WO2015025808A1 - Method for securing fiber, fiber-securing-structure body secured to fiber holding member, laser device provided with said fiber-securing-structure body, exposure device, and inspection device - Google Patents

Method for securing fiber, fiber-securing-structure body secured to fiber holding member, laser device provided with said fiber-securing-structure body, exposure device, and inspection device Download PDF

Info

Publication number
WO2015025808A1
WO2015025808A1 PCT/JP2014/071538 JP2014071538W WO2015025808A1 WO 2015025808 A1 WO2015025808 A1 WO 2015025808A1 JP 2014071538 W JP2014071538 W JP 2014071538W WO 2015025808 A1 WO2015025808 A1 WO 2015025808A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
cladding
double
clad
adhesive
Prior art date
Application number
PCT/JP2014/071538
Other languages
French (fr)
Japanese (ja)
Inventor
昌隆 森尾
Original Assignee
株式会社ニコン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン filed Critical 株式会社ニコン
Publication of WO2015025808A1 publication Critical patent/WO2015025808A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/44Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
    • G02B6/4439Auxiliary devices
    • G02B6/4457Bobbins; Reels
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70025Production of exposure light, i.e. light sources by lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06704Housings; Packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094003Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light the pumped medium being a fibre
    • H01S3/094007Cladding pumping, i.e. pump light propagating in a clad surrounding the active core
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0092Nonlinear frequency conversion, e.g. second harmonic generation [SHG] or sum- or difference-frequency generation outside the laser cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0407Liquid cooling, e.g. by water
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/042Arrangements for thermal management for solid state lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers
    • H01S3/06758Tandem amplifiers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094069Multi-mode pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/1601Solid materials characterised by an active (lasing) ion
    • H01S3/1603Solid materials characterised by an active (lasing) ion rare earth
    • H01S3/1618Solid materials characterised by an active (lasing) ion rare earth ytterbium

Definitions

  • the present invention relates to a method for fixing a double clad fiber.
  • the present invention also relates to a double-clad fiber fixing structure in which a double-clad fiber is fixed to a fiber holding member, a laser apparatus, an exposure apparatus, and an inspection apparatus provided with the double-clad fiber fixing structure.
  • a laser apparatus provided with an optical fiber for amplification is used as a light source for, for example, an exposure apparatus or an inspection apparatus.
  • the amplified light output from the fiber amplifier is also required to have higher output. Yes.
  • a high-power laser device with an amplified light output of several tens to several hundreds W class a plurality of fiber amplifiers are generally connected in series, and a double-clad fiber having two clads is used for the subsequent fiber amplifier.
  • multimode excitation light emitted from a high-power semiconductor laser is supplied to the first clad.
  • the excitation light supplied to the first clad propagates through the first clad toward the emission end, and excites the laser medium doped in the core in the process of propagating.
  • the pumping light supplied to the first cladding and the amplified light that is amplified and emitted are high-energy laser light.
  • Double clad fiber generates heat.
  • a configuration in which the double clad fiber is fixed to a fiber holding member having a heat dissipation or cooling structure to suppress overheating of the double clad fiber is examined. Has been.
  • An adhesive can be considered as one of means for fixing the double clad fiber to the fiber holding member.
  • there are many products of various types for example, epoxy-based, acrylic-based, silicone-based, etc.) depending on the material and application of the object to be bonded.
  • high heat with increased thermal conductivity by dispersing metal fine particles etc. in the resin as the base material There is a conductive adhesive.
  • the first factor is a minute scratch or peeling that occurs on the outer periphery of the second cladding. That is, it is difficult to maintain a completely intact state throughout the fiber processing and assembly processes, and minute scratches and peeling may occur on the outer periphery of the second cladding.
  • the second factor is that adhesives with high thermal conductivity are not necessarily clear in terms of optical properties such as transmittance and refractive index, but in general, the refractive index after curing is higher than the refractive index of the core or cladding. And the variation is large.
  • FIG. 9 is a schematic cross-sectional view in the axial direction of a double clad fiber 230 whose outer periphery is fixed by being covered with an adhesive 290 having a high thermal conductivity.
  • the double clad fiber 230 includes a core 231 doped with a laser medium, a first clad 232 that covers the outer circumference of the core 231, and a second clad 233 that covers the outer circumference of the first clad.
  • the refractive index of the core 231 in the double clad fiber 230 is n 0
  • the refractive index of the first cladding 232 is n 1
  • the refractive index of the second cladding 233 is n 2 .
  • the relationship between the refractive indexes of the respective parts is n 0 > n 1 > n 2 .
  • the refractive index after curing of the adhesive 290 is n 9 , n 9 > n 1 .
  • the laser light (excitation light) incident on the first clad 232 propagates as indicated by the solid line arrow in the figure. That is, in the region where the second cladding 233 does not peel, the refractive index n 1 of the first cladding 232 is higher than the refractive index n 2 of the second cladding 233 (n 1 > n 2 ). The propagating laser light is totally reflected at the interface between the first cladding 232 and the second cladding 233 and is confined in the first cladding 232.
  • the outer periphery of the first cladding 232 is covered with the adhesive 290, and the refractive index n 9 of the adhesive 290 is the refractive index of the first cladding 232. It is higher than n 1 (n 9 > n 1 ). Therefore, the laser light that has propagated through the first clad and entered the peeling portion 233 a is not totally reflected at the interface between the first clad 232 and the adhesive 290 and leaks from the first clad 232 to the adhesive 290 side.
  • the leaked excitation light is incident on a fracture surface or a mark of the second clad 233 generated by the peeling and becomes a bright spot, causing a problem of local overheating such as partial melting. Even if local overheating does not occur, leakage of excitation light is a loss and causes a decrease in excitation efficiency.
  • laser light in a mode that propagates through the second cladding may be generated as indicated by the two-dot chain line arrow in the figure. is there.
  • the outer periphery of the second clad 233 including the minute scratches 233b and the peeling portion 233a is covered with an adhesive 290 having a higher refractive index than that of the second clad (n 9 > n 2 ).
  • the laser light propagating through the second clad 233 and entering the scratch 233b or the peeling portion 233a leaks to the adhesive 290 side without being totally reflected at the interface between the second clad 233 and the adhesive 290.
  • a part of the laser light leaked to the adhesive side may re-enter the flaws 233b and the edges of the second clad, which may cause a problem of local overheating.
  • the present invention has been made in view of such circumstances, and a method for fixing a double-clad fiber capable of suppressing local overheating even if a minute scratch or peeling occurs in the second cladding.
  • the purpose is to provide. It is another object of the present invention to provide a double-clad fiber fixing structure in which local overheating is suppressed, a laser device with improved long-term stability by including such a double-clad fiber fixing structure.
  • a method of fixing a double clad fiber includes a core doped with a laser medium, a first clad that covers the outer periphery of the core and into which excitation light is introduced, and covers the outer periphery of the first clad.
  • the double-clad fiber fixing method is the same as that of the first aspect of the double-clad fiber fixing method, wherein the adhesive has a refractive index n 6 after curing of the refractive index n of the second cladding. It is preferably substantially the same as 2 .
  • an optical fiber fixing method comprising: a core doped with a laser medium; a first clad that covers the outer periphery of the core and into which excitation light is introduced; and a first cladding that covers the outer periphery of the first cladding.
  • An optical fiber fixing method for fixing an optical fiber including two claddings to a fiber holding member wherein the refractive index n 6 after curing is substantially equal to or greater than the refractive index n 2 of the second cladding, and the first cladding. with less adhesive than the refractive index n 1 of the arranged optical fibers to the fiber holding member and cured by coating with an adhesive so as to cover the outer periphery of the second cladding, the optical fiber to fiber holding member Fix it.
  • the optical fiber is bonded to the fiber holding member using an adhesive.
  • the refractive index “substantially the same” means that the refractive index includes a certain width that may occur at the time of preparation or construction of the adhesive, with the refractive index being completely the same.
  • “applying” an adhesive means that a liquid or gel adhesive is adhered so as to cover the outer periphery of the fiber, and is not limited to a mode in which the adhesive is applied with a brush or a spatula. As appropriate, it includes a mode in which an adhesive is dropped, injected, or filled using a syringe, a dispenser, or the like.
  • the double-clad fiber fixing structure includes a core doped with a laser medium, a first cladding that covers the outer periphery of the core and into which excitation light is introduced, and a first cladding that covers the outer periphery of the first cladding.
  • a double clad fiber having a second cladding has a fiber holding member that double-clad fiber is fixed, and an adhesive for bonding the double-clad fiber in the fiber holding member, the refractive index n 6 after curing the adhesive first
  • the double clad fiber is fixed to the fiber holding member with the outer circumference of the second clad covered with an adhesive that is substantially equal to or greater than the refractive index n 2 of the two clad and smaller than the refractive index n 1 of the first clad.
  • the refractive index n 6 after curing is substantially the same as the refractive index n 2 of the second cladding. It is preferable that
  • the double-clad fiber fixing structure in the double-clad fiber fixing structure according to the fifth or sixth aspect, has a cooling function for cooling the double-clad fiber. It is preferable to be configured.
  • the double-clad fiber holding structure in the double-clad fiber fixing structure according to any one of the fifth to seventh aspects, holds the double-clad fiber in the fiber holding member. A holding groove is formed, and the adhesive is preferably arranged so as to cover the double clad fiber arranged in the holding groove.
  • the holding groove is a concave groove whose groove width is somewhat larger than the diameter of the double-clad fiber. It is preferable that the double clad fiber is embedded and fixed in the holding groove with an adhesive.
  • the optical fiber fixing structure includes a core doped with a laser medium, a first clad that covers the outer periphery of the core and into which excitation light is introduced, and a second cover that covers the outer periphery of the first cladding.
  • the optical fiber fixing structure in the optical fiber fixing structure according to the tenth aspect, is preferably bonded to the fiber holding member with an adhesive.
  • a laser apparatus includes: a double clad fiber fixing structure according to any one of the fifth to ninth aspects; a laser light generator that generates laser light amplified in the core; An excitation light source for supplying excitation light to the first cladding.
  • a laser device wherein the optical fiber fixing structure according to the tenth or eleventh aspect, a laser light generating unit that generates laser light amplified in the core, and the first cladding are excited.
  • An excitation light source for supplying light.
  • the laser device in the laser device according to the twelfth aspect, preferably includes a wavelength conversion unit that converts the wavelength of the amplified light that is amplified by the double clad fiber and outputs the amplified light.
  • the laser device in the laser device according to the thirteenth aspect, it is preferable that the laser device includes a wavelength conversion unit that converts the wavelength of the amplified light that is amplified by the optical fiber and outputs the amplified light.
  • an exposure apparatus includes: the laser device according to the fourteenth or fifteenth aspect; a mask support for holding a photomask on which a predetermined exposure pattern is formed; and an exposure object.
  • An exposure object support unit for holding, an illumination optical system for irradiating a photomask held by the mask support unit with laser light output from the laser device, and an exposure object support for light transmitted through the photomask
  • a projection optical system for projecting onto the exposure object held by the unit.
  • an inspection apparatus includes a laser device according to the fourteenth or fifteenth aspect, a test object support for holding a test object, and a laser beam output from the laser apparatus.
  • An illumination optical system for irradiating the test object held by the test object support unit and a projection optical system for projecting light from the test object onto the detector are provided.
  • an adhesive whose refractive index n 6 after curing is substantially equal to or larger than the refractive index n 2 of the second cladding and smaller than the refractive index n 1 of the first cladding is used.
  • the double clad fiber is fixed to the fiber holding member by applying an adhesive to the double clad fiber disposed on the fiber holding member so as to cover the outer periphery of the second clad and curing it.
  • the double clad fiber fixed structure has a refractive index n 6 after curing substantially equal to or greater than the refractive index n 2 of the second clad and the refractive index n 1 of the first clad.
  • the outer periphery of the second cladding is fixed to the fiber holding member with a small adhesive.
  • FIG. 10 shows a schematic cross-sectional view in the axial direction of a double-clad fiber 230 similar to FIG. 9 for the double-clad fiber bonded and fixed in this manner.
  • the outer periphery of the double clad fiber 230 including the peeling portion 233a and the minute scratch 233b is covered with an adhesive 260 having a refractive index n 6 .
  • the refractive index of the adhesive 260 is substantially the same as the refractive index of the second cladding (n 6 ⁇ n 2 ), the refractive index configuration around the peeled portion is the same as that of the intact portion, and the peeling is optically repaired. Will be.
  • the relationship between the refractive indexes of the respective portions is n 1 > n 6 ⁇ n 2 as described above. That is, the refractive index difference between the second clad 233 and the adhesive 260 is smaller than the conventional (n 9 > n 1 > n 2 ).
  • the refractive index of the adhesive 260 is substantially the same as the refractive index of the second clad (n 6 ⁇ n 2 ), there is no difference in the refractive index between the second clad 233 and the adhesive 260 covering the periphery of the second clad 233.
  • the interface is no longer present, and the laser light propagating through the second cladding 233 is dissipated to the adhesive layer.
  • the laser beam dissipated around the wound is incident, there is no difference in refractive index from the surroundings, so that the laser beam is transmitted as it is and local overheating does not occur.
  • the fixing method of the double clad fiber and the double clad fiber fixing structure according to the aspect of the present invention even if a minute scratch or peeling is generated in the second clad, the local area of these parts is not affected. Overheating can be suppressed.
  • the laser device includes the double-clad fiber fixing structure according to the second aspect. Further, the exposure apparatus of the fourth aspect and the inspection apparatus of the fifth aspect are configured to include the laser apparatus of the third aspect. Therefore, it is possible to provide a laser apparatus, an exposure apparatus, and an inspection apparatus with high long-term stability in which local overheating due to scratches or peeling of the double clad fiber is suppressed.
  • FIG. 5 is a cross-sectional view taken along arrow VV appended in FIG. 4. It is sectional drawing of the double clad fiber fixed structure along the axis line of a double clad fiber.
  • FIG. 5 is a schematic block diagram of the exposure apparatus shown as a 1st application example of the system provided with the laser apparatus.
  • the illustrated laser device LS includes a light source unit 10 that emits seed light, an amplification unit 20 that amplifies seed light emitted from the light source unit 10 and outputs amplified light, and amplified light output from the amplification unit 20.
  • a wavelength conversion unit 30 that performs wavelength conversion and outputs output light, and a control unit 40 that controls the operation of each unit are configured.
  • the wavelength, optical waveform, power, and the like of the seed light and output light can be appropriately set according to the use and function of the apparatus configured using the laser apparatus LS.
  • a case where the light La is converted into output light Lv having a wavelength of 355 nm by the wavelength conversion unit 30 and output is illustrated.
  • a laser light source 11 for example, a DFB (Distributed Feedback) semiconductor laser can be used.
  • the DFB semiconductor laser can perform CW oscillation and pulse oscillation, and can output laser light having a single wavelength narrowed in a predetermined wavelength range by temperature control.
  • a light source unit 10 shown in FIG. 1 outputs pulse light (or CW light) having a sufficiently long ON time from a laser light source 11, and a part of the light is emitted from an electro-optic modulation element (EOM), an acousto-optic modulation element (AOM), or the like.
  • EOM electro-optic modulation element
  • AOM acousto-optic modulation element
  • the amplifying unit 20 amplifies the seed light Ls emitted from the light source unit 10 to several tens to several hundreds W level and emits the amplified light La to the wavelength conversion unit 30.
  • the figure shows a configuration in which three fiber amplifiers 21, 22, and 23 are connected in series, and the seed light Ls is sequentially amplified by these three stages of fiber amplifiers 21, 22, and 23.
  • a ytterbium-doped fiber amplifier (YDFA) having a single clad structure is used as the first and second stage fiber amplifiers 21 and 22, and a double clad structure YDFA is used as the third stage fiber amplifier 23. Shows the configuration.
  • YDFA ytterbium-doped fiber amplifier
  • the first and second stage fiber amplifiers 21 and 22 are mainly composed of single clad fibers 210 and 220 for amplification and excitation light sources 215 and 225 for exciting ytterbium (Yb).
  • the single clad fibers 210 and 220 are composed of a core doped with Yb and a clad covering the outer periphery of the core, and seed light Ls and excitation light Lp are introduced into the core.
  • the third-stage fiber amplifier 23 is mainly composed of an amplification double-clad fiber 230 and an excitation light source 235 for exciting Yb.
  • the double-clad fiber 230 is a Yb-doped core 231, a first clad 232 that covers the outer periphery of the core 231, and an outer periphery of the first cladding.
  • the seed light (referred to as signal light for convenience) amplified by the fiber amplifiers 21 and 22 is introduced into the core 231, and the excitation light Lp emitted from the excitation light source 235 is introduced into the first cladding 232.
  • the signal light output from the preceding fiber amplifier 22 is incident on the core 231 of the double clad fiber 230 via a WDM (Wavelength Division Multiplex) coupler 237 and the pumping light Lp emitted from the pumping light source 235 is generated.
  • And is incident on the first cladding 232 of the double cladding fiber 230 via the WDM coupler 237.
  • the first clad (also referred to as a pumping guide) 232 acts as a multi-mode waveguide for pumping light, and guides high-power multi-mode laser light emitted from a plurality of pumping light sources 235 in the axial direction.
  • Yb doped in H.231 is excited efficiently.
  • the double clad fiber 230 is generally an optical fiber in which the core 231 and the first clad 232 are made of quartz (silica) glass, and the second clad 233 is made of resin because of fiber productivity, workability, and ease of handling. Is used.
  • the signal light amplified by the third-stage fiber amplifier 23, that is, the amplified light La is emitted from the amplification unit 20 and enters the wavelength conversion unit 30.
  • the wavelength conversion unit 30 is mainly composed of wavelength conversion optical elements 31 and 32.
  • the wavelength conversion optical element 31 is a nonlinear optical crystal that generates a second harmonic of the amplified light La by second harmonic generation (SHG).
  • SHG second harmonic generation
  • As the wavelength conversion optical element 31 a configuration in which an LBO (LiB 3 O 5 ) crystal is used for non-critical phase matching (NCPM) is exemplified.
  • wavelength conversion optical element 32 can efficiently perform wavelength conversion.
  • the wavelength conversion optical element 31 may be a PPLN (Periodically Poled LiNbO 3 ) crystal or a PPLT (Periodically Poled LiTaO 3 ).
  • a quasi phase matching (QPM) crystal such as PPKTP (Periodically Poled KTiOPO 4 ) crystal may be used. Even when a QPM crystal is used, wavelength conversion can be performed efficiently, and there is no need to provide a shaping optical element between the wavelength conversion optical element 31 and the wavelength conversion optical element 32.
  • the second harmonic generated by the wavelength conversion optical element 31 and the amplified light transmitted through the wavelength conversion optical element 31 without being converted in wavelength are rotated by 90 degrees on the polarization plane of one (for example, the amplified light) by the two-wavelength wavelength plate. Then, the light is focused and incident on the wavelength conversion optical element 32.
  • the wavelength conversion optical element 32 is a nonlinear optical crystal that generates the sum frequency of the second harmonic and the amplified light by sum frequency generation (SFG).
  • FSG sum frequency generation
  • a configuration in which an LBO crystal is used for type I critical phase matching (CPM) is exemplified.
  • a BBO ( ⁇ -BaB 2 O 4 ) crystal or a CLBO (CsLiB 6 O 10 ) crystal can also be used.
  • the amplified light having a wavelength of 1064 nm and the second harmonic wave having a wavelength of 532 nm incident on the wavelength conversion optical element 32 are wavelength-converted in the process of passing through the wavelength conversion optical element 32, and the third harmonic wave having a sum frequency of 355 nm is obtained. appear.
  • the third harmonic generated by the wavelength conversion optical element 32 is output from the laser device LS as output light Lv.
  • the light emitted from the wavelength conversion optical element 32 includes the remaining amplified light and the second harmonic wave that have been transmitted through the wavelength conversion optical element 32 without being wavelength-converted.
  • a dichroic mirror, a prism, or the like By disposing a dichroic mirror, a prism, or the like on this, only the third harmonic wave having a wavelength of 355 nm can be output from the laser device LS.
  • the fiber amplifier 23 is provided with a cooling mechanism 25 for cooling the double clad fiber 230. That is, the double clad fiber 230 is bonded and fixed to a fiber holding member having a cooling function, absorbs heat generated due to a slight loss in the fiber when a high-energy laser beam propagates, and overheats the fiber. Is to prevent.
  • FIG. 4 shows a schematic diagram (outside view) of a double clad fiber fixing structure A in which a double clad fiber 230 is bonded and fixed to a water-cooled fiber holding member 250.
  • FIG. 5 is a cross-sectional view taken along arrows VV appended in FIG.
  • the illustrated fiber holding member 250 has a flat plate shape as a whole, and is manufactured using a metal material such as an aluminum alloy or stainless steel.
  • a communicating channel 251 for circulating cooling water by drilling or the like is drilled inside the plate. Cooling water at a predetermined temperature is supplied to the channel 251 from a cooling device (not shown), and fiber The holding member 250 is held at a substantially constant temperature.
  • a holding groove 252 for holding the double clad fiber 230 is formed on one surface of the fiber holding member 250.
  • the holding groove 252 is formed in one continuous concave groove shape whose groove width and depth are somewhat larger than the diameter d of the double clad fiber 230 (for example, about 1.2d to 2d).
  • a configuration in which one spiral holding groove 252 is formed on the upper surface of the plate is illustrated. Therefore, the double clad fiber 230 can be easily mounted and locked in the holding groove 252 when the fiber is assembled.
  • an adhesive 260 is injected into the holding groove 252 so as to cover the outer periphery of the fiber, and cured.
  • the adhesive 260 has a refractive index n 6 after curing that is smaller than that of the first cladding and substantially equal to the refractive index n 2 of the second cladding 233 (n 1 > n 6 ⁇ n 2 ). It has been prepared.
  • the double clad fiber 230 is embedded in the holding groove 252 and fixed to the fiber holding member 250 with the outer periphery of the second clad 233 covered with the adhesive 260 having substantially the same refractive index as that of the second clad. .
  • the double clad fiber 230 uses an optical fiber in which the core 231 and the first clad 232 are made of quartz (silica) glass and the second clad 233 is made of resin.
  • a suitable adhesive 260 an adhesive (for example, an adhesive adjusted to have a refractive index after curing of n 6 ⁇ n 2 using a resin material of the same system as the resin constituting the second cladding 233 as a base) And fluorine-based and silicon-based adhesives).
  • the adhesive has a refractive index after curing of n 6 ⁇ n 2 , it may be based on a resin material of a system different from that of the second cladding 233, An appropriate type of adhesive can be used according to the material of the second cladding.
  • FIG. 6 is a cross-sectional view (planar cross-sectional view) of the double-clad fiber fixing structure A along the axis of the double-clad fiber 230.
  • the double clad fiber 230 is embedded in the holding groove 252 and fixed to the fiber holding member 250 in a state where the outer periphery of the second clad 233 is covered with the adhesive 260 having substantially the same refractive index as that of the second clad.
  • the refractive index n 1 of the first cladding 232, the refractive index n 2 of the second cladding 233, the relationship of the refractive index n 6 of the adhesive 260 is n 1> n 6 ⁇ n 2. That is, the relationship between the refractive indexes of the first cladding 232 and the surrounding members in the periphery of the peeling portion 233a is the same as the refractive index relationship of the intact portion where there is no peeling, and is optically equivalent to that the peeling is repaired. .
  • the laser light that has propagated through the first clad 232 and entered the peeling portion 233a is totally reflected at the interface between the first clad 232 and the adhesive 260, as shown by the solid arrow in the figure, and has no peeling. It propagates in the first cladding 232 through the same optical path as in the above state.
  • the relationship between the refractive indexes of the respective portions is n 1 > n 6 ⁇ n 2 as described above, and the refractive indexes of the second cladding 233 and the adhesive 260 are substantially the same. That is, there is no difference in refractive index between the second cladding 233 and the adhesive 260 covering the periphery thereof, and no optical interface exists. Therefore, the laser light that has propagated through the second clad 233 to the fiber holding member 250 is emitted from the second clad 233 to the layer of the adhesive 260 and dissipated, as indicated by the two-dot chain arrow in the figure.
  • the double clad fiber fixing structure A as described above, even if a minute scratch or peeling occurs in the second clad 233, local overheating occurs at these portions. There is nothing. Further, since the holding groove 252 is formed in the fiber holding member 250, the double clad fiber 230 can be easily attached. Further, the holding groove 252 is formed in a concave groove shape whose groove width and depth are somewhat larger than the diameter of the double clad fiber 230, and the double clad fiber 230 is embedded in the holding groove 252 with an adhesive 260. Has been fixed. That is, the double clad fiber 230 is structured to be cooled from the bottom surface and the side wall surface of the adjacent holding groove 252. Therefore, overheating of the fiber is effectively suppressed, and the long-term stability of the fiber amplifier 23 can be improved.
  • a flow path 251 for circulating cooling water is formed inside a flat metal plate, and a concave groove-like holding groove 252 in which a double clad fiber is embedded is formed on one surface.
  • the formed water-cooled fiber holding member 250 is illustrated.
  • the form of the fiber holding member is not limited to such an embodiment.
  • a holding groove 252 similar to the above may be formed on a component mounting surface of a heat sink material that cools a power transistor or the like to constitute an air-cooled fiber holding member.
  • the fiber holding member of such a form is suitable when the heat generation amount of the double clad fiber is relatively low, and the cooling mechanism can be configured at low cost.
  • a concave groove-shaped holding groove 252 that is continuous in a spiral shape is formed on the outer peripheral surface of a columnar metal rod or a hollow cylindrical metal pipe to constitute a water-cooled or air-cooled fiber holding member. Also good. According to such a form of the fiber holding member, in addition to being able to manufacture the fiber holding member at a relatively low cost, the double clad fibers 230 do not cross each other and the curvature of the fiber can be made constant. it can.
  • YDFA in which the core is doped with Yb (ytterbium) is exemplified as an example of the fiber amplifier.
  • the core is doped with Er (erbium), and the core is doped with Tm (thulium).
  • Tm thulium
  • the laser device that has the wavelength conversion unit 30 and outputs the amplified light La output from the amplification unit 20 after wavelength conversion to the wavelength 355 nm in the wavelength conversion unit 30 is illustrated.
  • the output light output from the laser device LS The wavelength of Lv is arbitrary.
  • the present invention is also applied to a laser device that emits the amplified light La as it is without providing the wavelength conversion unit 30, or a laser device that uses the first-stage fiber amplifier 21 as a fiber laser without the light source unit 10. By doing so, the effects described above can be enjoyed.
  • the laser device LS as described above is small and light and easy to handle, optical processing devices such as exposure devices and stereolithography devices, inspection devices such as photomasks and wafers, observation devices such as microscopes and telescopes,
  • optical processing devices such as exposure devices and stereolithography devices
  • inspection devices such as photomasks and wafers
  • observation devices such as microscopes and telescopes
  • the present invention can be suitably applied to a measuring device such as a length measuring device or a shape measuring device, and a system such as a phototherapy device.
  • the exposure apparatus 500 is in principle the same as photolithography, and a device pattern precisely drawn on a quartz glass photomask 513 is applied to an exposure object 515 such as a semiconductor wafer or glass substrate coated with a photoresist. Optically project and transfer.
  • the exposure apparatus 500 includes the laser apparatus LS, the illumination optical system 502, the mask support base 503 for holding the photomask 513, the projection optical system 504, and the exposure object for holding the exposure object 515.
  • a support table 505 and a drive mechanism 506 for moving the exposure object support table 505 in a horizontal plane are provided.
  • the illumination optical system 502 includes a plurality of lens groups, and irradiates the photomask 513 held on the mask support 503 with laser light (output light Lv) output from the laser device LS.
  • the projection optical system 504 is also composed of a plurality of lens groups, and projects the light transmitted through the photomask 513 onto the exposure object 515 on the exposure object support table.
  • the laser light output from the laser apparatus LS is input to the illumination optical system 502, and the laser light adjusted to a predetermined light flux is applied to the photomask 513 held on the mask support 503. Irradiated.
  • the light that has passed through the photomask 513 has an image of a device pattern drawn on the photomask 513, and this light of the exposure object 515 held on the exposure object support table 505 via the projection optical system 504.
  • a predetermined position is irradiated.
  • the image of the device pattern of the photomask 513 is image-exposed at a predetermined magnification on the exposure object 515 such as a semiconductor wafer or a liquid crystal panel.
  • FIG. 8 showing a schematic configuration of an inspection device used in an inspection process of a photomask, a liquid crystal panel, a wafer, or the like (test object).
  • An inspection apparatus 600 illustrated in FIG. 8 is suitably used for inspecting a fine device pattern drawn on a light-transmitting object 613 such as a photomask.
  • the inspection apparatus 600 detects light from the laser apparatus LS, the illumination optical system 602, the test object support base 603 for holding the test object 613, the projection optical system 604, and the test object 613.
  • TDI Time Delay Integration
  • the illumination optical system 602 includes a plurality of lens groups, and adjusts the laser light output from the laser device LS to a predetermined light flux and irradiates the test object 613 held on the test object support base 603.
  • the projection optical system 604 is also composed of a plurality of lens groups, and projects the light transmitted through the test object 613 onto the TDI sensor 615.
  • the laser light (output light Lv) output from the laser apparatus LS is input to the illumination optical system 602, and the laser light adjusted to a predetermined light flux is applied to the object support base 603.
  • the object 613 such as a held photomask is irradiated.
  • the light from the object 613 (transmitted light in this configuration example) has an image of a device pattern drawn on the object 613, and this light is transmitted to the TDI sensor 615 via the projection optical system 604. Projected and imaged.
  • the horizontal movement speed of the test object support base 603 by the drive mechanism 606 and the transfer clock of the TDI sensor 615 are controlled in synchronization.
  • an image of the device pattern of the test object 613 is detected by the TDI sensor 615, and by comparing the detection image of the test object 613 detected in this way with a predetermined reference image set in advance, The defect of the fine pattern drawn on the test object is extracted. If the test object 613 does not have optical transparency like a wafer or the like, the reflected light from the test object is incident on the projection optical system 604 and guided to the TDI sensor 615 in the same manner. can do.
  • a Double-clad fiber fixed structure LS Laser device Lp Excitation light Lv Output light 10
  • Light source part (laser light generation part) 20
  • Amplifier (21, 22, 23 fiber amplifier) 25
  • Cooling mechanism 30
  • Wavelength conversion part (31, 32 wavelength conversion optical element)
  • 230 double clad fiber (231 core, 232 first clad, 233 second clad)
  • Excitation light source 250
  • Fiber holding member (251 flow path, 252 holding groove)

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Lasers (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

 A method for securing a double-clad fiber in which a double-clad fiber is secured using a fiber holding member, the double-clad fiber having a core doped with a laser medium, a first clad to which excitation light is introduced and which covers the outer circumference of the core, and a second clad covering the outer circumference of the first clad, wherein the double-clad fiber is secured to the fiber holding member using an adhesive having a post-curing refraction index (n6) that is substantially equal to or greater than the refraction index (n2) of the second clad, and smaller than the refraction index (n1) of the first clad, the adhesive being applied to, and cured on, the double-clad fiber installed in the fiber holding member so that the adhesive covers the outer circumference of the second clad.

Description

ファイバの固定方法、ファイバ保持部材に固定されたファイバ固定構造体、該ファイバ固定構造体を備えたレーザ装置、露光装置及び検査装置Fiber fixing method, fiber fixing structure fixed to a fiber holding member, laser apparatus, exposure apparatus and inspection apparatus including the fiber fixing structure
 本発明は、ダブルクラッドファイバの固定方法に関するものである。また、ダブルクラッドファイバがファイバ保持部材に固定されたダブルクラッドファイバ固定構造体、このダブルクラッドファイバ固定構造体を備えたレーザ装置、露光装置および検査装置に関するものである。 The present invention relates to a method for fixing a double clad fiber. The present invention also relates to a double-clad fiber fixing structure in which a double-clad fiber is fixed to a fiber holding member, a laser apparatus, an exposure apparatus, and an inspection apparatus provided with the double-clad fiber fixing structure.
 増幅用の光ファイバを備えたレーザ装置は、例えば、露光装置や検査装置等の光源として用いられている。このようなレーザ装置において、ファイバ増幅器は、一般的に、波長λ=1.0~1.55μmのシード光を増幅し、所定出力に増幅された増幅光を波長変換部に出力する。波長変換部では、入力された増幅光を波長変換光学素子により波長変換し、例えば、波長λ=193nmあるいはλ=355nm等の出力光を出力するように構成される(例えば、特許文献1、特許文献2を参照)。 A laser apparatus provided with an optical fiber for amplification is used as a light source for, for example, an exposure apparatus or an inspection apparatus. In such a laser device, the fiber amplifier generally amplifies seed light having a wavelength λ = 1.0 to 1.55 μm, and outputs the amplified light amplified to a predetermined output to the wavelength conversion unit. The wavelength conversion unit is configured to convert the wavelength of the input amplified light by a wavelength conversion optical element and output output light having a wavelength λ = 193 nm or λ = 355 nm, for example (for example, Patent Document 1, Patent Reference 2).
 近年では、レーザ加工の適用範囲の拡大や生産性の向上要求等によって出力光の高出力化が求められており、これに伴ってファイバ増幅器が出力する増幅光もさらなる高出力化が求められている。増幅光の出力が数十~数百Wクラスのハイパワーのレーザ装置では、一般的に複数のファイバ増幅器が直列に接続され、後段のファイバ増幅器にはクラッドが2層のダブルクラッドファイバが用いられる。ダブルクラッドファイバを用いたファイバ増幅器では、高出力半導体レーザから出射されたマルチモードの励起光が第1クラッドに供給される。第1クラッドに供給された励起光は第1クラッドを出射端に向けて伝播し、伝播する過程でコアにドープされたレーザ媒質を励起する。 In recent years, there has been a demand for higher output light due to the expansion of the application range of laser processing and demands for improvement in productivity, etc. With this, the amplified light output from the fiber amplifier is also required to have higher output. Yes. In a high-power laser device with an amplified light output of several tens to several hundreds W class, a plurality of fiber amplifiers are generally connected in series, and a double-clad fiber having two clads is used for the subsequent fiber amplifier. . In a fiber amplifier using a double clad fiber, multimode excitation light emitted from a high-power semiconductor laser is supplied to the first clad. The excitation light supplied to the first clad propagates through the first clad toward the emission end, and excites the laser medium doped in the core in the process of propagating.
 このようなダブルクラッドファイバを用いたファイバ増幅器では、第1クラッドに供給される励起光および増幅されて出射する増幅光が高エネルギーのレーザ光であることから、各部に内包されたわずかな損失でダブルクラッドファイバが発熱する。このダブルクラッドファイバの発熱に伴う問題を防止する手段の一つとして、放熱性あるいは冷却構造を有するファイバ保持部材にダブルクラッドファイバを固定し、ダブルクラッドファイバの過熱を抑止するようにした構成が検討されている。 In such a fiber amplifier using a double-clad fiber, the pumping light supplied to the first cladding and the amplified light that is amplified and emitted are high-energy laser light. Double clad fiber generates heat. As a means of preventing problems associated with the heat generation of this double clad fiber, a configuration in which the double clad fiber is fixed to a fiber holding member having a heat dissipation or cooling structure to suppress overheating of the double clad fiber is examined. Has been.
日本国特開2000-200747号公報Japanese Unexamined Patent Publication No. 2000-200747 日本国特開2002-50815号公報Japanese Unexamined Patent Publication No. 2002-50815
 ダブルクラッドファイバをファイバ保持部材に固定する手段のひとつとして接着剤が考えられる。よく知られるように、接着剤には、接着しようとする対象物の材質や用途等に応じて、種々の種類(例えば、エポキシ系、アクリル系、シリコーン系等)の多数の製品が存在する。例えば、上記のように発熱体を冷却構造を有するファイバ保持部材に接着固定するような用途に対して、例えば、基材となる樹脂に金属微粒子等を分散させることによって熱伝導率を高めた高熱伝導率の接着剤がある。 An adhesive can be considered as one of means for fixing the double clad fiber to the fiber holding member. As is well known, there are many products of various types (for example, epoxy-based, acrylic-based, silicone-based, etc.) depending on the material and application of the object to be bonded. For example, for applications where the heating element is bonded and fixed to a fiber holding member having a cooling structure as described above, for example, high heat with increased thermal conductivity by dispersing metal fine particles etc. in the resin as the base material There is a conductive adhesive.
 一方、光コネクタ等において光ファイバを固定して光路を結合するような用途に対して、硬化後の屈折率がコアの屈折率と略同一になるように調製した接着剤がある。また、クラッドを伝播する迷光を除去するような用途に対して、硬化後の屈折率がクラッドの屈折率よりも大きい高屈折率の接着剤も販売されている。 On the other hand, there is an adhesive prepared so that the refractive index after curing is substantially the same as the refractive index of the core for applications in which the optical fiber is fixed and the optical path is coupled in an optical connector or the like. For applications that remove stray light propagating through the cladding, high refractive index adhesives having a higher refractive index after curing than the refractive index of the cladding are also on the market.
 ダブルクラッドファイバの過熱を抑止するという観点では、ダブルクラッドファイバの固定手段として高熱伝導率の接着剤を用いることが好適と考えられる。ところが、このような接着剤を用いてダブルクラッドファイバを固定すると、以下のような要因に基づく問題が生じた。第1の要因は、第2クラッドの外周部に生じた微小な傷や剥離である。すなわち、ファイバの加工工程や組み付け工程を通して完全に無傷の状態を維持するのは難しく、第2クラッドの外周部に微小な傷や剥離が生じる場合がある。第2の要因は、高熱伝導率の接着剤は、透過率や屈折率等の光学的な特性が必ずしも明確ではないが、一般的には、硬化後の屈折率がコアやクラッドの屈折率よりも高く、且つそのばらつきが大きいことである。 From the viewpoint of suppressing overheating of the double clad fiber, it is considered preferable to use an adhesive having a high thermal conductivity as a fixing means for the double clad fiber. However, when a double-clad fiber is fixed using such an adhesive, a problem based on the following factors arises. The first factor is a minute scratch or peeling that occurs on the outer periphery of the second cladding. That is, it is difficult to maintain a completely intact state throughout the fiber processing and assembly processes, and minute scratches and peeling may occur on the outer periphery of the second cladding. The second factor is that adhesives with high thermal conductivity are not necessarily clear in terms of optical properties such as transmittance and refractive index, but in general, the refractive index after curing is higher than the refractive index of the core or cladding. And the variation is large.
 そして、このような要因に基づいて発生する問題は第2クラッドの局所的過熱である。図9に、外周を高熱伝導率の接着剤290により覆われて固定されたダブルクラッドファイバ230の軸方向の模式的な断面図を示す。ダブルクラッドファイバ230は、レーザ媒質がドープされたコア231と、コア231の外周を覆う第1クラッド232と、第1クラッドの外周を覆う第2クラッド233とを有して構成される。 The problem that occurs based on such factors is local overheating of the second cladding. FIG. 9 is a schematic cross-sectional view in the axial direction of a double clad fiber 230 whose outer periphery is fixed by being covered with an adhesive 290 having a high thermal conductivity. The double clad fiber 230 includes a core 231 doped with a laser medium, a first clad 232 that covers the outer circumference of the core 231, and a second clad 233 that covers the outer circumference of the first clad.
 ここで、ダブルクラッドファイバ230におけるコア231の屈折率をn0、第1クラッド232の屈折率をn1、第2クラッド233の屈折率をn2とする。このとき、各部の屈折率の関係は、n0>n1>n2である。また、接着剤290の硬化後の屈折率をn9とすると、n9>n1である。 Here, the refractive index of the core 231 in the double clad fiber 230 is n 0 , the refractive index of the first cladding 232 is n 1 , and the refractive index of the second cladding 233 is n 2 . At this time, the relationship between the refractive indexes of the respective parts is n 0 > n 1 > n 2 . Further, assuming that the refractive index after curing of the adhesive 290 is n 9 , n 9 > n 1 .
 屈折率がこのような関係にあるダブルクラッドファイバ固定構造体において、第1クラッド232に入射したレーザ光(励起光)は、図中に実線の矢印で示すように伝播する。すなわち、第2クラッド233に剥離がない領域では、第1クラッド232の屈折率n1が第2クラッド233の屈折率n2よりも高い(n1>n2)ことから、第1クラッド232を伝播するレーザ光は第1クラッド232と第2クラッド233との界面で全反射され、第1クラッド232内に閉じ込められる。 In the double clad fiber fixing structure having such a refractive index, the laser light (excitation light) incident on the first clad 232 propagates as indicated by the solid line arrow in the figure. That is, in the region where the second cladding 233 does not peel, the refractive index n 1 of the first cladding 232 is higher than the refractive index n 2 of the second cladding 233 (n 1 > n 2 ). The propagating laser light is totally reflected at the interface between the first cladding 232 and the second cladding 233 and is confined in the first cladding 232.
 しかし、第2クラッド233が剥離した部位(剥離部)233aにおいては、第1クラッド232の外周は接着剤290に覆われており、接着剤290の屈折率n9は第1クラッド232の屈折率n1よりも高くなっている(n9>n1)。そのため、第1クラッドを伝播して剥離部233aに入射したレーザ光は、第1クラッド232と接着剤290との界面で全反射されず、第1クラッド232から接着剤290側に漏出する。漏れ出した励起光は、剥離により生じた第2クラッド233の破断面やケバに入射して輝点となり、部分的な溶融等の局所的な過熱の問題を引き起こす。また、仮に局所過熱が生じなかったとしても、励起光の漏出は損失であり励起効率の低下を生じさせる。 However, in the portion (peeling portion) 233 a where the second cladding 233 is peeled off, the outer periphery of the first cladding 232 is covered with the adhesive 290, and the refractive index n 9 of the adhesive 290 is the refractive index of the first cladding 232. It is higher than n 1 (n 9 > n 1 ). Therefore, the laser light that has propagated through the first clad and entered the peeling portion 233 a is not totally reflected at the interface between the first clad 232 and the adhesive 290 and leaks from the first clad 232 to the adhesive 290 side. The leaked excitation light is incident on a fracture surface or a mark of the second clad 233 generated by the peeling and becomes a bright spot, causing a problem of local overheating such as partial melting. Even if local overheating does not occur, leakage of excitation light is a loss and causes a decrease in excitation efficiency.
 また、ファイバ融着点からの漏れや、曲率半径が小さい曲げ部分からの漏れなどにより、図中に二点鎖線の矢印で示すように、第2クラッドを伝播するモードのレーザ光が生じることがある。第2クラッド233は微小な傷233bや剥離部233aを含めて、その外周が第2クラッドよりも屈折率が高い(n9>n2)接着剤290で覆われている。そのため、第2クラッド233を伝播して傷233bや剥離部233aに入射したレーザ光は、第2クラッド233と接着剤290との界面で全反射されずに接着剤290側に漏出する。接着剤側に漏出したレーザ光の一部は、第2クラッドの傷233bやケバ等に再入射し、局所的な過熱の問題を生じるおそれがある。 In addition, due to leakage from the fiber fusion point, leakage from a bent portion having a small radius of curvature, or the like, laser light in a mode that propagates through the second cladding may be generated as indicated by the two-dot chain line arrow in the figure. is there. The outer periphery of the second clad 233 including the minute scratches 233b and the peeling portion 233a is covered with an adhesive 290 having a higher refractive index than that of the second clad (n 9 > n 2 ). Therefore, the laser light propagating through the second clad 233 and entering the scratch 233b or the peeling portion 233a leaks to the adhesive 290 side without being totally reflected at the interface between the second clad 233 and the adhesive 290. A part of the laser light leaked to the adhesive side may re-enter the flaws 233b and the edges of the second clad, which may cause a problem of local overheating.
 本発明はこのような事情に鑑みてなされたものであり、仮に第2クラッドに微小な傷や剥離等が生じていたような場合でも、局所的な過熱を抑制可能なダブルクラッドファイバの固定方法を提供することを目的とする。また、局所的な過熱が抑制されたダブルクラッドファイバ固定構造体、このようなダブルクラッドファイバ固定構造体を備えることにより長期安定性を高めたレーザ装置等を提供することを目的とする。 The present invention has been made in view of such circumstances, and a method for fixing a double-clad fiber capable of suppressing local overheating even if a minute scratch or peeling occurs in the second cladding. The purpose is to provide. It is another object of the present invention to provide a double-clad fiber fixing structure in which local overheating is suppressed, a laser device with improved long-term stability by including such a double-clad fiber fixing structure.
 本発明の第1の態様によると、ダブルクラッドファイバの固定方法は、レーザ媒質がドープされたコアと、コアの外周を覆い励起光が導入される第1クラッドと、第1クラッドの外周を覆う第2クラッドと、を有するダブルクラッドファイバをファイバ保持部材に固定するダブルクラッドファイバの固定方法であって、硬化後の屈折率n6が第2クラッドの屈折率n2と略同一以上であり且つ第1クラッドの屈折率n1よりも小さい接着剤を用い、ファイバ保持部材に配設されたダブルクラッドファイバに、第2クラッドの外周を覆うように接着剤を塗布して硬化させ、ダブルクラッドファイバをファイバ保持部材に固定する。
 本発明の第2の態様によると、ダブルクラッドファイバの固定方法は、第1の態様のダブルクラッドファイバの固定方法において、接着剤は、硬化後の屈折率n6が第2クラッドの屈折率n2と略同一であることが好ましい。
 本発明の第3の態様によると、光ファイバの固定方法は、レーザ媒質がドープされたコアと、コアの外周を覆い励起光が導入される第1クラッドと、第1クラッドの外周を覆う第2クラッドと、を含む光ファイバをファイバ保持部材に固定する光ファイバの固定方法であって、硬化後の屈折率n6が第2クラッドの屈折率n2と略同一以上であり且つ第1クラッドの屈折率n1よりも小さい接着剤を用い、ファイバ保持部材に配設された光ファイバに、第2クラッドの外周を覆うように接着剤で被覆して硬化させ、光ファイバをファイバ保持部材に固定する。
 本発明の第4の態様によると、光ファイバの固定方法は、第3の態様の光ファイバの固定方法において、接着剤を用いて、光ファイバをファイバ保持部材に接着させることが好ましい。
According to the first aspect of the present invention, a method of fixing a double clad fiber includes a core doped with a laser medium, a first clad that covers the outer periphery of the core and into which excitation light is introduced, and covers the outer periphery of the first clad. A double clad fiber fixing method for fixing a double clad fiber having a second clad to a fiber holding member, wherein a refractive index n 6 after curing is substantially equal to or greater than a refractive index n 2 of the second clad; Using an adhesive smaller than the refractive index n 1 of the first clad, the double clad fiber disposed on the fiber holding member is coated with an adhesive so as to cover the outer periphery of the second clad, and cured, and the double clad fiber Is fixed to the fiber holding member.
According to the second aspect of the present invention, the double-clad fiber fixing method is the same as that of the first aspect of the double-clad fiber fixing method, wherein the adhesive has a refractive index n 6 after curing of the refractive index n of the second cladding. It is preferably substantially the same as 2 .
According to the third aspect of the present invention, there is provided an optical fiber fixing method comprising: a core doped with a laser medium; a first clad that covers the outer periphery of the core and into which excitation light is introduced; and a first cladding that covers the outer periphery of the first cladding. An optical fiber fixing method for fixing an optical fiber including two claddings to a fiber holding member, wherein the refractive index n 6 after curing is substantially equal to or greater than the refractive index n 2 of the second cladding, and the first cladding. with less adhesive than the refractive index n 1 of the arranged optical fibers to the fiber holding member and cured by coating with an adhesive so as to cover the outer periphery of the second cladding, the optical fiber to fiber holding member Fix it.
According to the fourth aspect of the present invention, in the optical fiber fixing method according to the third aspect, it is preferable that the optical fiber is bonded to the fiber holding member using an adhesive.
 ここで、本明細書において、屈折率が「略同一」とは、屈折率が完全に同一な場合を中心として、接着剤の調製時や施工時に生じ得る一定の幅を含むものであることを意味する。また、接着剤を「塗布する」とは、液状ないしゲル状の接着剤をファイバの外周を覆うように密着して付着させることを意味し、刷毛やへら等により接着剤を塗り付ける態様のみならず、適宜、注射器やディスペンサ等を用いて接着剤を滴下し、注入し、あるいは充填するなどの態様を含むものである。 Here, in the present specification, the refractive index “substantially the same” means that the refractive index includes a certain width that may occur at the time of preparation or construction of the adhesive, with the refractive index being completely the same. . In addition, “applying” an adhesive means that a liquid or gel adhesive is adhered so as to cover the outer periphery of the fiber, and is not limited to a mode in which the adhesive is applied with a brush or a spatula. As appropriate, it includes a mode in which an adhesive is dropped, injected, or filled using a syringe, a dispenser, or the like.
 本発明の第5の態様によると、ダブルクラッドファイバ固定構造体は、レーザ媒質がドープされたコア、コアの外周を覆い励起光が導入される第1クラッド、および第1クラッドの外周を覆う第2クラッドを有するダブルクラッドファイバと、ダブルクラッドファイバが固定されるファイバ保持部材と、ダブルクラッドファイバをファイバ保持部材に接着する接着剤とを有し、接着剤は硬化後の屈折率n6が第2クラッドの屈折率n2と略同一以上であり且つ第1クラッドの屈折率n1よりも小さく、ダブルクラッドファイバは、第2クラッドの外周が接着剤により覆われた状態でファイバ保持部材に固定されている。
 本発明の第6の態様によると、ダブルクラッドファイバ固定構造体は、第5の態様によるダブルクラッドファイバ固定構造体において、硬化後の屈折率n6が第2クラッドの屈折率n2と略同一であることが好ましい。
According to the fifth aspect of the present invention, the double-clad fiber fixing structure includes a core doped with a laser medium, a first cladding that covers the outer periphery of the core and into which excitation light is introduced, and a first cladding that covers the outer periphery of the first cladding. a double clad fiber having a second cladding has a fiber holding member that double-clad fiber is fixed, and an adhesive for bonding the double-clad fiber in the fiber holding member, the refractive index n 6 after curing the adhesive first The double clad fiber is fixed to the fiber holding member with the outer circumference of the second clad covered with an adhesive that is substantially equal to or greater than the refractive index n 2 of the two clad and smaller than the refractive index n 1 of the first clad. Has been.
According to the sixth aspect of the present invention, in the double-clad fiber fixing structure according to the fifth aspect, the refractive index n 6 after curing is substantially the same as the refractive index n 2 of the second cladding. It is preferable that
 本発明の第7の態様によると、ダブルクラッドファイバ固定構造体は、第5または第6の態様によるダブルクラッドファイバ固定構造体において、ファイバ保持部材は、ダブルクラッドファイバを冷却する冷却機能を有して構成されることが好ましい。
 本発明の第8の態様によると、ダブルクラッドファイバ固定構造体は、第5~第7のいずれか一つの態様によるダブルクラッドファイバ固定構造体において、ファイバ保持部材には、ダブルクラッドファイバを保持するための保持溝が形成されており、接着剤は、保持溝に配置されたダブルクラッドファイバを覆って配設されることが好ましい。
 本発明の第9の態様によると、ダブルクラッドファイバ固定構造体は、第8の態様によるダブルクラッドファイバ固定構造体において、保持溝は、溝幅がダブルクラッドファイバの直径よりも幾分大きい凹溝状に形成されており、ダブルクラッドファイバは、接着剤により保持溝に埋設されて固定されることが好ましい。
 本発明の第10の態様によると、光ファイバ固定構造体は、レーザ媒質がドープされたコア、コアの外周を覆い励起光が導入される第1クラッド、および第1クラッドの外周を覆う第2クラッドを含む光ファイバと、光ファイバが固定されるファイバ保持部材と、光ファイバを被覆する接着剤とを有し、接着剤は、硬化後の屈折率n6が第2クラッドの屈折率n2と略同一以上であり且つ第1クラッドの屈折率n1よりも小さく、光ファイバは、第2クラッドの外周が接着剤により覆われた状態でファイバ保持部材に固定されている。
 本発明の第11の態様によると、光ファイバ固定構造体は、第10の態様による光ファイバ固定構造体において、光ファイバは、接着剤によって、ファイバ保持部材に接着されていることが好ましい。
According to a seventh aspect of the present invention, in the double-clad fiber fixing structure according to the fifth or sixth aspect, the double-clad fiber fixing structure has a cooling function for cooling the double-clad fiber. It is preferable to be configured.
According to an eighth aspect of the present invention, in the double-clad fiber fixing structure according to any one of the fifth to seventh aspects, the double-clad fiber holding structure holds the double-clad fiber in the fiber holding member. A holding groove is formed, and the adhesive is preferably arranged so as to cover the double clad fiber arranged in the holding groove.
According to a ninth aspect of the present invention, in the double-clad fiber fixing structure according to the eighth aspect, the holding groove is a concave groove whose groove width is somewhat larger than the diameter of the double-clad fiber. It is preferable that the double clad fiber is embedded and fixed in the holding groove with an adhesive.
According to the tenth aspect of the present invention, the optical fiber fixing structure includes a core doped with a laser medium, a first clad that covers the outer periphery of the core and into which excitation light is introduced, and a second cover that covers the outer periphery of the first cladding. an optical fiber comprising a cladding, and the fiber holding member is an optical fiber is fixed, and a bonding agent for coating the optical fiber, the adhesive has a refractive index of refraction n 6 after curing of the second cladding index n 2 And is smaller than the refractive index n 1 of the first cladding, and the optical fiber is fixed to the fiber holding member in a state where the outer periphery of the second cladding is covered with an adhesive.
According to an eleventh aspect of the present invention, in the optical fiber fixing structure according to the tenth aspect, the optical fiber is preferably bonded to the fiber holding member with an adhesive.
 本発明の第12の態様によると、レーザ装置は、第5~第9のいずれか一つの態様によるダブルクラッドファイバ固定構造体と、コアにおいて増幅されるレーザ光を発生するレーザ光発生部と、第1クラッドに励起光を供給する励起光源とを備える。
 本発明の第13の態様によると、レーザ装置は、第10または第11の態様の光ファイバ固定構造体と、コアにおいて増幅されるレーザ光を発生するレーザ光発生部と、第1クラッドに励起光を供給する励起光源とを備える。
 本発明の第14の態様によると、レーザ装置は、第12の態様のレーザ装置において、ダブルクラッドファイバにより増幅されて出射する増幅光を波長変換して出力する波長変換部を備えることが好ましい。
 本発明の第15の態様によると、レーザ装置は、第13の態様のレーザ装置において、光ファイバにより増幅されて出射する増幅光を波長変換して出力する波長変換部を備えることが好ましい。
According to a twelfth aspect of the present invention, a laser apparatus includes: a double clad fiber fixing structure according to any one of the fifth to ninth aspects; a laser light generator that generates laser light amplified in the core; An excitation light source for supplying excitation light to the first cladding.
According to the thirteenth aspect of the present invention, there is provided a laser device, wherein the optical fiber fixing structure according to the tenth or eleventh aspect, a laser light generating unit that generates laser light amplified in the core, and the first cladding are excited. An excitation light source for supplying light.
According to a fourteenth aspect of the present invention, in the laser device according to the twelfth aspect, the laser device preferably includes a wavelength conversion unit that converts the wavelength of the amplified light that is amplified by the double clad fiber and outputs the amplified light.
According to a fifteenth aspect of the present invention, in the laser device according to the thirteenth aspect, it is preferable that the laser device includes a wavelength conversion unit that converts the wavelength of the amplified light that is amplified by the optical fiber and outputs the amplified light.
 本発明の第16の態様によると、露光装置は、第14または第15の態様のレーザ装置と、所定の露光パターンが形成されたフォトマスクを保持するためのマスク支持部と、露光対象物を保持するための露光対象物支持部と、レーザ装置から出力されたレーザ光をマスク支持部に保持されたフォトマスクに照射するための照明光学系と、フォトマスクを透過した光を露光対象物支持部に保持された露光対象物に投影するための投影光学系とを備える。 According to a sixteenth aspect of the present invention, an exposure apparatus includes: the laser device according to the fourteenth or fifteenth aspect; a mask support for holding a photomask on which a predetermined exposure pattern is formed; and an exposure object. An exposure object support unit for holding, an illumination optical system for irradiating a photomask held by the mask support unit with laser light output from the laser device, and an exposure object support for light transmitted through the photomask A projection optical system for projecting onto the exposure object held by the unit.
 本発明の第17の態様によると、検査装置は、第14または第15の態様のレーザ装置と、被検物を保持するための被検物支持部と、レーザ装置から出力されたレーザ光を被検物支持部に保持された被検物に照射するための照明光学系と、被検物からの光を検出器に投影するための投影光学系とを備える。 According to a seventeenth aspect of the present invention, an inspection apparatus includes a laser device according to the fourteenth or fifteenth aspect, a test object support for holding a test object, and a laser beam output from the laser apparatus. An illumination optical system for irradiating the test object held by the test object support unit and a projection optical system for projecting light from the test object onto the detector are provided.
 第1の態様のダブルクラッドファイバの固定方法では、硬化後の屈折率n6が第2クラッドの屈折率n2と略同一以上であり且つ第1クラッドの屈折率n1よりも小さい接着剤が用いられ、ファイバ保持部材に配設されたダブルクラッドファイバに第2クラッドの外周を覆うように接着剤を塗布し硬化させることにより、ダブルクラッドファイバがファイバ保持部材に固定される。 In the fixing method of the double clad fiber of the first aspect, an adhesive whose refractive index n 6 after curing is substantially equal to or larger than the refractive index n 2 of the second cladding and smaller than the refractive index n 1 of the first cladding is used. The double clad fiber is fixed to the fiber holding member by applying an adhesive to the double clad fiber disposed on the fiber holding member so as to cover the outer periphery of the second clad and curing it.
 第2の態様のダブルクラッドファイバ固定構造体では、ダブルクラッドファイバは、硬化後の屈折率n6が第2クラッドの屈折率n2と略同一以上であり且つ第1クラッドの屈折率n1よりも小さい接着剤により、第2クラッドの外周が接着剤により覆われた状態でファイバ保持部材に固定されている。 In the double clad fiber fixed structure according to the second aspect, the double clad fiber has a refractive index n 6 after curing substantially equal to or greater than the refractive index n 2 of the second clad and the refractive index n 1 of the first clad. The outer periphery of the second cladding is fixed to the fiber holding member with a small adhesive.
 このように接着固定されたダブルクラッドファイバについて、図9と同様のダブルクラッドファイバ230の軸方向の模式的な断面図を図10に示す。図10に示す本発明の態様においては、剥離部233aや微小な傷233bを含むダブルクラッドファイバ230の外周が屈折率n6の接着剤260により覆われている。 FIG. 10 shows a schematic cross-sectional view in the axial direction of a double-clad fiber 230 similar to FIG. 9 for the double-clad fiber bonded and fixed in this manner. In the embodiment of the present invention shown in FIG. 10, the outer periphery of the double clad fiber 230 including the peeling portion 233a and the minute scratch 233b is covered with an adhesive 260 having a refractive index n 6 .
 まず、第1クラッドを伝播するレーザ光(励起光)が第2クラッドの剥離部233aに入射した場合について考える。このとき、第1クラッド232の屈折率n1、第2クラッド233の屈折率n2、接着剤260の屈折率n6の関係は、n1>n6≧n2である。そのため、第1クラッド232を伝播して剥離部233aに入射したレーザ光は、図中に実線の矢印で示すように、第1クラッド232と接着剤260との界面で全反射され、剥離がなかった状態と同様の光路で第1クラッド内を伝播する。接着剤260の屈折率を第2クラッドの屈折率と略同一(n6≒n2)とした場合、剥離部周辺の屈折率構成は無傷部分と同様になり、剥離が光学的に補修されていることになる。 First, consider a case where laser light (excitation light) propagating through the first cladding is incident on the peeling portion 233a of the second cladding. At this time, the refractive index n 1 of the first cladding 232, the refractive index n 2 of the second cladding 233, the relationship of the refractive index n 6 of the adhesive 260 is n 1> n 6 ≧ n 2. Therefore, the laser light that has propagated through the first clad 232 and entered the peeling portion 233a is totally reflected at the interface between the first clad 232 and the adhesive 260, as shown by the solid arrow in the figure, and has no peeling. It propagates in the first cladding through the same optical path as in the above state. When the refractive index of the adhesive 260 is substantially the same as the refractive index of the second cladding (n 6 ≈n 2 ), the refractive index configuration around the peeled portion is the same as that of the intact portion, and the peeling is optically repaired. Will be.
 次に、第2クラッドを伝播するレーザ光について考える。ここで、各部の屈折率の関係は上記の通りn1>n6≧n2である。すなわち、第2クラッド233と接着剤260との屈折率差は、従来(n9>n1>n2)よりも小さくなっている。このことは、第2クラッド233を伝播するモードのレーザ光が、周囲の接着剤260の層へ逃げやすくなることを意味する。レーザ光が接着層へ逃げやすいと、第2クラッド233を伝播するレーザ光が傷233bまで伝播しにくくなる(若しくは伝播するレーザ光のパワーが低下する)ため、傷233bの部分から放出されるレーザ光のパワーが低下する。特に、接着剤260の屈折率を第2クラッドの屈折率と略同一(n6≒n2)にした場合、第2クラッド233とその周囲を覆う接着剤260とに屈折率差がないため光学的に界面が存在しなくなり、第2クラッド233を伝播してきたレーザ光は接着層に散逸する。さらに、仮に傷の周辺に散逸したレーザ光が入射したとしても、周囲との屈折率差がないためそのまま透過し局所過熱を生じることがない。 Next, consider laser light propagating through the second cladding. Here, the relationship between the refractive indexes of the respective portions is n 1 > n 6 ≧ n 2 as described above. That is, the refractive index difference between the second clad 233 and the adhesive 260 is smaller than the conventional (n 9 > n 1 > n 2 ). This means that the laser beam in the mode propagating through the second cladding 233 easily escapes to the surrounding adhesive 260 layer. If the laser beam easily escapes to the adhesive layer, the laser beam propagating through the second clad 233 is difficult to propagate to the scratch 233b (or the power of the propagating laser beam is reduced), so that the laser emitted from the scratch 233b portion. The light power is reduced. In particular, when the refractive index of the adhesive 260 is substantially the same as the refractive index of the second clad (n 6 ≈n 2 ), there is no difference in the refractive index between the second clad 233 and the adhesive 260 covering the periphery of the second clad 233. Thus, the interface is no longer present, and the laser light propagating through the second cladding 233 is dissipated to the adhesive layer. Furthermore, even if the laser beam dissipated around the wound is incident, there is no difference in refractive index from the surroundings, so that the laser beam is transmitted as it is and local overheating does not occur.
 従って、本発明の態様のダブルクラッドファイバの固定方法、およびダブルクラッドファイバ固定構造体によれば、仮に第2クラッドに微小な傷や剥離等が生じていたような場合でも、これらの部位の局所的な過熱を抑制することができる。 Therefore, according to the fixing method of the double clad fiber and the double clad fiber fixing structure according to the aspect of the present invention, even if a minute scratch or peeling is generated in the second clad, the local area of these parts is not affected. Overheating can be suppressed.
 第3の態様のレーザ装置は、第2の態様のダブルクラッドファイバ固定構造体を備えて構成される。また、第4の態様の露光装置、第5の態様の検査装置は、第3の態様のレーザ装置を備えて構成される。そのため、ダブルクラッドファイバの傷や剥離に起因した局所過熱が抑制され、長期安定性の高いレーザ装置、露光装置、検査装置を提供することができる。 The laser device according to the third aspect includes the double-clad fiber fixing structure according to the second aspect. Further, the exposure apparatus of the fourth aspect and the inspection apparatus of the fifth aspect are configured to include the laser apparatus of the third aspect. Therefore, it is possible to provide a laser apparatus, an exposure apparatus, and an inspection apparatus with high long-term stability in which local overheating due to scratches or peeling of the double clad fiber is suppressed.
本発明の適用例として示すレーザ装置の概要構成図である。It is a schematic block diagram of the laser apparatus shown as an example of application of this invention. 上記レーザ装置におけるダブルクラッド構造のファイバ増幅器を主体として示す概要構成図である。It is a schematic block diagram which mainly shows the fiber amplifier of the double clad structure in the said laser apparatus. ダブルクラッドファイバの軸線に沿った断面図である。It is sectional drawing along the axis line of a double clad fiber. ダブルクラッドファイバ固定構造体の模式的な外観図である。It is a typical external view of a double clad fiber fixed structure. 図4中に付記したV-V矢視の断面図である。FIG. 5 is a cross-sectional view taken along arrow VV appended in FIG. 4. ダブルクラッドファイバの軸線に沿ったダブルクラッドファイバ固定構造体の断面図である。It is sectional drawing of the double clad fiber fixed structure along the axis line of a double clad fiber. レーザ装置を備えたシステムの第1の適用例として示す露光装置の概要構成図である。It is a schematic block diagram of the exposure apparatus shown as a 1st application example of the system provided with the laser apparatus. レーザ装置を備えたシステムの第2の適用例として示す検査装置の概要構成図である。It is a schematic block diagram of the test | inspection apparatus shown as the 2nd application example of the system provided with the laser apparatus. 従来の固定方法で固定されたダブルクラッドファイバを伝播するレーザ光の挙動を説明するための説明図(ダブルクラッドファイバの軸線に沿った断面図)である。It is explanatory drawing (sectional drawing along the axis line of a double clad fiber) for demonstrating the behavior of the laser beam which propagates the double clad fiber fixed with the conventional fixing method. 本発明の態様の固定方法で固定されたダブルクラッドファイバを伝播するレーザ光の挙動を説明するための説明図(ダブルクラッドファイバの軸線に沿った断面図)である。It is explanatory drawing (sectional drawing along the axis line of a double clad fiber) for demonstrating the behavior of the laser beam which propagates the double clad fiber fixed with the fixing method of the aspect of this invention.
 以下、本発明を実施するための形態について、図面を参照しながら説明する。本発明を適用したレーザ装置LS全体の概要構成を図1に示す。例示するレーザ装置LSは、シード光を出射する光源部10と、光源部10から出射されたシード光を増幅して増幅光を出力する増幅部20と、増幅部20から出力された増幅光を波長変換して出力光を出力する波長変換部30と、各部の作動を制御する制御部40とを備えて構成される。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. A schematic configuration of the entire laser apparatus LS to which the present invention is applied is shown in FIG. The illustrated laser device LS includes a light source unit 10 that emits seed light, an amplification unit 20 that amplifies seed light emitted from the light source unit 10 and outputs amplified light, and amplified light output from the amplification unit 20. A wavelength conversion unit 30 that performs wavelength conversion and outputs output light, and a control unit 40 that controls the operation of each unit are configured.
 シード光及び出力光の波長や光波形、パワー等は、このレーザ装置LSを用いて構成される装置の用途及び機能に応じて適宜に設定可能である。本実施形態では、光源部10から出射される波長λ=1064nm、パワーが数mWレベルのシード光Lsを、増幅部20において数十~数百Wレベルに増幅し、増幅されたシード光すなわち増幅光Laを波長変換部30において波長355nmの出力光Lvに変換して出力する場合を例示する。 The wavelength, optical waveform, power, and the like of the seed light and output light can be appropriately set according to the use and function of the apparatus configured using the laser apparatus LS. In the present embodiment, the seed light Ls emitted from the light source unit 10 having the wavelength λ = 1064 nm and the power of several mW level is amplified by the amplification unit 20 to several tens to several hundreds W level. A case where the light La is converted into output light Lv having a wavelength of 355 nm by the wavelength conversion unit 30 and output is illustrated.
 光源部10は、波長λ=1064nmのレーザ光を発生するレーザ光源11を主体として構成される。レーザ光源11は、例えばDFB(Distributed Feedback)半導体レーザを用いることができる。DFB半導体レーザは、CW発振及びパルス発振させることができ、また温度制御することにより所定の波長範囲で狭帯域化された単一波長のレーザ光を出力させることができる。図1に示す光源部10は、レーザ光源11からON時間が充分に長いパルス光(あるいはCW光)を出力させ、その一部を電気光学変調素子(EOM)や音響光学変調素子(AOM)等の外部変調器15により切り出して、パルス状のシード光Lsを出力するようにした構成例を示す。 The light source unit 10 is mainly composed of a laser light source 11 that generates laser light having a wavelength λ = 1064 nm. As the laser light source 11, for example, a DFB (Distributed Feedback) semiconductor laser can be used. The DFB semiconductor laser can perform CW oscillation and pulse oscillation, and can output laser light having a single wavelength narrowed in a predetermined wavelength range by temperature control. A light source unit 10 shown in FIG. 1 outputs pulse light (or CW light) having a sufficiently long ON time from a laser light source 11, and a part of the light is emitted from an electro-optic modulation element (EOM), an acousto-optic modulation element (AOM), or the like. A configuration example in which the pulsed seed light Ls is output by being cut out by the external modulator 15 is shown.
 増幅部20は、光源部10から出射されたシード光Lsを数十~数百Wレベルに増幅して増幅光Laを波長変換部30に出射する。図では3つのファイバ増幅器21,22,23を直列に接続し、これら3段のファイバ増幅器21,22,23によってシード光Lsを順次増幅する構成を示す。本構成例では、1段目及び2段目のファイバ増幅器21,22としてシングルクラッド構造のイッテルビウム・ドープ・ファイバ増幅器(YDFA)を用い、3段目のファイバ増幅器23としてダブルクラッド構造のYDFAを用いた構成を示す。 The amplifying unit 20 amplifies the seed light Ls emitted from the light source unit 10 to several tens to several hundreds W level and emits the amplified light La to the wavelength conversion unit 30. The figure shows a configuration in which three fiber amplifiers 21, 22, and 23 are connected in series, and the seed light Ls is sequentially amplified by these three stages of fiber amplifiers 21, 22, and 23. In this configuration example, a ytterbium-doped fiber amplifier (YDFA) having a single clad structure is used as the first and second stage fiber amplifiers 21 and 22, and a double clad structure YDFA is used as the third stage fiber amplifier 23. Shows the configuration.
 1段目及び2段目のファイバ増幅器21,22は、増幅用のシングルクラッドファイバ210,220と、イッテルビウム(Yb)を励起する励起光源215,225とを主体として構成される。シングルクラッドファイバ210,220は、Ybがドープされたコアと、コアの外周を覆うクラッドとからなり、コアにシード光Ls及び励起光Lpが導入される。励起光源215,225は、例えば波長λ=975nmの半導体レーザが好適に用いられる。 The first and second stage fiber amplifiers 21 and 22 are mainly composed of single clad fibers 210 and 220 for amplification and excitation light sources 215 and 225 for exciting ytterbium (Yb). The single clad fibers 210 and 220 are composed of a core doped with Yb and a clad covering the outer periphery of the core, and seed light Ls and excitation light Lp are introduced into the core. As the excitation light sources 215 and 225, for example, a semiconductor laser having a wavelength λ = 975 nm is preferably used.
 3段目のファイバ増幅器23は、このファイバ増幅器23を主体とした概要構成を図2に示すように、増幅用のダブルクラッドファイバ230と、Ybを励起する励起光源235とを主体として構成される。ダブルクラッドファイバ230は、ファイバの軸線に沿った断面図を図3に示すように、Ybがドープされたコア231と、コア231の外周を覆う第1クラッド232と、第1クラッドの外周を覆う第2クラッド233とを有して構成される。ファイバ増幅器21,22により増幅されたシード光(便宜的に信号光という)はコア231に導入され、励起光源235から出射した励起光Lpは第1クラッド232に導入される。 As shown in FIG. 2, the third-stage fiber amplifier 23 is mainly composed of an amplification double-clad fiber 230 and an excitation light source 235 for exciting Yb. . As shown in FIG. 3, the double-clad fiber 230 is a Yb-doped core 231, a first clad 232 that covers the outer periphery of the core 231, and an outer periphery of the first cladding. A second clad 233. The seed light (referred to as signal light for convenience) amplified by the fiber amplifiers 21 and 22 is introduced into the core 231, and the excitation light Lp emitted from the excitation light source 235 is introduced into the first cladding 232.
 具体的には、前段のファイバ増幅器22から出力された信号光が、WDM(Wavelength Division Multiplex)カプラ237を介してダブルクラッドファイバ230のコア231に入射し、励起光源235から出射した励起光Lpが、WDMカプラ237を介してダブルクラッドファイバ230の第1クラッド232に入射するように構成される。第1クラッド(ポンピングガイドとも称される)232は励起光のマルチモード導波路として作用し、複数の励起光源235から出射された高出力のマルチモードレーザ光を軸方向に導波して、コア231にドープされたYbが効率的に励起されるようになっている。 Specifically, the signal light output from the preceding fiber amplifier 22 is incident on the core 231 of the double clad fiber 230 via a WDM (Wavelength Division Multiplex) coupler 237 and the pumping light Lp emitted from the pumping light source 235 is generated. , And is incident on the first cladding 232 of the double cladding fiber 230 via the WDM coupler 237. The first clad (also referred to as a pumping guide) 232 acts as a multi-mode waveguide for pumping light, and guides high-power multi-mode laser light emitted from a plurality of pumping light sources 235 in the axial direction. Yb doped in H.231 is excited efficiently.
 ダブルクラッドファイバ230は、ファイバの生産性や加工性、取り扱いの容易さなどから、一般的に、コア231及び第1クラッド232が石英(シリカ)ガラス製、第2クラッド233が樹脂製の光ファイバが用いられる。3段目のファイバ増幅器23により増幅された信号光すなわち増幅光Laは増幅部20から出射し、波長変換部30に入射する
The double clad fiber 230 is generally an optical fiber in which the core 231 and the first clad 232 are made of quartz (silica) glass, and the second clad 233 is made of resin because of fiber productivity, workability, and ease of handling. Is used. The signal light amplified by the third-stage fiber amplifier 23, that is, the amplified light La is emitted from the amplification unit 20 and enters the wavelength conversion unit 30.
 波長変換部30は、波長変換光学素子31,32を主体として構成される。増幅部20から波長変換部30に入射した波長λ1=1064nmの増幅光Laは、集光レンズを介して波長変換光学素子31に集光入射する。波長変換光学素子31は、第2高調波発生(SHG:Second Harmonic Generation)により増幅光Laの第2高調波を発生する非線形光学結晶である。波長変換光学素子31として、LBO(LiB35)結晶を非臨界位相整合(NCPM:Non Critical Phase Matching)で用いる構成が例示される。 The wavelength conversion unit 30 is mainly composed of wavelength conversion optical elements 31 and 32. Amplified light La having a wavelength λ 1 = 1064 nm incident on the wavelength conversion unit 30 from the amplification unit 20 is condensed and incident on the wavelength conversion optical element 31 via a condensing lens. The wavelength conversion optical element 31 is a nonlinear optical crystal that generates a second harmonic of the amplified light La by second harmonic generation (SHG). As the wavelength conversion optical element 31, a configuration in which an LBO (LiB 3 O 5 ) crystal is used for non-critical phase matching (NCPM) is exemplified.
 LBO結晶を非臨界位相整合で用いた場合には、発生する波長532nmの第2高調波にウォークオフが生じない。そのため、十分な相互作用長を確保して効率的に波長変換を行うことができる。また、出射する第2高調波のビーム断面が楕円化するようなことがないため、波長変換光学素子31と波長変換光学素子32との間にシリンドリカルレンズ等の整形光学素子を設ける必要がなく、波長変換光学素子32において効率的に波長変換することができる。 When the LBO crystal is used with non-critical phase matching, no walk-off occurs in the generated second harmonic with a wavelength of 532 nm. Therefore, wavelength conversion can be efficiently performed while ensuring a sufficient interaction length. In addition, since the beam section of the emitted second harmonic does not become elliptical, it is not necessary to provide a shaping optical element such as a cylindrical lens between the wavelength conversion optical element 31 and the wavelength conversion optical element 32. The wavelength conversion optical element 32 can efficiently perform wavelength conversion.
 なお、増幅部20から出力される増幅光Laのパワーが~十W程度の低パワーの場合には、波長変換光学素子31としてPPLN(Periodically Poled LiNbO3)結晶や、PPLT(Periodically Poled LiTaO3)、PPKTP(Periodically Poled KTiOPO4)結晶等の疑似位相整合(QPM:Quasi Phase Matching)結晶を用いても良い。QPM結晶を用いた場合にも効率的に波長変換することができ、また波長変換光学素子31と波長変換光学素子32との間に整形光学素子を設ける必要がない。 When the power of the amplified light La output from the amplifying unit 20 is as low as about 10 W, the wavelength conversion optical element 31 may be a PPLN (Periodically Poled LiNbO 3 ) crystal or a PPLT (Periodically Poled LiTaO 3 ). Alternatively, a quasi phase matching (QPM) crystal such as PPKTP (Periodically Poled KTiOPO 4 ) crystal may be used. Even when a QPM crystal is used, wavelength conversion can be performed efficiently, and there is no need to provide a shaping optical element between the wavelength conversion optical element 31 and the wavelength conversion optical element 32.
 波長変換光学素子31で発生した第2高調波及び波長変換光学素子31を波長変換されずに透過した増幅光は、2波長波長板によりいずれか一方(例えば増幅光)の偏光面を90度回転させ、波長変換光学素子32に集光入射する。 The second harmonic generated by the wavelength conversion optical element 31 and the amplified light transmitted through the wavelength conversion optical element 31 without being converted in wavelength are rotated by 90 degrees on the polarization plane of one (for example, the amplified light) by the two-wavelength wavelength plate. Then, the light is focused and incident on the wavelength conversion optical element 32.
 波長変換光学素子32は、和周波発生(SFG:Sum Frequency Generation)により第2高調波と増幅光との和周波を発生させる非線形光学結晶である。波長変換光学素子32として、LBO結晶をタイプIの臨界位相整合(CPM)で用いる構成が例示される。なお、波長変換光学素子32としては、BBO(β-BaB24)結晶、CLBO(CsLiB610)結晶を用いることもできる。波長変換光学素子32に入射した波長1064nmの増幅光と波長532nmの第2高調波は、波長変換光学素子32を透過する過程で波長変換され、和周波である波長が355nmの第3高調波が発生する。 The wavelength conversion optical element 32 is a nonlinear optical crystal that generates the sum frequency of the second harmonic and the amplified light by sum frequency generation (SFG). As the wavelength conversion optical element 32, a configuration in which an LBO crystal is used for type I critical phase matching (CPM) is exemplified. As the wavelength conversion optical element 32, a BBO (β-BaB 2 O 4 ) crystal or a CLBO (CsLiB 6 O 10 ) crystal can also be used. The amplified light having a wavelength of 1064 nm and the second harmonic wave having a wavelength of 532 nm incident on the wavelength conversion optical element 32 are wavelength-converted in the process of passing through the wavelength conversion optical element 32, and the third harmonic wave having a sum frequency of 355 nm is obtained. appear.
 波長変換光学素子32で発生した第3高調波は、出力光Lvとしてレーザ装置LSから出力される。なお、波長変換光学素子32から出射する光には、波長変換光学素子32を波長変換されずに透過した残余の増幅光及び第2高調波が含まれるが、波長変換光学素子32の出射端側にダイクロイックミラーまたはプリズム等を配設してこれらを除去することにより、波長355nmの第3高調波のみをレーザ装置LSから出力することができる。 The third harmonic generated by the wavelength conversion optical element 32 is output from the laser device LS as output light Lv. Note that the light emitted from the wavelength conversion optical element 32 includes the remaining amplified light and the second harmonic wave that have been transmitted through the wavelength conversion optical element 32 without being wavelength-converted. By disposing a dichroic mirror, a prism, or the like on this, only the third harmonic wave having a wavelength of 355 nm can be output from the laser device LS.
 以上のように概要構成されるレーザ装置LSにあって、ファイバ増幅器23には、ダブルクラッドファイバ230を冷却するための冷却機構25が設けられている。すなわち、ダブルクラッドファイバ230は、冷却機能を有するファイバ保持部材に接着固定され、高エネルギーのレーザ光が伝播する際にファイバ内の僅かな損失に起因して生じる発熱を吸収して、ファイバの過熱を防止するようになっている。冷却機構25の一例として、水冷式のファイバ保持部材250にダブルクラッドファイバ230を接着固定したダブルクラッドファイバ固定構造体Aの模式図(外観図)を図4に示す。また、図4中に付記したV-V矢視の断面図を図5に示す。 In the laser apparatus LS schematically configured as described above, the fiber amplifier 23 is provided with a cooling mechanism 25 for cooling the double clad fiber 230. That is, the double clad fiber 230 is bonded and fixed to a fiber holding member having a cooling function, absorbs heat generated due to a slight loss in the fiber when a high-energy laser beam propagates, and overheats the fiber. Is to prevent. As an example of the cooling mechanism 25, FIG. 4 shows a schematic diagram (outside view) of a double clad fiber fixing structure A in which a double clad fiber 230 is bonded and fixed to a water-cooled fiber holding member 250. FIG. 5 is a cross-sectional view taken along arrows VV appended in FIG.
 例示するファイバ保持部材250は、全体として平坦なプレート状をなし、アルミニウム合金やステンレス等の金属材料を用いて製作される。プレート内部には、ドリル加工等により冷却水を循環させるための連通した流路251が穿設されており、この流路251に不図示の冷却装置から所定温度の冷却水が供給されて、ファイバ保持部材250が略一定の温度に保持されるようになっている。 The illustrated fiber holding member 250 has a flat plate shape as a whole, and is manufactured using a metal material such as an aluminum alloy or stainless steel. A communicating channel 251 for circulating cooling water by drilling or the like is drilled inside the plate. Cooling water at a predetermined temperature is supplied to the channel 251 from a cooling device (not shown), and fiber The holding member 250 is held at a substantially constant temperature.
 ファイバ保持部材250の一面には、ダブルクラッドファイバ230を保持するための保持溝252が形成されている。保持溝252は、溝幅および深さがダブルクラッドファイバ230の直径dよりも幾分大きい(例えば1.2d~2d程度の)、1本の連続した凹溝状に形成されている。本実施例では、プレート上面に1本の渦巻き状の保持溝252を形成した構成を例示する。そのため、ファイバの組み付け時に、ダブルクラッドファイバ230を保持溝252に容易に装着して係止可能になっている。 A holding groove 252 for holding the double clad fiber 230 is formed on one surface of the fiber holding member 250. The holding groove 252 is formed in one continuous concave groove shape whose groove width and depth are somewhat larger than the diameter d of the double clad fiber 230 (for example, about 1.2d to 2d). In this embodiment, a configuration in which one spiral holding groove 252 is formed on the upper surface of the plate is illustrated. Therefore, the double clad fiber 230 can be easily mounted and locked in the holding groove 252 when the fiber is assembled.
 ファイバ保持部材250に係止されたダブルクラッドファイバ230の上方から、ファイバの外周を覆うように保持溝252に接着剤260を注入して硬化させる。本実施例において、接着剤260は、硬化後の屈折率n6が第1クラッドよりも小さく第2クラッド233の屈折率n2と略同一(n1>n6≒n2)になるように調製されたものである。これにより、ダブルクラッドファイバ230は、第2クラッド233の外周が第2クラッドとほぼ同じ屈折率の接着剤260に覆われた状態で保持溝252内に埋設され、ファイバ保持部材250に固定される。 From the upper side of the double clad fiber 230 locked to the fiber holding member 250, an adhesive 260 is injected into the holding groove 252 so as to cover the outer periphery of the fiber, and cured. In this embodiment, the adhesive 260 has a refractive index n 6 after curing that is smaller than that of the first cladding and substantially equal to the refractive index n 2 of the second cladding 233 (n 1 > n 6 ≈n 2 ). It has been prepared. Thus, the double clad fiber 230 is embedded in the holding groove 252 and fixed to the fiber holding member 250 with the outer periphery of the second clad 233 covered with the adhesive 260 having substantially the same refractive index as that of the second clad. .
 なお、本実施例において、ダブルクラッドファイバ230は、コア231および第1クラッド232が石英(シリカ)ガラス製、第2クラッド233が樹脂製の光ファイバを用いている。このとき、好適な接着剤260として、第2クラッド233を構成する樹脂と同系統の樹脂材料を基剤として、硬化後の屈折率がn6≒n2になるように調整した接着剤(例えば、フッ素系やシリコン系の接着剤)が例示される。なお、硬化後の屈折率がn6≒n2になるような接着剤であれば、第2クラッド233と異なる系統の樹脂材料を基剤としたものであっても良く、また、第1,第2クラッドの材質に応じて適宜な種類の接着剤を用いることができる。 In this embodiment, the double clad fiber 230 uses an optical fiber in which the core 231 and the first clad 232 are made of quartz (silica) glass and the second clad 233 is made of resin. At this time, as a suitable adhesive 260, an adhesive (for example, an adhesive adjusted to have a refractive index after curing of n 6 ≈n 2 using a resin material of the same system as the resin constituting the second cladding 233 as a base) And fluorine-based and silicon-based adhesives). In addition, as long as the adhesive has a refractive index after curing of n 6 ≈n 2 , it may be based on a resin material of a system different from that of the second cladding 233, An appropriate type of adhesive can be used according to the material of the second cladding.
 以上のような固定方法により固定されたダブルクラッドファイバ固定構造体Aにおける、第1クラッド232および第2クラッド233を伝播するレーザ光の挙動について、図6を参照しながら説明する。図6は、ダブルクラッドファイバ230の軸線に沿ったダブルクラッドファイバ固定構造体Aの断面図(平断面図)である。ダブルクラッドファイバ230は、第2クラッド233の外周が第2クラッドとほぼ同じ屈折率の接着剤260により覆われた状態で保持溝252内に埋設され、ファイバ保持部材250に固定されている。 The behavior of laser light propagating through the first cladding 232 and the second cladding 233 in the double-clad fiber fixing structure A fixed by the fixing method as described above will be described with reference to FIG. FIG. 6 is a cross-sectional view (planar cross-sectional view) of the double-clad fiber fixing structure A along the axis of the double-clad fiber 230. The double clad fiber 230 is embedded in the holding groove 252 and fixed to the fiber holding member 250 in a state where the outer periphery of the second clad 233 is covered with the adhesive 260 having substantially the same refractive index as that of the second clad.
 まず、第1クラッド232を伝播するレーザ光が第2クラッドの剥離部233aに入射した場合について考える。このとき、第1クラッド232の屈折率n1、第2クラッド233の屈折率n2、接着剤260の屈折率n6の関係は、n1>n6≒n2である。すなわち、剥離部233aの周辺における第1クラッド232とその周囲の部材の屈折率の関係は、剥離がない無傷部分の屈折率関係と同様になり、光学的には剥離が補修されているに等しい。そのため、第1クラッド232を伝播して剥離部233aに入射したレーザ光は、図中に実線の矢印で示すように、第1クラッド232と接着剤260との界面で全反射され、剥離がなかった状態と同様の光路で第1クラッド232内を伝播する。 First, consider a case where laser light propagating through the first cladding 232 is incident on the peeling portion 233a of the second cladding. At this time, the refractive index n 1 of the first cladding 232, the refractive index n 2 of the second cladding 233, the relationship of the refractive index n 6 of the adhesive 260 is n 1> n 6 ≒ n 2. That is, the relationship between the refractive indexes of the first cladding 232 and the surrounding members in the periphery of the peeling portion 233a is the same as the refractive index relationship of the intact portion where there is no peeling, and is optically equivalent to that the peeling is repaired. . Therefore, the laser light that has propagated through the first clad 232 and entered the peeling portion 233a is totally reflected at the interface between the first clad 232 and the adhesive 260, as shown by the solid arrow in the figure, and has no peeling. It propagates in the first cladding 232 through the same optical path as in the above state.
 次に、第2クラッドを伝播するレーザ光について考える。ここで、各部の屈折率の関係は上記の通りn1>n6≒n2であり、第2クラッド233と接着剤260の屈折率はほぼ同一になっている。すなわち、第2クラッド233とその周囲を覆う接着剤260とに屈折率差がなく、光学的に界面が存在しない状態になっている。そのため、第2クラッド233をファイバ保持部材250まで伝播してきたレーザ光は、図中に二点鎖線の矢印で示すように、第2クラッド233から接着剤260の層に出射して散逸する。僅かな屈折率差により反射される成分(微弱なレーザ光)があっても、図中に点線の矢印で示すように、反射の度に大部分が接着剤260の層に出射して大きく減衰し、第2クラッド233を伝播するレーザ光は消滅する。また、仮に、第2クラッド233を伝播したレーザ光や接着剤260の層に散逸したレーザ光が傷233bに入射したとしても、周囲との屈折率差がないためそのまま透過し、傷の部分のみが局所的に過熱されるようなことは生じない。 Next, consider laser light propagating through the second cladding. Here, the relationship between the refractive indexes of the respective portions is n 1 > n 6 ≈n 2 as described above, and the refractive indexes of the second cladding 233 and the adhesive 260 are substantially the same. That is, there is no difference in refractive index between the second cladding 233 and the adhesive 260 covering the periphery thereof, and no optical interface exists. Therefore, the laser light that has propagated through the second clad 233 to the fiber holding member 250 is emitted from the second clad 233 to the layer of the adhesive 260 and dissipated, as indicated by the two-dot chain arrow in the figure. Even if there is a component reflected by a slight difference in refractive index (weak laser beam), as shown by the dotted arrow in the figure, most of the light is reflected on the adhesive 260 layer and greatly attenuated. Then, the laser beam propagating through the second cladding 233 disappears. Even if the laser light propagated through the second clad 233 or the laser light dissipated into the adhesive 260 layer enters the scratch 233b, it is transmitted as it is because there is no difference in refractive index from the surroundings, and only the scratched portion is transmitted. Is not locally overheated.
 従って、以上説明したようなダブルクラッドファイバ固定構造体Aによれば、たとえ第2クラッド233に微小な傷や剥離等が生じていたような場合でも、これらの部位で局所的な過熱が生じるようなことがない。また、ファイバ保持部材250に保持溝252が形成されているため、ダブルクラッドファイバ230を容易に装着することができる。また、保持溝252は、溝幅および深さがダブルクラッドファイバ230の直径よりも幾分大きい程度の凹溝状に形成されており、この保持溝252にダブルクラッドファイバ230が接着剤260により埋設されて固定されている。すなわちダブルクラッドファイバ230は、近接した保持溝252の底面と側壁面から冷却される構造になっている。そのためファイバの過熱が効果的に抑制され、ファイバ増幅器23の長期安定性を高めることができる。 Therefore, according to the double clad fiber fixing structure A as described above, even if a minute scratch or peeling occurs in the second clad 233, local overheating occurs at these portions. There is nothing. Further, since the holding groove 252 is formed in the fiber holding member 250, the double clad fiber 230 can be easily attached. Further, the holding groove 252 is formed in a concave groove shape whose groove width and depth are somewhat larger than the diameter of the double clad fiber 230, and the double clad fiber 230 is embedded in the holding groove 252 with an adhesive 260. Has been fixed. That is, the double clad fiber 230 is structured to be cooled from the bottom surface and the side wall surface of the adjacent holding groove 252. Therefore, overheating of the fiber is effectively suppressed, and the long-term stability of the fiber amplifier 23 can be improved.
 なお、実施例では、冷却機能を有するファイバ保持部材として、平坦な金属プレートの内部に冷却水を循環させる流路251を形成し、一面にダブルクラッドファイバを埋設する凹溝状の保持溝252を形成した水冷式のファイバ保持部材250を例示した。しかし、ファイバ保持部材の形態はこのような実施例に限られるものではない。例えば、パワートランジスタ等を冷却するヒートシンク材の部品取り付け面に、上記同様の保持溝252を形成して空冷式のファイバ保持部材を構成しても良い。このような形態のファイバ保持部材は、ダブルクラッドファイバの発熱量が比較的低い場合に好適であり、低コストに冷却機構を構成することができる。また、例えば、円柱状の金属ロッドまたは中空円筒状の金属パイプの外周面に、螺旋状に連続する凹溝状の保持溝252を形成し、水冷式または空冷式のファイバ保持部材を構成しても良い。このような形態のファイバ保持部材によれば、ファイバ保持部材を比較的低コストに製作できることに加えて、ダブルクラッドファイバ230が相互に交差することがなく、またファイバの曲率を一定にすることができる。 In the embodiment, as a fiber holding member having a cooling function, a flow path 251 for circulating cooling water is formed inside a flat metal plate, and a concave groove-like holding groove 252 in which a double clad fiber is embedded is formed on one surface. The formed water-cooled fiber holding member 250 is illustrated. However, the form of the fiber holding member is not limited to such an embodiment. For example, a holding groove 252 similar to the above may be formed on a component mounting surface of a heat sink material that cools a power transistor or the like to constitute an air-cooled fiber holding member. The fiber holding member of such a form is suitable when the heat generation amount of the double clad fiber is relatively low, and the cooling mechanism can be configured at low cost. In addition, for example, a concave groove-shaped holding groove 252 that is continuous in a spiral shape is formed on the outer peripheral surface of a columnar metal rod or a hollow cylindrical metal pipe to constitute a water-cooled or air-cooled fiber holding member. Also good. According to such a form of the fiber holding member, in addition to being able to manufacture the fiber holding member at a relatively low cost, the double clad fibers 230 do not cross each other and the curvature of the fiber can be made constant. it can.
 また本実施形態では、ファイバ増幅器の一例として、コアにYb(イッテルビウム)がドープされたYDFAを例示したが、コアにEr(エルビウム)がドープされたEDFや、コアにTm(ツリウム)がドープされたTDFAについても同様に適用し、同様の効果を得ることができる。さらに、波長変換部30を有し、増幅部20から出力された増幅光Laを波長変換部30において波長355nmに波長変換して出力するレーザ装置を例示したが、レーザ装置LSから出力する出力光Lvの波長は任意である。すなわち、波長変換部30を備えることなく増幅光Laをそのまま出射するレーザ装置や、光源部10を備えることなく1段目のファイバ増幅器21をファイバーレーザとしたレーザ装置等についても、本発明を適用することにより既述した効果を享受することができる。 In this embodiment, YDFA in which the core is doped with Yb (ytterbium) is exemplified as an example of the fiber amplifier. However, the core is doped with Er (erbium), and the core is doped with Tm (thulium). The same effect can be obtained by applying the same to TDFA. Further, the laser device that has the wavelength conversion unit 30 and outputs the amplified light La output from the amplification unit 20 after wavelength conversion to the wavelength 355 nm in the wavelength conversion unit 30 is illustrated. However, the output light output from the laser device LS The wavelength of Lv is arbitrary. That is, the present invention is also applied to a laser device that emits the amplified light La as it is without providing the wavelength conversion unit 30, or a laser device that uses the first-stage fiber amplifier 21 as a fiber laser without the light source unit 10. By doing so, the effects described above can be enjoyed.
 以上説明したようなレーザ装置LSは、小型軽量であるとともに取り扱いが容易であり、露光装置や光造形装置等の光加工装置、フォトマスクやウェハ等の検査装置、顕微鏡や望遠鏡等の観察装置、測長器や形状測定器等の測定装置、光治療装置などのシステムに好適に適用することができる。 The laser device LS as described above is small and light and easy to handle, optical processing devices such as exposure devices and stereolithography devices, inspection devices such as photomasks and wafers, observation devices such as microscopes and telescopes, The present invention can be suitably applied to a measuring device such as a length measuring device or a shape measuring device, and a system such as a phototherapy device.
 レーザ装置LSを備えたシステムの第1の適用例として、半導体製造や液晶パネル製造のフォトリソグラフィ工程で用いられる露光装置について、その概要構成を示す図7を参照して説明する。露光装置500は、原理的には写真製版と同じであり、石英ガラス製のフォトマスク513に精密に描かれたデバイスパターンを、フォトレジストを塗布した半導体ウェハやガラス基板などの露光対象物515に光学的に投影して転写する。 As a first application example of a system including a laser device LS, an exposure apparatus used in a photolithography process for manufacturing a semiconductor or a liquid crystal panel will be described with reference to FIG. The exposure apparatus 500 is in principle the same as photolithography, and a device pattern precisely drawn on a quartz glass photomask 513 is applied to an exposure object 515 such as a semiconductor wafer or glass substrate coated with a photoresist. Optically project and transfer.
 露光装置500は、上述したレーザ装置LSと、照明光学系502と、フォトマスク513を保持するためのマスク支持台503と、投影光学系504と、露光対象物515を保持するための露光対象物支持テーブル505と、露光対象物支持テーブル505を水平面内で移動させるための駆動機構506とを備えて構成される。照明光学系502は複数のレンズ群からなり、レーザ装置LSから出力されたレーザ光(出力光Lv)を、マスク支持台503に保持されたフォトマスク513に照射する。投影光学系504も複数のレンズ群により構成され、フォトマスク513を透過した光を露光対象物支持テーブル上の露光対象物515に投影する。 The exposure apparatus 500 includes the laser apparatus LS, the illumination optical system 502, the mask support base 503 for holding the photomask 513, the projection optical system 504, and the exposure object for holding the exposure object 515. A support table 505 and a drive mechanism 506 for moving the exposure object support table 505 in a horizontal plane are provided. The illumination optical system 502 includes a plurality of lens groups, and irradiates the photomask 513 held on the mask support 503 with laser light (output light Lv) output from the laser device LS. The projection optical system 504 is also composed of a plurality of lens groups, and projects the light transmitted through the photomask 513 onto the exposure object 515 on the exposure object support table.
 このような構成の露光装置500においては、レーザ装置LSから出力されたレーザ光が照明光学系502に入力され、所定光束に調整されたレーザ光がマスク支持台503に保持されたフォトマスク513に照射される。フォトマスク513を通過した光はフォトマスク513に描かれたデバイスパターンの像を有しており、この光が投影光学系504を介して露光対象物支持テーブル505に保持された露光対象物515の所定位置に照射される。これにより、フォトマスク513のデバイスパターンの像が、半導体ウェハや液晶パネル等の露光対象物515の上に所定倍率で結像露光される。 In the exposure apparatus 500 having such a configuration, the laser light output from the laser apparatus LS is input to the illumination optical system 502, and the laser light adjusted to a predetermined light flux is applied to the photomask 513 held on the mask support 503. Irradiated. The light that has passed through the photomask 513 has an image of a device pattern drawn on the photomask 513, and this light of the exposure object 515 held on the exposure object support table 505 via the projection optical system 504. A predetermined position is irradiated. Thereby, the image of the device pattern of the photomask 513 is image-exposed at a predetermined magnification on the exposure object 515 such as a semiconductor wafer or a liquid crystal panel.
 次に、レーザ装置LSを備えたシステムの第2の適用例として、フォトマスクや液晶パネル、ウェハ等(被検物)の検査工程で使用される検査装置について、その概要構成を示す図8を参照して説明する。図8に例示する検査装置600は、フォトマスク等の光透過性を有する被検物613に描かれた微細なデバイスパターンの検査に好適に使用される。 Next, as a second application example of the system including the laser device LS, FIG. 8 showing a schematic configuration of an inspection device used in an inspection process of a photomask, a liquid crystal panel, a wafer, or the like (test object). The description will be given with reference. An inspection apparatus 600 illustrated in FIG. 8 is suitably used for inspecting a fine device pattern drawn on a light-transmitting object 613 such as a photomask.
 検査装置600は、前述したレーザ装置LSと、照明光学系602と、被検物613を保持するための被検物支持台603と、投影光学系604と、被検物613からの光を検出するためのTDI(Time Delay Integration)センサ615と、被検物支持台603を水平面内で移動させるための駆動機構606とを備えて構成される。照明光学系602は複数のレンズ群からなり、レーザ装置LSから出力されたレーザ光を、所定光束に調整して被検物支持台603に保持された被検物613に照射する。投影光学系604も複数のレンズ群により構成され、被検物613を透過した光をTDIセンサ615に投影する。 The inspection apparatus 600 detects light from the laser apparatus LS, the illumination optical system 602, the test object support base 603 for holding the test object 613, the projection optical system 604, and the test object 613. TDI (Time Delay Integration) sensor 615 and a drive mechanism 606 for moving the object support base 603 in the horizontal plane. The illumination optical system 602 includes a plurality of lens groups, and adjusts the laser light output from the laser device LS to a predetermined light flux and irradiates the test object 613 held on the test object support base 603. The projection optical system 604 is also composed of a plurality of lens groups, and projects the light transmitted through the test object 613 onto the TDI sensor 615.
 このような構成の検査装置600においては、レーザ装置LSから出力されたレーザ光(出力光Lv)が照明光学系602に入力され、所定光束に調整されたレーザ光が被検物支持台603に保持されたフォトマスク等の被検物613に照射される。被検物613からの光(本構成例においては透過光)は、被検物613に描かれたデバイスパターンの像を有しており、この光が投影光学系604を介してTDIセンサ615に投影され結像する。このとき、駆動機構606による被検物支持台603の水平移動速度と、TDIセンサ615の転送クロックとは同期して制御される。 In the inspection apparatus 600 having such a configuration, the laser light (output light Lv) output from the laser apparatus LS is input to the illumination optical system 602, and the laser light adjusted to a predetermined light flux is applied to the object support base 603. The object 613 such as a held photomask is irradiated. The light from the object 613 (transmitted light in this configuration example) has an image of a device pattern drawn on the object 613, and this light is transmitted to the TDI sensor 615 via the projection optical system 604. Projected and imaged. At this time, the horizontal movement speed of the test object support base 603 by the drive mechanism 606 and the transfer clock of the TDI sensor 615 are controlled in synchronization.
 そのため、被検物613のデバイスパターンの像がTDIセンサ615により検出され、このようにして検出された被検物613の検出画像と、予め設定された所定の参照画像とを比較することにより、被検物に描かれた微細パターンの欠陥が抽出される。なお、被検物613がウェハ等のように光透過性を有さない場合には、被検物からの反射光を投影光学系604に入射してTDIセンサ615に導くことにより、同様に構成することができる。 Therefore, an image of the device pattern of the test object 613 is detected by the TDI sensor 615, and by comparing the detection image of the test object 613 detected in this way with a predetermined reference image set in advance, The defect of the fine pattern drawn on the test object is extracted. If the test object 613 does not have optical transparency like a wafer or the like, the reflected light from the test object is incident on the projection optical system 604 and guided to the TDI sensor 615 in the same manner. can do.
 次の優先権基礎出願の開示内容は引用文としてここに組み込まれる。
 日本国特許出願2013年第169628号(2013年8月19日出願)
The disclosure of the following priority application is hereby incorporated by reference.
Japanese Patent Application No. 2013 169628 (filed Aug. 19, 2013)
A ダブルクラッドファイバ固定構造体
LS レーザ装置
Lp 励起光
Lv 出力光
10光源部(レーザ光発生部)
20 増幅部(21,22,23 ファイバ増幅器)
25 冷却機構
30 波長変換部(31,32 波長変換光学素子)
230 ダブルクラッドファイバ(231 コア、232 第1クラッド、233 第2クラッド)
235 励起光源
250 ファイバ保持部材(251 流路、252 保持溝)
260 接着剤
500 露光装置
502 照明光学系
503 マスク支持台
504 投影光学系
505 露光対象物支持テーブル
506 駆動機構
513 フォトマスク
515 露光対象物
600 検査装置
602 照明光学系
603 被検物支持台
604 投影光学系
606 駆動機構
613 被検物
615 TDIセンサ
A Double-clad fiber fixed structure LS Laser device Lp Excitation light Lv Output light 10 Light source part (laser light generation part)
20 Amplifier (21, 22, 23 fiber amplifier)
25 Cooling mechanism 30 Wavelength conversion part (31, 32 wavelength conversion optical element)
230 double clad fiber (231 core, 232 first clad, 233 second clad)
235 Excitation light source 250 Fiber holding member (251 flow path, 252 holding groove)
260 Adhesive 500 Exposure Device 502 Illumination Optical System 503 Mask Support Stand 504 Projection Optical System 505 Exposure Object Support Table 506 Drive Mechanism 513 Photo Mask 515 Exposure Object 600 Inspection Device 602 Illumination Optical System 603 Object Support Stand 604 Projection Optical System 606 Drive mechanism 613 Test object 615 TDI sensor

Claims (17)

  1.  レーザ媒質がドープされたコアと、前記コアの外周を覆い励起光が導入される第1クラッドと、前記第1クラッドの外周を覆う第2クラッドと、を有するダブルクラッドファイバをファイバ保持部材に固定するダブルクラッドファイバの固定方法であって、
     硬化後の屈折率n6が前記第2クラッドの屈折率n2と略同一以上であり且つ前記第1クラッドの屈折率n1よりも小さい接着剤を用い、
     前記ファイバ保持部材に配設された前記ダブルクラッドファイバに、前記第2クラッドの外周を覆うように前記接着剤を塗布して硬化させ、
     前記ダブルクラッドファイバを前記ファイバ保持部材に固定するダブルクラッドファイバの固定方法。
    A double-clad fiber having a core doped with a laser medium, a first cladding that covers the outer periphery of the core and into which excitation light is introduced, and a second cladding that covers the outer periphery of the first cladding is fixed to a fiber holding member. A double-clad fiber fixing method,
    Using an adhesive having a refractive index n 6 after curing substantially equal to or greater than the refractive index n 2 of the second cladding and smaller than the refractive index n 1 of the first cladding;
    Applying and curing the adhesive on the double clad fiber disposed on the fiber holding member so as to cover the outer periphery of the second clad,
    A double-clad fiber fixing method for fixing the double-clad fiber to the fiber holding member.
  2.  前記接着剤は、前記硬化後の屈折率n6が前記第2クラッドの屈折率n2と略同一である請求項1に記載のダブルクラッドファイバの固定方法。 2. The method of fixing a double clad fiber according to claim 1, wherein the adhesive has a refractive index n 6 after the curing substantially equal to a refractive index n 2 of the second cladding.
  3.  レーザ媒質がドープされたコアと、前記コアの外周を覆い励起光が導入される第1クラッドと、前記第1クラッドの外周を覆う第2クラッドと、を含む光ファイバをファイバ保持部材に固定する光ファイバの固定方法であって、
     硬化後の屈折率n6が前記第2クラッドの屈折率n2と略同一以上であり且つ前記第1クラッドの屈折率n1よりも小さい接着剤を用い、
     前記ファイバ保持部材に配設された前記光ファイバに、前記第2クラッドの外周を覆うように前記接着剤で被覆して硬化させ、
     前記光ファイバを前記ファイバ保持部材に固定する光ファイバの固定方法。
    An optical fiber including a core doped with a laser medium, a first cladding that covers the outer periphery of the core and into which excitation light is introduced, and a second cladding that covers the outer periphery of the first cladding is fixed to a fiber holding member. An optical fiber fixing method,
    Using an adhesive having a refractive index n 6 after curing substantially equal to or greater than the refractive index n 2 of the second cladding and smaller than the refractive index n 1 of the first cladding;
    The optical fiber disposed in the fiber holding member is coated and cured with the adhesive so as to cover the outer periphery of the second cladding,
    An optical fiber fixing method for fixing the optical fiber to the fiber holding member.
  4.  前記接着剤を用いて、前記光ファイバを前記ファイバ保持部材に接着させる請求項3に記載の光ファイバの固定方法。 The method of fixing an optical fiber according to claim 3, wherein the optical fiber is bonded to the fiber holding member using the adhesive.
  5.  レーザ媒質がドープされたコア、前記コアの外周を覆い励起光が導入される第1クラッド、および前記第1クラッドの外周を覆う第2クラッドを有するダブルクラッドファイバと、
     前記ダブルクラッドファイバが固定されるファイバ保持部材と、
     前記ダブルクラッドファイバを前記ファイバ保持部材に接着する接着剤とを有し、
     前記接着剤は、硬化後の屈折率n6が前記第2クラッドの屈折率n2と略同一以上であり且つ前記第1クラッドの屈折率n1よりも小さく、
     前記ダブルクラッドファイバは、前記第2クラッドの外周が前記接着剤により覆われた状態で前記ファイバ保持部材に固定されているダブルクラッドファイバ固定構造体。
    A double-clad fiber having a core doped with a laser medium, a first cladding that covers the outer periphery of the core and into which excitation light is introduced, and a second cladding that covers the outer periphery of the first cladding;
    A fiber holding member to which the double clad fiber is fixed;
    An adhesive that bonds the double-clad fiber to the fiber holding member;
    The adhesive has a refractive index n 6 after curing substantially equal to or greater than the refractive index n 2 of the second cladding and smaller than the refractive index n 1 of the first cladding,
    The double clad fiber is a double clad fiber fixing structure in which an outer periphery of the second clad is covered with the adhesive and fixed to the fiber holding member.
  6.  前記接着剤は、前記硬化後の屈折率n6が前記第2クラッドの屈折率n2と略同一である請求項5に記載のダブルクラッドファイバ固定構造体。 The adhesive, double clad fiber fixing structure according to claim 5 refractive index n 6 after the curing is substantially the same as the refractive index n 2 of the second cladding.
  7.  前記ファイバ保持部材は、前記ダブルクラッドファイバを冷却する冷却機能を有して構成される請求項5または6に記載のダブルクラッドファイバ固定構造体。 The double-clad fiber fixing structure according to claim 5 or 6, wherein the fiber holding member is configured to have a cooling function for cooling the double-clad fiber.
  8.  前記ファイバ保持部材には、前記ダブルクラッドファイバを保持するための保持溝が形成されており、
     前記接着剤は、前記保持溝に配置された前記ダブルクラッドファイバを覆って配設される請求項5~7のいずれか一項に記載のダブルクラッドファイバ固定構造体。
    The fiber holding member has a holding groove for holding the double clad fiber,
    The double clad fiber fixing structure according to any one of claims 5 to 7, wherein the adhesive is disposed so as to cover the double clad fiber disposed in the holding groove.
  9.  前記保持溝は、溝幅が前記ダブルクラッドファイバの直径よりも幾分大きい凹溝状に形成されており、前記ダブルクラッドファイバは、前記接着剤により前記保持溝に埋設されて固定される請求項8に記載のダブルクラッドファイバ固定構造体。 The holding groove is formed in a concave groove shape having a groove width somewhat larger than a diameter of the double clad fiber, and the double clad fiber is embedded and fixed in the holding groove by the adhesive. The double clad fiber fixing structure according to claim 8.
  10.  レーザ媒質がドープされたコア、前記コアの外周を覆い励起光が導入される第1クラッド、および前記第1クラッドの外周を覆う第2クラッドを含む光ファイバと、
     前記光ファイバが固定されるファイバ保持部材と、
     前記光ファイバを被覆する接着剤とを有し、
     前記接着剤は、硬化後の屈折率n6が前記第2クラッドの屈折率n2と略同一以上であり且つ前記第1クラッドの屈折率n1よりも小さく、
     前記光ファイバは、前記第2クラッドの外周が前記接着剤により覆われた状態で前記ファイバ保持部材に固定されている光ファイバ固定構造体。
    An optical fiber including a core doped with a laser medium, a first cladding that covers the outer periphery of the core and into which excitation light is introduced, and a second cladding that covers the outer periphery of the first cladding;
    A fiber holding member to which the optical fiber is fixed;
    An adhesive for covering the optical fiber,
    The adhesive has a refractive index n 6 after curing substantially equal to or greater than the refractive index n 2 of the second cladding and smaller than the refractive index n 1 of the first cladding,
    The optical fiber is an optical fiber fixing structure in which an outer periphery of the second cladding is fixed to the fiber holding member in a state where the outer periphery is covered with the adhesive.
  11.  前記光ファイバは、前記接着剤によって、前記ファイバ保持部材に接着されている請求項10に記載の光ファイバ固定構造体。 The optical fiber fixing structure according to claim 10, wherein the optical fiber is bonded to the fiber holding member with the adhesive.
  12.  請求項5~9のいずれか一項に記載のダブルクラッドファイバ固定構造体と、
     前記コアにおいて増幅されるレーザ光を発生するレーザ光発生部と、
     前記第1クラッドに励起光を供給する励起光源とを備えたレーザ装置。
    A double-clad fiber fixing structure according to any one of claims 5 to 9,
    A laser beam generator for generating a laser beam amplified in the core;
    A laser apparatus comprising: an excitation light source that supplies excitation light to the first cladding.
  13.  請求項10または11に記載の光ファイバ固定構造体と、
     前記コアにおいて増幅されるレーザ光を発生するレーザ光発生部と、
     前記第1クラッドに励起光を供給する励起光源とを備えたレーザ装置。
    An optical fiber fixing structure according to claim 10 or 11,
    A laser beam generator for generating a laser beam amplified in the core;
    A laser apparatus comprising: an excitation light source that supplies excitation light to the first cladding.
  14.  前記ダブルクラッドファイバにより増幅されて出射する増幅光を波長変換して出力する波長変換部を備えた請求項12に記載のレーザ装置。 13. The laser device according to claim 12, further comprising a wavelength converter that converts the wavelength of the amplified light that is amplified by the double clad fiber and outputs the amplified light.
  15.  前記光ファイバにより増幅されて出射する増幅光を波長変換して出力する波長変換部を備えた請求項13に記載のレーザ装置。 14. The laser device according to claim 13, further comprising a wavelength conversion unit that converts the wavelength of the amplified light that is amplified by the optical fiber and outputs the amplified light.
  16.  請求項14または15に記載のレーザ装置と、
     所定の露光パターンが形成されたフォトマスクを保持するためのマスク支持部と、
     露光対象物を保持するための露光対象物支持部と、
     前記レーザ装置から出力されたレーザ光を前記マスク支持部に保持されたフォトマスクに照射するための照明光学系と、
     前記フォトマスクを透過した光を前記露光対象物支持部に保持された露光対象物に投影するための投影光学系とを備えた露光装置。
    A laser device according to claim 14 or 15,
    A mask support for holding a photomask on which a predetermined exposure pattern is formed;
    An exposure object support for holding the exposure object;
    An illumination optical system for irradiating the photomask held by the mask support with the laser beam output from the laser device;
    An exposure apparatus comprising: a projection optical system for projecting light transmitted through the photomask onto an exposure object held by the exposure object support unit.
  17.  請求項14または15に記載のレーザ装置と、
     被検物を保持するための被検物支持部と、
     前記レーザ装置から出力されたレーザ光を前記被検物支持部に保持された被検物に照射するための照明光学系と、
     前記被検物からの光を検出器に投影するための投影光学系とを備えた検査装置。
    A laser device according to claim 14 or 15,
    A specimen support for holding the specimen;
    An illumination optical system for irradiating the test object held by the test object support unit with the laser beam output from the laser device;
    An inspection apparatus comprising: a projection optical system for projecting light from the test object onto a detector.
PCT/JP2014/071538 2013-08-19 2014-08-18 Method for securing fiber, fiber-securing-structure body secured to fiber holding member, laser device provided with said fiber-securing-structure body, exposure device, and inspection device WO2015025808A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-169628 2013-08-19
JP2013169628A JP2016186953A (en) 2013-08-19 2013-08-19 Fixing method of double-clad fiber, double-clad fiber fixing structure fixed to fiber holding member, laser device including double-clad fiber fixing structure, exposure device and inspection device

Publications (1)

Publication Number Publication Date
WO2015025808A1 true WO2015025808A1 (en) 2015-02-26

Family

ID=52483583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071538 WO2015025808A1 (en) 2013-08-19 2014-08-18 Method for securing fiber, fiber-securing-structure body secured to fiber holding member, laser device provided with said fiber-securing-structure body, exposure device, and inspection device

Country Status (2)

Country Link
JP (1) JP2016186953A (en)
WO (1) WO2015025808A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017183471A1 (en) * 2016-04-19 2017-10-26 東京エレクトロン株式会社 Temperature measurement substrate and temperature measurement system
JP2018028638A (en) * 2016-08-19 2018-02-22 フジクラ電装株式会社 Ferrule with optical fiber

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7407630B2 (en) * 2020-03-17 2024-01-04 株式会社豊田中央研究所 optical fiber holder

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11133255A (en) * 1997-10-30 1999-05-21 Fujitsu Ltd Optical monitoring device and its equipment
JP2005091754A (en) * 2003-09-17 2005-04-07 Juichi Kubo Optical fiber wiring method and its device
JP2006293195A (en) * 2005-04-14 2006-10-26 Auto Network Gijutsu Kenkyusho:Kk Optical fiber connecting device
WO2012056566A1 (en) * 2010-10-29 2012-05-03 古河電気工業株式会社 Optical amplifier device and optical transmission system
JP2013007931A (en) * 2011-06-24 2013-01-10 Nikon Corp Laser device, exposure device and inspecting device
US20130028276A1 (en) * 2011-03-10 2013-01-31 Coherent, Inc. High-power cw fiber-laser

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11133255A (en) * 1997-10-30 1999-05-21 Fujitsu Ltd Optical monitoring device and its equipment
JP2005091754A (en) * 2003-09-17 2005-04-07 Juichi Kubo Optical fiber wiring method and its device
JP2006293195A (en) * 2005-04-14 2006-10-26 Auto Network Gijutsu Kenkyusho:Kk Optical fiber connecting device
WO2012056566A1 (en) * 2010-10-29 2012-05-03 古河電気工業株式会社 Optical amplifier device and optical transmission system
US20130028276A1 (en) * 2011-03-10 2013-01-31 Coherent, Inc. High-power cw fiber-laser
JP2013007931A (en) * 2011-06-24 2013-01-10 Nikon Corp Laser device, exposure device and inspecting device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017183471A1 (en) * 2016-04-19 2017-10-26 東京エレクトロン株式会社 Temperature measurement substrate and temperature measurement system
TWI718285B (en) * 2016-04-19 2021-02-11 日商東京威力科創股份有限公司 Temperature measurement substrate and temperature measurement system
US11035741B2 (en) 2016-04-19 2021-06-15 Tokyo Electron Limited Temperature measurement substrate and temperature measurement system
JP2018028638A (en) * 2016-08-19 2018-02-22 フジクラ電装株式会社 Ferrule with optical fiber

Also Published As

Publication number Publication date
JP2016186953A (en) 2016-10-27

Similar Documents

Publication Publication Date Title
US10431951B2 (en) Leakage light removal structure and fiber laser
JP4954737B2 (en) Optical amplification system, optical fiber laser and optical fiber amplifier using the same
US20080056642A1 (en) Reducing thermal load on optical head
EP3104201B1 (en) Structure for eliminating excess light, and fiber laser
JP6016086B2 (en) Ultraviolet laser apparatus, exposure apparatus and inspection apparatus equipped with the ultraviolet laser apparatus
US9429850B2 (en) Laser device, and exposure device and inspection device provided with laser device
WO2015025808A1 (en) Method for securing fiber, fiber-securing-structure body secured to fiber holding member, laser device provided with said fiber-securing-structure body, exposure device, and inspection device
TWI652516B (en) Fiber optic device
Bansal et al. High power cladding mode stripper
US20190237929A1 (en) Optical fiber and fiber laser
US20090147351A1 (en) Cassette for optical fiber amplifier, optical fiber amplifier and light source device
JP6016124B2 (en) Pulse laser apparatus, exposure apparatus and inspection apparatus
JP2014033044A (en) Double clad fiber, laser apparatus equipped with the same, exposure apparatus, and inspection apparatus
JP5641496B2 (en) Laser equipment
JP2014036152A (en) Fiber laser, laser device including fiber laser, exposure device and inspection device
JP2013044764A (en) Laser device, method for suppressing photorefractive effect of quasi-phase-matching wavelength conversion optical element, exposure device, and inspection device
JP2016212427A (en) Optical fiber device
JP2001015834A (en) Manufacture of laser beam generating device and optical amplifier
JP2013004597A (en) Laser device, exposure apparatus with laser device and inspection apparatus
JP2010286652A (en) Optical fiber array component and optical component
WO2020241363A1 (en) Optical fiber device
JP2009145423A (en) Wavelength conversion module
JP5780457B2 (en) Laser apparatus, exposure apparatus equipped with laser apparatus, and inspection apparatus
JP2014029384A (en) Wavelength conversion optical element holder, laser device including wavelength conversion optical element holder, exposure device including laser device and inspection device including laser device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14838688

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14838688

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP