WO2015025418A1 - Mobile station apparatus, power supply control method in mobile station apparatus, and wireless communication system - Google Patents

Mobile station apparatus, power supply control method in mobile station apparatus, and wireless communication system Download PDF

Info

Publication number
WO2015025418A1
WO2015025418A1 PCT/JP2013/072504 JP2013072504W WO2015025418A1 WO 2015025418 A1 WO2015025418 A1 WO 2015025418A1 JP 2013072504 W JP2013072504 W JP 2013072504W WO 2015025418 A1 WO2015025418 A1 WO 2015025418A1
Authority
WO
WIPO (PCT)
Prior art keywords
station apparatus
switching
mobile station
frequency band
base station
Prior art date
Application number
PCT/JP2013/072504
Other languages
French (fr)
Japanese (ja)
Inventor
村田秀一
Original Assignee
アクセスネットワークテクノロジ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アクセスネットワークテクノロジ株式会社 filed Critical アクセスネットワークテクノロジ株式会社
Priority to PCT/JP2013/072504 priority Critical patent/WO2015025418A1/en
Publication of WO2015025418A1 publication Critical patent/WO2015025418A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0261Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level
    • H04W52/0274Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof
    • H04W52/028Power saving arrangements in terminal devices managing power supply demand, e.g. depending on battery level by switching on or off the equipment or parts thereof switching on or off only a part of the equipment circuit blocks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to a mobile station apparatus, a power control method in the mobile station apparatus, and a radio communication system.
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-A
  • wireless communication may be performed using a plurality of carriers.
  • wireless communication using a plurality of carriers is sometimes called, for example, carrier aggregation.
  • Each carrier in the case where carrier aggregation is performed may be referred to as a component carrier (Component Carrier), for example.
  • Component Carrier Component Carrier
  • the frequency band used for wireless communication increases as compared to the case where wireless communication is performed using one component carrier, and thus throughput is reduced. Can be increased.
  • DC-HSDPA Dual Cell-High Speed Downlink Packet Access
  • DC-HSPA Dual Cell-High Speed Packet Access
  • a maximum of four carriers are used for wireless communication in the case of downlink communication and a maximum of two carriers in the case of uplink communication.
  • a plurality of carriers are used in continuous frequency bands.
  • DC-HSDPA and DC-HSPA since a plurality of carriers are used for wireless communication, for example, it is possible to increase the throughput.
  • Examples of such wireless communication technologies include the following technologies.
  • the serving base station sets the handover report condition and the handover threshold in the handover condition based on the signal strength difference between the PCC (Component Carrier) of the own station and other CCs. is there.
  • PCC Component Carrier
  • the base station and the user terminal can obtain appropriate handover timing and improve the user throughput.
  • the base station can provide a secondary uplink carrier carrier if the amount of uplink data in the secondary uplink carrier serving cell is very small.
  • the base station Is a technique in which part of uplink data is allocated to a secondary uplink carrier serving cell.
  • the uplink carrier frequency of multi-cell HSUPA (uplink multi-cell high-speed uplink packet access) can be managed.
  • the technology for switching to a new carrier in the multi-carrier system described above is that the mobile station transmits a response message to the carrier handover identification message to the base station, and then sends a new carrier assignment message from the base station. In response, wireless communication using the new carrier is performed. For this reason, the mobile station operates a circuit for performing wireless communication using the old carrier until a new carrier assignment message is received after the response message is transmitted. Therefore, in the mobile station, current is used to operate such a circuit, and current consumption may be wasted.
  • a technique in which the serving base station described above sets a handover threshold based on a difference in signal strength between the PCC of the own station and another CC is, for example, a technique related to handover, and is different from a technique for switching carriers.
  • handover of a mobile station is determined in a host device such as a serving base station. Therefore, the user terminal operates a circuit for performing wireless communication with the serving base station until receiving a notification regarding the handover decision, and current consumption may be wasted.
  • an object of the present invention is to provide a mobile station apparatus capable of reducing current consumption, a power supply control method in the mobile station apparatus, and a wireless communication system.
  • a first processing unit that processes a first data stream transmitted or received using the first frequency band
  • a second processing unit that processes the second data stream transmitted or received using the second frequency band, and the first and second frequency bands based on different indices for each mobile station device.
  • a switching control unit that turns off the power of the second processing unit without performing wireless communication with the base station device when it is determined to switch from the frequency band to the first frequency band.
  • FIG. 1 is a diagram illustrating a configuration example of a wireless communication system.
  • FIG. 2 is a diagram illustrating a configuration example of a wireless communication system.
  • 3A to 3D are diagrams illustrating examples of carriers.
  • FIG. 4 is a diagram illustrating a configuration example of a wireless communication system and a mobile device.
  • FIG. 5 is a diagram illustrating a configuration example of a radio communication system, a base station, and an RNC.
  • FIG. 6 is a sequence diagram showing an operation example in the wireless communication system.
  • FIG. 7 is a flowchart showing an operation example of the switching determination process.
  • FIG. 8 is a flowchart showing an operation example of the retransmission control care process.
  • FIG. 9 is a flowchart showing an operation example in the wireless communication system.
  • FIG. 9 is a flowchart showing an operation example in the wireless communication system.
  • FIG. 10 is a flowchart showing an operation example of stream switching processing.
  • FIG. 11 is a diagram illustrating a configuration example of a wireless communication system and a mobile device.
  • FIG. 12 is a diagram illustrating a configuration example of a radio communication system, a base station, and an RNC.
  • FIG. 13 is a flowchart showing an operation example in the wireless communication system.
  • FIG. 14 is a flowchart showing an operation example of the switching determination process.
  • FIG. 15 is a flowchart showing an example of the switching determination process.
  • FIG. 16 is a diagram illustrating a configuration example of a transmission unit.
  • FIG. 17 is a diagram illustrating a configuration example of a mobile device.
  • FIG. 18 is a diagram illustrating a configuration example of a base station.
  • FIG. 19 is a diagram illustrating a configuration example of the RNC.
  • FIG. 1 is a diagram illustrating a configuration example of a wireless communication system 10 according to the first embodiment.
  • the radio communication system 10 includes a mobile station device 100, a base station device 200, and a base station control device 300.
  • the mobile station device 100 performs radio communication with the base station device 200 using the frequency band.
  • the mobile station apparatus 100 includes a first processing unit 190, a second processing unit 191, and a switching control unit 120.
  • the first processing unit 190 processes the first data stream transmitted or received using the first frequency band.
  • the second processing unit 191 processes the second data stream transmitted or received using the second frequency band.
  • the switching control unit 120 determines to switch the frequency band from the first and second frequency bands to the first frequency band based on a different index for each mobile station apparatus 100, the switching control unit 120 is connected to the base station apparatus 200.
  • the power of the second processing unit 191 is turned off without performing wireless communication.
  • the power of the second processing unit 191 is turned off without performing wireless communication with the base station device 200.
  • the mobile station device 100 is powered off.
  • this mobile station apparatus 100 the time until the notification after the determination is received, compared with the case where the wireless communication with the base station apparatus 200 is performed and the notification is received from the base station 200 and the power is turned off after the switching is determined. It is possible to eliminate waste of current in the mobile station device 100 that is consumed in the above. Therefore, the mobile station apparatus 100 can reduce current consumption.
  • the power of the second processing unit 191 is turned off without performing wireless communication with the base station device 200. Therefore, after the decision to switch to the first frequency band, The power source of the processing unit 191 can be turned off. Also from this point, it is possible to reduce the current consumption of the mobile station device 100 as compared with the case where the power is turned off by performing wireless communication.
  • a certain index can be used for switching determination, but other indices may not be used for switching determination. Since the mobile station apparatus 100 performs the switching determination based on an index different for each mobile station apparatus 100, the switching determination can be performed based on an index that can be handled for each mobile station apparatus 100.
  • FIG. 2 is a diagram illustrating a configuration example of the wireless communication system 10.
  • the wireless communication system 10 includes mobile station devices (hereinafter, also referred to as “mobile devices”) 100-1 and 100-2 and base station devices (hereinafter also referred to as “base stations”) 200.
  • mobile stations hereinafter, also referred to as “mobile devices”
  • base stations hereinafter also referred to as “base stations”.
  • Base station 200 is a wireless communication device that performs wireless communication with mobile devices 100-1 and 100-2.
  • Base station 200 can perform wireless communication in parallel with a plurality of mobile devices 100-1 and 100-2. Further, base station 200 is capable of two-way communication with mobile devices 100-1 and 100-2 within the communicable range of the local station (for example, sometimes referred to as “cell range”).
  • Base station 200 allocates radio resources (for example, time resource and frequency resource) to mobile devices 100-1 and 100-2 by scheduling or the like. Base station 200 transmits the allocated radio resource as a control signal to mobile devices 100-1 and 100-2.
  • the base station 200 and the mobile devices 100-1 and 100-2 perform downlink communication and uplink communication using radio resources.
  • Mobile devices 100-1 and 100-2 are movable wireless communication devices such as feature phones and smartphones.
  • the mobile devices 100-1 and 100-2 receive various services such as a call service, video distribution, and homepage browsing by performing wireless communication with the base station 200.
  • the base station 200 may perform wireless communication using a plurality of component carriers (CC).
  • CC component carriers
  • the component carrier represents a frequency band having a maximum bandwidth of 20 MHz, for example, and corresponds to one carrier wave.
  • Performing wireless communication using a plurality of component carriers or a plurality of frequency bands may be referred to as carrier aggregation, for example.
  • each component carrier may be referred to as a carrier, for example.
  • Carrier aggregation is standardized in 3GPP as a standard in LTE (Long Term Evolution), for example.
  • a plurality of carriers are assigned to continuous frequency bands, but as shown in FIG. 3 (C), a plurality of carriers are assigned to discontinuous frequency bands. May be assigned.
  • uplink communication and downlink communication up to five carriers may be used, and the number of carriers may be different between uplink communication and downlink communication. For example, three carriers may be provided for uplink communication and five carriers for downlink communication. Also, the carrier bandwidths may not all be the same.
  • the mobile devices 100-1 and 100-2 can use some or all of the five carriers.
  • the base station 200 may perform radio communication using a dual cell.
  • wireless communication is performed using a DL (Down Link) carrier and a UL (Up Link) carrier having a maximum bandwidth of 5 MHz.
  • a DL carrier is bundled with a maximum of four carriers, and a UL carrier is bundled with a maximum of two carriers.
  • FIG. 3D is a diagram illustrating an example of a DL carrier. As shown in FIG. 3D, in the dual cell, a plurality of carriers are used in a continuous frequency band. Each DL carrier or UL carrier may be referred to as a carrier, for example. In the example shown in FIG. 3D, an example in which two carriers are used as DL carriers is shown.
  • the dual cell is standardized in 3GPP as a standard in DC-HSDPA or DC-HSPA, for example.
  • the carrier in the carrier aggregation and the carrier in the dual cell each represent a frequency band having a predetermined bandwidth.
  • both the carrier in the carrier aggregation and the carrier in the dual cell may be referred to as “carrier”, for example.
  • the mobile devices 100-1 and 100-2 and the base station 200 can transmit or receive one data stream, for example, to one carrier. Accordingly, the mobile devices 100-1 and 100-2 and the base station 200 can transmit or receive a plurality of data streams using a plurality of carriers.
  • the data stream may be referred to as a stream, for example.
  • mobile devices 100-1 and 100-2 have the same configuration and will be described as the mobile device 100 unless otherwise specified.
  • configuration examples of the mobile device 100 and the base station 200 will be described using an example in which a maximum of two streams are transmitted or received.
  • FIG. 4 is a diagram illustrating a configuration example of the wireless communication system 10 including the mobile device 100.
  • the wireless communication system 10 includes a mobile device 100 and an NW (network) 400.
  • the NW 400 includes first and second base stations (BTS # 1, BTS # 2) 200-1 and 200-2, and an RNC (Radio Network Controller) 300.
  • BTS # 1, BTS # 2) 200-1 and 200-2
  • RNC Radio Network Controller
  • the first base station 200-1 transmits the first stream using the first carrier (for example, DL carrier # 1), and the second base station 200-2 transmits the second carrier.
  • the second stream is transmitted using (for example, DL carrier # 2).
  • transmission of a plurality of streams is realized by being transmitted from a plurality of base stations 200.
  • the mobile device 100 can receive two streams using two carriers, and can receive one stream using one carrier.
  • the streams transmitted from the two base stations 200-1 and 200-2 can be separated into streams from the base stations 200-1 and 200-2. .
  • the mobile device 100 includes an antenna (ANT1) 101, a receiving unit 110, a MAC (Media Access Control) unit 130, an RLC (Radio Link Control) unit 140, a PDCP (Packet Data Convergence Protocol) unit 150, an application unit 160, and a transmission unit. 170.
  • ANT1 antenna
  • MAC Media Access Control
  • RLC Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • the receiving unit 110 includes an RF (Radio Frequency) unit 111, an L1 unit 115, a switching control unit 120, and a power supply control unit 121. Further, the RF unit 111 includes a first RX 112 and a second RX 113.
  • RF Radio Frequency
  • the receiving unit 110 includes a despreading unit 116, a decoding unit 117, and first and second BLER (Block Error Rate) measuring units 118 and 119.
  • the antenna 101 receives the first and second radio signals transmitted from the first and second base stations 200-1 and 200-2, respectively, and outputs them to the receiving unit 110.
  • the first radio signal corresponds to the first stream
  • the second radio signal corresponds to the second stream.
  • the antenna 101 transmits the radio signal output from the transmission unit 170 to the first and second base stations 200-1 and 200-2.
  • the first RX 112 receives the first radio signal transmitted from the first base station 200-1 by frequency separation from the antenna 101, and performs amplification processing and frequency conversion processing on the first radio signal.
  • the digital signal is converted.
  • the first RX 112 outputs the converted first radio signal to the despreading section 116 as a first received signal.
  • the second RX 113 receives, for example, the second radio signal transmitted from the second base station 200-2 by frequency separation from the antenna 101, and performs amplification processing or frequency on the second radio signal. Conversion processing, conversion to digital signal, etc. are performed. The second RX 113 outputs the converted second radio signal to the despreading section 116 as a second received signal.
  • the despreading unit 116 performs despreading processing on the first and second received signals by using the spreading codes used in the first and second base stations 200-1 and 200-2, respectively, and provides interference components. First and second received signals are obtained by removing the above.
  • Despreading section 116 outputs the first and second received signals after the despreading process to decoding section 117.
  • the decoding unit 117 performs error correction decoding processing on the first and second received signals after despreading processing to obtain first and second decoded data. For example, the first stream transmitted from the first base station 100-1 is obtained by obtaining the first decoded data, and the second stream is transmitted from the second base station 100-2 by obtaining the second decoded data. Obtain a second stream.
  • the decoding unit 117 outputs the first and second decoded data to the first and second BLER measurement units 118 and 119, respectively.
  • the first and second BLER measurement units 118 and 119 measure the block error rate for the first and first decoded data output from the decoding unit 117, respectively.
  • the first and second decoded data correspond to the first and second carriers, respectively. Therefore, for example, the first BLER measurement unit 118 measures the block error rate for the first carrier, and the second BLER measurement unit 119 measures the block error rate for the second carrier.
  • the block error rate is one index for measuring the downlink communication quality of each carrier, and the index for measuring the downlink communication quality may be CQI (Channel Quality Indicator) in addition to the block error rate.
  • the first and second BLER measurement units 118 and 119 measure SIR (Signal to Interference Ratio) for the first and second decoded signals, respectively, and the first and second BLER measurement units 118 and 119 correspond to the measured SIR. 2 CQI is set.
  • the first and second BLER measurement units 118 and 119 output the first and second decoded data to the MAC unit 130, and the measurement results for the first and second decoded data (first and second measurement respectively). Result) to the switching control unit 120.
  • the first RX 112, the circuit that performs processing for the output from the first RX 112 in the despreading unit 116, and the circuit that performs processing for the output from the first RX 112 in the decoding unit 117 are, for example, the first This is a circuit for performing processing on the stream.
  • a circuit that performs processing on the first stream corresponds to, for example, the first processing unit 190 in the first embodiment.
  • a circuit that performs processing for the output from the second RX 113 in the second RX 113 and the despreading unit 116, and a circuit that performs processing for the output from the second RX 113 in the decoding unit 117 are, for example, the second This is a circuit for performing processing on the stream.
  • a circuit that performs processing on the second stream corresponds to, for example, the second processing unit 191 in the second embodiment.
  • FIG. 4 a circuit that performs processing for the first stream and a circuit that performs processing for the second stream are indicated by dotted lines.
  • the switching control unit 120 determines to stop receiving the first or second stream corresponding to the lower measurement result. To do. At this time, the switching control unit 120 instructs the power control unit 121 to turn off the power of the unused circuit corresponding to the stopped first or second stream.
  • the switching control unit 120 receives the stream having the lower measurement result among the first and second measurement results. Can be stopped, or both of the two streams can be stopped.
  • the switching control unit 120 instructs the power supply control unit 121 to turn on the power of the unused circuit when the first or second measurement result lower than the threshold value is subsequently higher than the threshold value.
  • the switching control unit 120 detects that the first and second measurement results are higher than the threshold value, the switching control unit 120 continues to receive the first and second streams. In this case, the switching control unit 120 does not particularly instruct the power supply control unit 121. Details of the operation in the switching control unit 120 will be described in an operation example described later.
  • the power control unit 121 controls the power on or off of a circuit that performs processing for the first or second stream based on the instruction output from the switching control unit 120.
  • the power control unit 121 when the power control unit 121 receives an instruction to turn off the power of a circuit that performs processing for the first stream, the power control unit 121 performs processing for the first stream (for example, the first RX 112 and the despreading unit 116). Power of the circuit that performs processing for the output from the first RX 112 and the circuit that performs processing for the output from the first RX 112 in the decoding unit 117. Further, for example, when receiving an instruction to turn on the power of the unused circuit, the power control unit 121 turns on the power of the unused circuit whose power is turned off.
  • the power supply control unit 121 When the power supply is turned off or on, the power supply control unit 121 notifies the CQI generation unit 171 of the transmission unit 170 to that effect.
  • the MAC unit 130 includes a MUX 131.
  • the MUX 131 multiplexes the first and second decoded data output from the first and second measuring units 118 and 119, generates MAC packet data including the multiplexed first and second decoded data, Output to the RLC unit 140.
  • the MUX 131 receives one of the first and second decoded data when the unused circuit is powered off. In this case, the MUX 131 outputs without multiplexing. To do.
  • the MAC unit 130 generates a MAC packet data by adding a header to the RLC packet data output from the RLC unit 140, and outputs the generated MAC packet data to the transmission unit 170.
  • the RLC unit 140 extracts RLC packet data from the MAC packet data output from the MUX 131, and outputs the extracted RLC packet data to the PDCP unit 150. Further, the RLC unit 140 generates RLC packet data by adding a header or the like to the PDCP packet data output from the PDCP unit 150, and outputs the generated RLC packet data to the MAC unit 130.
  • the PDCP unit 150 extracts PDCP packet data from the RLC packet data output from the RLC unit 140 by discarding a header or the like, and outputs the extracted PDCP packet data to the application unit 160. In addition, the PDCP unit 150 generates PDCP packet data by adding a header or the like to the data output from the application unit 160, and outputs the generated packet data to the RLC unit 140.
  • the application unit 160 includes an RRC (Radio Resource Controller) 161.
  • the RRC 161 for example, with the RRC in the RNC 300 (shown in FIG. 5 described later), processing such as connection, maintenance, and release of an RRC connection, QoS (Quality Of Service) control, and base stations 200-1 and 200 -2 is selected.
  • RRC Radio Resource Controller
  • the application unit 160 extracts, for example, data transmitted from the first and second base stations 200-1 and 200-2 from the PDCP packet data output from the PDCP unit 150, via the input / output IF. Can be displayed on a monitor or output from a microphone.
  • the application unit 160 inputs character data input from a monitor or the like via the input / output IF, image data captured by a camera, and the like, and outputs these data to the PDCP unit 150.
  • the transmission unit 170 includes a CQI generation unit 171.
  • the CQI generation unit 171 receives the first and second measurement results from the first and second BLER measurement units 118 and 119 via the switching control unit 120 and the power supply control unit 121, respectively. Then, the CQI generation unit 171 generates CQIs corresponding to the first and second measurement results, respectively.
  • the CQI generation unit 171 when the CQI generation unit 171 receives a notification that the power supply is turned off or on from the power supply control unit 121, the CQI generation unit 171 generates the switching advance notice information, and sends the generated change advance notice information to the CQI. Transmit to the first or second base station 200-1, 20-2.
  • the CQI generating unit 171 may add a switch notice including the switch notice information to the CQI and transmit it as a CQI. In the following description, for example, a description may be given assuming that a switching notice is added to the CQI.
  • the CQI generation unit 171 generates 1-bit switching advance notice information indicating switching to one stream or switching to a plurality of streams based on a power off or on notification.
  • the CQI generation unit 171 may generate a switch advance notice based on an instruction from the switch control unit 120 and transmit it to the NW 400, and the switch advance notice may be generated under the control of the switch control unit 120. it can.
  • the transmission unit 170 receives the MAC packet data output from the MAC unit 130 and converts it into a radio signal by performing error correction coding processing, modulation processing, spreading processing, frequency conversion processing, and the like.
  • the transmission unit 170 converts the CQI generated by the CQI generation unit 171 and the switching advance notice into a radio signal by performing error correction coding processing and the like, similarly to the MAC packet data. Transmitter 170 outputs a radio signal to antenna 101.
  • FIG. 5 is a configuration example of the radio communication system 10, and also illustrates configuration examples of the first and second base stations 200-1, 200-2 and the RNC 300. Since the first and second base stations 200-1 and 200-2 have the same configuration, only the first base station 200-1 will be described, and the description of the configuration of the second base station 200-2 will be omitted. To do.
  • the first base station 200-1 includes a first antenna 201-1, a first receiving unit 210-1, a first MAC unit 220-1, a first RLC unit 230-1, and a first PDCP unit. 240-1 and a first transmitter 250-1.
  • the first transmission unit 250-1 includes a first encoding unit 251-1, a first modulation unit 252-1, and a first TX 253-1.
  • the first antenna 201-1 transmits the radio signal output from the first transmission unit 250-1 to the mobile device 100. Also, the first antenna 201-1 receives the radio signal transmitted from the mobile device 100 and outputs the received radio signal to the first receiving unit 210-1.
  • the first receiving unit 210-1 performs frequency conversion processing, despreading processing, error correction decoding processing, and the like on the received radio signal to obtain received data in the baseband.
  • the first receiving unit 210-1 outputs the received data to the first MAC unit 220-1.
  • the first MAC unit 220-1 generates MAC packet data including received data, and outputs the generated MAC packet data to the first RLC unit 230-1. Further, the first MAC unit 220-1 receives the RLC packet output from the first RLC unit 230-1, generates a MAC packet data by adding a header to the RLC packet, and generates the MAC packet data. The MAC packet data is output to the first transmission unit 250-1.
  • the first RLC unit 230-1 extracts the RLC packet data by discarding the header from the MAC packet data output from the first MAC unit 230-1, and extracts the extracted RLC packet data. Output to the first PDCP unit 240-1. Also, the first RLC unit 230-1 receives the PDCP data from the first PDCP unit 240-1, generates RLC packet data by adding a header to the PDCP packet data, etc. To the unit 220-1.
  • the first PDCP unit 240-1 extracts PDCP packet data from the RLC packet data output from the first RLC unit 230-1 by discarding the header or the like, and the extracted PDCP packet data is sent to the RNC 300. Send.
  • the first PDCP unit 240-1 receives the data transmitted from the RNC 300, generates PDCP packet data by adding a header or the like, and outputs the PDCP packet data to the first RLC unit 230-1.
  • the first encoding unit 251-1 performs error correction encoding processing on the MAC packet data output from the first MAC unit 220-1, and outputs the MAC packet data after the error correction encoding processing to the first To the modulation unit 252-1.
  • the first modulation unit 252-1 performs modulation processing on the MAC packet data after the error correction coding processing to convert it into a transmission signal, and outputs the converted transmission signal to the first TX 253-1 To do.
  • the first TX 253-1 generates a radio signal by performing spreading processing using a spreading code, frequency conversion processing, etc. on the transmission signal, and outputs the generated radio signal to the first antenna 201-1. To do.
  • the second base station 200-2 includes a second receiver 210-2, a second MAC unit 220-2, a second RLC unit 230-2, a second PDCP unit 240-2, and a second 2 transmission units 250-2.
  • the second transmission unit 250-2 includes a second encoding unit 251-2, a second modulation unit 252-2, and a second TX 253-2.
  • the first base station 200-1 transmits the first stream to the mobile device 100 using the first carrier.
  • the second base station 200-2 transmits the second stream to the mobile device 100 using the second carrier having a frequency band adjacent to the first carrier.
  • the first and second receiving units 210-1 and 210-2 and the first and second TX 253-1 and 253-2 process signals of different carriers, for example.
  • the RNC 300 is, for example, a base station control device that controls one or more base stations 100 under its control.
  • the RNC 300 includes a mobile device switching detection unit 310, a switching control unit 320, a De-MUX (demultiplexer) 330, and an RRC 340.
  • the mobile station switching detection unit 310 receives the PDCP packet data transmitted from the first and second base stations 200-1 and 200-2, and extracts the CQI and the switching advance notice added to the CQI from the packet data. To do. Then, when the mobile station switching detection unit 310 extracts the switching advance notice, the mobile station switching detection unit 310 monitors the retransmission control performed by the first or second base station 200-1 or 200-2.
  • the mobile device 100 that has received the first and second streams stops receiving one of the streams based on its own judgment.
  • the RNC 300 receives the switching advance notice and detects that the mobile device 100 stops receiving one of the streams.
  • the first or second base station 200-1 or 200-2 controls the mobile station 100 to perform retransmission control (for example, H-ARQ). (Hybrid-Automatic Repeat Request) control)). If such retransmission control continues for a long time, the load on the NW 400 is affected.
  • retransmission control for example, H-ARQ. (Hybrid-Automatic Repeat Request) control
  • the RNC 300 monitors the retransmission control in the first or second base station 200-1 or 200-2. Also, with this retransmission control, the mobile device 100 can eliminate missed reception for a stream whose power is turned off. That is to say, mobile station 100 can relieve missed reception by retransmission control for streams whose reception has been stopped due to power-off.
  • Monitoring of retransmission control is performed as follows, for example. That is, when the mobile switching detection unit 310 extracts the switching advance notice, it monitors the number of retransmission control in the first or second base station 200-1 or 200-2 that has output the switching advance notice. For example, each time the first or second transmission unit 250-1 or 250-2 performs retransmission control on the mobile device 100, the first or second transmission unit 250-1 or 250-2 transmits the fact to the RNC 300.
  • the mobile device switching detection unit 310 determines that the mobile device 100 has an adverse effect due to the stop of reception of one stream when the number of times of retransmission control in a certain period is greater than or equal to a threshold value when the switching advance notice indicates power off. Thus, it is determined to change the transmission data from 2 streams to 1 stream.
  • the mobile device switching detection unit 310 determines to change the transmission data from 1 stream to 2 streams when the number of times of retransmission control in a certain period is less than the threshold. .
  • the mobile device switching detection unit 310 notifies the switching control unit 320 of the determination.
  • the switching control unit 320 When the switching control unit 320 receives the change notification to one stream from the mobile device switching detection unit 310, the switching control unit 320 controls the De-MUX 330 to stop the transmission data from being separated into two streams and to output the one stream. To do. In addition, when the switching control unit 320 receives a notification of change to two streams from the mobile device switching detection unit 310, the switching control unit 320 controls the De-MUX 330 to separate the transmission data into two streams.
  • the De-MUX 330 under the control of the switching control unit 320, separates transmission data transmitted from the host device of the RNC 300 into two streams, or transmits the transmission data as one stream as it is as the first or second base station 200-1, To 200-2.
  • the RRC 340 performs setting, maintenance, release, etc. of the RRC connection to the mobile devices 100 subordinate to the first and second base stations 200-1 and 200-2, and broadcast notification, calling to the mobile device 100 Set up communication channels.
  • 6 to 10 are diagrams showing an operation example in the second embodiment.
  • this operation example a case will be mainly described where dual cell communication by DC-HSDPA is performed.
  • FIG. 6 is a sequence diagram showing an operation example in the wireless communication system 10.
  • MS is the mobile device 100
  • L1 in “NW” is the first and second receiving sections 210-1, 210-2
  • MAC in “NW” is the first and second receivers. 2 MAC units 220-1 and 220-2.
  • the mobile device 100 When the dual cell communication is being performed, the mobile device 100 performs a switching determination process for one stream (S11).
  • FIG. 7 is a flowchart showing an operation example of the switching determination process.
  • the process illustrated in FIG. 7 is a process mainly performed by the switching control unit 120 and the power supply control unit 121.
  • the mobile device 100 when dual-cell communication is performed between the RRC 161 of the mobile device 100 and the RRC 340 of the RNC 300, information such as whether or not the communication is based on a plurality of streams or which carrier is used is exchanged. Based on the exchanged information, the mobile device 100 can determine whether the communication state is communicating with a plurality of streams or communicating with one stream. For example, the switching control unit 120 obtains information on the communication state from the RRC 161 and makes a determination based on this information.
  • the mobile device 100 determines whether the reception quality is poor (S112).
  • the switching control unit 120 may select one of the first and second measurement results (for example, the first and second block error rates) output from the first and second BLER measurement units 118 and 119, respectively. Is lower than the threshold value, it is determined that the reception quality state is bad. Otherwise, it is determined that the reception quality state is not bad.
  • the reception quality for example, other index values such as SIR and CQI may be used besides the block error rate. Regardless of the index value, for example, the reception quality when the mobile device 100 receives each radio signal transmitted from the first and second base stations 200-1 and 200-2 is measured.
  • the mobile device 100 determines that the state of reception quality is not bad (NO in S112), the mobile device 100 ends the series of processing (S116). In this case, for example, since the quality state of the wireless communication using a plurality of streams of the mobile device 100 is good, the process is terminated without switching to one stream.
  • the mobile device 100 determines that the state of reception quality is poor (YES in S112), the mobile device 100 determines to switch to one stream (S113). Then, the mobile device 100 notifies the switching to one stream together with the CQI (S114), and turns off the power of the unused circuit (S115).
  • the CQI generation unit 171 when switching to one stream is determined by the switching control unit 120, the CQI generation unit 171 generates a switching advance notice. In this case, since the CQI generation unit 171 periodically transmits the CQI to the base stations 200-1 and 200-2, the CQI is sent to the base stations 200-1 and 200-2. it can.
  • the mobile device 100 when the mobile device 100 determines to switch to one stream, the mobile device 100 transmits a notification of switching notice to the first or second base stations 200-1 and 200-2. For example, the mobile device 100 transmits a switching advance notice to the base stations (first or second base stations 200-1 and 200-2) that transmit the stream determined to be stopped (S12).
  • the mobile device 100 notifies the MAC unit 130 of switching to one stream (S13). For example, when the switching control unit 120 determines to switch to one stream, the switching control unit 120 notifies the MAC unit 130 of switching to one stream. By notification to the MAC unit 130, for example, the multiplexing processing of the first and second streams in the MUX 131 can be stopped.
  • the mobile device 100 turns off unused power, and then starts receiving one stream (S14).
  • the first or second base station 200-1 or 200-2 receives the switching advance notice, it performs retransmission control care (S16).
  • FIG. 8 is a flowchart showing an operation example of processing related to retransmission control care.
  • the process is performed by the first or second base station 200-1, 200-2 or the RNC 300 that has received the switch notice.
  • the first or second base station 200-1 or 200-2 When the first or second base station 200-1 or 200-2 starts processing (S160), it receives a one-stream switching notice from the mobile device 100 (S161).
  • the first or second base station 200-1 or 200-2 confirms the H-ARQ result for the data transmitted to the mobile device 100 (S162).
  • the mobile device 100 since the mobile device 100 is powered off, the mobile device 100 stops receiving any stream, and the first or second base station 200-1 or 200-2 uses the mobile device 100. I don't know about the situation. Therefore, the first or second base station 200-1 or 200-2 that transmits the stopped stream may perform retransmission control on the mobile device 100.
  • the first and second receiving units 210-1 and 210-2, or the first and second MAC units 220-1 and 220-2 may receive a negative response (NACK (Negative Acknowledge)) or affirmation with respect to transmission data. Confirm receipt of response (ACK (Acknowledge)).
  • NACK Negative Acknowledge
  • ACK Acknowledge
  • the RNC 300 detects that the mobile device has been switched. Notification to the unit 310.
  • the mobile device 100 generates a signal related to a negative response or an affirmative response using the MAC unit 130 or the application unit 160 and transmits the signal to the NW 400, for example. For example, after determining to switch to one stream (S11), the mobile device 100 transmits a negative response even when receiving the stream on which reception has been stopped, and determines to switch to multiple streams (S20), and then returns an affirmative response. Will be sent.
  • the RNC 300 determines whether or not the retransmission control has continued for a threshold value or more (S163). For example, the mobile device switching detection unit 310 determines whether or not the number of negative responses in a certain period continues for a threshold value or more.
  • the RNC 300 determines to switch to 1-stream transmission when retransmission control continues for a threshold value or more (YES in S163) (S164). For example, the mobile device switching detection unit 310 notifies the switching control unit 320 when the number of negative responses in a certain period continues for a threshold or more, and the switching control unit 320 determines switching to one stream. In this case, the switching control unit 320 causes the base station (the first or second base station 200-1 or 200-2) on the side that transmitted the switching advance notice to the RNC 300 to stop transmission of transmission data. The De-MUX 330 is controlled. Thereby, one stream communication is started in NW400.
  • the RNC 300 determines whether or not the fixed period has expired (S166). For example, the mobile device switching detection unit 310 counts a certain period and determines whether or not the period has expired.
  • the first or second base station 200-1, 200-2 and RNC 300 that have received the notice of switching notice perform retransmission control care (S 16), and one-stream communication between NW 400 and mobile device 100 Is started (S15, S17).
  • the mobile device 100 determines whether to switch to a plurality of streams (S20).
  • FIG. 7 is a flowchart showing an operation example of the switching determination process. That is, when the communication state is the one stream state (“1 stream” in S111), the mobile device 100 determines whether or not the reception quality state is good (S116).
  • the first or second BLER measurement unit 118 or 119 of the mobile device 100 measures the reception quality (for example, the first or second block error rate) for the signal such as the broadcast signal or the reference signal, and the first or second Is notified to the switching control unit 120.
  • the switching control unit 120 determines that the reception quality state is improved as the reception quality deterioration state has been eliminated (YES in S116).
  • the switching control unit 120 determines that the degradation state of the reception quality is not eliminated and the reception quality is not improved (NO in S116). ).
  • the mobile device 100 determines to perform switching to a plurality of streams (S117), and transmits a switching advance notice together with CQI (S118). The power of the unused circuit whose power is turned off is turned on (S119). Then, the mobile device 100 ends the series of processes (S116).
  • the mobile device 100 transmits a notice of switching notice to the stream-side base stations (first or second base stations 200-1 and 200-2) that have stopped (S21).
  • the CQI generation unit 171 transmits a switch notice including 1-bit information indicating that the power is turned on or not 1-stream transmission (or multiple-stream transmission).
  • the mobile device 100 also notifies the MAC unit 130 in the mobile device 100 of switching to a plurality of streams (S22).
  • the notification to the MAC unit 130 for example, multiplexing processing can be performed in the MUX 131.
  • the mobile device 100 starts receiving a plurality of streams using the unused circuit whose power is turned on (S23).
  • the first or second base station 200-1 or 200-2 that has received the switching advance notice performs retransmission control care (S25).
  • the RNC 300 monitors the number of retransmission controls in the first or second base station 200-1 or 200-2.
  • the first or second base station 200-1 or 200-2 that has received the switch notice notice notifies the mobile station switch detection unit 310 of the number of times the NACK signal has been received.
  • the mobile station switching detection unit 310 determines whether to restore to the multi-stream communication or to continue the one-stream communication based on the number of times the NACK signal is received for a certain period (S163 in FIG. 8).
  • the number of retransmission controls is equal to or less than the threshold, and the mobile device switching detection unit 310 determines restoration to a plurality of streams (YES in S166).
  • the mobile device 100 determines to switch to one stream and supplies power to unused circuits. Is turned off by itself (for example, YES in S112 and S115 in FIG. 7).
  • the mobile device 100 transmits quality information to the first or second base station 200-1 or 200-2, and sends the quality information to one stream from the first or second base station 200-1 or 200-2. There is a case where the power of the unused circuit is turned off after waiting for the switching instruction.
  • this mobile device 100 when the quality degradation is judged, the power of the unused circuit is turned off by itself, so that the current consumption for the time until the instruction to switch to one stream is received after the quality information is transmitted is wasted. In addition, the current consumption in the mobile device 100 can be reduced.
  • switching from a plurality of streams to one stream may be performed.
  • communication between the RRC 161 and 340 communication is performed between the mobile device 100 and the RNC 300 via the first or second base stations 200-1 and 200-2. Therefore, for example, it may take a very long time for the switching time from when the mobile device 100 or the RNC 300 determines to switch to when switching to one stream.
  • the power supply is turned off at its own judgment without waiting for notification from the NW 400 (for example, YES in S112 and S115 in FIG. 7). Can be planned.
  • the mobile device 100 is an example of transmitting a switching instruction pattern instead of the switching advance notice.
  • the switching instruction pattern includes, for example, information indicating the number of streams after switching (or the number of frequency bands after switching).
  • FIG. 9 is a sequence example in the wireless communication system 10 when a switching instruction pattern is transmitted
  • FIG. 10 is a flowchart showing an operation example on the NW 400 side.
  • the same processing parts as those in the above example are denoted by the same reference numerals. Also in this example, a description will be given of an example of two streams as a plurality of streams.
  • the mobile device 100 determines whether to switch to one stream (S11 and FIG. 7). When determining that the reception quality for any of the two streams has deteriorated, the mobile device 100 determines to switch to one stream (YES in 112 of FIG. 7, S113).
  • the mobile device 100 generates a switching instruction pattern instructing switching to one stream, and transmits the switching instruction pattern to the first or second base station 200-1 or 200-2 ( S30).
  • the switching control unit 120 determines to switch to one stream, it notifies the power control unit 121 of switching to one stream, and the power control unit 121 notifies the CQI generation unit 171 of this notification.
  • the CQI generating unit 171 Upon receiving this notification, the CQI generating unit 171 generates a switching instruction pattern indicating that the number of streams after switching is “1”, and transmits the generated switching instruction pattern together with the CQI.
  • the transmission destination is, for example, a base station (first or second base station 2001, 200-2) that is transmitting the stream on the reception stop side.
  • the first or second base station 200-1 or 200-2 that has received the switching instruction pattern performs stream switching processing.
  • FIG. 10 is a flowchart showing an operation example of the stream switching process. For example, it is a process performed by the RNC 300.
  • the RNC 300 When the RNC 300 starts this processing (S121), it confirms the CQI pattern (S122). For example, the first or second base station 200-1 or 200-2 receives the switching instruction pattern transmitted from the mobile device 100 and transmits it to the RNC 300. The mobile device switching detection unit 310 of the RNC 300 receives the switching instruction pattern and confirms the content thereof.
  • the RNC 300 determines to start communication with one stream when the switching instruction pattern indicates switching to one stream ("1 stream" in S123) (S126). ).
  • the mobile device switching detection unit 310 notifies the switching control unit 320 that the switching instruction pattern indicates switching to one stream, and the switching control unit 320 that has received this notification determines the start of one-stream communication. To do.
  • the switching control unit 320 determines the start of one-stream communication, the switching control unit 320 causes the De-MUX 330 to stop transmission data separation.
  • the RNC 300 starts communication using a plurality of streams (S124).
  • the mobile device switching detection unit 310 notifies the switching control unit 320 that the switching instruction pattern represents switching to a plurality of streams such as two streams. Upon receiving this notification, the switching control unit 320 controls the De-MUX 330 so as to separate the transmission data into data for a plurality of streams.
  • the RNC 300 ends a series of processes (S125).
  • the RNC 300 continues the stream communication and ends the series of processes (S124).
  • the switching instruction pattern represents, for example, the number of streams after switching
  • the number of bits may be larger than the notification of switching notice.
  • the first and second base stations 200-1, 200-2 and RNC 300 switch to one stream or switch to multiple streams according to the switching instruction pattern. It becomes possible to do.
  • retransmission control care (for example, S16 in FIG. 6 and FIG. 8) is not performed in the first and second base stations 200-1 and 200-2 and the RNC 300. Therefore, it is possible to reduce the processing of the first and second base stations 200-1 and 200-2 and the RNC 300.
  • switching control care for example, 8 may be performed. This is because, by performing retransmission control in the first and second base stations 200-1 and 200-2, it is possible to relieve the reception failure of the stream on the side where the power is turned off in the mobile device 100.
  • the switching parameters and threshold values used for stream switching are negotiated in advance between the mobile device 100 and the NW 400, and the switching parameters and threshold values used are mutually determined or Share it. Then, the stream is switched based on the negotiated switching parameter and the threshold value.
  • the threshold value is, for example, a value indicating whether or not the mobile device 100 performs switching to one stream (or switching to a plurality of streams).
  • FIGS. 11 and 12 show configuration examples of the mobile device 100 and the NW 400 in the third embodiment, respectively.
  • the mobile device 100 further includes a parameter holding unit 123.
  • the parameter holding unit 123 stores the switching parameter and the threshold value in advance, and also stores the switching parameter and the threshold value negotiated with the NW 400.
  • the RNC 300 further includes a parameter holding unit 350.
  • the parameter holding unit 350 also stores switching parameters and threshold values in advance, and stores the switching parameters and threshold values negotiated with the mobile station 100.
  • the parameter holding unit 350 stores more types of switching parameters than the parameter holding unit 123 so that any switching parameter of the mobile device 100 can be handled on the NW 400 side. It shall be.
  • FIG. 13 is a sequence diagram illustrating an operation example in the wireless communication system 10 according to the third embodiment.
  • the NW 400 and the mobile device 100 negotiate a switching parameter and a threshold value (S50).
  • the mobile device 100 uses the “block error rate” as a switching parameter, it is confirmed whether or not the “block error rate” can be used with the NW 400 by negotiation, and the result that the NW 400 can use the result is confirmed. When obtained, this “block error rate” is used as a switching parameter.
  • some mobile devices 100 may not support “block error rate” as a parameter for stream switching.
  • the mobile device 100 can set the switching parameter corresponding to the mobile device 100 by negotiating with the NW 400 what kind of switching parameter should be used.
  • switching parameter for example, CQI or operating frequency may be used. Details will be described later.
  • Such negotiation is performed between the RRC 161 of the mobile device 100 and the RRC 340 of the RNC 300, for example. In this case, for example, the following processing is performed.
  • the first and second BLER measurement units 118 and 119 notify the switching control unit 120 to that effect.
  • the switching control unit 120 accesses the parameter holding unit 123, reads the switching parameter and the threshold stored in the parameter holding unit 123, and sends them to the first and second BLER measurement units 118 and 119. Output and instruct to include in the message.
  • the first and second BLER measurement units 118 and 119 include the switching parameter and the threshold value received from the switching control unit 120 in the message and output them to the MAC unit 130.
  • the RRC 161 receives a message including a switching parameter and a threshold value from the PDCP unit 150
  • the RRC 161 transmits a message including the switching parameter and the threshold value to the NW 400.
  • the RRC 340 accesses the parameter holding unit 350, and the switching parameter transmitted from the mobile device 100 is in the parameter holding unit 350. Check whether or not. Then, when the RRC 340 confirms that the switching parameter received from the mobile device 100 exists in the parameter holding unit 350, the RRC 340 approves that the switching parameter and the threshold are used for stream switching determination. The RRC 340 stores the approved switching parameter and threshold value in the parameter holding unit 350. In addition, RRC 340 generates a message including approval and transmits the message to RRC 161 of mobile device 100.
  • the RRC 161 of the mobile device 100 When the RRC 161 of the mobile device 100 receives the message, it notifies the switching control unit 120 that the switching parameter and the threshold are approved. Upon receiving this notification, the switching control unit 120 stores the approved switching parameter and threshold value in the parameter holding unit 123.
  • RRC 340 of RNC 300 when the switching parameter received from mobile device 100 is not stored in parameter holding unit 350, RRC 340 of RNC 300 generates a message instructing other switching parameters to be sent to RRC 161 of mobile device 100. Send.
  • the switching control unit 120 of the mobile device 100 When receiving the notification that the message has been received from the first and second BLER measuring units 118 and 119, the switching control unit 120 of the mobile device 100 reads the other switching parameters from the parameter holding unit 123 and reads the message. The first and second BLER measurement units 118 and 119 are instructed to be included. As a result, other switching parameters are transmitted to the RNC 300 and can be approved.
  • the mobile device 100 determines whether to switch to one stream (S52). For example, the switching control unit 120 of the mobile device 100 performs switching determination processing for one stream. *
  • FIG. 14 is a flowchart showing an operation example of the switching determination process.
  • the mobile device 100 When the mobile device 100 starts the switching determination process (S520), the mobile device 100 determines the communication state (S521).
  • the switching control unit 120 determines whether a multi-stream communication or a single-stream communication is being performed based on a notification from the RRC 161. In this example, the switching control unit 120 determines that a multi-stream communication is being performed.
  • the mobile device 100 determines whether to switch to one stream or continue the communication of the plurality of streams based on the switching parameter negotiated with the NW 400 and the threshold value. (S522).
  • the switching control unit 120 determines that one of the first and second block error rates measured by the first and second BLER measurement units 118 and 119 is equal to or less than a threshold value. Is determined to switch to 1 stream (“1 stream” in S522, S523).
  • the switching control unit 120 determines to continue communication using a plurality of streams (“multiple streams” in S522).
  • the determination criteria are the same as those in the second embodiment, for example.
  • the mobile device 100 transmits the measured first and second block error rates to the NW 400.
  • the switching control unit 120 outputs the first and second block error rates to the CQI generation unit 171, and the CQI generation unit 171 transmits the NQ 400 together with the CQI.
  • a switching determination process is performed.
  • FIG. 15 is a flowchart showing an example of the switching determination process performed by the RNC 300.
  • the RNC 300 When the RNC 300 starts processing (S530), it determines the communication state (S531). For example, the RRC 340 determines the communication state. In the example of FIG. 13, since communication is performed using a plurality of streams, it is determined that the communication state is a plurality of streams (“multiple streams” in S531).
  • the RNC 300 determines whether to switch to one stream or to continue communication of a plurality of streams based on the switching parameter negotiated with the mobile device 100 and the threshold (S532).
  • the RNC 300 determines to switch to one stream as follows, for example. That is, the RRC 340 receives the first and second block error rates transmitted from the mobile device 100 and notifies the switching control unit 320 of the first and second block error rates.
  • the switching control unit 320 reads the negotiated threshold value from the parameter holding unit 350 with respect to the first and second block error rates received from the RRC 340, and one of the first and second block error rates is lower than the threshold value. It is determined whether or not. When any of the first and second block error rates is lower than the threshold value, the switching control unit 320 determines to switch to one stream (“1 stream” in S532, S533), and both are threshold values. When the number exceeds, communication of a plurality of streams is continued (“multiple streams” in S532).
  • the RNC 300 holds the same switching parameter and threshold as the mobile device 100 by negotiation. Further, the RNC 400 receives the first and second block error rates from the mobile device 100. Therefore, the RNC 300 and the mobile device 100 obtain the same determination result (S532). Thereby, for example, both the mobile device 100 and the RNC 300 can share or synchronize the decision to switch to one stream.
  • the RNC 300 ends a series of processes (S535).
  • step S523 when switching to one stream is determined (S523), as in the second embodiment, the power to unused circuits is turned off (S524), and a series of processing ends (step S524). S525).
  • the mobile device 100 determines to continue communication of a plurality of streams (“multiple streams” in S522), the mobile device 100 ends the series of processes without performing an operation on the power supply (S525).
  • the mobile device 100 notifies the MAC unit 130 of switching to one stream (S54), turns off unused circuits, and starts receiving one stream (S55). Thereafter, communication by one stream is started between the mobile device 100 and the NW 400 (S56).
  • the mobile device 100 performs switching determination processing to a plurality of streams (S58).
  • the RNC 300 also performs switching determination processing for a plurality of streams based on the first and second block error rates received from the mobile device 100 (S59).
  • FIG. 14 An example of the switching determination process in the mobile device 100 is shown in FIG. 14, for example.
  • the communication state is a one-stream state (“one stream” in S521)
  • the mobile device 100 determines whether to recover to a plurality of streams or to maintain one-stream communication based on the negotiated switching parameter and threshold ( S526).
  • the first or second BLER measurement unit 118 or 119 may notify the broadcast signal or the reference signal transmitted from the stopped stream side base station (first or second base station 200-1 or 200-2).
  • the first or second block error rate is measured for and the switching control unit 120 is notified.
  • the switching control unit 120 reads the negotiated threshold value from the parameter holding unit 123 and determines whether or not the first or second block error rate exceeds the threshold value. This determination itself is the same as that of the second embodiment, for example.
  • the mobile device 100 transmits the measured first or second block error rate to the NW 400 together with the CQI.
  • the mobile device 100 determines to switch to a plurality of streams (“multiple streams” in S526, S527), the mobile device 100 turns on the power of the unused circuit whose power is turned off (S528), and ends the series of processing. .
  • the mobile device 100 determines to continue the 1-stream communication (“1 stream” in S526), the mobile device 100 ends the series of processes without performing any operation on the power supply (S525).
  • the mobile device 100 when it decides to switch to a plurality of streams, it notifies the MAC unit 130 to that effect (S60), turns on the power of the unused circuit, and starts receiving a plurality of streams. (S61).
  • the RNC 300 also performs switching determination processing to a plurality of streams (S59).
  • the switching determination process in the RNC 300 is shown in FIG. 15, for example.
  • the RNC 300 When the communication state is the one stream state (“1 stream” in S531), the RNC 300 performs recovery to a plurality of streams based on the switching parameter and the threshold value negotiated with the mobile device 100, or performs one stream communication. It is determined whether or not to continue (S536).
  • the RNC 300 determines based on the first or second block error rate received from the mobile device 100. This determination itself (S536) is the same as the determination in the mobile device 100 (for example, S526 in FIG. 14). This is because the RNC 300 holds the same switching parameters and threshold values as those of the mobile device 100 by negotiation, and further receives the first or second block error rate from the mobile device 100.
  • the RNC 300 determines that a plurality of streams are restored (“multiple streams” in S536), the RNC 300 starts communication of the plurality of streams (S537) and ends a series of processes (S535).
  • the RNC 300 determines to continue the one-stream communication (“1 stream” in S536), the RNC 300 continues the one-stream communication and ends a series of processes (S535).
  • the switching parameter and the threshold value are negotiated in advance between the NW 400 and the mobile device 100, and stream switching is determined based on the negotiated switching parameter and threshold value.
  • a mobile device 100 that does not support such switching parameters may not be able to perform switching determination.
  • the switching parameter is negotiated in advance between the mobile device 100 and the NW 400, the stream can be switched using the switching parameter corresponding to the mobile device 100.
  • a threshold value used for switching determination is also negotiated between the mobile device 100 and the NW 400.
  • wireless characteristics may also change due to component characteristics, component deterioration, or the like.
  • the threshold value is changed according to such wireless characteristics, and it is negotiated with the NW 400, so that it is possible to perform stream switching determination according to the wireless characteristics of each mobile device 100.
  • the third embodiment for example, it is possible to select a switching parameter and a threshold value for each mobile device 100, and perform more optimal stream switching that matches the radio characteristics of each mobile device 100. Is possible.
  • the mobile device 100 since the mobile device 100 can turn off the power of the unused circuit by its own judgment, the power is turned on after the NW 400 judges. The consumption current can be reduced compared to the case of turning off.
  • the example of the block error rate has been described as the switching parameter.
  • examples of other switching parameters will be described.
  • CQI may be used as a switching parameter.
  • CQI is negotiated between the mobile device 100 and the RNC 300 as the switching parameter (S50 in FIG. 13).
  • the mobile device 100 performs stream switching determination based on the negotiated CQI and the threshold (for example, FIG. 14). Also in the RNC 300, stream switching determination is performed based on the negotiated CQI and the threshold, and further, the CQI received from the mobile device 100 (for example, FIG. 15).
  • the measurement of CQI is performed as follows, for example. That is, the mobile device 100 measures the first and second reception quality levels corresponding to the two streams. The measurement of the first and second reception quality levels may be performed by the first and second RXs 112 and 113, respectively, or by the first and second BLER measurement units 118 and 119, respectively. Also good.
  • the switching control unit 120 receives the measurement results of the first and second reception quality levels, and calculates first and second CQIs corresponding to the first and second reception quality levels, respectively. The switching control unit 120 determines stream switching based on the first and second CQIs and the threshold value. Further, the first and second CQIs calculated by the CQI generating unit 171 are transmitted to the NW 400.
  • the mobile device 100 and the RNC 300 perform the same processing as described above except that the switching index is changed from the block error rate to the CQI.
  • the switching parameters such as the block error rate and CQI described above are measured values measured in the mobile device 100, for example.
  • a switching parameter other than the measured value may be used.
  • the operating frequency may be used as the switching parameter.
  • frequency bands in which it is difficult to reach For example, in the 700 to 900 MHz band, radio waves are likely to reach the target even if there are obstacles compared to higher frequency bands. Hard to reach.
  • the mobile device 100 when the operating frequency belongs to the 2 GHz band or the 1.5 GHz band, the mobile device 100 performs multi-stream communication. Thereby, for example, frequency efficiency and throughput can be improved even in a frequency band in which radio waves are difficult to reach.
  • the mobile device 100 when the operating frequency belongs to the 700 to 900 MHz band, the mobile device 100 performs one stream communication. Thereby, for example, the current consumption of the mobile device 100 is reduced. Therefore, for example, the switch parameter to be negotiated is the operating frequency, and the threshold to be negotiated can be a frequency band for switching to one stream or a frequency band for switching to multiple streams. The operating frequency and the threshold may be different for each mobile device 100, for example.
  • the mobile device 100 and the RNC 300 determine, by negotiation, that one stream is used when the operating frequency belongs to the 700 to 900 MHz band, and that there are multiple streams when the operating frequency belongs to the 1.5 GHz band or the 2 GHz band. It hold
  • the mobile device 100 receives notification from the RNC 300 and the first and second base stations 200-1 and 200-2 about the operating frequency at the start of communication, and if the operating frequency belongs to the 700 to 900 MHz band, Communication is performed, and the power of the unused circuit is turned off (for example, “1 stream” in S522 in FIG. 14, S523 to S524).
  • the mobile device 100 performs multi-stream communication and turns on the power of the unused circuit (for example, “multiple streams” in S522 of FIG. 14).
  • one-stream communication or multiple-stream communication can be determined according to the negotiated frequency band. Can be synchronized.
  • channel transition may be used as a switching parameter.
  • the channel transition represents a state such as whether the mobile device 100 is on standby or not.
  • the mobile device 100 shifts to the sleep mode by transmitting a specific signal to the first or second base stations 200-1 and 200-2 under certain conditions, for example.
  • the mobile device 100 that has shifted to the sleep mode is on standby.
  • the standby mobile device 100 periodically receives a specific signal from, for example, the first or second base station 200-1 or 200-2, and confirms communication addressed to itself.
  • the mobile device 100 is activated by periodically receiving Enhanced_Cell_PCH from the first or second base station 200-1 or 200-2 during standby, and the Check for presence.
  • the mobile device 100 when this Enhanced_Cell_PCH is received, the mobile device 100 performs 1-stream communication assuming that it is on standby, and turns off the power of unused circuits. On the other hand, when not receiving Enhanced_Cell_PCH for a certain period, mobile device 100 assumes that it is not in standby and performs multi-stream communication and turns on power to unused circuits.
  • the mobile device 100 and the RNC 300 negotiate whether to perform 1-stream communication or multi-stream communication depending on whether or not Enhanced_Cell_PCH is received, and share information with each other. Then, the mobile device 100 performs one-stream communication or multiple-stream communication depending on whether or not the Enhanced_Cell_PCH is received, and whether or not the RNC 300 (or the first and second base stations 200-1 and 200-2) transmits the Enhanced_Cell_PCH. Switch. Thereby, the switching determination can be synchronized between the mobile device 100 and the NW 400.
  • a signal other than Enhanced_Cell_PCH may be used as long as it is a signal for confirming reception to mobile device 100 in the sleep mode.
  • the switch parameter to be negotiated is a signal for confirming such reception
  • the threshold value to be negotiated can indicate how to switch streams depending on the presence or absence of the signal.
  • the switching parameter to be used is determined by negotiation.
  • the mobile device 100 can notify that there is no HSDPA function by negotiation, or can notify the available radio frequency band by negotiation.
  • the RNC 300 uses BLER instead of CQI as a switching parameter.
  • the RNC 300 can be operated with a normal one stream.
  • the example of two streams as a plurality of streams has been described, and the switching of streams has also been described from two streams to one stream or vice versa.
  • the stream can be switched from 3 streams to 2 or 1 stream, or from 4 streams to 3, 2 or 1 stream.
  • the mobile device 100 communicates with a plurality of streams and performs wireless communication by switching to a stream having a smaller number of streams, the number of streams before and after the switching is not limited.
  • the mobile device 100 may be provided with RX and BLER measurement circuits corresponding to the number of streams, and the despreading unit 116 and the decoding unit 117 may include a circuit corresponding to the number of streams.
  • the De-MUX 330 of the RNC 300 can transmit data of 3 streams or more to the mobile device 100 by separating the transmission data into data of 3 or more streams.
  • the number of base stations corresponding to the number of streams is also arranged in the base station, and each base station transmits each stream using a different carrier, so that three or more streams of data can be transmitted to the mobile device 100.
  • the mobile device 100 can determine to reduce the number of streams based on its own judgment, and can turn off the power of unused circuits. Therefore, as described above, the mobile device 100 can reduce current consumption.
  • switching to one stream not only the reception unit 110 but also the power of unused circuits in the transmission unit 170 can be turned off.
  • FIG. 16 is a diagram illustrating a configuration example of the transmission unit 170 when two-stream transmission is performed.
  • the transmission unit 170 includes an L1 unit 172 and an RF unit 173.
  • the L1 unit 172 includes a CQI generation unit 171, an encoding unit 175, and a modulation unit 176, and the RF unit 173 includes first and second TXs 177 and 178.
  • the circuit that processes the first stream of the encoding unit 175, the circuit that processes the first stream of the modulation unit 176, and the first TX 177 are circuits that process the first stream.
  • a circuit for processing the first stream corresponds to, for example, the first processing unit 190 in the first embodiment.
  • the circuit that processes the second stream of the encoding unit 175, the circuit that processes the second stream of the modulation unit 176, and the second TX 178 are circuits that process the second stream.
  • the circuit that processes the second stream corresponds to, for example, the second processing unit 191 in the second embodiment.
  • Each circuit is indicated by a dotted line in FIG. 16, for example.
  • the first stream is transmitted using the first carrier (or the first frequency band), and the second stream is transmitted using the second carrier (or the second frequency band).
  • the first stream is generated by, for example, a circuit that processes the first stream, and is transmitted to the first base station 200-1.
  • the second stream is generated by, for example, a circuit that processes the second stream, and is transmitted to the second base station 200-2.
  • a circuit portion for processing each stream is added according to the number of streams.
  • the power control unit 121 When switching to one stream is performed, the power control unit 121 turns off the power of the circuit that processes either the first stream or the second stream whose reception quality has deteriorated. For example, when stopping the reception of the first stream, the power supply control unit 121 selects a circuit that processes the first stream (a circuit that processes the first stream of the encoding unit 175 and a first stream of the modulation unit 176). The processing circuit and the first TX 177) are turned off. In addition, when switching to a plurality of streams is performed, the power control unit 121 turns on power to unused circuits that have been powered off.
  • a plurality of streams may be transmitted from one base station 200.
  • the base station 200 can perform wireless communication using a plurality of frequency bands, and thus one base station 200 can transmit a plurality of streams. Even when the mobile device 100 transmits a plurality of streams, for example, one base station 200 may receive the plurality of streams.
  • FIG. 17 to FIG. 19 are diagrams illustrating hardware configuration examples of the mobile device 100, the base station 200, and the RNC 300, respectively.
  • the mobile device 100 includes a RAM (Random Access Memory) 180, a CPU (Central Processing Unit) 181, a DSP (Digital Signal Processor) 182, first and second wireless processing units 183 and 184, a reception antenna 185, and a transmission antenna 186. Prepare.
  • RAM Random Access Memory
  • CPU Central Processing Unit
  • DSP Digital Signal Processor
  • the CPU 181 executes the program stored in the RAM 180 to thereby generate the first and second BLER measurement units 118 and 119, the switching control unit 120, the power supply control unit 121, and the CQI generation in the second and third embodiments.
  • Functions of the unit 171, the MAC unit 130, the RLC unit 140, the PDCP unit 150, and the application unit 160 are executed.
  • the CPU 181 includes, for example, the first and second BLER measurement units 118 and 119, the switching control unit 120, the power control unit 121, the CQI generation unit 171, the MAC unit 130, and the RLC in the second and third embodiments.
  • the unit 140, the PDCP unit 150, and the application unit 160 corresponds to the unit 140, the PDCP unit 150, and the application unit 160.
  • the CPU 181 outputs an execution instruction to the DSP 182, so that the DSP 182 executes the functions of the despreading unit 116, the decoding unit 117, and the transmission unit 170 in the L1 unit 115.
  • the DSP 182 corresponds to, for example, the despreading unit 116, the decoding unit 117, and the transmission unit 170 in the second and third embodiments.
  • the first wireless processing unit 183 corresponds to the RF unit 111 in the second and third embodiments
  • the second wireless processing unit 184 is the transmission unit 170 in the second and third embodiments.
  • reception antenna 185 and the transmission antenna 186 correspond to, for example, the antenna 101 in the second and third embodiments.
  • the RAM 180 corresponds to, for example, the parameter holding unit 123 in the third embodiment.
  • the base station 200 includes a RAM 270, a CPU 271, a DSP 272, first and second wireless processing units 274 and 275, a transmission antenna 276, and a reception antenna 277.
  • the CPU 271 reads out and executes a program stored in the RAM 270 or the like, thereby executing the first and second MAC units 220-1 and 220-2, the first and second in the second and third embodiments.
  • the functions of the RLC units 230-1 and 230-2 and the first and second PDCP units 240-1 and 240-2 are executed. Accordingly, the CPU 271 includes, for example, the first and second MAC units 220-1 and 220-2, the first and second RLC units 230-1 and 230-2, and the first and second PDCP units 240-1. , 240-2.
  • the DSP 272 also includes, for example, the first and second receiving units 210-1 and 210-2, the first and second encoding units 251-1 and 251-2, the second and third embodiments, and the second and third embodiments. This corresponds to the first and second modulators 252-1 and 252-2. Further, for example, the first wireless processing unit 274 corresponds to the first and second TX 253-1 and 253-2 in the second and third embodiments, and the second wireless processing unit 275 This corresponds to the first and second receiving units 210-1 and 210-2 in the second and third embodiments. *
  • the RNC 300 includes a ROM (Read Only Memory) 360, a RAM 361, a memory 362, and a CPU 363.
  • the CPU 363 reads out the program stored in the ROM 360, loads it into the RAM 361, and executes the loaded program, whereby the mobile device switching detection unit 310, the switching control unit 320, and the De-MUX 330 in the second and third embodiments.
  • the CPU 363 corresponds to, for example, the mobile device switching detection unit 310, the switching control unit 320, the De-MUX 330, and the RRC 340 in the second and third embodiments.
  • the memory 362 corresponds to, for example, the parameter holding unit 350 in the third embodiment.
  • the DSPs 182 and 272 and the CPU 363 can be replaced with FPGA (Field Programmable Gate Array) or MPU.
  • wireless communication system 100 (100-1, 100-2): mobile device 100: base station apparatus (base station) 110: receiving unit 111: RF unit 112, 113: first and second RX 115: L1 unit 116: Despreading unit 117: Decoding unit 118, 119: First and second BLER measurement unit 123: Parameter holding unit 131: MUX 161: RRC 170: transmitting unit 171: CQI generating unit 200 (200-1, 200-2): base stations 210-1, 210-2: first and second receiving units 250-1, 250-2: first 1st and 2nd transmission unit 300: RNC 310: mobile station switching detection unit 320: switching control unit 330: De-MUX 340: RRC 350: Parameter holding unit 400: NW 181

Abstract

A mobile station apparatus, which uses a frequency band to wirelessly communicate with a base station apparatus, comprises: a first processing unit for processing a first data stream that has been received or is to be transmitted by use of a first frequency band; a second processing unit for processing a second data stream that has been received or is to be transmitted by use of a second frequency band; and a switching control unit for turning off the power supply of the second processing unit without performing any wireless communication with the base station apparatus when it is determined, on the basis of indexes different for the different mobile station apparatuses, that the frequency band is to be switched from the first and second frequency bands to the first frequency band.

Description

移動局装置、移動局装置における電源制御方法、及び無線通信システムMobile station apparatus, power supply control method in mobile station apparatus, and radio communication system
 本発明は、移動局装置、移動局装置における電源制御方法、及び無線通信システムに関する。 The present invention relates to a mobile station apparatus, a power control method in the mobile station apparatus, and a radio communication system.
 現在、携帯電話システムや無線LAN(Local Area Network)などの無線通信システムが広く利用されている。また、無線通信の分野では、通信速度や通信容量を更に向上させるべく、次世代の通信技術について継続的な議論が行われている。例えば、標準化団体である3GPP(3rd Generation Partnership Project)では、LTE(Long Term Evolution)と呼ばれる通信規格や、LTEをベースとしたLTE-A(LTE-Advanced)と呼ばれる通信規格の標準化が完了若しくは検討されている。 Currently, wireless communication systems such as mobile phone systems and wireless local area networks (LANs) are widely used. Further, in the field of wireless communication, there is ongoing discussion on next-generation communication technology in order to further improve communication speed and communication capacity. For example, the standardization organization 3GPP (3rd Generation Partnership Project) has completed or is considering standardization of a communication standard called LTE (Long Term Evolution) and a communication standard called LTE-A (LTE-Advanced) based on LTE Has been.
 このような無線通信技術に関して、複数のキャリアを用いて無線通信が行われる場合がある。LTEにおいては、複数のキャリアを用いて無線通信が行われることを、例えば、キャリアアグリゲーション(Carrier Aggregation)と称する場合がある。キャリアアグリゲーションが行われる場合の各キャリアのことを、例えば、コンポーネントキャリア(Component Carrier)と称する場合がある。 For such wireless communication technology, wireless communication may be performed using a plurality of carriers. In LTE, wireless communication using a plurality of carriers is sometimes called, for example, carrier aggregation. Each carrier in the case where carrier aggregation is performed may be referred to as a component carrier (Component Carrier), for example.
 キャリアアグリゲーションでは、例えば、複数のコンポーネントキャリアを用いることができるため、1つのコンポーネントキャリアを用いて無線通信が行われる場合と比較して、無線通信に利用される周波数帯域が増加するため、スループットを増加させることができる。 In carrier aggregation, for example, since a plurality of component carriers can be used, the frequency band used for wireless communication increases as compared to the case where wireless communication is performed using one component carrier, and thus throughput is reduced. Can be increased.
 また、複数のキャリアを用いて無線通信が行われる技術として、例えば、DC-HSDPA(Dual Cell-High Speed Downlink Packet Access)やDC-HSPA(Dual Cell-High Speed Packet Access)などの技術もある。この技術では、例えば、下り通信の場合は最大4つのキャリア、上り通信の場合は最大2つのキャリアが無線通信に用いられる。ただし、連続した周波数帯域において複数のキャリアが用いられる。DC-HSDPAやDC-HSPAにおいても、複数のキャリアが無線通信に用いられるため、例えば、スループットの増加を図ることが可能となる。 In addition, as a technology for performing wireless communication using a plurality of carriers, for example, there are technologies such as DC-HSDPA (Dual Cell-High Speed Downlink Packet Access) and DC-HSPA (Dual Cell-High Speed Packet Access). In this technique, for example, a maximum of four carriers are used for wireless communication in the case of downlink communication and a maximum of two carriers in the case of uplink communication. However, a plurality of carriers are used in continuous frequency bands. Also in DC-HSDPA and DC-HSPA, since a plurality of carriers are used for wireless communication, for example, it is possible to increase the throughput.
 このような無線通信に関する技術として、例えば、以下のような技術がある。 Examples of such wireless communication technologies include the following technologies.
 すなわち、マルチキャリアシステムにおいて、基地局がキャリア・ハンドオーバ・アイデンティフィケーションメッセージを移動局へ送信し、その応答メッセージを移動局から受信すると旧キャリアにおけるリソース割当を停止し、新キャリアのリソースを割り当てる技術がある。 That is, in a multi-carrier system, when a base station transmits a carrier handover identification message to a mobile station and receives a response message from the mobile station, resource allocation in the old carrier is stopped and resources for the new carrier are allocated. There is technology.
 この技術によれば、例えば、無線通信システムにおいて旧無線周波数(radio frequency)(RF)キャリアから新RFキャリアに切替るための方法を提供することができる、とされる。 According to this technique, for example, it is possible to provide a method for switching from an old radio frequency (RF) carrier to a new RF carrier in a radio communication system.
 また、サービング基地局が自局のPCC(プライマリキャリア(CC: Component Carrier))と他のCCとの信号強度の差に基づいてハンドオーバ報告条件およびハンドオーバ条件におけるハンドオーバ閾値を設定するようにした技術もある。 In addition, there is a technique in which the serving base station sets the handover report condition and the handover threshold in the handover condition based on the signal strength difference between the PCC (Component Carrier) of the own station and other CCs. is there.
 この技術によれば、例えば、基地局やユーザ端末が適切なハンドオーバのタイミングを得て、ユーザのスループットを向上させることができる、とされる。 According to this technique, for example, the base station and the user terminal can obtain appropriate handover timing and improve the user throughput.
 さらに、UEがデュアルセル・アップリンク協調起動状態にあるとき、基地局は、2次アップリンク・キャリア・サービング・セルのアップリンク・データの量が非常に少ない場合、2次アップリンク・キャリア・サービング・セルに関して停止操作を実行する技術がある。また、UEがデュアルセル・アップリンク協調停止状態にある場合、UEのアップリンク・データの量が起動閾値を上回り、2次キャリア・サービング・セルの信号品質が信号品質基準を満たす場合、基地局は、アップリンク・データの一部を2次アップリンク・キャリア・サービング・セルに割り当てるようにした技術がある。 Further, when the UE is in a dual cell uplink coordinated activation state, the base station can provide a secondary uplink carrier carrier if the amount of uplink data in the secondary uplink carrier serving cell is very small. There are techniques for performing a stop operation on a serving cell. In addition, when the UE is in a dual cell uplink coordinated stop state, if the amount of uplink data of the UE exceeds the activation threshold and the signal quality of the secondary carrier serving cell satisfies the signal quality criterion, the base station Is a technique in which part of uplink data is allocated to a secondary uplink carrier serving cell.
 この技術によれば、例えば、マルチセルHSUPA(アップリンク・マルチセル高速アップリンク・パケット・アクセス)のアップリンク・キャリア周波数を管理することができる、とされる。 According to this technology, for example, the uplink carrier frequency of multi-cell HSUPA (uplink multi-cell high-speed uplink packet access) can be managed.
特表2012-509027号公報Special table 2012-509027 gazette 特開2011-254466号公報JP 2011-254466 A 特表2012-516086号公報Special table 2012-516086 gazette
 上記したマルチキャリアシステムにおいて新キャリアへの切替を行う技術は、移動局では、キャリア・ハンドオーバ・アイデンティフィケーションメッセージに対する応答メッセージを基地局へ送信し、その後、新キャリアの割り当てメッセージを基地局から受けて、新キャリアを用いた無線通信を行う。そのため、移動局では、応答メッセージを送信後、新キャリアの割り当てメッセージを受けるまで、旧キャリアによる無線通信を行うための回路を動作させることになる。従って、移動局では、このような回路を動作させるために電流が使用され、消費電流が無駄になる場合がある。 The technology for switching to a new carrier in the multi-carrier system described above is that the mobile station transmits a response message to the carrier handover identification message to the base station, and then sends a new carrier assignment message from the base station. In response, wireless communication using the new carrier is performed. For this reason, the mobile station operates a circuit for performing wireless communication using the old carrier until a new carrier assignment message is received after the response message is transmitted. Therefore, in the mobile station, current is used to operate such a circuit, and current consumption may be wasted.
 また、上述したサービング基地局が自局のPCCと他のCCとの信号強度の差に基づいてハンドオーバ閾値を設定する技術は、例えば、ハンドオーバに関する技術であり、キャリアを切り替える技術とは異なる。また、この技術では、例えば、サービング基地局などの上位装置において移動局のハンドオーバを決定するようにしている。従って、ユーザ端末ではハンドオーバの決定に関する通知を受けるまで、サービング基地局に対する無線通信を行うための回路を動作させることになり、消費電流が無駄になる場合がある。 In addition, a technique in which the serving base station described above sets a handover threshold based on a difference in signal strength between the PCC of the own station and another CC is, for example, a technique related to handover, and is different from a technique for switching carriers. In this technique, for example, handover of a mobile station is determined in a host device such as a serving base station. Therefore, the user terminal operates a circuit for performing wireless communication with the serving base station until receiving a notification regarding the handover decision, and current consumption may be wasted.
 さらに、上述した2次アップリンク・キャリア・サービング・セルに関して停止操作を実行する技術においても、例えば、このような判断は基地局において行われる。従って、UEでは、基地局から判断結果の通知を受けるまで、2次アップリンク・キャリア・サービング・セルを利用するための回路を動作させることになり、消費電流が無駄になる場合がある。 Furthermore, in the technology for executing the stop operation for the secondary uplink carrier serving cell described above, for example, such a determination is made in the base station. Therefore, in the UE, a circuit for using the secondary uplink carrier serving cell is operated until the notification of the determination result is received from the base station, and current consumption may be wasted.
 そこで、本発明の一目的は、消費電流を削減できるようにした移動局装置、移動局装置における電源制御方法、及び無線通信システムを提供することにある。 Therefore, an object of the present invention is to provide a mobile station apparatus capable of reducing current consumption, a power supply control method in the mobile station apparatus, and a wireless communication system.
 一態様によれば、周波数帯域を用いて基地局装置と無線通信を行う移動局装置において、第1の周波数帯域を用いて送信する又は受信した第1のデータストリームを処理する第1の処理部と、第2の周波数帯域を用いて送信する又は受信した第2のデータストリームを処理する第2の処理部と、前記移動局装置毎に異なる指標に基づいて周波数帯域を前記第1及び第2の周波数帯域から前記第1の周波数帯域に切替えることを決定したとき、前記基地局装置との間で無線通信を行うことなく前記第2の処理部の電源をオフにする切替制御部とを備える。 According to an aspect, in a mobile station apparatus that performs radio communication with a base station apparatus using a frequency band, a first processing unit that processes a first data stream transmitted or received using the first frequency band A second processing unit that processes the second data stream transmitted or received using the second frequency band, and the first and second frequency bands based on different indices for each mobile station device. A switching control unit that turns off the power of the second processing unit without performing wireless communication with the base station device when it is determined to switch from the frequency band to the first frequency band. .
 消費電流を削減できるようにした移動局装置、移動局装置における電源制御方法、及び無線通信システムを提供することができる。 It is possible to provide a mobile station apparatus capable of reducing current consumption, a power control method in the mobile station apparatus, and a wireless communication system.
図1は無線通信システムの構成例を表わす図である。FIG. 1 is a diagram illustrating a configuration example of a wireless communication system. 図2は無線通信システムの構成例を表わす図である。FIG. 2 is a diagram illustrating a configuration example of a wireless communication system. 図3(A)から図3(D)はキャリアの例を表わす図である。3A to 3D are diagrams illustrating examples of carriers. 図4は無線通信システムと移動機の構成例を表わす図である。FIG. 4 is a diagram illustrating a configuration example of a wireless communication system and a mobile device. 図5は無線通信システムと基地局、及びRNCの構成例を表わす図である。FIG. 5 is a diagram illustrating a configuration example of a radio communication system, a base station, and an RNC. 図6は無線通信システムにおける動作例を表わすシーケンス図である。FIG. 6 is a sequence diagram showing an operation example in the wireless communication system. 図7は切替判断処理の動作例を表わすフローチャート。FIG. 7 is a flowchart showing an operation example of the switching determination process. 図8は再送制御ケア処理の動作例を表わすフローチャートである。FIG. 8 is a flowchart showing an operation example of the retransmission control care process. 図9は無線通信システムにおける動作例を表わすフローチャートである。FIG. 9 is a flowchart showing an operation example in the wireless communication system. 図10はストリームの切替処理の動作例を表わすフローチャートである。FIG. 10 is a flowchart showing an operation example of stream switching processing. 図11は無線通信システムと移動機の構成例を表わす図である。FIG. 11 is a diagram illustrating a configuration example of a wireless communication system and a mobile device. 図12は無線通信システムと基地局、及びRNCの構成例を表わす図である。FIG. 12 is a diagram illustrating a configuration example of a radio communication system, a base station, and an RNC. 図13は無線通信システムにおける動作例を表わすフローチャートである。FIG. 13 is a flowchart showing an operation example in the wireless communication system. 図14は切替判断処理の動作例を表わすフローチャートである。FIG. 14 is a flowchart showing an operation example of the switching determination process. 図15は切替判断処理の例を表わすフローチャートである。FIG. 15 is a flowchart showing an example of the switching determination process. 図16は送信部の構成例を表わす図である。FIG. 16 is a diagram illustrating a configuration example of a transmission unit. 図17は移動機の構成例を表わす図である。FIG. 17 is a diagram illustrating a configuration example of a mobile device. 図18は基地局の構成例を表わす図である。FIG. 18 is a diagram illustrating a configuration example of a base station. 図19はRNCの構成例を表わす図である。FIG. 19 is a diagram illustrating a configuration example of the RNC.
 以下、本実施の形態について図面を参照して詳細に説明する。 Hereinafter, the present embodiment will be described in detail with reference to the drawings.
 [第1の実施の形態]
 図1は第1の実施の形態における無線通信システム10の構成例を表わす図である。無線通信システム10は、移動局装置100、基地局装置200、及び基地局制御装置300を備える。
[First Embodiment]
FIG. 1 is a diagram illustrating a configuration example of a wireless communication system 10 according to the first embodiment. The radio communication system 10 includes a mobile station device 100, a base station device 200, and a base station control device 300.
 移動局装置100は、周波数帯域を用いて基地局装置200と無線通信を行う。移動局装置100は、第1の処理部190、第2の処理部191、及び切替制御部120を備える。 The mobile station device 100 performs radio communication with the base station device 200 using the frequency band. The mobile station apparatus 100 includes a first processing unit 190, a second processing unit 191, and a switching control unit 120.
 第1の処理部190は、第1の周波数帯域を用いて送信する又は受信した第1のデータストリームを処理する。 The first processing unit 190 processes the first data stream transmitted or received using the first frequency band.
 また、第2の処理部191は、第2の周波数帯域を用いて送信する又は受信した第2のデータストリームを処理する。 Also, the second processing unit 191 processes the second data stream transmitted or received using the second frequency band.
 切替制御部120は、移動局装置100毎に異なる指標に基づいて、周波数帯域を第1及び第2の周波数帯域から第1の周波数帯域に切替えることを決定したとき、基地局装置200との間で無線通信を行うことなく、第2の処理部191の電源をオフにする。 When the switching control unit 120 determines to switch the frequency band from the first and second frequency bands to the first frequency band based on a different index for each mobile station apparatus 100, the switching control unit 120 is connected to the base station apparatus 200. The power of the second processing unit 191 is turned off without performing wireless communication.
 このように移動局装置100では、基地局装置200と無線通信を行うことなく第2の処理部191の電源をオフにしており、例えば、移動局装置100主導で電源をオフにしている。 As described above, in the mobile station device 100, the power of the second processing unit 191 is turned off without performing wireless communication with the base station device 200. For example, the mobile station device 100 is powered off.
 従って、本移動局装置100では、切替決定後、基地局装置200と無線通信を行って基地局200から通知を受けて電源をオフにする場合と比較して、決定後通知を受けるまでの時間で消費する移動局装置100における電流の無駄を省くことができる。よって、本移動局装置100は、消費電流の削減を図ることができる。 Therefore, in this mobile station apparatus 100, the time until the notification after the determination is received, compared with the case where the wireless communication with the base station apparatus 200 is performed and the notification is received from the base station 200 and the power is turned off after the switching is determined. It is possible to eliminate waste of current in the mobile station device 100 that is consumed in the above. Therefore, the mobile station apparatus 100 can reduce current consumption.
 また、本移動局装置100では、基地局装置200と無線通信することなく第2の処理部191の電源をオフにしているので、第1の周波数帯域への切替決定後、瞬時に第2の処理部191の電源をオフにすることができる。この点からも、無線通信を行って電源をオフにする場合と比較して、本移動局装置100の消費電流削減を図ることが可能となる。 Further, in the present mobile station device 100, the power of the second processing unit 191 is turned off without performing wireless communication with the base station device 200. Therefore, after the decision to switch to the first frequency band, The power source of the processing unit 191 can be turned off. Also from this point, it is possible to reduce the current consumption of the mobile station device 100 as compared with the case where the power is turned off by performing wireless communication.
 さらに、例えば、ある移動局装置100ではある指標は切替判断に用いることができるが、それ以外の指標は切替判断に用いることができない場合もある。本移動局装置100では移動局装置100毎に異なる指標に基づいて切替判断を行っているため、移動局装置100毎に対応可能な指標に基づいて切替判断を行うことが可能となる。 Furthermore, for example, in a certain mobile station apparatus 100, a certain index can be used for switching determination, but other indices may not be used for switching determination. Since the mobile station apparatus 100 performs the switching determination based on an index different for each mobile station apparatus 100, the switching determination can be performed based on an index that can be handled for each mobile station apparatus 100.
 [第2の実施の形態]
 次に第2の実施の形態について説明する。第2の実施の形態においては、以下の順番で説明する。
[Second Embodiment]
Next, a second embodiment will be described. The second embodiment will be described in the following order.
 <無線通信システムの構成例>
 無線通信システムの構成例について説明する。図2は無線通信システム10の構成例を表わす図である。
<Configuration example of wireless communication system>
A configuration example of the wireless communication system will be described. FIG. 2 is a diagram illustrating a configuration example of the wireless communication system 10.
 無線通信システム10は、移動局装置(以下、「移動機」と称する場合がある)100-1,100-2と基地局装置(以下、「基地局」と称する場合がある)200を備える。 The wireless communication system 10 includes mobile station devices (hereinafter, also referred to as “mobile devices”) 100-1 and 100-2 and base station devices (hereinafter also referred to as “base stations”) 200.
 基地局200は、移動機100-1,100-2と無線通信を行う無線通信装置である。基地局200は、複数の移動機100-1,100-2と並列に無線通信を行うことができる。また、基地局200は、自局の通信可能範囲(例えば、「セル範囲」と称する場合がある)において移動機100-1,100-2と双方向通信が可能である。 Base station 200 is a wireless communication device that performs wireless communication with mobile devices 100-1 and 100-2. Base station 200 can perform wireless communication in parallel with a plurality of mobile devices 100-1 and 100-2. Further, base station 200 is capable of two-way communication with mobile devices 100-1 and 100-2 within the communicable range of the local station (for example, sometimes referred to as “cell range”).
 すなわち、基地局200から移動機100-1,100-2への方向のデータ送信(又は下り通信)と、移動機100-1,100-2から基地局200への方向のデータ送信(又は上り通信)である。基地局200はスケジューリングなどにより移動機100-1,100-2に対して無線リソース(例えば時間リソースと周波数リソース)を割り当てる。基地局200は割り当てた無線リソースを制御信号として移動機100-1,100-2へ送信する。基地局200と移動機100-1,100-2は無線リソースを用いて下り通信や上り通信を行う。 That is, data transmission (or downlink communication) in the direction from the base station 200 to the mobile devices 100-1 and 100-2 and data transmission (or uplink in the direction from the mobile devices 100-1 and 100-2 to the base station 200). Communication). Base station 200 allocates radio resources (for example, time resource and frequency resource) to mobile devices 100-1 and 100-2 by scheduling or the like. Base station 200 transmits the allocated radio resource as a control signal to mobile devices 100-1 and 100-2. The base station 200 and the mobile devices 100-1 and 100-2 perform downlink communication and uplink communication using radio resources.
 移動機100-1,100-2は、フィーチャーフォンやスマートフォンなど、移動可能な無線通信装置である。移動機100-1,100-2は、基地局200と無線通信を行うことで、通話サービスや映像配信、ホームページの閲覧など、種々のサービスの提供を受ける。 Mobile devices 100-1 and 100-2 are movable wireless communication devices such as feature phones and smartphones. The mobile devices 100-1 and 100-2 receive various services such as a call service, video distribution, and homepage browsing by performing wireless communication with the base station 200.
 本第2の実施の形態において、基地局200は複数のコンポーネントキャリア(CC:Component Carrier)を用いて無線通信を行う場合がある。 In the second embodiment, the base station 200 may perform wireless communication using a plurality of component carriers (CC).
 図3(A)~図3(C)はコンポーネントキャリアの例を表わす図である。コンポーネントキャリアは、例えば、最大20MHzの帯域幅を有する周波数帯域を表わしており、また、1つの搬送波に対応する。複数のコンポーネントキャリア又は複数の周波数帯域を用いて無線通信を行うことを、例えば、キャリアアグリゲーションと称する場合がある。以下においては、1つ1つのコンポーネントキャリアのことを、例えば、キャリアと称する場合がある。 3A to 3C are diagrams showing examples of component carriers. The component carrier represents a frequency band having a maximum bandwidth of 20 MHz, for example, and corresponds to one carrier wave. Performing wireless communication using a plurality of component carriers or a plurality of frequency bands may be referred to as carrier aggregation, for example. In the following, each component carrier may be referred to as a carrier, for example.
 キャリアアグリゲーションは、例えば、LTE(Long Term Evolution)における規格として3GPPにおいて標準化されている。 Carrier aggregation is standardized in 3GPP as a standard in LTE (Long Term Evolution), for example.
 図3(A)及び図3(B)に示すように、複数のキャリアは連続した周波数帯域に割り当てられているが、図3(C)に示すように不連続の周波数帯域に複数のキャリアが割り当てられてもよい。また、上り通信と下り通信では、それぞれ最大5つのキャリアを用いてもよく、上り通信と下り通信でキャリア数が異なってもよい。例えば、上り通信に3つのキャリア、下り通信に5つのキャリアを設けてもよい。また、キャリアの帯域幅は全て同一でなくてもよい。移動機100-1,100-2は5つのキャリアの一部又は全部を使用することができる。 As shown in FIG. 3 (A) and FIG. 3 (B), a plurality of carriers are assigned to continuous frequency bands, but as shown in FIG. 3 (C), a plurality of carriers are assigned to discontinuous frequency bands. May be assigned. In uplink communication and downlink communication, up to five carriers may be used, and the number of carriers may be different between uplink communication and downlink communication. For example, three carriers may be provided for uplink communication and five carriers for downlink communication. Also, the carrier bandwidths may not all be the same. The mobile devices 100-1 and 100-2 can use some or all of the five carriers.
 キャリアアグリゲーションでは、最大100MHzの周波数帯域幅が得られるため、20MHzの周波数帯域幅による無線通信と比較して、移動機100-1,100-2に対してスループット向上を図ることができる。 In carrier aggregation, since a maximum frequency bandwidth of 100 MHz can be obtained, it is possible to improve the throughput of the mobile devices 100-1 and 100-2 as compared with wireless communication using a frequency bandwidth of 20 MHz.
 また、本第2の実施の形態において、基地局200は、デュアルセルを用いて無線通信を行う場合がある。デュアルセルでは、例えば、最大5MHzの帯域幅を有するDL(Down Link)キャリアとUL(Up Link)キャリアを用いて無線通信が行われる。DLキャリアは最大4つのキャリア、ULキャリアは最大2つのキャリアが束ねられる。図3(D)はDLキャリアの例を表わす図である。図3(D)に示すように、デュアルセルでは、複数のキャリアは連続した周波数帯域において利用される。DLキャリアやULキャリアの一つ一つを、例えば、キャリアと称する場合がある。図3(D)に示す例では、DLキャリアとして2つのキャリアが利用される例を示している。 Further, in the second embodiment, the base station 200 may perform radio communication using a dual cell. In the dual cell, for example, wireless communication is performed using a DL (Down Link) carrier and a UL (Up Link) carrier having a maximum bandwidth of 5 MHz. A DL carrier is bundled with a maximum of four carriers, and a UL carrier is bundled with a maximum of two carriers. FIG. 3D is a diagram illustrating an example of a DL carrier. As shown in FIG. 3D, in the dual cell, a plurality of carriers are used in a continuous frequency band. Each DL carrier or UL carrier may be referred to as a carrier, for example. In the example shown in FIG. 3D, an example in which two carriers are used as DL carriers is shown.
 デュアルセルは、例えば、DC-HSDPA又はDC-HSPAにおける規格として3GPPにおいて標準化されている。 The dual cell is standardized in 3GPP as a standard in DC-HSDPA or DC-HSPA, for example.
 キャリアアグリゲーションにおけるキャリアとデュアルセルにおけるキャリアは、例えば、いずれも所定の帯域幅を有する周波数帯域を表わしている。以下においては、キャリアアグリゲーションにおけるキャリアとデュアルセルにおけるキャリアのいずれについても、例えば、「キャリア」と称する場合がある。 The carrier in the carrier aggregation and the carrier in the dual cell, for example, each represent a frequency band having a predetermined bandwidth. In the following, both the carrier in the carrier aggregation and the carrier in the dual cell may be referred to as “carrier”, for example.
 また、本第2の実施の形態において、移動機100-1,100-2と基地局200は、1つのキャリアに対して、例えば、1つのデータストリームを送信又は受信できる。従って、移動機100-1,100-2と基地局200は、複数のキャリアを用いて複数のデータストリームの送信又は受信を行うことができる。以下では、データストリームを、例えば、ストリームと称する場合がある。 In the second embodiment, the mobile devices 100-1 and 100-2 and the base station 200 can transmit or receive one data stream, for example, to one carrier. Accordingly, the mobile devices 100-1 and 100-2 and the base station 200 can transmit or receive a plurality of data streams using a plurality of carriers. Hereinafter, the data stream may be referred to as a stream, for example.
 <移動機の構成例>
 次に移動機100-1,100-2の構成例について説明する。
<Configuration example of mobile device>
Next, a configuration example of the mobile devices 100-1 and 100-2 will be described.
 なお、各移動機100-1,100-2は同一構成のため、特に断らない限り移動機100として説明する。 Note that the mobile devices 100-1 and 100-2 have the same configuration and will be described as the mobile device 100 unless otherwise specified.
 また、移動機100や、後述する基地局200の構成例については、例えば、DC-HSDPAやDC-HSPAなどによるデュアルセルを利用した場合の構成例について説明する。 Also, with regard to configuration examples of the mobile device 100 and the base station 200 described later, a configuration example in the case of using a dual cell such as DC-HSDPA or DC-HSPA will be described.
 さらに、移動機100と基地局200の構成例については、最大2ストリームの送信又は受信が行われる場合の例で説明することにする。 Furthermore, configuration examples of the mobile device 100 and the base station 200 will be described using an example in which a maximum of two streams are transmitted or received.
 図4は移動機100を含む無線通信システム10の構成例を表わす図である。無線通信システム10は、移動機100とNW(ネットワーク)400を備える。NW400は、第1及び第2の基地局(BTS#1,BTS#2)200-1,200-2、及びRNC(Radio Network Controller)300を備える。第1及び第2の基地局200-1,200-2とRNC300の構成については、図5を用いて後述する。 FIG. 4 is a diagram illustrating a configuration example of the wireless communication system 10 including the mobile device 100. The wireless communication system 10 includes a mobile device 100 and an NW (network) 400. The NW 400 includes first and second base stations (BTS # 1, BTS # 2) 200-1 and 200-2, and an RNC (Radio Network Controller) 300. The configurations of the first and second base stations 200-1 and 200-2 and the RNC 300 will be described later with reference to FIG.
 図4の例では、第1の基地局200-1は第1のキャリア(例えばDLキャリア#1)を用いて第1のストリームを送信し、第2の基地局200-2は第2のキャリア(例えばDLキャリア#2)を用いて第2のストリームを送信する例を表わしている。図4の例では、複数ストリームの送信は、複数の基地局200から送信されることで実現している。 In the example of FIG. 4, the first base station 200-1 transmits the first stream using the first carrier (for example, DL carrier # 1), and the second base station 200-2 transmits the second carrier. In this example, the second stream is transmitted using (for example, DL carrier # 2). In the example of FIG. 4, transmission of a plurality of streams is realized by being transmitted from a plurality of base stations 200.
 また、移動機100は、2つのキャリアを用いて2つのストリームを受信できるし、1つのキャリアを用いて1つのストリームを受信できる。移動機100では、例えば、周波数分離などの処理を行うことで、2つの基地局200-1,200-2から送信されたストリームを各基地局200-1,200-2からのストリームに分離できる。 Also, the mobile device 100 can receive two streams using two carriers, and can receive one stream using one carrier. In the mobile device 100, for example, by performing processing such as frequency separation, the streams transmitted from the two base stations 200-1 and 200-2 can be separated into streams from the base stations 200-1 and 200-2. .
 移動機100は、アンテナ(ANT1)101、受信部110、MAC(Media Access Control)部130、RLC(Radio Link Control)部140、PDCP(Packet Data Convergence Protocol)部150、アプリケーション部160、及び送信部170を備える。 The mobile device 100 includes an antenna (ANT1) 101, a receiving unit 110, a MAC (Media Access Control) unit 130, an RLC (Radio Link Control) unit 140, a PDCP (Packet Data Convergence Protocol) unit 150, an application unit 160, and a transmission unit. 170.
 また、受信部110は、RF(Radio Frequency)部111、L1部115、切替制御部120、電源制御部121を備える。さらに、RF部111は、第1のRX112、第2のRX113を備える。 The receiving unit 110 includes an RF (Radio Frequency) unit 111, an L1 unit 115, a switching control unit 120, and a power supply control unit 121. Further, the RF unit 111 includes a first RX 112 and a second RX 113.
 さらに、受信部110は、逆拡散部116、復号部117、第1及び第2のBLER(Block Error Rate)測定部118,119を備える。 Furthermore, the receiving unit 110 includes a despreading unit 116, a decoding unit 117, and first and second BLER (Block Error Rate) measuring units 118 and 119.
 アンテナ101は、第1及び第2の基地局200-1,200-2から夫々送信された第1及び第2の無線信号を受信して受信部110へ出力する。この場合、第1の無線信号は第1のストリームに対応し、第2の無線信号は第2のストリームに対応する。アンテナ101は、送信部170から出力された無線信号を第1及び第2の基地局200-1,200-2へ送信する。 The antenna 101 receives the first and second radio signals transmitted from the first and second base stations 200-1 and 200-2, respectively, and outputs them to the receiving unit 110. In this case, the first radio signal corresponds to the first stream, and the second radio signal corresponds to the second stream. The antenna 101 transmits the radio signal output from the transmission unit 170 to the first and second base stations 200-1 and 200-2.
 第1のRX112は、例えば、周波数分離により第1の基地局200-1から送信された第1の無線信号をアンテナ101から受け取り、当該第1の無線信号に対して、増幅処理や周波数変換処理、デジタル信号への変換処理などを行う。第1のRX112は、変換後の第1の無線信号を第1の受信信号として逆拡散部116へ出力する。 For example, the first RX 112 receives the first radio signal transmitted from the first base station 200-1 by frequency separation from the antenna 101, and performs amplification processing and frequency conversion processing on the first radio signal. The digital signal is converted. The first RX 112 outputs the converted first radio signal to the despreading section 116 as a first received signal.
 また、第2のRX113は、例えば、周波数分離により第2の基地局200-2から送信された第2の無線信号をアンテナ101から受け取り、当該第2の無線信号に対して、増幅処理や周波数変換処理、デジタル信号への変換処理などを行う。第2のRX113は、変換後の第2の無線信号を第2の受信信号として逆拡散部116へ出力する。 Also, the second RX 113 receives, for example, the second radio signal transmitted from the second base station 200-2 by frequency separation from the antenna 101, and performs amplification processing or frequency on the second radio signal. Conversion processing, conversion to digital signal, etc. are performed. The second RX 113 outputs the converted second radio signal to the despreading section 116 as a second received signal.
 逆拡散部116は、第1及び第2の受信信号に対し、第1及び第2の基地局200-1,200-2で用いた拡散符号を夫々利用して逆拡散処理を行い、干渉成分などを取り除いた第1及び第2の受信信号を得る。逆拡散部116は、逆拡散処理後の第1及び第2の受信信号を復号部117へ出力する。 The despreading unit 116 performs despreading processing on the first and second received signals by using the spreading codes used in the first and second base stations 200-1 and 200-2, respectively, and provides interference components. First and second received signals are obtained by removing the above. Despreading section 116 outputs the first and second received signals after the despreading process to decoding section 117.
 復号部117は、逆拡散処理後の第1及び第2の受信信号に対して、誤り訂正復号化処理を施して、第1及び第2の復号データを得る。例えば、第1の復号データを得ることで第1の基地局100-1から送信された第1のストリームを得、第2の復号データを得ることで第2の基地局100-2から送信された第2のストリームを得る。復号部117は、第1及び第2の復号データを第1及び第2のBLER測定部118,119へ夫々出力する。 The decoding unit 117 performs error correction decoding processing on the first and second received signals after despreading processing to obtain first and second decoded data. For example, the first stream transmitted from the first base station 100-1 is obtained by obtaining the first decoded data, and the second stream is transmitted from the second base station 100-2 by obtaining the second decoded data. Obtain a second stream. The decoding unit 117 outputs the first and second decoded data to the first and second BLER measurement units 118 and 119, respectively.
 第1及び第2のBLER測定部118,119は、復号部117から出力された第1及び第1の復号データに対して、ブロック誤り率(Block Error Rate)を夫々測定する。例えば、第1及び第2の復号データは、第1及び第2のキャリアに夫々対応する。従って、例えば、第1のBLER測定部118は、第1のキャリアに対するブロック誤り率を測定し、第2のBLER測定部119は、第2のキャリアに対するブロック誤り率を測定している。 The first and second BLER measurement units 118 and 119 measure the block error rate for the first and first decoded data output from the decoding unit 117, respectively. For example, the first and second decoded data correspond to the first and second carriers, respectively. Therefore, for example, the first BLER measurement unit 118 measures the block error rate for the first carrier, and the second BLER measurement unit 119 measures the block error rate for the second carrier.
 なお、ブロック誤り率は、各キャリアの下り通信品質を測定する1つの指標であり、下り通信品質を測定する指標としては、ブロック誤り率以外にも、CQI(Channel Quality Indicator)でもよい。この場合、第1及び第2のBLER測定部118,119は、第1及び第2の復号信号に対してSIR(Signal to Interference Ratio)を夫々測定し、測定したSIRに対応する第1及び第2のCQIを設定する。 The block error rate is one index for measuring the downlink communication quality of each carrier, and the index for measuring the downlink communication quality may be CQI (Channel Quality Indicator) in addition to the block error rate. In this case, the first and second BLER measurement units 118 and 119 measure SIR (Signal to Interference Ratio) for the first and second decoded signals, respectively, and the first and second BLER measurement units 118 and 119 correspond to the measured SIR. 2 CQI is set.
 第1及び第2のBLER測定部118,119は、第1及び第2の復号データをMAC部130へ出力し、第1及び第2の復号データに対する測定結果(夫々第1及び第2の測定結果)を切替制御部120へ出力する。 The first and second BLER measurement units 118 and 119 output the first and second decoded data to the MAC unit 130, and the measurement results for the first and second decoded data (first and second measurement respectively). Result) to the switching control unit 120.
 なお、第1のRX112、逆拡散部116のうち第1のRX112からの出力に対する処理を行う回路、及び復号部117のうち第1のRX112からの出力に対する処理を行う回路は、例えば、第1のストリームに対する処理を行う回路である。この第1のストリームに対する処理を行う回路は、例えば、第1の実施に形態における第1の処理部190に対応する。 The first RX 112, the circuit that performs processing for the output from the first RX 112 in the despreading unit 116, and the circuit that performs processing for the output from the first RX 112 in the decoding unit 117 are, for example, the first This is a circuit for performing processing on the stream. A circuit that performs processing on the first stream corresponds to, for example, the first processing unit 190 in the first embodiment.
 また、第2のRX113、逆拡散部116のうち第2のRX113からの出力に対する処理を行う回路、及び復号部117のうち第2のRX113からの出力に対する処理を行う回路は、例えば、第2のストリームに対する処理を行う回路である。この第2のストリームに対する処理を行う回路は、例えば、第2の実施の形態における第2の処理部191に対応する。 In addition, a circuit that performs processing for the output from the second RX 113 in the second RX 113 and the despreading unit 116, and a circuit that performs processing for the output from the second RX 113 in the decoding unit 117 are, for example, the second This is a circuit for performing processing on the stream. A circuit that performs processing on the second stream corresponds to, for example, the second processing unit 191 in the second embodiment.
 図4においては、第1のストリームに対する処理を行う回路と、第2のストリームに対する処理を行う回路を点線で示している。 In FIG. 4, a circuit that performs processing for the first stream and a circuit that performs processing for the second stream are indicated by dotted lines.
 切替制御部120は、第1及び第2の測定結果のうちいずれかの測定結果が閾値より低いとき、低い側の測定結果に対応する第1又は第2のストリームの受信を停止させることを決定する。このとき、切替制御部120は停止した第1又は第2のストリームに対応する未使用回路の電源をオフにするよう電源制御部121に指示する。 When one of the first and second measurement results is lower than the threshold, the switching control unit 120 determines to stop receiving the first or second stream corresponding to the lower measurement result. To do. At this time, the switching control unit 120 instructs the power control unit 121 to turn off the power of the unused circuit corresponding to the stopped first or second stream.
 なお、切替制御部120は、第1及び第2の測定結果がいずれも閾値よりも低い結果を得たときは、第1及び第2の測定結果のうち、測定結果の低い方のストリームの受信を停止させることもできるし、2つのストリームの双方を停止させることもできる。 When the first and second measurement results are both lower than the threshold, the switching control unit 120 receives the stream having the lower measurement result among the first and second measurement results. Can be stopped, or both of the two streams can be stopped.
 また、切替制御部120は、閾値より低い第1又は第2の測定結果がその後、閾値よりも高くなったとき、電源制御部121に対して未使用回路の電源をオンにするよう指示する。 Also, the switching control unit 120 instructs the power supply control unit 121 to turn on the power of the unused circuit when the first or second measurement result lower than the threshold value is subsequently higher than the threshold value.
 一方、切替制御部120は、第1及び第2の測定結果が閾値より高いことを検出したとき、第1及び第2のストリームの受信を継続する。この場合、切替制御部120は、電源制御部121に対してとくに指示することはない。切替制御部120における動作の詳細は、後述する動作例において説明する。 On the other hand, when the switching control unit 120 detects that the first and second measurement results are higher than the threshold value, the switching control unit 120 continues to receive the first and second streams. In this case, the switching control unit 120 does not particularly instruct the power supply control unit 121. Details of the operation in the switching control unit 120 will be described in an operation example described later.
 電源制御部121は、切替制御部120から出力された指示に基づいて、第1又は第2のストリームに対する処理を行う回路の電源のオン又はオフを制御する。 The power control unit 121 controls the power on or off of a circuit that performs processing for the first or second stream based on the instruction output from the switching control unit 120.
 例えば、電源制御部121は、第1のストリームに対する処理を行う回路の電源をオフにする指示を受け取ったとき、第1のストリームに対する処理を行う回路(例えば、第1のRX112、逆拡散部116のうち第1のRX112からの出力に対する処理を行う回路、及び復号部117のうち第1のRX112からの出力に対する処理を行う回路)の電源をオフにする。また、例えば、電源制御部121は、未使用回路の電源をオンにする指示を受けたときは、電源をオフにした未使用回路の電源をオンにする。 For example, when the power control unit 121 receives an instruction to turn off the power of a circuit that performs processing for the first stream, the power control unit 121 performs processing for the first stream (for example, the first RX 112 and the despreading unit 116). Power of the circuit that performs processing for the output from the first RX 112 and the circuit that performs processing for the output from the first RX 112 in the decoding unit 117. Further, for example, when receiving an instruction to turn on the power of the unused circuit, the power control unit 121 turns on the power of the unused circuit whose power is turned off.
 電源制御部121は、電源をオフ又はオンにすると、その旨を送信部170のCQI生成部171へ通知する。 When the power supply is turned off or on, the power supply control unit 121 notifies the CQI generation unit 171 of the transmission unit 170 to that effect.
 MAC部130は、MUX131を備える。MUX131は、第1及び第2の測定部118,119から出力された第1及び第2の復号データを多重化し、多重化した第1及び第2の復号データを含むMACパケットデータを生成し、RLC部140へ出力する。 The MAC unit 130 includes a MUX 131. The MUX 131 multiplexes the first and second decoded data output from the first and second measuring units 118 and 119, generates MAC packet data including the multiplexed first and second decoded data, Output to the RLC unit 140.
 なお、MUX131は、未使用回路の電源がオフとなっているきは、第1及び第2の復号データのうち、一方の復号データが入力されるため、この場合はとくに多重化することなく出力する。 The MUX 131 receives one of the first and second decoded data when the unused circuit is powered off. In this case, the MUX 131 outputs without multiplexing. To do.
 また、MAC部130は、RLC部140から出力されたRLCパケットデータに対して、ヘッダなどを付加してMACパケットデータを生成し、生成したMACパケットデータを送信部170へ出力する。 Further, the MAC unit 130 generates a MAC packet data by adding a header to the RLC packet data output from the RLC unit 140, and outputs the generated MAC packet data to the transmission unit 170.
 RLC部140は、MUX131から出力されたMACパケットデータからRLCパケットデータを抽出し、抽出したRLCパケットデータをPDCP部150へ出力する。また、RLC部140は、PDCP部150から出力されたPDCPパケットデータに対してヘッダなどを付加してRLCパケットデータを生成して、生成したRLCパケットデータをMAC部130へ出力する。 The RLC unit 140 extracts RLC packet data from the MAC packet data output from the MUX 131, and outputs the extracted RLC packet data to the PDCP unit 150. Further, the RLC unit 140 generates RLC packet data by adding a header or the like to the PDCP packet data output from the PDCP unit 150, and outputs the generated RLC packet data to the MAC unit 130.
 PDCP部150は、RLC部140から出力されたRLCパケットデータに対して、ヘッダなどを破棄する等によりPDCPパケットデータを抽出し、抽出したPDCPパケットデータをアプリケーション部160へ出力する。また、PDCP部150は、アプリケーション部160から出力されたデータに対して、ヘッダなどを付加することでPDCPパケットデータを生成し、生成したパケットデータをRLC部140へ出力する。 The PDCP unit 150 extracts PDCP packet data from the RLC packet data output from the RLC unit 140 by discarding a header or the like, and outputs the extracted PDCP packet data to the application unit 160. In addition, the PDCP unit 150 generates PDCP packet data by adding a header or the like to the data output from the application unit 160, and outputs the generated packet data to the RLC unit 140.
 アプリケーション部160は、RRC(Radio Resource Controller)161を備える。RRC161は、例えば、RNC300内のRRC(後述する図5に示される)との間で、RRCコネクションの接続、維持、開放などの処理、QoS(Quality Of Service)制御、基地局200-1,200-2の選択などの処理を行う。 The application unit 160 includes an RRC (Radio Resource Controller) 161. The RRC 161, for example, with the RRC in the RNC 300 (shown in FIG. 5 described later), processing such as connection, maintenance, and release of an RRC connection, QoS (Quality Of Service) control, and base stations 200-1 and 200 -2 is selected.
 また、アプリケーション部160は、例えば、PDCP部150から出力されたPDCPパケットデータから、第1及び第2の基地局200-1,200-2から送信されたデータを抽出し、入出力IFを介してモニタに表示させたり、マイクから音声出力することができる。 Further, the application unit 160 extracts, for example, data transmitted from the first and second base stations 200-1 and 200-2 from the PDCP packet data output from the PDCP unit 150, via the input / output IF. Can be displayed on a monitor or output from a microphone.
 さらに、アプリケーション部160は、入出力IFを介して、モニタなどから入力された文字データやカメラなどで撮影された画像データなどを入力し、これらのデータをPDCP部150へ出力する。 Furthermore, the application unit 160 inputs character data input from a monitor or the like via the input / output IF, image data captured by a camera, and the like, and outputs these data to the PDCP unit 150.
 送信部170は、CQI生成部171を備える。CQI生成部171は、切替制御部120及び電源制御部121を介して、第1及び第2のBLER測定部118,119から第1及び第2の測定結果を夫々受け取る。そして、CQI生成部171は、第1及び第2の測定結果に夫々対応するCQIを生成する。 The transmission unit 170 includes a CQI generation unit 171. The CQI generation unit 171 receives the first and second measurement results from the first and second BLER measurement units 118 and 119 via the switching control unit 120 and the power supply control unit 121, respectively. Then, the CQI generation unit 171 generates CQIs corresponding to the first and second measurement results, respectively.
 また、CQI生成部171は、電源制御部121から電源をオフ又はオンにした旨の通知を受けたとき、切替予告情報を生成し、生成した切替予告情報をCQIに付加した切替予告通知を第1又は第2の基地局200-1,20-2へ送信する。或いは、CQI生成部171は、切替予告情報を含む切替予告通知をCQIに付加して、CQIとして送信してもよい。以下では、例えば、切替予告通知がCQIに付加されたものとして説明する場合がある。 In addition, when the CQI generation unit 171 receives a notification that the power supply is turned off or on from the power supply control unit 121, the CQI generation unit 171 generates the switching advance notice information, and sends the generated change advance notice information to the CQI. Transmit to the first or second base station 200-1, 20-2. Alternatively, the CQI generating unit 171 may add a switch notice including the switch notice information to the CQI and transmit it as a CQI. In the following description, for example, a description may be given assuming that a switching notice is added to the CQI.
 例えば、CQI生成部171は、電源のオフ又はオンの通知に基づいて、1ストリームへの切替又は複数ストリームへの切替を表わす1ビットの切替予告情報を生成する。例えば、CQI生成部171は、切替制御部120からの指示に基づいて切替予告通知を生成してNW400へ送信しており、切替予告通知は切替制御部120の制御により生成されるとすることもできる。 For example, the CQI generation unit 171 generates 1-bit switching advance notice information indicating switching to one stream or switching to a plurality of streams based on a power off or on notification. For example, the CQI generation unit 171 may generate a switch advance notice based on an instruction from the switch control unit 120 and transmit it to the NW 400, and the switch advance notice may be generated under the control of the switch control unit 120. it can.
 送信部170は、MAC部130から出力されたMACパケットデータを受け取り、誤り訂正符号化処理、変調処理、拡散処理、周波数変換処理などを施すことで、無線信号に変換する。 The transmission unit 170 receives the MAC packet data output from the MAC unit 130 and converts it into a radio signal by performing error correction coding processing, modulation processing, spreading processing, frequency conversion processing, and the like.
 また、送信部170は、CQI生成部171で生成されたCQIと切替予告通知に対しても、MACパケットデータと同様に、誤り訂正符号化処理などを施して無線信号に変換する。送信部170は、無線信号をアンテナ101へ出力する。 Also, the transmission unit 170 converts the CQI generated by the CQI generation unit 171 and the switching advance notice into a radio signal by performing error correction coding processing and the like, similarly to the MAC packet data. Transmitter 170 outputs a radio signal to antenna 101.
 図5は無線通信システム10の構成例であり、第1及び第2の基地局200-1,200-2、及びRNC300の構成例も表わす図である。なお、第1及び第2の基地局200-1,200-2は同一構成のため、第1の基地局200-1について説明し、第2の基地局200-2についての構成の説明は省略する。 FIG. 5 is a configuration example of the radio communication system 10, and also illustrates configuration examples of the first and second base stations 200-1, 200-2 and the RNC 300. Since the first and second base stations 200-1 and 200-2 have the same configuration, only the first base station 200-1 will be described, and the description of the configuration of the second base station 200-2 will be omitted. To do.
 第1の基地局200-1は、第1のアンテナ201-1、第1の受信部210-1、第1のMAC部220-1、第1のRLC部230-1、第1のPDCP部240-1、及び第1の送信部250-1を備える。また、第1の送信部250-1は、第1の符号部251-1、第1の変調部252-1、第1のTX253-1を備える。 The first base station 200-1 includes a first antenna 201-1, a first receiving unit 210-1, a first MAC unit 220-1, a first RLC unit 230-1, and a first PDCP unit. 240-1 and a first transmitter 250-1. In addition, the first transmission unit 250-1 includes a first encoding unit 251-1, a first modulation unit 252-1, and a first TX 253-1.
 第1のアンテナ201-1は、第1の送信部250-1から出力された無線信号を移動機100へ送信する。また、第1のアンテナ201-1は、移動機100から送信された無線信号を受信し、受信した無線信号を第1の受信部210-1へ出力する。 The first antenna 201-1 transmits the radio signal output from the first transmission unit 250-1 to the mobile device 100. Also, the first antenna 201-1 receives the radio signal transmitted from the mobile device 100 and outputs the received radio signal to the first receiving unit 210-1.
 第1の受信部210-1は、受信した無線信号に対して、周波数変換処理、逆拡散処理、誤り訂正復号化処理などを施して、ベースバンド帯域の受信データを得る。第1の受信部210-1は、受信データを第1のMAC部220-1へ出力する。 The first receiving unit 210-1 performs frequency conversion processing, despreading processing, error correction decoding processing, and the like on the received radio signal to obtain received data in the baseband. The first receiving unit 210-1 outputs the received data to the first MAC unit 220-1.
 第1のMAC部220-1は、受信データを含むMACパケットデータを生成し、生成したMACパケットデータを第1のRLC部230-1へ出力する。また、第1のMAC部220-1は、第1のRLC部230-1から出力されたRLCパケットを受け取り、RLCパケットに対してヘッダなどを付加することでMACパケットデータを生成し、生成したMACパケットデータを第1の送信部250-1へ出力する。 The first MAC unit 220-1 generates MAC packet data including received data, and outputs the generated MAC packet data to the first RLC unit 230-1. Further, the first MAC unit 220-1 receives the RLC packet output from the first RLC unit 230-1, generates a MAC packet data by adding a header to the RLC packet, and generates the MAC packet data. The MAC packet data is output to the first transmission unit 250-1.
 第1のRLC部230-1は、第1のMAC部230-1から出力されたMACパケットデータに対して、ヘッダを破棄するなどすることでRLCパケットデータを抽出し、抽出したRLCパケットデータを第1のPDCP部240-1へ出力する。また、第1のRLC部230-1は、第1のPDCP部240-1からPDCPデータを受け取り、PDCPパケットデータに対してヘッダを付加するなどにより、RLCパケットデータを生成し、第1のMAC部220-1へ出力する。 The first RLC unit 230-1 extracts the RLC packet data by discarding the header from the MAC packet data output from the first MAC unit 230-1, and extracts the extracted RLC packet data. Output to the first PDCP unit 240-1. Also, the first RLC unit 230-1 receives the PDCP data from the first PDCP unit 240-1, generates RLC packet data by adding a header to the PDCP packet data, etc. To the unit 220-1.
 第1のPDCP部240-1は、第1のRLC部230-1から出力されたRLCパケットデータに対して、ヘッダを破棄するなどによりPDCPパケットデータを抽出し、抽出したPDCPパケットデータをRNC300へ送信する。また、第1のPDCP部240-1は、RNC300から送信されたデータを受信し、ヘッダを付加するなどによりPDCPパケットデータを生成して、第1のRLC部230-1へ出力する。 The first PDCP unit 240-1 extracts PDCP packet data from the RLC packet data output from the first RLC unit 230-1 by discarding the header or the like, and the extracted PDCP packet data is sent to the RNC 300. Send. The first PDCP unit 240-1 receives the data transmitted from the RNC 300, generates PDCP packet data by adding a header or the like, and outputs the PDCP packet data to the first RLC unit 230-1.
 第1の符号部251-1は、第1のMAC部220-1から出力されたMACパケットデータに対して、誤り訂正符号化処理を施し、誤り訂正符号化処理後のMACパケットデータを第1の変調部252-1へ出力する。 The first encoding unit 251-1 performs error correction encoding processing on the MAC packet data output from the first MAC unit 220-1, and outputs the MAC packet data after the error correction encoding processing to the first To the modulation unit 252-1.
 第1の変調部252-1は、誤り訂正符号化処理後のMACパケットデータに対して変調処理を施すことで、送信信号に変換し、変換後の送信信号を第1のTX253-1へ出力する。 The first modulation unit 252-1 performs modulation processing on the MAC packet data after the error correction coding processing to convert it into a transmission signal, and outputs the converted transmission signal to the first TX 253-1 To do.
 第1のTX253-1は、送信信号に対して、拡散符号を用いた拡散処理、周波数変換処理などを施すことで無線信号を生成し、生成した無線信号を第1のアンテナ201-1へ出力する。 The first TX 253-1 generates a radio signal by performing spreading processing using a spreading code, frequency conversion processing, etc. on the transmission signal, and outputs the generated radio signal to the first antenna 201-1. To do.
 なお、第2の基地局200-2は、第2の受信部210-2、第2のMAC部220-2、第2のRLC部230-2、第2のPDCP部240-2、及び第2の送信部250-2を備える。また、第2の送信部250-2は、第2の符号部251-2、第2の変調部252-2、及び第2のTX253-2を備える。 Note that the second base station 200-2 includes a second receiver 210-2, a second MAC unit 220-2, a second RLC unit 230-2, a second PDCP unit 240-2, and a second 2 transmission units 250-2. The second transmission unit 250-2 includes a second encoding unit 251-2, a second modulation unit 252-2, and a second TX 253-2.
 上述したように、本第2の実施の形態においては、第1の基地局200-1は第1のキャリアを利用して第1のストリームを移動機100へ送信する。また、第2の基地局200-2は、第1のキャリアに隣接する周波数帯域を有する第2のキャリアを利用して第2のストリームを移動機100へ送信する。 As described above, in the second embodiment, the first base station 200-1 transmits the first stream to the mobile device 100 using the first carrier. Also, the second base station 200-2 transmits the second stream to the mobile device 100 using the second carrier having a frequency band adjacent to the first carrier.
 そのため、第1及び第2の受信部210-1,210-2と第1及び第2のTX253-1,253-2は、例えば、異なるキャリアの信号を処理することになる。 Therefore, the first and second receiving units 210-1 and 210-2 and the first and second TX 253-1 and 253-2 process signals of different carriers, for example.
 RNC300は、例えば、配下にある1又は複数の基地局100を制御する基地局制御装置である。RNC300は、移動機切替検知部310、切替制御部320、De-MUX(デマルチプレクサ)330、及びRRC340を備える。 The RNC 300 is, for example, a base station control device that controls one or more base stations 100 under its control. The RNC 300 includes a mobile device switching detection unit 310, a switching control unit 320, a De-MUX (demultiplexer) 330, and an RRC 340.
 移動機切替検知部310は、第1及び第2の基地局200-1,200-2から送信されたPDCPパケットデータを受信し、当該パケットデータからCQIやCQIに付加された切替予告通知を抽出する。そして、移動機切替検知部310は、切替予告通知を抽出すると、第1又は第2の基地局200-1,200-2で行われる再送制御の監視を行う。 The mobile station switching detection unit 310 receives the PDCP packet data transmitted from the first and second base stations 200-1 and 200-2, and extracts the CQI and the switching advance notice added to the CQI from the packet data. To do. Then, when the mobile station switching detection unit 310 extracts the switching advance notice, the mobile station switching detection unit 310 monitors the retransmission control performed by the first or second base station 200-1 or 200-2.
 上記したように第1及び第2のストリームを受信した移動機100は、自らの判断で、いずれか一方のストリームの受信を停止させる。この場合、RNC300は切替予告通知を受けて、移動機100においていずれか一方のストリームの受信を停止することを検知する。 As described above, the mobile device 100 that has received the first and second streams stops receiving one of the streams based on its own judgment. In this case, the RNC 300 receives the switching advance notice and detects that the mobile device 100 stops receiving one of the streams.
 しかし、移動機100ではいずれか一方のストリームの受信を停止しているため、第1又は第2の基地局200-1,200-2は移動機100に対して再送制御(例えば、H-ARQ(Hybrid-Automatic Repeat Request)制御))により何度も送信を行う場合がある。このような再送制御が長時間継続することはNW400に対する負荷に影響を与えることになる。 However, since the mobile station 100 stops receiving one of the streams, the first or second base station 200-1 or 200-2 controls the mobile station 100 to perform retransmission control (for example, H-ARQ). (Hybrid-Automatic Repeat Request) control)). If such retransmission control continues for a long time, the load on the NW 400 is affected.
 そこで、RNC300では第1又は第2の基地局200-1,200-2における再送制御を監視するようにしている。また、この再送制御によって、移動機100では、電源をオフにしたストリームに対する受信とりこぼしをなくすことも可能となる。すなわち、移動機100では、電源オフにより受信を停止したストリームについては再送制御によって受信の取りこぼしを救済することができる。 Therefore, the RNC 300 monitors the retransmission control in the first or second base station 200-1 or 200-2. Also, with this retransmission control, the mobile device 100 can eliminate missed reception for a stream whose power is turned off. That is to say, mobile station 100 can relieve missed reception by retransmission control for streams whose reception has been stopped due to power-off.
 再送制御の監視は、例えば、以下のようにして行われる。すなわち、移動機切替検知部310は、切替予告通知を抽出すると、切替予告通知を出力した第1又は第2の基地局200-1,200-2における再送制御の回数を監視する。第1又は第2の送信部250-1,250-2は、例えば、移動機100に対する再送制御を行う毎に、その旨をRNC300へ送信する。 Monitoring of retransmission control is performed as follows, for example. That is, when the mobile switching detection unit 310 extracts the switching advance notice, it monitors the number of retransmission control in the first or second base station 200-1 or 200-2 that has output the switching advance notice. For example, each time the first or second transmission unit 250-1 or 250-2 performs retransmission control on the mobile device 100, the first or second transmission unit 250-1 or 250-2 transmits the fact to the RNC 300.
 移動機切替検知部310は、切替予告通知が電源オフを表わしているときに、一定期間における再送制御の回数が閾値以上発生したとき、移動機100における一方のストリームの受信停止による弊害と判別して、送信データを2ストリームから1ストリームへ変更することを決定する。 The mobile device switching detection unit 310 determines that the mobile device 100 has an adverse effect due to the stop of reception of one stream when the number of times of retransmission control in a certain period is greater than or equal to a threshold value when the switching advance notice indicates power off. Thus, it is determined to change the transmission data from 2 streams to 1 stream.
 また、移動機切替検知部310は、切替予告通知が電源オンを表わしているとき、一定期間における再送制御の回数が閾値より少ないとき、送信データを1ストリームから2ストリームへ変更することを決定する。移動機切替検知部310は、決定した旨を切替制御部320へ通知する。 In addition, when the switching advance notice indicates that the power is on, the mobile device switching detection unit 310 determines to change the transmission data from 1 stream to 2 streams when the number of times of retransmission control in a certain period is less than the threshold. . The mobile device switching detection unit 310 notifies the switching control unit 320 of the determination.
 切替制御部320は、移動機切替検知部310から1ストリームへの変更通知を受け取ると、De-MUX330に対して、送信データを2ストリームに分離することを停止させ、1ストリームで出力するよう制御する。また、切替制御部320は、移動機切替検知部310から2ストリームへの変更通知を受け取ると、De-MUX330に対して、送信データを2ストリームに分離するよう制御する。 When the switching control unit 320 receives the change notification to one stream from the mobile device switching detection unit 310, the switching control unit 320 controls the De-MUX 330 to stop the transmission data from being separated into two streams and to output the one stream. To do. In addition, when the switching control unit 320 receives a notification of change to two streams from the mobile device switching detection unit 310, the switching control unit 320 controls the De-MUX 330 to separate the transmission data into two streams.
 De-MUX330は、切替制御部320の制御により、RNC300の上位装置から送信された送信データを2ストリームに分離したり、送信データを1ストリームとしてそのまま第1又は第2の基地局200-1,200-2へ送信する。 The De-MUX 330, under the control of the switching control unit 320, separates transmission data transmitted from the host device of the RNC 300 into two streams, or transmits the transmission data as one stream as it is as the first or second base station 200-1, To 200-2.
 RRC340は、例えば、第1及び第2の基地局200-1,200-2配下の移動機100に対して、RRCコネクションの設定、維持、開放などを行い、同報通知、移動機100に対する呼び出し、通信チャネルの設定などを行う。 For example, the RRC 340 performs setting, maintenance, release, etc. of the RRC connection to the mobile devices 100 subordinate to the first and second base stations 200-1 and 200-2, and broadcast notification, calling to the mobile device 100 Set up communication channels.
 <動作例>
 次に、第2の実施の形態における動作例について説明する。図6から図10は本第2の実施の形態における動作例を表わす図である。本動作例では、主に、DC-HSDPAによるデュアルセル通信が行われる場合で説明する。
<Operation example>
Next, an operation example in the second embodiment will be described. 6 to 10 are diagrams showing an operation example in the second embodiment. In this operation example, a case will be mainly described where dual cell communication by DC-HSDPA is performed.
 図6は無線通信システム10における動作例を表わすシーケンス図である。なお、図6において、「MS」は移動機100、「NW」における「L1」は第1及び第2の受信部210-1,210-2、「NW」における「MAC」は第1及び第2のMAC部220-1,220-2に夫々対応する。 FIG. 6 is a sequence diagram showing an operation example in the wireless communication system 10. In FIG. 6, “MS” is the mobile device 100, “L1” in “NW” is the first and second receiving sections 210-1, 210-2, and “MAC” in “NW” is the first and second receivers. 2 MAC units 220-1 and 220-2.
 移動機100とNW400間において、複数ストリームによるデュアルセル通信が行われている(S10)。ただし、本第2の実施の形態では、2ストリームによるデュアルセル通信が行われているものとして説明する。 Between the mobile device 100 and the NW 400, dual cell communication using a plurality of streams is performed (S10). However, in the second embodiment, description will be made assuming that dual-cell communication with two streams is performed.
 デュアルセル通信が行われているときに、移動機100は1ストリームへの切替判断処理を行う(S11)。 When the dual cell communication is being performed, the mobile device 100 performs a switching determination process for one stream (S11).
 図7は切替判断処理の動作例を表わすフローチャートである。図7に示す処理は、主に、切替制御部120と電源制御部121により行われる処理である。 FIG. 7 is a flowchart showing an operation example of the switching determination process. The process illustrated in FIG. 7 is a process mainly performed by the switching control unit 120 and the power supply control unit 121.
 移動機100は、本処理を開始すると(S110)、通信状態を判別する(S111)。 When the mobile device 100 starts this process (S110), it determines the communication state (S111).
 例えば、移動機100のRRC161とRNC300のRRC340との間で、デュアルセルによる通信が行われるときに複数ストリームによる通信か否か、或いはどのキャリアが利用されるかなどの情報が交換される。移動機100は、この交換される情報に基づいて、通信状態が複数ストリームによる通信中か、1ストリームによる通信中かを判別できる。このような判別は、例えば、切替制御部120がRRC161から通信状態に関する情報を得て、この情報に基づいて判別する。 For example, when dual-cell communication is performed between the RRC 161 of the mobile device 100 and the RRC 340 of the RNC 300, information such as whether or not the communication is based on a plurality of streams or which carrier is used is exchanged. Based on the exchanged information, the mobile device 100 can determine whether the communication state is communicating with a plurality of streams or communicating with one stream. For example, the switching control unit 120 obtains information on the communication state from the RRC 161 and makes a determination based on this information.
 移動機100は、通信状態が複数ストリームによる通信であると判別すると(S111で「複数ストリーム」)、受信品質の状態が悪いか否かを判別する(S112)。 If the mobile device 100 determines that the communication state is communication using a plurality of streams (“multiple streams” in S111), the mobile device 100 determines whether the reception quality is poor (S112).
 例えば、切替制御部120は、第1及び第2のBLER測定部118,119から夫々出力された第1及び第2の測定結果(例えば第1及び第2のブロック誤り率)のうちいすれかが閾値よりも低いとき、受信品質の状態が悪いと判別し、そうでないとき、受信品質の状態は悪くないと判別する。受信品質としては、例えば、ブロック誤り率以外にも、SIRやCQIなどの他の指標値であってもよい。いずれの指標値であっても、例えば、第1及び第2の基地局200-1,200-2から送信された各無線信号を移動機100が受信したときの受信品質が測定される。 For example, the switching control unit 120 may select one of the first and second measurement results (for example, the first and second block error rates) output from the first and second BLER measurement units 118 and 119, respectively. Is lower than the threshold value, it is determined that the reception quality state is bad. Otherwise, it is determined that the reception quality state is not bad. As the reception quality, for example, other index values such as SIR and CQI may be used besides the block error rate. Regardless of the index value, for example, the reception quality when the mobile device 100 receives each radio signal transmitted from the first and second base stations 200-1 and 200-2 is measured.
 移動機100は、受信品質の状態が悪くないと判別したとき(S112でNO)、一連の処理を終了させる(S116)。この場合、例えば、移動機100の複数ストリームによる無線通信の品質状態は良好なため、1ストリームへの切替など行うことなく処理を終了させる。 When the mobile device 100 determines that the state of reception quality is not bad (NO in S112), the mobile device 100 ends the series of processing (S116). In this case, for example, since the quality state of the wireless communication using a plurality of streams of the mobile device 100 is good, the process is terminated without switching to one stream.
 一方、移動機100は、受信品質の状態が悪いと判別したとき(S112でYES)、1ストリームへの切替を行うことを決定する(S113)。そして、移動機100は、CQIとともに1ストリームへの切替通知を行い(S114)、未使用回路の電源をオフにする(S115)。  On the other hand, when the mobile device 100 determines that the state of reception quality is poor (YES in S112), the mobile device 100 determines to switch to one stream (S113). Then, the mobile device 100 notifies the switching to one stream together with the CQI (S114), and turns off the power of the unused circuit (S115). *
 例えば、切替制御部120により1ストリームへの切替が決定されると、CQI生成部171では切替予告通知を生成する。この場合、CQI生成部171では、CQIを基地局200-1,200-2へ定期的に送信するため、切替予告通知をCQIとともに送信することで、NW400に対して速やかに切替予告通知を通知できる。 For example, when switching to one stream is determined by the switching control unit 120, the CQI generation unit 171 generates a switching advance notice. In this case, since the CQI generation unit 171 periodically transmits the CQI to the base stations 200-1 and 200-2, the CQI is sent to the base stations 200-1 and 200-2. it can.
 なお、S114とS115の処理順は逆でもよい。 Note that the processing order of S114 and S115 may be reversed.
 そして、移動機100は一連の処理を終了させる(S116)。 Then, the mobile device 100 ends a series of processes (S116).
 図6に戻り、移動機100は1ストリームへの切替を行うことを決定すると、第1又は第2の基地局200-1,200-2へ切替予告通知を送信する。例えば、移動機100は、停止することを決定したストリームを送信する基地局(第1又は第2の基地局200-1,200-2)へ、切替予告通知を送信する(S12)。 Returning to FIG. 6, when the mobile device 100 determines to switch to one stream, the mobile device 100 transmits a notification of switching notice to the first or second base stations 200-1 and 200-2. For example, the mobile device 100 transmits a switching advance notice to the base stations (first or second base stations 200-1 and 200-2) that transmit the stream determined to be stopped (S12).
 また、移動機100は、MAC部130に対しても1ストリームへ切替を行うことを通知する(S13)。例えば、切替制御部120は、1ストリームへの切替を決定すると、MAC部130へ、1ストリームへの切替を通知する。MAC部130への通知により、例えば、MUX131における第1及び第2のストリームの多重化処理を停止させることができる。 Also, the mobile device 100 notifies the MAC unit 130 of switching to one stream (S13). For example, when the switching control unit 120 determines to switch to one stream, the switching control unit 120 notifies the MAC unit 130 of switching to one stream. By notification to the MAC unit 130, for example, the multiplexing processing of the first and second streams in the MUX 131 can be stopped.
 次に、移動機100は、未使用電源をオフにし、その後、1ストリームの受信を開始する(S14)。 Next, the mobile device 100 turns off unused power, and then starts receiving one stream (S14).
 一方、第1又は第2の基地局200-1,200-2は切替予告通知を受信すると、再送制御ケアを行う(S16)。 On the other hand, when the first or second base station 200-1 or 200-2 receives the switching advance notice, it performs retransmission control care (S16).
 図8は、再送制御ケアに関する処理の動作例を表わすフローチャートである。例えば、切替予告通知を受け取った第1又は第2の基地局200-1,200-2や、RNC300で行われる処理である。 FIG. 8 is a flowchart showing an operation example of processing related to retransmission control care. For example, the process is performed by the first or second base station 200-1, 200-2 or the RNC 300 that has received the switch notice.
 第1又は第2の基地局200-1,200-2は処理を開始すると(S160)、1ストリームの切替予告通知を移動機100から受信する(S161)。 When the first or second base station 200-1 or 200-2 starts processing (S160), it receives a one-stream switching notice from the mobile device 100 (S161).
 次に、第1又は第2の基地局200-1,200-2は、移動機100宛てに送信したデータに対するH-ARQ結果を確認する(S162)。 Next, the first or second base station 200-1 or 200-2 confirms the H-ARQ result for the data transmitted to the mobile device 100 (S162).
 例えば、上述したように移動機100において電源がオフとなるため、移動機100においていずれのストリームの受信が停止するもの、第1又は第2の基地局200-1,200-2では移動機100の状況については関知していない。そのため、停止した側のストリームを送信する第1又は第2の基地局200-1,200-2では、移動機100に対して再送制御が行われる場合がある。 For example, as described above, since the mobile device 100 is powered off, the mobile device 100 stops receiving any stream, and the first or second base station 200-1 or 200-2 uses the mobile device 100. I don't know about the situation. Therefore, the first or second base station 200-1 or 200-2 that transmits the stopped stream may perform retransmission control on the mobile device 100.
 例えば、第1及び第2の受信部210-1,210-2、又は第1及び第2のMAC部220-1,220-2は、送信データに対する否定応答(NACK(Negative Acknowledge))や肯定応答(ACK(Acknowledge))の受信を確認する。そして、第1及び第2の受信部210-1,210-2、又は第1及び第2のMAC部220-1,220-2は、否定応答を受信するとその旨をRNC300の移動機切替検知部310へ通知する。 For example, the first and second receiving units 210-1 and 210-2, or the first and second MAC units 220-1 and 220-2 may receive a negative response (NACK (Negative Acknowledge)) or affirmation with respect to transmission data. Confirm receipt of response (ACK (Acknowledge)). When the first and second reception units 210-1 and 210-2 or the first and second MAC units 220-1 and 220-2 receive a negative response, the RNC 300 detects that the mobile device has been switched. Notification to the unit 310.
 なお、移動機100は、例えば、MAC部130又はアプリケーション部160により、否定応答や肯定応答に関する信号を生成してNW400へ送信するものとする。例えば、移動機100では、1ストリームへの切替決定後(S11)、受信を停止した側のストリームを受信しても否定応答を送信し、複数ストリームへの切替決定後(S20)、肯定応答を送信することになる。 Note that the mobile device 100 generates a signal related to a negative response or an affirmative response using the MAC unit 130 or the application unit 160 and transmits the signal to the NW 400, for example. For example, after determining to switch to one stream (S11), the mobile device 100 transmits a negative response even when receiving the stream on which reception has been stopped, and determines to switch to multiple streams (S20), and then returns an affirmative response. Will be sent.
 次に、RNC300は再送制御が閾値以上続いたか否かを判別する(S163)。例えば、移動機切替検知部310は、一定期間における否定応答の数が閾値以上連続したか否かを判別する。 Next, the RNC 300 determines whether or not the retransmission control has continued for a threshold value or more (S163). For example, the mobile device switching detection unit 310 determines whether or not the number of negative responses in a certain period continues for a threshold value or more.
 RNC300は、再送制御が閾値以上続いたとき(S163でYES)、1ストリーム送信に切替えることを決定する(S164)。例えば、移動機切替検知部310は、一定期間における否定応答の数が閾値以上連続するとその旨を切替制御部320へ通知し、切替制御部320は、1ストリームへの切替を決定する。この場合、切替制御部320は、切替予告通知をRNC300へ送信した側の基地局(第1又は第2の基地局200-1,200-2)に対して、送信データの送信を停止させるようDe-MUX330を制御する。これにより、NW400において、1ストリーム通信が開始される。 The RNC 300 determines to switch to 1-stream transmission when retransmission control continues for a threshold value or more (YES in S163) (S164). For example, the mobile device switching detection unit 310 notifies the switching control unit 320 when the number of negative responses in a certain period continues for a threshold or more, and the switching control unit 320 determines switching to one stream. In this case, the switching control unit 320 causes the base station (the first or second base station 200-1 or 200-2) on the side that transmitted the switching advance notice to the RNC 300 to stop transmission of transmission data. The De-MUX 330 is controlled. Thereby, one stream communication is started in NW400.
 そして、RNC300は一連の処理を終了させる(S165)。 Then, the RNC 300 ends a series of processes (S165).
 一方、RNC300は、再送制御が閾値以上続いていないとき(S163でNO)、一定期間満了したか否かを判別する(S166)。例えば、移動機切替検知部310が一定期間をカウントし、当該期間満了したか否かを判別する。 On the other hand, when the retransmission control does not continue for the threshold value or more (NO in S163), the RNC 300 determines whether or not the fixed period has expired (S166). For example, the mobile device switching detection unit 310 counts a certain period and determines whether or not the period has expired.
 RNC300は、一定期間満了したときは(S166でYES)、一連の処理を終了させ(S165)、一定期間満了しないとき(S166でNO)、S163へ移行して上述した処理を繰り返す。 When the RNC 300 has expired for a certain period (YES in S166), the series of processes is terminated (S165). When the certain period has not expired (NO in S166), the process proceeds to S163 and the above-described processes are repeated.
 図6に戻り、切替予告通知を受信した第1又は第2の基地局200-1,200-2とRNC300では再送制御ケア(S16)を行い、NW400と移動機100との間で1ストリーム通信が開始される(S15,S17)。 Returning to FIG. 6, the first or second base station 200-1, 200-2 and RNC 300 that have received the notice of switching notice perform retransmission control care (S 16), and one-stream communication between NW 400 and mobile device 100 Is started (S15, S17).
 1ストリーム通信が開始されると、今度は、移動機100において複数ストリームへの切替判断が行われる(S20)。 When 1-stream communication is started, the mobile device 100 determines whether to switch to a plurality of streams (S20).
 図7は切替判断処理の動作例を表わすフローチャートである。すなわち、移動機100は、通信状態が1ストリーム状態の場合において(S111で「1ストリーム」)、受信品質状態が良いか否かを判別する(S116)。 FIG. 7 is a flowchart showing an operation example of the switching determination process. That is, when the communication state is the one stream state (“1 stream” in S111), the mobile device 100 determines whether or not the reception quality state is good (S116).
 例えば、ストリームの送信を停止している第1又は第2の基地局200-1,200-2であっても、報知信号や参照信号などを送信している場合がある。移動機100の第1又は第2のBLER測定部118,119はこの報知信号や参照信号などの信号に対する受信品質(例えば第1又は第2のブロック誤り率)を測定し、第1又は第2の測定結果を切替制御部120へ通知する。切替制御部120は、第1又は第2の測定結果が閾値を超えるときは、受信品質の劣化状態が解消されたものとして、受信品質の状態が良くなったと判別する(S116でYES)。一方、切替制御部120は、第1又は第2の測定結果が閾値を超えないときは、受信品質の劣化状態は解消されず、受信品質の状態は良くなっていないと判別する(S116でNO)。 For example, even the first or second base station 200-1 or 200-2 that has stopped transmitting a stream may transmit a notification signal, a reference signal, or the like. The first or second BLER measurement unit 118 or 119 of the mobile device 100 measures the reception quality (for example, the first or second block error rate) for the signal such as the broadcast signal or the reference signal, and the first or second Is notified to the switching control unit 120. When the first measurement result or the second measurement result exceeds the threshold, the switching control unit 120 determines that the reception quality state is improved as the reception quality deterioration state has been eliminated (YES in S116). On the other hand, when the first or second measurement result does not exceed the threshold value, the switching control unit 120 determines that the degradation state of the reception quality is not eliminated and the reception quality is not improved (NO in S116). ).
 移動機100は、受信品質の状態が良くなったと判別したときは(S116でYES)、複数ストリームへの切替を行うことを決定し(S117)、CQIとともに切替予告通知を送信し(S118)、電源オフにした未使用回路の電源をオンにする(S119)。そして、移動機100は一連の処理を終了する(S116)。 When it is determined that the state of reception quality has improved (YES in S116), the mobile device 100 determines to perform switching to a plurality of streams (S117), and transmits a switching advance notice together with CQI (S118). The power of the unused circuit whose power is turned off is turned on (S119). Then, the mobile device 100 ends the series of processes (S116).
 一方、移動機100は、受信品質の状態が良くないと判別したとき(S116でNO)、受信品質の劣化状態は解消されず、1ストリーム通信を継続し、一連の処理を終了する(S116)。  On the other hand, when mobile device 100 determines that the state of reception quality is not good (NO in S116), the deterioration state of reception quality is not eliminated, and one stream communication is continued, and a series of processing ends (S116). . *
 図6の例では、受信品質の状態が良くなり複数ストリームへの切替が行われるものとして説明する。移動機100は、停止したストリーム側の基地局(第1又は第2の基地局200-1,200-2)へ切替予告通知を送信する(S21)。例えば、CQI生成部171は、電源オン、又は1ストリーム送信でない(或いは複数ストリーム送信)ことを表わす1ビットの情報を含む切替予告通知を送信する。 In the example of FIG. 6, description will be made assuming that the reception quality is improved and switching to a plurality of streams is performed. The mobile device 100 transmits a notice of switching notice to the stream-side base stations (first or second base stations 200-1 and 200-2) that have stopped (S21). For example, the CQI generation unit 171 transmits a switch notice including 1-bit information indicating that the power is turned on or not 1-stream transmission (or multiple-stream transmission).
 また、移動機100は、移動機100内のMAC部130へも複数ストリームへの切替を通知する(S22)。MAC部130への通知によって、例えば、MUX131において多重化処理を行わせることができる。 The mobile device 100 also notifies the MAC unit 130 in the mobile device 100 of switching to a plurality of streams (S22). By the notification to the MAC unit 130, for example, multiplexing processing can be performed in the MUX 131.
 そして、移動機100は、電源がオンになった未使用回路を用いて複数ストリームの受信を開始する(S23)。 Then, the mobile device 100 starts receiving a plurality of streams using the unused circuit whose power is turned on (S23).
 一方、切替予告通知を受信した第1又は第2の基地局200-1,200-2は、再送制御ケアを行う(S25)。 On the other hand, the first or second base station 200-1 or 200-2 that has received the switching advance notice performs retransmission control care (S25).
 上記した再送制御ケア(S16)と同様に、例えば、RNC300は第1又は第2の基地局200-1,200-2における再送制御回数を監視する。切替予告通知を受信した第1又は第2の基地局200-1,200-2は、NACK信号を受信した回数を移動機切替検知部310へ通知する。そして、移動機切替検知部310は一定期間NACK信号を受信した回数に基づいて、複数ストリーム通信への復旧か、1ストリーム通信の継続かを判別する(図8のS163)。本例では、再送制御回数が閾値以下となっており、移動機切替検知部310は、複数ストリームへの復旧を決定する(S166でYES)。 As in the retransmission control care (S16) described above, for example, the RNC 300 monitors the number of retransmission controls in the first or second base station 200-1 or 200-2. The first or second base station 200-1 or 200-2 that has received the switch notice notice notifies the mobile station switch detection unit 310 of the number of times the NACK signal has been received. Then, the mobile station switching detection unit 310 determines whether to restore to the multi-stream communication or to continue the one-stream communication based on the number of times the NACK signal is received for a certain period (S163 in FIG. 8). In this example, the number of retransmission controls is equal to or less than the threshold, and the mobile device switching detection unit 310 determines restoration to a plurality of streams (YES in S166).
 図6に戻り、再送制御ケアが終了すると(S25)、NW400側において複数ストリームの通信を開始し(S26)、移動機100においても複数ストリームの通信を開始する(S24)。 Returning to FIG. 6, when retransmission control care is completed (S25), communication of a plurality of streams is started on the NW 400 side (S26), and communication of a plurality of streams is also started in the mobile device 100 (S24).
 このように本第2の実施の形態においては、移動機100は、複数のストリームのうちいずれかのストリームに対する受信品質が劣化したと判別すると、1ストリームへ切替えを決定し、未使用回路の電源を自らオフにする(例えば、図7のS112のYES、S115)。 As described above, in the second embodiment, when it is determined that the reception quality for any one of the plurality of streams has deteriorated, the mobile device 100 determines to switch to one stream and supplies power to unused circuits. Is turned off by itself (for example, YES in S112 and S115 in FIG. 7).
 例えば、移動機100では、第1又は第2の基地局200-1,200-2へ品質情報を送信し、第1又は第2の基地局200-1,200-2からの1ストリームへの切替指示を待って未使用回路の電源をオフにする場合がある。 For example, the mobile device 100 transmits quality information to the first or second base station 200-1 or 200-2, and sends the quality information to one stream from the first or second base station 200-1 or 200-2. There is a case where the power of the unused circuit is turned off after waiting for the switching instruction.
 しかし、本移動機100では、品質劣化を判断すると未使用回路の電源を自らオフにしているため、品質情報を送信後、1ストリームへの切替指示を受けるまでの時間分の消費電流が無駄にならず、移動機100における消費電流の削減を図ることができる。 However, in this mobile device 100, when the quality degradation is judged, the power of the unused circuit is turned off by itself, so that the current consumption for the time until the instruction to switch to one stream is received after the quality information is transmitted is wasted. In addition, the current consumption in the mobile device 100 can be reduced.
 また、RRC161,RRC340間において通信が行われた後に複数ストリームから1ストリームへの切替えが行われる場合がある。RRC161,340間の通信では、第1又は第2の基地局200-1,200-2を介して、移動機100とRNC300との間で通信が行われる。そのため、例えば、移動機100やRNC300などが切替えを決定してから、1ストリームへの切替えるまでの切替時間に非常に多くの時間がかかってしまう場合がある。 Also, after communication is performed between the RRC 161 and the RRC 340, switching from a plurality of streams to one stream may be performed. In communication between the RRC 161 and 340, communication is performed between the mobile device 100 and the RNC 300 via the first or second base stations 200-1 and 200-2. Therefore, for example, it may take a very long time for the switching time from when the mobile device 100 or the RNC 300 determines to switch to when switching to one stream.
 しかし、本移動機100では、NW400からの通知を待つことなく、自らの判断で電源をオフにしているため(例えば、図7のS112のYES、S115)、切替時間分の消費電流の削減を図ることができる。 However, in this mobile device 100, the power supply is turned off at its own judgment without waiting for notification from the NW 400 (for example, YES in S112 and S115 in FIG. 7). Can be planned.
 次に、本第2の実施の形態におけるその他の実施例について説明する。例えば、移動機100は、切替予告通知に代えて切替指示パターンを送信する例である。切替指示パターンは、例えば、切替後のストリーム数(又は切替後の周波数帯域数)を表わす情報を含んでいる。 Next, other examples in the second embodiment will be described. For example, the mobile device 100 is an example of transmitting a switching instruction pattern instead of the switching advance notice. The switching instruction pattern includes, for example, information indicating the number of streams after switching (or the number of frequency bands after switching).
 図9は切替指示パターンを送信する場合の無線通信システム10におけるシーケンス例、図10はNW400側の動作例を表わすフローチャートである。上述した例と同一の処理部分は同一の符号を付している。本例においても、複数ストリームとして2ストリームの例で説明する。 FIG. 9 is a sequence example in the wireless communication system 10 when a switching instruction pattern is transmitted, and FIG. 10 is a flowchart showing an operation example on the NW 400 side. The same processing parts as those in the above example are denoted by the same reference numerals. Also in this example, a description will be given of an example of two streams as a plurality of streams.
 移動機100とNW400において、デュアルセル通信が行われている場合において(S10)、移動機100では1ストリームへの切替判断を行う(S11及び図7)。移動機100では、2ストリームのうちいずれのストリームに対する受信品質が劣化していると判別したときは、1ストリームへの切替を行うことを決定する(図7の112でYES、S113)。 When dual cell communication is performed between the mobile device 100 and the NW 400 (S10), the mobile device 100 determines whether to switch to one stream (S11 and FIG. 7). When determining that the reception quality for any of the two streams has deteriorated, the mobile device 100 determines to switch to one stream (YES in 112 of FIG. 7, S113).
 図9に戻り、次に、移動機100は1ストリームへの切替を指示する切替指示パターンを生成し、第1又は第2の基地局200-1,200-2へ切替指示パターンを送信する(S30)。 Returning to FIG. 9, next, the mobile device 100 generates a switching instruction pattern instructing switching to one stream, and transmits the switching instruction pattern to the first or second base station 200-1 or 200-2 ( S30).
 例えば、切替制御部120は1ストリームへの切替を判断すると、1ストリームへ切替を電源制御部121に通知し、電源制御部121はこの通知をCQI生成部171へ通知する。CQI生成部171は、この通知を受けて、切替後のストリーム数が「1」であることを表わす切替指示パターンを生成し、生成した切替指示パターンをCQIとともに送信する。送信先は、例えば、受信を停止する側のストリームを送信している基地局(第1又は第2の基地局2001,200-2)である。 For example, when the switching control unit 120 determines to switch to one stream, it notifies the power control unit 121 of switching to one stream, and the power control unit 121 notifies the CQI generation unit 171 of this notification. Upon receiving this notification, the CQI generating unit 171 generates a switching instruction pattern indicating that the number of streams after switching is “1”, and transmits the generated switching instruction pattern together with the CQI. The transmission destination is, for example, a base station (first or second base station 2001, 200-2) that is transmitting the stream on the reception stop side.
 切替指示パターンを受信した第1又は第2の基地局200-1,200-2は、ストリームの切替処理を行う。 The first or second base station 200-1 or 200-2 that has received the switching instruction pattern performs stream switching processing.
 図10はストリームの切替処理の動作例を表わすフローチャートである。例えば、RNC300で行われる処理である。 FIG. 10 is a flowchart showing an operation example of the stream switching process. For example, it is a process performed by the RNC 300.
 RNC300は、本処理を開始すると(S121)、CQIパターンを確認する(S122)。例えば、第1又は第2の基地局200-1,200-2は移動機100から送信された切替指示パターンを受信し、これをRNC300へ送信する。RNC300の移動機切替検知部310は、切替指示パターンを受け取ってその内容を確認する。 When the RNC 300 starts this processing (S121), it confirms the CQI pattern (S122). For example, the first or second base station 200-1 or 200-2 receives the switching instruction pattern transmitted from the mobile device 100 and transmits it to the RNC 300. The mobile device switching detection unit 310 of the RNC 300 receives the switching instruction pattern and confirms the content thereof.
 次に、RNC300は切替指示パターンについて(S123)、切替指示パターンが1ストリームへの切替を表わしているとき(S123で「1ストリーム」)、1ストリームでの通信を開始することを決定する(S126)。 Next, for the switching instruction pattern (S123), the RNC 300 determines to start communication with one stream when the switching instruction pattern indicates switching to one stream ("1 stream" in S123) (S126). ).
 例えば、移動機切替検知部310は、切替指示パターンが1ストリームへの切替を表わしていることを切替制御部320に通知し、この通知を受けた切替制御部320は1ストリーム通信の開始を決定する。切替制御部320は、1ストリーム通信の開始を決定すると、De-MUX330に対して送信データの分離を停止させる。 For example, the mobile device switching detection unit 310 notifies the switching control unit 320 that the switching instruction pattern indicates switching to one stream, and the switching control unit 320 that has received this notification determines the start of one-stream communication. To do. When the switching control unit 320 determines the start of one-stream communication, the switching control unit 320 causes the De-MUX 330 to stop transmission data separation.
 そして、RNC300は一連の処理を終了させる(S126)。 Then, the RNC 300 ends a series of processes (S126).
 一方、RNC300は、切替指示パターンが複数ストリームへの切替を表わしているとき(S123で「複数ストリーム」)、複数ストリームでの通信を開始する(S124)。 On the other hand, when the switching instruction pattern indicates switching to a plurality of streams (“multiple streams” in S123), the RNC 300 starts communication using a plurality of streams (S124).
 例えば、移動機切替検知部310は、切替指示パターンが、例えば2ストリームなど複数ストリームへの切替を表わしていることを切替制御部320に通知する。切替制御部320は、この通知を受けて、送信データを複数ストリーム分のデータに分離させるようDe-MUX330を制御する。 For example, the mobile device switching detection unit 310 notifies the switching control unit 320 that the switching instruction pattern represents switching to a plurality of streams such as two streams. Upon receiving this notification, the switching control unit 320 controls the De-MUX 330 so as to separate the transmission data into data for a plurality of streams.
 そして、RNC300は一連の処理を終了させる(S125)。 Then, the RNC 300 ends a series of processes (S125).
 一方、RNC300は、切替指示パターンを受信しないとき(S123で「なし」)、ストリーム通信を継続し、一連の処理を終了させる(S124)。 On the other hand, when the RNC 300 does not receive the switching instruction pattern (“None” in S123), the RNC 300 continues the stream communication and ends the series of processes (S124).
 切替指示パターンは、例えば、切替後のストリーム数を表わしているため、切替予告通知よりもビット数が多くなる場合がある。しかし、移動機100が切替指示パターンを送信することで、第1及び第2の基地局200-1,200-2やRNC300では切替指示パターンに応じて1ストリームへの切替えや複数ストリームへの切替えを行うことが可能になる。本例においては、第1及び第2の基地局200-1,200-2とRNC300においては再送制御ケア(例えば、図6のS16、図8)を行われない。そのため、第1及び第2の基地局200-1,200-2やRNC300の処理軽減を図ることが可能となる。 Since the switching instruction pattern represents, for example, the number of streams after switching, the number of bits may be larger than the notification of switching notice. However, when the mobile device 100 transmits the switching instruction pattern, the first and second base stations 200-1, 200-2 and RNC 300 switch to one stream or switch to multiple streams according to the switching instruction pattern. It becomes possible to do. In this example, retransmission control care (for example, S16 in FIG. 6 and FIG. 8) is not performed in the first and second base stations 200-1 and 200-2 and the RNC 300. Therefore, it is possible to reduce the processing of the first and second base stations 200-1 and 200-2 and the RNC 300.
 ただし、切替指示パターンによる場合であっても、例えば、切替制御ケア(例えば8)が行われても良い。第1及び第2の基地局200-1,200-2において再送制御が行われることで、移動機100において電源をオフにした側のストリームの受信とりこぼしを救済させることができるからである。 However, even when the switching instruction pattern is used, for example, switching control care (for example, 8) may be performed. This is because, by performing retransmission control in the first and second base stations 200-1 and 200-2, it is possible to relieve the reception failure of the stream on the side where the power is turned off in the mobile device 100.
 <第3の実施の形態>
 次に第3の実施の形態について説明する。第3の実施の形態では、例えば、ストリームの切替に利用される切替パラメータと閾値について、予め移動機100とNW400とでネゴシエーションして、どのような切替パラメータと閾値を利用するかを互いに決定又は共有しておく。そして、ネゴシエーションした切替パラメータと閾値に基づいてストリームの切替が行われる。閾値は、例えば、移動機100において1ストリームへ切替(又は複数ストリームへの切替)を行うか否かを示す値である。
<Third Embodiment>
Next, a third embodiment will be described. In the third embodiment, for example, the switching parameters and threshold values used for stream switching are negotiated in advance between the mobile device 100 and the NW 400, and the switching parameters and threshold values used are mutually determined or Share it. Then, the stream is switched based on the negotiated switching parameter and the threshold value. The threshold value is, for example, a value indicating whether or not the mobile device 100 performs switching to one stream (or switching to a plurality of streams).
 図11及び図12は、本第3の実施の形態における移動機100及びNW400の構成例を夫々表わしている。 FIGS. 11 and 12 show configuration examples of the mobile device 100 and the NW 400 in the third embodiment, respectively.
 図11に示すように移動機100は、更に、パラメータ保持部123を備える。パラメータ保持部123は、切替パラメータと閾値が予め記憶され、また、NW400との間でネゴシエーションした切替パラメータと閾値も記憶する。 As shown in FIG. 11, the mobile device 100 further includes a parameter holding unit 123. The parameter holding unit 123 stores the switching parameter and the threshold value in advance, and also stores the switching parameter and the threshold value negotiated with the NW 400.
 図12に示すようにRNC300は、更に、パラメータ保持部350を備える。パラメータ保持部350も、予め、切替パラメータと閾値が記憶され、移動局100との間でネゴシエーションした切替パラメータと閾値を記憶する。 12, the RNC 300 further includes a parameter holding unit 350. The parameter holding unit 350 also stores switching parameters and threshold values in advance, and stores the switching parameters and threshold values negotiated with the mobile station 100.
 なお、切替パラメータの種類については、NW400側では移動機100のどのような切替パラメータでも対応できるように、パラメータ保持部350の方がパラメータ保持部123よりも多くの種類の切替パラメータが記憶されているものとする。 As for the types of switching parameters, the parameter holding unit 350 stores more types of switching parameters than the parameter holding unit 123 so that any switching parameter of the mobile device 100 can be handled on the NW 400 side. It shall be.
 図13は本第3の実施の形態における無線通信システム10における動作例を表わすシーケンス図である。 FIG. 13 is a sequence diagram illustrating an operation example in the wireless communication system 10 according to the third embodiment.
 NW400と移動機100は、切替パラメータと閾値をネゴシエーションする(S50)。 The NW 400 and the mobile device 100 negotiate a switching parameter and a threshold value (S50).
 例えば、移動機100が切替パラメータとして「ブロック誤り率」を利用する場合、ネゴシエーションによって、NW400との間で「ブロック誤り率」を利用できるか否かを確認し、NW400で利用できる旨の結果を得たときは、この「ブロック誤り率」を切替パラメータとして利用する。 For example, when the mobile device 100 uses the “block error rate” as a switching parameter, it is confirmed whether or not the “block error rate” can be used with the NW 400 by negotiation, and the result that the NW 400 can use the result is confirmed. When obtained, this “block error rate” is used as a switching parameter.
 例えば、移動機100によっては「ブロック誤り率」をストリーム切替のパラメータとしてサポートしてない場合もある。移動機100は、NW400と切替パラメータをどのようなものにするかをネゴシエーションすることで、移動機100に対応する切替パラメータを設定することができる。 For example, some mobile devices 100 may not support “block error rate” as a parameter for stream switching. The mobile device 100 can set the switching parameter corresponding to the mobile device 100 by negotiating with the NW 400 what kind of switching parameter should be used.
 切替パラメータとしては、例えば、CQIや運用周波数などでもよい。詳細については後述する。 As the switching parameter, for example, CQI or operating frequency may be used. Details will be described later.
 このようなネゴシエーションは、例えば、移動機100のRRC161と、RNC300のRRC340との間で行われる。この場合、例えば、以下のような処理が行われる。 Such negotiation is performed between the RRC 161 of the mobile device 100 and the RRC 340 of the RNC 300, for example. In this case, for example, the following processing is performed.
 すなわち、第1及び第2のBLER測定部118,119は、RRC161,340間で送受信されるメッセージを復号部117から受け取るとその旨を切替制御部120へ通知する。切替制御部120は、当該通知を受け取ると、パラメータ保持部123にアクセスし、パラメータ保持部123に記憶された切替パラメータと閾値とを読み出して、第1及び第2のBLER測定部118,119に出力するとともに、当該メッセージに含めるよう指示する。第1及び第2のBLER測定部118,119は、切替制御部120から受け取った切替パラメータと閾値とを当該メッセージに含ませてMAC部130へ出力する。RRC161は、切替パラメータと閾値とを含むメッセージをPDCP部150から受け取ると、切替パラメータと閾値とを含むメッセージをNW400へ送信する。 That is, when the first and second BLER measurement units 118 and 119 receive a message transmitted / received between the RRC 161 and 340 from the decoding unit 117, the first and second BLER measurement units 118 and 119 notify the switching control unit 120 to that effect. Upon receiving the notification, the switching control unit 120 accesses the parameter holding unit 123, reads the switching parameter and the threshold stored in the parameter holding unit 123, and sends them to the first and second BLER measurement units 118 and 119. Output and instruct to include in the message. The first and second BLER measurement units 118 and 119 include the switching parameter and the threshold value received from the switching control unit 120 in the message and output them to the MAC unit 130. When the RRC 161 receives a message including a switching parameter and a threshold value from the PDCP unit 150, the RRC 161 transmits a message including the switching parameter and the threshold value to the NW 400.
 一方、RNC300では移動機100から送信された切替パラメータと閾値とを含むメッセージを受信すると、RRC340はパラメータ保持部350にアクセスして、移動機100から送信された切替パラメータがパラメータ保持部350にあるか否かを確認する。そして、RRC340は、移動機100から受信した切替パラメータがパラメータ保持部350にあることを確認すると、切替パラメータと閾値とをストリームの切替判断に利用することを承認する。RRC340は、承認した切替パラメータと閾値とをパラメータ保持部350に記憶する。また、RRC340は、了承した旨を含むメッセージを生成し、移動機100のRRC161に向けて送信する。 On the other hand, when the RNC 300 receives the message including the switching parameter and the threshold value transmitted from the mobile device 100, the RRC 340 accesses the parameter holding unit 350, and the switching parameter transmitted from the mobile device 100 is in the parameter holding unit 350. Check whether or not. Then, when the RRC 340 confirms that the switching parameter received from the mobile device 100 exists in the parameter holding unit 350, the RRC 340 approves that the switching parameter and the threshold are used for stream switching determination. The RRC 340 stores the approved switching parameter and threshold value in the parameter holding unit 350. In addition, RRC 340 generates a message including approval and transmits the message to RRC 161 of mobile device 100.
 移動機100のRRC161は当該メッセージを受信すると、切替制御部120に対して、切替パラメータと閾値とが承認された旨を通知する。切替制御部120は、この通知を受けて、承認を受けた切替パラメータと閾値とをパラメータ保持部123に記憶する。 When the RRC 161 of the mobile device 100 receives the message, it notifies the switching control unit 120 that the switching parameter and the threshold are approved. Upon receiving this notification, the switching control unit 120 stores the approved switching parameter and threshold value in the parameter holding unit 123.
 これにより、移動機100とRNC400との間では、同一の切替パラメータと同一の閾値とを用いてストリームの切替判断を行うことが可能となる。 Thereby, it is possible to perform stream switching determination between the mobile device 100 and the RNC 400 using the same switching parameter and the same threshold value.
 一方、RNC300のRRC340は、移動機100から受信した切替パラメータがパラメータ保持部350に記憶されていないときは、他の切替パラメータとするように指示するメッセージを生成して、移動機100のRRC161へ送信する。移動機100の切替制御部120は、第1及び第2のBLER測定部118,119から当該メッセージを受信した旨の通知を受けると、パラメータ保持部123から他の切替パラメータを読み出して、当該メッセージに含めるよう第1及び第2のBLER測定部118,119へ指示する。これにより、他の切替パラメータがRNC300へ送信され、承認を受けることが可能となる。 On the other hand, when the switching parameter received from mobile device 100 is not stored in parameter holding unit 350, RRC 340 of RNC 300 generates a message instructing other switching parameters to be sent to RRC 161 of mobile device 100. Send. When receiving the notification that the message has been received from the first and second BLER measuring units 118 and 119, the switching control unit 120 of the mobile device 100 reads the other switching parameters from the parameter holding unit 123 and reads the message. The first and second BLER measurement units 118 and 119 are instructed to be included. As a result, other switching parameters are transmitted to the RNC 300 and can be approved.
 ネゴシエーションが終了すると(S50)、移動機100とNW400との間で複数ストリームの通信が行われる(S51)。 When the negotiation is completed (S50), communication of a plurality of streams is performed between the mobile device 100 and the NW 400 (S51).
 次に、移動機100は1ストリームへの切替判断を行う(S52)。例えば、移動機100の切替制御部120において1ストリームへの切替判断処理が行われる。   Next, the mobile device 100 determines whether to switch to one stream (S52). For example, the switching control unit 120 of the mobile device 100 performs switching determination processing for one stream. *
 図14は切替判断処理の動作例を表わすフローチャートである。 FIG. 14 is a flowchart showing an operation example of the switching determination process.
 移動機100は、切替判断処理を開始すると(S520)、通信状態を判別する(S521)。 When the mobile device 100 starts the switching determination process (S520), the mobile device 100 determines the communication state (S521).
 例えば、切替制御部120はRRC161からの通知により、複数ストリーム通信中か1ストリーム通信中かを判別する。本例では、切替制御部120は複数ストリーム通信中であると判別する。 For example, the switching control unit 120 determines whether a multi-stream communication or a single-stream communication is being performed based on a notification from the RRC 161. In this example, the switching control unit 120 determines that a multi-stream communication is being performed.
 移動機100は、通信状態が複数ストリームのとき(S521で「複数ストリーム」)、NW400とのネゴシエーションした切替パラメータと閾値とに基づいて、1ストリームに切替えるか複数ストリームの通信を継続するかを判別する(S522)。 When the communication state is a plurality of streams (“multiple streams” in S521), the mobile device 100 determines whether to switch to one stream or continue the communication of the plurality of streams based on the switching parameter negotiated with the NW 400 and the threshold value. (S522).
 例えば、切替パラメータがブロック誤り率の場合、切替制御部120は、第1及び第2のBLER測定部118,119で夫々測定された第1及び第2のブロック誤り率のいずれか一方が閾値以下となるとき、1ストリームへの切替えることを決定する(S522で「1ストリーム」、S523)。 For example, when the switching parameter is a block error rate, the switching control unit 120 determines that one of the first and second block error rates measured by the first and second BLER measurement units 118 and 119 is equal to or less than a threshold value. Is determined to switch to 1 stream (“1 stream” in S522, S523).
 一方、切替制御部120は、いずれの受信品質も閾値を超えるときは複数ストリームによる通信の継続を決定する(S522で「複数ストリーム」)。判断基準は、例えば、第2の実施の形態と同様である。 On the other hand, when any reception quality exceeds the threshold, the switching control unit 120 determines to continue communication using a plurality of streams (“multiple streams” in S522). The determination criteria are the same as those in the second embodiment, for example.
 このとき、移動機100は、測定した第1及び第2のブロック誤り率をNW400へ送信する。例えば、切替制御部120は、第1及び第2のブロック誤り率をCQI生成部171へ出力し、CQI生成部171はCQIとともにNW400へ送信する。 At this time, the mobile device 100 transmits the measured first and second block error rates to the NW 400. For example, the switching control unit 120 outputs the first and second block error rates to the CQI generation unit 171, and the CQI generation unit 171 transmits the NQ 400 together with the CQI.
 RNC300の移動機切替検知部310は、第1及び第2の基地局200-1,200-2を介して第1及び第2のブロック誤り率を受信すると、移動機100と同じ1ストリームへの切替判断処理を行う。 When the mobile station switching detection unit 310 of the RNC 300 receives the first and second block error rates via the first and second base stations 200-1 and 200-2, A switching determination process is performed.
 図15はRNC300で行われる切替判断処理の例を表わすフローチャートである。 FIG. 15 is a flowchart showing an example of the switching determination process performed by the RNC 300.
 RNC300は、処理を開始すると(S530)、通信状態を判別する(S531)。例えば、RRC340が通信状態を判別する。図13の例では複数ストリームによる通信が行われているため、通信状態は複数ストリームであると判別する(S531で「複数ストリーム」)。 When the RNC 300 starts processing (S530), it determines the communication state (S531). For example, the RRC 340 determines the communication state. In the example of FIG. 13, since communication is performed using a plurality of streams, it is determined that the communication state is a plurality of streams (“multiple streams” in S531).
 次に、RNC300は、移動機100とネゴシエーションした切替パラメータと閾値とに基づいて、1ストリームへの切替を行うか、複数ストリームの通信を継続するかを決定する(S532)。 Next, the RNC 300 determines whether to switch to one stream or to continue communication of a plurality of streams based on the switching parameter negotiated with the mobile device 100 and the threshold (S532).
 RNC300は、例えば、以下のようにして1ストリームへの切替を決定する。すなわち、RRC340は、移動機100から送信された第1及び第2のブロック誤り率を受信し、切替制御部320へ通知する。切替制御部320は、RRC340から受け取った第1及び第2のブロック誤り率に対して、パラメータ保持部350からネゴシエーションした閾値を読み出し、第1及び第2のブロック誤り率のいずれかが閾値より低いか否かを判別する。切替制御部320は、第1及び第2のブロック誤り率のいずれかが閾値より低いときは、1ストリームへの切替を行うことを決定し(S532で「1ストリーム」、S533)、いずれも閾値を超えるときは複数ストリームの通信を継続する(S532で「複数ストリーム」)。 The RNC 300 determines to switch to one stream as follows, for example. That is, the RRC 340 receives the first and second block error rates transmitted from the mobile device 100 and notifies the switching control unit 320 of the first and second block error rates. The switching control unit 320 reads the negotiated threshold value from the parameter holding unit 350 with respect to the first and second block error rates received from the RRC 340, and one of the first and second block error rates is lower than the threshold value. It is determined whether or not. When any of the first and second block error rates is lower than the threshold value, the switching control unit 320 determines to switch to one stream (“1 stream” in S532, S533), and both are threshold values. When the number exceeds, communication of a plurality of streams is continued (“multiple streams” in S532).
 この場合、RNC300は、ネゴシエーションにより移動機100と同一の切替パラメータと閾値とを保持している。また、RNC400は、移動機100から第1及び第2のブロック誤り率を受信している。従って、RNC300と移動機100は、同一の判断結果(S532)を得る。これにより、例えば、移動機100とRNC300はともに1ストリームへの切替の決定を互いに共有又は同期させることができる。 In this case, the RNC 300 holds the same switching parameter and threshold as the mobile device 100 by negotiation. Further, the RNC 400 receives the first and second block error rates from the mobile device 100. Therefore, the RNC 300 and the mobile device 100 obtain the same determination result (S532). Thereby, for example, both the mobile device 100 and the RNC 300 can share or synchronize the decision to switch to one stream.
 そして、RNC300は一連の処理を終了させる(S535)。 Then, the RNC 300 ends a series of processes (S535).
 図14に戻り、移動機100では、1ストリームへの切替を決定すると(S523)、第2の実施の形態と同様に未使用回路の電源をオフにし(S524)、一連の処理を終了させる(S525)。 Returning to FIG. 14, in the mobile device 100, when switching to one stream is determined (S523), as in the second embodiment, the power to unused circuits is turned off (S524), and a series of processing ends (step S524). S525).
 一方、移動機100は、複数ストリームの通信継続を決定すると(S522で「複数ストリーム」)、電源に対する動作を行うことなく、一連の処理を終了させる(S525)。 On the other hand, when the mobile device 100 determines to continue communication of a plurality of streams (“multiple streams” in S522), the mobile device 100 ends the series of processes without performing an operation on the power supply (S525).
 図13に戻り、次に、移動機100は1ストリームへの切替をMAC部130へ通知し(S54)、未使用回路の電源をオフにして1ストリームの受信を開始する(S55)。その後、移動機100とNW400との間で1ストリームによる通信が開始される(S56)。 Returning to FIG. 13, next, the mobile device 100 notifies the MAC unit 130 of switching to one stream (S54), turns off unused circuits, and starts receiving one stream (S55). Thereafter, communication by one stream is started between the mobile device 100 and the NW 400 (S56).
 次に、移動機100は複数ストリームへの切替判断処理を行う(S58)。また、RNC300においても、移動機100から受信した第1及び第2のブロック誤り率に基づいて、複数ストリームへの切替判断処理を行う(S59)。 Next, the mobile device 100 performs switching determination processing to a plurality of streams (S58). The RNC 300 also performs switching determination processing for a plurality of streams based on the first and second block error rates received from the mobile device 100 (S59).
 移動機100における切替判断処理の例は、例えば、図14に示される。移動機100は通信状態が1ストリーム状態のときにおいて(S521で「1ストリーム」)、ネゴシエーションした切替パラメータと閾値とに基づいて複数ストリームへ復旧するか、1ストリーム通信を維持するかを判別する(S526)。 An example of the switching determination process in the mobile device 100 is shown in FIG. 14, for example. When the communication state is a one-stream state (“one stream” in S521), the mobile device 100 determines whether to recover to a plurality of streams or to maintain one-stream communication based on the negotiated switching parameter and threshold ( S526).
 例えば、第1又は第2のBLER測定部118,119は、停止したストリーム側の基地局(第1又は第2の基地局200-1,200-2)から送信された報知信号や参照信号などに対する第1又は第2のブロック誤り率を測定し、切替制御部120へ通知する。切替制御部120では、パラメータ保持部123からネゴシエーションした閾値を読み出して、第1又は第2のブロック誤り率が閾値を超えるか否かを判別する。この判別自体は、例えば、第2の実施の形態と同様である。 For example, the first or second BLER measurement unit 118 or 119 may notify the broadcast signal or the reference signal transmitted from the stopped stream side base station (first or second base station 200-1 or 200-2). The first or second block error rate is measured for and the switching control unit 120 is notified. The switching control unit 120 reads the negotiated threshold value from the parameter holding unit 123 and determines whether or not the first or second block error rate exceeds the threshold value. This determination itself is the same as that of the second embodiment, for example.
 このとき、移動機100は、測定した第1又は第2のブロック誤り率をCQIとともにNW400へ送信する。 At this time, the mobile device 100 transmits the measured first or second block error rate to the NW 400 together with the CQI.
 移動機100は、複数ストリームへの切替を行うことを決定すると(S526で「複数ストリーム」、S527)、電源をオフにした未使用回路の電源をオンにし(S528)、一連の処理を終了させる。一方、移動機100は、1ストリーム通信の継続を決定すると(S526で「1ストリーム」)、電源に対する操作を行うことなく、一連の処理を終了させる(S525)。 When the mobile device 100 determines to switch to a plurality of streams (“multiple streams” in S526, S527), the mobile device 100 turns on the power of the unused circuit whose power is turned off (S528), and ends the series of processing. . On the other hand, when the mobile device 100 determines to continue the 1-stream communication (“1 stream” in S526), the mobile device 100 ends the series of processes without performing any operation on the power supply (S525).
 図13に戻り、移動機100では複数ストリームへの切替を行うことを決定すると、その旨をMAC部130へ通知し(S60)、未使用回路の電源をオンにして複数ストリームの受信を開始する(S61)。 Returning to FIG. 13, when the mobile device 100 decides to switch to a plurality of streams, it notifies the MAC unit 130 to that effect (S60), turns on the power of the unused circuit, and starts receiving a plurality of streams. (S61).
 一方、RNC300においても、複数ストリームへの切替判断処理を行う(S59)。RNC300における切替判断処理は、例えば、図15に示される。 On the other hand, the RNC 300 also performs switching determination processing to a plurality of streams (S59). The switching determination process in the RNC 300 is shown in FIG. 15, for example.
 RNC300は、通信状態が1ストリーム状態において(S531で「1ストリーム」)、移動機100との間でネゴシエーションした切替パラメータと閾値とに基づいて、複数ストリームへの復旧を行うか、1ストリーム通信を継続するかを判別する(S536)。 When the communication state is the one stream state (“1 stream” in S531), the RNC 300 performs recovery to a plurality of streams based on the switching parameter and the threshold value negotiated with the mobile device 100, or performs one stream communication. It is determined whether or not to continue (S536).
 この場合、RNC300は、移動機100から受信した第1又は第2のブロック誤り率に基づいて判別する。この判別自体(S536)は、移動機100における判別(例えば図14のS526)と同一である。RNC300は、ネゴシエーションにより移動機100と同一の切替パラメータと閾値とを保持し、更に、移動機100から第1又は第2のブロック誤り率を受信しているからである。 In this case, the RNC 300 determines based on the first or second block error rate received from the mobile device 100. This determination itself (S536) is the same as the determination in the mobile device 100 (for example, S526 in FIG. 14). This is because the RNC 300 holds the same switching parameters and threshold values as those of the mobile device 100 by negotiation, and further receives the first or second block error rate from the mobile device 100.
 RNC300は、複数ストリームに復旧すると判別すると(S536で「複数ストリーム」)、複数ストリームの通信を開始し(S537)、一連の処理を終了させる(S535)。一方、RNC300は、1ストリーム通信を継続することを決定すると(S536で「1ストリーム」)、1ストリーム通信を継続し、一連の処理を終了させる(S535)。 When the RNC 300 determines that a plurality of streams are restored (“multiple streams” in S536), the RNC 300 starts communication of the plurality of streams (S537) and ends a series of processes (S535). On the other hand, when the RNC 300 determines to continue the one-stream communication (“1 stream” in S536), the RNC 300 continues the one-stream communication and ends a series of processes (S535).
 このように、本第3の実施の形態においては、切替パラメータと閾値について予めNW400と移動機100との間でネゴシエーションし、ネゴシエーションした切替パラメータと閾値とに基づいてストリーム切替の判断が行われる。 As described above, in the third embodiment, the switching parameter and the threshold value are negotiated in advance between the NW 400 and the mobile device 100, and stream switching is determined based on the negotiated switching parameter and threshold value.
 例えば、一律の切替パラメータでストリームの切替が判断される場合、そのような切替パラメータをサポートしない移動機100は切替判断を行うことができない場合がある。しかし、本無線通信システム10においては、移動機100とNW400との間で切替パラメータが予めネゴシエーションされるため、移動機100に対応した切替パラメータによりストリームの切替を行うことができる。 For example, when stream switching is determined with uniform switching parameters, a mobile device 100 that does not support such switching parameters may not be able to perform switching determination. However, in the wireless communication system 10, since the switching parameter is negotiated in advance between the mobile device 100 and the NW 400, the stream can be switched using the switching parameter corresponding to the mobile device 100.
 また、切替判断に用いる閾値も移動機100とNW400との間でネゴシエーションされる。例えば、移動機100では部品特性や部品の劣化などによって無線特性も変化する場合がある。移動機100では、そのような無線特性に合わせて閾値を変化させ、それをNW400との間でネゴシエーションすることで、移動機100毎の無線特性に合わせたストリームの切替判断を行うことができる。 Also, a threshold value used for switching determination is also negotiated between the mobile device 100 and the NW 400. For example, in the mobile device 100, wireless characteristics may also change due to component characteristics, component deterioration, or the like. In the mobile device 100, the threshold value is changed according to such wireless characteristics, and it is negotiated with the NW 400, so that it is possible to perform stream switching determination according to the wireless characteristics of each mobile device 100.
 従って、本第3の実施の形態においては、例えば、移動機100毎の切替パラメータと閾値を選択することが可能となり、移動機100毎の無線特性に合致したより最適なストリームの切替を行うことが可能となる。 Therefore, in the third embodiment, for example, it is possible to select a switching parameter and a threshold value for each mobile device 100, and perform more optimal stream switching that matches the radio characteristics of each mobile device 100. Is possible.
 また、本第3の実施の形態においても、例えば、第2の実施の形態と同様に移動機100が自らの判断で未使用回路の電源をオフにできるため、NW400の判断を待って電源をオフにする場合と比較して、消費電流の削減を図ることができる。 Also in the third embodiment, for example, as in the second embodiment, since the mobile device 100 can turn off the power of the unused circuit by its own judgment, the power is turned on after the NW 400 judges. The consumption current can be reduced compared to the case of turning off.
 なお、上記した例は、切替パラメータとしてブロック誤り率の例について説明した。以下では他の切替パラメータの例について説明する。 In the above example, the example of the block error rate has been described as the switching parameter. Hereinafter, examples of other switching parameters will be described.
 <切替パラメータがCQIの場合>
 例えば、CQIを切替パラメータとしてもよい。この場合、例えば、ブロック誤り率の例と同様に、切替パラメータとしてCQIとすることを移動機100とRNC300との間でネゴシエーションする(図13のS50)。
<When switching parameter is CQI>
For example, CQI may be used as a switching parameter. In this case, for example, as in the case of the block error rate, CQI is negotiated between the mobile device 100 and the RNC 300 as the switching parameter (S50 in FIG. 13).
 そして、移動機100は、ネゴシエーションしたCQIと閾値に基づいてストリームの切替判断を行う(例えば図14)。RNC300においても、ネゴシエーションしたCQIと閾値、更に、移動機100から受信したCQIに基づいてストリームの切替判断を行う(例えば図15)。 Then, the mobile device 100 performs stream switching determination based on the negotiated CQI and the threshold (for example, FIG. 14). Also in the RNC 300, stream switching determination is performed based on the negotiated CQI and the threshold, and further, the CQI received from the mobile device 100 (for example, FIG. 15).
 CQIの測定は、例えば、以下のようにして行われる。すなわち、移動機100では2つのストリームに対応する第1及び第2の受信品質レベルを測定する。第1及び第2の受信品質レベルの測定は、例えば、第1及び第2のRX112,113で夫々行われてもよいし、第1及び第2のBLER測定部118,119で夫々行われてもよい。切替制御部120は、第1及び第2の受信品質レベルの測定結果を受け取り、第1及び第2の受信品質レベルに夫々対応する第1及び第2のCQIを算出する。切替制御部120は、第1及び第2のCQIと閾値とに基づいてストリームの切替を判断する。また、CQI生成部171により算出した第1及び第2のCQIがNW400へ送信される。 The measurement of CQI is performed as follows, for example. That is, the mobile device 100 measures the first and second reception quality levels corresponding to the two streams. The measurement of the first and second reception quality levels may be performed by the first and second RXs 112 and 113, respectively, or by the first and second BLER measurement units 118 and 119, respectively. Also good. The switching control unit 120 receives the measurement results of the first and second reception quality levels, and calculates first and second CQIs corresponding to the first and second reception quality levels, respectively. The switching control unit 120 determines stream switching based on the first and second CQIs and the threshold value. Further, the first and second CQIs calculated by the CQI generating unit 171 are transmitted to the NW 400.
 1ストリームから複数ストリームへの切替についても、移動機100とRNC300は、切替の指標がブロック誤り率からCQIに変更された以外は上記した処理と同様の処理を行う。 For switching from one stream to multiple streams, the mobile device 100 and the RNC 300 perform the same processing as described above except that the switching index is changed from the block error rate to the CQI.
 <切替パラメータが運用周波数の場合>
 上記したブロック誤り率やCQIなどの切替パラメータは、例えば、移動機100において測定される測定値である。測定値以外の切替パラメータであってもよく、例えば、運用周波数を切替パラメータとしてもよい。周波数帯は、例えば、電波が届きやすい周波数帯と届きづらい周波数帯が存在する。例えば、700~900MHz帯は、これ以上の周波数帯と比較して障害物があっても電波が目標に届きやすく、2GHz帯や1.5GHz帯などはこれ以下の周波数帯と比較して電波が届きにくい。
<When switching parameter is operating frequency>
The switching parameters such as the block error rate and CQI described above are measured values measured in the mobile device 100, for example. A switching parameter other than the measured value may be used. For example, the operating frequency may be used as the switching parameter. For example, there are frequency bands in which radio waves are easy to reach and frequency bands in which it is difficult to reach. For example, in the 700 to 900 MHz band, radio waves are likely to reach the target even if there are obstacles compared to higher frequency bands. Hard to reach.
 従って、運用周波数が2GHz帯や1.5GHz帯に属する場合、移動機100では複数ストリーム通信を行うようにする。これにより、例えば、電波が届きづらい周波数帯でも周波数効率やスループットを向上させることが可能となる。 Therefore, when the operating frequency belongs to the 2 GHz band or the 1.5 GHz band, the mobile device 100 performs multi-stream communication. Thereby, for example, frequency efficiency and throughput can be improved even in a frequency band in which radio waves are difficult to reach.
 また、運用周波数が700~900MHz帯に属する場合、移動機100では1ストリーム通信を行うようにする。これにより、例えば、移動機100の消費電流の削減を図る。従って、例えば、ネゴシエーションする切替パラメータは運用周波数であって、ネゴシエーションする閾値は1ストリームへの切替を行う周波数帯や複数ストリームへの切替を行う周波数帯とすることができる。運用周波数と閾値は、例えば、移動機100毎に異なっていてもよい。 In addition, when the operating frequency belongs to the 700 to 900 MHz band, the mobile device 100 performs one stream communication. Thereby, for example, the current consumption of the mobile device 100 is reduced. Therefore, for example, the switch parameter to be negotiated is the operating frequency, and the threshold to be negotiated can be a frequency band for switching to one stream or a frequency band for switching to multiple streams. The operating frequency and the threshold may be different for each mobile device 100, for example.
 例えば、移動機100とRNC300は、ネゴシエーションにより、運用周波数が700~900MHz帯に属する場合は1ストリーム、運用周波数が1.5GHz帯や2GHz帯に属する場合は複数ストリームとすることを決定し、パラメータ保持部123,350に保持しておく(例えば図13のS50)。 For example, the mobile device 100 and the RNC 300 determine, by negotiation, that one stream is used when the operating frequency belongs to the 700 to 900 MHz band, and that there are multiple streams when the operating frequency belongs to the 1.5 GHz band or the 2 GHz band. It hold | maintains at the holding parts 123 and 350 (for example, S50 of FIG. 13).
 そして、移動機100は、通信開始時に、運用周波数についてRNC300や第1及び第2の基地局200-1,200-2から通知を受けて、運用周波数が700~900MHz帯に属する場合は1ストリーム通信を行い、未使用回路の電源をオフにする(例えば、図14のS522で「1ストリーム」、S523~S524)。一方、移動機100は、引用周波数が1.5GHz帯や2GHz帯に属する場合は複数ストリーム通信を行い、未使用回路の電源をオンにする(例えば、図14のS522で「複数ストリーム」)。 The mobile device 100 receives notification from the RNC 300 and the first and second base stations 200-1 and 200-2 about the operating frequency at the start of communication, and if the operating frequency belongs to the 700 to 900 MHz band, Communication is performed, and the power of the unused circuit is turned off (for example, “1 stream” in S522 in FIG. 14, S523 to S524). On the other hand, when the reference frequency belongs to the 1.5 GHz band or the 2 GHz band, the mobile device 100 performs multi-stream communication and turns on the power of the unused circuit (for example, “multiple streams” in S522 of FIG. 14).
 移動機100が利用する運用周波数については、RNC300においてもその情報を得ているため、ネゴシエーションした周波数帯に応じて1ストリーム通信か複数ストリーム通信を決定することができ、移動機100の判断結果と同期させることができる。 Since the information about the operating frequency used by the mobile device 100 is also obtained by the RNC 300, one-stream communication or multiple-stream communication can be determined according to the negotiated frequency band. Can be synchronized.
 <切替パラメータがCH遷移の場合>
 例えば、チャネル遷移を切替パラメータとしてもよい。チャネル遷移は、例えば、移動機100が待受中かそれ以外かなどの状態を表わすものである。
<When switching parameter is CH transition>
For example, channel transition may be used as a switching parameter. The channel transition represents a state such as whether the mobile device 100 is on standby or not.
 例えば、移動機100が待受中のときは移動機100の消費電流を抑えるために1ストリームで通信を行い、移動機100が待受中以外のときは複数ストリーム通信を行う。 For example, when the mobile device 100 is on standby, communication is performed in one stream in order to suppress current consumption of the mobile device 100, and when the mobile device 100 is not on standby, multi-stream communication is performed.
 移動機100は、例えば、一定の条件により第1又は第2の基地局200-1,200-2に対してある特定の信号を送信することでスリープモードに移行する。スリープモードに移行した移動機100は、例えば、待受中となる。待受中の移動機100は、例えば、第1又は第2の基地局200-1,200-2から特定の信号を定期的に受信して、自局宛ての通信を確認する。 The mobile device 100 shifts to the sleep mode by transmitting a specific signal to the first or second base stations 200-1 and 200-2 under certain conditions, for example. For example, the mobile device 100 that has shifted to the sleep mode is on standby. The standby mobile device 100 periodically receives a specific signal from, for example, the first or second base station 200-1 or 200-2, and confirms communication addressed to itself.
 具体的には、移動機100は、待受中のときに第1又は第2の基地局200-1,200-2からEnhanced_Cell_PCHを定期的に受信することで起動し、自局宛てのデータの有無を確認する。 Specifically, the mobile device 100 is activated by periodically receiving Enhanced_Cell_PCH from the first or second base station 200-1 or 200-2 during standby, and the Check for presence.
 従って、移動機100は、例えば、このEnhanced_Cell_PCHを受信したときは待受中であるとして1ストリーム通信を行い、未使用回路の電源をオフにする。一方、移動機100は、Enhanced_Cell_PCHを一定期間受信しないときは待受中以外であるとして、複数ストリーム通信を行い、未使用回路の電源をオンにする。 Therefore, for example, when this Enhanced_Cell_PCH is received, the mobile device 100 performs 1-stream communication assuming that it is on standby, and turns off the power of unused circuits. On the other hand, when not receiving Enhanced_Cell_PCH for a certain period, mobile device 100 assumes that it is not in standby and performs multi-stream communication and turns on power to unused circuits.
 例えば、移動機100とRNC300との間で、Enhanced_Cell_PCHの受信の有無で1ストリーム通信を行うか複数ストリーム通信を行うのかについてネゴシエーションし、互いに情報を共有しておく。そして、移動機100ではEnhanced_Cell_PCHの受信の有無、RNC300(又は、第1及び第2の基地局200-1,200-2)ではEnhanced_Cell_PCHの送信の有無に応じて1ストリーム通信か、複数ストリーム通信に切替える。これにより、切替判断を移動機100とNW400とで同期させることができる。 For example, the mobile device 100 and the RNC 300 negotiate whether to perform 1-stream communication or multi-stream communication depending on whether or not Enhanced_Cell_PCH is received, and share information with each other. Then, the mobile device 100 performs one-stream communication or multiple-stream communication depending on whether or not the Enhanced_Cell_PCH is received, and whether or not the RNC 300 (or the first and second base stations 200-1 and 200-2) transmits the Enhanced_Cell_PCH. Switch. Thereby, the switching determination can be synchronized between the mobile device 100 and the NW 400.
 例えば、スリープモードの移動機100に対して受信を確認する信号であれば、Enhanced_Cell_PCH以外の信号であってもよい。 For example, a signal other than Enhanced_Cell_PCH may be used as long as it is a signal for confirming reception to mobile device 100 in the sleep mode.
 この例では、ネゴシエーションする切替パラメータはそのような受信を確認するための信号であり、ネゴシエーションする閾値は信号の有無に応じてどのようにストリームを切替えるかを表わすものとすることができる。 In this example, the switch parameter to be negotiated is a signal for confirming such reception, and the threshold value to be negotiated can indicate how to switch streams depending on the presence or absence of the signal.
 以上、切替パラメータについて複数の例を説明した。例えば、どの切替パラメータを用いるかについてネゴシエーションで決定しているが、例えば、移動機100はHSDPA機能がない旨をネゴシエーションで通知したり、利用可能な無線周波数帯をネゴシエーションで通知することもできる。例えば、RNC300では、HSDPA機能がない旨の通知を受けたとき、CQIではなくBLERを切替パラメータとする。また、例えば、RNC300は、700~900MHz帯が利用できず1.5GHz帯や2GHz帯が利用できる旨の通知を受けると、常の1ストリームで動作させるなどとすることも可能である。 In the foregoing, a plurality of examples of switching parameters have been described. For example, the switching parameter to be used is determined by negotiation. For example, the mobile device 100 can notify that there is no HSDPA function by negotiation, or can notify the available radio frequency band by negotiation. For example, when the RNC 300 receives a notification that there is no HSDPA function, it uses BLER instead of CQI as a switching parameter. Further, for example, when the RNC 300 receives a notification that the 700-900 MHz band cannot be used and the 1.5 GHz band or the 2 GHz band can be used, the RNC 300 can be operated with a normal one stream.
 [その他の実施の形態]
 第2及び第3の実施の形態では、複数ストリームとして2ストリームの例について説明し、ストリームの切替も、2ストリームから1ストリーム或いはその逆について説明した。例えば、ストリームの切替については、3ストリームから2又は1ストリームへの切替としたり、4ストリームから3、2、又は1ストリームへの切替とすることもできる。例えば、移動機100は複数ストリームで通信しているときに、それよりもストリーム数が少ないストリームに切替えて無線通信を行うものであれば、切替前後のストリーム数は問わない。 
[Other embodiments]
In the second and third embodiments, the example of two streams as a plurality of streams has been described, and the switching of streams has also been described from two streams to one stream or vice versa. For example, the stream can be switched from 3 streams to 2 or 1 stream, or from 4 streams to 3, 2 or 1 stream. For example, when the mobile device 100 communicates with a plurality of streams and performs wireless communication by switching to a stream having a smaller number of streams, the number of streams before and after the switching is not limited.
 この場合、移動機100は、ストリーム数に応じたRXやBLER測定回路が配置され、逆拡散部116と復号部117においてもストリーム数に応じた回路を内部に備えるようにしてもよい。 In this case, the mobile device 100 may be provided with RX and BLER measurement circuits corresponding to the number of streams, and the despreading unit 116 and the decoding unit 117 may include a circuit corresponding to the number of streams.
 また、RNC300のDe-MUX330は送信データを3ストリーム以上のストリーム数のデータに分離することで、3ストリーム以上のデータを移動機100に送信できる。この場合、基地局もストリーム数に応じた個数の基地局が配置され、各基地局は異なるキャリアを用いて各ストリームを送信することで、3ストリーム以上のデータを移動機100に送信できる。 In addition, the De-MUX 330 of the RNC 300 can transmit data of 3 streams or more to the mobile device 100 by separating the transmission data into data of 3 or more streams. In this case, the number of base stations corresponding to the number of streams is also arranged in the base station, and each base station transmits each stream using a different carrier, so that three or more streams of data can be transmitted to the mobile device 100.
 このように、最大ストリーム数が「3」以上の場合であっても、移動機100は自らの判断でストリーム数を少なくすることを決定し、未使用回路の電源をオフにすることができる。従って、上記したように、移動機100は消費電流の削減を図ることができる。  As described above, even when the maximum number of streams is “3” or more, the mobile device 100 can determine to reduce the number of streams based on its own judgment, and can turn off the power of unused circuits. Therefore, as described above, the mobile device 100 can reduce current consumption. *
 また、第2及び第3の実施の形態では、ストリームの切替については、主に受信部110についての未使用回路の電源をオン又はオフにすることを説明した。例えば、1ストリームへの切替について、受信部110だけでなく、送信部170における未使用回路の電源をオフにすることもできる。 In the second and third embodiments, the description has been given of the switching of the stream, mainly turning on or off the power of unused circuits for the receiving unit 110. For example, regarding switching to one stream, not only the reception unit 110 but also the power of unused circuits in the transmission unit 170 can be turned off.
 図16は、2ストリーム送信が行われる場合の送信部170の構成例を表わす図である。送信部170は、L1部172とRF部173を備える。また、L1部172は、CQI生成部171、符号部175、変調部176を備え、RF部173は第1及び第2のTX177,178を備える。 FIG. 16 is a diagram illustrating a configuration example of the transmission unit 170 when two-stream transmission is performed. The transmission unit 170 includes an L1 unit 172 and an RF unit 173. The L1 unit 172 includes a CQI generation unit 171, an encoding unit 175, and a modulation unit 176, and the RF unit 173 includes first and second TXs 177 and 178.
 この場合、例えば、符号部175の第1のストリームを処理する回路、変調部176の第1のストリームを処理する回路、及び第1のTX177は、第1のストリームを処理する回路である。この第1のストリームを処理する回路は、例えば、第1の実施の形態における第1の処理部190に対応する。 In this case, for example, the circuit that processes the first stream of the encoding unit 175, the circuit that processes the first stream of the modulation unit 176, and the first TX 177 are circuits that process the first stream. A circuit for processing the first stream corresponds to, for example, the first processing unit 190 in the first embodiment.
 また、例えば、符号部175の第2のストリームを処理する回路、変調部176の第2のストリームを処理する回路、及び第2のTX178は、第2のストリームを処理する回路である。この第2のストリームを処理する回路は、例えば、第2の実施の形態における第2の処理部191に対応する。各回路は、例えば、図16においてそれぞれ点線で示される。 Also, for example, the circuit that processes the second stream of the encoding unit 175, the circuit that processes the second stream of the modulation unit 176, and the second TX 178 are circuits that process the second stream. The circuit that processes the second stream corresponds to, for example, the second processing unit 191 in the second embodiment. Each circuit is indicated by a dotted line in FIG. 16, for example.
 例えば、第1のストリームは第1のキャリア(又は第1の周波数帯域)を用いて送信され、第2のストリームは第2のキャリア(又は第2の周波数帯域)を用いて送信される。 For example, the first stream is transmitted using the first carrier (or the first frequency band), and the second stream is transmitted using the second carrier (or the second frequency band).
 この場合、第1のストリームは、例えば、第1のストリームを処理する回路で生成されて、第1の基地局200-1へ送信される。また、第2のストリームは、例えば、第2のストリームを処理する回路で生成されて、第2の基地局200-2へ送信される。送信部170の構成は、例えば、ストリーム数に応じて各ストリームを処理する回路部分が追加されることになる。 In this case, the first stream is generated by, for example, a circuit that processes the first stream, and is transmitted to the first base station 200-1. Also, the second stream is generated by, for example, a circuit that processes the second stream, and is transmitted to the second base station 200-2. In the configuration of the transmission unit 170, for example, a circuit portion for processing each stream is added according to the number of streams.
 1ストリームへの切替が行われると、電源制御部121は、受信品質が劣化した第1又は第2のストリームのいずれかのストリームを処理する回路の電源をオフにする。例えば、電源制御部121は、第1のストリームの受信を停止する場合、第1のストリームを処理する回路(符号部175の第1のストリームを処理する回路、変調部176の第1のストリームを処理する回路、及び第1のTX177)の電源をオフにする。また、複数ストリームへの切替が行われると、電源制御部121は電源オフにした未使用回路の電源をオンにする。 When switching to one stream is performed, the power control unit 121 turns off the power of the circuit that processes either the first stream or the second stream whose reception quality has deteriorated. For example, when stopping the reception of the first stream, the power supply control unit 121 selects a circuit that processes the first stream (a circuit that processes the first stream of the encoding unit 175 and a first stream of the modulation unit 176). The processing circuit and the first TX 177) are turned off. In addition, when switching to a plurality of streams is performed, the power control unit 121 turns on power to unused circuits that have been powered off.
 これにより、例えば、下り通信だけでなく、上り通信についても移動機100の消費電流の削減を図ることが可能となる。 Thereby, for example, it is possible to reduce the current consumption of the mobile device 100 not only for downlink communication but also for uplink communication.
 さらに、上述した例においては、2ストリームを基地局200が送信するとき、2つの基地局200-1,200-2により送信する例について説明した。例えば、複数ストリームを1つの基地局200から送信されるようにしてもよい。例えば、キャリアアグリゲーションでは、基地局200が複数の周波数帯域を用いて無線通信を行うことができ、従って、1つの基地局200が複数ストリームを送信することも可能である。移動機100が複数ストリームを送信する場合でも、例えば、1つの基地局200で複数ストリームを受信してもよい。 Furthermore, in the above-described example, an example in which two base stations 200-1 and 200-2 transmit two streams when the base station 200 transmits two streams has been described. For example, a plurality of streams may be transmitted from one base station 200. For example, in carrier aggregation, the base station 200 can perform wireless communication using a plurality of frequency bands, and thus one base station 200 can transmit a plurality of streams. Even when the mobile device 100 transmits a plurality of streams, for example, one base station 200 may receive the plurality of streams.
 図17から図19は、移動機100、基地局200、及びRNC300のハードウェア構成例を夫々表わす図である。 FIG. 17 to FIG. 19 are diagrams illustrating hardware configuration examples of the mobile device 100, the base station 200, and the RNC 300, respectively.
 移動機100は、RAM(Random Access Memory)180、CPU(Central Processing Unit)181、DSP(Digital Signal Processor)182、第1及び第2の無線処理部183,184、受信アンテナ185、送信アンテナ186を備える。 The mobile device 100 includes a RAM (Random Access Memory) 180, a CPU (Central Processing Unit) 181, a DSP (Digital Signal Processor) 182, first and second wireless processing units 183 and 184, a reception antenna 185, and a transmission antenna 186. Prepare.
 CPU181は、RAM180に記憶されたプログラムを実行することで、第2及び第3の実施の形態における第1及び第2のBLER測定部118,119、切替制御部120、電源制御部121、CQI生成部171、MAC部130、RLC部140、PDCP部150、アプリケーション部160の機能を実行する。従って、CPU181は、例えば、第2及び第3の実施の形態における第1及び第2のBLER測定部118,119、切替制御部120、電源制御部121、CQI生成部171、MAC部130、RLC部140、PDCP部150、アプリケーション部160に対応する。 The CPU 181 executes the program stored in the RAM 180 to thereby generate the first and second BLER measurement units 118 and 119, the switching control unit 120, the power supply control unit 121, and the CQI generation in the second and third embodiments. Functions of the unit 171, the MAC unit 130, the RLC unit 140, the PDCP unit 150, and the application unit 160 are executed. Accordingly, the CPU 181 includes, for example, the first and second BLER measurement units 118 and 119, the switching control unit 120, the power control unit 121, the CQI generation unit 171, the MAC unit 130, and the RLC in the second and third embodiments. Corresponds to the unit 140, the PDCP unit 150, and the application unit 160.
 また、CPU181はDSP182に対して実行命令を出力することで、DSP182は、L1部115における逆拡散部116、復号部117、及び送信部170の機能を実行する。従って、DSP182は、例えば、第2及び第3の実施の形態における逆拡散部116、復号部117、及び送信部170に対応する。 Further, the CPU 181 outputs an execution instruction to the DSP 182, so that the DSP 182 executes the functions of the despreading unit 116, the decoding unit 117, and the transmission unit 170 in the L1 unit 115. Accordingly, the DSP 182 corresponds to, for example, the despreading unit 116, the decoding unit 117, and the transmission unit 170 in the second and third embodiments.
 さらに、例えば、第1の無線処理部183は第2及び第3の実施の形態におけるRF部111に対応し、第2の無線処理部184は第2及び第3の実施の形態における送信部170に対応する。 Further, for example, the first wireless processing unit 183 corresponds to the RF unit 111 in the second and third embodiments, and the second wireless processing unit 184 is the transmission unit 170 in the second and third embodiments. Corresponding to
 さらに、受信アンテナ185及び送信アンテナ186は、例えば、第2及び第3の実施の形態におけるアンテナ101に対応する。 Furthermore, the reception antenna 185 and the transmission antenna 186 correspond to, for example, the antenna 101 in the second and third embodiments.
 なお、RAM180は、例えば、第3の実施の形態におけるパラメータ保持部123に対応する。 Note that the RAM 180 corresponds to, for example, the parameter holding unit 123 in the third embodiment.
 基地局200は、RAM270、CPU271、DSP272、第1及び第2の無線処理部274,275、送信アンテナ276、及び受信アンテナ277を備える。 The base station 200 includes a RAM 270, a CPU 271, a DSP 272, first and second wireless processing units 274 and 275, a transmission antenna 276, and a reception antenna 277.
 CPU271は、RAM270などに記憶されたプログラムを読み出して実行することで、第2及び第3の実施の形態における第1及び第2のMAC部220-1,220-2、第1及び第2のRLC部230-1,230-2、第1及び第2のPDCP部240-1,240-2の機能を実行する。従って、CPU271は、例えば、第1及び第2のMAC部220-1,220-2、第1及び第2のRLC部230-1,230-2、第1及び第2のPDCP部240-1,240-2に対応する。 The CPU 271 reads out and executes a program stored in the RAM 270 or the like, thereby executing the first and second MAC units 220-1 and 220-2, the first and second in the second and third embodiments. The functions of the RLC units 230-1 and 230-2 and the first and second PDCP units 240-1 and 240-2 are executed. Accordingly, the CPU 271 includes, for example, the first and second MAC units 220-1 and 220-2, the first and second RLC units 230-1 and 230-2, and the first and second PDCP units 240-1. , 240-2.
 また、DSP272は、例えば、第2及び第3の実施の形態における第1及び第2の受信部210-1,210-2、第1及び第2の符号部251-1,251-2、第1及び第2の変調部252-1,252-2に対応する。さらに、例えば、第1の無線処理部274は、第2及び第3の実施の形態における第1及び第2のTX253-1,253-2に対応し、第2の無線処理部275は、第2及び第3の実施の形態における第1及び第2の受信部210-1,210-2に対応する。  The DSP 272 also includes, for example, the first and second receiving units 210-1 and 210-2, the first and second encoding units 251-1 and 251-2, the second and third embodiments, and the second and third embodiments. This corresponds to the first and second modulators 252-1 and 252-2. Further, for example, the first wireless processing unit 274 corresponds to the first and second TX 253-1 and 253-2 in the second and third embodiments, and the second wireless processing unit 275 This corresponds to the first and second receiving units 210-1 and 210-2 in the second and third embodiments. *
 RNC300は、ROM(Read Only Memory)360、RAM361、メモリ362、CPU363を備える。CPU363は、ROM360に記憶されたプログラムを読み出してRAM361にロードし、ロードしたプログラム実行することで、第2及び第3の実施の形態における移動機切替検知部310、切替制御部320、De-MUX330、及びRRC340の機能を実現する。従って、CPU363は、例えば、第2及び第3の実施の形態における移動機切替検知部310、切替制御部320、De-MUX330、及びRRC340に対応する。 The RNC 300 includes a ROM (Read Only Memory) 360, a RAM 361, a memory 362, and a CPU 363. The CPU 363 reads out the program stored in the ROM 360, loads it into the RAM 361, and executes the loaded program, whereby the mobile device switching detection unit 310, the switching control unit 320, and the De-MUX 330 in the second and third embodiments. , And the function of RRC340. Therefore, the CPU 363 corresponds to, for example, the mobile device switching detection unit 310, the switching control unit 320, the De-MUX 330, and the RRC 340 in the second and third embodiments.
 また、メモリ362は、例えば、第3の実施の形態におけるパラメータ保持部350に対応する。 Further, the memory 362 corresponds to, for example, the parameter holding unit 350 in the third embodiment.
 なお、上記したハードウェア構成例において、DSP182,272及びCPU363については、これらに代えて、FPGA(Field Programmable Gate Array)やMPUとすることも可能である。 In the hardware configuration example described above, the DSPs 182 and 272 and the CPU 363 can be replaced with FPGA (Field Programmable Gate Array) or MPU.
10:無線通信システム        100(100-1,100-2):移動機
100:基地局装置(基地局)     110:受信部
111:RF部            112,113:第1及び第2のRX
115:L1部            116:逆拡散部
117:復号部            118,119:第1及び第2のBLER測定部
123:パラメータ保持部       131:MUX
161:RRC            170:送信部
171:CQI生成部         200(200-1,200-2):基地局
210-1,210-2:第1及び第2の受信部
250-1,250-2:第1及び第2の送信部
300:RNC            310:移動機切替検知部
320:切替制御部          330:De-MUX
340:RRC            350:パラメータ保持部
400:NW 181
10: wireless communication system 100 (100-1, 100-2): mobile device 100: base station apparatus (base station) 110: receiving unit 111: RF unit 112, 113: first and second RX
115: L1 unit 116: Despreading unit 117: Decoding unit 118, 119: First and second BLER measurement unit 123: Parameter holding unit 131: MUX
161: RRC 170: transmitting unit 171: CQI generating unit 200 (200-1, 200-2): base stations 210-1, 210-2: first and second receiving units 250-1, 250-2: first 1st and 2nd transmission unit 300: RNC 310: mobile station switching detection unit 320: switching control unit 330: De-MUX
340: RRC 350: Parameter holding unit 400: NW 181

Claims (24)

  1.  周波数帯域を用いて基地局装置と無線通信を行う移動局装置において、
     第1の周波数帯域を用いて送信する又は受信した第1のデータストリームを処理する第1の処理部と、
     第2の周波数帯域を用いて送信する又は受信した第2のデータストリームを処理する第2の処理部と、
     前記移動局装置毎に異なる指標に基づいて周波数帯域を前記第1及び第2の周波数帯域から前記第1の周波数帯域に切替えることを決定したとき、前記基地局装置との間で無線通信を行うことなく前記第2の処理部の電源をオフにする切替制御部と、
     を備えることを特徴とする移動局装置。 
    In a mobile station device that performs radio communication with a base station device using a frequency band,
    A first processing unit for processing a first data stream transmitted or received using a first frequency band;
    A second processing unit for processing a second data stream transmitted or received using the second frequency band;
    When it is determined to switch the frequency band from the first and second frequency bands to the first frequency band based on a different index for each mobile station apparatus, wireless communication is performed with the base station apparatus. A switching control unit for turning off the power of the second processing unit without
    A mobile station apparatus comprising:
  2.  前記移動局装置毎に異なる指標は、前記基地局装置から送信された無線信号を受信したときの受信品質であることを特徴とする請求項1記載の移動局装置。 The mobile station apparatus according to claim 1, wherein the index different for each mobile station apparatus is a reception quality when a radio signal transmitted from the base station apparatus is received.
  3.  前記切替制御部は、前記移動局装置毎に異なる指標を前記基地局装置との間でネゴシエーションにより決定することを特徴とする請求項1記載の移動局装置。 The mobile station apparatus according to claim 1, wherein the switching control unit determines a different index for each mobile station apparatus by negotiation with the base station apparatus.
  4.  前記切替制御部は、更に、前記指標に対して前記第1の周波数帯域への切替を行うか否かを示す閾値を前記基地局装置との間でネゴシエーションにより決定することを特徴とする請求項3記載の移動局装置。 The switch control unit further determines a threshold value indicating whether or not to switch to the first frequency band for the index by negotiation with the base station device. 3. The mobile station apparatus according to 3.
  5.  前記移動局装置毎に異なる指標は、前記基地局装置から送信された無線信号を受信したときの受信品質であることを特徴とする請求項4記載の移動局装置。 The mobile station apparatus according to claim 4, wherein the index different for each mobile station apparatus is a reception quality when a radio signal transmitted from the base station apparatus is received.
  6.  前記切替制御部は、測定した前記受信品質を前記基地局装置へ送信することを特徴とする請求項5記載の移動局装置。 The mobile station apparatus according to claim 5, wherein the switching control unit transmits the measured reception quality to the base station apparatus.
  7.  前記移動局装置毎に異なる指標は前記第1及び第2の周波数帯域が属する周波数帯であり、前記閾値は前記第1の周波数帯域に切替えるときの前記周波数帯を示すことを特徴とする請求項4記載の移動局装置。  The index different for each mobile station apparatus is a frequency band to which the first and second frequency bands belong, and the threshold indicates the frequency band when switching to the first frequency band. 4. The mobile station apparatus according to 4. *
  8.  前記移動局装置毎に異なる指標はスリープモードの前記移動局装置に対して受信を確認するための信号であり、前記閾値は前記第1の周波数帯域に切替えるときの当該信号の有無を示すことを特徴とする請求項4記載の移動局装置。 A different index for each mobile station apparatus is a signal for confirming reception to the mobile station apparatus in the sleep mode, and the threshold indicates whether or not the signal is present when switching to the first frequency band. The mobile station apparatus according to claim 4, wherein:
  9.  前記切替制御部は、前記第1及び第2の周波数帯域から前記第1の周波数帯域に切替えることを決定したとき、前記第1の周波数帯域への切替を表わす切替予告通知を前記基地局装置へ送信することを特徴とする請求項1記載の移動局装置。 When the switching control unit determines to switch from the first and second frequency bands to the first frequency band, the switching control unit notifies the base station apparatus of a switching advance notice indicating switching to the first frequency band. The mobile station apparatus according to claim 1, wherein the mobile station apparatus transmits the mobile station apparatus.
  10.  前記切替制御部は、前記第1及び第2の周波数帯域から前記第1の周波数帯域に切替えることを決定したとき、切替後のデータストリーム数又は切替後の周波数帯域数を示す切替指示パターンを前記基地局装置へ送信することを特徴とする請求項1記載の移動局装置。 When the switching control unit determines to switch from the first and second frequency bands to the first frequency band, the switching control unit displays a switching instruction pattern indicating the number of data streams after switching or the number of frequency bands after switching. The mobile station apparatus according to claim 1, wherein the mobile station apparatus transmits to the base station apparatus.
  11.  更に、前記第1の周波数帯への切替え決定後、前記移動局装置から前記第2のデータストリームを受信しても当該第2のデータストリームを受信できなかったことを示す否定応答を前記基地局装置へ送信するコントローラを備えることを特徴とする請求項1記載の移動局装置。  Further, after the decision to switch to the first frequency band, even if the second data stream is received from the mobile station apparatus, a negative response indicating that the second data stream cannot be received is sent to the base station. The mobile station apparatus according to claim 1, further comprising a controller that transmits to the apparatus. *
  12.  前記否定応答を送信後、前記第1の処理部は前記基地局装置から前記第1のデータストリームを受信し、前記第2の処理部は前記基地局装置から前記第2のデータストリームを受信しないことを特徴とする請求項11記載の移動局装置。 After transmitting the negative response, the first processing unit receives the first data stream from the base station device, and the second processing unit does not receive the second data stream from the base station device. The mobile station apparatus according to claim 11.
  13.  前記切替制御部は、前記第2の処理部の電源をオフにした後、前記移動局装置毎に異なる指標に基づいて周波数帯域を前記第1の周波数帯域から前記第1及び第2の周波数帯域に切替えることを決定したとき、前記基地局装置との間で無線通信を行うことなく前記第2の処理の電源をオンにすることを特徴とする請求項1記載の移動局装置。 The switching control unit, after turning off the power of the second processing unit, changes the frequency band from the first frequency band to the first and second frequency bands based on a different index for each mobile station device. 2. The mobile station apparatus according to claim 1, wherein when it is decided to switch to the second station, the power of the second process is turned on without performing wireless communication with the base station apparatus.
  14.  前記切替制御部は、前記第1の周波数帯域から前記第1及び第2の周波数帯域に切替えることを決定したとき、前記第1及び第2の周波数帯域への切替を表わす切替予告通知を前記基地局装置へ送信することを特徴とする請求項13記載の移動局装置。 When the switching control unit determines to switch from the first frequency band to the first and second frequency bands, the switching control unit notifies the base station of a switching advance notice indicating switching to the first and second frequency bands. The mobile station apparatus according to claim 13, wherein the mobile station apparatus transmits to the station apparatus.
  15.  前記切替制御部は、前記第1の周波数帯域から前記第1及び第2の周波数帯域に切替えることを決定したとき、切替後のデータストリーム数又は切替後の周波数帯域数を示す切替指示パターンを前記基地局装置へ送信することを特徴とする請求項13記載の移動局装置。 When the switching control unit determines to switch from the first frequency band to the first and second frequency bands, the switching control unit displays a switching instruction pattern indicating the number of data streams after switching or the number of frequency bands after switching. The mobile station apparatus according to claim 13, wherein the mobile station apparatus transmits to the base station apparatus.
  16.  前記切替制御部は、前記受信品質が閾値よりも劣化していることを検出したとき、周波数帯域を前記第1及び第2の周波数帯域から前記第1の周波数帯域へ切替えることを決定することを特徴とする請求項2記載の移動局装置。 The switching control unit determines to switch the frequency band from the first and second frequency bands to the first frequency band when detecting that the reception quality is deteriorated below a threshold value. The mobile station apparatus according to claim 2, wherein:
  17.  前記切替制御部は、ネゴシエーションした前記指標がネゴシエーションした前記閾値よりも劣化していることを検出したとき、周波数帯域を前記第1及び第2の周波数帯域から前記第1の周波数帯域へ切替えることを決定することを特徴とする請求項4記載の移動局装置。 The switching control unit switches the frequency band from the first and second frequency bands to the first frequency band when detecting that the negotiated indicator is degraded from the negotiated threshold value. The mobile station apparatus according to claim 4, wherein the mobile station apparatus is determined.
  18.  前記切替制御部は、前記移動局装置毎に異なる指標に基づいて周波数帯域を前記第1及び第2の周波数帯域から前記第1の周波数帯域に切替えることを決定したとき、前記基地局装置との間で無線通信を行うことなく前記第1の処理部の電源をオンにすることを特徴とする請求項1記載の移動局装置。 When the switching control unit determines to switch the frequency band from the first and second frequency bands to the first frequency band based on a different index for each mobile station apparatus, The mobile station apparatus according to claim 1, wherein the first processing unit is turned on without performing wireless communication.
  19.  前記基地局装置は第1及び第2の基地局装置を含み、
     前記第1及び第2のデータストリームは前記第1及び第2の基地局装置から夫々送信されることを特徴とする請求項1記載の移動局装置。
    The base station device includes first and second base station devices,
    The mobile station apparatus according to claim 1, wherein the first and second data streams are transmitted from the first and second base station apparatuses, respectively.
  20.  第1の周波数帯域を用いて送信する又は受信した第1のデータストリームを処理する第1の処理部と、第2の周波数帯域を用いて送信する又は受信した第2のデータストリームを処理する第2の処理部とを備え、基地局装置と無線通信を行う移動局装置における電源制御方法であって、
     切替制御部により、前記移動局装置毎に異なる指標に基づいて周波数帯域を前記第1及び第2の周波数帯域から前記第1の周波数帯域に切替えることを決定したとき、前記基地局装置との間で無線通信を行うことなく前記第2の処理部の電源をオフにする
     ことを特徴とする電源制御方法。
    A first processing unit for processing a first data stream transmitted or received using a first frequency band; and a second processing unit for processing a second data stream transmitted or received using a second frequency band. 2 is a power control method for a mobile station apparatus that performs wireless communication with a base station apparatus.
    When the switching control unit decides to switch the frequency band from the first and second frequency bands to the first frequency band based on an index different for each mobile station apparatus, between the base station apparatus A power control method characterized by turning off the power of the second processing unit without performing wireless communication.
  21.  基地局装置と、
     前記基地局装置を制御する基地局制御装置と、
     周波数帯域を用いて前記基地局装置と無線通信を行う移動局装置とを備える無線通信システムにおいて、
     前記移動局装置は、
     第1の周波数帯域を用いて送信する又は受信した第1のデータストリームを処理する第1の処理部と、
     第2の周波数帯域を用いて送信する又は受信した第2のデータストリームを処理する第2の処理部と、
     前記移動局装置毎に異なる指標に基づいて周波数帯域を前記第1及び第2の周波数帯域から前記第1の周波数帯域に切替えることを決定したとき、前記基地局装置との間で無線通信を行うことなく前記第2の処理部の電源をオフにする切替制御部を備えることを特徴とする無線通信システム。
    A base station device;
    A base station control device for controlling the base station device;
    In a radio communication system comprising a mobile station apparatus that performs radio communication with the base station apparatus using a frequency band,
    The mobile station device
    A first processing unit for processing a first data stream transmitted or received using a first frequency band;
    A second processing unit for processing a second data stream transmitted or received using the second frequency band;
    When it is determined to switch the frequency band from the first and second frequency bands to the first frequency band based on a different index for each mobile station apparatus, wireless communication is performed with the base station apparatus. A wireless communication system, comprising: a switching control unit that turns off the power of the second processing unit.
  22.  前記切替制御部は、前記第1の周波数帯域に切替えることを決定したとき、前記第1の周波数帯域への切替を表わす切替予告通知を、前記基地局装置を経由して前記基地局制御装置へ送信し、
     前記移動局装置は、更に、前記第1の周波数帯への切替え決定後、前記第2のデータストリームを受信できなかったことを示す否定応答を前記基地局装置へ送信するコントローラを備え、
     前記基地局制御装置は、更に、前記切替予告通知を前記基地局装置を介して受信したとき、前記移動局装置から前記基地局装置を介して受信した前記否定応答の回数に基づいて、周波数帯域を前記第1及び第2の周波数帯域から前記第1の周波数帯域に切替える移動機切替検知部(340)を備えることを特徴とする請求項20記載の無線通信システム。
    When the switching control unit decides to switch to the first frequency band, the switching control unit notifies the base station control device via the base station device of a switching notice of notification indicating switching to the first frequency band. Send
    The mobile station apparatus further includes a controller that transmits a negative response indicating that the second data stream could not be received to the base station apparatus after determining to switch to the first frequency band,
    The base station control device further has a frequency band based on the number of negative responses received from the mobile station device via the base station device when the switching notice is received via the base station device. 21. The radio communication system according to claim 20, further comprising: a mobile station switching detection unit (340) that switches the first to second frequency bands from the first and second frequency bands.
  23.  前記切替制御部は、前記切替制御部は、前記第1及び第2の周波数帯域から前記第1の周波数帯域に切替えることを決定したとき、切替後のデータストリーム数又は切替後の周波数帯域数を示す切替指示パターンを前記基地局装置へ送信し、
     前記基地局制御装置は、更に、前記切替指示パターンを前記基地局装置を介して受信したとき、前記切替指示パターンに従って周波数帯域を前記第1及び第2の周波数帯域から前記第1の周波数帯域に切替える移動機切替検知部(340)を備えることを特徴とする請求項20記載の無線通信システム。
    When the switching control unit determines to switch from the first and second frequency bands to the first frequency band, the switching control unit determines the number of data streams after switching or the number of frequency bands after switching. The switching instruction pattern shown is transmitted to the base station device,
    The base station controller further changes the frequency band from the first and second frequency bands to the first frequency band according to the switching instruction pattern when the switching instruction pattern is received via the base station apparatus. 21. The wireless communication system according to claim 20, further comprising a mobile unit switching detection unit (340) for switching.
  24.  周波数帯域を用いて基地局装置と無線通信を行う移動局装置において、
     第1の周波数帯域を用いて送信する又は受信した第1のデータストリームを処理する第1の回路と、
     第2の周波数帯域を用いて送信する又は受信した第2のデータストリームを処理する第2の回路と、
     前記移動局装置毎に異なる指標に基づいて周波数帯域を前記第1及び第2の周波数帯域から前記第1の周波数帯域に切替えることを決定したとき、前記基地局装置との間で無線通信を行うことなく前記第2の処理部の電源をオフにするコントローラと、
     を備えることを特徴とする移動局装置。
    In a mobile station device that performs radio communication with a base station device using a frequency band,
    A first circuit for processing a first data stream transmitted or received using a first frequency band;
    A second circuit for processing a second data stream transmitted or received using the second frequency band;
    When it is determined to switch the frequency band from the first and second frequency bands to the first frequency band based on a different index for each mobile station apparatus, wireless communication is performed with the base station apparatus. A controller for turning off the power of the second processing unit without
    A mobile station apparatus comprising:
PCT/JP2013/072504 2013-08-23 2013-08-23 Mobile station apparatus, power supply control method in mobile station apparatus, and wireless communication system WO2015025418A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/072504 WO2015025418A1 (en) 2013-08-23 2013-08-23 Mobile station apparatus, power supply control method in mobile station apparatus, and wireless communication system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/072504 WO2015025418A1 (en) 2013-08-23 2013-08-23 Mobile station apparatus, power supply control method in mobile station apparatus, and wireless communication system

Publications (1)

Publication Number Publication Date
WO2015025418A1 true WO2015025418A1 (en) 2015-02-26

Family

ID=52483222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072504 WO2015025418A1 (en) 2013-08-23 2013-08-23 Mobile station apparatus, power supply control method in mobile station apparatus, and wireless communication system

Country Status (1)

Country Link
WO (1) WO2015025418A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020098640A1 (en) * 2018-11-12 2020-05-22 华为技术有限公司 Multi-standard network control method, and network management device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011024646A1 (en) * 2009-08-25 2011-03-03 シャープ株式会社 Wireless communication system, wireless communication apparatus and wireless communication method
JP2013017217A (en) * 2007-02-05 2013-01-24 Interdigital Technology Corp Paging over high-speed downlink shared channel
JP2013048370A (en) * 2011-08-29 2013-03-07 Fujitsu Ltd Mobile terminal and sleep control method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013017217A (en) * 2007-02-05 2013-01-24 Interdigital Technology Corp Paging over high-speed downlink shared channel
WO2011024646A1 (en) * 2009-08-25 2011-03-03 シャープ株式会社 Wireless communication system, wireless communication apparatus and wireless communication method
JP2013048370A (en) * 2011-08-29 2013-03-07 Fujitsu Ltd Mobile terminal and sleep control method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020098640A1 (en) * 2018-11-12 2020-05-22 华为技术有限公司 Multi-standard network control method, and network management device

Similar Documents

Publication Publication Date Title
US20210297887A1 (en) Apparatus and method for measurement in wireless communication system
KR101968586B1 (en) In device coexistence interference report control method and apparatus of network in mobile communication system
US10028331B2 (en) User terminal, communication control method and chipset
KR102349361B1 (en) Seamless mobility in 5G and LTE systems and devices
US8315629B2 (en) Asymmetric uplink/downlink connections in a mobile communication system
TW201941655A (en) Method of wireless communication of a user equipment and user equipment and computer-readable medium
WO2013136906A1 (en) Wireless communication system, communication method, base station apparatus, and communication terminal
WO2015141012A1 (en) Wireless communication apparatus and wireless communication method
WO2014112563A1 (en) Cellular communication system, user terminal, and cellular base station
US10356804B2 (en) Data transmission method and user equipment
KR20190113472A (en) Apparatus and method for cofngiuring measurement in wireless communication system
WO2009117944A1 (en) Carrier frequency control method and apparatus in multi-carrier /cell system
JP7144541B2 (en) Cell reselection control method and user equipment
WO2015025418A1 (en) Mobile station apparatus, power supply control method in mobile station apparatus, and wireless communication system
JP7050721B2 (en) Wireless communication device and control method
WO2023132273A1 (en) Communication device and communication method
WO2023132272A1 (en) Communication device and communication method
US20180255601A1 (en) Base station, wlan terminal node, and radio terminal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13892003

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC ( EPO FORM 1205A DATED 02/06/2016 )

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 13892003

Country of ref document: EP

Kind code of ref document: A1