WO2015025406A1 - Control device - Google Patents

Control device Download PDF

Info

Publication number
WO2015025406A1
WO2015025406A1 PCT/JP2013/072457 JP2013072457W WO2015025406A1 WO 2015025406 A1 WO2015025406 A1 WO 2015025406A1 JP 2013072457 W JP2013072457 W JP 2013072457W WO 2015025406 A1 WO2015025406 A1 WO 2015025406A1
Authority
WO
WIPO (PCT)
Prior art keywords
acceleration
period
speed
rate
deceleration
Prior art date
Application number
PCT/JP2013/072457
Other languages
French (fr)
Japanese (ja)
Inventor
基親 新宅
優 山元
Original Assignee
東芝三菱電機産業システム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝三菱電機産業システム株式会社 filed Critical 東芝三菱電機産業システム株式会社
Priority to PCT/JP2013/072457 priority Critical patent/WO2015025406A1/en
Priority to JP2015532655A priority patent/JPWO2015025406A1/en
Publication of WO2015025406A1 publication Critical patent/WO2015025406A1/en
Priority to PH12016500248A priority patent/PH12016500248A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H23/00Registering, tensioning, smoothing or guiding webs
    • B65H23/04Registering, tensioning, smoothing or guiding webs longitudinally
    • B65H23/18Registering, tensioning, smoothing or guiding webs longitudinally by controlling or regulating the web-advancing mechanism, e.g. mechanism acting on the running web
    • B65H23/195Registering, tensioning, smoothing or guiding webs longitudinally by controlling or regulating the web-advancing mechanism, e.g. mechanism acting on the running web in winding mechanisms or in connection with winding operations
    • B65H23/198Registering, tensioning, smoothing or guiding webs longitudinally by controlling or regulating the web-advancing mechanism, e.g. mechanism acting on the running web in winding mechanisms or in connection with winding operations motor-controlled (Controlling electrical drive motors therefor)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2513/00Dynamic entities; Timing aspects
    • B65H2513/20Acceleration or deceleration

Definitions

  • the present invention relates to a rewinding machine and a control device for controlling a winding device provided with the winding machine.
  • Patent Document 1 describes a control device for controlling a winding device.
  • the control device described in Patent Literature 1 controls a drive device that drives the winder.
  • FIG. 7 is a diagram illustrating a configuration example of the conventional control device 17.
  • FIG. 8 is a diagram for explaining the function of the conventional control device 17.
  • a conventional control device 17 will be described with reference to FIGS. 7 and 8.
  • the speed reference logic circuit 20 outputs a signal A for requesting acceleration when the speed reference V (mpm) output from the speed reference generation circuit 19 is smaller than the speed reference set value V * (mpm). .
  • mpm / sec 2
  • the acceleration ⁇ (mpm / sec) that is an output from the arithmetic circuit 18 increases at a constant rate up to the maximum value ⁇ max.
  • represents an acceleration increase rate
  • ⁇ (mpm / sec 2 ) represents a deceleration decrease rate.
  • the speed reference logic circuit 20 calculates the timing at which the acceleration is reduced and outputs an acceleration request reset signal B. As a result, when the switch B is closed, ⁇ is subtracted in the arithmetic circuit 18 every sampling time. If the switch B is closed, the acceleration ⁇ that is an output from the arithmetic circuit 18 decreases at a constant rate. Thereafter, when the acceleration ⁇ becomes zero, the driving device becomes a constant speed.
  • the moment of inertia torque is obtained by multiplying the output from the arithmetic circuit 18 by the entire moment of inertia by a predetermined coefficient. For this reason, the output from the arithmetic circuit 18 is handled as a reference signal for inertia moment compensation.
  • the above deviation gradually increases while the acceleration / deceleration increases or decreases at a constant rate.
  • This deviation becomes maximum when the acceleration / deceleration reaches the maximum value.
  • a typical winding device is provided with a tension control circuit.
  • the tension control circuit outputs a tension correction so as to eliminate the tension fluctuation acting on the material.
  • FIG. 9 is a diagram for explaining the tension variation of the material.
  • FIG. 9 shows an example in which tension control is performed by a rewinding machine.
  • tension control is performed by a rewinding machine.
  • the correction amount corrected in the increasing direction during acceleration becomes a tension fluctuation factor when the acceleration is completed. That is, when the acceleration is completed, a tension fluctuation in a direction opposite to the tension fluctuation that has occurred so far occurs.
  • F in FIG. 9 shows a case where the acceleration is decreased at a constant rate immediately after the acceleration is increased at a constant rate in order to make the speed of the driving device coincide with the target set speed.
  • the torque changes at an increase / decrease rate that is twice the normal increase / decrease rate when switching the acceleration increase / decrease. For this reason, there has been a problem that the tension fluctuation becomes extremely large.
  • the present invention has been made to solve the above-described problems.
  • the objective of this invention is providing the control apparatus which can suppress the fluctuation
  • the control device controls a winding device that includes a winding device for winding the material that has been rewound by the rewinding device, and a drive device that drives the winding machine or the rewinding device. And a change unit that increases or decreases the acceleration increase rate of the drive device at a constant rate and smoothly changes the acceleration of the drive device.
  • a control device comprises a winding device including a winding device for winding the material rewinded by the rewinding device, and a driving device for driving the winding device or the rewinding device. It is a control device for controlling, and is provided with changing means for increasing / decreasing the deceleration reduction rate of the driving device at a constant rate and smoothly changing the deceleration of the driving device.
  • control device for controlling the winding device in the control device for controlling the winding device, it is possible to suppress the fluctuation of the tension acting on the material without impairing the operation efficiency.
  • FIG. 1 is a diagram illustrating a configuration of the winding device 1.
  • the winding device 1 is a device for rewinding the material 2 wound in a roll shape and winding it again in a roll shape.
  • the winding device 1 includes, for example, a rewinding machine (Unwinder) 3 and a winding machine (Winder) 4.
  • the rewinding machine 3 is a device for rewinding the material 2 wound in a roll shape.
  • the winder 4 is a device for winding the material 2 rewound by the rewinder 3.
  • the material 2 is paper
  • the paper wound in a roll shape is set in the rewinding machine 3, and the paper is sent out from the rewinding machine 3.
  • the paper sent out from the rewinder 3 is taken up by the winder 4.
  • the winding device 1 is used, for example, to subdivide a large roll of paper into small rolls of paper.
  • the rewinder 3 and the winder 4 are stopped. After the paper is cut, the wound paper is taken out from the winder 4 and conveyed as a product (or semi-finished product).
  • the tension detector 5 detects the tension acting on the material 2. Specifically, the tension detector 5 detects the tension of the material 2 existing between the unwinder 3 and the winder 4. Information on the tension detected by the tension detector 5 is input to the tension controller 6. The tension control device 6 outputs a tension correction so that the tension of the material 2 wound up by the winder 4 becomes a desired value. The tension control device 6 outputs a tension correction based on the tension detected by the tension detector 5.
  • the rewinding machine 3 is driven by a motor 7.
  • the control device 9 to be described later outputs an inertia moment compensation reference for driving the motor 7.
  • the inertia moment compensation reference output from the control device 9 is input to the motor 7 after the tension correction output from the tension control device 6 is added.
  • the motor 7 operates based on this input.
  • FIG. 1 shows an example in which the winder 4 is driven by a plurality of motors 8.
  • the control device 9 outputs a line speed reference for driving the motor 8.
  • the line speed reference output from the control device 9 is input to the motor 8.
  • the motor 8 operates based on this input.
  • FIG. 2 is a diagram showing a configuration of the control device 9 according to the first embodiment of the present invention.
  • the control device 9 includes increment circuits 10 and 11, an adder 12, arithmetic circuits 13 and 14, a speed reference generation circuit 15, and a speed reference logic circuit 16.
  • the increment circuit 10 outputs a signal for increasing or decreasing the acceleration increase rate (change rate) of the motor 8.
  • the output from the increment circuit 10 is input to the arithmetic circuit 13 via the adder 12.
  • the arithmetic circuit 13 is a circuit for calculating an increase / decrease rate of acceleration / deceleration.
  • the increment amount ⁇ ′ (mpm / sec 3 ) is output from the increment circuit 10.
  • ⁇ ′ is a unit amount to be added to the acceleration increase rate ⁇ (mpm / sec 2 ).
  • the output ⁇ ′ from the increment circuit 10 is input to the arithmetic circuit 13 via the adder 12.
  • Z ⁇ 1 shown in the arithmetic circuit 13 is the previous value in the sampling program.
  • the arithmetic circuit 13 adds ⁇ ′ to the previous value Z ⁇ 1 every sampling time. Therefore, if the switch A is closed, the acceleration increase rate ⁇ that is an output from the arithmetic circuit 13 increases at a constant rate until the maximum value ⁇ max is reached.
  • ⁇ max is set by the limiter UL / LL in the arithmetic circuit 13.
  • the output ⁇ from the arithmetic circuit 13 is input to the arithmetic circuit 14 and the speed reference logic circuit 16.
  • a value ⁇ ′ obtained by multiplying the increment amount ⁇ ′ by ⁇ 1 is output from the increment circuit 10.
  • the output ⁇ ′ from the increment circuit 10 is input to the arithmetic circuit 13 via the adder 12.
  • the arithmetic circuit 13 adds - ⁇ 'to the previous value Z -1 every sampling time. Therefore, if the switch B is closed, the acceleration increase rate ⁇ , which is an output from the arithmetic circuit 13, decreases at a constant rate until it reaches the minimum value ⁇ max.
  • is an acceleration reduction rate.
  • the increment circuit 11 outputs a signal for increasing or decreasing the deceleration reduction rate (change rate) of the motor 8.
  • the output from the increment circuit 11 is input to the arithmetic circuit 13 via the adder 12.
  • the increment amount ⁇ ′ (mpm / sec 3 ) is output from the increment circuit 11.
  • ⁇ ′ is a unit amount added to the deceleration reduction rate ⁇ (mpm / sec 2 ).
  • the output ⁇ ′ from the increment circuit 11 is input to the arithmetic circuit 13 via the adder 12.
  • ⁇ ′ is added to the previous value Z ⁇ 1 every sampling time in the arithmetic circuit 13. Therefore, if the switch C is closed, the deceleration reduction rate ⁇ that is an output from the arithmetic circuit 13 increases at a constant rate until the maximum value ⁇ max is reached.
  • ⁇ max is set by the limiter UL / LL in the arithmetic circuit 13.
  • the output ⁇ from the arithmetic circuit 13 is input to the arithmetic circuit 14 and the speed reference logic circuit 16.
  • the calculation circuit 14 is a circuit for calculating the acceleration / deceleration (speed change rate) of the motor 8.
  • the output from the arithmetic circuit 14 is handled as a reference signal for inertia moment compensation (the inertia moment compensation reference).
  • is input from the arithmetic circuit 13 to the arithmetic circuit 14 when increasing or decreasing the acceleration ⁇ (mpm / sec) of the motor 8.
  • Z ⁇ 1 shown in the arithmetic circuit 14 is the previous value in the sampling program.
  • the input ⁇ from the arithmetic circuit 13 is added to the previous value Z ⁇ 1 at every sampling time in the arithmetic circuit 14.
  • the acceleration ⁇ which is an output from the arithmetic circuit 14, is set to a maximum value ⁇ max by the limiter UL / LL.
  • the output ⁇ from the arithmetic circuit 14 is input to the speed reference generation circuit 15 and the speed reference logic circuit 16.
  • is input from the arithmetic circuit 13 to the arithmetic circuit 14 when increasing or decreasing the deceleration ⁇ (mpm / sec) of the motor 8.
  • is a deceleration reduction rate.
  • the positive / negative of the deceleration ⁇ is opposite to the positive / negative of ⁇ .
  • the output from the arithmetic circuit 14 is ⁇ instead of the deceleration ⁇ . That is, the arithmetic circuit 14 outputs the rate of change in speed.
  • the input ⁇ from the arithmetic circuit 13 is added to the previous value Z ⁇ 1 at every sampling time in the arithmetic circuit 14.
  • the speed change rate which is an output from the arithmetic circuit 14, is set to the minimum value - ⁇ max by the limiters UL / LL.
  • the output from the arithmetic circuit 14 is input to the speed reference generation circuit 15 and the speed reference logic circuit 16.
  • the speed reference generation circuit 15 is a circuit for calculating the speed V (mpm / sec) of the motor 8.
  • the output from the speed reference generation circuit 15 is handled as a line speed reference signal (line speed reference).
  • the output from the arithmetic circuit 14 is input to the speed reference generation circuit 15 when the speed V of the motor 8 is increased or decreased.
  • Z ⁇ 1 shown in the speed reference generation circuit 15 is the previous value in the sampling program.
  • the input (speed change rate) from the arithmetic circuit 13 is added to the previous value Z ⁇ 1 at every sampling time in the speed reference generation circuit 15.
  • the maximum value Vmax is set by the limiters UL / LL for the speed V that is the output from the speed reference generation circuit 15.
  • the speed reference logic circuit 16 has a function of controlling the increase / decrease rate of the acceleration / deceleration of the motor 8, the acceleration / deceleration (speed change rate), and the speed to desired values. Specifically, the speed reference logic circuit 16 outputs a signal for opening and closing the switches A to D, and realizes the above function. As described above, the output of the arithmetic circuit 13, the output of the arithmetic circuit 14, and the output of the speed reference generation circuit 15 are input to the speed reference logic circuit 16. In addition, the speed reference logic circuit 16 is input with a speed reference set value V * (mpm), a speed rounding time setting t RNDV * (sec), and an acceleration / deceleration rounding time setting t RNDACC * (sec). The speed reference logic circuit 16 performs an operation based on these inputs and outputs a signal for opening and closing the switches A to D.
  • FIG. 3 and 4 are diagrams for explaining functions of the control device 9 shown in FIG.
  • FIG. 4 is an enlarged view of a part of FIG.
  • the acceleration increase rate ⁇ decreases at a constant rate. While the acceleration increase rate ⁇ decreases at a constant rate, the acceleration ⁇ gradually increases so that the increase amount decreases with time. Thereafter, when the acceleration increase rate ⁇ becomes 0 at time t4, the switch B is opened. As a result, the acceleration ⁇ becomes constant, and the speed V increases at a constant rate. At this time, for example, the acceleration ⁇ is controlled to be ⁇ max.
  • the acceleration increase rate ⁇ decreases at a constant rate. While the acceleration increase rate ⁇ decreases at a constant rate, the acceleration ⁇ gradually decreases so that the amount of decrease increases with time. Thereafter, when the switch B is opened at time t6, the acceleration increase rate ⁇ becomes constant, and the acceleration ⁇ decreases at a constant rate. For example, when the acceleration increase rate ⁇ becomes ⁇ max, the switch B is opened.
  • the acceleration increase rate ⁇ increases at a constant rate. While the acceleration increase rate ⁇ increases at a constant rate, the acceleration ⁇ gradually decreases so that the amount of decrease decreases with time. Thereafter, when the acceleration increase rate ⁇ becomes 0 at time t8, the switch A is opened. As a result, the acceleration ⁇ becomes 0 and the speed V becomes constant.
  • the speed V of the motor 8 is constant.
  • the switch D is closed at time t16, the deceleration reduction rate ⁇ decreases at a constant rate. While the deceleration reduction rate ⁇ decreases at a constant rate, the deceleration ⁇ gradually increases so that the amount of increase increases with time. Thereafter, when the switch D is opened, the deceleration reduction rate ⁇ becomes constant, and the deceleration ⁇ increases at a constant rate. For example, when the deceleration reduction rate ⁇ becomes ⁇ max, the switch D is opened.
  • the deceleration reduction rate ⁇ increases at a constant rate. While the deceleration reduction rate ⁇ increases at a constant rate, the deceleration ⁇ gradually increases so that the amount of increase decreases with time. Thereafter, when the deceleration reduction rate ⁇ becomes 0, the switch C is opened. As a result, the deceleration ⁇ becomes constant, and the speed V decreases at a constant rate. At this time, for example, the deceleration ⁇ is controlled to be the maximum value ⁇ max.
  • the deceleration reduction rate increases at a constant rate of ⁇ . While the deceleration reduction rate ⁇ increases at a constant rate, the deceleration ⁇ gradually decreases so that the amount of decrease increases with time. Thereafter, when the switch C is opened, the deceleration reduction rate ⁇ becomes constant, and the deceleration ⁇ decreases at a constant rate. For example, when the deceleration reduction rate ⁇ reaches ⁇ max, the switch C is opened.
  • the deceleration reduction rate ⁇ decreases at a constant rate. While the deceleration reduction rate ⁇ decreases at a constant rate, the deceleration ⁇ gradually decreases so that the amount of decrease decreases with time. Thereafter, when the deceleration reduction rate ⁇ becomes 0, the switch D is opened. As a result, the deceleration ⁇ becomes 0 and the speed V becomes 0.
  • the acceleration increase rate ⁇ increases at a constant rate. While the acceleration increase rate ⁇ increases at a constant rate, the acceleration ⁇ gradually increases so that the amount of increase increases with time. Thereafter, when the switch A is opened at time t10, the acceleration increase rate ⁇ becomes constant, and the acceleration ⁇ increases at a constant rate. For example, when the acceleration increase rate ⁇ becomes ⁇ max, the switch A is opened.
  • the acceleration increase rate ⁇ decreases at a constant rate. While the acceleration increase rate ⁇ decreases at a constant rate, the acceleration ⁇ gradually increases so that the increase amount decreases with time. At time t12, the acceleration increase rate ⁇ becomes zero. Even after the acceleration increase rate ⁇ becomes zero, the switch B remains closed. As a result, the acceleration ⁇ gradually decreases so that the amount of decrease increases with time. Thereafter, when the switch B is opened at t13, the acceleration increase rate ⁇ becomes constant, and the acceleration ⁇ decreases at a constant rate. For example, when the acceleration increase rate ⁇ becomes ⁇ max, the switch B is opened.
  • the acceleration increase rate ⁇ increases at a constant rate. While the acceleration increase rate ⁇ increases at a constant rate, the acceleration ⁇ gradually decreases so that the amount of decrease decreases with time. Thereafter, when the acceleration increase rate ⁇ becomes 0 at time t15, the switch A is opened. As a result, the acceleration ⁇ becomes 0 and the speed V becomes constant.
  • the speed reference logic circuit 16 When making the motor 8 under acceleration constant at a certain target set speed, the speed reference logic circuit 16 must output an acceleration request reset signal for closing the switch B at an appropriate timing. The timing for outputting the acceleration request reset signal will be described below with reference to FIG. FIG. 6 is a diagram for explaining the output timing of the acceleration request reset signal.
  • Vdet shown in FIG. 6 is the speed of the motor 8 when the acceleration starts to decrease.
  • a speed change amount L (mpm) from when the acceleration of the motor 8 starts to decrease until the speed of the motor 8 reaches the target set speed V * (speed reference set value) is expressed by the following equation.
  • L V * ⁇ Vdet
  • the speed reference logic circuit 16 calculates the speed change amount L using the above equation.
  • the speed change amount L1 (mpm) is expressed by the following equation.
  • L1 ⁇ max ⁇ t RNDAC * ⁇ ( ⁇ ′ ⁇ t RNACC * 3 ) / 6
  • the speed change amount L1 is an amount by which the speed changes during a period from when the acceleration of the motor 8 starts to decrease until the rate of change becomes constant. During this period, the acceleration of the motor 8 gradually decreases so that the amount of decrease increases with time.
  • the speed reference logic circuit 16 calculates the speed change amount L1 using ⁇ ′ based on the above equation.
  • the speed change amount L3 (mpm) is expressed by the following equation.
  • L3 ( ⁇ ′ ⁇ t RNDACC * 3 ) / 6
  • the speed change amount L3 is an amount by which the speed changes during a period from the end of the state in which the acceleration change rate of the motor 8 is constant until the acceleration becomes zero. During this period, the acceleration of the motor 8 gradually decreases so that the amount of decrease decreases with time.
  • the speed reference logic circuit 16 calculates the speed change amount L3 using ⁇ ′ based on the above equation.
  • the speed change amount L2 is an amount by which the speed changes during a period in which the rate of change of the acceleration of the motor 8 is constant. This period is a period between a period for calculating the speed change amount L1 and a period for calculating the speed change amount L3. During this period, the acceleration of the motor 8 decreases at a constant rate.
  • the speed reference logic circuit 16 calculates the speed change amount L2 based on the above equation.
  • a determination condition for determining the output timing of the acceleration request reset signal is expressed by the following equation. L ⁇ L1 + L2 + L3
  • the speed reference logic circuit 16 periodically determines whether or not the determination condition is satisfied.
  • the speed reference logic circuit 16 outputs an acceleration request reset signal when the determination condition is satisfied. Thereby, the speed of the motor 8 can be made constant according to the target set speed V * .
  • the output timing of the deceleration request reset signal can be calculated by the same method as described above.
  • Vdet is the speed of the motor 8 when starting to decrease the deceleration.
  • ⁇ max is used instead of ⁇ max
  • ⁇ ′ is used instead of ⁇ ′.
  • ts indicates the time during which the deceleration change rate is constant.
  • the speed change amount L1 is an amount by which the speed changes during a period from when the deceleration of the motor 8 starts to decrease until the rate of change becomes constant. During this period, the deceleration of the motor 8 gradually decreases so that the amount of decrease increases with time.
  • the speed change amount L3 is an amount by which the speed changes during a period from when the state in which the rate of change of the deceleration of the motor 8 is constant to when the deceleration becomes zero. During this period, the deceleration of the motor 8 gradually decreases so that the amount of decrease decreases with time.
  • the speed change amount L2 is an amount by which the speed changes during a period in which the rate of change of the deceleration of the motor 8 is constant. This period is a period between a period for calculating the speed change amount L1 and a period for calculating the speed change amount L3. During this period, the deceleration of the motor 8 decreases at a constant rate.
  • the speed reference logic circuit 16 periodically determines whether or not the determination condition is satisfied, and outputs a deceleration request reset signal when the determination condition is satisfied. Thereby, the speed of the motor 8 can be made constant according to the target set speed V * .
  • the speed and acceleration / deceleration of the motor 8 are rounded in an S shape as shown in FIG. That is, when the speed of the motor 8 is changed, the acceleration / deceleration can be smoothly changed while gradually increasing and decreasing. It is possible to reliably prevent the speed and acceleration / deceleration of the motor 8 from changing suddenly.
  • FIG. 5 is a diagram for explaining the tension fluctuation of the material 2.
  • FIG. 5 shows the tension acting on the material 2 when control is performed with the contents shown in FIG.
  • FIG. 9 shows the tension fluctuation when the same control is performed by the conventional control device 17.
  • the conventional control device 17 for example, if the tension correction is output in the increasing direction during acceleration of the drive device, the tension fluctuation at the completion of acceleration becomes large.
  • the tension fluctuation becomes extremely large.
  • the acceleration / deceleration changes smoothly while gradually increasing and decreasing when the value increases and decreases. For this reason, even if there is a deviation in the tension correction output from the tension control device 6, the tension control system can perform a correction operation while the acceleration / deceleration is gradually increasing or decreasing. Therefore, as shown in FIG. 5, the tension fluctuation is greatly suppressed. Tension fluctuations when the operation of increasing the acceleration at a constant rate and the operation of decreasing the acceleration at a constant rate are continuously performed are also greatly suppressed. The speed rounding time setting t RNDV * does not need to be set longer than necessary, and the operation efficiency is not impaired.
  • the general winding device 1 is provided with a driving roll for conveying paper such as a paper roll and a spreader roll between the rewinding machine 3 and the winding machine 4.
  • a driving roll for conveying paper such as a paper roll and a spreader roll between the rewinding machine 3 and the winding machine 4.
  • uniform speed control is performed.
  • the acceleration / deceleration torque and mechanical loss necessary for each roll during acceleration / deceleration are compensated, and only the necessary torque for the roll body is compensated to operate in the same manner.
  • the difference between the acceleration / deceleration torque compensation at this time and the actual required torque acts as tension on the paper between the rolls via the friction between the roll and the paper.
  • the control device 9 having the above-described configuration is employed, the torque on the roll surface can be changed while gradually increasing and gradually decreasing, so that it is possible to suppress the slip that occurs between the roll and the paper.
  • the roll driven when the winding device 1 is started and stopped operates with the torque behavior of all the torques corresponding to the acceleration / deceleration. For this reason, the effect that the winding device 1 can be started and stopped smoothly can be expected.
  • control device 9 controls the motor 8
  • the control contents described in the present embodiment can be applied in the same manner even when the control device 9 controls another motor (for example, the motor 7).
  • the value of ⁇ ′ may be equal to the value of ⁇ ′.
  • the present invention can be applied to a control device that controls a winding device.

Abstract

A control device (9) is a device for controlling a winding device (1). The winding device (1) is provided with a winder (4) for winding a material (2) unwound by an unwinder (3), and a drive device for driving the winder (4) or the unwinder (3). Further, the control device (9) is provided with the function of increasing/decreasing the acceleration increase rate of the drive device at a constant rate to thereby smoothly change the acceleration of the drive device. Consequently, fluctuations in tension acting on the material (2) can be suppressed without impairing operation efficiency.

Description

制御装置Control device
 この発明は、巻戻し機及び巻取り機を備えた巻取り装置を制御するための制御装置に関する。 The present invention relates to a rewinding machine and a control device for controlling a winding device provided with the winding machine.
 特許文献1に、巻取り装置を制御するための制御装置が記載されている。特許文献1に記載された制御装置は、巻取り機を駆動する駆動装置を制御する。 Patent Document 1 describes a control device for controlling a winding device. The control device described in Patent Literature 1 controls a drive device that drives the winder.
 巻取り装置の制御装置では、一般に、フィードフォワード方式の加減速トルク補償が採用されている。即ち、駆動装置の速度を変更する際に、速度変化率と巻取り材料及び機械駆動系を含む慣性モーメントとから必要な加減速トルクが演算される。そして、その演算結果に基づくトルク補償信号が制御信号に加算され、駆動装置が制御される。 In the control device of the winding device, generally feed-forward acceleration / deceleration torque compensation is adopted. That is, when changing the speed of the drive device, the necessary acceleration / deceleration torque is calculated from the speed change rate and the moment of inertia including the winding material and the mechanical drive system. Then, a torque compensation signal based on the calculation result is added to the control signal, and the drive device is controlled.
 図7は、従来の制御装置17の構成例を示す図である。図8は、従来の制御装置17の機能を説明するための図である。図7及び図8を参照し、従来の制御装置17について説明する。 FIG. 7 is a diagram illustrating a configuration example of the conventional control device 17. FIG. 8 is a diagram for explaining the function of the conventional control device 17. A conventional control device 17 will be described with reference to FIGS. 7 and 8.
 図7及び図8に示すように、従来では、加減速度を一定の割合で増減させることにより速度変更時に発生するトルクの急激な変化を防止していた。例えば、速度基準論理回路20は、速度基準発生回路19から出力される速度基準V(mpm)が速度基準設定値V(mpm)より小さい場合に、加速を要求するための信号Aを出力する。これによってスイッチAが閉じられると、演算回路18においてサンプリング時間毎にΔα(mpm/sec)が加算される。スイッチAが閉じられていれば、演算回路18からの出力である加速度α(mpm/sec)は、最大値αmaxまで一定の割合で増加する。なお、Δαは加速度増加率、Δβ(mpm/sec)は減速度減少率を示す。 As shown in FIGS. 7 and 8, conventionally, a sudden change in torque that occurs when the speed is changed is prevented by increasing or decreasing the acceleration / deceleration at a constant rate. For example, the speed reference logic circuit 20 outputs a signal A for requesting acceleration when the speed reference V (mpm) output from the speed reference generation circuit 19 is smaller than the speed reference set value V * (mpm). . Thus, when the switch A is closed, Δα (mpm / sec 2 ) is added every sampling time in the arithmetic circuit 18. If the switch A is closed, the acceleration α (mpm / sec) that is an output from the arithmetic circuit 18 increases at a constant rate up to the maximum value αmax. Δα represents an acceleration increase rate, and Δβ (mpm / sec 2 ) represents a deceleration decrease rate.
 速度基準論理回路20は、駆動装置の速度が速度基準設定値Vに近づくと、加速度を減ずるタイミングを計算し、加速要求リセット信号Bを出力する。これによってスイッチBが閉じられると、演算回路18においてサンプリング時間毎にΔαが減算される。スイッチBが閉じられていれば、演算回路18からの出力である加速度αは、一定の割合で減少する。その後、加速度αが0になると、駆動装置は一定速になる。 When the speed of the driving device approaches the speed reference set value V * , the speed reference logic circuit 20 calculates the timing at which the acceleration is reduced and outputs an acceleration request reset signal B. As a result, when the switch B is closed, Δα is subtracted in the arithmetic circuit 18 every sampling time. If the switch B is closed, the acceleration α that is an output from the arithmetic circuit 18 decreases at a constant rate. Thereafter, when the acceleration α becomes zero, the driving device becomes a constant speed.
 上記一連の動作が行われることにより、駆動装置の速度は、加減速時でもS字状の丸めがつき、滑らかに変化する。 れ る By performing the above series of operations, the speed of the driving device is smoothly changed with S-shaped rounding even during acceleration / deceleration.
 また、演算回路18からの出力に全体の慣性モーメントを所定の係数で乗じたものが慣性モーメントトルクになる。このため、演算回路18からの出力は、慣性モーメント補償の基準信号として取り扱われる。 Further, the moment of inertia torque is obtained by multiplying the output from the arithmetic circuit 18 by the entire moment of inertia by a predetermined coefficient. For this reason, the output from the arithmetic circuit 18 is handled as a reference signal for inertia moment compensation.
日本特開平5-43100号公報Japanese Unexamined Patent Publication No. 5-43100 日本特開平10-174489号公報Japanese Unexamined Patent Publication No. 10-174489 日本特開昭63-60857号公報Japanese Unexamined Patent Publication No. 63-60857
 何らかの要因で慣性モーメント設定が実際の値とずれている場合、加減速度が一定の割合で増減している間は、上記ずれが徐々に大きくなる。このずれは、加減速度が最大値に達した時点で最大になる。例えば、駆動装置が最大加速度で加速している時、上記トルクの差分に応じた張力変動が材料に発生する。なお、一般的な巻取り装置には、張力制御回路が備えられている。張力制御回路は、材料に作用する張力変動が解消するように張力補正を出力する。 If the inertia moment setting deviates from the actual value for some reason, the above deviation gradually increases while the acceleration / deceleration increases or decreases at a constant rate. This deviation becomes maximum when the acceleration / deceleration reaches the maximum value. For example, when the driving device is accelerating at the maximum acceleration, a tension fluctuation corresponding to the difference in torque is generated in the material. A typical winding device is provided with a tension control circuit. The tension control circuit outputs a tension correction so as to eliminate the tension fluctuation acting on the material.
 図9は、材料の張力変動を説明するための図である。図9は、巻戻し機で張力制御を行う場合を一例として示している。例えば、駆動装置の加速中に張力補正が増方向に出力される場合を考える。かかる場合、加速が完了した際に、上記補正分を元に戻す修正動作が必要になる。図9からも分かるように、加速中に増方向に補正した補正量が加速完了時に張力の変動要因になってしまう。即ち、加速完了時に、それまで発生していた張力変動とは逆方向の張力変動が発生する。 FIG. 9 is a diagram for explaining the tension variation of the material. FIG. 9 shows an example in which tension control is performed by a rewinding machine. For example, consider a case where tension correction is output in an increasing direction during acceleration of the drive device. In such a case, when the acceleration is completed, a correction operation for returning the correction amount to the original is necessary. As can be seen from FIG. 9, the correction amount corrected in the increasing direction during acceleration becomes a tension fluctuation factor when the acceleration is completed. That is, when the acceleration is completed, a tension fluctuation in a direction opposite to the tension fluctuation that has occurred so far occurs.
 加速完了時の張力変動を抑えるために、サンプリング時間毎に加算するΔαの値を小さくすることが考えられる。しかし、この方法によって張力変動を抑制すると、加速時間が長くなって操業効率が著しく損なわれるといった問題があった。 In order to suppress the tension fluctuation at the completion of acceleration, it is conceivable to reduce the value of Δα added every sampling time. However, when the tension fluctuation is suppressed by this method, there is a problem that the acceleration time becomes long and the operation efficiency is remarkably impaired.
 また、図9のFは、駆動装置の速度を目標設定速度に一致させるために、加速度を一定の割合で増加させた直後に加速度を一定の割合で減少させる場合を示している。かかる場合、加速度の増減を切り換える際に通常時の増減率の倍の増減率でトルクが変化する。このため、張力変動が極めて大きくなるといった問題があった。 Further, F in FIG. 9 shows a case where the acceleration is decreased at a constant rate immediately after the acceleration is increased at a constant rate in order to make the speed of the driving device coincide with the target set speed. In such a case, the torque changes at an increase / decrease rate that is twice the normal increase / decrease rate when switching the acceleration increase / decrease. For this reason, there has been a problem that the tension fluctuation becomes extremely large.
 この発明は、上述のような課題を解決するためになされたものである。この発明の目的は、操業効率を損なうことなく、材料に作用する張力の変動を抑制することができる制御装置を提供することである。 The present invention has been made to solve the above-described problems. The objective of this invention is providing the control apparatus which can suppress the fluctuation | variation of the tension | tensile_strength which acts on material, without impairing operation efficiency.
 この発明に係る制御装置は、巻戻し機によって巻戻された材料を巻取るための巻取り機と、巻取り機又は巻戻し機を駆動する駆動装置と、を備えた巻取り装置を制御するための制御装置であって、駆動装置の加速度増加率を一定の割合で増減させ、駆動装置の加速度を滑らかに変更させる変更手段を備えたものである。 The control device according to the present invention controls a winding device that includes a winding device for winding the material that has been rewound by the rewinding device, and a drive device that drives the winding machine or the rewinding device. And a change unit that increases or decreases the acceleration increase rate of the drive device at a constant rate and smoothly changes the acceleration of the drive device.
 また、この発明に係る制御装置は、巻戻し機によって巻戻された材料を巻取るための巻取り機と、巻取り機又は巻戻し機を駆動する駆動装置と、を備えた巻取り装置を制御するための制御装置であって、駆動装置の減速度減少率を一定の割合で増減させ、駆動装置の減速度を滑らかに変更させる変更手段を備えたものである。 Further, a control device according to the present invention comprises a winding device including a winding device for winding the material rewinded by the rewinding device, and a driving device for driving the winding device or the rewinding device. It is a control device for controlling, and is provided with changing means for increasing / decreasing the deceleration reduction rate of the driving device at a constant rate and smoothly changing the deceleration of the driving device.
 この発明によれば、巻取り装置を制御するための制御装置において、操業効率を損なうことなく、材料に作用する張力の変動を抑制することができる。 According to this invention, in the control device for controlling the winding device, it is possible to suppress the fluctuation of the tension acting on the material without impairing the operation efficiency.
巻取り装置の構成を示す図である。It is a figure which shows the structure of a winding apparatus. この発明の実施の形態1における制御装置の構成を示す図である。It is a figure which shows the structure of the control apparatus in Embodiment 1 of this invention. 図2に示す制御装置の機能を説明するための図である。It is a figure for demonstrating the function of the control apparatus shown in FIG. 図2に示す制御装置の機能を説明するための図である。It is a figure for demonstrating the function of the control apparatus shown in FIG. 加速要求リセット信号の出力タイミングを説明するための図である。It is a figure for demonstrating the output timing of an acceleration request reset signal. 材料の張力変動を説明するための図である。It is a figure for demonstrating the tension | tensile_strength fluctuation | variation of material. 従来の制御装置の構成例を示す図である。It is a figure which shows the structural example of the conventional control apparatus. 従来の制御装置の機能を説明するための図である。It is a figure for demonstrating the function of the conventional control apparatus. 材料の張力変動を説明するための図である。It is a figure for demonstrating the tension | tensile_strength fluctuation | variation of material.
 添付の図面を参照し、本発明を説明する。重複する説明は、適宜簡略化或いは省略する。各図において、同一の符号は、同一の部分又は相当する部分を示す。 The present invention will be described with reference to the accompanying drawings. The overlapping description will be simplified or omitted as appropriate. In each figure, the same code | symbol shows the same part or a corresponding part.
実施の形態1.
 図1は、巻取り装置1の構成を示す図である。巻取り装置1は、ロール状に巻かれた材料2を巻戻し、再びロール状に巻くための装置である。巻取り装置1は、例えば、巻戻し機(Unwinder)3及び巻取り機(Winder)4を備える。
Embodiment 1 FIG.
FIG. 1 is a diagram illustrating a configuration of the winding device 1. The winding device 1 is a device for rewinding the material 2 wound in a roll shape and winding it again in a roll shape. The winding device 1 includes, for example, a rewinding machine (Unwinder) 3 and a winding machine (Winder) 4.
 巻戻し機3は、ロール状に巻かれた材料2を巻戻すための装置である。巻取り機4は、巻戻し機3によって巻戻された材料2を巻取るための装置である。材料2が紙である場合、ロール状に巻かれた紙が巻戻し機3にセットされ、巻戻し機3から紙が送り出される。巻戻し機3から送り出された紙は、巻取り機4によって巻取られる。巻取り装置1は、例えば、大きなロール状の紙を小さなロール状の紙に小分けするために使用される。巻取り機4に所望の長さの紙が巻取られると、巻戻し機3及び巻取り機4が停止される。紙が切断された後、巻取られた紙が巻取り機4から取り出され、製品(或いは、半製品)として搬送される。 The rewinding machine 3 is a device for rewinding the material 2 wound in a roll shape. The winder 4 is a device for winding the material 2 rewound by the rewinder 3. When the material 2 is paper, the paper wound in a roll shape is set in the rewinding machine 3, and the paper is sent out from the rewinding machine 3. The paper sent out from the rewinder 3 is taken up by the winder 4. The winding device 1 is used, for example, to subdivide a large roll of paper into small rolls of paper. When the desired length of paper is wound on the winder 4, the rewinder 3 and the winder 4 are stopped. After the paper is cut, the wound paper is taken out from the winder 4 and conveyed as a product (or semi-finished product).
 張力検出器5は、材料2に作用している張力を検出する。具体的に、張力検出器5は、巻戻し機3と巻取り機4との間に存在している材料2の張力を検出する。張力検出器5によって検出された張力の情報は、張力制御装置6に入力される。張力制御装置6は、巻取り機4に巻取られる材料2の張力が所望の値になるように張力補正を出力する。張力制御装置6は、張力検出器5によって検出された張力に基づいて張力補正を出力する。 The tension detector 5 detects the tension acting on the material 2. Specifically, the tension detector 5 detects the tension of the material 2 existing between the unwinder 3 and the winder 4. Information on the tension detected by the tension detector 5 is input to the tension controller 6. The tension control device 6 outputs a tension correction so that the tension of the material 2 wound up by the winder 4 becomes a desired value. The tension control device 6 outputs a tension correction based on the tension detected by the tension detector 5.
 巻戻し機3は、モータ7によって駆動される。後述の制御装置9は、モータ7を駆動するための慣性モーメント補償基準を出力する。制御装置9から出力された慣性モーメント補償基準は、張力制御装置6から出力された張力補正が加算された上で、モータ7に入力される。モータ7は、この入力に基づいて動作する。 The rewinding machine 3 is driven by a motor 7. The control device 9 to be described later outputs an inertia moment compensation reference for driving the motor 7. The inertia moment compensation reference output from the control device 9 is input to the motor 7 after the tension correction output from the tension control device 6 is added. The motor 7 operates based on this input.
 巻取り機4は、モータ8によって駆動される。図1は、巻取り機4を複数のモータ8によって駆動する場合を一例として示している。制御装置9は、モータ8を駆動するためのライン速度基準を出力する。制御装置9から出力されたライン速度基準は、モータ8に入力される。モータ8は、この入力に基づいて動作する。 The winder 4 is driven by a motor 8. FIG. 1 shows an example in which the winder 4 is driven by a plurality of motors 8. The control device 9 outputs a line speed reference for driving the motor 8. The line speed reference output from the control device 9 is input to the motor 8. The motor 8 operates based on this input.
 次に、図2乃至図6も参照し、制御装置9について説明する。図2は、この発明の実施の形態1における制御装置9の構成を示す図である。図2に示すように、制御装置9は、インクリメント回路10及び11、加算器12、演算回路13及び14、速度基準発生回路15、速度基準論理回路16を備える。 Next, the control device 9 will be described with reference to FIGS. FIG. 2 is a diagram showing a configuration of the control device 9 according to the first embodiment of the present invention. As shown in FIG. 2, the control device 9 includes increment circuits 10 and 11, an adder 12, arithmetic circuits 13 and 14, a speed reference generation circuit 15, and a speed reference logic circuit 16.
 インクリメント回路10は、モータ8の加速度増加率(変化率)を増減させるための信号を出力する。インクリメント回路10からの出力は加算器12を介して演算回路13に入力される。演算回路13は、加減速度の増減率を演算するための回路である。 The increment circuit 10 outputs a signal for increasing or decreasing the acceleration increase rate (change rate) of the motor 8. The output from the increment circuit 10 is input to the arithmetic circuit 13 via the adder 12. The arithmetic circuit 13 is a circuit for calculating an increase / decrease rate of acceleration / deceleration.
 例えば、スイッチAが閉じられると、インクリメント量Δα´(mpm/sec)がインクリメント回路10から出力される。Δα´は、加速度増加率Δα(mpm/sec)に加算される単位量である。インクリメント回路10からの出力Δα´は、加算器12を介して演算回路13に入力される。演算回路13内に示すZ-1は、サンプリングプログラム中の前回値である。スイッチAが閉じられている間、演算回路13においてサンプリング時間毎に前回値Z-1にΔα´が加算される。このため、演算回路13からの出力である加速度増加率Δαは、スイッチAが閉じられていれば、最大値Δαmaxに達するまで一定の割合で増加する。Δαmaxは、演算回路13内のリミッタUL/LLによって設定される。演算回路13からの出力Δαは、演算回路14と速度基準論理回路16とに入力される。 For example, when the switch A is closed, the increment amount Δα ′ (mpm / sec 3 ) is output from the increment circuit 10. Δα ′ is a unit amount to be added to the acceleration increase rate Δα (mpm / sec 2 ). The output Δα ′ from the increment circuit 10 is input to the arithmetic circuit 13 via the adder 12. Z −1 shown in the arithmetic circuit 13 is the previous value in the sampling program. While the switch A is closed, the arithmetic circuit 13 adds Δα ′ to the previous value Z− 1 every sampling time. Therefore, if the switch A is closed, the acceleration increase rate Δα that is an output from the arithmetic circuit 13 increases at a constant rate until the maximum value Δαmax is reached. Δαmax is set by the limiter UL / LL in the arithmetic circuit 13. The output Δα from the arithmetic circuit 13 is input to the arithmetic circuit 14 and the speed reference logic circuit 16.
 また、スイッチBが閉じられると、上記インクリメント量Δα´に-1を掛けた値-Δα´がインクリメント回路10から出力される。インクリメント回路10からの出力-Δα´は、加算器12を介して演算回路13に入力される。スイッチBが閉じられている間、演算回路13においてサンプリング時間毎に前回値Z-1に-Δα´が加算される。このため、演算回路13からの出力である加速度増加率Δαは、スイッチBが閉じられていれば、最小値-Δαmaxに達するまでの間、一定の割合で減少する。なお、-Δαは、加速度減少率である。-Δα´は、加速度減少率のインクリメント量に相当する。 When the switch B is closed, a value −Δα ′ obtained by multiplying the increment amount Δα ′ by −1 is output from the increment circuit 10. The output −Δα ′ from the increment circuit 10 is input to the arithmetic circuit 13 via the adder 12. While the switch B is closed, the arithmetic circuit 13 adds -Δα 'to the previous value Z -1 every sampling time. Therefore, if the switch B is closed, the acceleration increase rate Δα, which is an output from the arithmetic circuit 13, decreases at a constant rate until it reaches the minimum value −Δαmax. Note that −Δα is an acceleration reduction rate. -Δα 'corresponds to the increment amount of the acceleration decrease rate.
 インクリメント回路11は、モータ8の減速度減少率(変化率)を増減させるための信号を出力する。インクリメント回路11からの出力は加算器12を介して演算回路13に入力される。 The increment circuit 11 outputs a signal for increasing or decreasing the deceleration reduction rate (change rate) of the motor 8. The output from the increment circuit 11 is input to the arithmetic circuit 13 via the adder 12.
 例えば、スイッチCが閉じられると、インクリメント量Δβ´(mpm/sec)がインクリメント回路11から出力される。Δβ´は、減速度減少率Δβ(mpm/sec)に加算される単位量である。インクリメント回路11からの出力Δβ´は、加算器12を介して演算回路13に入力される。スイッチCが閉じられている間、演算回路13においてサンプリング時間毎に前回値Z-1にΔβ´が加算される。このため、演算回路13からの出力である減速度減少率Δβは、スイッチCが閉じられていれば、最大値Δβmaxに達するまで一定の割合で増加する。Δβmaxは、演算回路13内のリミッタUL/LLによって設定される。演算回路13からの出力Δβは、演算回路14と速度基準論理回路16とに入力される。 For example, when the switch C is closed, the increment amount Δβ ′ (mpm / sec 3 ) is output from the increment circuit 11. Δβ ′ is a unit amount added to the deceleration reduction rate Δβ (mpm / sec 2 ). The output Δβ ′ from the increment circuit 11 is input to the arithmetic circuit 13 via the adder 12. While the switch C is closed, Δβ ′ is added to the previous value Z −1 every sampling time in the arithmetic circuit 13. Therefore, if the switch C is closed, the deceleration reduction rate Δβ that is an output from the arithmetic circuit 13 increases at a constant rate until the maximum value Δβmax is reached. Δβmax is set by the limiter UL / LL in the arithmetic circuit 13. The output Δβ from the arithmetic circuit 13 is input to the arithmetic circuit 14 and the speed reference logic circuit 16.
 また、スイッチDが閉じられると、上記インクリメント量Δβ´に-1を掛けた値-Δβ´がインクリメント回路11から出力される。インクリメント回路11からの出力-Δβ´は、加算器12を介して演算回路13に入力される。スイッチDが閉じられている間、演算回路13においてサンプリング時間毎に前回値Z-1に-Δβ´が加算される。このため、演算回路13からの出力である減速度減少率Δβは、スイッチDが閉じられていれば、最小値-Δβmaxに達するまでの間、一定の割合で減少する。なお、-Δβは、減速度増加率である。-Δβ´は、減速度増加率のインクリメント量に相当する。 When the switch D is closed, a value −Δβ ′ obtained by multiplying the increment amount Δβ ′ by −1 is output from the increment circuit 11. The output −Δβ ′ from the increment circuit 11 is input to the arithmetic circuit 13 via the adder 12. While the switch D is closed, -Δβ ′ is added to the previous value Z −1 every sampling time in the arithmetic circuit 13. Therefore, if the switch D is closed, the deceleration reduction rate Δβ, which is an output from the arithmetic circuit 13, decreases at a constant rate until reaching the minimum value −Δβmax. Note that −Δβ is a deceleration increase rate. -Δβ ′ corresponds to the increment amount of the deceleration increase rate.
 演算回路14は、モータ8の加減速度(速度の変化率)を演算するための回路である。演算回路14からの出力は、慣性モーメント補償の基準信号(上記慣性モーメント補償基準)として取り扱われる。 The calculation circuit 14 is a circuit for calculating the acceleration / deceleration (speed change rate) of the motor 8. The output from the arithmetic circuit 14 is handled as a reference signal for inertia moment compensation (the inertia moment compensation reference).
 例えば、モータ8の加速度α(mpm/sec)を増減させる際に、演算回路13から演算回路14にΔαが入力される。演算回路14内に示すZ-1は、サンプリングプログラム中の前回値である。演算回路13からの入力Δαは、演算回路14においてサンプリング時間毎に前回値Z-1に加算される。演算回路14からの出力である加速度αは、リミッタUL/LLによって最大値αmaxが設定される。演算回路14からの出力αは、速度基準発生回路15と速度基準論理回路16とに入力される。 For example, Δα is input from the arithmetic circuit 13 to the arithmetic circuit 14 when increasing or decreasing the acceleration α (mpm / sec) of the motor 8. Z −1 shown in the arithmetic circuit 14 is the previous value in the sampling program. The input Δα from the arithmetic circuit 13 is added to the previous value Z −1 at every sampling time in the arithmetic circuit 14. The acceleration α, which is an output from the arithmetic circuit 14, is set to a maximum value αmax by the limiter UL / LL. The output α from the arithmetic circuit 14 is input to the speed reference generation circuit 15 and the speed reference logic circuit 16.
 また、モータ8の減速度β(mpm/sec)を増減させる際に、演算回路13から演算回路14にΔβが入力される。なお、Δβは減速度減少率である。このため、減速度βは、その正負がΔβの正負とは逆になる。図2に示す例では、演算回路14からの出力は、減速度βではなく-βとなる。即ち、演算回路14は、速度の変化率を出力する。演算回路13からの入力Δβは、演算回路14においてサンプリング時間毎に前回値Z-1に加算される。演算回路14からの出力である速度変化率は、リミッタUL/LLによって最小値-βmaxが設定される。演算回路14からの出力は、速度基準発生回路15と速度基準論理回路16とに入力される。 Further, Δβ is input from the arithmetic circuit 13 to the arithmetic circuit 14 when increasing or decreasing the deceleration β (mpm / sec) of the motor 8. Δβ is a deceleration reduction rate. For this reason, the positive / negative of the deceleration β is opposite to the positive / negative of Δβ. In the example shown in FIG. 2, the output from the arithmetic circuit 14 is −β instead of the deceleration β. That is, the arithmetic circuit 14 outputs the rate of change in speed. The input Δβ from the arithmetic circuit 13 is added to the previous value Z −1 at every sampling time in the arithmetic circuit 14. The speed change rate, which is an output from the arithmetic circuit 14, is set to the minimum value -βmax by the limiters UL / LL. The output from the arithmetic circuit 14 is input to the speed reference generation circuit 15 and the speed reference logic circuit 16.
 速度基準発生回路15は、モータ8の速度V(mpm/sec)を演算するための回路である。速度基準発生回路15からの出力は、ライン速度の基準信号(上記ライン速度基準)として取り扱われる。 The speed reference generation circuit 15 is a circuit for calculating the speed V (mpm / sec) of the motor 8. The output from the speed reference generation circuit 15 is handled as a line speed reference signal (line speed reference).
 演算回路14からの出力は、モータ8の速度Vを増減させる際に速度基準発生回路15に入力される。速度基準発生回路15内に示すZ-1は、サンプリングプログラム中の前回値である。演算回路13からの入力(速度変化率)は、速度基準発生回路15においてサンプリング時間毎に前回値Z-1に加算される。速度基準発生回路15からの出力である速度Vは、リミッタUL/LLによって最大値Vmaxが設定される。 The output from the arithmetic circuit 14 is input to the speed reference generation circuit 15 when the speed V of the motor 8 is increased or decreased. Z −1 shown in the speed reference generation circuit 15 is the previous value in the sampling program. The input (speed change rate) from the arithmetic circuit 13 is added to the previous value Z −1 at every sampling time in the speed reference generation circuit 15. The maximum value Vmax is set by the limiters UL / LL for the speed V that is the output from the speed reference generation circuit 15.
 速度基準論理回路16は、モータ8の加減速度の増減率、加減速度(速度変化率)、速度を所望の値に制御する機能を有する。具体的に、速度基準論理回路16は、スイッチA乃至Dを開閉するための信号を出力し、上記機能を実現する。上述したように、速度基準論理回路16に、演算回路13の出力と演算回路14の出力と速度基準発生回路15の出力とが入力される。また、速度基準論理回路16に、速度基準設定値V(mpm)と速度丸め時間設定tRNDV (sec)と加減速度丸め時間設定tRNDACC (sec)とが入力される。速度基準論理回路16は、これらの入力に基づいて演算を行い、スイッチA乃至Dを開閉するための信号を出力する。 The speed reference logic circuit 16 has a function of controlling the increase / decrease rate of the acceleration / deceleration of the motor 8, the acceleration / deceleration (speed change rate), and the speed to desired values. Specifically, the speed reference logic circuit 16 outputs a signal for opening and closing the switches A to D, and realizes the above function. As described above, the output of the arithmetic circuit 13, the output of the arithmetic circuit 14, and the output of the speed reference generation circuit 15 are input to the speed reference logic circuit 16. In addition, the speed reference logic circuit 16 is input with a speed reference set value V * (mpm), a speed rounding time setting t RNDV * (sec), and an acceleration / deceleration rounding time setting t RNDACC * (sec). The speed reference logic circuit 16 performs an operation based on these inputs and outputs a signal for opening and closing the switches A to D.
 図3及び図4は、図2に示す制御装置9の機能を説明するための図である。図4は、図3の一部を拡大した図である。 3 and 4 are diagrams for explaining functions of the control device 9 shown in FIG. FIG. 4 is an enlarged view of a part of FIG.
<時刻t1-t8>
 時刻t1より前の時刻において、モータ8は停止している。時刻t1においてスイッチAが閉じられると、加速度増加率Δαが一定の割合で増加する。加速度増加率Δαが一定の割合で増加する間、加速度αは、時間が経過するに従って増加量が大きくなるように漸増していく。その後に時刻t2でスイッチAが開放すると、加速度増加率Δαが一定になり、加速度αが一定の割合で増加する。例えば、加速度増加率ΔαがΔαmaxになると、スイッチAが開放する。
<Time t1-t8>
At a time before time t1, the motor 8 is stopped. When the switch A is closed at time t1, the acceleration increase rate Δα increases at a constant rate. While the acceleration increase rate Δα increases at a constant rate, the acceleration α gradually increases so that the amount of increase increases with time. Thereafter, when the switch A is opened at time t2, the acceleration increase rate Δα becomes constant, and the acceleration α increases at a constant rate. For example, when the acceleration increase rate Δα becomes Δαmax, the switch A is opened.
 その後に時刻t3でスイッチBが閉じられると、加速度増加率Δαが一定の割合で減少する。加速度増加率Δαが一定の割合で減少する間、加速度αは、時間が経過するに従って増加量が小さくなるように漸増していく。その後に時刻t4で加速度増加率Δαが0になると、スイッチBが開放する。これにより、加速度αが一定になり、速度Vが一定の割合で増加する。この時、例えば、加速度αがαmaxになるように制御される。 After that, when the switch B is closed at time t3, the acceleration increase rate Δα decreases at a constant rate. While the acceleration increase rate Δα decreases at a constant rate, the acceleration α gradually increases so that the increase amount decreases with time. Thereafter, when the acceleration increase rate Δα becomes 0 at time t4, the switch B is opened. As a result, the acceleration α becomes constant, and the speed V increases at a constant rate. At this time, for example, the acceleration α is controlled to be αmax.
 その後に時刻t5でスイッチBが閉じられると、加速度増加率Δαが一定の割合で減少する。加速度増加率Δαが一定の割合で減少する間、加速度αは、時間が経過するに従って減少量が大きくなるように漸減していく。その後に時刻t6でスイッチBが開放すると、加速度増加率Δαが一定になり、加速度αが一定の割合で減少する。例えば、加速度増加率Δαが-Δαmaxになると、スイッチBが開放する。 After that, when the switch B is closed at time t5, the acceleration increase rate Δα decreases at a constant rate. While the acceleration increase rate Δα decreases at a constant rate, the acceleration α gradually decreases so that the amount of decrease increases with time. Thereafter, when the switch B is opened at time t6, the acceleration increase rate Δα becomes constant, and the acceleration α decreases at a constant rate. For example, when the acceleration increase rate Δα becomes −Δαmax, the switch B is opened.
 その後に時刻t7でスイッチAが閉じられると、加速度増加率Δαが一定の割合で増加する。加速度増加率Δαが一定の割合で増加する間、加速度αは、時間が経過するに従って減少量が小さくなるように漸減していく。その後に時刻t8で加速度増加率Δαが0になると、スイッチAが開放する。これにより、加速度αが0になり、速度Vが一定になる。 When the switch A is subsequently closed at time t7, the acceleration increase rate Δα increases at a constant rate. While the acceleration increase rate Δα increases at a constant rate, the acceleration α gradually decreases so that the amount of decrease decreases with time. Thereafter, when the acceleration increase rate Δα becomes 0 at time t8, the switch A is opened. As a result, the acceleration α becomes 0 and the speed V becomes constant.
<時刻t15以降>
 時刻t15から時刻t16の間、モータ8の速度Vは一定である。時刻t16でスイッチDが閉じられると、減速度減少率Δβが一定の割合で減少する。減速度減少率Δβが一定の割合で減少する間、減速度βは、時間が経過するに従って増加量が大きくなるように漸増していく。その後にスイッチDが開放すると、減速度減少率Δβが一定になり、減速度βが一定の割合で増加する。例えば、減速度減少率Δβが-Δβmaxになると、スイッチDが開放する。
<After time t15>
From time t15 to time t16, the speed V of the motor 8 is constant. When the switch D is closed at time t16, the deceleration reduction rate Δβ decreases at a constant rate. While the deceleration reduction rate Δβ decreases at a constant rate, the deceleration β gradually increases so that the amount of increase increases with time. Thereafter, when the switch D is opened, the deceleration reduction rate Δβ becomes constant, and the deceleration β increases at a constant rate. For example, when the deceleration reduction rate Δβ becomes −Δβmax, the switch D is opened.
 その後にスイッチCが閉じられると、減速度減少率Δβが一定の割合で増加する。減速度減少率Δβが一定の割合で増加する間、減速度βは、時間が経過するに従って増加量が小さくなるように漸増していく。その後、減速度減少率Δβが0になると、スイッチCが開放する。これにより、減速度βが一定になり、速度Vが一定の割合で減少する。この時、例えば、減速度βが最大値βmaxになるように制御される。 When the switch C is subsequently closed, the deceleration reduction rate Δβ increases at a constant rate. While the deceleration reduction rate Δβ increases at a constant rate, the deceleration β gradually increases so that the amount of increase decreases with time. Thereafter, when the deceleration reduction rate Δβ becomes 0, the switch C is opened. As a result, the deceleration β becomes constant, and the speed V decreases at a constant rate. At this time, for example, the deceleration β is controlled to be the maximum value βmax.
 その後にスイッチCが閉じられると、減速度減少率がΔβ一定の割合で増加する。減速度減少率Δβが一定の割合で増加する間、減速度βは、時間が経過するに従って減少量が大きくなるように漸減していく。その後にスイッチCが開放すると、減速度減少率Δβが一定になり、減速度βが一定の割合で減少する。例えば、減速度減少率ΔβがΔβmaxになると、スイッチCが開放する。 When the switch C is subsequently closed, the deceleration reduction rate increases at a constant rate of Δβ. While the deceleration reduction rate Δβ increases at a constant rate, the deceleration β gradually decreases so that the amount of decrease increases with time. Thereafter, when the switch C is opened, the deceleration reduction rate Δβ becomes constant, and the deceleration β decreases at a constant rate. For example, when the deceleration reduction rate Δβ reaches Δβmax, the switch C is opened.
 その後にスイッチDが閉じられると、減速度減少率Δβが一定の割合で減少する。減速度減少率Δβが一定の割合で減少する間、減速度βは、時間が経過するに従って減少量が小さくなるように漸減していく。その後、減速度減少率Δβが0になると、スイッチDが開放する。これにより、減速度βが0になり、速度Vが0になる。 When the switch D is subsequently closed, the deceleration reduction rate Δβ decreases at a constant rate. While the deceleration reduction rate Δβ decreases at a constant rate, the deceleration β gradually decreases so that the amount of decrease decreases with time. Thereafter, when the deceleration reduction rate Δβ becomes 0, the switch D is opened. As a result, the deceleration β becomes 0 and the speed V becomes 0.
<時刻t8-t15>
 上述したように、時刻t8においてモータ8の速度Vは一定になる。モータ8は、時刻t9から時刻t15の間に加速され、時刻t15においてその速度Vが、時刻t8での速度より速いある速度で一定になる。なお、時刻t9から時刻t15の間に、加速度αはαmaxに達しない。
<Time t8-t15>
As described above, the speed V of the motor 8 becomes constant at time t8. The motor 8 is accelerated between time t9 and time t15, and at time t15, the speed V becomes constant at a speed that is faster than the speed at time t8. Note that the acceleration α does not reach αmax between time t9 and time t15.
 時刻t9でスイッチAが閉じられると、加速度増加率Δαが一定の割合で増加する。加速度増加率Δαが一定の割合で増加する間、加速度αは、時間が経過するに従って増加量が大きくなるように漸増していく。その後に時刻t10でスイッチAが開放すると、加速度増加率Δαが一定になり、加速度αが一定の割合で増加する。例えば、加速度増加率ΔαがΔαmaxになると、スイッチAが開放する。 When the switch A is closed at time t9, the acceleration increase rate Δα increases at a constant rate. While the acceleration increase rate Δα increases at a constant rate, the acceleration α gradually increases so that the amount of increase increases with time. Thereafter, when the switch A is opened at time t10, the acceleration increase rate Δα becomes constant, and the acceleration α increases at a constant rate. For example, when the acceleration increase rate Δα becomes Δαmax, the switch A is opened.
 その後に時刻t11でスイッチBが閉じられると、加速度増加率Δαが一定の割合で減少する。加速度増加率Δαが一定の割合で減少する間、加速度αは、時間が経過するに従って増加量が小さくなるように漸増していく。時刻t12において加速度増加率Δαは0になる。加速度増加率Δαが0になった後もスイッチBは閉じたままである。これにより、加速度αは、時間が経過するに従って減少量が大きくなるように漸減していく。その後にt13でスイッチBが開放すると、加速度増加率Δαが一定になり、加速度αが一定の割合で減少する。例えば、加速度増加率Δαが-Δαmaxになると、スイッチBが開放する。 After that, when the switch B is closed at time t11, the acceleration increase rate Δα decreases at a constant rate. While the acceleration increase rate Δα decreases at a constant rate, the acceleration α gradually increases so that the increase amount decreases with time. At time t12, the acceleration increase rate Δα becomes zero. Even after the acceleration increase rate Δα becomes zero, the switch B remains closed. As a result, the acceleration α gradually decreases so that the amount of decrease increases with time. Thereafter, when the switch B is opened at t13, the acceleration increase rate Δα becomes constant, and the acceleration α decreases at a constant rate. For example, when the acceleration increase rate Δα becomes −Δαmax, the switch B is opened.
 その後に時刻t14でスイッチAが閉じられると、加速度増加率Δαが一定の割合で増加する。加速度増加率Δαが一定の割合で増加する間、加速度αは、時間が経過するに従って減少量が小さくなるように漸減していく。その後に時刻t15で加速度増加率Δαが0になると、スイッチAが開放する。これにより、加速度αが0になり、速度Vが一定になる。 After that, when the switch A is closed at time t14, the acceleration increase rate Δα increases at a constant rate. While the acceleration increase rate Δα increases at a constant rate, the acceleration α gradually decreases so that the amount of decrease decreases with time. Thereafter, when the acceleration increase rate Δα becomes 0 at time t15, the switch A is opened. As a result, the acceleration α becomes 0 and the speed V becomes constant.
 加速中のモータ8をある目標設定速度で一定にする場合、速度基準論理回路16は、スイッチBを閉じるための加速要求リセット信号を適切なタイミングで出力しなければならない。以下に、図6も参照し、加速要求リセット信号を出力するタイミングについて説明する。図6は、加速要求リセット信号の出力タイミングを説明するための図である。 When making the motor 8 under acceleration constant at a certain target set speed, the speed reference logic circuit 16 must output an acceleration request reset signal for closing the switch B at an appropriate timing. The timing for outputting the acceleration request reset signal will be described below with reference to FIG. FIG. 6 is a diagram for explaining the output timing of the acceleration request reset signal.
 図6に示すVdetは、加速度を減少させ始める時のモータ8の速度である。モータ8の加速度を減少させ始めてからモータ8の速度が目標設定速度V(速度基準設定値)に到達するまでの速度の変化量L(mpm)は、次式で表される。
 L=V-Vdet
 速度基準論理回路16は、上式を用いて速度変化量Lを演算する。
Vdet shown in FIG. 6 is the speed of the motor 8 when the acceleration starts to decrease. A speed change amount L (mpm) from when the acceleration of the motor 8 starts to decrease until the speed of the motor 8 reaches the target set speed V * (speed reference set value) is expressed by the following equation.
L = V * −Vdet
The speed reference logic circuit 16 calculates the speed change amount L using the above equation.
 また、速度変化量L1(mpm)は、次式で表される。
 L1=αmax×tRNDACC -(Δα´×tRNDACC *3)/6
 速度変化量L1は、モータ8の加速度を減少させ始めてからその変化率が一定になるまでの期間に速度が変化する量である。この期間中、モータ8の加速度は、時間が経過するに従って減少量が大きくなるように漸減する。速度基準論理回路16は、上式に基づき、Δα´を用いて速度変化量L1を演算する。
Further, the speed change amount L1 (mpm) is expressed by the following equation.
L1 = αmax × t RNDAC * − (Δα ′ × t RNACC * 3 ) / 6
The speed change amount L1 is an amount by which the speed changes during a period from when the acceleration of the motor 8 starts to decrease until the rate of change becomes constant. During this period, the acceleration of the motor 8 gradually decreases so that the amount of decrease increases with time. The speed reference logic circuit 16 calculates the speed change amount L1 using Δα ′ based on the above equation.
 速度変化量L3(mpm)は、次式で表される。
 L3=(Δα´×tRNDACC *3)/6
 速度変化量L3は、モータ8の加速度の変化率が一定である状態が終了してから加速度が0になるまでの期間に速度が変化する量である。この期間中、モータ8の加速度は、時間が経過するに従って減少量が小さくなるように漸減する。速度基準論理回路16は、上式に基づき、Δα´を用いて速度変化量L3を演算する。
The speed change amount L3 (mpm) is expressed by the following equation.
L3 = (Δα ′ × t RNDACC * 3 ) / 6
The speed change amount L3 is an amount by which the speed changes during a period from the end of the state in which the acceleration change rate of the motor 8 is constant until the acceleration becomes zero. During this period, the acceleration of the motor 8 gradually decreases so that the amount of decrease decreases with time. The speed reference logic circuit 16 calculates the speed change amount L3 using Δα ′ based on the above equation.
 速度変化量L2(mpm)は、次式で表される。なお、tsは加速度変化率が一定である時間を示す。
 L2=(αmax×ts)/2
 速度変化量L2は、モータ8の加速度の変化率が一定である期間に速度が変化する量である。この期間は、速度変化量L1を算出するための期間と速度変化量L3を算出するための期間との間の期間である。この期間中、モータ8の加速度は、一定の割合で減少する。速度基準論理回路16は、上式に基づいて速度変化量L2を演算する。
The speed change amount L2 (mpm) is expressed by the following equation. Note that ts indicates a time during which the acceleration change rate is constant.
L2 = (αmax × ts) / 2
The speed change amount L2 is an amount by which the speed changes during a period in which the rate of change of the acceleration of the motor 8 is constant. This period is a period between a period for calculating the speed change amount L1 and a period for calculating the speed change amount L3. During this period, the acceleration of the motor 8 decreases at a constant rate. The speed reference logic circuit 16 calculates the speed change amount L2 based on the above equation.
 加速要求リセット信号の出力タイミングを決定するための判定条件は、次式で表される。
 L≧L1+L2+L3
 速度基準論理回路16は、上記判定条件が成立するか否かを定期的に判定する。速度基準論理回路16は、判定条件が成立する場合に、加速要求リセット信号を出力する。これにより、モータ8の速度を目標設定速度Vに合わせて一定にすることができる。
A determination condition for determining the output timing of the acceleration request reset signal is expressed by the following equation.
L ≧ L1 + L2 + L3
The speed reference logic circuit 16 periodically determines whether or not the determination condition is satisfied. The speed reference logic circuit 16 outputs an acceleration request reset signal when the determination condition is satisfied. Thereby, the speed of the motor 8 can be made constant according to the target set speed V * .
 なお、上記は、加速度αmaxで加速しているモータ8を目標設定速度Vで一定にする場合の説明である。図4に示す時刻t8から時刻t15までの期間のように、モータ8の加速度がαmaxに達する前に加速要求リセット信号を出力する場合は、上記計算式中のαmaxを現在の加速度αに置き換えれば良い。 The above is a case where the motor 8 accelerating at the acceleration αmax is made constant at the target set speed V * . When the acceleration request reset signal is output before the acceleration of the motor 8 reaches αmax as in the period from time t8 to time t15 shown in FIG. 4, if αmax in the above formula is replaced with the current acceleration α, good.
 減速中のモータ8をある目標設定速度で一定にする場合も、上記と同様の方法によって減速要求リセット信号の出力タイミングを演算することができる。かかる場合、Vdetは、減速度を減少させ始める時のモータ8の速度である。また、αmaxの代わりにβmaxを用い、Δα´の代わりにΔβ´を用いる。tsは減速度変化率が一定である時間を示す。 When the motor 8 being decelerated is kept constant at a certain target set speed, the output timing of the deceleration request reset signal can be calculated by the same method as described above. In such a case, Vdet is the speed of the motor 8 when starting to decrease the deceleration. Also, βmax is used instead of αmax, and Δβ ′ is used instead of Δα ′. ts indicates the time during which the deceleration change rate is constant.
 速度変化量L1は、モータ8の減速度を減少させ始めてからその変化率が一定になるまでの期間に速度が変化する量である。この期間中、モータ8の減速度は、時間が経過するに従って減少量が大きくなるように漸減する。また、速度変化量L3は、モータ8の減速度の変化率が一定である状態が終了してから減速度が0になるまでの期間に速度が変化する量である。この期間中、モータ8の減速度は、時間が経過するに従って減少量が小さくなるように漸減する。 The speed change amount L1 is an amount by which the speed changes during a period from when the deceleration of the motor 8 starts to decrease until the rate of change becomes constant. During this period, the deceleration of the motor 8 gradually decreases so that the amount of decrease increases with time. The speed change amount L3 is an amount by which the speed changes during a period from when the state in which the rate of change of the deceleration of the motor 8 is constant to when the deceleration becomes zero. During this period, the deceleration of the motor 8 gradually decreases so that the amount of decrease decreases with time.
 速度変化量L2は、モータ8の減速度の変化率が一定である期間に速度が変化する量である。この期間は、速度変化量L1を算出するための期間と速度変化量L3を算出するための期間との間の期間である。この期間中、モータ8の減速度は、一定の割合で減少する。そして、速度基準論理回路16は、上記判定条件が成立するか否かを定期的に判定し、判定条件が成立する場合に減速要求リセット信号を出力する。これにより、モータ8の速度を目標設定速度Vに合わせて一定にすることができる。 The speed change amount L2 is an amount by which the speed changes during a period in which the rate of change of the deceleration of the motor 8 is constant. This period is a period between a period for calculating the speed change amount L1 and a period for calculating the speed change amount L3. During this period, the deceleration of the motor 8 decreases at a constant rate. The speed reference logic circuit 16 periodically determines whether or not the determination condition is satisfied, and outputs a deceleration request reset signal when the determination condition is satisfied. Thereby, the speed of the motor 8 can be made constant according to the target set speed V * .
 上記構成を有する制御装置9であれば、モータ8の速度及び加減速度は、その変化時に図3に示すようにS字状の丸めがつけられる。即ち、モータ8の速度を変更する際に、加減速度を漸増及び漸減させながら滑らかに変化させることができる。モータ8の速度及び加減速度が急激に変化することを確実に防止できる。 In the case of the control device 9 having the above configuration, the speed and acceleration / deceleration of the motor 8 are rounded in an S shape as shown in FIG. That is, when the speed of the motor 8 is changed, the acceleration / deceleration can be smoothly changed while gradually increasing and decreasing. It is possible to reliably prevent the speed and acceleration / deceleration of the motor 8 from changing suddenly.
 図5は、材料2の張力変動を説明するための図である。図5は、図4に示す内容で制御が行われた際に材料2に作用する張力を示している。なお、図9は、同様の制御を従来の制御装置17で行った場合の張力変動を示している。上述したように、従来の制御装置17では、例えば、駆動装置の加速中に張力補正が増方向に出力されると、加速完了時の張力変動が大きくなってしまう。特に、加速度を一定の割合で増加させる動作と一定の割合で減少させる動作とが連続して行われる場合は、張力変動が極めて大きくなる。 FIG. 5 is a diagram for explaining the tension fluctuation of the material 2. FIG. 5 shows the tension acting on the material 2 when control is performed with the contents shown in FIG. FIG. 9 shows the tension fluctuation when the same control is performed by the conventional control device 17. As described above, in the conventional control device 17, for example, if the tension correction is output in the increasing direction during acceleration of the drive device, the tension fluctuation at the completion of acceleration becomes large. In particular, when the operation of increasing the acceleration at a constant rate and the operation of decreasing the acceleration at a constant rate are performed continuously, the tension fluctuation becomes extremely large.
 一方、上記構成を有する制御装置9であれば、加減速度は、その値が増加及び減少する時に漸増及び漸減しながら滑らかに変化する。このため、張力制御装置6から出力される張力補正にずれがあっても、加減速度が漸増或いは漸減している間に張力制御系で修正動作を行うことができる。したがって、図5に示すように、張力変動は大幅に抑制される。加速度を一定の割合で増加させる動作と一定の割合で減少させる動作とが連続して行われる時の張力変動も大幅に抑制される。速度丸め時間設定tRNDV を必要以上に長く設定する必要がなく、操業効率が損なわれる恐れもない。 On the other hand, in the control device 9 having the above configuration, the acceleration / deceleration changes smoothly while gradually increasing and decreasing when the value increases and decreases. For this reason, even if there is a deviation in the tension correction output from the tension control device 6, the tension control system can perform a correction operation while the acceleration / deceleration is gradually increasing or decreasing. Therefore, as shown in FIG. 5, the tension fluctuation is greatly suppressed. Tension fluctuations when the operation of increasing the acceleration at a constant rate and the operation of decreasing the acceleration at a constant rate are continuously performed are also greatly suppressed. The speed rounding time setting t RNDV * does not need to be set longer than necessary, and the operation efficiency is not impaired.
 なお、一般的な巻取り装置1には、巻戻し機3と巻取り機4との間に、ペーパーロール及びスプレッダーロールといった紙を搬送するための駆動ロールが設けられる。駆動ロールの制御として、例えば揃速制御が行われる。即ち、加減速時に各々のロールに必要な加減速トルクと機械的ロスとに補償を施し、ロール本体に必要なトルクのみで補償して全体を同じように動作させる。この時の加減速トルク補償と実際の必要トルクとの差分は、ロールと紙との摩擦を経由してロール間の紙に張力として作用する。 The general winding device 1 is provided with a driving roll for conveying paper such as a paper roll and a spreader roll between the rewinding machine 3 and the winding machine 4. As control of the driving roll, for example, uniform speed control is performed. In other words, the acceleration / deceleration torque and mechanical loss necessary for each roll during acceleration / deceleration are compensated, and only the necessary torque for the roll body is compensated to operate in the same manner. The difference between the acceleration / deceleration torque compensation at this time and the actual required torque acts as tension on the paper between the rolls via the friction between the roll and the paper.
 ロール表面のトルクが急激に変化すると、ロール間の張力が大きく変化する。このため、急激なトルク変動が生じると、ロールと紙との間に滑りが生じる可能性がある。上記構成の制御装置9を採用すれば、ロール表面のトルクも漸増及び漸減しながら変化させることができるため、ロールと紙との間に生じる滑りを抑制することが可能となる。 When the torque on the roll surface changes abruptly, the tension between the rolls changes greatly. For this reason, when a sudden torque fluctuation occurs, there is a possibility that slip occurs between the roll and the paper. If the control device 9 having the above-described configuration is employed, the torque on the roll surface can be changed while gradually increasing and gradually decreasing, so that it is possible to suppress the slip that occurs between the roll and the paper.
 また、上記構成の制御装置9を採用すれば、巻取り装置1の起動時及び停止時に駆動されるロールは、その全てのトルクが加減速度に応じたトルク挙動で動作する。このため、巻取り装置1をスムーズに起動及び停止できるといった効果も期待できる。 Further, if the control device 9 having the above-described configuration is employed, the roll driven when the winding device 1 is started and stopped operates with the torque behavior of all the torques corresponding to the acceleration / deceleration. For this reason, the effect that the winding device 1 can be started and stopped smoothly can be expected.
 本実施の形態では、制御装置9がモータ8を制御する場合について説明した。本実施の形態で説明した制御内容は、制御装置9が他のモータ(例えば、モータ7)を制御する場合でも同様に適用できることは言うまでもない。また、Δα´の値とΔβ´の値とが一致していても構わない。 In the present embodiment, the case where the control device 9 controls the motor 8 has been described. It goes without saying that the control contents described in the present embodiment can be applied in the same manner even when the control device 9 controls another motor (for example, the motor 7). Further, the value of Δα ′ may be equal to the value of Δβ ′.
 この発明は、巻取り装置を制御する制御装置に適用できる。 The present invention can be applied to a control device that controls a winding device.
 1 巻取り装置
 2 材料
 3 巻戻し機
 4 巻取り機
 5 張力検出器
 6 張力制御装置
 7、8 モータ
 9、17 制御装置
 10、11 インクリメント回路
 12 加算器
 13、14、18 演算回路
 15、19 速度基準発生回路
 16、20 速度基準論理回路
DESCRIPTION OF SYMBOLS 1 Winding device 2 Material 3 Rewinding machine 4 Winding machine 5 Tension detector 6 Tension control device 7, 8 Motor 9, 17 Control device 10, 11 Increment circuit 12 Adder 13, 14, 18 Arithmetic circuit 15, 19 Speed Reference generation circuit 16, 20 Speed reference logic circuit

Claims (4)

  1.  巻戻し機によって巻戻された材料を巻取るための巻取り機と、
     前記巻取り機又は巻戻し機を駆動する駆動装置と、
    を備えた巻取り装置を制御するための制御装置であって、
     前記駆動装置の加速度増加率を一定の割合で増減させ、前記駆動装置の加速度を滑らかに変更させる変更手段
    を備えた制御装置。
    A winder for winding material unwound by the winder;
    A driving device for driving the winder or rewinder;
    A control device for controlling a winding device comprising:
    A control device comprising change means for increasing or decreasing the acceleration increase rate of the drive device at a constant rate and smoothly changing the acceleration of the drive device.
  2.  前記駆動装置の現在の速度と目標設定速度との差を演算する第1演算手段と、
     前記変更手段が加速度増加率を増減させる割合の値を用いて、第1期間における前記駆動装置の速度の変化量を演算する第2演算手段と、
     前記変更手段が加速度増加率を増減させる割合の値を用いて、第2期間における前記駆動装置の速度の変化量を演算する第3演算手段と、
     第3期間における前記駆動装置の速度の変化量を演算する第4演算手段と、
     前記第1演算手段、前記第2演算手段、前記第3演算手段及び前記第4演算手段の各演算結果に基づいて、前記駆動装置の加速度を減少させ始めるタイミングを決定する決定手段と、
    を備え、
     前記第1期間に、前記駆動装置の加速度は、時間が経過するに従って減少量が大きくなるように漸減し、
     前記第2期間に、前記駆動装置の加速度は、時間が経過するに従って減少量が小さくなるように漸減し、
     前記第3期間は前記第1期間及び前記第2期間の間の期間であり、前記駆動装置の加速度は前記第3期間に一定の割合で減少する
    請求項1に記載の制御装置。
    First calculating means for calculating a difference between a current speed of the driving device and a target set speed;
    Second calculating means for calculating an amount of change in speed of the driving device in the first period using a value of a rate by which the changing means increases or decreases an acceleration increase rate;
    Third calculating means for calculating the amount of change in the speed of the driving device in the second period using the value of the rate by which the changing means increases or decreases the acceleration increase rate;
    Fourth calculating means for calculating a change in speed of the driving device in a third period;
    Determining means for deciding the timing for starting to decrease the acceleration of the drive device based on the respective calculation results of the first calculation means, the second calculation means, the third calculation means and the fourth calculation means;
    With
    In the first period, the acceleration of the driving device gradually decreases so that the amount of decrease increases as time passes,
    In the second period, the acceleration of the driving device gradually decreases so that the amount of decrease decreases as time passes,
    2. The control device according to claim 1, wherein the third period is a period between the first period and the second period, and the acceleration of the driving device decreases at a constant rate in the third period.
  3.  巻戻し機によって巻戻された材料を巻取るための巻取り機と、
     前記巻取り機又は巻戻し機を駆動する駆動装置と、
    を備えた巻取り装置を制御するための制御装置であって、
     前記駆動装置の減速度減少率を一定の割合で増減させ、前記駆動装置の減速度を滑らかに変更させる変更手段
    を備えた制御装置。
    A winder for winding material unwound by the winder;
    A driving device for driving the winder or rewinder;
    A control device for controlling a winding device comprising:
    A control device comprising change means for increasing or decreasing a deceleration reduction rate of the drive device at a constant rate and smoothly changing the deceleration of the drive device.
  4.  前記駆動装置の現在の速度と目標設定速度との差を演算する第1演算手段と、
     前記変更手段が減速度減少率を増減させる割合の値を用いて、第1期間における前記駆動装置の速度の変化量を演算する第2演算手段と、
     前記変更手段が減速度減少率を増減させる割合の値を用いて、第2期間における前記駆動装置の速度の変化量を演算する第3演算手段と、
     第3期間における前記駆動装置の速度の変化量を演算する第4演算手段と、
     前記第1演算手段、前記第2演算手段、前記第3演算手段及び前記第4演算手段の各演算結果に基づいて、前記駆動装置の減速度を減少させ始めるタイミングを決定する決定手段と、
    を備え、
     前記第1期間に、前記駆動装置の減速度は、時間が経過するに従って減少量が大きくなるように漸減し、
     前記第2期間に、前記駆動装置の減速度は、時間が経過するに従って減少量が小さくなるように漸減し、
     前記第3期間は前記第1期間及び前記第2期間の間の期間であり、前記駆動装置の減速度は前記第3期間に一定の割合で減少する
    請求項3に記載の制御装置。
    First calculating means for calculating a difference between a current speed of the driving device and a target set speed;
    Second calculating means for calculating an amount of change in speed of the driving device in the first period using a value of a ratio by which the changing means increases or decreases the deceleration reduction rate;
    Third calculating means for calculating a change amount of the speed of the driving device in the second period using a value of a ratio by which the changing means increases or decreases the deceleration reduction rate;
    Fourth calculating means for calculating a change in speed of the driving device in a third period;
    Determining means for deciding the timing for starting to decrease the deceleration of the driving device based on the respective calculation results of the first calculation means, the second calculation means, the third calculation means and the fourth calculation means;
    With
    In the first period, the deceleration of the driving device gradually decreases so that the amount of decrease increases as time passes,
    In the second period, the deceleration of the driving device gradually decreases so that the amount of decrease decreases as time elapses,
    4. The control device according to claim 3, wherein the third period is a period between the first period and the second period, and the deceleration of the driving device decreases at a constant rate in the third period.
PCT/JP2013/072457 2013-08-22 2013-08-22 Control device WO2015025406A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2013/072457 WO2015025406A1 (en) 2013-08-22 2013-08-22 Control device
JP2015532655A JPWO2015025406A1 (en) 2013-08-22 2013-08-22 Control device
PH12016500248A PH12016500248A1 (en) 2013-08-22 2016-02-04 Control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/072457 WO2015025406A1 (en) 2013-08-22 2013-08-22 Control device

Publications (1)

Publication Number Publication Date
WO2015025406A1 true WO2015025406A1 (en) 2015-02-26

Family

ID=52483213

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072457 WO2015025406A1 (en) 2013-08-22 2013-08-22 Control device

Country Status (3)

Country Link
JP (1) JPWO2015025406A1 (en)
PH (1) PH12016500248A1 (en)
WO (1) WO2015025406A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61174066A (en) * 1985-01-30 1986-08-05 Hitachi Ltd Inertia tension compensative takeup/payoff device
JPH01321245A (en) * 1988-06-22 1989-12-27 Toshiba Corp Rewinder controller
JPH02215642A (en) * 1989-02-17 1990-08-28 Toshiba Corp Rounding reference generating method
JPH0991023A (en) * 1995-09-25 1997-04-04 Kataoka Mach Co Ltd Speed setting device for strip like sheet winding device
JP2004051370A (en) * 2002-07-19 2004-02-19 Watanabe Denki:Kk Automated web splicing device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003062629A (en) * 2001-08-23 2003-03-05 Hitachi Ltd Method and device for feeding material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61174066A (en) * 1985-01-30 1986-08-05 Hitachi Ltd Inertia tension compensative takeup/payoff device
JPH01321245A (en) * 1988-06-22 1989-12-27 Toshiba Corp Rewinder controller
JPH02215642A (en) * 1989-02-17 1990-08-28 Toshiba Corp Rounding reference generating method
JPH0991023A (en) * 1995-09-25 1997-04-04 Kataoka Mach Co Ltd Speed setting device for strip like sheet winding device
JP2004051370A (en) * 2002-07-19 2004-02-19 Watanabe Denki:Kk Automated web splicing device

Also Published As

Publication number Publication date
JPWO2015025406A1 (en) 2017-03-02
PH12016500248A1 (en) 2016-05-16

Similar Documents

Publication Publication Date Title
US9676578B2 (en) Roller-to-roller conveyance control apparatus
EP3171234B1 (en) Control device, control method, information processing program, and recording medium
US8405338B2 (en) Method for controlling an electric drive
US10315876B2 (en) Roller-to-roller conveyance control apparatus
JP2010162553A (en) Device and method for controlling rolling mill
JP4554480B2 (en) Motor control device
JP5128009B1 (en) Automatic wire connection device
WO2015025406A1 (en) Control device
JP2016093828A (en) Rolling control device, rolling control method and rolling control program
JP2009208957A (en) Tension control device and its control method, and transfer device with tension control device
JP5058397B1 (en) Wire travel device
JPH01321245A (en) Rewinder controller
JP2000184763A (en) Speed control method for roll driving motor
JP2793103B2 (en) How to stop the strip processing line
JP5223470B2 (en) Electric motor control device
CN112522847B (en) Cloth swinging control method, device and equipment
JPH1045331A (en) Tension control device in textile machinery
JP6385379B2 (en) Dancer control device, dancer control program and slitter device
JP2022084377A (en) Winder control system
CN113054888A (en) Motor control device and motor control method
JP2009120278A (en) Torque controller of paper payoff reel
KR20120004773A (en) Open loop winding system having hold of diameter calculation and torque limit selection
JPH0265676A (en) Rewinder control device
JP2011245501A (en) Steel sheet conveyance system and method for manufacturing the same
JPS61155152A (en) Tension control device in winder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13891715

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015532655

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12016500248

Country of ref document: PH

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201601826

Country of ref document: ID

122 Ep: pct application non-entry in european phase

Ref document number: 13891715

Country of ref document: EP

Kind code of ref document: A1