WO2015025392A1 - Transformer - Google Patents

Transformer Download PDF

Info

Publication number
WO2015025392A1
WO2015025392A1 PCT/JP2013/072360 JP2013072360W WO2015025392A1 WO 2015025392 A1 WO2015025392 A1 WO 2015025392A1 JP 2013072360 W JP2013072360 W JP 2013072360W WO 2015025392 A1 WO2015025392 A1 WO 2015025392A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage side
coil
transformer
tank
coil group
Prior art date
Application number
PCT/JP2013/072360
Other languages
French (fr)
Japanese (ja)
Inventor
敏弘 野田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2014504508A priority Critical patent/JPWO2015025392A1/en
Priority to PCT/JP2013/072360 priority patent/WO2015025392A1/en
Publication of WO2015025392A1 publication Critical patent/WO2015025392A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/08Cooling; Ventilating
    • H01F27/10Liquid cooling
    • H01F27/12Oil cooling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F30/00Fixed transformers not covered by group H01F19/00
    • H01F30/04Fixed transformers not covered by group H01F19/00 having two or more secondary windings, each supplying a separate load, e.g. for radio set power supplies

Definitions

  • the present invention relates to a transformer, and more particularly to a vehicle-mounted transformer.
  • Patent Document 1 Japanese Patent No. 4523076 is a prior document disclosing a transformer in which an iron core is provided between adjacent coil groups.
  • an iron core is provided between adjacent coil groups, thereby reducing the reactance while reducing the height and reducing the size.
  • Patent Document 2 is a prior art document that discloses a transformer for a vehicle that is provided with a partitioning member so as to divide the inside of the tank into two parts to reduce the size and weight.
  • the refrigerant flow path that flows inside the winding is divided into a first refrigerant flow path and a second refrigerant flow path by a partition member.
  • a cooling device that connects the first refrigerant flow path and the second refrigerant flow path on one end side of the tank and is connected to each of the first refrigerant flow path and the second refrigerant flow path on the other end side of the tank. It arrange
  • coolant may circulate through the 1st refrigerant flow path and the 2nd refrigerant flow path.
  • the tank has been made thinner.
  • a cooler provided outside the tank and a pipe for connecting the pump and the tank are connected to circulate and cool the insulating oil. Vibration propagates through the pipe to the side wall to which the pipe is connected.
  • the side wall is formed so as to have a strength that can withstand this vibration, the side wall becomes thick and becomes an obstacle to thinning the tank.
  • the present invention has been made in view of the above problems, and provides a transformer capable of reducing the reactance by reducing the size and weight while ensuring the strength of the side wall of the tank while reducing the thickness of the tank. For the purpose.
  • a transformer according to the present invention includes an iron core having a first leg and a second leg arranged at a distance from each other, a plurality of high-voltage side coils wound around the first leg, and the high-voltage side coil.
  • a first coil group including a plurality of low voltage side coils provided correspondingly and magnetically coupled to a corresponding high voltage side coil, a plurality of high voltage side coils wound around the second leg, and the high voltage side coil
  • a second coil group including a plurality of low-voltage coils that are magnetically coupled to the corresponding high-voltage coil, and the iron core, the first coil group, and the second coil group are accommodated in an immersion oil.
  • Each high-voltage coil receives a common single-phase AC power.
  • the low voltage side coil of the first coil group and the low voltage side coil of the second coil group are coupled to separate loads.
  • In the metal plate at least one end of the metal plate extends so as to be connected to the side wall of the tank.
  • the pump moves the insulating oil through the cooler between the first coil group side and the second coil group side in the tank separated by the metal plate on the one end side.
  • the transformer while reducing the thickness of the tank while ensuring the strength of the side wall of the tank, the transformer can be reduced in size and weight, and the reactance can be prevented from being lowered.
  • FIG. 3 is a view showing a VI-VI cross section of the transformer main body in FIG. 2 and currents and magnetic fluxes generated in the transformer main body.
  • FIG. 13 It is a circuit diagram which shows the structure of the alternating current train containing the transformer which concerns on Embodiment 3 of this invention. It is a plane sectional view showing the composition of the transformer concerning Embodiment 4 of the present invention. It is the perspective view which looked at the internal structure of the transformer of FIG. 13 from the direction shown by arrow XIV.
  • FIG. 1 is a cross-sectional plan view illustrating a configuration of a transformer according to Embodiment 1 of the present invention.
  • FIG. 2 is a perspective view of the internal configuration of the transformer of FIG. 1 as seen from the direction indicated by arrow II.
  • the transformer 100 according to Embodiment 1 of the present invention is a shell-type transformer.
  • the transformer 100 includes an iron core 110 having a first leg portion 111 and a second leg portion 112 that are arranged at a distance from each other.
  • the iron core 110 is composed of laminated magnetic steel plates.
  • the iron core 110 has one side surface and the other side surface that face each other, and a window portion W1, a window portion W2, and a window portion W3 that penetrate from one side surface to the other side surface.
  • the first leg portion 111 is located between the window portion W1 and the window portion W2.
  • the second leg portion 112 is located between the window portion W2 and the window portion W3.
  • the transformer 100 is provided corresponding to the plurality of high voltage side coils 1A and 1B wound around the first leg 111 and the high voltage side coils 1A and 1B, and is magnetically coupled to the corresponding high voltage side coils 1A and 1B.
  • the first coil group G1 including the plurality of low-voltage coils 2A and 2B.
  • the transformer 100 is provided corresponding to the plurality of high voltage side coils 11A and 11B wound around the second leg 112 and the high voltage side coils 11A and 11B, and the corresponding high voltage side coils 11A and 11B.
  • a second coil group G2 including a plurality of magnetically coupled low voltage side coils 12A, 12B is provided.
  • Each of high voltage side coils 1A, 1B, 11A, 11B and low voltage side coils 2A, 2B, 12A, 12B includes, for example, a plurality of stacked disk windings. Adjacent disk windings are electrically connected. Each disk winding in the high voltage side coils 1A, 1B, 11A, 11B and the low voltage side coils 2A, 2B, 12A, 12B is formed by a conductive wire having a rectangular cross section wound in an approximately elliptical shape.
  • the high voltage side coil 1A is provided between the low voltage side coil 2A and the low voltage side coil 2B at a position facing the low voltage side coil 2A, and is magnetically coupled to the low voltage side coil 2A.
  • the high voltage side coil 1B is provided at a position between the low voltage side coil 2B and the low voltage side coil 2B and is opposed to the low voltage side coil 2B, and is magnetically coupled to the low voltage side coil 2B.
  • the high voltage side coil 11A is provided between the low voltage side coil 12A and the low voltage side coil 12B at a position facing the low voltage side coil 12A, and is magnetically coupled to the low voltage side coil 12A.
  • the high voltage side coil 11B is provided between the low voltage side coil 12A and the low voltage side coil 12B and is opposed to the low voltage side coil 12B, and is magnetically coupled to the low voltage side coil 12B.
  • the high-voltage side coil and the low-voltage side coil in each coil group are wound around the leg part through the window parts on both sides of the leg part, and are laminated in the extending direction of the leg part. That is, in the first coil group G1, the high-voltage coils 1A and 1B and the low-voltage coils 2A and 2B are wound around the first leg 111 through the window W1 and the window W2, and the extending direction of the first leg 111 Are stacked.
  • the high voltage side coils 11A and 11B and the low voltage side coils 12A and 12B are wound around the second leg part 112 through the window part W2 and the window part W3, and are laminated in the extending direction of the second leg part 112. Has been.
  • the transformer 100 includes a tank 130 that houses the iron core 110, the first coil group G1, and the second coil group G2 in a state of being immersed in insulating oil, a cooler 140 that cools the insulating oil, and a pump 150 that circulates the insulating oil.
  • a cooler 140 such as an air cooling method or a water cooling method can be used.
  • the tank 130 has one side wall 138 and the other side wall 139 facing each other.
  • the iron core 110 is arranged inside the tank 130 so that the direction perpendicular to the one side wall 138 and the other side wall 139 and the lamination direction of the magnetic steel plates constituting the iron core 110 are substantially parallel.
  • An opening 131 and an opening 134 are formed in one side wall 138 of the tank 130.
  • An opening 132 and an opening 133 are formed in the other side wall 139 of the tank 130.
  • the tank 130 is filled with insulating oil for cooling the iron core 110, the high-voltage side coils 1A, 1B, 11A, and 11B and the low-voltage side coils 2A, 2B, 12A, and 12B.
  • the cooler 140 is located on the side of the one side wall 138 outside the tank 130.
  • the outlet of the cooler 140 and the opening 131 of the tank 130 are connected by a pipe 161.
  • the inlet of the cooler 140 and the opening 134 of the tank 130 are connected by a pipe 164.
  • the pump 150 is located outside the tank 130 on the other side wall 139 side.
  • the suction port of the pump 150 and the opening 132 of the tank 130 are connected by a pipe 162.
  • the discharge port of the pump 150 and the opening 133 of the tank 130 are connected by a pipe 163.
  • the transformer 100 includes a metal plate 135 positioned between the first leg 111 and the second leg 112 of the iron core 110. As shown in FIG. 2, the transformer main body 51 is composed of the iron core 110, the first coil group G ⁇ b> 1, the second coil group G ⁇ b> 2, and the metal plate 135.
  • the window W2 is divided into two by the metal plate 135 into the first coil group G1 side and the second coil group G2.
  • the metal plate 135 is made of a magnetic material.
  • the metal plate 1335 at least one end of the metal plate 135 extends so as to be connected to the side wall of the tank 130.
  • one end in the extending direction of the metal plate 135 is connected to one side wall 138 of the tank 130 facing each other.
  • the other end of the metal plate 135 in the extending direction is connected to the other side wall 139 of the tank 130 facing each other.
  • one end of the metal plate 135 and one side wall 138 of the tank 130 are welded and fixed to each other.
  • the other end of the metal plate 135 and the other side wall 139 of the tank 130 are welded and fixed to each other.
  • the space inside the tank 130 is divided into two by the metal plate 135 into the first coil group G1 side and the second coil group G2 side.
  • the opening 131 and the opening 132 of the tank 130 are located on the first coil group G1 side.
  • the opening 133 and the opening 134 of the tank 130 are located on the second coil group G2 side.
  • the insulating oil that has flowed from the opening 131 to the first coil group G1 side in the tank 130 as shown by the arrow 10 becomes the window W1 and the window as shown by the arrow 11. It passes through the first coil group G1 side of W2 and reaches the suction port of the pump 150 from the opening 132.
  • the insulating oil sucked into the pump 150 from the suction port is pressurized and sent out toward the discharge port as indicated by an arrow 12.
  • the insulating oil discharged from the discharge port of the pump 150 flows into the second coil group G2 side in the tank 130 from the opening 133 as shown by the arrow 13, and as shown by the arrow 14, the second coil group of the window W2. It passes through the G2 side and the window W3 and reaches the inlet of the cooler 140 through the opening 134.
  • the insulating oil that has flowed into the cooler 140 from the inlet flows toward the outlet as indicated by the arrow 15 while being cooled.
  • the insulating oil flowing out from the outlet of the cooler 140 flows into the first coil group G1 side in the tank 130 from the opening 131 as indicated by the arrow 10.
  • the pump 150 allows the insulating oil to pass through the cooler 140 between the first coil group G1 side and the second coil group G2 side in the tank 130 separated by one end side of the metal plate 135. To move. By circulating the insulating oil cooled by the cooler 140, the first coil group G1 and the second coil group G2 can be sequentially cooled.
  • the flow direction of the insulating oil may be reversed. That is, the insulating oil cooled by the cooler 140 may flow from the opening 134 to the second coil group G2 side in the tank 130. Further, the pump 150 may be positioned on the side of one side wall 138 outside the tank 130. In this case, the pipe 162 and the pipe 163 are connected to each other.
  • FIG. 3 is a cross-sectional plan view illustrating a configuration of a transformer according to a comparative example.
  • an opening 931 is formed in one side wall 938 of the tank 930.
  • An opening 932 is formed in the other side wall 939 of the tank 930.
  • the cooler 140 is located on the side of one side wall 938 outside the tank 930.
  • the outlet of the cooler 140 and the opening 931 of the tank 930 are connected by a pipe 161.
  • the pump 150 is located on the other side wall 939 side outside the tank 930.
  • the suction port of the pump 150 and the opening 932 of the tank 930 are connected by a pipe 162.
  • the discharge port of the pump 150 and the inlet of the cooler 140 are connected by a pipe 963 routed outside the tank 930.
  • the transformer 900 includes a metal plate 915 positioned between the first leg 111 and the second leg 112 of the iron core 110.
  • One end of the metal plate 915 in the extending direction is separated from one side wall 938 of the tank 930 facing each other.
  • the other end in the extending direction of the metal plate 915 is separated from the other side wall 939 of the tank 930 facing each other.
  • the metal plate 915 extends from one side surface of the iron core 110 to the other side surface.
  • the space inside the tank 930 is not divided.
  • the insulating oil that has flowed into the tank 930 from the opening 931 as shown by the arrow 90 passes through each window portion as shown by the arrow 93 and passes through the opening 932 to the suction port of the pump 150. To reach.
  • the insulating oil sucked into the pump 150 from the suction port is pressurized and sent out toward the discharge port as indicated by an arrow 94.
  • the insulating oil discharged from the discharge port of the pump 150 flows through the pipe 963 and reaches the inlet of the cooler 140.
  • the insulating oil that has flowed into the cooler 140 from the inlet flows toward the outlet as indicated by an arrow 95 while being cooled.
  • the insulating oil that has flowed out from the outlet of the cooler 140 flows into the tank 930 from the opening 931 as indicated by an arrow 90.
  • the insulating oil in the tank 930 is circulated without being divided into the first coil group G1 side and the second coil group G2 side. Therefore, the insulating oil flows uniformly in the tank 930 from the one side wall 938 side toward the other side wall 939 side.
  • FIG. 4 is a graph comparing the pressure and flow rate of the insulating oil flowing in the tank in the transformer according to the present embodiment and the transformer according to the comparative example.
  • the vertical axis represents pressure
  • the horizontal axis represents flow rate.
  • a curve indicating the relationship between the discharge flow rate (Q) and the discharge pressure (P) of the pump 150 is represented by a solid line 1
  • a resistance curve of the insulating oil flow path of the transformer 100 according to the present embodiment is represented by a solid line 2.
  • a resistance curve of the insulating oil flow path of the transformer 900 according to the example is indicated by a dotted line 3.
  • the pressure value is P 1 and the flow rate is Q 1 at the operating point of the pump 150 that is the intersection of the solid line 1 and the solid line 2.
  • the pressure value is P 2 and the flow rate Q 2 at the operating point of the pump 150 that is the intersection of the solid line 1 and the dotted line 3.
  • the flow path through which the insulating oil flows in the tank is a comparative example. Longer than such a transformer 900.
  • the transformer 900 according to the comparative example since the length of the pipe 963 is long, the flow path through which the insulating oil flows outside the tank is long compared to the transformer 100 according to the present embodiment.
  • the operating point of the pump 150 slightly larger than the pressure value P 2 of the transformer 900 the pressure value P 1 of the transformer 100 according to the present embodiment according to the comparative example.
  • the operating point of the pump 150 slightly smaller than the flow rate Q 2 of the transformer 900 to flow to Q 1 transformer 100 according to the present embodiment according to the comparative example.
  • the coil cooling performance with the insulating oil increases as the flow rate of the insulating oil increases.
  • the transformer 100 according to the present embodiment since the inside of the tank 130 is divided into the first coil group G1 side and the second coil group G2 side, each of the first coil group G1 and the second coil group G2 The flow rate of the insulating oil flowing through is the discharge flow rate Q 1 of the pump 150.
  • the flow rate of the insulating oil flowing through each of the first coil group G1 and the second coil group G2 is the discharge flow rate of the pump 150. the Q 2/2, which is half.
  • each of the first coil group G1 and the second coil group G2 is compared with the transformer 900 according to the comparative example.
  • the flow rate of the flowing insulating oil can be approximately doubled to improve the coil cooling efficiency.
  • the pipe 963 does not need to be routed outside the tank 930 unlike the transformer 900 according to the comparative example, and therefore, the tank 130 as compared with the transformer 900 according to the comparative example.
  • the transformer 100 can be reduced in size by shortening the pipe connecting the cooler 140.
  • one end in the extending direction of the metal plate 135 is connected to a position between the opening 131 and the opening 134 of the one side wall 138 of the tank 130.
  • the other end of the metal plate 135 in the extending direction is connected to a position between the opening 132 and the opening 133 on the other side wall 139 of the tank 130.
  • FIG. 5 is a circuit diagram showing a configuration of an AC train including a transformer according to the present embodiment.
  • the AC train 201 including the transformer 100 according to the present embodiment includes a pantograph 92, a transformer device 101, and motors MA and MB.
  • Transformer 101 includes a transformer body 51, converters 5A and 5B, and inverters 6A and 6B.
  • each coil is divided into a first coil group G1 and a second coil group G2. That is, the high voltage side coils 1A and 1B are obtained by dividing the high voltage side coil 1, the low voltage side coils 2A and 2B are obtained by dividing the low voltage side coil 2, and the high voltage side coils 11A and 11B are obtained by dividing the high voltage side coil 11.
  • the low voltage side coils 12 ⁇ / b> A and 12 ⁇ / b> B are obtained by dividing the low voltage side coil 12.
  • High-voltage side coil 1A has a first end connected to pantograph 92 and a second end.
  • High voltage side coil 1B has a first end connected to the second end of high voltage side coil 1A and a second end connected to a ground node to which a ground voltage is supplied.
  • High voltage side coil 11 ⁇ / b> A has a first end connected to pantograph 92 and a second end.
  • High voltage side coil 11B has a first end connected to the second end of high voltage side coil 11A and a second end connected to a ground node to which a ground voltage is supplied.
  • the low voltage side coil is provided corresponding to the high voltage side coil and is magnetically coupled to the corresponding high voltage side coil. That is, low voltage side coil 2A is magnetically coupled to high voltage side coil 1A, and has a first end connected to the first input terminal of converter 5A, and a second end.
  • the low voltage side coil 2B is magnetically coupled to the high voltage side coil 1B, and has a first end connected to the second end of the low voltage side coil 2A and a second end connected to the second input terminal of the converter 5A.
  • Low voltage side coil 12A is magnetically coupled to high voltage side coil 11A, and has a first end connected to a first input terminal of converter 5B, and a second end.
  • the low voltage side coil 12B is magnetically coupled to the high voltage side coil 11B, and has a first end connected to the second end of the low voltage side coil 12A and a second end connected to the second input terminal of the converter 5B.
  • FIG. 6 is a view showing a VI-VI cross section of the transformer main body in FIG. 2 and currents and magnetic fluxes generated in the transformer main body.
  • a single-phase AC voltage is supplied from the overhead wire 91 to the pantograph 92.
  • the AC voltage supplied from the overhead wire 91 is applied to the high voltage side coils 1A, 1B, 11A, and 11B via the pantograph 92. That is, the high-voltage side coil in each coil group receives a common single-phase AC power.
  • an alternating current IH flows through the high voltage side coils 1A, 1B, 11A, and 11B.
  • the main magnetic flux FH1 is generated in the iron core 110 by the alternating current IH flowing through the high-voltage side coils 1A and 1B. Then, the alternating current IL1 and the alternating voltage corresponding to the ratio of the number of turns of the low voltage side coil 2A and the number of turns of the high voltage side coil 1A are generated in the low voltage side coil 2A by the main magnetic flux FH1.
  • the main magnetic flux FH1 generates an alternating current IL1 and an alternating voltage in the low voltage side coil 2B according to the ratio of the number of turns of the low voltage side coil 2B and the number of turns of the high voltage side coil 1B.
  • the AC voltage obtained by stepping down the AC voltage applied to the high voltage side coils 1A and 1B is reduced. 2B, respectively.
  • the main magnetic flux FH11 is generated by the alternating current IH flowing through the high-voltage side coils 11A and 11B. Then, the alternating current IL11 and the alternating voltage corresponding to the ratio of the number of turns of the low voltage side coil 12A and the number of turns of the high voltage side coil 11A are generated in the low voltage side coil 12A by the main magnetic flux FH11.
  • the main magnetic flux FH11 generates an alternating current IL11 and an alternating voltage in the low voltage side coil 12B according to the ratio of the number of turns of the low voltage side coil 12B and the number of turns of the high voltage side coil 11B.
  • the number of turns of the low voltage side coils 12A and 12B is smaller than the number of turns of the high voltage side coils 11A and 11B, respectively, the AC voltage obtained by stepping down the AC voltage applied to the high voltage side coils 11A and 11B is reduced. 12B, respectively.
  • the alternating voltage induced in the low voltage side coils 2A and 2B is supplied to the converter 5A. Further, the AC voltage induced in low voltage side coils 12A and 12B is supplied to converter 5B.
  • Converter 5A converts the AC voltage supplied from low voltage side coils 2A and 2B into a DC voltage and outputs it to inverter 6A.
  • Converter 5B converts the AC voltage supplied from low voltage side coils 12A and 12B into a DC voltage and outputs the DC voltage to inverter 6B.
  • the inverter 6A converts the DC voltage received from the converter 5A into a three-phase AC voltage and outputs it to the motor MA.
  • Inverter 6B converts the DC voltage received from converter 5B into a three-phase AC voltage and outputs it to motor MB.
  • the motor MA is driven based on the three-phase AC voltage received from the inverter 6A.
  • Motor MB is driven based on the three-phase AC voltage received from inverter 6B.
  • the low voltage side coils 2A and 2B of the first coil group G1 and the low voltage side coils 12A and 12B of the second coil group G2 are coupled to separate loads.
  • the low voltage side coil and the high voltage side coil are divided into a plurality of coil groups, and a leg is provided for each coil group. And the low voltage
  • the height of the transformer that is, the length of the transformer in the extending direction of the legs can be reduced. Further, it is not necessary to increase the cross-sectional area of the conductive wire of the coil, and an increase in power loss in the coil can be prevented.
  • the power capacity of each coil group is halved.
  • the height of the entire transformer can be reduced.
  • FIG. 7 is a diagram showing the leakage magnetic flux in the transformer according to this embodiment.
  • leakage magnetic fluxes FKH ⁇ b> 1 and FKH ⁇ b> 11 that do not flow through the iron core 110 are generated in addition to the main magnetic fluxes FH ⁇ b> 1 and FH ⁇ b> 11 generated by the alternating current IH flowing through the high-voltage side coil.
  • leakage magnetic fluxes FKL1 and FKL11 that do not flow through the iron core 110 are generated by the alternating currents IL1 and IL11 that flow through the low-voltage side coil.
  • FIG. 8 is a diagram showing the main magnetic flux during one-side operation in the transformer according to the present embodiment.
  • the transformer main body 51 for example, even when the motor MB fails, it is possible to operate the motor MA alone using the coil group G1.
  • the high-voltage side coils 11A and 11B and the low-voltage side coils 12A and 12B do not function, that is, no current flows through the high-voltage side coils 11A and 11B and the low-voltage side coils 12A and 12B. Does not occur.
  • FIG. 9 is a diagram showing a leakage magnetic flux during one-side operation in a configuration in which it is assumed that the transformer according to this embodiment does not include a metal plate. As shown in FIG. 9, for example, if the motor MB fails and no current flows through the high voltage side coils 11A and 11B and the low voltage side coils 12A and 12B, the leakage magnetic fluxes FKH11 and FKL11 are not generated.
  • the transformer shown in FIG. 9 does not include the metal plate 135, the leakage magnetic fluxes FKH1 and FKL1 spread in the window W2, and the magnetic path length becomes long. For this reason, compared with the state shown in FIG. 7, the magnetomotive force in window part W2 becomes 1/2. That is, since the magnitude of the leakage magnetic flux in the window W2 is halved, the reactances of the low voltage side coils 2A and 2B and the high voltage side coils 1A and 1B are reduced.
  • the strength of the magnetic field is inversely proportional to the magnetic path length.
  • the weak magnetic field means that the magnetic flux density is small and the self-inductance of the coil is small.
  • reactance is greatly affected by leakage inductance caused by a leakage magnetic field. Therefore, when the magnetic path length is increased, the magnetic field is weakened and the self-inductance of the coil is reduced. If it does so, a reactance will fall because leakage inductance falls.
  • FIG. 10 is a diagram showing a leakage magnetic flux at the time of one-side operation in the transformer according to the present embodiment. As shown in FIG. 10, for example, when the motor MB fails and no current flows through the high voltage side coils 11A and 11B and the low voltage side coils 12A and 12B, the leakage magnetic fluxes FKH11 and FKL11 are not generated.
  • the magnetomotive force in the window W2 is halved compared to the state shown in FIG.
  • the leakage fluxes FKH1 and FKL1 flow through the metal plate 135.
  • the leakage magnetic fluxes FKH1 and FKL1 do not spread within the window portion W2, so that the magnetic path lengths of the leakage magnetic fluxes FKH1 and FKL1 can be halved compared to the state shown in FIG.
  • the metal plate 135 is made of a magnetic material, a magnetic path can be formed similarly to the iron core 110.
  • the reactances of the low voltage side coils 2A and 2B and the high voltage side coils 1A and 1B are the same as the state shown in FIG. Therefore, the transformer main body 51 can prevent the reactances of the low-voltage side coils 2A and 2B and the high-voltage side coils 1A and 1B from decreasing even during one-side operation, and a stable reactance can be obtained. .
  • the transformer according to the present embodiment is a single-phase transformer.
  • Single-phase transformers usually do not require interphase iron cores like three-phase transformers.
  • a metal plate is disposed on the iron core, and for example, when one motor fails and only the other motor is operated, the magnetic path length is prevented from increasing, and the reactance is reduced. Is preventing.
  • FIG. 11 is a circuit diagram showing a configuration of an AC train including a transformer according to Embodiment 2 of the present invention.
  • an AC train 205 including a transformer according to Embodiment 2 of the present invention includes a pantograph 92, a transformer 105, and motors MA, MB, MC, MD.
  • the transformer device 105 includes a transformer main body 55, converters 5A, 5B, 5C, and 5D, and inverters 6A, 6B, 6C, and 6D.
  • the transformer main body 55 includes coil groups G1 and G2.
  • the coil group G1 includes high-voltage side coils 1A and 1B and low-voltage side coils 2A and 2B.
  • the coil group G2 includes high voltage side coils 11A and 11B and low voltage side coils 12A and 12B.
  • the low voltage side coils 2A, 2B, 12A, 12B are coupled to separate loads. That is, the low voltage side coil 2A is magnetically coupled to the high voltage side coil 1A, and has a first end connected to the first input terminal of the converter 5A and a second end connected to the second input terminal of the converter 5A.
  • Have Low voltage side coil 2B is magnetically coupled to high voltage side coil 1B, and has a first end connected to the first input terminal of converter 5C and a second end connected to the second input terminal of converter 5C. .
  • Low voltage side coil 12A is magnetically coupled to high voltage side coil 11A and has a first end connected to the first input terminal of converter 5B and a second end connected to the second input terminal of converter 5B.
  • Low voltage side coil 12B is magnetically coupled to high voltage side coil 11B and has a first end connected to the first input terminal of converter 5D and a second end connected to the second input terminal of converter 5D. .
  • the single-phase AC voltage supplied from the overhead wire 91 is supplied to the high-voltage side coils 1A, 1B, 11A, and 11B via the pantograph 92.
  • An alternating voltage is induced in the low voltage side coils 2A and 12A by the alternating voltage supplied to the high voltage side coils 1A and 11A, respectively.
  • An AC voltage is induced in the low voltage side coils 2B and 12B by the AC voltage supplied to the high voltage side coils 1B and 11B, respectively.
  • the converter 5A converts the AC voltage induced in the low voltage side coil 2A into a DC voltage.
  • Converter 5B converts the AC voltage induced in low voltage side coil 12A into a DC voltage.
  • Converter 5C converts the AC voltage induced in low voltage side coil 2B into a DC voltage.
  • Converter 5D converts the AC voltage induced in low voltage side coil 12B into a DC voltage.
  • the inverter 6A converts the DC voltage received from the converter 5A into a three-phase AC voltage and outputs it to the motor MA.
  • Inverter 6B converts the DC voltage received from converter 5B into a three-phase AC voltage and outputs it to motor MB.
  • Inverter 6C converts the DC voltage received from converter 5C into a three-phase AC voltage and outputs it to motor MC.
  • Inverter 6D converts the DC voltage received from converter 5D into a three-phase AC voltage and outputs it to motor MD.
  • the motor MA is driven based on the three-phase AC voltage received from the inverter 6A.
  • Motor MB is driven based on the three-phase AC voltage received from inverter 6B.
  • Motor MC is driven based on the three-phase AC voltage received from inverter 6C.
  • Motor MD is driven based on the three-phase AC voltage received from inverter 6D.
  • FIG. 12 is a circuit diagram showing a configuration of an AC train including a transformer according to Embodiment 3 of the present invention.
  • an AC train 206 including a transformer according to Embodiment 3 of the present invention includes a pantograph 92, a transformer device 106, and motors MA, MB, MC, MD.
  • the transformer device 106 includes a transformer main body 56, converters 5A, 5B, 5C, and 5D, and inverters 6A, 6B, 6C, and 6D.
  • the transformer main body 56 includes coil groups G1 and G2.
  • the coil group G1 includes high-voltage side coils 1A and 1B and low-voltage side coils 2A and 2B.
  • the coil group G2 includes high voltage side coils 11A and 11B and low voltage side coils 12A and 12B.
  • the high voltage side coils 1A, 1B, 11A, and 11B are connected in parallel to each other, and the low voltage side coils 2A, 2B, 12A, and 12B are coupled to separate loads. That is, the high voltage side coil 1A has a first end connected to the pantograph 92 and a second end connected to a ground node to which a ground voltage is supplied. High-voltage side coil 1B has a first end connected to pantograph 92 and a second end connected to a ground node to which a ground voltage is supplied. High voltage side coil 11A has a first end connected to pantograph 92 and a second end connected to a ground node to which a ground voltage is supplied. High voltage side coil 11B has a first end connected to pantograph 92 and a second end connected to a ground node to which a ground voltage is supplied.
  • Low voltage side coil 2A is magnetically coupled to high voltage side coil 1A and has a first end connected to the first input terminal of converter 5A and a second end connected to the second input terminal of converter 5A.
  • Low voltage side coil 2B is magnetically coupled to high voltage side coil 1B, and has a first end connected to the first input terminal of converter 5C and a second end connected to the second input terminal of converter 5C.
  • Low voltage side coil 12A is magnetically coupled to high voltage side coil 11A and has a first end connected to the first input terminal of converter 5B and a second end connected to the second input terminal of converter 5B.
  • Low voltage side coil 12B is magnetically coupled to high voltage side coil 11B and has a first end connected to the first input terminal of converter 5D and a second end connected to the second input terminal of converter 5D.
  • the single-phase AC voltage supplied from the overhead wire 91 is supplied to the high-voltage side coils 1A, 1B, 11A, and 11B via the pantograph 92.
  • An alternating voltage is induced in the low voltage side coils 2A and 12A by the alternating voltage supplied to the high voltage side coils 1A and 11A, respectively.
  • An AC voltage is induced in the low voltage side coils 2B and 12B by the AC voltage supplied to the high voltage side coils 1B and 11B, respectively.
  • the converter 5A converts the AC voltage induced in the low voltage side coil 2A into a DC voltage.
  • Converter 5B converts the AC voltage induced in low voltage side coil 12A into a DC voltage.
  • Converter 5C converts the AC voltage induced in low voltage side coil 2B into a DC voltage.
  • Converter 5D converts the AC voltage induced in low voltage side coil 12B into a DC voltage.
  • the inverter 6A converts the DC voltage received from the converter 5A into a three-phase AC voltage and outputs it to the motor MA.
  • Inverter 6B converts the DC voltage received from converter 5B into a three-phase AC voltage and outputs it to motor MB.
  • Inverter 6C converts the DC voltage received from converter 5C into a three-phase AC voltage and outputs it to motor MC.
  • Inverter 6D converts the DC voltage received from converter 5D into a three-phase AC voltage and outputs it to motor MD.
  • the motor MA is driven based on the three-phase AC voltage received from the inverter 6A.
  • Motor MB is driven based on the three-phase AC voltage received from inverter 6B.
  • Motor MC is driven based on the three-phase AC voltage received from inverter 6C.
  • Motor MD is driven based on the three-phase AC voltage received from inverter 6D.
  • FIG. 13 is a cross-sectional plan view illustrating a configuration of a transformer according to Embodiment 4 of the present invention.
  • FIG. 14 is a perspective view of the internal configuration of the transformer of FIG. 13 as seen from the direction indicated by arrow XIV.
  • the transformer 200 according to the fourth embodiment of the present invention is a shell type transformer.
  • the transformer 200 includes a tank 230 that houses the iron core 110, the first coil group G1, and the second coil group G2 in a state of being immersed in insulating oil.
  • the tank 230 has one side wall 238 and the other side wall 239 facing each other.
  • the iron core 110 is arranged inside the tank 230 so that the direction perpendicular to the one side wall 238 and the other side wall 239 and the lamination direction of the magnetic steel plates constituting the iron core 110 are substantially parallel.
  • An opening 231 and an opening 232 are formed in one side wall 238 of the tank 230.
  • the tank 230 is filled with insulating oil that cools the iron core 110, the high-voltage side coils 1A, 1B, 11A, and 11B and the low-voltage side coils 2A, 2B, 12A, and 12B.
  • the cooler 140 is located on the side of one side wall 238 outside the tank 230.
  • the outlet of the cooler 140 and the opening 231 of the tank 230 are connected by a pipe 161.
  • the pump 150 is located on the one side wall 238 side outside the tank 230.
  • the suction port of the pump 150 and the opening 232 of the tank 230 are connected by a pipe 162.
  • the discharge port of the pump 150 and the inflow port of the cooler 140 are connected by a pipe 263.
  • the transformer 200 includes a metal plate 235 positioned between the first leg 111 and the second leg 112 of the iron core 110. As shown in FIG. 14, the transformer main body 52 is configured by the iron core 110, the first coil group G ⁇ b> 1, the second coil group G ⁇ b> 2, and the metal plate 235.
  • the metal plate 235 divides the window W2 into two parts, the first coil group G1 side and the second coil group G2.
  • the metal plate 235 is made of a magnetic material.
  • one end in the extending direction of the metal plate 235 is connected to one side wall 238 of the tank 230 facing each other.
  • the other end of the metal plate 235 in the extending direction is separated from the other side wall 239 of the tank 230 facing each other.
  • one end of the metal plate 235 and one side wall 238 of the tank 230 are welded and fixed to each other.
  • the other end surface of the metal plate 235 is located on the same plane as the other side surface of the iron core 110.
  • the metal plate 235 divides the space on one side wall 238 side into two into a first coil group G1 side and a second coil group G2 side inside the tank 130.
  • the opening 231 of the tank 230 is located on the first coil group G1 side.
  • the opening 232 of the tank 230 is located on the second coil group G2 side.
  • the insulating oil that has flowed into the first coil group G1 side in the tank 230 from the opening 231 as shown by the arrow 20 is, as shown by the arrow 21, the window W1 and the window. It passes through the first coil group G1 side of W2.
  • the insulating oil that has reached the side of the other side wall 239 in the tank 130 flows from the first coil group G1 side to the second coil group G2 side as indicated by the arrow 22.
  • the insulating oil that has flowed into the second coil group G2 side passes through the second coil group G2 side of the window W2 and the window W3 as indicated by the arrow 23 and reaches the suction port of the pump 150 from the opening 232.
  • the insulating oil sucked into the pump 150 from the suction port is pressurized and sent out toward the discharge port as indicated by an arrow 24.
  • the insulating oil discharged from the discharge port of the pump 150 reaches the inlet of the cooler 140 as indicated by an arrow 25.
  • the insulating oil that has flowed into the cooler 140 from the inlet flows toward the outlet as indicated by an arrow 25 while being cooled.
  • the insulating oil flowing out from the outlet of the cooler 140 flows into the first coil group G1 side in the tank 230 from the opening 231 as indicated by an arrow 20.
  • the pump 150 allows the insulating oil to pass through the cooler 140 between the first coil group G1 side and the second coil group G2 side in the tank 230 separated by one end side of the metal plate 235. To move. By circulating the insulating oil cooled by the cooler 140, the first coil group G1 and the second coil group G2 can be sequentially cooled.
  • the flow direction of the insulating oil may be reversed. That is, the insulating oil cooled by the cooler 140 may flow from the opening 232 to the second coil group G2 side in the tank 230.
  • the metal plate 235 by causing the metal plate 235 to function as a partition plate, insulation that flows in each of the first coil group G1 and the second coil group G2 as compared with the transformer 900 according to the comparative example.
  • the oil flow rate can be doubled to improve coil cooling efficiency.
  • the pipe 963 does not need to be routed outside the tank 930 unlike the transformer 900 according to the comparative example, and therefore the tank 230 compared with the transformer 900 according to the comparative example.
  • the transformer 200 can be reduced in size by shortening the pipe connecting the cooler 140.
  • the piping since the piping is provided only on the one side wall 238 side of the tank 230, the size can be further reduced as compared with the transformer 100 according to the first embodiment.
  • one end in the extending direction of the metal plate 235 is connected to a position between the opening 231 and the opening 232 of the one side wall 238 of the tank 230.
  • the metal plate 235 function as a reinforcing plate, it is possible to ensure the strength of the side wall of the tank while reducing the thickness of the tank. As a result, the transformer 200 can be reduced in size and weight.
  • the transformer main body 52 it is possible to prevent the reactances of the low voltage side coils 2A and 2B and the high voltage side coils 1A and 1B from being lowered during one-side operation, and a stable reactance can be obtained.

Abstract

A transformer is provided with: a core (110) comprising a first leg part (111) and a second leg part (112); a first coil group (G1) comprising a plurality of high-pressure-side coils wound around the first leg part (111), and a plurality of low-pressure-side coils; a second coil group (G2) comprising a plurality of high-pressure-side coils wound around the second leg part (112), and a plurality of low-pressure-side coils; a tank (130) housing the core, the first coil group (G1), and the second coil group (G2) in a state of being immersed in insulating oil; a cooler (140) which cools the insulating oil; a pump (150) which circulates the insulating oil; and a metal plate (135) which is positioned between the first leg part (111) and the second leg part (112). The low-pressure-side coil of the first coil group (G1) and the low-pressure-side coil of the second coil group (G2) are coupled to separate loads. For the metal plate (135), at least one end of the metal plate (135) is extended so as to be connected to a sidewall (138) of the tank (130). The pump (150) causes the insulating oil to pass through the cooler (140) and to move in between the first coil group (G1) side and the second coil group (G2) side, which are separated by the metal plate (135) on the one end side, within the tank (130).

Description

変圧器Transformer
 本発明は、変圧器に関し、特に、車載用変圧器に関する。 The present invention relates to a transformer, and more particularly to a vehicle-mounted transformer.
 隣り合うコイルグループ間に鉄心が設けられた変圧器を開示した先行文献として、特許第4523076号公報(特許文献1)がある。特許文献1に記載された変圧器においては、隣り合うコイルグループ間に鉄心を設けることにより、高さを低減して小型化を図りつつリアクタンスの低下を防止している。 Japanese Patent No. 4523076 (Patent Document 1) is a prior document disclosing a transformer in which an iron core is provided between adjacent coil groups. In the transformer described in Patent Document 1, an iron core is provided between adjacent coil groups, thereby reducing the reactance while reducing the height and reducing the size.
 タンクの内部を2分するように仕切部材を設けて小型化および軽量化を図った車両用変圧器を開示した先行文献として、国際公開第2008/007513号公報(特許文献2)がある。特許文献2に記載された車両用変圧器においては、仕切部材によって巻線の内部を流れる冷媒の流路を第1の冷媒流路と第2の冷媒流路とに分割している。 International Publication No. 2008/007513 (Patent Document 2) is a prior art document that discloses a transformer for a vehicle that is provided with a partitioning member so as to divide the inside of the tank into two parts to reduce the size and weight. In the vehicular transformer described in Patent Document 2, the refrigerant flow path that flows inside the winding is divided into a first refrigerant flow path and a second refrigerant flow path by a partition member.
 タンクの一端側で第1の冷媒流路と第2の冷媒流路とを連通させ、タンクの他端側に第1の冷媒流路および第2の冷媒流路の各々に接続した冷却装置を配置して、冷媒が第1の冷媒流路と第2の冷媒流路とを循環して流れるようにしている。 A cooling device that connects the first refrigerant flow path and the second refrigerant flow path on one end side of the tank and is connected to each of the first refrigerant flow path and the second refrigerant flow path on the other end side of the tank. It arrange | positions so that a refrigerant | coolant may circulate through the 1st refrigerant flow path and the 2nd refrigerant flow path.
特許第4523076号公報Japanese Patent No. 4523076 国際公開第2008/007513号公報International Publication No. 2008/007513
 変圧器の小型化および軽量化のために、タンクの薄型化が図られている。タンクの側壁には、絶縁油を循環冷却するためにタンク外に設けられた冷却器およびポンプとタンクとを連結する配管が接続される。この配管が接続された側壁には、配管を通じて振動が伝播する。この振動に耐えられる強度を有するように側壁を形成した場合、側壁が厚くなってタンクの薄型化の障害となる。 To reduce the size and weight of the transformer, the tank has been made thinner. To the side wall of the tank, a cooler provided outside the tank and a pipe for connecting the pump and the tank are connected to circulate and cool the insulating oil. Vibration propagates through the pipe to the side wall to which the pipe is connected. When the side wall is formed so as to have a strength that can withstand this vibration, the side wall becomes thick and becomes an obstacle to thinning the tank.
 本発明は上記の問題点に鑑みてなされたものであって、タンクを薄型化しつつタンクの側壁の強度を確保して小型化および軽量化を図るとともにリアクタンスの低下も防止できる変圧器を提供することを目的とする。 The present invention has been made in view of the above problems, and provides a transformer capable of reducing the reactance by reducing the size and weight while ensuring the strength of the side wall of the tank while reducing the thickness of the tank. For the purpose.
 本発明に基づく変圧器は、互いに間隔を置いて並ぶ第1脚部および第2脚部を有する鉄心と、第1脚部に巻回された複数の高圧側コイル、および、この高圧側コイルに対応して設けられて対応の高圧側コイルと磁気結合された複数の低圧側コイルを含む第1コイルグループと、第2脚部に巻回された複数の高圧側コイル、および、この高圧側コイルに対応して設けられて対応の高圧側コイルと磁気結合された複数の低圧側コイルを含む第2コイルグループと、鉄心、第1コイルグループおよび第2コイルグループを絶縁油に浸漬した状態で収容するタンクと、絶縁油を冷却する冷却器と、絶縁油を循環させるポンプと、第1脚部と第2脚部との間に位置する金属板とを備える。各高圧側コイルは共通の単相交流電力を受ける。第1コイルグループの低圧側コイルと第2コイルグループの低圧側コイルとは別個の負荷に結合されている。金属板においては、金属板の少なくとも一端がタンクの側壁に接続されるように延在している。ポンプは、上記一端側の金属板によって隔てられているタンク内の第1コイルグループ側と第2コイルグループ側との間において、絶縁油を冷却器を通過させて移動させる。 A transformer according to the present invention includes an iron core having a first leg and a second leg arranged at a distance from each other, a plurality of high-voltage side coils wound around the first leg, and the high-voltage side coil. A first coil group including a plurality of low voltage side coils provided correspondingly and magnetically coupled to a corresponding high voltage side coil, a plurality of high voltage side coils wound around the second leg, and the high voltage side coil And a second coil group including a plurality of low-voltage coils that are magnetically coupled to the corresponding high-voltage coil, and the iron core, the first coil group, and the second coil group are accommodated in an immersion oil. A tank for cooling the insulating oil, a pump for circulating the insulating oil, and a metal plate positioned between the first leg portion and the second leg portion. Each high-voltage coil receives a common single-phase AC power. The low voltage side coil of the first coil group and the low voltage side coil of the second coil group are coupled to separate loads. In the metal plate, at least one end of the metal plate extends so as to be connected to the side wall of the tank. The pump moves the insulating oil through the cooler between the first coil group side and the second coil group side in the tank separated by the metal plate on the one end side.
 本発明によれば、タンクを薄型化しつつタンクの側壁の強度を確保して変圧器の小型化および軽量化を図るとともにリアクタンスの低下も防止できる。 According to the present invention, while reducing the thickness of the tank while ensuring the strength of the side wall of the tank, the transformer can be reduced in size and weight, and the reactance can be prevented from being lowered.
本発明の実施形態1に係る変圧器の構成を示す平面断面図である。It is a plane sectional view showing composition of a transformer concerning Embodiment 1 of the present invention. 図1の変圧器の内部構成を矢印IIで示す方向から見た斜視図である。It is the perspective view which looked at the internal structure of the transformer of FIG. 1 from the direction shown by arrow II. 比較例に係る変圧器の構成を示す平面断面図である。It is a plane sectional view showing the composition of the transformer concerning a comparative example. 同実施形態に係る変圧器と比較例に係る変圧器とにおいて、タンク内を流れる絶縁油の圧力および流量を比較したグラフである。It is the graph which compared the pressure and flow volume of the insulating oil which flow in the tank in the transformer which concerns on the embodiment, and the transformer which concerns on a comparative example. 同実施形態に係る変圧器を含む交流電車の構成を示す回路図である。It is a circuit diagram which shows the structure of the AC train containing the transformer which concerns on the same embodiment. 図2における変圧器本体部のVI-VI断面およびこの変圧器本体部において発生する電流および磁束を示す図である。FIG. 3 is a view showing a VI-VI cross section of the transformer main body in FIG. 2 and currents and magnetic fluxes generated in the transformer main body. 同実施形態に係る変圧器における漏れ磁束を示す図である。It is a figure which shows the leakage magnetic flux in the transformer which concerns on the same embodiment. 同実施形態に係る変圧器における片側運転時の主磁束を示す図である。It is a figure which shows the main magnetic flux at the time of the one side operation | movement in the transformer which concerns on the same embodiment. 同実施形態に係る変圧器が金属板を備えないと仮定した構成における片側運転時の漏れ磁束を示す図である。It is a figure which shows the leakage magnetic flux at the time of the one-side driving | running in the structure assumed that the transformer which concerns on the same embodiment is not provided with a metal plate. 同実施形態に係る変圧器における片側運転時の漏れ磁束を示す図である。It is a figure which shows the leakage magnetic flux at the time of the one-side driving | operation in the transformer which concerns on the same embodiment. 本発明の実施形態2に係る変圧器を含む交流電車の構成を示す回路図である。It is a circuit diagram which shows the structure of the alternating current train containing the transformer which concerns on Embodiment 2 of this invention. 本発明の実施形態3に係る変圧器を含む交流電車の構成を示す回路図である。It is a circuit diagram which shows the structure of the alternating current train containing the transformer which concerns on Embodiment 3 of this invention. 本発明の実施形態4に係る変圧器の構成を示す平面断面図である。It is a plane sectional view showing the composition of the transformer concerning Embodiment 4 of the present invention. 図13の変圧器の内部構成を矢印XIVで示す方向から見た斜視図である。It is the perspective view which looked at the internal structure of the transformer of FIG. 13 from the direction shown by arrow XIV.
 以下、本発明の実施形態1に係る変圧器について図面を参照して説明する。以下の実施形態の説明においては、図中の同一または相当部分には同一符号を付して、その説明は繰り返さない。 Hereinafter, a transformer according to Embodiment 1 of the present invention will be described with reference to the drawings. In the following description of the embodiments, the same or corresponding parts in the drawings are denoted by the same reference numerals, and the description thereof will not be repeated.
 (実施形態1)
 図1は、本発明の実施形態1に係る変圧器の構成を示す平面断面図である。図2は、図1の変圧器の内部構成を矢印IIで示す方向から見た斜視図である。図1,2に示すように、本発明の実施形態1に係る変圧器100は、外鉄型(Shell-Type)の変圧器である。
(Embodiment 1)
FIG. 1 is a cross-sectional plan view illustrating a configuration of a transformer according to Embodiment 1 of the present invention. FIG. 2 is a perspective view of the internal configuration of the transformer of FIG. 1 as seen from the direction indicated by arrow II. As shown in FIGS. 1 and 2, the transformer 100 according to Embodiment 1 of the present invention is a shell-type transformer.
 変圧器100は、互いに間隔を置いて並ぶ第1脚部111および第2脚部112を有する鉄心110を備える。鉄心110は、積層された磁性鋼板によって構成されている。鉄心110は、互いに対向する一方の側面および他方の側面と、一方の側面から他方の側面へ貫通する窓部W1、窓部W2および窓部W3とを有する。第1脚部111は、窓部W1と窓部W2との間に位置する。第2脚部112は、窓部W2と窓部W3との間に位置する。 The transformer 100 includes an iron core 110 having a first leg portion 111 and a second leg portion 112 that are arranged at a distance from each other. The iron core 110 is composed of laminated magnetic steel plates. The iron core 110 has one side surface and the other side surface that face each other, and a window portion W1, a window portion W2, and a window portion W3 that penetrate from one side surface to the other side surface. The first leg portion 111 is located between the window portion W1 and the window portion W2. The second leg portion 112 is located between the window portion W2 and the window portion W3.
 変圧器100は、第1脚部111に巻回された複数の高圧側コイル1A,1B、および、高圧側コイル1A,1Bに対応して設けられて対応の高圧側コイル1A,1Bと磁気結合された複数の低圧側コイル2A,2Bを含む第1コイルグループG1を備える。 The transformer 100 is provided corresponding to the plurality of high voltage side coils 1A and 1B wound around the first leg 111 and the high voltage side coils 1A and 1B, and is magnetically coupled to the corresponding high voltage side coils 1A and 1B. The first coil group G1 including the plurality of low- voltage coils 2A and 2B.
 また、変圧器100は、第2脚部112に巻回された複数の高圧側コイル11A,11B、および、高圧側コイル11A,11Bに対応して設けられて対応の高圧側コイル11A,11Bと磁気結合された複数の低圧側コイル12A,12Bを含む第2コイルグループG2を備える。 Moreover, the transformer 100 is provided corresponding to the plurality of high voltage side coils 11A and 11B wound around the second leg 112 and the high voltage side coils 11A and 11B, and the corresponding high voltage side coils 11A and 11B. A second coil group G2 including a plurality of magnetically coupled low voltage side coils 12A, 12B is provided.
 高圧側コイル1A,1B,11A,11Bおよび低圧側コイル2A,2B,12A,12Bの各々は、たとえば、複数積層された円盤巻線を含む。互いに隣り合う円盤巻線同士は、電気的に接続されている。高圧側コイル1A,1B,11A,11Bおよび低圧側コイル2A,2B,12A,12Bにおける各円盤巻線は、略楕円状に巻回された横断面矩形状の導電線によって形成されている。 Each of high voltage side coils 1A, 1B, 11A, 11B and low voltage side coils 2A, 2B, 12A, 12B includes, for example, a plurality of stacked disk windings. Adjacent disk windings are electrically connected. Each disk winding in the high voltage side coils 1A, 1B, 11A, 11B and the low voltage side coils 2A, 2B, 12A, 12B is formed by a conductive wire having a rectangular cross section wound in an approximately elliptical shape.
 高圧側コイル1Aは、低圧側コイル2Aと低圧側コイル2Bとの間であって低圧側コイル2Aに対向する位置に設けられ、低圧側コイル2Aと磁気結合されている。高圧側コイル1Bは、低圧側コイル2Aと低圧側コイル2Bとの間であって低圧側コイル2Bに対向する位置に設けられ、低圧側コイル2Bと磁気結合されている。 The high voltage side coil 1A is provided between the low voltage side coil 2A and the low voltage side coil 2B at a position facing the low voltage side coil 2A, and is magnetically coupled to the low voltage side coil 2A. The high voltage side coil 1B is provided at a position between the low voltage side coil 2B and the low voltage side coil 2B and is opposed to the low voltage side coil 2B, and is magnetically coupled to the low voltage side coil 2B.
 高圧側コイル11Aは、低圧側コイル12Aと低圧側コイル12Bとの間であって低圧側コイル12Aに対向する位置に設けられ、低圧側コイル12Aと磁気結合されている。高圧側コイル11Bは、低圧側コイル12Aと低圧側コイル12Bとの間であって低圧側コイル12Bに対向する位置に設けられ、低圧側コイル12Bと磁気結合されている。 The high voltage side coil 11A is provided between the low voltage side coil 12A and the low voltage side coil 12B at a position facing the low voltage side coil 12A, and is magnetically coupled to the low voltage side coil 12A. The high voltage side coil 11B is provided between the low voltage side coil 12A and the low voltage side coil 12B and is opposed to the low voltage side coil 12B, and is magnetically coupled to the low voltage side coil 12B.
 各コイルグループにおける高圧側コイルおよび低圧側コイルは、脚部の両隣の各窓部を通してこの脚部に巻回され、この脚部の延伸方向に積層されている。すなわち、第1コイルグループG1において、高圧側コイル1Aおよび1Bならびに低圧側コイル2Aおよび2Bは、窓部W1および窓部W2を通して第1脚部111に巻回され、第1脚部111の延伸方向に積層されている。 The high-voltage side coil and the low-voltage side coil in each coil group are wound around the leg part through the window parts on both sides of the leg part, and are laminated in the extending direction of the leg part. That is, in the first coil group G1, the high- voltage coils 1A and 1B and the low- voltage coils 2A and 2B are wound around the first leg 111 through the window W1 and the window W2, and the extending direction of the first leg 111 Are stacked.
 第2コイルグループG2において、高圧側コイル11Aおよび11Bならびに低圧側コイル12Aおよび12Bは、窓部W2および窓部W3を通して第2脚部112に巻回され、第2脚部112の延伸方向に積層されている。 In the second coil group G2, the high voltage side coils 11A and 11B and the low voltage side coils 12A and 12B are wound around the second leg part 112 through the window part W2 and the window part W3, and are laminated in the extending direction of the second leg part 112. Has been.
 変圧器100は、鉄心110、第1コイルグループG1および第2コイルグループG2を絶縁油に浸漬した状態で収容するタンク130と、絶縁油を冷却する冷却器140と、絶縁油を循環させるポンプ150とを備える。冷却器140としては、空冷方式または水冷方式などの冷却器を用いることができる。 The transformer 100 includes a tank 130 that houses the iron core 110, the first coil group G1, and the second coil group G2 in a state of being immersed in insulating oil, a cooler 140 that cools the insulating oil, and a pump 150 that circulates the insulating oil. With. As the cooler 140, a cooler such as an air cooling method or a water cooling method can be used.
 タンク130は、互いに対向する一方の側壁138と他方の側壁139とを有する。一方の側壁138および他方の側壁139に直交する方向と、鉄心110を構成する磁性鋼板の積層方向とが略平行になるように、タンク130の内部に鉄心110が配置されている。 The tank 130 has one side wall 138 and the other side wall 139 facing each other. The iron core 110 is arranged inside the tank 130 so that the direction perpendicular to the one side wall 138 and the other side wall 139 and the lamination direction of the magnetic steel plates constituting the iron core 110 are substantially parallel.
 タンク130の一方の側壁138に開口131および開口134が形成されている。タンク130の他方の側壁139に開口132および開口133が形成されている。タンク130の内部には、鉄心110と高圧側コイル1A,1B,11A,11Bと低圧側コイル2A,2B,12A,12Bとを冷却する絶縁油が封入されている。 An opening 131 and an opening 134 are formed in one side wall 138 of the tank 130. An opening 132 and an opening 133 are formed in the other side wall 139 of the tank 130. The tank 130 is filled with insulating oil for cooling the iron core 110, the high-voltage side coils 1A, 1B, 11A, and 11B and the low-voltage side coils 2A, 2B, 12A, and 12B.
 本実施形態に係る変圧器100においては、冷却器140は、タンク130の外部において一方の側壁138側に位置する。冷却器140の流出口とタンク130の開口131とが、配管161によって接続されている。冷却器140の流入口とタンク130の開口134とが、配管164によって接続されている。 In the transformer 100 according to this embodiment, the cooler 140 is located on the side of the one side wall 138 outside the tank 130. The outlet of the cooler 140 and the opening 131 of the tank 130 are connected by a pipe 161. The inlet of the cooler 140 and the opening 134 of the tank 130 are connected by a pipe 164.
 ポンプ150は、タンク130の外部において他方の側壁139側に位置する。ポンプ150の吸込口とタンク130の開口132とが、配管162によって接続されている。ポンプ150の吐出口とタンク130の開口133とが、配管163によって接続されている。 The pump 150 is located outside the tank 130 on the other side wall 139 side. The suction port of the pump 150 and the opening 132 of the tank 130 are connected by a pipe 162. The discharge port of the pump 150 and the opening 133 of the tank 130 are connected by a pipe 163.
 変圧器100は、鉄心110の第1脚部111と第2脚部112との間に位置する金属板135を備える。図2に示すように、鉄心110と第1コイルグループG1と第2コイルグループG2と金属板135とから、変圧器本体部51が構成されている。 The transformer 100 includes a metal plate 135 positioned between the first leg 111 and the second leg 112 of the iron core 110. As shown in FIG. 2, the transformer main body 51 is composed of the iron core 110, the first coil group G <b> 1, the second coil group G <b> 2, and the metal plate 135.
 金属板135によって窓部W2が、第1コイルグループG1側と第2コイルグループG2とに2分割されている。本実施形態においては、金属板135は磁性体で構成されている。 The window W2 is divided into two by the metal plate 135 into the first coil group G1 side and the second coil group G2. In the present embodiment, the metal plate 135 is made of a magnetic material.
 金属板135においては、金属板135の少なくとも一端がタンク130の側壁に接続されるように延在している。本実施形態においては、金属板135の延在方向の一端は、タンク130の互いに対向する一方の側壁138に接続されている。金属板135の延在方向の他端は、タンク130の互いに対向する他方の側壁139に接続されている。 In the metal plate 135, at least one end of the metal plate 135 extends so as to be connected to the side wall of the tank 130. In the present embodiment, one end in the extending direction of the metal plate 135 is connected to one side wall 138 of the tank 130 facing each other. The other end of the metal plate 135 in the extending direction is connected to the other side wall 139 of the tank 130 facing each other.
 具体的には、金属板135の一端とタンク130の一方の側壁138とは、溶接されて互いに固定されている。金属板135の他端とタンク130の他方の側壁139とは、溶接されて互いに固定されている。 Specifically, one end of the metal plate 135 and one side wall 138 of the tank 130 are welded and fixed to each other. The other end of the metal plate 135 and the other side wall 139 of the tank 130 are welded and fixed to each other.
 金属板135によって、タンク130の内部の空間が、第1コイルグループG1側と第2コイルグループG2側とに2分割されている。タンク130の開口131および開口132は、第1コイルグループG1側に位置している。タンク130の開口133および開口134は、第2コイルグループG2側に位置している。 The space inside the tank 130 is divided into two by the metal plate 135 into the first coil group G1 side and the second coil group G2 side. The opening 131 and the opening 132 of the tank 130 are located on the first coil group G1 side. The opening 133 and the opening 134 of the tank 130 are located on the second coil group G2 side.
 その結果、ポンプ150が作動することにより、矢印10で示すように開口131からタンク130内の第1コイルグループG1側に流入した絶縁油は、矢印11で示すように窓部W1、および窓部W2の第1コイルグループG1側を通過して開口132からポンプ150の吸込口に到達する。 As a result, when the pump 150 is operated, the insulating oil that has flowed from the opening 131 to the first coil group G1 side in the tank 130 as shown by the arrow 10 becomes the window W1 and the window as shown by the arrow 11. It passes through the first coil group G1 side of W2 and reaches the suction port of the pump 150 from the opening 132.
 吸込口からポンプ150内に吸い込まれた絶縁油は、加圧されて矢印12で示すように吐出口に向けて送出される。ポンプ150の吐出口から吐き出された絶縁油は、矢印13で示すように開口133からタンク130内の第2コイルグループG2側に流入し、矢印14で示すように窓部W2の第2コイルグループG2側および窓部W3を通過して開口134から冷却器140の流入口に到達する。 The insulating oil sucked into the pump 150 from the suction port is pressurized and sent out toward the discharge port as indicated by an arrow 12. The insulating oil discharged from the discharge port of the pump 150 flows into the second coil group G2 side in the tank 130 from the opening 133 as shown by the arrow 13, and as shown by the arrow 14, the second coil group of the window W2. It passes through the G2 side and the window W3 and reaches the inlet of the cooler 140 through the opening 134.
 流入口から冷却器140内に流入した絶縁油は、冷却されつつ矢印15で示すように流出口に向けて流れる。冷却器140の流出口から流出した絶縁油は、矢印10で示すように開口131からタンク130内の第1コイルグループG1側に流入する。 The insulating oil that has flowed into the cooler 140 from the inlet flows toward the outlet as indicated by the arrow 15 while being cooled. The insulating oil flowing out from the outlet of the cooler 140 flows into the first coil group G1 side in the tank 130 from the opening 131 as indicated by the arrow 10.
 このように、ポンプ150は、金属板135の一端側によって隔てられているタンク130内の第1コイルグループG1側と第2コイルグループG2側との間において、絶縁油を冷却器140を通過させて移動させる。冷却器140によって冷却された絶縁油を循環させることにより、第1コイルグループG1および第2コイルグループG2を順次冷却することができる。 Thus, the pump 150 allows the insulating oil to pass through the cooler 140 between the first coil group G1 side and the second coil group G2 side in the tank 130 separated by one end side of the metal plate 135. To move. By circulating the insulating oil cooled by the cooler 140, the first coil group G1 and the second coil group G2 can be sequentially cooled.
 なお、絶縁油の流動方向は逆でもよい。すなわち、冷却器140によって冷却された絶縁油が開口134からタンク130内の第2コイルグループG2側に流入するようにしてもよい。また、ポンプ150をタンク130の外部において一方の側壁138側に位置させてもよい。この場合、配管162と配管163とが互いに接続される。 The flow direction of the insulating oil may be reversed. That is, the insulating oil cooled by the cooler 140 may flow from the opening 134 to the second coil group G2 side in the tank 130. Further, the pump 150 may be positioned on the side of one side wall 138 outside the tank 130. In this case, the pipe 162 and the pipe 163 are connected to each other.
 ここで、比較例に係る変圧器の構成について説明する。図3は、比較例に係る変圧器の構成を示す平面断面図である。図3に示すように、比較例に係る変圧器900においては、タンク930の一方の側壁938に開口931が形成されている。タンク930の他方の側壁939に開口932が形成されている。 Here, the configuration of the transformer according to the comparative example will be described. FIG. 3 is a cross-sectional plan view illustrating a configuration of a transformer according to a comparative example. As shown in FIG. 3, in the transformer 900 according to the comparative example, an opening 931 is formed in one side wall 938 of the tank 930. An opening 932 is formed in the other side wall 939 of the tank 930.
 比較例に係る変圧器900においては、冷却器140は、タンク930の外部において一方の側壁938側に位置する。冷却器140の流出口とタンク930の開口931とが、配管161によって接続されている。ポンプ150は、タンク930の外部において他方の側壁939側に位置する。ポンプ150の吸込口とタンク930の開口932とが、配管162によって接続されている。ポンプ150の吐出口と冷却器140の流入口とが、タンク930の外側を引き回された配管963によって接続されている。 In the transformer 900 according to the comparative example, the cooler 140 is located on the side of one side wall 938 outside the tank 930. The outlet of the cooler 140 and the opening 931 of the tank 930 are connected by a pipe 161. The pump 150 is located on the other side wall 939 side outside the tank 930. The suction port of the pump 150 and the opening 932 of the tank 930 are connected by a pipe 162. The discharge port of the pump 150 and the inlet of the cooler 140 are connected by a pipe 963 routed outside the tank 930.
 変圧器900は、鉄心110の第1脚部111と第2脚部112との間に位置する金属板915を備える。金属板915の延在方向の一端は、タンク930の互いに対向する一方の側壁938に対して離間している。金属板915の延在方向の他端は、タンク930の互いに対向する他方の側壁939に対して離間している。具体的には、金属板915は、鉄心110の一方の側面から他方の側面まで延在している。このように、比較例に係る変圧器900においては、タンク930の内部の空間が分割されていない。 The transformer 900 includes a metal plate 915 positioned between the first leg 111 and the second leg 112 of the iron core 110. One end of the metal plate 915 in the extending direction is separated from one side wall 938 of the tank 930 facing each other. The other end in the extending direction of the metal plate 915 is separated from the other side wall 939 of the tank 930 facing each other. Specifically, the metal plate 915 extends from one side surface of the iron core 110 to the other side surface. Thus, in the transformer 900 according to the comparative example, the space inside the tank 930 is not divided.
 よって、ポンプ150が作動することにより、矢印90で示すように開口931からタンク930内に流入した絶縁油は、矢印93で示すように各窓部を通過して開口932からポンプ150の吸込口に到達する。 Therefore, when the pump 150 is operated, the insulating oil that has flowed into the tank 930 from the opening 931 as shown by the arrow 90 passes through each window portion as shown by the arrow 93 and passes through the opening 932 to the suction port of the pump 150. To reach.
 吸込口からポンプ150内に吸い込まれた絶縁油は、加圧されて矢印94で示すように吐出口に向けて送出される。ポンプ150の吐出口から吐き出された絶縁油は、配管963内を流れて冷却器140の流入口に到達する。 The insulating oil sucked into the pump 150 from the suction port is pressurized and sent out toward the discharge port as indicated by an arrow 94. The insulating oil discharged from the discharge port of the pump 150 flows through the pipe 963 and reaches the inlet of the cooler 140.
 流入口から冷却器140内に流入した絶縁油は、冷却されつつ矢印95で示すように流出口に向けて流れる。冷却器140の流出口から流出した絶縁油は、矢印90で示すように開口931からタンク930内に流入する。 The insulating oil that has flowed into the cooler 140 from the inlet flows toward the outlet as indicated by an arrow 95 while being cooled. The insulating oil that has flowed out from the outlet of the cooler 140 flows into the tank 930 from the opening 931 as indicated by an arrow 90.
 このように、比較例に係る変圧器900においては、タンク930内の絶縁油を第1コイルグループG1側と第2コイルグループG2側とに分割することなく循環させる。よって、絶縁油は、一方の側壁938側から他方の側壁939側に向けてタンク930内を一様に流れる。 Thus, in the transformer 900 according to the comparative example, the insulating oil in the tank 930 is circulated without being divided into the first coil group G1 side and the second coil group G2 side. Therefore, the insulating oil flows uniformly in the tank 930 from the one side wall 938 side toward the other side wall 939 side.
 図4は、本実施形態に係る変圧器と比較例に係る変圧器とにおいて、タンク内を流れる絶縁油の圧力および流量を比較したグラフである。図4においては、縦軸に圧力、横軸に流量を示している。また、ポンプ150の吐出流量(Q)と吐出圧力(P)との関係を示す曲線を実線1で、本実施形態に係る変圧器100の絶縁油の流路の抵抗曲線を実線2で、比較例に係る変圧器900の絶縁油の流路の抵抗曲線を点線3で示している。 FIG. 4 is a graph comparing the pressure and flow rate of the insulating oil flowing in the tank in the transformer according to the present embodiment and the transformer according to the comparative example. In FIG. 4, the vertical axis represents pressure, and the horizontal axis represents flow rate. Further, a curve indicating the relationship between the discharge flow rate (Q) and the discharge pressure (P) of the pump 150 is represented by a solid line 1 and a resistance curve of the insulating oil flow path of the transformer 100 according to the present embodiment is represented by a solid line 2. A resistance curve of the insulating oil flow path of the transformer 900 according to the example is indicated by a dotted line 3.
 図4に示すように、本実施形態に係る変圧器100においては、実線1と実線2との交点であるポンプ150の運転点にて、圧力値がP1、流量がQ1である。比較例に係る変圧器900においては、実線1と点線3との交点であるポンプ150の運転点にて、圧力値がP2、流量Q2である。 As shown in FIG. 4, in the transformer 100 according to the present embodiment, the pressure value is P 1 and the flow rate is Q 1 at the operating point of the pump 150 that is the intersection of the solid line 1 and the solid line 2. In the transformer 900 according to the comparative example, the pressure value is P 2 and the flow rate Q 2 at the operating point of the pump 150 that is the intersection of the solid line 1 and the dotted line 3.
 本実施形態に係る変圧器100においては、タンク130の内部が第1コイルグループG1側と第2コイルグループG2側とに分割されているためタンク内を絶縁油が流れる流路が、比較例に係る変圧器900に比較して長い。一方、比較例に係る変圧器900においては、配管963の長さが長いため、タンク外を絶縁油が流れる流路が、本実施形態に係る変圧器100に比較して長い。 In the transformer 100 according to the present embodiment, since the inside of the tank 130 is divided into the first coil group G1 side and the second coil group G2 side, the flow path through which the insulating oil flows in the tank is a comparative example. Longer than such a transformer 900. On the other hand, in the transformer 900 according to the comparative example, since the length of the pipe 963 is long, the flow path through which the insulating oil flows outside the tank is long compared to the transformer 100 according to the present embodiment.
 その結果、ポンプ150の運転点において、本実施形態に係る変圧器100の圧力値P1が比較例に係る変圧器900の圧力値P2より僅かに大きい。これにより、ポンプ150の運転点において、本実施形態に係る変圧器100の流量Q1が比較例に係る変圧器900の流量Q2より僅かに小さい。 As a result, the operating point of the pump 150, slightly larger than the pressure value P 2 of the transformer 900 the pressure value P 1 of the transformer 100 according to the present embodiment according to the comparative example. Thus, in the operating point of the pump 150, slightly smaller than the flow rate Q 2 of the transformer 900 to flow to Q 1 transformer 100 according to the present embodiment according to the comparative example.
 絶縁油によるコイルの冷却性能は、絶縁油の流量が多いほど大きくなる。本実施形態に係る変圧器100においては、タンク130の内部が第1コイルグループG1側と第2コイルグループG2側とに分割されているため、第1コイルグループG1および第2コイルグループG2の各々に流れる絶縁油の流量は、ポンプ150の吐出流量Q1である。一方、比較例に係る変圧器900においては、タンク130の内部が分割されていないため、第1コイルグループG1および第2コイルグループG2の各々に流れる絶縁油の流量は、ポンプ150の吐出流量の半分であるQ2/2となる。 The coil cooling performance with the insulating oil increases as the flow rate of the insulating oil increases. In the transformer 100 according to the present embodiment, since the inside of the tank 130 is divided into the first coil group G1 side and the second coil group G2 side, each of the first coil group G1 and the second coil group G2 The flow rate of the insulating oil flowing through is the discharge flow rate Q 1 of the pump 150. On the other hand, in the transformer 900 according to the comparative example, since the inside of the tank 130 is not divided, the flow rate of the insulating oil flowing through each of the first coil group G1 and the second coil group G2 is the discharge flow rate of the pump 150. the Q 2/2, which is half.
 よって、本実施形態に係る変圧器100においては、金属板135を仕切板として機能させることにより、比較例に係る変圧器900に比較して第1コイルグループG1および第2コイルグループG2の各々に流れる絶縁油の流量を約2倍にして、コイルの冷却効率を向上することができる。 Therefore, in the transformer 100 according to the present embodiment, by causing the metal plate 135 to function as a partition plate, each of the first coil group G1 and the second coil group G2 is compared with the transformer 900 according to the comparative example. The flow rate of the flowing insulating oil can be approximately doubled to improve the coil cooling efficiency.
 また、本実施形態に係る変圧器100においては、比較例に係る変圧器900のように配管963をタンク930の外側で引き回す必要がないため、比較例に係る変圧器900に比較してタンク130と冷却器140とを接続する配管を短くして変圧器100を小型化できる。 Further, in the transformer 100 according to the present embodiment, the pipe 963 does not need to be routed outside the tank 930 unlike the transformer 900 according to the comparative example, and therefore, the tank 130 as compared with the transformer 900 according to the comparative example. The transformer 100 can be reduced in size by shortening the pipe connecting the cooler 140.
 さらに、本実施形態に係る変圧器100においては、タンク130の一方の側壁138の開口131と開口134との間の位置に金属板135の延在方向の一端を接続している。タンク130の他方の側壁139の開口132と開口133との間の位置に金属板135の延在方向の他端を接続している。このように、金属板135を補強板として機能させることにより、タンクを薄型化しつつタンクの側壁の強度を確保することができる。その結果、変圧器100の小型化および軽量化を図ることができる。 Furthermore, in the transformer 100 according to the present embodiment, one end in the extending direction of the metal plate 135 is connected to a position between the opening 131 and the opening 134 of the one side wall 138 of the tank 130. The other end of the metal plate 135 in the extending direction is connected to a position between the opening 132 and the opening 133 on the other side wall 139 of the tank 130. Thus, by making the metal plate 135 function as a reinforcing plate, the strength of the side wall of the tank can be ensured while reducing the thickness of the tank. As a result, the transformer 100 can be reduced in size and weight.
 図5は、本実施形態に係る変圧器を含む交流電車の構成を示す回路図である。図5に示すように、本実施形態に係る変圧器100を含む交流電車201は、パンタグラフ92と、変圧装置101と、モータMA,MBとを備える。変圧装置101は、変圧器本体部51と、コンバータ5A,5Bと、インバータ6A,6Bとを含む。 FIG. 5 is a circuit diagram showing a configuration of an AC train including a transformer according to the present embodiment. As shown in FIG. 5, the AC train 201 including the transformer 100 according to the present embodiment includes a pantograph 92, a transformer device 101, and motors MA and MB. Transformer 101 includes a transformer body 51, converters 5A and 5B, and inverters 6A and 6B.
 変圧器本体部51では、各コイルを第1コイルグループG1および第2コイルグループG2に分割している。すなわち、高圧側コイル1A,1Bは高圧側コイル1を分割したものであり、低圧側コイル2A,2Bは低圧側コイル2を分割したものであり、高圧側コイル11A,11Bは高圧側コイル11を分割したものであり、低圧側コイル12A,12Bは低圧側コイル12を分割したものである。 In the transformer body 51, each coil is divided into a first coil group G1 and a second coil group G2. That is, the high voltage side coils 1A and 1B are obtained by dividing the high voltage side coil 1, the low voltage side coils 2A and 2B are obtained by dividing the low voltage side coil 2, and the high voltage side coils 11A and 11B are obtained by dividing the high voltage side coil 11. The low voltage side coils 12 </ b> A and 12 </ b> B are obtained by dividing the low voltage side coil 12.
 パンタグラフ92は、架線91に接続されている。高圧側コイル1Aは、パンタグラフ92に接続された第1端と、第2端とを有する。高圧側コイル1Bは、高圧側コイル1Aの第2端に接続された第1端と、接地電圧が供給される接地ノードに接続された第2端とを有する。高圧側コイル11Aは、パンタグラフ92に接続された第1端と、第2端とを有する。高圧側コイル11Bは、高圧側コイル11Aの第2端に接続された第1端と、接地電圧が供給される接地ノードに接続された第2端とを有する。 The pantograph 92 is connected to the overhead line 91. High-voltage side coil 1A has a first end connected to pantograph 92 and a second end. High voltage side coil 1B has a first end connected to the second end of high voltage side coil 1A and a second end connected to a ground node to which a ground voltage is supplied. High voltage side coil 11 </ b> A has a first end connected to pantograph 92 and a second end. High voltage side coil 11B has a first end connected to the second end of high voltage side coil 11A and a second end connected to a ground node to which a ground voltage is supplied.
 低圧側コイルは、高圧側コイルに対応して設けられ、対応の高圧側コイルと磁気結合されている。すなわち、低圧側コイル2Aは、高圧側コイル1Aと磁気結合されており、コンバータ5Aの第1入力端子に接続された第1端と、第2端とを有する。低圧側コイル2Bは、高圧側コイル1Bと磁気結合されており、低圧側コイル2Aの第2端に接続された第1端と、コンバータ5Aの第2入力端子に接続された第2端とを有する。低圧側コイル12Aは、高圧側コイル11Aと磁気結合されており、コンバータ5Bの第1入力端子に接続された第1端と、第2端とを有する。低圧側コイル12Bは、高圧側コイル11Bと磁気結合されており、低圧側コイル12Aの第2端に接続された第1端と、コンバータ5Bの第2入力端子に接続された第2端とを有する。 The low voltage side coil is provided corresponding to the high voltage side coil and is magnetically coupled to the corresponding high voltage side coil. That is, low voltage side coil 2A is magnetically coupled to high voltage side coil 1A, and has a first end connected to the first input terminal of converter 5A, and a second end. The low voltage side coil 2B is magnetically coupled to the high voltage side coil 1B, and has a first end connected to the second end of the low voltage side coil 2A and a second end connected to the second input terminal of the converter 5A. Have. Low voltage side coil 12A is magnetically coupled to high voltage side coil 11A, and has a first end connected to a first input terminal of converter 5B, and a second end. The low voltage side coil 12B is magnetically coupled to the high voltage side coil 11B, and has a first end connected to the second end of the low voltage side coil 12A and a second end connected to the second input terminal of the converter 5B. Have.
 図6は、図2における変圧器本体部のVI-VI断面およびこの変圧器本体部において発生する電流および磁束を示す図である。まず、架線91からパンタグラフ92へ単相交流電圧が供給される。架線91から供給される交流電圧は、パンタグラフ92を介して高圧側コイル1A,1B,11A,11Bに印加される。すなわち、各コイルグループにおける高圧側コイルは共通の単相交流電力を受ける。そうすると、図6に示すように、高圧側コイル1A,1B,11A,11Bを通して交流電流IHが流れる。 FIG. 6 is a view showing a VI-VI cross section of the transformer main body in FIG. 2 and currents and magnetic fluxes generated in the transformer main body. First, a single-phase AC voltage is supplied from the overhead wire 91 to the pantograph 92. The AC voltage supplied from the overhead wire 91 is applied to the high voltage side coils 1A, 1B, 11A, and 11B via the pantograph 92. That is, the high-voltage side coil in each coil group receives a common single-phase AC power. Then, as shown in FIG. 6, an alternating current IH flows through the high voltage side coils 1A, 1B, 11A, and 11B.
 高圧側コイル1A,1Bを通して流れる交流電流IHにより、鉄心110内に主磁束FH1が発生する。そうすると、主磁束FH1により、低圧側コイル2Aの巻数と高圧側コイル1Aの巻数との比に応じた交流電流IL1および交流電圧が低圧側コイル2Aに発生する。また、主磁束FH1により、低圧側コイル2Bの巻数と高圧側コイル1Bの巻数との比に応じた交流電流IL1および交流電圧が低圧側コイル2Bに発生する。 The main magnetic flux FH1 is generated in the iron core 110 by the alternating current IH flowing through the high- voltage side coils 1A and 1B. Then, the alternating current IL1 and the alternating voltage corresponding to the ratio of the number of turns of the low voltage side coil 2A and the number of turns of the high voltage side coil 1A are generated in the low voltage side coil 2A by the main magnetic flux FH1. The main magnetic flux FH1 generates an alternating current IL1 and an alternating voltage in the low voltage side coil 2B according to the ratio of the number of turns of the low voltage side coil 2B and the number of turns of the high voltage side coil 1B.
 ここで、低圧側コイル2Aおよび2Bの巻数はそれぞれ高圧側コイル1Aおよび1Bの巻数より小さいことから、高圧側コイル1Aおよび1Bに印加される交流電圧が降圧された交流電圧が低圧側コイル2Aおよび2Bにそれぞれ誘起される。 Here, since the number of turns of the low voltage side coils 2A and 2B is smaller than the number of turns of the high voltage side coils 1A and 1B, respectively, the AC voltage obtained by stepping down the AC voltage applied to the high voltage side coils 1A and 1B is reduced. 2B, respectively.
 同様に、高圧側コイル11A,11Bを通して流れる交流電流IHにより、主磁束FH11が発生する。そうすると、主磁束FH11により、低圧側コイル12Aの巻数と高圧側コイル11Aの巻数との比に応じた交流電流IL11および交流電圧が低圧側コイル12Aに発生する。また、主磁束FH11により、低圧側コイル12Bの巻数と高圧側コイル11Bの巻数との比に応じた交流電流IL11および交流電圧が低圧側コイル12Bに発生する。 Similarly, the main magnetic flux FH11 is generated by the alternating current IH flowing through the high- voltage side coils 11A and 11B. Then, the alternating current IL11 and the alternating voltage corresponding to the ratio of the number of turns of the low voltage side coil 12A and the number of turns of the high voltage side coil 11A are generated in the low voltage side coil 12A by the main magnetic flux FH11. The main magnetic flux FH11 generates an alternating current IL11 and an alternating voltage in the low voltage side coil 12B according to the ratio of the number of turns of the low voltage side coil 12B and the number of turns of the high voltage side coil 11B.
 ここで、低圧側コイル12Aおよび12Bの巻数はそれぞれ高圧側コイル11Aおよび11Bの巻数より小さいことから、高圧側コイル11Aおよび11Bに印加される交流電圧が降圧された交流電圧が低圧側コイル12Aおよび12Bにそれぞれ誘起される。 Here, since the number of turns of the low voltage side coils 12A and 12B is smaller than the number of turns of the high voltage side coils 11A and 11B, respectively, the AC voltage obtained by stepping down the AC voltage applied to the high voltage side coils 11A and 11B is reduced. 12B, respectively.
 低圧側コイル2Aおよび2Bに誘起された交流電圧は、コンバータ5Aに供給される。また、低圧側コイル12Aおよび12Bに誘起された交流電圧は、コンバータ5Bに供給される。 The alternating voltage induced in the low voltage side coils 2A and 2B is supplied to the converter 5A. Further, the AC voltage induced in low voltage side coils 12A and 12B is supplied to converter 5B.
 コンバータ5Aは、低圧側コイル2Aおよび2Bから供給された交流電圧を直流電圧に変換し、インバータ6Aへ出力する。また、コンバータ5Bは、低圧側コイル12Aおよび12Bから供給された交流電圧を直流電圧に変換し、インバータ6Bへ出力する。 Converter 5A converts the AC voltage supplied from low voltage side coils 2A and 2B into a DC voltage and outputs it to inverter 6A. Converter 5B converts the AC voltage supplied from low voltage side coils 12A and 12B into a DC voltage and outputs the DC voltage to inverter 6B.
 インバータ6Aは、コンバータ5Aから受けた直流電圧を三相交流電圧に変換し、モータMAへ出力する。また、インバータ6Bは、コンバータ5Bから受けた直流電圧を三相交流電圧に変換し、モータMBへ出力する。 The inverter 6A converts the DC voltage received from the converter 5A into a three-phase AC voltage and outputs it to the motor MA. Inverter 6B converts the DC voltage received from converter 5B into a three-phase AC voltage and outputs it to motor MB.
 モータMAは、インバータ6Aから受けた三相交流電圧に基づいて駆動される。また、モータMBは、インバータ6Bから受けた三相交流電圧に基づいて駆動される。このように、第1コイルグループG1の低圧側コイル2A,2Bと第2コイルグループG2の低圧側コイル12A,12Bとは別個の負荷に結合されている。 The motor MA is driven based on the three-phase AC voltage received from the inverter 6A. Motor MB is driven based on the three-phase AC voltage received from inverter 6B. Thus, the low voltage side coils 2A and 2B of the first coil group G1 and the low voltage side coils 12A and 12B of the second coil group G2 are coupled to separate loads.
 変圧器本体部51においては、低圧側コイルおよび高圧側コイルを複数のコイルグループに分割し、コイルグループごとに脚部を設ける。そして、複数のコイルグループにおける低圧側コイルおよび高圧側コイルを複数の脚部にそれぞれ巻回する。このような構成により、変圧器の高さすなわち脚部の延伸方向における変圧器の長さを低減することができる。また、コイルの導電線の断面積を大きくする必要がなくなり、コイルにおける電力損失の増大を防ぐことができる。 In the transformer main body 51, the low voltage side coil and the high voltage side coil are divided into a plurality of coil groups, and a leg is provided for each coil group. And the low voltage | pressure side coil and high voltage | pressure side coil in a some coil group are wound around a some leg part, respectively. With such a configuration, the height of the transformer, that is, the length of the transformer in the extending direction of the legs can be reduced. Further, it is not necessary to increase the cross-sectional area of the conductive wire of the coil, and an increase in power loss in the coil can be prevented.
 すなわち、変圧器本体部51においては、低圧側コイル2,12および高圧側コイル1,11を2つのコイルグループに分割しているため、各コイルグループの電力容量は1/2となる。ここで、供給電圧は一定であり、電力容量=電圧×電流より、各コイルグループの電力容量が1/2になると各コイルを通して流れる電流が1/2になる。これにより、各コイルにおいて積み重ねる円盤巻線の枚数を減らすことができるため、変圧器の高さを低減することができる。あるいは、円盤巻線の枚数を減らす代わりに、高圧側コイル1A,1B,11A,11Bおよび低圧側コイル2A,2B,12A,12Bの導電線の断面積を小さくすることにより、各コイルグループの高さが低くなり、変圧器全体の高さを低減することができる。 That is, in the transformer main body 51, since the low voltage side coils 2 and 12 and the high voltage side coils 1 and 11 are divided into two coil groups, the power capacity of each coil group is halved. Here, the supply voltage is constant, and from the power capacity = voltage × current, when the power capacity of each coil group is halved, the current flowing through each coil is halved. Thereby, since the number of disk windings stacked in each coil can be reduced, the height of the transformer can be reduced. Alternatively, instead of reducing the number of disk windings, by reducing the cross-sectional area of the conductive wires of the high voltage side coils 1A, 1B, 11A, 11B and the low voltage side coils 2A, 2B, 12A, 12B, The height of the entire transformer can be reduced.
 次に、変圧器におけるリアクタンス低下の問題およびその解決手段について説明する。 図7は、本実施形態に係る変圧器における漏れ磁束を示す図である。図7に示すように、変圧器本体部51では、高圧側コイルを通して流れる交流電流IHによって発生する主磁束FH1およびFH11に加えて、鉄心110を通して流れない漏れ磁束FKH1およびFKH11が発生する。また、低圧側コイルを通して流れる交流電流IL1およびIL11によって、鉄心110を通して流れない漏れ磁束FKL1およびFKL11が発生する。 Next, the problem of the decrease in reactance in the transformer and the means for solving it will be described. FIG. 7 is a diagram showing the leakage magnetic flux in the transformer according to this embodiment. As shown in FIG. 7, in the transformer main body 51, leakage magnetic fluxes FKH <b> 1 and FKH <b> 11 that do not flow through the iron core 110 are generated in addition to the main magnetic fluxes FH <b> 1 and FH <b> 11 generated by the alternating current IH flowing through the high-voltage side coil. Further, leakage magnetic fluxes FKL1 and FKL11 that do not flow through the iron core 110 are generated by the alternating currents IL1 and IL11 that flow through the low-voltage side coil.
 図8は、本実施形態に係る変圧器における片側運転時の主磁束を示す図である。図8に示すように、変圧器本体部51では、たとえば、モータMBが故障した場合でも、コイルグループG1を用いてモータMAを単独で運転することが可能である。このような片側運転時では、高圧側コイル11A,11Bおよび低圧側コイル12A,12Bが機能しない、すなわち高圧側コイル11A,11Bおよび低圧側コイル12A,12Bを通して電流が流れないため、主磁束FH11は発生しない。 FIG. 8 is a diagram showing the main magnetic flux during one-side operation in the transformer according to the present embodiment. As shown in FIG. 8, in the transformer main body 51, for example, even when the motor MB fails, it is possible to operate the motor MA alone using the coil group G1. In such one-side operation, the high- voltage side coils 11A and 11B and the low- voltage side coils 12A and 12B do not function, that is, no current flows through the high- voltage side coils 11A and 11B and the low- voltage side coils 12A and 12B. Does not occur.
 図9は、本実施形態に係る変圧器が金属板を備えないと仮定した構成における片側運転時の漏れ磁束を示す図である。図9に示すように、たとえば、モータMBが故障して高圧側コイル11A,11Bおよび低圧側コイル12A,12Bを通して電流が流れなくなると、漏れ磁束FKH11およびFKL11が発生しなくなる。 FIG. 9 is a diagram showing a leakage magnetic flux during one-side operation in a configuration in which it is assumed that the transformer according to this embodiment does not include a metal plate. As shown in FIG. 9, for example, if the motor MB fails and no current flows through the high voltage side coils 11A and 11B and the low voltage side coils 12A and 12B, the leakage magnetic fluxes FKH11 and FKL11 are not generated.
 ここで、図9に示す変圧器は、金属板135を備えないことから、漏れ磁束FKH1およびFKL1が窓部W2内で広がり、磁路長が長くなる。このため、図7に示す状態と比べて窓部W2における起磁力が1/2になる。すなわち窓部W2における漏れ磁束の大きさが1/2になることから、低圧側コイル2A,2Bおよび高圧側コイル1A,1Bのリアクタンスが低下する。 Here, since the transformer shown in FIG. 9 does not include the metal plate 135, the leakage magnetic fluxes FKH1 and FKL1 spread in the window W2, and the magnetic path length becomes long. For this reason, compared with the state shown in FIG. 7, the magnetomotive force in window part W2 becomes 1/2. That is, since the magnitude of the leakage magnetic flux in the window W2 is halved, the reactances of the low voltage side coils 2A and 2B and the high voltage side coils 1A and 1B are reduced.
 ここで、アンペールの法則より、磁場の強さは磁路長に反比例する。磁場が弱くなるということは、磁束密度が小さくなり、コイルの自己インダクタンスが小さくなるということである。また、リアクタンスは漏れ磁場による漏れインダクタンスの影響を大きく受ける。したがって、磁路長が長くなることにより磁場が弱くなってコイルの自己インダクタンスが低下する。そうすると、漏れインダクタンスが低下することにより、リアクタンスが低下することになる。 Here, according to Ampere's law, the strength of the magnetic field is inversely proportional to the magnetic path length. The weak magnetic field means that the magnetic flux density is small and the self-inductance of the coil is small. In addition, reactance is greatly affected by leakage inductance caused by a leakage magnetic field. Therefore, when the magnetic path length is increased, the magnetic field is weakened and the self-inductance of the coil is reduced. If it does so, a reactance will fall because leakage inductance falls.
 なお、図7に示す通常運転時では、漏れ磁束FKH1およびFKH11が合成され、また、漏れ磁束FKL1およびFKL11が合成され、窓部W2における起磁力が図9に示す状態と比べて2倍になる。このため、漏れ磁束FKH1およびFKH11ならびに漏れ磁束FKL1およびFKL11の磁路長が図9に示す状態と同じ長さになっても高圧側コイル1A,1B,11A,11Bおよび低圧側コイル2A,2B,12A,12Bのリアクタンスは低下しない。 7, the leakage magnetic fluxes FKH1 and FKH11 are combined, and the leakage magnetic fluxes FKL1 and FKL11 are combined, so that the magnetomotive force in the window W2 is twice that in the state shown in FIG. . For this reason, even if the magnetic path lengths of the leakage magnetic fluxes FKH1 and FKH11 and the leakage magnetic fluxes FKL1 and FKL11 are the same as those shown in FIG. 9, the high-voltage side coils 1A, 1B, 11A, 11B and the low-voltage side coils 2A, 2B, The reactance of 12A and 12B does not decrease.
 図10は、本実施形態に係る変圧器における片側運転時の漏れ磁束を示す図である。図10に示すように、たとえば、モータMBが故障して高圧側コイル11A,11Bおよび低圧側コイル12A,12Bを通して電流が流れなくなると、漏れ磁束FKH11およびFKL11が発生しなくなる。 FIG. 10 is a diagram showing a leakage magnetic flux at the time of one-side operation in the transformer according to the present embodiment. As shown in FIG. 10, for example, when the motor MB fails and no current flows through the high voltage side coils 11A and 11B and the low voltage side coils 12A and 12B, the leakage magnetic fluxes FKH11 and FKL11 are not generated.
 このため、窓部W2における起磁力は図7に示す状態と比べて1/2になる。しかしながら、変圧器本体部51では、漏れ磁束FKH1およびFKL1は、金属板135を通して流れる。これにより、漏れ磁束FKH1およびFKL1は窓部W2内で広がらないことから、図9に示す状態と比べて漏れ磁束FKH1およびFKL1の磁路長を1/2にすることができる。金属板135が磁性体で構成されていることにより、鉄心110と同様に磁路を形成することができる。 For this reason, the magnetomotive force in the window W2 is halved compared to the state shown in FIG. However, in the transformer main body 51, the leakage fluxes FKH1 and FKL1 flow through the metal plate 135. As a result, the leakage magnetic fluxes FKH1 and FKL1 do not spread within the window portion W2, so that the magnetic path lengths of the leakage magnetic fluxes FKH1 and FKL1 can be halved compared to the state shown in FIG. Since the metal plate 135 is made of a magnetic material, a magnetic path can be formed similarly to the iron core 110.
 したがって、低圧側コイル2A,2Bおよび高圧側コイル1A,1Bのリアクタンスは図7に示す状態と同じになる。したがって、変圧器本体部51では、片側運転時であっても、低圧側コイル2A,2Bおよび高圧側コイル1A,1Bのリアクタンスが低下することを防ぐことができ、安定したリアクタンスを得ることができる。 Therefore, the reactances of the low voltage side coils 2A and 2B and the high voltage side coils 1A and 1B are the same as the state shown in FIG. Therefore, the transformer main body 51 can prevent the reactances of the low-voltage side coils 2A and 2B and the high- voltage side coils 1A and 1B from decreasing even during one-side operation, and a stable reactance can be obtained. .
 ここで、三相変圧器では、たとえば、主磁束を通すために各相のコイル間に鉄心(相間鉄心)が設けられる。これに対して、本実施形態に係る変圧器は、単相変圧器である。単相変圧器では、三相変圧器のような相間鉄心は通常不要である。しかしながら、本実施形態に係る変圧器では、鉄心に金属板を配置して、たとえば、一方のモータが故障して他方のモータだけを運転する場合において磁路長が長くなることを防ぎ、リアクタンス低下を防いでいる。 Here, in the three-phase transformer, for example, an iron core (interphase iron core) is provided between the coils of each phase in order to pass the main magnetic flux. On the other hand, the transformer according to the present embodiment is a single-phase transformer. Single-phase transformers usually do not require interphase iron cores like three-phase transformers. However, in the transformer according to the present embodiment, a metal plate is disposed on the iron core, and for example, when one motor fails and only the other motor is operated, the magnetic path length is prevented from increasing, and the reactance is reduced. Is preventing.
 以下、本発明の実施形態2に係る変圧器について説明する。本実施形態に係る変圧器は、交流電車において負荷との接続形態のみ実施形態1に係る変圧器100と異なるため、他の構成については説明を繰り返さない。 Hereinafter, a transformer according to Embodiment 2 of the present invention will be described. Since the transformer according to the present embodiment is different from the transformer 100 according to the first embodiment only in the form of connection with a load in an AC train, the description of other configurations will not be repeated.
 (実施形態2)
 図11は、本発明の実施形態2に係る変圧器を含む交流電車の構成を示す回路図である。図11に示すように、本発明の実施形態2に係る変圧器を含む交流電車205は、パンタグラフ92と、変圧装置105と、モータMA,MB,MC,MDとを備える。
(Embodiment 2)
FIG. 11 is a circuit diagram showing a configuration of an AC train including a transformer according to Embodiment 2 of the present invention. As shown in FIG. 11, an AC train 205 including a transformer according to Embodiment 2 of the present invention includes a pantograph 92, a transformer 105, and motors MA, MB, MC, MD.
 変圧装置105は、変圧器本体部55と、コンバータ5A,5B,5C,5Dと、インバータ6A,6B,6C,6Dとを含む。変圧器本体部55は、コイルグループG1,G2を含む。コイルグループG1は、高圧側コイル1A,1Bと、低圧側コイル2A,2Bとを含む。コイルグループG2は、高圧側コイル11A,11Bと、低圧側コイル12A,12Bとを含む。 The transformer device 105 includes a transformer main body 55, converters 5A, 5B, 5C, and 5D, and inverters 6A, 6B, 6C, and 6D. The transformer main body 55 includes coil groups G1 and G2. The coil group G1 includes high- voltage side coils 1A and 1B and low-voltage side coils 2A and 2B. The coil group G2 includes high voltage side coils 11A and 11B and low voltage side coils 12A and 12B.
 変圧装置105では、低圧側コイル2A,2B,12A,12Bが別個の負荷に結合されている。すなわち、低圧側コイル2Aは、高圧側コイル1Aと磁気結合されており、コンバータ5Aの第1入力端子に接続された第1端と、コンバータ5Aの第2入力端子に接続された第2端とを有する。低圧側コイル2Bは、高圧側コイル1Bと磁気結合されており、コンバータ5Cの第1入力端子に接続された第1端と、コンバータ5Cの第2入力端子に接続された第2端とを有する。 In the transformer 105, the low voltage side coils 2A, 2B, 12A, 12B are coupled to separate loads. That is, the low voltage side coil 2A is magnetically coupled to the high voltage side coil 1A, and has a first end connected to the first input terminal of the converter 5A and a second end connected to the second input terminal of the converter 5A. Have Low voltage side coil 2B is magnetically coupled to high voltage side coil 1B, and has a first end connected to the first input terminal of converter 5C and a second end connected to the second input terminal of converter 5C. .
 低圧側コイル12Aは、高圧側コイル11Aと磁気結合されており、コンバータ5Bの第1入力端子に接続された第1端と、コンバータ5Bの第2入力端子に接続された第2端とを有する。低圧側コイル12Bは、高圧側コイル11Bと磁気結合されており、コンバータ5Dの第1入力端子に接続された第1端と、コンバータ5Dの第2入力端子に接続された第2端とを有する。 Low voltage side coil 12A is magnetically coupled to high voltage side coil 11A and has a first end connected to the first input terminal of converter 5B and a second end connected to the second input terminal of converter 5B. . Low voltage side coil 12B is magnetically coupled to high voltage side coil 11B and has a first end connected to the first input terminal of converter 5D and a second end connected to the second input terminal of converter 5D. .
 架線91から供給される単相交流電圧は、パンタグラフ92を介して高圧側コイル1A,1B,11A,11Bに供給される。高圧側コイル1Aおよび11Aに供給される交流電圧により、低圧側コイル2Aおよび12Aにそれぞれ交流電圧が誘起される。高圧側コイル1Bおよび11Bに供給される交流電圧により、低圧側コイル2Bおよび12Bにそれぞれ交流電圧が誘起される。 The single-phase AC voltage supplied from the overhead wire 91 is supplied to the high-voltage side coils 1A, 1B, 11A, and 11B via the pantograph 92. An alternating voltage is induced in the low voltage side coils 2A and 12A by the alternating voltage supplied to the high voltage side coils 1A and 11A, respectively. An AC voltage is induced in the low voltage side coils 2B and 12B by the AC voltage supplied to the high voltage side coils 1B and 11B, respectively.
 コンバータ5Aは、低圧側コイル2Aに誘起された交流電圧を直流電圧に変換する。コンバータ5Bは、低圧側コイル12Aに誘起された交流電圧を直流電圧に変換する。コンバータ5Cは、低圧側コイル2Bに誘起された交流電圧を直流電圧に変換する。コンバータ5Dは、低圧側コイル12Bに誘起された交流電圧を直流電圧に変換する。 The converter 5A converts the AC voltage induced in the low voltage side coil 2A into a DC voltage. Converter 5B converts the AC voltage induced in low voltage side coil 12A into a DC voltage. Converter 5C converts the AC voltage induced in low voltage side coil 2B into a DC voltage. Converter 5D converts the AC voltage induced in low voltage side coil 12B into a DC voltage.
 インバータ6Aは、コンバータ5Aから受けた直流電圧を三相交流電圧に変換し、モータMAへ出力する。インバータ6Bは、コンバータ5Bから受けた直流電圧を三相交流電圧に変換し、モータMBへ出力する。インバータ6Cは、コンバータ5Cから受けた直流電圧を三相交流電圧に変換し、モータMCへ出力する。インバータ6Dは、コンバータ5Dから受けた直流電圧を三相交流電圧に変換し、モータMDへ出力する。 The inverter 6A converts the DC voltage received from the converter 5A into a three-phase AC voltage and outputs it to the motor MA. Inverter 6B converts the DC voltage received from converter 5B into a three-phase AC voltage and outputs it to motor MB. Inverter 6C converts the DC voltage received from converter 5C into a three-phase AC voltage and outputs it to motor MC. Inverter 6D converts the DC voltage received from converter 5D into a three-phase AC voltage and outputs it to motor MD.
 モータMAは、インバータ6Aから受けた三相交流電圧に基づいて駆動される。モータMBは、インバータ6Bから受けた三相交流電圧に基づいて駆動される。モータMCは、インバータ6Cから受けた三相交流電圧に基づいて駆動される。モータMDは、インバータ6Dから受けた三相交流電圧に基づいて駆動される。 The motor MA is driven based on the three-phase AC voltage received from the inverter 6A. Motor MB is driven based on the three-phase AC voltage received from inverter 6B. Motor MC is driven based on the three-phase AC voltage received from inverter 6C. Motor MD is driven based on the three-phase AC voltage received from inverter 6D.
 上記のように構成された本実施形態に係る変圧器においても、変圧器の高さを低減するとともにリアクタンスの低下を防ぐことができる。 Also in the transformer according to the present embodiment configured as described above, it is possible to reduce the height of the transformer and prevent a decrease in reactance.
 以下、本発明の実施形態3に係る変圧器について説明する。本実施形態に係る変圧器は、交流電車において負荷との接続形態のみ実施形態1に係る変圧器100と異なるため、他の構成については説明を繰り返さない。 Hereinafter, a transformer according to Embodiment 3 of the present invention will be described. Since the transformer according to the present embodiment is different from the transformer 100 according to the first embodiment only in the form of connection with a load in an AC train, the description of other configurations will not be repeated.
 (実施形態3)
 図12は、本発明の実施形態3に係る変圧器を含む交流電車の構成を示す回路図である。図12に示すように、本発明の実施形態3に係る変圧器を含む交流電車206は、パンタグラフ92と、変圧装置106と、モータMA,MB,MC,MDとを備える。
(Embodiment 3)
FIG. 12 is a circuit diagram showing a configuration of an AC train including a transformer according to Embodiment 3 of the present invention. As shown in FIG. 12, an AC train 206 including a transformer according to Embodiment 3 of the present invention includes a pantograph 92, a transformer device 106, and motors MA, MB, MC, MD.
 変圧装置106は、変圧器本体部56と、コンバータ5A,5B,5C,5Dと、インバータ6A,6B,6C,6Dとを含む。変圧器本体部56は、コイルグループG1,G2を含む。コイルグループG1は、高圧側コイル1A,1Bと、低圧側コイル2A,2Bとを含む。コイルグループG2は、高圧側コイル11A,11Bと、低圧側コイル12A,12Bとを含む。 The transformer device 106 includes a transformer main body 56, converters 5A, 5B, 5C, and 5D, and inverters 6A, 6B, 6C, and 6D. The transformer main body 56 includes coil groups G1 and G2. The coil group G1 includes high- voltage side coils 1A and 1B and low-voltage side coils 2A and 2B. The coil group G2 includes high voltage side coils 11A and 11B and low voltage side coils 12A and 12B.
 変圧装置106では、高圧側コイル1A,1B,11A,11Bは互いに並列に接続され、低圧側コイル2A,2B,12A,12Bが別個の負荷に結合されている。すなわち、高圧側コイル1Aは、パンタグラフ92に接続された第1端と、接地電圧が供給される接地ノードに接続された第2端とを有する。高圧側コイル1Bは、パンタグラフ92に接続された第1端と、接地電圧が供給される接地ノードに接続された第2端とを有する。高圧側コイル11Aは、パンタグラフ92に接続された第1端と、接地電圧が供給される接地ノードに接続された第2端とを有する。高圧側コイル11Bは、パンタグラフ92に接続された第1端と、接地電圧が供給される接地ノードに接続された第2端とを有する。 In the transformer 106, the high voltage side coils 1A, 1B, 11A, and 11B are connected in parallel to each other, and the low voltage side coils 2A, 2B, 12A, and 12B are coupled to separate loads. That is, the high voltage side coil 1A has a first end connected to the pantograph 92 and a second end connected to a ground node to which a ground voltage is supplied. High-voltage side coil 1B has a first end connected to pantograph 92 and a second end connected to a ground node to which a ground voltage is supplied. High voltage side coil 11A has a first end connected to pantograph 92 and a second end connected to a ground node to which a ground voltage is supplied. High voltage side coil 11B has a first end connected to pantograph 92 and a second end connected to a ground node to which a ground voltage is supplied.
 低圧側コイル2Aは、高圧側コイル1Aと磁気結合されており、コンバータ5Aの第1入力端子に接続された第1端と、コンバータ5Aの第2入力端子に接続された第2端とを有する。低圧側コイル2Bは、高圧側コイル1Bと磁気結合されており、コンバータ5Cの第1入力端子に接続された第1端と、コンバータ5Cの第2入力端子に接続された第2端とを有する。低圧側コイル12Aは、高圧側コイル11Aと磁気結合されており、コンバータ5Bの第1入力端子に接続された第1端と、コンバータ5Bの第2入力端子に接続された第2端とを有する。低圧側コイル12Bは、高圧側コイル11Bと磁気結合されており、コンバータ5Dの第1入力端子に接続された第1端と、コンバータ5Dの第2入力端子に接続された第2端とを有する。 Low voltage side coil 2A is magnetically coupled to high voltage side coil 1A and has a first end connected to the first input terminal of converter 5A and a second end connected to the second input terminal of converter 5A. . Low voltage side coil 2B is magnetically coupled to high voltage side coil 1B, and has a first end connected to the first input terminal of converter 5C and a second end connected to the second input terminal of converter 5C. . Low voltage side coil 12A is magnetically coupled to high voltage side coil 11A and has a first end connected to the first input terminal of converter 5B and a second end connected to the second input terminal of converter 5B. . Low voltage side coil 12B is magnetically coupled to high voltage side coil 11B and has a first end connected to the first input terminal of converter 5D and a second end connected to the second input terminal of converter 5D. .
 架線91から供給される単相交流電圧は、パンタグラフ92を介して高圧側コイル1A,1B,11A,11Bに供給される。高圧側コイル1Aおよび11Aに供給される交流電圧により、低圧側コイル2Aおよび12Aにそれぞれ交流電圧が誘起される。高圧側コイル1Bおよび11Bに供給される交流電圧により、低圧側コイル2Bおよび12Bにそれぞれ交流電圧が誘起される。 The single-phase AC voltage supplied from the overhead wire 91 is supplied to the high-voltage side coils 1A, 1B, 11A, and 11B via the pantograph 92. An alternating voltage is induced in the low voltage side coils 2A and 12A by the alternating voltage supplied to the high voltage side coils 1A and 11A, respectively. An AC voltage is induced in the low voltage side coils 2B and 12B by the AC voltage supplied to the high voltage side coils 1B and 11B, respectively.
 コンバータ5Aは、低圧側コイル2Aに誘起された交流電圧を直流電圧に変換する。コンバータ5Bは、低圧側コイル12Aに誘起された交流電圧を直流電圧に変換する。コンバータ5Cは、低圧側コイル2Bに誘起された交流電圧を直流電圧に変換する。コンバータ5Dは、低圧側コイル12Bに誘起された交流電圧を直流電圧に変換する。 The converter 5A converts the AC voltage induced in the low voltage side coil 2A into a DC voltage. Converter 5B converts the AC voltage induced in low voltage side coil 12A into a DC voltage. Converter 5C converts the AC voltage induced in low voltage side coil 2B into a DC voltage. Converter 5D converts the AC voltage induced in low voltage side coil 12B into a DC voltage.
 インバータ6Aは、コンバータ5Aから受けた直流電圧を三相交流電圧に変換し、モータMAへ出力する。インバータ6Bは、コンバータ5Bから受けた直流電圧を三相交流電圧に変換し、モータMBへ出力する。インバータ6Cは、コンバータ5Cから受けた直流電圧を三相交流電圧に変換し、モータMCへ出力する。インバータ6Dは、コンバータ5Dから受けた直流電圧を三相交流電圧に変換し、モータMDへ出力する。 The inverter 6A converts the DC voltage received from the converter 5A into a three-phase AC voltage and outputs it to the motor MA. Inverter 6B converts the DC voltage received from converter 5B into a three-phase AC voltage and outputs it to motor MB. Inverter 6C converts the DC voltage received from converter 5C into a three-phase AC voltage and outputs it to motor MC. Inverter 6D converts the DC voltage received from converter 5D into a three-phase AC voltage and outputs it to motor MD.
 モータMAは、インバータ6Aから受けた三相交流電圧に基づいて駆動される。モータMBは、インバータ6Bから受けた三相交流電圧に基づいて駆動される。モータMCは、インバータ6Cから受けた三相交流電圧に基づいて駆動される。モータMDは、インバータ6Dから受けた三相交流電圧に基づいて駆動される。 The motor MA is driven based on the three-phase AC voltage received from the inverter 6A. Motor MB is driven based on the three-phase AC voltage received from inverter 6B. Motor MC is driven based on the three-phase AC voltage received from inverter 6C. Motor MD is driven based on the three-phase AC voltage received from inverter 6D.
 上記のように構成された本実施形態に係る変圧器においても、変圧器の高さを低減するとともにリアクタンスの低下を防ぐことができる。 Also in the transformer according to the present embodiment configured as described above, it is possible to reduce the height of the transformer and prevent a decrease in reactance.
 以下、本発明の実施形態4に係る変圧器について説明する。本実施形態に係る変圧器は、金属板がタンクの他方の側壁に対して離間している点のみ実施形態1に係る変圧器100と異なるため、他の構成については説明を繰り返さない。 Hereinafter, a transformer according to Embodiment 4 of the present invention will be described. Since the transformer according to the present embodiment is different from the transformer 100 according to the first embodiment only in that the metal plate is separated from the other side wall of the tank, the description of other configurations will not be repeated.
 (実施形態4)
 図13は、本発明の実施形態4に係る変圧器の構成を示す平面断面図である。図14は、図13の変圧器の内部構成を矢印XIVで示す方向から見た斜視図である。図13,14に示すように、本発明の実施形態4に係る変圧器200は、外鉄型の変圧器である。
(Embodiment 4)
FIG. 13 is a cross-sectional plan view illustrating a configuration of a transformer according to Embodiment 4 of the present invention. FIG. 14 is a perspective view of the internal configuration of the transformer of FIG. 13 as seen from the direction indicated by arrow XIV. As shown in FIGS. 13 and 14, the transformer 200 according to the fourth embodiment of the present invention is a shell type transformer.
 変圧器200は、鉄心110、第1コイルグループG1および第2コイルグループG2を絶縁油に浸漬した状態で収容するタンク230を備える。タンク230は、互いに対向する一方の側壁238と他方の側壁239とを有する。一方の側壁238および他方の側壁239に直交する方向と、鉄心110を構成する磁性鋼板の積層方向とが略平行になるように、タンク230の内部に鉄心110が配置されている。 The transformer 200 includes a tank 230 that houses the iron core 110, the first coil group G1, and the second coil group G2 in a state of being immersed in insulating oil. The tank 230 has one side wall 238 and the other side wall 239 facing each other. The iron core 110 is arranged inside the tank 230 so that the direction perpendicular to the one side wall 238 and the other side wall 239 and the lamination direction of the magnetic steel plates constituting the iron core 110 are substantially parallel.
 タンク230の一方の側壁238に開口231および開口232が形成されている。タンク230の内部には、鉄心110と高圧側コイル1A,1B,11A,11Bと低圧側コイル2A,2B,12A,12Bとを冷却する絶縁油が封入されている。 An opening 231 and an opening 232 are formed in one side wall 238 of the tank 230. The tank 230 is filled with insulating oil that cools the iron core 110, the high-voltage side coils 1A, 1B, 11A, and 11B and the low-voltage side coils 2A, 2B, 12A, and 12B.
 本実施形態に係る変圧器200においては、冷却器140は、タンク230の外部において一方の側壁238側に位置する。冷却器140の流出口とタンク230の開口231とが、配管161によって接続されている。ポンプ150は、タンク230の外部において一方の側壁238側に位置する。ポンプ150の吸込口とタンク230の開口232とが、配管162によって接続されている。ポンプ150の吐出口と冷却器140の流入口とが、配管263によって接続されている。 In the transformer 200 according to the present embodiment, the cooler 140 is located on the side of one side wall 238 outside the tank 230. The outlet of the cooler 140 and the opening 231 of the tank 230 are connected by a pipe 161. The pump 150 is located on the one side wall 238 side outside the tank 230. The suction port of the pump 150 and the opening 232 of the tank 230 are connected by a pipe 162. The discharge port of the pump 150 and the inflow port of the cooler 140 are connected by a pipe 263.
 変圧器200は、鉄心110の第1脚部111と第2脚部112との間に位置する金属板235を備える。図14に示すように、鉄心110と第1コイルグループG1と第2コイルグループG2と金属板235とから、変圧器本体部52が構成されている。 The transformer 200 includes a metal plate 235 positioned between the first leg 111 and the second leg 112 of the iron core 110. As shown in FIG. 14, the transformer main body 52 is configured by the iron core 110, the first coil group G <b> 1, the second coil group G <b> 2, and the metal plate 235.
 金属板235によって窓部W2が、第1コイルグループG1側と第2コイルグループG2とに2分割されている。本実施形態においては、金属板235は磁性体で構成されている。 The metal plate 235 divides the window W2 into two parts, the first coil group G1 side and the second coil group G2. In the present embodiment, the metal plate 235 is made of a magnetic material.
 本実施形態においては、金属板235の延在方向の一端は、タンク230の互いに対向する一方の側壁238に接続されている。金属板235の延在方向の他端は、タンク230の互いに対向する他方の側壁239に対して離間している。 In the present embodiment, one end in the extending direction of the metal plate 235 is connected to one side wall 238 of the tank 230 facing each other. The other end of the metal plate 235 in the extending direction is separated from the other side wall 239 of the tank 230 facing each other.
 具体的には、金属板235の一端とタンク230の一方の側壁238とは、溶接されて互いに固定されている。金属板235の他端の面は、鉄心110の他方の側面と同一面上に位置している。 Specifically, one end of the metal plate 235 and one side wall 238 of the tank 230 are welded and fixed to each other. The other end surface of the metal plate 235 is located on the same plane as the other side surface of the iron core 110.
 金属板235によって、タンク130の内部において一方の側壁238側の空間が、第1コイルグループG1側と第2コイルグループG2側とに2分割されている。タンク230の開口231は、第1コイルグループG1側に位置している。タンク230の開口232は、第2コイルグループG2側に位置している。 The metal plate 235 divides the space on one side wall 238 side into two into a first coil group G1 side and a second coil group G2 side inside the tank 130. The opening 231 of the tank 230 is located on the first coil group G1 side. The opening 232 of the tank 230 is located on the second coil group G2 side.
 その結果、ポンプ150が作動することにより、矢印20で示すように開口231からタンク230内の第1コイルグループG1側に流入した絶縁油は、矢印21で示すように窓部W1、および窓部W2の第1コイルグループG1側を通過する。タンク130の内部において他方の側壁239側に到達した絶縁油は、矢印22で示すように、第1コイルグループG1側から第2コイルグループG2側に流入する。 As a result, when the pump 150 is operated, the insulating oil that has flowed into the first coil group G1 side in the tank 230 from the opening 231 as shown by the arrow 20 is, as shown by the arrow 21, the window W1 and the window. It passes through the first coil group G1 side of W2. The insulating oil that has reached the side of the other side wall 239 in the tank 130 flows from the first coil group G1 side to the second coil group G2 side as indicated by the arrow 22.
 第2コイルグループG2側に流入した絶縁油は、矢印23で示すように窓部W2の第2コイルグループG2側および窓部W3を通過して開口232からポンプ150の吸込口に到達する。 The insulating oil that has flowed into the second coil group G2 side passes through the second coil group G2 side of the window W2 and the window W3 as indicated by the arrow 23 and reaches the suction port of the pump 150 from the opening 232.
 吸込口からポンプ150内に吸い込まれた絶縁油は、加圧されて矢印24で示すように吐出口に向けて送出される。ポンプ150の吐出口から吐き出された絶縁油は、矢印25で示すように冷却器140の流入口に到達する。 The insulating oil sucked into the pump 150 from the suction port is pressurized and sent out toward the discharge port as indicated by an arrow 24. The insulating oil discharged from the discharge port of the pump 150 reaches the inlet of the cooler 140 as indicated by an arrow 25.
 流入口から冷却器140内に流入した絶縁油は、冷却されつつ矢印25で示すように流出口に向けて流れる。冷却器140の流出口から流出した絶縁油は、矢印20で示すように開口231からタンク230内の第1コイルグループG1側に流入する。 The insulating oil that has flowed into the cooler 140 from the inlet flows toward the outlet as indicated by an arrow 25 while being cooled. The insulating oil flowing out from the outlet of the cooler 140 flows into the first coil group G1 side in the tank 230 from the opening 231 as indicated by an arrow 20.
 このように、ポンプ150は、金属板235の一端側によって隔てられているタンク230内の第1コイルグループG1側と第2コイルグループG2側との間において、絶縁油を冷却器140を通過させて移動させる。冷却器140によって冷却された絶縁油を循環させることにより、第1コイルグループG1および第2コイルグループG2を順次冷却することができる。 In this way, the pump 150 allows the insulating oil to pass through the cooler 140 between the first coil group G1 side and the second coil group G2 side in the tank 230 separated by one end side of the metal plate 235. To move. By circulating the insulating oil cooled by the cooler 140, the first coil group G1 and the second coil group G2 can be sequentially cooled.
 なお、絶縁油の流動方向は逆でもよい。すなわち、冷却器140によって冷却された絶縁油が開口232からタンク230内の第2コイルグループG2側に流入するようにしてもよい。 The flow direction of the insulating oil may be reversed. That is, the insulating oil cooled by the cooler 140 may flow from the opening 232 to the second coil group G2 side in the tank 230.
 本実施形態に係る変圧器200においても、金属板235を仕切板として機能させることにより、比較例に係る変圧器900に比較して第1コイルグループG1および第2コイルグループG2の各々に流れる絶縁油の流量を約2倍にして、コイルの冷却効率を向上することができる。 Also in the transformer 200 according to the present embodiment, by causing the metal plate 235 to function as a partition plate, insulation that flows in each of the first coil group G1 and the second coil group G2 as compared with the transformer 900 according to the comparative example. The oil flow rate can be doubled to improve coil cooling efficiency.
 また、本実施形態に係る変圧器200においても、比較例に係る変圧器900のように配管963をタンク930の外側で引き回す必要がないため、比較例に係る変圧器900に比較してタンク230と冷却器140とを接続する配管を短くして変圧器200を小型化できる。変圧器200においては、タンク230の一方の側壁238側のみに配管を設けているため、実施形態1に係る変圧器100に比較してさらに小型化できる。 Further, in the transformer 200 according to the present embodiment, the pipe 963 does not need to be routed outside the tank 930 unlike the transformer 900 according to the comparative example, and therefore the tank 230 compared with the transformer 900 according to the comparative example. The transformer 200 can be reduced in size by shortening the pipe connecting the cooler 140. In the transformer 200, since the piping is provided only on the one side wall 238 side of the tank 230, the size can be further reduced as compared with the transformer 100 according to the first embodiment.
 さらに、本実施形態に係る変圧器200においては、タンク230の一方の側壁238の開口231と開口232との間の位置に金属板235の延在方向の一端を接続している。このように、金属板235を補強板として機能させることにより、タンクを薄型化しつつタンクの側壁の強度を確保することができる。その結果、変圧器200の小型化および軽量化を図ることができる。 Furthermore, in the transformer 200 according to the present embodiment, one end in the extending direction of the metal plate 235 is connected to a position between the opening 231 and the opening 232 of the one side wall 238 of the tank 230. Thus, by making the metal plate 235 function as a reinforcing plate, it is possible to ensure the strength of the side wall of the tank while reducing the thickness of the tank. As a result, the transformer 200 can be reduced in size and weight.
 変圧器本体部52においても、片側運転時に、低圧側コイル2A,2Bおよび高圧側コイル1A,1Bのリアクタンスが低下することを防ぐことができ、安定したリアクタンスを得ることができる。 Also in the transformer main body 52, it is possible to prevent the reactances of the low voltage side coils 2A and 2B and the high voltage side coils 1A and 1B from being lowered during one-side operation, and a stable reactance can be obtained.
 なお、今回開示した上記実施形態はすべての点で例示であって、限定的な解釈の根拠となるものではない。したがって、本発明の技術的範囲は、上記した実施形態のみによって解釈されるものではなく、請求の範囲の記載に基づいて画定される。また、請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。 In addition, the said embodiment disclosed this time is an illustration in all the points, Comprising: It does not become the basis of a limited interpretation. Therefore, the technical scope of the present invention is not interpreted only by the above-described embodiments, but is defined based on the description of the scope of claims. In addition, meanings equivalent to the claims and all modifications within the scope are included.
 1 高圧側コイル、2 低圧側コイル、5A,5B,5C,5D コンバータ、6A,6B,6C,6D インバータ、51,52,55,56 変圧器本体部、100,200,900 変圧器、91 架線、92 パンタグラフ、101,105,106 変圧装置、110 鉄心、111 第1脚部、112 第2脚部、130,230,930 タンク、131,132,133,134,231,232,931,932 開口、135,235,915 金属板、138,139,238,239,938,939 側壁、140 冷却器、150 ポンプ、161,162,163,164,263,963 配管、201,205,206 交流電車、FH1,FH11 主磁束、FKH1,FKH11,FKL1 漏れ磁束、G1 第1コイルグループ、G2 第2コイルグループ、IH,IL1,IL11 交流電流、MA,MB,MC,MD,MA,MC,MD モータ、W1,W2,W3 窓部。 1 high voltage side coil, 2 low voltage side coil, 5A, 5B, 5C, 5D converter, 6A, 6B, 6C, 6D inverter, 51, 52, 55, 56 transformer body, 100, 200, 900 transformer, 91 overhead wire , 92 Pantograph, 101, 105, 106 Transformer, 110 Iron core, 111 First leg, 112 Second leg, 130, 230, 930 Tank, 131, 132, 133, 134, 231, 232, 931, 932 Open 135, 235, 915 Metal plate, 138, 139, 238, 239, 938, 939 Side wall, 140 cooler, 150 pump, 161, 162, 163, 164, 263, 963 piping, 201, 205, 206 AC train, FH1, FH11 main magnetic flux, FKH1, FKH11, FKL1 leakage Beam, G1 a first coil group, G2 second coil group, IH, IL1, IL11 alternating current, MA, MB, MC, MD, MA, MC, MD motor, W1, W2, W3 window.

Claims (4)

  1.  互いに間隔を置いて並ぶ第1脚部および第2脚部を有する鉄心と、
     前記第1脚部に巻回された複数の高圧側コイル、および、該高圧側コイルに対応して設けられて対応の前記高圧側コイルと磁気結合された複数の低圧側コイルを含む第1コイルグループと、
     前記第2脚部に巻回された複数の高圧側コイル、および、該高圧側コイルに対応して設けられて対応の前記高圧側コイルと磁気結合された複数の低圧側コイルを含む第2コイルグループと、
     前記鉄心、前記第1コイルグループおよび前記第2コイルグループを絶縁油に浸漬した状態で収容するタンクと、
     前記絶縁油を冷却する冷却器と、
     前記絶縁油を循環させるポンプと、
     前記第1脚部と前記第2脚部との間に位置する金属板と
    を備え、
     各前記高圧側コイルは共通の単相交流電力を受け、
     前記第1コイルグループの前記低圧側コイルと前記第2コイルグループの前記低圧側コイルとは別個の負荷に結合され、
     前記金属板においては、前記金属板の少なくとも一端が前記タンクの側壁に接続されるように延在し、
     前記ポンプは、前記一端側の前記金属板によって隔てられている前記タンク内の前記第1コイルグループ側と前記第2コイルグループ側との間において、前記絶縁油を前記冷却器を通過させて移動させる、変圧器。
    An iron core having a first leg and a second leg that are spaced apart from each other;
    A first coil including a plurality of high voltage side coils wound around the first leg and a plurality of low voltage side coils provided corresponding to the high voltage side coils and magnetically coupled to the corresponding high voltage side coils; Groups,
    A second coil including a plurality of high voltage side coils wound around the second leg and a plurality of low voltage side coils provided corresponding to the high voltage side coils and magnetically coupled to the corresponding high voltage side coils; Groups,
    A tank that accommodates the iron core, the first coil group, and the second coil group immersed in insulating oil;
    A cooler for cooling the insulating oil;
    A pump for circulating the insulating oil;
    A metal plate positioned between the first leg and the second leg;
    Each of the high-voltage side coils receives a common single-phase AC power,
    The low voltage side coil of the first coil group and the low voltage side coil of the second coil group are coupled to separate loads;
    In the metal plate, it extends so that at least one end of the metal plate is connected to the side wall of the tank,
    The pump moves the insulating oil through the cooler between the first coil group side and the second coil group side in the tank separated by the metal plate on the one end side. Let the transformer.
  2.  前記金属板が磁性体で構成されている、請求項1に記載の変圧器。 The transformer according to claim 1, wherein the metal plate is made of a magnetic material.
  3.  前記金属板の延在方向の前記一端は、前記タンクの互いに対向する一方の側壁に接続され、
     前記金属板の延在方向の他端は、前記タンクの互いに対向する他方の側壁に接続されている、請求項1または2に記載の変圧器。
    The one end in the extending direction of the metal plate is connected to one side wall of the tank facing each other,
    3. The transformer according to claim 1, wherein the other end of the metal plate in the extending direction is connected to the other side walls of the tank facing each other.
  4.  前記金属板の延在方向の前記一端は、前記タンクの互いに対向する一方の側壁に接続され、
     前記金属板の延在方向の他端は、前記タンクの互いに対向する他方の側壁に対して離間している、請求項1または2に記載の変圧器。
    The one end in the extending direction of the metal plate is connected to one side wall of the tank facing each other,
    3. The transformer according to claim 1, wherein the other end in the extending direction of the metal plate is separated from the other side walls of the tank facing each other.
PCT/JP2013/072360 2013-08-22 2013-08-22 Transformer WO2015025392A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014504508A JPWO2015025392A1 (en) 2013-08-22 2013-08-22 Transformer
PCT/JP2013/072360 WO2015025392A1 (en) 2013-08-22 2013-08-22 Transformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/072360 WO2015025392A1 (en) 2013-08-22 2013-08-22 Transformer

Publications (1)

Publication Number Publication Date
WO2015025392A1 true WO2015025392A1 (en) 2015-02-26

Family

ID=52483201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/072360 WO2015025392A1 (en) 2013-08-22 2013-08-22 Transformer

Country Status (2)

Country Link
JP (1) JPWO2015025392A1 (en)
WO (1) WO2015025392A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105355375A (en) * 2015-11-20 2016-02-24 铜陵瑞博电子科技有限公司 Transformer oil cooling processing device
CN107545994A (en) * 2017-09-28 2018-01-05 江苏容源电力设备有限公司 A kind of subregion oil tank of transformer
JP6448883B1 (en) * 2018-05-17 2019-01-09 三菱電機株式会社 Automotive transformers and oil flow relays
CN112216490A (en) * 2020-10-13 2021-01-12 云南电网有限责任公司电力科学研究院 Three-phase transformer with adjacent-phase supporting strips
CN112687450A (en) * 2020-12-03 2021-04-20 江苏安靠智能电站科技有限公司 Opening and changing integrated machine
JP2022507434A (en) * 2018-11-14 2022-01-18 ヒタチ・エナジー・スウィツァーランド・アクチェンゲゼルシャフト Internal support for external iron transformers
US11640871B2 (en) 2017-11-08 2023-05-02 Mitsubishi Electric Corporation Transformer and power conversion device
CN112067901B (en) * 2020-10-13 2023-11-28 海南电网有限责任公司电力科学研究院 Dielectric response testing device for insulating paper

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57134824U (en) * 1981-02-14 1982-08-23
WO2008007513A1 (en) * 2006-07-10 2008-01-17 Mitsubishi Electric Corporation Transformer for vehicles
WO2010092676A1 (en) * 2009-02-13 2010-08-19 三菱電機株式会社 Transformer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57134824U (en) * 1981-02-14 1982-08-23
WO2008007513A1 (en) * 2006-07-10 2008-01-17 Mitsubishi Electric Corporation Transformer for vehicles
WO2010092676A1 (en) * 2009-02-13 2010-08-19 三菱電機株式会社 Transformer

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105355375A (en) * 2015-11-20 2016-02-24 铜陵瑞博电子科技有限公司 Transformer oil cooling processing device
CN107545994A (en) * 2017-09-28 2018-01-05 江苏容源电力设备有限公司 A kind of subregion oil tank of transformer
US11640871B2 (en) 2017-11-08 2023-05-02 Mitsubishi Electric Corporation Transformer and power conversion device
JP6448883B1 (en) * 2018-05-17 2019-01-09 三菱電機株式会社 Automotive transformers and oil flow relays
WO2019220587A1 (en) * 2018-05-17 2019-11-21 三菱電機株式会社 On-vehicle transformer and oil flow relay
EP3796343A4 (en) * 2018-05-17 2021-09-08 Mitsubishi Electric Corporation On-vehicle transformer and oil flow relay
JP2022507434A (en) * 2018-11-14 2022-01-18 ヒタチ・エナジー・スウィツァーランド・アクチェンゲゼルシャフト Internal support for external iron transformers
JP7296457B2 (en) 2018-11-14 2023-06-22 ヒタチ・エナジー・スウィツァーランド・アクチェンゲゼルシャフト Internal supports for shell transformers
CN112216490A (en) * 2020-10-13 2021-01-12 云南电网有限责任公司电力科学研究院 Three-phase transformer with adjacent-phase supporting strips
CN112067901B (en) * 2020-10-13 2023-11-28 海南电网有限责任公司电力科学研究院 Dielectric response testing device for insulating paper
CN112687450A (en) * 2020-12-03 2021-04-20 江苏安靠智能电站科技有限公司 Opening and changing integrated machine

Also Published As

Publication number Publication date
JPWO2015025392A1 (en) 2017-03-02

Similar Documents

Publication Publication Date Title
WO2015025392A1 (en) Transformer
US8421571B2 (en) Transformer
US7633369B2 (en) Extended E matrix integrated magnetics (MIM) core
KR20140032449A (en) High-frequency transformer
US7432791B2 (en) Magnet arrangement for carrying, guiding and/or braking systems in magnetic levitation vehicles
WO2015186303A1 (en) Reactor
JP5217061B2 (en) Transformer
JP2013093921A (en) Reactor for two-phase converter and two-phase converter
EP3171372B1 (en) In-vehicle voltage-transforming device
WO2011148468A1 (en) Transformer
EP2937877B1 (en) Transformer and transformer device including same
JP2015126145A (en) Reactor
JP2020136364A (en) Transformer
US11170928B2 (en) Automotive variable voltage converter with inductor having hidden air gap
CN112425050A (en) Coil, motor and hybrid electric aerial vehicle
KR102652386B1 (en) Gas insulated transformer
US20220223331A1 (en) Compact power inductor
US20220068557A1 (en) Transformer and dc-dc converter including same
US20230395313A1 (en) Heat transfer from transformer windings
JP6680820B2 (en) Multi-stage electromagnetic device
KR101997981B1 (en) Transformer type tie-plate for reduced stray loss, and manufacturing method thereof
JP2019029454A (en) Core and transformer

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014504508

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13891896

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13891896

Country of ref document: EP

Kind code of ref document: A1