WO2015025444A1 - Mtc-iwfエンティティ、scsエンティティ、pcrfエンティティ、及び通信方法 - Google Patents

Mtc-iwfエンティティ、scsエンティティ、pcrfエンティティ、及び通信方法 Download PDF

Info

Publication number
WO2015025444A1
WO2015025444A1 PCT/JP2014/003020 JP2014003020W WO2015025444A1 WO 2015025444 A1 WO2015025444 A1 WO 2015025444A1 JP 2014003020 W JP2014003020 W JP 2014003020W WO 2015025444 A1 WO2015025444 A1 WO 2015025444A1
Authority
WO
WIPO (PCT)
Prior art keywords
mtc
entity
load information
ggsn
iwf
Prior art date
Application number
PCT/JP2014/003020
Other languages
English (en)
French (fr)
Inventor
孝法 岩井
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US14/912,944 priority Critical patent/US9980172B2/en
Priority to JP2015532682A priority patent/JP6394602B2/ja
Publication of WO2015025444A1 publication Critical patent/WO2015025444A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/0215Traffic management, e.g. flow control or congestion control based on user or device properties, e.g. MTC-capable devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/04Network management architectures or arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/14Charging, metering or billing arrangements for data wireline or wireless communications
    • H04L12/1403Architecture for metering, charging or billing
    • H04L12/1407Policy-and-charging control [PCC] architecture
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/14Charging, metering or billing arrangements for data wireline or wireless communications
    • H04L12/1432Metric aspects
    • H04L12/1435Metric aspects volume-based
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/14Network analysis or design
    • H04L41/147Network analysis or design for predicting network behaviour
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/34Signalling channels for network management communication
    • H04L41/344Out-of-band transfers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/08Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters
    • H04L43/0805Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability
    • H04L43/0817Monitoring or testing based on specific metrics, e.g. QoS, energy consumption or environmental parameters by checking availability by checking functioning
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/24Traffic characterised by specific attributes, e.g. priority or QoS
    • H04L47/2466Traffic characterised by specific attributes, e.g. priority or QoS using signalling traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/14Access restriction or access information delivery, e.g. discovery data delivery using user query or user detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0893Assignment of logical groups to network elements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0894Policy-based network configuration management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks
    • H04L43/02Capturing of monitoring data
    • H04L43/028Capturing of monitoring data by filtering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/12Avoiding congestion; Recovering from congestion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L47/00Traffic control in data switching networks
    • H04L47/10Flow control; Congestion control
    • H04L47/12Avoiding congestion; Recovering from congestion
    • H04L47/127Avoiding congestion; Recovering from congestion by using congestion prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/16Gateway arrangements

Definitions

  • This application relates to Universal Mobile Telecommunications System (UMTS) and Evolved Packet System (EPS) that support Machine type Communication (MTC).
  • UMTS Universal Mobile Telecommunications System
  • EPS Evolved Packet System
  • MTC Machine type Communication
  • MTC Machine-to-Machine
  • 3GPP defines a mobile station (MS, UE) that is implemented in a machine and sensor for MTC as an “MTC device”.
  • MTC devices are installed in various devices such as machinery (e.g., firewood vending machines, gas meters, electric meters, automobiles, railway vehicles) and sensors (e.g., sensors related to the environment, agriculture, traffic, etc.).
  • the MTC device connects to the Public Land Mobile Network (PLMN) and communicates with the MTC application server (Application Server (AS)).
  • PLMN Public Land Mobile Network
  • AS Application Server
  • the MTC application server is arranged outside the PLMN (external network), executes the MTC application, and communicates with the MTC UE application mounted on the MTC device.
  • An MTC application server is generally controlled by an MTC service provider (M2M service provider).
  • 3GPP provides network elements, reference points, and procedures that include Service Capability Server (SCS) and Machine Type Communication Communication Function (MTC-IWF) to allow MTC application servers to communicate with MTC devices.
  • SCS Service Capability Server
  • MTC-IWF Machine Type Communication Communication Function
  • the SCS is an entity that connects the MTC application server to the 3GPP PLMN and enables the MTC application server to communicate with the UE (that is, the MTC device) via the PLMN service defined by 3GPP.
  • the SCS also enables the MTC application server to communicate with the MTC-IWF. It is assumed that the SCS is controlled by a PLMN operator or an MTC service provider.
  • MTC-IWF is a control plane entity belonging to PLMN.
  • MTC-IWF has a signaling interface (reference point) with SCS, and nodes in PLMN (for example, Home Subscriber Server (HSS), Short Message Service-Service Center (SMS-SC), Serving GPRS Support Node ( SGSN), Mobility Management Entity (MME), Mobile Switching Center (MSC)) and signaling interfaces (reference points).
  • the MTC-IWF acts as a control plane interface for the M2M service layer including SCS and 3GPP PLMN to interwork while hiding the details of the 3GPP PLMN topology.
  • the inventor of the present case examined various use cases of the MTC application. For example, it is conceivable that information (e.g. load information) relating to Public Land Mobile Mobile Network (PLMN) is provided from the PLMN to an MTC service customer (i.e. Further, for example, it is conceivable to determine a charging policy (e.g. fee) related to the MTC service according to the load status of the PLMN.
  • the MTC-IWF or SCS can load the user plane and / or the control plane via the signaling interface (reference point) to and from the network element in the PLMN. It is preferable that the situation can be acquired.
  • Non-Patent Document 1 does not assume that the load status of the PLMN user plane or control plane is collected in MTC-IWF or SCS. Therefore, the MTC-IWF or SCS signaling interfaces (reference points) specified in Non-Patent Document 1 or the information transferred by these signaling interfaces is the load information of the PLMN user plane or control plane. Or it may not be enough to collect at SCS.
  • the present invention has been made on the basis of the above-mentioned knowledge of the inventor, and one of the purposes thereof is an MTC-IWF entity for facilitating collection of PLMN load information in the MTC-IWF or SCS.
  • SCS entity PCRF entity, communication method, and program.
  • the MTC-IWF entity has a messaging unit.
  • the messaging unit is configured via a signaling interface between the Gateway-General-Packet-Radio-Service-Support-Node (GGSN), Serving-Gateway (S-GW), or Packet-Data-Network Gateway (P-GW) and the MTC-IWF entity.
  • the control message including the first load information is received from the GGSN, the S-GW, or the P-GW.
  • the first load information indicates a load status of a user plane or a control plane in the GGSN, the S-GW, or the P-GW.
  • the communication method includes the first load information in the MTC-IWF entity via a signaling interface between the GGSN, S-GW, or P-GW and the MTC-IWF entity.
  • the first load information indicates a load status of a user plane or a control plane in the GGSN, the S-GW, or the P-GW.
  • the MTC-IWF entity has a messaging part.
  • the messaging unit is operable to receive a control message including first load information from the SGSN or the MME via a signaling interface between the SGSN or MME and the MTC-IWF entity.
  • the first load information indicates a load status of a user plane or a control plane in the GGSN, S-GW, or P-GW.
  • the communication method includes, in the MTC-IWF entity, sending a control message including first load information via the signaling interface between the SGSN or MME and the MTC-IWF entity to the SGSN or the Including receiving from MME.
  • the first load information indicates a load status of a user plane or a control plane in the GGSN, S-GW, or P-GW.
  • the MTC-IWF entity has a messaging unit.
  • the messaging unit operates to receive a control message including first load information from the PCRF via a signaling interface between a Policy-and-Charging-Rule-Function (PCRF) and the MTC-IWF entity.
  • the first load information indicates a load status of a user plane or a control plane in the GGSN, S-GW, or P-GW.
  • the communication method receives, in the MTC-IWF entity, a control message including first load information from the PCRF via a signaling interface between the PCRF and the MTC-IWF entity. Operate.
  • the first load information indicates a load status of a user plane or a control plane in the GGSN, S-GW, or P-GW.
  • the SCS entity has first and second messaging units.
  • the first messaging unit operates to communicate with the MTC-IWF entity via a first signaling interface between the MTC-IWF entity and the SCS entity.
  • the second messaging unit sends a control message including first load information to the GGSN, the S-GW, or a second signaling interface between a P-GW and the SCS entity. It operates to receive from the S-GW or the P-GW.
  • the first load information indicates a load status of a user plane or a control plane in the GGSN, S-GW, or P-GW.
  • a communication method comprises: (a) communicating with the MTC-IWF entity at a SCS entity via a first signaling interface between the MTC-IWF entity and the SCS entity; and (B) In the SCS entity, a control message including first load information is sent to the GGSN, the S-GW, or a second signaling interface between the P-GW and the SCS entity. Receiving from the S-GW or the P-GW.
  • the first load information indicates a load status of the user plane or the control plane in the GGSN, S-GW, or P-GW.
  • the PCRF entity has a control unit and a messaging unit.
  • the control unit operates to supply a Policy and Charging Control (PCC) rule to the GGSN or P-GW as a Policy Charging Enforcement Function (PCEF).
  • PCEF Policy Charging Enforcement Function
  • the messaging unit operates to send load information to the SCS or application server.
  • the load information indicates a load status of a user plane or a control plane in the GGSN, the P-GW, or the S-GW.
  • the SCS entity has first and second messaging units.
  • the first messaging unit operates to communicate with the MTC-IWF entity via a first signaling interface between the MTC-IWF entity and the SCS entity.
  • the second messaging unit operates to receive a control message including load information from the PCRF via a second signaling interface between the PCRF and the SCS entity.
  • the load information indicates the load status of the user plane or control plane in the GGSN, S-GW, or P-GW.
  • the communication method includes (a) supplying a PCC rule to a GGSN or P-GW as a PCEF in a PCRF entity, and (b) loading information to an SCS or an application server in the PCRF entity. Including sending.
  • the load information indicates a load status of a user plane or a control plane in the GGSN, the P-GW, or the S-GW.
  • the communication method comprises: (a) communicating with the MTC-IWF entity at a SCS entity via a first signaling interface between the MTC-IWF entity and the SCS entity; and (B)
  • the SCS entity includes receiving a control message including load information from the PCRF via a second signaling interface between the PCRF and the SCS entity.
  • the load information indicates the load status of the user plane or control plane in the GGSN, S-GW, or P-GW.
  • the MTC-IWF entity has a messaging unit.
  • the messaging unit is operable to receive a control message including first load information from the SGSN or the MME via a signaling interface between the SGSN or MME and the MTC-IWF entity.
  • the first load information indicates a load status of the SGSN or the MME.
  • the communication method includes a control message including first load information in the MTC-IWF entity via a signaling interface between the SGSN or MME and the MTC-IWF entity. Including receiving from MME.
  • the first load information indicates a load status of the SGSN or the MME.
  • the MTC-IWF entity has a messaging unit.
  • the messaging unit is operative to receive a control message including first load information from the TDF via a signaling interface between a Traffic Detection Function (TDF) and the MTC-IWF entity.
  • the first load information indicates a load status of a user plane load status in the GGSN, S-GW, or P-GW.
  • the communication method includes the control message including the first load information in the MTC-IWF entity via a signaling interface between the Traffic Detection Function (TDF) and the MTC-IWF entity. Including receiving from TDF.
  • the first load information indicates a load status of a user plane load status in the GGSN, S-GW, or P-GW.
  • the program is a group of instructions for causing a computer to perform the communication method according to the second, fourth, sixth, eighth, eleventh, twelfth, fourteenth, or sixteenth aspect. including.
  • an MTC-IWF entity an SCS entity, a PCRF entity, a communication method, and a program for facilitating the collection of PLMN load information in MTC-IWF or SCS.
  • FIG. 1 is a diagram illustrating a configuration example of a wireless communication system according to the present embodiment.
  • the wireless communication system according to the present embodiment is a 3GPP wireless communication system, that is, UMTS or EPS.
  • EPS is also called Long Term Evolution (LTE) system.
  • UE3 executes MTC UE application 31 and behaves as an MTC device.
  • the UE 3 as an MTC device is connected to the SGSN 54 or the MME 55 via the Radio) Access Network (RAN) 59 and communicates with the MTC application server 4.
  • RAN Radio
  • UE3 may be an MTC gateway device.
  • MTC gateway devices have 3GPP mobile communication capabilities (ie UE capabilities) and connect to neighboring devices (eg sensors, radio frequency identification (RFID) tags, car navigation devices) via personal / local area connection technology To do.
  • Specific examples of personal / local area connection technologies include IEEE 802.15, ZigBee, Bluetooth, IEEE 802.11a.
  • the neighboring device connected to the MTC gateway device is typically a device that does not have a 3GPP mobile communication function, but may be a device that has a 3GPP mobile communication function (that is, an MTC device). .
  • MTC device and MTC gateway device are used without any particular distinction. That is, the term MTC device as used herein encompasses an MTC gateway device. Therefore, UE3 as an MTC device also means UE3 as an MTC gateway device.
  • MTC-IWF entity 1 is a control plane entity belonging to PLMN.
  • the MTC-IWF entity 1 communicates with other network elements via a signaling interface (reference point).
  • the MTC-IWF entity 1 behaves as a control plane interface or gateway for the M2M service layer including the SCS 2 and 3GPP PLMN to interwork while concealing the details of the 3GPP PLMN topology.
  • the signaling interface (reference point) of the MTC-IWF entity 1 and other network elements will be described.
  • MTC-IWF entity 1 communicates with SCS2 via a Tsp reference point.
  • the SCS 2 connects the MTC application server 4 to the PLMN so that the MTC application server 4 can communicate with the UE 3 (that is, the MTC device) via the PLMN service defined by 3GPP. Further, the SCS 2 enables the MTC application server 4 to communicate with the MTC-IWF entity 1.
  • the SCS2 is controlled by a PLMN operator or an MTC service provider. SCS2 is also called an MTC server or an M2M server.
  • the SCS 2 may be a single independent physical entity or may be a functional entity added to another network element (for example, the MTC application server 4).
  • the Tsp reference point is used, for example, for transmitting a device trigger transmission request (Device Trigger Request (DTR)) from the SCS2 to the MTC-IWF entity 1, and for reporting the device trigger result from the MTC-IWF entity 1 to the SCS2. It is done.
  • DTR Device Trigger Request
  • the MTC-IWF entity 1 communicates with HSS 51 via the S6m reference point.
  • the HSS 51 is a control plane node arranged in the PLMN core network, and manages subscriber information of the UE 3.
  • the S6m reference point is used for, for example, transmission of a subscriber information inquiry from the MTC-IWF entity 1 to the HSS 51 and transmission of subscriber information from the HSS 51 to the MTC-IWF entity 1.
  • MTC-IWF entity 1 communicates with SMS-SC 52 via a T4 reference point.
  • the SMS-SC 52 transmits a short message in the Mobile Terminated (MT) direction to the UE 3 via the SGSN 54, MME 55, or MSC 56, and receives a short message in the Mobile Originated (MO) direction from the UE 3.
  • the T4 interface is, for example, for transmitting a device trigger transmission request (ie, a short message transmission request) from the MTC-IWF entity 1 to the SMS-SC 52, and for transmitting a confirmation message from the SMS-SC 52 to the MTC-IWF entity 1. Used for.
  • MTC-IWF entity 1 communicates with Charging Data Function (CDF) / Charging Gateway Function (CGF) 53 via Rf reference point or Ga reference point.
  • the CDF included in the CDF / CGF 53 receives the charging information (charging information) about the chargeable event (chargeable event) generated by the Charging Trigger Function (CTF) via the Rf reference point, and determines a predetermined charging party ( Generate Charging Data Record (CDR) for each charged party.
  • the CGF included in the CDF / CGF 53 receives the CDR from the CDF via the Ga reference point, and transmits the CDR to the charging system.
  • the chargeable event means an activity that uses a communication network resource or service.
  • Billable events include user to user communication (eg a single call, a data communication session or a short message), user to network communication (eg service profile administration), inter-network communication (eg transferring calls, signalling, or short messages), or mobility (eg roaming or inter-system handover).
  • CDR means formatted billing information (e.g. talk time, data transfer amount, etc.).
  • the MTC-IWF entity 1 has, for example, CTF or CTF IV and CDF.
  • a CTF (not shown) arranged in the MTC-IWF entity 1 sends charging information to the CDF / CGF 53 via the Rf reference point.
  • the CDF (not shown) arranged in the MTC-IWF entity 1 sends the CDR to the CDF / CGF 53 via the Ga reference point.
  • the MTC-IWF entity 1 communicates with SGSN 54 via a T5a reference point.
  • the SGSN 54 is a UMTS core network node and has a user plane function and a control plane function.
  • the user plane function of SGSN54 has a user plane tunneling interface (ie Iu-PS reference point) with RAN59 (ie UMTS Terrestrial Radio Access Network (UTRAN)), Gateway GPRS Support Node (GGSN, ie GGSN). / P-GW57) has a user plane tunneling interface (ie Gn reference point).
  • the user plane function of the SGSN 54 transfers the user data packet of the UE 3 between the RAN 59 and the GGSN (GGSN / P-GW 57).
  • the control plane function of the SGSN 54 performs UE 3 mobility management (e.g. location registration), bearer management (e.g. bearer establishment, bearer configuration change, bearer release), and the like.
  • the control plane function of the SGSN 54 transmits / receives control messages to / from nodes (i.e.eRadio Network Controller (RNC)) in the RAN 59 and sends / receives Non-Access Stratum (NAS) messages to / from UE3.
  • the NAS message is a control message that is not terminated by the RAN 59 and is transparently transmitted and received between the UE 3 and the SGSN 54 without depending on the RAN radio access scheme.
  • the SGSN 54 operates as a mobility anchor for the user plane when the UE 3 performs an inter-RNC handover.
  • MTC-IWF entity 1 communicates with MME 55 via a T5b reference point.
  • the MME 55 is an EPS core network node and performs mobility management (e.g. location registration), bearer management (e.g. bearer establishment, bearer configuration change, bearer release), and the like of the UE 3.
  • the MME 55 transmits / receives a control message to / from a node (i.e. eNodeB) in the RAN 59 and transmits / receives a NAS message to / from the UE 3.
  • the NAS message is not terminated at the RAN 59 and is transmitted and received transparently between the UE 3 and the MME 55 without depending on the RAN radio access scheme.
  • MTC-IWF entity 1 communicates with MSC 56 via a T5c reference point.
  • the MSC 56 is a node of a Circuit-Switched (CS) service domain (i.e. Public-Switched Telephone Network (PSTN) / Integrated Services Digital Network (ISDN)) arranged in the core network.
  • CS Circuit-Switched
  • PSTN Public-Switched Telephone Network
  • ISDN Integrated Services Digital Network
  • Non-Patent Document 1 defines the Tsp, S6m, T4, Rf / Ga, and T5a / T5b / T5c reference points described above. However, Non-Patent Document 1 does not define reference points between the MTC-IWF entity 1 and the GGSN / P-GW 57 and between the MTC-IWF entity 1 and the S-GW 58.
  • Gateway GPRS Support Node is a UMTS core network node.
  • Packet Data Network Gateway is an EPS core network node.
  • GGSN / P-GW57 means GGSN or P-GW or both.
  • the GGSN / P-GW 57 is a user plane packet transfer node arranged in the PLMN core network, and transfers the user data packet of the UE 3.
  • the GGSN / P-GW 57 plays a role of a gateway with an external packet data network (PDN) and provides connectivity to the UE 3 to the external PDN.
  • the GGSN / P-GW 57 has Charging Trigger Function (CTF), Charging Data Function (CDF), and Policy and Charging Enforcement Function (PCEF).
  • CTF Charging Trigger Function
  • CDF Charging Data Function
  • PCEF Policy and Charging Enforcement Function
  • GGSN / P-GW57 as CTF collects charging information about a chargeable event (charging event). Then, the GGSN / P-GW 57 as a CDF generates Charging Data Record (CDR) for each predetermined charging party (charged party) using the collected charging information.
  • CDR Charging Data Record
  • GGSN / P-GW57 as PCEF is a service data flow (that is, IP packet flow) unit of UE3 in accordance with a Policy and Charging Control (PCC) rule supplied from a Policy and Charging Rule Function (PCRF, not shown).
  • PCC Policy and Charging Control
  • PCRF Policy and Charging Rule Function
  • FBC Quality of Service
  • CTF, CDF, and PCEF included in GGSN / P-GW57.
  • the GGSN / P-GW 57 performs filtering on the service data flow of UE3, monitors the service data flow as a chargeable event that triggers generation and closing of the CDR, counts the number of packets in the service data flow, Generate a CDR containing billing information about the flow.
  • the S-GW 58 is a packet forwarding node arranged in the EPS core network.
  • S-GW58 has a user plane tunneling interface (ie S1-U reference point) with RAN59 (ie Evolved UTRAN), and user plane with P-GW (ie GGSN / P-GW57). With a tunneling interface (ie S5 / S8 reference point).
  • S-GW58 transfers the user data packet of UE3 between RAN59 and P-GW (GGSN / P-GW57).
  • the S-GW 58 operates as a mobility anchor for the user plane during the UE 3 inter-eNodeB handover.
  • the MTC-IWF entity 1 has a signaling interface (reference point) 11 between the GGSN / P-GW 57. Then, the MTC-IWF entity 1 receives the load information of the GGSN or P-GW from the GGSN / P-GW 57 via the signaling interface 11.
  • the load information of the GGSN or P-GW indicates the load status of the user plane and / or control plane in the GGSN or P-GW.
  • the load information of the GGSN or P-GW includes, for example, the number of transferred user data packets, the number of established tunnels, the number of established bearers, the number of bearer contexts held, or the control message processed. Indicates a number.
  • FIG. 2 is a sequence diagram showing a procedure for acquiring the load information of the GGSN or P-GW in the MTC-IWF entity 1.
  • the GGSN / P-GW 57 transmits a control message to the MTC-IWF entity 1 via the signaling interface 11.
  • the control message includes GGSN or P-GW load information.
  • the MTC-IWF entity 1 has a signaling interface (reference point) 12 with the S-GW 58. Then, the MTC-IWF entity 1 receives the load information of the S-GW 58 from the S-GW 58 via the signaling interface 12.
  • the load information of the S-GW 58 indicates the load status of the user plane and / or the control plane in the S-GW 58.
  • the load information of the S-GW 58 includes, for example, the number of transferred user data packets, the number of established tunnels, the number of established bearers, the number of bearer contexts held, or the number of processed control messages. Show.
  • FIG. 3 is a sequence diagram showing a procedure for acquiring the load information of the S-GW 58 in the MTC-IWF entity 1.
  • the S-GW 58 transmits a control message to the MTC-IWF entity 1 via the signaling interface 12.
  • the control message includes the load information of the S-GW 58.
  • the MTC-IWF entity 1 may have only one of the signaling interfaces 11 and 12. In this case, the MTC-IWF entity 1 may receive the load information of only one of the GGSN / P-GW 57 and the S-GW 58.
  • the MTC-IWF entity 1 transmits the GGSN via the signaling interface 11 with the GGSN / P-GW 57 or the signaling interface 12 with the S-GW 58. / P-GW57 or S-GW58 or both load information is received. Therefore, the MTC-IWF entity 1 can use the load information of the GGSN / P-GW 57 and / or the S-GW 58. For example, the MTC-IWF entity 1 may provide additional services using load information of the GGSN / P-GW 57 and / or the S-GW 58.
  • the MTC-IWF entity 1 may determine a charging policy related to communication of the UE 3 as the MTC device based on the load information of the GGSN / P-GW 57 and / or the S-GW 58, for example.
  • the charging policy includes, for example, an MTC service usage fee (e.g. ⁇ ⁇ device-per-device trigger fee, UE3 user data unit volume fee).
  • the MTC-IWF entity 1 may predict the future load of the PLMN based on the load information of the GGSN / P-GW 57 and / or the S-GW 58. For example, the MTC-IWF entity 1 statistically monitors and analyzes the load information and determines a time zone in which the loads such as the GGSN / P-GW 57 and the S-GW 58 are relatively large or relatively small. Also good.
  • the load of the future PLMN may be used, for example, for adjusting the communication timing of the MTC service (e.g., adjusting the device trigger generation timing by the MTC application server 4).
  • the MTC-IWF entity 1 creates second load information indicating the load status of the PLMN based on the load information (first load information) of the GGSN / P-GW 57 and / or the S-GW 58, and the SCS2
  • the second load information may be sent to the MTC application server 4 via.
  • FIG. 4 is a block diagram showing a configuration example of the MTC-IWF entity 1.
  • the MTC-IWF entity 1 includes a messaging unit 101 and a control unit 102.
  • the messaging unit 101 receives the load information of the GGSN / P-GW 57 and / or the S-GW 58 via the signaling interface 11 with the GGSN / P-GW 57 or the signaling interface 12 with the S-GW 58. Operates to receive.
  • the control unit 102 operates to perform processing related to the additional service (e.g. charging policy determination) as described above, using the load information of the GGSN / P-GW 57 and / or the S-GW 58.
  • the additional service e.g. charging policy determination
  • FIG. 5 is a diagram illustrating a configuration example of the wireless communication system according to the present embodiment.
  • the wireless communication system according to the present embodiment is a 3GPP wireless communication system, that is, UMTS or EPS.
  • the MTC-IWF entity 1 sends a control message including load information to the SGSN 54 via the signaling interface (ie, T5a reference point or T5b reference point) between the SGSN 54 or MME 55 and the MTC-IWF entity 1. Or it receives from MME55.
  • the load information indicates the load status of GGSN / P-GW 57 or S-GW 58 or both.
  • the SGSN 54 sends the load information of the GGSN to the GGSN (GGSN / P-) via the existing signaling interface (ie Gn reference point) with the GGSN. You may receive from GW57).
  • the MME 55 may receive the load information of the S-GW and / or the P-GW from the S-GW 58 via the existing signaling interface (ie, S11 reference point) with the S-GW 58. .
  • the S-GW 58 uses the existing signaling interface (ie S5 / S8 reference point) to the P-GW. May be received from the P-GW (GGSN / P-GW 57).
  • FIG. 6 is a sequence diagram showing a procedure for acquiring the load information of the GGSN in the MTC-IWF entity 1.
  • the SGSN 54 transmits a control message to the MTC-IWF entity 1 via the T5a reference point.
  • the control message includes load information of GGSN (GGSN / P-GW57).
  • FIG. 7 is a sequence diagram showing a procedure for acquiring the load information of the P-GW (GGSN / P-GW 57) and / or the S-GW 58 in the MTC-IWF entity 1.
  • the MME 55 transmits a control message to the MTC-IWF entity 1 via the T5b reference point.
  • the control message includes load information of P-GW (GGSN / P-GW 57) or S-GW 58 or both.
  • the MTC-IWF entity 1 can receive the load information of the GGSN / P-GW 57 and / or the S-GW 58. Therefore, the MTC-IWF entity 1 can use the load information of the GGSN / P-GW 57 and / or the S-GW 58. For example, the MTC-IWF entity 1 may provide additional services using load information of the GGSN / P-GW 57 and / or the S-GW 58.
  • FIG. 8 is a diagram illustrating a configuration example of the wireless communication system according to the present embodiment.
  • the wireless communication system according to the present embodiment is a 3GPP wireless communication system, that is, UMTS or EPS.
  • the MTC-IWF entity 1 receives a control message including load information from the PCRF 60 via the signaling interface (reference point) 13 between the PCRF 60 and the MTC-IWF entity 1.
  • the load information indicates the load status of GGSN / P-GW 57 or S-GW 58 or both.
  • the PCRF 60 transmits the GGSN / P via the existing signaling interface (ie, Gx reference point) to the GGSN / P-GW 57.
  • -Load information of GW57 may be received from GGSN / P-GW57.
  • the PCRF 60 loads the load of the S-GW 58 via the existing signaling interface (ie, Gxc reference point) with the S-GW 58.
  • Information may be received from the S-GW 58.
  • the PCRF 60 may receive the load information of the GGSN / P-GW 57 from the TDF (not shown) via a signaling interface (i.e. Sd reference point) with the Traffic Function (TDF).
  • TDF has a deep packet inspection function.
  • the TDF receives an Application Detection and Control (ADC) rule from the PCRF 60 via the Sd reference point, performs deep packet inspection on the user packet according to the ADC rule, and detects traffic of the application specified by the ADC rule. Then, the TDF reports the application traffic detection result to the PCRF 60 via the Sd reference point. Therefore, the TDF can detect the traffic amount for each application, and can detect the load of the GGSN / P-GW 57 for each application.
  • ADC Application Detection and Control
  • the signaling interface 13 between the PCRF 60 and the MTC-IWF entity 1 may be an Rx reference point.
  • the Rx reference point is the interface between PCRF and Application Function (AF).
  • the PCRF 60 may receive application level service information from the MTC-IWF entity 1, determine a PCC rule, and supply the PCC rule to the GGSN / P-GW 57.
  • FIG. 9 is a sequence diagram showing a procedure for acquiring load information of the GGSN / P-GW 57 and / or the S-GW 58 in the MTC-IWF entity 1.
  • the PCRF 60 transmits a control message to the MTC-IWF entity 1 via the signaling interface 13.
  • the control message includes load information of GGSN / P-GW 57 or S-GW 58 or both.
  • the MTC-IWF entity 1 can receive the load information of the GGSN / P-GW 57 and / or the S-GW 58. Therefore, the MTC-IWF entity 1 can use the load information of the GGSN / P-GW 57 and / or the S-GW 58. For example, the MTC-IWF entity 1 may provide additional services using load information of the GGSN / P-GW 57 and / or the S-GW 58.
  • FIG. 10 is a diagram illustrating a configuration example of the wireless communication system according to the present embodiment.
  • the wireless communication system according to the present embodiment is a 3GPP wireless communication system, that is, UMTS or EPS.
  • the SCS 2 instead of the MTC-IWF entity 1, the SCS 2 operates so as to receive the load information of the GGSN / P-GW 57 and / or the S-GW 58.
  • the SCS 2 according to the present embodiment has a signaling interface (reference point) 14 between the GGSN / P-GW 57. Then, the SCS 2 receives the load information of the GGSN or P-GW from the GGSN / P-GW 57 via the signaling interface 13.
  • the load information of the GGSN or P-GW indicates the load status of the user plane and / or control plane in the GGSN or P-GW.
  • FIG. 11 is a sequence diagram showing a procedure for acquiring the load information of the GGSN or P-GW in the SCS2.
  • the GGSN / P-GW 57 transmits a control message to the SCS 2 via the signaling interface 14.
  • the control message includes GGSN or P-GW load information.
  • the SCS 2 has a signaling interface (reference point) 15 between the SCS 2 and the S-GW 58. Then, the SCS 2 receives the load information of the S-GW 58 from the S-GW 58 via the signaling interface 15.
  • the load information of the S-GW 58 indicates the load status of the user plane and / or the control plane in the S-GW 58.
  • FIG. 12 is a sequence diagram showing a procedure for acquiring the load information of the S-GW 58 in the SCS2.
  • the S-GW 58 transmits a control message to the SCS 2 via the signaling interface 15.
  • the control message includes the load information of the S-GW 58.
  • the SCS 2 can receive load information of the GGSN / P-GW 57 and / or the S-GW 58. Therefore, the SCS 2 can use the load information of the GGSN / P-GW 57 and / or the S-GW 58. For example, the SCS 2 may provide additional services using load information of the GGSN / P-GW 57 and / or the S-GW 58.
  • the SCS 2 may determine a charging policy related to communication of the UE 3 as the MTC device based on, for example, load information of the GGSN / P-GW 57 and / or the S-GW 58. Further, the SCS 2 may predict the future load of the PLMN based on the load information of the GGSN / P-GW 57 and / or the S-GW 58. Also, the SCS 2 creates second load information indicating the load status of the PLMN based on the load information (first load information) of the GGSN / P-GW 57 or S-GW 58 or both of them, and sends it to the MTC application server 4. The second load information may be sent.
  • the SCS 2 may send the load information of the GGSN / P-GW 57 and / or the S-GW 58 to the MTC-IWF entity 1 via the signaling interface (ie, Tsp reference point) with the MTC-IWF entity 1. Good. Thereby, the MTC-IWF entity 1 can use the load information of the GGSN / P-GW 57 and / or the S-GW 58.
  • FIG. 13 is a block diagram showing a configuration example of SCS2.
  • the SCS 2 includes a first messaging unit 201 and a second messaging unit 202.
  • the first messaging unit 201 operates to communicate with the MTC-IWF entity 1 via the Tsp reference point.
  • the second messaging unit 202 transmits the GGSN / P-GW 57 and / or the S-GW 58 via the signaling interface 14 to / from the GGSN / P-GW 57 or the signaling interface 15 to / from the S-GW 58. Operates to receive load information.
  • the first messaging unit 201 may transmit a control message including load information of the GGSN / P-GW 57 and / or the S-GW 58 to the MTC-IWF entity 1 via the Tsp reference point.
  • FIG. 14 is a diagram illustrating a configuration example of the wireless communication system according to the present embodiment.
  • the wireless communication system according to the present embodiment is a 3GPP wireless communication system, that is, UMTS or EPS.
  • the SCS 2 operates so as to receive the load information of the GGSN / P-GW 57 and / or the S-GW 58.
  • the load information indicates the load status of the user plane and / or the control plane.
  • the SCS 2 according to the present embodiment has a signaling interface (reference point) 16 between the SCS 2 according to the present embodiment and the PCRF 60, and receives the load information from the PCRF 60.
  • the signaling interface 16 between the PCRF 60 and the SCS 2 may be an Rx reference point.
  • the Rx reference point is the interface between PCRF and Application Function (AF).
  • the PCRF 60 includes a signaling interface with the GGSN / P-GW 57 (ie Gx reference point), a signaling interface with the S-GW 58 (ie Gxc reference point), Alternatively, the load information of the GGSN / P-GW57 and / or the S-GW58 may be obtained by using a signaling interface (ie, Sd reference point) with the TrafficTrDetection Function (TDF), or a combination thereof. .
  • TDF TrafficTrDetection Function
  • FIG. 15 is a sequence diagram showing a procedure for acquiring the load information of the GGSN / P-GW 57 and / or the S-GW 58 in the SCS 2.
  • the PCRF 60 transmits a control message to the SCS2 via the signaling interface 16.
  • the control message includes load information of GGSN / P-GW 57 or S-GW 58 or both.
  • the SCS 2 can receive the load information of the GGSN / P-GW 57 and / or the S-GW 58. Therefore, the SCS 2 can use the load information of the GGSN / P-GW 57 and / or the S-GW 58. For example, the SCS 2 may provide additional services using load information of the GGSN / P-GW 57 and / or the S-GW 58.
  • the SCS 2 may send the load information of the GGSN / P-GW 57 and / or the S-GW 58 to the MTC-IWF entity 1 via the signaling interface (ie, Tsp reference point) with the MTC-IWF entity 1. Good. Thereby, the MTC-IWF entity 1 can use the load information of the GGSN / P-GW 57 and / or the S-GW 58.
  • FIG. 16 is a block diagram illustrating a configuration example of the PCRF 60.
  • the PCRF 60 includes a messaging unit 601 and a control unit 602.
  • the control unit 602 operates to supply the PCC rule to the GGSN / P-GW 57 as the PCEF.
  • the messaging unit 601 operates to transmit the load information of the GGSN / P-GW 57 and / or the S-GW 58 to the SCS 2 via the signaling interface 16 with the SCS 2.
  • the PCRF 60 may operate so as to transmit the load information of the GGSN / P-GW 57 and / or the S-GW 58 to the application server 4 instead of the SCS 2.
  • FIG. 17 is a diagram illustrating a configuration example of a wireless communication system according to the present embodiment.
  • the wireless communication system according to the present embodiment is a 3GPP wireless communication system, that is, UMTS or EPS.
  • the MTC-IWF entity 1 receives a control message including load information from the TDF 61 via the signaling interface (reference point) 17 between the Traffic Detection Function (TDF) 61 and the MTC-IWF entity 1.
  • the load information indicates the load information of the PLMN user plane, in other words, the load status of the GGSN / P-GW 57 and / or the S-GW 58.
  • TDF61 has a deep packet inspection function.
  • the TDF 61 receives an Application Detection and Control (ADC) rule from the PCRF 60 via the Sd reference point, performs deep packet inspection on the user packet according to the ADC rule, and performs an application specified by the ADC rule (in other words, packet flow or IP-CAN session) traffic is detected. Therefore, the TDF 61 can detect the traffic amount for each application, and can detect the load of the GGSN / P-GW 57 for each application. Furthermore, the TDF 61 of the present embodiment reports the detection result of the traffic volume for each application (or the load of the GGSN / P-GW 57 for each application) to the MTC-IWF entity 1 via the signaling interface 17.
  • ADC Application Detection and Control
  • FIG. 18 is a sequence diagram showing a procedure for acquiring the load information of the PLMN user plane detected by the TDF 61 in the MTC-IWF entity 1.
  • the TDF 61 transmits a control message to the MTC-IWF entity 1 via the signaling interface 17.
  • the control message includes load information of the PLMN user plane, in other words, load information of the GGSN / P-GW 57 and / or the S-GW 58.
  • the MTC-IWF entity 1 can receive the load information of the GGSN / P-GW 57 and / or the S-GW 58. Therefore, the MTC-IWF entity 1 can use the load information of the GGSN / P-GW 57 and / or the S-GW 58. For example, the MTC-IWF entity 1 may provide additional services using load information of the GGSN / P-GW 57 and / or the S-GW 58.
  • a configuration example of the wireless communication system according to the present embodiment may be the same as that illustrated in FIG. 5, for example.
  • the MTC-IWF entity 1 operates to receive the load information of the SGSN 54 or MME 55 from the SGSN 54 or MME 55.
  • the load information of the SGSN 54 or the MME 55 indicates the load status of the control processing in the SGSN 54 or the MME 55 as a control plane node.
  • the load information of the SGSN 54 or the MME 55 is, for example, the number of processes of all control messages, the number of processes of attach requests from the UE 3, the number of processes of bearer establishment requests (or bearer context activation requests) from the UE 3, or holds Indicates the number of bearer contexts.
  • the MTC-IWF entity 1 receives a control message including the load information of the SGSN 54 from the SGSN 54 via the signaling interface (ie, T5a reference point) between the SGSN 54 and the MTC-IWF entity 1. Also good. Further, the MTC-IWF entity 1 may receive a control message including the load information of the MME 55 from the MME 55 via a signaling interface (i.e. T5b reference point) between the MME 55 and the MTC-IWF entity 1.
  • FIG. 19 is a sequence diagram showing a procedure for acquiring the load information of the MME 55 in the MTC-IWF entity 1.
  • the MME 55 transmits a control message to the MTC-IWF entity 1 via the T5b reference point.
  • the control message includes the load information of the MME 55.
  • the configuration example of the MTC-IWF 1 according to the present embodiment may be the same as that shown in FIG.
  • the MTC-IWF entity 1 can receive the load information of the SGSN 54 or MME 55 as a control plane node. Therefore, the MTC-IWF entity 1 can use the load information of the SGSN 54 or the MME 55. For example, the MTC-IWF entity 1 uses the load information of the SGSN 54 or the MME 55 to add the same as described in the first embodiment regarding the use of the load information of the GGSN / P-GW 57 or S-GW 58. A service may be provided.
  • the processing performed by the MTC-IWF entity 1, SCS 2, MTC application server 4, SGSN 54, MME 55, GGSN / P-GW 57, S-GW 58, PCRF 60, and UE 3 described in the above embodiments is performed in the computer system.
  • Non-transitory computer readable media include various types of tangible storage media (tangible storage medium). Examples of non-transitory computer-readable media are magnetic recording media (eg flexible disks, magnetic tapes, hard disk drives), magneto-optical recording media (eg magneto-optical discs), Compact Disc Read Only Memory (CD-ROM), CD-ROM R, CD-R / W, semiconductor memory (for example, mask ROM, Programmable ROM (PROM), Erasable PROM (EPROM), flash ROM, Random Access Memory (RAM)).
  • the program may also be supplied to the computer by various types of temporary computer-readable media. Examples of transitory computer readable media include electrical signals, optical signals, and electromagnetic waves.
  • the temporary computer-readable medium can supply the program to the computer via a wired communication path such as an electric wire and an optical fiber, or a wireless communication path.
  • MTC-IWF Machine Type Communication Inter Working Function
  • GGSN Gateway General Packet Radio Service Support Node
  • S-GW Serving Gateway
  • P-GW Packet Data Network Gateway
  • the first load information indicates a load status of a user plane or a control plane in the GGSN, the S-GW, or the P-GW.
  • MTC-IWF entity Machine Type Communication Inter Working Function
  • appendix A2 The MTC-IWF entity according to appendix A1, further comprising a first control unit that determines a charging policy related to communication of a machine type communication (MTC) device based on the first load information.
  • MTC machine type communication
  • Appendix A3 The MTC-IWF entity according to appendix A1 or A2, further comprising a second control unit that predicts a future network load based on the first load information.
  • Second load information indicating the load status of the mobile core network is created based on the first load information, and the second load information is sent to the application server via the Service Capability Server (SCS).
  • SCS Service Capability Server
  • MTC-IWF Machine Type Communication Inter Working Function
  • GGSN Gateway General Packet Radio Service Support Node
  • S-GW Serving Gateway
  • P-GW Packet Data Network Gateway
  • MTC-IWF entity Receiving a control message including first load information from the GGSN, the S-GW, or the P-GW via a signaling interface between The first load information indicates a load status of a user plane or a control plane in the GGSN, the S-GW, or the P-GW. Communication method.
  • Appendix A6 The communication method according to appendix A5, further comprising determining a charging policy related to communication of a machine type communication (MTC) device based on the first load information.
  • MTC machine type communication
  • Appendix A7 The communication method according to appendix A5 or A6, further comprising predicting a future network load based on the first load information.
  • Appendix A8 Creating second load information indicating the load status of the mobile core network based on the first load information; and generating the second load information from the MTC-IWF entity via a Service Capability Server (SCS) Sending to the application server,
  • SCS Service Capability Server
  • the communication method includes a machine type communication interworking function (MTC-IWF) entity, a gateway general packet radio service support node (GGSN), a serving gateway (S-GW), or a packet data network gateway (P-GW).
  • MTC-IWF machine type communication interworking function
  • GGSN gateway general packet radio service support node
  • S-GW serving gateway
  • P-GW packet data network gateway
  • the first load information indicates a load status of a user plane or a control plane in the GGSN, the S-GW, or the P-GW. program.
  • a control message including first load information is transmitted from the SGSN or the MME via a signaling interface between a Serving General Packet Radio Service Support Node (SGSN) or a Mobility Management Entity (MME) and the MTC-IWF entity.
  • the first load information indicates a load status of a user plane or a control plane in a Gateway General Packet Radio Service Support Node (GGSN), Serving Gateway (S-GW), or Packet Data Network Gateway (P-GW).
  • GGSN Gateway General Packet Radio Service Support Node
  • S-GW Serving Gateway
  • P-GW Packet Data Network Gateway
  • Appendix B2 The MTC-IWF entity according to appendix B10, further comprising a first control unit that determines a charging policy related to communication of a machine type communication (MTC) device based on the first load information.
  • MTC machine type communication
  • Appendix B3 The MTC-IWF entity according to appendix B1 or B2, further comprising a second control unit that predicts a future network load based on the first load information.
  • Appendix B4 Second load information indicating the load status of the mobile core network is created based on the first load information, and the second load information is sent to the application server via the Service Capability Server (SCS).
  • SCS Service Capability Server
  • Appendix B5 The MTC-IWF entity according to any one of appendices B1 to B4, wherein the signaling interface is a T5a interface or a T5b interface.
  • the first is established via the signaling interface between the Serving General Packet Radio Service Support Node (SGSN) or Mobility Management Entity (MME) and the MTC-IWF entity.
  • SGSN Serving General Packet Radio Service Support Node
  • MME Mobility Management Entity
  • Receiving a control message including the load information of the SGSN or the MME The first load information indicates a load status of a user plane or a control plane in a Gateway General Packet Radio Service Support Node (GGSN), Serving Gateway (S-GW), or Packet Data Network Gateway (P-GW). Communication method.
  • GGSN Gateway General Packet Radio Service Support Node
  • S-GW Serving Gateway
  • P-GW Packet Data Network Gateway
  • Appendix B7 The communication method according to appendix B6, further comprising determining a charging policy related to communication of a machine type communication (MTC) device based on the first load information.
  • MTC machine type communication
  • Appendix B8 The communication method according to appendix B6 or B7, further comprising predicting a future network load based on the first load information.
  • Appendix B9 Creating second load information indicating the load status of the mobile core network based on the first load information; and generating the second load information from the MTC-IWF entity via a Service Capability Server (SCS) Sending to the application server,
  • SCS Service Capability Server
  • the communication method includes a signaling interface between a serving general packet radio service support node (SGSN) or a mobility management entity (MME) and the MTC-IWF entity.
  • SGSN serving general packet radio service support node
  • MME mobility management entity
  • GGSN Gateway General Packet Radio Service Support Node
  • S-GW Serving Gateway
  • P-GW Packet Data Network Gateway
  • a Service Capability Server (SCS) entity A first messaging unit that communicates with the MTC-IWF entity via a first signaling interface between a Machine type Communication Inter Working Function (MTC-IWF) entity and the SCS entity; Via a second signaling interface between the Gateway General Packet Radio Service Support Node (GGSN), Serving Gateway (S-GW), or Packet Data Network Gateway (P-GW) and the SCS entity, the first A second messaging unit for receiving a control message including load information from the GGSN, the S-GW, or the P-GW; The first load information indicates a load status of a user plane or a control plane in the GGSN, the S-GW, or the P-GW.
  • SCS entity A Service Capability Server
  • Appendix C2 The SCS entity according to appendix C1, wherein the first messaging unit transmits a control message including the first load information to the MTC-IWF entity via the first signaling interface.
  • SCS Service Capability Server
  • MTC-IWF Machine type Communication Inter Working Function
  • SCS Packet Data Network Gateway
  • GGSN Gateway General Packet Radio Service Support Node
  • S-GW Serving Gateway
  • P-GW Packet Data Network Gateway
  • Appendix C4 The communication method according to appendix C3, further comprising: transmitting a control message including the first load information from the SCS entity to the MTC-IWF entity via the first signaling interface.
  • a program for causing a computer to perform a communication method is: In a Service Capability Server (SCS) entity, communicating with the MTC-IWF entity via a first signaling interface between a Machine type Communication Inter Working Function (MTC-IWF) entity and the SCS entity; and In the SCS entity, via a second signaling interface between the Gateway General Packet Radio Service Support Node (GGSN), Serving Gateway (S-GW), or Packet Data Network Gateway (P-GW) and the SCS entity Receiving a control message including first load information from the GGSN, the S-GW, or the P-GW; With The first load information indicates a load status of a user plane or a control plane in the GGSN, the S-GW, or the P-GW. program.
  • SCS Service Capability Server
  • MTC-IWF Machine type Communication Inter Working Function
  • P-GW Packet Data Network Gateway
  • a control message including first load information is transmitted from the SGSN or the MME via a signaling interface between a Serving General Packet Radio Service Support Node (SGSN) or a Mobility Management Entity (MME) and the MTC-IWF entity.
  • the first load information indicates a load status of the SGSN or the MME.
  • the first is established via the signaling interface between the Serving General Packet Radio Service Support Node (SGSN) or Mobility Management Entity (MME) and the MTC-IWF entity.
  • SGSN Serving General Packet Radio Service Support Node
  • MME Mobility Management Entity
  • Receiving a control message including the load information of the SGSN or the MME The first load information indicates a load status of the SGSN or the MME. Communication method.
  • the communication method includes a signaling interface between a serving general packet radio service support node (SGSN) or a mobility management entity (MME) and the MTC-IWF entity.
  • SGSN serving general packet radio service support node
  • MME mobility management entity
  • MTC-IWF Machine Type Communication Inter Working Function
  • the first load information indicates a load status of a user plane in the Gateway General Packet Radio Service Support Node (GGSN), Serving Gateway (S-GW), or Packet Data Network Gateway (P-GW).
  • GGSN Gateway General Packet Radio Service Support Node
  • S-GW Serving Gateway
  • P-GW Packet Data Network Gateway
  • a control message including first load information is transmitted from the TDF via a signaling interface between the Traffic Detection Function (TDF) and the MTC-IWF entity. Ready to receive,
  • the first load information indicates a load status of a user plane in the Gateway General Packet Radio Service Support Node (GGSN), Serving Gateway (S-GW), or Packet Data Network Gateway (P-GW). Communication method.
  • GGSN Gateway General Packet Radio Service Support Node
  • S-GW Serving Gateway
  • P-GW Packet Data Network Gateway
  • a program for causing a computer to perform a communication method in a machine type communication interworking function (MTC-IWF) entity, control including first load information is performed via a signaling interface between a traffic detection function (TDF) and the MTC-IWF entity. Receiving a message from the TDF; The first load information indicates a load status of a user plane in the Gateway General Packet Radio Service Support Node (GGSN), Serving Gateway (S-GW), or Packet Data Network Gateway (P-GW). program.
  • MTC-IWF machine type communication interworking function
  • MTC-IWF Machine Type Communication Inter Working Function
  • SCS Service Capability Server
  • UE User Equipment
  • MTC application servers 11 to 17 Signaling interface (or reference point) 31 MTC UE application 51 Home Subscriber Server (HSS) 52 Short Message Service-Service Center (SMS-SC) 53 Charging Data Function (CDF) / Charging Gateway Function (CGF) 54 Serving General Packet Radio Service (GPRS) Support Node (SGSN) 55 Mobility Management Entity (MME) 56 Mobile Switching Center (MSC) 57 Gateway GPRS Support Node / Packet Data Network Gateway (GGSN / P-GW) 58 Serving Gateway (S-GW) 59 Radio Access Network (RAN) 60 Policy and Charging Rule Function (PCRF) 61 Traffic Detection Function (TDF) 101 messaging unit 102 control unit 201 first messaging unit 202 second messaging unit
  • PCRF Policy and Charging Rule Function
  • TDF Traffic Detection Function

Abstract

MTC-IWFエンティティ(1)は、メッセージング部(101)を有する。メッセージング部(101)は、PCRF(60)とMTC-IWFエンティティ(1)との間のシグナリング・インタフェース(13)を介して、第1の負荷情報を含む制御メッセージをPCRF(60)から受信するよう動作する。第1の負荷情報は、GGSN(57)、S-GW(58)、又はP-GW(57)におけるユーザープレーン又はコントロールプレーンの負荷状況を示す。これにより、例えば、PLMNの負荷情報をMTC-IWF又はSCSにおいて収集することを容易にできる。

Description

MTC-IWFエンティティ、SCSエンティティ、PCRFエンティティ、及び通信方法
 本出願は、Machine type Communication(MTC)をサポートするUniversal Mobile Telecommunications System(UMTS)及びEvolved Packet System(EPS)に関する。
 Third Generation Partnership Project(3GPP)はMTCの標準化を検討している。MTCは、Machine-to-Machine(M2M)ネットワーク又はセンサネットワークとも呼ばれる。3GPPは、MTCのために機械及びセンサに実装される移動局(MS, UE)を“MTCデバイス”と定義している。MTCデバイスは、機械(e.g., 自動販売機、ガスメータ、電気メータ、自動車、鉄道車両)及びセンサ(e.g., 環境、農業、交通等に関するセンサ)等の様々な機器に搭載される。MTCデバイスは、Public Land Mobile Network(PLMN)に接続し、MTCアプリケーションサーバ(Application Server(AS))と通信を行う。MTC アプリケーションサーバは、PLMNの外部(外部ネットワーク)に配置され、MTCアプリケーションを実行し、MTCデバイスに実装されたMTC UEアプリケーションと通信する。MTC アプリケーションサーバは、一般的に、MTCサービスプロバイダ(M2Mサービスプロバイダ)によって制御される。
 3GPPは、MTC アプリケーションサーバがMTCデバイスと通信できるようにするために、Service Capability Server (SCS)及びMachine Type Communication Inter Working Function (MTC-IWF)を含むネットワークエレメント、参照点(reference point)、及び手順(procedure)を規定している(非特許文献1を参照)。なお、参照点(reference point)は、インタフェースとも呼ばれる。
 SCSは、MTCアプリケーションサーバを3GPPのPLMNに接続し、3GPPで定義されたPLMNサービスを介してMTCアプリケーションサーバがUE(つまり、MTCデバイス)と通信できるようにするエンティティである。また、SCSは、MTCアプリケーションサーバがMTC-IWFと通信できるようにする。SCSは、PLMNのオペレータ、又はMTCサービスプロバイダによって制御されることが想定されている。
 MTC-IWFは、PLMNに属するコントロールプレーンのエンティティである。MTC-IWFは、SCSとのシグナリング・インタフェース(参照点)を有するとともに、PLMN内のノード(例えば、Home Subscriber Server(HSS)、Short Message Service - Service Center(SMS-SC)、Serving GPRS Support Node (SGSN)、Mobility Management Entity(MME)、Mobile Switching Center(MSC))とのシグナリング・インタフェース(参照点)を有する。MTC-IWFは、SCSを含むM2Mサービスレイヤと3GPP PLMNとが、3GPP PLMN のトポロジの詳細を隠蔽しながら協調動作(interwork)するためのコントロールプレーンのインタフェースとして振る舞う。
 本件の発明者は、MTCアプリケーションの様々なユースケースについて検討した。例えば、Public Land Mobile Network(PLMN)に関する情報(e.g. 負荷情報)をPLMNからMTCサービスの顧客(i.e. SCSの管理者、MTC アプリケーションサーバの管理者、又はMTCサービスプロバイダ)に提供することが考えられる。また、例えば、MTCサービスに関する課金ポリシー(e.g. 料金)をPLMNの負荷状況に応じて決定することが考えられる。これらのユースケースを実現するためには、例えば、MTC-IWF又はSCSは、PLMN内のネットワークエレメントとの間のシグナリング・インタフェース(参照点)を介して、ユーザープレーン若しくはコントロールプレーン又はこれら両方の負荷状況を取得できることが好ましい。しかしながら、非特許文献1は、PLMNのユーザープレーン又はコントロールプレーンの負荷状況をMTC-IWF又はSCSにおいて収集することについて想定していない。したがって、非特許文献1に規定されたMTC-IWF又はSCSのシグナリング・インタフェース(参照点)又はこれらのシグナリング・インタフェースで転送される情報は、PLMNのユーザープレーン又はコントロールプレーンの負荷情報をMTC-IWF又はSCSにおいて収集するために十分ではない可能性がある。
 本発明は、上述した発明者の知見に基づいてなされたものであり、その目的の1つは、PLMNの負荷情報をMTC-IWF又はSCSにおいて収集することを容易にするためのMTC-IWFエンティティ、SCSエンティティ、PCRFエンティティ、通信方法、及びプログラムを提供することである。
 第1の態様では、MTC-IWFエンティティは、メッセージング部を有する。前記メッセージング部は、Gateway General Packet Radio Service Support Node(GGSN)、Serving Gateway(S-GW)、又はPacket Data Network Gateway(P-GW)と前記MTC-IWFエンティティとの間のシグナリング・インタフェースを介して、第1の負荷情報を含む制御メッセージを前記GGSN、前記S-GW、又は前記P-GWから受信するよう動作する。前記第1の負荷情報は、前記GGSN、前記S-GW、又は前記P-GWにおけるユーザープレーン又はコントロールプレーンの負荷状況を示す。
 第2の態様では、通信方法は、MTC-IWFエンティティにおいて、GGSN、S-GW、又はP-GWと前記MTC-IWFエンティティとの間のシグナリング・インタフェースを介して、第1の負荷情報を含む制御メッセージを前記GGSN、前記S-GW、又は前記P-GWから受信することを含む。前記第1の負荷情報は、前記GGSN、前記S-GW、又は前記P-GWにおけるユーザープレーン又はコントロールプレーンの負荷状況を示す。
 第3の態様では、MTC-IWFエンティティは、メッセージング部を有する。前記メッセージング部は、SGSN又はMMEと前記MTC-IWFエンティティとの間のシグナリング・インタフェースを介して、第1の負荷情報を含む制御メッセージを前記SGSN又は前記MMEから受信するよう動作する。前記第1の負荷情報は、GGSN、S-GW、又はP-GWにおけるユーザープレーン又はコントロールプレーンの負荷状況を示す。
 第4の態様では、通信方法は、MTC-IWFエンティティにおいて、SGSN又はMMEと前記MTC-IWFエンティティとの間のシグナリング・インタフェースを介して、第1の負荷情報を含む制御メッセージを前記SGSN又は前記MMEから受信することを含む。前記第1の負荷情報は、GGSN、S-GW、又はP-GWにおけるユーザープレーン又はコントロールプレーンの負荷状況を示す。
 第5の態様では、MTC-IWFエンティティは、メッセージング部を有する。前記メッセージング部は、Policy and Charging Rule Function(PCRF)と前記MTC-IWFエンティティとの間のシグナリング・インタフェースを介して、第1の負荷情報を含む制御メッセージを前記PCRFから受信するよう動作する。前記第1の負荷情報は、GGSN、S-GW、又はP-GWにおけるユーザープレーン又はコントロールプレーンの負荷状況を示す。
 第6の態様では、通信方法は、MTC-IWFエンティティにおいて、PCRFと前記MTC-IWFエンティティとの間のシグナリング・インタフェースを介して、第1の負荷情報を含む制御メッセージを前記PCRFから受信するよう動作する。前記第1の負荷情報は、GGSN、S-GW、又はP-GWにおけるユーザープレーン又はコントロールプレーンの負荷状況を示す。
 第7の態様では、SCSエンティティは、第1及び第2のメッセージング部を有する。前記第1のメッセージング部は、MTC-IWFエンティティと前記SCSエンティティとの間の第1のシグナリング・インタフェースを介して、前記MTC-IWFエンティティと通信するよう動作する。前記第2のメッセージング部は、GGSN、S-GW、又はP-GWと前記SCSエンティティとの間の第2のシグナリング・インタフェースを介して、第1の負荷情報を含む制御メッセージを前記GGSN、前記S-GW、又は前記P-GWから受信するよう動作する。前記第1の負荷情報は、GGSN、S-GW、又はP-GWにおけるユーザープレーン又はコントロールプレーンの負荷状況を示す。
 第8の態様では、通信方法は、(a)SCSエンティティにおいて、MTC-IWFエンティティと前記SCSエンティティとの間の第1のシグナリング・インタフェースを介して、前記MTC-IWFエンティティと通信すること、及び(b)前記SCSエンティティにおいて、GGSN、S-GW、又はP-GWと前記SCSエンティティとの間の第2のシグナリング・インタフェースを介して、第1の負荷情報を含む制御メッセージを前記GGSN、前記S-GW、又は前記P-GWから受信することを含む。ここで、前記第1の負荷情報は、GGSN、S-GW、又はP-GWにおけるユーザープレーン又はコントロールプレーンの負荷状況を示す。
 第9の態様では、PCRFエンティティは、制御部及びメッセージング部を有する。前記制御部は、Policy and Charging Enforcement Function(PCEF)としてGGSN又はP-GWにPolicy and Charging Control(PCC)ルールを供給するよう動作する。前記メッセージング部は、負荷情報をSCS又はアプリケーションサーバに送るよう動作する。ここで、前記負荷情報は、前記GGSN、前記P-GW、又はS-GWにおけるユーザープレーン又はコントロールプレーンの負荷状況を示す。
 第10の態様では、SCSエンティティは、第1及び第2のメッセージング部を有する。前記第1のメッセージング部は、MTC-IWFエンティティと前記SCSエンティティとの間の第1のシグナリング・インタフェースを介して、前記MTC-IWFエンティティと通信するよう動作する。前記第2のメッセージング部は、PCRFと前記SCSエンティティとの間の第2のシグナリング・インタフェースを介して、負荷情報を含む制御メッセージを前記PCRFから受信するよう動作する。ここで、前記負荷情報は、GGSN、S-GW、又はP-GWにおけるユーザープレーン又はコントロールプレーンの負荷状況を示す。
 第11の態様では、通信方法は、(a)PCRFエンティティにおいて、PCEFとしてのGGSN又はP-GWにPCCルールを供給すること、及び(b)前記PCRFエンティティにおいて、負荷情報をSCS又はアプリケーションサーバに送ることを含む。ここで、前記負荷情報は、前記GGSN、前記P-GW、又はS-GWにおけるユーザープレーン又はコントロールプレーンの負荷状況を示す。
 第12の態様では、通信方法は、(a)SCSエンティティにおいて、MTC-IWFエンティティと前記SCSエンティティとの間の第1のシグナリング・インタフェースを介して、前記MTC-IWFエンティティと通信すること、及び(b)前記SCSエンティティにおいて、PCRFと前記SCSエンティティとの間の第2のシグナリング・インタフェースを介して、負荷情報を含む制御メッセージを前記PCRFから受信することを含む。ここで、前記負荷情報は、GGSN、S-GW、又はP-GWにおけるユーザープレーン又はコントロールプレーンの負荷状況を示す。
 第13の態様では、MTC-IWFエンティティは、メッセージング部を有する。前記メッセージング部は、SGSN又はMMEと前記MTC-IWFエンティティとの間のシグナリング・インタフェースを介して、第1の負荷情報を含む制御メッセージを前記SGSN又は前記MMEから受信するよう動作する。前記第1の負荷情報は、前記SGSN又は前記MMEの負荷状況を示す。
 第14の態様では、通信方法は、MTC-IWFエンティティにおいて、SGSN又はMMEと前記MTC-IWFエンティティとの間のシグナリング・インタフェースを介して、第1の負荷情報を含む制御メッセージを前記SGSN又は前記MMEから受信することを含む。前記第1の負荷情報は、前記SGSN又は前記MMEの負荷状況を示す。
 第15の態様では、MTC-IWFエンティティは、メッセージング部を有する。前記メッセージング部は、Traffic Detection Function(TDF)と前記MTC-IWFエンティティとの間のシグナリング・インタフェースを介して、第1の負荷情報を含む制御メッセージを前記TDFから受信するよう動作する。前記第1の負荷情報は、GGSN、S-GW、又はP-GWにおけるユーザープレーンの負荷状況の負荷状況を示す。
 第16の態様では、通信方法は、MTC-IWFエンティティにおいて、Traffic Detection Function(TDF)と前記MTC-IWFエンティティとの間のシグナリング・インタフェースを介して、第1の負荷情報を含む制御メッセージを前記TDFから受信することを含む。前記第1の負荷情報は、GGSN、S-GW、又はP-GWにおけるユーザープレーンの負荷状況の負荷状況を示す。
 第17の態様では、プログラムは、上述した第2、第4、第6、第8、第11、第12、第14、又は第16の態様に係る通信方法をコンピュータに行わせるための命令群を含む。
 上述した態様によれば、PLMNの負荷情報をMTC-IWF又はSCSにおいて収集することを容易にするためのMTC-IWFエンティティ、SCSエンティティ、PCRFエンティティ、通信方法、及びプログラムを提供できる。
第1の実施形態に係るPLMNの負荷情報を取得する手順を実施するMTC-IWFエンティティを含む無線通信システムを示す図である。 第1の実施形態に係るPLMNの負荷情報を取得する手順の一例を示すシーケンス図である。 第1の実施形態に係るPLMNの負荷情報を取得する手順の一例を示すシーケンス図である。 第1の実施形態に係るMTC-IWFエンティティの構成例を示すブロック図である。 第2の実施形態に係るPLMNの負荷情報を取得する手順を実施するMTC-IWFエンティティを含む通信システムを示す図である。 第2の実施形態に係るPLMNの負荷情報を取得する手順の一例を示すシーケンス図である。 第2の実施形態に係るPLMNの負荷情報を取得する手順の一例を示すシーケンス図である。 第3の実施形態に係るPLMNの負荷情報を取得する手順を実施するMTC-IWFエンティティを含む通信システムを示す図である。 第3の実施形態に係るPLMNの負荷情報を取得する手順の一例を示すシーケンス図である。 第4の実施形態に係るPLMNの負荷情報を取得する手順を実施するSCSエンティティを含む通信システムを示す図である。 第4の実施形態に係るPLMNの負荷情報を取得する手順の一例を示すシーケンス図である。 第4の実施形態に係るPLMNの負荷情報を取得する手順の一例を示すシーケンス図である。 第4の実施形態に係るSCSの構成例を示すブロック図である。 第5の実施形態に係るPLMNの負荷情報を取得する手順を実施するSCSエンティティを含む通信システムを示す図である。 第5の実施形態に係るPLMNの負荷情報を取得する手順の一例を示すシーケンス図である。 第5の実施形態に係るPCRFの構成例を示すブロック図である。 第6の実施形態に係るPLMNの負荷情報を取得する手順を実施するMTC-IWFエンティティを含む無線通信システムを示す図である。 第6の実施形態に係るPLMNの負荷情報を取得する手順の一例を示すシーケンス図である。 第7の実施形態に係るPLMNの負荷情報を取得する手順の一例を示すシーケンス図である。
 以下では、具体的な実施形態について、図面を参照しながら詳細に説明する。各図面において、同一又は対応する要素には同一の符号が付されており、説明の明確化のため、必要に応じて重複説明は省略される。
<第1の実施形態>
 図1は、本実施形態に係る無線通信システムの構成例を示す図である。本実施形態に係る無線通信システムは、3GPPの無線通信システム、すなわちUMTS又はEPSである。EPSは、Long Term Evolution(LTE)システムとも呼ばれる。
 UE3は、MTC UEアプリケーション31を実行し、MTCデバイスとして振る舞う。MTCデバイスとしてのUE3は、Radio Access Network(RAN)59を介してSGSN54又はMME55に接続するとともに、MTCアプリケーションサーバ4と通信する。なお、UE3は、MTCゲートウェイ・デバイスであってもよい。MTCゲートウェイ・デバイスは、3GPP移動通信機能(つまり、UEの機能)を有するとともに、パーソナル/ローカルエリア接続技術によって近隣のデバイス(例えば、センサ、radio frequency identification (RFID)タグ、カーナビゲーション装置)と接続する。パーソナル/ローカルエリア接続技術の具体例は、IEEE 802.15、ZigBee、Bluetooth、IEEE 802.11aを含む。なお、MTCゲートウェイ・デバイスに接続する近隣のデバイスは、典型的には3GPP移動通信機能を有していないデバイスであるが、3GPP移動通信機能を有するデバイス(つまり、MTCデバイス)であってもよい。
 なお、本明細書では、MTCデバイスの用語とMTCゲートウェイ・デバイスの用語を特に区別せずに使用する。つまり、本明細書において用いられるMTCデバイスの用語は、MTCゲートウェイ・デバイスを包含する。したがって、MTCデバイスとしてのUE3は、MTCゲートウェイ・デバイスとしてのUE3も意味する。
 MTC-IWFエンティティ1は、PLMNに属するコントロールプレーンのエンティティである。MTC-IWFエンティティ1は、シグナリング・インタフェース(参照点)を介して他のネットワーク要素と通信する。MTC-IWFエンティティ1は、SCS2を含むM2Mサービスレイヤと3GPP PLMNとが、3GPP PLMN のトポロジの詳細を隠蔽しながら協調動作(interwork)するためのコントロールプレーンのインタフェース又はゲートウェイとして振る舞う。以下では、MTC-IWFエンティティ1のシグナリング・インタフェース(参照点)及び他のネットワーク要素について説明する。
 MTC-IWFエンティティ1は、Tsp参照点を介してSCS2と通信する。SCS2は、MTCアプリケーションサーバ4をPLMNに接続し、3GPPで定義されたPLMNサービスを介してMTCアプリケーションサーバ4がUE3(つまり、MTCデバイス)と通信できるようにする。また、SCS2は、MTCアプリケーションサーバ4がMTC-IWFエンティティ1と通信できるようにする。SCS2は、PLMNのオペレータ、又はMTCサービスプロバイダによって制御される。SCS2は、MTCサーバ又はM2Mサーバとも呼ばれる。SCS2は、単体の独立した物理的なエンティティであってもよいし、他のネットワーク要素(例えば、MTCアプリケーションサーバ4)に付加された機能的なエンティティであってもよい。Tsp参照点は、例えば、SCS2からMTC-IWFエンティティ1へのデバイストリガーの送信要求(Device Trigger Request(DTR))の送信、MTC-IWFエンティティ1からSCS2へのデバイストリガー結果の報告のために用いられる。
 MTC-IWFエンティティ1は、S6m参照点を介してHSS51と通信する。HSS51は、PLMNのコアネットワークに配置されたコントロールプレーンのノードであり、UE3の加入者情報を管理する。S6m参照点は、例えば、MTC-IWFエンティティ1からHSS51への加入者情報の問い合わせの送信、及びHSS51からMTC-IWFエンティティ1への加入者情報の送信のために用いられる。
 MTC-IWFエンティティ1は、T4参照点を介してSMS-SC52と通信する。SMS-SC52は、Mobile Terminated(MT)方向のショートメッセージをSGSN54、MME55、又はMSC56を介してUE3に送信し、Mobile Originated(MO)方向のショートメッセージをUE3から受信する。T4インタフェースは、例えば、MTC-IWFエンティティ1からSMS-SC52へのデバイストリガーの送信要求(i.e. ショートメッセージの送信要求)の送信、SMS-SC52からMTC-IWFエンティティ1への確認メッセージの送信のために使用される。
 MTC-IWFエンティティ1は、Rf参照点又はGa参照点を介してCharging Data Function(CDF)/Charging Gateway Function(CGF)53と通信する。CDF/CGF53が有するCDFは、Charging Trigger Function(CTF)によって生成された課金対象イベント(chargeable event)についての課金情報(charging information)をRf参照点を介して受信し、予め定められた課金パーティ(charged party)毎にCharging Data Record(CDR)を生成する。また、CDF/CGF53が有するCGFは、Ga参照点を介してCDFからCDRを受信し、課金システムにCDRを送信する。なお、課金対象イベントは、通信ネットワークのリソース又はサービスを利用するアクテビティを意味する。課金対象イベントは、例えば、user to user communication (e.g. a single call, a data communication session or a short message)、user to network communication (e.g. service profile administration)、inter-network communication (e.g. transferring calls, signalling, or short messages)、又はmobility (e.g. roaming or inter-system handover) である。CDRは、フォーマットされた課金情報(e.g. 通話時間、データ転送量など)を意味する。MTC-IWFエンティティ1は、例えば、CTF又はCTF 及びCDFを有する。MTC-IWFエンティティ1に配置されたCTF(不図示)は、Rf参照点を介して課金情報をCDF/CGF53に送る。また、MTC-IWFエンティティ1に配置されたCDF(不図示)は、Ga参照点を介してCDRをCDF/CGF53に送る。
 MTC-IWFエンティティ1は、T5a参照点を介してSGSN54と通信する。SGSN54は、UMTSのコアネットワークノードであり、ユーザープレーン機能及びコントロールプレーン機能を有する。SGSN54のユーザープレーン機能は、RAN59(i.e. UMTS Terrestrial Radio Access Network(UTRAN))との間にユーザープレーンのトンネリング・インタフェース(i.e. Iu-PS参照点)を有し、Gateway GPRS Support Node(GGSN、i.e. GGSN/P-GW57)との間にユーザープレーンのトンネリング・インタフェース(i.e. Gn参照点)を有する。そして、SGSN54のユーザープレーン機能は、RAN59とGGSN(GGSN/P-GW57)との間でUE3のユーザーデータパケットを転送する。SGSN54のコントロールプレーン機能は、UE3のモビリティ管理(e.g. 位置登録)、及びベアラ管理(e.g. ベアラ確立、ベアラ構成変更、ベアラ解放)などを行う。SGSN54のコントロールプレーン機能は、RAN59内のノード(i.e. Radio Network Controller (RNC))との間で制御メッセージを送受信し、UE3との間でNon-Access Stratum(NAS)メッセージを送受信する。NASメッセージは、RAN59で終端されず、RANの無線アクセス方式に依存することなく、UE3とSGSN54の間で透過的に送受信される制御メッセージである。さらに、SGSN54は、UE3のinter-RNCハンドオーバーの際に、ユーザープレーンのモビリティアンカーとして動作する。
 MTC-IWFエンティティ1は、T5b参照点を介してMME55と通信する。MME55は、EPSのコアネットワークノードであり、UE3のモビリティ管理(e.g. 位置登録)、及びベアラ管理(e.g. ベアラ確立、ベアラ構成変更、ベアラ解放)などを行う。MME55は、RAN59内のノード(i.e. eNodeB)との間で制御メッセージを送受信し、UE3との間でNASメッセージを送受信する。NASメッセージは、RAN59で終端されず、RANの無線アクセス方式に依存することなく、UE3とMME55の間で透過的に送受信される。
 MTC-IWFエンティティ1は、T5c参照点を介してMSC56と通信する。MSC56は、コアネットワークに配置されるCircuit-Switched(CS)サービスドメイン(i.e. Public-Switched Telephone Network(PSTN)/Integrated Services Digital Network(ISDN))のノードである。MSC56は、CSサービスドメインでの呼接続および呼制御を行う。
 以上に述べた、Tsp、S6m、T4、Rf/Ga、及びT5a/T5b/T5c参照点は、非特許文献1に規定されている。しかしながら、非特許文献1は、MTC-IWFエンティティ1とGGSN/P-GW57の間、及びMTC-IWFエンティティ1とS-GW58の間の参照点を規定していない。
 Gateway GPRS Support Node(GGSN)は、UMTSのコアネットワークノードである。Packet Data Network Gateway(P-GW)は、EPSのコアネットワークノードである。GGSN/P-GW57は、GGSN若しくはP-GW又はこれら両方を意味する。GGSN/P-GW57は、PLMNのコアネットワークに配置されるユーザープレーンのパケット転送ノードであり、UE3のユーザーデータパケットを転送する。GGSN/P-GW57は、外部Packet Data Network(PDN)とのゲートウェイの役割を担い、UE3に外部PDNとのコネクティビティを提供する。さらに、GGSN/P-GW57は、Charging Trigger Function (CTF)、Charging Data Function (CDF)、及びPolicy and Charging Enforcement Function(PCEF)を有する。
 CTFとしてのGGSN/P-GW57は、課金対象イベント(chargeable event)についての課金情報(charging information)を収集する。そして、CDFとしてのGGSN/P-GW57は、収集された課金情報を用いて、予め定められた課金パーティ(charged party)毎にCharging Data Record (CDR) を生成する。
 さらに、PCEFとしてのGGSN/P-GW57は、Policy and Charging Rule Function(PCRF、不図示)から供給されたPolicy and Charging Control(PCC)ルールに従って、UE3のサービスデータフロー(つまり、IPパケットフロー)単位でのQuality of Service(QoS)制御およびフローベースのベアラ課金(Flow Based bearer Charging(FBC))を行う。FBCは、GGSN/P-GW57が有するCTF、CDF、及びPCEFによって実現される。つまり、GGSN/P-GW57は、UE3のサービスデータフローのフィルタリングを行い、CDRの生成及びクローズをトリガーする課金対象イベントとしてサービスデータフローを監視し、サービスデータフローのパケット数をカウントし、サービスデータフローに関する課金情報を含むCDRを生成する。
 S-GW58は、EPSのコアネットワークに配置されるパケット転送ノードである。S-GW58は、RAN59(i.e. Evolved UTRAN)との間にユーザープレーンのトンネリング・インタフェース(i.e. S1-U参照点)を有し、P-GW(i.e. GGSN/P-GW57)との間にユーザープレーンのトンネリング・インタフェース(i.e. S5/S8参照点)を有する。そして、S-GW58は、RAN59とP-GW(GGSN/P-GW57)との間でUE3のユーザーデータパケットを転送する。さらに、S-GW58は、UE3のinter-eNodeBハンドオーバーの際に、ユーザープレーンのモビリティアンカーとして動作する。
 図1の例では、MTC-IWFエンティティ1は、GGSN/P-GW57との間にシグナリング・インタフェース(参照点)11を有する。そして、MTC-IWFエンティティ1は、シグナリング・インタフェース11を介して、GGSN又はP-GWの負荷情報をGGSN/P-GW57から受信する。GGSN又はP-GWの負荷情報は、GGSN又はP-GWにおけるユーザープレーン若しくはコントロールプレーン又はこれら両方の負荷状況を示す。GGSN又はP-GWの負荷情報は、例えば、転送したユーザーデータパケット数、確立されているトンネルの数、確立されているベアラの数、保持しているベアラコンテキストの数、又は処理した制御メッセージの数を示す。
 図2は、GGSN又はP-GWの負荷情報をMTC-IWFエンティティ1において取得する手順を示すシーケンス図である。ステップS11では、GGSN/P-GW57は、シグナリング・インタフェース11を介して、MTC-IWFエンティティ1に制御メッセージを送信する。当該制御メッセージは、GGSN又はP-GWの負荷情報を含む。
 さらに、図1の例では、MTC-IWFエンティティ1は、S-GW58との間にシグナリング・インタフェース(参照点)12を有する。そして、MTC-IWFエンティティ1は、シグナリング・インタフェース12を介して、S-GW58の負荷情報をS-GW58から受信する。S-GW58の負荷情報は、S-GW58におけるユーザープレーン若しくはコントロールプレーン又はこれら両方の負荷状況を示す。S-GW58の負荷情報は、例えば、転送したユーザーデータパケット数、確立されているトンネルの数、確立されているベアラの数、保持しているベアラコンテキストの数、又は処理した制御メッセージの数を示す。
 図3は、S-GW58の負荷情報をMTC-IWFエンティティ1において取得する手順を示すシーケンス図である。ステップS12では、S-GW58は、シグナリング・インタフェース12を介して、MTC-IWFエンティティ1に制御メッセージを送信する。当該制御メッセージは、S-GW58の負荷情報を含む。
 なお、MTC-IWFエンティティ1は、シグナリング・インタフェース11及び12のうちいずれか一方のみを有してもよい。この場合、MTC-IWFエンティティ1は、GGSN/P-GW57及びS-GW58のいずれか一方のみの負荷情報を受信してもよい。
 以上に述べたように、本実施形態では、MTC-IWFエンティティ1は、GGSN/P-GW57との間のシグナリング・インタフェース11又はS-GW58又はとの間のシグナリング・インタフェース12を介して、GGSN/P-GW57若しくはS-GW58又はこれら両方の負荷情報を受信する。したがって、MTC-IWFエンティティ1は、GGSN/P-GW57若しくはS-GW58又はこれら両方の負荷情報を利用することができる。例えば、MTC-IWFエンティティ1は、GGSN/P-GW57若しくはS-GW58又はこれら両方の負荷情報を利用して、追加的なサービスを提供してもよい。
 MTC-IWFエンティティ1は、例えば、GGSN/P-GW57若しくはS-GW58又はこれら両方の負荷情報に基づいて、MTCデバイスとしてのUE3の通信に関する課金ポリシーを決定してもよい。課金ポリシーは、例えば、MTCサービスの利用料金(e.g. デバイストリガー当たりの料金、UE3のユーザデータの単位ボリューム当たりの料金)を含む。
 また、MTC-IWFエンティティ1は、GGSN/P-GW57若しくはS-GW58又はこれら両方の負荷情報に基づいて、将来のPLMNの負荷を予測してもよい。例えば、MTC-IWFエンティティ1は、負荷情報を統計的に監視及び解析し、GGSN/P-GW57及びS-GW58等の負荷が相対的に大きい時間帯又は相対的に小さい時間帯を判定してもよい。将来のPLMNの負荷は、例えば、MTCサービスの通信タイミングの調整(e.g. MTCアプリケーションサーバ4によるデバイストリガーの発生タイミングの調整)に利用されてもよい。
 また、MTC-IWFエンティティ1は、GGSN/P-GW57若しくはS-GW58又はこれら両方の負荷情報(第1の負荷情報)に基づいてPLMNの負荷状況を示す第2の負荷情報を作成し、SCS2を介してMTCアプリケーションサーバ4に第2の負荷情報を送ってもよい。
 図4は、MTC-IWFエンティティ1の構成例を示すブロック図である。図4の例では、MTC-IWFエンティティ1は、メッセージング部101及び制御部102を有する。メッセージング部101は、GGSN/P-GW57との間のシグナリング・インタフェース11又はS-GW58との間のシグナリング・インタフェース12を介して、GGSN/P-GW57若しくはS-GW58又はこれら両方の負荷情報を受信するよう動作する。制御部102は、GGSN/P-GW57若しくはS-GW58又はこれら両方の負荷情報を利用して、上述したような追加的なサービス(e.g.課金ポリシーの決定)に関する処理を行うよう動作する。
<第2の実施形態>
 本実施形態では、上述した第1の実施形態の変形例について説明する。図5は、本実施形態に係る無線通信システムの構成例を示す図である。本実施形態に係る無線通信システムは、3GPPの無線通信システム、すなわちUMTS又はEPSである。
 本実施形態では、MTC-IWFエンティティ1は、SGSN54又はMME55とMTC-IWFエンティティ1との間のシグナリング・インタフェース(i.e. T5a参照点又はT5b参照点)を介して、負荷情報を含む制御メッセージをSGSN54又はMME55から受信する。ここで、負荷情報は、GGSN/P-GW57若しくはS-GW58又はこれら両方の負荷状況を示す。GGSNの負荷情報をMTC-IWFエンティティ1に送信するために、SGSN54は、GGSNとの間の既存のシグナリング・インタフェース(i.e. Gn参照点)を介して、GGSNの負荷情報をGGSN(GGSN/P-GW57)から受信してもよい。また、MME55は、S-GW58との間の既存のシグナリング・インタフェース(i.e. S11参照点)を介して、S-GW若しくはP-GW又はこれら両方の負荷情報をS-GW58から受信してもよい。P-GWの負荷情報をMTC-IWFエンティティ1に送信するために、S-GW58は、P-GWとの間の既存のシグナリング・インタフェース(i.e. S5/S8参照点)を介して、P-GWの負荷情報をP-GW(GGSN/P-GW57)から受信してもよい。
 図6は、GGSNの負荷情報をMTC-IWFエンティティ1において取得する手順を示すシーケンス図である。ステップS21では、SGSN54は、T5a参照点を介して、MTC-IWFエンティティ1に制御メッセージを送信する。当該制御メッセージは、GGSN(GGSN/P-GW57)の負荷情報を含む。
 図7は、P-GW(GGSN/P-GW57)若しくはS-GW58又はこれら両方の負荷情報をMTC-IWFエンティティ1において取得する手順を示すシーケンス図である。ステップS22では、MME55は、T5b参照点を介して、MTC-IWFエンティティ1に制御メッセージを送信する。当該制御メッセージは、P-GW(GGSN/P-GW57)若しくはS-GW58又はこれら両方の負荷情報を含む。
 本実施形態では、第1の実施形態と同様に、MTC-IWFエンティティ1は、GGSN/P-GW57若しくはS-GW58又はこれら両方の負荷情報を受信することができる。したがって、MTC-IWFエンティティ1は、GGSN/P-GW57若しくはS-GW58又はこれら両方の負荷情報を利用することができる。例えば、MTC-IWFエンティティ1は、GGSN/P-GW57若しくはS-GW58又はこれら両方の負荷情報を利用して、追加的なサービスを提供してもよい。
<第3の実施形態>
 本実施形態では、上述した第1の実施形態の変形例について説明する。図8は、本実施形態に係る無線通信システムの構成例を示す図である。本実施形態に係る無線通信システムは、3GPPの無線通信システム、すなわちUMTS又はEPSである。
 本実施形態では、MTC-IWFエンティティ1は、PCRF60とMTC-IWFエンティティ1との間のシグナリング・インタフェース(参照点)13を介して、負荷情報を含む制御メッセージをPCRF60から受信する。ここで、負荷情報は、GGSN/P-GW57若しくはS-GW58又はこれら両方の負荷状況を示す。GGSN/P-GW57の負荷情報をMTC-IWFエンティティ1に送信するために、PCRF60は、GGSN/P-GW57との間の既存のシグナリング・インタフェース(i.e. Gx参照点)を介して、GGSN/P-GW57の負荷情報をGGSN/P-GW57から受信してもよい。また、S-GW58の負荷情報をMTC-IWFエンティティ1に送信するために、PCRF60は、S-GW58との間の既存のシグナリング・インタフェース(i.e. Gxc参照点)を介して、S-GW58の負荷情報をS-GW58から受信してもよい。
 さらにまた、PCRF60は、Traffic Detection Function(TDF)との間のシグナリング・インタフェース(i.e. Sd参照点)を介して、GGSN/P-GW57の負荷情報をTDF(不図示)から受信してもよい。TDFは、ディープパケットインスペクション機能を有する。TDFは、Sd参照点を介してPCRF60からApplication Detection and Control(ADC)ルールを受信し、ADCルールに従ってユーザパケットに対するディープパケットインスペクションを実行し、ADCルールによって指定されたアプリケーションのトラフィックを検出する。そして、TDFは、Sd参照点を介して、アプリケーションのトラフィックの検出結果をPCRF60に報告する。したがって、TDFは、アプリケーション毎のトラフィック量を検出することができ、アプリケーション毎のGGSN/P-GW57の負荷を検出することができる。
 PCRF60とMTC-IWFエンティティ1の間のシグナリング・インタフェース13は、Rx参照点であってもよい。Rx参照点は、PCRF とApplication Function(AF)の間のインタフェースである。この場合、PCRF60は、アプリケーション・レベルのサービス情報をMTC-IWFエンティティ1から受信し、PCCルールを決定し、PCCルールをGGSN/P-GW57に供給してもよい。
 図9は、GGSN/P-GW57若しくはS-GW58又はこれら両方の負荷情報をMTC-IWFエンティティ1において取得する手順を示すシーケンス図である。ステップS31では、PCRF60は、シグナリング・インタフェース13を介して、MTC-IWFエンティティ1に制御メッセージを送信する。当該制御メッセージは、GGSN/P-GW57若しくはS-GW58又はこれら両方の負荷情報を含む。
 本実施形態では、第1の実施形態と同様に、MTC-IWFエンティティ1は、GGSN/P-GW57若しくはS-GW58又はこれら両方の負荷情報を受信することができる。したがって、MTC-IWFエンティティ1は、GGSN/P-GW57若しくはS-GW58又はこれら両方の負荷情報を利用することができる。例えば、MTC-IWFエンティティ1は、GGSN/P-GW57若しくはS-GW58又はこれら両方の負荷情報を利用して、追加的なサービスを提供してもよい。
<第4の実施形態>
 本実施形態では、上述した第1の実施形態の変形例について説明する。図10は、本実施形態に係る無線通信システムの構成例を示す図である。本実施形態に係る無線通信システムは、3GPPの無線通信システム、すなわちUMTS又はEPSである。
 本実施形態では、MTC-IWFエンティティ1の代わりに、SCS2がGGSN/P-GW57若しくはS-GW58又はこれら両方の負荷情報を受信するよう動作する。本実施形態に係るSCS2は、GGSN/P-GW57との間にシグナリング・インタフェース(参照点)14を有する。そして、SCS2は、シグナリング・インタフェース13を介して、GGSN又はP-GWの負荷情報をGGSN/P-GW57から受信する。GGSN又はP-GWの負荷情報は、GGSN又はP-GWにおけるユーザープレーン若しくはコントロールプレーン又はこれら両方の負荷状況を示す。
 図11は、GGSN又はP-GWの負荷情報をSCS2において取得する手順を示すシーケンス図である。ステップS41では、GGSN/P-GW57は、シグナリング・インタフェース14を介して、SCS2に制御メッセージを送信する。当該制御メッセージは、GGSN又はP-GWの負荷情報を含む。
 さらに、図10の例では、SCS2は、S-GW58との間にシグナリング・インタフェース(参照点)15を有する。そして、SCS2は、シグナリング・インタフェース15を介して、S-GW58の負荷情報をS-GW58から受信する。S-GW58の負荷情報は、S-GW58におけるユーザープレーン若しくはコントロールプレーン又はこれら両方の負荷状況を示す。
 図12は、S-GW58の負荷情報をSCS2において取得する手順を示すシーケンス図である。ステップS42では、S-GW58は、シグナリング・インタフェース15を介して、SCS2に制御メッセージを送信する。当該制御メッセージは、S-GW58の負荷情報を含む。
 本実施形態では、SCS2は、GGSN/P-GW57若しくはS-GW58又はこれら両方の負荷情報を受信することができる。したがって、SCS2は、GGSN/P-GW57若しくはS-GW58又はこれら両方の負荷情報を利用することができる。例えば、SCS2は、GGSN/P-GW57若しくはS-GW58又はこれら両方の負荷情報を利用して、追加的なサービスを提供してもよい。
 SCS2は、例えば、GGSN/P-GW57若しくはS-GW58又はこれら両方の負荷情報に基づいて、MTCデバイスとしてのUE3の通信に関する課金ポリシーを決定してもよい。また、SCS2は、GGSN/P-GW57若しくはS-GW58又はこれら両方の負荷情報に基づいて、将来のPLMNの負荷を予測してもよい。また、SCS2は、GGSN/P-GW57若しくはS-GW58又はこれら両方の負荷情報(第1の負荷情報)に基づいてPLMNの負荷状況を示す第2の負荷情報を作成し、MTCアプリケーションサーバ4に第2の負荷情報を送ってもよい。
 SCS2は、GGSN/P-GW57若しくはS-GW58又はこれら両方の負荷情報を、MTC-IWFエンティティ1との間のシグナリング・インタフェース(i.e. Tsp参照点)を介してMTC-IWFエンティティ1に送ってもよい。これにより、MTC-IWFエンティティ1は、GGSN/P-GW57若しくはS-GW58又はこれら両方の負荷情報を利用できる。
 図13は、SCS2の構成例を示すブロック図である。図13の例では、SCS2は、第1メッセージング部201及び第2メッセージング部202を有する。第1メッセージング部201は、Tsp参照点を介して、MTC-IWFエンティティ1と通信するよう動作する。第2メッセージング部202は、GGSN/P-GW57との間のシグナリング・インタフェース14又はS-GW58又はとの間のシグナリング・インタフェース15を介して、GGSN/P-GW57若しくはS-GW58又はこれら両方の負荷情報を受信するよう動作する。なお、第1メッセージング部201は、GGSN/P-GW57若しくはS-GW58又はこれら両方の負荷情報を含む制御メッセージを、Tsp参照点を介してMTC-IWFエンティティ1に送信してもよい。
<第5の実施形態>
 本実施形態では、上述した第3又は第4の実施形態の変形例について説明する。図14は、本実施形態に係る無線通信システムの構成例を示す図である。本実施形態に係る無線通信システムは、3GPPの無線通信システム、すなわちUMTS又はEPSである。
 本実施形態では、第4の実施形態と同様に、SCS2がGGSN/P-GW57若しくはS-GW58又はこれら両方の負荷情報を受信するよう動作する。当該負荷情報は、ユーザープレーン若しくはコントロールプレーン又はこれら両方の負荷状況を示す。さらに、本実施形態に係るSCS2は、本実施形態に係るSCS2は、PCRF60との間にシグナリング・インタフェース(参照点)16を有し、当該負荷情報をPCRF60から受信する。
 PCRF60とSCS2の間のシグナリング・インタフェース16は、Rx参照点であってもよい。Rx参照点は、PCRF とApplication Function(AF)の間のインタフェースである。PCRF60は、第3の実施形態で述べたように、GGSN/P-GW57との間のシグナリング・インタフェース(i.e. Gx参照点)、S-GW58との間のシグナリング・インタフェース(i.e. Gxc参照点)、若しくはTraffic Detection Function(TDF)との間のシグナリング・インタフェース(i.e. Sd参照点)、又はこれらの組み合わせを用いて、GGSN/P-GW57若しくはS-GW58又はこれら両方の負荷情報を取得してもよい。
 図15は、GGSN/P-GW57若しくはS-GW58又はこれら両方の負荷情報をSCS2において取得する手順を示すシーケンス図である。ステップS51では、PCRF60は、シグナリング・インタフェース16を介して、SCS2に制御メッセージを送信する。当該制御メッセージは、GGSN/P-GW57若しくはS-GW58又はこれら両方の負荷情報を含む。
 本実施形態では、第4の実施形態と同様に、SCS2は、GGSN/P-GW57若しくはS-GW58又はこれら両方の負荷情報を受信することができる。したがって、SCS2は、GGSN/P-GW57若しくはS-GW58又はこれら両方の負荷情報を利用することができる。例えば、SCS2は、GGSN/P-GW57若しくはS-GW58又はこれら両方の負荷情報を利用して、追加的なサービスを提供してもよい。
 SCS2は、GGSN/P-GW57若しくはS-GW58又はこれら両方の負荷情報を、MTC-IWFエンティティ1との間のシグナリング・インタフェース(i.e. Tsp参照点)を介してMTC-IWFエンティティ1に送ってもよい。これにより、MTC-IWFエンティティ1は、GGSN/P-GW57若しくはS-GW58又はこれら両方の負荷情報を利用できる。
 図16は、PCRF60の構成例を示すブロック図である。図16の例では、PCRF60は、メッセージング部601及び制御部602を有する。制御部602は、PCEFとしてのGGSN/P-GW57に対してPCCルールを供給するよう動作する。メッセージング部601は、SCS2との間のシグナリング・インタフェース16を介して、GGSN/P-GW57若しくはS-GW58又はこれら両方の負荷情報をSCS2に送信するよう動作する。
 上述した本実施形態に係るPCRF60は、SCS2ではなくアプリケーションサーバ4に対して、GGSN/P-GW57若しくはS-GW58又はこれら両方の負荷情報を送信するよう動作してもよい。
<第6の実施形態>
 本実施形態では、上述した第第1~第3の実施形態の変形例について説明する。図17は、本実施形態に係る無線通信システムの構成例を示す図である。本実施形態に係る無線通信システムは、3GPPの無線通信システム、すなわちUMTS又はEPSである。
 本実施形態では、MTC-IWFエンティティ1はTraffic Detection Function(TDF)61とMTC-IWFエンティティ1との間のシグナリング・インタフェース(参照点)17を介して、負荷情報を含む制御メッセージをTDF61から受信する。ここで、負荷情報は、PLMNのユーザープレーンの負荷情報、言い換えるとGGSN/P-GW57若しくはS-GW58又はこれら両方の負荷状況を示す。
 既に述べたように、TDF61は、ディープパケットインスペクション機能を有する。TDF61は、Sd参照点を介してPCRF60からApplication Detection and Control(ADC)ルールを受信し、ADCルールに従ってユーザパケットに対するディープパケットインスペクションを実行し、ADCルールによって指定されたアプリケーション(言い換えると、パケットフロー又はIP-CANセッション)のトラフィックを検出する。したがって、TDF61は、アプリケーション毎のトラフィック量を検出することができ、アプリケーション毎のGGSN/P-GW57の負荷を検出することができる。さらに、本実施形態のTDF61は、シグナリング・インタフェース17を介して、アプリケーション毎のトラフィック量(又はアプリケーション毎のGGSN/P-GW57の負荷)の検出結果をMTC-IWFエンティティ1に報告する。
 図18は、TDF61によって検出されたPLMNのユーザープレーンの負荷情報をMTC-IWFエンティティ1において取得する手順を示すシーケンス図である。ステップS61では、TDF61は、シグナリング・インタフェース17を介して、MTC-IWFエンティティ1に制御メッセージを送信する。当該制御メッセージは、PLMNのユーザープレーンの負荷情報、言い換えるとGGSN/P-GW57若しくはS-GW58又はこれら両方の負荷情報を含む。
 本実施形態では、第1~第3の実施形態と同様に、MTC-IWFエンティティ1は、GGSN/P-GW57若しくはS-GW58又はこれら両方の負荷情報を受信することができる。したがって、MTC-IWFエンティティ1は、GGSN/P-GW57若しくはS-GW58又はこれら両方の負荷情報を利用することができる。例えば、MTC-IWFエンティティ1は、GGSN/P-GW57若しくはS-GW58又はこれら両方の負荷情報を利用して、追加的なサービスを提供してもよい。
<第7の実施形態>
 本実施形態に係る無線通信システムの構成例は、例えば図5と同様であってもよい。本実施形態では、MTC-IWFエンティティ1は、SGSN54又はMME55の負荷情報をSGSN54又はMME55から受信するよう動作する。ここで、SGSN54又はMME55の負荷情報は、コントロールプレーンのノードとしてのSGSN54又はMME55における制御処理の負荷状況を示す。SGSN54又はMME55の負荷情報は、例えば、全ての制御メッセージの処理数、UE3からのアタッチ要求の処理数、UE3からのベアラ確立要求(又はベアラコンテキスト活性化要求)の処理数、又は保持しているベアラコンテキストの数を示す。
 具体的には、MTC-IWFエンティティ1は、SGSN54とMTC-IWFエンティティ1との間のシグナリング・インタフェース(i.e. T5a参照点)を介して、SGSN54の負荷情報を含む制御メッセージをSGSN54から受信してもよい。また、MTC-IWFエンティティ1は、MME55とMTC-IWFエンティティ1との間のシグナリング・インタフェース(i.e. T5b参照点)を介して、MME55の負荷情報を含む制御メッセージをMME55から受信してもよい。
 図19は、MME55の負荷情報をMTC-IWFエンティティ1において取得する手順を示すシーケンス図である。ステップS71では、MME55は、T5b参照点を介して、MTC-IWFエンティティ1に制御メッセージを送信する。当該制御メッセージは、MME55の負荷情報を含む。
 本実施形態に係るMTC-IWF1の構成例は、図4と同様であってもよい。
 本実施形態では、MTC-IWFエンティティ1は、コントロールプレーンのノードとしてのSGSN54又はMME55の負荷情報を受信することができる。したがって、MTC-IWFエンティティ1は、SGSN54又はMME55の負荷情報を利用することができる。例えば、MTC-IWFエンティティ1は、SGSN54又はMME55の負荷情報を利用して、GGSN/P-GW57又はS-GW58の負荷情報の利用に関して第1の実施形態で述べたのと同様の追加的なサービスを提供してもよい。
<その他の実施形態>
 上述した複数の実施形態は、適宜組み合わせて実施されてもよい。
 上述した複数の実施形態で説明されたMTC-IWFエンティティ1、SCS2、MTCアプリケーションサーバ4、SGSN54、MME55、GGSN/P-GW57、S-GW58、PCRF60、及びUE3により行われる処理は、コンピュータシステムにプログラムを実行させることによって実現してもよい。具体的には、本明細書においてシーケンス図等を用いて説明したアルゴリズムをコンピュータシステムに行わせるための命令群を含む一つ又は複数のプログラムを作成し、当該プログラムをコンピュータシステムに供給すればよい。
 このプログラムは、様々なタイプの非一時的なコンピュータ可読媒体(non-transitory computer readable medium)を用いて格納され、コンピュータに供給することができる。非一時的なコンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。非一時的なコンピュータ可読媒体の例は、磁気記録媒体(例えばフレキシブルディスク、磁気テープ、ハードディスクドライブ)、光磁気記録媒体(例えば光磁気ディスク)、Compact Disc Read Only Memory(CD-ROM)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、Programmable ROM(PROM)、Erasable PROM(EPROM)、フラッシュROM、Random Access Memory(RAM))を含む。また、プログラムは、様々なタイプの一時的なコンピュータ可読媒体(transitory computer readable medium)によってコンピュータに供給されてもよい。一時的なコンピュータ可読媒体の例は、電気信号、光信号、及び電磁波を含む。一時的なコンピュータ可読媒体は、電線及び光ファイバ等の有線通信路、又は無線通信路を介して、プログラムをコンピュータに供給できる。
 さらに、上述した実施形態は本件発明者により得られた技術思想の適用に関する例に過ぎない。すなわち、当該技術思想は、上述した実施形態のみに限定されるものではなく、種々の変更が可能であることは勿論である。
 例えば、上記の実施形態の一部又は全部は、以下の付記のようにも記載され得るが、以下には限られない。
(付記A1)
 モバイルコアネットワークに配置されるMachine Type Communication Inter Working Function(MTC-IWF)エンティティであって、
 Gateway General Packet Radio Service Support Node(GGSN)、Serving Gateway(S-GW)、又はPacket Data Network Gateway(P-GW)と前記MTC-IWFエンティティとの間のシグナリング・インタフェースを介して、第1の負荷情報を含む制御メッセージを前記GGSN、前記S-GW、又は前記P-GWから受信するメッセージング部を備え、
 前記第1の負荷情報は、前記GGSN、前記S-GW、又は前記P-GWにおけるユーザープレーン又はコントロールプレーンの負荷状況を示す、
MTC-IWFエンティティ。
(付記A2)
 前記第1の負荷情報に基づいてMachine Type Communication(MTC)デバイスの通信に関する課金ポリシーを決定する第1の制御部をさらに備える、付記A1に記載のMTC-IWFエンティティ。
(付記A3)
 前記第1の負荷情報に基づいて将来のネットワーク負荷を予測する第2の制御部をさらに備える、付記A1又はA2に記載のMTC-IWFエンティティ。
(付記A4)
 前記モバイルコアネットワークの負荷状況を示す第2の負荷情報を前記第1の負荷情報に基づいて作成し、前記第2の負荷情報をService Capability Server(SCS)を介してアプリケーションサーバに送る第3の制御部をさらに備える、付記A1~A3のいずれか1項に記載のMTC-IWFエンティティ。
(付記A5)
 Machine Type Communication Inter Working Function(MTC-IWF)エンティティにおいて、Gateway General Packet Radio Service Support Node(GGSN)、Serving Gateway(S-GW)、又はPacket Data Network Gateway(P-GW)と前記MTC-IWFエンティティとの間のシグナリング・インタフェースを介して、第1の負荷情報を含む制御メッセージを前記GGSN、前記S-GW、又は前記P-GWから受信することを備え、
 前記第1の負荷情報は、前記GGSN、前記S-GW、又は前記P-GWにおけるユーザープレーン又はコントロールプレーンの負荷状況を示す、
通信方法。
(付記A6)
 前記第1の負荷情報に基づいてMachine Type Communication(MTC)デバイスの通信に関する課金ポリシーを決定することを更に備える、付記A5に記載の通信方法。
(付記A7)
 前記第1の負荷情報に基づいて将来のネットワーク負荷を予測することをさらに備える、付記A5又はA6に記載の通信方法。
(付記A8)
 モバイルコアネットワークの負荷状況を示す第2の負荷情報を前記第1の負荷情報に基づいて作成すること、及び
 前記第2の負荷情報をService Capability Server(SCS)を介して前記MTC-IWFエンティティからアプリケーションサーバに送ること、
をさらに備える、付記A5~A7のいずれか1項に記載の通信方法。
(付記A9)
 通信方法をコンピュータに行わせるためのプログラムであって、
 前記通信方法は、Machine Type Communication Inter Working Function(MTC-IWF)エンティティにおいて、Gateway General Packet Radio Service Support Node(GGSN)、Serving Gateway(S-GW)、又はPacket Data Network Gateway(P-GW)と前記MTC-IWFエンティティとの間のシグナリング・インタフェースを介して、第1の負荷情報を含む制御メッセージを前記GGSN、前記S-GW、又は前記P-GWから受信することを備え、
 前記第1の負荷情報は、前記GGSN、前記S-GW、又は前記P-GWにおけるユーザープレーン又はコントロールプレーンの負荷状況を示す、
プログラム。
(付記B1)
 モバイルコアネットワークに配置されるMachine Type Communication Inter Working Function(MTC-IWF)エンティティであって、
 Serving General Packet Radio Service Support Node(SGSN)又はMobility Management Entity(MME)と前記MTC-IWFエンティティとの間のシグナリング・インタフェースを介して、第1の負荷情報を含む制御メッセージを前記SGSN又は前記MMEから受信するメッセージング部を備え、
 前記第1の負荷情報は、Gateway General Packet Radio Service Support Node(GGSN)、Serving Gateway(S-GW)、又はPacket Data Network Gateway(P-GW)におけるユーザープレーン又はコントロールプレーンの負荷状況を示す、
MTC-IWFエンティティ。
(付記B2)
 前記第1の負荷情報に基づいてMachine Type Communication(MTC)デバイスの通信に関する課金ポリシーを決定する第1の制御部をさらに備える、付記B10に記載のMTC-IWFエンティティ。
(付記B3)
 前記第1の負荷情報に基づいて将来のネットワーク負荷を予測する第2の制御部をさらに備える、付記B1又はB2に記載のMTC-IWFエンティティ。
(付記B4)
 前記モバイルコアネットワークの負荷状況を示す第2の負荷情報を前記第1の負荷情報に基づいて作成し、前記第2の負荷情報をService Capability Server(SCS)を介してアプリケーションサーバに送る第3の制御部をさらに備える、付記B1~B3のいずれか1項に記載のMTC-IWFエンティティ。
(付記B5)
 前記シグナリング・インタフェースは、T5aインタフェース又はT5bインタフェースである、付記B1~B4のいずれか1項に記載のMTC-IWFエンティティ。
(付記B6)
 Machine Type Communication Inter Working Function(MTC-IWF)エンティティにおいて、Serving General Packet Radio Service Support Node(SGSN)又はMobility Management Entity(MME)と前記MTC-IWFエンティティとの間のシグナリング・インタフェースを介して、第1の負荷情報を含む制御メッセージを前記SGSN又は前記MMEから受信することを備え、
 前記第1の負荷情報は、Gateway General Packet Radio Service Support Node(GGSN)、Serving Gateway(S-GW)、又はPacket Data Network Gateway(P-GW)におけるユーザープレーン又はコントロールプレーンの負荷状況を示す、
通信方法。
(付記B7)
 前記第1の負荷情報に基づいてMachine Type Communication(MTC)デバイスの通信に関する課金ポリシーを決定することを更に備える、付記B6に記載の通信方法。
(付記B8)
 前記第1の負荷情報に基づいて将来のネットワーク負荷を予測することをさらに備える、付記B6又はB7に記載の通信方法。
(付記B9)
 モバイルコアネットワークの負荷状況を示す第2の負荷情報を前記第1の負荷情報に基づいて作成すること、及び
 前記第2の負荷情報をService Capability Server(SCS)を介して前記MTC-IWFエンティティからアプリケーションサーバに送ること、
をさらに備える、付記B6~B8のいずれか1項に記載の通信方法。
(付記B10)
 通信方法をコンピュータに行わせるためのプログラムであって、
 前記通信方法は、Machine Type Communication Inter Working Function(MTC-IWF)エンティティにおいて、Serving General Packet Radio Service Support Node(SGSN)又はMobility Management Entity(MME)と前記MTC-IWFエンティティとの間のシグナリング・インタフェースを介して、第1の負荷情報を含む制御メッセージを前記SGSN又は前記MMEから受信することを備え、
 前記第1の負荷情報は、Gateway General Packet Radio Service Support Node(GGSN)、Serving Gateway(S-GW)、又はPacket Data Network Gateway(P-GW)におけるユーザープレーン又はコントロールプレーンの負荷状況を示す、
プログラム。
(付記C1)
 Service Capability Server(SCS)エンティティであって、
 Machine type Communication Inter Working Function(MTC-IWF)エンティティと前記SCSエンティティとの間の第1のシグナリング・インタフェースを介して、前記MTC-IWFエンティティと通信する第1のメッセージング部と、
 Gateway General Packet Radio Service Support Node(GGSN)、Serving Gateway(S-GW)、又はPacket Data Network Gateway(P-GW)と前記SCSエンティティとの間の第2のシグナリング・インタフェースを介して、第1の負荷情報を含む制御メッセージを前記GGSN、前記S-GW、又は前記P-GWから受信する第2のメッセージング部を備え、
 前記第1の負荷情報は、前記GGSN、前記S-GW、又は前記P-GWにおけるユーザープレーン又はコントロールプレーンの負荷状況を示す、
SCSエンティティ。
(付記C2)
 前記第1のメッセージング部は、前記第1の負荷情報を含む制御メッセージを前記第1のシグナリング・インタフェースを介して前記MTC-IWFエンティティに送信する、付記C1に記載のSCSエンティティ。
(付記C3)
 Service Capability Server(SCS)エンティティにおいて、Machine type Communication Inter Working Function(MTC-IWF)エンティティと前記SCSエンティティとの間の第1のシグナリング・インタフェースを介して、前記MTC-IWFエンティティと通信すること、及び
 前記SCSエンティティにおいて、Gateway General Packet Radio Service Support Node(GGSN)、Serving Gateway(S-GW)、又はPacket Data Network Gateway(P-GW)と前記SCSエンティティとの間の第2のシグナリング・インタフェースを介して、第1の負荷情報を含む制御メッセージを前記GGSN、前記S-GW、又は前記P-GWから受信すること、
を備え、
 前記第1の負荷情報は、前記GGSN、前記S-GW、又は前記P-GWにおけるユーザープレーン又はコントロールプレーンの負荷状況を示す、
通信方法。
(付記C4)
 前記第1の負荷情報を含む制御メッセージを前記第1のシグナリング・インタフェースを介して前記SCSエンティティから前記MTC-IWFエンティティに送信することをさらに備える、付記C3に記載の通信方法。
(付記C5)
 通信方法をコンピュータに行わせるためのプログラムであって、
 前記通信方法は、
 Service Capability Server(SCS)エンティティにおいて、Machine type Communication Inter Working Function(MTC-IWF)エンティティと前記SCSエンティティとの間の第1のシグナリング・インタフェースを介して、前記MTC-IWFエンティティと通信すること、及び
 前記SCSエンティティにおいて、Gateway General Packet Radio Service Support Node(GGSN)、Serving Gateway(S-GW)、又はPacket Data Network Gateway(P-GW)と前記SCSエンティティとの間の第2のシグナリング・インタフェースを介して、第1の負荷情報を含む制御メッセージを前記GGSN、前記S-GW、又は前記P-GWから受信すること、
を備え、
 前記第1の負荷情報は、前記GGSN、前記S-GW、又は前記P-GWにおけるユーザープレーン又はコントロールプレーンの負荷状況を示す、
プログラム。
(付記D1)
 モバイルコアネットワークに配置されるMachine Type Communication Inter Working Function(MTC-IWF)エンティティであって、
 Serving General Packet Radio Service Support Node(SGSN)又はMobility Management Entity(MME)と前記MTC-IWFエンティティとの間のシグナリング・インタフェースを介して、第1の負荷情報を含む制御メッセージを前記SGSN又は前記MMEから受信するメッセージング部を備え、
 前記第1の負荷情報は、前記SGSN又は前記MMEの負荷状況を示す、
MTC-IWFエンティティ。
(付記D2)
 前記シグナリング・インタフェースは、T5aインタフェース又はT5bインタフェースである、付記D1に記載のMTC-IWFエンティティ。
(付記D3)
 Machine Type Communication Inter Working Function(MTC-IWF)エンティティにおいて、Serving General Packet Radio Service Support Node(SGSN)又はMobility Management Entity(MME)と前記MTC-IWFエンティティとの間のシグナリング・インタフェースを介して、第1の負荷情報を含む制御メッセージを前記SGSN又は前記MMEから受信することを備え、
 前記第1の負荷情報は、前記SGSN又は前記MMEの負荷状況を示す、
通信方法。
(付記D4)
 通信方法をコンピュータに行わせるためのプログラムであって、
 前記通信方法は、Machine Type Communication Inter Working Function(MTC-IWF)エンティティにおいて、Serving General Packet Radio Service Support Node(SGSN)又はMobility Management Entity(MME)と前記MTC-IWFエンティティとの間のシグナリング・インタフェースを介して、第1の負荷情報を含む制御メッセージを前記SGSN又は前記MMEから受信することを備え、
 前記第1の負荷情報は、前記SGSN又は前記MMEの負荷状況を示す、
プログラム。
(付記E1)
 モバイルコアネットワークに配置されるMachine Type Communication Inter Working Function(MTC-IWF)エンティティであって、
 Traffic Detection Function(TDF)と前記MTC-IWFエンティティとの間のシグナリング・インタフェースを介して、第1の負荷情報を含む制御メッセージを前記TDFから受信するメッセージング部を備え、
 前記第1の負荷情報は、Gateway General Packet Radio Service Support Node(GGSN)、Serving Gateway(S-GW)、又はPacket Data Network Gateway(P-GW)におけるユーザープレーンの負荷状況を示す、
MTC-IWFエンティティ。
(付記E2)
 Machine Type Communication Inter Working Function(MTC-IWF)エンティティにおいて、Traffic Detection Function(TDF)と前記MTC-IWFエンティティとの間のシグナリング・インタフェースを介して、第1の負荷情報を含む制御メッセージを前記TDFから受信することを備え、
 前記第1の負荷情報は、Gateway General Packet Radio Service Support Node(GGSN)、Serving Gateway(S-GW)、又はPacket Data Network Gateway(P-GW)におけるユーザープレーンの負荷状況を示す、
通信方法。
(付記E3)
 通信方法をコンピュータに行わせるためのプログラムであって、
 前記通信方法は、Machine Type Communication Inter Working Function(MTC-IWF)エンティティにおいて、Traffic Detection Function(TDF)と前記MTC-IWFエンティティとの間のシグナリング・インタフェースを介して、第1の負荷情報を含む制御メッセージを前記TDFから受信することを備え、
 前記第1の負荷情報は、Gateway General Packet Radio Service Support Node(GGSN)、Serving Gateway(S-GW)、又はPacket Data Network Gateway(P-GW)におけるユーザープレーンの負荷状況を示す、
プログラム。
 この出願は、2013年8月22日に出願された日本出願特願2013-172653を基礎とする優先権を主張し、その開示の全てをここに取り込む。
1 Machine Type Communication Inter Working Function (MTC-IWF)エンティティ
2 Service Capability Server (SCS)
3 User Equipment(UE)
4 MTC アプリケーションサーバ
11~17 シグナリング・インタフェース(又は参照点)
31 MTC UE アプリケーション
51 Home Subscriber Server(HSS)
52 Short Message Service - Service Center(SMS-SC)
53 Charging Data Function(CDF)/Charging Gateway Function(CGF)
54 Serving General Packet Radio Service (GPRS) Support Node(SGSN)
55 Mobility Management Entity(MME)
56 Mobile Switching Center(MSC)
57 Gateway GPRS Support Node/Packet Data Network Gateway(GGSN/P-GW)
58 Serving Gateway(S-GW)
59 Radio Access Network(RAN)
60 Policy and Charging Rule Function(PCRF)
61 Traffic Detection Function(TDF)
101 メッセージング部
102 制御部
201 第1メッセージング部
202 第2メッセージング部

Claims (15)

  1.  モバイルコアネットワークに配置されるMachine Type Communication Inter Working Function(MTC-IWF)エンティティであって、
     Policy and Charging Rule Function(PCRF)と前記MTC-IWFエンティティとの間のシグナリング・インタフェースを介して、第1の負荷情報を含む制御メッセージを前記PCRFから受信するメッセージング手段を備え、
     前記第1の負荷情報は、Gateway General Packet Radio Service Support Node(GGSN)、Serving Gateway(S-GW)、又はPacket Data Network Gateway(P-GW)におけるユーザープレーン又はコントロールプレーンの負荷状況を示す、
    MTC-IWFエンティティ。
  2.  前記第1の負荷情報に基づいてMachine Type Communication(MTC)デバイスの通信に関する課金ポリシーを決定する第1の制御手段をさらに備える、請求項1に記載のMTC-IWFエンティティ。
  3.  前記第1の負荷情報に基づいて将来のネットワーク負荷を予測する第2の制御手段をさらに備える、請求項1又は2に記載のMTC-IWFエンティティ。
  4.  前記モバイルコアネットワークの負荷状況を示す第2の負荷情報を前記第1の負荷情報に基づいて作成し、前記第2の負荷情報をService Capability Server(SCS)を介してアプリケーションサーバに送る第3の制御手段をさらに備える、請求項1~3のいずれか1項に記載のMTC-IWFエンティティ。
  5.  Machine Type Communication Inter Working Function(MTC-IWF)エンティティにおいて、Policy and Charging Rule Function(PCRF)と前記MTC-IWFエンティティとの間のシグナリング・インタフェースを介して、第1の負荷情報を含む制御メッセージを前記PCRFから受信することを備え、
     前記第1の負荷情報は、Gateway General Packet Radio Service Support Node(GGSN)、Serving Gateway(S-GW)、又はPacket Data Network Gateway(P-GW)におけるユーザープレーン又はコントロールプレーンの負荷状況を示す、
    通信方法。
  6.  前記第1の負荷情報に基づいてMachine Type Communication(MTC)デバイスの通信に関する課金ポリシーを決定することを更に備える、請求項5に記載の通信方法。
  7.  前記第1の負荷情報に基づいて将来のネットワーク負荷を予測することをさらに備える、請求項5又は6に記載の通信方法。
  8.  モバイルコアネットワークの負荷状況を示す第2の負荷情報を前記第1の負荷情報に基づいて作成すること、及び
     前記第2の負荷情報をService Capability Server(SCS)を介して前記MTC-IWFエンティティからアプリケーションサーバに送ること、
    をさらに備える、請求項5~7のいずれか1項に記載の通信方法。
  9.  通信方法をコンピュータに行わせるためのプログラムを格納した非一時的なコンピュータ可読媒体であって、
     前記通信方法は、Machine Type Communication Inter Working Function(MTC-IWF)エンティティにおいて、Policy and Charging Rule Function(PCRF)と前記MTC-IWFエンティティとの間のシグナリング・インタフェースを介して、第1の負荷情報を含む制御メッセージを前記PCRFから受信することを備え、
     前記第1の負荷情報は、Gateway General Packet Radio Service Support Node(GGSN)、Serving Gateway(S-GW)、又はPacket Data Network Gateway(P-GW)におけるユーザープレーン又はコントロールプレーンの負荷状況を示す、
    非一時的なコンピュータ可読媒体。
  10.  Policy and Charging Enforcement Function(PCEF)としてのGateway General Packet Radio Service Support Node(GGSN)又はPacket Data Network Gateway(P-GW)にPolicy and Charging Control(PCC)ルールを供給する制御手段と、
     負荷情報をService Capability Server(SCS)又はアプリケーションサーバに送るメッセージング手段を備え、
     前記負荷情報は、前記GGSN、前記P-GW、又はServing Gateway(S-GW)におけるユーザープレーン又はコントロールプレーンの負荷状況を示す、
    Policy and Charging Rule Function(PCRF)エンティティ。
  11.  Service Capability Server(SCS)エンティティであって、
     Machine type Communication Inter Working Function(MTC-IWF)エンティティと前記SCSエンティティとの間の第1のシグナリング・インタフェースを介して、前記MTC-IWFエンティティと通信する第1のメッセージング手段と、
     Policy and Charging Rule Function(PCRF)と前記SCSエンティティとの間の第2のシグナリング・インタフェースを介して、負荷情報を含む制御メッセージを前記PCRFから受信する第2のメッセージング手段を備え、
     前記負荷情報は、Gateway General Packet Radio Service Support Node(GGSN)、Serving Gateway(S-GW)、又はPacket Data Network Gateway(P-GW)におけるユーザープレーン又はコントロールプレーンの負荷状況を示す、
    SCSエンティティ。
  12.  Policy and Charging Rule Function(PCRF)エンティティにおいて、Policy and Charging Enforcement Function(PCEF)としてのGateway General Packet Radio Service Support Node(GGSN)又はPacket Data Network Gateway(P-GW)にPolicy and Charging Control(PCC)ルールを供給すること、及び
     前記PCRFエンティティにおいて、負荷情報をService Capability Server(SCS)又はアプリケーションサーバに送ること、
    を備え、
     前記負荷情報は、前記GGSN、前記P-GW、又はServing Gateway(S-GW)におけるユーザープレーン又はコントロールプレーンの負荷状況を示す、
    通信方法。
  13.  Service Capability Server(SCS)エンティティにおいて、Machine type Communication Inter Working Function(MTC-IWF)エンティティと前記SCSエンティティとの間の第1のシグナリング・インタフェースを介して、前記MTC-IWFエンティティと通信すること、及び
     前記SCSエンティティにおいて、Policy and Charging Rule Function(PCRF)と前記SCSエンティティとの間の第2のシグナリング・インタフェースを介して、負荷情報を含む制御メッセージを前記PCRFから受信すること、
    を備え、
     前記負荷情報は、Gateway General Packet Radio Service Support Node(GGSN)、Serving Gateway(S-GW)、又はPacket Data Network Gateway(P-GW)におけるユーザープレーン又はコントロールプレーンの負荷状況を示す、
    通信方法。
  14.  通信方法をコンピュータに行わせるためのプログラムを格納した非一時的なコンピュータ可読媒体であって、
     前記通信方法は、
     Policy and Charging Rule Function(PCRF)エンティティにおいて、Policy and Charging Enforcement Function(PCEF)としてのGateway General Packet Radio Service Support Node(GGSN)又はPacket Data Network Gateway(P-GW)にPolicy and Charging Control(PCC)ルールを供給すること、及び
     前記PCRFエンティティにおいて、負荷情報をService Capability Server(SCS)又はアプリケーションサーバに送ること、
    を備え、
     前記負荷情報は、前記GGSN、前記P-GW、又はServing Gateway(S-GW)におけるユーザープレーン又はコントロールプレーンの負荷状況を示す、
    非一時的なコンピュータ可読媒体。
  15.  通信方法をコンピュータに行わせるためのプログラムを格納した非一時的なコンピュータ可読媒体であって、
     前記通信方法は、
     Service Capability Server(SCS)エンティティにおいて、Machine type Communication Inter Working Function(MTC-IWF)エンティティと前記SCSエンティティとの間の第1のシグナリング・インタフェースを介して、前記MTC-IWFエンティティと通信すること、及び
     前記SCSエンティティにおいて、Policy and Charging Rule Function(PCRF)と前記SCSエンティティとの間の第2のシグナリング・インタフェースを介して、負荷情報を含む制御メッセージを前記PCRFから受信すること、
    を備え、
     前記負荷情報は、Gateway General Packet Radio Service Support Node(GGSN)、Serving Gateway(S-GW)、又はPacket Data Network Gateway(P-GW)におけるユーザープレーン又はコントロールプレーンの負荷状況を示す、
    非一時的なコンピュータ可読媒体。
PCT/JP2014/003020 2013-08-22 2014-06-06 Mtc-iwfエンティティ、scsエンティティ、pcrfエンティティ、及び通信方法 WO2015025444A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/912,944 US9980172B2 (en) 2013-08-22 2014-06-06 MTC-IWF entity, SCS entity, PCRF entity, and communication method
JP2015532682A JP6394602B2 (ja) 2013-08-22 2014-06-06 Mtc−iwfエンティティ、scsエンティティ、pcrfエンティティ、及び通信方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-172653 2013-08-22
JP2013172653 2013-08-22

Publications (1)

Publication Number Publication Date
WO2015025444A1 true WO2015025444A1 (ja) 2015-02-26

Family

ID=52483244

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/003020 WO2015025444A1 (ja) 2013-08-22 2014-06-06 Mtc-iwfエンティティ、scsエンティティ、pcrfエンティティ、及び通信方法

Country Status (3)

Country Link
US (1) US9980172B2 (ja)
JP (1) JP6394602B2 (ja)
WO (1) WO2015025444A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017193356A1 (zh) * 2016-05-13 2017-11-16 华为技术有限公司 数据传输方法、基站、终端及移动管理实体mme

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10356184B2 (en) 2016-03-31 2019-07-16 Huawei Technologies Co., Ltd. Systems and methods for service and session continuity in software defined topology management
US10650621B1 (en) 2016-09-13 2020-05-12 Iocurrents, Inc. Interfacing with a vehicular controller area network

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012083795A1 (zh) * 2010-12-21 2012-06-28 华为技术有限公司 业务控制方法、装置及系统
JP2012151803A (ja) * 2011-01-21 2012-08-09 Sony Corp 通信料金予測装置、通信装置、通信システム、並びに、課金方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011020208A1 (en) * 2009-08-17 2011-02-24 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for adapting policy control
US20130042011A1 (en) * 2010-04-14 2013-02-14 Panasonic Corporation Communication nodes and network nodes
CN103188617B (zh) * 2011-12-27 2016-11-23 华为技术有限公司 实现集群业务的方法、实体及系统
WO2013109061A1 (en) * 2012-01-18 2013-07-25 Lg Electronics Inc. Control method and device based on multiple priorities in wireless communication system
EP2873257A4 (en) * 2012-07-10 2016-03-09 Ericsson Telefon Ab L M REDUCE A SIGNALING LOAD BY CHANGING THE POSITION OF TERMINALS
CN103782555A (zh) * 2012-09-06 2014-05-07 华为技术有限公司 控制网络传输时延的方法、服务质量控制实体和通信设备
US8989729B2 (en) * 2012-11-09 2015-03-24 Alcatel Lucent Network monitoring of user equipment events
US9973966B2 (en) * 2013-01-11 2018-05-15 Interdigital Patent Holdings, Inc. User-plane congestion management
WO2014166884A1 (en) * 2013-04-08 2014-10-16 Telefonaktiebolaget L M Ericsson (Publ) Congestion aware throughput targets

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012083795A1 (zh) * 2010-12-21 2012-06-28 华为技术有限公司 业务控制方法、装置及系统
JP2012151803A (ja) * 2011-01-21 2012-08-09 Sony Corp 通信料金予測装置、通信装置、通信システム、並びに、課金方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"3rd Generation Partnership Project, Technical Specification Group Services and System Aspects;System improvements for Machine-Type Communications (MTC) (Release 11", 3GPP TR 23.888 V11.0.0, September 2012 (2012-09-01), pages 71 - 80 *
HUAWEI, HISILICON: "Proposed reference architecture for monitoring", 3GPP TSG-SA WG2#93, pages 2 - 124131 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017193356A1 (zh) * 2016-05-13 2017-11-16 华为技术有限公司 数据传输方法、基站、终端及移动管理实体mme

Also Published As

Publication number Publication date
US9980172B2 (en) 2018-05-22
JPWO2015025444A1 (ja) 2017-03-02
JP6394602B2 (ja) 2018-09-26
US20160212652A1 (en) 2016-07-21

Similar Documents

Publication Publication Date Title
JP7444153B2 (ja) 第1の装置による方法及びpcrf装置による方法
US9344830B2 (en) Handling of M2M services in a communication system
CN102075898B (zh) 业务控制方法、装置及系统
JP6652177B2 (ja) システム、サービスプラットフォーム、及び方法
CN107258070B (zh) 对授权和非授权频带中数据使用的差异计费的网络支持
WO2015022764A1 (ja) 無線通信システム及び課金制御のための方法
WO2017219972A1 (zh) 网元管理方法、设备、系统、控制面功能实体及存储介质
JP6090310B2 (ja) 移動通信システム、ゲートウェイ装置、課金ポリシー制御方法及びプログラム
CN104247331A (zh) 用于管理网络资源的方法和节点以及相应的系统和计算机程序
JP6394602B2 (ja) Mtc−iwfエンティティ、scsエンティティ、pcrfエンティティ、及び通信方法
CN105516952A (zh) 一种策略和计费规则功能的选择方法及装置
EP3044931A1 (en) Subscriber-specific tracing in communications
JP6484941B2 (ja) ネットワークノード及び課金管理のための方法
KR20200033611A (ko) 스플릿 베어러를 적용한 무선 통신 시스템에서의 과금 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14838330

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015532682

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14912944

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14838330

Country of ref document: EP

Kind code of ref document: A1