WO2015025573A1 - Wall body structure of automobile vehicle body - Google Patents

Wall body structure of automobile vehicle body Download PDF

Info

Publication number
WO2015025573A1
WO2015025573A1 PCT/JP2014/063461 JP2014063461W WO2015025573A1 WO 2015025573 A1 WO2015025573 A1 WO 2015025573A1 JP 2014063461 W JP2014063461 W JP 2014063461W WO 2015025573 A1 WO2015025573 A1 WO 2015025573A1
Authority
WO
WIPO (PCT)
Prior art keywords
skin
outer skin
fiber orientation
pair
orientation angle
Prior art date
Application number
PCT/JP2014/063461
Other languages
French (fr)
Japanese (ja)
Inventor
正太郎 鮎澤
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to JP2015532733A priority Critical patent/JP6032630B2/en
Publication of WO2015025573A1 publication Critical patent/WO2015025573A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D29/00Superstructures, understructures, or sub-units thereof, characterised by the material thereof
    • B62D29/04Superstructures, understructures, or sub-units thereof, characterised by the material thereof predominantly of synthetic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • B62D25/20Floors or bottom sub-units
    • B62D25/2009Floors or bottom sub-units in connection with other superstructure subunits
    • B62D25/2018Floors or bottom sub-units in connection with other superstructure subunits the subunits being front structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D29/00Superstructures, understructures, or sub-units thereof, characterised by the material thereof
    • B62D29/04Superstructures, understructures, or sub-units thereof, characterised by the material thereof predominantly of synthetic material
    • B62D29/041Understructures

Definitions

  • FIG. 2D the fiber orientation angle with respect to the longitudinal direction of the continuous fibers of the eight continuous fiber layers constituting the inner skin 25 is shown. That is, of the eight continuous fiber layers of the inner skin 25, two surface layers have a fiber orientation angle of 0 °, and two inner layers on the inner side have a fiber orientation angle of 45 °, and two inner layers on the inner side.
  • the fiber orientation angle is 90 °, and the inner two inner layers have a fiber orientation angle of -45 °. That is, while the continuous orientation angle of the surface layer is parallel to the longitudinal direction, the fiber orientation angles of all the inner layers are inclined to the longitudinal direction.
  • the amount of deformation of the surface layer is larger than the amount of deformation of the inner layer, so the fiber orientation angle of the surface layer has a large effect on the strength of the outer skin 24 or the inner skin 25 become.
  • the outer skin 24 having high ductility is easily deformed to the core 26 side.
  • the load can be dispersed and transmitted to the inner skin 25 having high strength, and the local collision load can be efficiently absorbed by the cooperation of the outer skin 24 and the inner skin 25 to suppress the breakage of the dash panel 16 .
  • the core 26 is made of a CFRP corrugated plate having a constant cross section in the vehicle width direction orthogonal to the longitudinal direction (direction of arrow A in FIG. 1), the collision load input to the outer skin 24 is through the core 26 having high strength.
  • the inner skin 25 can be dispersed efficiently.
  • the core 26 since the core 26 includes continuous fibers oriented along the vehicle width direction, it is possible to prevent the ductility of the outer skin 24 in the longitudinal direction from being hindered by the continuous fibers of the core 26.
  • the fiber orientation angles of the pair of surface layers of the outer skin 24 need not be larger than the fiber orientation angles of all the inner layers, and may be at least larger than the fiber orientation angles of the inner layers positioned at the center in the stacking direction.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Body Structure For Vehicles (AREA)

Abstract

In a wall body structure of an automobile vehicle body, an outer skin (24) and an inner skin (25) of a wall body (16) of an FRP automobile cabin (11) are provided with a plurality of continuous fiber layers that are layered with different fiber oriented angles of continuous fibers with respect to the longitudinal direction of the outer and inner skins. In the outer skin (24), the fiber oriented angle of a pair of surface layers is greater than the fiber oriented angle of an inner layer. Thus, the outer skin (24) has lower strength but higher ductility than the inner skin (25), and the inner skin (25) has higher strength but lower ductility. As a result, when localized collision load is applied to the outer skin (24), the outer skin (24) is readily deformed, transmitting the collision load to the inner skin (25) in a distributed manner. Accordingly, the localized collision load can be efficiently absorbed by the outer skin (24) and the inner skin (25) cooperating together, whereby destruction of the wall body (16) can be suppressed.

Description

自動車車体の壁体構造Car body wall structure
 本発明は、自動車車体の壁体が、車体外側に位置するFRP製のアウタースキンおよび車体内側に位置するFRP製のインナースキン間にコアを挟んで構成される自動車車体の壁体構造に関する。 The present invention relates to a wall structure of an automobile body, in which a wall of an automobile body is formed by sandwiching a core between an FRP outer skin located outside the vehicle body and an FRP inner skin located inside the vehicle body.
 FRP製のフロア部の後部の立壁の車幅方向両端部に車体後方に向けてハ字状に拡開する傾斜壁を形成するとともに、立壁の後方に配置されたリヤサスペンションメンバの車幅方向両端部に前記傾斜壁に対向する傾斜部を形成し、後面衝突の衝突荷重でリヤサスペンションメンバが立壁に向かって前進し、リヤサスペンションメンバの傾斜部が立壁の傾斜壁に面接触して衝突荷重を伝達するとき、FRP製の立壁の内部に車幅方向に配向した連続繊維により車幅方向の引張荷重を効率的に受け止めるものが、下記特許文献1により公知である。 At both ends in the vehicle width direction at the rear of the FRP floor section, inclined walls are formed to expand in a V-shape toward the rear of the vehicle body, and both ends in the vehicle width direction of rear suspension members disposed behind the vertical wall An inclined portion is formed on the opposite side of the inclined wall, and the rear suspension member advances toward the upright wall by the collision load of the rear surface collision, and the inclined portion of the rear suspension member contacts the inclined wall of the upright wall to make a collision load. It is known from the following patent document 1 that, when transmitting, efficiently receive a tensile load in the vehicle width direction by continuous fibers oriented in the vehicle width direction inside a standing wall made of FRP.
日本特開2012-224281号公報Japan JP 2012-224281
 ところで、上記特許文献1に記載されたものは、リヤサスペンションメンバの前面に突起部が形成されているような場合に、車両の後面衝突時に突起部から入力する局所的な荷重によってFRP製の立壁が突き破られてしまい、そこが起点となって立壁の破壊が一気に進行する可能性がある。 By the way, when the projection is formed on the front surface of the rear suspension member, the one described in Patent Document 1 is an FRP upright wall due to a local load inputted from the projection at the time of a rear collision of the vehicle. There is a possibility that the destruction of the standing wall may progress at once as the starting point.
 本発明は前述の事情に鑑みてなされたもので、集中的な衝突荷重を効果的に分散して破壊を回避し得る自動車車体の壁体構造を提供することを目的とする。 The present invention has been made in view of the above-mentioned circumstances, and an object thereof is to provide a wall structure of an automobile body which can effectively disperse a concentrated collision load to avoid breakage.
 上記目的を達成するために、本発明によれば、自動車車体の壁体が、車体外側に位置するFRP製のアウタースキンおよび車体内側に位置するFRP製のインナースキン間にコアを挟んで構成される自動車車体の壁体構造であって、前記アウタースキンおよび前記インナースキンは、それらの長手方向に対する連続繊維の繊維配向角を一致あるいは異ならせた状態で積層した複数の連続繊維層を樹脂で固めた板材からなり、前記アウタースキンは、前記複数の連続繊維層のうちの一対の表層の繊維配向角が、前記一対の表層に挟まれた積層方向中央部の内層の繊維配向角よりも大きいことを第1の特徴とする自動車車体の壁体構造が提案される。 According to the present invention, in order to achieve the above object, according to the present invention, a wall of an automobile body is constituted by sandwiching a core between an FRP outer skin located on the outer side of the vehicle and an FRP inner skin located on the inner side of the vehicle. Wall structure of an automobile body, wherein the outer skin and the inner skin are formed by resin bonding a plurality of continuous fiber layers laminated in a state in which the fiber orientation angles of the continuous fibers with respect to their longitudinal direction are matched or different. The outer skin has a fiber orientation angle of a pair of surface layers of the plurality of continuous fiber layers is larger than a fiber orientation angle of an inner layer of a central portion in the stacking direction sandwiched between the pair of surface layers. A wall structure of an automobile body having the first feature is proposed.
 また本発明によれば、前記第1の特徴に加えて、前記アウタースキンは、前記一対の表層の繊維配向角と、前記一対の表層に隣接する一対の内層の繊維配向角とが、前記長手方向に対して対称であることを第2の特徴とする自動車車体の壁体構造が提案される。 Further, according to the present invention, in addition to the first feature, in the outer skin, a fiber orientation angle of the pair of surface layers and a fiber orientation angle of a pair of inner layers adjacent to the pair of surface layers are the longitudinal According to a second aspect of the invention, there is proposed a wall structure of a motor vehicle body that is symmetrical with respect to a direction.
 また本発明によれば、前記第1または第2の特徴に加えて、前記インナースキンは、前記複数の連続繊維層のうちの一対の表層の繊維配向角が、前記一対の表層間に挟まれた内層の繊維配向角よりも小さいことを第3の特徴とする自動車車体の壁体構造が提案される。 Further, according to the present invention, in addition to the first or second feature, in the inner skin, a fiber orientation angle of a pair of surface layers of the plurality of continuous fiber layers is sandwiched between the pair of surface layers. According to a third aspect of the present invention, there is proposed a wall structure of an automobile body characterized in that the fiber orientation angle of the inner layer is smaller.
 また本発明によれば、前記第1~第3の何れか1つの特徴に加えて、前記コアは、前記長手方向に直交する方向に一定断面を有するFRP製の波板からなることを第4の特徴とする自動車車体の壁体構造が提案される。 Further, according to the present invention, in addition to any one of the first to third features, the core is made of an FRP corrugated plate having a constant cross section in a direction orthogonal to the longitudinal direction. The wall structure of the car body is proposed.
 また本発明によれば、前記第4の特徴に加えて、前記コアは、前記長手方向に直交する方向に沿って配向された連続繊維を含むことを第5の特徴とする自動車車体の壁体構造が提案される。 Further, according to the present invention, in addition to the fourth feature, the wall of a car body as a fifth feature is that the core includes continuous fibers oriented along a direction orthogonal to the longitudinal direction. A structure is proposed.
 また本発明によれば、前記第1~第5の何れか1つの特徴に加えて、前記壁体の周縁部の少なくとも一部は、それと交差する方向に延びる他の壁体に連続することを第6の特徴とする自動車車体の壁体構造が提案される。 Further, according to the present invention, in addition to any one of the first to fifth features, at least a part of the peripheral portion of the wall is connected to another wall extending in a direction intersecting with it. A sixth feature of the present invention is a wall structure of a car body.
 尚、実施の形態のフロントフロアパネル部12およびフロントピラーロア15は本発明の他の壁体に対応し、実施の形態のダッシュパネル16は本発明の壁体に対応する。 The front floor panel portion 12 and the front pillar lower portion 15 of the embodiment correspond to the other wall of the present invention, and the dash panel 16 of the embodiment corresponds to the wall of the present invention.
 本発明の第1の特徴によれば、自動車車体の壁体は、車体外側に位置するFRP製のアウタースキンおよび車体内側に位置するFRP製のインナースキン間にコアを挟んで構成され、アウタースキンおよびインナースキンは、それらの長手方向に対する連続繊維の繊維配向角を一致あるいは異ならせた状態で積層した複数の連続繊維層を樹脂で固めた板材からなる。アウタースキンは、複数の連続繊維層のうちの一対の表層の繊維配向角が、一対の表層に挟まれた積層方向中央部の内層の繊維配向角よりも大きいので、比較的に強度は低いが延性が高くなる。その結果、アウタースキンに局所的な衝突荷重が入力したときに、アウタースキンがコア側に容易に変形して衝突荷重をインナースキンに分散して伝達し、前記局所的な衝突荷重をアウタースキンおよびインナースキンの協働で効率的に吸収して壁体の破壊を抑制することができる。 According to the first feature of the present invention, the wall of the car body is constituted by sandwiching the core between the outer skin made of FRP located on the outer side of the body and the inner skin made of FRP located on the inner side of the body The inner skin is made of a plate material in which a plurality of continuous fiber layers stacked in a state in which the fiber orientation angles of the continuous fibers with respect to the longitudinal direction thereof are matched or different are resin-solidified. The outer skin has a relatively low strength because the fiber orientation angle of the pair of surface layers of the plurality of continuous fiber layers is larger than the fiber orientation angle of the inner layer in the central portion in the stacking direction sandwiched between the pair of surface layers. Ductility is high. As a result, when a local collision load is input to the outer skin, the outer skin is easily deformed toward the core side to disperse and transmit the collision load to the inner skin, and the local collision load is transmitted to the outer skin and It can be absorbed efficiently by the cooperation of the inner skin to suppress the destruction of the wall.
 また本発明の第2の特徴によれば、アウタースキンは、一対の表層の繊維配向角と、一対の表層に隣接する一対の内層の繊維配向角とが、長手方向に対して対称であるので、表層とそれに隣接する内層の繊維配向角が共に大きくなることで、衝突荷重の入力時に表層および内層の樹脂にマイクロクラックが発生し易くなり、アウタースキンの延性が確保される。 Further, according to the second feature of the present invention, in the outer skin, the fiber orientation angles of the pair of surface layers and the fiber orientation angles of the pair of inner layers adjacent to the pair of surface layers are symmetrical with respect to the longitudinal direction. When the fiber orientation angle of the surface layer and the inner layer adjacent thereto is increased, microcracks are easily generated in the resin of the surface layer and the inner layer when a collision load is input, and the ductility of the outer skin is secured.
 また本発明の第3の特徴によれば、インナースキンは、複数の連続繊維層のうちの一対の表層の繊維配向角が、一対の表層間に挟まれた内層の繊維配向角よりも小さいので、長手方向の引張力に対して大きな強度を持つことができ、コアから伝達される衝突荷重を効率良く分散して破壊を防止することができる。 Further, according to the third feature of the present invention, in the inner skin, the fiber orientation angle of the pair of surface layers of the plurality of continuous fiber layers is smaller than the fiber orientation angle of the inner layer sandwiched between the pair of surface layers. It is possible to have a large strength against the tensile force in the longitudinal direction, and it is possible to efficiently disperse the collision load transmitted from the core and to prevent the breakage.
 また本発明の第4の特徴によれば、コアは、長手方向に直交する方向に一定断面を有するFRP製の波板からなるので、アウタースキンに入力した衝突荷重をコアを介してインナースキンに効率良く分散して吸収することができる。 Further, according to the fourth feature of the present invention, since the core is made of an FRP corrugated plate having a constant cross section in the direction orthogonal to the longitudinal direction, the collision load inputted to the outer skin is applied to the inner skin via the core. It can be dispersed and absorbed efficiently.
 また本発明の第5の特徴によれば、コアは、長手方向に直交する方向に沿って配向された連続繊維を含むので、アウタースキンの長手方向の延性がコアにより阻害されるのを防止することができる。 Also according to the fifth aspect of the present invention, the core includes continuous fibers oriented along the direction orthogonal to the longitudinal direction, so that the ductility of the outer skin in the longitudinal direction is prevented from being blocked by the core be able to.
 また本発明の第6の特徴によれば、壁体の周縁部の少なくとも一部は、それと交差する方向に延びる他の壁体に連続するので、壁体に入力した衝突荷重を他の壁体に分散して吸収することで、壁体だけで衝突エネルギーを吸収する必要をなくして軽量化を図ることができる。 Further, according to the sixth aspect of the present invention, at least a part of the peripheral portion of the wall is continuous with the other wall extending in the direction intersecting with it, so that the collision load input to the wall is transmitted to the other wall It is possible to reduce the weight by eliminating the need to absorb the collision energy only by the wall body by dispersing and absorbing.
図1はCFRP製の自動車キャビンの斜視図である。(第1の実施の形態)FIG. 1 is a perspective view of a CFRP automobile cabin. First Embodiment 図2はアウタースキンおよびインナースキンの断面構造の説明図である。(第1の実施の形態)FIG. 2 is an explanatory view of a cross-sectional structure of an outer skin and an inner skin. First Embodiment 図3はアウタースキンおよびインナースキンの破壊プロセスの説明図である。(第1の実施の形態)FIG. 3 is an explanatory view of the destruction process of the outer skin and the inner skin. First Embodiment 図4はアウタースキンおよびインナースキンの変形量と曲げ強度との関係を示すグラフである。(第1の実施の形態)FIG. 4 is a graph showing the relationship between the amount of deformation of the outer skin and the inner skin and the bending strength. First Embodiment 図5はダッシュパネルに衝突荷重が入力したときの作用説明図である。(第1の実施の形態)FIG. 5 is an operation explanatory view when a collision load is input to the dash panel. First Embodiment 図6は図5に対応する比較例を示す図である。(第1の実施の形態)FIG. 6 is a view showing a comparative example corresponding to FIG. First Embodiment
12    フロントフロアパネル部(他の壁体)
15    フロントピラーロア(他の壁体)
16    ダッシュパネル(壁体)
24    アウタースキン
25    インナースキン
26    コア
12 Front floor panel (other wall)
15 front pillar lower (other wall)
16 dash panel (wall)
24 Outer skin 25 Inner skin 26 core
 以下、図1~図6に基づいて本発明の実施の形態を説明する。本明細書において、前後方向、左右方向(車幅方向)および上下方向とは、運転席に着座した乗員を基準として定義される。 Hereinafter, an embodiment of the present invention will be described based on FIGS. 1 to 6. In the present specification, the front-rear direction, the left-right direction (vehicle width direction), and the up-down direction are defined based on the occupant seated in the driver's seat.
第1の実施の形態First embodiment
 図1に示すように、CFRP(カーボン繊維強化樹脂)で一体に成形されたバスタブ状のキャビン11は、フロントフロアパネル部12と、リヤフロアパネル部13と、フロントフロアパネル部12およびリヤフロアパネル部13の左右両側部に沿って前後方向に延びる左右一対のサイドシル14,14と、左右のサイドシル14,14の前端から起立する左右一対のフロントピラーロア15,15と、フロントフロアパネル部12の前端および左右のフロントピラーロア15,15の前端を接続するダッシュパネル16と、リヤフロアパネル部13の後端および左右のサイドシル14,14の後端を接続するリヤクロスメンバ17とを備える。 As shown in FIG. 1, the bathtub-like cabin 11 integrally formed of CFRP (carbon fiber reinforced resin) includes a front floor panel 12, a rear floor panel 13, a front floor panel 12 and a rear floor panel 13. Of the left and right side sills 14 and 14 extending in the front and rear direction along the left and right sides of the left and right front pillar lowers 15 and 15 rising from the front ends of the left and right side sills 14 and 14; A dash panel 16 connecting the front ends of the left and right front pillar lowers 15, 15 and a rear cross member 17 connecting the rear ends of the rear floor panel portion 13 and the rear ends of the left and right side sills 14, 14 are provided.
 ダッシュパネル16の前面には左右一対のアルミニウム製のダンパーハウジング18,18が固定されており、ダンパーハウジング18,18には前方に延びる左右一対のフロントサイドフレーム19,19が一体に形成される。フロントサイドフレーム19,19の前端から左右一対のCFRP製のバンパービームイクステンション20,20が前方に延びており、左右のバンパービームイクステンション20,20の前端がCFRP製のバンパービーム21の車幅方向両端に接続される。また左右のバンパービームイクステンション20,20の前端から左右一対のCFRP製のロアメンバ22,22が後上方に延びており、左右のロアメンバ22,22の後端から後上方に延びる左右一対のCFRP製のアッパーメンバ23,23が、ダンパーハウジング18,18の車幅方向外面およびダッシュパネル16の前面に接続される。 A pair of left and right aluminum damper housings 18, 18 is fixed to the front of the dash panel 16, and a pair of left and right front side frames 19, 19 extending forward are integrally formed on the damper housings 18, 18. A pair of left and right CFRP bumper beam extensions 20, 20 extend forward from the front end of the front side frames 19, 19, and the front width of the left and right bumper beam extensions 20, 20 is the width of the CFRP bumper beam 21 Connected to both ends of the direction. Also, a pair of left and right CFRP lower members 22, 22 extend from the front end of the left and right bumper beam extensions 20, 20 in the rear upper direction, and a pair of left and right CFRPs extend from the rear end of the left and right lower members 22, 22 in the rear upper direction. The upper members 23, 23 are connected to the outer surface in the vehicle width direction of the damper housings 18, 18 and the front surface of the dash panel 16.
 図2(A)はダッシュパネル16を上下方向に切断した断面を模式的に示すもので、CFRP製のダッシュパネル16は、前側(エンジンルーム側)に位置するアウタースキン24と、後側(車室側)に位置するインナースキン25と、アウタースキン24およびインナースキン25間に挟まれた波板状のコア26とを備える。CFRP製のアウタースキン24およびインナースキン25は、カーボンの連続繊維を一方向に引き揃えた連続繊維層を複数層に積層して樹脂で固めたものである。図2(B)はアウタースキン24あるいはインナースキン25をモデル化した板材に荷重が入力した状態を模式的に示すもので、荷重の入力によって板材は湾曲する。アウタースキン24およびインナースキン25の長手方向とは、そこに荷重が入力したときに湾曲する方向と定義される。自動車の前面衝突によりエンジンルーム内で後退したエンジンやトランスミッションがダッシュパネル16を後方に押圧すると、ダッシュパネル16は車室側に向けて後方に湾曲するが、そのときの湾曲方向(長手方向)は図1に矢印Aで示される。 FIG. 2A schematically shows a cross section of the dash panel 16 cut in the vertical direction, and the CFRP dash panel 16 has an outer skin 24 located on the front side (engine room side) and a rear side (car And an outer skin 24 and a corrugated plate-like core 26 sandwiched between the inner skin 25 and the inner skin 25. The outer skin 24 and the inner skin 25 made of CFRP are obtained by laminating a continuous fiber layer in which continuous carbon fibers are aligned in one direction in a plurality of layers, and curing with a resin. FIG. 2B schematically shows a state in which a load is input to a plate material obtained by modeling the outer skin 24 or the inner skin 25. The plate material is curved by the input of the load. The longitudinal direction of the outer skin 24 and the inner skin 25 is defined as the direction of bending when a load is input thereto. When the engine or transmission retreated in the engine room due to a frontal collision of the vehicle pushes the dash panel 16 backward, the dash panel 16 curves backward toward the passenger compartment side, but the bending direction (longitudinal direction) at that time is It is shown by arrow A in FIG.
 図2(C)には、アウタースキン24を構成する6層の連続繊維層の連続繊維の長手方向に対する繊維配向角が示される。即ち、アウタースキン24の6層の連続繊維層のうち、二つの表層は繊維配向角が60°であり、その内側の二つの内層は繊維配向角が-60°であり、その内側の二つの内層は繊維配向角が0°である。つまり表層の繊維配向角は長手方向に対して60°の角度で傾斜しているのに対し、最内層の繊維配向角は長手方向に対して平行である。 In FIG. 2 (C), the fiber orientation angle with respect to the longitudinal direction of the continuous fiber of the continuous fiber layer of six layers constituting the outer skin 24 is shown. That is, of the six continuous fiber layers of the outer skin 24, two surface layers have a fiber orientation angle of 60 °, and two inner layers on the inner side have a fiber orientation angle of -60 °, and two inner layers thereof. The inner layer has a fiber orientation angle of 0 °. That is, while the fiber orientation angle of the surface layer is inclined at an angle of 60 ° to the longitudinal direction, the fiber orientation angle of the innermost layer is parallel to the longitudinal direction.
 図2(D)には、インナースキン25を構成する8層の連続繊維層の連続繊維の長手方向に対する繊維配向角が示される。即ち、インナースキン25の8層の連続繊維層のうち、二つの表層は繊維配向角が0°であり、その内側の二つの内層は繊維配向角が45°であり、その内側の二つの内層は繊維配向角が90°であり、その内側の二つの内層は繊維配向角が-45°である。つまり表層の連続配向角は長手方向に対して平行であるのに対し、全ての内層の繊維配向角は長手方向に対して傾斜している。 In FIG. 2D, the fiber orientation angle with respect to the longitudinal direction of the continuous fibers of the eight continuous fiber layers constituting the inner skin 25 is shown. That is, of the eight continuous fiber layers of the inner skin 25, two surface layers have a fiber orientation angle of 0 °, and two inner layers on the inner side have a fiber orientation angle of 45 °, and two inner layers on the inner side. The fiber orientation angle is 90 °, and the inner two inner layers have a fiber orientation angle of -45 °. That is, while the continuous orientation angle of the surface layer is parallel to the longitudinal direction, the fiber orientation angles of all the inner layers are inclined to the longitudinal direction.
 アウタースキン24あるいはインナースキン25が曲げ変形するとき、内層の変形量に比べて表層の変形量が大きくなるため、表層の繊維配向角がアウタースキン24あるいはインナースキン25の強度に大きな影響を及ぼすことになる。 When the outer skin 24 or the inner skin 25 is bent and deformed, the amount of deformation of the surface layer is larger than the amount of deformation of the inner layer, so the fiber orientation angle of the surface layer has a large effect on the strength of the outer skin 24 or the inner skin 25 become.
 図3(A)はアウタースキン24に対応するもので、表層の繊維配向角が0°以外であり、積層方向中央の内層の繊維配向角が0°(長手方向と平行)であるため、表層が大きく圧縮変形あるいは引張変形したとき、繊維配向角が0°以外の連続繊維が周囲の樹脂に対して滑ることで樹脂に細かい亀裂(マイクロクラック)が発生する。その結果、表層が比較的に容易に変形することで急激な破断が回避される。よって、図4に示すように、アウタースキン24全体として強度は低くなるが延性が高くなり、荷重に対して比較的に柔軟な特性を持つことになる。 FIG. 3A corresponds to the outer skin 24, and the fiber orientation angle of the surface layer is other than 0 °, and the fiber orientation angle of the inner layer at the center in the stacking direction is 0 ° (parallel to the longitudinal direction). When a large compressive deformation or tensile deformation occurs, continuous fibers having a fiber orientation angle other than 0 ° slip against the surrounding resin, resulting in the formation of fine cracks (micro cracks) in the resin. As a result, rapid breakage is avoided by the surface layer deforming relatively easily. Therefore, as shown in FIG. 4, the overall strength of the outer skin 24 is low but the ductility is high, and it has relatively flexible characteristics with respect to the load.
 一方、図3(B)はインナースキン25に対応するもので、表層の繊維配向角が0°(長手方向と平行)であり、内層の繊維配向角が0°以外であるため、表層が大きく圧縮変形あるいは引張変形したとき、表層の繊維配向角が0°の連続繊維が強く抵抗することで強度が高められる。しかしながら、表層の連続繊維の応力が局所的に高まって一気に破断すると、それが内層の連続繊維の破断を誘発してしまう可能性がある。よって、図4に示すように、インナースキン25全体として強度は高くなるが延性が低くなり、荷重に対して比較的に脆い特性を持つことになる。 On the other hand, FIG. 3B corresponds to the inner skin 25, and the fiber orientation angle of the surface layer is 0 ° (parallel to the longitudinal direction), and the fiber orientation angle of the inner layer is other than 0 °. When compressive deformation or tensile deformation is performed, the strength is enhanced by the strong resistance of the continuous fiber having a fiber orientation angle of 0 ° in the surface layer. However, if the stress of the continuous fiber in the surface layer locally increases and breaks at a stretch, it may cause the break of the continuous fiber in the inner layer. Therefore, as shown in FIG. 4, the overall strength of the inner skin 25 is high but the ductility is low, and it has a relatively brittle property to the load.
 従って、図5に示すように、自動車の前面衝突によりエンジンルーム内に配置したエンジン27が後退し、その後面に突出する固い突起物27aがダッシュパネル16の前面に衝突した場合を考えると、ダッシュパネル16は後方に凸に湾曲することで、前側のアウタースキン24には全体として圧縮荷重が作用し、後側のインナースキン25には全体として引張荷重が作用する。このとき、突起物27aが最初に衝突するアウタースキン24は、その一対の表層の繊維配向角が長手方向に対して傾斜しているため、図3(A)で説明したように延性が高くなって破断し難くなり、突起物27aに押されて後方に変形する。その結果、アウタースキン24が後方に変形する荷重はコア26を介してインナースキン25に伝達される。 Therefore, as shown in FIG. 5, in the case where the engine 27 disposed in the engine room is retracted due to a frontal collision of the vehicle, and the hard protrusion 27a protruding on the rear surface collides with the front of the dash panel 16, the dash The panel 16 is curved in a convex shape to the rear, so that a compressive load acts on the front outer skin 24 as a whole, and a tensile load acts on the rear inner skin 25 as a whole. At this time, since the fiber orientation angles of the pair of surface layers of the outer skin 24 with which the projections 27 a first collide are inclined with respect to the longitudinal direction, the ductility becomes high as described in FIG. As a result, it becomes difficult to break and is pushed backward by the projection 27a. As a result, the load that the outer skin 24 deforms rearward is transmitted to the inner skin 25 via the core 26.
 ダッシュパネル16の湾曲により引張荷重が作用しているインナースキン25は、一対の表層の繊維配向角が長手方向に対して平行であるため、図3(B)で説明したようにインナースキン25はアウタースキン24に比べて延性が低くなって一気に破断する可能性があるが、インナースキン25に入力した局所的な荷重は、アウタースキン24およびコア26によって広範囲に分散された状態でインナースキン25に入力し、かつインナースキン25の破断強度自体がアウタースキン24に比べて高いため、インナースキン25は破断することなく持ち堪えてダッシュパネル16の破壊が回避される。 In the inner skin 25 to which a tensile load is applied due to the curvature of the dash panel 16, the fiber orientation angles of the pair of surface layers are parallel to the longitudinal direction, and therefore the inner skin 25 is the one described in FIG. Although the ductility is lower than the outer skin 24 and there is a possibility of breaking at a stretch, the local load input to the inner skin 25 is distributed to the inner skin 25 in a widely dispersed state by the outer skin 24 and the core 26. Since the input and the breaking strength itself of the inner skin 25 is higher than that of the outer skin 24, the inner skin 25 can be held without breaking and the breakage of the dash panel 16 is avoided.
 図6は比較例を示すもので、比較例のダッシュパネル16はアウタースキン24およびインナースキン25の特性が実施の形態と逆になっており、アウタースキン24は延性が低く強度が高いもので構成され、インナースキン25は延性が高く強度が低いもので構成される。 FIG. 6 shows a comparative example, in which the properties of the outer skin 24 and the inner skin 25 of the dash panel 16 of the comparative example are the reverse of those of the embodiment, and the outer skin 24 has low ductility and high strength. The inner skin 25 is made of high ductility and low strength.
 従って、自動車の前面衝突により固い突起物27aがダッシュパネル16の前面に衝突した場合、突起物27aが最初に衝突するアウタースキン24は延性が低いため、突起物27aから入力する局所的な荷重に耐えきれずに破断してしまい、アウタースキン24の局所的な破断がコア26およびインナースキン25に一気に伝搬してダッシュパネル16の破壊に至ることになる。 Therefore, when the hard protrusion 27a collides with the front surface of the dash panel 16 due to a frontal collision of a car, the outer skin 24 first collides with the protrusion 27a has a low ductility, so the local load input from the protrusion 27a It breaks unbearably, and local breakage of the outer skin 24 propagates to the core 26 and the inner skin 25 at a stretch, leading to breakage of the dash panel 16.
 以上のように、本実施の形態によれば、ダッシュパネル16のアウタースキン24に局所的な衝突荷重が入力したときに、延性が高いアウタースキン24がコア26側に容易に変形することで衝突荷重を強度が高いインナースキン25に分散して伝達し、前記局所的な衝突荷重をアウタースキン24およびインナースキン25の協働で効率的に吸収してダッシュパネル16の破壊を抑制することができる。しかもアウタースキン24は、表層の繊維配向角(60゜)と、その表層に隣接する内層の繊維配向角(-60゜)とが長手方向に対して対称であるので、それら表層および内層の繊維配向角が共に大きくなって樹脂にマイクロクラックが発生し易くなり、アウタースキン24の延性が更に高められる。 As described above, according to the present embodiment, when a local collision load is input to the outer skin 24 of the dash panel 16, the outer skin 24 having high ductility is easily deformed to the core 26 side. The load can be dispersed and transmitted to the inner skin 25 having high strength, and the local collision load can be efficiently absorbed by the cooperation of the outer skin 24 and the inner skin 25 to suppress the breakage of the dash panel 16 . Moreover, since the outer skin 24 has the fiber orientation angle (60 °) of the surface layer and the fiber orientation angle (−60 °) of the inner layer adjacent to the surface layer symmetrical with respect to the longitudinal direction, the fibers of the surface layer and the inner layer are Both orientation angles become large, microcracks are easily generated in the resin, and the ductility of the outer skin 24 is further enhanced.
 またコア26は長手方向(図1の矢印A方向)に直交する車幅方向に一定断面を有するCFRP製の波板からなるので、アウタースキン24に入力した衝突荷重を強度の高いコア26を介してインナースキン25に効率良く分散することができる。その際に、コア26は車幅方向に沿って配向された連続繊維を含むので、アウタースキン24の長手方向の延性がコア26の連続繊維により阻害されるのを防止することができる。 Further, since the core 26 is made of a CFRP corrugated plate having a constant cross section in the vehicle width direction orthogonal to the longitudinal direction (direction of arrow A in FIG. 1), the collision load input to the outer skin 24 is through the core 26 having high strength. Thus, the inner skin 25 can be dispersed efficiently. At that time, since the core 26 includes continuous fibers oriented along the vehicle width direction, it is possible to prevent the ductility of the outer skin 24 in the longitudinal direction from being hindered by the continuous fibers of the core 26.
 しかもダッシュパネル16は、それと交差する方向に延びるフロントフロアパネル部12やフロントピラーロア15,15に連続するので、ダッシュパネル16に入力した衝突荷重をフロントフロアパネル部12やフロントピラーロア15,15に分散して吸収することで、ダッシュパネル16だけで衝突エネルギーを吸収する必要をなくして軽量化を図ることができる。 Moreover, since the dash panel 16 is continuous with the front floor panel portion 12 and the front pillar lowers 15 and 15 extending in the direction intersecting with it, the collision load inputted to the dash panel 16 is the front floor panel portion 12 and the front pillar lowers 15 and 15 It is possible to reduce the weight by eliminating the need to absorb the collision energy with only the dash panel 16 by dispersing and absorbing it.
 以上、本発明の実施の形態を説明したが、本発明はその要旨を逸脱しない範囲で種々の設計変更を行うことが可能である。 As mentioned above, although embodiment of this invention was described, this invention can perform various design changes in the range which does not deviate from the summary.
 例えば、本発明の壁体は実施の形態のダッシュパネル16に限定されるものではなく、また本発明の他の壁体は実施の形態のフロントフロアパネル部12およびフロントピラーロア15に限定されるものではない。 For example, the wall of the present invention is not limited to the dash panel 16 of the embodiment, and the other walls of the present invention are limited to the front floor panel portion 12 and the front pillar lower 15 of the embodiment. It is not a thing.
 またアウタースキン24およびインナースキン25の連続繊維層の積層数や、その繊維配向角は実施の形態に限定されるものではない。 Further, the number of laminated continuous fiber layers of the outer skin 24 and the inner skin 25 and the fiber orientation angle thereof are not limited to those in the embodiment.
 またアウタースキン24の一対の表層の繊維配向角は、全ての内層の繊維配向角よりも大きい必要はなく、少なくとも積層方向中央に位置する内層の繊維配向角よりも大きければ良い。 Further, the fiber orientation angles of the pair of surface layers of the outer skin 24 need not be larger than the fiber orientation angles of all the inner layers, and may be at least larger than the fiber orientation angles of the inner layers positioned at the center in the stacking direction.
 また実施の形態ではインナースキン25の一対の表層の繊維配向角が0°になっているが、その繊維配向角は必ずしも0°である必要はなく、一対の表層の繊維配向角が内層の繊維配向角よりも小さければ良い。 In the embodiment, the fiber orientation angle of the pair of surface layers of the inner skin 25 is 0 °, but the fiber orientation angle does not necessarily have to be 0 °, and the fiber orientation angle of the pair of surface layers is the inner layer fiber It should be smaller than the orientation angle.
 また本発明のFRPは実施の形態のCFRP製に限定されるものではなく、ガラス繊維強化樹脂のような他種のFRPであっても良い。 Further, the FRP of the present invention is not limited to the one made of CFRP of the embodiment, and may be another kind of FRP such as a glass fiber reinforced resin.

Claims (6)

  1.  自動車車体の壁体(16)が、車体外側に位置するFRP製のアウタースキン(24)および車体内側に位置するFRP製のインナースキン(25)間にコア(26)を挟んで構成される自動車車体の壁体構造であって、
     前記アウタースキン(24)および前記インナースキン(25)は、それらの長手方向に対する連続繊維の繊維配向角を一致あるいは異ならせた状態で積層した複数の連続繊維層を樹脂で固めた板材からなり、前記アウタースキン(24)は、前記複数の連続繊維層のうちの一対の表層の繊維配向角が、前記一対の表層に挟まれた積層方向中央部の内層の繊維配向角よりも大きいことを特徴とする自動車車体の壁体構造。
    Automobile comprising a core (26) between an FRP outer skin (24) located on the outer side of the vehicle body and an FRP inner skin (25) located on the inner side of the vehicle body. The wall structure of the car body,
    The outer skin (24) and the inner skin (25) are made of a plate material in which a plurality of continuous fiber layers stacked in a state where the fiber orientation angles of continuous fibers with respect to their longitudinal direction are matched or different. The outer skin (24) is characterized in that the fiber orientation angle of the pair of surface layers of the plurality of continuous fiber layers is larger than the fiber orientation angle of the inner layer in the central portion in the stacking direction sandwiched between the pair of surface layers. Wall structure of the car body to be taken.
  2.  前記アウタースキン(24)は、前記一対の表層の繊維配向角と、前記一対の表層に隣接する一対の内層の繊維配向角とが、前記長手方向に対して対称であることを特徴とする、請求項1に記載の自動車車体の壁体構造。 The outer skin (24) is characterized in that a fiber orientation angle of the pair of surface layers and a fiber orientation angle of a pair of inner layers adjacent to the pair of surface layers are symmetrical with respect to the longitudinal direction. A wall structure of a car body according to claim 1.
  3.  前記インナースキン(25)は、前記複数の連続繊維層のうちの一対の表層の繊維配向角が、前記一対の表層間に挟まれた内層の繊維配向角よりも小さいことを特徴とする、請求項1または請求項2に記載の自動車車体の壁体構造。 The inner skin (25) is characterized in that a fiber orientation angle of a pair of surface layers of the plurality of continuous fiber layers is smaller than a fiber orientation angle of an inner layer sandwiched between the pair of surface layers. The wall structure of the vehicle body according to claim 1 or 2.
  4.  前記コア(26)は、前記長手方向に直交する方向に一定断面を有するFRP製の波板からなることを特徴とする、請求項1~請求項3の何れか1項に記載の自動車車体の壁体構造。 The automobile body according to any one of claims 1 to 3, wherein the core (26) is made of an FRP corrugated plate having a constant cross section in a direction orthogonal to the longitudinal direction. Wall structure.
  5.  前記コア(26)は、前記長手方向に直交する方向に沿って配向された連続繊維を含むことを特徴とする、請求項4に記載の自動車車体の壁体構造。 5. A car body wall according to claim 4, wherein said core (26) comprises continuous fibers oriented along a direction perpendicular to said longitudinal direction.
  6.  前記壁体(16)の周縁部の少なくとも一部は、それと交差する方向に延びる他の壁体(12,15)に連続することを特徴とする、請求項1~請求項5の何れか1項に記載の自動車車体の壁体構造。 The device according to any one of the preceding claims, characterized in that at least a part of the peripheral edge of the wall (16) is continuous with another wall (12, 15) extending in a direction intersecting it. The car body wall structure according to the above item.
PCT/JP2014/063461 2013-08-23 2014-05-21 Wall body structure of automobile vehicle body WO2015025573A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015532733A JP6032630B2 (en) 2013-08-23 2014-05-21 Auto body wall structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-172950 2013-08-23
JP2013172950 2013-08-23

Publications (1)

Publication Number Publication Date
WO2015025573A1 true WO2015025573A1 (en) 2015-02-26

Family

ID=52483358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/063461 WO2015025573A1 (en) 2013-08-23 2014-05-21 Wall body structure of automobile vehicle body

Country Status (2)

Country Link
JP (1) JP6032630B2 (en)
WO (1) WO2015025573A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018034664A (en) * 2016-08-31 2018-03-08 トヨタ自動車株式会社 Skeleton structure for vehicle
CN110282021A (en) * 2018-03-19 2019-09-27 丰田自动车株式会社 Vehicle frame structure
WO2021187390A1 (en) * 2020-03-18 2021-09-23 株式会社有沢製作所 Connection member for vehicle structure
JP2023095729A (en) * 2021-12-24 2023-07-06 山東泰山体育器具有限公司 Load bearing frame of gymnastic tool and fiber structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08184126A (en) * 1994-12-28 1996-07-16 Mitsubishi Heavy Ind Ltd Frp structural material
JP2003291232A (en) * 2002-02-14 2003-10-14 Daimlerchrysler Ag Structure made of fiber-reinforced plastic
JP2009190696A (en) * 2008-02-18 2009-08-27 Toyota Motor Corp Vehicle body floor structure

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08184126A (en) * 1994-12-28 1996-07-16 Mitsubishi Heavy Ind Ltd Frp structural material
JP2003291232A (en) * 2002-02-14 2003-10-14 Daimlerchrysler Ag Structure made of fiber-reinforced plastic
JP2009190696A (en) * 2008-02-18 2009-08-27 Toyota Motor Corp Vehicle body floor structure

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018034664A (en) * 2016-08-31 2018-03-08 トヨタ自動車株式会社 Skeleton structure for vehicle
CN110282021A (en) * 2018-03-19 2019-09-27 丰田自动车株式会社 Vehicle frame structure
WO2021187390A1 (en) * 2020-03-18 2021-09-23 株式会社有沢製作所 Connection member for vehicle structure
JP2021146837A (en) * 2020-03-18 2021-09-27 株式会社有沢製作所 Connection member for vehicle structure
JP7196126B2 (en) 2020-03-18 2022-12-26 株式会社有沢製作所 Connecting member for vehicle structure
JP2023095729A (en) * 2021-12-24 2023-07-06 山東泰山体育器具有限公司 Load bearing frame of gymnastic tool and fiber structure
JP7435956B2 (en) 2021-12-24 2024-02-21 山東泰山体育器具有限公司 Load-bearing frames and fiber structures for gymnastics equipment

Also Published As

Publication number Publication date
JP6032630B2 (en) 2016-11-30
JPWO2015025573A1 (en) 2017-03-02

Similar Documents

Publication Publication Date Title
JP6176467B2 (en) Manufacturing method of automobile body structure and body floor
JP6020944B2 (en) Auto body structure
WO2014203680A1 (en) Frame structure for vehicle
WO2015029646A1 (en) Framework structure for vehicle
WO2015145891A1 (en) Automobile body structure
WO2015025573A1 (en) Wall body structure of automobile vehicle body
JP6032629B2 (en) Automobile center pillar structure
JP5862555B2 (en) Auto body structure
JP5799838B2 (en) Vehicle seat cushion frame
US9481333B2 (en) Bumper back beam for vehicle
WO2015019720A1 (en) Framework structure for vehicle
JP2017501931A (en) Increased compressibility of bumper beam
JP6235384B2 (en) Auto body structure
JP6035654B2 (en) Auto body structure
CN210707652U (en) Automobile longitudinal beam connecting structure, automobile longitudinal beam structure using same and automobile
CN110843932B (en) Vehicle body structure and vehicle
JP5928880B2 (en) CFRP cabin of automobile
JP6683002B2 (en) Body front structure
JP6084705B2 (en) Automotive bumper
JP6206304B2 (en) Vehicle frame structure
KR102156913B1 (en) Mounting bracket for recliner of seat back frame of vehicle
JP6961524B2 (en) Vehicle front pillar reinforcement structure
JP6523390B2 (en) Energy absorption structure of floor panel
JPWO2015037443A1 (en) Auto body structure
WO2018174037A1 (en) Tilting vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14837472

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015532733

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14837472

Country of ref document: EP

Kind code of ref document: A1