WO2015025620A1 - Endoscope system, processor device, and operation method - Google Patents

Endoscope system, processor device, and operation method Download PDF

Info

Publication number
WO2015025620A1
WO2015025620A1 PCT/JP2014/067499 JP2014067499W WO2015025620A1 WO 2015025620 A1 WO2015025620 A1 WO 2015025620A1 JP 2014067499 W JP2014067499 W JP 2014067499W WO 2015025620 A1 WO2015025620 A1 WO 2015025620A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen saturation
image
image signal
frequency component
specimen
Prior art date
Application number
PCT/JP2014/067499
Other languages
French (fr)
Japanese (ja)
Inventor
加來 俊彦
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2015025620A1 publication Critical patent/WO2015025620A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/1459Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters invasive, e.g. introduced into the body by a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00004Operational features of endoscopes characterised by electronic signal processing
    • A61B1/00009Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope
    • A61B1/000094Operational features of endoscopes characterised by electronic signal processing of image signals during a use of endoscope extracting biological structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00043Operational features of endoscopes provided with output arrangements
    • A61B1/00045Display arrangement
    • A61B1/0005Display arrangement combining images e.g. side-by-side, superimposed or tiled
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/043Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances for fluorescence imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/063Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements for monochromatic or narrow-band illumination
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0638Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements providing two or more wavelengths
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0646Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements with illumination filters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0653Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements with wavelength conversion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • A61B1/0684Endoscope light sources using light emitting diodes [LED]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • A61B5/14556Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases by fluorescence

Definitions

  • the present invention relates to an endoscope system, a processor device, and an operating method for acquiring biological function information related to oxygen saturation of blood hemoglobin from an image signal obtained by imaging in a specimen.
  • diagnosis is generally performed using an endoscope system including a light source device, an endoscope, and a processor device.
  • lesions are being diagnosed using the oxygen saturation of blood hemoglobin in the biological function information.
  • the first signal light and the second signal light which have different wavelength bands and different absorption coefficients of oxyhemoglobin and deoxyhemoglobin, are alternately applied to the blood vessels in the mucous membrane.
  • a method is known in which each reflected light from the blood vessel of the first and second signal lights is detected by a sensor at the distal end of the endoscope (Patent Document 1).
  • the ratio of the first signal light image signal corresponding to the reflected light of the first signal light detected by the sensor and the second signal light image signal corresponding to the reflected light of the second signal light (hereinafter referred to as signal ratio) is a blood vessel. If there is no change in the oxygen saturation, a constant value is maintained, but if a change in oxygen saturation occurs, it changes accordingly. Therefore, the oxygen saturation can be calculated based on the signal ratio between the first signal light image signal and the second signal light image signal.
  • the calculation of the oxygen saturation is based on the premise that the specimen is uniformly irradiated with the first and second signal lights. For this reason, when the first and second signal lights are non-uniform, the reliability of the calculated oxygen saturation is reduced. Therefore, in an endoscope system that acquires oxygen saturation, the first and second signals The irradiation range of the first and second signal lights, the distribution of the amount of light, and the like are strictly adjusted in advance so that the sample is irradiated with light almost uniformly.
  • Endoscope systems such as general digital cameras, are not indefinite, and the distance to the subject (specimen) and subject is limited, so the illumination illumination range, light intensity distribution, etc. are precisely adjusted in advance. Can be kept. For this reason, in an endoscope system, it is usually not difficult to partially observe a specimen due to uneven illumination unlike a digital camera.
  • oxygen saturation is calculated. May cause a large error (hereinafter referred to as artifact) that is not caused by the properties of the specimen.
  • artifact a large error that is not caused by the properties of the specimen.
  • non-magnifying observation observation where the tip of the endoscope is very close to the specimen, or observation that magnifies the specimen by operating the zoom lens
  • it occurs during non-magnifying observation.
  • the low oxygen region and the high oxygen region that did not exist are generated. That is, at the time of magnified observation, an artifact of oxygen saturation that could not occur at the time of non-magnified observation occurs.
  • the oxygen saturation is extremely sensitive to the light amount distribution of the illumination (first and second signal lights), and even if there is an error such as the light amount distribution of the very small illumination, the oxygen saturation depends on the magnification rate during magnification observation. The main reason is that the contribution to saturation is increased.
  • An object of the present invention is to provide an endoscope system, a processor device, and an operation method that reduce an oxygen saturation artifact generated during magnified observation and calculate and display the oxygen saturation distribution more finely and accurately than before.
  • the endoscope system of the present invention includes a light source device, a sensor, an oxygen saturation calculation unit, an image generation unit, a low frequency component extraction unit, a high frequency component extraction unit, and a synthesis processing unit.
  • the light source device emits illumination light.
  • the sensor irradiates the specimen with illumination light, receives reflected light reflected by the specimen, outputs a first image signal obtained by imaging the specimen, and outputs the specimen more than when the first image signal is output.
  • a second image signal obtained by enlarging and imaging is output.
  • the oxygen saturation calculation unit calculates the oxygen saturation of the specimen based on the first image signal and the second image signal.
  • the image generation unit generates a first oxygen saturation image based on the first image signal and the oxygen saturation calculated based on the first image signal, and based on the second image signal and the second image signal.
  • a second oxygen saturation image is generated based on the calculated oxygen saturation.
  • the low frequency component extraction unit extracts a low frequency component less than the cutoff frequency from the first oxygen saturation image.
  • the high frequency component extraction unit extracts a high frequency component equal to or higher than a cutoff frequency from the second oxygen saturation image.
  • the synthesis processing unit synthesizes the low frequency component and the high frequency component to generate a synthesized oxygen saturation image.
  • a zooming lens for enlarging or reducing an image of the specimen formed on the sensor, and a zoom detection unit for detecting whether or not magnification observation is performed based on an operation state of the zooming lens may be provided.
  • an artifact detection unit for detecting an oxygen saturation artifact from the first oxygen saturation image and the second oxygen saturation image may be provided.
  • the corresponding region detection unit for detecting a region corresponding to the second oxygen saturation image from the first oxygen saturation image and the region detected by the corresponding region detection unit are enlarged to the same size as the second oxygen saturation image.
  • an enlargement processing unit it is preferable that the low frequency component extraction unit extracts the low frequency component from the image of the region enlarged to the same size as the second oxygen saturation image.
  • the corresponding region detection unit can detect a corresponding region by pattern matching between the first oxygen saturation image and the second oxygen saturation image, for example.
  • the display screen of the monitor indicates that the processing by the low frequency component extraction unit, the high frequency component extraction unit, and the synthesis processing unit is performed together with the synthetic oxygen saturation image. It is preferable to do.
  • the processor device of the present invention outputs a first image signal obtained by imaging a specimen by receiving a reflected light reflected from the specimen by illuminating the specimen with the light source that emits illumination light, And a sensor device that outputs a second image signal obtained by enlarging and imaging the specimen as compared with the output of the first image signal, a processor device of an endoscope system, a receiving unit, and an oxygen saturation level A calculation unit, an image generation unit, a low frequency component extraction unit, a high frequency component extraction unit, and a synthesis processing unit are provided.
  • the receiving unit receives the first image signal and the second image signal from the sensor.
  • the oxygen saturation calculation unit calculates the oxygen saturation of the specimen based on the first image signal and the second image signal.
  • the image generation unit generates a first oxygen saturation image based on the first image signal and the oxygen saturation calculated based on the first image signal, and based on the second image signal and the second image signal. Based on the calculated oxygen saturation, a second oxygen saturation image is generated.
  • the low frequency component extraction unit extracts a low frequency component less than the cutoff frequency from the first oxygen saturation image.
  • the high frequency component extraction unit extracts a high frequency component equal to or higher than a cutoff frequency from the second oxygen saturation image.
  • the synthesis processing unit synthesizes the low frequency component and the high frequency component to generate a synthesized oxygen saturation image.
  • the operation method of the endoscope system includes a first imaging step, a second imaging step, an oxygen saturation calculation step, a first image generation step, a second image generation step, and a low frequency component extraction step. And a high frequency component extraction step and a synthesis processing step.
  • the first imaging step the sample is imaged by irradiating the sample with illumination light emitted from the light source device and receiving the reflected light reflected by the sample to obtain a first image signal.
  • the second imaging step the second image signal is obtained by enlarging and imaging the specimen compared to when the first image signal is obtained.
  • the oxygen saturation calculation step the oxygen saturation of the specimen is calculated based on the first image signal and the second image signal.
  • a first oxygen saturation image is generated based on the first image signal and the oxygen saturation calculated based on the first image signal.
  • a second oxygen saturation image is generated based on the second image signal and the oxygen saturation calculated based on the second image signal.
  • the low frequency component extraction step a low frequency component less than the cutoff frequency is extracted from the first oxygen saturation image.
  • a high frequency component equal to or higher than the cutoff frequency is extracted from the second oxygen saturation image.
  • the low frequency component and the high frequency component are synthesized to generate a synthesized oxygen saturation image.
  • Another endoscope system includes a light source device, a sensor, a low frequency component extraction unit, a high frequency component extraction unit, a synthesis processing unit, an oxygen saturation calculation unit, an image generation unit, Is provided.
  • the light source device emits illumination light.
  • the sensor irradiates the specimen with illumination light, receives reflected light reflected by the specimen, outputs a first image signal obtained by imaging the specimen, and outputs the specimen more than when the first image signal is output.
  • a second image signal obtained by enlarging and imaging is output.
  • the low frequency component extraction unit extracts a low frequency component having a frequency lower than the cutoff frequency from the first image signal.
  • the high frequency component extraction unit extracts a high frequency component equal to or higher than a cutoff frequency from the second image signal.
  • the synthesis processing unit synthesizes the low frequency component and the high frequency component to generate a synthesized image signal.
  • the oxygen saturation calculation unit calculates the oxygen saturation of the specimen based on the composite image signal.
  • the image generation unit generates an oxygen saturation image representing the oxygen saturation of the specimen based on the composite image signal and the oxygen saturation.
  • Another processor device of the present invention includes a light source device that emits illumination light, and a first image signal obtained by imaging the sample by receiving the reflected light that is irradiated with the illumination light and reflected by the sample. And a sensor that outputs a second image signal obtained by enlarging and imaging the specimen as compared with the output of the first image signal, and a processor device of an endoscope system, A low-frequency component extraction unit, a high-frequency component extraction unit, a synthesis processing unit, an oxygen saturation calculation unit, and an image generation unit.
  • the receiving unit receives the first image signal and the second image signal from the sensor.
  • the low frequency component extraction unit extracts a low frequency component having a frequency lower than the cutoff frequency from the first image signal.
  • the high frequency component extraction unit extracts a high frequency component equal to or higher than a cutoff frequency from the second image signal.
  • the synthesis processing unit synthesizes the low frequency component and the high frequency component to generate a synthesized image signal.
  • the oxygen saturation calculation unit calculates the oxygen saturation of the specimen based on the composite image signal.
  • the image generation unit generates an oxygen saturation image representing the oxygen saturation of the specimen based on the composite image signal and the oxygen saturation.
  • another endoscope system operating method of the present invention includes a first imaging step, a second imaging step, a low frequency component extraction step, a high frequency component extraction step, a synthesis processing step, and oxygen saturation calculation.
  • a step and an image generation step In the first imaging step, the specimen is imaged by irradiating the specimen with illumination light emitted from the light source device and receiving the reflected light reflected by the specimen, thereby obtaining a first image signal.
  • the second imaging step the second image signal is obtained by enlarging and imaging the specimen compared to when the first image signal is obtained.
  • the low frequency component extraction step a low frequency component less than the cutoff frequency is extracted from the first image signal.
  • the high frequency component extraction step a high frequency component equal to or higher than the cutoff frequency is extracted from the second image signal.
  • the low frequency component and the high frequency component are synthesized to generate a synthesized image signal.
  • the oxygen saturation calculation step the oxygen saturation of the specimen is calculated based on the composite image signal.
  • an oxygen saturation image representing the oxygen saturation of the specimen is generated based on the composite image signal and the oxygen saturation.
  • the processor device According to the endoscope system, the processor device, and the operating method of the present invention, it is possible to reduce the oxygen saturation artifact during magnified observation, and to calculate and display the oxygen saturation distribution more finely and accurately than before. .
  • the endoscope system 10 includes an endoscope 12, a light source device 14, a processor device 16, a monitor 18, and a console 20.
  • the endoscope 12 is optically connected to the light source device 14 and electrically connected to the processor device 16.
  • the endoscope 12 includes an insertion portion 21 to be inserted into a specimen, an operation portion 22 provided at a proximal end portion of the insertion portion 21, a bending portion 23 and a distal end portion 24 provided on the distal end side of the insertion portion 21. have.
  • the angle knob 22a of the operation unit 22 By operating the angle knob 22a of the operation unit 22, the bending unit 23 performs a bending operation. With this bending operation, the distal end portion 24 is directed in a desired direction.
  • the operation unit 22 is provided with a mode switch SW (mode switch) 22b and a zoom operation unit 22c.
  • the mode switching SW 22b is used for switching operation between two types of modes, a normal observation mode and a special observation mode.
  • the normal observation mode is a mode in which a normal light image in which the inside of the specimen is converted into a full color image is displayed on the monitor 18.
  • the special observation mode is a mode in which an oxygen saturation image obtained by imaging the oxygen saturation of blood hemoglobin in the specimen is displayed on the monitor 18.
  • the zoom operation unit 22c is used for a zoom operation for driving the zooming lens 47 (see FIG. 2) in the endoscope 12 to enlarge the specimen.
  • the processor device 16 is electrically connected to the monitor 18 and the console 20.
  • the monitor 18 displays images such as normal light images and oxygen saturation images, and information related to these images (hereinafter referred to as image information and the like).
  • the console 20 functions as a UI (user interface) that receives input operations such as function settings.
  • a recording unit (not shown) for recording image information or the like may be connected to the processor device 16.
  • the light source device 14 includes a first blue laser light source (473LD (laser diode)) 34 that emits a first blue laser beam having a center wavelength of 473 nm and a second blue laser beam that emits a second blue laser beam having a center wavelength of 445 nm.
  • Two blue laser light sources (445LD) 36 are provided as light emission sources. Light emission of the first blue laser light source 34 and the second blue laser light source 36 made of these semiconductor light emitting elements is individually controlled by the light source control unit 40. For this reason, the light quantity ratio between the emitted light from the first blue laser light source 34 and the emitted light from the second blue laser light source 36 is freely changeable.
  • the light source control unit 40 turns on the second blue laser light source 36 and emits the second blue laser light.
  • the first blue laser light source 34 and the second blue laser light source 36 are alternately turned on at intervals of one frame, and the first blue laser light and the second blue laser light are alternately turned on. Make it emit light.
  • the half width of the first blue laser beam and the second blue laser beam is preferably about ⁇ 10 nm.
  • the first blue laser light source 34 and the second blue laser light source 36 can use broad area type InGaN laser diodes, and can also use InGaNAs laser diodes or GaNAs laser diodes.
  • the light source may be configured to use a light emitter such as a light emitting diode.
  • the first blue laser light and the second blue laser light emitted from the first blue laser light source 34 and the second blue laser light source 36 are optical members such as a condensing lens, an optical fiber, a multiplexer (not shown). ) Through the light guide (LG) 41.
  • the light guide 41 is built in a universal cord that connects the light source device 14 and the endoscope 12.
  • the light guide 41 propagates the first blue laser light and the second blue laser light from the first blue laser light source 34 and the second blue laser light source 36 to the distal end portion 24 of the endoscope 12.
  • a multimode fiber can be used as the light guide 41.
  • a thin fiber cable having a core diameter of 105 ⁇ m, a cladding diameter of 125 ⁇ m, and a diameter of ⁇ 0.3 to 0.5 mm including a protective layer serving as an outer shell can be used.
  • the distal end portion 24 of the endoscope 12 has an illumination optical system 24a and an imaging optical system 24b.
  • the illumination optical system 24a is provided with a phosphor 44 and an illumination lens 45.
  • the first blue laser light and the second blue laser light are incident on the phosphor 44 from the light guide 41.
  • the phosphor 44 emits fluorescence when irradiated with the first blue laser light or the second blue laser light. Further, a part of the first blue laser light or the second blue laser light passes through the phosphor 44 as it is. The light emitted from the phosphor 44 is irradiated into the specimen through the illumination lens 45.
  • the second blue laser light is incident on the phosphor 44, white light having the spectrum shown in FIG. 3 (second white light) is irradiated into the specimen.
  • the second white light is composed of second blue laser light and green to red second fluorescence excited and emitted from the phosphor 44 by the second blue laser light. Therefore, the wavelength range of the second white light extends to the entire visible light range.
  • the first white light and the second white light having the spectrum shown in FIG. Irradiated inside.
  • the first white light is composed of first blue laser light and green to red first fluorescence that is excited and emitted from the phosphor 44 by the first blue laser light. Therefore, the first white light has a wavelength range covering the entire visible light range.
  • the second white light is the same as the second white light irradiated in the normal observation mode.
  • the first fluorescence and the second fluorescence have substantially the same waveform (spectrum shape), and the ratio of the intensity of the first fluorescence (I1 ( ⁇ )) to the intensity of the second fluorescence (I2 ( ⁇ )) (hereinafter referred to as a frame).
  • the intensity ratio) is the same at any wavelength ⁇ .
  • I2 ( ⁇ 1) / I1 ( ⁇ 1) I2 ( ⁇ 2) / I1 ( ⁇ 2). Since the inter-frame intensity ratio I2 ( ⁇ ) / I1 ( ⁇ ) affects the calculation accuracy of the oxygen saturation, the light source control unit 40 maintains a preset reference inter-frame intensity ratio. It is controlled with high accuracy.
  • the phosphor 44 absorbs a part of the first and second blue laser beams and excites and emits green to red light (for example, YAG phosphor or BAM (BaMgAl 10 O 17 )). It is preferable to use a material comprising a phosphor such as.
  • a material comprising a phosphor such as
  • high intensity first white light and second white light can be obtained with high luminous efficiency. If a semiconductor light emitting element is used as the excitation light source of the phosphor 44, the intensity of each white light can be easily adjusted, and changes in color temperature and chromaticity can be suppressed to a small level.
  • the imaging optical system 24b of the endoscope 12 includes an imaging lens 46, a zooming lens 47, and a sensor 48 (see FIG. 2). Reflected light from the specimen enters the sensor 48 via the imaging lens 46 and zooming lens 47. Thereby, a reflected image of the specimen is formed on the sensor 48.
  • the zooming lens 47 moves between the tele end and the wide end by operating the zoom operation unit 22c. When the zooming lens 47 moves to the wide end side, the reflected image of the specimen is reduced. On the other hand, when the zooming lens 47 moves to the tele end side, the reflected image of the specimen is enlarged. Note that the zoom lens 47 is disposed at the wide end when magnification observation is not performed (during non-magnification observation). When the zoom operation unit 22c is operated to perform magnified observation, the zooming lens 47 is moved from the wide end to the tele end side.
  • the sensor 48 is a color image sensor, picks up a reflected image of the specimen, and outputs an image signal.
  • the sensor 48 is, for example, a CCD (Charge-Coupled Device) image sensor or a CMOS (Complementary Metal-Oxide Semiconductor) image sensor.
  • the sensor 48 has RGB pixels provided with RGB color filters on the imaging surface, and outputs image signals of three colors of R, G, and B by performing photoelectric conversion with pixels of each color of RGB. .
  • the B color filter has a spectral transmittance of 380 to 560 nm
  • the G color filter has a spectral transmittance of 450 to 630 nm
  • the R color filter has a spectral transmittance of 580 to 760 nm. It has transmittance. Therefore, when the second white light is irradiated into the specimen in the normal observation mode, the second blue laser light and a part of the green component of the second fluorescence are incident on the B pixel, and the second light is incident on the G pixel. A part of the green component of the fluorescence is incident, and the red component of the second fluorescence is incident on the R pixel. However, since the emission intensity of the second blue laser light is much higher than that of the second fluorescence, most of the B image signal output from the B pixel is occupied by the reflected light component of the second blue laser light.
  • the special observation mode when the first white light is irradiated into the specimen and the reflected light reflected in the specimen is received by the sensor 48, the first blue laser light and the first fluorescent green are applied to the B pixel. Part of the component is incident, part of the green component of the first fluorescence is incident on the G pixel, and the red component of the first fluorescence is incident on the R pixel. However, since the emission intensity of the first blue laser light is much higher than that of the first fluorescence, most of the B image signal is occupied by the reflected light component of the first blue laser light. It should be noted that the light incident components at the RGB pixels when the second white light is irradiated into the specimen in the special observation mode are the same as in the normal observation mode.
  • the sensor 48 may be a so-called complementary color image sensor having C (cyan), M (magenta), Y (yellow), and G (green) complementary color filters on the imaging surface.
  • the color conversion unit that performs color conversion from the CMYG four-color image signal to the RGB three-color image signal is any of the endoscope 12, the light source device 14, and the processor device 16. It should be provided in. In this way, even when a complementary color image sensor is used, it is possible to obtain RGB three-color image signals by color conversion from the four-color CMYG image signals.
  • the imaging control unit 49 performs imaging control of the sensor 48.
  • the one frame period of the sensor 48 includes an accumulation period for photoelectrically converting reflected light from the specimen and accumulating charges, and a readout period for reading the accumulated charges and outputting an image signal thereafter. Consists of. In the normal observation mode, the inside of the specimen illuminated with the second white light is imaged by the sensor 48 every frame period. Thereby, RGB image signals are output from the sensor 48 for each frame.
  • the imaging control unit 49 causes the sensor 48 to perform an accumulation period and a reading period in the special observation mode as in the normal observation mode.
  • the special observation mode the first white light and the second white light are alternately irradiated into the specimen in synchronization with the imaging frame of the sensor 48. Therefore, as shown in FIG.
  • the sample is irradiated with the first white light in the eye, and the reflected light reflected in the sample is received by the sensor 48 to image the inside of the sample.
  • the second white light is irradiated into the sample. Then, the reflected light reflected in the specimen is received by the sensor 48 to image the inside of the specimen.
  • the sensor 48 outputs RGB color image signals in both the first frame and the second frame, but the spectrum of the white light on which it depends is different. Therefore, for the sake of distinction, the reflection of the first white light in the first frame will be described below.
  • the RGB color image signals obtained by imaging light by the sensor 48 are called R1 image signal, G1 image signal, and B1 image signal, respectively, and the reflected light of the second white light is imaged by the sensor 48 in the second frame.
  • the obtained RGB color image signals are referred to as an R2 image signal, a G2 image signal, and a B2 image signal.
  • Each image signal at the time of non-magnification observation is referred to as a first image signal
  • each image signal at the time of magnification observation is referred to as a second image signal.
  • the image signals of the respective colors output from the sensor 48 are transmitted to a CDS (correlated double sampling) / AGC (automatic gain control) circuit 50 (see FIG. 2).
  • the CDS / AGC circuit 50 performs correlated double sampling (CDS) and automatic gain control (AGC) on the analog image signal output from the sensor 48.
  • CDS correlated double sampling
  • AGC automatic gain control
  • the image signal that has passed through the CDS / AGC circuit 50 is converted into a digital image signal by the A / D converter 52.
  • the digitized image signal is input to the processor device 16.
  • the processor device 16 includes a receiving unit 54, an image processing switching unit 60, a normal observation image processing unit 62, a special observation image processing unit 64, and an image display signal generation unit 66.
  • the receiving unit 54 receives an image signal input from the endoscope 12.
  • the reception unit 54 includes a DSP (Digital Signal Processor) 56 and a noise removal unit 58, and the DSP 56 performs digital signal processing such as color correction processing on the received image signal.
  • the noise removal unit 58 performs noise removal processing by, for example, a moving average method or a median filter method on the image signal that has been subjected to color correction processing or the like by the DSP 56.
  • the image signal from which the noise has been removed is input to the image processing switching unit 60.
  • the image processing switching unit 60 inputs an image signal to the normal observation image processing unit 62 when the mode switching SW 22b is set to the normal observation mode. On the other hand, when the mode switching SW 22 b is set to the special observation mode, the image processing switching unit 60 inputs an image signal to the special observation image processing unit 64.
  • the normal observation image processing unit 62 includes a color conversion unit 68, a color enhancement unit 70, and a structure enhancement unit 72.
  • the color conversion unit 68 generates RGB image data in which each input RGB image signal for one frame is assigned to an R pixel, a G pixel, or a B pixel.
  • the RGB image data is further subjected to color conversion processing such as 3 ⁇ 3 matrix processing, gradation conversion processing, and three-dimensional LUT processing.
  • the color enhancement unit 70 performs various color enhancement processes on the RGB image data that has been subjected to the color conversion process.
  • the structure enhancement unit 72 performs structure enhancement processing such as spatial frequency enhancement on the RGB image data that has been subjected to color enhancement processing.
  • the RGB image data subjected to the structure enhancement process by the structure enhancement unit 72 is input to the image display signal generation unit 66 as a normal observation image.
  • the special observation image processing unit 64 includes an oxygen saturation image generation unit 76 and a structure enhancement unit 78.
  • the oxygen saturation image generation unit 76 calculates the oxygen saturation and generates an oxygen saturation image representing the calculated oxygen saturation.
  • the oxygen saturation image generation unit 76 calculates the oxygen saturation and generates an oxygen saturation image during magnification observation, and further corrects the oxygen saturation artifact to generate a synthesized oxygen saturation image. To do.
  • the oxygen saturation image at the time of non-enlarged observation is referred to as a non-enlarged oxygen saturation image (first oxygen saturation image).
  • An oxygen saturation image at the time of magnified observation is referred to as a magnified oxygen saturation image (second oxygen saturation image), and an oxygen saturation image in which artifacts are reduced using the magnified oxygen saturation image or the like is referred to as a synthetic oxygen saturation image.
  • the structure enhancement unit 78 performs structure enhancement processing such as spatial frequency enhancement processing on the non-enlarged oxygen saturation image or the synthetic oxygen saturation image input from the oxygen saturation image generation unit 76.
  • structure enhancement processing such as spatial frequency enhancement processing on the non-enlarged oxygen saturation image or the synthetic oxygen saturation image input from the oxygen saturation image generation unit 76.
  • the oxygen saturation image that has undergone the structure enhancement processing by the structure enhancement unit 72 is input to the image display signal generation unit 66.
  • the display image signal generation unit 66 converts the normal observation image or the oxygen saturation image into a display format signal (display image signal) and inputs it to the monitor 18. As a result, the normal observation image or the oxygen saturation image is displayed on the monitor 18.
  • the oxygen saturation image generation unit 76 includes a signal ratio calculation unit 81, a correlation storage unit 82, an oxygen saturation calculation unit 83, an image generation unit 84, a zoom detection unit 86, An image storage unit 87 and an artifact correction unit 88 are provided.
  • the signal ratio calculation unit 81 receives the B1 image signal, the G2 image signal, and the R2 image signal among the image signals for two frames input to the oxygen saturation image generation unit 76.
  • the signal ratio calculation unit 81 calculates a signal ratio B1 / G2 between the B1 image signal and the G2 image signal and a signal ratio R2 / G2 between the G2 image signal and the R2 image signal for each pixel.
  • the correlation storage unit 82 stores the correlation between the signal ratio B1 / G2 and the signal ratio R2 / G2 and the oxygen saturation.
  • This correlation is stored in a two-dimensional table in which contour lines of oxygen saturation are defined on the two-dimensional space shown in FIG.
  • the positions and shapes of the contour lines with respect to the signal ratio B1 / G2 and the signal ratio R2 / G2 are obtained in advance by a physical simulation of light scattering, and the interval between the contour lines changes according to the blood volume (signal ratio R2 / G2). To do.
  • the correlation between the signal ratio B1 / G2 and the signal ratio R2 / G2 and the oxygen saturation is stored on a log scale.
  • the above correlation is closely related to the light absorption characteristics and light scattering characteristics of oxyhemoglobin (graph 90) and reduced hemoglobin (graph 91).
  • information on oxygen saturation is easy to handle at a wavelength where the difference in absorption coefficient between oxygenated hemoglobin and reduced hemoglobin is large, such as the center wavelength of 473 nm of the first blue laser beam.
  • the B1 image signal including a signal corresponding to 473 nm light is highly dependent not only on the oxygen saturation but also on the blood volume.
  • a signal ratio B1 / G2 obtained from an R2 image signal corresponding to light that changes mainly depending on blood volume, and a G2 image signal serving as a reference signal for the B1 image signal and the R2 image signal, and By using R2 / G2, the oxygen saturation can be accurately calculated without depending on the blood volume.
  • the oxygen saturation calculation unit 83 refers to the correlation stored in the correlation storage unit 82, and calculates the oxygen saturation corresponding to the signal ratio B1 / G2 and the signal ratio R2 / G2 calculated by the signal ratio calculation unit 81. Calculate for each pixel. For example, when the signal ratio B1 / G2 and the signal ratio R2 / G2 at a predetermined pixel are B1 * / G2 * and R2 * / G2 * , respectively, referring to the correlation as shown in FIG. 11, the signal ratio B1 * The oxygen saturation corresponding to / G2 * and the signal ratio R2 * / G2 * is “60%”. Therefore, the oxygen saturation calculation unit 83 calculates the oxygen saturation of this pixel as “60%”.
  • the signal ratio B1 / G2 and the signal ratio R2 / G2 are hardly increased or extremely decreased.
  • the values of the signal ratio B1 / G2 and the signal ratio R2 / G2 hardly exceed the lower limit line 93 with an oxygen saturation of 0%, or conversely fall below the upper limit line 94 with an oxygen saturation of 100%.
  • the oxygen saturation calculation unit 83 sets the oxygen saturation to 0%.
  • the oxygen saturation is set to 100. %.
  • the image generation unit 84 generates an oxygen saturation image obtained by imaging oxygen saturation using the oxygen saturation calculated by the oxygen saturation calculation unit 86 and the B2 image signal, the G2 image signal, and the R2 image signal. To do. Specifically, the image generation unit 84 applies a gain corresponding to the oxygen saturation to the input original B2 image signal, G2 image signal, and R2 image signal for each pixel, and applies the gained B2 RGB image data is generated using the image signal, the G2 image signal, and the R2 image signal. For example, the image generation unit 84 multiplies all of the B2 image signal, the G2 image signal, and the R2 image signal by the same gain “1” for a pixel having an oxygen saturation of 60% or more.
  • the B2 image signal is multiplied by a gain less than “1”
  • the G2 image signal and the R2 image signal are multiplied by a gain of “1” or more.
  • the RGB image data generated using the B1 image signal, the G2 image signal, and the R2 image signal after the gain processing is an oxygen saturation image.
  • those generated based on the image signals of the respective colors at the time of non-magnifying observation are non-magnified oxygen saturation images, and are based on the image signals of the respective colors at the time of magnified observation. What is generated is an enlarged oxygen saturation image.
  • the high oxygen region (region where the oxygen saturation is 60 to 100%) is represented by the same color as the normal observation image.
  • a low oxygen region where the oxygen saturation is below a predetermined value (region where the oxygen saturation is 0 to 60%) is represented by a color (pseudo color) different from that of the normal observation image.
  • the image generation unit 84 multiplies the gain for pseudo-coloring only the low oxygen region, but the gain corresponding to the oxygen saturation is applied even in the high oxygen region, and the entire oxygen saturation image is obtained.
  • a pseudo color may be used.
  • the low oxygen region and the high oxygen region are separated by oxygen saturation 60%, this boundary is also arbitrary.
  • the zoom detection unit 86 monitors the operation status of the zoom operation unit 22c and detects the presence / absence of zoom (whether or not magnification observation is performed). The detection result by the zoom detection unit 86 is input to the image generation unit 84. In addition, when performing magnified observation, the zoom detection unit 86 calculates the magnification of the observation range based on the operation amount of the zoom operation unit 22c, for example. When magnification observation is not performed, the image generation unit 84 outputs the generated oxygen saturation image to the structure enhancement unit 78 and stores it in the image storage unit 87. On the other hand, at the time of magnifying observation, the image generation unit 84 inputs the generated enlarged oxygen saturation image to the artifact correction unit 88, corrects the oxygen saturation artifact, and outputs it to the structure enhancement unit 78.
  • the image storage unit 87 is a memory for storing a non-expanded oxygen saturation image.
  • the image storage unit 87 stores the latest one of the non-enlarged oxygen saturation images. That is, every time the image generation unit 84 generates a non-enlarged oxygen saturation image, the non-enlarged oxygen saturation image stored in the image storage unit 87 is sequentially updated to the latest one. When the magnification observation is performed, the update of the non-magnified oxygen saturation image stored in the image storage unit 87 is stopped.
  • the artifact correction unit 88 includes a high frequency component extraction unit 101, an enlarged portion extraction unit 102, a low frequency component extraction unit 103, and a synthesis processing unit 104.
  • the high frequency component extraction unit 101 extracts a high frequency component equal to or higher than the cutoff frequency from the enlarged oxygen saturation image input from the image generation unit 84 at the time of magnification observation.
  • the enlarged oxygen saturation image corresponds to an enlarged part of the non-enlarged oxygen saturation image stored in the image storage unit 87.
  • An image of a high frequency component extracted from the enlarged oxygen saturation image (hereinafter referred to as a high frequency component image) is input to the synthesis processing unit 104.
  • the cut-off frequency is determined in advance according to the enlargement ratio, and the cut-off frequency is determined to shift to the lower frequency side as the enlargement ratio increases. Thereby, the high frequency component extraction part 101 extracts the appropriate high frequency component according to the expansion condition of the specimen.
  • the enlarged portion extraction unit 102 includes a corresponding region detection unit 102a and an enlargement processing unit 102b.
  • the corresponding region detection unit 102 a acquires the expanded oxygen saturation image from the image generation unit 84 and acquires the non-enlarged oxygen saturation image from the image storage unit 87. Then, by performing pattern matching between the expanded oxygen saturation image and the non-enlarged oxygen saturation image, a region corresponding to the expanded oxygen saturation image is extracted from the non-enlarged oxygen saturation image.
  • the enlargement processing unit 102b enlarges the image of the region extracted from the non-enlarged oxygen saturation image so as to have the same size as the enlarged oxygen saturation image.
  • the low frequency component extraction unit 103 extracts a low frequency component having a frequency lower than the cutoff frequency from the image extracted by the expansion portion extraction unit 102 from the non-expansion oxygen saturation image and enlarged by the expansion processing unit 102b.
  • the low frequency component image extracted by the low frequency component extraction unit from the non-enlarged oxygen saturation image (hereinafter referred to as a low frequency component image) is input to the synthesis processing unit 104.
  • the cutoff frequency used as the threshold value by the low frequency component extraction unit 103 is the same value as that used by the high frequency component extraction unit 101.
  • the synthesis processing unit 104 corrects artifacts by aligning and synthesizing the high frequency component image input from the high frequency component extraction unit 101 and the low frequency component image input from the low frequency component extraction unit 103.
  • a synthesized oxygen saturation image is generated.
  • the synthesized oxygen saturation image generated by the synthesis processing unit 104 is input to the structure enhancement unit 78, subjected to structure enhancement processing, converted into a display image signal by the image display signal generation unit 66, and displayed on the monitor 18. Is done.
  • the flow of observation by the endoscope system 10 of this embodiment will be described along the flowchart of FIG.
  • screening is performed from the farthest view state (S10).
  • a normal observation image is displayed on the monitor 18.
  • the mode switching SW 22b is operated to switch to the special observation mode. (S12).
  • a diagnosis is made as to whether or not the likely lesion site is in a hypoxic state.
  • the first white light and the second white light are alternately irradiated into the specimen in synchronization with the imaging frame of the sensor 48. Therefore, the sensor 48 detects the R1 image signal in the frame irradiated with the first white light. , G1 image signal, and B1 image signal are output, and R2 image signal, G2 image signal, and B2 image signal are output in the frame irradiated with the second white light. Based on the image signals for these two frames, the oxygen saturation is calculated for each pixel (S13).
  • the oxygen saturation image generation unit 76 detects whether or not the zoom detection unit 86 performs magnified observation (S14). At the time of non-magnifying observation, the image generating unit 84 applies gain to the R2 image signal, G2 image signal, and B2 image signal according to the oxygen saturation, and generates a non-enlarged oxygen saturation image (S15). The generated non-enlarged oxygen saturation image is stored in the image storage unit 87 (S16) and displayed on the monitor 18.
  • the doctor confirms whether the lesion possibility site is in a hypoxic state.
  • Such display of the oxygen saturation is continuously performed until the normal observation mode is switched (S25).
  • the insertion portion 21 of the endoscope 12 is extracted from the sample (S26).
  • the zoom detection unit 86 detects that magnified observation is being performed (S14).
  • the image generation unit 84 applies a gain to the R2 image signal, the G2 image signal, and the B2 image signal at the time of enlarged observation according to the oxygen saturation, and generates an enlarged oxygen saturation image (S18).
  • an oxygen saturation artifact that may not occur in the non-enlarged oxygen saturation image may occur. Therefore, the endoscope system 10 corrects a unique artifact during magnification observation. To do.
  • the high-frequency component extraction unit 101 extracts a high-frequency component equal to or higher than the cutoff frequency from the enlarged oxygen saturation image 120 (S19), and a high-frequency component image 121 composed of the extracted high-frequency components. Is generated.
  • the enlarged oxygen saturation image 120 is a fine structure that cannot be confirmed by the non-expanded oxygen saturation image 125 due to the expansion of the low oxygen region 123, a local change in oxygen saturation, etc. (hereinafter collectively referred to as a high-frequency structure 124).
  • an artifact 122 having a low frequency component is generated.
  • the high-frequency component 124 since the low frequency component which is mainly the artifact 122 is cut, the high frequency structure 124 appears more clearly.
  • the high-frequency component image 121 since the low-frequency component is cut, the structure of the specimen having the low-frequency component and a gentle change in oxygen saturation cannot be confirmed.
  • the enlarged portion extraction unit 102 acquires the enlarged oxygen saturation image 120, acquires the non-enlarged oxygen saturation image 125 from the image storage unit 87, and performs pattern matching by the corresponding region detection unit 102a.
  • a region 126 corresponding to the portion (enlarged oxygen saturation image 120) being magnified is detected from the non-enlarged oxygen saturation image 125 (S20).
  • the detected image of the region 126 is size-converted by the enlargement processing unit 102b according to the enlarged oxygen saturation image 120 (S21).
  • the low-frequency component extraction unit 103 extracts a low-frequency component less than the cutoff frequency from the image 127 in the region 126 after the size conversion, and generates a low-frequency component image 128 including the extracted low-frequency component (S22). ).
  • the low-frequency component image 128 generated based on the non-enlarged oxygen saturation image 125 has a low-frequency component such as a structure of the specimen and a gentle change in oxygen saturation (hereinafter collectively referred to as a low-frequency structure 129). Appears correctly.
  • the synthesis processing unit 104 synthesizes them to generate a synthetic oxygen saturation image 130 (S23). That is, the synthetic oxygen saturation image 130 is an image in which the high frequency structure 124 of the high frequency component image 121 and the low frequency structure 129 of the low frequency component image 128 are superimposed. For this reason, the synthetic oxygen saturation image 130 has no artifact 122 as shown in the enlarged oxygen saturation image 120, and both the high-frequency structure 124 and the low-frequency structure 129 can be confirmed. The synthetic oxygen saturation image 130 thus generated is displayed on the monitor 18 after undergoing structure enhancement processing or the like (S24).
  • the endoscope system 10 performs special image processing for correcting the artifact 122 by the endoscope system 10.
  • a display 131 clearly indicating that the process has been performed is displayed on the display screen of the monitor 18 together with the synthetic oxygen saturation image 130.
  • the display 131 is a character such as “enlarged image processing”, for example.
  • the endoscope system 10 performs the low-frequency component of the non-enlarged oxygen saturation image 125 and the enlarged oxygen saturation image 120 when performing the enlarged observation in the special observation mode for calculating and displaying the oxygen saturation.
  • a synthetic oxygen saturation image 130 in which high frequency components are synthesized is generated and displayed.
  • the artifact 122 of the enlarged oxygen saturation image 125 is corrected (removed), and both the high-frequency structure 124 and the low-frequency structure 129 of the specimen can be observed. Can make an accurate diagnosis by confirming the hypoxic region 123 in more detail.
  • the low oxygen region 123 is magnified. However, even if the low oxygen region 123 is not detected at the time of non-magnifying observation, the magnified region is enlarged. You may observe. For example, as shown in FIG. 15, even when a possible lesion site is found during screening in the normal observation mode and the special observation mode is switched, a hypoxic region may not be recognized in the non-enlarged oxygen saturation image 141. . In this case, the doctor may magnify and observe the likely lesion site in order to confirm that the likely lesion site is not a hypoxic lesion. However, in the enlarged oxygen saturation image 142 in this case, although the high-frequency structure 143 can be confirmed, the oxygen saturation artifact 122 is also generated by performing the enlarged observation.
  • the endoscope system 10 extracts a high-frequency component from the enlarged oxygen saturation image 142 regardless of whether or not the non-enlarged oxygen saturation image 141 has a low oxygen region. Then, the high frequency component image 144 is generated. In the high frequency component image 144, the artifact 122 is corrected and the high frequency structure 143 can be confirmed. However, in the high frequency component image 144, the low frequency structure having the same frequency as the artifact 122 is also removed.
  • the endoscope system 10 extracts a region 145 corresponding to the enlarged oxygen saturation image 142 from the non-enlarged oxygen saturation image 141, and generates an image 146 that has undergone size conversion. Then, a low frequency component is extracted from the image 146 to generate a low frequency component image 147. In the low frequency component image 147, the low frequency structure 148 of the specimen appears.
  • the synthetic oxygen saturation image 150 is not disturbed by the artifact 122 and the high-frequency structure 143 of the specimen is low. Both frequency structures 148 can be observed. If the high-frequency structure 143 is in a low-oxygen state, it is displayed in pseudo color, so even if the low-oxygen state cannot be confirmed in the non-enlarged oxygen saturation image 141, the low-oxygen state that can be observed only after magnified observation The high-frequency structure 143 can be found from the synthetic oxygen saturation image 150.
  • the non-enlarged oxygen saturation image 125 or 141 is displayed as it is, or the synthetic oxygen saturation image 130 or 150 in which the artifact 122 is corrected is displayed.
  • Switching between generating and displaying, but instead of monitoring the zoom operation, by detecting the artifact 122 from the generated oxygen saturation image (non-enlarged oxygen saturation image or expanded oxygen saturation image) It may be switched whether to generate a synthetic oxygen saturation image.
  • the oxygen saturation generation unit 76 of the endoscope system 10 of the first embodiment is replaced with an oxygen saturation image generation unit 160 shown in FIG.
  • Other configurations are the same as those of the endoscope system 10 of the first embodiment.
  • the oxygen saturation image generation unit 160 is obtained by adding an artifact detection unit 161 to the oxygen saturation image generation unit 76 of the first embodiment except for the zoom detection unit 86. Further, the oxygen saturation image generation unit 160 has the same signal ratio detection unit 81, correlation storage unit 82, oxygen saturation calculation unit 83, image generation unit 84, and image as the oxygen saturation image generation unit 76 of the first embodiment. A storage unit 87 and an artifact correction unit 88 are provided.
  • the oxygen saturation image generated by the image generation unit 84 is classified into a non-enlarged oxygen saturation image and an enlarged oxygen saturation image according to the presence or absence of the zoom operation. In the present embodiment, The non-enlarged oxygen saturation image and the enlarged oxygen saturation image are not distinguished, and all images generated by the image generation unit 84 are referred to as oxygen saturation images.
  • the artifact detection unit 161 acquires the oxygen saturation image from the image generation unit 84, and detects the artifact 122 from the acquired oxygen saturation image.
  • the artifact 122 generated by the magnified observation is generated in the structure (distribution, intensity, etc.) of the endoscope 12 such as the arrangement of the illumination optical system 24a and the imaging optical system 24b at the distal end portion 24, and the magnification rate of the specimen ( Or the distance between the tip 24 and the specimen) is substantially determined. For this reason, the artifact detection unit 161 detects whether or not the artifact 122 has occurred by monitoring pixel values at one or more arbitrary points in the oxygen saturation image.
  • the B pixel value is compared with a first threshold value, and the B pixel value is equal to or lower than the first threshold value due to gain (low oxygen level). Occurrence of artifacts is detected. There may be no artifact at the position corresponding to the pixel being monitored, and the specimen itself may actually be hypoxic, but the artifact is generally larger than the hypoxic condition that can occur in the specimen. If the first threshold value is set to be large to some extent, the occurrence of artifacts can be detected without erroneous detection.
  • a pixel at a position where an artifact that always becomes a high oxygen state is generated may be monitored.
  • the detection accuracy is improved. Therefore, it is preferable to monitor the pixel values at two or more points.
  • the detection method of the artifact is arbitrary. Instead of comparing the pixel value with the threshold value, the occurrence of the artifact 122 may be detected by extracting the frequency component of the artifact.
  • the artifact detection unit 161 When no artifact is detected from the oxygen saturation image acquired from the image generation unit 84, the artifact detection unit 161 outputs the acquired oxygen saturation image to the structure enhancement unit 78 and displays it on the monitor 18. Further, the artifact detection unit 161 stores the oxygen saturation image in which no artifact is detected in the image storage unit 87. That is, the oxygen saturation image in which no artifact is detected by the artifact detection unit 161 corresponds to the non-enlarged oxygen saturation image of the first embodiment.
  • the artifact detection unit 161 inputs the oxygen saturation image in which the artifact is detected to the artifact correction unit 88, corrects the detected artifact, and outputs the corrected image to the structure enhancement unit 78. That is, the oxygen saturation image in which the artifact is detected corresponds to the enlarged oxygen saturation image of the first embodiment.
  • the configuration of the artifact correction unit 88 is the same as that of the first embodiment, and the high frequency component extraction unit 101 extracts a high frequency component from the oxygen saturation image in which the artifact is detected, and generates a high frequency component image.
  • the enlarged portion extraction unit 102 acquires a past oxygen saturation image in which no artifact has been detected from the image storage unit 87, acquires an oxygen saturation image in which the artifact has been detected from the artifact detection unit 161, and the corresponding region
  • the pattern matching is performed by the detection unit 102a, a region corresponding to the oxygen saturation image in which the artifact is detected is detected from the oxygen saturation image in which the artifact is not detected, and this region is sized by the enlargement processing unit 102b. Convert.
  • the low frequency component extraction unit 103 extracts a low frequency component from the size-converted image, and generates a low frequency component image.
  • the synthesis processing unit 104 synthesizes the high-frequency component image and the low-frequency component image, generates a synthesized oxygen saturation image in which artifacts are corrected, and outputs the synthesized oxygen saturation image to the structure enhancement unit 78.
  • the endoscope system including the oxygen saturation generation unit 160 of the second embodiment detects the occurrence of the artifact 122 from the oxygen saturation image instead of monitoring the zoom operation, and the artifact is detected.
  • a synthesized oxygen saturation image in which the detected artifact is corrected is generated. That is, the endoscope system including the oxygen saturation generation unit 160 detects magnified observation by detecting artifacts.
  • This endoscope system is capable of generating and displaying a synthetic oxygen saturation image with corrected artifacts when performing close-up observation with the distal end portion 24 of the endoscope 12 approaching the specimen, regardless of the zoom operation. it can.
  • first and second embodiments may be combined. Specifically, when the zoom operation is not detected while monitoring the zoom operation as in the first embodiment, the artifact is corrected in the flow of the second embodiment, and when the zoom operation is detected.
  • a synthetic oxygen saturation image in which artifacts are forcibly corrected as in the first embodiment may be generated as artifacts are generated.
  • the distal end portion 24 of the endoscope 12 is brought close to the specimen when performing magnified observation by the zoom operation and without performing the zoom operation.
  • an accurate oxygen saturation image synthetic oxygen saturation image
  • an oxygen saturation image (non-enlarged oxygen saturation image, enlarged oxygen saturation image) generated by the image generation unit 84 is used to generate a synthetic oxygen saturation image with corrected artifacts.
  • the artifact may be corrected at the stage of each image signal.
  • the oxygen saturation image generation unit 76 of the endoscope system 10 of the first embodiment is replaced with an oxygen saturation image generation unit 170 shown in FIG.
  • Other configurations are the same as those of the endoscope system 10 of the first embodiment.
  • the oxygen saturation image generation unit 170 includes a signal ratio detection unit 81, a correlation storage unit 82, an oxygen saturation calculation unit 83, an image generation unit 84, a zoom detection unit 86, An image storage unit 87, an artifact correction unit 171, an image signal storage unit 172, and a signal processing switching unit 173 are provided.
  • the signal ratio detection unit 81, the correlation storage unit 82, the oxygen saturation calculation unit 83, the image generation unit 84, and the zoom detection unit 86 are the same as those in the first embodiment.
  • the detection result by the zoom detection unit 86 is input to the signal processing switching unit 173.
  • the signal processing switching unit 173 switches the content of the signal processing applied to the input image signal by switching the output destination of the image signal of each color input in the special observation mode. Specifically, when a zoom operation is not detected by the zoom detection unit 86 (when non-magnifying observation is performed), the signal processing switching unit 173 converts each image signal input to the oxygen saturation image generation unit 170 into a signal ratio. It outputs to the calculation part 81 and the image generation part 84, and produces
  • the image signal input when the zoom operation is not detected is stored in the image signal storage unit 172. That is, the image signal storage unit 172 stores an image signal at the time of non-magnification observation corresponding to the non-magnification oxygen saturation image of the first embodiment (hereinafter referred to as a non-magnification image signal).
  • the signal processing switching unit 173 uses the image signal at the time of the magnified observation (hereinafter referred to as the magnified image signal) as an artifact.
  • the data is output to the correction unit 171.
  • the artifact correction unit 171 includes a high frequency component extraction unit 181, an enlarged portion extraction unit 182, a low frequency component extraction unit 183, and a synthesis processing unit 184.
  • the enlarged portion extraction unit 182 includes a corresponding area detection unit 182a and an enlargement processing unit 182b. The basic actions of these parts are the same as those of the first embodiment, but the high-frequency component extraction part 181 and the enlarged part extraction part 182 (corresponding area detection part 182a and enlargement processing part 182b) of the artifact correction part 171 are low.
  • the frequency component extraction unit 183 and the synthesis processing unit 184 perform each process on the image signal, not the oxygen saturation image.
  • each color image signal (hereinafter referred to as an enlarged image signal) output during magnified observation is input to the high frequency component extracting unit 181 and high frequency components are extracted from the enlarged image signals of these colors.
  • the high frequency component image signal which consists of the extracted high frequency component is produced
  • the corresponding area detection unit 182a acquires the enlarged image signal from the signal processing switching unit 173, and stores the image signal of each color (hereinafter referred to as a non-enlarged image signal) stored from the image signal storage unit 172 at the time of non-magnification observation. get. Then, by performing pattern matching between the enlarged image signal of each color and the non-enlarged image signal, a portion corresponding to the image represented by the enlarged image signal is extracted from the non-enlarged image signal.
  • the enlargement processing unit 182b performs size conversion for enlarging the portion extracted from the non-enlarged image signal so that the size corresponds to the enlarged image signal.
  • the low frequency component extraction unit 183 extracts a low frequency component from the image signal subjected to the size conversion, and generates a low frequency component image signal. Then, the synthesis processing unit 184 synthesizes the high-frequency component image signal and the low-frequency component image signal of the corresponding frame and color to generate a synthesized image signal.
  • the artifact correction unit 171 receives the R1 image signal, the G1 image signal, and the B1 image signal of the first frame and the R2 image signal, the G2 image signal, and the B2 image signal of the second frame.
  • each synthesized image signal for example, the R1 synthesized image signal, the G1 synthesized image signal, the B1 synthesized image signal, the R2 synthesized image signal of the second frame, and the G2 synthesized image signal in which the artifact is corrected.
  • B2 composite image signal for example, the R1 synthesized image signal, the G1 synthesized image signal, the B1 synthesized image signal, the R2 synthesized image signal of the second frame, and the G2 synthesized image signal
  • Each synthesized image signal output from the synthesis processing unit 184 is input to the signal ratio calculation unit 81 and the image generation unit 84. Thereby, a synthetic oxygen saturation image free from artifacts is generated and displayed based on each synthetic image signal.
  • the process of generating the synthesized oxygen saturation image in which the artifact is corrected according to the first embodiment can be performed in advance at the stage of the image signal before the oxygen saturation image is generated.
  • the same may be applied to the process of generating the synthetic oxygen saturation image of the second embodiment or the combination of the first embodiment and the second embodiment.
  • artifacts are corrected at the stage of each image signal input to the oxygen saturation image generation unit 170, but the signal ratio B1 / G2 output by the signal ratio calculation unit 81 and Similar processing for correcting the artifact may be applied to the signal ratio R2 / G2.
  • the same artifact correction processing may be performed on the oxygen saturation data output from the oxygen saturation calculation unit 83.
  • the phosphor 44 is provided at the distal end portion 24 of the endoscope 12, but instead of this, like an endoscope system 300 shown in FIG.
  • a phosphor 44 may be provided inside the light source device 14.
  • the phosphor 44 is provided between the first blue laser light source (473LD) 34 and the second blue laser light source (445LD) 36 and the light guide 41.
  • the first blue laser light source 34 or the second blue laser light source 36 is irradiated with the first blue laser light or the second blue laser light toward the phosphor 44.
  • 1st white light or 2nd white light is emitted.
  • the first or second white light is irradiated into the specimen through the light guide 41.
  • the rest is the same as the endoscope system of the first to third embodiments.
  • the first and second blue laser beams are made incident on the same phosphor 44.
  • the first blue laser beam and the second blue laser beam are separately used in the first fluorescence. Or the second phosphor.
  • the light source device 14 of the endoscope system 400 includes an LED (Light Emitting Diode) light source unit instead of the first blue laser light source 34, the second blue laser light source 36, and the light source control unit 40. 401 and an LED light source controller 404 are provided. Further, the phosphor 44 is not provided in the illumination optical system 24a of the endoscope system 400. The rest is the same as the endoscope system of the first to third embodiments.
  • LED Light Emitting Diode
  • the LED light source unit 401 includes an R-LED 401a, a G-LED 401b, and a B-LED 401c as light sources that emit light limited to a specific wavelength band.
  • the R-LED 401a has a red band light in the red region of 600 to 720 nm (hereinafter simply referred to as red light)
  • the G-LED 401b has a green band light in the green region of 480 to 620 nm (hereinafter referred to as “red light”). Simply emits green light).
  • the B-LED 401c emits blue band light in the blue region of 400 to 500 nm (hereinafter simply referred to as blue light).
  • the LED light source unit 401 has a high-pass filter (HPF) 402 that is inserted into and removed from the optical path of blue light emitted from the B-LED 401c.
  • the high pass filter 402 cuts blue light having a wavelength band of 450 nm or less and transmits light having a wavelength band longer than 450 nm.
  • the cut-off wavelength (450 nm) of the high-pass filter 402 is a wavelength in which the absorption coefficients of oxyhemoglobin and reduced hemoglobin are substantially equal (see FIG. 10), and the absorption coefficients of oxyhemoglobin and reduced hemoglobin are reversed at this wavelength.
  • the correlation stored in the correlation storage unit 82 is a case where the extinction coefficient of oxyhemoglobin is larger than the extinction coefficient of reduced hemoglobin. Therefore, a signal based on a wavelength band equal to or less than the cutoff wavelength is The signal ratio B1 / G2 is lower than the original value measured at 473 nm, causing inaccurate oxygen saturation to be calculated. For this reason, the high-pass filter 402 prevents the specimen from being irradiated with light in the wavelength band equal to or less than the cutoff wavelength when acquiring the B1 image signal for calculating the oxygen saturation.
  • the high-pass filter 402 is inserted in front of the B-LED 401c in the special observation mode, and is retracted to the retreat position in the normal observation mode.
  • the high-pass filter 402 is inserted / removed by the HPF insertion / extraction unit 403 under the control of the LED light source control unit 404.
  • the LED light source control unit 404 controls turning on / off of each LED 401 a to 401 c of the LED light source unit 401 and insertion / extraction of the high-pass filter 402. Specifically, as shown in FIG. 21, in the normal observation mode, the LED light source control unit 404 turns on all the LEDs 401a to 401c, and the high-pass filter 402 retracts from the optical path of the B-LED 401c.
  • the LED light source control unit 40 inserts the high-pass filter 402 on the optical path of the B-LED 401c.
  • the B-LED 401c is turned on and the R-LED 401a and the G-LED 401b are turned off to irradiate the sample with blue light with a wavelength band of 450 nm or less cut.
  • the R-LED 401a, the G-LED 401b, and the B-LED 401c are all turned on, and the blue light from which the wavelength band of 450 nm or less is cut out of the blue light emitted from the B-LED 401c and the R-LED 401a emits light.
  • the sensor 48 outputs a B1 image signal in the first frame, and outputs an R2 image signal, a G2 image signal, and a B2 image signal in the second frame, respectively.
  • the subsequent processing can be performed in the same manner as the endoscope system of the first to third embodiments.
  • the endoscope system 400 of the fourth embodiment using LEDs can also generate and display a synthetic oxygen saturation image in which artifacts are corrected.
  • the specimen is imaged with the high-pass filter 102 inserted in both the first frame and the second frame in the special observation mode.
  • the high-pass filter 102 is inserted only in the first frame, and the second frame.
  • the high pass filter 102 may be retracted.
  • the first frame in the special observation mode only the B-LED 401c is turned on and only the blue light is irradiated on the specimen, but the R-LED 401a and the G-LED 401b are also turned on in the first frame, and the R1 image signal
  • the G1 image signal may be output to the sensor 48.
  • the light source device 14 of the endoscope system 500 includes a broadband light source 501, a rotary filter 502, and a rotation instead of the first and second blue laser beams 34 and 36 and the light source control unit 40.
  • a filter control unit 503 is provided.
  • the sensor 505 of the endoscope system 500 is a monochrome image sensor that is not provided with a color filter. The rest is the same as the endoscope system of the first to third embodiments.
  • the broadband light source 501 includes, for example, a xenon lamp, a white LED, and the like, and emits white light whose wavelength band ranges from blue to red.
  • the rotation filter 502 includes a normal observation mode filter 510 and a special observation mode filter 511 (see FIG. 24), and the white light emitted from the broadband light source 501 is normally on the optical path on which the light guide 41 is incident. It is movable in the radial direction between a first position for the normal observation mode where the observation mode filter 510 is disposed and a second position for the special observation mode where the special observation mode filter 511 is disposed. The mutual movement of the rotary filter 502 to the first position and the second position is controlled by the rotary filter control unit 503 according to the selected observation mode.
  • the rotary filter 502 rotates according to the imaging frame of the sensor 505 in a state where the rotary filter 502 is disposed at the first position or the second position.
  • the rotation speed of the rotation filter 502 is controlled by the rotation filter control unit 503 according to the selected observation mode.
  • the normal observation mode filter 510 is provided on the inner periphery of the rotary filter 502.
  • the normal observation mode filter 510 includes an R filter 510a that transmits red light, a G filter 510b that transmits green light, and a B filter 510c that transmits blue light. Therefore, when the rotary filter 502 is disposed at the first position for the normal light observation mode, white light from the broadband light source 501 is selected from the R filter 510a, the G filter 510b, and the B filter 510c according to the rotation of the rotary filter 502. It enters the crab.
  • the specimen is sequentially irradiated with red light, green light, and blue light according to the transmitted filter, and the sensor 505 images the specimen with these reflected lights, so that an R image signal and a G image are obtained.
  • the signal and the B image signal are sequentially output.
  • the special observation mode filter 511 is provided on the outer peripheral portion of the rotary filter 502.
  • the special observation mode filter 511 includes an R filter 511a that transmits red light, a G filter 511b that transmits green light, a B filter 511c that transmits blue light, and a narrow band that transmits 473 ⁇ 10 nm narrow band light. And a filter 511d. Therefore, when the rotary filter 502 is disposed at the second position for the normal light observation mode, white light from the broadband light source 501 is reduced according to the rotation of the rotary filter 502 by the R filter 511a, the G filter 511b, the B filter 511c, and the narrow filter. It enters one of the band-pass filters 511d.
  • the specimen is sequentially irradiated with red light, green light, blue light, and narrowband light (473 nm) according to the transmitted filter, and the sensor 505 images each specimen with these reflected lights.
  • R image signal, G image signal, B image signal, and narrowband image signal are sequentially output.
  • the R image signal and the G image signal obtained in the special observation mode correspond to the R1 (or R2) image signal and the G1 (or G2) image signal of the first embodiment.
  • the B image signal obtained in the special observation mode corresponds to the B2 image signal of the first embodiment, and the narrowband image signal corresponds to the B1 image signal. Therefore, the subsequent processing can be performed in the same manner as in the endoscope systems of the first to third embodiments. For this reason, the endoscope system 500 of the fifth embodiment using the rotation filter 502 can also generate and display a synthetic oxygen saturation image in which artifacts are corrected.
  • the oxygen saturation is calculated based on the signal ratio B1 / G2 and the signal ratio R2 / G2, but the oxygen saturation is calculated based only on the signal ratio B1 / G2. May be.
  • the correlation storage unit 82 may store the correlation between the signal ratio B1 / G2 and the oxygen saturation.
  • an oxygen saturation image obtained by imaging oxygen saturation is generated and displayed.
  • a blood volume image obtained by imaging blood volume is generated and displayed. May be. Since the blood volume has a correlation with the signal ratio R2 / G2, a blood volume image in which the blood volume is imaged can be created by assigning a different color according to the signal ratio R2 / G2.
  • the oxygen saturation is calculated, but instead of or in addition to this, “blood volume (signal ratio R2 / G2) ⁇ oxygen saturation (%)”.
  • Other biological function information such as a calculated oxyhemoglobin index or a reduced hemoglobin index calculated by “blood volume ⁇ (1 ⁇ oxygen saturation) (%)” may be calculated.

Abstract

In the present invention, characteristic artifacts are corrected in the case of magnified observation by means of an oxygen saturation image. This endoscope system (10) is provided with an image generation unit (84), a low-frequency component extraction unit (103), a high-frequency component extraction unit (101), and a combining process unit (104). The image generation unit (84) generates a first oxygen saturation image on the basis of a first image signal obtained by imaging a specimen and the oxygen saturation calculated on the basis of the first image signal. Also, the image generation unit (84) generates a second image signal obtained by imaging the specimen magnified more than during the output of the first image signal, and a second oxygen saturation image that is on the basis of the oxygen saturation calculated on the basis of the second image signal. The low-frequency component extraction unit (103) extracts the low-frequency component that is less than a cutoff frequency from the first oxygen saturation image, and the high-frequency component extraction unit (101) extracts a high-frequency component that is at least the cutoff frequency from the second oxygen saturation image. The combining process unit (104) generates a combined oxygen saturation image resulting from combining same.

Description

内視鏡システム及びプロセッサ装置並びに作動方法ENDOSCOPE SYSTEM, PROCESSOR DEVICE, AND OPERATION METHOD
 本発明は、検体内の撮像により得られる画像信号から血中ヘモグロビンの酸素飽和度に関する生体機能情報を取得する内視鏡システム及びプロセッサ装置並びに作動方法に関する。 The present invention relates to an endoscope system, a processor device, and an operating method for acquiring biological function information related to oxygen saturation of blood hemoglobin from an image signal obtained by imaging in a specimen.
 医療分野においては、光源装置、内視鏡、及びプロセッサ装置を備える内視鏡システムを用いて診断することが一般的になっている。また、近年においては、生体機能情報の中でも血中ヘモグロビンの酸素飽和度を用いた病変部の診断が行われつつある。血中ヘモグロビンの酸素飽和度を取得する方法としては、波長帯域が異なり、かつ、酸化ヘモグロビンと還元ヘモグロビンの吸光係数が異なる、第1信号光と第2信号光を交互に粘膜内の血管に照射して、第1及び第2信号光の血管からの各反射光を内視鏡先端部のセンサで検出する方法が知られている(特許文献1)。 In the medical field, diagnosis is generally performed using an endoscope system including a light source device, an endoscope, and a processor device. In recent years, lesions are being diagnosed using the oxygen saturation of blood hemoglobin in the biological function information. As a method of obtaining the oxygen saturation of blood hemoglobin, the first signal light and the second signal light, which have different wavelength bands and different absorption coefficients of oxyhemoglobin and deoxyhemoglobin, are alternately applied to the blood vessels in the mucous membrane. A method is known in which each reflected light from the blood vessel of the first and second signal lights is detected by a sensor at the distal end of the endoscope (Patent Document 1).
 センサで検出した第1信号光の反射光に対応する第1信号光画像信号と、第2信号光の反射光に対応する第2信号光画像信号の比率(以下、信号比という)は、血管内の酸素飽和度に変化がなければ一定値を維持するが、酸素飽和度の変化が生じれば、それにともなって変化する。したがって、第1信号光画像信号と第2信号光画像信号の信号比に基づいて酸素飽和度を算出することができる。 The ratio of the first signal light image signal corresponding to the reflected light of the first signal light detected by the sensor and the second signal light image signal corresponding to the reflected light of the second signal light (hereinafter referred to as signal ratio) is a blood vessel. If there is no change in the oxygen saturation, a constant value is maintained, but if a change in oxygen saturation occurs, it changes accordingly. Therefore, the oxygen saturation can be calculated based on the signal ratio between the first signal light image signal and the second signal light image signal.
 但し、酸素飽和度の算出は、第1及び第2信号光が検体に対して均一に照射されていることを前提としている。このため、第1及び第2信号光が不均一な場合には算出した酸素飽和度の信頼性が低くなってしまうので、酸素飽和度を取得する内視鏡システムでは、第1及び第2信号光が検体にほぼ均一に照射されるように第1及び第2信号光の照射範囲や光量の分布等が予め厳密に調節されている。 However, the calculation of the oxygen saturation is based on the premise that the specimen is uniformly irradiated with the first and second signal lights. For this reason, when the first and second signal lights are non-uniform, the reliability of the calculated oxygen saturation is reduced. Therefore, in an endoscope system that acquires oxygen saturation, the first and second signals The irradiation range of the first and second signal lights, the distribution of the amount of light, and the like are strictly adjusted in advance so that the sample is irradiated with light almost uniformly.
 ところで、人物や風景等を撮影するための一般的なデジタルカメラでは、例えば暗所でストロボ撮影を行う場合に、照明光量が不均一になりやすく、撮影範囲の一部に白飛びや黒つぶれが発生する場合がある。このため、デジタルカメラの場合には、ストロボの発光量を変えて撮影した複数の画像を合成することにより、画像全体がほぼ均一に照明された場合と同等な画像を得る技術が知られている(特許文献2~4)。また、拡大率が異なる複数の画像を合成することにより、ダイナミックレンジを拡大し、白飛びや黒つぶれを解消する方法も知られている(特許文献5)。 By the way, in a general digital camera for photographing a person or a landscape, for example, when taking a stroboscopic shot in a dark place, the amount of illumination tends to be uneven, and overexposure and blackout are part of the shooting range. May occur. For this reason, in the case of a digital camera, there is known a technique for obtaining an image equivalent to a case where the entire image is illuminated almost uniformly by synthesizing a plurality of images taken by changing the light emission amount of the strobe. (Patent Documents 2 to 4). In addition, a method is known in which a dynamic range is expanded by combining a plurality of images having different enlargement ratios to eliminate overexposure and underexposure (Patent Document 5).
特開2012-125402号公報JP 2012-125402 A 特開2006-254493号公報JP 2006-254493 A 特開2006-033049号公報JP 2006-033049 A 特開2009-206651号公報JP 2009-206651 A 特開2008-301332号公報JP 2008-301332 A
 内視鏡システムは、一般的なデジタルカメラのように被写体が不定ではなく、被写体(検体)や被写体までの距離が限られているので、照明の照射範囲や光量の分布等を予め厳密に調節しておくことができる。このため、内視鏡システムでは、通常は、デジタルカメラのように照明の不均一さが原因で検体が部分的に観察し難くなるようなことはない。 Endoscope systems, such as general digital cameras, are not indefinite, and the distance to the subject (specimen) and subject is limited, so the illumination illumination range, light intensity distribution, etc. are precisely adjusted in advance. Can be kept. For this reason, in an endoscope system, it is usually not difficult to partially observe a specimen due to uneven illumination unlike a digital camera.
 しかし、通常の白色光による観察をする場合に観察範囲の全範囲で検体を鮮明に観察できるように照明の照射範囲や光量の分布が調節してあったとしても、酸素飽和度を算出する場合には、検体の性状によるものではない大きな誤差(以下、アーチファクトという)が発生してしまう場合がある。具体的には、非拡大観察から拡大観察(内視鏡先端部を検体に極めて接近させた観察、またはズームレンズを作動して検体を拡大する観察)に切り替えると、非拡大観察時には発生していなかった低酸素領域や高酸素領域が発生するようになる。すなわち、拡大観察時には、非拡大観察時には起こりえなかった酸素飽和度のアーチファクトが発生する。これは、酸素飽和度が照明(第1及び第2信号光)の光量分布等に対して極めて敏感であることと、極めて小さな照明の光量分布等の誤差でも拡大観察時には拡大率に応じて酸素飽和度への寄与が大きくなってしまうことが主な原因である。 However, when observing with normal white light, even when the illumination irradiation range and light intensity distribution are adjusted so that the specimen can be clearly observed in the entire observation range, oxygen saturation is calculated. May cause a large error (hereinafter referred to as artifact) that is not caused by the properties of the specimen. Specifically, when switching from non-magnifying observation to magnifying observation (observation where the tip of the endoscope is very close to the specimen, or observation that magnifies the specimen by operating the zoom lens), it occurs during non-magnifying observation. The low oxygen region and the high oxygen region that did not exist are generated. That is, at the time of magnified observation, an artifact of oxygen saturation that could not occur at the time of non-magnified observation occurs. This is because the oxygen saturation is extremely sensitive to the light amount distribution of the illumination (first and second signal lights), and even if there is an error such as the light amount distribution of the very small illumination, the oxygen saturation depends on the magnification rate during magnification observation. The main reason is that the contribution to saturation is increased.
 拡大観察時に酸素飽和度のアーチファクトが発生しないようにするためには、さらに厳密に照明を均一にすれば良いが、当然ながら、文字通り完全に照明を均一化することは不可能である。また、所定の拡大率での拡大観察時に酸素飽和度のアーチファクトが発生しないようにしたとしても、拡大率を上げれば再び同じ問題が発生するので根本的な解決にはならない。 In order to prevent the occurrence of oxygen saturation artifacts during magnified observation, it is only necessary to make the illumination more uniform, but of course, literally it is impossible to make the illumination completely uniform. Even if the oxygen saturation artifact is prevented from occurring during magnified observation at a predetermined magnification, the same problem will occur again if the magnification is increased, which is not a fundamental solution.
 なお、内視鏡システムでは検体の微細構造自体はもともと観察可能であって、特許文献2~5のようにダイナミックレンジを拡大して検体の微細構造を観察できるようにしたとしても、拡大観察時に発生する酸素飽和度のアーチファクトの低減にはつながらない。 In the endoscope system, the fine structure of the specimen itself can be originally observed. Even if the dynamic range is expanded and the fine structure of the specimen can be observed as in Patent Documents 2 to 5, It does not lead to reduction of the generated oxygen saturation artifact.
 本発明は、拡大観察時に発生する酸素飽和度のアーチファクトを低減し、酸素飽和度の分布を従来よりも細かく正確に算出及び表示する内視鏡システム及びプロセッサ装置並びに作動方法を提供することを目的とする。 An object of the present invention is to provide an endoscope system, a processor device, and an operation method that reduce an oxygen saturation artifact generated during magnified observation and calculate and display the oxygen saturation distribution more finely and accurately than before. And
 本発明の内視鏡システムは、光源装置と、センサと、酸素飽和度算出部と、画像生成部と、低周波成分抽出部と、高周波成分抽出部と、合成処理部と、を備える。光源装置は、照明光を発する。センサは、照明光が検体に照射され、検体で反射した反射光を受光することにより検体を撮像して得られた第1画像信号を出力し、かつ第1画像信号の出力時よりも検体を拡大して撮像して得られた第2画像信号を出力する。酸素飽和度算出部は、第1画像信号及び第2画像信号に基づいてそれぞれ検体の酸素飽和度を算出する。画像生成部は、第1画像信号と、第1画像信号に基づいて算出された酸素飽和度とに基づいて第1酸素飽和度画像を生成し、かつ第2画像信号と第2画像信号に基づいて算出された酸素飽和度に基づいて第2酸素飽和度画像を生成する。低周波成分抽出部は、第1酸素飽和度画像からカットオフ周波数未満の低周波成分を抽出する。高周波成分抽出部は、第2酸素飽和度画像からカットオフ周波数以上の高周波成分を抽出する。合成処理部は、低周波成分と高周波成分とを合成し、合成酸素飽和度画像を生成する。 The endoscope system of the present invention includes a light source device, a sensor, an oxygen saturation calculation unit, an image generation unit, a low frequency component extraction unit, a high frequency component extraction unit, and a synthesis processing unit. The light source device emits illumination light. The sensor irradiates the specimen with illumination light, receives reflected light reflected by the specimen, outputs a first image signal obtained by imaging the specimen, and outputs the specimen more than when the first image signal is output. A second image signal obtained by enlarging and imaging is output. The oxygen saturation calculation unit calculates the oxygen saturation of the specimen based on the first image signal and the second image signal. The image generation unit generates a first oxygen saturation image based on the first image signal and the oxygen saturation calculated based on the first image signal, and based on the second image signal and the second image signal. A second oxygen saturation image is generated based on the calculated oxygen saturation. The low frequency component extraction unit extracts a low frequency component less than the cutoff frequency from the first oxygen saturation image. The high frequency component extraction unit extracts a high frequency component equal to or higher than a cutoff frequency from the second oxygen saturation image. The synthesis processing unit synthesizes the low frequency component and the high frequency component to generate a synthesized oxygen saturation image.
 また、センサに結像する検体の像を拡大または縮小するズーミングレンズと、ズーミングレンズの操作状況に基づいて拡大観察をしているか否かを検出するズーム検出部と、を備えていても良い。この場合、低周波成分抽出部,高周波成分抽出部,及び合成処理部を、ズーム検出部によって拡大観察をしていることが検出された場合に作動させることが好ましい。 Further, a zooming lens for enlarging or reducing an image of the specimen formed on the sensor, and a zoom detection unit for detecting whether or not magnification observation is performed based on an operation state of the zooming lens may be provided. In this case, it is preferable to operate the low-frequency component extraction unit, the high-frequency component extraction unit, and the synthesis processing unit when the zoom detection unit detects that magnification observation is performed.
 また、第1酸素飽和度画像及び第2酸素飽和度画像から酸素飽和度のアーチファクトを検出するアーチファクト検出部を備えていても良い。この場合、低周波成分抽出部,高周波成分抽出部,及び合成処理部を、アーチファクト検出部がアーチファクトを検出した場合に作動させることが好ましい。 Further, an artifact detection unit for detecting an oxygen saturation artifact from the first oxygen saturation image and the second oxygen saturation image may be provided. In this case, it is preferable to operate the low-frequency component extraction unit, the high-frequency component extraction unit, and the synthesis processing unit when the artifact detection unit detects the artifact.
 また、第1酸素飽和度画像から、第2酸素飽和度画像に対応する領域を検出する対応領域検出部と、対応領域検出部が検出した領域を、第2酸素飽和度画像と同じサイズに拡大する拡大処理部と、を備えていても良い。この場合、低周波成分抽出部は、第2酸素飽和度画像と同じサイズに拡大された領域の画像から低周波成分を抽出することが好ましい。 In addition, the corresponding region detection unit for detecting a region corresponding to the second oxygen saturation image from the first oxygen saturation image and the region detected by the corresponding region detection unit are enlarged to the same size as the second oxygen saturation image. And an enlargement processing unit. In this case, it is preferable that the low frequency component extraction unit extracts the low frequency component from the image of the region enlarged to the same size as the second oxygen saturation image.
 対応領域検出部は、例えば、第1酸素飽和度画像と、第2酸素飽和度画像とのパターンマッチングにより対応する領域を検出することができる。 The corresponding region detection unit can detect a corresponding region by pattern matching between the first oxygen saturation image and the second oxygen saturation image, for example.
 モニタに合成酸素飽和度画像を表示する場合、モニタの表示画面には、合成酸素飽和度画像とともに、低周波成分抽出部,高周波成分抽出部,及び合成処理部による処理が行われたことを表示することが好ましい。 When the synthetic oxygen saturation image is displayed on the monitor, the display screen of the monitor indicates that the processing by the low frequency component extraction unit, the high frequency component extraction unit, and the synthesis processing unit is performed together with the synthetic oxygen saturation image. It is preferable to do.
 本発明のプロセッサ装置は、照明光を発する光源装置と、照明光が検体に照射され、検体で反射した反射光を受光することにより検体を撮像して得られた第1画像信号を出力し、かつ第1画像信号の出力時よりも検体を拡大して撮像して得られた第2画像信号を出力するセンサと、を備える内視鏡システムのプロセッサ装置であり、受信部と、酸素飽和度算出部と、画像生成部と、低周波成分抽出部と、高周波成分抽出部と、合成処理部と、を備える。受信部は、センサから第1画像信号及び第2画像信号を受信する。酸素飽和度算出部は、第1画像信号及び第2画像信号に基づいてそれぞれ検体の酸素飽和度を算出する。画像生成部は、第1画像信号と、第1画像信号に基づいて算出された酸素飽和度とに基づいて第1酸素飽和度画像を生成し、かつ第2画像信号と第2画像信号に基づいて算出された酸素飽和度とに基づいて第2酸素飽和度画像を生成する。低周波成分抽出部は、第1酸素飽和度画像からカットオフ周波数未満の低周波成分を抽出する。高周波成分抽出部は、第2酸素飽和度画像からカットオフ周波数以上の高周波成分を抽出する。合成処理部は、低周波成分と高周波成分とを合成し、合成酸素飽和度画像を生成する。 The processor device of the present invention outputs a first image signal obtained by imaging a specimen by receiving a reflected light reflected from the specimen by illuminating the specimen with the light source that emits illumination light, And a sensor device that outputs a second image signal obtained by enlarging and imaging the specimen as compared with the output of the first image signal, a processor device of an endoscope system, a receiving unit, and an oxygen saturation level A calculation unit, an image generation unit, a low frequency component extraction unit, a high frequency component extraction unit, and a synthesis processing unit are provided. The receiving unit receives the first image signal and the second image signal from the sensor. The oxygen saturation calculation unit calculates the oxygen saturation of the specimen based on the first image signal and the second image signal. The image generation unit generates a first oxygen saturation image based on the first image signal and the oxygen saturation calculated based on the first image signal, and based on the second image signal and the second image signal. Based on the calculated oxygen saturation, a second oxygen saturation image is generated. The low frequency component extraction unit extracts a low frequency component less than the cutoff frequency from the first oxygen saturation image. The high frequency component extraction unit extracts a high frequency component equal to or higher than a cutoff frequency from the second oxygen saturation image. The synthesis processing unit synthesizes the low frequency component and the high frequency component to generate a synthesized oxygen saturation image.
 本発明の内視鏡システムの作動方法は、第1撮像ステップと、第2撮像ステップと、酸素飽和度算出ステップと、第1画像生成ステップと、第2画像生成ステップと、低周波成分抽出ステップと、高周波成分抽出ステップと、合成処理ステップと、を備える。第1撮像ステップでは、光源装置が発する照明光を検体に照射し、検体で反射した反射光を受光することにより検体を撮像して第1画像信号を取得する。第2撮像ステップでは、第1画像信号の取得時よりも検体を拡大して撮像することにより第2画像信号を取得する。酸素飽和度算出ステップでは、第1画像信号及び第2画像信号に基づいてそれぞれ検体の酸素飽和度を算出する。第1画像生成ステップでは、第1画像信号と、第1画像信号に基づいて算出された酸素飽和度とに基づいて第1酸素飽和度画像を生成する。第2画像生成ステップでは、第2画像信号と、第2画像信号に基づいて算出された酸素飽和度とに基づいて第2酸素飽和度画像を生成する。低周波成分抽出ステップでは、第1酸素飽和度画像からカットオフ周波数未満の低周波成分を抽出する。高周波成分抽出ステップでは、第2酸素飽和度画像からカットオフ周波数以上の高周波成分を抽出する。合成処理ステップでは、低周波成分と高周波成分とを合成し、合成酸素飽和度画像を生成する。 The operation method of the endoscope system according to the present invention includes a first imaging step, a second imaging step, an oxygen saturation calculation step, a first image generation step, a second image generation step, and a low frequency component extraction step. And a high frequency component extraction step and a synthesis processing step. In the first imaging step, the sample is imaged by irradiating the sample with illumination light emitted from the light source device and receiving the reflected light reflected by the sample to obtain a first image signal. In the second imaging step, the second image signal is obtained by enlarging and imaging the specimen compared to when the first image signal is obtained. In the oxygen saturation calculation step, the oxygen saturation of the specimen is calculated based on the first image signal and the second image signal. In the first image generation step, a first oxygen saturation image is generated based on the first image signal and the oxygen saturation calculated based on the first image signal. In the second image generation step, a second oxygen saturation image is generated based on the second image signal and the oxygen saturation calculated based on the second image signal. In the low frequency component extraction step, a low frequency component less than the cutoff frequency is extracted from the first oxygen saturation image. In the high frequency component extraction step, a high frequency component equal to or higher than the cutoff frequency is extracted from the second oxygen saturation image. In the synthesis processing step, the low frequency component and the high frequency component are synthesized to generate a synthesized oxygen saturation image.
 また、本発明の別の内視鏡システムは、光源装置と、センサと、低周波成分抽出部と、高周波成分抽出部と、合成処理部と、酸素飽和度算出部と、画像生成部と、を備える。光源装置は、照明光を発する。センサは、照明光が検体に照射され、検体で反射した反射光を受光することにより検体を撮像して得られた第1画像信号を出力し、かつ第1画像信号の出力時よりも検体を拡大して撮像して得られた第2画像信号を出力する。低周波成分抽出部は、第1画像信号からカットオフ周波数未満の低周波成分を抽出する。高周波成分抽出部は、第2画像信号からカットオフ周波数以上の高周波成分を抽出する。合成処理部は、低周波成分と高周波成分とを合成し、合成画像信号を生成する。酸素飽和度算出部は、合成画像信号に基づいて検体の酸素飽和度を算出する。画像生成部は、合成画像信号と酸素飽和度とに基づいて、検体の酸素飽和度を表す酸素飽和度画像を生成する。 Another endoscope system according to the present invention includes a light source device, a sensor, a low frequency component extraction unit, a high frequency component extraction unit, a synthesis processing unit, an oxygen saturation calculation unit, an image generation unit, Is provided. The light source device emits illumination light. The sensor irradiates the specimen with illumination light, receives reflected light reflected by the specimen, outputs a first image signal obtained by imaging the specimen, and outputs the specimen more than when the first image signal is output. A second image signal obtained by enlarging and imaging is output. The low frequency component extraction unit extracts a low frequency component having a frequency lower than the cutoff frequency from the first image signal. The high frequency component extraction unit extracts a high frequency component equal to or higher than a cutoff frequency from the second image signal. The synthesis processing unit synthesizes the low frequency component and the high frequency component to generate a synthesized image signal. The oxygen saturation calculation unit calculates the oxygen saturation of the specimen based on the composite image signal. The image generation unit generates an oxygen saturation image representing the oxygen saturation of the specimen based on the composite image signal and the oxygen saturation.
 また、本発明の別のプロセッサ装置は、照明光を発する光源装置と、照明光が検体に照射され、検体で反射した反射光を受光することにより検体を撮像して得られた第1画像信号を出力し、かつ第1画像信号の出力時よりも検体を拡大して撮像して得られた第2画像信号を出力するセンサと、を備える内視鏡システムのプロセッサ装置であり、受信部と、低周波成分抽出部と、高周波成分抽出部と、合成処理部と、酸素飽和度算出部と、画像生成部と、を備える。受信部は、センサから第1画像信号及び第2画像信号を受信する。低周波成分抽出部は、第1画像信号からカットオフ周波数未満の低周波成分を抽出する。高周波成分抽出部は、第2画像信号からカットオフ周波数以上の高周波成分を抽出する。合成処理部は、低周波成分と高周波成分とを合成し、合成画像信号を生成する。酸素飽和度算出部は、合成画像信号に基づいて検体の酸素飽和度を算出する。画像生成部は、合成画像信号と酸素飽和度とに基づいて、検体の酸素飽和度を表す酸素飽和度画像を生成する。 Another processor device of the present invention includes a light source device that emits illumination light, and a first image signal obtained by imaging the sample by receiving the reflected light that is irradiated with the illumination light and reflected by the sample. And a sensor that outputs a second image signal obtained by enlarging and imaging the specimen as compared with the output of the first image signal, and a processor device of an endoscope system, A low-frequency component extraction unit, a high-frequency component extraction unit, a synthesis processing unit, an oxygen saturation calculation unit, and an image generation unit. The receiving unit receives the first image signal and the second image signal from the sensor. The low frequency component extraction unit extracts a low frequency component having a frequency lower than the cutoff frequency from the first image signal. The high frequency component extraction unit extracts a high frequency component equal to or higher than a cutoff frequency from the second image signal. The synthesis processing unit synthesizes the low frequency component and the high frequency component to generate a synthesized image signal. The oxygen saturation calculation unit calculates the oxygen saturation of the specimen based on the composite image signal. The image generation unit generates an oxygen saturation image representing the oxygen saturation of the specimen based on the composite image signal and the oxygen saturation.
 また、本発明の別の内視鏡システムの作動方法は、第1撮像ステップと、第2撮像ステップと、低周波成分抽出ステップと、高周波成分抽出ステップと、合成処理ステップと、酸素飽和度算出ステップと、画像生成ステップと、を備える。第1撮像ステップでは、光源装置が発する照明光を検体に照射し、検体で反射した反射光を受光することにより検体を撮像し、第1画像信号を取得する。第2撮像ステップでは、第1画像信号の取得時よりも検体を拡大して撮像することにより第2画像信号を取得する。低周波成分抽出ステップでは、第1画像信号からカットオフ周波数未満の低周波成分を抽出する。高周波成分抽出ステップでは、第2画像信号からカットオフ周波数以上の高周波成分を抽出する。合成処理ステップでは、低周波成分と高周波成分とを合成し、合成画像信号を生成する。酸素飽和度算出ステップでは、合成画像信号に基づいて検体の酸素飽和度を算出する。画像生成ステップでは、合成画像信号と酸素飽和度とに基づいて、検体の酸素飽和度を表す酸素飽和度画像を生成する。 In addition, another endoscope system operating method of the present invention includes a first imaging step, a second imaging step, a low frequency component extraction step, a high frequency component extraction step, a synthesis processing step, and oxygen saturation calculation. A step and an image generation step. In the first imaging step, the specimen is imaged by irradiating the specimen with illumination light emitted from the light source device and receiving the reflected light reflected by the specimen, thereby obtaining a first image signal. In the second imaging step, the second image signal is obtained by enlarging and imaging the specimen compared to when the first image signal is obtained. In the low frequency component extraction step, a low frequency component less than the cutoff frequency is extracted from the first image signal. In the high frequency component extraction step, a high frequency component equal to or higher than the cutoff frequency is extracted from the second image signal. In the synthesis processing step, the low frequency component and the high frequency component are synthesized to generate a synthesized image signal. In the oxygen saturation calculation step, the oxygen saturation of the specimen is calculated based on the composite image signal. In the image generation step, an oxygen saturation image representing the oxygen saturation of the specimen is generated based on the composite image signal and the oxygen saturation.
 本発明の内視鏡システム及びプロセッサ装置並びに作動方法によれば、拡大観察時の酸素飽和度のアーチファクトを低減し、酸素飽和度の分布を従来よりも細かく正確に算出し、表示することができる。 According to the endoscope system, the processor device, and the operating method of the present invention, it is possible to reduce the oxygen saturation artifact during magnified observation, and to calculate and display the oxygen saturation distribution more finely and accurately than before. .
内視鏡システムの外観図である。It is an external view of an endoscope system. 内視鏡システムのブロック図である。It is a block diagram of an endoscope system. 通常観察モード時に発光する第2白色光のスペクトルを示すグラフである。It is a graph which shows the spectrum of the 2nd white light light-emitted at the time of normal observation mode. 特殊観察モード時に発光する第1及び第2白色光のスペクトルを示すグラフである。It is a graph which shows the spectrum of the 1st and 2nd white light light-emitted at the time of special observation mode. RGBカラーフィルタの分光透過率を示すグラフである。It is a graph which shows the spectral transmittance of a RGB color filter. 通常観察モード時の撮像制御を示す説明図である。It is explanatory drawing which shows the imaging control at the time of normal observation mode. 特殊観察モード時の撮像制御を示す説明図である。It is explanatory drawing which shows the imaging control at the time of special observation mode. 酸素飽和度画像生成部のブロック図である。It is a block diagram of an oxygen saturation image generation part. 信号比B1/G2,R2/G2と酸素飽和度の相関関係を示すグラフである。It is a graph which shows correlation with signal ratio B1 / G2, R2 / G2, and oxygen saturation. 酸化ヘモグロビンと還元ヘモグロビンの吸光係数を示すグラフである。It is a graph which shows the light absorption coefficient of oxygenated hemoglobin and reduced hemoglobin. 酸素飽和度を算出する方法を示す説明図である。It is explanatory drawing which shows the method of calculating oxygen saturation. 内視鏡システムの作用を示すフローチャートである。It is a flowchart which shows the effect | action of an endoscope system. 合成酸素飽和度画像が作成される手順を示す説明図である。It is explanatory drawing which shows the procedure in which a synthetic oxygen saturation image is created. モニタに合成酸素飽和度画像を表示した様子を示す説明図である。It is explanatory drawing which shows a mode that the synthetic oxygen saturation image was displayed on the monitor. 合成酸素飽和度画像が作成される別の手順を示す説明図である。It is explanatory drawing which shows another procedure in which a synthetic oxygen saturation image is created. 第2実施形態における酸素飽和度画像生成部のブロック図である。It is a block diagram of the oxygen saturation image generation part in 2nd Embodiment. 第3実施形態における酸素飽和度画像生成部のブロック図である。It is a block diagram of the oxygen saturation image generation part in 3rd Embodiment. 蛍光体が光源装置内に設けられた内視鏡システムのブロック図である。It is a block diagram of an endoscope system in which a phosphor is provided in a light source device. 第3実施形態の内視鏡システムのブロック図である。It is a block diagram of the endoscope system of a 3rd embodiment. LEDの発光帯域とHPFの特性を示すグラフである。It is a graph which shows the light emission zone | band of LED, and the characteristic of HPF. 第3実施形態における通常観察モード時の撮像制御を示す説明図である。It is explanatory drawing which shows the imaging control at the time of normal observation mode in 3rd Embodiment. 第3実施形態における特殊観察モード時の撮像制御を示す説明図である。It is explanatory drawing which shows the imaging control at the time of the special observation mode in 3rd Embodiment. 第4実施形態の内視鏡システムのブロック図である。It is a block diagram of the endoscope system of a 4th embodiment. 回転フィルタの平面図である。It is a top view of a rotation filter.
[第1実施形態]
 図1に示すように、第1実施形態の内視鏡システム10は、内視鏡12と、光源装置14と、プロセッサ装置16、モニタ18と、コンソール20とを有する。内視鏡12は、光源装置14と光学的に接続されるとともに、プロセッサ装置16と電気的に接続される。内視鏡12は、検体内に挿入される挿入部21と、挿入部21の基端部分に設けられた操作部22と、挿入部21の先端側に設けられた湾曲部23及び先端部24を有している。操作部22のアングルノブ22aを操作することにより、湾曲部23は湾曲動作する。この湾曲動作にともなって、先端部24が所望の方向に向けられる。
[First Embodiment]
As shown in FIG. 1, the endoscope system 10 according to the first embodiment includes an endoscope 12, a light source device 14, a processor device 16, a monitor 18, and a console 20. The endoscope 12 is optically connected to the light source device 14 and electrically connected to the processor device 16. The endoscope 12 includes an insertion portion 21 to be inserted into a specimen, an operation portion 22 provided at a proximal end portion of the insertion portion 21, a bending portion 23 and a distal end portion 24 provided on the distal end side of the insertion portion 21. have. By operating the angle knob 22a of the operation unit 22, the bending unit 23 performs a bending operation. With this bending operation, the distal end portion 24 is directed in a desired direction.
 また、操作部22には、アングルノブ22aの他、モード切替SW(モード切替スイッチ)22bと、ズーム操作部22cが設けられている。モード切替SW22bは、通常観察モードと、特殊観察モードの2種類のモード間の切り替え操作に用いられる。通常観察モードは、検体内をフルカラー画像化した通常光画像をモニタ18に表示するモードである。特殊観察モードは、検体内の血中ヘモグロビンの酸素飽和度を画像化した酸素飽和度画像をモニタ18に表示するモードである。ズーム操作部22cは、内視鏡12内のズーミングレンズ47(図2参照)を駆動して、検体を拡大するズーム操作に用いられる。 In addition to the angle knob 22a, the operation unit 22 is provided with a mode switch SW (mode switch) 22b and a zoom operation unit 22c. The mode switching SW 22b is used for switching operation between two types of modes, a normal observation mode and a special observation mode. The normal observation mode is a mode in which a normal light image in which the inside of the specimen is converted into a full color image is displayed on the monitor 18. The special observation mode is a mode in which an oxygen saturation image obtained by imaging the oxygen saturation of blood hemoglobin in the specimen is displayed on the monitor 18. The zoom operation unit 22c is used for a zoom operation for driving the zooming lens 47 (see FIG. 2) in the endoscope 12 to enlarge the specimen.
 プロセッサ装置16は、モニタ18及びコンソール20と電気的に接続される。モニタ18は、通常光画像や酸素飽和度画像等の画像、及びこれらの画像に関する情報(以下、画像情報等という)を表示する。コンソール20は、機能設定等の入力操作を受け付けるUI(ユーザインタフェース)として機能する。なお、プロセッサ装置16には、画像情報等を記録する記録部(図示省略)を接続しても良い。 The processor device 16 is electrically connected to the monitor 18 and the console 20. The monitor 18 displays images such as normal light images and oxygen saturation images, and information related to these images (hereinafter referred to as image information and the like). The console 20 functions as a UI (user interface) that receives input operations such as function settings. Note that a recording unit (not shown) for recording image information or the like may be connected to the processor device 16.
 図2に示すように、光源装置14は、中心波長473nmの第1青色レーザ光を発する第1青色レーザ光源(473LD(レーザダイオード))34と、中心波長445nmの第2青色レーザ光を発する第2青色レーザ光源(445LD)36とを発光源として備えている。これらの半導体発光素子からなる第1青色レーザ光源34及び第2青色レーザ光源36の発光は、光源制御部40により個別に制御される。このため、第1青色レーザ光源34の出射光と、第2青色レーザ光源36の出射光の光量比は変更自在になっている。 As shown in FIG. 2, the light source device 14 includes a first blue laser light source (473LD (laser diode)) 34 that emits a first blue laser beam having a center wavelength of 473 nm and a second blue laser beam that emits a second blue laser beam having a center wavelength of 445 nm. Two blue laser light sources (445LD) 36 are provided as light emission sources. Light emission of the first blue laser light source 34 and the second blue laser light source 36 made of these semiconductor light emitting elements is individually controlled by the light source control unit 40. For this reason, the light quantity ratio between the emitted light from the first blue laser light source 34 and the emitted light from the second blue laser light source 36 is freely changeable.
 光源制御部40は、通常観察モードの場合には、第2青色レーザ光源36を点灯させ、第2青色レーザ光を発光させる。これに対して、特殊観察モードの場合には、1フレーム間隔で、第1青色レーザ光源34と第2青色レーザ光源36を交互に点灯させ、第1青色レーザ光と第2青色レーザ光が交互に発光させる。なお、第1青色レーザ光及び第2青色レーザ光の半値幅は±10nm程度にすることが好ましい。また、第1青色レーザ光源34と第2青色レーザ光源36は、ブロードエリア型のInGaN系レーザダイオードが利用でき、また、InGaNAs系レーザダイオードやGaNAs系レーザダイオードを用いることもできる。また、上記光源として、発光ダイオード等の発光体を用いた構成としても良い。 In the normal observation mode, the light source control unit 40 turns on the second blue laser light source 36 and emits the second blue laser light. In contrast, in the special observation mode, the first blue laser light source 34 and the second blue laser light source 36 are alternately turned on at intervals of one frame, and the first blue laser light and the second blue laser light are alternately turned on. Make it emit light. The half width of the first blue laser beam and the second blue laser beam is preferably about ± 10 nm. In addition, the first blue laser light source 34 and the second blue laser light source 36 can use broad area type InGaN laser diodes, and can also use InGaNAs laser diodes or GaNAs laser diodes. The light source may be configured to use a light emitter such as a light emitting diode.
 第1青色レーザ光源34及び第2青色レーザ光源36から出射される第1青色レーザ光及び第2青色レーザ光は、集光レンズ、光ファイバ、合波器等の光学部材(いずれも図示せず)を介してライトガイド(LG)41に入射する。ライトガイド41は、光源装置14と内視鏡12を接続するユニバーサルコードに内蔵されている。ライトガイド41は、第1青色レーザ光源34及び第2青色レーザ光源36からの第1青色レーザ光及び第2青色レーザ光を、内視鏡12の先端部24まで伝搬する。なお、ライトガイド41としては、マルチモードファイバを使用することができる。一例として、コア径105μm、クラッド径125μm、外皮となる保護層を含めた径がφ0.3~0.5mmの細径なファイバケーブルを使用することができる。 The first blue laser light and the second blue laser light emitted from the first blue laser light source 34 and the second blue laser light source 36 are optical members such as a condensing lens, an optical fiber, a multiplexer (not shown). ) Through the light guide (LG) 41. The light guide 41 is built in a universal cord that connects the light source device 14 and the endoscope 12. The light guide 41 propagates the first blue laser light and the second blue laser light from the first blue laser light source 34 and the second blue laser light source 36 to the distal end portion 24 of the endoscope 12. A multimode fiber can be used as the light guide 41. As an example, a thin fiber cable having a core diameter of 105 μm, a cladding diameter of 125 μm, and a diameter of φ0.3 to 0.5 mm including a protective layer serving as an outer shell can be used.
 内視鏡12の先端部24は、照明光学系24aと撮像光学系24bを有している。照明光学系24aには、蛍光体44と、照明レンズ45が設けられている。蛍光体44には、ライトガイド41から第1青色レーザ光及び第2青色レーザ光が入射する。蛍光体44は、第1青色レーザ光または第2青色レーザ光が照射されることで蛍光を発する。また、一部の第1青色レーザ光または第2青色レーザ光は、そのまま蛍光体44を透過する。蛍光体44を出射した光は、照明レンズ45を介して検体内に照射される。 The distal end portion 24 of the endoscope 12 has an illumination optical system 24a and an imaging optical system 24b. The illumination optical system 24a is provided with a phosphor 44 and an illumination lens 45. The first blue laser light and the second blue laser light are incident on the phosphor 44 from the light guide 41. The phosphor 44 emits fluorescence when irradiated with the first blue laser light or the second blue laser light. Further, a part of the first blue laser light or the second blue laser light passes through the phosphor 44 as it is. The light emitted from the phosphor 44 is irradiated into the specimen through the illumination lens 45.
 通常観察モードにおいては、第2青色レーザ光が蛍光体44に入射するため、図3に示すスペクトルの白色光(第2白色光)が検体内に照射される。この第2白色光は、第2青色レーザ光と、この第2青色レーザ光により蛍光体44から励起発光する緑色~赤色の第2蛍光とから構成される。したがって、第2白色光は、波長範囲が可視光全域に及んでいる。 In the normal observation mode, since the second blue laser light is incident on the phosphor 44, white light having the spectrum shown in FIG. 3 (second white light) is irradiated into the specimen. The second white light is composed of second blue laser light and green to red second fluorescence excited and emitted from the phosphor 44 by the second blue laser light. Therefore, the wavelength range of the second white light extends to the entire visible light range.
 一方、特殊観察モードにおいては、第1青色レーザ光と第2青色レーザ光が蛍光体44に交互に入射することにより、図4に示すスペクトルの第1白色光と第2白色光が交互に検体内に照射される。第1白色光は、第1青色レーザ光と、この第1青色レーザ光により蛍光体44から励起発光する緑色~赤色の第1蛍光とから構成される。したがって、第1白色光は、波長範囲が可視光全域に及んでいる。第2白色光は、通常観察モード時に照射される第2白色光と同様である。 On the other hand, in the special observation mode, when the first blue laser light and the second blue laser light are alternately incident on the phosphor 44, the first white light and the second white light having the spectrum shown in FIG. Irradiated inside. The first white light is composed of first blue laser light and green to red first fluorescence that is excited and emitted from the phosphor 44 by the first blue laser light. Therefore, the first white light has a wavelength range covering the entire visible light range. The second white light is the same as the second white light irradiated in the normal observation mode.
 第1蛍光と第2蛍光は、波形(スペクトルの形状)がほぼ同じであり、第1蛍光の強度(I1(λ))と第2蛍光の強度(I2(λ))の比(以下、フレーム間強度比という)は、何れの波長λにおいても同じである。例えば、I2(λ1)/I1(λ1)=I2(λ2)/I1(λ2)である。このフレーム間強度比I2(λ)/I1(λ)は、酸素飽和度の算出精度に影響を与えるものであるため、光源制御部40により、予め設定された基準フレーム間強度比を維持するように高精度に制御されている。 The first fluorescence and the second fluorescence have substantially the same waveform (spectrum shape), and the ratio of the intensity of the first fluorescence (I1 (λ)) to the intensity of the second fluorescence (I2 (λ)) (hereinafter referred to as a frame). The intensity ratio) is the same at any wavelength λ. For example, I2 (λ1) / I1 (λ1) = I2 (λ2) / I1 (λ2). Since the inter-frame intensity ratio I2 (λ) / I1 (λ) affects the calculation accuracy of the oxygen saturation, the light source control unit 40 maintains a preset reference inter-frame intensity ratio. It is controlled with high accuracy.
 なお、蛍光体44は、第1及び第2青色レーザ光の一部を吸収して、緑色~赤色に励起発光する複数種類の蛍光体(例えばYAG系蛍光体、あるいはBAM(BaMgAl1017)等の蛍光体)を含んで構成されるものを使用することが好ましい。また、本実施形態のように、半導体発光素子を蛍光体44の励起光源として用いれば、高い発光効率で高強度の第1白色光及び第2白色光が得られる。また、蛍光体44の励起光源として半導体発光素子を用いれば、各白色光の強度を容易に調整できる上に、色温度、色度の変化を小さく抑えることができる。 The phosphor 44 absorbs a part of the first and second blue laser beams and excites and emits green to red light (for example, YAG phosphor or BAM (BaMgAl 10 O 17 )). It is preferable to use a material comprising a phosphor such as In addition, when the semiconductor light emitting element is used as an excitation light source of the phosphor 44 as in the present embodiment, high intensity first white light and second white light can be obtained with high luminous efficiency. If a semiconductor light emitting element is used as the excitation light source of the phosphor 44, the intensity of each white light can be easily adjusted, and changes in color temperature and chromaticity can be suppressed to a small level.
 内視鏡12の撮像光学系24bは、撮像レンズ46、ズーミングレンズ47、センサ48を有している(図2参照)。検体からの反射光は、撮像レンズ46及びズーミングレンズ47を介してセンサ48に入射する。これにより、センサ48に検体の反射像が結像される。ズーミングレンズ47は、ズーム操作部22cを操作することでテレ端とワイド端との間を移動する。ズーミングレンズ47がワイド端側に移動すると検体の反射像が縮小する。一方、ズーミングレンズ47がテレ端側に移動することで、検体の反射像が拡大する。なお、拡大観察をしない場合(非拡大観察時)には、ズーミングレンズ47はワイド端に配置されている。そして、ズーム操作部22cを操作して拡大観察を行う場合に、ズーミングレンズ47はワイド端からテレ端側に移動される。 The imaging optical system 24b of the endoscope 12 includes an imaging lens 46, a zooming lens 47, and a sensor 48 (see FIG. 2). Reflected light from the specimen enters the sensor 48 via the imaging lens 46 and zooming lens 47. Thereby, a reflected image of the specimen is formed on the sensor 48. The zooming lens 47 moves between the tele end and the wide end by operating the zoom operation unit 22c. When the zooming lens 47 moves to the wide end side, the reflected image of the specimen is reduced. On the other hand, when the zooming lens 47 moves to the tele end side, the reflected image of the specimen is enlarged. Note that the zoom lens 47 is disposed at the wide end when magnification observation is not performed (during non-magnification observation). When the zoom operation unit 22c is operated to perform magnified observation, the zooming lens 47 is moved from the wide end to the tele end side.
 センサ48は、カラーの撮像素子であり、検体の反射像を撮像して画像信号を出力する。センサ48は、例えばCCD(Charge Coupled Device)イメージセンサやCMOS(Complementary Metal-Oxide Semiconductor)イメージセンサである。また、センサ48は、撮像面にRGBカラーフィルタが設けられたRGB画素を有しており、RGBの各色の画素で光電変換をすることによってR,G,Bの三色の画像信号を出力する。 The sensor 48 is a color image sensor, picks up a reflected image of the specimen, and outputs an image signal. The sensor 48 is, for example, a CCD (Charge-Coupled Device) image sensor or a CMOS (Complementary Metal-Oxide Semiconductor) image sensor. The sensor 48 has RGB pixels provided with RGB color filters on the imaging surface, and outputs image signals of three colors of R, G, and B by performing photoelectric conversion with pixels of each color of RGB. .
 図5に示すように、Bカラーフィルタは380~560nmの分光透過率を有しており、Gカラーフィルタは450~630nmの分光透過率を有しており、Rカラーフィルタは580~760nmの分光透過率を有している。したがって、通常観察モード時に第2白色光が検体内に照射された場合には、B画素には第2青色レーザ光と第2蛍光の緑色成分の一部が入射し、G画素には第2蛍光の緑色成分の一部が入射し、R画素には第2蛍光の赤色成分が入射する。但し、第2青色レーザ光は第2蛍光よりも発光強度が極めて大きいのでB画素から出力するB画像信号の大部分は第2青色レーザ光の反射光成分で占められている。 As shown in FIG. 5, the B color filter has a spectral transmittance of 380 to 560 nm, the G color filter has a spectral transmittance of 450 to 630 nm, and the R color filter has a spectral transmittance of 580 to 760 nm. It has transmittance. Therefore, when the second white light is irradiated into the specimen in the normal observation mode, the second blue laser light and a part of the green component of the second fluorescence are incident on the B pixel, and the second light is incident on the G pixel. A part of the green component of the fluorescence is incident, and the red component of the second fluorescence is incident on the R pixel. However, since the emission intensity of the second blue laser light is much higher than that of the second fluorescence, most of the B image signal output from the B pixel is occupied by the reflected light component of the second blue laser light.
 一方、特殊観察モード時に第1白色光が検体内に照射され、検体内で反射した反射光がセンサ48によって受光された場合には、B画素には第1青色レーザ光と第1蛍光の緑色成分の一部が入射し、G画素には第1蛍光の緑色成分の一部が入射し、R画素には第1蛍光の赤色成分が入射する。但し、第1青色レーザ光は第1蛍光よりも発光強度が極めて大きいので、B画像信号の大部分は第1青色レーザ光の反射光成分で占められている。なお、特殊観察モード時に第2白色光が検体内に照射されたときのRGB各画素での光入射成分は、通常観察モードの場合と同様である。 On the other hand, in the special observation mode, when the first white light is irradiated into the specimen and the reflected light reflected in the specimen is received by the sensor 48, the first blue laser light and the first fluorescent green are applied to the B pixel. Part of the component is incident, part of the green component of the first fluorescence is incident on the G pixel, and the red component of the first fluorescence is incident on the R pixel. However, since the emission intensity of the first blue laser light is much higher than that of the first fluorescence, most of the B image signal is occupied by the reflected light component of the first blue laser light. It should be noted that the light incident components at the RGB pixels when the second white light is irradiated into the specimen in the special observation mode are the same as in the normal observation mode.
 なお、センサ48としては、撮像面にC(シアン),M(マゼンタ),Y(イエロー)及びG(グリーン)の補色フィルタを備えた、いわゆる補色イメージセンサを用いても良い。センサ48として補色イメージセンサを用いる場合は、CMYGの四色の画像信号からRGBの三色の画像信号に色変換する色変換部を、内視鏡12、光源装置14またはプロセッサ装置16のいずれかに設けておけば良い。こうすれば補色イメージセンサを用いる場合でも、CMYGの4色の画像信号から色変換によってRGB3色の画像信号を得ることができる。 The sensor 48 may be a so-called complementary color image sensor having C (cyan), M (magenta), Y (yellow), and G (green) complementary color filters on the imaging surface. When a complementary color image sensor is used as the sensor 48, the color conversion unit that performs color conversion from the CMYG four-color image signal to the RGB three-color image signal is any of the endoscope 12, the light source device 14, and the processor device 16. It should be provided in. In this way, even when a complementary color image sensor is used, it is possible to obtain RGB three-color image signals by color conversion from the four-color CMYG image signals.
 撮像制御部49はセンサ48の撮像制御を行う。図6に示すように、センサ48の1フレームの期間は、検体からの反射光を光電変換して電荷を蓄積する蓄積期間と、その後に蓄積した電荷を読み出して画像信号を出力する読出期間とからなる。通常観察モード時には、1フレームの期間毎に、第2白色光で照明された検体内をセンサ48で撮像する。これにより、1フレーム毎にセンサ48からRGBの各画像信号が出力される。 The imaging control unit 49 performs imaging control of the sensor 48. As shown in FIG. 6, the one frame period of the sensor 48 includes an accumulation period for photoelectrically converting reflected light from the specimen and accumulating charges, and a readout period for reading the accumulated charges and outputting an image signal thereafter. Consists of. In the normal observation mode, the inside of the specimen illuminated with the second white light is imaged by the sensor 48 every frame period. Thereby, RGB image signals are output from the sensor 48 for each frame.
 撮像制御部49は、特殊観察モード時も、通常観察モード時と同様にしてセンサ48に蓄積期間と読出期間を行わせる。但し、特殊観察モード下ではセンサ48の撮像のフレームに同期して第1白色光と第2白色光が交互に検体内に照射されるので、図7に示すように、センサ48は、1フレーム目に第1白色光を検体内に照射し、検体内で反射した反射光をセンサ48によって受光することにより検体内を撮像し、次の2フレーム目では第2白色光を検体内に照射し、検体内で反射した反射光をセンサ48によって受光することにより検体内を撮像する。センサ48は、1フレーム目及び2フレーム目ともRGBの各色の画像信号を出力するが、依拠する白色光のスペクトルが異なるので、以下では区別のために、1フレーム目に第1白色光の反射光をセンサ48によって撮像して得られるRGB各色の画像信号をそれぞれR1画像信号,G1画像信号,及びB1画像信号といい、2フレーム目に第2白色光の反射光をセンサ48によって撮像して得られるRGB各色の画像信号をR2画像信号,G2画像信号,及びB2画像信号という。また、非拡大観察時の各画像信号を第1画像信号といい、拡大観察時の各画像信号を第2画像信号という。 The imaging control unit 49 causes the sensor 48 to perform an accumulation period and a reading period in the special observation mode as in the normal observation mode. However, in the special observation mode, the first white light and the second white light are alternately irradiated into the specimen in synchronization with the imaging frame of the sensor 48. Therefore, as shown in FIG. The sample is irradiated with the first white light in the eye, and the reflected light reflected in the sample is received by the sensor 48 to image the inside of the sample. In the next second frame, the second white light is irradiated into the sample. Then, the reflected light reflected in the specimen is received by the sensor 48 to image the inside of the specimen. The sensor 48 outputs RGB color image signals in both the first frame and the second frame, but the spectrum of the white light on which it depends is different. Therefore, for the sake of distinction, the reflection of the first white light in the first frame will be described below. The RGB color image signals obtained by imaging light by the sensor 48 are called R1 image signal, G1 image signal, and B1 image signal, respectively, and the reflected light of the second white light is imaged by the sensor 48 in the second frame. The obtained RGB color image signals are referred to as an R2 image signal, a G2 image signal, and a B2 image signal. Each image signal at the time of non-magnification observation is referred to as a first image signal, and each image signal at the time of magnification observation is referred to as a second image signal.
 センサ48から出力される各色の画像信号は、CDS(correlated double sampling)/AGC(automatic gain control)回路50送信される(図2参照)。CDS/AGC回路50は、センサ48から出力されるアナログの画像信号に相関二重サンプリング(CDS)や自動利得制御(AGC)を行う。CDS/AGC回路50を経た画像信号は、A/D変換器52によってデジタル画像信号に変換される。こうしてデジタル化された画像信号はプロセッサ装置16に入力される。 The image signals of the respective colors output from the sensor 48 are transmitted to a CDS (correlated double sampling) / AGC (automatic gain control) circuit 50 (see FIG. 2). The CDS / AGC circuit 50 performs correlated double sampling (CDS) and automatic gain control (AGC) on the analog image signal output from the sensor 48. The image signal that has passed through the CDS / AGC circuit 50 is converted into a digital image signal by the A / D converter 52. The digitized image signal is input to the processor device 16.
 プロセッサ装置16は、受信部54と、画像処理切替部60と、通常観察画像処理部62と、特殊観察用画像処理部64と、画像表示信号生成部66とを備えている。受信部54は、内視鏡12から入力される画像信号を受信する。受信部54はDSP(Digital Signal Processor)56とノイズ除去部58を備えており、DSP56は、受信した画像信号に対して色補正処理等のデジタル信号処理を行う。ノイズ除去部58は、DSP56で色補正処理等が施された画像信号に対して、例えば移動平均法やメディアンフィルタ法等によるノイズ除去処理を施す。ノイズが除去された画像信号は、画像処理切替部60に入力される。 The processor device 16 includes a receiving unit 54, an image processing switching unit 60, a normal observation image processing unit 62, a special observation image processing unit 64, and an image display signal generation unit 66. The receiving unit 54 receives an image signal input from the endoscope 12. The reception unit 54 includes a DSP (Digital Signal Processor) 56 and a noise removal unit 58, and the DSP 56 performs digital signal processing such as color correction processing on the received image signal. The noise removal unit 58 performs noise removal processing by, for example, a moving average method or a median filter method on the image signal that has been subjected to color correction processing or the like by the DSP 56. The image signal from which the noise has been removed is input to the image processing switching unit 60.
 画像処理切替部60は、モード切替SW22bが通常観察モードにセットされている場合には、画像信号を通常観察画像処理部62に入力する。一方、モード切替SW22bが特殊観察モードに設定されている場合、画像処理切替部60は、画像信号を特殊観察用画像処理部64に入力する。 The image processing switching unit 60 inputs an image signal to the normal observation image processing unit 62 when the mode switching SW 22b is set to the normal observation mode. On the other hand, when the mode switching SW 22 b is set to the special observation mode, the image processing switching unit 60 inputs an image signal to the special observation image processing unit 64.
 通常観察画像処理部62は、色変換部68と、色彩強調部70と、構造強調部72とを有する。色変換部68は、入力された1フレーム分のRGBの各画像信号を、それぞれR画素、G画素、又はB画素に割り当てたRGB画像データを生成する。そして、RGB画像データに対して、さらに3×3のマトリックス処理、階調変換処理、3次元LUT処理等の色変換処理を施す。 The normal observation image processing unit 62 includes a color conversion unit 68, a color enhancement unit 70, and a structure enhancement unit 72. The color conversion unit 68 generates RGB image data in which each input RGB image signal for one frame is assigned to an R pixel, a G pixel, or a B pixel. The RGB image data is further subjected to color conversion processing such as 3 × 3 matrix processing, gradation conversion processing, and three-dimensional LUT processing.
 色彩強調部70は、色変換処理済みのRGB画像データに対して、各種色彩強調処理を施す。構造強調部72は、色彩強調処理済みのRGB画像データに対して、空間周波数強調等の構造強調処理を施す。構造強調部72で構造強調処理が施されたRGB画像データは、通常観察画像として画像表示信号生成部66に入力される。 The color enhancement unit 70 performs various color enhancement processes on the RGB image data that has been subjected to the color conversion process. The structure enhancement unit 72 performs structure enhancement processing such as spatial frequency enhancement on the RGB image data that has been subjected to color enhancement processing. The RGB image data subjected to the structure enhancement process by the structure enhancement unit 72 is input to the image display signal generation unit 66 as a normal observation image.
 特殊観察画像処理部64は、酸素飽和度画像生成部76と、構造強調部78とを有する。酸素飽和度画像生成部76は、酸素飽和度を算出し、算出した酸素飽和度を表す酸素飽和度画像を生成する。また、酸素飽和度画像生成部76は、拡大観察時には、酸素飽和度を算出して酸素飽和度画像を生成し、さらに酸素飽和度のアーチファクトを低減する補正をし、合成酸素飽和度画像を生成する。以下、区別が必要な場合には、酸素飽和度画像生成部76が生成する酸素飽和度画像のうち、非拡大観察時の酸素飽和度画像を非拡大酸素飽和度画像(第1酸素飽和度画像)、拡大観察時の酸素飽和度画像を拡大酸素飽和度画像(第2酸素飽和度画像)、拡大酸素飽和度画像等を用いてアーチファクトを低減した酸素飽和度画像を合成酸素飽和度画像という。 The special observation image processing unit 64 includes an oxygen saturation image generation unit 76 and a structure enhancement unit 78. The oxygen saturation image generation unit 76 calculates the oxygen saturation and generates an oxygen saturation image representing the calculated oxygen saturation. In addition, the oxygen saturation image generation unit 76 calculates the oxygen saturation and generates an oxygen saturation image during magnification observation, and further corrects the oxygen saturation artifact to generate a synthesized oxygen saturation image. To do. Hereinafter, when distinction is necessary, among the oxygen saturation images generated by the oxygen saturation image generation unit 76, the oxygen saturation image at the time of non-enlarged observation is referred to as a non-enlarged oxygen saturation image (first oxygen saturation image). ), An oxygen saturation image at the time of magnified observation is referred to as a magnified oxygen saturation image (second oxygen saturation image), and an oxygen saturation image in which artifacts are reduced using the magnified oxygen saturation image or the like is referred to as a synthetic oxygen saturation image.
 構造強調部78は、酸素飽和度画像生成部76から入力される非拡大酸素飽和度画像、または合成酸素飽和度画像に対して、空間周波数強調処理等の構造強調処理を施す。構造強調部72で構造強調処理が施された酸素飽和度画像は、画像表示信号生成部66に入力される。 The structure enhancement unit 78 performs structure enhancement processing such as spatial frequency enhancement processing on the non-enlarged oxygen saturation image or the synthetic oxygen saturation image input from the oxygen saturation image generation unit 76. The oxygen saturation image that has undergone the structure enhancement processing by the structure enhancement unit 72 is input to the image display signal generation unit 66.
 表示用画像信号生成部66は、通常観察画像または酸素飽和度画像を表示用形式の信号(表示用画像信号)に変換し、モニタ18に入力する。これにより、モニタ18には通常観察画像または酸素飽和度画像が表示される。 The display image signal generation unit 66 converts the normal observation image or the oxygen saturation image into a display format signal (display image signal) and inputs it to the monitor 18. As a result, the normal observation image or the oxygen saturation image is displayed on the monitor 18.
 図8に示すように、酸素飽和度画像生成部76は、信号比算出部81と、相関関係記憶部82と、酸素飽和度算出部83と、画像生成部84と、ズーム検出部86と、画像記憶部87と、アーチファクト補正部88と、を備えている。 As shown in FIG. 8, the oxygen saturation image generation unit 76 includes a signal ratio calculation unit 81, a correlation storage unit 82, an oxygen saturation calculation unit 83, an image generation unit 84, a zoom detection unit 86, An image storage unit 87 and an artifact correction unit 88 are provided.
 信号比算出部81には、酸素飽和度画像生成部76に入力される2フレーム分の画像信号のうち、B1画像信号、G2画像信号、R2画像信号が入力される。信号比算出部81は、B1画像信号とG2画像信号の信号比B1/G2と、G2画像信号とR2画像信号の信号比R2/G2とを、画素毎に算出する。 The signal ratio calculation unit 81 receives the B1 image signal, the G2 image signal, and the R2 image signal among the image signals for two frames input to the oxygen saturation image generation unit 76. The signal ratio calculation unit 81 calculates a signal ratio B1 / G2 between the B1 image signal and the G2 image signal and a signal ratio R2 / G2 between the G2 image signal and the R2 image signal for each pixel.
 相関関係記憶部82は、信号比B1/G2及び信号比R2/G2と、酸素飽和度の相関関係を記憶している。この相関関係は、図9に示す二次元空間上に酸素飽和度の等高線を定義した2次元テーブルで記憶されている。信号比B1/G2及び信号比R2/G2に対する等高線の位置及び形状は、光散乱の物理的なシミュレーションによって予め得られ、各等高線の間隔は、血液量(信号比R2/G2)に応じて変化する。なお、信号比B1/G2及び信号比R2/G2と、酸素飽和度との相関関係はlogスケールで記憶されている。 The correlation storage unit 82 stores the correlation between the signal ratio B1 / G2 and the signal ratio R2 / G2 and the oxygen saturation. This correlation is stored in a two-dimensional table in which contour lines of oxygen saturation are defined on the two-dimensional space shown in FIG. The positions and shapes of the contour lines with respect to the signal ratio B1 / G2 and the signal ratio R2 / G2 are obtained in advance by a physical simulation of light scattering, and the interval between the contour lines changes according to the blood volume (signal ratio R2 / G2). To do. The correlation between the signal ratio B1 / G2 and the signal ratio R2 / G2 and the oxygen saturation is stored on a log scale.
 なお、上記相関関係は、図10に示すように、酸化ヘモグロビン(グラフ90)や還元ヘモグロビン(グラフ91)の吸光特性や光散乱特性と密接に関連し合っている。例えば、第1青色レーザ光の中心波長473nmのように、酸化ヘモグロビンと還元ヘモグロビンの吸光係数の差が大きい波長では、酸素飽和度の情報を取り扱いやすい。しかしながら、473nmの光に対応する信号を含むB1画像信号は、酸素飽和度だけでなく、血液量にも依存度が高い。そこで、B1画像信号に加え、主として血液量に依存して変化する光に対応するR2画像信号と、B1画像信号とR2画像信号のリファレンス信号となるG2画像信号から得られる信号比B1/G2及びR2/G2を用いることで血液量に依存することなく、酸素飽和度を正確に算出することができる。 Note that, as shown in FIG. 10, the above correlation is closely related to the light absorption characteristics and light scattering characteristics of oxyhemoglobin (graph 90) and reduced hemoglobin (graph 91). For example, information on oxygen saturation is easy to handle at a wavelength where the difference in absorption coefficient between oxygenated hemoglobin and reduced hemoglobin is large, such as the center wavelength of 473 nm of the first blue laser beam. However, the B1 image signal including a signal corresponding to 473 nm light is highly dependent not only on the oxygen saturation but also on the blood volume. Therefore, in addition to the B1 image signal, a signal ratio B1 / G2 obtained from an R2 image signal corresponding to light that changes mainly depending on blood volume, and a G2 image signal serving as a reference signal for the B1 image signal and the R2 image signal, and By using R2 / G2, the oxygen saturation can be accurately calculated without depending on the blood volume.
 酸素飽和度算出部83は、相関関係記憶部82に記憶された相関関係を参照し、信号比算出部81で算出された信号比B1/G2及び信号比R2/G2に対応する酸素飽和度を画素毎に算出する。例えば、所定画素における信号比B1/G2及び信号比R2/G2がそれぞれB1/G2及びR2/G2である場合、図11に示すように、相関関係を参照すると、信号比B1/G2及び信号比R2/G2に対応する酸素飽和度は「60%」である。したがって、酸素飽和度算出部83は、この画素の酸素飽和度を「60%」と算出する。 The oxygen saturation calculation unit 83 refers to the correlation stored in the correlation storage unit 82, and calculates the oxygen saturation corresponding to the signal ratio B1 / G2 and the signal ratio R2 / G2 calculated by the signal ratio calculation unit 81. Calculate for each pixel. For example, when the signal ratio B1 / G2 and the signal ratio R2 / G2 at a predetermined pixel are B1 * / G2 * and R2 * / G2 * , respectively, referring to the correlation as shown in FIG. 11, the signal ratio B1 * The oxygen saturation corresponding to / G2 * and the signal ratio R2 * / G2 * is “60%”. Therefore, the oxygen saturation calculation unit 83 calculates the oxygen saturation of this pixel as “60%”.
 なお、信号比B1/G2及び信号比R2/G2が極めて大きくなったり、極めて小さくなったりすることはほとんどない。すなわち、信号比B1/G2や信号比R2/G2の値が、酸素飽和度0%の下限ライン93を上回ったり、反対に酸素飽和度100%の上限ライン94を下回ったりすることはほとんどない。但し、算出する酸素飽和度が下限ライン93を下回ってしまった場合には酸素飽和度算出部83は酸素飽和度を0%とし、上限ライン94を上回ってしまった場合には酸素飽和度を100%とする。なお、信号比B1/G2及び信号比R2/G2に対応する点が下限ライン93と上限ライン94の間から外れた場合には、その画素における酸素飽和度の信頼度が低いことが分かるように表示をしても良いし、酸素飽和度を算出しないようにしても良い。 It should be noted that the signal ratio B1 / G2 and the signal ratio R2 / G2 are hardly increased or extremely decreased. In other words, the values of the signal ratio B1 / G2 and the signal ratio R2 / G2 hardly exceed the lower limit line 93 with an oxygen saturation of 0%, or conversely fall below the upper limit line 94 with an oxygen saturation of 100%. However, when the calculated oxygen saturation falls below the lower limit line 93, the oxygen saturation calculation unit 83 sets the oxygen saturation to 0%. When the calculated oxygen saturation exceeds the upper limit line 94, the oxygen saturation is set to 100. %. Note that when the points corresponding to the signal ratio B1 / G2 and the signal ratio R2 / G2 deviate from between the lower limit line 93 and the upper limit line 94, it is understood that the reliability of oxygen saturation in the pixel is low. Display may be performed, or oxygen saturation may not be calculated.
 画像生成部84は、酸素飽和度算出部86で算出された酸素飽和度と、B2画像信号、G2画像信号、及びR2画像信号を用いて、酸素飽和度を画像化した酸素飽和度画像を生成する。具体的には、画像生成部84は、入力される元のB2画像信号,G2画像信号,及びR2画像信号に対して、酸素飽和度に応じたゲインを画素毎に施し、ゲインを施したB2画像信号,G2画像信号,及びR2画像信号を用いてRGB画像データを生成する。例えば、画像生成部84は、酸素飽和度が60%以上の画素ではB2画像信号,G2画像信号,及びR2画像信号のいずれにも同じゲイン「1」を乗じる。これに対して、酸素飽和度が60%未満の画素では、B2画像信号に対して「1」未満のゲインを乗じ、G2画像信号及びR2画像信号に対しては「1」以上のゲインを乗じる。このゲイン処理後のB1画像信号,G2画像信号,及びR2画像信号を用いて生成されたRGB画像データが酸素飽和度画像である。画像生成部84が生成する酸素飽和度画像のうち、非拡大観察時の各色の画像信号に基づいて生成されたものは非拡大酸素飽和度画像であり、拡大観察時の各色の画像信号に基づいて生成されたものは拡大酸素飽和度画像である。 The image generation unit 84 generates an oxygen saturation image obtained by imaging oxygen saturation using the oxygen saturation calculated by the oxygen saturation calculation unit 86 and the B2 image signal, the G2 image signal, and the R2 image signal. To do. Specifically, the image generation unit 84 applies a gain corresponding to the oxygen saturation to the input original B2 image signal, G2 image signal, and R2 image signal for each pixel, and applies the gained B2 RGB image data is generated using the image signal, the G2 image signal, and the R2 image signal. For example, the image generation unit 84 multiplies all of the B2 image signal, the G2 image signal, and the R2 image signal by the same gain “1” for a pixel having an oxygen saturation of 60% or more. On the other hand, for pixels with oxygen saturation less than 60%, the B2 image signal is multiplied by a gain less than “1”, and the G2 image signal and the R2 image signal are multiplied by a gain of “1” or more. . The RGB image data generated using the B1 image signal, the G2 image signal, and the R2 image signal after the gain processing is an oxygen saturation image. Of the oxygen saturation images generated by the image generation unit 84, those generated based on the image signals of the respective colors at the time of non-magnifying observation are non-magnified oxygen saturation images, and are based on the image signals of the respective colors at the time of magnified observation. What is generated is an enlarged oxygen saturation image.
 画像生成部84が生成した非拡大酸素飽和度画像や拡大酸素飽和度画像では、高酸素の領域(酸素飽和度が60~100%の領域)は、通常観察画像と同様の色で表される。一方、酸素飽和度が所定値を下回る低酸素の領域(酸素飽和度が0~60%の領域)は、通常観察画像とは異なる色(疑似カラー)で表される。 In the non-enlarged oxygen saturation image and the enlarged oxygen saturation image generated by the image generation unit 84, the high oxygen region (region where the oxygen saturation is 60 to 100%) is represented by the same color as the normal observation image. . On the other hand, a low oxygen region where the oxygen saturation is below a predetermined value (region where the oxygen saturation is 0 to 60%) is represented by a color (pseudo color) different from that of the normal observation image.
 なお、本実施形態では、画像生成部84は、低酸素の領域のみ疑似カラー化するゲインを乗じているが、高酸素領域でも酸素飽和度に応じたゲインを施し、酸素飽和度画像の全体を疑似カラー化しても良い。また、低酸素領域と高酸素領域を酸素飽和度60%で分けているがこの境界も任意である。 In the present embodiment, the image generation unit 84 multiplies the gain for pseudo-coloring only the low oxygen region, but the gain corresponding to the oxygen saturation is applied even in the high oxygen region, and the entire oxygen saturation image is obtained. A pseudo color may be used. Further, although the low oxygen region and the high oxygen region are separated by oxygen saturation 60%, this boundary is also arbitrary.
 ズーム検出部86は、ズーム操作部22cの操作状況を監視し、ズームの有無(拡大観察をしているか否か)を検出する。ズーム検出部86による検出結果は、画像生成部84に入力される。また、拡大観察をしている場合、ズーム検出部86は例えばズーム操作部22cの操作量に基づいて観察範囲の拡大率を算出する。拡大観察をしていない場合、画像生成部84は、生成した酸素飽和度画像を、構造強調部78に出力し、画像記憶部87に記憶させる。一方、拡大観察時には、画像生成部84は、生成した拡大酸素飽和度画像をアーチファクト補正部88に入力し、酸素飽和度のアーチファクトを補正してから構造強調部78に出力する。 The zoom detection unit 86 monitors the operation status of the zoom operation unit 22c and detects the presence / absence of zoom (whether or not magnification observation is performed). The detection result by the zoom detection unit 86 is input to the image generation unit 84. In addition, when performing magnified observation, the zoom detection unit 86 calculates the magnification of the observation range based on the operation amount of the zoom operation unit 22c, for example. When magnification observation is not performed, the image generation unit 84 outputs the generated oxygen saturation image to the structure enhancement unit 78 and stores it in the image storage unit 87. On the other hand, at the time of magnifying observation, the image generation unit 84 inputs the generated enlarged oxygen saturation image to the artifact correction unit 88, corrects the oxygen saturation artifact, and outputs it to the structure enhancement unit 78.
 画像記憶部87は、非拡大酸素飽和度画像を記憶しておくメモリである。本実施形態では、画像記憶部87は、非拡大酸素飽和度画像のうち最新のものを一つ記憶する。すなわち、画像生成部84が非拡大酸素飽和度画像を生成する度に、画像記憶部87に記憶される非拡大酸素飽和度画像は順次最新のものに更新される。拡大観察が行われると、画像記憶部87に記憶する非拡大酸素飽和度画像の更新は停止する。 The image storage unit 87 is a memory for storing a non-expanded oxygen saturation image. In the present embodiment, the image storage unit 87 stores the latest one of the non-enlarged oxygen saturation images. That is, every time the image generation unit 84 generates a non-enlarged oxygen saturation image, the non-enlarged oxygen saturation image stored in the image storage unit 87 is sequentially updated to the latest one. When the magnification observation is performed, the update of the non-magnified oxygen saturation image stored in the image storage unit 87 is stopped.
 アーチファクト補正部88は、高周波成分抽出部101と、拡大部分抽出部102と、低周波成分抽出部103と、合成処理部104とを有する。 The artifact correction unit 88 includes a high frequency component extraction unit 101, an enlarged portion extraction unit 102, a low frequency component extraction unit 103, and a synthesis processing unit 104.
 高周波成分抽出部101は、拡大観察時に画像生成部84から入力される拡大酸素飽和度画像からカットオフ周波数以上の高周波成分を抽出する。拡大酸素飽和度画像は、画像記憶部87に記憶された非拡大酸素飽和度画像の一部を拡大したものに対応する。拡大酸素飽和度画像から抽出された高周波成分の画像(以下、高周波成分画像という)は、合成処理部104に入力される。なお、カットオフ周波数は拡大率に応じて予め定められており、拡大率が大きいほどカットオフ周波数が低周波数側にシフトするように定められている。これにより、高周波成分抽出部101は、検体の拡大状況に応じた適切な高周波成分を抽出する。 The high frequency component extraction unit 101 extracts a high frequency component equal to or higher than the cutoff frequency from the enlarged oxygen saturation image input from the image generation unit 84 at the time of magnification observation. The enlarged oxygen saturation image corresponds to an enlarged part of the non-enlarged oxygen saturation image stored in the image storage unit 87. An image of a high frequency component extracted from the enlarged oxygen saturation image (hereinafter referred to as a high frequency component image) is input to the synthesis processing unit 104. The cut-off frequency is determined in advance according to the enlargement ratio, and the cut-off frequency is determined to shift to the lower frequency side as the enlargement ratio increases. Thereby, the high frequency component extraction part 101 extracts the appropriate high frequency component according to the expansion condition of the specimen.
 拡大部分抽出部102は、対応領域検出部102aと拡大処理部102bとを有する。対応領域検出部102aは、画像生成部84から拡大酸素飽和度画像を取得し、かつ、画像記憶部87から非拡大酸素飽和度画像を取得する。そして、拡大酸素飽和度画像と非拡大酸素飽和度画像のパターンマッチングを行うことにより、非拡大酸素飽和度画像から拡大酸素飽和度画像に対応する領域を抽出する。拡大処理部102bは、非拡大酸素飽和度画像から抽出した領域の画像を、拡大酸素飽和度画像と同じサイズになるように拡大する。 The enlarged portion extraction unit 102 includes a corresponding region detection unit 102a and an enlargement processing unit 102b. The corresponding region detection unit 102 a acquires the expanded oxygen saturation image from the image generation unit 84 and acquires the non-enlarged oxygen saturation image from the image storage unit 87. Then, by performing pattern matching between the expanded oxygen saturation image and the non-enlarged oxygen saturation image, a region corresponding to the expanded oxygen saturation image is extracted from the non-enlarged oxygen saturation image. The enlargement processing unit 102b enlarges the image of the region extracted from the non-enlarged oxygen saturation image so as to have the same size as the enlarged oxygen saturation image.
 低周波成分抽出部103は、拡大部分抽出部102が非拡大酸素飽和度画像から抽出し、拡大処理部102bで拡大された画像から、カットオフ周波数未満の低周波成分を抽出する。低周波成分抽出部が非拡大酸素飽和度画像から抽出した低周波成分の画像(以下、低周波成分画像という)は、合成処理部104に入力される。なお、低周波成分抽出部103が閾値として用いるカットオフ周波数は、高周波成分抽出部101で用いるものと同じ値である。 The low frequency component extraction unit 103 extracts a low frequency component having a frequency lower than the cutoff frequency from the image extracted by the expansion portion extraction unit 102 from the non-expansion oxygen saturation image and enlarged by the expansion processing unit 102b. The low frequency component image extracted by the low frequency component extraction unit from the non-enlarged oxygen saturation image (hereinafter referred to as a low frequency component image) is input to the synthesis processing unit 104. Note that the cutoff frequency used as the threshold value by the low frequency component extraction unit 103 is the same value as that used by the high frequency component extraction unit 101.
 合成処理部104は、高周波成分抽出部101から入力される高周波成分画像と、低周波成分抽出部103から入力される低周波成分画像とを、位置合わせをして合成することにより、アーチファクトが補正された合成酸素飽和度画像を生成する。合成処理部104が生成した合成酸素飽和度画像は、構造強調部78に入力され、構造強調処理を施された後、画像表示信号生成部66で表示用画像信号に変換され、モニタ18に表示される。 The synthesis processing unit 104 corrects artifacts by aligning and synthesizing the high frequency component image input from the high frequency component extraction unit 101 and the low frequency component image input from the low frequency component extraction unit 103. A synthesized oxygen saturation image is generated. The synthesized oxygen saturation image generated by the synthesis processing unit 104 is input to the structure enhancement unit 78, subjected to structure enhancement processing, converted into a display image signal by the image display signal generation unit 66, and displayed on the monitor 18. Is done.
 次に、本実施形態の内視鏡システム10による観察の流れを図12のフローチャートに沿って説明する。まず、通常観察モードにおいて、最も遠景の状態からスクリーニングを行う(S10)。通常観察モードでは、通常観察画像がモニタ18に表示される。このスクリーニング時に、ブラウニッシュエリアや発赤等の病変の可能性がある部位(以下、病変可能性部位という)を発見した場合(S11)には、モード切替SW22bを操作して、特殊観察モードに切り替える(S12)。そして、この特殊観察モードにおいて、病変可能性部位が低酸素状態になっているか否かの診断を行う。 Next, the flow of observation by the endoscope system 10 of this embodiment will be described along the flowchart of FIG. First, in the normal observation mode, screening is performed from the farthest view state (S10). In the normal observation mode, a normal observation image is displayed on the monitor 18. At the time of this screening, if a site (hereinafter, referred to as a possible lesion) such as a brownish area or redness is found (S11), the mode switching SW 22b is operated to switch to the special observation mode. (S12). Then, in this special observation mode, a diagnosis is made as to whether or not the likely lesion site is in a hypoxic state.
 特殊観察モードでは、第1白色光及び第2白色光がセンサ48の撮像フレームに同期して交互に検体内に照射されるので、第1白色光が照射されたフレームではセンサ48はR1画像信号,G1画像信号,及びB1画像信号を出力し、第2白色光が照射されたフレームではR2画像信号,G2画像信号,及びB2画像信号を出力する。これら2フレーム分の画像信号に基づいて、画素毎に酸素飽和度が算出される(S13)。 In the special observation mode, the first white light and the second white light are alternately irradiated into the specimen in synchronization with the imaging frame of the sensor 48. Therefore, the sensor 48 detects the R1 image signal in the frame irradiated with the first white light. , G1 image signal, and B1 image signal are output, and R2 image signal, G2 image signal, and B2 image signal are output in the frame irradiated with the second white light. Based on the image signals for these two frames, the oxygen saturation is calculated for each pixel (S13).
 また、酸素飽和度画像生成部76はズーム検出部86によって拡大観察をしているか否かを検出する(S14)。非拡大観察時には、画像生成部84により、R2画像信号,G2画像信号,及びB2画像信号に対し、酸素飽和度に応じてゲインを施し、非拡大酸素飽和度画像を生成する(S15)。生成された非拡大酸素飽和度画像は、画像記憶部87に記憶され(S16)、モニタ18に表示される。 Further, the oxygen saturation image generation unit 76 detects whether or not the zoom detection unit 86 performs magnified observation (S14). At the time of non-magnifying observation, the image generating unit 84 applies gain to the R2 image signal, G2 image signal, and B2 image signal according to the oxygen saturation, and generates a non-enlarged oxygen saturation image (S15). The generated non-enlarged oxygen saturation image is stored in the image storage unit 87 (S16) and displayed on the monitor 18.
 そして、モニタ18に表示された非拡大酸素飽和度画像に基づいて、ドクターは病変可能性部位が低酸素状態になっているかどうかを確認する。こうした酸素飽和度の表示は、通常観察モードに切り替えられるまで継続して行わる(S25)。また、診断を終了する場合には、内視鏡12の挿入部21を検体内から抜き出す(S26)。 Then, based on the non-enlarged oxygen saturation image displayed on the monitor 18, the doctor confirms whether the lesion possibility site is in a hypoxic state. Such display of the oxygen saturation is continuously performed until the normal observation mode is switched (S25). When the diagnosis is finished, the insertion portion 21 of the endoscope 12 is extracted from the sample (S26).
 一方、例えばモニタ18に表示された非拡大酸素飽和度画像によって、病変可能性部位が疑似カラーで表示され、低酸素状態になっていることが確認されると、正確な診断のために、ズーム操作部22cを操作して低酸素状態の病変可能性部位(以下、低酸素領域という)を拡大観察する。この場合、ズーム検出部86は拡大観察を行なっていることを検出する(S14)。すると、画像生成部84は、拡大観察時のR2画像信号,G2画像信号,及びB2画像信号に対し、酸素飽和度に応じてゲインを施し、拡大酸素飽和度画像を生成する(S18)。ここで生成される拡大酸素飽和度画像では非拡大酸素飽和度画像には発生しないような酸素飽和度のアーチファクトが発生する場合があるので、内視鏡システム10では拡大観察時に特有のアーチファクトを補正する。 On the other hand, if, for example, the non-enlarged oxygen saturation image displayed on the monitor 18 is displayed in pseudo color and the hypoxic state is confirmed, the zoom is performed for accurate diagnosis. The operation unit 22c is operated to enlarge and observe a lesion likely site (hereinafter referred to as a hypoxic region) in a hypoxic state. In this case, the zoom detection unit 86 detects that magnified observation is being performed (S14). Then, the image generation unit 84 applies a gain to the R2 image signal, the G2 image signal, and the B2 image signal at the time of enlarged observation according to the oxygen saturation, and generates an enlarged oxygen saturation image (S18). In the enlarged oxygen saturation image generated here, an oxygen saturation artifact that may not occur in the non-enlarged oxygen saturation image may occur. Therefore, the endoscope system 10 corrects a unique artifact during magnification observation. To do.
 具体的には、図13に示すように、高周波成分抽出部101によって、拡大酸素飽和度画像120からカットオフ周波数以上の高周波成分を抽出し(S19)、抽出した高周波成分からなる高周波成分画像121が生成される。 Specifically, as shown in FIG. 13, the high-frequency component extraction unit 101 extracts a high-frequency component equal to or higher than the cutoff frequency from the enlarged oxygen saturation image 120 (S19), and a high-frequency component image 121 composed of the extracted high-frequency components. Is generated.
 拡大酸素飽和度画像120は、低酸素領域123が拡大されたことにより非拡大酸素飽和度画像125では確認できない微細構造や酸素飽和度の局所的な変化等(以下、まとめて高周波構造124という)を確認することができるが、低周波数成分を有するアーチファクト122が発生する。このため、拡大酸素飽和度画像120では高周波構造124が確認できるとしても、アーチファクト122のために必ずしも高周波成分124を確認しやすい状態とはいえない。しかし、高周波成分画像121では、主にアーチファクト122である低周波成分がカットされているので、高周波構造124がより鮮明に表れる。但し、高周波成分画像121では、低周波成分がカットされているので、低周波数成分を有する検体の構造やなだらかな酸素飽和度の変化は確認できない。 The enlarged oxygen saturation image 120 is a fine structure that cannot be confirmed by the non-expanded oxygen saturation image 125 due to the expansion of the low oxygen region 123, a local change in oxygen saturation, etc. (hereinafter collectively referred to as a high-frequency structure 124). However, an artifact 122 having a low frequency component is generated. For this reason, even if the high-frequency structure 124 can be confirmed in the enlarged oxygen saturation image 120, it cannot be said that the high-frequency component 124 is easily confirmed due to the artifact 122. However, in the high frequency component image 121, since the low frequency component which is mainly the artifact 122 is cut, the high frequency structure 124 appears more clearly. However, in the high-frequency component image 121, since the low-frequency component is cut, the structure of the specimen having the low-frequency component and a gentle change in oxygen saturation cannot be confirmed.
 一方、拡大部分抽出部102は、拡大酸素飽和度画像120を取得し、画像記憶部87から非拡大酸素飽和度画像125を取得し、対応領域検出部102aによってこれらのパターンマッチングをすることによって、非拡大酸素飽和度画像125から拡大観察している部分(拡大酸素飽和度画像120)に対応する領域126を検出する(S20)。検出された領域126の画像は、拡大処理部102bによって拡大酸素飽和度画像120に合わせてサイズ変換される(S21)。そして、低周波成分抽出部103によって、サイズ変換後の領域126の画像127からカットオフ周波数未満の低周波成分が抽出され、抽出した低周波成分からなる低周波成分画像128が生成される(S22)。 On the other hand, the enlarged portion extraction unit 102 acquires the enlarged oxygen saturation image 120, acquires the non-enlarged oxygen saturation image 125 from the image storage unit 87, and performs pattern matching by the corresponding region detection unit 102a. A region 126 corresponding to the portion (enlarged oxygen saturation image 120) being magnified is detected from the non-enlarged oxygen saturation image 125 (S20). The detected image of the region 126 is size-converted by the enlargement processing unit 102b according to the enlarged oxygen saturation image 120 (S21). Then, the low-frequency component extraction unit 103 extracts a low-frequency component less than the cutoff frequency from the image 127 in the region 126 after the size conversion, and generates a low-frequency component image 128 including the extracted low-frequency component (S22). ).
 非拡大酸素飽和度画像125では、遠景画像であるため、微細構造124は確認できないものの、拡大観察時に起こり得るような酸素飽和度のアーチファクト122は発生しないので、例えば低酸素領域123の範囲等が表れている。このため、非拡大酸素飽和度画像125に基づいて生成された低周波成分画像128は、低周波数成分を有する、検体の構造や酸素飽和度のなだらかな変化等(以下、まとめて低周波構造129という)が正しく表れている。 In the non-enlarged oxygen saturation image 125, since it is a distant view image, the fine structure 124 cannot be confirmed, but the oxygen saturation artifact 122 that may occur during magnified observation does not occur. Appears. For this reason, the low-frequency component image 128 generated based on the non-enlarged oxygen saturation image 125 has a low-frequency component such as a structure of the specimen and a gentle change in oxygen saturation (hereinafter collectively referred to as a low-frequency structure 129). Appears correctly.
 こうして高周波成分画像121と低周波成分画像128が生成されると、合成処理部104はこれらを合成し、合成酸素飽和度画像130を生成する(S23)。すなわち、合成酸素飽和度画像130では、高周波成分画像121の高周波構造124と低周波成分画像128の低周波構造129が重畳した画像である。このため、合成酸素飽和度画像130は、拡大酸素飽和度画像120に表れるようなアーチファクト122はなく、かつ、高周波構造124と低周波構造129を両方とも確認可能である。こうして生成された合成酸素飽和度画像130は、構造強調処理等を経た後、モニタ18に表示される(S24)。 Thus, when the high frequency component image 121 and the low frequency component image 128 are generated, the synthesis processing unit 104 synthesizes them to generate a synthetic oxygen saturation image 130 (S23). That is, the synthetic oxygen saturation image 130 is an image in which the high frequency structure 124 of the high frequency component image 121 and the low frequency structure 129 of the low frequency component image 128 are superimposed. For this reason, the synthetic oxygen saturation image 130 has no artifact 122 as shown in the enlarged oxygen saturation image 120, and both the high-frequency structure 124 and the low-frequency structure 129 can be confirmed. The synthetic oxygen saturation image 130 thus generated is displayed on the monitor 18 after undergoing structure enhancement processing or the like (S24).
 なお、図14に示すように、拡大観察時に合成酸素飽和度画像130を生成及び表示した場合、内視鏡システム10は、内視鏡システム10がアーチファクト122を補正するための特別な上記画像処理を行ったことを明示する表示131を、合成酸素飽和度画像130とともにモニタ18の表示画面上に表示する。表示131は、例えば「拡大画像処理」等の文字である。 As shown in FIG. 14, when the synthesized oxygen saturation image 130 is generated and displayed at the time of magnified observation, the endoscope system 10 performs special image processing for correcting the artifact 122 by the endoscope system 10. A display 131 clearly indicating that the process has been performed is displayed on the display screen of the monitor 18 together with the synthetic oxygen saturation image 130. The display 131 is a character such as “enlarged image processing”, for example.
 以上のように、内視鏡システム10は、酸素飽和度を算出及び表示する特殊観察モードにおいて拡大観察を行う場合に、非拡大酸素飽和度画像125の低周波成分と拡大酸素飽和度画像120の高周波成分を合成した合成酸素飽和度画像130を生成及び表示する。
この合成酸素飽和度画像130は、拡大酸素飽和度画像125のアーチファクト122が補正(除去)されており、かつ、検体の高周波構造124と低周波構造129を両方とも観察することができるので、ドクターは低酸素領域123をより仔細に確認して正確な診断を行うことができる。
As described above, the endoscope system 10 performs the low-frequency component of the non-enlarged oxygen saturation image 125 and the enlarged oxygen saturation image 120 when performing the enlarged observation in the special observation mode for calculating and displaying the oxygen saturation. A synthetic oxygen saturation image 130 in which high frequency components are synthesized is generated and displayed.
In this synthetic oxygen saturation image 130, the artifact 122 of the enlarged oxygen saturation image 125 is corrected (removed), and both the high-frequency structure 124 and the low-frequency structure 129 of the specimen can be observed. Can make an accurate diagnosis by confirming the hypoxic region 123 in more detail.
 なお、上記第1実施形態では、非拡大観察時に低酸素領域123を確認した後、低酸素領域123の拡大観察をしているが、非拡大観察時に低酸素領域123を検出しない場合でも、拡大観察をしてよい。例えば、図15に示すように、通常観察モードでのスクリーニング時に病変可能性部位を発見し、特殊観察モードに切り替えても、非拡大酸素飽和度画像141に低酸素領域が認められないことがある。この場合、ドクターは病変可能性部位が低酸素状態の病変でないことを確実に確認するために、病変可能性部位を拡大観察することがある。しかし、この場合の拡大酸素飽和度画像142では、高周波構造143が確認できるものの、拡大観察をしていることによって酸素飽和度のアーチファクト122も発生する。 In the first embodiment, after the low oxygen region 123 is confirmed at the time of non-magnifying observation, the low oxygen region 123 is magnified. However, even if the low oxygen region 123 is not detected at the time of non-magnifying observation, the magnified region is enlarged. You may observe. For example, as shown in FIG. 15, even when a possible lesion site is found during screening in the normal observation mode and the special observation mode is switched, a hypoxic region may not be recognized in the non-enlarged oxygen saturation image 141. . In this case, the doctor may magnify and observe the likely lesion site in order to confirm that the likely lesion site is not a hypoxic lesion. However, in the enlarged oxygen saturation image 142 in this case, although the high-frequency structure 143 can be confirmed, the oxygen saturation artifact 122 is also generated by performing the enlarged observation.
 内視鏡システム10は、特殊観察モードで拡大操作がなされれば、非拡大酸素飽和度画像141に低酸素領域があるか否かに関わらず、拡大酸素飽和度画像142から高周波成分を抽出し、高周波成分画像144を生成する。この高周波成分画像144では、アーチファクト122が補正され、高周波構造143が確認できる。但し、高周波成分画像144では、アーチファクト122と同程度の周波数の低周波構造も除去されてしまっている。 When the enlargement operation is performed in the special observation mode, the endoscope system 10 extracts a high-frequency component from the enlarged oxygen saturation image 142 regardless of whether or not the non-enlarged oxygen saturation image 141 has a low oxygen region. Then, the high frequency component image 144 is generated. In the high frequency component image 144, the artifact 122 is corrected and the high frequency structure 143 can be confirmed. However, in the high frequency component image 144, the low frequency structure having the same frequency as the artifact 122 is also removed.
 また、内視鏡システム10は、非拡大酸素飽和度画像141から拡大酸素飽和度画像142に対応する領域145を抽出し、サイズ変換をした画像146を生成する。そして、この画像146から低周波成分を抽出し、低周波成分画像147を生成する。低周波成分画像147では、検体の低周波構造148が表れる。 Also, the endoscope system 10 extracts a region 145 corresponding to the enlarged oxygen saturation image 142 from the non-enlarged oxygen saturation image 141, and generates an image 146 that has undergone size conversion. Then, a low frequency component is extracted from the image 146 to generate a low frequency component image 147. In the low frequency component image 147, the low frequency structure 148 of the specimen appears.
 そして、高周波成分画像144と低周波成分画像147を合成し、合成酸素飽和度画像150を生成すると、合成酸素飽和度画像150では、アーチファクト122に邪魔されることなく、検体の高周波構造143と低周波構造148を両方とも観察することができる。高周波構造143が低酸素状態であれば、擬似カラーで表示されているので、非拡大酸素飽和度画像141で低酸素状態が確認できなくても、拡大観察をしてはじめて観察され得る低酸素状態の高周波構造143を合成酸素飽和度画像150から発見することができる。 Then, when the high-frequency component image 144 and the low-frequency component image 147 are synthesized to generate the synthetic oxygen saturation image 150, the synthetic oxygen saturation image 150 is not disturbed by the artifact 122 and the high-frequency structure 143 of the specimen is low. Both frequency structures 148 can be observed. If the high-frequency structure 143 is in a low-oxygen state, it is displayed in pseudo color, so even if the low-oxygen state cannot be confirmed in the non-enlarged oxygen saturation image 141, the low-oxygen state that can be observed only after magnified observation The high-frequency structure 143 can be found from the synthetic oxygen saturation image 150.
[第2実施形態]
 第1実施形態の内視鏡システム10では、ズーム操作を監視することにより、非拡大酸素飽和度画像125又は141をそのまま表示するか、アーチファクト122が補正された合成酸素飽和度画像130又は150を生成して表示をするかを切り替えているが、ズーム操作を監視する代わりに、生成された酸素飽和度画像(非拡大酸素飽和度画像または拡大酸素飽和度画像)からアーチファクト122を検出することにより、合成酸素飽和度画像を生成するか否かを切り換えても良い。
[Second Embodiment]
In the endoscope system 10 of the first embodiment, by monitoring the zoom operation, the non-enlarged oxygen saturation image 125 or 141 is displayed as it is, or the synthetic oxygen saturation image 130 or 150 in which the artifact 122 is corrected is displayed. Switching between generating and displaying, but instead of monitoring the zoom operation, by detecting the artifact 122 from the generated oxygen saturation image (non-enlarged oxygen saturation image or expanded oxygen saturation image) It may be switched whether to generate a synthetic oxygen saturation image.
 この場合、第1実施形態の内視鏡システム10の酸素飽和度生成部76を、図16に示す酸素飽和度画像生成部160に置き換える。その他の構成は、第1実施形態の内視鏡システム10と同じである。 In this case, the oxygen saturation generation unit 76 of the endoscope system 10 of the first embodiment is replaced with an oxygen saturation image generation unit 160 shown in FIG. Other configurations are the same as those of the endoscope system 10 of the first embodiment.
 図16に示すように、酸素飽和度画像生成部160は、第1実施形態の酸素飽和度画像生成部76に対して、ズーム検出部86を除き、アーチファクト検出部161を加えたものである。また、酸素飽和度画像生成部160は、第1実施形態の酸素飽和度画像生成部
76と同じ信号比検出部81,相関関係記憶部82,酸素飽和度算出部83,画像生成部84,画像記憶部87及びアーチファクト補正部88を備える。なお、第1実施形態では、ズーム操作の有無に応じて、画像生成部84が生成する酸素飽和度画像を非拡大酸素飽和度画像と拡大酸素飽和度画像に区別したが、本実施形態では、非拡大酸素飽和度画像と拡大酸素飽和度画像の区別はせず、画像生成部84が生成する画像を全て酸素飽和度画像という。
As illustrated in FIG. 16, the oxygen saturation image generation unit 160 is obtained by adding an artifact detection unit 161 to the oxygen saturation image generation unit 76 of the first embodiment except for the zoom detection unit 86. Further, the oxygen saturation image generation unit 160 has the same signal ratio detection unit 81, correlation storage unit 82, oxygen saturation calculation unit 83, image generation unit 84, and image as the oxygen saturation image generation unit 76 of the first embodiment. A storage unit 87 and an artifact correction unit 88 are provided. In the first embodiment, the oxygen saturation image generated by the image generation unit 84 is classified into a non-enlarged oxygen saturation image and an enlarged oxygen saturation image according to the presence or absence of the zoom operation. In the present embodiment, The non-enlarged oxygen saturation image and the enlarged oxygen saturation image are not distinguished, and all images generated by the image generation unit 84 are referred to as oxygen saturation images.
 アーチファクト検出部161は、画像生成部84から酸素飽和度画像を取得し、取得した酸素飽和度画像からアーチファクト122を検出する。拡大観察によって発生するアーチファクト122は、発生の仕方(分布や強度等)が先端部24での照明光学系24aと撮像光学系24bの配置等の内視鏡12の構造と、検体の拡大率(または先端部24と検体の距離)によってほぼ定まっている。このため、アーチファクト検出部161は、酸素飽和度画像の任意の1点または複数点で画素値を監視することにより、アーチファクト122が発生しているか否かを検出する。 The artifact detection unit 161 acquires the oxygen saturation image from the image generation unit 84, and detects the artifact 122 from the acquired oxygen saturation image. The artifact 122 generated by the magnified observation is generated in the structure (distribution, intensity, etc.) of the endoscope 12 such as the arrangement of the illumination optical system 24a and the imaging optical system 24b at the distal end portion 24, and the magnification rate of the specimen ( Or the distance between the tip 24 and the specimen) is substantially determined. For this reason, the artifact detection unit 161 detects whether or not the artifact 122 has occurred by monitoring pixel values at one or more arbitrary points in the oxygen saturation image.
 例えば、必ず低酸素状態になるアーチファクトが発生する位置の画素を監視する場合、そのB画素値を第1閾値と比較し、ゲインによってB画素値が第1閾値以下になっている場合(低酸素の疑似カラーになっている場合)にアーチファクトの発生を検出する。監視している画素に対応する位置において、アーチファクトが発生しておらず、検体自体が本当に低酸素状態になっている場合もあるが、アーチファクトは検体で発生し得る低酸素状態よりも概ね大きいので、第1閾値をある程度大きく設定しておけば、誤検出することなく、アーチファクトの発生を検出可能である。 For example, when monitoring a pixel at a position where an artifact that always becomes hypoxic occurs, the B pixel value is compared with a first threshold value, and the B pixel value is equal to or lower than the first threshold value due to gain (low oxygen level). Occurrence of artifacts is detected. There may be no artifact at the position corresponding to the pixel being monitored, and the specimen itself may actually be hypoxic, but the artifact is generally larger than the hypoxic condition that can occur in the specimen. If the first threshold value is set to be large to some extent, the occurrence of artifacts can be detected without erroneous detection.
 なお、必ず高酸素状態になるアーチファクトが発生する位置の画素を監視しても良い。また、複数点で画素値を監視すれば検出精度が向上するので、2点以上で画素値を監視することが好ましい。さらに、アーチファクトの検出方法は任意であり、画素値を閾値と比較する代わりに、アーチファクトの周波数成分を抽出することにより、アーチファクト122の発生を検出しても良い。 It should be noted that a pixel at a position where an artifact that always becomes a high oxygen state is generated may be monitored. In addition, if the pixel values are monitored at a plurality of points, the detection accuracy is improved. Therefore, it is preferable to monitor the pixel values at two or more points. Furthermore, the detection method of the artifact is arbitrary. Instead of comparing the pixel value with the threshold value, the occurrence of the artifact 122 may be detected by extracting the frequency component of the artifact.
 画像生成部84から取得した酸素飽和度画像からアーチファクトが検出されなかった場合、アーチファクト検出部161は、取得した酸素飽和度画像を構造強調部78に出力し、モニタ18に表示させる。また、アーチファクト検出部161は、アーチファクトが検出されなかった酸素飽和度画像を画像記憶部87に記憶させる。すなわち、アーチファクト検出部161でアーチファクトが検出されなかった酸素飽和度画像は、第1実施形態の非拡大酸素飽和度画像に対応する。 When no artifact is detected from the oxygen saturation image acquired from the image generation unit 84, the artifact detection unit 161 outputs the acquired oxygen saturation image to the structure enhancement unit 78 and displays it on the monitor 18. Further, the artifact detection unit 161 stores the oxygen saturation image in which no artifact is detected in the image storage unit 87. That is, the oxygen saturation image in which no artifact is detected by the artifact detection unit 161 corresponds to the non-enlarged oxygen saturation image of the first embodiment.
 一方、アーチファクト検出部161は、アーチファクトを検出した場合、アーチファクトを検出した酸素飽和度画像をアーチファクト補正部88に入力し、検出したアーチファクトを補正してから構造強調部78に出力させる。すなわち、アーチファクトが検出された酸素飽和度画像は、第1実施形態の拡大酸素飽和度画像に対応する。 On the other hand, when detecting the artifact, the artifact detection unit 161 inputs the oxygen saturation image in which the artifact is detected to the artifact correction unit 88, corrects the detected artifact, and outputs the corrected image to the structure enhancement unit 78. That is, the oxygen saturation image in which the artifact is detected corresponds to the enlarged oxygen saturation image of the first embodiment.
 アーチファクト補正部88の構成は、第1実施形態と同じであり、高周波成分抽出部101によって、アーチファクトが検出された酸素飽和度画像から高周波成分が抽出され、高周波成分画像が生成される。 The configuration of the artifact correction unit 88 is the same as that of the first embodiment, and the high frequency component extraction unit 101 extracts a high frequency component from the oxygen saturation image in which the artifact is detected, and generates a high frequency component image.
 一方、拡大部分抽出部102は、画像記憶部87からアーチファクトが検出されなかった過去の酸素飽和度画像を取得し、アーチファクト検出部161からアーチファクトが検出された酸素飽和度画像を取得し、対応領域検出部102aでこれらのパターンマッチングを行なって、アーチファクトが検出されなかった酸素飽和度画像から、アーチファクトが検出された酸素飽和度画像に対応する領域を検出し、この領域を拡大処理部
102bによってサイズ変換をする。そして、低周波成分抽出部103によって、サイズ変換された画像から低周波成分を抽出し、低周波成分画像を生成する。
On the other hand, the enlarged portion extraction unit 102 acquires a past oxygen saturation image in which no artifact has been detected from the image storage unit 87, acquires an oxygen saturation image in which the artifact has been detected from the artifact detection unit 161, and the corresponding region The pattern matching is performed by the detection unit 102a, a region corresponding to the oxygen saturation image in which the artifact is detected is detected from the oxygen saturation image in which the artifact is not detected, and this region is sized by the enlargement processing unit 102b. Convert. Then, the low frequency component extraction unit 103 extracts a low frequency component from the size-converted image, and generates a low frequency component image.
 そして、合成処理部104で高周波成分画像と低周波成分画像を合成し、アーチファクトが補正された合成酸素飽和度画像を生成し、構造強調部78に出力する。 Then, the synthesis processing unit 104 synthesizes the high-frequency component image and the low-frequency component image, generates a synthesized oxygen saturation image in which artifacts are corrected, and outputs the synthesized oxygen saturation image to the structure enhancement unit 78.
 このように、第2実施形態の酸素飽和度生成部160を備える内視鏡システムは、ズーム操作を監視する代わりに、酸素飽和度画像からアーチファクト122の発生を検出し、アーチファクトが検出された場合に検出されたアーチファクトを補正した合成酸素飽和度画像を生成する。すなわち、酸素飽和度生成部160を備える内視鏡システムは、アーチファクトを検出することで、拡大観察を検出する。この内視鏡システムは、ズーム操作によらず、内視鏡12の先端部24を検体に近づけて拡大観察をする場合に、アーチファクトを補正した合成酸素飽和度画像を生成し、表示することができる。 As described above, the endoscope system including the oxygen saturation generation unit 160 of the second embodiment detects the occurrence of the artifact 122 from the oxygen saturation image instead of monitoring the zoom operation, and the artifact is detected. A synthesized oxygen saturation image in which the detected artifact is corrected is generated. That is, the endoscope system including the oxygen saturation generation unit 160 detects magnified observation by detecting artifacts. This endoscope system is capable of generating and displaying a synthetic oxygen saturation image with corrected artifacts when performing close-up observation with the distal end portion 24 of the endoscope 12 approaching the specimen, regardless of the zoom operation. it can.
 なお、第1及び第2実施形態を組み合わせても良い。具体的には、第1実施形態のようにズーム操作を監視しつつ、ズーム操作が検出されない場合には、第2実施形態の流れでアーチファクトの補正を行い、ズーム操作が検出された場合には、アーチファクトが発生するものとして第1実施形態のように強制的にアーチファクトを補正した合成酸素飽和度画像を生成すれば良い。このように、第1及び第2実施形態を組み合わせた内視鏡システムによれば、ズーム操作によって拡大観察をする場合と、ズーム操作によらず、内視鏡12の先端部24を検体に近づけて拡大観察をする場合とのどちらでも正確な酸素飽和度画像(合成酸素飽和度画像)を生成し、表示することができる。 Note that the first and second embodiments may be combined. Specifically, when the zoom operation is not detected while monitoring the zoom operation as in the first embodiment, the artifact is corrected in the flow of the second embodiment, and when the zoom operation is detected. A synthetic oxygen saturation image in which artifacts are forcibly corrected as in the first embodiment may be generated as artifacts are generated. As described above, according to the endoscope system in which the first and second embodiments are combined, the distal end portion 24 of the endoscope 12 is brought close to the specimen when performing magnified observation by the zoom operation and without performing the zoom operation. Thus, an accurate oxygen saturation image (synthetic oxygen saturation image) can be generated and displayed in both cases of magnified observation.
[第3実施形態]
 第1及び第2実施形態では、画像生成部84で生成された酸素飽和度画像(非拡大酸素飽和度画像,拡大酸素飽和度画像)を用いてアーチファクトが補正された合成酸素飽和度画像を生成しているが、酸素飽和度画像を用いる代わりに、各画像信号の段階でアーチファクトを補正しても良い。この場合、第1実施形態の内視鏡システム10の酸素飽和度画像生成部76を、図17に示す酸素飽和度画像生成部170に置き換える。その他の構成は、第1実施形態の内視鏡システム10と同じである。
[Third Embodiment]
In the first and second embodiments, an oxygen saturation image (non-enlarged oxygen saturation image, enlarged oxygen saturation image) generated by the image generation unit 84 is used to generate a synthetic oxygen saturation image with corrected artifacts. However, instead of using the oxygen saturation image, the artifact may be corrected at the stage of each image signal. In this case, the oxygen saturation image generation unit 76 of the endoscope system 10 of the first embodiment is replaced with an oxygen saturation image generation unit 170 shown in FIG. Other configurations are the same as those of the endoscope system 10 of the first embodiment.
 図17に示すように、酸素飽和度画像生成部170は、信号比検出部81と、相関関係記憶部82と、酸素飽和度算出部83と、画像生成部84と、ズーム検出部86と、画像記憶部87と、アーチファクト補正部171と、画像信号記憶部172と、信号処理切替部173とを備える。これらのうち、信号比検出部81、相関関係記憶部82、酸素飽和度算出部83、画像生成部84及びズーム検出部86は第1実施形態のものと同じものである。 As shown in FIG. 17, the oxygen saturation image generation unit 170 includes a signal ratio detection unit 81, a correlation storage unit 82, an oxygen saturation calculation unit 83, an image generation unit 84, a zoom detection unit 86, An image storage unit 87, an artifact correction unit 171, an image signal storage unit 172, and a signal processing switching unit 173 are provided. Among these, the signal ratio detection unit 81, the correlation storage unit 82, the oxygen saturation calculation unit 83, the image generation unit 84, and the zoom detection unit 86 are the same as those in the first embodiment.
 但し、ズーム検出部86による検出結果は、信号処理切替部173に入力される。信号処理切替部173は、特殊観察モード時に入力される各色の画像信号の出力先を切り替えることにより、入力された画像信号に施す信号処理の内容を切り替える。具体的には、ズーム検出部86によってズーム操作が検出されない場合(非拡大観察をする場合)、信号処理切替部173は、酸素飽和度画像生成部170に入力される各画像信号を、信号比算出部81と画像生成部84に出力し、酸素飽和度画像を生成させる。 However, the detection result by the zoom detection unit 86 is input to the signal processing switching unit 173. The signal processing switching unit 173 switches the content of the signal processing applied to the input image signal by switching the output destination of the image signal of each color input in the special observation mode. Specifically, when a zoom operation is not detected by the zoom detection unit 86 (when non-magnifying observation is performed), the signal processing switching unit 173 converts each image signal input to the oxygen saturation image generation unit 170 into a signal ratio. It outputs to the calculation part 81 and the image generation part 84, and produces | generates an oxygen saturation image.
 また、ズーム操作が検出されない場合に入力された画像信号は、画像信号記憶部172に記憶させる。すなわち、画像信号記憶部172は、第1実施形態の非拡大酸素飽和度画像に対応する非拡大観察時の画像信号(以下、非拡大画像信号という)を記憶する。 Further, the image signal input when the zoom operation is not detected is stored in the image signal storage unit 172. That is, the image signal storage unit 172 stores an image signal at the time of non-magnification observation corresponding to the non-magnification oxygen saturation image of the first embodiment (hereinafter referred to as a non-magnification image signal).
 一方、ズーム検出部86によってズーム操作が検出され、拡大観察をしていることが検出された場合、信号処理切替部173は、この拡大観察時の画像信号(以下、拡大画像信号という)をアーチファクト補正部171に出力する。 On the other hand, when the zoom operation is detected by the zoom detection unit 86 and it is detected that the magnified observation is performed, the signal processing switching unit 173 uses the image signal at the time of the magnified observation (hereinafter referred to as the magnified image signal) as an artifact. The data is output to the correction unit 171.
 アーチファクト補正部171は、高周波成分抽出部181と、拡大部分抽出部182と、低周波成分抽出部183と、合成処理部184を備える。また、拡大部分抽出部182は、対応領域検出部182aと拡大処理部182bとを備える。これら各部の基本的な作用は第1実施形態のものと同じであるが、アーチファクト補正部171の高周波成分抽出部181、拡大部分抽出部182(対応領域検出部182aと拡大処理部182b)、低周波成分抽出部183及び合成処理部184は、酸素飽和度画像ではなく、画像信号に対して各処理をする。 The artifact correction unit 171 includes a high frequency component extraction unit 181, an enlarged portion extraction unit 182, a low frequency component extraction unit 183, and a synthesis processing unit 184. The enlarged portion extraction unit 182 includes a corresponding area detection unit 182a and an enlargement processing unit 182b. The basic actions of these parts are the same as those of the first embodiment, but the high-frequency component extraction part 181 and the enlarged part extraction part 182 (corresponding area detection part 182a and enlargement processing part 182b) of the artifact correction part 171 are low. The frequency component extraction unit 183 and the synthesis processing unit 184 perform each process on the image signal, not the oxygen saturation image.
 すなわち、高周波成分抽出部181には、拡大観察時に出力された各色の画像信号(以下、拡大画像信号という)が入力され、これらの各色の拡大画像信号からそれぞれ高周波成分を抽出する。そして、抽出した高周波成分からなる高周波成分画像信号をフレーム毎及び色毎に生成する。 That is, each color image signal (hereinafter referred to as an enlarged image signal) output during magnified observation is input to the high frequency component extracting unit 181 and high frequency components are extracted from the enlarged image signals of these colors. And the high frequency component image signal which consists of the extracted high frequency component is produced | generated for every flame | frame and every color.
 また、対応領域検出部182aは、信号処理切替部173から拡大画像信号を取得し、かつ画像信号記憶部172から非拡大観察時に記憶された各色の画像信号(以下、非拡大画像信号という)を取得する。そして、各色の拡大画像信号と非拡大画像信号のパターンマッチングを行うことにより、拡大画像信号が表す像に対応する部分を、非拡大画像信号から抽出する。拡大処理部182bは、拡大画像信号に対応するサイズになるように、非拡大画像信号から抽出された部分を拡大するサイズ変換をする。低周波成分抽出部183は、このサイズ変換がなされた画像信号から低周波成分を抽出し、低周波成分画像信号を生成する。そして、合成処理部184は、対応するフレーム及び色の高周波成分画像信号と低周波成分画像信号とを合成し、合成画像信号を生成する。 In addition, the corresponding area detection unit 182a acquires the enlarged image signal from the signal processing switching unit 173, and stores the image signal of each color (hereinafter referred to as a non-enlarged image signal) stored from the image signal storage unit 172 at the time of non-magnification observation. get. Then, by performing pattern matching between the enlarged image signal of each color and the non-enlarged image signal, a portion corresponding to the image represented by the enlarged image signal is extracted from the non-enlarged image signal. The enlargement processing unit 182b performs size conversion for enlarging the portion extracted from the non-enlarged image signal so that the size corresponds to the enlarged image signal. The low frequency component extraction unit 183 extracts a low frequency component from the image signal subjected to the size conversion, and generates a low frequency component image signal. Then, the synthesis processing unit 184 synthesizes the high-frequency component image signal and the low-frequency component image signal of the corresponding frame and color to generate a synthesized image signal.
 これらの処理はフレーム毎及び色毎に行われる。アーチファクト補正部171には1フレーム目のR1画像信号,G1画像信号,及びB1画像信号と2フレーム目のR2画像信号,G2画像信号,及びB2画像信号が入力されるので、これに対応するように、合成処理部184からは、アーチファクトが補正された各合成画像信号(例えば、R1合成画像信号,G1合成画像信号,及びB1合成画像信号と2フレーム目のR2合成画像信号,G2合成画像信号,及びB2合成画像信号)を出力する。 These processes are performed for each frame and each color. The artifact correction unit 171 receives the R1 image signal, the G1 image signal, and the B1 image signal of the first frame and the R2 image signal, the G2 image signal, and the B2 image signal of the second frame. In addition, from the synthesis processing unit 184, each synthesized image signal (for example, the R1 synthesized image signal, the G1 synthesized image signal, the B1 synthesized image signal, the R2 synthesized image signal of the second frame, and the G2 synthesized image signal) in which the artifact is corrected. , And B2 composite image signal).
 合成処理部184が出力する各合成画像信号は、信号比算出部81と画像生成部84に入力される。これにより、各合成画像信号に基づいてアーチファクトがない合成酸素飽和度画像が生成され、表示される。 Each synthesized image signal output from the synthesis processing unit 184 is input to the signal ratio calculation unit 81 and the image generation unit 84. Thereby, a synthetic oxygen saturation image free from artifacts is generated and displayed based on each synthetic image signal.
 このように、第1実施形態のアーチファクトを補正した合成酸素飽和度画像を生成する処理は、酸素飽和度画像の生成前に、画像信号の段階で予め行うことができる。もちろん、第2実施形態の合成酸素飽和度画像を生成する処理や、第1実施形態及び第2実施形態を組み合わせる場合も同様にすれば良い。 As described above, the process of generating the synthesized oxygen saturation image in which the artifact is corrected according to the first embodiment can be performed in advance at the stage of the image signal before the oxygen saturation image is generated. Of course, the same may be applied to the process of generating the synthetic oxygen saturation image of the second embodiment or the combination of the first embodiment and the second embodiment.
 なお、第3実施形態では、酸素飽和度画像生成部170に入力される各画像信号の段階でアーチファクトを補正する処理をしているが、信号比算出部81が出力する信号比B1/G2及び信号比R2/G2に対して同様のアーチファクトを補正する処理を施しても良い。また、酸素飽和度算出部83が出力する酸素飽和度のデータに対して同様のアーチファクトを補正する処理を施しても良い。 In the third embodiment, artifacts are corrected at the stage of each image signal input to the oxygen saturation image generation unit 170, but the signal ratio B1 / G2 output by the signal ratio calculation unit 81 and Similar processing for correcting the artifact may be applied to the signal ratio R2 / G2. In addition, the same artifact correction processing may be performed on the oxygen saturation data output from the oxygen saturation calculation unit 83.
 なお、第1~第3実施形態の内視鏡システムでは、内視鏡12の先端部24に蛍光体44を設けたが、これに代えて図18に示す内視鏡システム300のように、光源装置14の内部に蛍光体44を設けても良い。この場合には、第1青色レーザ光源(473LD)34及び第2青色レーザ光源(445LD)36と、ライトガイド41との間に蛍光体44を設ける。そして、第1青色レーザ光源34または第2青色レーザ光源36に、第1青色レーザ光または第2青色レーザ光を蛍光体44に向けて照射させる。これにより、第1白色光または第2白色光が発せられる。この第1または第2白色光は、ライトガイド41を介して、検体内に照射される。それ以外については、第1~第3実施形態の内視鏡システムと同様である。 In the endoscope systems of the first to third embodiments, the phosphor 44 is provided at the distal end portion 24 of the endoscope 12, but instead of this, like an endoscope system 300 shown in FIG. A phosphor 44 may be provided inside the light source device 14. In this case, the phosphor 44 is provided between the first blue laser light source (473LD) 34 and the second blue laser light source (445LD) 36 and the light guide 41. Then, the first blue laser light source 34 or the second blue laser light source 36 is irradiated with the first blue laser light or the second blue laser light toward the phosphor 44. Thereby, 1st white light or 2nd white light is emitted. The first or second white light is irradiated into the specimen through the light guide 41. The rest is the same as the endoscope system of the first to third embodiments.
 また、第1~第3実施形態では、第1及び第2青色レーザ光を同一の蛍光体44に入射させているが、第1青色レーザ光と第2青色レーザ光をそれぞれ別々の第1蛍光体、第2蛍光体に入射させても良い。 In the first to third embodiments, the first and second blue laser beams are made incident on the same phosphor 44. However, the first blue laser beam and the second blue laser beam are separately used in the first fluorescence. Or the second phosphor.
[第4実施形態]
 図19に示すように、内視鏡システム400の光源装置14には、第1青色レーザ光源34、第2青色レーザ光源36、及び光源制御部40の代わりに、LED(Light Emitting Diode)光源ユニット401と、LED光源制御部404が設けられている。また、内視鏡システム400の照明光学系24aには蛍光体44が設けられていない。それ以外については、第1~第3実施形態の内視鏡システムと同様である。
[Fourth Embodiment]
As shown in FIG. 19, the light source device 14 of the endoscope system 400 includes an LED (Light Emitting Diode) light source unit instead of the first blue laser light source 34, the second blue laser light source 36, and the light source control unit 40. 401 and an LED light source controller 404 are provided. Further, the phosphor 44 is not provided in the illumination optical system 24a of the endoscope system 400. The rest is the same as the endoscope system of the first to third embodiments.
 LED光源ユニット401は、特定の波長帯域に制限された光を発光する光源として、R-LED401a,G-LED401b,B-LED401cを有する。図20に示すように、R-LED401aは、600~720nmの赤色領域の赤色帯域光(以下、単に赤色光という)し、G-LED401bは、480~620nmの緑色領域の緑色帯域光(以下、単に緑色光)を発光する。また、B-LED401cは、400~500nmの青色領域の青色帯域光(以下、単に青色光という)を発光する。 The LED light source unit 401 includes an R-LED 401a, a G-LED 401b, and a B-LED 401c as light sources that emit light limited to a specific wavelength band. As shown in FIG. 20, the R-LED 401a has a red band light in the red region of 600 to 720 nm (hereinafter simply referred to as red light), and the G-LED 401b has a green band light in the green region of 480 to 620 nm (hereinafter referred to as “red light”). Simply emits green light). The B-LED 401c emits blue band light in the blue region of 400 to 500 nm (hereinafter simply referred to as blue light).
 また、LED光源ユニット401は、B-LED401cが発する青色光の光路上に挿抜されるハイパスフィルタ(HPF)402を有する。ハイパスフィルタ402は、450nm以下の波長帯域の青色光をカットし、450nmより長波長帯域の光を透過する。 Also, the LED light source unit 401 has a high-pass filter (HPF) 402 that is inserted into and removed from the optical path of blue light emitted from the B-LED 401c. The high pass filter 402 cuts blue light having a wavelength band of 450 nm or less and transmits light having a wavelength band longer than 450 nm.
 ハイパスフィルタ402のカットオフ波長(450nm)は、酸化ヘモグロビンと還元ヘモグロビンの吸光係数がほぼ等しい波長であり(図10参照)、この波長を境に酸化ヘモグロビンと還元ヘモグロビンの吸光係数が逆転する。本実施形態の場合、相関関係記憶部82に記憶された相関関係は、酸化ヘモグロビンの吸光係数が還元ヘモグロビンの吸光係数よりも大きい場合のものなので、カットオフ波長以下の波長帯域に基づくシグナルは、信号比B1/G2が473nmで測定する本来の値よりも低下し、不正確な酸素飽和度が算出される原因になる。このため、ハイパスフィルタ402は、酸素飽和度を算出するためのB1画像信号を取得する時に、カットオフ波長以下の波長帯域の光が検体に照射されないようにする。 The cut-off wavelength (450 nm) of the high-pass filter 402 is a wavelength in which the absorption coefficients of oxyhemoglobin and reduced hemoglobin are substantially equal (see FIG. 10), and the absorption coefficients of oxyhemoglobin and reduced hemoglobin are reversed at this wavelength. In the case of the present embodiment, the correlation stored in the correlation storage unit 82 is a case where the extinction coefficient of oxyhemoglobin is larger than the extinction coefficient of reduced hemoglobin. Therefore, a signal based on a wavelength band equal to or less than the cutoff wavelength is The signal ratio B1 / G2 is lower than the original value measured at 473 nm, causing inaccurate oxygen saturation to be calculated. For this reason, the high-pass filter 402 prevents the specimen from being irradiated with light in the wavelength band equal to or less than the cutoff wavelength when acquiring the B1 image signal for calculating the oxygen saturation.
 したがって、ハイパスフィルタ402は、特殊観察モード時にB-LED401cの前に挿入され、通常観察モード時には退避位置に退避される。ハイパスフィルタ402の挿抜は、LED光源制御部404の制御の下、HPF挿抜部403によって行われる。 Therefore, the high-pass filter 402 is inserted in front of the B-LED 401c in the special observation mode, and is retracted to the retreat position in the normal observation mode. The high-pass filter 402 is inserted / removed by the HPF insertion / extraction unit 403 under the control of the LED light source control unit 404.
 LED光源制御部404は、LED光源ユニット401の各LED401a~401cの点灯/消灯、及びハイパスフィルタ402の挿抜を制御する。具体的には、図21に示すように、通常観察モードの場合、LED光源制御部404は、各LED401a~401cを全て点灯させ、ハイパスフィルタ402はB-LED401cの光路上から退避させる。 The LED light source control unit 404 controls turning on / off of each LED 401 a to 401 c of the LED light source unit 401 and insertion / extraction of the high-pass filter 402. Specifically, as shown in FIG. 21, in the normal observation mode, the LED light source control unit 404 turns on all the LEDs 401a to 401c, and the high-pass filter 402 retracts from the optical path of the B-LED 401c.
 一方、図22に示すように、特殊観察モードの場合、LED光源制御部40は、ハイパスフィルタ402をB-LED401cの光路上に挿入する。そして、1フレーム目は、B-LED401cを点灯させ、R-LED401a及びG-LED401bを消灯させることにより、450nm以下の波長帯域がカットされた青色光を検体内に照射する。そして、2フレーム目は、R-LED401a、G-LED401b、B-LED401cを全て点灯させ、B-LED401cが発する青色光のうち450nm以下の波長帯域がカットされた青色光と、R-LED401aが発する赤色光と、G-LED401bが発する緑色光からなる白色光を検体内に照射させる。これにより、センサ48は、1フレーム目には、B1画像信号を出力し、2フレーム目にはR2画像信号,G2画像信号,B2画像信号をそれぞれ出力する。 On the other hand, as shown in FIG. 22, in the special observation mode, the LED light source control unit 40 inserts the high-pass filter 402 on the optical path of the B-LED 401c. In the first frame, the B-LED 401c is turned on and the R-LED 401a and the G-LED 401b are turned off to irradiate the sample with blue light with a wavelength band of 450 nm or less cut. In the second frame, the R-LED 401a, the G-LED 401b, and the B-LED 401c are all turned on, and the blue light from which the wavelength band of 450 nm or less is cut out of the blue light emitted from the B-LED 401c and the R-LED 401a emits light. White light consisting of red light and green light emitted from the G-LED 401b is irradiated into the specimen. Accordingly, the sensor 48 outputs a B1 image signal in the first frame, and outputs an R2 image signal, a G2 image signal, and a B2 image signal in the second frame, respectively.
 したがって、その後の処理は第1~第3実施形態の内視鏡システムと同様に行うことができる。このため、LEDを用いた第4実施形態の内視鏡システム400によってもアーチファクトを補正した合成酸素飽和度画像の生成し、表示することができる。 Therefore, the subsequent processing can be performed in the same manner as the endoscope system of the first to third embodiments. For this reason, the endoscope system 400 of the fourth embodiment using LEDs can also generate and display a synthetic oxygen saturation image in which artifacts are corrected.
 なお、第4実施形態では、特殊観察モード時の1フレーム目、2フレーム目ともハイパスフィルタ102を挿入したまま検体を撮像しているが、1フレーム目だけハイパスフィルタ102を挿入し、2フレーム目にはハイパスフィルタ102を退避させても良い。また、特殊観察モード時の1フレーム目では、B-LED401cだけを点灯させ、青色光だけを検体に照射しているが、1フレーム目でもR-LED401a及びG-LED401bを点灯させ、R1画像信号及びG1画像信号をセンサ48に出力させても良い。 In the fourth embodiment, the specimen is imaged with the high-pass filter 102 inserted in both the first frame and the second frame in the special observation mode. However, the high-pass filter 102 is inserted only in the first frame, and the second frame. Alternatively, the high pass filter 102 may be retracted. Further, in the first frame in the special observation mode, only the B-LED 401c is turned on and only the blue light is irradiated on the specimen, but the R-LED 401a and the G-LED 401b are also turned on in the first frame, and the R1 image signal The G1 image signal may be output to the sensor 48.
[第5実施形態]
 図23に示すように、内視鏡システム500の光源装置14には、第1及び第2青色レーザ光34,36と光源制御部40の代わりに、広帯域光源501と、回転フィルタ502と、回転フィルタ制御部503が設けられている。また、内視鏡システム500のセンサ505は、カラーフィルタが設けられていないモノクロの撮像素子である。それ以外については、第1~第3実施形態の内視鏡システムと同じである。
[Fifth Embodiment]
As shown in FIG. 23, the light source device 14 of the endoscope system 500 includes a broadband light source 501, a rotary filter 502, and a rotation instead of the first and second blue laser beams 34 and 36 and the light source control unit 40. A filter control unit 503 is provided. In addition, the sensor 505 of the endoscope system 500 is a monochrome image sensor that is not provided with a color filter. The rest is the same as the endoscope system of the first to third embodiments.
 広帯域光源501は、例えばキセノンランプ、白色LED等からなり、波長帯域が青色から赤色に及ぶ白色光を発する。回転フィルタ502は、通常観察モード用フィルタ510と特殊観察モード用フィルタ511とを備えており(図24参照)、広帯域光源501から発せられる白色光がライトガイド41に入射される光路上に、通常観察モード用フィルタ510を配置する通常観察モード用の第1位置と、特殊観察モード用フィルタ511を配置する特殊観察モード用の第2位置との間で径方向に移動可能である。この第1位置と第2位置への回転フィルタ502の相互移動は、選択された観察モードに応じて回転フィルタ制御部503によって制御される。また、回転フィルタ502は、第1位置または第2位置に配置された状態で、センサ505の撮像フレームに応じて回転する。回転フィルタ502の回転速度は、選択された観察モードに応じて回転フィルタ制御部503によって制御される。 The broadband light source 501 includes, for example, a xenon lamp, a white LED, and the like, and emits white light whose wavelength band ranges from blue to red. The rotation filter 502 includes a normal observation mode filter 510 and a special observation mode filter 511 (see FIG. 24), and the white light emitted from the broadband light source 501 is normally on the optical path on which the light guide 41 is incident. It is movable in the radial direction between a first position for the normal observation mode where the observation mode filter 510 is disposed and a second position for the special observation mode where the special observation mode filter 511 is disposed. The mutual movement of the rotary filter 502 to the first position and the second position is controlled by the rotary filter control unit 503 according to the selected observation mode. The rotary filter 502 rotates according to the imaging frame of the sensor 505 in a state where the rotary filter 502 is disposed at the first position or the second position. The rotation speed of the rotation filter 502 is controlled by the rotation filter control unit 503 according to the selected observation mode.
 図24に示すように、通常観察モード用フィルタ510は、回転フィルタ502の内周部に設けられている。通常観察モード用フィルタ510は、赤色光を透過するRフィルタ510aと、緑色光を透過するGフィルタ510bと、青色光を透過するBフィルタ510cと有する。したがって、回転フィルタ502を通常光観察モード用の第1位置に配置すると、広帯域光源501からの白色光は、回転フィルタ502の回転に応じてRフィルタ510a、Gフィルタ510b、及びBフィルタ510cのいずれかに入射する。このため、検体には、透過したフィルタに応じて、赤色光、緑色光、青色光が順次照射され、センサ505は、これらの反射光によりそれぞれ検体を撮像することにより、R画像信号、G画像信号、B画像信号を順次出力する。 As shown in FIG. 24, the normal observation mode filter 510 is provided on the inner periphery of the rotary filter 502. The normal observation mode filter 510 includes an R filter 510a that transmits red light, a G filter 510b that transmits green light, and a B filter 510c that transmits blue light. Therefore, when the rotary filter 502 is disposed at the first position for the normal light observation mode, white light from the broadband light source 501 is selected from the R filter 510a, the G filter 510b, and the B filter 510c according to the rotation of the rotary filter 502. It enters the crab. For this reason, the specimen is sequentially irradiated with red light, green light, and blue light according to the transmitted filter, and the sensor 505 images the specimen with these reflected lights, so that an R image signal and a G image are obtained. The signal and the B image signal are sequentially output.
 また、特殊観察モード用フィルタ511は、回転フィルタ502の外周部に設けられている。特殊観察モード用フィルタ511は、赤色光を透過するRフィルタ511aと、緑色光を透過するGフィルタ511bと、青色光を透過するBフィルタ511cと、473±10nmの狭帯域光を透過する狭帯域フィルタ511dとを有する。したがって、回転フィルタ502を通常光観察モード用の第2位置に配置すると、広帯域光源501からの白色光は、回転フィルタ502の回転に応じてRフィルタ511a、Gフィルタ511b、Bフィルタ511c、及び狭帯域フィルタ511dのいずれかに入射する。このため、検体には、透過したフィルタに応じて、赤色光、緑色光、青色光,狭帯域光(473nm)が順次照射され、センサ505は、これらの反射光によりそれぞれ検体を撮像することにより、R画像信号、G画像信号、B画像信号、及び狭帯域画像信号を順次出力する。 The special observation mode filter 511 is provided on the outer peripheral portion of the rotary filter 502. The special observation mode filter 511 includes an R filter 511a that transmits red light, a G filter 511b that transmits green light, a B filter 511c that transmits blue light, and a narrow band that transmits 473 ± 10 nm narrow band light. And a filter 511d. Therefore, when the rotary filter 502 is disposed at the second position for the normal light observation mode, white light from the broadband light source 501 is reduced according to the rotation of the rotary filter 502 by the R filter 511a, the G filter 511b, the B filter 511c, and the narrow filter. It enters one of the band-pass filters 511d. Therefore, the specimen is sequentially irradiated with red light, green light, blue light, and narrowband light (473 nm) according to the transmitted filter, and the sensor 505 images each specimen with these reflected lights. , R image signal, G image signal, B image signal, and narrowband image signal are sequentially output.
 特殊観察モードで得られるR画像信号とG画像信号は、第1実施形態のR1(またはR2)画像信号とG1(またはG2)画像信号に対応する。また、特殊観察モードで得られるB画像信号は、第1実施形態のB2画像信号に対応し、狭帯域画像信号はB1画像信号に対応する。したがって、その後の処理は第1~第3実施形態の内視鏡システムと同様に行うことができる。このため、回転フィルタ502を用いた第5実施形態の内視鏡システム500によってもアーチファクトを補正した合成酸素飽和度画像を生成し、表示することができる。 The R image signal and the G image signal obtained in the special observation mode correspond to the R1 (or R2) image signal and the G1 (or G2) image signal of the first embodiment. Further, the B image signal obtained in the special observation mode corresponds to the B2 image signal of the first embodiment, and the narrowband image signal corresponds to the B1 image signal. Therefore, the subsequent processing can be performed in the same manner as in the endoscope systems of the first to third embodiments. For this reason, the endoscope system 500 of the fifth embodiment using the rotation filter 502 can also generate and display a synthetic oxygen saturation image in which artifacts are corrected.
 なお、第1~第5実施形態では、信号比B1/G2と信号比R2/G2に基づいて酸素飽和度を算出しているが、信号比B1/G2のみに基づいて酸素飽和度を算出しても良い。この場合には、相関関係記憶部82には信号比B1/G2と酸素飽和度の相関関係を記憶しておけば良い。 In the first to fifth embodiments, the oxygen saturation is calculated based on the signal ratio B1 / G2 and the signal ratio R2 / G2, but the oxygen saturation is calculated based only on the signal ratio B1 / G2. May be. In this case, the correlation storage unit 82 may store the correlation between the signal ratio B1 / G2 and the oxygen saturation.
 なお、第1~第5実施形態では、酸素飽和度を画像化した酸素飽和度画像を生成及び表示しているが、これに加えて、血液量を画像化した血液量画像を生成及び表示しても良い。血液量は信号比R2/G2と相関があるので、信号比R2/G2に応じて異なる色を割り当てることで、血液量を画像化した血液量画像を作成することができる。 In the first to fifth embodiments, an oxygen saturation image obtained by imaging oxygen saturation is generated and displayed. In addition to this, a blood volume image obtained by imaging blood volume is generated and displayed. May be. Since the blood volume has a correlation with the signal ratio R2 / G2, a blood volume image in which the blood volume is imaged can be created by assigning a different color according to the signal ratio R2 / G2.
 なお、第1~第5実施形態では酸素飽和度を算出しているが、これに代えて、あるいはこれに加えて、「血液量(信号比R2/G2)×酸素飽和度(%)」によって算出される酸化ヘモグロビンインデックスや、「血液量×(1-酸素飽和度)(%)」によって算出される還元ヘモグロビンインデックス等、他の生体機能情報を算出しても良い。 In the first to fifth embodiments, the oxygen saturation is calculated, but instead of or in addition to this, “blood volume (signal ratio R2 / G2) × oxygen saturation (%)”. Other biological function information such as a calculated oxyhemoglobin index or a reduced hemoglobin index calculated by “blood volume × (1−oxygen saturation) (%)” may be calculated.
 10,300,400,500 内視鏡システム
 47 ズーミングレンズ
 48 センサ
 76,160,170 酸素飽和度画像生成部
 86 ズーム検出部
 87 画像記憶部
 120,142 拡大酸素飽和度画像
 121,144 高周波成分画像
 122 アーチファクト
 123 低酸素領域
 124,143 高周波構造
 125,141 非拡大酸素飽和度画像
 128,147 低周波数成分画像
 129,148 低周波構造
 130,150 合成酸素飽和度画像
 172 画像信号記憶部
10, 300, 400, 500 Endoscope system 47 Zooming lens 48 Sensor 76, 160, 170 Oxygen saturation image generation unit 86 Zoom detection unit 87 Image storage unit 120, 142 Enlarged oxygen saturation image 121, 144 High-frequency component image 122 Artifact 123 Low oxygen region 124,143 High frequency structure 125,141 Non-enlarged oxygen saturation image 128,147 Low frequency component image 129,148 Low frequency structure 130,150 Synthetic oxygen saturation image 172 Image signal storage unit

Claims (11)

  1.  照明光を発する光源装置と、
     前記照明光が検体に照射され、該検体で反射した反射光を受光することにより該検体を撮像して得られた第1画像信号を出力し、かつ前記第1画像信号の出力時よりも前記検体を拡大して撮像して得られた第2画像信号を出力するセンサと、
     前記第1画像信号及び前記第2画像信号に基づいてそれぞれ前記検体の酸素飽和度を算出する酸素飽和度算出部と、
     前記第1画像信号と、前記第1画像信号に基づいて算出された前記酸素飽和度とに基づいて第1酸素飽和度画像を生成し、かつ前記第2画像信号と前記第2画像信号に基づいて算出された前記酸素飽和度に基づいて第2酸素飽和度画像を生成する画像生成部と、
     前記第1酸素飽和度画像からカットオフ周波数未満の低周波成分を抽出する低周波成分抽出部と、
     前記第2酸素飽和度画像から前記カットオフ周波数以上の高周波成分を抽出する高周波成分抽出部と、
     前記低周波成分と前記高周波成分とを合成し、合成酸素飽和度画像を生成する合成処理部と、
     を備える内視鏡システム。
    A light source device that emits illumination light;
    The illumination light is applied to the specimen, and the first image signal obtained by imaging the specimen is output by receiving the reflected light reflected by the specimen, and the first image signal is output more than when the first image signal is output. A sensor that outputs a second image signal obtained by enlarging and imaging the specimen;
    An oxygen saturation calculator for calculating the oxygen saturation of the specimen based on the first image signal and the second image signal,
    A first oxygen saturation image is generated based on the first image signal and the oxygen saturation calculated based on the first image signal, and based on the second image signal and the second image signal. An image generation unit that generates a second oxygen saturation image based on the oxygen saturation calculated in
    A low-frequency component extraction unit that extracts a low-frequency component having a frequency lower than the cutoff frequency from the first oxygen saturation image;
    A high-frequency component extraction unit that extracts a high-frequency component equal to or higher than the cutoff frequency from the second oxygen saturation image;
    A synthesis processing unit that synthesizes the low frequency component and the high frequency component to generate a synthetic oxygen saturation image;
    An endoscope system comprising:
  2.  前記センサに結像する前記検体の像を拡大または縮小するズーミングレンズと、
     前記ズーミングレンズの操作状況に基づいて拡大観察をしているか否かを検出するズーム検出部と、を備え、
     前記低周波成分抽出部,前記高周波成分抽出部,及び前記合成処理部は、前記ズーム検出部によって拡大観察をしていることが検出された場合に作動する請求項1に記載の内視鏡システム。
    A zooming lens for enlarging or reducing the image of the specimen formed on the sensor;
    A zoom detection unit that detects whether or not magnification observation is performed based on an operation state of the zooming lens,
    The endoscope system according to claim 1, wherein the low-frequency component extraction unit, the high-frequency component extraction unit, and the synthesis processing unit are activated when the zoom detection unit detects that magnification observation is performed. .
  3.  前記第1酸素飽和度画像及び前記第2酸素飽和度画像から前記酸素飽和度のアーチファクトを検出するアーチファクト検出部を備え、
     前記低周波成分抽出部,前記高周波成分抽出部,及び前記合成処理部は、前記アーチファクト検出部が前記アーチファクトを検出した場合に作動する請求項1または2に記載の内視鏡システム。
    An artifact detection unit that detects the oxygen saturation artifact from the first oxygen saturation image and the second oxygen saturation image;
    The endoscope system according to claim 1, wherein the low-frequency component extraction unit, the high-frequency component extraction unit, and the synthesis processing unit operate when the artifact detection unit detects the artifact.
  4.  前記第1酸素飽和度画像から、前記第2酸素飽和度画像に対応する領域を検出する対応領域検出部と、
     前記対応領域検出部が検出した前記領域を、前記第2酸素飽和度画像と同じサイズに拡大する拡大処理部と、を備え、
     前記低周波成分抽出部は、前記第2酸素飽和度画像と同じサイズに拡大された前記領域の画像から低周波成分を抽出する請求項1~3のいずれか1項に記載の内視鏡システム。
    A corresponding region detection unit for detecting a region corresponding to the second oxygen saturation image from the first oxygen saturation image;
    An enlargement processing unit that enlarges the region detected by the corresponding region detection unit to the same size as the second oxygen saturation image,
    The endoscope system according to any one of claims 1 to 3, wherein the low-frequency component extraction unit extracts a low-frequency component from the image of the region enlarged to the same size as the second oxygen saturation image. .
  5.  前記対応領域検出部は、前記第1酸素飽和度画像と、前記第2酸素飽和度画像とのパターンマッチングにより前記領域を検出する請求項4記載の内視鏡システム。 The endoscope system according to claim 4, wherein the corresponding region detection unit detects the region by pattern matching between the first oxygen saturation image and the second oxygen saturation image.
  6.  前記合成酸素飽和度画像を表示するモニタを備え、
     前記モニタに前記合成酸素飽和度画像を表示する場合、前記モニタの表示画面には、前記合成酸素飽和度画像とともに、前記低周波成分抽出部,前記高周波成分抽出部,及び前記合成処理部による処理が行われたことを表示する請求項1~5のいずれか1項に記載の内視鏡システム。
    A monitor for displaying the synthetic oxygen saturation image;
    When the synthetic oxygen saturation image is displayed on the monitor, the display screen of the monitor includes the synthetic oxygen saturation image and processing by the low frequency component extraction unit, the high frequency component extraction unit, and the synthesis processing unit. The endoscope system according to any one of claims 1 to 5, which displays that the operation has been performed.
  7.  照明光を発する光源装置と、前記照明光が検体に照射され、該検体で反射した反射光を受光することにより該検体を撮像して得られた第1画像信号を出力し、かつ前記第1画像信号の出力時よりも前記検体を拡大して撮像して得られた第2画像信号を出力するセンサと、を備える内視鏡システムのプロセッサ装置において、
     前記センサから前記第1画像信号及び前記第2画像信号を受信する受信部と、
     前記第1画像信号及び前記第2画像信号に基づいてそれぞれ前記検体の酸素飽和度を算出する酸素飽和度算出部と、
     前記第1画像信号と、前記第1画像信号に基づいて算出された前記酸素飽和度とに基づいて第1酸素飽和度画像を生成し、かつ前記第2画像信号と前記第2画像信号に基づいて算出された前記酸素飽和度に基づいて第2酸素飽和度画像を生成する画像生成部と、
     前記第1酸素飽和度画像からカットオフ周波数未満の低周波成分を抽出する低周波成分抽出部と、
     前記第2酸素飽和度画像から前記カットオフ周波数以上の高周波成分を抽出する高周波成分抽出部と、
     前記低周波成分と前記高周波成分とを合成し、合成酸素飽和度画像を生成する合成処理部と、
     を備えるプロセッサ装置。
    A light source device that emits illumination light; outputs a first image signal obtained by imaging the specimen by irradiating the specimen with the illumination light and receiving reflected light reflected by the specimen; In a processor device of an endoscope system comprising: a sensor that outputs a second image signal obtained by enlarging and imaging the specimen than when an image signal is output;
    A receiver for receiving the first image signal and the second image signal from the sensor;
    An oxygen saturation calculator for calculating the oxygen saturation of the specimen based on the first image signal and the second image signal,
    A first oxygen saturation image is generated based on the first image signal and the oxygen saturation calculated based on the first image signal, and based on the second image signal and the second image signal. An image generation unit that generates a second oxygen saturation image based on the oxygen saturation calculated in
    A low-frequency component extraction unit that extracts a low-frequency component having a frequency lower than the cutoff frequency from the first oxygen saturation image;
    A high-frequency component extraction unit that extracts a high-frequency component equal to or higher than the cutoff frequency from the second oxygen saturation image;
    A synthesis processing unit that synthesizes the low frequency component and the high frequency component to generate a synthetic oxygen saturation image;
    A processor device comprising:
  8.  光源装置が発する照明光を検体に照射し、該検体で反射した反射光を受光することにより該検体を撮像して第1画像信号を取得する第1撮像ステップと、
     前記第1画像信号の取得時よりも前記検体を拡大して撮像することにより第2画像信号を取得する第2撮像ステップと、
     前記第1画像信号及び前記第2画像信号に基づいてそれぞれ前記検体の酸素飽和度を算出する酸素飽和度算出ステップと、
     前記第1画像信号と、前記第1画像信号に基づいて算出された前記酸素飽和度とに基づいて第1酸素飽和度画像を生成する第1画像生成ステップと、
     前記第2画像信号と、前記第2画像信号に基づいて算出された前記酸素飽和度とに基づいて第2酸素飽和度画像を生成する第2画像生成ステップと、
     前記第1酸素飽和度画像からカットオフ周波数未満の低周波成分を抽出する低周波成分抽出ステップと、
     前記第2酸素飽和度画像から前記カットオフ周波数以上の高周波成分を抽出する高周波成分抽出ステップと、
     前記低周波成分と前記高周波成分とを合成し、合成酸素飽和度画像を生成する合成処理ステップと、
     を備える内視鏡システムの作動方法。
    A first imaging step of irradiating the specimen with illumination light emitted from the light source device and capturing the specimen by receiving reflected light reflected by the specimen to obtain a first image signal;
    A second imaging step of acquiring a second image signal by enlarging and imaging the specimen than when acquiring the first image signal;
    An oxygen saturation calculating step for calculating oxygen saturation of the specimen based on the first image signal and the second image signal,
    A first image generation step of generating a first oxygen saturation image based on the first image signal and the oxygen saturation calculated based on the first image signal;
    A second image generation step of generating a second oxygen saturation image based on the second image signal and the oxygen saturation calculated based on the second image signal;
    A low frequency component extracting step of extracting a low frequency component having a frequency lower than a cutoff frequency from the first oxygen saturation image;
    A high frequency component extracting step of extracting a high frequency component equal to or higher than the cutoff frequency from the second oxygen saturation image;
    Synthesizing the low frequency component and the high frequency component to generate a synthetic oxygen saturation image; and
    A method of operating an endoscope system comprising:
  9.  照明光を発する光源装置と、
     前記照明光が検体に照射され、該検体で反射した反射光を受光することにより該検体を撮像して得られた第1画像信号を出力し、かつ前記第1画像信号の出力時よりも前記検体を拡大して撮像して得られた第2画像信号を出力するセンサと、
     前記第1画像信号からカットオフ周波数未満の低周波成分を抽出する低周波成分抽出部と、
     前記第2画像信号から前記カットオフ周波数以上の高周波成分を抽出する高周波成分抽出部と、
     前記低周波成分と前記高周波成分とを合成し、合成画像信号を生成する合成処理部と、
     前記合成画像信号に基づいて前記検体の酸素飽和度を算出する酸素飽和度算出部と、
     前記合成画像信号と前記酸素飽和度とに基づいて、前記検体の酸素飽和度を表す酸素飽和度画像を生成する画像生成部と、
     を備える内視鏡システム。
    A light source device that emits illumination light;
    The illumination light is applied to the specimen, and the first image signal obtained by imaging the specimen is output by receiving the reflected light reflected by the specimen, and the first image signal is output more than when the first image signal is output. A sensor that outputs a second image signal obtained by enlarging and imaging the specimen;
    A low frequency component extraction unit that extracts a low frequency component having a frequency lower than a cutoff frequency from the first image signal;
    A high-frequency component extraction unit that extracts a high-frequency component equal to or higher than the cutoff frequency from the second image signal;
    Combining a low-frequency component and the high-frequency component to generate a composite image signal; and
    An oxygen saturation calculator that calculates the oxygen saturation of the specimen based on the composite image signal;
    An image generation unit that generates an oxygen saturation image representing the oxygen saturation of the specimen based on the composite image signal and the oxygen saturation;
    An endoscope system comprising:
  10.  照明光を発する光源装置と、前記照明光が検体に照射され、該検体から反射した反射光を受光することにより該検体を撮像して得られた第1画像信号を出力し、かつ前記第1画像信号の出力時よりも前記検体を拡大して撮像して得られた第2画像信号を出力するセンサと、を備える内視鏡システムのプロセッサ装置において、
     前記センサから前記第1画像信号及び前記第2画像信号を受信する受信部と、
     前記第1画像信号からカットオフ周波数未満の低周波成分を抽出する低周波成分抽出部と、
     前記第2画像信号から前記カットオフ周波数以上の高周波成分を抽出する高周波成分抽出部と、
     前記低周波成分と前記高周波成分とを合成し、合成画像信号を生成する合成処理部と、
     前記合成画像信号に基づいて前記検体の酸素飽和度を算出する酸素飽和度算出部と、
     前記合成画像信号と前記酸素飽和度とに基づいて、前記検体の酸素飽和度を表す酸素飽和度画像を生成する画像生成部と、
     を備える内視鏡システムのプロセッサ装置。
    A light source device that emits illumination light; outputs a first image signal obtained by imaging the specimen by receiving the reflected light reflected from the specimen and irradiating the specimen with the illumination light; and In a processor device of an endoscope system comprising: a sensor that outputs a second image signal obtained by enlarging and imaging the specimen than when an image signal is output;
    A receiver for receiving the first image signal and the second image signal from the sensor;
    A low frequency component extraction unit that extracts a low frequency component having a frequency lower than a cutoff frequency from the first image signal;
    A high-frequency component extraction unit that extracts a high-frequency component equal to or higher than the cutoff frequency from the second image signal;
    Combining a low-frequency component and the high-frequency component to generate a composite image signal; and
    An oxygen saturation calculator that calculates the oxygen saturation of the specimen based on the composite image signal;
    An image generation unit that generates an oxygen saturation image representing the oxygen saturation of the specimen based on the composite image signal and the oxygen saturation;
    A processor device of an endoscope system comprising:
  11.  光源装置が発する照明光を検体に照射し、該検体で反射した反射光を受光することにより該検体を撮像し、第1画像信号を取得する第1撮像ステップと、
     前記第1画像信号の取得時よりも前記検体を拡大して撮像することにより第2画像信号を取得する第2撮像ステップと、
     前記第1画像信号からカットオフ周波数未満の低周波成分を抽出する低周波成分抽出ステップと、
     前記第2画像信号から前記カットオフ周波数以上の高周波成分を抽出する高周波成分抽出ステップと、
     前記低周波成分と前記高周波成分とを合成し、合成画像信号を生成する合成処理ステップと、
     前記合成画像信号に基づいて前記検体の酸素飽和度を算出する酸素飽和度算出ステップと、
     前記合成画像信号と前記酸素飽和度とに基づいて、前記検体の酸素飽和度を表す酸素飽和度画像を生成する酸素飽和度画像生成ステップと、
     を備える内視鏡システムの作動方法。
    A first imaging step of illuminating the specimen with illumination light emitted from the light source device, capturing the specimen by receiving reflected light reflected by the specimen, and acquiring a first image signal;
    A second imaging step of acquiring a second image signal by enlarging and imaging the specimen than when acquiring the first image signal;
    A low frequency component extracting step of extracting a low frequency component having a frequency lower than a cutoff frequency from the first image signal;
    A high frequency component extracting step of extracting a high frequency component equal to or higher than the cutoff frequency from the second image signal;
    Combining a low frequency component and the high frequency component to generate a composite image signal;
    An oxygen saturation calculating step for calculating oxygen saturation of the specimen based on the synthesized image signal;
    An oxygen saturation image generating step for generating an oxygen saturation image representing the oxygen saturation of the specimen based on the synthesized image signal and the oxygen saturation;
    A method of operating an endoscope system comprising:
PCT/JP2014/067499 2013-08-21 2014-07-01 Endoscope system, processor device, and operation method WO2015025620A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-171693 2013-08-21
JP2013171693A JP5990141B2 (en) 2013-08-21 2013-08-21 ENDOSCOPE SYSTEM, PROCESSOR DEVICE, AND OPERATION METHOD

Publications (1)

Publication Number Publication Date
WO2015025620A1 true WO2015025620A1 (en) 2015-02-26

Family

ID=52483404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067499 WO2015025620A1 (en) 2013-08-21 2014-07-01 Endoscope system, processor device, and operation method

Country Status (2)

Country Link
JP (1) JP5990141B2 (en)
WO (1) WO2015025620A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019130834A1 (en) * 2017-12-26 2019-07-04 オリンパス株式会社 Image processing device and image processing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6920931B2 (en) * 2017-09-01 2021-08-18 富士フイルム株式会社 Medical image processing equipment, endoscopy equipment, diagnostic support equipment, and medical business support equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012125461A (en) * 2010-12-16 2012-07-05 Fujifilm Corp Image processing device
JP2012143399A (en) * 2011-01-12 2012-08-02 Fujifilm Corp Endoscope system, processor apparatus thereof, and image generating method
JP2012213551A (en) * 2011-04-01 2012-11-08 Fujifilm Corp Biological information obtaining system and method
JP2012213552A (en) * 2011-04-01 2012-11-08 Fujifilm Corp Endoscope system, processor device of endoscope system, and image processing method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012125461A (en) * 2010-12-16 2012-07-05 Fujifilm Corp Image processing device
JP2012143399A (en) * 2011-01-12 2012-08-02 Fujifilm Corp Endoscope system, processor apparatus thereof, and image generating method
JP2012213551A (en) * 2011-04-01 2012-11-08 Fujifilm Corp Biological information obtaining system and method
JP2012213552A (en) * 2011-04-01 2012-11-08 Fujifilm Corp Endoscope system, processor device of endoscope system, and image processing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019130834A1 (en) * 2017-12-26 2019-07-04 オリンパス株式会社 Image processing device and image processing method
JPWO2019130834A1 (en) * 2017-12-26 2020-11-19 オリンパス株式会社 Image processing device and image processing method
US11509834B2 (en) 2017-12-26 2022-11-22 Olympus Corporation Image processing apparatus and image processing method

Also Published As

Publication number Publication date
JP2015039502A (en) 2015-03-02
JP5990141B2 (en) 2016-09-07

Similar Documents

Publication Publication Date Title
JP5992936B2 (en) Endoscope system, processor device for endoscope system, operation method of endoscope system, operation method of processor device for endoscope system
JP5887367B2 (en) Processor device, endoscope system, and operation method of endoscope system
JP6039639B2 (en) Endoscope system, processor device for endoscope system, method for operating endoscope system, and method for operating processor device for endoscope system
JP5977772B2 (en) Endoscope system, processor device for endoscope system, method for operating endoscope system, method for operating processor device
JP6010571B2 (en) Endoscope system, processor device for endoscope system, operation method of endoscope system, operation method of processor device for endoscope system
JP5654511B2 (en) Endoscope system, processor device for endoscope system, and method for operating endoscope system
JP6092792B2 (en) Endoscope system processor device, endoscope system, operating method of endoscope system processor device, operating method of endoscope system
JP6085648B2 (en) Endoscope light source device and endoscope system
US10285631B2 (en) Light source device for endoscope and endoscope system
WO2014156604A1 (en) Endoscope system, operational method therefor and processor device
JP6214503B2 (en) Endoscope light source device and endoscope system
JP6129686B2 (en) Endoscope system, processor device, operation method, and table creation method
JP2018051364A (en) Endoscope system, endoscope system processor, endoscope system operation method, and processor operation method
JP5990141B2 (en) ENDOSCOPE SYSTEM, PROCESSOR DEVICE, AND OPERATION METHOD
JP6099518B2 (en) Endoscope system and method of operation
JP6099529B2 (en) Endoscope system, processor device, light source device, and operation method
JP6254502B2 (en) Endoscope light source device and endoscope system
JP6272956B2 (en) Endoscope system, processor device for endoscope system, method for operating endoscope system, method for operating processor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14837635

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14837635

Country of ref document: EP

Kind code of ref document: A1