WO2015023083A1 - Wide-angle lens for far-infrared camera - Google Patents

Wide-angle lens for far-infrared camera Download PDF

Info

Publication number
WO2015023083A1
WO2015023083A1 PCT/KR2014/007340 KR2014007340W WO2015023083A1 WO 2015023083 A1 WO2015023083 A1 WO 2015023083A1 KR 2014007340 W KR2014007340 W KR 2014007340W WO 2015023083 A1 WO2015023083 A1 WO 2015023083A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
wide
far
refractive index
wavelength
Prior art date
Application number
PCT/KR2014/007340
Other languages
French (fr)
Korean (ko)
Other versions
WO2015023083A9 (en
Inventor
정재철
유재각
Original Assignee
주식회사 소모홀딩스엔테크놀러지
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 소모홀딩스엔테크놀러지 filed Critical 주식회사 소모홀딩스엔테크놀러지
Publication of WO2015023083A1 publication Critical patent/WO2015023083A1/en
Publication of WO2015023083A9 publication Critical patent/WO2015023083A9/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/14Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/0015Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
    • G02B13/002Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
    • G02B13/003Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having two lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/001Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
    • G02B13/008Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras designed for infrared light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B9/00Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or -
    • G02B9/04Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having two components only
    • G02B9/06Optical objectives characterised both by the number of the components and their arrangements according to their sign, i.e. + or - having two components only two + components

Definitions

  • the present invention relates to a wide-angle lens, and more particularly, to a wide-angle lens for a far-infrared camera capable of obtaining a far-infrared image having a wide angle of view and less distortion of an image throughout the angle of view.
  • Security cameras for observing the surrounding situation for crime prevention purposes generally use a wide-angle lens having a wide angle of view to perform observation of a wider place.
  • Security cameras need to be miniaturized so as not to be exposed to the outside.
  • the wide-angle lens used by the security camera has a problem that it is difficult to miniaturize because many lenses are generally disposed.
  • a wide-angle lens dedicated to infrared rays may be used.
  • far infrared rays having a wavelength of 8 ⁇ m or more among infrared rays have a large thermal action, a strong penetrating force, a strong resonance and resonance effect on organic compound molecules, and have been applied to the medical field.
  • a wide angle lens having a wide angle of view with respect to far infrared rays was required.
  • An object of the present invention is to provide a wide-angle lens for far-infrared camera that can obtain a wide field of view even with a smaller number of lenses by optimizing the shape of the lens used.
  • the present invention provides a wide-angle lens for far-infrared camera, comprising: a first lens having a positive refractive index as a meniscus lens convex with respect to an object; A meniscus lens having a third surface and a fourth surface aspherical and disposed behind the first lens and convex in a direction opposite to the first lens, the second lens having a positive refractive index; And an infrared filter disposed behind the second lens and passing far infrared rays among the incident light rays, wherein a focal length of the first lens and the second lens satisfies Equation 1 below.
  • the dispersion ratio of two lenses provides a wide-angle lens for a far infrared camera that satisfies the following [Equation 2].
  • n210 refractive index at wavelength 10um of second lens
  • n208 refractive index at a wavelength of 8 ⁇ m of the second lens
  • n212 refractive index at a wavelength of 12 ⁇ m of the second lens
  • Both surfaces of the first lens may be spherical.
  • the dispersion ratio v1 of the first lens may satisfy Equation 3 below.
  • V1 (n110-1) / (n108-n112)
  • n110 refractive index of 10um wavelength of the first lens
  • n108 Refractive index at a wavelength of 8um of the first lens
  • n112 refractive index at a wavelength of 12um of the first lens
  • the display device may further include an aperture disposed between the first lens and the second lens to adjust an amount of incident light.
  • the glass transition temperature of the second lens may be less than 370 ° C.
  • the second lens may be manufactured by molding.
  • the third surface of the second lens may have a ring-shaped flat portion formed on an outer circumferential side thereof.
  • the present invention as described above, by optimizing the shape of the lens used to obtain a wide angle of view even with a smaller number of lenses, it is possible to provide a wide-angle lens with a low distortion of a wide field of view with respect to far infrared rays.
  • FIG. 1 is a cross-sectional view of an optical system showing the configuration of a wide-angle lens according to a first embodiment of the present invention.
  • FIG. 2 is a graph illustrating spherical aberration, astigmatism, and distortion of the wide-angle lens of FIG. 1, respectively.
  • FIG. 3 is a graph showing the performance of the wide-angle lens shown in FIG.
  • FIG. 4 is a cross-sectional view of an optical system showing the configuration of a wide-angle lens according to a second embodiment of the present invention.
  • FIG. 5 is a graph illustrating spherical aberration, astigmatism, and distortion of the wide-angle lens shown in FIG. 4, respectively.
  • FIG. 6 is a graph showing the performance of the wide-angle lens shown in FIG.
  • FIG. 7 is a cross-sectional view of an optical system showing the configuration of a wide-angle lens according to a third embodiment of the present invention.
  • FIG. 8 is a graph illustrating spherical aberration, astigmatism, and distortion of the wide-angle lens shown in FIG. 7, respectively.
  • FIG. 9 is a graph showing the performance of the wide-angle lens shown in FIG.
  • FIG. 1 is a cross-sectional view of an optical system showing the configuration of a wide-angle lens according to a first embodiment of the present invention.
  • the wide-angle lens 100 includes a first lens L1, a second lens L2, and an infrared filter F.
  • the wide-angle lens 100 according to the present invention may further include an aperture 110.
  • the first lens L1 is disposed at the extreme end of the wide-angle lens 100 according to the present invention.
  • the first lens L1 is a meniscus-type lens that is convex with respect to an object to which the wide-angle lens 100 faces. Both surfaces, that is, a first surface R1 through which light is incident and a second surface through which light is transmitted ( R2) are all spherical.
  • the first lens L1 has a positive refractive index.
  • the refractive index of the first lens L1 is preferably 2.0 to 4.5.
  • the refractive index at this time is the case where the wavelength of light used is 10 micrometers.
  • the second lens L2 is a convex lens in which both surfaces, that is, the third surface R3 through which light is incident and the fourth surface R4 through which the light is transmitted, are both aspherical.
  • the second lens L2 is a meniscus-type lens in which the third surface R3 is concave with respect to the object to which the wide-angle lens 100 faces, and the fourth surface R4 is convex with respect to the direction in which the focal point is focused. .
  • the second lens L2 has a positive refractive index.
  • the refractive index of the second lens L2 is preferably 2.0 to 3.5.
  • the refractive index at this time is the case where the wavelength of light used is 10 micrometers.
  • the first lens L1 and the second lens L2 are preferably manufactured to satisfy the following conditions.
  • the focal lengths of the first lens L1 and the second lens L2 have the following correlation.
  • the focal length f1 of the first lens L1 is preferably set longer than the focal length f2 of the second lens L2.
  • the combined focal length F obtained by the combination of the first lens L1 and the second lens L2 and the focal length F1 of the first lens L1 are set to satisfy Equation 1. It is desirable to be.
  • F1 focal length of the first lens at a reference wavelength of 10um
  • the dispersion ratio v2 of the second lens L2 satisfies the following [Equation 2].
  • n210 refractive index at wavelength 10um of second lens
  • n208 refractive index at a wavelength of 8 ⁇ m of the second lens
  • n212 refractive index at a wavelength of 12 ⁇ m of the second lens
  • the dispersion ratio v1 of the first lens L1 preferably satisfies Equation 3 below.
  • n110 refractive index at a wavelength of 10 ⁇ m of the first lens
  • n108 refractive index at a wavelength of 8 ⁇ m of the first lens
  • n112 refractive index at a wavelength of 12 ⁇ m of the first lens
  • Equation 4 the aspherical surfaces of both surfaces of the second lens L2 may be converted by Equation 4 below.
  • n10 refractive index at wavelength 10um
  • n08 refractive index at wavelength 8um
  • n12 refractive index at wavelength 12um
  • the first lens L1 and the second lens L2 as described above are preferably manufactured by a molding process using a predetermined mold. Fabrication of the lens by molding is disclosed in Korean Patent Laid-Open No. 2001-113041, and thus a detailed description thereof is omitted since it is a well-known technique well known in the art.
  • An aperture 110 may be disposed between the first lens L1 and the second lens L2.
  • the diaphragm 110 may be configured such that the opening degree may be changed to adjust the amount of light passing from the first lens L1 to the second lens L2 as necessary.
  • diaphragm 110 is a well-known technique widely used in this field, a detailed description thereof will be omitted.
  • the infrared filter F is disposed behind the second lens L2 to allow only infrared light to pass through the light passing through the first lens L1 and the second lens L2.
  • infrared rays having a wavelength of 0.75 to 3 ⁇ m are near infrared rays
  • infrared rays having 3 to 5 ⁇ m are medium infrared rays
  • infrared rays having 8 to 13 ⁇ m are far infrared rays.
  • the infrared filter F transmits far infrared rays of 8 micrometers or more.
  • the infrared filter F is uniform thickness, and 5th surface R5 and 6th surface R6 are planar.
  • Each optical surface of the wide-angle lens shown in FIG. 1 has numerical values described in the following [Table 1], [Table 2] and [Table 3].
  • Fig. 2 is a graph showing spherical aberration, astigmatism, and distortion of the wide-angle lens shown in Fig. 1, respectively. Indicates.
  • FIG. 3 is a graph showing the performance of the wide-angle lens shown in FIG.
  • FIG. 4 is a cross-sectional view of an optical system showing the configuration of a wide-angle lens according to a second embodiment of the present invention.
  • the wide-angle lens 200 according to the second embodiment of the present invention includes a first lens L1, a second lens L2, and an infrared filter F.
  • the wide-angle lens 200 according to the present invention may further include an aperture 210.
  • each optical surface of the wide-angle lens shown in FIG. 4 has the numerical value described in the following [Table 4], [Table 5], and [Table 6].
  • FIG. 5 is a graph showing spherical aberration, astigmatism, and distortion of the wide-angle lens shown in FIG. 4, respectively.
  • (A), (b), and (c) show spherical aberration, astigmatism, and distortion of the wide-angle lens, respectively. Indicates.
  • FIG. 6 is a graph showing the performance of the wide-angle lens shown in FIG.
  • FIG. 7 is a cross-sectional view of an optical system showing the configuration of a wide-angle lens according to a third embodiment of the present invention.
  • the wide-angle lens 300 according to the third embodiment of the present invention includes a first lens L1, a second lens L2, and an infrared filter F.
  • the wide-angle lens 300 according to the present invention may further include an aperture 310.
  • each optical surface of the wide-angle lens shown in FIG. 7 has numerical values described in the following [Table 7], [Table 8] and [Table 9].
  • FIG. 8 is a graph showing spherical aberration, astigmatism, and distortion of the wide-angle lens shown in FIG. 7, respectively.
  • (A), (b), and (c) show spherical aberration, astigmatism, and distortion of the wide-angle lens, respectively. Indicates.
  • FIG. 9 is a graph showing the performance of the wide-angle lens shown in FIG.
  • the wide-angle lens according to the present invention can obtain a wide field of view even with a smaller number of lenses by optimizing the shape of the lens used, and the distortion of the wide field of view with respect to far infrared rays can be reduced.

Abstract

The present invention provides a wide angle lens for a far-infrared camera, the wide angle lens comprising: a first lens which is a meniscus lens convex with respect to an object and has a positive refractive index; a second lens which is a meniscus lens disposed on the rear side of the first lens and convex in a direction opposite to the first lens and has a positive refractive index; and an infrared filter through which only far-infrared rays among all rays introduced therein pass, the infrared filter being disposed on the rear side of the second lens, wherein the focal distance between the first lens and the second lens satisfies equation (1) and the dispersion rate of the second lens satisfies equation (2). In the above-described wide angle lens according to the present invention, the shape of lens used is optimized, thereby obtaining a wide view angle using only the smaller number of lenses and reducing the distortion factor of the wide view angle with respect to far-infrared rays.

Description

원적외선 카메라용 광각 렌즈Wide Angle Lens for Far Infrared Camera
본 발명은 광각 렌즈에 관한 것으로서, 보다 상세하게는 넓은 화각을 갖고 화각 전반에 걸쳐 화상의 왜곡이 적은 원적외선 영상을 얻을 수 있는 원적외선 카메라용 광각 렌즈에 관한 것이다.The present invention relates to a wide-angle lens, and more particularly, to a wide-angle lens for a far-infrared camera capable of obtaining a far-infrared image having a wide angle of view and less distortion of an image throughout the angle of view.
범죄 예방을 목적으로 주위 상황을 관찰하는 방범 카메라는 보다 넓은 장소에 대한 관찰을 수행하기 위하여, 넓은 화각을 갖는 광각 렌즈를 사용하는 것이 일반적이다. Security cameras for observing the surrounding situation for crime prevention purposes generally use a wide-angle lens having a wide angle of view to perform observation of a wider place.
한편, 사람 및 동물등 온도를 가지고 있는 물체는 중적외선 및 원적외선을 스스로 발생시킨다. 원적외선 카메라는 물체에서 발생되는 적외선을 촬영하므로 별도의 적외선 광원방사 장치가 필요 없이 촬영이 가능하고, 어두운 곳에서도 사용이 가능하다. 그러나 가시광선용으로 설계된 렌즈를 적외선 조건에서 사용하는 경우, 가시광선용 렌즈는 원적외선을 투과하지 못하기 때문에, 원적외선 전용의 광각렌즈를 필요로 한다. On the other hand, objects having a temperature such as humans and animals generate mid-infrared and far-infrared rays by themselves. Far-infrared cameras shoot infrared rays generated from objects, so they can be taken without the need of a separate infrared light source device, and can be used even in dark places. However, when a lens designed for visible light is used in an infrared condition, the visible light lens does not transmit far infrared rays, and thus requires a wide-angle lens dedicated to far infrared rays.
방범 카메라는 외부에 노출되지 않도록 소형화할 필요가 있다. 그러나, 방범 카메라가 사용하는 광각 렌즈는 많은 렌즈(lens element)가 배치되는 것이 일반적이기 때문에 소형화화하기 어려운 문제점이 있다.Security cameras need to be miniaturized so as not to be exposed to the outside. However, the wide-angle lens used by the security camera has a problem that it is difficult to miniaturize because many lenses are generally disposed.
또한, 방범 카메라 이외에도 적외선 전용의 광각 렌즈가 사용될 수 있다. 예를 들어 적외선 중, 파장이 8㎛ 이상인 원적외선은 열작용이 크고, 침투력이 강하며, 유기화합물 분자에 대한 공진 및 공명 작용이 강하여, 의료 분야에 적용되고 있다. 이와 같이 원적외선에 대하여 넓은 화각을 갖는 광각 렌즈를 필요로 하였다.In addition to the security camera, a wide-angle lens dedicated to infrared rays may be used. For example, far infrared rays having a wavelength of 8 µm or more among infrared rays have a large thermal action, a strong penetrating force, a strong resonance and resonance effect on organic compound molecules, and have been applied to the medical field. Thus, a wide angle lens having a wide angle of view with respect to far infrared rays was required.
본 발명에 대한 선행기술로는 등록특허 10-0821933호를 예시할 수 있다.Prior art for the present invention may be exemplified in Patent Registration No. 10-0821933.
본 발명은 상기한 필요성을 해결하기 위한 것으로서, 사용되는 렌즈의 형상을 최적화하여 보다 적은 개수의 렌즈로도 넓은 화각을 얻을 수 있는 원적외선 카메라용 광각 렌즈를 제공하는 것을 목적으로 한다. An object of the present invention is to provide a wide-angle lens for far-infrared camera that can obtain a wide field of view even with a smaller number of lenses by optimizing the shape of the lens used.
또한, 본 발명은 원적외선에 대하여 넓은 화각을 갖고 화각 전반에 걸쳐 왜곡이 적은 원적외선 카메라용 광각 렌즈를 제공하는 것을 목적으로 한다. It is also an object of the present invention to provide a wide-angle lens for a far-infrared camera having a wide angle of view with respect to far infrared rays and low distortion throughout the field of view.
상기한 목적을 달성하기 위해 본 발명은, 원적외선 카메라용 광각 렌즈로서, 물체에 대하여 볼록한 메니스커스 렌즈로서 정(+) 의 굴절률을 갖는 제1 렌즈; 제3 면과 제4 면이 비구면으로서, 상기 제1 렌즈 후방에 배치되고 상기 제1 렌즈의 반대 방향으로 볼록한 메니스커스 렌즈로서, 정(+) 의 굴절률을 갖는 제2 렌즈; 및 상기 제2 렌즈의 후방에 배치되고, 입사되는 광선 중 원적외선을 통과시키는 적외선 필터를 포함하고, 상기 제1 렌즈와 상기 제2 렌즈의 초점거리는 다음의 [수학식 1]을 만족하고, 상기 제2 렌즈의 분산율은 다음의 [수학식 2]를 만족하는 원적외선 카메라용 광각 렌즈를 제공한다.In order to achieve the above object, the present invention provides a wide-angle lens for far-infrared camera, comprising: a first lens having a positive refractive index as a meniscus lens convex with respect to an object; A meniscus lens having a third surface and a fourth surface aspherical and disposed behind the first lens and convex in a direction opposite to the first lens, the second lens having a positive refractive index; And an infrared filter disposed behind the second lens and passing far infrared rays among the incident light rays, wherein a focal length of the first lens and the second lens satisfies Equation 1 below. The dispersion ratio of two lenses provides a wide-angle lens for a far infrared camera that satisfies the following [Equation 2].
[수학식 1][Equation 1]
f1 > f2f1> f2
2 < f1/f < 52 <f1 / f <5
f1 : 기준파장 10um에서 제1 렌즈의 초점거리f1: focal length of the first lens at a reference wavelength of 10 μm
f2 : 기준파장 10um에서 제2 렌즈의 초점거리f2: Focal length of the second lens at a reference wavelength of 10um
f : 기준 파장 10um 에서 상기 제1 및 상기 제2 렌즈의 합성 초점거리f: composite focal length of the first and second lenses at a reference wavelength of 10 μm
[수학식 2][Equation 2]
v2 = (n210-1)/(n208-n212)v2 = (n210-1) / (n208-n212)
n210 : 제2 렌즈의 파장 10um에서의 굴절율n210: refractive index at wavelength 10um of second lens
n208 : 제2 렌즈의 파장 8um에서의 굴절율n208: refractive index at a wavelength of 8 μm of the second lens
n212 : 제2 렌즈의 파장 12um에서의 굴절율n212: refractive index at a wavelength of 12 μm of the second lens
이때, 2.0 < n210 < 3.0Where 2.0 <n210 <3.0
80 < v2 < 20080 <v2 <200
상기 제1 렌즈의 양면은 구면일 수 있다.Both surfaces of the first lens may be spherical.
상기 제1 렌즈의 분산율(v1)은 다음의 [수학식 3]을 만족할 수 있다.The dispersion ratio v1 of the first lens may satisfy Equation 3 below.
[수학식 2][Equation 2]
2.0 < n110 < 4.52.0 <n110 <4.5
20 < v1 < 160020 <v1 <1600
V1 = (n110-1)/(n108-n112)V1 = (n110-1) / (n108-n112)
n110 : 첫번째 렌즈의 파장 10um에서의 굴절율n110: refractive index of 10um wavelength of the first lens
n108 : 첫번째 렌즈의 파장 8um에서의 굴절율n108: Refractive index at a wavelength of 8um of the first lens
n112 : 첫번째 렌즈의 파장 12um에서의 굴절율n112: refractive index at a wavelength of 12um of the first lens
상기 제1 렌즈와 제2 렌즈 사이에 배치되고 입사되는 광의 양을 조절하는 조리개를 더 포함할 수 있다.The display device may further include an aperture disposed between the first lens and the second lens to adjust an amount of incident light.
상기 제2 렌즈의 유리 전이 온도는 370℃ 미만일 수 있다.The glass transition temperature of the second lens may be less than 370 ° C.
상기 제2 렌즈는 몰딩에 의해 제작될 수 있다.The second lens may be manufactured by molding.
상기 제2 렌즈의 상기 제3 면은 외주측으로 링 형태의 평면부가 형성될 수 있다.The third surface of the second lens may have a ring-shaped flat portion formed on an outer circumferential side thereof.
상기와 같은 본 발명은, 사용되는 렌즈의 형상을 최적화하여 보다 적은 개수의 렌즈로도 넓은 화각을 얻을 수 있고, 원적외선에 대하여 넓은 화각의 왜곡률이 적은 광각 렌즈를 제공할 수 있다.The present invention as described above, by optimizing the shape of the lens used to obtain a wide angle of view even with a smaller number of lenses, it is possible to provide a wide-angle lens with a low distortion of a wide field of view with respect to far infrared rays.
도 1은 본 발명의 제1 실시예에 따른 광각 렌즈의 구성을 나타내는 광학계 단면도이다. 1 is a cross-sectional view of an optical system showing the configuration of a wide-angle lens according to a first embodiment of the present invention.
도 2의 도 1에 도시된 광각 렌즈의 구면 수차, 비점 수차 및 왜곡도를 각각 나타내는 그래프이다. 2 is a graph illustrating spherical aberration, astigmatism, and distortion of the wide-angle lens of FIG. 1, respectively.
도 3은 도 1에 도시된 광각 렌즈의 성능을 나타내는 그래프이다.3 is a graph showing the performance of the wide-angle lens shown in FIG.
도 4는 본 발명의 제2 실시예에 따른 광각 렌즈의 구성을 나타내는 광학계 단면도이다. 4 is a cross-sectional view of an optical system showing the configuration of a wide-angle lens according to a second embodiment of the present invention.
도 5는 도 4에 도시된 광각 렌즈의 구면 수차, 비점 수차 및 왜곡도를 각각 나타내는 그래프이다. FIG. 5 is a graph illustrating spherical aberration, astigmatism, and distortion of the wide-angle lens shown in FIG. 4, respectively.
도 6은 도 4에 도시된 광각 렌즈의 성능을 나타내는 그래프이다.6 is a graph showing the performance of the wide-angle lens shown in FIG.
도 7은 본 발명의 제3 실시예에 따른 광각 렌즈의 구성을 나타내는 광학계 단면도이다. 7 is a cross-sectional view of an optical system showing the configuration of a wide-angle lens according to a third embodiment of the present invention.
도 8은 도 7에 도시된 광각 렌즈의 구면 수차, 비점 수차 및 왜곡도를 각각 나타내는 그래프이다. FIG. 8 is a graph illustrating spherical aberration, astigmatism, and distortion of the wide-angle lens shown in FIG. 7, respectively.
도 9는 도 7에 도시된 광각 렌즈의 성능을 나타내는 그래프이다.9 is a graph showing the performance of the wide-angle lens shown in FIG.
이하 첨부된 도면을 참조하면서 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings.
도 1은 본 발명의 제1 실시예에 따른 광각 렌즈의 구성을 나타내는 광학계 단면도이다. 1 is a cross-sectional view of an optical system showing the configuration of a wide-angle lens according to a first embodiment of the present invention.
도 1을 참조하면, 본 발명의 제1 실시예에 따른 광각 렌즈(100)는 제1 렌즈(L1), 제2 렌즈(L2) 및 적외선 필터(F)를 포함한다. 또한, 본 발명에 따른 광각 렌즈(100)는 조리개(110)를 더 포함할 수 있다. Referring to FIG. 1, the wide-angle lens 100 according to the first embodiment of the present invention includes a first lens L1, a second lens L2, and an infrared filter F. FIG. In addition, the wide-angle lens 100 according to the present invention may further include an aperture 110.
제1 렌즈(L1)는 본 발명에 따른 광각 렌즈(100)의 최선단에 배치된다. The first lens L1 is disposed at the extreme end of the wide-angle lens 100 according to the present invention.
제1 렌즈(L1)는 광각 렌즈(100)가 향하는 물체에 대하여 볼록한 메니스커스(meniscus) 타입 렌즈로서, 양면 즉, 광이 입광하는 제1 면(R1)과 광이 투과되는 제2 면(R2)이 모두 구면이다. 제1 렌즈(L1)는 정(+)의 굴절률을 갖는다.The first lens L1 is a meniscus-type lens that is convex with respect to an object to which the wide-angle lens 100 faces. Both surfaces, that is, a first surface R1 through which light is incident and a second surface through which light is transmitted ( R2) are all spherical. The first lens L1 has a positive refractive index.
여기서, 제1 렌즈(L1)의 굴절률은 2.0 내지 4.5 인 것이 바람직하다. 다만, 이때의 굴절률은 사용되는 광의 파장이 10㎛ 인 경우이다.Here, the refractive index of the first lens L1 is preferably 2.0 to 4.5. However, the refractive index at this time is the case where the wavelength of light used is 10 micrometers.
제2 렌즈(L2)는 양면 즉, 광이 입광하는 제3 면(R3)과 광이 투과되는 제4 면(R4) 이 모두 비구면인 볼록렌즈이다.The second lens L2 is a convex lens in which both surfaces, that is, the third surface R3 through which light is incident and the fourth surface R4 through which the light is transmitted, are both aspherical.
제2 렌즈(L2)는 제3 면(R3)은 광각 렌즈(100)가 향하는 물체에 대하여 오목하고, 제4 면(R4)는 초점이 맺히는 방향에 대하여 볼록한 메니스커스(meniscus) 타입 렌즈이다. 제2 렌즈(L2)는 정(+)의 굴절률을 갖는다. The second lens L2 is a meniscus-type lens in which the third surface R3 is concave with respect to the object to which the wide-angle lens 100 faces, and the fourth surface R4 is convex with respect to the direction in which the focal point is focused. . The second lens L2 has a positive refractive index.
여기서, 제2 렌즈(L2)의 굴절률은 2.0 내지 3.5 인 것이 바람직하다. 다만, 이때의 굴절률은 사용되는 광의 파장이 10㎛ 인 경우이다. Here, the refractive index of the second lens L2 is preferably 2.0 to 3.5. However, the refractive index at this time is the case where the wavelength of light used is 10 micrometers.
그리고, 제2 렌즈(L2)는 유리 전이 온도가 370℃미만인 유리를 사용하는 것이 바람직하다. And it is preferable to use the glass whose glass transition temperature is less than 370 degreeC for the 2nd lens L2.
여기서, 제1 렌즈(L1)와 제2 렌즈(L2)는 다음의 조건을 만족하도록 제작되는 것이 바람직하다. Here, the first lens L1 and the second lens L2 are preferably manufactured to satisfy the following conditions.
우선, 제1 렌즈(L1)와 제2 렌즈(L2)의 초점거리는 다음과 같은 상관관계를 갖는 것이 바람직하다. 여기서, 제1 렌즈(L1)의 초점거리(f1)는 제2 렌즈(L2)의 초점거리(f2)보다 길게 설정되는 것이 바람직하다. First, it is preferable that the focal lengths of the first lens L1 and the second lens L2 have the following correlation. Here, the focal length f1 of the first lens L1 is preferably set longer than the focal length f2 of the second lens L2.
그리고, 제1 렌즈(L1)와 제2 렌즈(L2)의 조합에 의해 얻어지는 합성 초점거리(F)와 제1 렌즈(L1)의 초점거리(F1)는 [수학식 1]을 만족할 수 있도록 설정되는 것이 바람직하다.Then, the combined focal length F obtained by the combination of the first lens L1 and the second lens L2 and the focal length F1 of the first lens L1 are set to satisfy Equation 1. It is desirable to be.
수학식 1
Figure PCTKR2014007340-appb-M000001
Equation 1
Figure PCTKR2014007340-appb-M000001
F : 기준 파장 10um 에서 상기 제1 및 상기 제2 렌즈의 합성 초점거리F: composite focal length of the first and second lenses at a reference wavelength of 10 μm
F1 : 기준파장 10um에서 제1 렌즈의 초점거리F1: focal length of the first lens at a reference wavelength of 10um
그리고, And,
우선, 제2 렌즈(L2)의 분산율(v2)은 다음의 [수학식 2]를 만족한다.First, the dispersion ratio v2 of the second lens L2 satisfies the following [Equation 2].
수학식 2
Figure PCTKR2014007340-appb-M000002
Equation 2
Figure PCTKR2014007340-appb-M000002
n210 : 제2 렌즈의 파장 10um에서의 굴절율n210: refractive index at wavelength 10um of second lens
n208 : 제2 렌즈의 파장 8um에서의 굴절율n208: refractive index at a wavelength of 8 μm of the second lens
n212 : 제2 렌즈의 파장 12um에서의 굴절율n212: refractive index at a wavelength of 12 μm of the second lens
그리고, 제1 렌즈(L1)의 분산률(v1)은 다음의 [수학식 3]을 만족하는 것이 바람직하다.In addition, the dispersion ratio v1 of the first lens L1 preferably satisfies Equation 3 below.
수학식 3
Figure PCTKR2014007340-appb-M000003
Equation 3
Figure PCTKR2014007340-appb-M000003
n110 : 제1 렌즈의 파장 10um에서의 굴절율n110: refractive index at a wavelength of 10 μm of the first lens
n108 : 제1 렌즈의 파장 8um에서의 굴절율n108: refractive index at a wavelength of 8 μm of the first lens
n112 : 제1 렌즈의 파장 12um에서의 굴절율n112: refractive index at a wavelength of 12 μm of the first lens
여기서, 제2 렌즈(L2) 양면의 비구면은 다음의 [수학식 4]에 의해 환산할 수 있다. Here, the aspherical surfaces of both surfaces of the second lens L2 may be converted by Equation 4 below.
수학식 4
Figure PCTKR2014007340-appb-M000004
Equation 4
Figure PCTKR2014007340-appb-M000004
c = 1 / radiusc = 1 / radius
v# = (n10-1)/(n08-n12)v # = (n10-1) / (n08-n12)
n10 : 파장 10um 에서의 굴절율n10: refractive index at wavelength 10um
n08 : 파장 8um 에서의 굴절율n08: refractive index at wavelength 8um
n12 : 파장 12um 에서의 굴절율n12: refractive index at wavelength 12um
상기와 같은 제1 렌즈(L1)와 제2 렌즈(L2)는 소정의 몰드를 사용하는 몰딩(molding) 공정에 의해 제작되는 것이 바람직하다. 몰딩에 의한 렌즈의 제작은 공개특허 2001-113041호에 개시되어 있는 바와 같이, 이 분야에서는 널리 알려진 공지의 기술이므로 이에 대한 상세한 설명은 생략한다. The first lens L1 and the second lens L2 as described above are preferably manufactured by a molding process using a predetermined mold. Fabrication of the lens by molding is disclosed in Korean Patent Laid-Open No. 2001-113041, and thus a detailed description thereof is omitted since it is a well-known technique well known in the art.
제1 렌즈(L1)와 제2 렌즈(L2)의 사이에는 조리개(110)가 배치될 수 있다. 조리개(110)는 개구 정도가 변화될 수 있도록 구성되어 제1 렌즈(L1)에서 제2 렌즈(L2)를 지나는 광량을 필요에 따라 조절할 수 있다. An aperture 110 may be disposed between the first lens L1 and the second lens L2. The diaphragm 110 may be configured such that the opening degree may be changed to adjust the amount of light passing from the first lens L1 to the second lens L2 as necessary.
조리개(110)는 이 분야에서는 널리 사용되는 공지의 기술이므로 이에 대한 상세한 설명은 생략한다. Since the diaphragm 110 is a well-known technique widely used in this field, a detailed description thereof will be omitted.
적외선 필터(F)는 제2 렌즈(L2)의 후방에 배치되어, 제1 렌즈(L1)와 제2 렌즈(L2)를 통과한 광에서 적외선만이 투과될 수 있도록 한다. 적외선 중, 파장 0.75~3㎛의 적외선은 근적외선, 3~5㎛의 적외선은 중적외선, 8~13㎛의 적외선은 원적외선이라 한다. 여기서, 적외선 필터(F)는 8㎛ 이상의 원적외선을 투과시키는 것이 바람직하다. The infrared filter F is disposed behind the second lens L2 to allow only infrared light to pass through the light passing through the first lens L1 and the second lens L2. Among the infrared rays, infrared rays having a wavelength of 0.75 to 3 µm are near infrared rays, infrared rays having 3 to 5 µm are medium infrared rays, and infrared rays having 8 to 13 µm are far infrared rays. Here, it is preferable that the infrared filter F transmits far infrared rays of 8 micrometers or more.
그리고, 적외선 필터(F)는 균일한 두께로서, 제5 면(R5)과 제6 면(R6)은 평면인 것이 바람직하다. In addition, it is preferable that the infrared filter F is uniform thickness, and 5th surface R5 and 6th surface R6 are planar.
도 1에 도시된 광각 렌즈의 각 광학면은 다음의 [표 1], [표 2] 및 [표 3]에 기재된 수치를 갖는다.Each optical surface of the wide-angle lens shown in FIG. 1 has numerical values described in the following [Table 1], [Table 2] and [Table 3].
표 1
실시예 1 기본 렌즈 데이터
면번호 R(곡률) D(면간격) 굴절률 분산률
R1 11.01908 1.400000 2.6038 102.15
R2 30.33097 0.620124
조리개 무한 0.315858
R3 -3.20511 1.864018 2.6038 102.15
R4 -2.40772 0.100000
R5 무한 0.650000 3.421 2421.00
R6 무한 2.450000
IMAGE 무한 0.000000
Table 1
Example 1 Basic Lens Data
Face number R (curvature) D (face spacing) Refractive index Dispersion
R1 11.01908 1.400000 2.6038 102.15
R2 30.33097 0.620124
iris infinite 0.315858
R3 -3.20511 1.864018 2.6038 102.15
R4 -2.40772 0.100000
R5 infinite 0.650000 3.421 2421.00
R6 infinite 2.450000
IMAGE infinite 0.000000
표 2
실시예 1의 제2 렌즈의 비구면 데이터
면번호 K A B C D
R3 0.704660 -0.431767E-01 -0.210689E-01 -0.134185E-01 0.000000E+00
R4 0.163374 0.150688E-02 -0.956681E-03 0.377164E-04 0.000000E+00
TABLE 2
Aspherical data of the second lens of Example 1
Face number K A B C D
R3 0.704660 -0.431767E-01 -0.210689E-01 -0.134185E-01 0.000000E + 00
R4 0.163374 0.150688E-02 -0.956681E-03 0.377164E-04 0.000000E + 00
표 3
조건식 데이터
f 2.586 n110 2.6038 n210 2.6038 v1 102.15
f1 10.3296 n108 2.6105 n208 2.6125 v2 102.15
f2 2.4732 n112 2.5948 n212 2.5948
TABLE 3
Conditional data
f 2.586 n110 2.6038 n210 2.6038 v1 102.15
f1 10.3296 n108 2.6105 n208 2.6125 v2 102.15
f2 2.4732 n112 2.5948 n212 2.5948
상기와 같이 구성된 본 발명의 제1 실시예에 따른 광각 렌즈의 수차는 다음의 도면에 도시된 바와 같다. The aberration of the wide-angle lens according to the first embodiment of the present invention configured as described above is as shown in the following drawings.
도 2의 도 1에 도시된 광각 렌즈의 구면 수차, 비점 수차 및 왜곡도를 각각 나타내는 그래프로서, (a), (b), (c)는 광각 렌즈의 구면 수차, 비점 수차 및 왜곡도를 각각 나타낸다. Fig. 2 is a graph showing spherical aberration, astigmatism, and distortion of the wide-angle lens shown in Fig. 1, respectively. Indicates.
도 3은 도 1에 도시된 광각 렌즈의 성능을 나타내는 그래프이다.3 is a graph showing the performance of the wide-angle lens shown in FIG.
도 4는 본 발명의 제2 실시예에 따른 광각 렌즈의 구성을 나타내는 광학계 단면도이다. 4 is a cross-sectional view of an optical system showing the configuration of a wide-angle lens according to a second embodiment of the present invention.
도 4를 참조하면, 본 발명의 제2 실시예에 따른 광각 렌즈(200)는 제1 렌즈(L1), 제2 렌즈(L2) 및 적외선 필터(F)를 포함한다. 또한, 본 발명에 따른 광각 렌즈(200)는 조리개(210)를 더 포함할 수 있다. Referring to FIG. 4, the wide-angle lens 200 according to the second embodiment of the present invention includes a first lens L1, a second lens L2, and an infrared filter F. FIG. In addition, the wide-angle lens 200 according to the present invention may further include an aperture 210.
이전의 실시예와 동일한 구성에 대해서는 이에 대한 상세한 설명을 생략하고, 차이가 있는 구성에 대해서만 설명하기로 한다. For the same configuration as in the previous embodiment, a detailed description thereof will be omitted, and only different configurations will be described.
도 4에 도시된 광각 렌즈의 각 광학면은 다음의 [표 4], [표 5] 및 [표 6]에 기재된 수치를 갖는 것이 바람직하다.It is preferable that each optical surface of the wide-angle lens shown in FIG. 4 has the numerical value described in the following [Table 4], [Table 5], and [Table 6].
표 4
실시예 2 기본 렌즈 데이터
면번호 R(곡률) D(면간격) 굴절률 분산률
R1 23.95857 2.020204 2.6038 102.15
R2 58.39635 1.891702
조리개 무한 0.812475
R3 -8.44377 4.0871588 2.6038 102.15
R4 -6.26108 0.252526
R5 무한 1.000000 4.003263 1501.70
R6 무한 6.416884
IMAGE 무한 0.000000
Table 4
Example 2 Basic Lens Data
Face number R (curvature) D (face spacing) Refractive index Dispersion
R1 23.95857 2.020204 2.6038 102.15
R2 58.39635 1.891702
iris infinite 0.812475
R3 -8.44377 4.0871588 2.6038 102.15
R4 -6.26108 0.252526
R5 infinite 1.000000 4.003263 1501.70
R6 infinite 6.416884
IMAGE infinite 0.000000
표 5
실시예 1의 제2 렌즈의 비구면 데이터
면번호 K A B C D
R3 0.323996 -0.264209E-02 -0.187381E-03 -0.148667E-04 0.000000E+00
R4 0.159699 0.631881E-04 -0.717421E-05 0.501092E-07 0.000000E+00
Table 5
Aspherical data of the second lens of Example 1
Face number K A B C D
R3 0.323996 -0.264209E-02 -0.187381E-03 -0.148667E-04 0.000000E + 00
R4 0.159699 0.631881E-04 -0.717421E-05 0.501092E-07 0.000000E + 00
표 6
조건식 데이터
f 6.5366 n110 2.6038 n210 2.6038 v1 102.15
f1 24.4486 n108 2.6105 n208 2.6125 v2 102.15
f2 6.3595 n112 2.5948 n212 2.5948
Table 6
Conditional data
f 6.5366 n110 2.6038 n210 2.6038 v1 102.15
f1 24.4486 n108 2.6105 n208 2.6125 v2 102.15
f2 6.3595 n112 2.5948 n212 2.5948
상기와 같이 구성된 본 발명의 제2 실시예에 따른 광각 렌즈의 수차는 다음의 도면에 도시된 바와 같다. The aberration of the wide-angle lens according to the second embodiment of the present invention configured as described above is as shown in the following drawings.
도 5는 도 4에 도시된 광각 렌즈의 구면 수차, 비점 수차 및 왜곡도를 각각 나타내는 그래프로서, (a), (b), (c)는 광각 렌즈의 구면 수차, 비점 수차 및 왜곡도를 각각 나타낸다. FIG. 5 is a graph showing spherical aberration, astigmatism, and distortion of the wide-angle lens shown in FIG. 4, respectively. (A), (b), and (c) show spherical aberration, astigmatism, and distortion of the wide-angle lens, respectively. Indicates.
도 6은 도 4에 도시된 광각 렌즈의 성능을 나타내는 그래프이다.6 is a graph showing the performance of the wide-angle lens shown in FIG.
도 7은 본 발명의 제3 실시예에 따른 광각 렌즈의 구성을 나타내는 광학계 단면도이다. 7 is a cross-sectional view of an optical system showing the configuration of a wide-angle lens according to a third embodiment of the present invention.
도 7을 참조하면, 본 발명의 제3 실시예에 따른 광각 렌즈(300)는 제1 렌즈(L1), 제2 렌즈(L2) 및 적외선 필터(F)를 포함한다. 또한, 본 발명에 따른 광각 렌즈(300)는 조리개(310)를 더 포함할 수 있다. Referring to FIG. 7, the wide-angle lens 300 according to the third embodiment of the present invention includes a first lens L1, a second lens L2, and an infrared filter F. FIG. In addition, the wide-angle lens 300 according to the present invention may further include an aperture 310.
이전의 실시예와 동일한 구성에 대해서는 이에 대한 상세한 설명을 생략하고, 차이가 있는 구성에 대해서만 설명하기로 한다. For the same configuration as in the previous embodiment, a detailed description thereof will be omitted, and only different configurations will be described.
도 7에 도시된 광각 렌즈의 각 광학면은 다음의 [표 7], [표 8] 및 [표 9]에 기재된 수치를 갖는 것이 바람직하다.It is preferable that each optical surface of the wide-angle lens shown in FIG. 7 has numerical values described in the following [Table 7], [Table 8] and [Table 9].
표 7
실시예 3 기본 렌즈 데이터
면번호 R(곡률) D(면간격) 굴절률 분산률
R1 16.70333 1.400000 4.003263 1501.70
R2 32.59225 0.736197
조리개 무한 0.318854
R3 -3.16567 1.894949 2.6038 102.15
R4 -2.41051 0.100000
R5 무한 0.650000 3.4210 2421.00
R6 무한 2.499999
IMAGE 무한 0.000000
TABLE 7
Example 3 Basic Lens Data
Face number R (curvature) D (face spacing) Refractive index Dispersion
R1 16.70333 1.400000 4.003263 1501.70
R2 32.59225 0.736197
iris infinite 0.318854
R3 -3.16567 1.894949 2.6038 102.15
R4 -2.41051 0.100000
R5 infinite 0.650000 3.4210 2421.00
R6 infinite 2.499999
IMAGE infinite 0.000000
표 8
실시예 1의 제2 렌즈의 비구면 데이터
면번호 K A B C D
R3 0.198505 -0.391519E-01 -0.287649E-01 -0.750905E-02 0.000000E+00
R4 0.092027 0.185272E-02 -0.116019E-02 0.163447E-04 0.000000E+00
Table 8
Aspherical data of the second lens of Example 1
Face number K A B C D
R3 0.198505 -0.391519E-01 -0.287649E-01 -0.750905E-02 0.000000E + 00
R4 0.092027 0.185272E-02 -0.116019E-02 0.163447E-04 0.000000E + 00
표 9
조건식 데이터
f 2.5841 n110 4.003263 n210 2.6038 v1 1501.7
f1 10.7011 n108 4.005524 n208 2.6125 v2 102.15
f2 2.475108 n112 4.002036 n212 2.5948
Table 9
Conditional data
f 2.5841 n110 4.003263 n210 2.6038 v1 1501.7
f1 10.7011 n108 4.005524 n208 2.6125 v2 102.15
f2 2.475108 n112 4.002036 n212 2.5948
도 8은 도 7에 도시된 광각 렌즈의 구면 수차, 비점 수차 및 왜곡도를 각각 나타내는 그래프로서, (a), (b), (c)는 광각 렌즈의 구면 수차, 비점 수차 및 왜곡도를 각각 나타낸다. FIG. 8 is a graph showing spherical aberration, astigmatism, and distortion of the wide-angle lens shown in FIG. 7, respectively. (A), (b), and (c) show spherical aberration, astigmatism, and distortion of the wide-angle lens, respectively. Indicates.
도 9는 도 7에 도시된 광각 렌즈의 성능을 나타내는 그래프이다.9 is a graph showing the performance of the wide-angle lens shown in FIG.
상기와 같은 본 발명에 따른 광각 렌즈는 사용되는 렌즈의 형상을 최적화하여 보다 적은 개수의 렌즈로도 넓은 화각을 얻을 수 있고, 원적외선에 대하여 넓은 화각의 왜곡률이 적어질 수 있다.The wide-angle lens according to the present invention can obtain a wide field of view even with a smaller number of lenses by optimizing the shape of the lens used, and the distortion of the wide field of view with respect to far infrared rays can be reduced.
본 발명은 도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다.Although the present invention has been described with reference to the embodiments shown in the drawings, this is merely exemplary, and it will be understood by those skilled in the art that various modifications and equivalent other embodiments are possible. Therefore, the true technical protection scope of the present invention will be defined by the technical spirit of the appended claims.

Claims (7)

  1. 원적외선 카메라용 광각 렌즈로서, As a wide-angle lens for far infrared cameras,
    물체에 대하여 볼록한 메니스커스 렌즈로서 정(+) 의 굴절률을 갖는 제1 렌즈;A first lens having a positive refractive index as a meniscus lens convex with respect to an object;
    제3 면과 제4 면이 비구면으로서, 상기 제1 렌즈 후방에 배치되고 상기 제1 렌즈의 반대 방향으로 볼록한 메니스커스 렌즈로서, 정(+) 의 굴절률을 갖는 제2 렌즈; 및A meniscus lens having a third surface and a fourth surface aspherical and disposed behind the first lens and convex in a direction opposite to the first lens, the second lens having a positive refractive index; And
    상기 제2 렌즈의 후방에 배치되고, 입사되는 광선 중 원적외선을 통과시키는 적외선 필터를 포함하고, An infrared filter disposed behind the second lens and configured to pass far-infrared rays of the incident light;
    상기 제1 렌즈와 상기 제2 렌즈의 초점거리는 다음의 [수학식 1]을 만족하고, The focal length of the first lens and the second lens satisfies the following [Equation 1],
    상기 제2 렌즈의 분산율은 다음의 [수학식 2]를 만족하는 원적외선 카메라용 광각 렌즈.The dispersion ratio of the second lens is a wide-angle lens for far-infrared camera that satisfies Equation 2 below.
    [수학식 1][Equation 1]
    f1 > f2f1> f2
    2 < f1/f < 52 <f1 / f <5
    f1 : 기준파장 10um에서 제1 렌즈의 초점거리f1: focal length of the first lens at a reference wavelength of 10 μm
    f2 : 기준파장 10um에서 제2 렌즈의 초점거리f2: Focal length of the second lens at a reference wavelength of 10um
    f : 기준 파장 10um 에서 상기 제1 및 상기 제2 렌즈의 합성 초점거리f: composite focal length of the first and second lenses at a reference wavelength of 10 μm
    [수학식 2][Equation 2]
    v2 = (n210-1)/(n208-n212)v2 = (n210-1) / (n208-n212)
    n210 : 제2 렌즈의 파장 10um에서의 굴절율n210: refractive index at wavelength 10um of second lens
    n208 : 제2 렌즈의 파장 8um에서의 굴절율n208: refractive index at a wavelength of 8 μm of the second lens
    n212 : 제2 렌즈의 파장 12um에서의 굴절율n212: refractive index at a wavelength of 12 μm of the second lens
    이때, 2.0 < n210 < 3.0Where 2.0 <n210 <3.0
    80 < v2 < 20080 <v2 <200
  2. 제1항에 있어서, The method of claim 1,
    상기 제1 렌즈의 양면은 구면인 원적외선 카메라용 광각 렌즈.Both sides of the first lens is a spherical wide-angle lens for the far infrared camera.
  3. 제2항에 있어서, The method of claim 2,
    상기 제1 렌즈의 분산율(v1)은 다음의 [수학식 3]을 만족하는 원적외선 카메라용 광각 렌즈.The dispersion ratio v1 of the first lens is a far-angle lens for a far infrared camera that satisfies Equation 3 below.
    [수학식 3][Equation 3]
    2.0 < n110 < 4.52.0 <n110 <4.5
    20 < v1 < 160020 <v1 <1600
    v1 = (n110-1)/(n108-n112)v1 = (n110-1) / (n108-n112)
    n110 : 첫번째 렌즈의 파장 10um에서의 굴절율n110: refractive index of 10um wavelength of the first lens
    n108 : 첫번째 렌즈의 파장 8um에서의 굴절율n108: Refractive index at a wavelength of 8um of the first lens
    n112 : 첫번째 렌즈의 파장 12um에서의 굴절율n112: refractive index at a wavelength of 12um of the first lens
  4. 제1항에 있어서,The method of claim 1,
    상기 제1 렌즈와 제2 렌즈 사이에 배치되고 입사되는 광의 양을 조절하는 조리개를 더 포함하는 원적외선 카메라용 광각 렌즈.And a iris disposed between the first lens and the second lens to adjust an amount of incident light.
  5. 제1항에 있어서,The method of claim 1,
    상기 제2 렌즈의 유리 전이 온도는 370℃ 미만인 원적외선 카메라용 광각 렌즈.The wide-angle lens for far-infrared cameras whose glass transition temperature of the said 2nd lens is less than 370 degreeC.
  6. 제5항에 있어서, The method of claim 5,
    상기 제2 렌즈는 몰딩에 의해 제작되는 원적외선 카메라용 광각 렌즈. The second lens is a wide-angle lens for far-infrared camera manufactured by molding.
  7. 제6항에 있어서, The method of claim 6,
    상기 제2 렌즈의 상기 제3 면은 외주측으로 링 형태의 평면부가 형성되는 원적외선 카메라용 광각 렌즈.The third surface of the second lens is a wide-angle lens for far-infrared camera, the ring-shaped flat portion is formed on the outer circumferential side.
PCT/KR2014/007340 2013-08-12 2014-08-07 Wide-angle lens for far-infrared camera WO2015023083A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0095456 2013-08-12
KR1020130095456A KR101431106B1 (en) 2013-08-12 2013-08-12 Wide field lens for infrared camera

Publications (2)

Publication Number Publication Date
WO2015023083A1 true WO2015023083A1 (en) 2015-02-19
WO2015023083A9 WO2015023083A9 (en) 2015-07-16

Family

ID=51750628

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/007340 WO2015023083A1 (en) 2013-08-12 2014-08-07 Wide-angle lens for far-infrared camera

Country Status (2)

Country Link
KR (1) KR101431106B1 (en)
WO (1) WO2015023083A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019098405A1 (en) * 2017-11-15 2019-05-23 (주)토핀스 Short-wave infrared camera optical system for performing long-distance monitoring

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5999327A (en) * 1995-09-12 1999-12-07 Olympus Optical Co., Ltd. Objective lens system
JP3138700U (en) * 2007-04-02 2008-01-17 一品光学工業股▲ふん▼有限公司 An imaging lens consisting of two lenses
JP2010113191A (en) * 2008-11-07 2010-05-20 Topcon Corp Infrared optical system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3835398B2 (en) 2002-11-15 2006-10-18 コニカミノルタオプト株式会社 Imaging lens
KR100843466B1 (en) 2007-03-05 2008-07-03 삼성전기주식회사 Subminiature optical system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5999327A (en) * 1995-09-12 1999-12-07 Olympus Optical Co., Ltd. Objective lens system
JP3138700U (en) * 2007-04-02 2008-01-17 一品光学工業股▲ふん▼有限公司 An imaging lens consisting of two lenses
JP2010113191A (en) * 2008-11-07 2010-05-20 Topcon Corp Infrared optical system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019098405A1 (en) * 2017-11-15 2019-05-23 (주)토핀스 Short-wave infrared camera optical system for performing long-distance monitoring

Also Published As

Publication number Publication date
WO2015023083A9 (en) 2015-07-16
KR101431106B1 (en) 2014-08-18

Similar Documents

Publication Publication Date Title
WO2017160092A2 (en) Optical photographing lens system
WO2017164607A1 (en) Lens optical system and photographing device
WO2012008694A1 (en) Super wide angle optical lens system
WO2017160095A1 (en) Optical imaging lens system
WO2017160093A1 (en) Optical imaging lens system
WO2013133660A1 (en) Zoom lens and photographing apparatus including the same
WO2015005611A1 (en) Photographing lens and electronic apparatus including the same
WO2012086890A1 (en) Zoom lens system
WO2013024979A2 (en) Imaging lens
WO2017082480A1 (en) Tele-lens and imaging device
WO2017023086A1 (en) Imaging lens
WO2016140520A1 (en) Imaging lens, camera module and digital device comprising same
WO2014104787A1 (en) Photographic lens and photographic apparatus using the same
WO2016036210A1 (en) Inner foucing telephoto lens system and photographing apparatus including the same
WO2013065972A1 (en) Imaging lens
WO2017090928A1 (en) Camera module for both normal photography and infrared photography
WO2013048089A1 (en) Imaging lens
EP2702440A2 (en) Camera lens module
WO2014025121A1 (en) Optical system
WO2022035219A1 (en) Optical system
EP2718760A2 (en) Imaging lens
WO2018080100A1 (en) Optical lens system
WO2017164605A1 (en) Photographic lens optical system
WO2014142438A1 (en) Telephoto zoom lens system and electronic apparatus including the same
WO2016105074A1 (en) Lens optical system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14836765

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14836765

Country of ref document: EP

Kind code of ref document: A1