
(2)siSRFを用いた検討
上記(1)と同様に、心筋梗塞施術後3日目のマウスから単離した筋線維芽細胞に対し、SRF遺伝子に対するsiRNAを用いて、遺伝子発現を抑制して培養を行った後、常法により回収した。
(2) Examination using siSRF In the same manner as in (1) above, for myofibroblasts isolated from mice 3 days after myocardial infarction, gene expression was suppressed using siRNA against the SRF gene. After culturing, the cells were collected by a conventional method.
図10Aに示す結果から、CCG1423を用いることにより、その濃度依存的に、Acta2及びMfg-e8の発現が有意に低下することが確認できた。
また、図10Bに示す結果から、siSRFを用いることにより、Acta2、Mfg-e8及びSrfの発現が有意に低下することも確認できた。
 上記の結果から、筋線維芽細胞におけるMFG-E8の発現は、SRF、MRTFに依存することが再確認できた。
なお、CCG1423又はsiSRF若しくはsiMRTF-Aを用いた場合の、マウス筋線維芽細胞におけるCTGF(Connective Tissue Growth Factor)、MRTF-Aの発現量を、各ターゲットに対するプライマー等を用いて同様に調べた。CCG1423の添加により、CTGFは顕著に発現が低下した。また、いずれのsiRNAを用いた場合にも、CTGF及びMRTF-Aは発現が低下した(結果は図示せず)。
From the results shown in FIG. 10A, it was confirmed that the use of CCG1423 significantly decreased the expression of Acta2 and Mfg-e8 depending on its concentration.
From the results shown in FIG. 10B, it was also confirmed that the expression of Acta2, Mfg-e8 and Srf was significantly reduced by using siSRF.
From the above results, it was reconfirmed that the expression of MFG-E8 in myofibroblasts depends on SRF and MRTF.
The expression levels of CTGF (Connective Tissue Growth Factor) and MRTF-A in mouse myofibroblasts using CCG1423, siSRF, or siMRTF-A were similarly examined using primers for each target. The addition of CCG1423 significantly reduced the expression of CTGF. Moreover, the expression of CTGF and MRTF-A decreased when any siRNA was used (results not shown).
[実験例8]骨髄由来筋線維芽細胞又は内皮細胞由来筋線維芽細胞の、MFG-E8産生に関する検討
 上述したように、筋線維芽細胞には、MFG-E8を発現することが確認された常在性線維芽細胞由来の細胞の他に、骨髄由来、内皮間葉転換細胞由来の細胞が存在する。そこで、骨髄由来又は内皮間葉転換細胞由来の筋線維芽細胞が、MFG-E8を産生するかどうかに関して検討を行った。
[Experimental Example 8] Examination of MFG-E8 production by bone marrow-derived myofibroblasts or endothelial cell-derived myofibroblasts As described above, it was confirmed that myofibroblasts express MFG-E8. In addition to cells derived from resident fibroblasts, there are cells derived from bone marrow and endothelial-mesenchymal transition cells. Therefore, an examination was conducted as to whether myofibroblasts derived from bone marrow or endothelial-mesenchymal transition cells produce MFG-E8.
(1)骨髄由来筋線維芽細胞の検討
 具体的にはまず、Ly5(CD45)抗原の異なるハプロタイプを持つマウスを用いた(三協ラボサービスより入手)。
まず、Ly5.2のハプロタイプを持つMFG-E8 KOマウスに、ガンマセル40を用いてγ線照射(10Gy)を行い、これをレシピエントとした。その後、Ly5.1のハプロタイプを持つ野生型マウスをドナーとし、ドナーマウスの脛骨および大腿骨から骨髄液を採取した骨髄を、レシピエントの眼底静脈を介して静脈注射により骨髄移植を行った。移植2週間後に、マウス末梢血中の細胞を、FITC-anti-CD45.1抗体およびAPC-anti-CD45.2抗体によって染色し、FACSを用いてchimerism checkを行った。その結果、骨髄移植マウスでは、末梢血管に存在するすべての骨髄細胞の内、98.6%がドナー由来の細胞に占められていることが確認できた(図11A)。
 その後、上記骨髄移植マウスを用いて、上記参考例1と同様にして心筋梗塞施術を行った。心筋梗塞施術後3日目に採取したマウス心臓組織を用いて、上記実験例2と同様に、共染色を行った結果を図11Bに示す。
 図11Bに示すように、心筋梗塞後3日目のマウス心臓組織には、CD45(CD45.1)を発現した骨髄由来細胞が見出された。しかしながら、これらCD45を発現する骨髄由来細胞において、MFG-E8の発現はほとんど認められなかった。
(1) Examination of bone marrow-derived myofibroblasts Specifically, first, mice having haplotypes different from Ly5 (CD45) antigen were used (obtained from Sankyo Lab Service).
First, γ-ray irradiation (10 Gy) was performed using a gamma cell 40 on MFG-E8 KO mice having a haplotype of Ly5.2, and this was used as a recipient. Thereafter, a wild-type mouse having a Ly5.1 haplotype was used as a donor, and bone marrow from which bone marrow fluid was collected from the tibia and femur of the donor mouse was subjected to bone marrow transplantation by intravenous injection through the recipient's fundus vein. Two weeks after transplantation, cells in mouse peripheral blood were stained with FITC-anti-CD45.1 antibody and APC-anti-CD45.2 antibody, and chimerism check was performed using FACS. As a result, it was confirmed that in the bone marrow transplanted mouse, 98.6% of all bone marrow cells present in the peripheral blood vessels were occupied by donor-derived cells (FIG. 11A).
Thereafter, myocardial infarction was performed in the same manner as in Reference Example 1 using the bone marrow transplanted mouse. FIG. 11B shows the result of co-staining using mouse heart tissue collected on the third day after myocardial infarction in the same manner as in Experimental Example 2.
As shown in FIG. 11B, bone marrow-derived cells expressing CD45 (CD45.1) were found in the mouse heart tissue 3 days after myocardial infarction. However, almost no expression of MFG-E8 was observed in these bone marrow-derived cells expressing CD45.
 また、上記同様にして、Ly5.1のハプロタイプを持つ野生型マウスに、Ly5.2のハプロタイプを持つMFG-E8 KOマウスの骨髄を常法により移植し、心筋梗塞施術を行った。
なお、骨髄移植マウスの末梢血を用いて骨髄由来細胞を確認したところ、骨髄移植マウスでは、末梢血管に存在するすべての骨髄細胞の内、99.61%がドナー由来の細胞に占められていることを確認した(図12A)。
 心筋梗塞施術後3日目に採取したマウス心臓組織を用いて、上記実験例2と同様に、共染色を行った。結果を図12Bに示す。
 図12Bに示すように、心筋梗塞後3日目のマウス心臓組織には、CD45(CD45.2)を発現した骨髄由来細胞が見出された。しかしながら、これらCD45の発現と、MFG-E8の発現とは共局在していなかった。
In the same manner as described above, the bone marrow of MFG-E8 KO mice having Ly5.2 haplotype was transplanted to wild-type mice having Ly5.1 haplotype by a conventional method, and myocardial infarction was performed.
When bone marrow-derived cells were confirmed using peripheral blood of bone marrow transplanted mice, 99.61% of all bone marrow cells present in peripheral blood vessels were occupied by donor-derived cells in bone marrow transplanted mice. This was confirmed (FIG. 12A).
Co-staining was performed in the same manner as in Experimental Example 2 using mouse heart tissue collected on the third day after myocardial infarction. The result is shown in FIG. 12B.
As shown in FIG. 12B, bone marrow-derived cells expressing CD45 (CD45.2) were found in the mouse heart tissue 3 days after myocardial infarction. However, CD45 expression and MFG-E8 expression were not colocalized.
(2)内皮間葉転換細胞由来筋線維芽細胞の検討
 上記参考例1と同様にして用意した、心筋梗塞施術後3日目に採取したマウス心臓組織を用いて、vimentin、S100A4、及びMFG-E8に対する抗体を用いて共染色を行った。S100A4抗体は、内皮間葉転換(EMT)細胞のマーカーであるFSP-1(Fibroblast-Specific Protein-1)を検出する抗体である。
 図13に示すように、vimentinを発現する筋線維芽細胞の一部は、FSP-1(S100A4)を発現する内皮間葉転換細胞由来であることが確認できた。また、vimentinを発現する筋線維芽細胞の多くが、MFG-E8を発現することが確認できた。しかしながら、共染色の結果から明らかなように、FSP-1を発現する内皮間葉転換細胞由来の筋線維芽細胞は、MFG-E8を発現していなかった。
(2) Examination of Endothelial Mesenchymal Converted Cell-Derived Myofibroblasts Using the mouse heart tissue prepared in the same manner as in Reference Example 1 and collected 3 days after myocardial infarction, vimentin, S100A4, and MFG- Co-staining was performed using an antibody against E8. The S100A4 antibody is an antibody that detects FSP-1 (Fibroblast-Specific Protein-1), which is a marker of endothelial-mesenchymal transition (EMT) cells.
As shown in FIG. 13, it was confirmed that a part of myofibroblasts expressing vimentin was derived from endothelial mesenchymal transition cells expressing FSP-1 (S100A4). It was also confirmed that many myofibroblasts expressing vimentin express MFG-E8. However, as is apparent from the results of co-staining, myofibroblasts derived from endothelial-mesenchymal transition cells that express FSP-1 did not express MFG-E8.
 上記(1)~(2)の結果から、骨髄由来細胞、及び内皮間葉転換細胞は、MFG-E8産生に関与しないことが示唆された。 From the results of (1) and (2) above, it was suggested that bone marrow-derived cells and endothelial mesenchymal transition cells are not involved in MFG-E8 production.
[実験例9]MFG-E8の欠損による心筋梗塞後生存率に関する検討
 野生型マウス及びMFG-E8 KOマウスを用いて、上記参考例1と同様に心筋梗塞施術を行い、施術後の28日間に亘って観察を行った。施術後28日間の生存率のグラフを図14に示す。
 野生型コントロール群(非施術群)及びMFG-E8 KOマウスコントロール群(非施術群)における生存率が100%であるのに対し、心筋梗塞施術後野生型マウスの生存率は71.4%であり、心筋梗塞施術後MFG-E8 KOマウスの生存率は26.3%であった。死亡したマウスを解剖したところ、胸腔内出血及び左室自由壁の亀裂が認められ、死因はすべてのマウスにおいて左室自由壁破裂による心破裂であった。また、心筋梗塞後4~5日目において心破裂が多く認められた。
 上記の結果から、MFG-E8の欠損は、心筋梗塞後の心破裂のリスクを増大させ、生存率を顕著に低下させることがわかった。
[Experimental Example 9] Examination of survival rate after myocardial infarction due to MFG-E8 deficiency Using wild-type mice and MFG-E8 KO mice, myocardial infarction was performed in the same manner as in Reference Example 1 above, and 28 days after the operation. Observations were made. A graph of the survival rate for 28 days after the treatment is shown in FIG.
The survival rate in the wild-type control group (non-treated group) and MFG-E8 KO mouse control group (non-treated group) was 100%, whereas the survival rate of wild-type mice after myocardial infarction was 71.4%. Yes, the survival rate of MFG-E8 KO mice after myocardial infarction was 26.3%. When the dead mice were dissected, intrapleural hemorrhage and left ventricular free wall cracking were observed, and the cause of death was cardiac rupture due to left ventricular free wall rupture in all mice. Many cardiac ruptures were observed on the 4th to 5th day after myocardial infarction.
From the above results, it was found that MFG-E8 deficiency increases the risk of cardiac rupture after myocardial infarction and significantly decreases the survival rate.
[実験例10]MFG-E8の欠損による、心筋梗塞後の心臓所見の検討
 上記実験例9において、心筋梗塞後の死因は全て心破裂によるものであっため、心筋梗塞後3日目に摘出したマウス心臓を用いて、心臓切片の組織染色を行った。
(1)HE染色
 具体的には、マウス心臓のパラフィン切片を用い、キシレンおよびエタノールによってパラフィンを除去した後、3分間の流水水洗を行った。その後、マイヤーヘマトキシリン液中で5分間インキュベートし、流水水洗を10分間行った。さらにエオシンY液中で5分間インキュベートし、軽い水洗の後、エタノールによる脱水処理およびキシレンによる透徹処理を行い、ビオライトにより封入した。
 HE染色後の心臓組織を観察したところ、図15Aに示すように、心筋梗塞施術後において、MFG-E8 KOマウス(KO MI)の左室壁は、野生型マウスの左室壁と比べて、その厚さが顕著に薄くなっていた。左室壁の厚さを数値化したグラフが図15Bである。図15Bから明らかなように、非施術群(sham)に比べて心筋梗塞施術群(MI)では、それぞれ有意に左室壁の厚さが薄くなっており、且つ、MFG-E8 KOマウスの施術群は、野生型マウスの施術群よりも壁が薄くなっていた。
[Experimental example 10] Examination of cardiac findings after myocardial infarction due to MFG-E8 deficiency In the above experimental example 9, all the causes of death after myocardial infarction were due to cardiac rupture, and thus the patient was removed 3 days after myocardial infarction. Tissue staining of heart sections was performed using a mouse heart.
(1) HE staining Specifically, a paraffin section of a mouse heart was used, and paraffin was removed with xylene and ethanol, followed by washing with running water for 3 minutes. Thereafter, the mixture was incubated for 5 minutes in Mayer's hematoxylin solution and washed with running water for 10 minutes. Further, the mixture was incubated in eosin Y solution for 5 minutes, washed with light water, dehydrated with ethanol and transparent with xylene, and encapsulated with biolite.
When the heart tissue after HE staining was observed, as shown in FIG. 15A, the left ventricular wall of the MFG-E8 KO mouse (KO MI) after the myocardial infarction was compared with the left ventricular wall of the wild type mouse. Its thickness was significantly reduced. FIG. 15B is a graph in which the thickness of the left ventricular wall is digitized. As is clear from FIG. 15B, the left ventricular wall thickness is significantly thinner in the myocardial infarction group (MI) than in the non-surgery group (sham), and the MFG-E8 KO mouse is treated. The group had thinner walls than the wild-type mouse treatment group.
(2)ピクロシリウスレッド染色
 心筋梗塞後は梗塞部位の修復のため、線維化が起こることが知られている。そこで、線維化の程度を評価するため、コラーゲンを染色可能なピクロシリウスレッド染色を行った。
 具体的には、マウス心臓のパラフィン切片を用い、キシレンおよびエタノールによってパラフィンを除去した後、ピクリン酸飽和0.1%Direct Red 80溶液中で60分間インキュベートした。その後0.01N HClにより洗浄し、エタノールによる脱水処理およびキシレンによる透徹処理を行い、ビオライトにより封入した。
 ピクロシリウスレッド染色後の心臓組織を観察したところ、染色切片画像である図15C、及び図15Cにおけるコラーゲン量を数値化した図15Dに示すように、心筋梗塞施術によってコラーゲンの有意な沈着が認められた。一方、心筋梗塞施術後のMFG-E8 KOマウスでは、心筋梗塞施術後の野生型マウスに比べて、コラーゲン沈着の減弱が認められた。
(2) Picrosirius red staining It is known that fibrosis occurs after myocardial infarction to repair the infarcted site. Therefore, in order to evaluate the degree of fibrosis, picrosirius red staining capable of staining collagen was performed.
Specifically, paraffin sections of mouse heart were used, and paraffin was removed with xylene and ethanol, followed by incubation in picric acid saturated 0.1% Direct Red 80 solution for 60 minutes. Thereafter, it was washed with 0.01N HCl, dehydrated with ethanol and transparent with xylene, and sealed with biolite.
When the heart tissue after Picrosirius red staining was observed, as shown in FIG. 15C which is a stained section image and FIG. 15D in which the amount of collagen in FIG. 15C was quantified, significant deposition of collagen was recognized by myocardial infarction treatment. It was. On the other hand, in MFG-E8 KO mice after myocardial infarction, collagen deposition was attenuated as compared to wild-type mice after myocardial infarction.
 上記の結果から、MFG-E8の欠損によって、心筋梗塞後の梗塞部位における修復反応が減弱することが示唆された。 The above results suggest that the MFG-E8 deficiency attenuates the repair reaction at the infarct site after myocardial infarction.
[実験例11]MFG-E8の欠損による、心筋梗塞後の心臓組織の蛍光染色による検討
 心筋梗塞施術後3日目の野生型又はMFG-E8 KOマウスの心臓組織と、施術を行っていない野生型又はMFG-E8 KOマウスの心臓組織とを用いて、上記実験例3等と同様に、αSMAの蛍光染色を行った。結果の写真図を図16Aに、図16Aの結果を数値化したグラフを図16Bに示す。
 上記の結果から、梗塞後の修復応答に必要な筋線維芽細胞を示すαSMA陽性細胞の割合が、MFG-E8の欠損によって有意に低下することが確認できた。
[Experimental Example 11] Examination by fluorescence staining of heart tissue after myocardial infarction due to MFG-E8 deficiency Wild type or MFG-E8 KO mouse heart tissue on day 3 after myocardial infarction and untreated wild Using the type or MFG-E8 KO mouse heart tissue, αSMA fluorescence staining was performed in the same manner as in Experimental Example 3 and the like. The photograph figure of a result is shown to FIG. 16A, and the graph which digitized the result of FIG. 16A is shown to FIG. 16B.
From the above results, it was confirmed that the proportion of αSMA positive cells showing myofibroblasts necessary for the repair response after infarction was significantly reduced by MFG-E8 deficiency.
[実験例12]心筋梗塞施術後の心機能及び心臓形態の評価
(1)心エコー
 心筋梗塞施術後3日目及び28日目の野生型又はMFG-E8 KOマウスにおいて、Nemio XG汎用超音波画像診断装置(SSD-580A; 東芝メディカルシステムズ株式会社)を用いて心エコー評価を行った。
マウスの腹腔内にソムノペンチル注射液(50 mg/kg ペントバルビタールナトリウム)を投与後、仰臥位にて手術台に固定した。14-MHzのトランスデューサを左前胸壁に軽く当て、二次元の傍胸骨左室短軸断面を得た。トランスデューサを動かし、左室内腔が最も大きい短軸像よりM-モード像を記録した。左室拡張末期径(LVIDd)、収縮末期径(LVIDs)のM-モード法による測定はアメリカ心エコー図学会のleading-edge to leading-edgeに従い測定した。拡張末期は左室の拡張径が最も大きくなった時とし、収縮末期径は左室後壁の動きが最も大きくなった時とした。駆出画分(EF)はPombo法を用いて算出した。
[Experimental Example 12] Evaluation of cardiac function and cardiac morphology after myocardial infarction (1) Echocardiography Nemi XG general-purpose ultrasound image in wild type or MFG-E8 KO mice on days 3 and 28 after myocardial infarction Echocardiographic evaluation was performed using a diagnostic device (SSD-580A; Toshiba Medical Systems Corporation).
Somnopentyl injection (50 mg / kg pentobarbital sodium) was administered into the abdominal cavity of the mouse, and then fixed to the operating table in the supine position. A 14-MHz transducer was lightly applied to the left anterior chest wall to obtain a two-dimensional parasternal left ventricular short-axis cross section. The transducer was moved and an M-mode image was recorded from a short-axis image with the largest left ventricular cavity. The left ventricular end diastolic diameter (LVIDd) and end systolic diameter (LVIDs) were measured according to the M-mode method according to the American College of Echocardiography leading-edge to leading-edge. The end diastole was when the left ventricular expansion diameter was the largest, and the end systolic diameter was when the movement of the left ventricular rear wall was the largest. The ejection fraction (EF) was calculated using the Pombo method.
まず、心拍数(HR)は各群において大差がなかったため、心拍数が各パラメータに与える影響はいずれの群に対しても同様であると考えられた。
心筋梗塞施術群では、IVSTd及びEFの低下、並びに、LVIDsの上昇が認められた。この結果は、3日目(図17A)においても28日目(図17B)においても同様であった。
First, since the heart rate (HR) was not significantly different in each group, it was considered that the influence of the heart rate on each parameter was the same for any group.
In the myocardial infarction treatment group, a decrease in IVSTd and EF and an increase in LVIDs were observed. This result was the same on the third day (FIG. 17A) and the 28th day (FIG. 17B).
(2)血行動態
 心筋梗塞施術後3日目及び28日目の野生型又はMFG-E8 KOマウスにおいて、マウスの腹腔内にソムノペンチル注射液(50 mg/kg ペントバルビタールナトリウム)を投与後、仰臥位にて手術台に固定し、頚部を煎毛、切開した。その後、右頸動脈より1.4-Fr微小圧測定カテーテル(モデルSPR-671;Millar社)を挿入し左心室内に進め左室内圧を測定した。左室内血行動態学パラメータの解析は、カテーテルに接続したDigi-Med Heart Performance Analyzer(モデル410;Micro-Med社)およびDigi-Med System Integrator(モデル210;Micro-Med社)により行った。施術後3日目の結果を図18Aに、施術後28日目の結果を図18Bに示す。
(2) Hemodynamics In the wild-type or MFG-E8 KO mice on the 3rd and 28th day after the myocardial infarction operation, the somnopentyl injection solution (50 mg / kg pentobarbital sodium) was administered into the abdominal cavity of the mouse, and the supine position And fixed to the operating table, and the neck was shaved and incised. Thereafter, a 1.4-Fr micropressure measurement catheter (model SPR-671; Millar) was inserted from the right carotid artery and advanced into the left ventricle to measure the left ventricular pressure. Analysis of left ventricular hemodynamic parameters was performed with Digi-Med Heart Performance Analyzer (Model 410; Micro-Med) and Digi-Med System Integrator (Model 210; Micro-Med) connected to a catheter. The results on the third day after the treatment are shown in FIG. 18A, and the results on the 28th day after the treatment are shown in FIG. 18B.
まず、心拍数(HR)は各群において大差がなかったため、心拍数が各パラメータに与える影響はいずれの群に対しても同様であると考えられた。
心筋梗塞施術(MI)群では、拡張末期圧(EDP)、圧降下時定数(tau)、収縮能の指標とされる圧微分最大値(dP/dt Max)、弛緩能の指標とされる圧微分最小値(dP/dt Min)のいずれのパラメータも、非施術(sham)群と比較して、有意に悪化していた。
特に、施術後3日目のEDPに関しては、MFG-E8 KO MI群において、野生型のMI群と比べて、有意な悪化が認められた。
First, since the heart rate (HR) was not significantly different in each group, it was considered that the influence of the heart rate on each parameter was the same for any group.
In the myocardial infarction (MI) group, end diastolic pressure (EDP), pressure drop time constant (tau), pressure differential maximum value (dP / dt Max) as an index of contractility, and pressure as an index of relaxation ability All parameters of the differential minimum value (dP / dt Min) were significantly worse compared to the non-sham group.
In particular, regarding EDP on the third day after the treatment, significant deterioration was observed in the MFG-E8 KO MI group compared to the wild-type MI group.
(3)臓器重量及び体重
 心筋梗塞施術後3日目及び28日目の野生型又はMFG-E8 KOマウスにおいて、心重量および肺重量を測定した。結果を図19A(3日目)及び図19B(28日目)に示す。心重量は非施術(sham)群と比較して心筋梗塞施術(MI)群で有意に増加していた。
(3) Organ Weight and Body Weight Heart weight and lung weight were measured in wild-type or MFG-E8 KO mice on day 3 and day 28 after myocardial infarction. The results are shown in FIG. 19A (day 3) and FIG. 19B (day 28). The heart weight was significantly increased in the myocardial infarction (MI) group compared to the non-sham group (sham).
[実験例13]心筋梗塞時における、MFG-E8のアポトーシスへの影響の検討
(1)梗塞部位周辺のTUNEL法及びαSMAによる蛍光染色
 心筋梗塞施術後3日目のマウスの梗塞部位周辺の心臓切片を、アポトーシスを検出するTUNEL法、又はαSMAで蛍光染色した。
 具体的には、摘出した心臓をSurgipath FSC 22(Leica社製)にて包埋し、液体窒素にて凍結したものを凍結標本とした。凍結標本は、クライオスタットで4μmに薄切後1時間風乾させた。凍結切片は-20℃cold-acetoneにて10分間固定し、その後の作業はApopTag Fluorescein In Situ Apoptosis Detection Kitのプロトコールに従った。野生型マウスの結果を図20Aに示し、MFG-E8 KOマウスの結果を図20Bに示す。
 図20A~Bに示すように、野生型では、TUNEL陽性のアポトーシス細胞がαSMA陽性の筋線維芽細胞の内部に取り込まれていた(図20A)。一方、MFG-E8 KOマウスでは、TUNEL陽性のアポトーシス細胞は観察されたものの、それらはαSMA陽性の筋線維芽細胞の内部ではなく、筋線維芽細胞の表面や外部に存在していた(図20B)。
[Experimental Example 13] Examination of the effect of MFG-E8 on apoptosis during myocardial infarction (1) TUNEL method around the infarcted area and fluorescent staining with αSMA Heart section around the infarcted area of the mouse 3 days after myocardial infarction Were stained with TUNEL method to detect apoptosis, or αSMA.
Specifically, the excised heart was embedded in Surgipath FSC 22 (manufactured by Leica) and frozen in liquid nitrogen was used as a frozen specimen. The frozen specimen was sliced to 4 μm with a cryostat and air-dried for 1 hour. Frozen sections were fixed for 10 minutes at -20 ℃ cold-acetone, subsequent work in accordance with the ApopTag R Fluorescein In Situ Apoptosis Detection Kit protocol. The result of the wild type mouse is shown in FIG. 20A, and the result of the MFG-E8 KO mouse is shown in FIG. 20B.
As shown in FIGS. 20A and 20B, in the wild type, TUNEL-positive apoptotic cells were incorporated into αSMA-positive myofibroblasts (FIG. 20A). On the other hand, in MFG-E8 KO mice, although TUNEL-positive apoptotic cells were observed, they were not inside αSMA-positive myofibroblasts but on the surface and outside of myofibroblasts (FIG. 20B). ).
(2)梗塞部位と非梗塞部位との境界領域におけるのTUNEL法及びDAPIによる蛍光染色2
 心筋梗塞施術後3日目のマウスの心臓切片を、アポトーシスを検出するTUNEL法、又は、核を染色するDAPIで上記同様に蛍光染色した。心筋梗塞後において、アポトーシスは主に梗塞部位と非梗塞部位との境界領域において生じることが報告されている。結果の写真図(上段:野生型、下段:KO)を図21Aに、視野中の総細胞におけるアポトーシス細胞の割合を測定及び算出した結果(TUNEL+細胞/DAPI %)を図21Bに示す。
 その結果、図21A~Bに示すように、野生型と比べてMFG-E8 KOマウスでは、有意にアポトーシス細胞が貪食されずに多く残留していた。
(2) Fluorescent staining with the TUNEL method and DAPI in the boundary region between the infarcted site and the non-infarcted site 2
Heart sections of mice 3 days after myocardial infarction were fluorescently stained with the TUNEL method for detecting apoptosis or DAPI for staining nuclei as described above. After myocardial infarction, it has been reported that apoptosis occurs mainly in the boundary region between the infarcted site and the non-infarcted site. A photograph of the results (upper part: wild type, lower part: KO) is shown in FIG. 21A, and the ratio of apoptotic cells in the total cells in the visual field (TUNEL + cells / DAPI%) is shown in FIG. 21B.
As a result, as shown in FIGS. 21A and 21B, in the MFG-E8 KO mouse, a large number of apoptotic cells remained without being phagocytosed as compared with the wild type.
(3)リコンビナントMFG-E8を用いたアポトーシス細胞貪食能の検討
・アポトーシス細胞の調製
 まず、C57BL/6J雌性4-8週齢のマウスから胸線を摘出した。摘出した胸線は2枚のスライドガラスを擦り合わせて組織を粉砕後、メッシュフィルターを用いてフィルトレーションした。回収した胸腺細胞は遠心後、無血清のDMEMに懸濁し、セルカウントを行った。1×10cells/mlに調製後1μM CelltrackerTM Green CMFDA を1μl/10mlの割合で加え、37℃で30分間培養した。インキュベート後、冷却した5倍量の10%FBS/DMEMを加え、蛍光標識を安定化させるため氷上で5分間放置した。その後洗浄し、再びセルカウントを行った。1.2×10cells/mlに調製後、10mMdexamethasoneを1μl/1ml加え、37℃で4時間インキュベートすることによりアポトーシスの誘導を行った。インキュベート後、10%FBS DMEM置換を用いて洗浄を行い、得られた細胞をアポトーシス細胞として使用した。
(3) Examination of Apoptotic Cell Phagocytosis Using Recombinant MFG-E8 Preparation of Apoptotic Cells First, a thoracic line was extracted from a C57BL / 6J female 4-8 week old mouse. The excised chest line was crushed by rubbing two glass slides and filtered using a mesh filter. The collected thymocytes were centrifuged, suspended in serum-free DMEM, and cell count was performed. After preparation to 1 × 10 7 cells / ml, 1 μM Celltracker Green CMFDA was added at a ratio of 1 μl / 10 ml and cultured at 37 ° C. for 30 minutes. After incubation, 5 times cooled 10% FBS / DMEM was added and left on ice for 5 minutes to stabilize the fluorescent label. Thereafter, washing was performed, and cell counting was performed again. After preparation to 1.2 × 10 7 cells / ml, 1 μl / 1 ml of 10 mM dexamethasone was added, and apoptosis was induced by incubation at 37 ° C. for 4 hours. After incubation, washing was performed using 10% FBS DMEM replacement, and the obtained cells were used as apoptotic cells.
・リコンビナントmMFG-E8の調製
PLAT-E細胞を用いてFLAG-mouse MFG-E8を発現させるレトロウィルスを産生させ、NIH3T3細胞への遺伝子導入を行った。FLAG-MFG-E8安定発現NIH3T3細胞は37℃で72時間培養した。MFG-E8は分泌タンパク質であることから培養細胞上清を回収し、遠心分離および濾過により不純物を除去した。
 上記の培養上清からのタンパク精製は4℃下で行った。ANTI-FLAG M2-Affinity Gel(SIGMA)をPBSで3回buffer置換した後、Poly-Prep クロマトグラフィーカラム(BIO-RAD)に充填し、カラムベッドを作成した。カラムをPBSで洗浄後、回収した細胞上清を加えて、FLAG-MFG-E8を吸着させた。PBSで洗浄後、溶出液(10mM Tris pH7.5,5M LiCl)を加えて、FLAG-MFG-E8を溶出させた。溶出画分の濃縮ため、Amicon Ultra-4(MILLIPORE)に加えて3500rpm、4℃で遠心した後、バッファー交換のためPBSを加え、再度遠心した。濃縮タンパク溶液は、最後にULTRA FREE-MC(MILLIPORE)を用いて濾過滅菌した。
Preparation of Recombinant mMFG-E8 A retrovirus that expresses FLAG-mouse MFG-E8 was produced using PLAT-E cells, and the gene was introduced into NIH3T3 cells. FLAG-MFG-E8 stably expressing NIH3T3 cells were cultured at 37 ° C. for 72 hours. Since MFG-E8 is a secreted protein, the cultured cell supernatant was collected, and impurities were removed by centrifugation and filtration.
Protein purification from the above culture supernatant was performed at 4 ° C. ANTI-FLAG M2-Affinity Gel (SIGMA) was buffer-substituted 3 times with PBS and then packed in a Poly-Prep chromatography column (BIO-RAD) to prepare a column bed. After washing the column with PBS, the collected cell supernatant was added to adsorb FLAG-MFG-E8. After washing with PBS, an eluate (10 mM Tris pH 7.5, 5M LiCl) was added to elute FLAG-MFG-E8. In order to concentrate the eluted fraction, it was added to Amicon Ultra-4 (MILLIPORE), centrifuged at 3500 rpm at 4 ° C., PBS was added for buffer exchange, and the mixture was centrifuged again. The concentrated protein solution was finally sterilized by filtration using ULTRA FREE-MC (MILLIPORE).
・筋線維芽細胞の貪食能評価
 心筋梗塞後3日目の、野生型又はMFG-E8 KOマウスから単離された筋線維芽細胞をCC2-coated 4-well chamber slideに播種し、そこに筋線維芽細胞1に対して蛍光標識をしたアポトーシス胸腺細胞を10の割合で加え、37℃,90分間インキュベートした。その後、PBSで洗浄し、貪食されていないアポトーシス細胞を除去した。線維芽細胞を4%PFAで固定後、0.1%Triton-Xで透過処理を行い、anti-MFG-E8antibodyを用いて染色し、共焦点顕微鏡にて観察した。貪食能は筋線維芽細胞ひとつ当たりが貪食したアポトーシス細胞の数をPhagocytosis indexとして評価した。なお、評価は10視野以上かつ150細胞以上を対象に行った。
Evaluation of phagocytic ability of myofibroblasts Myofibroblasts isolated from wild-type or MFG-E8 KO mice on day 3 after myocardial infarction were seeded on CC2-coated 4-well chamber slide and muscle Apoptotic thymocytes fluorescently labeled with respect to fibroblast 1 were added at a ratio of 10 and incubated at 37 ° C. for 90 minutes. Thereafter, the cells were washed with PBS to remove apoptotic cells that were not phagocytosed. Fibroblasts were fixed with 4% PFA, permeabilized with 0.1% Triton-X, stained with anti-MFG-E8antibody, and observed with a confocal microscope. Phagocytosis was evaluated as the number of apoptotic cells phagocytosed per myofibroblast as a phagocytosis index. The evaluation was performed on 10 fields or more and 150 cells or more.
 まず、位相差観察下で細胞内に取り込まれたアポトーシス細胞を確認したところ、暗い像として判別することができた(図22の中央)。蛍光(図22の左)及び位相差(図22の右)による解析により、筋線維芽細胞が細胞内にアポトーシス細胞を取り込んでいる様子が観察された(図22、矢印部分)。
 次に、上記のようにして、筋線維芽細胞ひとつ当たりに取り込まれたアポトーシス細胞の数(Phagocytosis index)を図23Aに示すような写真に基づき、定量解析した結果、野生型と比較して、MFG-E8 KOでは筋線維芽細胞の貪食能が有意に低下していた(図23A~B)。このMFG-E8 KOマウス由来の筋線維芽細胞にリコンビナントMFG-E8を添加すると、その添加量依存的に、有意に貪食能が上昇した(図23B)。
以上の結果から、心筋梗塞後の梗塞領域境界部位において、筋線維芽細胞がMFG-E8依存的に死細胞(アポトーシス細胞)の貪食を行っていることがわかった。
First, when apoptotic cells incorporated into the cells under phase difference observation were confirmed, they could be identified as dark images (center of FIG. 22). Analysis of fluorescence (left in FIG. 22) and phase difference (right in FIG. 22) showed that myofibroblasts incorporated apoptotic cells into the cells (FIG. 22, arrows).
Next, as described above, the number of apoptotic cells taken up per myofibroblast (Phagocytosis index) was quantitatively analyzed based on the photograph shown in FIG. 23A. As a result, compared with the wild type, MFG-E8 KO significantly reduced the phagocytic ability of myofibroblasts (FIGS. 23A-B). When recombinant MFG-E8 was added to myofibroblasts derived from this MFG-E8 KO mouse, the phagocytic ability was significantly increased depending on the amount added (FIG. 23B).
From the above results, it was found that myofibroblasts phagocytose dead cells (apoptotic cells) in an MFG-E8-dependent manner at the infarct region boundary after myocardial infarction.
[実験例14]心筋梗塞部位周辺における、インテグリンαvβ3発現細胞の同定
 MFG-E8は、細胞表面のインテグリンαvβ3あるいはインテグリンαvβ5と結合することが知られている。そこで、心筋梗塞施術後3日目のマウスより摘出した心臓から、酵素反応を用いて細胞を回収し、細胞表面にインテグリンαvβ3あるいはインテグリンαvβ5が発現しているかを検討した。
[Experimental Example 14] Identification of integrin αvβ3-expressing cells around the myocardial infarction site It is known that MFG-E8 binds to integrin αvβ3 or integrin αvβ5 on the cell surface. Therefore, cells were collected from the heart excised from the mouse 3 days after myocardial infarction using an enzyme reaction to examine whether integrin αvβ3 or integrin αvβ5 was expressed on the cell surface.
(1)
 具体的には、心筋梗塞施術後3日目の野生型マウス又はMFG-E8 KOマウスから心臓を摘出し、心房を取り除いた後5-6片に分割した。その後、それら心臓片をDispase II溶液(2.4U/ml Dispase II,0.25%trypsin-EDTA/PBS)中で37℃10分間の振とうを3回~5回行うことにより各種細胞を単離した。単離した細胞を、Mouse BD Fc Block含有FACS buffer(2%FBS,0.05%NaN/PBS)中で4℃10分インキュベートした後、各種抗体をFACS buffer中で4℃で1時間インキュベートすることにより、表面抗原の染色を行った。細胞内抗原の染色は、細胞を単離後、4%PFA/PBSにて4℃10分間の固定を行い、0.01%Saponin/PBSにて4℃10分の透過処理を行った。
(1)
Specifically, hearts were removed from wild-type mice or MFG-E8 KO mice 3 days after myocardial infarction, and the atrium was removed and divided into 5-6 pieces. Thereafter, the heart pieces were shaken at 37 ° C. for 10 minutes in Dispase II solution (2.4 U / ml Dispase II, 0.25% trypsin-EDTA / PBS) for 3 to 5 times to obtain single cells. Released. The isolated cells were incubated at 4 ° C. for 10 minutes in Mouse BD Fc Block-containing FACS buffer (2% FBS, 0.05% NaN 2 / PBS), and then various antibodies were incubated at 4 ° C. for 1 hour in FACS buffer. By doing so, the surface antigen was stained. For intracellular antigen staining, cells were isolated, fixed with 4% PFA / PBS at 4 ° C. for 10 minutes, and permeabilized with 0.01% Saponin / PBS at 4 ° C. for 10 minutes.
図24Aに示すように、F4/80陽性のマクロファージ細胞(図24A上段)と、CD11b陰性の非白血球細胞(図24A下段)とに分画し、インテグリンの発現を確認した。
その結果、インテグリンαvは、マクロファージ、非白血球細胞で共に発現していることが確認できた(図24B)。
As shown in FIG. 24A, F4 / 80-positive macrophage cells (FIG. 24A, upper part) and CD11b-negative non-white blood cells (FIG. 24A, lower part) were fractionated, and integrin expression was confirmed.
As a result, it was confirmed that integrin αv was expressed in both macrophages and non-white blood cells (FIG. 24B).
(2)
 上記(1)で分画されたマクロファージ陽性細胞を用いて、蛍光染色を行い、インテグリンβ5の発現に関する検討を行った。マクロファージ細胞は、梗塞部位、及び梗塞から離間した部位(非梗塞部位;Remote area)の心臓片から採取され、分画されたものを用いた。
その結果、梗塞部位ではvimentin陽性の線維芽細胞の多くがインテグリンβ5を発現していることが確認できた(図24C上段)。一方、非梗塞部位のvimentin陽性細胞はインテグリンβ5を発現していなかった(図24C下段)。
(2)
Using the macrophage positive cells fractionated in (1) above, fluorescent staining was performed to examine the expression of integrin β5. Macrophage cells were collected and fractionated from heart pieces at the site of infarction and a site separated from the infarction (non-infarcted site; Remote area).
As a result, it was confirmed that many vimentin-positive fibroblasts expressed integrin β5 at the infarct site (upper part of FIG. 24C). On the other hand, vimentin positive cells at the non-infarcted site did not express integrin β5 (lower part of FIG. 24C).
(3)
 次に、野生型のマウスのみを用いた以外は上記(1)と同様にして、CD11b陽性又は陰性細胞、F4/80陽性細胞、及びαSMA陽性細胞に対して検討を行った。
その結果、CD11b陽性細胞ではインテグリンαvの発現は確認されたが、インテグリンβ3,β5の発現は確認できなかった(図25A)。一方、CD11b陰性細胞では、インテグリンαvおよびインテグリンβ3の発現が確認された(図25B)。
さらに詳細な細胞マーカーとして、マクロファージのマーカーであるF4/80陽性画分のインテグリン発現を観察したところ、やはりマクロファージにはインテグリンαvの発現が見られる一方でインテグリンβ3、β5の発現は確認できなかった(図25C)。
心筋梗塞後の心臓に存在するCD11b陰性細胞として、筋線維芽細胞が挙げられる。そこで筋線維芽細胞のマーカーであるαSMA陽性画分のインテグリン発現を観察したところ、この画分においてはインテグリンαvおよびβ3両方の発現が確認できた(図25D)。
上記の結果より、MFG-E8の作用点がマクロファージなどの白血球ではなく、筋線維芽細胞である可能性が示された。
(3)
Next, CD11b positive or negative cells, F4 / 80 positive cells, and αSMA positive cells were examined in the same manner as (1) except that only wild-type mice were used.
As a result, integrin αv expression was confirmed in CD11b positive cells, but integrin β3 and β5 expression could not be confirmed (FIG. 25A). On the other hand, in the CD11b negative cells, the expression of integrin αv and integrin β3 was confirmed (FIG. 25B).
As a more detailed cell marker, the integrin expression of the F4 / 80 positive fraction, which is a macrophage marker, was observed, but the integrin αv expression was also observed in the macrophage, but the integrin β3 and β5 expression could not be confirmed. (FIG. 25C).
Examples of CD11b negative cells present in the heart after myocardial infarction include myofibroblasts. Thus, when integrin expression was observed in the αSMA positive fraction that is a marker of myofibroblasts, the expression of both integrin αv and β3 could be confirmed in this fraction (FIG. 25D).
From the above results, it was shown that the action point of MFG-E8 is not leukocytes such as macrophages but myofibroblasts.
[実験例15]心筋梗塞施術後マウスにおける各種細胞の割合の検討
 実験例14と同様にして、心筋梗塞施術後の野生型又はKOマウスにおける、各種細胞の割合について検討を行った。
 その結果、CD86陽性のM1マクロファージは、野生型マウスに比べてKOマウスで有意に割合が高い一方、CD206陽性のM2マクロファージは、有意に割合が低かった(図26A)。
 また、CD45陽性の白血球、及びCD11b陽性の顆粒球、単球又はマクロファージは、野生型マウスに比べてKOマウスで有意に割合が高かった(図26B)。
 さらに、F4/80陽性のマクロファージは、野生型マウスに比べてKOマウスで、有意に割合が高かった。Ly-6G陽性の好中球に差異は認められなかった(図26C)。
以上の結果から、MFG-E8 KOマウスにおいては、貪食されずに残存した死細胞から内容物が流出し、その結果、多くのマクロファージ等が梗塞部位に流入してくるものと考えられた。
[Experimental Example 15] Examination of proportions of various cells in mice after myocardial infarction In the same manner as in Experimental Example 14, the proportions of various cells in wild-type or KO mice after myocardial infarction were examined.
As a result, CD86-positive M1 macrophages were significantly higher in KO mice than wild-type mice, whereas CD206-positive M2 macrophages were significantly lower in proportion (FIG. 26A).
In addition, CD45 positive leukocytes and CD11b positive granulocytes, monocytes or macrophages were significantly higher in KO mice than in wild type mice (FIG. 26B).
Furthermore, the proportion of F4 / 80 positive macrophages was significantly higher in KO mice than in wild type mice. There was no difference in Ly-6G positive neutrophils (FIG. 26C).
From the above results, it was considered that in MFG-E8 KO mice, the contents flowed out from dead cells that remained without phagocytosis, and as a result, many macrophages and the like flowed into the infarcted region.
[実験例16]MFG-E8の欠損による、サイトカイン、ケモカイン等のmRNA発現変化の検討
心筋梗塞後は心筋の壊死を発端に炎症が引き起こされる。炎症期において、TNF-αなどの炎症性サイトカインや、MMP-9などの基質タンパク分解酵素の発現が誘導され、壊死組織の除去が積極的に行われる。炎症はその後の梗塞部位修復の活性化に繋がる重要なイベントであるが、過剰な炎症は逆に組織の過剰な破壊を促し、その結果として修復反応を減弱させてしまう。従って、心筋梗塞後に起こる過剰な炎症を抑制することは心破裂を防ぐことに重要な意味を持つ。そこで、心筋梗塞施術後の各種サイトカイン、ケモカイン等の発現について検討を行った。
[Experimental Example 16] Examination of mRNA expression changes of cytokines, chemokines and the like due to MFG-E8 deficiency After myocardial infarction, inflammation is caused by myocardial necrosis. In the inflammatory phase, the expression of inflammatory cytokines such as TNF-α and substrate proteolytic enzymes such as MMP-9 is induced, and the necrotic tissue is actively removed. Inflammation is an important event that leads to the subsequent activation of infarct site repair, but excessive inflammation conversely promotes excessive destruction of tissue and consequently attenuates the repair response. Therefore, suppressing excessive inflammation that occurs after myocardial infarction is important in preventing heart rupture. Therefore, the expression of various cytokines and chemokines after myocardial infarction was examined.
 具体的にはまず、上記実験例等と同様に、心筋梗塞施術後3日目の野生型及びMFG-E8 KOマウスから心臓の梗塞領域のみを摘出して、totalRNAを抽出し、リアルタイムRT-PCR法を用いて、炎症又は線維化に関連するサイトカイン、ケモカイン等のmRNAの発現を定量した。使用したプライマーおよびTaqManプローブの配列を表1に示す。また、GAPDHによる補正後の測定結果を図27に示す。 Specifically, first, in the same manner as in the above experimental example, only the infarct region of the heart was extracted from wild type and MFG-E8 KO mice on the third day after myocardial infarction, and total RNA was extracted, and real-time RT-PCR was performed. The method was used to quantify the expression of cytokines, chemokines and other mRNAs associated with inflammation or fibrosis. The sequences of the primers and TaqMan probe used are shown in Table 1. Moreover, the measurement result after correction | amendment by GAPDH is shown in FIG.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 上記の結果から、野生型マウス心臓の梗塞部位において、測定したすべての炎症性又は抗炎症性サイトカイン、ケモカイン等(TNF-α、IL-1β、IL-6、TGF-β、IL-10、MIP-2、MMP-9、CTGF、ColA1)の発現が上昇していた。TNF-α、IL-1β、IL-6、MIP-2、及びMMP-9については、梗塞部位における発現上昇は、MFG-E8の欠損によりさらに亢進していた(図27)。
この結果から、MFG-E8はアポトーシス細胞の貪食を促進することにより、梗塞部位の炎症を抑制していることが示唆された。
From the above results, it was found that all measured inflammatory or anti-inflammatory cytokines, chemokines, etc. (TNF-α, IL-1β, IL-6, TGF-β, IL-10, MIP, at the infarct site of the wild-type mouse heart -2, MMP-9, CTGF, ColA1) expression was increased. Regarding TNF-α, IL-1β, IL-6, MIP-2, and MMP-9, the increase in expression at the infarct site was further enhanced by MFG-E8 deficiency (FIG. 27).
This result suggests that MFG-E8 suppresses inflammation at the infarct site by promoting phagocytosis of apoptotic cells.
[実験例17]アポトーシス細胞貪食による筋線維芽細胞のサイトカイン産生に関する検討
 マクロファージはアポトーシス細胞を貪食すると、抗炎症性のサイトカイン産生を誘導することが知られている。そこで次にMFG-E8陽性の筋線維芽細胞がアポトーシス細胞を貪食することによって抗炎症的な性質を持つようになるか否かを調べた。
[Experimental Example 17] Study on cytokine production of myofibroblasts by phagocytosis of apoptotic cells It is known that macrophages induce anti-inflammatory cytokine production when phagocytosing apoptotic cells. Therefore, it was next examined whether or not MFG-E8-positive myofibroblasts have anti-inflammatory properties by phagocytosing apoptotic cells.
 具体的には、心臓より採取した線維芽細胞をTGF-β1(1ng/ml)存在下で48時間培養することにより分化誘導し、筋線維芽細胞を得た。
得られた筋線維芽細胞を6-well plateに播種し、そこに筋線維芽細胞1に対してアポトーシス胸腺細胞を10の割合で加え、37℃で2時間インキュベートした。その後、PBSで洗浄し、貪食されていないアポトーシス細胞を除去した。次に、貪食後の筋線維芽細胞に、リポ多糖(LPS;1μg/ml)刺激を行い、12時間培養後に、常法により筋線維芽細胞を回収した。
回収した筋線維芽細胞を用いて、上記実験例16等と同様に、totalRNAを抽出し、リアルタイムRT-PCR法を用いてIL-6及びTGF-βのmRNA発現を定量した。また、GAPDHによる補正後の測定結果を図28A~Bに示す。
Specifically, fibroblasts collected from the heart were induced to differentiate by culturing for 48 hours in the presence of TGF-β1 (1 ng / ml) to obtain myofibroblasts.
The obtained myofibroblasts were seeded on a 6-well plate, apoptotic thymocytes were added at a ratio of 10 to myofibroblasts 1, and incubated at 37 ° C. for 2 hours. Thereafter, the cells were washed with PBS to remove apoptotic cells that were not phagocytosed. Next, the myofibroblasts after phagocytosis were stimulated with lipopolysaccharide (LPS; 1 μg / ml), and after culturing for 12 hours, myofibroblasts were collected by a conventional method.
Using the collected myofibroblasts, total RNA was extracted in the same manner as in Experimental Example 16 and the like, and mRNA expression of IL-6 and TGF-β was quantified using a real-time RT-PCR method. 28A and 28B show the measurement results after correction by GAPDH.
上記の結果、マクロファージと同様にこの筋線維芽細胞はアポトーシス細胞の貪食によって抗炎症性サイトカインであるTGF-βをより産生しやすいことが分かった(図28B)。その一方で、炎症性のサイトカインであるTNF-α、IL-1β及びIL-6を、より産生しにくくなることが明らかとなった(図28B;TNF-α、IL-1βの結果は図示せず)。 The above results revealed that, like macrophages, this myofibroblast is more likely to produce anti-inflammatory cytokine TGF-β by phagocytosis of apoptotic cells (FIG. 28B). On the other hand, it became clear that TNF-α, IL-1β and IL-6, which are inflammatory cytokines, are more difficult to produce (FIG. 28B; the results of TNF-α and IL-1β are not shown). )
[実験例18]ヒト心筋梗塞患者の梗塞領域における、MFG-E8陽性筋線維芽細胞の確認
 心筋梗塞を罹患した患者の心臓切片に対してmouse anti-human MFG-E8抗体を用いて免疫染色を行った。心臓切片は東京医科大学、分子病理学教室 黒田雅彦教授より提供頂き、MFG-E8抗体は京都大学 長田重一教授より分与頂いた。
 具体的には、ホルマリンによって固定されたヒト心臓の切片を作成し、10mM NaCitrate(pH6.0)液中で121℃にて10分間処理し、抗原の賦活化を行った。その後、0.3%H/メタノール液を10分間処理し、内因性パーオキシダーゼのクエンチングを行った。引き続き、10%ヤギ正常血清/PBSによってブロッキングを10分間、行った。その後、上記のmouse anti-human MFG-E8抗体(200倍希釈)を室温にて1時間、反応させた。二次抗体はDAKO LSAB2 キットを説明書に従って用い、DAB発色にて検出した(DAKO DAB発色キット)。その結果、非梗塞部位にはMFG-E8陽性細胞が観察されなかったが、梗塞部位周辺においてはMFG-E8を発現する細胞が観察された(図29)。さらに連続切片を使用して精査したところ、MFG-E8陽性細胞は、SMA陽性の筋線維芽細胞であった(図示せず)。
[Experimental Example 18] Confirmation of MFG-E8-positive myofibroblasts in the infarct region of human myocardial infarction Patients were subjected to immunostaining using a mouse anti-human MFG-E8 antibody on heart sections of patients suffering from myocardial infarction. went. Heart sections were provided by Professor Masahiko Kuroda, Department of Molecular Pathology, Tokyo Medical University, and MFG-E8 antibody was provided by Professor Shigekazu Nagata, Kyoto University.
Specifically, a section of a human heart fixed with formalin was prepared and treated for 10 minutes at 121 ° C. in a 10 mM NaCitrate (pH 6.0) solution to activate the antigen. Thereafter, 0.3% H 2 O 2 / methanol solution was treated for 10 minutes to quench endogenous peroxidase. Subsequently, blocking with 10% normal goat serum / PBS was performed for 10 minutes. Thereafter, the above mouse anti-human MFG-E8 antibody (200-fold dilution) was reacted at room temperature for 1 hour. Secondary antibody was detected by DAB color development using DAKO LSAB2 kit according to the instructions (DAKO DAB color development kit). As a result, no MFG-E8 positive cells were observed in the non-infarcted area, but cells expressing MFG-E8 were observed in the vicinity of the infarcted area (FIG. 29). Further examination using serial sections revealed that MFG-E8 positive cells were SMA positive myofibroblasts (not shown).
上記実験例1~18の結果から、心筋梗塞時に筋線維芽細胞が死細胞を貪食することが初めて明らかとなった。また、心筋梗塞時の死細胞の貪食に関与する分子は現在までに見出されていなかったが、今回、本発明者らはMFG-E8の関与ことを初めて見出した。
また、常在性の線維芽細胞由来の筋線維芽細胞のみがMFG-E8を発現すること;筋線維芽細胞は、マクロファージと同様に、死細胞の貪食後に抗炎症性の性質を帯びること;MFG-E8養成の筋線維芽細胞は、実際のヒト心筋梗塞部位においても認められることが明らかとなった。
From the results of the above Experimental Examples 1 to 18, it became clear for the first time that myofibroblasts phagocytose dead cells during myocardial infarction. In addition, no molecule involved in phagocytosis of dead cells during myocardial infarction has been found so far, but the present inventors have now found that MFG-E8 is involved for the first time.
Also, only resident fibroblast-derived myofibroblasts express MFG-E8; myofibroblasts, like macrophages, have anti-inflammatory properties after phagocytosis of dead cells; It was revealed that myofibroblasts trained with MFG-E8 were also observed at actual human myocardial infarction sites.
[実験例19]心筋梗塞後の心臓に対するMFG-E8投与の影響の検討
(1)マウス心筋内へのMFG-E8投与
上記参考例1等と同様に、8週齢のC57BL/6J野生型雄マウスに心筋梗塞施術を行った。その際、左冠状動脈前下後肢を6mm絹ブレード縫合糸で結紮した後、結紮部より下流における虚血心筋の左右2箇所にMFG-E8/PBS(1.6μg又は3.2μg)またはPBSを10μlずつ投与した。投与に用いたMFG-E8は、上記実験例13で製造したリコンビナントMFG-E8をULTRA FREE-MC(Millipore社製)を用いて滅菌したものである。投与には29G注射針(BDロードーズTM;326631)を用いた。投与後、出血や溶液の漏出が無いことを確認した後に縫合糸で切開箇所の縫合を行った。図30Aに、施術の模式図を示す。結紮点が●、MFG-E8投与点が□である。
[Experimental Example 19] Examination of the effect of MFG-E8 administration on the heart after myocardial infarction (1) MFG-E8 administration into mouse myocardium As in Reference Example 1 above, 8-week-old C57BL / 6J wild-type male Mice were subjected to myocardial infarction. At that time, after ligating the left anterior hind limb of the left coronary artery with a 6 mm silk blade suture, MFG-E8 / PBS (1.6 μg or 3.2 μg) or PBS was added to the left and right of the ischemic myocardium downstream from the ligature. 10 μl each was administered. MFG-E8 used for administration was obtained by sterilizing the recombinant MFG-E8 produced in Experimental Example 13 using ULTRA FREE-MC (manufactured by Millipore). For administration, a 29G needle (BD Rhodos ™; 326631) was used. After administration, it was confirmed that there was no bleeding or solution leakage, and the incision was sutured with a suture. FIG. 30A shows a schematic diagram of the treatment. The ligation point is ●, and the MFG-E8 administration point is □.
(2)梗塞領域及びリスク領域の確認
上記(1)のモデルマウスにおいて、心筋梗塞施術及びMFG-E8投与後、 1%Evans blue染色液により潅流後、心臓を摘出した。摘出後の心臓を1%TTC染色液により処理した。TTC染色後の心臓写真図を図30Bに示す。Evans blue非染色部はリスク領域(areaat risk;AAR)に相当し、TTC染色部は梗塞領域に相当する。梗塞領域の大きさと、リスク領域のサイズを測定し、リスク領域に対する梗塞領域の割合、又は左心室に対するリスク領域の割合を定量した結果を図30Cに示す。
図30B~30Cの結果、MFG-E8投与群と非投与群との間に差異は認められなかった。
(2) Confirmation of infarct area and risk area After the myocardial infarction operation and MFG-E8 administration in the model mouse of (1) above, the heart was excised after perfusion with 1% Evans blue staining solution. The isolated heart was treated with 1% TTC staining solution. A photograph of the heart after TTC staining is shown in FIG. 30B. The Evans blue non-stained part corresponds to a risk area (AAR), and the TTC stained part corresponds to an infarcted area. FIG. 30C shows the result of measuring the size of the infarct region and the size of the risk region, and quantifying the ratio of the infarct region to the risk region or the ratio of the risk region to the left ventricle.
As a result of FIGS. 30B to 30C, no difference was observed between the MFG-E8 administration group and the non-administration group.
[実験例20]心筋梗塞後の梗塞部位の炎症に対するMFG-E8投与の影響の検討
上記実験例19と同様に心筋梗塞施術及びMFG-E8投与を行った。一部のサンプルでは、投与するMFG-E8を、1.6μg又は3.2μgとした。施術及び投与後4日目にマウスから心臓を摘出し、その心臓を梗塞部位と非梗塞部位にわけた。その後、上記同様の方法により、それぞれの部位からtotalRNAを回収し、IL-1β及びMIP-2の発現量を、リアルタイムRT-PCR法により調べた。
GAPDHにより補正を行った、1.6μgのMFG-E8投与時のIL-1β及びMIP-2の発現量の結果を図31Aに示す。この結果、梗塞部位においてIL-1β及びMIP-2の発現量の上昇が認められた。また、この発現上昇は、MFG-E8投与群において有意に抑制されていることがわかった。
また、18SrRNAにより補正を行った、1.6μg又は3.2μgのMFG-E8投与時のIL-1β及びMIP-2の発現量の結果を図31Bに示す。この結果、梗塞施術後の炎症は、投与するMFG-E8の濃度依存的に抑制されることが明らかとなった。
[Experimental Example 20] Examination of the effect of MFG-E8 administration on inflammation at the infarct site after myocardial infarction In the same manner as in Experimental Example 19, myocardial infarction and MFG-E8 administration were performed. In some samples, the administered MFG-E8 was 1.6 μg or 3.2 μg. On the 4th day after the treatment and administration, the heart was removed from the mouse, and the heart was divided into an infarcted site and a non-infarcted site. Thereafter, total RNA was recovered from each site by the same method as described above, and the expression levels of IL-1β and MIP-2 were examined by real-time RT-PCR.
FIG. 31A shows the results of the expression levels of IL-1β and MIP-2 when 1.6 μg of MFG-E8 was administered, corrected by GAPDH. As a result, increased expression levels of IL-1β and MIP-2 were observed at the infarct site. It was also found that this increase in expression was significantly suppressed in the MFG-E8 administration group.
In addition, FIG. 31B shows the results of the expression levels of IL-1β and MIP-2 when 1.6 μg or 3.2 μg of MFG-E8 was corrected with 18S rRNA. As a result, it became clear that the inflammation after the infarction was suppressed depending on the concentration of MFG-E8 to be administered.
[実験例21]心筋梗塞後のアポトーシスに対するMFG-E8投与の影響の検討
上記実験例19と同様に心筋梗塞施術及びMFG-E8投与を行った(PBS投与群:N=7、MFG-E8投与群:N=7)。一部のサンプルでは、投与するMFG-E8の濃度を、3.2μgとした。施術及び投与後3日目にマウスから心臓を摘出し、その心臓の左心室を、実験例13等と同様の方法により選択的に蛍光染色した。結果を図32Aに示す。
 図32Aに示すように、心筋梗塞施術後にMFG-E8を投与した群においてアポトーシス細胞を示すTUNEL陽性細胞の割合が減少していた。視野中の総細胞におけるアポトーシス細胞の割合を測定及び算出した(TUNEL陽性細胞/DAPI %)結果、アポトーシス細胞数が有意に減少することが確認できた(図32B)。
[Experimental Example 21] Examination of the effect of MFG-E8 administration on apoptosis after myocardial infarction Myocardial infarction and MFG-E8 administration were performed in the same manner as in Experimental Example 19 (PBS administration group: N = 7, MFG-E8 administration) Group: N = 7). In some samples, the concentration of MFG-E8 administered was 3.2 μg. Three days after the treatment and administration, the heart was removed from the mouse, and the left ventricle of the heart was selectively fluorescently stained by the same method as in Experimental Example 13 and the like. The results are shown in FIG. 32A.
As shown in FIG. 32A, the proportion of TUNEL positive cells showing apoptotic cells decreased in the group administered MFG-E8 after myocardial infarction. As a result of measuring and calculating the proportion of apoptotic cells in the total cells in the visual field (TUNEL positive cells / DAPI%), it was confirmed that the number of apoptotic cells was significantly reduced (FIG. 32B).
[実験例22]心筋梗塞後の心機能等に対するMFG-E8投与の影響の検討
上記実験例19と同様に心筋梗塞施術、及び3.2μgのMFG-E8投与を行った。心筋梗塞施術及びMFG-E8投与後2週~10週において、上記実験例13と同様にして心エコー評価を経時的に行った。
 この結果、心拍数(HR)は全ての群で有意な差はなく(図示せず)、心拍数が各パラメータに与える影響はいずれの群(PBS投与群:N=10、MFG-E8投与群:N=9)においても同様であると考えられる。そして、すべての時点において、MFG-E8投与群では、心筋梗塞施術後の心臓の機能低下が改善されていた(図33)。
また、図34には10週目の結果を示す。10週目においては、心臓カテーテルによって心機能および血行動態についても調べ(PBS投与群:N=7、MFG-E8投与群:N=7)、この方法によってもMFG-E8投与によって心臓の機能に改善が見られる事が明らかとなった(図34)。
さらに、図34には併せて、10週目の体重(BW)に対する心臓重量(HW)の割合を測定した結果(PBS投与群:N=10、MFG-E8投与群:N=9)も示す。その結果、MFG-E8投与によって心臓重量割合が有意に減少していた。
[Experimental Example 22] Examination of influence of MFG-E8 administration on cardiac function after myocardial infarction In the same manner as in Experimental Example 19, myocardial infarction was performed and 3.2 μg of MFG-E8 was administered. Echocardiographic evaluation was performed over time in the same manner as in Experimental Example 13 from 2 to 10 weeks after the myocardial infarction operation and MFG-E8 administration.
As a result, there was no significant difference in heart rate (HR) in all groups (not shown), and the effect of heart rate on each parameter was affected by any group (PBS administration group: N = 10, MFG-E8 administration group). : N = 9) is considered to be the same. At all time points, in the MFG-E8 administration group, the decrease in cardiac function after myocardial infarction was improved (FIG. 33).
FIG. 34 shows the results of the 10th week. In the 10th week, cardiac function and hemodynamics were also examined with a cardiac catheter (PBS administration group: N = 7, MFG-E8 administration group: N = 7), and MFG-E8 administration also improved cardiac function by this method. It became clear that an improvement was seen (FIG. 34).
Further, FIG. 34 also shows the results of measuring the ratio of heart weight (HW) to body weight (BW) at 10 weeks (PBS administration group: N = 10, MFG-E8 administration group: N = 9). . As a result, the heart weight ratio was significantly decreased by MFG-E8 administration.
[実験例23]心筋梗塞後の心臓の線維化に対するMFG-E8投与の影響の検討
上記実験例19と同様に心筋梗塞施術、及び3.2μgのMFG-E8投与を行った(PBS投与群:N=6、MFG-E8投与群:N=5)。心筋梗塞施術及びMFG-E8投与後10週目において、心臓を摘出して切片を作製し、マッソントリクローム染色を行った。結果の染色写真を図35Aに示す。また、左心室領域に対する梗塞領域を算出した結果を図35Bに示す。
上記の結果、MFG-E8の投与により、左心室全体に対する線維化領域が減少することが確認できた。
[Experimental Example 23] Examination of the effect of MFG-E8 administration on cardiac fibrosis after myocardial infarction In the same manner as in Experimental Example 19, myocardial infarction was performed and 3.2 μg of MFG-E8 was administered (PBS administration group: N = 6, MFG-E8 administration group: N = 5). At 10 weeks after myocardial infarction and MFG-E8 administration, the heart was removed, sections were prepared, and Masson trichrome staining was performed. The resulting stained photograph is shown in FIG. 35A. Moreover, the result of having calculated the infarct area | region with respect to the left ventricle area | region is shown to FIG. 35B.
As a result, it was confirmed that administration of MFG-E8 decreased the fibrosis region for the entire left ventricle.
上記実験例19~23の結果から、心筋梗塞後にMFG-E8を投与することにより、心筋梗塞後の梗塞部位での炎症および心機能を有意に改善され得ることが初めて明らかになった。
これまで薬のターゲットにされていなかった心筋梗塞後の死細胞の除去というイベントにおいて、MFG-E8が大きく貢献することから、新規の創薬シーズになりうる。MFG-E8は既存の治療法との併用も含め、新規の治療法になる可能性は高いと考えられる。
From the results of Experimental Examples 19 to 23, it became clear for the first time that administration of MFG-E8 after myocardial infarction can significantly improve inflammation and cardiac function at the infarct site after myocardial infarction.
Since MFG-E8 contributes greatly in the event of removal of dead cells after myocardial infarction, which has not been targeted by drugs so far, it can be a new drug discovery seed. MFG-E8 is considered to have a high possibility of becoming a new treatment method including the combined use with an existing treatment method.
 本発明に係る予防用薬剤組成物、心筋障害又は心不全を治療又は予防する方法は、心筋障害や心不全の予防又は治療に非常に有用であり、製薬又は医療産業で利用できる。 The preventive pharmaceutical composition and the method for treating or preventing myocardial injury or heart failure according to the present invention are very useful for the prevention or treatment of myocardial injury or heart failure, and can be used in the pharmaceutical or medical industry.

Claims (11)

  1.  MFG-E8を有効成分として含有することを特徴とする心筋障害治療用薬剤組成物。 A pharmaceutical composition for treating myocardial injury, comprising MFG-E8 as an active ingredient.
  2.  MFG-E8を有効成分として含有することを特徴とする心筋障害予防用薬剤組成物。 A pharmaceutical composition for preventing myocardial injury, comprising MFG-E8 as an active ingredient.
  3.  MFG-E8を有効成分として含有することを特徴とする心不全治療用薬剤組成物。 A pharmaceutical composition for treating heart failure, comprising MFG-E8 as an active ingredient.
  4.  MFG-E8を有効成分として含有することを特徴とする心不全予防用薬剤組成物。 A pharmaceutical composition for preventing heart failure, comprising MFG-E8 as an active ingredient.
  5.  MFG-E8を投与する工程を含むことを特徴とする、心筋障害又は心不全を治療又は予防する方法。 A method of treating or preventing myocardial injury or heart failure, comprising a step of administering MFG-E8.
  6. 心筋障害又は心不全の治療薬又は予防薬としての使用のための、MFG-E8。 MFG-E8 for use as a therapeutic or prophylactic agent for myocardial injury or heart failure.
  7. 心筋障害又は心不全を治療又は予防するための医薬の製造のためのMFG-E8の使用。 Use of MFG-E8 for the manufacture of a medicament for treating or preventing myocardial injury or heart failure.
  8. MFG-E8の発現誘導を指標にした、心筋障害又は心不全を治療する化合物のスクリーニング方法。 A method for screening a compound for treating myocardial injury or heart failure, using MFG-E8 expression induction as an index.
  9. MFG-E8の発現誘導を指標にした、心筋障害又は心不全を予防する化合物のスクリーニング方法。 A method for screening a compound for preventing myocardial injury or heart failure, using MFG-E8 expression induction as an index.
  10. MFG-E8のバイオアッセイ系を用いた、心筋障害又は心不全を治療する化合物のスクリーニング方法。 A method for screening a compound for treating myocardial injury or heart failure using an MFG-E8 bioassay system.
  11. MFG-E8のバイオアッセイ系を用いた、心筋障害又は心不全を予防する化合物のスクリーニング方法。 A method for screening a compound for preventing myocardial injury or heart failure using an MFG-E8 bioassay system.
PCT/JP2014/072028 2013-08-22 2014-08-22 Pharmaceutical composition for treating myocardial damage, pharmaceutical composition for preventing myocardial damage, pharmaceutical composition for treating heart failure, pharmaceutical composition for preventing heart failure, method for treating or preventing myocardial damage or heart failure, mfg-e8, uses of mfg-e8, and method for screening compounds for treating or preventing myocardial damage or heart failure WO2015025956A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361868599P 2013-08-22 2013-08-22
US61/868,599 2013-08-22

Publications (1)

Publication Number Publication Date
WO2015025956A1 true WO2015025956A1 (en) 2015-02-26

Family

ID=52483726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/072028 WO2015025956A1 (en) 2013-08-22 2014-08-22 Pharmaceutical composition for treating myocardial damage, pharmaceutical composition for preventing myocardial damage, pharmaceutical composition for treating heart failure, pharmaceutical composition for preventing heart failure, method for treating or preventing myocardial damage or heart failure, mfg-e8, uses of mfg-e8, and method for screening compounds for treating or preventing myocardial damage or heart failure

Country Status (1)

Country Link
WO (1) WO2015025956A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106555002A (en) * 2016-11-16 2017-04-05 武汉大学 Application of the milk fat globule epidermal somatomedin 8 in the diagnosis and treatment of cardiac remodeling and heart failure
WO2018212372A1 (en) * 2017-05-17 2018-11-22 (주)넥셀 Recombinant protein for preventing or treating tissue fibrosis and composition for preventing or treating tissue fibrosis comprising same
WO2019107445A1 (en) * 2017-11-30 2019-06-06 国立大学法人筑波大学 Activity modulator
WO2020085545A1 (en) * 2018-10-25 2020-04-30 (주)넥셀 Recombinant protein for prevention or treatment of myocardial infarction and composition comprising same for prevention or treatment of myocardial infarction
US11028139B2 (en) 2017-05-17 2021-06-08 Nexel Co., Ltd. Recombinant protein for preventing or treating tissue fibrosis and composition for preventing or treating tissue fibrosis comprising the same
JP2022509445A (en) * 2018-10-25 2022-01-20 ネクセル カンパニー,リミテッド Compositions and Methods for Treating or Preventing Fibrosis
WO2022196747A1 (en) * 2021-03-18 2022-09-22 国立大学法人東京大学 Therapy for heart failure and concomitant diseases thereof, therapeutic agent, and diagnostic method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003155251A (en) * 2001-11-20 2003-05-27 Japan Science & Technology Corp Promoter and inhibitor for removing apoptosis cell in the body
WO2005077397A2 (en) * 2004-02-12 2005-08-25 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating vascular diseases
JP2009543876A (en) * 2006-07-14 2009-12-10 アラビタ・ファーマシューティカルズ・インコーポレーテッド Attenuation of reperfusion injury
WO2012149254A2 (en) * 2011-04-28 2012-11-01 The Feinstein Institute For Medical Research Mfg-e8 and uses thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003155251A (en) * 2001-11-20 2003-05-27 Japan Science & Technology Corp Promoter and inhibitor for removing apoptosis cell in the body
WO2005077397A2 (en) * 2004-02-12 2005-08-25 INSERM (Institut National de la Santé et de la Recherche Médicale) Methods and compositions for treating vascular diseases
JP2009543876A (en) * 2006-07-14 2009-12-10 アラビタ・ファーマシューティカルズ・インコーポレーテッド Attenuation of reperfusion injury
WO2012149254A2 (en) * 2011-04-28 2012-11-01 The Feinstein Institute For Medical Research Mfg-e8 and uses thereof

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
AKIHISA MATSUDA ET AL.: "MFG-E8 ni Chakumoku shita Shock ni Okeru Kajo na Ensho Hanno no Seigyo no Kanosei", SHOCK, vol. 28, no. 1, April 2013 (2013-04-01), pages 39 *
GENZO TAKEMURA: "Pathophysiological significance of apoptosis and its potential for treating heart diseases", FOLIA PHARMACOL.JPN., vol. 134, no. 4, 2009, pages 192 - 197 *
SILVESTRE, JEAN-SEBASTIEN ET AL.: "Lactadherin/mfg-e8: A Novel Candidate For Promoting Therapeutic Neovascularization In Ischemic Diseases", CIRCULATION, vol. 110, no. 17, 2004, pages III-218, 1045 *
THORP, E. B.: "Mechanisms of failed apoptotic cel clearance by phagocyte subsets in cardiovascular disease", APOPTOSIS, vol. 15, no. 9, 2010, pages 1124 - 1136 *
VANESSA P.M. VAN EMPEL ET AL.: "Myocyte apoptosis in heart failure", CARDIOVASCULAR RESEARCH, vol. 67, no. 1, 2005, pages 21 - 29 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106555002A (en) * 2016-11-16 2017-04-05 武汉大学 Application of the milk fat globule epidermal somatomedin 8 in the diagnosis and treatment of cardiac remodeling and heart failure
WO2018212372A1 (en) * 2017-05-17 2018-11-22 (주)넥셀 Recombinant protein for preventing or treating tissue fibrosis and composition for preventing or treating tissue fibrosis comprising same
KR101947902B1 (en) 2017-05-17 2019-02-13 (주) 넥셀 Recombinant protein for treatment or prevention and compositon for treatment or prevention containing thereof
US11028139B2 (en) 2017-05-17 2021-06-08 Nexel Co., Ltd. Recombinant protein for preventing or treating tissue fibrosis and composition for preventing or treating tissue fibrosis comprising the same
WO2019107445A1 (en) * 2017-11-30 2019-06-06 国立大学法人筑波大学 Activity modulator
CN111447950A (en) * 2017-11-30 2020-07-24 国立大学法人筑波大学 Activity modulators
JPWO2019107445A1 (en) * 2017-11-30 2020-11-26 国立大学法人 筑波大学 Activity regulator
JP7246094B2 (en) 2017-11-30 2023-03-27 国立大学法人 筑波大学 activity regulator
CN111447950B (en) * 2017-11-30 2023-05-23 国立大学法人筑波大学 Activity modulators
WO2020085545A1 (en) * 2018-10-25 2020-04-30 (주)넥셀 Recombinant protein for prevention or treatment of myocardial infarction and composition comprising same for prevention or treatment of myocardial infarction
JP2022509445A (en) * 2018-10-25 2022-01-20 ネクセル カンパニー,リミテッド Compositions and Methods for Treating or Preventing Fibrosis
WO2022196747A1 (en) * 2021-03-18 2022-09-22 国立大学法人東京大学 Therapy for heart failure and concomitant diseases thereof, therapeutic agent, and diagnostic method

Similar Documents

Publication Publication Date Title
WO2015025956A1 (en) Pharmaceutical composition for treating myocardial damage, pharmaceutical composition for preventing myocardial damage, pharmaceutical composition for treating heart failure, pharmaceutical composition for preventing heart failure, method for treating or preventing myocardial damage or heart failure, mfg-e8, uses of mfg-e8, and method for screening compounds for treating or preventing myocardial damage or heart failure
Sawaki et al. Visceral adipose tissue drives cardiac aging through modulation of fibroblast senescence by osteopontin production
US20190134193A1 (en) Use of tam receptor inhibitors as immunoenhancers and tam activators as immunosuppressors
Cieslik et al. Immune-inflammatory dysregulation modulates the incidence of progressive fibrosis and diastolic stiffness in the aging heart
Kapur et al. Reduced endoglin activity limits cardiac fibrosis and improves survival in heart failure
Kanamori et al. The role of autophagy emerging in postinfarction cardiac remodelling
Iwasaki et al. PlGF repairs myocardial ischemia through mechanisms of angiogenesis, cardioprotection and recruitment of myo-angiogenic competent marrow progenitors
JP6573329B2 (en) Drug delivery accelerator containing substance that activates lysophospholipid receptor
Wei et al. Hydroxysafflor yellow A promotes neovascularization and cardiac function recovery through HO-1/VEGF-A/SDF-1α cascade
Vatner et al. Secreted frizzled-related protein 2, a novel mechanism to induce myocardial ischemic protection through angiogenesis
Gardner et al. Phosphorylation of Hsp20 promotes fibrotic remodeling and heart failure
JPWO2005009470A1 (en) Heart failure therapeutic agent containing an ASK1 inhibitor as an active ingredient and screening method thereof
Sheng et al. TWEAK promotes endothelial progenitor cell vasculogenesis to alleviate acute myocardial infarction via the Fn14‑NF‑κB signaling pathway
Zindl et al. The lymphotoxin LTα1β2 controls postnatal and adult spleen marginal sinus vascular structure and function
Ge et al. Silencing of TLR4 inhibits atrial fibrosis and susceptibility to atrial fibrillation via downregulation of NLRP3-TGF-β in spontaneously hypertensive rats
Miao et al. ErbB3 binding protein 1 (EBP1) participates in the regulation of intestinal inflammation via mediating Akt signaling pathway
US20220088015A1 (en) Methods and pharmaceutical compositions for the treatment of age-related cardiometabolic diseases
US9974831B2 (en) Methods of reducing myocardial injury following myocardial infarction
Lee et al. Effect of local treatment with adipose tissue-derived mesenchymal stem cells in the early tumorigenesis of osteosarcoma
Chen et al. SGLT2 inhibitor-pretreated macrophage transplantation improves adverse ventricular remodeling after acute myocardial infarction
KR102142559B1 (en) Composition for preventing or treating myocardial fibrosis comprising DPP4 inhibitor as an active ingredient
Hall et al. Targeting vascular senescence in cardiovascular disease with aging
WO2017175808A1 (en) Therapeutic/prophylactic agent for graft-versus-host disease, fibrocyte invasion inhibitor, and inhibitor against tear reduction and reduction in goblet cells
Liu et al. The Role of the NOD1/Rip2 Signaling Pathway in Myocardial Remodeling in Spontaneously Hypertensive Rats
WO2018137701A1 (en) Pharmaceutical composition targeting cxcr7 and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14838518

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14838518

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP