WO2015025426A1 - Power control device, method for controlling power control device, and program - Google Patents
Power control device, method for controlling power control device, and program Download PDFInfo
- Publication number
- WO2015025426A1 WO2015025426A1 PCT/JP2013/072611 JP2013072611W WO2015025426A1 WO 2015025426 A1 WO2015025426 A1 WO 2015025426A1 JP 2013072611 W JP2013072611 W JP 2013072611W WO 2015025426 A1 WO2015025426 A1 WO 2015025426A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power
- agent
- excess
- deficiency
- amount
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/46—Controlling of the sharing of output between the generators, converters, or transformers
Definitions
- the present invention relates to a power control apparatus, a control method for the power control apparatus, and a program.
- the data communication network that connects the distributed generator installed at various locations on the power system and the central control unit is rebuilt. It is also necessary to change various setting data and programs set in the control device.
- the entire power system may not be controlled.
- the present invention has been made in view of the above problems, and an object thereof is to make it possible to optimally control the entire power system without using an apparatus that controls the entire power system. .
- a power control device includes a power generation device, a power load device, and a control device configured to control a power generation amount of the power generation device and a power consumption amount of the power load device.
- a power control device in a power system configured to be connected to a power system, and a communication unit capable of communicating with a control device of an adjacent agent adjacent to the own agent having the control device on the power system; Based on the power generation amount and power consumption in the own agent, a power measuring unit for obtaining an excess / deficiency amount of power in the own agent and the excess / deficiency amount are transmitted to the control device in the adjacent agent.
- the entire power system can be optimally controlled without using a device that controls the entire power system.
- FIG. 1 shows a power system 1000 according to an embodiment of the present invention.
- the power system 1000 includes a plurality of agents 200 that are interconnected via a transformer 1030 to a distribution line 1010 that constitutes a commercial power system.
- the agent 200 includes a power generation device 300, a power load device 400, and a control device 100.
- the power generation device 300, the power load device 400, and the control device 100 in the agent 200 are connected via an in-agent distribution line 1040.
- the agent 200 can be configured with a consumer such as each household or factory as a unit, or can be configured with a predetermined area including a plurality of consumers as a unit.
- the power generator 300 is, for example, a distributed generator such as a fuel cell, a micro gas turbine, or a wind power generator or a solar power generator that uses natural energy.
- the power load device 400 is, for example, a consumer load 410, a battery 420, a heat storage device 430, or the like, and is a device that consumes power supplied from the power generation device 300 or a commercial power system.
- the customer load 410 is various electric devices in the home, various power devices operating in a factory, and the like.
- the battery 420 is a device that stores electrical energy.
- the heat storage device 430 is a device that stores electrical energy in the form of heat energy.
- the control device 100 is a device that can control the power generation amount of the power generation device 300 and the power consumption amount of the power load device 400.
- the control device 100 generates the power generation amount and the power load device 400 of the power generation device 300 in the agent 200 to which the control device 100 belongs (hereinafter also referred to as the self agent 200) at a predetermined timing, for example, every 30 minutes.
- the self agent 200 the agent 200 to which the control device 100 belongs
- control device 100 controls the power generation device 300 so that the surplus power generated by the power generation device 300 is stored in the battery 420 or the heat storage device 430 according to the excess or deficiency of power in the own agent 200, or the power stored in the battery 420 is stored. Control is performed so that the customer load 410 can be used.
- control device 100 is communicably connected to the control device 100 in an agent 200 (hereinafter also referred to as an adjacent agent) 200 adjacent to the own agent 200 on the power system via the communication network 1020.
- agent 200 hereinafter also referred to as an adjacent agent
- the target value of the power excess / deficiency amount in the self agent 200 is calculated according to the power excess / deficiency amount in FIG.
- the control device 100 controls the power generation amount of the power generation device 300 and the power consumption amount of the power load device 400 in the own agent 200 so that the excess and deficiency amount of power in the own agent 200 approaches this target value.
- the control device 100 updates the target value every predetermined time, for example, every 30 minutes.
- the control device 100 is a device that realizes various functions described in the present embodiment when adjacent control devices 100 in the power system 1000 are connected to each other via the communication network 1020. I write.
- FIG. 2 shows a state in which the control devices 100 in each agent 200 constituting the power system 1000 are connected by a communication network 1020.
- each agent 200 is assigned identification information (id).
- FIG. 2 shows the excess and deficiency of power in the own agent 200 calculated by the control device 100 in each agent 200.
- the power is excessive by 5 (“+” indicates that the amount of power generation is larger than the power consumption, and the power is excessive in the agent 200. ).
- the surplus power is supplied to the power system.
- the shortage of power is compensated by the power system.
- the control device 100 in each agent 200 causes the power in the agent 200 so that the total value of the excess and deficiency of the power in each agent 200 in the power system approaches zero.
- the target value of the excess / deficiency value is calculated, and the power generation amount of the power generation device 300 and the power consumption amount of the power load device 400 in each agent 200 are controlled.
- the control device 100 in each agent 200 is based on the power excess / shortage amount of the own agent 200 and the power excess / shortage amount of the adjacent agent 200. Then, the target value of the excess / deficiency amount of power in the own agent 200 is calculated. Then, the control device 100 controls the power generation amount of the power generation device 300 in the own agent 200 and the power consumption amount of the power load device 400 so that the excess or deficiency amount of power in the own agent 200 approaches the target value.
- the entire power system can be optimally controlled without using a device that controls the entire power system.
- FIG. 3 shows an example of the hardware configuration of the control device 100 according to the present embodiment.
- the control device 100 is an information processing device including a CPU 110, a memory 120, a communication device 130, and a storage device 140.
- the CPU 110 governs overall control of the control device 100, and a control program 600 (details will be described later) configured by codes for performing various operations according to the present embodiment stored in the storage device 140 is stored in the memory 120.
- the various functions as the control device 100 are realized by reading and executing the above.
- control program 600 is executed by the CPU 110, and by cooperating with hardware devices such as the memory 120, the communication device 130, and the storage device 140, a communication unit, a power measurement unit, a power reception unit, A target calculation unit and a power control unit are realized.
- the memory 120 can be constituted by a semiconductor memory device, for example.
- the storage device 140 can be constituted by, for example, a hard disk device or a semiconductor storage device.
- the storage device 140 is a device that provides a physical storage area for storing various programs, data, tables, and the like.
- the storage device 140 may be built in the control device 100 or may be externally attached.
- FIG. 4 shows how the control program 600 and the control table 700 according to the present embodiment are stored in the storage device 140.
- the control program 600 and the control table 700 can be stored in the control device 100 by reading them from a recording medium (not shown) (various optical disks, magnetic disks, semiconductor memories, etc.) to the storage device 140. It can also be stored in the control device 100 by obtaining from another computer that is communicably connected via the communication device 130. In the latter case, the control device 100 may be configured not to include the storage device 140.
- a recording medium not shown
- the control device 100 may be configured not to include the storage device 140.
- the control program 600 and the control table 700 are a program and a table for realizing various functions and methods of the control device 100 shown in the present embodiment.
- the control table 700 has a “date and time” column, an “own agent id” column, an “adjacent agent id” column, and a “target value” column.
- the date / time information is recorded in the “date / time” column.
- the control device 100 acquires date / time information from a time measuring unit (not shown) included in the control device 100 and records it in the “date / time” column.
- the id of the own agent 200 is described, and the amount of power in and out of the own agent 200 at each date and time is recorded.
- FIG. 5 shows that at 13:00 on June 10, 2013, the excess and deficiency of the power of the own agent 200 is -3.
- the excess / deficiency amount of power in the own agent 200 is calculated based on the power generation amount of the power generation device 300 and the power consumption amount of the power load device 400 in the own agent 200. For example, a value obtained by subtracting the power consumption amount of the power load device 400 from the power generation amount of the power generation device 300 is calculated as the excess / deficiency amount.
- the control device 100 transmits the excess / deficiency amount of power in the own agent 200 to the adjacent agent 200.
- the control device 100 can identify the neighboring agent 200 by referring to the “neighboring agent id” column described below.
- the id of the neighboring agent is described, and the excess / shortage amount of power in the neighboring agent 200 at each date and time is recorded.
- FIG. 5 the same applies to FIGS. 2 and 6
- the excess and deficiency of power of each adjacent agent 200 is +5, +5, and -2.
- the “target value” column includes the power excess / deficiency amount in the own agent 200 described in the “own agent id” column, and the power excess / deficiency amount in the adjacent agent 200 described in the “adjacent agent id” column. , The target value of the excess / deficiency amount of power in the own agent 200 calculated by the control device 100 of the own agent 200 is recorded.
- the control device 100 subtracts the average value of the power excess / deficiency amount in the own agent 200 and the power excess / deficiency amount in the adjacent agent 200 from the power excess / deficiency amount in the own agent 200.
- the value is calculated as a target value of the excess / deficiency amount of power in the own agent 200.
- the target value of the excess and deficiency of power in the own agent 200 is calculated as ⁇ 4.25.
- control device 100 of the own agent 200 controls the power generation amount of the power generation device 300 and the power consumption amount of the power load device 400 in the own agent 200 so that the excess and deficiency amount of power in the own agent 200 approaches the target value. To do.
- FIG. 6 shows the excess and deficiency of power in each agent 200 in the power system 1000 at that time.
- the excess amount of power is +1.75, which is a significant improvement from +9, which is the excess amount at 13:00 on June 10, 2013.
- the control device 100 repeats the above processing every predetermined time (in this embodiment, every 30 minutes). As a result, the excess amount of power in the entire power system can approach 0.
- control device 100 it is possible to optimally control the entire power system without using a device that controls the entire power system. Become.
- a value obtained by subtracting the average value of the power excess / deficiency amount in the own agent 200 and the power excess / deficiency amount in the adjacent agent 200 from the power excess / deficiency amount in the own agent 200 is calculated. Only by executing a simple algorithm that is calculated as the target value of the excess / deficiency amount, each control device 100 does not control the entire power system and controls it with the control device 100 of the adjacent agent 200. By simply exchanging data, the entire power system can be optimally controlled.
- control device 100 proceeds to SYES at “YES”.
- the control device 100 measures the excess / deficiency value of power in the own agent 200 (S1010). Specifically, the control device 100 calculates the excess / deficiency amount of power in the own agent 200 based on the power generation amount of the power generation device 300 in the own agent 200 and the power consumption amount of the power load device 400. For example, the control device 100 calculates a value obtained by subtracting the power consumption amount of the power load device 400 from the power generation amount of the power generation device 300 as the excess / deficiency amount.
- control device 100 records the power excess / deficiency value in the own agent 200 in the “own agent” column of the control table 700 (S1020).
- control device 100 transmits the power excess / deficiency value of the own agent 200 to the adjacent agent 200 (S1030).
- the adjacent agent 200 can be identified by referring to the “adjacent agent” column of the control table 700.
- control device 100 acquires the power excess / deficiency value in the adjacent agent 200 from the adjacent agent 200 and records it in the “adjacent agent” column of the control table 700 (S1040).
- processing of S1030 and the processing of S1040 are executed according to the timing of communication with the adjacent agent 200.
- the control device 100 calculates the target value of the power excess / deficiency value in the own agent 200 and records it in the “target value” column of the control table 700 (S1050). For example, the control device 100 subtracts, from the self agent 200, a value obtained by subtracting the average value of the power surplus / shortage amount of the self agent 200 and the power surplus / shortage amount of the adjacent agent 200 from the power surplus / shortage amount of the self agent 200. 200 is calculated as a target value of the excess or deficiency of electric power at 200.
- control device 100 returns to S1000 and proceeds to “NO”.
- control device 100 controls the power generation amount of the power generation device 300 and the power consumption amount of the power load device 400 so that the excess / deficiency value of the power in the own agent 200 becomes the target value calculated in S1050 (S1060). ).
- the entire power system can be optimally controlled without using a device that controls the entire power system. It becomes possible. That is, the control device 100 can bring the excess amount of power in the entire power system close to 0 without using a device that controls the entire power system.
- control device 100 when adding or deleting the agent 200, only the setting related to the agent 200 to be added or deleted and the agent 200 adjacent to the agent 200 needs to be changed. Therefore, it is possible to flexibly cope with the installation of a new distributed power source and the work load can be greatly reduced.
- control device 100 it is possible to flexibly cope with a configuration change of the power system 1000, so that it is possible to reduce a maintenance burden.
- the target value calculation formula uses the average value of the power excess / deficiency amount in the own agent 200 and the power excess / deficiency amount in the adjacent agent 200 as the power excess / deficiency amount in the own agent 200.
- various values can be used.
- the control device 100 determines the excess of power in the own agent 200 based on the excess or deficiency amount of power in the own agent 200 and the mean square value of the excess or deficiency amount of power in the adjacent agent 200. It is also possible to calculate a target value for the shortage.
- control device 100 can optimally control the entire power system without using a device that controls the entire power system.
- the control device 100 determines the power excess / deficiency in the adjacent agent 200 from the power excess / deficiency amount in the own agent 200.
- a value obtained by subtracting the root mean square value of the amount is calculated as a target value of the excess / deficiency amount of power in the own agent 200. If the excess / deficiency amount of power in the own agent 200 is a negative value, the power in the own agent 200 is calculated.
- a value obtained by adding the mean square value of the excess / deficiency amount of power in the adjacent agent 200 to the excess / deficiency amount of the adjacent agent 200 is calculated as a target value of the excess / deficiency amount of power in the own agent 200.
- the excess amount of power in the entire power system obtained by summing the excess and deficiency amounts of the power of each agent 200 in the power system is initially +9. Even if it exists, as shown in (B) of FIG. 10, at the next timing, the power excess amount in the entire power system becomes +1.27, and it can be seen that it is greatly improved.
- the control device 100 uses the subtraction value obtained by subtracting the excess / deficiency amount of power in the adjacent agent 200 from the excess / deficiency amount of power in the own agent 200, and Based on the excess and deficiency amount of power, the target value of the excess and deficiency amount of power in the own agent 200 can be calculated.
- control device 100 can optimally control the entire power system without using a device that controls the entire power system.
- the control device 100 obtains the above subtraction value for each adjacent agent 200 as shown in FIG. 11, and the absolute value is the smallest among the subtraction values. Based on the subtracted value and the excess / deficiency amount of power in the own agent 200, the target value of the excess / deficiency amount of power in the own agent 200 may be calculated.
- the control device 100 when the number of the subtraction values having a positive value is larger than the number of subtraction values having a negative value, the control device 100 has the absolute value that is the smallest from the excess / shortage amount of power in the own agent 200. By subtracting the subtraction value, the target value of the excess or deficiency of power in the own agent 200 is calculated, and when the number of subtraction values having a positive value is smaller than the number of subtraction values having a negative value, By adding a subtraction value having a minimum absolute value to the excess or deficiency amount of power in the agent 200, the target value of the excess or deficiency amount of power in the own agent 200 can be calculated.
- the control device 100 determines the excess or deficiency of power in the own agent 200 as the own agent 200. It may be calculated as a target value of the excess or deficiency of power in
- the excess amount of power in the entire power system obtained by summing the excess and deficiency amounts of the power of each agent 200 in the power system is calculated. Even if it was initially +9, as shown in FIG. 11C, the excess power in the entire power system becomes +8 at the next timing, and further at the next timing, As shown, the power surplus in the entire power system is +5, which is close to 0.
- the control device 100 obtains the subtraction value for each of the adjacent agents 200, and calculates the average value of the subtraction values as the power excess in the own agent 200. It is also possible to calculate the target value of the power excess / deficiency in the own agent 200 by subtracting the value subtracted from the shortage.
- control device 100 can optimally control the entire power system without using a device that controls the entire power system.
- the excess amount of power in the entire power system obtained by summing the excess and deficiency amounts of the power of the agents 200 in the power system was initially +9.
- (C) of FIG. 12 at the next timing, it is understood that the excess power amount in the entire power system is +5.51 and approaches 0.
- the entire power system 1000 can be controlled by each control device 100 performing autonomous control based only on information in the vicinity of the control target.
- each control device 100 performs control using only information in the vicinity of the controlled object, so that it is not necessary to invest as a wide area information network as an initial facility, and a communication path in a place requiring control is constructed at any time. It is possible to achieve the overall optimum control just by going through.
- control device 110 CPU DESCRIPTION OF SYMBOLS 120 Memory 130 Communication apparatus 140 Storage apparatus 200 Agent 300 Electric power generation apparatus 400 Electric power utilization apparatus 410 Consumer load 420 Battery 430 Thermal storage apparatus 600 Control program 700 Control table 1000 Electric power system 1010 Distribution line 1020 Communication network 1030 Transformer 1040 Distribution line in agent 1100 Power control device
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Supply And Distribution Of Alternating Current (AREA)
Abstract
A power control device in a power system is constructed by connecting a plurality of agents to a power grid, said agents being each constructed by having a power generation device, a power load device, and a control device capable of controlling the amount of power generated by the power generation device and the amount of power consumed by the power load device. The power control device comprises: a communication unit capable of communicating with a control device in an adjacent agent; a power measurement unit for obtaining the excess or insufficient amount of power in an intra-agent; a power transmission unit for transmitting the excess or insufficient amount to the control device in the adjacent agent; a power receiving unit for receiving, from the control device in the adjacent agent, the excess or insufficient amount of power in the adjacent agent; a target calculation unit for, based on the excess or insufficient amount of power in the intra-agent and the excess or insufficient amount of power in the adjacent agent, calculating a target value of the excess or insufficient amount of power in the intra-agent; and a power control unit for controlling the amount of power generated by the power generation device in the intra-agent and the amount of power consumed by the power load device in the intra-agent so that the excess or insufficient amount of power in the intra-agent approaches the target value.
Description
本発明は、電力制御装置、電力制御装置の制御方法及びプログラムに関する。
The present invention relates to a power control apparatus, a control method for the power control apparatus, and a program.
近年、太陽光発電機や風力発電機のような分散型発電機が普及している。
In recent years, distributed generators such as solar power generators and wind power generators have become widespread.
これらの分散型発電機は、電力需要とは関係なく気象条件などによって発電量が増減するため、余剰電力が生じた場合には電力系統への逆潮流が生じ、電力系統の電圧や周波数に影響を与えるおそれがある。
These distributed generators increase or decrease the amount of power generation depending on weather conditions, etc. regardless of power demand, so when surplus power is generated, reverse power flow to the power system occurs, affecting the voltage and frequency of the power system. There is a risk of giving.
そのため、電力系統上の各所に電圧調整装置を設置して電力系統を安定化させる技術や、分散型発電機により生じた余剰電力のエネルギーをバッテリや電気温水器等の各種電力負荷装置に蓄えるようにすることにより電力系統を安定化させる技術等が開発されている(例えば特許文献1を参照)。
For this reason, voltage regulators are installed in various places on the power system to stabilize the power system, and excess power generated by the distributed generator is stored in various power load devices such as batteries and electric water heaters. In order to stabilize the electric power system, etc. have been developed (see, for example, Patent Document 1).
しかしながら、このような電力系統の各所に設置される電圧調整装置や分散型発電機、電力負荷装置等を制御して電力系統全体の電圧や周波数を制御するためには、巨大な制御システムが構築されることになり、そしてこの制御システムの維持管理コストも大きなものになる。
However, in order to control the voltage and frequency of the entire power system by controlling voltage regulators, distributed generators, power load devices, etc. installed in various places in such a power system, a huge control system is constructed. And the maintenance cost of this control system will be large.
例えば、分散型発電機やバッテリ等の新設や撤去等が行われる都度、電力系統上の各所に設けられている分散型発電機等と中央の制御装置との間を結ぶデータ通信網の再構築や、制御装置に設定されている各種の設定データやプログラムの変更等を行うことが必要になる。
For example, whenever a new installation or removal of a distributed generator or battery, etc. is performed, the data communication network that connects the distributed generator installed at various locations on the power system and the central control unit is rebuilt. It is also necessary to change various setting data and programs set in the control device.
また、中央の制御装置に何らかの障害が発生すると電力系統全体の制御を行うことができなくなるおそれもある。
Also, if a failure occurs in the central control device, the entire power system may not be controlled.
このような観点から、電力系統の全体を統括して制御するような装置を用いることなく、電力系統の全体を最適に制御可能とする技術が求められている。
From such a point of view, there is a need for a technology that can optimally control the entire power system without using a device that controls the entire power system.
本発明は上記課題を鑑みてなされたものであり、電力系統の全体を統括して制御するような装置を用いることなく、電力系統の全体を最適に制御可能とすることを一つの目的とする。
The present invention has been made in view of the above problems, and an object thereof is to make it possible to optimally control the entire power system without using an apparatus that controls the entire power system. .
一つの側面に係る電力制御装置は、発電装置と、電力負荷装置と、前記発電装置の発電量及び前記電力負荷装置の電力消費量を制御可能な制御装置と、を有して構成される複数のエージェントが電力系統に連系して構成される電力システムにおける電力制御装置であって、前記制御装置を有する自エージェントに前記電力系統上で隣接する隣接エージェントの制御装置と通信可能な通信部と、前記自エージェント内の発電量及び電力消費量に基づいて、前記自エージェントにおける電力の過不足量を求める電力計測部と、前記隣接エージェント内の制御装置に対して、前記過不足量を送信する電力送信部と、前記隣接エージェント内の制御装置から、前記隣接エージェントにおける電力の過不足量を受信する電力受信部と、前記自エージェントにおける電力の過不足量と、前記隣接エージェントにおける電力の過不足量と、に基づいて、前記自エージェントにおける電力の過不足量の目標値を算出する目標算出部と、前記自エージェント内における電力の過不足量が前記目標値に近づくように、前記自エージェント内の発電装置の発電量及び前記電力負荷装置の電力消費量を制御する電力制御部と、を備える。
A power control device according to one aspect includes a power generation device, a power load device, and a control device configured to control a power generation amount of the power generation device and a power consumption amount of the power load device. A power control device in a power system configured to be connected to a power system, and a communication unit capable of communicating with a control device of an adjacent agent adjacent to the own agent having the control device on the power system; Based on the power generation amount and power consumption in the own agent, a power measuring unit for obtaining an excess / deficiency amount of power in the own agent and the excess / deficiency amount are transmitted to the control device in the adjacent agent. A power transmission unit; a power reception unit that receives an excess or deficiency of power in the neighboring agent from a control device in the neighboring agent; and A target calculation unit for calculating a target value of the power excess / deficiency amount in the own agent based on the power excess / deficiency amount in the local agent and the power excess / deficiency amount in the adjacent agent; A power control unit that controls the power generation amount of the power generation device in the self-agent and the power consumption amount of the power load device so that the excess / deficiency amount of the power supply device approaches the target value.
その他、本願が開示する課題、及びその解決方法は、発明を実施するための形態の欄の記載、及び図面の記載等により明らかにされる。
The other problems disclosed by the present application and the solutions thereof will be clarified by the description in the column of the embodiment for carrying out the invention and the description of the drawings.
電力系統の全体を統括して制御するような装置を用いることなく、電力系統の全体を最適に制御可能とすることができる。
The entire power system can be optimally controlled without using a device that controls the entire power system.
本明細書および添付図面の記載により、少なくとも以下の事項が明らかとなる。以下、本発明をその一実施形態に即して添付図面を参照しつつ説明する。
At least the following matters will become clear from the description of this specification and the accompanying drawings. Hereinafter, the present invention will be described in accordance with an embodiment thereof with reference to the accompanying drawings.
本発明の実施形態に係る電力システム1000を図1に示す。電力システム1000は、商用の電力系統を構成する配電線1010に、変圧器1030を介して連系する複数のエージェント200を有して構成されている。
FIG. 1 shows a power system 1000 according to an embodiment of the present invention. The power system 1000 includes a plurality of agents 200 that are interconnected via a transformer 1030 to a distribution line 1010 that constitutes a commercial power system.
エージェント200は、発電装置300、電力負荷装置400及び制御装置100を有して構成される。またエージェント200内の発電装置300、電力負荷装置400及び制御装置100は、エージェント内配電線1040を介して接続される。
The agent 200 includes a power generation device 300, a power load device 400, and a control device 100. In addition, the power generation device 300, the power load device 400, and the control device 100 in the agent 200 are connected via an in-agent distribution line 1040.
エージェント200は、各家庭や各工場等の需要家を単位として構成することもできるし、複数の需要家を含む所定の地域を単位として構成することもできる。
The agent 200 can be configured with a consumer such as each household or factory as a unit, or can be configured with a predetermined area including a plurality of consumers as a unit.
発電装置300は、例えば、燃料電池やマイクロガスタービン、あるいは、自然エネルギーを利用する風力発電機や太陽光発電機等の分散型発電機である。
The power generator 300 is, for example, a distributed generator such as a fuel cell, a micro gas turbine, or a wind power generator or a solar power generator that uses natural energy.
電力負荷装置400は、例えば需要家負荷410やバッテリ420、蓄熱装置430などであり、発電装置300や商用の電力系統から供給される電力を消費する装置である。
The power load device 400 is, for example, a consumer load 410, a battery 420, a heat storage device 430, or the like, and is a device that consumes power supplied from the power generation device 300 or a commercial power system.
需要家負荷410は、家庭内における各種電気機器や、工場などで稼動する各種動力装置等である。バッテリ420は、電気エネルギーを貯蔵する装置である。蓄熱装置430は、電気エネルギーを熱エネルギーの形で貯蔵する装置である。
The customer load 410 is various electric devices in the home, various power devices operating in a factory, and the like. The battery 420 is a device that stores electrical energy. The heat storage device 430 is a device that stores electrical energy in the form of heat energy.
制御装置100は、発電装置300の発電量及び電力負荷装置400の電力消費量を制御可能な装置である。例えば、制御装置100は、所定のタイミングで、例えば30分ごとに、自己の制御装置100が所属するエージェント200(以下、自エージェント200とも記す)内の発電装置300の発電量及び電力負荷装置400の電力消費量をそれぞれ取得し、自エージェント200内における電力の過不足量を求め、変圧器1030を制御することで商用の電力系統と自エージェント200との間の電力の出入りを制御する。また制御装置100は、自エージェント200内における電力の過不足量に応じて、発電装置300による余剰電力をバッテリ420や蓄熱装置430へ蓄えるように制御したり、バッテリ420に蓄えられている電力を需要家負荷410が利用できるように制御する。
The control device 100 is a device that can control the power generation amount of the power generation device 300 and the power consumption amount of the power load device 400. For example, the control device 100 generates the power generation amount and the power load device 400 of the power generation device 300 in the agent 200 to which the control device 100 belongs (hereinafter also referred to as the self agent 200) at a predetermined timing, for example, every 30 minutes. Each power consumption amount is acquired, an excess or deficiency amount of power in the own agent 200 is obtained, and by controlling the transformer 1030, the power input / output between the commercial power system and the own agent 200 is controlled. Further, the control device 100 controls the power generation device 300 so that the surplus power generated by the power generation device 300 is stored in the battery 420 or the heat storage device 430 according to the excess or deficiency of power in the own agent 200, or the power stored in the battery 420 is stored. Control is performed so that the customer load 410 can be used.
また制御装置100は、電力系統上で自エージェント200に隣接するエージェント(以下、隣接エージェントとも記す)200内の制御装置100と、通信ネットワーク1020を介して通信可能に接続されており、自エージェント200における電力の過不足量と、隣接エージェント200における電力の過不足量と、に応じて、自エージェント200における電力の過不足量の目標値を算出する。そして制御装置100は、自エージェント200における電力の過不足量が、この目標値に近づくように、自エージェント200内の発電装置300の発電量及び電力負荷装置400の電力消費量を制御する。制御装置100は、この目標値を、所定時間毎例えば30分毎に更新する。
Further, the control device 100 is communicably connected to the control device 100 in an agent 200 (hereinafter also referred to as an adjacent agent) 200 adjacent to the own agent 200 on the power system via the communication network 1020. The target value of the power excess / deficiency amount in the self agent 200 is calculated according to the power excess / deficiency amount in FIG. Then, the control device 100 controls the power generation amount of the power generation device 300 and the power consumption amount of the power load device 400 in the own agent 200 so that the excess and deficiency amount of power in the own agent 200 approaches this target value. The control device 100 updates the target value every predetermined time, for example, every 30 minutes.
なお制御装置100は、電力システム1000内において隣接する制御装置100同士が通信ネットワーク1020を介して互いに接続された際に本実施形態で説明する各種機能を実現する装置であり、電力制御装置1100とも記す。
The control device 100 is a device that realizes various functions described in the present embodiment when adjacent control devices 100 in the power system 1000 are connected to each other via the communication network 1020. I write.
電力システム1000を構成する各エージェント200内の制御装置100が、通信ネットワーク1020で接続されている様子を図2に示す。
FIG. 2 shows a state in which the control devices 100 in each agent 200 constituting the power system 1000 are connected by a communication network 1020.
図2に示すように、各エージェント200には識別情報(id)が付与されている。図2に示す例では、電力システム1000は、id=0からid=7までの8つのエージェント200を有して構成されている。
As shown in FIG. 2, each agent 200 is assigned identification information (id). In the example illustrated in FIG. 2, the power system 1000 includes eight agents 200 having id = 0 to id = 7.
また各エージェント200内の制御装置100が、それぞれ算出した自エージェント200における電力の過不足量が図2に示されている。
Also, FIG. 2 shows the excess and deficiency of power in the own agent 200 calculated by the control device 100 in each agent 200.
例えばid=0のエージェント200においては、5だけ電力が過剰であることを示す(”+”は、発電量の方が電力消費量よりも多く、エージェント200内で電力が過剰であることを示す)。電力の余剰分は電力系統に供給される。またid=1のエージェント200においては、3だけ電力が不足していることを示す(”-”は、発電量よりも電力消費量の方が多く、エージェント200内で電力が不足していることを示す)。電力の不足分は、電力系統から補われる。
For example, in the agent 200 with id = 0, the power is excessive by 5 (“+” indicates that the amount of power generation is larger than the power consumption, and the power is excessive in the agent 200. ). The surplus power is supplied to the power system. In addition, the agent 200 with id = 1 indicates that power is insufficient by 3 ("-" indicates that the power consumption is greater than the power generation amount, and the power is insufficient in the agent 200. Showing). The shortage of power is compensated by the power system.
また図2には、id=0からid=7までの8つのエージェント200の電力のそれぞれの過不足量を合計すると、全体として9だけ電力が過剰であることが示されている。この場合、この過剰な電力が電力系統に逆潮流として供給されるため、電力系統の電圧や周波数が変動することになる。
FIG. 2 also shows that the total excess and deficiency of the power of the eight agents 200 from id = 0 to id = 7 is an excess of 9 as a whole. In this case, since this excessive power is supplied to the power system as a reverse power flow, the voltage and frequency of the power system fluctuate.
本実施形態に係る電力システム1000においては、電力系統内の各エージェント200の電力の過不足量の合計値が0に近付くように、各エージェント200内の制御装置100が、それぞれエージェント200内の電力の過不足値の目標値を算出し、各エージェント200内の発電装置300の発電量及び電力負荷装置400の電力消費量を制御する。
In the power system 1000 according to the present embodiment, the control device 100 in each agent 200 causes the power in the agent 200 so that the total value of the excess and deficiency of the power in each agent 200 in the power system approaches zero. The target value of the excess / deficiency value is calculated, and the power generation amount of the power generation device 300 and the power consumption amount of the power load device 400 in each agent 200 are controlled.
以下に詳しく述べるように、本実施形態に係る各エージェント200内の制御装置100は、それぞれが、自エージェント200における電力の過不足量と、隣接エージェント200における電力の過不足量と、に基づいて、自エージェント200における電力の過不足量の目標値を算出する。そして制御装置100は、自エージェント200内における電力の過不足量が目標値に近づくように、自エージェント200内の発電装置300の発電量及び電力負荷装置400の電力消費量を制御する。
As will be described in detail below, the control device 100 in each agent 200 according to the present embodiment is based on the power excess / shortage amount of the own agent 200 and the power excess / shortage amount of the adjacent agent 200. Then, the target value of the excess / deficiency amount of power in the own agent 200 is calculated. Then, the control device 100 controls the power generation amount of the power generation device 300 in the own agent 200 and the power consumption amount of the power load device 400 so that the excess or deficiency amount of power in the own agent 200 approaches the target value.
このような態様により、電力系統の全体を統括して制御するような装置を用いることなく、電力系統の全体を最適に制御可能とすることが可能となる。
In this manner, the entire power system can be optimally controlled without using a device that controls the entire power system.
本実施形態に係る制御装置100のハードウェア構成の一例を図3に示す。制御装置100は、CPU110、メモリ120、通信装置130及び記憶装置140を有して構成される情報処理装置である。
FIG. 3 shows an example of the hardware configuration of the control device 100 according to the present embodiment. The control device 100 is an information processing device including a CPU 110, a memory 120, a communication device 130, and a storage device 140.
CPU110は制御装置100の全体の制御を司るもので、記憶装置140に記憶される本実施形態に係る各種の動作を行うためのコードから構成される制御プログラム600(詳細は後述する)をメモリ120に読み出して実行することにより、制御装置100としての各種機能を実現する。
The CPU 110 governs overall control of the control device 100, and a control program 600 (details will be described later) configured by codes for performing various operations according to the present embodiment stored in the storage device 140 is stored in the memory 120. The various functions as the control device 100 are realized by reading and executing the above.
例えば、詳細は後述するが、CPU110により制御プログラム600が実行され、メモリ120や通信装置130、記憶装置140等のハードウェア機器と協働することにより、通信部、電力計測部、電力受信部、目標算出部、電力制御部、が実現される。
For example, although details will be described later, the control program 600 is executed by the CPU 110, and by cooperating with hardware devices such as the memory 120, the communication device 130, and the storage device 140, a communication unit, a power measurement unit, a power reception unit, A target calculation unit and a power control unit are realized.
メモリ120は例えば半導体記憶装置により構成することができる。
The memory 120 can be constituted by a semiconductor memory device, for example.
記憶装置140は、例えばハードディスク装置や半導体記憶装置等により構成することができる。記憶装置140は、各種プログラムやデータ、テーブル等を記憶するための物理的な記憶領域を提供する装置である。記憶装置140は、制御装置100に内蔵されている形態とすることもできるし、外付されている形態とすることもできる。記憶装置140に、本実施形態に係る制御プログラム600や制御テーブル700が記憶されている様子を図4に示す。
The storage device 140 can be constituted by, for example, a hard disk device or a semiconductor storage device. The storage device 140 is a device that provides a physical storage area for storing various programs, data, tables, and the like. The storage device 140 may be built in the control device 100 or may be externally attached. FIG. 4 shows how the control program 600 and the control table 700 according to the present embodiment are stored in the storage device 140.
なお、制御プログラム600や制御テーブル700は、図示しない記録媒体(各種の光ディスクや磁気ディスク、半導体メモリ等)から記憶装置140に読み出すことで、制御装置100に格納されるようにすることもできるし、通信装置130を介して通信可能に接続される他のコンピュータから取得することで、制御装置100に格納されるようにすることもできる。なお後者の場合には、制御装置100は記憶装置140を備えない構成とすることも可能である。
The control program 600 and the control table 700 can be stored in the control device 100 by reading them from a recording medium (not shown) (various optical disks, magnetic disks, semiconductor memories, etc.) to the storage device 140. It can also be stored in the control device 100 by obtaining from another computer that is communicably connected via the communication device 130. In the latter case, the control device 100 may be configured not to include the storage device 140.
制御プログラム600及び制御テーブル700は、本実施形態に示す制御装置100の各種機能や方法を実現するためのプログラム及びテーブルである。
The control program 600 and the control table 700 are a program and a table for realizing various functions and methods of the control device 100 shown in the present embodiment.
制御テーブル700の一例を図5に示す。なお図5に示す例は、id=1で特定されるエージェント200内の制御装置100が記憶している制御テーブル700である。
An example of the control table 700 is shown in FIG. Note that the example shown in FIG. 5 is a control table 700 stored in the control device 100 in the agent 200 identified by id = 1.
制御テーブル700は、「日時」欄、「自エージェントid」欄、「隣接エージェントid」欄、「目標値」欄を有する。
The control table 700 has a “date and time” column, an “own agent id” column, an “adjacent agent id” column, and a “target value” column.
「日時」欄は、日時情報が記録される。制御装置100は、以下に述べる目標値の更新タイミングが到来すると、制御装置100が有する図示しない計時手段から日時情報を取得して「日時」欄に記録する。
The date / time information is recorded in the “date / time” column. When the update timing of the target value described below arrives, the control device 100 acquires date / time information from a time measuring unit (not shown) included in the control device 100 and records it in the “date / time” column.
「自エージェントid」欄は、自エージェント200のidが記載されると共に、各日時における自エージェント200内の電力の過不足量が記録される。図5には、2013年6月10日の13時の時点においては、自エージェント200の電力の過不足量が-3であることが記載されている。上述したように、自エージェント200内の電力の過不足量は、自エージェント200内の発電装置300の発電量及び電力負荷装置400の電力消費量に基づいて算出される。例えば、発電装置300の発電量から電力負荷装置400の電力消費量を減算した値が過不足量として算出される。また制御装置100は、この自エージェント200内の電力の過不足量を、隣接エージェント200に送信する。制御装置100は、以下に述べる「隣接エージェントid」欄を参照することにより隣接エージェント200を特定することができる。
In the “own agent id” column, the id of the own agent 200 is described, and the amount of power in and out of the own agent 200 at each date and time is recorded. FIG. 5 shows that at 13:00 on June 10, 2013, the excess and deficiency of the power of the own agent 200 is -3. As described above, the excess / deficiency amount of power in the own agent 200 is calculated based on the power generation amount of the power generation device 300 and the power consumption amount of the power load device 400 in the own agent 200. For example, a value obtained by subtracting the power consumption amount of the power load device 400 from the power generation amount of the power generation device 300 is calculated as the excess / deficiency amount. In addition, the control device 100 transmits the excess / deficiency amount of power in the own agent 200 to the adjacent agent 200. The control device 100 can identify the neighboring agent 200 by referring to the “neighboring agent id” column described below.
「隣接エージェントid」欄は、隣接エージェントのidが記載されると共に、各日時における隣接エージェント200内の電力の過不足量が記録される。図5に示す例(図2及び図6も同様)では、id=1で特定されるエージェント200の隣接エージェント200は、id=0、id=5、id=2で特定される3つである。そして、2013年6月10日の13時の時点においては、各隣接エージェント200の電力の過不足量は、+5、+5、-2であることが記載されている。自エージェント200の制御装置100は、id=0、id=5、id=2で特定される3つの隣接エージェント200の制御装置100から、それぞれ電力の過不足量を受信し、図5に示す制御テーブルに記録する。
In the “neighboring agent id” column, the id of the neighboring agent is described, and the excess / shortage amount of power in the neighboring agent 200 at each date and time is recorded. In the example shown in FIG. 5 (the same applies to FIGS. 2 and 6), there are three neighboring agents 200 identified by id = 1, id = 0, id = 5, and id = 2. . Then, at 13:00 on June 10, 2013, it is described that the excess and deficiency of power of each adjacent agent 200 is +5, +5, and -2. The control device 100 of the own agent 200 receives the power excess / deficiency amounts from the control devices 100 of the three adjacent agents 200 identified by id = 0, id = 5, and id = 2, and performs the control shown in FIG. Record on the table.
「目標値」欄は、「自エージェントid」欄に記載されている自エージェント200における電力の過不足量と、「隣接エージェントid」欄に記載されている隣接エージェント200における電力の過不足量と、に基づいて、自エージェント200の制御装置100が算出した、自エージェント200における電力の過不足量の目標値が記録される。
The “target value” column includes the power excess / deficiency amount in the own agent 200 described in the “own agent id” column, and the power excess / deficiency amount in the adjacent agent 200 described in the “adjacent agent id” column. , The target value of the excess / deficiency amount of power in the own agent 200 calculated by the control device 100 of the own agent 200 is recorded.
本実施形態においては、制御装置100は、自エージェント200における電力の過不足量と、隣接エージェント200における電力の過不足量と、の平均値を、自エージェント200における電力の過不足量から減算した値を、自エージェント200における電力の過不足量の目標値として算出する。図5に示す例では、2013年6月10日の13時の時点においては、自エージェント200における電力の過不足量の目標値は、-4.25と算出されている。
In the present embodiment, the control device 100 subtracts the average value of the power excess / deficiency amount in the own agent 200 and the power excess / deficiency amount in the adjacent agent 200 from the power excess / deficiency amount in the own agent 200. The value is calculated as a target value of the excess / deficiency amount of power in the own agent 200. In the example shown in FIG. 5, at 13:00 on June 10, 2013, the target value of the excess and deficiency of power in the own agent 200 is calculated as −4.25.
そして自エージェント200の制御装置100は、自エージェント200内における電力の過不足量が目標値に近づくように、自エージェント200内の発電装置300の発電量及び電力負荷装置400の電力消費量を制御する。
Then, the control device 100 of the own agent 200 controls the power generation amount of the power generation device 300 and the power consumption amount of the power load device 400 in the own agent 200 so that the excess and deficiency amount of power in the own agent 200 approaches the target value. To do.
このような処理をid=0からid=7までの8つのエージェント200内の制御装置100がそれぞれ実行する。
The control device 100 in each of the eight agents 200 from id = 0 to id = 7 executes such processing.
その後30分が経過し、2013年6月10日の13時30分になると、id=1の自エージェント200の電力の過不足量は目標値に応じて-4.25になっており、またid=0、id=5、id=2の3つの隣接エージェント200の電力の過不足量も、それぞれ目標値に応じて+3.67、+5.5、0になっていることが記録されている。
After 30 minutes, when the time reached 13:30 on June 10, 2013, the excess and deficiency of the power of the self-agent 200 with id = 1 was −4.25 according to the target value, and id = It is recorded that the excess and deficiency of the power of the three adjacent agents 200 with 0, id = 5, and id = 2 are also +3.67, +5.5, and 0 according to the target values, respectively.
そのときの電力システム1000内の各エージェント200における電力の過不足量を図6に示す。
FIG. 6 shows the excess and deficiency of power in each agent 200 in the power system 1000 at that time.
図6に示すように、2013年6月10日の13時30分の時点では、id=0からid=7までの8つのエージェント200の電力のそれぞれの過不足量を合計して求めた全体としての電力の過剰量は、+1.75になっており、2013年6月10日の13時の時点の過剰量である+9から大きく改善していることが分かる。
As shown in FIG. 6, at 13:30 on June 10, 2013, the total amount obtained by summing the excess and deficiency of the power of each of the eight agents 200 from id = 0 to id = 7. The excess amount of power is +1.75, which is a significant improvement from +9, which is the excess amount at 13:00 on June 10, 2013.
制御装置100は、上記の処理を所定時間毎(本実施形態では30分毎)に繰り返し行う。これにより、電力系統全体としての電力の過剰量を0に近付けていくことができる。
The control device 100 repeats the above processing every predetermined time (in this embodiment, every 30 minutes). As a result, the excess amount of power in the entire power system can approach 0.
このように、本実施形態に係る制御装置100を用いることにより、電力系統の全体を統括して制御するような装置を用いることなく、電力系統の全体を最適に制御可能とすることが可能となる。
Thus, by using the control device 100 according to the present embodiment, it is possible to optimally control the entire power system without using a device that controls the entire power system. Become.
特に、自エージェント200における電力の過不足量と、隣接エージェント200における電力の過不足量と、の平均値を、自エージェント200における電力の過不足量から減算した値を、自エージェント200における電力の過不足量の目標値として算出するような簡単なアルゴリズムを実行するだけで、各制御装置100は、電力系統の全体を統括して制御することなく、隣接エージェント200の制御装置100との間でデータの授受を行うだけで、電力系統の全体を最適に制御できるようになる。
In particular, a value obtained by subtracting the average value of the power excess / deficiency amount in the own agent 200 and the power excess / deficiency amount in the adjacent agent 200 from the power excess / deficiency amount in the own agent 200 is calculated. Only by executing a simple algorithm that is calculated as the target value of the excess / deficiency amount, each control device 100 does not control the entire power system and controls it with the control device 100 of the adjacent agent 200. By simply exchanging data, the entire power system can be optimally controlled.
次に、本実施形態に係る制御装置100が実行する処理の流れを、図7に示すフローチャートを参照しながら説明する。
Next, the flow of processing executed by the control device 100 according to the present embodiment will be described with reference to the flowchart shown in FIG.
まず制御装置100は、所定時刻が到来すると(例えば30分ごとの所定時刻。上記に例示した2013年6月10日の13時など)、S1000を"YES"に進む。
First, when a predetermined time arrives (for example, a predetermined time every 30 minutes; 13:00 on June 10, 2013 illustrated above), the control device 100 proceeds to SYES at “YES”.
そして制御装置100は、自エージェント200における電力の過不足値を計測する(S1010)。具体的には、制御装置100は、自エージェント200内の発電装置300の発電量及び電力負荷装置400の電力消費量に基づいて自エージェント200内の電力の過不足量を算出する。例えば制御装置100は、発電装置300の発電量から電力負荷装置400の電力消費量を減算した値を過不足量として算出する。
Then, the control device 100 measures the excess / deficiency value of power in the own agent 200 (S1010). Specifically, the control device 100 calculates the excess / deficiency amount of power in the own agent 200 based on the power generation amount of the power generation device 300 in the own agent 200 and the power consumption amount of the power load device 400. For example, the control device 100 calculates a value obtained by subtracting the power consumption amount of the power load device 400 from the power generation amount of the power generation device 300 as the excess / deficiency amount.
次に制御装置100は、自エージェント200における電力の過不足値を制御テーブル700の「自エージェント」欄に記録する(S1020)。
Next, the control device 100 records the power excess / deficiency value in the own agent 200 in the “own agent” column of the control table 700 (S1020).
そして制御装置100は、自エージェント200における電力の過不足値を、隣接エージェント200に送信する(S1030)。隣接エージェント200は、制御テーブル700の「隣接エージェント」欄を参照することにより特定することができる。
Then, the control device 100 transmits the power excess / deficiency value of the own agent 200 to the adjacent agent 200 (S1030). The adjacent agent 200 can be identified by referring to the “adjacent agent” column of the control table 700.
一方、制御装置100は、隣接エージェント200から隣接エージェント200における電力の過不足値を取得し、制御テーブル700の「隣接エージェント」欄に記録する(S1040)。
On the other hand, the control device 100 acquires the power excess / deficiency value in the adjacent agent 200 from the adjacent agent 200 and records it in the “adjacent agent” column of the control table 700 (S1040).
なお、S1030の処理及びS1040の処理は、隣接エージェント200との通信のタイミングに応じて実行される。
Note that the processing of S1030 and the processing of S1040 are executed according to the timing of communication with the adjacent agent 200.
次に制御装置100は、自エージェント200における電力の過不足値の目標値を算出して、制御テーブル700の「目標値」欄に記録する(S1050)。例えば制御装置100は、自エージェント200における電力の過不足量と、隣接エージェント200における電力の過不足量と、の平均値を、自エージェント200における電力の過不足量から減算した値を、自エージェント200における電力の過不足量の目標値として算出する。
Next, the control device 100 calculates the target value of the power excess / deficiency value in the own agent 200 and records it in the “target value” column of the control table 700 (S1050). For example, the control device 100 subtracts, from the self agent 200, a value obtained by subtracting the average value of the power surplus / shortage amount of the self agent 200 and the power surplus / shortage amount of the adjacent agent 200 from the power surplus / shortage amount of the self agent 200. 200 is calculated as a target value of the excess or deficiency of electric power at 200.
次に、制御装置100は、S1000に戻り、"NO"に進む。
Next, the control device 100 returns to S1000 and proceeds to “NO”.
そして制御装置100は、自エージェント200における電力の過不足値がS1050において算出した目標値になるように、発電装置300の発電量と、電力負荷装置400の電力消費量と、を制御する(S1060)。
Then, the control device 100 controls the power generation amount of the power generation device 300 and the power consumption amount of the power load device 400 so that the excess / deficiency value of the power in the own agent 200 becomes the target value calculated in S1050 (S1060). ).
電力系統内の各制御装置100が以上説明したS1000からS1060の処理を実行することにより、電力系統の全体を統括して制御するような装置を用いることなく、電力系統の全体を最適に制御可能とすることが可能となる。つまり制御装置100は、電力系統の全体を統括して制御するような装置を用いることなく、電力系統全体としての電力の過剰量を0に近付けていくことができる。
By executing the processes from S1000 to S1060 described above by each control device 100 in the power system, the entire power system can be optimally controlled without using a device that controls the entire power system. It becomes possible. That is, the control device 100 can bring the excess amount of power in the entire power system close to 0 without using a device that controls the entire power system.
また本実施形態に係る制御装置100によれば、エージェント200の追加や削除を行なう場合には、追加や削除されるエージェント200及びこのエージェント200に隣接するエージェント200に関する設定だけを変更すれば良いため、新たな分散型電源の設置等に柔軟に対応でき、作業負担も大幅に軽減することができる。
In addition, according to the control device 100 according to the present embodiment, when adding or deleting the agent 200, only the setting related to the agent 200 to be added or deleted and the agent 200 adjacent to the agent 200 needs to be changed. Therefore, it is possible to flexibly cope with the installation of a new distributed power source and the work load can be greatly reduced.
例えば図8に示すように、図2に示した電力系統の構成に対して、新たにid=8で特定されるエージェント200をid=1で特定されるエージェント200の隣に追加する場合には、id=8で特定されるエージェント200の設定を新たに行う他は、id=1で特定されるエージェント200の設定を変更するだけで済む。
For example, as shown in FIG. 8, when the agent 200 identified by id = 8 is newly added next to the agent 200 identified by id = 1 in the configuration of the power system shown in FIG. In addition to newly setting the agent 200 specified by id = 8, it is only necessary to change the setting of the agent 200 specified by id = 1.
具体的には、図9に示すように、2013年6月10日14時から新たにid=8で特定されるエージェント200が稼動を開始する場合には、id=1で特定されるエージェント200では、制御テーブル700の「隣接エージェント」欄に、新たにid=8の列を追加し、目標値の算出式を変更する。
Specifically, as shown in FIG. 9, when the agent 200 newly specified with id = 8 starts operation from 14:00 on June 10, 2013, the agent 200 specified with id = 1. Then, a column of id = 8 is newly added to the “adjacent agent” field of the control table 700, and the target value calculation formula is changed.
このように本実施形態に係る制御装置100によれば、電力システム1000の構成変更にも柔軟に対応することができるので、メンテナンス負担を軽減することが可能となる。
As described above, according to the control device 100 according to the present embodiment, it is possible to flexibly cope with a configuration change of the power system 1000, so that it is possible to reduce a maintenance burden.
なお、目標値の算出式は、上述したように、自エージェント200における電力の過不足量と、隣接エージェント200における電力の過不足量と、の平均値を、自エージェント200における電力の過不足量から減算した値を、自エージェント200における電力の過不足量の目標値として算出する以外にも、様々なものを用いることができる。
As described above, the target value calculation formula uses the average value of the power excess / deficiency amount in the own agent 200 and the power excess / deficiency amount in the adjacent agent 200 as the power excess / deficiency amount in the own agent 200. In addition to calculating the value obtained by subtracting from the target value of the excess or deficiency of power in the own agent 200, various values can be used.
例えば図10に示すように、制御装置100は、自エージェント200における電力の過不足量と、隣接エージェント200における電力の過不足量の二乗平均値と、に基づいて、自エージェント200における電力の過不足量の目標値を算出するようにすることもできる。
For example, as illustrated in FIG. 10, the control device 100 determines the excess of power in the own agent 200 based on the excess or deficiency amount of power in the own agent 200 and the mean square value of the excess or deficiency amount of power in the adjacent agent 200. It is also possible to calculate a target value for the shortage.
このような態様によっても、制御装置100は、電力系統の全体を統括して制御するような装置を用いることなく、電力系統の全体を最適に制御可能とすることが可能となる。
Also according to such an aspect, the control device 100 can optimally control the entire power system without using a device that controls the entire power system.
なお図10に示す例では、制御装置100は、自エージェント200における電力の過不足量が正の値である場合は、自エージェント200における電力の過不足量から、隣接エージェント200における電力の過不足量の二乗平均値を減算した値を、自エージェント200における電力の過不足量の目標値として算出し、自エージェント200における電力の過不足量が負の値である場合は、自エージェント200における電力の過不足量に、隣接エージェント200における電力の過不足量の二乗平均値を加算した値を、自エージェント200における電力の過不足量の目標値として算出する。
In the example illustrated in FIG. 10, when the power excess / deficiency amount in the own agent 200 is a positive value, the control device 100 determines the power excess / deficiency in the adjacent agent 200 from the power excess / deficiency amount in the own agent 200. A value obtained by subtracting the root mean square value of the amount is calculated as a target value of the excess / deficiency amount of power in the own agent 200. If the excess / deficiency amount of power in the own agent 200 is a negative value, the power in the own agent 200 is calculated. A value obtained by adding the mean square value of the excess / deficiency amount of power in the adjacent agent 200 to the excess / deficiency amount of the adjacent agent 200 is calculated as a target value of the excess / deficiency amount of power in the own agent 200.
これにより、図10の(A)で示すように、電力系統内の各エージェント200の電力のそれぞれの過不足量を合計して求めた電力系統全体での電力の過剰量が当初は+9であったとしても、図10の(B)で示すように、次のタイミングでは電力系統全体での電力過剰量は+1.27となり、大きく改善していることが分かる。
As a result, as shown in FIG. 10A, the excess amount of power in the entire power system obtained by summing the excess and deficiency amounts of the power of each agent 200 in the power system is initially +9. Even if it exists, as shown in (B) of FIG. 10, at the next timing, the power excess amount in the entire power system becomes +1.27, and it can be seen that it is greatly improved.
あるいは、図11や図12に示すように、制御装置100は、自エージェント200における電力の過不足量から隣接エージェント200における電力の過不足量を減算して得た減算値と、自エージェント200における電力の過不足量と、に基づいて、自エージェント200における電力の過不足量の目標値を算出するようにすることもできる。
Alternatively, as illustrated in FIG. 11 and FIG. 12, the control device 100 uses the subtraction value obtained by subtracting the excess / deficiency amount of power in the adjacent agent 200 from the excess / deficiency amount of power in the own agent 200, and Based on the excess and deficiency amount of power, the target value of the excess and deficiency amount of power in the own agent 200 can be calculated.
このような態様によっても、制御装置100は、電力系統の全体を統括して制御するような装置を用いることなく、電力系統の全体を最適に制御可能とすることが可能となる。
Also according to such an aspect, the control device 100 can optimally control the entire power system without using a device that controls the entire power system.
なおこの場合、制御装置100は、隣接エージェント200が複数ある場合には、図11に示すように、隣接エージェント200毎にそれぞれ上記の減算値を求め、この減算値の中で絶対値が最小の減算値と、自エージェント200における電力の過不足量と、に基づいて、自エージェント200における電力の過不足量の目標値を算出するようにすることもできる。
In this case, when there are a plurality of adjacent agents 200, the control device 100 obtains the above subtraction value for each adjacent agent 200 as shown in FIG. 11, and the absolute value is the smallest among the subtraction values. Based on the subtracted value and the excess / deficiency amount of power in the own agent 200, the target value of the excess / deficiency amount of power in the own agent 200 may be calculated.
さらにこの場合、制御装置100は、正の値を持つ上記減算値の個数が負の値を持つ減算値の個数よりも多い場合は、自エージェント200における電力の過不足量から絶対値が最小の減算値を減算することにより、自エージェント200における電力の過不足量の目標値を算出し、正の値を持つ減算値の個数が負の値を持つ減算値の個数よりも少ない場合は、自エージェント200における電力の過不足量に絶対値が最小の減算値を加算することにより、自エージェント200における電力の過不足量の目標値を算出するようにすることができる。
Furthermore, in this case, when the number of the subtraction values having a positive value is larger than the number of subtraction values having a negative value, the control device 100 has the absolute value that is the smallest from the excess / shortage amount of power in the own agent 200. By subtracting the subtraction value, the target value of the excess or deficiency of power in the own agent 200 is calculated, and when the number of subtraction values having a positive value is smaller than the number of subtraction values having a negative value, By adding a subtraction value having a minimum absolute value to the excess or deficiency amount of power in the agent 200, the target value of the excess or deficiency amount of power in the own agent 200 can be calculated.
なおこの場合、正の値を持つ減算値の個数と負の値を持つ減算値の個数とが同数である場合は、制御装置100は、自エージェント200における電力の過不足量を、自エージェント200における電力の過不足量の目標値として算出すると良い。
In this case, when the number of subtraction values having a positive value is the same as the number of subtraction values having a negative value, the control device 100 determines the excess or deficiency of power in the own agent 200 as the own agent 200. It may be calculated as a target value of the excess or deficiency of power in
このような態様によれば、図11の(A)で示すように、電力系統内の各エージェント200の電力のそれぞれの過不足量を合計して求めた電力系統全体での電力の過剰量が当初は+9であったとしても、図11の(C)で示すように、次のタイミングでは電力系統全体での電力過剰量は+8となり、さらに次のタイミングでは図11の(E)で示すように、電力系統全体での電力過剰量は+5となり、0に近付いていることが分かる。
According to such an aspect, as shown in (A) of FIG. 11, the excess amount of power in the entire power system obtained by summing the excess and deficiency amounts of the power of each agent 200 in the power system is calculated. Even if it was initially +9, as shown in FIG. 11C, the excess power in the entire power system becomes +8 at the next timing, and further at the next timing, As shown, the power surplus in the entire power system is +5, which is close to 0.
また制御装置100は、図12に示すように、隣接エージェント200が複数ある場合には、隣接エージェント200毎にそれぞれ上記減算値を求め、各減算値の平均値を、自エージェント200における電力の過不足量から減算した値を、自エージェント200における電力の過不足量の目標値を算出するようにすることもできる。
As shown in FIG. 12, when there are a plurality of adjacent agents 200, the control device 100 obtains the subtraction value for each of the adjacent agents 200, and calculates the average value of the subtraction values as the power excess in the own agent 200. It is also possible to calculate the target value of the power excess / deficiency in the own agent 200 by subtracting the value subtracted from the shortage.
このような態様によっても、制御装置100は、電力系統の全体を統括して制御するような装置を用いることなく、電力系統の全体を最適に制御可能とすることが可能となる。
Also according to such an aspect, the control device 100 can optimally control the entire power system without using a device that controls the entire power system.
例えば図12の(A)で示すように、電力系統内の各エージェント200の電力のそれぞれの過不足量を合計して求めた電力系統全体での電力の過剰量が当初は+9であったとしても、図12の(C)で示すように、次のタイミングでは電力系統全体での電力過剰量は+5.51となり、0に近付いていることが分かる。
For example, as shown in FIG. 12A, the excess amount of power in the entire power system obtained by summing the excess and deficiency amounts of the power of the agents 200 in the power system was initially +9. However, as shown in (C) of FIG. 12, at the next timing, it is understood that the excess power amount in the entire power system is +5.51 and approaches 0.
以上説明した様に、本実施形態に係る態様によれば、各制御装置100が制御対象の近傍の情報のみを元に自律制御を行なうことで、電力システム1000の全体を制御することができる。
As described above, according to the aspect according to the present embodiment, the entire power system 1000 can be controlled by each control device 100 performing autonomous control based only on information in the vicinity of the control target.
また各制御装置100が同じ制御プログラム600を実行し、全体の情報を集めて制御するような装置を使用することなく、全体最適な制御を実現することができる。
Further, it is possible to realize overall optimum control without using each control device 100 by executing the same control program 600 and collecting and controlling the entire information.
このように、各制御装置100が制御対象近傍の情報のみを使用して制御を行なうことにより、広域情報網を初期設備として投資する必要がなく、制御が必要な箇所の通信路を随時構築していくだけで全体最適な制御を実現できる。
In this way, each control device 100 performs control using only information in the vicinity of the controlled object, so that it is not necessary to invest as a wide area information network as an initial facility, and a communication path in a place requiring control is constructed at any time. It is possible to achieve the overall optimum control just by going through.
また新たな制御対象が追加される場合も、既に運用中の制御装置100の制御プログラム600や制御テーブル700の更新も最小限で済むので、追加コストも抑制することができる。
Also, when a new control target is added, the update of the control program 600 and the control table 700 of the control apparatus 100 already in operation can be minimized, so that additional costs can be suppressed.
このように、本実施形態に係る態様によれば、電力系統の全体を統括して制御するような装置を用いることなく、電力系統の全体を最適に制御可能とすることが可能となる。
Thus, according to the aspect according to the present embodiment, it is possible to optimally control the entire power system without using a device that controls the entire power system.
なお上述した実施の形態は本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明はその趣旨を逸脱することなく変更、改良され得るとともに、本発明にはその等価物も含まれる。
The above-described embodiment is for facilitating understanding of the present invention, and is not intended to limit the present invention. The present invention can be changed and improved without departing from the gist thereof, and equivalents thereof are also included in the present invention.
100 制御装置
110 CPU
120 メモリ
130 通信装置
140 記憶装置
200 エージェント
300 発電装置
400 電力利用装置
410 需要家負荷
420 バッテリ
430 蓄熱装置
600 制御プログラム
700 制御テーブル
1000 電力システム
1010 配電線
1020 通信ネットワーク
1030 変圧器
1040 エージェント内配電線
1100 電力制御装置 100control device 110 CPU
DESCRIPTION OFSYMBOLS 120 Memory 130 Communication apparatus 140 Storage apparatus 200 Agent 300 Electric power generation apparatus 400 Electric power utilization apparatus 410 Consumer load 420 Battery 430 Thermal storage apparatus 600 Control program 700 Control table 1000 Electric power system 1010 Distribution line 1020 Communication network 1030 Transformer 1040 Distribution line in agent 1100 Power control device
110 CPU
120 メモリ
130 通信装置
140 記憶装置
200 エージェント
300 発電装置
400 電力利用装置
410 需要家負荷
420 バッテリ
430 蓄熱装置
600 制御プログラム
700 制御テーブル
1000 電力システム
1010 配電線
1020 通信ネットワーク
1030 変圧器
1040 エージェント内配電線
1100 電力制御装置 100
DESCRIPTION OF
Claims (10)
- 発電装置と、電力負荷装置と、前記発電装置の発電量及び前記電力負荷装置の電力消費量を制御可能な制御装置と、を有して構成される複数のエージェントが電力系統に連系して構成される電力システムにおける電力制御装置であって、
前記制御装置を有する自エージェントに前記電力系統上で隣接する隣接エージェントの制御装置と通信可能な通信部と、
前記自エージェント内の発電量及び電力消費量に基づいて、前記自エージェントにおける電力の過不足量を求める電力計測部と、
前記隣接エージェント内の制御装置に対して、前記過不足量を送信する電力送信部と、
前記隣接エージェント内の制御装置から、前記隣接エージェントにおける電力の過不足量を受信する電力受信部と、
前記自エージェントにおける電力の過不足量と、前記隣接エージェントにおける電力の過不足量と、に基づいて、前記自エージェントにおける電力の過不足量の目標値を算出する目標算出部と、
前記自エージェント内における電力の過不足量が前記目標値に近づくように、前記自エージェント内の発電装置の発電量及び前記電力負荷装置の電力消費量を制御する電力制御部と、
を備えることを特徴とする電力制御装置。 A plurality of agents configured to include a power generation device, a power load device, and a control device capable of controlling the power generation amount of the power generation device and the power consumption amount of the power load device are connected to the power system. A power control device in a configured power system,
A communication unit capable of communicating with a control device of an adjacent agent adjacent to the own agent having the control device on the power system;
Based on the power generation amount and power consumption in the own agent, a power measurement unit for obtaining an excess / deficiency amount of power in the own agent;
A power transmission unit that transmits the excess / deficiency amount to the control device in the adjacent agent;
A power receiving unit that receives an excess or deficiency amount of power in the adjacent agent from a control device in the adjacent agent;
A target calculation unit for calculating a target value of the power excess / deficiency in the own agent based on the power excess / deficiency in the own agent and the power excess / deficiency in the adjacent agent;
A power control unit that controls the power generation amount of the power generation device in the self agent and the power consumption amount of the power load device so that the excess or deficiency of power in the self agent approaches the target value;
A power control apparatus comprising: - 請求項1に記載の電力制御装置であって、
前記目標算出部は、
前記自エージェントにおける電力の過不足量と、前記隣接エージェントにおける電力の過不足量と、の平均値を、前記自エージェントにおける電力の過不足量から減算した値を、前記自エージェントにおける電力の過不足量の前記目標値として算出する
ことを特徴とする電力制御装置。 The power control apparatus according to claim 1,
The target calculation unit
The value obtained by subtracting the average value of the power excess / deficiency amount in the own agent and the power excess / deficiency amount in the adjacent agent from the power excess / deficiency amount in the own agent is used. A power control device that calculates the target value of a quantity. - 請求項1に記載の電力制御装置であって、
前記目標算出部は、
前記自エージェントにおける電力の過不足量と、前記隣接エージェントにおける電力の過不足量の二乗平均値と、に基づいて、前記自エージェントにおける電力の過不足量の前記目標値を算出する
ことを特徴とする電力制御装置。 The power control apparatus according to claim 1,
The target calculation unit
Calculating the target value of the excess / deficiency amount of power in the own agent based on the excess / deficiency amount of power in the own agent and the mean square value of the excess / deficiency amount of power in the neighboring agent; Power control device. - 請求項3に記載の電力制御装置であって、
前記目標算出部は、
前記自エージェントにおける電力の過不足量が正の値である場合は、前記自エージェントにおける電力の過不足量から、前記隣接エージェントにおける電力の過不足量の二乗平均値を減算した値を、前記自エージェントにおける電力の過不足量の前記目標値として算出し、
前記自エージェントにおける電力の過不足量が負の値である場合は、前記自エージェントにおける電力の過不足量に、前記隣接エージェントにおける電力の過不足量の二乗平均値を加算した値を、前記自エージェントにおける電力の過不足量の前記目標値として算出する
ことを特徴とする電力制御装置。 The power control device according to claim 3,
The target calculation unit
When the power excess / deficiency amount in the own agent is a positive value, a value obtained by subtracting the square average value of the power excess / deficiency amount in the neighboring agent from the power excess / deficiency amount in the own agent is obtained. Calculate as the target value of excess and deficiency of power in the agent,
When the power excess / deficiency amount in the own agent is a negative value, a value obtained by adding a square average value of the power excess / deficiency amount in the neighboring agent to the power excess / deficiency amount in the own agent is obtained. A power control apparatus that calculates the target value of an excess or deficiency of power in an agent. - 請求項1に記載の電力制御装置であって、
前記目標算出部は、
前記自エージェントにおける電力の過不足量から前記隣接エージェントにおける電力の過不足量を減算して得た減算値と、前記自エージェントにおける電力の過不足量と、に基づいて、前記自エージェントにおける電力の過不足量の前記目標値を算出する
ことを特徴とする電力制御装置。 The power control apparatus according to claim 1,
The target calculation unit
Based on the subtraction value obtained by subtracting the power excess / deficiency amount in the adjacent agent from the power excess / deficiency amount in the own agent, and the power excess / deficiency amount in the own agent, A power control apparatus that calculates the target value of an excess / deficiency amount. - 請求項5に記載の電力制御装置であって、
前記目標算出部は、
前記隣接エージェントが複数ある場合には、前記隣接エージェント毎にそれぞれ前記減算値を求め、前記減算値の中で絶対値が最小の減算値と、前記自エージェントにおける電力の過不足量と、に基づいて、前記自エージェントにおける電力の過不足量の前記目標値を算出する
ことを特徴とする電力制御装置。 The power control device according to claim 5,
The target calculation unit
When there are a plurality of the adjacent agents, the subtraction value is obtained for each of the adjacent agents, and based on the subtraction value having the smallest absolute value among the subtraction values and the power excess / shortage amount in the own agent. And calculating the target value of the excess / deficiency amount of power in the own agent. - 請求項6に記載の電力制御装置であって、
前記目標算出部は、
正の値を持つ前記減算値の個数が負の値を持つ前記減算値の個数よりも多い場合は、前記自エージェントにおける電力の過不足量から、前記絶対値が最小の減算値を減算することにより、前記自エージェントにおける電力の過不足量の前記目標値を算出し、
正の値を持つ前記減算値の個数が負の値を持つ前記減算値の個数よりも少ない場合は、前記自エージェントにおける電力の過不足量に、前記絶対値が最小の減算値を加算することにより、前記自エージェントにおける電力の過不足量の前記目標値を算出し、
正の値を持つ前記減算値の個数と負の値を持つ前記減算値の個数とが同数である場合は、前記自エージェントにおける電力の過不足量を、前記自エージェントにおける電力の過不足量の前記目標値として算出する
ことを特徴とする電力制御装置。 The power control device according to claim 6,
The target calculation unit
When the number of subtraction values having a positive value is larger than the number of subtraction values having a negative value, the subtraction value having the minimum absolute value is subtracted from the excess or deficiency of power in the own agent. By calculating the target value of the excess and deficiency of power in the own agent,
When the number of subtraction values having a positive value is smaller than the number of subtraction values having a negative value, the subtraction value having the minimum absolute value is added to the excess or deficiency of power in the own agent. By calculating the target value of the excess and deficiency of power in the own agent,
When the number of subtraction values having a positive value is equal to the number of subtraction values having a negative value, the power excess / deficiency amount of the own agent A power control apparatus that calculates the target value. - 請求項5に記載の電力制御装置であって、
前記目標算出部は、
前記隣接エージェントが複数ある場合には、前記隣接エージェント毎にそれぞれ前記減算値を求め、前記各減算値の平均値を、前記自エージェントにおける電力の過不足量から減算した値を、前記自エージェントにおける電力の過不足量の前記目標値を算出する
ことを特徴とする電力制御装置。 The power control device according to claim 5,
The target calculation unit
When there are a plurality of the adjacent agents, the subtraction value is obtained for each of the adjacent agents, and a value obtained by subtracting the average value of the subtraction values from the excess / shortage amount of the power in the own agent is obtained. A power control apparatus that calculates the target value of an excess or deficiency of power. - 発電装置と、電力負荷装置と、前記発電装置の発電量及び前記電力負荷装置の電力消費量を制御可能な制御装置と、を有して構成される複数のエージェントが電力系統に連系して構成され、前記電力系統上で隣り合う前記エージェント内の前記制御装置同士が通信可能に接続されて構成される電力システムにおける電力制御装置の制御方法であって、
前記制御装置が、自エージェント内の発電量及び電力消費量に基づいて、前記自エージェントにおける電力の過不足量を求め、
前記自エージェントの制御装置が、前記自エージェントに隣接する隣接エージェント内の制御装置に対して、前記過不足量を送信し、
前記自エージェントの制御装置が、前記隣接エージェント内の制御装置から、前記隣接エージェントにおける電力の過不足量を受信し、
前記自エージェントの制御装置が、前記自エージェントにおける電力の過不足量と、前記隣接エージェントにおける電力の過不足量と、に基づいて、前記自エージェントにおける電力の過不足量の目標値を算出し、
前記自エージェントの制御装置が、前記自エージェント内における電力の過不足量が前記目標値に近づくように、前記自エージェント内の発電装置の発電量及び前記電力負荷装置の電力消費量を制御する
ことを特徴とする電力制御装置の制御方法。 A plurality of agents configured to include a power generation device, a power load device, and a control device capable of controlling the power generation amount of the power generation device and the power consumption amount of the power load device are connected to the power system. A control method of a power control device in a power system configured and configured such that the control devices in the agent adjacent to each other on the power system are communicably connected,
Based on the power generation amount and power consumption in the own agent, the control device determines the excess or deficiency of power in the own agent,
The control device of the self agent transmits the excess / deficiency amount to a control device in an adjacent agent adjacent to the self agent,
The control device of the own agent receives the excess / deficiency amount of power in the adjacent agent from the control device in the adjacent agent,
The control device of the own agent calculates a target value of the excess / deficiency amount of power in the own agent based on the excess / deficiency amount of power in the own agent and the excess / deficiency amount of power in the neighboring agent,
The control device of the self agent controls the power generation amount of the power generation device in the self agent and the power consumption amount of the power load device so that the excess or deficiency of power in the self agent approaches the target value. A control method for a power control apparatus. - 発電装置と、電力負荷装置と、前記発電装置の発電量及び前記電力負荷装置の電力消費量を制御可能な制御装置と、を有して構成される複数のエージェントが電力系統に連系して構成され、前記電力系統上で隣り合う前記エージェント内の前記制御装置同士が通信可能に接続されて構成される電力システムにおける電力制御装置に、
自エージェント内の発電量及び電力消費量に基づいて、前記自エージェントにおける電力の過不足量を求める手順と、
前記自エージェントに隣接する隣接エージェント内の制御装置に対して、前記過不足量を送信する手順と、
前記隣接エージェント内の制御装置から、前記隣接エージェントにおける電力の過不足量を受信する手順と、
前記自エージェントにおける電力の過不足量と、前記隣接エージェントにおける電力の過不足量と、に基づいて、前記自エージェントにおける電力の過不足量の目標値を算出する手順と、
前記自エージェント内における電力の過不足量が前記目標値に近づくように、前記自エージェント内の発電装置の発電量及び前記電力負荷装置の電力消費量を制御する手順と、
を実行させるためのプログラム。 A plurality of agents configured to include a power generation device, a power load device, and a control device capable of controlling the power generation amount of the power generation device and the power consumption amount of the power load device are connected to the power system. A power control device in a power system configured and configured such that the control devices in the agent adjacent to each other on the power system are communicably connected,
A procedure for determining an excess or deficiency of power in the agent based on the amount of power generation and power consumption in the agent;
A procedure for transmitting the excess / deficiency amount to a control device in an adjacent agent adjacent to the own agent;
A procedure for receiving an excess or deficiency amount of power in the neighboring agent from a control device in the neighboring agent;
A procedure for calculating a target value of the power excess / deficiency in the own agent based on the power excess / deficiency in the own agent and the power excess / deficiency in the adjacent agent;
A procedure for controlling the power generation amount of the power generation device in the self agent and the power consumption amount of the power load device so that the excess or deficiency amount of power in the self agent approaches the target value;
A program for running
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013552022A JP5524428B1 (en) | 2013-08-23 | 2013-08-23 | Power control apparatus, control method and program for power control apparatus |
PCT/JP2013/072611 WO2015025426A1 (en) | 2013-08-23 | 2013-08-23 | Power control device, method for controlling power control device, and program |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/072611 WO2015025426A1 (en) | 2013-08-23 | 2013-08-23 | Power control device, method for controlling power control device, and program |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015025426A1 true WO2015025426A1 (en) | 2015-02-26 |
Family
ID=51175700
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/072611 WO2015025426A1 (en) | 2013-08-23 | 2013-08-23 | Power control device, method for controlling power control device, and program |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP5524428B1 (en) |
WO (1) | WO2015025426A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105162172A (en) * | 2015-08-13 | 2015-12-16 | 中国电力科学研究院 | Automatic power control system of grid-connected photovoltaic power station |
JP2016063573A (en) * | 2014-09-16 | 2016-04-25 | 株式会社東芝 | System stabilization system |
JP2018170884A (en) * | 2017-03-30 | 2018-11-01 | 積水化学工業株式会社 | Power management device, power management method, and power management program |
JP2019126200A (en) * | 2018-01-17 | 2019-07-25 | 東芝エネルギーシステムズ株式会社 | Electric system stabilization system |
CN110970890A (en) * | 2019-10-28 | 2020-04-07 | 中冶南方都市环保工程技术股份有限公司 | Isolated power grid stability control system and method based on energy storage device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003324850A (en) * | 2002-04-26 | 2003-11-14 | Nippon Telegr & Teleph Corp <Ntt> | Power demand/supply adjusting system and customer controller |
WO2004073136A1 (en) * | 2003-02-13 | 2004-08-26 | Vpec, Inc. | Power system |
JP2011103736A (en) * | 2009-11-11 | 2011-05-26 | Mitsubishi Heavy Ind Ltd | Wind power generation system |
JP2012249374A (en) * | 2011-05-26 | 2012-12-13 | Kawasaki Heavy Ind Ltd | Micro grid and control device therefor, and control method therefor |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA2746166A1 (en) * | 2009-03-12 | 2010-09-16 | Vpec, Inc. | Autonomous distributed ac power system |
JP5643577B2 (en) * | 2010-09-01 | 2014-12-17 | 学校法人慶應義塾 | Power grid control system |
JP5790081B2 (en) * | 2011-03-30 | 2015-10-07 | 富士通株式会社 | Power control apparatus, power control program, and power control method |
-
2013
- 2013-08-23 WO PCT/JP2013/072611 patent/WO2015025426A1/en active Application Filing
- 2013-08-23 JP JP2013552022A patent/JP5524428B1/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003324850A (en) * | 2002-04-26 | 2003-11-14 | Nippon Telegr & Teleph Corp <Ntt> | Power demand/supply adjusting system and customer controller |
WO2004073136A1 (en) * | 2003-02-13 | 2004-08-26 | Vpec, Inc. | Power system |
JP2011103736A (en) * | 2009-11-11 | 2011-05-26 | Mitsubishi Heavy Ind Ltd | Wind power generation system |
JP2012249374A (en) * | 2011-05-26 | 2012-12-13 | Kawasaki Heavy Ind Ltd | Micro grid and control device therefor, and control method therefor |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016063573A (en) * | 2014-09-16 | 2016-04-25 | 株式会社東芝 | System stabilization system |
CN105162172A (en) * | 2015-08-13 | 2015-12-16 | 中国电力科学研究院 | Automatic power control system of grid-connected photovoltaic power station |
CN105162172B (en) * | 2015-08-13 | 2018-07-20 | 中国电力科学研究院 | A kind of grid-connected photovoltaic power generation station power automatic control system |
JP2018170884A (en) * | 2017-03-30 | 2018-11-01 | 積水化学工業株式会社 | Power management device, power management method, and power management program |
JP2019126200A (en) * | 2018-01-17 | 2019-07-25 | 東芝エネルギーシステムズ株式会社 | Electric system stabilization system |
JP6995640B2 (en) | 2018-01-17 | 2022-01-14 | 東芝エネルギーシステムズ株式会社 | Power system stabilization system |
CN110970890A (en) * | 2019-10-28 | 2020-04-07 | 中冶南方都市环保工程技术股份有限公司 | Isolated power grid stability control system and method based on energy storage device |
Also Published As
Publication number | Publication date |
---|---|
JP5524428B1 (en) | 2014-06-18 |
JPWO2015025426A1 (en) | 2017-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Firouzmakan et al. | A comprehensive stochastic energy management system of micro-CHP units, renewable energy sources and storage systems in microgrids considering demand response programs | |
US11314304B2 (en) | Datacenter power management using variable power sources | |
JP5802463B2 (en) | Electric quantity adjusting device, electric quantity adjusting method, electric quantity adjusting program, and power supply system | |
Jaradat et al. | Integration of renewable energy in demand-side management for home appliances | |
JP5524428B1 (en) | Power control apparatus, control method and program for power control apparatus | |
Nikoobakht et al. | Allocation of fast-acting energy storage systems in transmission grids with high renewable generation | |
Yang et al. | Research on heat and electricity coordinated dispatch model for better integration of wind power based on electric boiler with thermal storage | |
WO2015037307A1 (en) | Power storage control device, management system, power storage control method, power storage control program, and memory medium | |
Chalise et al. | Data center energy systems: Current technology and future direction | |
Sanjareh et al. | A novel approach for sizing thermal and electrical energy storage systems for energy management of islanded residential microgrid | |
Bagheri‐Sanjareh et al. | Energy management of islanded microgrid by coordinated application of thermal and electrical energy storage systems | |
Masaud et al. | Sizing of large‐scale battery storage for off‐grid wind power plant considering a flexible wind supply–demand balance | |
JP2018133939A (en) | Power supply system and control method for power supply system | |
Yousefi et al. | Energy management strategies for smart home regarding uncertainties: State of the art, trends, and challenges | |
Wen et al. | Optimal distributed energy storage investment scheme for distribution network accommodating high renewable penetration | |
JP2016163488A (en) | Device, method and program for power control | |
Yorino et al. | Novel agent-based voltage control methods for PV prosumers using nodal price | |
Srinivasan et al. | A layered architecture for control functionality implementation in smart grids | |
Bashiri | Optimal scheduling of distributed energy resources in a distribution system based on imperialist competitive algorithm considering reliability worth | |
JP2013247792A (en) | Power management device, power management system, and power management method | |
Harb et al. | A multi-agent based approach for energy management in microgrids | |
Al‐Gablawy | Retracted: Optimal peak shifting of a domestic load connected to utility grid using storage battery based on deep Q‐learning network | |
Saidi et al. | Realization of the optimal sizing of local hybrid photovoltaic and wind energy systems with load scheduling capacity | |
JP7208095B2 (en) | Server device and control method | |
Viola et al. | Optimal Operation of Battery and Hydrogen Energy Storage Systems in Electrical Distribution Networks for Peak Shaving |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2013552022 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13892071 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13892071 Country of ref document: EP Kind code of ref document: A1 |