WO2015023295A1 - Adhesion promotion in printed circuit boards - Google Patents

Adhesion promotion in printed circuit boards Download PDF

Info

Publication number
WO2015023295A1
WO2015023295A1 PCT/US2013/055368 US2013055368W WO2015023295A1 WO 2015023295 A1 WO2015023295 A1 WO 2015023295A1 US 2013055368 W US2013055368 W US 2013055368W WO 2015023295 A1 WO2015023295 A1 WO 2015023295A1
Authority
WO
WIPO (PCT)
Prior art keywords
substituted
unsubstituted
set forth
group
copper
Prior art date
Application number
PCT/US2013/055368
Other languages
French (fr)
Inventor
Abayomi I. Owei
Joseph A. Abys
Theodore Antonellis
Eric Walch
Original Assignee
Enthone Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Enthone Inc. filed Critical Enthone Inc.
Priority to KR1020167006853A priority Critical patent/KR20160056892A/en
Priority to JP2016534564A priority patent/JP2016535453A/en
Priority to CN201380078898.8A priority patent/CN105453711A/en
Priority to PCT/US2013/055368 priority patent/WO2015023295A1/en
Priority to EP13753393.1A priority patent/EP3033929A1/en
Publication of WO2015023295A1 publication Critical patent/WO2015023295A1/en

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/382Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal
    • H05K3/383Improvement of the adhesion between the insulating substrate and the metal by special treatment of the metal by microetching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F1/00Etching metallic material by chemical means
    • C23F1/10Etching compositions
    • C23F1/14Aqueous compositions
    • C23F1/16Acidic compositions
    • C23F1/18Acidic compositions for etching copper or alloys thereof
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/38Improvement of the adhesion between the insulating substrate and the metal
    • H05K3/389Improvement of the adhesion between the insulating substrate and the metal by the use of a coupling agent, e.g. silane
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/03Metal processing
    • H05K2203/0392Pretreatment of metal, e.g. before finish plating, etching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/07Treatments involving liquids, e.g. plating, rinsing
    • H05K2203/0779Treatments involving liquids, e.g. plating, rinsing characterised by the specific liquids involved
    • H05K2203/0786Using an aqueous solution, e.g. for cleaning or during drilling of holes
    • H05K2203/0793Aqueous alkaline solution, e.g. for cleaning or etching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/12Using specific substances
    • H05K2203/122Organic non-polymeric compounds, e.g. oil, wax, thiol
    • H05K2203/124Heterocyclic organic compounds, e.g. azole, furan

Definitions

  • This invention relates to improving adhesion of metal surfaces, such as copper to an insulating layer, in the manufacture of printed circuit boards.
  • a multilayer circuit board has, among other things, a number of metal layers defining circuit patterns, and a number of insulating layers there-between .
  • the metal layers defining circuit patterns today are typically formed from copper, and the insulating layers are typically formed from a resinous fiber-impregnated dielectric material.
  • respective layers can have a wide variety of thickness. For example, they can be on the order of only microns thick, or much thicker .
  • organometallic conversion coating processes which produce significantly lighter coatings are generally
  • the application is directed to a method for enhancing adhesion between a copper conducting layer and a dielectric material during manufacture of a printed circuit board, the method comprising contacting the copper conducting layer with a conditioning composition, said
  • conditioning composition comprising a functional organic compound and a transition metal ion, said functional organic compound being capable of forming a self-assembled monolayer on a copper surface, and thereafter contacting the copper
  • an adhesion promoting composition that comprises an oxidizing agent, an inorganic acid, and a corrosion inhibitor .
  • the invention is directed to a method for enhancing adhesion between a copper conducting layer and a dielectric material during manufacture of a printed circuit board, the method comprising contacting the copper conducting layer with a conditioning composition comprising an organic N-bearing compound capable of forming a self-assembled monolayer on a copper surface, and thereafter contacting the copper conducting layer with an adhesion promoting composition that comprises an oxidizing agent, an inorganic acid, a corrosion inhibitor and a transition metal ion selected from the group consisting of zinc, nickel, cobalt, copper, silver, gold, palladium and other platinum group metals, said corrosion inhibitor comprising an aromatic heterocyclic compound
  • the invention is further directed to an aqueous alkaline composition comprising a nitrogen-containing aromatic heterocyclic compound and a transition metal ion, said
  • heterocyclic compound comprising a ring group or an amine substitutent on the ring wherein R7 is hydrogen, hydrocarbyl, substituted hydrocarbyl, hydroxyl, or a negative charge, said heterocyclic compound being capable of forming a self-assembled monolayer on a copper surface .
  • the invention is also directed to an aqueous composition for treating a copper surface to enhance adhesion to a dielectric, the composition comprising between about 0.02 and about 2 wt . % transition metal ion selected from the group consisting of zinc, nickel, cobalt, copper, silver, gold, palladium and other platinum group metal, between about 10 and about 50 wt . % sulfuric acid, between about 1 and about 10 wt . % hydrogen peroxide, and a corrosion inhibitor comprising a nitrogen-containing aromatic heterocyclic compound.
  • transition metal ion selected from the group consisting of zinc, nickel, cobalt, copper, silver, gold, palladium and other platinum group metal
  • between about 10 and about 50 wt . % sulfuric acid between about 1 and about 10 wt . % hydrogen peroxide
  • a corrosion inhibitor comprising a nitrogen-containing aromatic heterocyclic compound.
  • the invention is directed to method for enhancing adhesion between a copper conducting layer and a dielectric material during manufacture of a printed circuit board.
  • the method comprises contacting the copper conducting layer with a conditioning composition comprising a nitrogen-containing aromatic heterocyclic compound that is capable of forming a self-assembled monolayer on a copper surface.
  • the nitrogen-containing aromatic heterocyclic compound corresponds to the formula:
  • R 2 , R 6 , and R 8 is independently selected from the group consisting of hydrogen, hydrocarbyl, substituted
  • hydrocarbyl, hydroxycarbonyl , alkoxycarbonyl , alkoxy, hydroxyl, sulfhydryl, halo, nitro, cyano and NR 9 R 10 , R 7 is selected from the group consisting of hydrogen, hydrocarbyl, substituted
  • each of R 9 and R 10 is independently selected from the group consisting of hydrogen, hydrocarbyl and substituted hydrocarbyl.
  • the invention is still further directed to method for preparing a copper conducting layer for adhesion to a dielectric material during manufacture of a printed circuit board.
  • the method comprises contacting the copper conducting layer with a conditioning composition comprising a nitrogen- containing aromatic heterocyclic compound and an anionic
  • the nitrogen-containing aromatic heterocyclic compound is capable of forming a self-assembled monolayer on a
  • the copper surface and comprises a ring ⁇ group or an amine substitutent on the ring wherein R 7 is hydrogen, hydrocarbyl, substituted hydrocarbyl, hydroxyl, or a negative charge.
  • an adhesive promoting composition that comprises an acid and an oxidant .
  • the invention is also directed to a method for preparing a copper conducting layer for adhesion to a dielectric material during manufacture of a printed circuit board.
  • the method comprises contacting the copper conducting layer with a conditioning composition comprising a nitrogen-containing aromatic heterocyclic compound, an alkali metal iodide and a glycol ether.
  • the nitrogen containing heterocyclic compound is capable of forming a self-assembled monolayer on a copper
  • R 7 is hydrogen, hydrocarbyl, substituted hydrocarbyl, hydroxyl, or a negative charge.
  • Fig. 1 is a series of bar graphs showing peel strength as a function of copper loading for various laminates prepared at 15.5 bars after treatment with a conditioner and adhesion promoter of the invention as described in Example 18, wherein each of the conditioner and adhesion promoter
  • compositions contained a concentration of copper ion ranging from 0 to 10 g/1,
  • Fig. 2 is a series of bar graphs showing peel strength as a function of copper loading for laminates prepared at 24.1 bars after treatment with a conditioner and adhesion promoter of the invention as further described in Example 18, wherein again each of the conditioner and adhesion promoter compositions contained a concentration of copper ion ranging from 0 to 10 g/1; [ 0015 ] Each of Figs.
  • 3 to 6 is a series of bar graphs showing peel strength as a function of copper loading for laminates prepared after treatment with a conditioner and adhesion promoter at two different laminating pressures (24.1 bars or 15.5 bars) and both before and after reflow, as further described in Example 19, wherein again each of the conditioner and adhesion promoter compositions contained a concentration of copper ion ranging from 0 to 10 g/l;
  • FIG. 7 and 8 is a series of bar graphs showing peel strength as a function of copper loading for laminates prepared at 15.5 bars and 24.1 bars, respectively, after treatment with a conditioner and adhesion promoter as described in Example 20, wherein each of the conditioner and adhesion promoting composition had a copper ion content ranging from 0 to 10 g/l and the adhesion promoting composition had not been doped with the conditioner;
  • FIG. 9 and 10 are a series of bar graphs showing peel strength as a function of copper loading for laminates prepared at 15.5 and 24.1 bars, respectively, after treatment with a conditioner and adhesion promoter as described in Example 20, wherein each of the conditioner and adhesion promoting composition had a copper ion content ranging from 0 to 10 g/l and the adhesion promoting composition had been doped with ⁇ 1 g/l of conditioner #2;
  • Fig. 11 is a series of bar graphs showing peel strength as a function of conditioner #2 content in the adhesion promoting composition for laminates prepared according to
  • compositions had a copper ion content of approximately 5 g/l;
  • Fig. 12 is a series of bar graphs showing peel strength as a function of copper loading for laminates prepared according to Example 22 wherein the copper ion concentration ranged from 0 to 50 g/1 and no Conditioner #2 was added to the adhesion promoting composition;
  • Fig. 13 is a series of bar graphs showing peel strength as a function of copper loading for laminates prepared according to Example 22 wherein the copper ion concentration ranged from 0 to 50 g/1 and the adhesion promoting composition was doped with ⁇ 1 g/1 Conditioner #2;
  • Fig. 14 is a series of bar graphs showing peel strength as a function of dwell time between application of the conditioner and application of the adhesion promoting
  • FIG. 15 and 16 is a series of bar graphs showing peel strength as a function of conditioner #2 content in the adhesion promoting composition for laminates prepared according to Example 24 wherein each of the conditioner and adhesion promoting compositions had a copper ion content of approximately 10 g/1.
  • the present invention is directed to compositions and methods for enhancing adhesion between a copper conducting layer and a non-conducting laminate.
  • compositions and methods for enhancing adhesion between a copper conducting layer and a non-conducting laminate As a general proposition, the development of an adhesive organometallic conversion coating on the surface of the copper conducting layer occurs by
  • cuprous ions Cu +
  • cupric ions Cu 2+
  • the cuprous ions on the surface bind with a corrosion inhibitor in the adhesion promotion composition and form a copper-inhibitor-complex as copper dissolves from the conducting copper layer into the adhesion promoter chemistry at the same time. This results in micro-roughened surface morphology of the conducting copper layer. This micro-roughened copper surface promotes adhesion with the subsequently applied insulating layer.
  • the copper conducting layer is preferabl contacted with a conditioning composition comprising a nitrogen containing heterocycle that is capable of forming a self- assembled monolayer (SAM) on a copper surface.
  • a conditioning composition comprising a nitrogen containing heterocycle that is capable of forming a self- assembled monolayer (SAM) on a copper surface.
  • SAM self- assembled monolayer
  • the self-assembled monolayer essentially consists of a densely packed organic film formed of a monolayer of the nitrogen-containing heterocycle molecule or other film-forming organic nitrogen or sulfur compound
  • the self assembled monolayer formed over the copper surface from the conditioning solution functions to passivate the copper surface by blocking access of oxygen contained in the adhesion promoting
  • composition modulates the effect of the subsequently applied adhesion promotion solution by preventing excess copper oxide formation that may otherwise result from the aggressive effect of the peroxide component of the latter solution.
  • the conditioning composition preferably contains a transition metal ion, typically in the form of a transition metal salt.
  • transition metal ions include zinc, nickel, copper, cobalt, silver, gold, palladium and other platinum group metals
  • the transition metal ion is selected from the group consisting of zinc, nickel, cobalt, silver, gold, palladium and other platinum group metals, more preferably zinc, nickel, cobalt or silver, still more preferably zinc, nickel or cobalt.
  • Zinc is preferred.
  • Various salts of the transition metal can be used, including sulfates, chlorides, other halides, most
  • transition metal ions in the conditioning solution contributes to the heat stability of the conversion coating produced in the subsequent treatment with the adhesion promoting solution.
  • zinc is incorporated into the conditioning solution in the form of an alkaline dispersion of ZnO, a solution of alkali metal zincate, or a zinc ammonium halide such as zinc ammonium chloride.
  • the nitrogen-containing heterocycle is a purine compound, for example, a compound that corresponds to the formula :
  • R 2 , R 6 , and R 8 is independently selected from the group consisting of hydrogen, hydrocarbyl, substituted
  • hydrocarbyl, hydroxycarbonyl , alkoxycarbonyl , alkoxy, hydroxyl, sulfhydryl, halo, nitro, cyano and NR 9 R 10 , R 7 is selected from the group consisting of hydrogen, hydrocarbyl, substituted
  • each of R 9 and R 10 is independently selected from the group consisting of hydrogen, hydrocarbyl and substituted hydrocarbyl.
  • each of R 9 and R 10 is independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, aralkyl and aryl .
  • R 6 of Formula I comprises NR 9 R 10 .
  • the hydrocarbyl substituent is
  • the substituent on the hydrocarbyl is preferably amino, cyano, nitro, halo, hydroxy or sulfhydryl.
  • R 9 is hydrogen and R 10 is benzyl, i.e., the compound forming the self-assembling monolayer is most preferably an amino substituted purine such as 6-benz laminopurine :
  • the compound of Formula I can also advantageously comprise unsubstituted purine.
  • R 7 is preferably hydrogen and said
  • R 7 comprises hydrox or a negative charge.
  • Purine derivatives have further been found to contribute to the thermal stability of the conversion coating produced by subsequent treatment with the adhesion promoting solution .
  • Benzo-triazole BTA and various substituted benzotriazoles , as well as substituted and unsubstituted triazoles, tetrazoles, benzimidazoles , etc.
  • the heterocycle may comprise a functional ring substituent such as thiol, vinyl ether, thiamide, amine, carboxylic acid, ester, alcohol, silane, alkoxy silane.
  • exemplary compounds useful in forming the self assembled monolayer include adenine, 2-mercaptobenzimidazole,
  • the self-assembling monolayer can be formed from: arylamines such as aniline, aniline derivatives, toluidine and toluidine derivatives; aralkylamines such as benzylamine, tolylamine and benzylamine and tolylamine derivatives; various alkylamines , particularly fatty amines; sulfur-bearing aromatic heterocyclic compounds such as thiophene, thiophene derivatives,
  • benzothiophene benzothiophene , benzothiophene derivatives, benzothiazoles and benzothiazole derivatives; aryl thiols such as thiophenol, thiophenol derivatives, tolyl thiol and tolyl thiol derivatives; and other aralkyl thiols such as benzyl mercaptan and
  • suitable components from which the self-assembling monolayer can be formed include multi-functional compounds having structure (la) or structure (lb) :
  • Ai, A 2 , A3, A 4 , A 5 , A 6 , and A 7 are carbon atoms or nitrogen atoms and the sum of nitrogen atoms from Ai, A 2 , A3, A 4 , A 5 , A 6 , and A 7 is 0, 1, 2, or 3;
  • An, 22, A 33 , A 44 , A 55 , A 6 6, and A 77 are selected from the group consisting of electron pair, hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted aryl, substituted or unsubstituted vinyl ether, substituted or unsubstituted amide, substituted or unsubstituted amine, substituted or unsubstituted carboxylic acid, substituted or unsubstituted ester, substituted or unsubstituted alcohol, and substituted and unsubstituted silane or alkoxysilane; and
  • An, A22, A 33 , A 44 , and A 55 is selected from the group consisting of substituted or unsubstituted vinyl ether, substituted or unsubstituted amide, substituted or unsubstituted amine, substituted or unsubstituted carboxylic acid, substituted or unsubstituted ester, substituted or unsubstituted alcohol, and substituted and unsubsituted silane or alkoxysilane.
  • an moiety of an aromatic heterocycle from which the self-assembling monolayer is formed may comprise a substituted nitrogen, i.e., R 7 may be hydrocarbyl
  • R 7 may be hydrocarbyl
  • at least one nitrogen atom of the film-forming aromatic heterocycle be bonded to an acidic hydrogen atom, such that the compound may become deprotonated and the resultant negatively charged aromatic heterocyle is available to interact with copper (I) ions and copper (II) ions in a manner which forms a copper (I) rich organometallic adhesive film over the surface of the metal substrate.
  • an aromatic N-bearing heterocycle which serves to form the monolayer comprise in which R 7 is hydrogen, and that the hydrogen be acidic, e.g., wherein it exhibits a pK a of between about 5 and about 13, such as between about 3.5 and about 11, such as between about 4 and about 10.
  • the ring may be fused to aromatic or cycloalkyl groups, which may be homocyclic or heterocyclic .
  • Suitable multi-functional compounds of structures 1(a) and (b) are those having structure (II), structure (III) and structure (IV):
  • a 2 2, A 44 , A 55 , A 6 6, and A 77 are as defined in connection with structures (la) and (lb) .
  • a 2 , A3, A 4 and A 5 are carbon atoms or nitrogen atoms and the sum of nitrogen atoms from A 2 , A 3 , A 4 and A 5 is 0, 1 or 2;
  • A22, A33, A , and A 55 are selected from the group consisting of hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted aryl, substituted or unsubstituted vinyl ether, substituted or unsubstituted amide, substituted or unsubstituted amine, substituted or unsubstituted carboxylic acid, substituted or unsubstituted ester, substituted or unsubstituted alcohol, and substituted and unsubsituted silane or alkoxysilane; and at least one of A22, A 33 , A 44 , and A 55 is selected from the group consisting of substituted or unsubstituted vinyl ether, substituted or unsubstituted amide, substituted or unsubstituted amine, substituted or unsubstituted carboxylic acid, substituted or unsubstituted ester, substituted or unsubstituted alcohol, and substituted and unsubsituted si
  • the monolayer film may be formed from heterocyclics such as mercaptobenzamidazoles ,
  • the corrosion inhibitor component of the adhesive promoting solution also contains a component which may be chemisorbed to the copper surface, such as benzotriazole or benzotriazole 5-carboxylic acid
  • the process of the invention which combines treatment of the substrate with a conditioning solution and subsequent treatment with an adhesion promoting solution containing a heterocyclic corrosion inhibitor, is believed to form a complex of the self assembled monolayer from the conditioning solution, the corrosion inhibitor from the adhesion promoting solution and copper which interact, in some or all instances synergistically, to enhance binding of the copper substrate to the dielectric in the laminating step of the multi-layer circuit board manufacturing process.
  • the alkaline cleaner may optionally comprise a molecule capable of forming a self-assembled monolayer (SAM) on a copper surface.
  • SAM self-assembled monolayer
  • organometallic conversion coating thereon.
  • organometallic conversion coating to confirm the presence of a substantially uniform dark reddish brown to chocolate brown color, free of any marked patchiness or striations.
  • the presence of the uniform brown color indicates the presence of a conversion coating that enhances the adhesion of the copper substrate to the dielectric in the subsequent laminating step of the manufacturing process..
  • the surface of the copper conducting layer may have previously been provided with a tarnish-inhibiting coating, e.g., by incorporating the tarnish inhibitor into a resist stripping composition used in an
  • Tarnish inhibitors used in such strippers are, for example, a triazole or other coating. Therefore, the conductive copper surface is generally micro-etched, cleaned, and immersed in a pre-dip composition prior to exposure to the adhesion promotion
  • the surfaces of copper conducting layer are exposed to an etchant solution by immersion, spraying, cascading, or any other industry appropriate method.
  • the etchant solution may be, for example, micro-etchant comprising about 12 to 20 wt . % Na persulfate and 2 to 5 wt . % sulfuric acid with a minor fraction of phenolsulfate, prepared for example by 40-60% dilution of a concentrated available under the trademark Enthone® PC-7077 (from Enthone Inc.) .
  • the copper conducting layer is exposed to the etchant composition for durations between 10 to 120 seconds, such as between 20 to 60 seconds at solution temperatures generally between of 20°C and 40°C.
  • Etching micro- roughens the copper surface and removes excess copper oxide and other oxide contaminants prior to the treatment according to the invention with a conditioning solution followed by an adhesion promoting solution.
  • the etched copper conducting layer is next rinsed of the etchant composition, generally in warm water (tap water or deionized) for between 10 and 120 seconds.
  • the rinse water is deionized water to allow better process control.
  • the rinse water is preferably allowed to drain for 10 to 30 seconds in order to avoid undue dilution of the subsequent process composition.
  • the etched surfaces of the copper conducting layer are next cleaned by immersion, spraying, cascading, or any other industry appropriate method cleaned of the layers in an alkaline cleaner.
  • Useful compositions include Enthone® PC-7086 and Enthone® PC-7096 (10 to 15% concentrations, available from Enthone Inc.) .
  • PC 7086 comprises monethanolamine (78 wt.%), 1- methylbenzotriazole (0.06 wt.%), KOH (10 wt.%), water (12 wt.%) and a quaternary ammonium salt (0.02 wt.%), and PC 7096
  • the copper conducting layers are cleaned for a duration between 30 and 240 seconds, such as between 45 and 90 seconds at solution temperatures generally between of 30 °C and 50 °C.
  • the cleaning composition optionally further comprises a molecule capable of forming a self assembled monolayer on a copper surface.
  • Cleaning with an alkaline cleaner is effective to remove oily residues, residual photo-resist and other organic and inorganic contaminants present on the copper substrate as a result of prior steps in the process of manufacturing the circuit boards. It also neutralizes residual acid on the copper surface not fully removed in the rinse step following the micro-etch.
  • the etched and cleaned copper conducting layer is next rinsed of the alkaline cleaning composition, generally in warm water (tap water or deionized) for between 10 and 120 seconds.
  • the rinse water is deionized water to allow better process control.
  • the rinse water is preferably allowed to drain for 10 to 30 seconds in order to avoid undue dilution of the subsequent process composition.
  • the copper conducting layers are contacted with the pre-dip composition for durations between 30 and 240 seconds, such as between 45 and 90 seconds at solution temperatures generally between of 30°C and 50°C.
  • the conditioning solution may usefully contain any, or any combination, of other components such as, e.g., iodide ion, e.g., in the form of KI, an ethanolamine such as MEA, an anionic surfactant, diethylene glycol butyl ether, and/or zinc ions, e.g., in the form of a zinc compound such as zinc iodide or zinc ammonium carbonate.
  • iodide ion e.g., in the form of KI
  • MEA ethanolamine
  • anionic surfactant diethylene glycol butyl ether
  • zinc ions e.g., in the form of a zinc compound such as zinc iodide or zinc ammonium carbonate.
  • conditioner help to enhance bonding of the copper substrate to the dielectric in the laminating step that follows application of the adhesion promoting solution.
  • the conditioner may contain certain other transition metal ions including, e.g., nickel, cobalt, silver, gold, palladium, or other platinum group metal.
  • a further option is the presence of copper ions.
  • Zinc or other transition metal is incorporated into the conditioner solution as a salt comprising a counteranion typically selected from the group consisting of chlorides, iodides, phosphates, carbonates, and various carboxylates , including, e.g., malates and oxalates. Oxides may also be used.
  • the conditioner composition comprises zinc ion in the form of Zn 2+ , Zn 2+ /ammonia complex, zinc oxide, ZnC> 2 ⁇ or combinations thereof.
  • the composition further includes one or more
  • counteranions selected from the group consisting of chlorides, iodides, bromides, phosphates, carbonates, hydroxides, and various carboxylates, including, e.g., malates, oxalates; or in the case of zincate, the counterion is a cation such as Na + , K + and/or NH 4 + "
  • the conditioner is alkaline, so that it can function as the alkaline cleaner for the copper substrate, thereby obviating the need for separate alkaline cleaning step.
  • Alkalinity also promotes solubility of zinc sources such as, e.g., zinc oxide as well as oxides or hydroxides of other transition metals.
  • the conditioner has a pH in the range between about 10 and about 15, still more preferably between about 10 and about 14, most preferably about 13.5 to about 14. A pH in these ranges also functions to maintain shelf life during storage and to extend conditioner bath life during process operations.
  • Alkalinity can conveniently be imparted by the presence of an alkali metal hydroxide such as NaOH or KOH. Potassium hydroxide is preferred because of its favorable solubility and lesser susceptibility to carbonation by
  • a particularly preferred source of zinc ions, especially in alkaline solution, is a zinc ammonium complex, or a combination of zinc ammonium complex and alkaline zincate salt.
  • a highly useful commercial source of zinc is the
  • ZINPLEX 15 which contains zinc ammonium complex (30-60 wt.%), ammonium carbonate (10-30 wt.%), ammonium hydroxide (0.1 to 10 wt . % basis NH 3 ) and minor to trace proportions of zinc oxide in the form of zincate ions.
  • the zinc is predominantly present as Zn 2+ or a Zn 2+ /ammonia complex, but at the upper end of the range some zincate ion (ZnC>2 ⁇ ) may also be present and is believed to contribute to thermal stability of the conversion coating subsequently applied from the adhesion promoting solution.
  • Zinc ion or other transition metal ion and in particular the combination of zinc ion and ammonia, are believed to promote the formation of a more effective protective film comprising the component that forms the self-assembled monolayer on the copper substrate.
  • the complexing capability of ammonia further contributes to cleaning of the copper surface by contact with the cleaner/conditioner .
  • contact with the alkaline conditioner is effective to remove oxidation and oily residues such as fingerprints from the copper surface and thereby enhance the effectiveness of the subsequently applied adhesion promoting composition.
  • the conditioner is preferably substantially free of peroxide, more preferably substantially free of other oxidants as well.
  • the conditioner comprise a solution having an oxidation potential not greater than about 0.8-1.02V, as typically exhibited, e.g., by purine, guanine and adenine.
  • the conditioner is believed to promote the reduction of cupric ion to cuprous ion which in turn promotes the formation of complex of cuprous ion with the corrosion inhibitor component of the adhesion promoting solution, e.g., benzotriazole, thereby forming a conversion coating that enhances the bond strength between the copper substrate and the resin in the laminate.
  • the concentration of iodide ion in the conditioning solution is between about 0.001 and about 1.00 wt . % .
  • the conditioning solution also preferably contains an alcohol, more preferably a glycol ether such as, e.g., diethylene glycol butyl ether.
  • an alcohol more preferably a glycol ether such as, e.g., diethylene glycol butyl ether.
  • Other alcohols described herein for incorporation in the adhesion promoting solution can also optionally be present in the conditioning solution.
  • the alcohol, and especially the preferred glycol ethers are examples of the preferred glycol ethers.
  • the conditioning solution contains the alcohol component in a concentration between about 1.00 and about 20.00 wt . % .
  • the conditioning composition may further contain an alkanolamine such as, e.g., methanolamine .
  • Alkanolamines are cleaning agents with good chelating properties.
  • an alkanolamine is present in a concentration between about 1.00 and about 20.00 wt . % .
  • the conditioning solution include one or more surfactants, preferably anionic to wet the copper surface, reduce interfacial tension and enhance solubility of the component that forms the self-assembling monolayer on the substrate.
  • anionic surfactants both aryl sulfonates and sulfate ester salts are preferred.
  • anionic surfactants which can be included in the conditioning solution are Na 2-ethylhexyl sulfate, sold under the trade designation Niaproof 08 and Na
  • dodecylbenzenesulfonate sold under the trade designation
  • non-ionic surfactants are preferably present in the conditioning solution in a
  • the conditioner comprises the
  • Preferred embodiments of the conditioner generally also contain an anionic surfactant in a concentration between about 0.001 and about 0.03 wt . % and/or a glycol ether in a concentration between about 0.5 and about 5 wt . % .
  • Preferred embodiments generally also contain an alkanolamine such as monoethanolamine in a concentration between about 0.5 and about 5 wt.%.
  • the nitrogen- bearing aromatic heterocycle preferably comprises purine or a purine derivatives in a concentration between about 0.05 and about 2.5 wt . % .
  • the etched copper conducting layer is next rinsed of the conditioner composition, generally in warm water (tap water or deionized) for between 10 and 120 seconds.
  • the rinse water is deionized water to allow better process control.
  • the rinse water is preferably allowed to drain for 10 to 30 seconds in order to avoid undue dilution of the subsequent process composition.
  • the copper surface will be substantially dry or have only minimal wetness.
  • the cleaned and etched surfaces of the copper conducting layer are next contacted with an adhesion promotion composition.
  • Contact with the adhesion promotion composition may be by any conventional means, for example by immersion in a bath of the adhesion promotion composition or by spraying or any other means of contact. Contact may be as part of a continuous process. As is well understood in the art, immersion processes involve simply dipping the substrate into a bath of the
  • Spray processes typically involve application using a series of automated squeegee-type mechanisms .
  • the method of application is not critical to the invention.
  • the tolerance for copper loading can be greater for spray processes than for dip processes because, for example, there is more bath stagnation with dip processes.
  • the adhesion promotion composition may comprise an oxidizing agent.
  • oxidizing agents include hydrogen peroxide and persulfates, e.g., ammonium persulfate, potassium persulfate, sodium persulfate, and the like.
  • hydrogen peroxide is incorporated into the adhesion promotion composition of the invention as an oxidizing agent to oxidize copper on the substrate.
  • the oxidizing agent e.g., hydrogen peroxide
  • the concentration of oxidizing agent e.g., hydrogen peroxide, is typically no greater than about 20%, and in certain preferred embodiments it is no greater than about 10%.
  • One preferred concentration of hydrogen peroxide is from about 0.5% by weight of the adhesion promotion composition to about 4% by weight. It has been found that when the concentration of hydrogen peroxide in the adhesion promotion composition is too high the structure of the roughened surface of the conducting layer forms a somewhat dendritic structure which is more fragile than the desired roughening effect, so that it forms a weaker bond than when lower
  • the H 2 C> 2 solution added to the composition is 35% concentrated H 2 O 2 , rather than a 100% concentrated H 2 O 2 .
  • the 20%, 10%, 4% etc. numbers provided above are % of 100% H 2 O 2 in the final composition, not % of 35% H 2 O 2 in the final composition.
  • the composition is preferably initially substantially free of copper and any other transition metals which have a tendency to destabilize the oxidizing agent.
  • copper ions are avoided in the initial solution because they have a tendency to destabilize hydrogen peroxide. This requirement pertains to the initial composition in that the copper is avoided in the fresh composition before its use to promote adhesion. Upon use, however, copper is not excluded from the composition because, in fact, copper does tend to accumulate in the solution during use.
  • transition metal ions have been found to contribute to the thermal stability of the conversion coating without destabilizing the peroxide.
  • the transition metals beneficially contained in the initial bath include nickel, cobalt, silver, gold, palladium and other platinum group metals.
  • the adhesion promoting composition is "substantially" free of transition metals in that any trace amounts in the composition are sufficiently low as to not significantly contribute to degradation of the oxidizing agent; for example, sufficiently low as to not increase the degradation rate by more than about 10%.
  • the adhesion promotion composition comprises one or more inorganic acids for the main purpose of solubilizing copper, and maintaining other components of the composition in solution.
  • a variety of acids such as mineral acids including phosphoric acid, nitric acid, sulfuric acid, and mixtures thereof are workable.
  • both HNO 3 and H 2 SO 4 are employed. It has been discovered that in addition to solubilizing the Cu, H 2 S0 4 helps to moderate the etch rate, and therefore help prevent over-etching of the substrate in isolated areas.
  • the HNO 3 increases the etch rate; increases the
  • the overall acid concentration in the composition is generally at least 1%, preferably at least 8%, and in certain preferred embodiments at least 14% of the composition.
  • the etch rate is slowed excessively if the acid concentration is too high, with the exception of nitric acid, and can yield an organometallic conversion coating which is nonuniform and too light in color. For this reason, the acidity level in previous compositions had been typically selected to be about 20%.
  • the coating is not lightened as would otherwise be expected with an acid level elevated to about 25%.
  • the overall acid level is typically maintained below about 50%. In one preferred embodiment, therefore, there is between about 22% and about 28% acid, including about 20% H 2 S0 4 (50% grade) and about 5% HN0 3 (95% grade) .
  • the inorganic acid constitutes at least about 30% of the composition.
  • Another preferred embodiment employs 28% H 2 SO 4 (50% grade) and 5% HNO 3 (95% grade) .
  • HNO 3 is employed in these preferred embodiments because it has been discovered that it has a unique ability to solubilize the inhibitor-Cu complex better than do other mineral acids. It contributes to the etch rate, improves the topography of the conversion coating and enhances copper loading capacity of the adhesive promoting bath. While weight fractions given above are percentages of the acids in the final composition and are based on use of 100% concentrated acid, as discussed above, the preferred forms of the acids actually added are 50%
  • the total mineral acid content is preferably at least about 20 wt.%. It is further preferred that nitric acid be present in a concentration of at least the difference between the total mineral acid content and 20 wt% .
  • the overall composition is formulated to be compatible therewith.
  • thiourea-based complexing agents are specifically avoided due to the explosive nature thereof when mixed with HNO 3 .
  • triazoles, tetrazoles, imidazoles and mixtures thereof have been proposed as corrosion inhibitors in adhesion promotion compositions.
  • Useful corrosion inhibitors include benzotriazole, triazole, benzimidazole, imidazole, Benzotriazole (BTA) compounds are most preferred due to their effectiveness in chelating Cu, their effectiveness to inhibit corrosion, and their effectiveness to help darken the
  • the most preferred BTA compound currently is 1 , 2 , 3-benzotriazole , also known as aziamino-benzene or benzene azimide, and has the formula
  • Purine and the purine derivatives of Formula I can also be used, as may the multi-functional compounds of Formulas 1(a), 1(b), III, IV and V. Particularly desirable results are achieved with corrosion inhibitor concentrations of at least 0.1%, more preferably more than 0.5% by weight, and something more than 1% by weight. Generally, the corrosion inhibitor will be present in the composition in an amount no greater than 20%, preferably no greater than 10%, and more preferably less than 5% by weight of the total weight of the adhesion promotion
  • compositions High concentrations, such as more than 5% can be desirable as they can allow a reduction in the processing time. In certain preferred embodiments, however, the concentration is less than 5% or even less than 1%.
  • the invention also employs various additives to the adhesion promoting composition, as discussed in more detail below, selected from among monomeric and oligomeric alcohols, and polymeric, oligomeric, and monomeric alcohol derivatives, including, but not limited to alcohol sulfates, sulfonates, and ethoxylates .
  • Preferred embodiments of the invention may employ a sulfonated anionic surfactant. It has been discovered that in addition to surface wetting, this surfactant helps to stabilize the H 2 O 2 .
  • This surfactant is dodecylbenzene sulfonic acid (DDBSA) .
  • DDBSA is available from Ashland Distribution Company of Santa Ana, California; or from Pilot Chemical Company of Santa Fe Springs, California under the trade designation Calsoft LAS 99.
  • surfactants include sodium dodecylbenzene sulfonate available from Witco Corporation, Organic Division, of New York, New York under the trade designation Witconate 1850; the isopropyl amine salt of branched alkyl benzene sulfonate available from Stepan Company of Northfield, Illinois under the trade designation Polystep A- 11; and TEA dodecylbenzene sulfonate available from Norman, Fox & Company of Vernon, California under the trade designation Norfox T-60.
  • the sulfonated anionic surfactant is used in a quantity sufficient to achieve surface wetting and H 2 O 2
  • the stabilization which quantity can vary depending on the overall composition of the adhesion promoter.
  • One currently preferred embodiment includes at least about 0.0001% of sulfonated anionic surfactant.
  • the sulfonated anionic surfactant concentration is at least about 0.005%, preferably at least about 0.1%; and is less than about 10%, preferably less than about 5%, more preferably less than about 2%.
  • One specific example employs 0.002% of this surfactant, particularly DDBSA.
  • a currently preferred embodiment of the invention also incorporates a sulfated anionic surfactant.
  • a sulfated anionic surfactant is sodium 2-ethylhexyl sulfate, also known as 2-ethylhexanol sulfate sodium salt, having the formula C 4 H 9 CH (C 2 H 5 ) CH 2 S0 4 Na .
  • Niaproof 08 which contains 38.5 to 40.5% sodium 2-ethylhexyl sulfate and the balance water.
  • Alternatives include sodium tetradecyl sulfate available from Niacet under the trade designation
  • Niaproof 4 sodium lauryl sulfate available from Stepan Company of Northfield, Illinois under the trade designation Polystep B- 5, and sodium n-decyl sulfate available from Henkel
  • sulfated anionic surfactant compound surprisingly permits the acidity level to be raised, without the expected detrimental effect of lightening the coating. Because the acidity level can be raised in this manner, copper loading is increased. It also helps darken the coating.
  • This compound is present in this embodiment in a concentration sufficient to increase copper loading without substantial lightening of the coating.
  • the typical concentration is at least about 0.001%, and preferably at least about 0.1%.
  • the concentration of sulfated anionic surfactant is no greater than about 10%, and preferably no greater than about 5%. One preferred range is between about 0.05 and 2%.
  • the sulfated anionic surfactant concentration is about 0.5%. In another it is 0.15%.
  • the composition also includes a nonionic surfactant.
  • Anionic and nonionic surfactants complement each other in the action of the adhesion promoter to produce a conversion coating with the most favorable properties for enhancing the adherence of resin to copper conductor.
  • Anionic surfactants are effective in removing oily/greasy residue on the copper substrate and preventing their re-deposition.
  • anionic surfactants also comprise a
  • nonionics assures that the oily residues are removed even in hard water adhesion promoting formulations because, lacking a negative charge, nonionics are unaffected by calcium or
  • this surfactant is one or more ethoxylated nonylphenols , such as polyoxyethylene nonylphenol.
  • Polyoxyethylene nonylphenol is available from Dow Chemical Company of Midland, Michigan under the trade designation Tergitol NP9.
  • Alternatives include an ethoxylated nonylphenol available from Dow Chemical Company of Midland, Michigan under the trade designation Tergitol NP8, nonylphenoxypolyethoxyethanol available from Union Carbide
  • concentration of this surfactant is selected to be sufficient to improve peel strength.
  • One currently preferred embodiment includes at least about 0.0001% of an ethoxylated phenol derivative. As a general proposition, the concentration is at least about 0.01%, preferably at least about 0.2%; and is less than about 10%, preferably less than about 5%. One preferred range is between about 0.0001% and about 2%. One exemplary embodiment contains 0.02%.
  • the alcohols may be monohydric or they may be multihydric, e.g., dihydric (i.e., diols), trihydric (i.e., triols), tetrahydric, pentahydric, etc.
  • the alcohols may be primary, secondary, and/or tertiary
  • Suitable aliphatic alcohols include monohydric alcohols such as methanol, ethanol, n-propanol, isopropanol, n- butanol, isobutanol, tert-butanol , pentanol, neopentanol, hexanol, cyclohexanol , furfuryl alcohol, and tetrahydrofurfuryl alcohol, and so forth.
  • monohydric alcohols such as methanol, ethanol, n-propanol, isopropanol, n- butanol, isobutanol, tert-butanol , pentanol, neopentanol, hexanol, cyclohexanol , furfuryl alcohol, and tetrahydrofurfuryl alcohol, and so forth.
  • alcohols having higher boiling points e.g., above about 110°C are preferred over alcohols having
  • Suitable aliphatic saturated alcohols include dihydric alcohols, e.g., diols, such as ethylene glycol;
  • propylene glycols such as propane-1 , 2-diol and propane-1 , 3-diol ; butylene glycols such as butane-1, 2-diol, butane-1 , 3-diol , butane-2 , 3-diol , butane-1 , 4-diol , and 2-methylpropane-l, 3-diol; pentylene glycols such as pentane-1 , 5-diol , pentane-1, 4-diol, pentane-1 , 3-diol , 2 , 2-dimethyle-l , 3-propanediol , etc.; hexylene glycols such as hexane-1, 2-diol, hexane-1 , 4-diol, hexane-1, 5- diol, hexane-1 , 6-diol , 2-methylpentane-2, 4-diol,
  • Suitable aliphatic saturated alcohols also include triols, such as glycerol, butanetriol, pentanetriol , etc.
  • Oligomeric alcohols are those alcohols and alcohol derivatives, e.g., ethers, that comprise multiple repeat units of the general formula:
  • R lr R 2 , R3, R4, R5, and R6 may be hydrogen or a low molecular weight hydrocarbon having, generally from 1 to about 6 carbon atoms, more generally from 1 to about 3 carbon atoms, and even more generally from 1 to 2 carbon atoms.
  • the number of repeat units in an oligomer is low, such as between about 2 and about 12, more generally between about 2 and about 6, more generally, 2, 3, or 4.
  • Suitable oligomeric alcohols include diethylene glycol, diethylene glycol methyl ether, diethylene glycol dimethyl ether, triethylene glycol,
  • unsaturated diols such as butene diol, hexene diol, and acetylenics such as butyne diol .
  • An example of a suitable trihydric alcohol is glycerol.
  • This additive is present in this embodiment at a concentration sufficient to increase copper loading of the composition. Typically, this concentration is at least about 0.01%, and in certain embodiments is at least about 0.5%. The concentration of this additive is no greater than about 20%, and in certain embodiments no greater than about 10%.
  • Preferred alcohols include propylene glycol and/or oligomeric polypropyleneglycol having a molecular weight generally between about 300-4000 g/mol and about 4000 g/mol, preferably about 80 g/mol and about 76.09 g/mol.
  • the propylene glycol and/or oligomeric polypropyleneglycol may be added in a concentration range between about 0.1 wt . % and about 5 wt.%, more suitably between about 0.2 wt.% and about 1 wt.%, such as about 0.5 wt.%.
  • compositions containing this oligomer have copper-loading capacity of about 30 grams copper per liter solution up to about 35 and even about 40 g/L in dip process applications. In spray process and flooded immersion process applications, automated and conveyorized applications, these compositions have copper-loading capacity of up to about 45 g/L and even up to 50 g/L.
  • This triethylene glycol is an oligomer in that it is a molecule of intermediate relative molecular mass with a structure comprising a small number of units derived from molecules of lower relative molecular mass. This is in contrast to a polymer, which has a high relative molecular mass.
  • This triethylene glycol is also oligomeric in that its properties vary significantly with removal of one of its units; as opposed to polymeric compounds, with which removal of one or a few units has a relatively negligible effect on molecular properties.
  • This triethylene glycol has the molecular formula C 6 H 14 O 4 , more specifically, HO(C 2 H 4 0)3H, and a molecular weight of 150.17.
  • concentration of TEG is no greater than about 20%
  • the TEG concentration is about 1%.
  • the TEG also has the added benefit of helping to stabilize the H 2 O 2 .
  • composition optionally also includes an
  • stabilizing agents include, for example, dipicolinic acid, diglycolic and thiodiglycolic acid, ethylene diamine tetra-acetic acid and its derivatives, magnesium salt of an aminopolycarboxylic acid, sodium silicate, phosphates, phosphonates , and sulfonates.
  • the stabilizing agent is present in an amount of from 0.001% or even at least 0.005% by weight of the adhesion promotion composition. Generally there is no more than 1% by weight in the composition.
  • the currently preferred composition contains an additional stabilizing agent, but relies primarily on the stabilizing function of the TEG, as described above.
  • the composition further includes a source of halide ions.
  • This source is preferably HC1, and provides a chloride ion concentration in the range of about 10 pp to 100 ppm, preferably between about 20 ppm and about 100 ppm, even more preferably between about 30 ppm and about 100 ppm.
  • the units "ppm" in the context of an aqueous composition are in terms of mass: volume, so 1 ppm is generally equivalent to 1 microgram per milliliter, or about 1 mg per liter.
  • the chloride ion concentration range is between about 60 and 65 ppm. In one embodiment, the chloride ion concentration range is between about 65 and 75 ppm. In one embodiment, the chloride ion concentration range is between about 75 and 85 ppm. In one embodiment, the chloride ion concentration range is between about 85 and 95 ppm. Preferred ranges are different for other embodiments depending on the overall composition and
  • concentration of between about 20 ppm and about 100 ppm is preferred in one embodiment in order to achieve Cl ⁇ ion content in service of on the order of about 20 to 80 ppm.
  • the adhesion promotion composition is manufactured by mixing the components in an aqueous solution, preferably using deionized water.
  • hydrogen peroxide is added to the composition in a diluted form.
  • the adhesion promotion composition is ready to use and can be used directly for immersion or other exposure of the substrate.
  • the invention is a concentrate that is to be diluted to form the composition for immersion or other exposure.
  • An exemplary ready-to-use composition includes the following :
  • DBSA dodecylbenzene sulfonic acid
  • the concentrate has the following
  • DBSA dodecylbenzene sulfonic acid
  • the H 2 O 2 is added later and is not included in the concentrate formulation. This concentrate is then incorporated into an overall solution in which, for example, about 43 wt% is this concentrate, about 7 wt% is H 2 O 2 , and about 50 wt% is water.
  • adhesion promoting composition also contain a transition metal ion but it has been found important to be selective in choosing a transition metal ion for the composition.
  • transition metal ions can adversely affect the stability of the peroxide component of the composition and/or promote release of excessive volumes of hazardous gases, e.g., H 2 , O 2 , ⁇ and SO x .
  • other transition metal ions can contribute to the thermal stability of the conversion coating produced in the adhesion promoting step of the process without material adverse effect on the stability of the peroxide and without generating excessive volumes of hazardous gases.
  • Preferred transition metal ions for inclusion in the adhesion promoting solution include zinc, nickel, copper, cobalt, silver, gold, palladium and other platinum group metals.
  • the transition metal ions are preferably incorporated into the adhesion promoting composition in the form of their salts.
  • the preferred adhesion promoting solution contains zinc, nickel, copper, cobalt, silver, gold, palladium or other platinum group metals in the form of their cations plus a counteranion derived from the salt that serves as the transition metal ion.
  • the transition metal ion comprises Zn, Ni, Co, Ag, Au, Pd or other platinum group metals, still more preferably Zn, Ni, Co, or Ag, or Zn, Ni, or Co.
  • the transition metal is introduced in the form of a sulfate, chloride, bromide, iodide, phosphate, or any of various carboxylates , including, e.g., malates and oxalates.
  • Complex salts such as, e.g., zinc ammonium halides, can also be used.
  • the adhesion promoting solution contains the
  • transition metal ion in a concentration between about 0.02 wt . % and about 2 wt.%, a nitrogenous corrosion inhibitor in a
  • the composition contains one or more anionic surfactants in a concentration between about 0.01 and 1 wt.%, and an alcohol in a concentration between about 0.1 and 3 wt.%. Still more preferably, the composition further comprises a one or more nonionic surfactants in a concentration between about about 0.0005 and about 0.2 wt.%. In each of these various embodiments, it is preferred that the composition further comprise nitric acid in a concentration between about 0.5 and about 15 wt.%.
  • the transition metal ion component of the adhesion promoting solution comprises zinc ion.
  • a particularly preferred source of zinc ion is ZnS0 4 .
  • the adhesion promoting composition comprises:
  • balance deionized water typically 45 to 70 wt . % .
  • Contact of the copper surface with the adhesion promotion composition is typically at a temperature between about 20°C and about 40°C, though temperatures reasonably outside this range are operable.
  • the contact time is generally no less than 1 second, preferably no less than 5 seconds, and often at least 10 seconds, most preferably at least 30 seconds.
  • the maximum contact time may be up to 10 minutes, although preferably the contact time is no greater than 5 minutes, most preferably no greater than 2 minutes.
  • a contact time of about 1 minute or less than 1 minute is standard.
  • the copper conducting layer having the organometallic conversion coating thereon is next rinsed of the adhesion promotion composition, generally in warm water (tap water or deionized) for between 10 and 120 seconds.
  • the rinse water is deionized water to allow better process control.
  • the rinse water is preferably allowed to drain for 10 to 30 seconds and the surface is then dried.
  • a Pre-preg layer may be placed directly adjacent to the copper surface and the Pre-preg layer adhered directly to the copper surface in the adhesion step, forming a multi-layer PCB.
  • Appropriate substrate materials for a printed circuit board include, for example, high-pressure laminates (i.e., layers of fibrous materials bonded together under heat and pressure with a thermosetting resin) .
  • a laminate layer comprises an electrical-grade paper bonded with phenolic or epoxy resin or a continuous-filament glass cloth bonded with an epoxy-resin system.
  • Specific examples of laminate layers are: XXXPC which is an electrical paper
  • the organic circuit board material is an FR-4 laminate layer that is placed on top of, and in intimate contact with the passive component pattern, and the two are laminated together . [ 0098 ] Generally in the adhesion step heat and pressure are applied to initiate the adhesion reaction.
  • adhesion step mechanical bonding is due to penetration of the polymeric material of the insulating layer into the micro-roughened surface provided in the adhesion promotion step.
  • a pre-preg insulating layer is applied directly to the micro-roughened surface, i.e., preferably without any intermediate metal deposition onto the micro-roughened surface or the like, although optionally with a post-treatment cupric oxide removal or reduction operation to further enhance the bond strength as disclosed in U.S. Pat. No. 6,294,220.
  • Pressure is applied by placing the layers that are to form the multi-layer laminate of the PCB in a press. Where pressure is applied it is generally from 100 to 400 psi, preferably from 150 to 300 psi.
  • the temperature of this adhesion step will generally be at least about 100°C, preferably between about 120°C and about 200°C.
  • the adhesion step is generally carried out for any period from 5 minutes to 3 hours, most usually from 20 minutes to 1 hour, but is for sufficient time and pressure and at a sufficiently high temperature to ensure good adhesion between the first and second layers.
  • the polymeric material of the insulating layers generally an epoxy resin tends to flow ensuring that the conductive pattern in the metal is
  • the exemplary arrangement discussed at length herein is a pre-preg layer adhered to a copper surface
  • the invention also includes improving adhesion of other dielectric materials, whether permanent or temporary, to copper.
  • the invention improves adhesion between copper and a solder mask that is dielectric. It similarly improves copper adhesion with inks, polymeric photo-resists, and dry films. It also has application in connection with photo-imageable
  • AOS AOS
  • PC-7077 is a conventional micro-etchant that contains Na persulfate, Na phenolsulfate and sulfuric acid.
  • AlphaPREP® PC-7030 (100% concentration, available from Enthone Inc.) by immersion or spraying the coupons in or with the adhesion promotion composition.
  • One set of coupons was contacted with AlphaPREP® PC-7030 for 45 seconds .
  • One set of coupons was contacted with AlphaPREP® PC-7030 for 1 minute.
  • One set of coupons was contacted with AlphaPREP® PC-7030 for 2 minutes.
  • the solution temperature between of 43°C ⁇ 6°C.
  • the adhesion promotion composition contained the following components and concentrations :
  • the copper coupons treated in this manner were inspected for coating appearance and defects prior to lamination to a standard FR4 pre-preg laminate such as Isola FR370HR (high Performance FR-4 material) .
  • AO AO control processes and were carried out in order to provide comparative data for peel strength, conversion coating appearance, and number of solder dip cycles to delamination .
  • the AO control processes were carried out in a similar manner to the AOS control processes of Example 1, except that the chloride ion concentration of the adhesion promotion composition was increased to between about 85 and about 95 ppm.
  • microetchant Enthone® PC-7077 40-60% concentration, available from Enthone Inc.
  • AlphaPREP® PC-7030 (100% concentration, available from Enthone Inc.) by immersion or spraying the coupons in or with the adhesion promotion composition.
  • One set of coupons was contacted with AlphaPREP® PC-7030 for 45 seconds .
  • One set of coupons was contacted with AlphaPREP® PC-7030 for 1 minute.
  • One set of coupons was contacted with AlphaPREP® PC-7030 for 2 minutes.
  • the solution temperature between of 43°C ⁇ 6°C.
  • the adhesion promotion composition contained the following components and concentrations :
  • MSA Methane Sulfonic Acid
  • Monopropylene glycol is preferably included to inhibit premature sludge formation in the adhesion promoting composition bath.
  • the copper coupons treated in this manner were inspected for coating appearance and defects prior to lamination to a standard phenolic filled, halogen-free and/or polyimide pre-preg laminate.
  • Useful phenolic filled dielectrics include those sold under the trade designations Isola 370H, FR408HR, and Isola IS 410.
  • Useful halogen free, high glass transition temperature dielectrics include DE 156 and DE 155, while useful polyimides include Isola P95 and P96.
  • microetchant, cleaner, and adhesion promotion compositions These processes, designated Al, were control processes and were carried out in order to provide comparative data for peel strength, conversion coating appearance, and number of solder dip cycles to delamination .
  • the Al control processes were carried out in a similar manner to the AO control processes of Example 2, except that the copper coupons were contacted with a pre-dip composition prior to contact with the adhesion promotion composition .
  • microetchant Enthone® PC-7077 40-60% concentration, available from Enthone Inc.
  • SAM8R-1 has the following composition:
  • bicarbonate ( a 2 C03 « H 2 0, 30 grams/Liter) for 60 seconds at a solution temperature between of 43°C ⁇ 6°C.
  • the water was allowed to drain from the coupons for 10 to 20 seconds to avoid unnecessary dilution of the adhesion promotion composition.
  • the adhesion promotion composition contained the following components and concentrations :
  • the copper coupons were pre- dipped in a composition comprising a molecular capable of forming a self-assembled monolayer on a copper surface.
  • adhesion promotion composition was further modified with polypropylene glycol.
  • adhesion promotion processes were carried out on three sets of 1" (25.4 mm) by 2" (50.8 mm) copper coupons according to the following protocol:
  • AlphaPREP® PC-7030M (100% concentration, available from Enthone Inc.) modified by adding polypropylene glycol or propylene glycol (0.5 to 1.0 wt . %) by immersing or spraying the coupons in or with the adhesion promotion composition.
  • One set of coupons was contacted with
  • AlphaPREP® PC-7030 for 45 seconds. One set of coupons was contacted with AlphaPREP® PC-7030 for 1 minute. One set of coupons was contacted with AlphaPREP® PC-7030 for 2 minutes. The solution temperature between of 43°C ⁇ 6°C.
  • the adhesion promotion composition contained the following components and concentrations :
  • the copper coupons were pre- dipped in a composition comprising a molecular capable of forming a self-assembled monolayer on a copper surface.
  • adhesion promotion composition was further modified with methane-sulfonic acid.
  • AlphaPREP® PC-7030 (100% concentration, available from Enthone Inc.) modified by adding methanesulfonic acid (2 wt . %) , so that the solution contained nitric, sulfuric and methanesulfonic acids, and immersing or sprayingthe coupons in or with the adhesion promotion composition.
  • One set of coupons was contacted with AlphaPREP® PC-7030 for 45 seconds .
  • One set of coupons was contacted with AlphaPREP® PC-7030 for 1 minute.
  • One set of coupons was contacted with AlphaPREP® PC-7030 for 2 minutes.
  • the solution temperature was 43°C ⁇ 6°C.
  • the adhesion promotion composition contained the following components and
  • the copper coupons were pre- dipped in a composition comprising a molecule capable of forming a self-assembled monolayer on a copper surface. Additionally, the adhesion promotion composition was further modified with methanesulfonic acid and polypropylene glycol.
  • microetchant Enthone® PC-7077 40-60% concentration, available from Enthone Inc.
  • AlphaPREP® PC-7030 (100% concentration, available from Enthone Inc.) modified by adding polypropylene glycol (0.5 to 1.0 wt . %) having an average molecular weight 76.1 g/mol, available from KingChem or Aldrich Chemical, and by adding methanesulfonic acid (2 wt . %) , available from Huntsman Corporation thereby producing a solution
  • the coupons were then immersed in and/or sprayed with the adhesion promotion composition.
  • One set of coupons was contacted with AlphaPREP® PC-7030 for 45 seconds.
  • One set of coupons was contacted with AlphaPREP® PC-7030M for 1 minute.
  • One set of coupons was contacted with AlphaPREP® PC-7030 for 2 minutes.
  • the solution temperature between of 43°C ⁇ 6°C.
  • the adhesion promotion composition contained the following components and concentrations: Component Concentration
  • the copper coupons were cleaned in an alkaline cleaner composition further comprising a
  • composition was further modified with methanesulfonic acid and polypropylene glycol .
  • the adhesion promotion processes were carried out on three sets of 1" (25.4 mm) by 2" (50.8 mm) copper coupons according to the following protocol: 1. Contact the surfaces of three copper coupons with microetchant Enthone® PC-7077 (40-60% concentration, available from Enthone Inc.) by spraying the coupons in the microetchant composition for 30 to 45 seconds, or immersing them with the solution, in either case at a solution temperature between of 27°C ⁇ 3°C.
  • AlphaPREP® PC-7030 (100% concentration, available from Enthone Inc.) modified by adding polypropylene glycol (0.5 wt . %) having a molecular weight of 76.1 g/mol, and by adding methanesulfonic acid (2 wt . %) so that the
  • composition contained sulfuric, nitric and methanesulfonic acid. Contact was by immersion or spraying or both. One set of coupons was contacted with AlphaPREP® PC-7030M for 45 seconds. One set of coupons was contacted with
  • AlphaPREP® PC-7030 for 1 minute.
  • One set of coupons was contacted with AlphaPREP® PC-7030 for 2 minutes.
  • the solution temperature was 43°C ⁇ 6°C.
  • the adhesion promotion composition contained the following components and concentrations :
  • Adhesion promotion processes were carried out on test copper coupons that were designated BOS, B0, Bl, B3, B6, B7, and B8.
  • Adhesion promotion processes BOS, B0, Bl, B3, B6, B7, and B8 were identical to process AOS, AO, Al, A3, A6, A7, and A8 , respectively, except that in each of BOS, B0, Bl, B3, B6, B7, and B8, the adhesion promotion compositions were formulated with 30 g/L copper ions, in order to simulate a working adhesion promotion process in which the adhesion promotion composition has accumulated a substantial copper ion concentration .
  • Example 15 Lamination Process
  • One surface of the copper coupon and one surface of the pre-preg were each coated by a DuPontTM Tedlar® PVF Film.
  • Tedlar® coated sides were then contacted with platens and compressed together in a hydraulic press at about 765 kPa (about 111 PSI) for 5 minutes.
  • the pressure was increased to 1917 kPa (about 211 PSI) for 60 minutes.
  • solder pot dip test is conducted by lowering a portion of the copper laminated pre-preg into molten solder at a temperature of 260°C for 10 second interval cycles. The number of cycles until delamination is recorded.
  • Peel strength is determined with the Instron 4442 Instrument (ASTM standard) . The peel strength is run on five samples .
  • the etch rate of copper in the adhesion promotion composition was determined by measuring the copper ion concentration in the adhesion promotion composition.
  • “Appearance” is a qualitative, eyeball measurement of the appearance of the organometallic conversion coating.
  • a rating of 5 means that the coating was an excellent dark brown color that the industry associates with a strongly adhesive coating.
  • a 4 rating means that the coating was good, uniform, and dark reddish brown.
  • a 3 rating means that the coating was fairly uniform and still dark brown, but less so than a 4 or 5. Ratings of 1 or 2 mean that the coating was uneven; the dark reddish brown color was spotty.
  • an adhesion promotion composition can be used for an extended duration when copper coupons are pre-dipped in a composition comprising a molecule capable of forming a self-assembled monolayer .
  • microetchant Enthone® PC-7077 40-60% concentration, available from Enthone Inc.
  • Example 17 A control (Experiment #7) was run using the adhesion promoting solution of Example 16 after conditioning only with a standard alkaline cleaning solution.
  • the coupons were laminated to a dielectric material generally in the manner described above. In some instances, the lamination took place after lOx IR-reflow, and in other cases lamination was conducted before reflow.
  • formulations is contacted with copper substrates through
  • the adhesion promoting solution was spiked with either 1, 5, or 10 g/1 copper.
  • the treated coupons were then laminated to a dielectric material at either 15.5 or 24.1 bars and peel strength tests conducted on the resulting laminated composites.
  • Example 16 was used without adulteration.
  • Example 18 Additional tests were run generally in the manner described in Example 18. Conditioner #2 was used, followed by the adhesion promoting solution of Example 16. Both the conditioner and the adhesion promoting solution were doped with copper ions in a concentration of 40 g/1. The dwell time between application of the conditioner and application of the adhesion promoting solution was varied.
  • Example 21 generally in the manner described in Example 21 except that the copper ion concentration in the adhesion promoting formulations was 10 g/1 and only dielectric substrates 370 HR, 408 HR and IS 410 were tested.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Manufacturing Of Printed Wiring (AREA)
  • Paints Or Removers (AREA)
  • Laminated Bodies (AREA)

Abstract

Compositions and methods for enhancing adhesion between a copper conducting layer and a dielectric material during manufacture of a printed circuit board. Conditioning compositions contain a functional organic compound and preferably a transition metal ion. The functional organic compound, e.g., a purine derivative, is capable of forming a self-assembled monolayer. Adhesion promoting compositions contain an acid, preferably an inorganic acid, and an oxidant. The latter compositions may also contain a corrosion inhibitor and/or a transition metal ion selected from among Zn, Ni, Co, Cu, Ag, Au, Pd or another Pt group metal. The corrosion inhibitor may comprise a nitrogen-containing aromatic heterocyclic compound.

Description

ADHESION PROMOTION IN PRINTED CIRCUIT BOARDS
FIELD OF THE INVENTION
[ 0001 ] This invention relates to improving adhesion of metal surfaces, such as copper to an insulating layer, in the manufacture of printed circuit boards.
BACKGROUND OF THE INVENTION
[ 0002 ] A multilayer circuit board (MLB) has, among other things, a number of metal layers defining circuit patterns, and a number of insulating layers there-between . The metal layers defining circuit patterns today are typically formed from copper, and the insulating layers are typically formed from a resinous fiber-impregnated dielectric material. These
respective layers can have a wide variety of thickness. For example, they can be on the order of only microns thick, or much thicker .
[ 0003 ] In manufacturing MLBs, it is desirable to enhance the adhesion between the conducting and insulating layers to avoid delamination in subsequent manufacturing operations or in service. So called "black oxide" processes had been used for years which created a strongly adherent copper oxide layer to which an insulating layer would adhere better. Black oxide processes have, for most of the industry, been replaced by processes such as described in U.S. Pat. No. 5,800,859 involving formation of an organometallic conversion coating (OMCC) . These organometallic conversion coating processes involve exposing the copper circuit layer to an adhesion promotion solution, which contains various components including an oxidizer, an inhibitor, and a mineral acid.
[ 0004 ] One limitation on organometallic conversion coating processes has been that the organometallic conversion coating must be a uniform color, such as, for example, a dark brown or chocolate color. The industry associates this color with a uniform coating which has strong adhesion properties. A dark uniform color is preferred because it provides color contrast with copper to aid in inspection for defects. For example, it provides contrast for inspection for the so-called "pink-ring" defect. Organometallic conversion coating processes which produce significantly lighter coatings are generally
unacceptable, or at least undesirable for most applications. For a lighter coating, "pink ring" defects are substantially more difficult to detect.
SUMMARY OF THE INVENTION
[0005] Briefly, therefore, the application is directed to a method for enhancing adhesion between a copper conducting layer and a dielectric material during manufacture of a printed circuit board, the method comprising contacting the copper conducting layer with a conditioning composition, said
conditioning composition comprising a functional organic compound and a transition metal ion, said functional organic compound being capable of forming a self-assembled monolayer on a copper surface, and thereafter contacting the copper
conducting layer with an adhesion promoting composition that comprises an oxidizing agent, an inorganic acid, and a corrosion inhibitor .
[0006] In another aspect the invention is directed to a method for enhancing adhesion between a copper conducting layer and a dielectric material during manufacture of a printed circuit board, the method comprising contacting the copper conducting layer with a conditioning composition comprising an organic N-bearing compound capable of forming a self-assembled monolayer on a copper surface, and thereafter contacting the copper conducting layer with an adhesion promoting composition that comprises an oxidizing agent, an inorganic acid, a corrosion inhibitor and a transition metal ion selected from the group consisting of zinc, nickel, cobalt, copper, silver, gold, palladium and other platinum group metals, said corrosion inhibitor comprising an aromatic heterocyclic compound
comprising nitrogen.
[ 0007 ] The invention is further directed to an aqueous alkaline composition comprising a nitrogen-containing aromatic heterocyclic compound and a transition metal ion, said
;NR7
heterocyclic compound comprising a ring group or an amine substitutent on the ring wherein R7 is hydrogen, hydrocarbyl, substituted hydrocarbyl, hydroxyl, or a negative charge, said heterocyclic compound being capable of forming a self-assembled monolayer on a copper surface .
[ 0008 ] The invention is also directed to an aqueous composition for treating a copper surface to enhance adhesion to a dielectric, the composition comprising between about 0.02 and about 2 wt . % transition metal ion selected from the group consisting of zinc, nickel, cobalt, copper, silver, gold, palladium and other platinum group metal, between about 10 and about 50 wt . % sulfuric acid, between about 1 and about 10 wt . % hydrogen peroxide, and a corrosion inhibitor comprising a nitrogen-containing aromatic heterocyclic compound.
[ 0009 ] In another aspect, the invention is directed to method for enhancing adhesion between a copper conducting layer and a dielectric material during manufacture of a printed circuit board. The method comprises contacting the copper conducting layer with a conditioning composition comprising a nitrogen-containing aromatic heterocyclic compound that is capable of forming a self-assembled monolayer on a copper surface. The nitrogen-containing aromatic heterocyclic compound corresponds to the formula:
Figure imgf000005_0001
wherein each of R2, R6, and R8 is independently selected from the group consisting of hydrogen, hydrocarbyl, substituted
hydrocarbyl, hydroxycarbonyl , alkoxycarbonyl , alkoxy, hydroxyl, sulfhydryl, halo, nitro, cyano and NR9R10, R7 is selected from the group consisting of hydrogen, hydrocarbyl, substituted
hydrocarbyl, hydroxyl, or a negative charge, and each of R9 and R10 is independently selected from the group consisting of hydrogen, hydrocarbyl and substituted hydrocarbyl. Thereafter the copper conducting layer is contacted with an adhesion promoting composition that comprises an oxidizing agent, an inorganic acid, a corrosion inhibitor, and a surfactant.
[ 0010 ] The invention is still further directed to method for preparing a copper conducting layer for adhesion to a dielectric material during manufacture of a printed circuit board. The method comprises contacting the copper conducting layer with a conditioning composition comprising a nitrogen- containing aromatic heterocyclic compound and an anionic
surfactant. The nitrogen-containing aromatic heterocyclic compound is capable of forming a self-assembled monolayer on a
;NR'
copper surface and comprises a ring ^ group or an amine substitutent on the ring wherein R7 is hydrogen, hydrocarbyl, substituted hydrocarbyl, hydroxyl, or a negative charge. Thereafter the copper conducting layer is contacted with an adhesive promoting composition that comprises an acid and an oxidant .
[ 0011 ] The invention is also directed to a method for preparing a copper conducting layer for adhesion to a dielectric material during manufacture of a printed circuit board. The method comprises contacting the copper conducting layer with a conditioning composition comprising a nitrogen-containing aromatic heterocyclic compound, an alkali metal iodide and a glycol ether. The nitrogen containing heterocyclic compound is capable of forming a self-assembled monolayer on a copper
^ R7
surface, and comprises a ring group or an amine
substitutent on the ring wherein R7 is hydrogen, hydrocarbyl, substituted hydrocarbyl, hydroxyl, or a negative charge.
[ 0012 ] Other aspects and features will be in part apparent and in part pointed out hereinafter.
BRIEF DESCRIPTION OF THE DRAWINGS
[ 0013 ] Fig. 1 is a series of bar graphs showing peel strength as a function of copper loading for various laminates prepared at 15.5 bars after treatment with a conditioner and adhesion promoter of the invention as described in Example 18, wherein each of the conditioner and adhesion promoter
compositions contained a concentration of copper ion ranging from 0 to 10 g/1,
[ 0014 ] Fig. 2 is a series of bar graphs showing peel strength as a function of copper loading for laminates prepared at 24.1 bars after treatment with a conditioner and adhesion promoter of the invention as further described in Example 18, wherein again each of the conditioner and adhesion promoter compositions contained a concentration of copper ion ranging from 0 to 10 g/1; [ 0015 ] Each of Figs. 3 to 6 is a series of bar graphs showing peel strength as a function of copper loading for laminates prepared after treatment with a conditioner and adhesion promoter at two different laminating pressures (24.1 bars or 15.5 bars) and both before and after reflow, as further described in Example 19, wherein again each of the conditioner and adhesion promoter compositions contained a concentration of copper ion ranging from 0 to 10 g/l;
[ 0016 ] Each of Figs. 7 and 8 is a series of bar graphs showing peel strength as a function of copper loading for laminates prepared at 15.5 bars and 24.1 bars, respectively, after treatment with a conditioner and adhesion promoter as described in Example 20, wherein each of the conditioner and adhesion promoting composition had a copper ion content ranging from 0 to 10 g/l and the adhesion promoting composition had not been doped with the conditioner;
[ 0017 ] Each of Figs. 9 and 10 is a series of bar graphs showing peel strength as a function of copper loading for laminates prepared at 15.5 and 24.1 bars, respectively, after treatment with a conditioner and adhesion promoter as described in Example 20, wherein each of the conditioner and adhesion promoting composition had a copper ion content ranging from 0 to 10 g/l and the adhesion promoting composition had been doped with ~1 g/l of conditioner #2;
[ 0018 ] Fig. 11 is a series of bar graphs showing peel strength as a function of conditioner #2 content in the adhesion promoting composition for laminates prepared according to
Example 21 wherein each of the conditioner and adhesion
promoting compositions had a copper ion content of approximately 5 g/l;
[ 0019 ] Fig. 12 is a series of bar graphs showing peel strength as a function of copper loading for laminates prepared according to Example 22 wherein the copper ion concentration ranged from 0 to 50 g/1 and no Conditioner #2 was added to the adhesion promoting composition;
[ 0020 ] Fig. 13 is a series of bar graphs showing peel strength as a function of copper loading for laminates prepared according to Example 22 wherein the copper ion concentration ranged from 0 to 50 g/1 and the adhesion promoting composition was doped with ~1 g/1 Conditioner #2;
[ 0021 ] Fig. 14 is a series of bar graphs showing peel strength as a function of dwell time between application of the conditioner and application of the adhesion promoting
composition for laminates prepared according to Example 23 wherein each conditioner and adhesion promoter was doped with 40 g/1 copper ions;
[ 0022 ] Each of Figs. 15 and 16 is a series of bar graphs showing peel strength as a function of conditioner #2 content in the adhesion promoting composition for laminates prepared according to Example 24 wherein each of the conditioner and adhesion promoting compositions had a copper ion content of approximately 10 g/1.
DETAILED DESCRIPTION OF EMBODIMENT (S ) OF THE INVENTION
[ 0023 ] The present invention is directed to compositions and methods for enhancing adhesion between a copper conducting layer and a non-conducting laminate. As a general proposition, the development of an adhesive organometallic conversion coating on the surface of the copper conducting layer occurs by
contacting the copper conducting layer with an adhesion
promotion composition that brings about the oxidation of copper on the surface of the conducting layer into cuprous ions and cupric ions. Cuprous ions (Cu+) which are formed by the oxidation reaction generally dominate on the surface, and cupric ions (Cu2+) generally dominate in solution. The cuprous ions on the surface bind with a corrosion inhibitor in the adhesion promotion composition and form a copper-inhibitor-complex as copper dissolves from the conducting copper layer into the adhesion promoter chemistry at the same time. This results in micro-roughened surface morphology of the conducting copper layer. This micro-roughened copper surface promotes adhesion with the subsequently applied insulating layer.
[ 0024 ] In the process of the present invention, prior to contacting the copper conducting layer with the adhesion promotion composition, the copper conducting layer is preferabl contacted with a conditioning composition comprising a nitrogen containing heterocycle that is capable of forming a self- assembled monolayer (SAM) on a copper surface. It has been discovered that the molecule capable of forming a SAM may be incorporated into the alkaline cleaner or it may be used in a separate pre-dip composition. The self-assembled monolayer essentially consists of a densely packed organic film formed of a monolayer of the nitrogen-containing heterocycle molecule or other film-forming organic nitrogen or sulfur compound
chemisorbed to the copper surface. Without being bound to a particular theory, it is believed that the self assembled monolayer formed over the copper surface from the conditioning solution functions to passivate the copper surface by blocking access of oxygen contained in the adhesion promoting
composition. It thus modulates the effect of the subsequently applied adhesion promotion solution by preventing excess copper oxide formation that may otherwise result from the aggressive effect of the peroxide component of the latter solution.
[ 0025 ] In addition to the nitrogen-containing heterocycle, the conditioning composition preferably contains a transition metal ion, typically in the form of a transition metal salt. Useful transition metal ions include zinc, nickel, copper, cobalt, silver, gold, palladium and other platinum group metals Preferably, the transition metal ion is selected from the group consisting of zinc, nickel, cobalt, silver, gold, palladium and other platinum group metals, more preferably zinc, nickel, cobalt or silver, still more preferably zinc, nickel or cobalt. Zinc is preferred. Various salts of the transition metal can be used, including sulfates, chlorides, other halides, most
prominently iodides, phosphates, phosphides, carbonates, and various carboxylates , including, e.g., oxalates. Oxides may also be used. It is believed that the presence of these
transition metal ions in the conditioning solution contributes to the heat stability of the conversion coating produced in the subsequent treatment with the adhesion promoting solution. In a preferred embodiment of the invention, zinc is incorporated into the conditioning solution in the form of an alkaline dispersion of ZnO, a solution of alkali metal zincate, or a zinc ammonium halide such as zinc ammonium chloride.
[ 0026 ] Preferably, the nitrogen-containing heterocycle is a purine compound, for example, a compound that corresponds to the formula :
Figure imgf000010_0001
(Formula I)
wherein each of R2, R6, and R8 is independently selected from the group consisting of hydrogen, hydrocarbyl, substituted
hydrocarbyl, hydroxycarbonyl , alkoxycarbonyl , alkoxy, hydroxyl, sulfhydryl, halo, nitro, cyano and NR9R10, R7 is selected from the group consisting of hydrogen, hydrocarbyl, substituted
hydrocarbyl, hydroxyl, or a negative charge, and each of R9 and R10 is independently selected from the group consisting of hydrogen, hydrocarbyl and substituted hydrocarbyl. Preferably, each of R9 and R10 is independently selected from the group consisting of hydrogen, alkyl, substituted alkyl, aralkyl and aryl .
[ 0027 ] In particularly preferred embodiments, R6 of Formula I comprises NR9R10. Where the hydrocarbyl substituent is
substituted, the substituent on the hydrocarbyl is preferably amino, cyano, nitro, halo, hydroxy or sulfhydryl. Most
preferably, R9 is hydrogen and R10 is benzyl, i.e., the compound forming the self-assembling monolayer is most preferably an amino substituted purine such as 6-benz laminopurine :
Figure imgf000011_0001
However, the compound of Formula I can also advantageously comprise unsubstituted purine. In the preferably alkaline conditioner solution, R7 is preferably hydrogen and said
nitrogen-containing aromatic heterocyclic compound is
deprotonatable in contact with a copper substrate. Thus, in the solution, and especially in contact with a copper substrate, R7 comprises hydrox or a negative charge.
[ 0028 ] The
Figure imgf000011_0002
group in the purine ring enables an efficient interaction towards the metal surface (copper) . The
NH NR
presence of the ring S group and/or other ^ group (R7 being benzyl in the case of 6-benzylaminopurine) substituent on the ring allows the formation of coordinate bonds at the metal and purine compound interface.
[ 0029 ] Purine derivatives in the conditioning solution have been found to contribute to bond strength between copper conductor and resin after treatment of the conditioned surface with the adhesion promoting composition and subsequent
lamination. Purine derivatives have further been found to contribute to the thermal stability of the conversion coating produced by subsequent treatment with the adhesion promoting solution .
[ 0030 ] Although purines and especially amine substituted purines are especially preferred, other nitrogen heterocycles
^ R7
comprising a ring ^ group and/or an amino substituent on the ring can serve effectively for formation of a self-assembled monolayer from the conditioning solution onto the copper surface. Illustrative heterocycles that function effectively for this purpose include benzotriazole :
Figure imgf000012_0001
Benzo-triazole ( BTA) and various substituted benzotriazoles , as well as substituted and unsubstituted triazoles, tetrazoles, benzimidazoles , etc. In addition to amines, the heterocycle may comprise a functional ring substituent such as thiol, vinyl ether, thiamide, amine, carboxylic acid, ester, alcohol, silane, alkoxy silane. Exemplary compounds useful in forming the self assembled monolayer include adenine, 2-mercaptobenzimidazole,
mercaptobenzothiazole and di ( sulfhydrylmethyl ) benzene.
[ 0031 ] In certain embodiments of the conditioning solution of the invention, a variety of other functional organic
compounds can be present as the component which forms the self- assembling monolayer. Especially in those embodiments wherein the conditioning solution comprises a transition metal cation, the self-assembling monolayer can be formed from: arylamines such as aniline, aniline derivatives, toluidine and toluidine derivatives; aralkylamines such as benzylamine, tolylamine and benzylamine and tolylamine derivatives; various alkylamines , particularly fatty amines; sulfur-bearing aromatic heterocyclic compounds such as thiophene, thiophene derivatives,
benzothiophene , benzothiophene derivatives, benzothiazoles and benzothiazole derivatives; aryl thiols such as thiophenol, thiophenol derivatives, tolyl thiol and tolyl thiol derivatives; and other aralkyl thiols such as benzyl mercaptan and
di ( sulfhydrylmethyl ) benzene.
[ 0032 ] Among the nitrogen-bearing heterocycles , suitable components from which the self-assembling monolayer can be formed include multi-functional compounds having structure (la) or structure (lb) :
Figure imgf000013_0001
Figure imgf000014_0001
wherein :
Ai, A2, A3, A4, A5, A6, and A7 are carbon atoms or nitrogen atoms and the sum of nitrogen atoms from Ai, A2, A3, A4, A5, A6, and A7 is 0, 1, 2, or 3;
An, 22, A33, A44, A55, A66, and A77 are selected from the group consisting of electron pair, hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted aryl, substituted or unsubstituted vinyl ether, substituted or unsubstituted amide, substituted or unsubstituted amine, substituted or unsubstituted carboxylic acid, substituted or unsubstituted ester, substituted or unsubstituted alcohol, and substituted and unsubstituted silane or alkoxysilane; and
at least one of An, A22, A33, A44, and A55 is selected from the group consisting of substituted or unsubstituted vinyl ether, substituted or unsubstituted amide, substituted or unsubstituted amine, substituted or unsubstituted carboxylic acid, substituted or unsubstituted ester, substituted or unsubstituted alcohol, and substituted and unsubsituted silane or alkoxysilane.
^ R7
[ 0033 ] Although an moiety of an aromatic heterocycle from which the self-assembling monolayer is formed may comprise a substituted nitrogen, i.e., R7 may be hydrocarbyl, it is preferred that at least one nitrogen atom of the film-forming aromatic heterocycle be bonded to an acidic hydrogen atom, such that the compound may become deprotonated and the resultant negatively charged aromatic heterocyle is available to interact with copper (I) ions and copper (II) ions in a manner which forms a copper (I) rich organometallic adhesive film over the surface of the metal substrate. In short, it is particularly preferred that an aromatic N-bearing heterocycle which serves to form the monolayer comprise
Figure imgf000015_0001
in which R7 is hydrogen, and that the hydrogen be acidic, e.g., wherein it exhibits a pKa of between about 5 and about 13, such as between about 3.5 and about 11, such as between about 4 and about 10. The ring may be fused to aromatic or cycloalkyl groups, which may be homocyclic or heterocyclic .
[ 0034 ] Among the suitable multi-functional compounds of structures 1(a) and (b) are those having structure (II), structure (III) and structure (IV):
Figure imgf000015_0002
, or
Figure imgf000016_0001
wherein A22, A44, A55, A66, and A77 are as defined in connection with structures (la) and (lb) .
[ 0035 ] Other particular multi-functional compounds for forming the self-assembling monoloayer include those having the structure (V) :
Figure imgf000016_0002
wherein :
A2, A3, A4 and A5 are carbon atoms or nitrogen atoms and the sum of nitrogen atoms from A2, A3, A4 and A5 is 0, 1 or 2;
A22, A33, A , and A55 are selected from the group consisting of hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted aryl, substituted or unsubstituted vinyl ether, substituted or unsubstituted amide, substituted or unsubstituted amine, substituted or unsubstituted carboxylic acid, substituted or unsubstituted ester, substituted or unsubstituted alcohol, and substituted and unsubsituted silane or alkoxysilane; and at least one of A22, A33, A44, and A55 is selected from the group consisting of substituted or unsubstituted vinyl ether, substituted or unsubstituted amide, substituted or unsubstituted amine, substituted or unsubstituted carboxylic acid, substituted or unsubstituted ester, substituted or unsubstituted alcohol, and substituted and unsubsituted silane or alkoxysilane. [ 0036 ] Various of the nitrogen-containing aromatic heterocyclic compounds which form the self assembled monolayer may also comprise one or more ring substituents selected from the group consisting of cyano, nitro, halo, hydroxy and
sulfhydryl. For example, the monolayer film may be formed from heterocyclics such as mercaptobenzamidazoles ,
mercaptobenzothiazoles , and mercaptobenzotriazoles .
[ 0037 ] Where the corrosion inhibitor component of the adhesive promoting solution also contains a component which may be chemisorbed to the copper surface, such as benzotriazole or benzotriazole 5-carboxylic acid, the process of the invention, which combines treatment of the substrate with a conditioning solution and subsequent treatment with an adhesion promoting solution containing a heterocyclic corrosion inhibitor, is believed to form a complex of the self assembled monolayer from the conditioning solution, the corrosion inhibitor from the adhesion promoting solution and copper which interact, in some or all instances synergistically, to enhance binding of the copper substrate to the dielectric in the laminating step of the multi-layer circuit board manufacturing process.
[ 0038 ] In general, the process of the present invention is carried out according to the following protocol:
1. Etch the surface of the copper conducting layer with a micro-etchant composition.
2. Rinse the surface of the copper conducting layer of the etchant composition.
3. Clean the etched surface by contacting the surface with an alkaline cleaner. The alkaline cleaner may optionally comprise a molecule capable of forming a self-assembled monolayer (SAM) on a copper surface.
4. Rinse the surface of the copper conducting layer of the cleaning composition. 5. Contact the cleaned and etched surfaces of the copper conductive layer with a pre-dip composition comprising a molecule capable of forming a self-assembled monolayer (SAM) on a copper surface. If the alkaline cleaner comprises the molecule capable of forming a self-assembled monolayer (SAM) on a copper surface, this step is optional
6. Rinse the surface of the copper conducting layer of the pre-dip composition.
7. Contact the cleaned, etched, and pre-treated surfaces of the copper conducting layer with an adhesion promotion composition .
8. Rinse the surfaces of the copper conducting layer of the adhesion promotion composition to form an
organometallic conversion coating thereon.
9. Dry the surfaces of the copper conducting layer.
10. Inspect the organometallic conversion coating to confirm the presence of a substantially uniform dark reddish brown to chocolate brown color, free of any marked patchiness or striations. The presence of the uniform brown color indicates the presence of a conversion coating that enhances the adhesion of the copper substrate to the dielectric in the subsequent laminating step of the manufacturing process..
11. Adhere the surface of the copper conducting layer having the organometallic conversion coating thereon to a pre-preg laminate .
[ 0039 ] The process of the present invention is described i more detail below.
Microetching
[ 0040 ] In some embodiments, the surface of the copper conducting layer may have previously been provided with a tarnish-inhibiting coating, e.g., by incorporating the tarnish inhibitor into a resist stripping composition used in an
immediately preceding step of etch resist stripping. Tarnish inhibitors used in such strippers are, for example, a triazole or other coating. Therefore, the conductive copper surface is generally micro-etched, cleaned, and immersed in a pre-dip composition prior to exposure to the adhesion promotion
composition .
[ 0041 ] The surfaces of copper conducting layer are exposed to an etchant solution by immersion, spraying, cascading, or any other industry appropriate method. The etchant solution may be, for example, micro-etchant comprising about 12 to 20 wt . % Na persulfate and 2 to 5 wt . % sulfuric acid with a minor fraction of phenolsulfate, prepared for example by 40-60% dilution of a concentrated available under the trademark Enthone® PC-7077 (from Enthone Inc.) . In general, the copper conducting layer is exposed to the etchant composition for durations between 10 to 120 seconds, such as between 20 to 60 seconds at solution temperatures generally between of 20°C and 40°C. Etching micro- roughens the copper surface and removes excess copper oxide and other oxide contaminants prior to the treatment according to the invention with a conditioning solution followed by an adhesion promoting solution.
[ 0042 ] The etched copper conducting layer is next rinsed of the etchant composition, generally in warm water (tap water or deionized) for between 10 and 120 seconds. Preferably, the rinse water is deionized water to allow better process control. The rinse water is preferably allowed to drain for 10 to 30 seconds in order to avoid undue dilution of the subsequent process composition.
Cleaning
[ 0043 ] The etched surfaces of the copper conducting layer are next cleaned by immersion, spraying, cascading, or any other industry appropriate method cleaned of the layers in an alkaline cleaner. Useful compositions include Enthone® PC-7086 and Enthone® PC-7096 (10 to 15% concentrations, available from Enthone Inc.) . PC 7086 comprises monethanolamine (78 wt.%), 1- methylbenzotriazole (0.06 wt.%), KOH (10 wt.%), water (12 wt.%) and a quaternary ammonium salt (0.02 wt.%), and PC 7096
comprises water (16 wt.%), monethanolamine (72 wt.%),
tetramethylammonium hydroxide 25% (3.2 wt.%) ethylenediamine (0.17 wt.%), ethoxylated quaternary ammonium salts (0.032 wt.%), 1-methylbenzyltriazole (0.06 wt.%), aqueous choline base (2.2 wt.%) and KOH (8 wt.%) . In general, the copper conducting layers are cleaned for a duration between 30 and 240 seconds, such as between 45 and 90 seconds at solution temperatures generally between of 30 °C and 50 °C. In some embodiments of the invention, the cleaning composition optionally further comprises a molecule capable of forming a self assembled monolayer on a copper surface. Such molecules are further described below in connection with the pre-dip composition. Cleaning with an alkaline cleaner is effective to remove oily residues, residual photo-resist and other organic and inorganic contaminants present on the copper substrate as a result of prior steps in the process of manufacturing the circuit boards. It also neutralizes residual acid on the copper surface not fully removed in the rinse step following the micro-etch.
[ 0044 ] The etched and cleaned copper conducting layer is next rinsed of the alkaline cleaning composition, generally in warm water (tap water or deionized) for between 10 and 120 seconds. Preferably, the rinse water is deionized water to allow better process control. The rinse water is preferably allowed to drain for 10 to 30 seconds in order to avoid undue dilution of the subsequent process composition. Pre-treatment with Conditioner
[0045] The cleaned and etched surface of the copper conducting layer is next contacted with a conditioner
composition comprising a molecule capable of forming a self assembled monolayer on a copper surface. In general, the copper conducting layers are contacted with the pre-dip composition for durations between 30 and 240 seconds, such as between 45 and 90 seconds at solution temperatures generally between of 30°C and 50°C.
[0046] In addition to the nitrogen-bearing heterocycle or other functional organic compound that forms the self assembled monolayer, the conditioning solution may usefully contain any, or any combination, of other components such as, e.g., iodide ion, e.g., in the form of KI, an ethanolamine such as MEA, an anionic surfactant, diethylene glycol butyl ether, and/or zinc ions, e.g., in the form of a zinc compound such as zinc iodide or zinc ammonium carbonate. Iodide and zinc ions in the
conditioner help to enhance bonding of the copper substrate to the dielectric in the laminating step that follows application of the adhesion promoting solution. Although synergism is not a requirement of the conditioning compositions used in the methods herein described, it is understood that the alkalinity of the conditioning composition can and often does interact
synergistically with the iodide ion optionally contained therein to impart corrosion protection of the surface after subsequent treatment with the adhesion promoting solution, and to enhance bond strength between the conversion coating and the resin after lamination .
[0047] In lieu of or in combination with zinc ions, the conditioner may contain certain other transition metal ions including, e.g., nickel, cobalt, silver, gold, palladium, or other platinum group metal. A further option is the presence of copper ions. Zinc or other transition metal is incorporated into the conditioner solution as a salt comprising a counteranion typically selected from the group consisting of chlorides, iodides, phosphates, carbonates, and various carboxylates , including, e.g., malates and oxalates. Oxides may also be used. Thus, the conditioner composition comprises zinc ion in the form of Zn2+, Zn2+/ammonia complex, zinc oxide, ZnC>2 ~ or combinations thereof. The composition further includes one or more
counteranions selected from the group consisting of chlorides, iodides, bromides, phosphates, carbonates, hydroxides, and various carboxylates, including, e.g., malates, oxalates; or in the case of zincate, the counterion is a cation such as Na+, K+ and/or NH4 +"
[ 0048 ] Preferably, the conditioner is alkaline, so that it can function as the alkaline cleaner for the copper substrate, thereby obviating the need for separate alkaline cleaning step. Alkalinity also promotes solubility of zinc sources such as, e.g., zinc oxide as well as oxides or hydroxides of other transition metals. More preferably, the conditioner has a pH in the range between about 10 and about 15, still more preferably between about 10 and about 14, most preferably about 13.5 to about 14. A pH in these ranges also functions to maintain shelf life during storage and to extend conditioner bath life during process operations. Alkalinity can conveniently be imparted by the presence of an alkali metal hydroxide such as NaOH or KOH. Potassium hydroxide is preferred because of its favorable solubility and lesser susceptibility to carbonation by
absorption of CO2 from the environment.
[ 0049 ] A particularly preferred source of zinc ions, especially in alkaline solution, is a zinc ammonium complex, or a combination of zinc ammonium complex and alkaline zincate salt. A highly useful commercial source of zinc is the
formulation available under the trade designation ZINPLEX 15 which contains zinc ammonium complex (30-60 wt.%), ammonium carbonate (10-30 wt.%), ammonium hydroxide (0.1 to 10 wt . % basis NH3) and minor to trace proportions of zinc oxide in the form of zincate ions. In the preferred 10 to 14 pH range, the zinc is predominantly present as Zn2+ or a Zn2+/ammonia complex, but at the upper end of the range some zincate ion (ZnC>2~) may also be present and is believed to contribute to thermal stability of the conversion coating subsequently applied from the adhesion promoting solution.
[ 0050 ] Zinc ion or other transition metal ion, and in particular the combination of zinc ion and ammonia, are believed to promote the formation of a more effective protective film comprising the component that forms the self-assembled monolayer on the copper substrate. The complexing capability of ammonia further contributes to cleaning of the copper surface by contact with the cleaner/conditioner . For example, contact with the alkaline conditioner is effective to remove oxidation and oily residues such as fingerprints from the copper surface and thereby enhance the effectiveness of the subsequently applied adhesion promoting composition.
[ 0051 ] For purposes of process control, the conditioner is preferably substantially free of peroxide, more preferably substantially free of other oxidants as well. For example, it is generally preferred that the conditioner comprise a solution having an oxidation potential not greater than about 0.8-1.02V, as typically exhibited, e.g., by purine, guanine and adenine.
[ 0052 ] The preferred presence of iodide ion in the
conditioner is believed to promote the reduction of cupric ion to cuprous ion which in turn promotes the formation of complex of cuprous ion with the corrosion inhibitor component of the adhesion promoting solution, e.g., benzotriazole, thereby forming a conversion coating that enhances the bond strength between the copper substrate and the resin in the laminate. Preferably, the concentration of iodide ion in the conditioning solution is between about 0.001 and about 1.00 wt . % .
[0053] The conditioning solution also preferably contains an alcohol, more preferably a glycol ether such as, e.g., diethylene glycol butyl ether. Other alcohols described herein for incorporation in the adhesion promoting solution can also optionally be present in the conditioning solution. The alcohol, and especially the preferred glycol ethers are
understood to function as dispersants, and further provide solvency and stability. Preferably the conditioning solution contains the alcohol component in a concentration between about 1.00 and about 20.00 wt . % .
[0054] The conditioning composition may further contain an alkanolamine such as, e.g., methanolamine . Alkanolamines are cleaning agents with good chelating properties. Preferably, an alkanolamine is present in a concentration between about 1.00 and about 20.00 wt . % .
[0055] It is further preferred that the conditioning solution include one or more surfactants, preferably anionic to wet the copper surface, reduce interfacial tension and enhance solubility of the component that forms the self-assembling monolayer on the substrate. Among the anionic surfactants, both aryl sulfonates and sulfate ester salts are preferred.
Exemplary anionic surfactants which can be included in the conditioning solution are Na 2-ethylhexyl sulfate, sold under the trade designation Niaproof 08 and Na
dodecylbenzenesulfonate , sold under the trade designation
Calsoft Las 99. Where present, non-ionic surfactants are preferably present in the conditioning solution in a
concentration between about 0.0005 and about 1.00 wt . % .
[0056] Preferably, the conditioner comprises the
combination of between about 0.1 and about 3 wt . % transition metal selected from the group consisting of n, Ni, Co, Cu, Ag, Au, Pd and other platinum group metals, more preferably n, Ni, Co, Ag, Au, or Pd, still more preferably Zn, Ni, or Co, most preferably Zn, and between about 0.05 and about 2.5 wt . % of a nitrogen-containing aromatic heterocycle comprising a ring =NR7 group. More preferably, such solution further comprises between about 0.04 and about 4 wt . % iodide ion, preferably in the form of KI .
[0057] Preferred embodiments of the conditioner generally also contain an anionic surfactant in a concentration between about 0.001 and about 0.03 wt . % and/or a glycol ether in a concentration between about 0.5 and about 5 wt . % . Preferred embodiments generally also contain an alkanolamine such as monoethanolamine in a concentration between about 0.5 and about 5 wt.%.
[0058] In each of these various embodiments, the nitrogen- bearing aromatic heterocycle preferably comprises purine or a purine derivatives in a concentration between about 0.05 and about 2.5 wt . % .
[0059] The etched copper conducting layer is next rinsed of the conditioner composition, generally in warm water (tap water or deionized) for between 10 and 120 seconds. Preferably, the rinse water is deionized water to allow better process control. The rinse water is preferably allowed to drain for 10 to 30 seconds in order to avoid undue dilution of the subsequent process composition. Preferably prior to contact with the adhesion promotion composition, the copper surface will be substantially dry or have only minimal wetness.
Adhesion promotion
[0060] The cleaned and etched surfaces of the copper conducting layer are next contacted with an adhesion promotion composition. Contact with the adhesion promotion composition may be by any conventional means, for example by immersion in a bath of the adhesion promotion composition or by spraying or any other means of contact. Contact may be as part of a continuous process. As is well understood in the art, immersion processes involve simply dipping the substrate into a bath of the
composition for the desired period. Spray processes typically involve application using a series of automated squeegee-type mechanisms . The method of application is not critical to the invention. However, as discussed above, the tolerance for copper loading can be greater for spray processes than for dip processes because, for example, there is more bath stagnation with dip processes.
[ 0061 ] The adhesion promotion composition may comprise an oxidizing agent. Useful oxidizing agents include hydrogen peroxide and persulfates, e.g., ammonium persulfate, potassium persulfate, sodium persulfate, and the like. In general, hydrogen peroxide is incorporated into the adhesion promotion composition of the invention as an oxidizing agent to oxidize copper on the substrate. The oxidizing agent, e.g., hydrogen peroxide, is present in the adhesion promotion composition at a concentration of at least about 1 wt% . The concentration of oxidizing agent, e.g., hydrogen peroxide, is typically no greater than about 20%, and in certain preferred embodiments it is no greater than about 10%. One preferred concentration of hydrogen peroxide is from about 0.5% by weight of the adhesion promotion composition to about 4% by weight. It has been found that when the concentration of hydrogen peroxide in the adhesion promotion composition is too high the structure of the roughened surface of the conducting layer forms a somewhat dendritic structure which is more fragile than the desired roughening effect, so that it forms a weaker bond than when lower
concentrations of hydrogen peroxide are used. Moreover, the organometallic conversion coating becomes hazy if there is over- etching by too much hydrogen peroxide. All percentages herein are by weight unless indicated otherwise. Moreover, all
concentrations are normalized such that they refer to
concentrations of each element as if used in 100%
concentrations. For example, in one embodiment the H2C>2 solution added to the composition is 35% concentrated H2O2, rather than a 100% concentrated H2O2. However, the 20%, 10%, 4% etc. numbers provided above are % of 100% H2O2 in the final composition, not % of 35% H2O2 in the final composition.
[0062] To enhance the stability of the composition, the composition is preferably initially substantially free of copper and any other transition metals which have a tendency to destabilize the oxidizing agent. For example, copper ions are avoided in the initial solution because they have a tendency to destabilize hydrogen peroxide. This requirement pertains to the initial composition in that the copper is avoided in the fresh composition before its use to promote adhesion. Upon use, however, copper is not excluded from the composition because, in fact, copper does tend to accumulate in the solution during use.
[0063] Certain other transition metal ions have been found to contribute to the thermal stability of the conversion coating without destabilizing the peroxide. The transition metals beneficially contained in the initial bath include nickel, cobalt, silver, gold, palladium and other platinum group metals.
[0064] Other than nickel, cobalt, silver, gold, palladium, other platinum group metals (plus copper with which the
composition becomes loaded during use) , the adhesion promoting composition is "substantially" free of transition metals in that any trace amounts in the composition are sufficiently low as to not significantly contribute to degradation of the oxidizing agent; for example, sufficiently low as to not increase the degradation rate by more than about 10%.
[0065] The adhesion promotion composition comprises one or more inorganic acids for the main purpose of solubilizing copper, and maintaining other components of the composition in solution. A variety of acids, such as mineral acids including phosphoric acid, nitric acid, sulfuric acid, and mixtures thereof are workable. In one preferred embodiment both HNO3 and H2SO4 are employed. It has been discovered that in addition to solubilizing the Cu, H2S04 helps to moderate the etch rate, and therefore help prevent over-etching of the substrate in isolated areas. The HNO3 increases the etch rate; increases the
solubility of Cu; helps prevent premature sludge formation; and works synergistically with H2O2, H2S04, and the corrosion inhibitor to darken the coating. The overall acid concentration in the composition is generally at least 1%, preferably at least 8%, and in certain preferred embodiments at least 14% of the composition. The etch rate is slowed excessively if the acid concentration is too high, with the exception of nitric acid, and can yield an organometallic conversion coating which is nonuniform and too light in color. For this reason, the acidity level in previous compositions had been typically selected to be about 20%. However, in the present invention it is possible to push the acidity level up to about 25% and above, because with the other additives described herein, the coating is not lightened as would otherwise be expected with an acid level elevated to about 25%. The overall acid level is typically maintained below about 50%. In one preferred embodiment, therefore, there is between about 22% and about 28% acid, including about 20% H2S04 (50% grade) and about 5% HN03 (95% grade) . In one preferred embodiment, the inorganic acid constitutes at least about 30% of the composition. Another preferred embodiment employs 28% H2SO4 (50% grade) and 5% HNO3 (95% grade) . HNO3 is employed in these preferred embodiments because it has been discovered that it has a unique ability to solubilize the inhibitor-Cu complex better than do other mineral acids. It contributes to the etch rate, improves the topography of the conversion coating and enhances copper loading capacity of the adhesive promoting bath. While weight fractions given above are percentages of the acids in the final composition and are based on use of 100% concentrated acid, as discussed above, the preferred forms of the acids actually added are 50%
concentrated H2S04 and about 95% concentrated HNO3.
[ 0066 ] Where a combination of nitric and sulfuric acids is contained in the adhesion promoting solution, the total mineral acid content is preferably at least about 20 wt.%. It is further preferred that nitric acid be present in a concentration of at least the difference between the total mineral acid content and 20 wt% .
[ 0067 ] Inasmuch as certain of the preferred compositions employ HNO3, the overall composition is formulated to be compatible therewith. In particular, thiourea-based complexing agents are specifically avoided due to the explosive nature thereof when mixed with HNO3.
[ 0068 ] In general, triazoles, tetrazoles, imidazoles and mixtures thereof have been proposed as corrosion inhibitors in adhesion promotion compositions. Useful corrosion inhibitors include benzotriazole, triazole, benzimidazole, imidazole, Benzotriazole (BTA) compounds are most preferred due to their effectiveness in chelating Cu, their effectiveness to inhibit corrosion, and their effectiveness to help darken the
organometallic conversion coating surface. The most preferred BTA compound currently is 1 , 2 , 3-benzotriazole , also known as aziamino-benzene or benzene azimide, and has the formula
C6H4 H 2. Purine and the purine derivatives of Formula I can also be used, as may the multi-functional compounds of Formulas 1(a), 1(b), III, IV and V. Particularly desirable results are achieved with corrosion inhibitor concentrations of at least 0.1%, more preferably more than 0.5% by weight, and something more than 1% by weight. Generally, the corrosion inhibitor will be present in the composition in an amount no greater than 20%, preferably no greater than 10%, and more preferably less than 5% by weight of the total weight of the adhesion promotion
composition. High concentrations, such as more than 5% can be desirable as they can allow a reduction in the processing time. In certain preferred embodiments, however, the concentration is less than 5% or even less than 1%.
[0069] The invention also employs various additives to the adhesion promoting composition, as discussed in more detail below, selected from among monomeric and oligomeric alcohols, and polymeric, oligomeric, and monomeric alcohol derivatives, including, but not limited to alcohol sulfates, sulfonates, and ethoxylates .
[0070] Preferred embodiments of the invention may employ a sulfonated anionic surfactant. It has been discovered that in addition to surface wetting, this surfactant helps to stabilize the H2O2. The most particularly preferred of such surfactants is dodecylbenzene sulfonic acid (DDBSA) . DDBSA is available from Ashland Distribution Company of Santa Ana, California; or from Pilot Chemical Company of Santa Fe Springs, California under the trade designation Calsoft LAS 99. Other such surfactants include sodium dodecylbenzene sulfonate available from Witco Corporation, Organic Division, of New York, New York under the trade designation Witconate 1850; the isopropyl amine salt of branched alkyl benzene sulfonate available from Stepan Company of Northfield, Illinois under the trade designation Polystep A- 11; and TEA dodecylbenzene sulfonate available from Norman, Fox & Company of Vernon, California under the trade designation Norfox T-60. The sulfonated anionic surfactant is used in a quantity sufficient to achieve surface wetting and H2O2
stabilization, which quantity can vary depending on the overall composition of the adhesion promoter. One currently preferred embodiment includes at least about 0.0001% of sulfonated anionic surfactant. As a general proposition, the sulfonated anionic surfactant concentration is at least about 0.005%, preferably at least about 0.1%; and is less than about 10%, preferably less than about 5%, more preferably less than about 2%. One specific example employs 0.002% of this surfactant, particularly DDBSA.
[ 0071 ] A currently preferred embodiment of the invention also incorporates a sulfated anionic surfactant. One preferred example of this compound is sodium 2-ethylhexyl sulfate, also known as 2-ethylhexanol sulfate sodium salt, having the formula C4H9CH (C2H5) CH2S04Na . This is available from Niacet Corporation of Niagara Falls, New York under the trade designation Niaproof 08, which contains 38.5 to 40.5% sodium 2-ethylhexyl sulfate and the balance water. Alternatives include sodium tetradecyl sulfate available from Niacet under the trade designation
Niaproof 4, sodium lauryl sulfate available from Stepan Company of Northfield, Illinois under the trade designation Polystep B- 5, and sodium n-decyl sulfate available from Henkel
Corporation/Emery Group, Cospha/CD of Ambler, and Pennsylvania under the trade designation Sulfotex 110. The addition of a sulfated anionic surfactant compound surprisingly permits the acidity level to be raised, without the expected detrimental effect of lightening the coating. Because the acidity level can be raised in this manner, copper loading is increased. It also helps darken the coating. This compound is present in this embodiment in a concentration sufficient to increase copper loading without substantial lightening of the coating. The typical concentration is at least about 0.001%, and preferably at least about 0.1%. The concentration of sulfated anionic surfactant is no greater than about 10%, and preferably no greater than about 5%. One preferred range is between about 0.05 and 2%. In one preferred embodiment the sulfated anionic surfactant concentration is about 0.5%. In another it is 0.15%. [ 0072 ] In a currently preferred embodiment, the composition also includes a nonionic surfactant. Anionic and nonionic surfactants complement each other in the action of the adhesion promoter to produce a conversion coating with the most favorable properties for enhancing the adherence of resin to copper conductor. Anionic surfactants are effective in removing oily/greasy residue on the copper substrate and preventing their re-deposition. But anionic surfactants also comprise a
negatively charged head that can easily be deactivated by water hardness (Ca2+ and Mg2+ ions) that inhibits their cleaning efficiency. Builders can optionally be used to sequester calcium and magnesium ions and thereby preserve the
effectiveness of anionic surfactants. But the presence of nonionics assures that the oily residues are removed even in hard water adhesion promoting formulations because, lacking a negative charge, nonionics are unaffected by calcium or
magnesium ions .
[ 0073 ] In any event, the combination of an anionic and nonionic surfactant in the adhesion promoting solution has been discovered to provide the unexpected additional benefit of improving peel strength. In one preferred embodiment this surfactant is one or more ethoxylated nonylphenols , such as polyoxyethylene nonylphenol. Polyoxyethylene nonylphenol is available from Dow Chemical Company of Midland, Michigan under the trade designation Tergitol NP9. Alternatives include an ethoxylated nonylphenol available from Dow Chemical Company of Midland, Michigan under the trade designation Tergitol NP8, nonylphenoxypolyethoxyethanol available from Union Carbide
Corporation of Danbury, Connecticut under the trade designation Triton N, and ethoxylated nonylphenol (or nonoxynol-2) available from Rhone-Poulenc, Surfactant & Specialty Division of New
Jersey under the trade designation Igepal CO-210. The
concentration of this surfactant is selected to be sufficient to improve peel strength. One currently preferred embodiment includes at least about 0.0001% of an ethoxylated phenol derivative. As a general proposition, the concentration is at least about 0.01%, preferably at least about 0.2%; and is less than about 10%, preferably less than about 5%. One preferred range is between about 0.0001% and about 2%. One exemplary embodiment contains 0.02%.
[0074] It has been discovered that incorporating certain alcohols into the adhesion promotion composition that solubilize the BTA copper complex can enhance copper loading capacity of the adhesion promotion composition. The alcohols may be monohydric or they may be multihydric, e.g., dihydric (i.e., diols), trihydric (i.e., triols), tetrahydric, pentahydric, etc. The alcohols may be primary, secondary, and/or tertiary
alcohols .
[0075] Suitable aliphatic alcohols include monohydric alcohols such as methanol, ethanol, n-propanol, isopropanol, n- butanol, isobutanol, tert-butanol , pentanol, neopentanol, hexanol, cyclohexanol , furfuryl alcohol, and tetrahydrofurfuryl alcohol, and so forth. In general, due to elevated process conditions, alcohols having higher boiling points, e.g., above about 110°C are preferred over alcohols having lower boiling points .
[0076] Suitable aliphatic saturated alcohols include dihydric alcohols, e.g., diols, such as ethylene glycol;
propylene glycols such as propane-1 , 2-diol and propane-1 , 3-diol ; butylene glycols such as butane-1, 2-diol, butane-1 , 3-diol , butane-2 , 3-diol , butane-1 , 4-diol , and 2-methylpropane-l, 3-diol; pentylene glycols such as pentane-1 , 5-diol , pentane-1, 4-diol, pentane-1 , 3-diol , 2 , 2-dimethyle-l , 3-propanediol , etc.; hexylene glycols such as hexane-1, 2-diol, hexane-1 , 4-diol, hexane-1, 5- diol, hexane-1 , 6-diol , 2-methylpentane-2, 4-diol, 1,2- cyclohexanediol , etc.; heptylene glycols such as 2-methyl-2- propyl-propane-1 , 3-diol ; octylene glycols such as 2-ethyl- hexane-1 , 3-diol and 2, 5-dimethylhexane-2, 5-diol; nonanediols, decanediols, dodecanediols , and so forth. Also suitable are certain derivatives of diols, such as ethers, including
methoxypropanols , methoxybutanols , etc.
[ 0077 ] Suitable aliphatic saturated alcohols also include triols, such as glycerol, butanetriol, pentanetriol , etc.
[ 0078 ] Oligomeric alcohols are those alcohols and alcohol derivatives, e.g., ethers, that comprise multiple repeat units of the general formula:
Figure imgf000034_0001
wherein Rlr R2, R3, R4, R5, and R6 may be hydrogen or a low molecular weight hydrocarbon having, generally from 1 to about 6 carbon atoms, more generally from 1 to about 3 carbon atoms, and even more generally from 1 to 2 carbon atoms. In general, the number of repeat units in an oligomer is low, such as between about 2 and about 12, more generally between about 2 and about 6, more generally, 2, 3, or 4. Suitable oligomeric alcohols include diethylene glycol, diethylene glycol methyl ether, diethylene glycol dimethyl ether, triethylene glycol,
triethylene glycol monomethyl ether, triethylene glycol dimethyl ether, dipropylene glycol,
[ 0079 ] Also suitable are unsaturated diols, such as butene diol, hexene diol, and acetylenics such as butyne diol . An example of a suitable trihydric alcohol is glycerol.
[ 0080 ] This additive is present in this embodiment at a concentration sufficient to increase copper loading of the composition. Typically, this concentration is at least about 0.01%, and in certain embodiments is at least about 0.5%. The concentration of this additive is no greater than about 20%, and in certain embodiments no greater than about 10%.
[ 0081 ] Preferred alcohols include propylene glycol and/or oligomeric polypropyleneglycol having a molecular weight generally between about 300-4000 g/mol and about 4000 g/mol, preferably about 80 g/mol and about 76.09 g/mol. The propylene glycol and/or oligomeric polypropyleneglycol may be added in a concentration range between about 0.1 wt . % and about 5 wt.%, more suitably between about 0.2 wt.% and about 1 wt.%, such as about 0.5 wt.%. Incorporation of propylene glycol and/or oligomeric polypropyleneglycol into the adhesion promotion composition has been discovered to generally improve the peel strength of the copper conducting layer with the pre-preg and to improve the appearance of the organometallic conversion coating.
[ 0082 ] Another preferred alcohol that has proven to be especially effective is the oligomer triethylene glycol (TEG) . In particular, compositions containing this oligomer have copper-loading capacity of about 30 grams copper per liter solution up to about 35 and even about 40 g/L in dip process applications. In spray process and flooded immersion process applications, automated and conveyorized applications, these compositions have copper-loading capacity of up to about 45 g/L and even up to 50 g/L. This triethylene glycol is an oligomer in that it is a molecule of intermediate relative molecular mass with a structure comprising a small number of units derived from molecules of lower relative molecular mass. This is in contrast to a polymer, which has a high relative molecular mass. This triethylene glycol is also oligomeric in that its properties vary significantly with removal of one of its units; as opposed to polymeric compounds, with which removal of one or a few units has a relatively negligible effect on molecular properties.
This triethylene glycol has the molecular formula C6H14O4, more specifically, HO(C2H40)3H, and a molecular weight of 150.17.
Triethylene glycol is present in this embodiment at a
concentration of at least about 0.01%, typically at least about 0.5%, and in one embodiment at least about 0.8%. The
concentration of TEG is no greater than about 20%, and
preferably no greater than about 10%. In a currently preferred embodiment the TEG concentration is about 1%. The TEG also has the added benefit of helping to stabilize the H2O2.
[ 0083 ] The composition optionally also includes an
additional stabilizing agent for the H2O2. Suitable stabilizing agents include, for example, dipicolinic acid, diglycolic and thiodiglycolic acid, ethylene diamine tetra-acetic acid and its derivatives, magnesium salt of an aminopolycarboxylic acid, sodium silicate, phosphates, phosphonates , and sulfonates. When the composition includes a stabilizing agent, preferably the stabilizing agent is present in an amount of from 0.001% or even at least 0.005% by weight of the adhesion promotion composition. Generally there is no more than 1% by weight in the composition. The currently preferred composition contains an additional stabilizing agent, but relies primarily on the stabilizing function of the TEG, as described above.
[ 0084 ] The composition further includes a source of halide ions. This source is preferably HC1, and provides a chloride ion concentration in the range of about 10 pp to 100 ppm, preferably between about 20 ppm and about 100 ppm, even more preferably between about 30 ppm and about 100 ppm. The units "ppm" in the context of an aqueous composition are in terms of mass: volume, so 1 ppm is generally equivalent to 1 microgram per milliliter, or about 1 mg per liter. In one embodiment, the chloride ion concentration range is between about 60 and 65 ppm. In one embodiment, the chloride ion concentration range is between about 65 and 75 ppm. In one embodiment, the chloride ion concentration range is between about 75 and 85 ppm. In one embodiment, the chloride ion concentration range is between about 85 and 95 ppm. Preferred ranges are different for other embodiments depending on the overall composition and
application. This increased Cl~ level in comparison to previous formulations helps to increase the ratio of cuprous copper to cupric copper, which has been discovered to increase peel strength. The Cl~ level tapers off and then stabilizes during use of the composition. As such, an initial Cl~ ion
concentration of between about 20 ppm and about 100 ppm is preferred in one embodiment in order to achieve Cl~ ion content in service of on the order of about 20 to 80 ppm.
[0085] The adhesion promotion composition is manufactured by mixing the components in an aqueous solution, preferably using deionized water. In accordance with standard safe practice, hydrogen peroxide is added to the composition in a diluted form.
[0086] In one form the adhesion promotion composition is ready to use and can be used directly for immersion or other exposure of the substrate. In another form the invention is a concentrate that is to be diluted to form the composition for immersion or other exposure.
[0087] An exemplary ready-to-use composition includes the following :
0.5 to 8 wt% H202
16 to 25 wt% H2S04
0.1 to 10 wt% HNO3
0.1 to 2 wt% 1 , 2 , 3-benzotriazole
0.01 to 5 wt% triethylene glycol
0.05 to 2 wt% 2-ethyloxosulfonate (Niaproof 08)
0.0001 to 2 wt% dodecylbenzene sulfonic acid (DDBSA)
0.0001 to 2 wt% polyoxyethylene nonylphenol (Tergitol
NP9)
40 to 70 wt% deionized water [ 0088 ] When provided as a concentrate, the ranges described above for the preferred proportions of the ingredients are essentially doubled, because the product is diluted with, for example, 50% water upon formulation of the composition for use. In one embodiment, the concentrate has the following
ingredients :
32-50 wt% H2S04
0.2 to 20 wt% HNO3
0.2 to 4 wt% 1 , 2 , 3-benzotriazole
0.02 to 10 wt% triethylene glycol
0.002 to 4 wt% 2-ethyloxosulfonate (Niaproof 08)
0.0002 to 4wt% dodecylbenzene sulfonic acid (DDBSA)
0.0002 to 4 wt% polyoxyethylene nonylphenol (Tergitol
NP9)
[ 0089 ] The H2O2 is added later and is not included in the concentrate formulation. This concentrate is then incorporated into an overall solution in which, for example, about 43 wt% is this concentrate, about 7 wt% is H2O2, and about 50 wt% is water.
[ 0090 ] As mentioned above, various preferred embodiments of the adhesion promoting composition also contain a transition metal ion but it has been found important to be selective in choosing a transition metal ion for the composition. A
substantial class of transition metal ions can adversely affect the stability of the peroxide component of the composition and/or promote release of excessive volumes of hazardous gases, e.g., H2, O2, Οχ and SOx. However, other transition metal ions can contribute to the thermal stability of the conversion coating produced in the adhesion promoting step of the process without material adverse effect on the stability of the peroxide and without generating excessive volumes of hazardous gases.
[ 0091 ] Preferred transition metal ions for inclusion in the adhesion promoting solution include zinc, nickel, copper, cobalt, silver, gold, palladium and other platinum group metals. The transition metal ions are preferably incorporated into the adhesion promoting composition in the form of their salts.
Thus, the preferred adhesion promoting solution contains zinc, nickel, copper, cobalt, silver, gold, palladium or other platinum group metals in the form of their cations plus a counteranion derived from the salt that serves as the transition metal ion. More preferably, the transition metal ion comprises Zn, Ni, Co, Ag, Au, Pd or other platinum group metals, still more preferably Zn, Ni, Co, or Ag, or Zn, Ni, or Co.
Preferably, the transition metal is introduced in the form of a sulfate, chloride, bromide, iodide, phosphate, or any of various carboxylates , including, e.g., malates and oxalates. Complex salts, such as, e.g., zinc ammonium halides, can also be used. Preferably, the adhesion promoting solution contains the
transition metal ion in a concentration between about 0.02 wt . % and about 2 wt.%, a nitrogenous corrosion inhibitor in a
concentration between about 0.1 and about 5 wt.%, sulfuric acid in a concentration between about 10 and about 50 wt.% and hydrogen peroxide in a concentration between about 1 and about 10 wt.%. More preferably, the composition contains one or more anionic surfactants in a concentration between about 0.01 and 1 wt.%, and an alcohol in a concentration between about 0.1 and 3 wt.%. Still more preferably, the composition further comprises a one or more nonionic surfactants in a concentration between about about 0.0005 and about 0.2 wt.%. In each of these various embodiments, it is preferred that the composition further comprise nitric acid in a concentration between about 0.5 and about 15 wt.%.
[ 0092 ] Most preferably, the transition metal ion component of the adhesion promoting solution comprises zinc ion. A particularly preferred source of zinc ion is ZnS04. [ 0093 ] In an especially preferred embodiment, the adhesion promoting composition comprises:
20-35 wt . % sulfuric acid;
2-8 wt . % nitric acid;
4-12 wt . % hydrogen peroxide;
0.2 to 3 wt . % benzotriazole (Cobratec 99);
0.05 to 0.5 wt . % zinc sulfate;
0.2 to 2 wt . % triethylene glycol;
0.02 to 0.5 wt . % Na 2-ethylhexyl sulfate sold under the trade designation Niaproof 08;
0.0005 to 0.01 wt . % Na dodecylbenzenesulfonate sold under the trade designation Calsoft Las 99;
0.0005 to 0.01 wt . % polyoxyethylene nonylphenol sold under the trade designation Tergitol NP9; and
balance deionized water, typically 45 to 70 wt . % .
[ 0094 ] Contact of the copper surface with the adhesion promotion composition is typically at a temperature between about 20°C and about 40°C, though temperatures reasonably outside this range are operable. The contact time is generally no less than 1 second, preferably no less than 5 seconds, and often at least 10 seconds, most preferably at least 30 seconds. The maximum contact time may be up to 10 minutes, although preferably the contact time is no greater than 5 minutes, most preferably no greater than 2 minutes. A contact time of about 1 minute or less than 1 minute is standard. If the contact time of the adhesion promotion composition with the copper surface is too long, there is a risk that the copper surface may be etched away due to dissolution and/or that a deposit other than the micro-porous crystalline deposit that forms the micro-roughened surface will be deposited onto the surface of the conducting material . [0095] The copper conducting layer having the organometallic conversion coating thereon is next rinsed of the adhesion promotion composition, generally in warm water (tap water or deionized) for between 10 and 120 seconds. Preferably, the rinse water is deionized water to allow better process control. The rinse water is preferably allowed to drain for 10 to 30 seconds and the surface is then dried.
[0096] After contact of the copper surface with the adhesion promotion composition to form the micro-roughened surface, generally a Pre-preg layer may be placed directly adjacent to the copper surface and the Pre-preg layer adhered directly to the copper surface in the adhesion step, forming a multi-layer PCB.
[0097] Appropriate substrate materials for a printed circuit board include, for example, high-pressure laminates (i.e., layers of fibrous materials bonded together under heat and pressure with a thermosetting resin) . In general, a laminate layer comprises an electrical-grade paper bonded with phenolic or epoxy resin or a continuous-filament glass cloth bonded with an epoxy-resin system. Specific examples of laminate layers are: XXXPC which is an electrical paper
impregnated with phenolic resin; FR-2 which is similar to XXXPC with a flame retardant property; FR-3 which is a self- extinguishing laminate of electrical paper and epoxy resin; G-10 which is a laminate of glass cloth sheets and epoxy resin; FR-4 which is a self-extinguishing laminate similar to G-10; G-ll which is a glass cloth and epoxy mixture; FR-5 which is a flame- resistant version of G-ll. In one embodiment of the present invention, the organic circuit board material is an FR-4 laminate layer that is placed on top of, and in intimate contact with the passive component pattern, and the two are laminated together . [ 0098 ] Generally in the adhesion step heat and pressure are applied to initiate the adhesion reaction. In the adhesion step, mechanical bonding is due to penetration of the polymeric material of the insulating layer into the micro-roughened surface provided in the adhesion promotion step. Although it may be desirable to follow the adhesion promotion step with a specially formulated rinse step, it is often adequate to rinse just with water.
[ 0099 ] A pre-preg insulating layer is applied directly to the micro-roughened surface, i.e., preferably without any intermediate metal deposition onto the micro-roughened surface or the like, although optionally with a post-treatment cupric oxide removal or reduction operation to further enhance the bond strength as disclosed in U.S. Pat. No. 6,294,220. Pressure is applied by placing the layers that are to form the multi-layer laminate of the PCB in a press. Where pressure is applied it is generally from 100 to 400 psi, preferably from 150 to 300 psi. The temperature of this adhesion step will generally be at least about 100°C, preferably between about 120°C and about 200°C. The adhesion step is generally carried out for any period from 5 minutes to 3 hours, most usually from 20 minutes to 1 hour, but is for sufficient time and pressure and at a sufficiently high temperature to ensure good adhesion between the first and second layers. During this adhesion step, the polymeric material of the insulating layers, generally an epoxy resin tends to flow ensuring that the conductive pattern in the metal is
substantially sealed between insulating layers, so subsequent penetration of water and air is avoided. Several layers may be placed together in the adhesion step to effect lamination of several layers in a single step to form the MLB.
[ 00100 ] Though the exemplary arrangement discussed at length herein is a pre-preg layer adhered to a copper surface, the invention also includes improving adhesion of other dielectric materials, whether permanent or temporary, to copper. For example, the invention improves adhesion between copper and a solder mask that is dielectric. It similarly improves copper adhesion with inks, polymeric photo-resists, and dry films. It also has application in connection with photo-imageable
dielectrics or other dielectrics used in the context of high density interconnect and sequential build up technologies.
[00101] Having described the invention in detail, it will be apparent that modifications and variations are possible without departing from the scope of the invention defined in the
appended claims .
EXAMPLES
[00102] The following non-limiting examples are provided to further illustrate the present invention.
Example 1. Control Adhesion Promotion Process
[00103] Multiple adhesion promotion processes were carried out on test copper coupons using commercially available
microetchant, cleaner, and adhesion promotion compositions.
These processes, designated AOS, were control processes and were carried out in order to provide comparative data for peel strength, conversion coating appearance, and number of solder dip cycles to delamination .
[00104] The adhesion promotion processes were carried out on three sets of 1" (25.4 mm) by 2" (50.8 mm) copper coupons according to the following protocol:
1. Contact the surfaces of copper coupons with microetchant Enthone® PC-7077 (40-60% concentration, available from Enthone Inc.) by immersion or spraying the coupons in or with the microetchant composition for 30 to 45 seconds at a solution temperature between of 27°C ± 3°C. PC-7077 is a conventional micro-etchant that contains Na persulfate, Na phenolsulfate and sulfuric acid.
Figure imgf000044_0001
2. Rinse the coupons in warm water (tap water or
deionized) for 30 seconds.
3. Contact the etched surfaces of the copper coupons with alkaline cleaner/Conditioner Enthone® PC 7096 10 to 15% concentration, available from Enthone Inc.) by immersion or spraying the coupons in or with the alkaline cleaner composition for 60- 120 seconds at a solution temperature between of 43°C ± 6°C.
4. Rinse the coupons in warm water (tap water or
deionized) for 30 seconds. The water was allowed to drain from the coupons for 10 to 20 seconds to avoid unnecessary dilution of the adhesion promotion composition.
5. Contact the cleaned and etched surfaces of the three copper coupons with adhesion promotion composition
AlphaPREP® PC-7030 (100% concentration, available from Enthone Inc.) by immersion or spraying the coupons in or with the adhesion promotion composition. One set of coupons was contacted with AlphaPREP® PC-7030 for 45 seconds . One set of coupons was contacted with AlphaPREP® PC-7030 for 1 minute. One set of coupons was contacted with AlphaPREP® PC-7030 for 2 minutes. The solution temperature between of 43°C ± 6°C. The adhesion promotion composition contained the following components and concentrations :
Figure imgf000045_0001
6. Rinse the coupons in warm water (tap water or
deionized) for 30 seconds.
7. Air dry the coupons at ambient temperature or up to about 35-40°C, for between 30 seconds to 5 minutes, as needed .
[00105] The copper coupons treated in this manner were inspected for coating appearance and defects prior to lamination to a standard FR4 pre-preg laminate such as Isola FR370HR (high Performance FR-4 material) .
Example 2. Control Adhesion Promotion Process
[00106] Multiple adhesion promotion processes were carried out on test copper coupons using commercially available
microetchant, cleaner, and adhesion promotion compositions.
These processes, designated AO, were control processes and were carried out in order to provide comparative data for peel strength, conversion coating appearance, and number of solder dip cycles to delamination . The AO control processes were carried out in a similar manner to the AOS control processes of Example 1, except that the chloride ion concentration of the adhesion promotion composition was increased to between about 85 and about 95 ppm.
[ 00107 ] The adhesion promotion processes were carried out on three sets of 1" (25.4 mm) by 2" (50.8 mm) copper coupons according to the following protocol:
1. Contact the surfaces of three copper coupons with microetchant Enthone® PC-7077 (40-60% concentration, available from Enthone Inc.) by immersion or spraying the coupons in or with the microetchant composition for 30 to 45 seconds at a solution temperature between of 27°C ± 3°C.
2. Rinse the coupons in warm water (tap water or
deionized) for 30 seconds.
3. Contact the etched surfaces of the three copper coupons with alkaline cleaner Enthone® PC-7096 (10 to 15%
concentration, available from Enthone Inc.) by immersion or spraying the coupons in or with the alkaline cleaner composition for 60 seconds at a solution temperature between of 43°C ± 6°C.
4. Rinse the coupons in warm water (tap water or
deionized) for 30 seconds. The water was allowed to drain from the coupons for 10 to 20 seconds to avoid unnecessary dilution of the adhesion promotion composition.
5. Contact the cleaned and etched surfaces of the three copper coupons with adhesion promotion composition
AlphaPREP® PC-7030 (100% concentration, available from Enthone Inc.) by immersion or spraying the coupons in or with the adhesion promotion composition. One set of coupons was contacted with AlphaPREP® PC-7030 for 45 seconds . One set of coupons was contacted with AlphaPREP® PC-7030 for 1 minute. One set of coupons was contacted with AlphaPREP® PC-7030 for 2 minutes. The solution temperature between of 43°C ± 6°C. The adhesion promotion composition contained the following components and concentrations :
PC 7030M (With MPG : Mono-propylene Glycol)
Figure imgf000047_0001
Although not used in this Example, the following formulation provides equivalent results .
Component Concentration
H202 7.2 wt . %
H2SO4 28.0 wt.%
HNO3 5.0 wt.%
1,2, 3-Benzotriazole 1.0 wt . %
Triethylene glycol 0.9 wt.%
2-ethyoxosulfonate (Niaproof 08) 0.15 wt.%
Dodecylbenzene Sulfonic acid (DDBSA) 0.002 wt.%
Polyoxyethylene Nonylphenol (Tergitol NP 9) 0.002 wt.%
Methane Sulfonic Acid (MSA) 70% 0.00 wt.%
Chloride ion 85-95 ppm
Water (Deionized) Balance
Monopropylene glycol is preferably included to inhibit premature sludge formation in the adhesion promoting composition bath.
6. Rinse the coupons in warm water (tap water or
deionized) for 30 seconds.
7. Air dry the coupons at ambient temperature or up to about 35-40°C, for between 30 seconds to 5 minutes, as needed .
[00108] The copper coupons treated in this manner were inspected for coating appearance and defects prior to lamination to a standard phenolic filled, halogen-free and/or polyimide pre-preg laminate. Useful phenolic filled dielectrics include those sold under the trade designations Isola 370H, FR408HR, and Isola IS 410. Useful halogen free, high glass transition temperature dielectrics include DE 156 and DE 155, while useful polyimides include Isola P95 and P96.
Example 3. Novel Conditioning Step followed by Adhesion
Promotion Process
[00109] Multiple adhesion promotion processes were carried out on test copper coupons using commercially available
microetchant, cleaner, and adhesion promotion compositions. These processes, designated Al, were control processes and were carried out in order to provide comparative data for peel strength, conversion coating appearance, and number of solder dip cycles to delamination . The Al control processes were carried out in a similar manner to the AO control processes of Example 2, except that the copper coupons were contacted with a pre-dip composition prior to contact with the adhesion promotion composition .
[ 00110 ] The adhesion promotion processes were carried out on three sets of 1" (25.4 mm) by 2" (50.8 mm) copper coupons according to the following protocol:
1. Contact the surfaces of three copper coupons with microetchant Enthone® PC-7077 (40-60% concentration, available from Enthone Inc.) by immersion or spraying the coupons in or with the microetchant composition for 30 to 45 seconds at a solution temperature between of 27°C ± 3°C.
2. Rinse the coupons in warm water (tap water or
deionized) for 30 seconds.
3. Contact the etched surfaces of the three copper coupons with a novel alkaline cleaner/conditioner Enthone® (SAM8- Rl- 10 to 15% concentration) by immersion or spraying the coupons in or with the alkaline cleaner composition for 60 seconds at a solution temperature between of 43°C ± 6°C. SAM8R-1 has the following composition:
Table 1: Formulation of Alkaline Cleaner Conditioner ( SAM8R-10 orXRD111901 ) as CONTROL
Items
# Raw Materials % By wt Gm/L
1 Di Water 89.75 908
2 Dowano DB ( Diethtylene Glycol Butyl Ether) 1.86 19
Caustic Potash 50% ( Potassium Hydroxide
3 Liq. ) 0.5 5.06
4 SAM #4 (6- Benzyl Amino Purine) 0.025 0.253
5 KI (Potassium Iodide) 0.01 0.1
6 Niaproof 08 0.005 0.05
7 MEA ( Monoethanolamine) 1.5 15.2
8 Caustic Soda 50% Liq. ( Sodium Hydroxide 6.25 63.22
9 ZAC ( Zinc Ammonium Carbonate Liq.) 0.1 1.01
SPG: 1.01- 1.008 ( 8.430 lb/gal)
4 Rinse the coupons in warm water (tap water or
deionized) for 30 seconds.
5. Contact the cleaned and etched surfaces of the copper coupons with a pre-dip composition comprising sodium
bicarbonate ( a2C03«H20, 30 grams/Liter) for 60 seconds at a solution temperature between of 43°C ± 6°C.
6. Rinse the coupons in warm deionizied water for 30
seconds. The water was allowed to drain from the coupons for 10 to 20 seconds to avoid unnecessary dilution of the adhesion promotion composition.
7. Contact the cleaned and etched surfaces of the three copper coupons with adhesion promotion composition
AlphaPREP® PC-7030 (100% concentration, available from
Enthone Inc.) by immersion or spraying the coupons in or with the adhesion promotion composition. One set of
coupons was contacted with AlphaPREP® PC-7030M-1 for 45 seconds . One set of coupons was contacted with AlphaPREP® PC-7030 for 1 minute. One set of coupons was contacted with AlphaPREP® PC-7030M for 2 minutes. The solution temperature between of 43°C ± 6°C. The adhesion promotion composition contained the following components and concentrations :
Figure imgf000051_0001
8. Rinse the coupons in warm water (tap water or
deionized) for 30 seconds.
9. Air dry the coupons at ambient temperature or up to about 35-40°C, for between 30 seconds to 5 minutes, as needed .
[00111] The copper coupons treated in this manner were inspected for coating appearance and defects prior to lamination to a standard epoxy or novolac resin.
Example 4. Adhesion Promotion Process with 6-Benzylaminopurine Conditioning Step
[00112] Multiple adhesion promotion processes were carried out on test copper coupons. These processes, designated A3, were carried out according to the method of the present
invention. In these processes, the copper coupons were pre- dipped in a composition comprising a molecular capable of forming a self-assembled monolayer on a copper surface.
Additionally, the adhesion promotion composition was further modified with polypropylene glycol. [ 0100 ] The adhesion promotion processes were carried out on three sets of 1" (25.4 mm) by 2" (50.8 mm) copper coupons according to the following protocol:
1. Contact the surfaces of three copper coupons with microetchant Enthone® PC-7077 (40-60% concentration, available from Enthone Inc.) by immersion, spraying or both, the coupons in or with the microetchant composition for 30 to 45 seconds at a solution temperature between of 27°C ± 3°C.
2. Rinse the coupons in warm water (tap water or
deionized) for 30 seconds.
3. Contact the etched surface of the three copper coupons with alkaline cleaner Enthone® PC-7096 (10 to 15%
concentration, available from Enthone Inc.) by immersing or spraying the coupons in or with the alkaline cleaner composition for 60 seconds at a solution temperature between of 43°C ± 6°C.
4. Rinse the coupons in warm water (tap water or
deionized) for 30 seconds.
5. Contact the cleaned and etched surfaces of the copper coupons with a pre-dip composition comprising 6-benzylamino purine (5 grams/Liter, available from KingChem or Aldrich Chemicals for 60 seconds at a solution temperature between of 43°C ± 6°C.
6. Rinse the coupons in warm deionizied water for 30 seconds. The water was allowed to drain from the coupons for 10 to 20 seconds to avoid unnecessary dilution of the adhesion promotion composition.
7. Contact the cleaned and etched surfaces of the three copper coupons with adhesion promotion composition
AlphaPREP® PC-7030M (100% concentration, available from Enthone Inc.) modified by adding polypropylene glycol or propylene glycol (0.5 to 1.0 wt . %) by immersing or spraying the coupons in or with the adhesion promotion composition. One set of coupons was contacted with
AlphaPREP® PC-7030 for 45 seconds. One set of coupons was contacted with AlphaPREP® PC-7030 for 1 minute. One set of coupons was contacted with AlphaPREP® PC-7030 for 2 minutes. The solution temperature between of 43°C ± 6°C. The adhesion promotion composition contained the following components and concentrations :
Figure imgf000053_0001
8. Rinse the coupons in warm water (tap water or
deionized) for 30 seconds.
9. Air dry the coupons at ambient temperature or up to about 35-40°C, for between 30 seconds to 5 minutes, as needed .
[ 0101 ] The copper coupons treated in this manner were inspected for coating appearance and defects prior to lamination to a standard FR4 pre-preg laminate available under the trade designation Isola FR4, Panasonic 155 plus, Nanya 170 or Nanya 175. Example 5. Adhesion Promotion Process Using 6-Benzylaminopurine Conditioner
[0102] Multiple adhesion promotion processes were carried out on test copper coupons. These processes, designated A6, were carried out according to the method of the present
invention. In these processes, the copper coupons were pre- dipped in a composition comprising a molecular capable of forming a self-assembled monolayer on a copper surface.
Additionally, the adhesion promotion composition was further modified with methane-sulfonic acid.
[0103] The adhesion promotion processes were carried out on three sets of 1" (25.4 mm) by 2" (50.8 mm) copper coupons according to the following protocol:
1. Contact the surfaces of three copper coupons for 30 to 45 seconds with microetchant Enthone® PC-7077 (40-60% concentration, available from Enthone Inc.) by immersion, spraying or both, while maintaining the solution
temperature between of 27°C ± 3°C.
2. Rinse the coupons in warm water (tap water or
deionized) for 30 seconds.
3. Contact the etched surface of the three copper coupons with alkaline cleaner Enthone® SAM8-R1 (10 to 15%
concentration, available from Enthone Inc.) by immersion, spraying or both, the coupons in or with the alkaline cleaner/Conditioner composition for 60 seconds at a solution temperature between of 43°C ± 6°C.
4. Rinse the coupons in warm water (tap water or
deionized) for 30 seconds.
5. Contact the cleaned and etched surfaces of the copper coupons with a pre-dip composition comprising 6-benzylamino purine (5 grams/Liter) , available from KingChem or Aldrich Chemical for 60 seconds at a solution temperature between of 43°C ± 6°C. 6. Rinse the coupons in warm deionizied water for 30 seconds. The water was allowed to drain from the coupons for 10 to 20 seconds to avoid unnecessary dilution of the adhesion promotion composition.
7. Contact the cleaned and etched surfaces of the three copper coupons with adhesion promotion composition
AlphaPREP® PC-7030 (100% concentration, available from Enthone Inc.) modified by adding methanesulfonic acid (2 wt . %) , so that the solution contained nitric, sulfuric and methanesulfonic acids, and immersing or sprayingthe coupons in or with the adhesion promotion composition. One set of coupons was contacted with AlphaPREP® PC-7030 for 45 seconds . One set of coupons was contacted with AlphaPREP® PC-7030 for 1 minute. One set of coupons was contacted with AlphaPREP® PC-7030 for 2 minutes. The solution temperature was 43°C ± 6°C. The adhesion promotion composition contained the following components and
concentrations :
Figure imgf000055_0001
8. Rinse the coupons in warm water (tap water or
deionized) for 30 seconds.
9. Air dry the coupons at ambient temperature or up to about 35-40°C, for between 30 seconds to 5 minutes, as needed . [0104] The copper coupons treated in this manner were inspected for coating appearance and defects prior to lamination to a standard FR4 pre-preg laminate available under the trade designation I sola 370 FR, I sola FR408HR or I sola Is410.
Example 6. Adhesion Promotion Process
[0105] Multiple adhesion promotion processes were carried out on test copper coupons. These processes, designated A7, were carried out according to the method of the present
invention. In these processes, the copper coupons were pre- dipped in a composition comprising a molecule capable of forming a self-assembled monolayer on a copper surface. Additionally, the adhesion promotion composition was further modified with methanesulfonic acid and polypropylene glycol.
[0106] The adhesion promotion processes were carried out on three sets of 1" (25.4 mm) by 2" (50.8 mm) copper coupons according to the following protocol:
1. Contact the surfaces of three copper coupons with microetchant Enthone® PC-7077 (40-60% concentration, available from Enthone Inc.) by immersion, spraying or both, the coupons in the microetchant composition for 30 to 45 seconds at a solution temperature between of 27°C ± 3°C.
2. Rinse the coupons in warm water (tap water or
deionized) for 30 seconds.
3. Contact the etched surface of the three copper coupons with alkaline cleaner Enthone® PC-7096 (10 to 15%
concentration, available from Enthone Inc.) by immersion, spraying or both, the coupons in or with the alkaline cleaner composition for 60 seconds at a solution
temperature between of 43°C ± 6°C.
4. Rinse the coupons in warm water (tap water or
deionized) for 30 seconds. 5. Contact the cleaned and etched surfaces of the copper coupons with a pre-dip composition comprising 6-benzylamino purine (5 grams/Liter, available from KingChem or Aldrich for 60 seconds at a solution temperature between of 43°C ± 6°C.
6. Rinse the coupons in warm deionizied water for 30 seconds. The water was allowed to drain from the coupons for 10 to 20 seconds to avoid unnecessary dilution of the adhesion promotion composition.
7. Contact the cleaned and etched surfaces of the three copper coupons with adhesion promotion composition
AlphaPREP® PC-7030 (100% concentration, available from Enthone Inc.) modified by adding polypropylene glycol (0.5 to 1.0 wt . %) having an average molecular weight 76.1 g/mol, available from KingChem or Aldrich Chemical, and by adding methanesulfonic acid (2 wt . %) , available from Huntsman Corporation thereby producing a solution
containing sulfuric, nitric and methanesulfonic acids. The coupons were then immersed in and/or sprayed with the adhesion promotion composition. One set of coupons was contacted with AlphaPREP® PC-7030 for 45 seconds. One set of coupons was contacted with AlphaPREP® PC-7030M for 1 minute. One set of coupons was contacted with AlphaPREP® PC-7030 for 2 minutes. The solution temperature between of 43°C ± 6°C. The adhesion promotion composition contained the following components and concentrations: Component Concentration
H202 7.2 wt . %
H2SO4 28.0 wt.%
HNO3 5.0 wt.%
CH3SO4H 2.0 wt . %
1,2, 3-Benzotriazole 1.0 wt . %
Triethylene glycol 0.9 wt.%
Polypropylene glycol 0.5 to 1.0 wt.%
2-ethyoxosulfonate (Niaproof 08) 0.15 wt.%
Dodecylbenzene Sulfonic acid (DDBSA) 0.002 wt.%
Polyoxyethylene Nonylphenol (Tergitol NP 9) 0.002 wt.%
Chloride ion 85-95 ppm
Water (Deionized) Balance
8. Rinse the coupons in warm water (tap water or
deionized) for 30 seconds.
9. Air dry the coupons at ambient temperature or up to about 35-40°C, for between 30 seconds to 5 minutes, as needed .
[0107] The copper coupons treated in this manner were inspected for coating appearance and defects prior to lamination to a standard FR4 pre-preg laminate.
Example 7. Adhesion Promotion Process of the Invention
[0108] Multiple adhesion promotion processes were carried out on test copper coupons. These processes, designated A8, were carried out according to the method of the present
invention. In these processes, the copper coupons were cleaned in an alkaline cleaner composition further comprising a
molecular capable of forming a self-assembled monolayer on a copper surface. Additionally, the adhesion promotion
composition was further modified with methanesulfonic acid and polypropylene glycol .
[0109] The adhesion promotion processes were carried out on three sets of 1" (25.4 mm) by 2" (50.8 mm) copper coupons according to the following protocol: 1. Contact the surfaces of three copper coupons with microetchant Enthone® PC-7077 (40-60% concentration, available from Enthone Inc.) by spraying the coupons in the microetchant composition for 30 to 45 seconds, or immersing them with the solution, in either case at a solution temperature between of 27°C ± 3°C.
2. Rinse the coupons in warm water (tap water or
deionized) for 30 seconds.
3. Contact the etched surface of the three copper coupons with alkaline cleaner Enthone® SAM8-R1(10 to 15%
concentration, available from Enthone Inc.) further comprising 6-benzylamino purine (5 grams/Liter) by
immersing the coupons in the alkaline cleaner composition for 60 seconds, or spraying them with the composition, in either case at a solution temperature between of 43°C ± 6°C.
4. Rinse the coupons in warm water (tap water or
deionized) for 30 seconds. The water was allowed to drain from the coupons for 10 to 20 seconds to avoid unnecessary dilution of the adhesion promotion composition.
5. Contact the cleaned and etched surfaces of the three copper coupons with adhesion promotion composition
AlphaPREP® PC-7030 (100% concentration, available from Enthone Inc.) modified by adding polypropylene glycol (0.5 wt . %) having a molecular weight of 76.1 g/mol, and by adding methanesulfonic acid (2 wt . %) so that the
composition contained sulfuric, nitric and methanesulfonic acid. Contact was by immersion or spraying or both. One set of coupons was contacted with AlphaPREP® PC-7030M for 45 seconds. One set of coupons was contacted with
AlphaPREP® PC-7030 for 1 minute. One set of coupons was contacted with AlphaPREP® PC-7030 for 2 minutes. The solution temperature was 43°C ± 6°C. The adhesion promotion composition contained the following components and concentrations :
Figure imgf000060_0001
6. Rinse the coupons in warm water (tap water or
deionized) for 30 seconds.
7. Air dry the coupons at ambient temperature or up to about 35-40°C, for between 30 seconds to 5 minutes, as needed .
[0110] The copper coupons treated in this manner were inspected for coating appearance and defects prior to lamination to a standard FR4 pre-preg laminate.
Example 8-14. Adhesion Promotion Process
[0111] Multiple adhesion promotion processes were carried out on test copper coupons that were designated BOS, B0, Bl, B3, B6, B7, and B8. Adhesion promotion processes BOS, B0, Bl, B3, B6, B7, and B8 were identical to process AOS, AO, Al, A3, A6, A7, and A8 , respectively, except that in each of BOS, B0, Bl, B3, B6, B7, and B8, the adhesion promotion compositions were formulated with 30 g/L copper ions, in order to simulate a working adhesion promotion process in which the adhesion promotion composition has accumulated a substantial copper ion concentration . Example 15. Lamination Process
[0112] The copper coupons treated as described in Examples 1 through 14 were laminated to a standard FR4 pre-preg laminate at 188°C of the type available under the trade designation Isola 370HR, Isola IS410, Nanya 170, Nanya 175 or Panasonci R1551, according to the following protocol:
1. One surface of the copper coupon and one surface of the pre-preg were each coated by a DuPont™ Tedlar® PVF Film.
2. The opposite, uncoated sides of the copper coupon and pre-preg were placed in contact with each other.
3. The Tedlar® coated sides were then contacted with platens and compressed together in a hydraulic press at about 765 kPa (about 111 PSI) for 5 minutes.
4. The pressure was increased to 1436 kPa (about 208.33 PSI) for 10 minutes.
5. The pressure was increased to 1917 kPa (about 211 PSI) for 60 minutes.
6. The pressure was decreased to 1436 kPa (about 208.33 PSI) for 5 minutes.
[0113] The copper coupon coated pre-pregs were then
subjected to solder pot dip tests and peel strength tests.
[0114] The solder pot dip test is conducted by lowering a portion of the copper laminated pre-preg into molten solder at a temperature of 260°C for 10 second interval cycles. The number of cycles until delamination is recorded.
[0115] Peel strength is determined with the Instron 4442 Instrument (ASTM standard) . The peel strength is run on five samples .
[0116] Additionally, the etch rate of copper in the adhesion promotion composition was determined by measuring the copper ion concentration in the adhesion promotion composition.
[0117] The empirical results are summarized in the following Tables 1 through 3: Table 1. Empirical Data for Copper Coupons Treated in Adhesion Promotion Composition for Two Minutes
DesigCopper Etch Total Peel Appearance Solder Dip nation weight Rate Etch Strength (Cycles to
Loss (pm/min) (pm) (N/M) Delamination) (grams
Cu2+)
AOS 0.083 1.79 3.58 301.9 3 16
BOS 0.077 1.67 3.33 942.15 4 15
AO 0.050 1.08 2.15 1165.6 3 17
BO 0.049 1.06 2.13 1092.8 4 16
Al 0.048 1.03 2.07 1040.2 3 17
Bl 0.039 0.83 1.66 1075.2 4 17
A3 0.066 1.50 3.00 1372.9 5 23
B3 0.069 1.48 2.96 1339.7 5 24
A6 0.044 0.95 1.89 959.7 3 20
B6 0.042 0.90 1.80 991.2 4 22
A7 0.065 1.39 2.79 1162.8 4 29
B7 0.060 1.30 2.60 1126.0 5 28
A8 0.066 1.43 2.86 1204.8 4 31
B8 0.063 1.35 2.71 1210.1 5 30
Table 2. Empirical Data for Copper Coupons Treated in Adhesion
Promotion Composition for One Minute
DesigCopper Etch Total Peel Appearance Solder Dip nation weight Rate Etch Strength (Cycles to
Loss (pm/min) (pm) (N/M) Delamination) (grams
Cu2+)
AOS 0.040 1.7 1.7 795.1 2 12
BOS 0.032 1.39 1.39 872.1 3 13
AO 0.026 1.11 1.11 866.8 3 14
BO 0.026 1.13 1.13 882.6 3 16
Al 0.024 1.04 1.04 882.6 3 14
Bl 0.022 0.96 0.96 889.6 3 15
A3 0.033 1.43 1.43 924.6 4 29
B3 0.033 1.43 1.43 900.1 4 30
A6 0.033 0.93 0.93 812.6 3 19
B6 0.022 0.93 0.93 826.6 3 18
A7 0.032 1.39 1.39 886.1 4 24
B7 0.034 1.47 1.47 849.3 4 25
A8 0.033 1.42 1.42 914.1 4 32
B8 0.034 1.47 1.47 882.6 4 33
Table 3. Empirical Data for Copper Coupons Treated in Adhesion Promotion Composition for 45 Seconds
Figure imgf000064_0001
[0118] In the above tables, "Appearance" is a qualitative, eyeball measurement of the appearance of the organometallic conversion coating. A rating of 5 means that the coating was an excellent dark brown color that the industry associates with a strongly adhesive coating. A 4 rating means that the coating was good, uniform, and dark reddish brown. A 3 rating means that the coating was fairly uniform and still dark brown, but less so than a 4 or 5. Ratings of 1 or 2 mean that the coating was uneven; the dark reddish brown color was spotty.
[0119] The results of the various adhesion promotion processes as set out in Tables 1 through 3 indicate that the incorporation of propylene glycol or polypropylene glycol in the adhesion promotion composition in addition to a pre-dip in a composition comprising a molecule capable of forming a self- assembled monolayer on a copper surface improves the overall performance of the adhesion process. Advantageous results achieved include an improvement in the appearance of the
organometallic conversion coating, an increase in peel strength, and an increase in the number of solder dip cycles prior to delamination . In some respects, the adhesion promotion process was improved when compositions comprising a substantial copper load were employed. It may therefore be concluded that an adhesion promotion composition can be used for an extended duration when copper coupons are pre-dipped in a composition comprising a molecule capable of forming a self-assembled monolayer .
Example 16: Adhesion Promoting Process
[0120] Multiple adhesion promotion processes were carried out on test copper coupons. These processes were carried out according to the method of the present invention. In these processes, the copper coupons were pre-dipped in a composition comprising a molecular capable of forming a self-assembled monolayer on a copper surface. Additionally, the adhesion promotion composition was further modified with polypropylene glycol .
[0121] The adhesion promotion processes were carried out on three sets of 1" (25.4 mm) by 2" (50.8 mm) copper coupons according to the following protocol:
1. Contact the surfaces of three copper coupons with microetchant Enthone® PC-7077 (40-60% concentration, available from Enthone Inc.) by immersion, spraying or both, the coupons in the microetchant composition for 30 to 45 seconds at a solution temperature between of 27°C ± 3°C.
2. Rinse the coupons in warm water (tap water or
deionized) for 30 seconds.
3. Contact the etched surface of the three copper coupons with alkaline cleaner Enthone® PC-7096 (10 to 15% concentration, available from Enthone Inc.) by immersing or spraying the coupons in the alkaline cleaner composition for 60 seconds at a solution temperature between of 43°C ± 6°C.
4. Rinse the coupons in warm water (tap water or
deionized) for 30 seconds.
5. Contact the cleaned and etched surfaces of the copper coupons with a pre-dip composition having the following composition :
Figure imgf000066_0001
The cleaned and etched coupons were contacted with this conditioning solution for 60 seconds at a solution
temperature between of 43°C ± 6°C.
6. Rinse the coupons in warm deionizied water for 30 seconds. The water was allowed to drain from the coupons for 10 to 20 seconds to avoid unnecessary dilution of the adhesion promotion composition.
[ 0122 ] Contact the cleaned and etched surfaces of the three copper coupons with adhesion promotion composition having the composition (specific gravity 1.13): # OF RAW MA ' L Quantity
RAWS CODE RAW MA ' L NAME WT% in Gram
1 803313 DI WATER 55. 59 628. 17
2 803236 Calsoft Las 99 0. 00 0. 02
3 803382 Tergitol NP9 0. 00 0. 02
4 804763 Niaproof 08 0. 15 1. 70
5 803461 Nitric Acid 5. 00 56. 50
Benzotriazole
6 803679 cobratec 99 1. 00 11. 30
Hydrogen
7 801051 Peroxde (35%) 7. 20 81. 36
Sulfuric
8 803257 Acid (50%) 28. 00 316. 40
Triethylene
9 803046 Glycol 0. 90 10. 17
Zinc Sulfate
10 804699 Monohydrate 0. 16 1. 79
[0123] The solution temperature during contact of the adhesion promoting solution with the coupons was between 43°C ± 6°C. In repetitive operations using this adhesion promoting bath, the copper capacity reached >40 g/L. After lamination in the manner described hereinabove, High Tg Phenolic cured laminates achieved a peel strength of 690 N/m and survived lOx IR reflow without delamination . Panasonic 1551 halogen-free laminates achieved an initial peel strength of 835 N/m which remained at 755 N/m after lOx IR reflow; Nanya NPG 170 halogen free laminates achieved an initial peel strength of 733 N/m which increased to 784 N/m after lOx IR reflow. ISOLA 370 laminates achieved an initial peel strength of 835 to 890 N/m which remained at 770 to 850 N/m after lOx IR reflow.
Example 17 - Tests at Varying Copper Levels
[0124] In accordance with the method of the invention, multiple adhesion promotion tests were carried out on copper coupons . [ 0125 ] The coupons were micro-etched, rinsed, cleaned, rinsed again in the manner described above, and then immersed for either 60 or 120 seconds at 43 ±6°C in one of two different conditioning solutions, either Conditioner #1 or Conditioner #2. Conditioner #1 contained 6-benzylaminopurine and generally corresponded to the formulation set out for the conditioner used in Example 3, above. Conditioner #2 contained 6- benzylaminopurine and Zinplex, and generally corresponded to the conditioner composition used in Example 16. The coupons were thereafter rinsed, drained and contacted with an adhesion promoting composition.
[ 0126 ] A control (Experiment #7) was run using the adhesion promoting solution of Example 16 after conditioning only with a standard alkaline cleaning solution.
[ 0127 ] After treatment with the adhesion promoting
solution, the coupons were laminated to a dielectric material generally in the manner described above. In some instances, the lamination took place after lOx IR-reflow, and in other cases lamination was conducted before reflow.
[ 0128 ] After the lamination step, the laminated composites were subjected to peel strength tests as described above. The peel strength results for the coupons laminated before reflow are set forth in Table 5 and the results for coupons laminated after reflow are set forth in Table 6.
Laminated Before 10X Reflow - ISOLA 370HR Peel
Experiment Conditioner Adhesion Peel Peel Peel Peel Peel
Promoter Sample Sample Sample Sample Sample
#1 #2 #3 #4 #5
1 #2, 1 min. 7030M-1, 879 813 809 760 781
Ex. 2
2 #2, 2 mins. 7030M-1, 802 809 795 848 802
Ex. 2
3 #1, 2 mins. 7030M-1, 823 799 750 715 697
Ex. 2
4 #2, 2 mins. 7030M-1, 953 900 893 851 840
Ex. 2
5 #1, 2 mins. 7030M-1, 816 805 732 750 736
Ex. 2
6 #2, 2 mins. 7030M-2, 135 217 228 252 214
Ex. 16
7 Std. standard 579 536 536 546 652 alkaline
cleaner
8 #1 Standard 686.5 711 722 704 694
9 #2 standard 746 725 750 736 753
Table 6. After IPX IR-reflow - ISOLA 370HR Peel Strength
Figure imgf000070_0001
[0129] Poor results were experienced with the adhesion promotion formulation of Experiment #6, both in the case of lamination before reflow and in the case of lamination after reflow, because of the presence of polyglycol WL-5000 containing 0.1 wt . % butylated hydroxytoluene in the adhesion promoting solution. The presence of these components proved to have a sharply adverse effect on the peel strength.
[0130] However, the remaining experiments using either (i) Conditioner #1 (Experiments ## 3, 5 and 8) or (ii) Conditioner #2 (Experiments ## 1 to 5, 8 and 9) all gave results
substantially superior to the control (Experiment #7) . A further increment in peel strength was obtained in those experiments using both conditioner #2 and an adhesion promoting solution of Example 16 containing Zn ions (Experiment #4) .
Example 18
[0131] To simulate commercial operations in which the conditioning and adhesion promoting solutions are subjected to contact with a succession of different copper substrates in repetitive cycles of conditioning, adhesion promoting, and laminating operations, experimental runs were conducted in which the adhesion promoting solution was spiked with copper. Copper was added in proportions that reflect the actual accumulation of copper ions in the adhesion promoting solutions during
commercial operations in which each of the two treating
formulations is contacted with copper substrates through
repetitive cycles. In each run the conditioning step was carried out using a conditioning solution having essentially the composition of Conditioner #2. The conditions of treatment with conditioner and adhesion promoting solution were as otherwise described in Example 17.
[0132] In the test runs of this example, the adhesion promoting solution was spiked with either 1, 5, or 10 g/1 copper. The treated coupons were then laminated to a dielectric material at either 15.5 or 24.1 bars and peel strength tests conducted on the resulting laminated composites.
[0133] The average peel strengths for composites comprising the three different dielectrics are depicted in Fig. 1 for laminates prepared at 15.5 bar and in Fig. 2 for laminates prepared at 24.1 bar.
Example 19
[0134] Another series of tests were conducted substantially in the manner described in Example 18. [0135] Three different dielectric materials were used in the experiments of this example, i.e., Isola 370R, 408 HR, and IS 410. With each combination of conditioner and adhesion promoting solution, separate lamination experiments were
conducted at laminating pressures of either 15.5 bars or 24.1 bars. Peel strength tests were conducted both before and after reflow .
[0136] The average peel strengths for composites comprising the three different dielectrics are depicted in Fig. 3 for laminates prepared at 15.5 bar and tested before reflow, in Fig. 4 for laminates prepared at 24.1 bar and tested before reflow, in Fig. 5 for laminates prepared at 15.5 bar and tested after reflow, and in Fig. 6 for laminates prepared at 24.1 bar and tested after reflow.
Example 20
[0137] Another series of tests were conducted in the manner described in Example 19 except that, in one series of tests, the adhesion promoting solution was doped with 1 g/1 of Conditioner #2, while in the other the adhesion promoting solution of
Example 16 was used without adulteration.
[0138] The average peel strengths for composites comprising the three different dielectric for laminates prepared at 15.5 bar and 24.1 bars, respectively, after treatment with an
adhesion promoting solution of Example 16 with no addition of conditioner #2 are displayed in Figs. 7 and 8 while the peel strengths for composites prepared at 15.5 and 24.1 bars, respectively, after treatment with an adhesion promoting
solution that had been doped with ~1 g/1 of Conditioner #2 are depicted in Figs. 9 and 10.
Example 21
[0139] Another series of tests were conducted generally in the manner described in Example 17. Five different substrates were used, including 370 HR, 408 HR, IS 410, Pan R-1556, and Nanya NPG 170 L . The adhesion promoting solution was doped with copper ions in a concentration of 5 g/1 and with varying
proportions of conditioner #2, ranging from 0 to 10 g/1.
Lamination was effected at a pressure of 15.5 bars.
[0140] The average peel strengths obtained were as depicted in Fig . 11.
Example 22
[0141] Two additional series of tests were conducted substantially in the manner described in Example 18, except that the adhesion promoting solution was doped with a substantially broader and higher range of concentrations of copper ions, i.e., 0, 1, 10, 40 and 50 g/1. Each run was conducted using
Conditioner #2 followed by the adhesion promoting solution of Example 16. The adhesion promoting solution was not doped with any addition of Conditioner.
[0142] The peel test results of the tests of this Example are depicted as bar graphs in Figs. 12 and 13.
Example 23
[0143] Additional tests were run generally in the manner described in Example 18. Conditioner #2 was used, followed by the adhesion promoting solution of Example 16. Both the conditioner and the adhesion promoting solution were doped with copper ions in a concentration of 40 g/1. The dwell time between application of the conditioner and application of the adhesion promoting solution was varied.
[0144] The peel test results of this Example are depicted in the bar graphs of Fig. 14. "Hang time" refers to the time required to remove the bulk of the water film adhering to the coupons after treatment with the conditioner. "Cool Dry" refers to cool dry time subsequent to removal of the water film. Example 24
[0145] Additional experimental runs were conducted
generally in the manner described in Example 21 except that the copper ion concentration in the adhesion promoting formulations was 10 g/1 and only dielectric substrates 370 HR, 408 HR and IS 410 were tested.
[0146] Peel strength results are depicted in Figs. 15 and
16.
[0147] In view of the above, it will be seen that the several objects of the invention are achieved and other
advantageous results attained.
[0148] When introducing elements of the present invention or the preferred embodiments ( s ) thereof, the articles "a", "an", "the" and "said" are intended to mean that there are one or more of the elements. The terms "comprising", "including" and
"having" are intended to be inclusive and mean that there may be additional elements other than the listed elements.
[0149] As various changes could be made in the above compositions and processes without departing from the scope of the invention, it is intended that all matter contained in the above description and shown in the accompanying drawings shall be interpreted as illustrative and not in a limiting sense.

Claims

CLAIMS : What is claimed is:
1. A method for enhancing adhesion between a copper conducting layer and a dielectric material during manufacture of a printed circuit board, the method comprising:
contacting the copper conducting layer with a conditioning composition, said conditioning composition comprising a
functional organic compound and a transition metal ion, said functional organic compound being capable of forming a self- assembled monolayer on a copper surface; and
thereafter contacting the copper conducting layer with an adhesion promoting composition that comprises an oxidizing agent, an inorganic acid, and a corrosion inhibitor.
2. A method as set forth in claim 1 wherein said
transition metal ion is selected from the group consisting of zinc, nickel, cobalt, copper, silver, gold, palladium and other platinum group metals.
3. A method as set forth in claim 2 wherein said transition metal is selected from the group consisting of zinc, nickel, cobalt, silver, gold, palladium and other platinum group metals.
4. A method as set forth in claim 2 wherein said
transition metal ion comprises zinc.
5. A method as set forth in claim 4 wherein Zn is present in said conditioning composition in the form of Zn2+, Zn2+/ammonia complex, zinc oxide, ZnC>2= or combinations thereof.
6. A method as set forth in any of claims 1 to 5 further comprises a counteranion selected from the group consisting of chloride, iodide, bromide, phosphate, carbonate, hydroxide, and carboxylate .
7. A method as set forth in any of claims 1 to 6 wherein said functional organic compound is selected from the group consisting of arylamines, aryl thiols, aralkyl thiols, aromatic sulfur-containing heterocycles .
8. A method as set forth in any of claims 1 to 6 wherein said functional organic compound is selected from the group consisting of aniline, aniline derivatives, toluidine, toluidine derivatives, benzothiazoles , thiophene, thiophene derivatives, benzothiophene , and benzothiophene derivatives.
9. A method as set forth in any of claims 1 to 6 wherein said functional organic compound comprises a nitrogen-containing
^ R7
aromatic heterocyclic compound comprising a ring — group or an amine substitutent on the ring wherein R7 is hydrogen, hydrocarbyl or substituted hydrocarbyl, hydroxyl or a negative charge .
10. A method as set forth in claim 9 wherein said
heterocyclic compound capable of forming a self assembled
^ R7
monolayer comprises both a ring group and an amine substituent on the ring.
11. A method as set forth in claim 9 or 10 wherein the functional organic compound comprises the nitrogen-containing aromatic heterocyclic compound comprising the ring ■— group wherein R7 is substituted hydrocarbyl comprising a substituent selected from the group consisting of amino, cyano, nitro, halo, hydroxy and sulfhydryl.
12. A method as set forth in any of claims 9 to 11 wherein said nitrogen-containing aromatic heterocyclic compound
comprises a ring substituent selected from the group consisting of cyano, nitro, halo, hydroxy and sulfhydryl.
13. A method as set forth in claim 12 wherein said nitrogen containing aromatic heterocyclic compound comprises a compound selected from the group consisting of
mercaptobenzamidazoles , mercaptobenzothiazoles , and
mercaptobenzotriazoles .
14. A method as set forth in any of claims 1 to 3 wherein said conditioning composition comprises purine or a purine derivative .
15. A method as set forth in claim 14 wherein said purine or purine derivative compound corresponds to the formula:
Figure imgf000077_0001
(Formula I)
wherein each of R2, R6, and R8 is independently selected from the group consisting of hydrogen, hydrocarbyl, substituted
hydrocarbyl, hydroxycarbonyl , alkylcarbonyl alkoxycarbonyl , alkoxy, alkenoxy, hydroxyl, hydroxyalkyl, hydroxyalkenyl , sulfhydryl, halo, nitro, cyano and NR9R10, R7 is selected from the group consisting of hydrogen, hydrocarbyl, substituted
hydrocarbyl, hydroxyl, or a negative charge, and each of R9 and R10 is independently selected from the group consisting of hydrogen, hydrocarbyl and substituted hydrocarbyl.
16. A method as set forth in claim 15 wherein said purine derivative is present and is substituted with a functional group selected from the group consisting of substituted or
unsubstituted vinyloxy, substituted or unsubstituted amide, substituted or unsubstituted amine, hydroxycarbonyl , substituted or unsubstituted alkoxycarbonyl, hydroxyalkyl , hydroxyalkenyl , substituted or unsubstituted silyl, and substituted or
unsubstituted alkoxysilyl.
17. A method as set forth in claim 9 wherein said
nitrogen-containing aromatic heterocyclic compound has the structure (la) or structure (lb) :
Figure imgf000078_0001
wherein :
Ai, A2, A3, A4, A5, A6, and A7 are carbon atoms or nitrogen atoms and the sum of nitrogen atoms from Ai, A2, A3, A4, A5, A6, and A7 is 0, 1, 2, or 3;
An, 22, A33, A44, A55, A66, and A77 are selected from the group consisting of electron pair, hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted aryl,
substituted or unsubstituted vinyl ether, substituted or unsubstituted amide, substituted or unsubstituted amine, substituted or unsubstituted carboxylic acid, substituted or unsubstituted ester, substituted or unsubstituted alcohol, and substituted and unsubstituted silane or alkoxysilane; and
at least one of An, A22, A33, A44, and A55 is selected from the group consisting of substituted or unsubstituted vinyl ether, substituted or unsubstituted amide, substituted or unsubstituted amine, substituted or unsubstituted carboxylic acid, substituted or unsubstituted ester, substituted or unsubstituted alcohol, and substituted and unsubsituted silane or alkoxysilane.
18. A method as set forth in claim 17 wherein the nitrogen- containing aromatic heterocyclic compound correspond to
structure (II) , structure (III) , or structure (IV) :
Figure imgf000079_0001
Figure imgf000080_0001
wherein A22, A , A55, A66, and A77 are as defined in connection with structures (la) and (lb) .
19. A method as set forth in any claim 9 or 10 wherein said nitrogen-containing aromatic heterocyclic compound has the structure (V) :
Figure imgf000080_0002
wherein :
A2, A3, A4 and A5 are carbon atoms or nitrogen atoms and the sum of nitrogen atoms from A2, A3, A4 and A5 is 0, 1 or 2;
A22, A33, A , and A55 are selected from the group consisting of hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted aryl, substituted or unsubstituted vinyl ether, substituted or unsubstituted amide, substituted or unsubstituted amine, substituted or unsubstituted carboxylic acid, substituted or unsubstituted ester, substituted or unsubstituted alcohol, and substituted and unsubsituted silane or alkoxysilane; and at least one of 22 , A33, A44, and A55 is selected from the group consisting of substituted or unsubstituted vinyl ether,
substituted or unsubstituted amide, substituted or unsubstituted amine, substituted or unsubstituted carboxylic acid, substituted or unsubstituted ester, substituted or unsubstituted alcohol, and substituted and unsubsituted silane or alkoxysilane .
20. A method as set forth in any of the foregoing claims wherein said adhesion promoting composition further comprises a transition metal ion.
21. A method as set forth in claim 20 wherein said adhesion promoting solution comprises a transition metal ion selected from the group consisting of zinc, nickel, cobalt, silver, gold, palladium and other platinum group metals.
22. A method as set forth in claim 21 wherein said adhesion promoting composition comprises a zinc ion.
23. A method as set forth in any of claims 1 through 22 wherein said corrosion inhibitor comprises a nitrogen-containing
;NR'
aromatic heterocyclic compound comprising a ring group or an amine substitutent on the ring wherein R7 is hydrogen, hydrocarbyl or substituted hydrocarbyl.
24. A method as set forth in claim 23 wherein said heterocyclic compound of the corrosion inhibitor comprises both
Figure imgf000081_0001
group and an amine substituent on the
25. An aqueous composition as set forth in claim 23 wherein said nitrogen containing aromatic heterocyclic compound of the corrosion inhibitor comprises a compound selected from the group consisting of mercaptobenzamidazoles,
mercaptobenzothiazoles , and mercaptobenzotriazoles .
26. A method as set forth in any of claim 23 wherein said corrosion inhibitor has the structure (la) or structure (lb) :
Figure imgf000082_0001
wherein :
Ai, A2, A3, A4, A5, A6, and A7 are carbon atoms or nitrogen atoms and the sum of nitrogen atoms from Ai, A2, A3, A4, A5, Αε, and A7 is 0, 1, 2, or 3;
An, A22, A33, A44, A55, A66, and A77 are selected from the group consisting of electron pair, hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted aryl, substituted or unsubstituted vinyl ether, substituted or unsubstituted amide, substituted or unsubstituted amine, substituted or unsubstituted carboxylic acid, substituted or unsubstituted ester, substituted or unsubstituted alcohol, and substituted and unsubstituted silane or alkoxysilane; and at least one of An , A22, A33 , A44 , and A55 is selected from the group consisting of substituted or unsubstituted vinyl ether, substituted or unsubstituted amide, substituted or unsubstituted amine, substituted or unsubstituted carboxylic acid, substituted or unsubstituted ester, substituted or unsubstituted alcohol, and substituted and unsubsituted silane or alkoxysilane .
27. A method as set forth in claim 26 wherein corrosion inhibitor corresponds to structure (II), structure (III), or structure (IV) :
Figure imgf000083_0001
wherein A22, A44 , A55 , A66, and A77 are as defined in connection with structures (la) and (lb) .
28. A method as set forth claim 23 wherein said corrosion inhibitor has the structure (V) :
Figure imgf000084_0001
A2, A3, A4 and A5 are carbon atoms or nitrogen atoms and the sum of nitrogen atoms from A2, A3, A4 and A5 is 0, 1 or 2;
A22, A33, A44, and A55 are selected from the group consisting of hydrogen, substituted or unsubstituted alkyl, substituted or unsubstituted aryl, substituted or unsubstituted vinyl ether, substituted or unsubstituted amide, substituted or unsubstituted amine, substituted or unsubstituted carboxylic acid, substituted or unsubstituted ester, substituted or unsubstituted alcohol, and substituted and unsubsituted silane or alkoxysilane; and at least one of A22, A33, A44, and A55 is selected from the group consisting of substituted or unsubstituted vinyl ether,
substituted or unsubstituted amide, substituted or unsubstituted amine, substituted or unsubstituted carboxylic acid, substituted or unsubstituted ester, substituted or unsubstituted alcohol, and substituted and unsubsituted silane or alkoxysilane.
29. A method as set forth in claim 23 wherein said corrosion inhibitor comprises purine or a purine derivative.
30. A method as set forth in any of claims 1 to 29 wherein the conditioning composition is substantially free of peroxide.
31. A method as set forth in any of claims 1 to 30 wherein said conditioning composition is substantially free of an oxidant .
32. A method as set forth in any of claims 1 to 31 wherein said conditioning composition comprises an aqueous solution having an oxidation potential not greater than about 1.02 volts or 0.8 volts or 0.2 volts or 0.1 volts.
33. A method as set forth in any of claims 1 through 32 wherein said conditioning composition comprises a solution having a pH between about 10 and about 15.
34. A method as set forth in claim 59 wherein the pH of said conditioning solution is between about 10 and about 14.
35. A method as set forth in claim 60 wherein the pH of said conditioning solution is between about 13.5 and about 14.
36. An aqueous alkaline composition comprising a nitrogen- containing aromatic heterocyclic compound and a transition metal
;NR'
ion, said heterocyclic compound comprising a ring group or an amine substitutent on the ring wherein R7 is hydrogen, hydrocarbyl, substituted hydrocarbyl, hydroxyl, or a negative charge, said heterocyclic compound being capable of forming a self-assembled monolayer on a copper surface.
37. A method for preparing a copper conducting layer for adhesion to a dielectric material during manufacture of a printed circuit board, the method comprising:
contacting the copper conducting layer with a conditioning composition comprising a nitrogen-containing aromatic heterocyclic compound, an alkali metal iodide and a glycol ether, said a nitrogen-containing aromatic heterocyclic compound comprising a ring
Figure imgf000086_0001
group or an amine substitutent on the ring wherein R7 is hydrogen, hydrocarbyl, substituted
hydrocarbyl, hydroxyl, or a negative charge, said heterocyclic compound being capable of forming a self-assembled monolayer on a copper surface.
PCT/US2013/055368 2013-08-16 2013-08-16 Adhesion promotion in printed circuit boards WO2015023295A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020167006853A KR20160056892A (en) 2013-08-16 2013-08-16 Adhesion promotion in printed circuit boards
JP2016534564A JP2016535453A (en) 2013-08-16 2013-08-16 Promoting adhesion of printed circuit boards
CN201380078898.8A CN105453711A (en) 2013-08-16 2013-08-16 Adhesion promotion in printed circuit boards
PCT/US2013/055368 WO2015023295A1 (en) 2013-08-16 2013-08-16 Adhesion promotion in printed circuit boards
EP13753393.1A EP3033929A1 (en) 2013-08-16 2013-08-16 Adhesion promotion in printed circuit boards

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2013/055368 WO2015023295A1 (en) 2013-08-16 2013-08-16 Adhesion promotion in printed circuit boards

Publications (1)

Publication Number Publication Date
WO2015023295A1 true WO2015023295A1 (en) 2015-02-19

Family

ID=49036657

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2013/055368 WO2015023295A1 (en) 2013-08-16 2013-08-16 Adhesion promotion in printed circuit boards

Country Status (5)

Country Link
EP (1) EP3033929A1 (en)
JP (1) JP2016535453A (en)
KR (1) KR20160056892A (en)
CN (1) CN105453711A (en)
WO (1) WO2015023295A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4057783A1 (en) * 2021-03-10 2022-09-14 INTEL Corporation Dielectric-to-metal adhesion promotion material

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108535959B (en) * 2018-02-28 2021-09-24 苏州城邦达益材料科技有限公司 Photosensitive adhesive and preparation method and application thereof
CN110029348A (en) * 2018-08-09 2019-07-19 苏州纳勒电子科技有限公司 It is a kind of for handling the micro-corrosion liquid on copper surface
CN110205630A (en) * 2018-08-09 2019-09-06 苏州纳勒电子科技有限公司 A kind of micro-corrosion liquid that can be used for impurity removing
CN110129802A (en) * 2019-06-18 2019-08-16 博敏电子股份有限公司 A kind of printed board novel antioxidant and its application
CN113903502A (en) 2019-11-14 2022-01-07 宸盛光电有限公司 Conductive structure with self-assembly protective layer and self-assembly coating composition
TW202402773A (en) * 2022-03-24 2024-01-16 日商三菱瓦斯化學股份有限公司 Composition for protecting copper surface, and method for producing semiconductor intermediate and semiconductor using same
CN116607136B (en) * 2023-06-01 2024-01-05 武汉创新特科技有限公司 Bonding agent for circuit board surface treatment and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010015345A1 (en) * 1999-11-29 2001-08-23 Applied Materials, Inc. Planarized copper cleaning for reduced defects
US20050067378A1 (en) * 2003-09-30 2005-03-31 Harry Fuerhaupter Method for micro-roughening treatment of copper and mixed-metal circuitry
US20050126429A1 (en) * 2003-12-12 2005-06-16 Bernards Roger F. Additives to stop copper attack by alkaline etching agents such as ammonia and monoethanol amine (MEA)
US20120168075A1 (en) * 2008-03-21 2012-07-05 Enthone Inc. Adhesion promotion of metal to laminate with multi-functional molecular system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4605446B2 (en) * 2004-09-08 2011-01-05 日立化成工業株式会社 Multilayer wiring substrate, semiconductor chip mounting substrate, semiconductor package, and manufacturing method thereof
JP4804847B2 (en) * 2005-09-15 2011-11-02 新日鐵化学株式会社 Method for producing copper clad laminate
US8088246B2 (en) * 2009-01-08 2012-01-03 Cordani Jr John L Process for improving the adhesion of polymeric materials to metal surfaces
US10577507B2 (en) * 2013-03-16 2020-03-03 Prc-Desoto International, Inc. Alkaline cleaning compositions for metal substrates

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010015345A1 (en) * 1999-11-29 2001-08-23 Applied Materials, Inc. Planarized copper cleaning for reduced defects
US20050067378A1 (en) * 2003-09-30 2005-03-31 Harry Fuerhaupter Method for micro-roughening treatment of copper and mixed-metal circuitry
US20050126429A1 (en) * 2003-12-12 2005-06-16 Bernards Roger F. Additives to stop copper attack by alkaline etching agents such as ammonia and monoethanol amine (MEA)
US20120168075A1 (en) * 2008-03-21 2012-07-05 Enthone Inc. Adhesion promotion of metal to laminate with multi-functional molecular system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4057783A1 (en) * 2021-03-10 2022-09-14 INTEL Corporation Dielectric-to-metal adhesion promotion material

Also Published As

Publication number Publication date
CN105453711A (en) 2016-03-30
JP2016535453A (en) 2016-11-10
EP3033929A1 (en) 2016-06-22
KR20160056892A (en) 2016-05-20

Similar Documents

Publication Publication Date Title
US9338896B2 (en) Adhesion promotion in printed circuit boards
US7682432B2 (en) Adhesion promotion in printed circuit boards
WO2015023295A1 (en) Adhesion promotion in printed circuit boards
KR101632450B1 (en) Adhesion promotion of metal to laminate with a multi-functional compound
JP2019502824A (en) Etching solutions for copper and copper alloy surfaces
JP4881916B2 (en) Surface roughening agent
WO1996019097A1 (en) Copper coating
WO2002079542A9 (en) Improved adhesion of polymeric materials to metal surfaces
JP2011179085A (en) Pretreatment agent and pretreatment method for electroplating and electroplating method
KR20180072725A (en) Surface treatment agents for copper and copper alloy surfaces and methods for treating copper or copper alloy surfaces
JP4836365B2 (en) Composition for circuit board manufacture
WO2018207479A1 (en) Etching liquid composition and etching method
KR101494618B1 (en) Conversion coating composition for flexible print circuit board and surface treating method using the same
KR102124328B1 (en) Micro-roughening composition for increasing adhesion of copper metal surface
TWI468550B (en) Adhesion promotion of metal to laminate with multi-functional molecular system
KR100567093B1 (en) Coating composition for treating inner layer of printed circuit board and method for treating inner layer of printed circuit board using the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201380078898.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13753393

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016534564

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013753393

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013753393

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167006853

Country of ref document: KR

Kind code of ref document: A