WO2015022806A1 - Crust data analysis method, crust data analysis program, and crust data analysis device - Google Patents

Crust data analysis method, crust data analysis program, and crust data analysis device Download PDF

Info

Publication number
WO2015022806A1
WO2015022806A1 PCT/JP2014/065556 JP2014065556W WO2015022806A1 WO 2015022806 A1 WO2015022806 A1 WO 2015022806A1 JP 2014065556 W JP2014065556 W JP 2014065556W WO 2015022806 A1 WO2015022806 A1 WO 2015022806A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
crustal
threshold
deleted
value
Prior art date
Application number
PCT/JP2014/065556
Other languages
French (fr)
Japanese (ja)
Inventor
春寿 両角
Original Assignee
独立行政法人石油天然ガス・金属鉱物資源機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人石油天然ガス・金属鉱物資源機構 filed Critical 独立行政法人石油天然ガス・金属鉱物資源機構
Priority to AU2014307511A priority Critical patent/AU2014307511C1/en
Priority to JP2015531736A priority patent/JP6429398B2/en
Publication of WO2015022806A1 publication Critical patent/WO2015022806A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/24Earth materials

Definitions

  • the present invention relates to a crustal data analysis method, a crustal data analysis program, and a crustal data analysis apparatus used for geochemical exploration.
  • FIG. 9 is a diagram showing an example of a frequency distribution of a dorsal value corresponding to a general content rate of contained elements in each rock and an abnormal value suggesting the presence of mineral occurrence in a plurality of samples collected from the crust. is there.
  • the horizontal axis represents the common logarithm of substance content
  • the vertical axis represents the number of samples corresponding to each substance content.
  • FIG. 9 shows a dorsal value frequency distribution FD1 and an abnormal value frequency distribution FD2. These dorsal value frequency distribution FD1 and abnormal value frequency distribution FD2 tend to follow a normal distribution independently.
  • the threshold values of the contained elements of the multiple samples with respect to the frequency distribution of the contained elements of the multiple samples Has been set up.
  • FIG. 10 is a cumulative frequency distribution diagram of analysis values of each element in each of a plurality of samples.
  • the horizontal axis indicates the content of each element
  • the vertical axis indicates the normal distribution probability.
  • Mo molybdenum
  • FIG. 10 it can be confirmed that the straight line indicating the cumulative distribution of molybdenum (Mo) is bent at about 2 ppm and about 8 ppm.
  • a line segment of about 2 ppm or less is formed by the population of dorsal values
  • a line segment from about 2 ppm to about 8 ppm is formed of the population of dorsal values and the population of abnormal values
  • a line of about 8 ppm or more is formed. It can be confirmed that the minute is formed by the population of abnormal values.
  • the threshold value of the population corresponding to the back value in Mo and the population corresponding to the abnormal value can be set between about 2 ppm and about 8 ppm.
  • a method for determining the threshold value a method is disclosed in which the threshold value is determined by a multiple of a value obtained by adding the standard deviation to the average value in the common logarithm (see, for example, Non-Patent Document 2).
  • the inflection point is not clearly shown as shown in FIG. 9 even when the threshold values of the population of the back value and the population of the abnormal value are determined based on the substance contents of a plurality of samples. Therefore, even if the method disclosed in Non-Patent Document 1 is used, it may be difficult to set the threshold value.
  • Non-Patent Document 2 even if the method disclosed in Non-Patent Document 2 is used, by giving a value that is half the detection limit value to data less than the detection limit of geochemical analysis, the original average value and standard deviation can be reduced. It may not be obtained. Furthermore, there is a problem that a threshold cannot be set appropriately even if the method disclosed in Non-Patent Document 2 is applied to a population that clearly does not follow the normal distribution.
  • the object of the present invention is to provide a crustal data analysis method, a crustal data analysis program, and a crustal data analysis apparatus that can appropriately set a threshold value for a geochemical abnormality.
  • the crustal data analysis method includes a step of obtaining a plurality of data indicating the crustal abundance of a predetermined element or compound at a plurality of positions, and deleting some data from the plurality of data, Based on the determination result, the step of generating deleted data, the step of determining whether or not the plurality of data constituting the deleted data follow a normal distribution for each of the plurality of deleted data, Determining a threshold for geochemical anomaly.
  • the crustal presence of the plurality of data is calculated from the plurality of data by using different first threshold values.
  • An area where a plurality of data constituting the deleted data is wider than an area including the plurality of positions in the determining step by deleting data equal to or greater than the first threshold to generate a plurality of deleted data.
  • a plurality of the deleted that has been determined not to follow the normal distribution Among the data a value within a predetermined range from the maximum value of the crustal abundance in the deleted data with the smallest number of data may be determined as the threshold for geochemical abnormality.
  • a crustal presence degree of the plurality of data is determined from the plurality of data by using different first threshold values. Deleting data equal to or greater than one threshold, and using a second threshold lower than the first threshold, deleting data equal to or less than the second threshold, and generating the plurality of deleted data Also good.
  • the second threshold value is a detection limit value of the crustal presence
  • data equal to or less than the second threshold value in the step of generating the plurality of deleted data.
  • the deleted data may be generated by deleting data that is equal to or greater than the first threshold after deleting.
  • the first threshold value is sequentially decreased to generate the plurality of deleted data, and in the determination step The determination may be performed in response to the generation of the one deleted data.
  • the first threshold is determined based on a binary search method, and the deletion is performed based on the determined first threshold.
  • Completed data may be generated.
  • the crustal data analysis program includes a computer that acquires a plurality of data indicating the crustal abundance of predetermined elements or compounds at a plurality of positions, and deletes some data from the plurality of data.
  • a generation unit that generates a plurality of deleted data
  • a determination unit that determines whether or not a plurality of pieces of data constituting the deleted data follow a normal distribution for each of the plurality of deleted data, and the determination It is made to function as a determination part which determines the threshold value of geochemical abnormality based on a result.
  • the crustal data analysis apparatus includes an acquisition unit that acquires a plurality of data indicating the crustal abundances of a predetermined element or compound at a plurality of positions, a part of the plurality of data is deleted, and a plurality of data is deleted.
  • a generation unit that generates the deleted data, a determination unit that determines whether or not a plurality of pieces of data constituting the deleted data follow a normal distribution, and a result of the determination
  • a determination unit that determines a threshold for geochemical abnormality.
  • the threshold for geochemical abnormality can be set appropriately.
  • FIG. 1 is a functional configuration diagram of a crustal data analysis apparatus 1 according to the present embodiment.
  • the crustal data analyzing apparatus 1 is a plurality of data indicating the crustal abundance of each of a plurality of elements or compounds (hereinafter also referred to as elements) obtained by analyzing samples collected at a plurality of positions in the first area.
  • Threshold values hereinafter referred to as geochemical anomaly threshold values
  • the plurality of data is referred to as target data.
  • the crustal data analysis apparatus 1 deletes data whose crustal presence is equal to or higher than the first threshold value from the target data and creates deleted data. Then, the crustal data analyzing apparatus 1 changes the first threshold value until the deleted data follows a normal distribution having an average value of the average crustal presence in the second area wider than the first area, and among the deleted data, The maximum crustal abundance value in the deleted data with the smallest number of data is determined as the geochemical abnormality threshold.
  • the geochemical abnormality threshold For example, Rudnick, RL and Gao, S. (2003) The Composition of the Continental Crust, p1-64. In The Crust (ed. RL Rudnick) Vol. 3, Treatise on Geochemistry Average chemical composition data of the upper continental crust shown in (eds. HD Holland and ⁇ KK ⁇ Turekian), Elsevier-Pergamon, Oxford can be used.
  • the crustal data analysis apparatus 1 includes a display unit 10, an input unit 20, a storage unit 30, and a control unit 40.
  • the display unit 10 is configured by a liquid crystal display, for example.
  • the display unit 10 displays various information according to the control of the control unit 40.
  • the input unit 20 is configured by a mouse or a keyboard, for example.
  • the input unit 20 receives input of various types of information from the user and outputs the received information to the control unit 40.
  • the storage unit 30 includes, for example, a ROM and a RAM, and a hard disk.
  • the storage unit 30 stores various programs (not shown) for causing the crustal data analysis apparatus 1 to function.
  • the storage unit 30 stores a crustal data analysis program for causing the control unit 40 to function as an acquisition unit 41, a generation unit 42, a determination unit 43, and a determination unit 44 described later.
  • the crustal data analysis program may be stored in a storage medium such as a CD-ROM or a hard disk, and the storage unit 30 may store the crustal data analysis program acquired from the storage medium.
  • the storage unit 30 stores, for example, target data.
  • the storage unit 30 stores average chemical composition data indicating average crust abundances of a plurality of elements and the like measured at a plurality of positions in a second area wider than the first area.
  • the second area includes the first area.
  • the control unit 40 is constituted by a CPU, for example.
  • the control unit 40 comprehensively controls functions related to the crustal data analysis device 1 by executing various programs stored in the storage unit 30 for causing the crustal data analysis device 1 to function.
  • the control unit 40 executes a crustal data analysis program stored in the storage unit 30 to obtain a computer, an acquisition unit 41, a generation unit 42, a determination unit 43, and a determination unit 44.
  • the acquisition unit 41, the generation unit 42, the determination unit 43, and the determination unit 44 will be described.
  • the acquisition unit 41 acquires target data from the storage unit 30, for example. That is, the acquisition unit 41 acquires a plurality of pieces of data indicating the crustal abundance of predetermined elements or compounds at a plurality of positions, which are stored in advance in the storage unit 30.
  • the predetermined element or compound is an element or compound that is a target for finding a threshold value between the population of the back value and the population of the abnormal value.
  • the generation unit 42 deletes some data from a plurality of data and generates a plurality of deleted data. Specifically, the generation unit 42 deletes data having a crust presence degree equal to or higher than the first threshold from the target data acquired by the acquisition unit 41 using different first threshold values, and deletes a plurality of deleted data. Generate data. More specifically, the generation unit 42 sets the highest crust presence level among the crust presence levels indicated by the target data as the first threshold value, and deletes data that is equal to or higher than the first threshold value from the target data and has been deleted. Generate data.
  • the generation unit 42 sets the second highest crust presence level as the first threshold value among the crust presence levels indicated by the target data, Data that is equal to or greater than the first threshold is deleted from the target data to generate deleted data.
  • a plurality of data indicating a plurality of different values are stored in advance in the storage unit 30 as a first threshold data set, and the generation unit 42 extracts data from the data set in descending order of values, The value of the extracted data may be set as the first threshold value.
  • the generation unit 42 deletes data whose crustal presence of the plurality of data is equal to or higher than the first threshold from the target data using different first thresholds, and is lower than the first threshold.
  • a plurality of deleted data may be generated by deleting data equal to or lower than the second threshold from the target data using the second threshold.
  • the second threshold is a detection limit value of the crustal presence in the target data.
  • the generation unit 42 may generate deleted data by deleting data that is equal to or higher than the first threshold after deleting data that is equal to or lower than the second threshold from the target data.
  • the determination unit 43 determines, for each of the plurality of deleted data, whether or not the plurality of data constituting the deleted data follows a normal distribution. As shown below, the determination unit 43 determines whether or not a plurality of data constituting the deleted data follow a normal distribution having an average value of the average crust presence of the predetermined element in the second area.
  • the predetermined element refers to an element or a compound for which a threshold value between the population of the back value and the population of the abnormal value is found.
  • the determination unit 43 acquires the average crustal abundance ⁇ of a predetermined element from the average chemical composition data stored in the storage unit 30. Then, the determination unit 43 establishes a null hypothesis that the average value of the crust presence of the plurality of data constituting the deleted data is the average crust presence ⁇ of the predetermined element in the second area. Subsequently, the determination unit 43, based on the following formulas (1) to (3), the average value x bar of the crust presence of a plurality of data constituting the deleted data, the variance S 2 , and the test statistic t Is calculated. Here, it is assumed that there are n pieces of data constituting the deleted data, and the crustal presence of each piece of data is x i (where i is an integer between 1 and n).
  • the determination unit 43 specifies the boundary value t (n ⁇ 1) (0.05) of the t distribution with n ⁇ 1 degrees of freedom from the t distribution table stored in the storage unit 30 in advance, and the test statistics It is determined whether or not the absolute value of the quantity t is larger than the boundary value.
  • the determination unit 43 determines that the absolute value of the test statistic t is larger than the boundary value
  • the determination unit 43 adopts the alternative hypothesis, and the deleted data uses the average crust presence of the predetermined element in the second area as the average value. It is determined that the normal distribution is not followed.
  • the determination unit 43 determines that the absolute value of the test statistic t is equal to or less than the boundary value, rejects the alternative hypothesis, and the deleted data indicates that the average crust presence of the predetermined element in the second area is the average value. It is determined to follow a normal distribution.
  • the determination unit 44 determines a threshold for geochemical abnormality based on the determined result. Specifically, the determination unit 44 determines the maximum crustal abundance value in the deleted data with the least data among the plurality of deleted data determined not to follow the normal distribution as the geochemical abnormality threshold value. To do.
  • FIG. 2 is a flowchart illustrating an example of a processing flow until the geochemical abnormality threshold value is determined in the crustal data analysis apparatus 1 according to the first embodiment.
  • the acquisition unit 41 acquires target data stored in the storage unit 30 (S1). Subsequently, the generation unit 42 deletes data whose crust presence is equal to or less than the second threshold from the target data acquired in S1 (S2).
  • the generation unit 42 determines a first threshold value (S3). For example, when the number of execution times of the process is 1, that is, when the process is executed for the first time, the generation unit 42 determines the highest crust presence in the target data as the first threshold value. In addition, when the number of execution times of the process is two or more, the generation unit 42 sets a new crust presence level next to the crust presence level corresponding to the first threshold value determined immediately before in the target data. The first threshold is determined.
  • the generation unit 42 deletes data having a first threshold value or more from the target data to generate deleted data (S4).
  • the determination unit 43 determines whether or not the deleted data follows a normal distribution having an average value of the average crust presence of the predetermined element in the second area (S5). If the determination unit 43 determines to follow the normal distribution (if the determination in S5 is Yes), the determination unit 43 moves the process to S6. Moreover, the determination part 43 transfers a process to S1, when it determines with not following normal distribution (when determination of S5 is No).
  • the determination unit 44 deletes the deleted data having the smallest number of data among the plurality of deleted data generated in S4 and determined not to follow the normal distribution, that is, the deleted data generated immediately before. Identify. Subsequently, the determination unit 44 determines the maximum value of the crustal presence in the specified deleted data as the threshold for geochemical abnormality (S6).
  • FIG. 3 is a diagram illustrating a sampling position of a sample in an existing area (Toyoha vein deposit) applied to the first area according to the first embodiment.
  • the sampling position shown in FIG. 3 is 184 points of the Toyoha vein deposit described in Non-Patent Document 2.
  • Analytical values of rock samples collected on the surface of those points described in Non-Patent Document 2 were used as target data to which the method according to this embodiment is applied.
  • the black dots shown in FIG. 3 are sample collection positions.
  • Pb lead
  • Zn zinc
  • silver Ag
  • S sulfur
  • FIG. 4A is a frequency distribution diagram of analysis values of lead (Pb).
  • the horizontal axis in FIG. 4A indicates the value of the common logarithm of the crustal abundance of Pb.
  • FIG. 4B is a cumulative frequency distribution diagram of lead analysis values. The horizontal axis of FIG. 4B shows the crustal abundance of Pb, and the vertical axis shows the inverse function of the normal distribution probability.
  • FIG. 4C is a diagram illustrating a sampling position determined to be an abnormal value based on a geochemical anomaly threshold value of lead crustal abundance. In FIG. 4C, a black spot having the same size as the black spot shown in FIG.
  • the crustal abundance of Pb in the first area the maximum value is 70 ppm and the minimum value is 1.5 ppm, and the average value x bar of the plurality of data is 5.2 ppm.
  • the average value of the crustal abundance of Pb in the average chemical composition data stored in the storage unit 30 is 17 ppm.
  • the crustal data analysis apparatus 1 calculated the threshold value of the geochemical abnormality, and as a result, the threshold value was 25 ppm.
  • 10 points were obtained as geochemical abnormality points exceeding 25 ppm.
  • the point where the sample of the crustal abundance having the same value as the threshold value of the geochemical abnormality may be taken as the point of the geochemical abnormality.
  • FIG. 5A is a frequency distribution diagram of analytical values of zinc (Zn).
  • FIG. 5B is a cumulative frequency distribution diagram of analytical values of zinc.
  • FIG. 5C is a diagram showing a sampling position determined as an abnormal value based on a geochemical abnormality threshold value of the crustal abundance of zinc.
  • the black dots in FIG. 5C indicate the sampling positions where the crustal abundance of Zn was 0.5 to 66 ppm, the white circles indicate the sampling positions where the crustal abundance of Zn was 67 to 96 ppm, and the black circles represent Zn.
  • the sampling position where the crust abundance was 97 to 370 ppm is shown.
  • the crustal abundance of Zn in the first area the maximum value is 370 ppm and the minimum value is 0.5 ppm, and the average value x bar of the plurality of data is 45.9 ppm.
  • the average value of Zn crust presence in the average chemical composition data stored in the storage unit 30 is 67 ppm. Based on these results, the crustal data analysis apparatus 1 calculated the threshold value for geochemical abnormality, and as a result, the threshold value was 97 ppm. In the first area, 23 points were obtained as geochemical anomalies exceeding 97 ppm.
  • FIG. 6A is a frequency distribution diagram of analysis values of silver (Ag).
  • FIG. 6B is a cumulative frequency distribution diagram of analysis values of silver.
  • FIG. 6C is a diagram illustrating a sampling position determined as an abnormal value based on a threshold value of a geochemical abnormality of the degree of silver crust presence.
  • the black dots in FIG. 6C indicate the sampling positions where the crustal abundance of Ag was 0.1 ppm or less, and the black circles indicate the sampling positions where the crustal abundance of Ag was 0.2 to 6.2 ppm.
  • the crustal abundance of Ag in the first area the maximum value is 6.2 ppm and the minimum value is 0.1 ppm, and the average value x bar of the plurality of data is 0.2 ppm.
  • the detection limit value of Ag is 0.2 ppm.
  • the average value of Ag crustal abundance in the average chemical composition data stored in the storage unit 30 is 53 ppb. Based on these results, the crustal data analysis apparatus 1 calculates the threshold value of the geochemical anomaly.
  • the deleted data when the 0.2 ppm data is not deleted is the normal value of the crustal abundance with an average crust abundance of 53 ppb. Since it did not follow the distribution, the detection limit value of 0.2 ppm was determined as the geochemical abnormality threshold.
  • 35 points were obtained as points of geochemical abnormality exceeding the detection limit value of 0.2 ppm.
  • FIG. 7A is a frequency distribution diagram of analysis values of sulfur (S).
  • FIG. 7B is a cumulative frequency distribution diagram of analysis values of sulfur.
  • FIG. 7C is a diagram illustrating a sampling position determined as an abnormal value based on a threshold of geochemical abnormality of sulfur crustal abundance.
  • a black dot in FIG. 7C indicates a sampling position where the crustal abundance of S was 0.005 to 0.05 ppm, and a white circle indicates a sampling position where the crustal abundance of S was 0.06 to 0.09 ppm.
  • the black circles indicate the sampling positions where the crustal abundance of S was 0.1 to 4.41 ppm.
  • the maximum crustal abundance of sulfur in the first area is 4.41% and the minimum value is 0.005%, and the average value x bar of the plurality of data is 0.2%. Moreover, the average content of the crustal abundance of S in the average chemical composition data stored in the storage unit 30 is 0.06%. Based on these results, the crustal data analysis apparatus 1 calculated the threshold value for geochemical abnormality, and as a result, 0.1% was determined as the threshold value for geochemical abnormality, and 109 points were obtained as points for the geochemical abnormality. .
  • the threshold for geochemical abnormality was determined using another method.
  • Pb, Zn, and Ag are determined by a method (hereinafter referred to as the method of the Ministry of International Trade and Industry) proposed by the Ministry of International Trade and Industry in 1986 to determine a threshold value by a multiple of a value obtained by adding a standard deviation to an average value of common logarithms.
  • An example in which the threshold value for geochemical abnormality of S is determined will be described.
  • Pb has an average value of 5.2 ppm, an average value + standard deviation of 13.2 ppm, and an average value + 2 ⁇ standard deviation of 33.4 ppm.
  • the appearance of geochemical anomalies is not much different between the method of the crustal data analysis apparatus 1 and the method of the Ministry of International Trade and Industry that determines the threshold value by a multiple of the value obtained by adding the standard deviation to the average value in the common logarithm. It is considered a thing.
  • Zn has an average value of 45.9 ppm, an average value + standard deviation of 146.6 ppm, and an average value + 2 ⁇ standard deviation of 468.0 ppm. A value greater than the average value + 2 ⁇ standard deviation does not exist in the target data.
  • the average value of 45.9 ppm is smaller than 67 ppm, which is the average value of the crustal abundance indicated by the average chemical composition data of the upper continental crust. Therefore, the method of the Ministry of International Trade and Industry cannot detect a population of abnormal values that can be detected by the method using the crustal data analysis apparatus 1.
  • Ag has an average value of 0.2 ppm, an average value + standard deviation of 0.4 ppm, and an average value + 2 ⁇ standard deviation of 0.9 ppm.
  • the threshold value for the geochemical anomaly is determined without considering the detection limit value, so that the threshold value may not be appropriately determined. Therefore, compared with the method of the Ministry of International Trade and Industry, it is considered that the method for determining the threshold value of the geochemical abnormality by the crustal data analysis apparatus 1 more accurately indicates the presence of the geochemical abnormality.
  • S has an average value of 0.2%, an average value + standard deviation of 1.1%, and an average value + 2 ⁇ standard deviation of 6.1%.
  • This value of 6.1% is the crustal abundance that is not present in the sample, and is far above the average value of the crustal abundance shown in the average chemical composition data. Therefore, it can be said that the method of the Ministry of International Trade and Industry cannot appropriately determine the threshold for S geochemical abnormality.
  • the method for determining the threshold value of the geochemical abnormality by the crustal data analyzing apparatus 1 109 points are obtained as the points of the geochemical abnormality as described above. Therefore, also from this result, compared with the method of the Ministry of International Trade and Industry, the method of determining the threshold value of the geochemical abnormality by the crustal data analysis apparatus 1 can accurately detect the point where the geochemical abnormality is occurring. Conceivable.
  • MgO showed a result that 25.9% was close to the maximum value in the normal population with the average crustal abundance. Also regarding this, since the MgO contained in the partially melted liquid of the mantle reaches 20% or more, the numerical value of 25.9 is also considered appropriate. Therefore, it was shown that the average chemical composition of the main igneous rocks in the crust follows a normal distribution with the average crustal abundance.
  • the crustal data analysis apparatus 1 determines whether or not the plurality of data constituting the deleted data follows a normal distribution for each of the plurality of deleted data from the plurality of data. Based on the determination result, a threshold for geochemical abnormality is determined. Therefore, the crustal data analysis apparatus 1 classifies the plurality of deleted data into deleted data that conforms to the normal distribution and deleted data that does not conform to the normal distribution, and a population of dorsal values and a population of abnormal values And the threshold value of the geochemical abnormality can be appropriately set based on the boundary values of these populations.
  • the crustal data analyzing apparatus 1 deletes data having a crustal abundance of the plurality of data equal to or higher than the first threshold from a plurality of data by using different first threshold values. To determine whether or not the plurality of data constituting the deleted data follow a normal distribution having an average value of the average crust presence of the predetermined element in the second area wider than the first area. Among the plurality of deleted data determined not to be followed, the maximum value of the crustal presence in the deleted data with the smallest number of data is determined as the threshold for geochemical abnormality.
  • the crustal data analyzing apparatus 1 is configured to analyze a plurality of data from a population that follows a normal distribution having an average value of the average crustal abundance of a predetermined element in a second area wider than the first area, and a mother that does not follow the normal distribution. It is possible to appropriately set a threshold of geochemical abnormality for classifying into a group.
  • the crustal data analysis apparatus 1 uses a first threshold value that is different from each other, and the crustal presence of the plurality of data is greater than or equal to the first threshold value. While deleting the data, the second threshold lower than the first threshold is used to delete data equal to or lower than the second threshold to generate a plurality of deleted data. That is, the crustal data analyzing apparatus 1 deletes the data that has been deleted from the deleted data by deleting the data that is equal to or lower than the second threshold value indicating the detection limit value of the crustal presence, and then deletes the data that is equal to or higher than the first threshold value. Is generated. In this way, the crustal data analysis apparatus 1 determines whether or not to follow the normal distribution using the deleted data obtained by deleting the crustal abundance level lower than the detection limit value. Can be determined.
  • the generation unit 42 of the present embodiment determines the first threshold based on the binary search method, and generates deleted data based on the determined first threshold. The point is the same.
  • the generation unit 42 rearranges the deleted data in descending order of crust presence. Subsequently, the generation unit 42 sets the search range of the first threshold from data corresponding to the crustal presence closest to the average crustal presence to data having the highest crustal presence. Subsequently, the generation unit 42 determines an intermediate value of the search range as an initial value of the first threshold value. Subsequently, the generation unit 42 generates deleted data by deleting data that is equal to or greater than the determined first threshold value from the target data. Subsequently, the determination unit 43 determines whether or not the deleted data follows a normal distribution having the average crustal presence of the predetermined element in the second area as an average value.
  • the generation unit 42 Based on the determination result of the determination unit 43, the generation unit 42 reduces the new search range of the first threshold to half the previous search range, and determines a new first threshold. Specifically, when the determination unit 43 determines that the normal distribution is followed, the generation unit 42 sets a range larger than the first threshold in the current search range as a new search range. Further, when the determination unit 43 determines that the normal distribution is not followed, the generation unit 42 sets a range smaller than the first threshold in the current search range as a new search range. Subsequently, the generation unit 42 determines the intermediate value of the newly set search range as a new first threshold value. Subsequently, the generation unit 42 deletes data that is equal to or more than the determined first threshold value and generates deleted data.
  • the generation unit 42 repeats the process of determining the first threshold and generating deleted data until the search range cannot be reduced.
  • the determination unit 44 after the generation unit 42 finishes generating the deleted data, among the plurality of deleted data determined not to follow the normal distribution, the largest crust in the deleted data with the smallest number of data.
  • the abundance value is determined as the geochemical anomaly threshold.
  • FIG. 8 is a flowchart illustrating an example of a processing flow until the geochemical abnormality threshold value is determined in the crustal data analysis apparatus 1 according to the second embodiment.
  • the acquisition unit 41 acquires target data stored in the storage unit 30 (S11). Subsequently, the generation unit 42 deletes data whose crust presence is equal to or less than the second threshold from the target data acquired in S11 (S12).
  • the generation unit 42 determines the search range for the first threshold and the first threshold (S13). For example, the generation unit 42 executes the process once, that is, when the process is executed for the first time, the search range of the first threshold is data corresponding to the crustal presence closest to the average crustal presence. To the data with the highest crustal abundance. In addition, when the number of execution times of the process is two or more, the generation unit 42 sets the search range to half of the previous search range based on the determination result immediately before by the determination unit 43. In addition, the generation unit 42 determines the median value of the set search range as the first threshold value.
  • the determination unit 43 determines whether or not the deleted data follows a normal distribution having an average value of the average crust presence of the predetermined element in the second area (S15). Subsequently, the generation unit 42 determines whether or not the search range of the first threshold can be reduced (S16). When the generation unit 42 determines that the search range can be reduced (when the determination of S16 is Yes), the process proceeds to S11, and when it is determined that the search range cannot be reduced (when the determination of S16 is No), S17. Move processing to.
  • the determination unit 44 identifies the deleted data with the smallest data among the plurality of deleted data generated in S14 and determined not to follow the normal distribution, that is, the deleted data generated immediately before. To do. Subsequently, the determination unit 44 determines the maximum value of the crustal presence in the specified deleted data as the threshold for geochemical abnormality (S17).
  • the generation unit 42 determines the first threshold value based on the binary search method, and generates deleted data based on the determined first threshold value.
  • the first threshold value can be determined, and the threshold value of the geochemical abnormality can be calculated at high speed.
  • the maximum crustal abundance value in the deleted data with the smallest number of data is determined as the geochemical abnormality threshold value.
  • another value within a predetermined range may be determined as the threshold value from the maximum crustal abundance value.
  • the maximum crustal presence value in the deleted data having the largest number of data among the plurality of deleted data determined to follow the normal distribution may be determined as the geochemical abnormality threshold value.
  • a threshold value that is larger by a predetermined value is determined from the maximum crustal presence value in the deleted data with the smallest number of data. May be.
  • the test is repeated by deleting the upper and lower data centering on the value of the crustal abundance until the normal distribution is followed, and the highest value of the population of the minimum number not following the normal distribution
  • the threshold value is determined by the following method so that it can be applied even when the number of data increases.
  • the determination unit 43 calculates the standard deviation ⁇ as follows, assuming that n items of data follow a ⁇ 2 distribution with n degrees of freedom.
  • the determination unit 43 reads a value from the ⁇ 2 distribution table and calculates ⁇ 2 .
  • the determination unit 43 when n> 100, ⁇ 2 is calculated as approximately following the normal normal distribution N (0,1).
  • the determination unit 43 uses a minimum standard deviation obtained in this way, and follows a normal distribution in which the value obtained by adding the average value and the minimum standard deviation to the real number is returned to the real value. And the most recent value is set as the threshold value.
  • the reason why the maximum standard deviation is not used is that the upper part of the dorsal value population and the lower order of the abnormal value population are considered to be overlapped, so that the overlap is minimized.
  • the threshold value was 45 ppm, and two points were obtained as points of geochemical abnormality.
  • the threshold value was 166 ppm, and 5 points were obtained as points of geochemical abnormality.
  • the threshold was 0.4%, and 70 points were obtained as geochemical abnormality points.
  • FIG. 11A is a frequency distribution diagram of the analysis value of Au (gold) in the Kushikino deposit, which is a typical deposit in the northern and southern areas. 2331 data were used.
  • FIG. 11B is a cumulative frequency distribution diagram of Au analysis values.
  • FIG. 11C is a diagram showing a sampling position (black circle in the figure) determined as an abnormal value based on the threshold value of the geochemical abnormality of the crustal abundance of Au obtained by this method.
  • FIG. 11D is a diagram showing sampling positions (black circles in the figure) determined as abnormal values by the method of the Ministry of International Trade and Industry.
  • the average value of crustal abundance was 1.5 ppb
  • the threshold value was 14 ppb
  • 132 geochemical anomaly points were obtained.
  • the average value of crustal abundance was 2 ppb
  • the average value + 2 ⁇ standard deviation was 75 ppb
  • 65 geochemical abnormalities were obtained.
  • Kitaka area which is a typical deposit area in Akita and Aomori.
  • the average value of the crustal abundance was 17 ppm
  • the threshold value was 57 ppm
  • 11 geochemical anomaly points were obtained.
  • the average value of crustal abundance was 12 ppm
  • the average value + 2 ⁇ standard deviation was 161 ppm
  • 8 geochemical anomaly points were obtained. Therefore, by using this method, more geochemical abnormalities could be grasped in the vicinity of the vein deposit.
  • the average value of crustal abundance was 67 ppm
  • the threshold was 176 ppm
  • 12 geochemical anomaly points were obtained.
  • the average value of the crustal abundance was 65 ppm
  • the average value + 2 ⁇ standard deviation was 534 ppm
  • two geochemical anomaly points were obtained. Therefore, by using this method, more geochemical abnormalities could be grasped in the vicinity of the vein deposit.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Food Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

A crust data analysis device (1) is provided with: an acquisition unit (41) for acquiring a plurality of data items indicating the crustal abundance of a prescribed element or compound at a plurality of locations; a generation unit (42) for using differing first thresholds to delete, from the plurality of data items, data for which the crustal abundance is greater than or equal to the first threshold corresponding to the data item and generating a plurality of data items for which deletion has been completed; a determination unit (43) for determining whether the data composing the data items for which deletion has been completed conforms to a normal distribution having the average crustal abundance of the prescribed element or compound within an area larger than the area including the plurality of positions as the mean thereof; and a setting unit (44) for setting a geochemical anomaly threshold to the maximum crustal abundance value in the data item for which deletion has been completed having the smallest amount of data from among the plurality of data items for which deletion has been completed that have been determined to not conform to the normal distribution.

Description

地殻データ解析方法、地殻データ解析プログラム及び地殻データ解析装置Crustal data analysis method, crustal data analysis program, and crustal data analysis apparatus
 本発明は、地化学探査に用いられる地殻データ解析方法、地殻データ解析プログラム及び地殻データ解析装置に関する。 The present invention relates to a crustal data analysis method, a crustal data analysis program, and a crustal data analysis apparatus used for geochemical exploration.
 地化学探査のデータ解析において、地殻から採取した複数のサンプルの物質含有量が常用対数で正規分布に従うことが知られている。図9は、地殻から採取した複数のサンプルにおいて、各岩における含有元素の一般的な含有率に対応する後背値と、鉱徴の存在を示唆する異常値との頻度分布の例を示す図である。図9において、横軸は物質含有量の常用対数であり、縦軸はそれぞれの物質含有量に対応するサンプルの数である。図9には、後背値の頻度分布FD1と、異常値の頻度分布FD2とが示されている。これら後背値の頻度分布FD1及び異常値の頻度分布FD2は、独立して正規分布に従う傾向にある。 In geochemical exploration data analysis, it is known that the substance content of multiple samples collected from the crust follows a normal distribution with a common logarithm. FIG. 9 is a diagram showing an example of a frequency distribution of a dorsal value corresponding to a general content rate of contained elements in each rock and an abnormal value suggesting the presence of mineral occurrence in a plurality of samples collected from the crust. is there. In FIG. 9, the horizontal axis represents the common logarithm of substance content, and the vertical axis represents the number of samples corresponding to each substance content. FIG. 9 shows a dorsal value frequency distribution FD1 and an abnormal value frequency distribution FD2. These dorsal value frequency distribution FD1 and abnormal value frequency distribution FD2 tend to follow a normal distribution independently.
 従来、地殻から採取した複数のサンプルを、後背値の母集団と異常値の母集団とに分離するために、複数のサンプルの含有元素の頻度分布に対して、複数のサンプルの含有元素の閾値を設定することが行われている。 Conventionally, in order to separate a plurality of samples collected from the crust into a population of dorsal values and a population of abnormal values, the threshold values of the contained elements of the multiple samples with respect to the frequency distribution of the contained elements of the multiple samples Has been set up.
 例えば、複数のサンプルそれぞれの物質含有量を示すデータのうち、常用対数で正規分布に従う一の母集団に属する複数のデータが、累積頻度分布において直線を示すことに着目し、累積頻度分布における直線の屈曲点から、後背値の母集団と、異常値の母集団との閾値を読み取る手法が開示されている(例えば、非特許文献1参照)。 For example, paying attention to the fact that a plurality of data belonging to one population that follows the normal distribution in the common logarithm among the data indicating the substance content of each of a plurality of samples shows a straight line in the cumulative frequency distribution, the straight line in the cumulative frequency distribution A method of reading a threshold value between a population of dorsal values and a population of abnormal values from an inflection point is disclosed (for example, see Non-Patent Document 1).
 図10は、複数のサンプルそれぞれにおける各元素の分析値の累積頻度分布図である。図10において、横軸は各元素の含有量を示し、縦軸は正規分布確率を示す。図10では、例えば、モリブデン(Mo)の累積分布を示す直線が、約2ppm及び約8ppmにおいて屈曲していることが確認できる。これにより、約2ppm以下の線分が後背値の母集団によって形成され、約2ppmから約8ppmまでの線分が、後背値の母集団及び異常値の母集団によって形成され、約8ppm以上の線分が異常値の母集団によって形成されていることが確認できる。そこで、Moにおける後背値に対応する母集団と、異常値に対応する母集団との閾値を約2ppmから約8ppmの間に設定することができる。
 また、閾値を決定する他の手法として、常用対数での平均値に標準偏差を加算した値の倍数で閾値を決定する手法が開示されている(例えば、非特許文献2参照)。
FIG. 10 is a cumulative frequency distribution diagram of analysis values of each element in each of a plurality of samples. In FIG. 10, the horizontal axis indicates the content of each element, and the vertical axis indicates the normal distribution probability. In FIG. 10, for example, it can be confirmed that the straight line indicating the cumulative distribution of molybdenum (Mo) is bent at about 2 ppm and about 8 ppm. Thus, a line segment of about 2 ppm or less is formed by the population of dorsal values, and a line segment from about 2 ppm to about 8 ppm is formed of the population of dorsal values and the population of abnormal values, and a line of about 8 ppm or more is formed. It can be confirmed that the minute is formed by the population of abnormal values. Therefore, the threshold value of the population corresponding to the back value in Mo and the population corresponding to the abnormal value can be set between about 2 ppm and about 8 ppm.
As another method for determining the threshold value, a method is disclosed in which the threshold value is determined by a multiple of a value obtained by adding the standard deviation to the average value in the common logarithm (see, for example, Non-Patent Document 2).
 しかしながら、複数のサンプルの物質含有量に基づいて後背値の母集団と異常値の母集団との閾値を決定しようとしても、図9に示されるように屈曲点が明確に示されないことが多い。従って、非特許文献1に開示されている手法を用いたとしても、閾値の設定が困難である場合がある。 However, in many cases, the inflection point is not clearly shown as shown in FIG. 9 even when the threshold values of the population of the back value and the population of the abnormal value are determined based on the substance contents of a plurality of samples. Therefore, even if the method disclosed in Non-Patent Document 1 is used, it may be difficult to set the threshold value.
 また、非特許文献2に開示されている手法を用いたとしても、地化学分析の検出限界未満のデータに対して検出限界値の半分の値を与えることで、本来の平均値や標準偏差が得られないことがある。さらに、明らかに正規分布に従っていない母集団に対しては、非特許文献2に開示されている手法を適用しても閾値を適切に設定できないという問題がある。 Moreover, even if the method disclosed in Non-Patent Document 2 is used, by giving a value that is half the detection limit value to data less than the detection limit of geochemical analysis, the original average value and standard deviation can be reduced. It may not be obtained. Furthermore, there is a problem that a threshold cannot be set appropriately even if the method disclosed in Non-Patent Document 2 is applied to a population that clearly does not follow the normal distribution.
 そこで、正規分布に従わない母集団や、地化学分析の検出限界未満のデータを含む複数のデータについても、地化学異常の閾値を適切に設定できるようにすることが望まれている。 Therefore, it is desired to be able to appropriately set a threshold value for geochemical abnormality even for a population that does not follow a normal distribution and a plurality of data including data that is less than the detection limit of geochemical analysis.
 本発明は、地化学異常の閾値を適切に設定することができる地殻データ解析方法、地殻データ解析プログラム及び地殻データ解析装置を提供することを目的とする。 The object of the present invention is to provide a crustal data analysis method, a crustal data analysis program, and a crustal data analysis apparatus that can appropriately set a threshold value for a geochemical abnormality.
 本発明に係る地殻データ解析方法は、複数の位置における所定の元素又は化合物の地殻存在度を示す複数のデータを取得するステップと、前記複数のデータから一部のデータを削除して、複数の削除済データを生成するステップと、前記複数の削除済データのそれぞれについて、当該削除済データを構成する複数のデータが正規分布に従うか否かを判定するステップと、前記判定した結果に基づいて、地化学異常の閾値を決定するステップと、を備える。 The crustal data analysis method according to the present invention includes a step of obtaining a plurality of data indicating the crustal abundance of a predetermined element or compound at a plurality of positions, and deleting some data from the plurality of data, Based on the determination result, the step of generating deleted data, the step of determining whether or not the plurality of data constituting the deleted data follow a normal distribution for each of the plurality of deleted data, Determining a threshold for geochemical anomaly.
 また、本発明に係る地殻データ解析方法では、前記複数の削除済データを生成するステップにおいて、それぞれ異なる第1の閾値を用いて、前記複数のデータから、当該複数のデータの地殻存在度が前記第1の閾値以上のデータを削除して、複数の削除済データを生成し、前記判定するステップにおいて、前記削除済データを構成する複数のデータが、前記複数の位置を含むエリアよりも広いエリアにおける前記所定の元素又は化合物の平均地殻存在度を平均値とする正規分布に従うか否かを判定し、前記閾値を決定するステップにおいて、前記正規分布に従わないと判定された複数の前記削除済データのうち、最もデータ数が少ない削除済データにおける最大の前記地殻存在度の値から所定範囲内の値を地化学異常の閾値に決定してもよい。 Further, in the crustal data analysis method according to the present invention, in the step of generating the plurality of deleted data, the crustal presence of the plurality of data is calculated from the plurality of data by using different first threshold values. An area where a plurality of data constituting the deleted data is wider than an area including the plurality of positions in the determining step by deleting data equal to or greater than the first threshold to generate a plurality of deleted data. In the step of determining whether or not to follow a normal distribution with an average crustal abundance of the predetermined element or compound in the mean value, and determining the threshold, a plurality of the deleted that has been determined not to follow the normal distribution Among the data, a value within a predetermined range from the maximum value of the crustal abundance in the deleted data with the smallest number of data may be determined as the threshold for geochemical abnormality. .
 また、本発明に係る地殻データ解析方法では、前記複数の削除済データを生成するステップにおいて、それぞれ異なる第1の閾値を用いて、前記複数のデータから、当該複数のデータの地殻存在度が第1の閾値以上のデータを削除するとともに、前記第1の閾値よりも低い第2の閾値を用いて、前記第2の閾値以下のデータを削除して、前記複数の削除済データを生成してもよい。 Further, in the crustal data analysis method according to the present invention, in the step of generating the plurality of deleted data, a crustal presence degree of the plurality of data is determined from the plurality of data by using different first threshold values. Deleting data equal to or greater than one threshold, and using a second threshold lower than the first threshold, deleting data equal to or less than the second threshold, and generating the plurality of deleted data Also good.
 また、本発明に係る地殻データ解析方法では、前記第2の閾値は、前記地殻存在度の検出限界値であり、前記複数の削除済データを生成するステップにおいて、前記第2の閾値以下のデータを削除した後に、前記第1の閾値以上のデータを削除することにより前記削除済データを生成してもよい。 Further, in the crustal data analysis method according to the present invention, the second threshold value is a detection limit value of the crustal presence, and in the step of generating the plurality of deleted data, data equal to or less than the second threshold value. The deleted data may be generated by deleting data that is equal to or greater than the first threshold after deleting.
 また、本発明に係る地殻データ解析方法では、前記複数の削除データを生成するステップにおいて、前記第1の閾値を順番に小さくして、前記複数の削除済データを生成し、前記判定するステップにおいて、一の前記削除済データが生成されたことに応じて、前記判定を行ってもよい。 Further, in the crustal data analysis method according to the present invention, in the step of generating the plurality of deletion data, the first threshold value is sequentially decreased to generate the plurality of deleted data, and in the determination step The determination may be performed in response to the generation of the one deleted data.
 また、本発明に係る地殻データ解析方法では、前記複数の削除データを生成するステップにおいて、二分探索法に基づいて前記第1の閾値を決定し、決定した第1の閾値に基づいて、前記削除済データを生成してもよい。 In the crustal data analysis method according to the present invention, in the step of generating the plurality of deletion data, the first threshold is determined based on a binary search method, and the deletion is performed based on the determined first threshold. Completed data may be generated.
 本発明に係る地殻データ解析プログラムは、コンピュータを、複数の位置における所定の元素又は化合物の地殻存在度を示す複数のデータを取得する取得部、前記複数のデータから一部のデータを削除して、複数の削除済データを生成する生成部、前記複数の削除済データのそれぞれについて、当該削除済データを構成する複数のデータが正規分布に従うか否かを判定する判定部、及び、前記判定した結果に基づいて地化学異常の閾値を決定する決定部、として機能させる。 The crustal data analysis program according to the present invention includes a computer that acquires a plurality of data indicating the crustal abundance of predetermined elements or compounds at a plurality of positions, and deletes some data from the plurality of data. A generation unit that generates a plurality of deleted data, a determination unit that determines whether or not a plurality of pieces of data constituting the deleted data follow a normal distribution for each of the plurality of deleted data, and the determination It is made to function as a determination part which determines the threshold value of geochemical abnormality based on a result.
 本発明に係る地殻データ解析装置は、複数の位置における所定の元素又は化合物の地殻存在度を示す複数のデータを取得する取得部と、前記複数のデータから一部のデータを削除して、複数の削除済データを生成する生成部と、前記複数の削除済データのそれぞれについて、当該削除済データを構成する複数のデータが正規分布に従うか否かを判定する判定部と、前記判定した結果に基づいて、地化学異常の閾値を決定する決定部と、を備える。 The crustal data analysis apparatus according to the present invention includes an acquisition unit that acquires a plurality of data indicating the crustal abundances of a predetermined element or compound at a plurality of positions, a part of the plurality of data is deleted, and a plurality of data is deleted. A generation unit that generates the deleted data, a determination unit that determines whether or not a plurality of pieces of data constituting the deleted data follow a normal distribution, and a result of the determination And a determination unit that determines a threshold for geochemical abnormality.
 本発明によれば、地化学異常の閾値を適切に設定することができる。 According to the present invention, the threshold for geochemical abnormality can be set appropriately.
第1の実施形態に係る地殻データ解析装置の機能構成図である。It is a functional lineblock diagram of the crust data analysis device concerning a 1st embodiment. 第1の実施形態に係る地殻データ解析装置において、地化学異常の閾値を決定するまでの処理の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of a process until the threshold value of geochemical abnormality is determined in the crustal data analysis apparatus which concerns on 1st Embodiment. 第1の実施形態に係る第1エリアに適用された実在するエリアにおけるサンプルの採取位置を示す図である。It is a figure which shows the collection position of the sample in the existing area applied to the 1st area which concerns on 1st Embodiment. 鉛の分析値の頻度分布図である。It is a frequency distribution map of the analytical value of lead. 鉛の分析値の累積頻度分布図である。It is a cumulative frequency distribution diagram of the analytical value of lead. 鉛の地殻存在度の地化学異常の閾値に基づき、異常値と判定された採取位置を示す図である。It is a figure which shows the sampling position determined to be an abnormal value based on the threshold value of the geochemical abnormality of the crustal abundance of lead. 亜鉛の分析値の頻度分布図である。It is a frequency distribution map of the analytical value of zinc. 亜鉛の分析値の累積頻度分布図である。It is a cumulative frequency distribution figure of the analytical value of zinc. 亜鉛の地殻存在度の地化学異常の閾値に基づき、異常値と判定された採取位置を示す図である。It is a figure which shows the sampling position determined to be an abnormal value based on the threshold value of the geochemical abnormality of the crustal abundance of zinc. 銀の分析値の頻度分布図である。It is a frequency distribution map of the analytical value of silver. 銀の分析値の累積頻度分布図である。It is a cumulative frequency distribution map of the analytical value of silver. 銀の地殻存在度の地化学異常の閾値に基づき、異常値と判定された採取位置を示す図である。It is a figure which shows the sampling position determined to be an abnormal value based on the threshold value of the geochemical abnormality of the degree of silver crust. 硫黄の分析値の頻度分布図である。It is a frequency distribution map of the analytical value of sulfur. 硫黄の分析値の累積頻度分布図である。It is a cumulative frequency distribution map of the analytical value of sulfur. 硫黄の地殻存在度の地化学異常の閾値に基づき、異常値と判定された採取位置を示す図である。It is a figure which shows the sampling position determined to be an abnormal value based on the threshold of the geochemical abnormality of the degree of sulfur crust presence. 第2の実施形態に係る地殻データ解析装置において、地化学異常の閾値を決定するまでの処理の流れの一例を示すフローチャートである。It is a flowchart which shows an example of the flow of a process until the threshold value of a geochemical abnormality is determined in the crustal data analysis apparatus which concerns on 2nd Embodiment. 地殻から採取した複数のサンプルにおける後背値及び異常値の頻度分布の例を示す図である。It is a figure which shows the example of the frequency distribution of the back value and the abnormal value in the some sample extract | collected from the crust. 複数のサンプルそれぞれにおける各元素の分析値の累積頻度分布図である。It is a cumulative frequency distribution figure of the analysis value of each element in each of a plurality of samples. 北薩・南薩の代表的な鉱床地帯である串木野鉱床におけるAu(金)の分析値の頻度分布図である。It is a frequency distribution map of the analytical value of Au (gold) in the Kushikino deposit, which is a typical deposit zone in the northern and southern areas. Auの分析値の累積頻度分布図である。It is a cumulative frequency distribution figure of the analysis value of Au. 本手法により異常値と判定された採取位置(図中の黒丸)を示す図である。It is a figure which shows the collection position (black circle in a figure) determined to be an abnormal value by this method. 従来の方法により異常値と判定された採取位置(図中の黒丸)を示す図である。It is a figure which shows the collection position (black circle in a figure) determined with the abnormal value by the conventional method.
<第1の実施形態>
[地殻データ解析装置1の構成例]
 図1は、本実施形態に係る地殻データ解析装置1の機能構成図である。
 地殻データ解析装置1は、第1エリアにおける複数の位置において採取されたサンプルを解析して得られた、複数の元素又は化合物(以下、元素等ともいう)それぞれの地殻存在度を示す複数のデータから構成される地殻存在度情報について、後背値の母集団と、異常値の母集団とに分類するための閾値(以下、地化学異常の閾値という)を決定する。以下、当該複数のデータを、対象データという。
<First Embodiment>
[Configuration example of the crustal data analysis apparatus 1]
FIG. 1 is a functional configuration diagram of a crustal data analysis apparatus 1 according to the present embodiment.
The crustal data analyzing apparatus 1 is a plurality of data indicating the crustal abundance of each of a plurality of elements or compounds (hereinafter also referred to as elements) obtained by analyzing samples collected at a plurality of positions in the first area. Threshold values (hereinafter referred to as geochemical anomaly threshold values) for categorizing the crustal abundance information, which are composed of a population of dorsal values and a population of abnormal values, are determined. Hereinafter, the plurality of data is referred to as target data.
 具体的には、地殻データ解析装置1は、対象データから、地殻存在度が第1の閾値以上のデータを削除して削除済データを作成する。そして、地殻データ解析装置1は、削除済データが第1エリアよりも広い第2エリアにおける平均地殻存在度を平均値とする正規分布に従うまで第1の閾値を変化させ、削除済データのうち、最もデータ数が少ない削除済データにおける最大の地殻存在度の値を、地化学異常の閾値に決定する。第2エリアにおける平均地殻存在度として、例えば、Rudnick, R.L. and Gao, S. (2003) The Composition of the Continental Crust, p1-64. In The Crust (ed. R.L. Rudnick) Vol. 3, Treatise on Geochemistry (eds. H.D. Holland and K.K. Turekian), Elsevier-Pergamon, Oxfordに示されている上部大陸地殻の平均化学組成データを用いることができる。 Specifically, the crustal data analysis apparatus 1 deletes data whose crustal presence is equal to or higher than the first threshold value from the target data and creates deleted data. Then, the crustal data analyzing apparatus 1 changes the first threshold value until the deleted data follows a normal distribution having an average value of the average crustal presence in the second area wider than the first area, and among the deleted data, The maximum crustal abundance value in the deleted data with the smallest number of data is determined as the geochemical abnormality threshold. For example, Rudnick, RL and Gao, S. (2003) The Composition of the Continental Crust, p1-64. In The Crust (ed. RL Rudnick) Vol. 3, Treatise on Geochemistry Average chemical composition data of the upper continental crust shown in (eds. HD Holland and 上部 KK 大陸 Turekian), Elsevier-Pergamon, Oxford can be used.
 以下、地殻データ解析装置1の具体的な構成について説明する。
 地殻データ解析装置1は、表示部10と、入力部20と、記憶部30と、制御部40と、を備える。
 表示部10は、例えば、液晶ディスプレイにより構成される。表示部10は、制御部40の制御に応じて各種情報を表示する。
 入力部20は、例えば、マウス又はキーボードにより構成される。入力部20は、ユーザから、各種情報の入力を受け付け、受け付けられた情報を制御部40に出力する。
Hereinafter, a specific configuration of the crustal data analysis apparatus 1 will be described.
The crustal data analysis apparatus 1 includes a display unit 10, an input unit 20, a storage unit 30, and a control unit 40.
The display unit 10 is configured by a liquid crystal display, for example. The display unit 10 displays various information according to the control of the control unit 40.
The input unit 20 is configured by a mouse or a keyboard, for example. The input unit 20 receives input of various types of information from the user and outputs the received information to the control unit 40.
 記憶部30は、例えば、ROM及びRAM、並びにハードディスク等により構成される。記憶部30は、地殻データ解析装置1を機能させるための各種プログラム(図示省略)を記憶する。具体的には、記憶部30は、制御部40を、後述の取得部41、生成部42、判定部43及び決定部44として機能させるための地殻データ解析プログラムを記憶する。なお、地殻データ解析プログラムを、CD-ROMやハードディスク等の記憶媒体に記憶させておき、記憶部30が、当該記憶媒体から取得した地殻データ解析プログラムを記憶してもよい。 The storage unit 30 includes, for example, a ROM and a RAM, and a hard disk. The storage unit 30 stores various programs (not shown) for causing the crustal data analysis apparatus 1 to function. Specifically, the storage unit 30 stores a crustal data analysis program for causing the control unit 40 to function as an acquisition unit 41, a generation unit 42, a determination unit 43, and a determination unit 44 described later. The crustal data analysis program may be stored in a storage medium such as a CD-ROM or a hard disk, and the storage unit 30 may store the crustal data analysis program acquired from the storage medium.
 また、記憶部30は、例えば、対象データを記憶する。また、記憶部30は、第1エリアよりも広い第2エリアにおける複数の位置において測定された複数の元素等それぞれの平均地殻存在度を示す平均化学組成データを記憶する。なお、本実施形態では、第2エリアは、第1エリアを包含するものとする。 Further, the storage unit 30 stores, for example, target data. In addition, the storage unit 30 stores average chemical composition data indicating average crust abundances of a plurality of elements and the like measured at a plurality of positions in a second area wider than the first area. In the present embodiment, the second area includes the first area.
 制御部40は、例えば、CPUにより構成される。制御部40は、記憶部30により記憶されている、地殻データ解析装置1を機能させるための各種プログラムを実行することにより、地殻データ解析装置1に係る機能を統括的に制御する。具体的には、制御部40は、記憶部30に記憶されている、地殻データ解析プログラムを実行することにより、コンピュータを、取得部41と、生成部42と、判定部43と、決定部44として機能させる。以下、取得部41、生成部42、判定部43、及び決定部44について説明する。 The control unit 40 is constituted by a CPU, for example. The control unit 40 comprehensively controls functions related to the crustal data analysis device 1 by executing various programs stored in the storage unit 30 for causing the crustal data analysis device 1 to function. Specifically, the control unit 40 executes a crustal data analysis program stored in the storage unit 30 to obtain a computer, an acquisition unit 41, a generation unit 42, a determination unit 43, and a determination unit 44. To function as. Hereinafter, the acquisition unit 41, the generation unit 42, the determination unit 43, and the determination unit 44 will be described.
 取得部41は、例えば記憶部30から対象データを取得する。すなわち、取得部41は、記憶部30に予め記憶されている、複数の位置における所定の元素又は化合物の地殻存在度を示す複数のデータを取得する。ここで、所定の元素又は化合物とは、後背値の母集団と異常値の母集団との閾値を見出す対象の元素又は化合物である。 The acquisition unit 41 acquires target data from the storage unit 30, for example. That is, the acquisition unit 41 acquires a plurality of pieces of data indicating the crustal abundance of predetermined elements or compounds at a plurality of positions, which are stored in advance in the storage unit 30. Here, the predetermined element or compound is an element or compound that is a target for finding a threshold value between the population of the back value and the population of the abnormal value.
 生成部42は、複数のデータから一部のデータを削除して、複数の削除済データを生成する。具体的には、生成部42は、それぞれ異なる第1の閾値を用いて、取得部41が取得した対象データから、地殻存在度が第1の閾値以上のデータを削除して、複数の削除済データを生成する。より具体的には、生成部42は、対象データが示す地殻存在度のうち最も高い地殻存在度を第1の閾値に設定し、対象データから第1の閾値以上のデータを削除して削除済データを生成する。その後、生成部42は、判定部43の判定の結果、第1の閾値を再設定する場合に、対象データが示す地殻存在度のうち次に高い地殻存在度を第1の閾値に設定し、対象データから第1の閾値以上のデータを削除して削除済データを生成する。 The generation unit 42 deletes some data from a plurality of data and generates a plurality of deleted data. Specifically, the generation unit 42 deletes data having a crust presence degree equal to or higher than the first threshold from the target data acquired by the acquisition unit 41 using different first threshold values, and deletes a plurality of deleted data. Generate data. More specifically, the generation unit 42 sets the highest crust presence level among the crust presence levels indicated by the target data as the first threshold value, and deletes data that is equal to or higher than the first threshold value from the target data and has been deleted. Generate data. Thereafter, when the determination unit 43 determines that the first threshold value is reset, the generation unit 42 sets the second highest crust presence level as the first threshold value among the crust presence levels indicated by the target data, Data that is equal to or greater than the first threshold is deleted from the target data to generate deleted data.
 また、それぞれ異なる複数の値を示す複数のデータを第1の閾値のデータセットとして記憶部30に予め記憶させておき、生成部42は、当該データセットから、値が高い順にデータを抽出し、抽出したデータの値を第1の閾値に設定してもよい。 Further, a plurality of data indicating a plurality of different values are stored in advance in the storage unit 30 as a first threshold data set, and the generation unit 42 extracts data from the data set in descending order of values, The value of the extracted data may be set as the first threshold value.
 ここで、生成部42は、それぞれ異なる第1の閾値を用いて、対象データから、当該複数のデータの地殻存在度が第1の閾値以上のデータを削除するとともに、第1の閾値よりも低い第2の閾値を用いて、対象データから第2の閾値以下のデータを削除して、複数の削除済データを生成してもよい。なお、第2の閾値は、対象データにおける地殻存在度の検出限界値である。
 また、生成部42は、対象データから第2の閾値以下のデータを削除した後に、第1の閾値以上のデータを削除することにより削除済データを生成してもよい。
Here, the generation unit 42 deletes data whose crustal presence of the plurality of data is equal to or higher than the first threshold from the target data using different first thresholds, and is lower than the first threshold. A plurality of deleted data may be generated by deleting data equal to or lower than the second threshold from the target data using the second threshold. The second threshold is a detection limit value of the crustal presence in the target data.
The generation unit 42 may generate deleted data by deleting data that is equal to or higher than the first threshold after deleting data that is equal to or lower than the second threshold from the target data.
 判定部43は、複数の削除済データのそれぞれについて、当該削除済データを構成する複数のデータが正規分布に従うか否かを判定する。判定部43は、以下に示すように、削除済データを構成する複数のデータが、第2エリアにおける所定元素の平均地殻存在度を平均値とする正規分布に従うか否かを判定する。ここで、所定元素とは、後背値の母集団と異常値の母集団との閾値を見出す対象の元素又は化合物を示すものとする。 The determination unit 43 determines, for each of the plurality of deleted data, whether or not the plurality of data constituting the deleted data follows a normal distribution. As shown below, the determination unit 43 determines whether or not a plurality of data constituting the deleted data follow a normal distribution having an average value of the average crust presence of the predetermined element in the second area. Here, the predetermined element refers to an element or a compound for which a threshold value between the population of the back value and the population of the abnormal value is found.
 まず、判定部43は、記憶部30に記憶されている平均化学組成データから、所定元素の平均地殻存在度μを取得する。そして、判定部43は、削除済データを構成する複数のデータの地殻存在度の平均値が、第2エリアにおける所定元素の平均地殻存在度μであるとの帰無仮説をたてる。続いて、判定部43は、以下の式(1)から(3)に基づいて、削除済データを構成する複数のデータの地殻存在度の平均値xbar、分散S、及び検定統計量tを算出する。ここで、削除済データを構成する複数のデータは、n個存在するものとし、複数のデータそれぞれの地殻存在度をx(ただし、iは1以上、n以下の整数である)とする。 First, the determination unit 43 acquires the average crustal abundance μ of a predetermined element from the average chemical composition data stored in the storage unit 30. Then, the determination unit 43 establishes a null hypothesis that the average value of the crust presence of the plurality of data constituting the deleted data is the average crust presence μ of the predetermined element in the second area. Subsequently, the determination unit 43, based on the following formulas (1) to (3), the average value x bar of the crust presence of a plurality of data constituting the deleted data, the variance S 2 , and the test statistic t Is calculated. Here, it is assumed that there are n pieces of data constituting the deleted data, and the crustal presence of each piece of data is x i (where i is an integer between 1 and n).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 続いて、判定部43は、予め記憶部30に記憶されているt分布表から、自由度n-1のt分布の境界値t(n-1)(0.05)を特定し、検定統計量tの絶対値が、当該境界値より大きいか否かを判定する。判定部43は、検定統計量tの絶対値が境界値より大きいと判定した場合に、対立仮説を採択し、削除済データが、第2エリアにおける所定元素の平均地殻存在度を平均値とする正規分布に従わないと判定する。また、判定部43は、検定統計量tの絶対値が境界値以下と判定した場合に、対立仮説を棄却し、削除済データが、第2エリアにおける所定元素の平均地殻存在度を平均値とする正規分布に従うと判定する。 Subsequently, the determination unit 43 specifies the boundary value t (n−1) (0.05) of the t distribution with n−1 degrees of freedom from the t distribution table stored in the storage unit 30 in advance, and the test statistics It is determined whether or not the absolute value of the quantity t is larger than the boundary value. When the determination unit 43 determines that the absolute value of the test statistic t is larger than the boundary value, the determination unit 43 adopts the alternative hypothesis, and the deleted data uses the average crust presence of the predetermined element in the second area as the average value. It is determined that the normal distribution is not followed. Further, when the determination unit 43 determines that the absolute value of the test statistic t is equal to or less than the boundary value, the determination unit 43 rejects the alternative hypothesis, and the deleted data indicates that the average crust presence of the predetermined element in the second area is the average value. It is determined to follow a normal distribution.
 決定部44は、判定した結果に基づいて、地化学異常の閾値を決定する。具体的には、決定部44は、正規分布に従わないと判定された複数の削除済データのうち、最もデータが少ない削除済データにおける最大の地殻存在度の値を地化学異常の閾値に決定する。 The determination unit 44 determines a threshold for geochemical abnormality based on the determined result. Specifically, the determination unit 44 determines the maximum crustal abundance value in the deleted data with the least data among the plurality of deleted data determined not to follow the normal distribution as the geochemical abnormality threshold value. To do.
[処理フロー]
 続いて、制御部40の処理の流れについて説明する。図2は、第1の実施形態に係る地殻データ解析装置1において、地化学異常の閾値を決定するまでの処理の流れの一例を示すフローチャートである。
[Processing flow]
Next, the process flow of the control unit 40 will be described. FIG. 2 is a flowchart illustrating an example of a processing flow until the geochemical abnormality threshold value is determined in the crustal data analysis apparatus 1 according to the first embodiment.
 まず、取得部41は、記憶部30に記憶されている対象データを取得する(S1)。
 続いて、生成部42は、S1において取得された対象データから、地殻存在度が第2の閾値以下のデータを削除する(S2)。
First, the acquisition unit 41 acquires target data stored in the storage unit 30 (S1).
Subsequently, the generation unit 42 deletes data whose crust presence is equal to or less than the second threshold from the target data acquired in S1 (S2).
 続いて、生成部42は、第1の閾値を決定する(S3)。例えば、生成部42は、当該処理の実行回数が1回の場合、すなわち、当該処理を初めて実行する場合に、対象データにおいて最も高い地殻存在度を第1の閾値に決定する。また、生成部42は、当該処理の実行回数が2回以上である場合に、対象データにおいて、直前に決定された第1の閾値に対応する地殻存在度の次に高い地殻存在度を新たな第1の閾値に決定する。 Subsequently, the generation unit 42 determines a first threshold value (S3). For example, when the number of execution times of the process is 1, that is, when the process is executed for the first time, the generation unit 42 determines the highest crust presence in the target data as the first threshold value. In addition, when the number of execution times of the process is two or more, the generation unit 42 sets a new crust presence level next to the crust presence level corresponding to the first threshold value determined immediately before in the target data. The first threshold is determined.
 続いて、生成部42は、対象データから第1の閾値以上のデータを削除して削除済データを生成する(S4)。
 続いて、判定部43は、削除済データが、第2エリアにおける所定元素の平均地殻存在度を平均値とする正規分布に従うか否かを判定する(S5)。判定部43は、正規分布に従うと判定した場合(S5の判定がYesの場合)に、S6に処理を移す。また、判定部43は、正規分布に従わないと判定した場合(S5の判定がNoの場合)に、S1に処理を移す。
Subsequently, the generation unit 42 deletes data having a first threshold value or more from the target data to generate deleted data (S4).
Subsequently, the determination unit 43 determines whether or not the deleted data follows a normal distribution having an average value of the average crust presence of the predetermined element in the second area (S5). If the determination unit 43 determines to follow the normal distribution (if the determination in S5 is Yes), the determination unit 43 moves the process to S6. Moreover, the determination part 43 transfers a process to S1, when it determines with not following normal distribution (when determination of S5 is No).
 続いて、決定部44は、S4で生成され、正規分布に従わないと判定された複数の削除済データのうち、最もデータ数が少ない削除済データ、すなわち、直前に生成された削除済データを特定する。続いて、決定部44は、特定した削除済データにおける最大の地殻存在度の値を地化学異常の閾値に決定する(S6)。 Subsequently, the determination unit 44 deletes the deleted data having the smallest number of data among the plurality of deleted data generated in S4 and determined not to follow the normal distribution, that is, the deleted data generated immediately before. Identify. Subsequently, the determination unit 44 determines the maximum value of the crustal presence in the specified deleted data as the threshold for geochemical abnormality (S6).
[実データへの適用例]
 図3は、第1の実施形態に係る第1エリアに適用された実在するエリア(豊羽鉱脈鉱床)におけるサンプルの採取位置を示す図である。図3に示す採取位置は、非特許文献2に記載されている豊羽鉱脈鉱床の184地点である。非特許文献2に記載されている、それらの地点の地表で採取された岩石試料の分析値を、本実施形態に係る手法を適用する対象データとして用いた。図3に示される黒点は、サンプルの採取位置である。ここでは、上記の地点で採取された複数の岩石試料を分析して得られた鉛(Pb)、亜鉛(Zn)、銀(Ag)、硫黄(S)の含有量に基づいて、それぞれの元素における地化学異常の閾値の決定を行った。
[Example of application to actual data]
FIG. 3 is a diagram illustrating a sampling position of a sample in an existing area (Toyoha vein deposit) applied to the first area according to the first embodiment. The sampling position shown in FIG. 3 is 184 points of the Toyoha vein deposit described in Non-Patent Document 2. Analytical values of rock samples collected on the surface of those points described in Non-Patent Document 2 were used as target data to which the method according to this embodiment is applied. The black dots shown in FIG. 3 are sample collection positions. Here, based on the content of lead (Pb), zinc (Zn), silver (Ag), and sulfur (S) obtained by analyzing a plurality of rock samples collected at the above points, each element The threshold of geochemical anomaly was determined.
 図4Aは、鉛(Pb)の分析値の頻度分布図である。図4Aにおける横軸は、Pbの地殻存在度の常用対数の値を示す。図4Bは、鉛の分析値の累積頻度分布図である。図4Bの横軸は、Pbの地殻存在度を示し、縦軸は正規分布確率の逆関数を示す。図4Cは、鉛の地殻存在度の地化学異常の閾値に基づき、異常値と判定された採取位置を示す図である。図4Cにおいて、図3に示した黒点と同じ大きさの黒点は、Pbの地殻存在度が1.5~16ppmであった採取位置を示し、白丸は、Pbの地殻存在度が17~24ppmであった採取位置を示し、黒点よりも大きな黒丸は、Pbの地殻存在度が25~70ppmであった採取位置を示している。 FIG. 4A is a frequency distribution diagram of analysis values of lead (Pb). The horizontal axis in FIG. 4A indicates the value of the common logarithm of the crustal abundance of Pb. FIG. 4B is a cumulative frequency distribution diagram of lead analysis values. The horizontal axis of FIG. 4B shows the crustal abundance of Pb, and the vertical axis shows the inverse function of the normal distribution probability. FIG. 4C is a diagram illustrating a sampling position determined to be an abnormal value based on a geochemical anomaly threshold value of lead crustal abundance. In FIG. 4C, a black spot having the same size as the black spot shown in FIG. 3 indicates a sampling position where the crustal abundance of Pb was 1.5 to 16 ppm, and a white circle represents a crustal abundance of Pb of 17 to 24 ppm. A black circle larger than the black point indicates a sampling position where the crustal abundance of Pb was 25 to 70 ppm.
 第1エリアにおけるPbの地殻存在度は、最大値が70ppm、最小値が1.5ppmであり、これら複数のデータの平均値xbarは5.2ppmである。また、記憶部30に記憶されている平均化学組成データにおけるPbの地殻存在度の平均値は、17ppmである。これらの結果に基づいて、地殻データ解析装置1が地化学異常の閾値を算出した結果、当該閾値は、25ppmであった。第1エリアでは、25ppmを超える地化学異常の地点として、10点が得られた。なお、地化学異常の閾値と同値の地殻存在度のサンプルが採取された地点も地化学異常の地点としてもよい。このように、図4Bに示すように累積頻度分布図がほぼ直線を示している場合であっても、本実施形態に係る手法によれば、地化学異常を示す地点を抽出できることがわかる。 As for the crustal abundance of Pb in the first area, the maximum value is 70 ppm and the minimum value is 1.5 ppm, and the average value x bar of the plurality of data is 5.2 ppm. The average value of the crustal abundance of Pb in the average chemical composition data stored in the storage unit 30 is 17 ppm. Based on these results, the crustal data analysis apparatus 1 calculated the threshold value of the geochemical abnormality, and as a result, the threshold value was 25 ppm. In the first area, 10 points were obtained as geochemical abnormality points exceeding 25 ppm. In addition, the point where the sample of the crustal abundance having the same value as the threshold value of the geochemical abnormality may be taken as the point of the geochemical abnormality. Thus, even when the cumulative frequency distribution diagram shows a substantially straight line as shown in FIG. 4B, it can be seen that according to the method according to the present embodiment, a point indicating a geochemical abnormality can be extracted.
 図5Aは、亜鉛(Zn)の分析値の頻度分布図である。図5Bは、亜鉛の分析値の累積頻度分布図である。図5Cは、亜鉛の地殻存在度の地化学異常の閾値に基づき、異常値と判定された採取位置を示す図である。図5Cにおける黒点は、Znの地殻存在度が0.5~66ppmであった採取位置を示し、白丸は、Znの地殻存在度が67~96ppmであった採取位置を示し、黒丸は、Znの地殻存在度が97~370ppmであった採取位置を示している。 FIG. 5A is a frequency distribution diagram of analytical values of zinc (Zn). FIG. 5B is a cumulative frequency distribution diagram of analytical values of zinc. FIG. 5C is a diagram showing a sampling position determined as an abnormal value based on a geochemical abnormality threshold value of the crustal abundance of zinc. The black dots in FIG. 5C indicate the sampling positions where the crustal abundance of Zn was 0.5 to 66 ppm, the white circles indicate the sampling positions where the crustal abundance of Zn was 67 to 96 ppm, and the black circles represent Zn. The sampling position where the crust abundance was 97 to 370 ppm is shown.
 第1エリアにおけるZnの地殻存在度は、最大値が370ppm、最小値が0.5ppmであり、これら複数のデータの平均値xbarは45.9ppmである。また、記憶部30に記憶されている平均化学組成データにおけるZnの地殻存在度の平均値は、67ppmである。これらの結果に基づいて、地殻データ解析装置1が地化学異常の閾値を算出した結果、当該閾値は、97ppmであった。第1エリアでは、97ppmを超える地化学異常の地点として、23点が得られた。 As for the crustal abundance of Zn in the first area, the maximum value is 370 ppm and the minimum value is 0.5 ppm, and the average value x bar of the plurality of data is 45.9 ppm. In addition, the average value of Zn crust presence in the average chemical composition data stored in the storage unit 30 is 67 ppm. Based on these results, the crustal data analysis apparatus 1 calculated the threshold value for geochemical abnormality, and as a result, the threshold value was 97 ppm. In the first area, 23 points were obtained as geochemical anomalies exceeding 97 ppm.
 図6Aは、銀(Ag)の分析値の頻度分布図である。図6Bは、銀の分析値の累積頻度分布図である。図6Cは、銀の地殻存在度の地化学異常の閾値に基づき、異常値と判定された採取位置を示す図である。図6Cにおける黒点は、Agの地殻存在度が0.1ppm以下であった採取位置を示し、黒丸は、Agの地殻存在度が0.2~6.2ppmであった採取位置を示している。 FIG. 6A is a frequency distribution diagram of analysis values of silver (Ag). FIG. 6B is a cumulative frequency distribution diagram of analysis values of silver. FIG. 6C is a diagram illustrating a sampling position determined as an abnormal value based on a threshold value of a geochemical abnormality of the degree of silver crust presence. The black dots in FIG. 6C indicate the sampling positions where the crustal abundance of Ag was 0.1 ppm or less, and the black circles indicate the sampling positions where the crustal abundance of Ag was 0.2 to 6.2 ppm.
 第1エリアにおけるAgの地殻存在度は、最大値が6.2ppm、最小値が0.1ppmであり、これら複数のデータの平均値xbarは0.2ppmである。また、Agの検出限界値は、0.2ppmである。また、記憶部30に記憶されている平均化学組成データにおけるAgの地殻存在度の平均値は、53ppbである。これらの結果に基づいて、地殻データ解析装置1が地化学異常の閾値を算出した結果、0.2ppmのデータを削除しない場合の削除済データが地殻存在度の平均値53ppbの地殻存在度の正規分布に従わないことから、検出限界値である0.2ppmが地化学異常の閾値に決定された。その結果、第1エリアでは、検出限界値である0.2ppmを超える地化学異常の地点として、35点が得られた。 As for the crustal abundance of Ag in the first area, the maximum value is 6.2 ppm and the minimum value is 0.1 ppm, and the average value x bar of the plurality of data is 0.2 ppm. The detection limit value of Ag is 0.2 ppm. Moreover, the average value of Ag crustal abundance in the average chemical composition data stored in the storage unit 30 is 53 ppb. Based on these results, the crustal data analysis apparatus 1 calculates the threshold value of the geochemical anomaly. As a result, the deleted data when the 0.2 ppm data is not deleted is the normal value of the crustal abundance with an average crust abundance of 53 ppb. Since it did not follow the distribution, the detection limit value of 0.2 ppm was determined as the geochemical abnormality threshold. As a result, in the first area, 35 points were obtained as points of geochemical abnormality exceeding the detection limit value of 0.2 ppm.
 図7Aは、硫黄(S)の分析値の頻度分布図である。図7Bは、硫黄の分析値の累積頻度分布図である。図7Cは、硫黄の地殻存在度の地化学異常の閾値に基づき、異常値と判定された採取位置を示す図である。図7Cにおける黒点は、Sの地殻存在度が0.005~0.05ppmであった採取位置を示し、白丸は、Sの地殻存在度が0.06~0.09ppmであった採取位置を示し、黒丸は、Sの地殻存在度が0.1~4.41ppmであった採取位置を示している。 FIG. 7A is a frequency distribution diagram of analysis values of sulfur (S). FIG. 7B is a cumulative frequency distribution diagram of analysis values of sulfur. FIG. 7C is a diagram illustrating a sampling position determined as an abnormal value based on a threshold of geochemical abnormality of sulfur crustal abundance. A black dot in FIG. 7C indicates a sampling position where the crustal abundance of S was 0.005 to 0.05 ppm, and a white circle indicates a sampling position where the crustal abundance of S was 0.06 to 0.09 ppm. The black circles indicate the sampling positions where the crustal abundance of S was 0.1 to 4.41 ppm.
 第1エリアにおける硫黄の地殻存在度は、最大値が4.41%、最小値が0.005%であり、これら複数のデータの平均値xbarは0.2%である。また、記憶部30に記憶されている平均化学組成データにおけるSの地殻存在度の平均含有量は、0.06%である。これらの結果に基づいて、地殻データ解析装置1が地化学異常の閾値を算出した結果、0.1%が地化学異常の閾値に決定され、地化学異常の地点として、109点が得られた。 The maximum crustal abundance of sulfur in the first area is 4.41% and the minimum value is 0.005%, and the average value x bar of the plurality of data is 0.2%. Moreover, the average content of the crustal abundance of S in the average chemical composition data stored in the storage unit 30 is 0.06%. Based on these results, the crustal data analysis apparatus 1 calculated the threshold value for geochemical abnormality, and as a result, 0.1% was determined as the threshold value for geochemical abnormality, and 109 points were obtained as points for the geochemical abnormality. .
[比較例]
 続いて、上述の第1エリアに適用された実在するエリアの163地点において採取されたサンプルにおける各元素等の含有量について、他の手法を用いて地化学異常の閾値の決定を行った。
 ここでは、通商産業省が1986年に提案した、常用対数での平均値に標準偏差を加算した値の倍数で閾値を決定する手法(以下、通商産業省の手法)により、Pb、Zn、Ag、Sの地化学異常の閾値を決定した例について説明する。
[Comparative example]
Subsequently, with respect to the content of each element and the like in the sample collected at 163 points in the existing area applied to the first area, the threshold for geochemical abnormality was determined using another method.
Here, Pb, Zn, and Ag are determined by a method (hereinafter referred to as the method of the Ministry of International Trade and Industry) proposed by the Ministry of International Trade and Industry in 1986 to determine a threshold value by a multiple of a value obtained by adding a standard deviation to an average value of common logarithms. An example in which the threshold value for geochemical abnormality of S is determined will be described.
 Pbは、平均値が5.2ppm、平均値+標準偏差が13.2ppm、平均値+2×標準偏差が33.4ppmである。この場合、地化学異常の現れ方は、地殻データ解析装置1による手法と、常用対数での平均値に標準偏差を加算した値の倍数で閾値を決定する通商産業省の手法とで大差が無いものと考えられる。 Pb has an average value of 5.2 ppm, an average value + standard deviation of 13.2 ppm, and an average value + 2 × standard deviation of 33.4 ppm. In this case, the appearance of geochemical anomalies is not much different between the method of the crustal data analysis apparatus 1 and the method of the Ministry of International Trade and Industry that determines the threshold value by a multiple of the value obtained by adding the standard deviation to the average value in the common logarithm. It is considered a thing.
 Znは、平均値は45.9ppm、平均値+標準偏差が146.6ppm、平均値+2×標準偏差が468.0ppmである。平均値+2×標準偏差以上の値は対象データには存在しない。また、平均値の45.9ppmは、上部大陸地殻の平均化学組成データで示されている地殻存在度の平均値である67ppmよりも小さい。したがって、通商産業省の手法では、地殻データ解析装置1を用いた手法によって検出できた異常値の母集団を検出することができない。 Zn has an average value of 45.9 ppm, an average value + standard deviation of 146.6 ppm, and an average value + 2 × standard deviation of 468.0 ppm. A value greater than the average value + 2 × standard deviation does not exist in the target data. The average value of 45.9 ppm is smaller than 67 ppm, which is the average value of the crustal abundance indicated by the average chemical composition data of the upper continental crust. Therefore, the method of the Ministry of International Trade and Industry cannot detect a population of abnormal values that can be detected by the method using the crustal data analysis apparatus 1.
 Agは、平均値が0.2ppm、平均値+標準偏差が0.4ppm、平均値+2×標準偏差が0.9ppmである。ここで、0.4ppmより大きい地点は25点、0.9ppmより大きい地点は9点存在する。通商産業省の手法でも、地化学異常の鉱脈の潜在箇所は得られるが、検出限界値を考慮することなく地化学異常の閾値が決定されるため、適切に当該閾値が決定されない場合がある。したがって、通商産業省の手法に比べて、地殻データ解析装置1による地化学異常の閾値を決定方法の方が、地化学異常の存在を的確に示していると考えられる。 Ag has an average value of 0.2 ppm, an average value + standard deviation of 0.4 ppm, and an average value + 2 × standard deviation of 0.9 ppm. Here, there are 25 points greater than 0.4 ppm and 9 points greater than 0.9 ppm. Even with the method of the Ministry of International Trade and Industry, a potential portion of a geochemical anomaly vein can be obtained, but the threshold value for the geochemical anomaly is determined without considering the detection limit value, so that the threshold value may not be appropriately determined. Therefore, compared with the method of the Ministry of International Trade and Industry, it is considered that the method for determining the threshold value of the geochemical abnormality by the crustal data analysis apparatus 1 more accurately indicates the presence of the geochemical abnormality.
 Sは、平均値が0.2%、平均値+標準偏差が1.1%、平均値+2×標準偏差が6.1%である。この6.1%という値は、サンプル中に存在しない地殻存在度であり、さらに、平均化学組成データに示される地殻存在度の平均値を大きく上回っている。したがって、通商産業省の手法では、Sの地化学異常の閾値を適切に決定することができないといえる。これに対して、地殻データ解析装置1による地化学異常の閾値を決定方法では、上述したとおり、地化学異常の地点として、109点が得られている。よって、この結果からも、通商産業省の手法に比べて、地殻データ解析装置1による地化学異常の閾値の決定方法の方が、地化学異常が生じている地点を的確に検出できていると考えられる。 S has an average value of 0.2%, an average value + standard deviation of 1.1%, and an average value + 2 × standard deviation of 6.1%. This value of 6.1% is the crustal abundance that is not present in the sample, and is far above the average value of the crustal abundance shown in the average chemical composition data. Therefore, it can be said that the method of the Ministry of International Trade and Industry cannot appropriately determine the threshold for S geochemical abnormality. On the other hand, in the method for determining the threshold value of the geochemical abnormality by the crustal data analyzing apparatus 1, 109 points are obtained as the points of the geochemical abnormality as described above. Therefore, also from this result, compared with the method of the Ministry of International Trade and Industry, the method of determining the threshold value of the geochemical abnormality by the crustal data analysis apparatus 1 can accurately detect the point where the geochemical abnormality is occurring. Conceivable.
[正規分布の検証]
 続いて、地殻の主な火成岩の平均化学組成が、地殻存在度を平均値とする正規分布に従っているかの検定を行った結果について説明する。具体的には、主な火成岩の平均化学組成が第2エリアにおける平均地殻存在度μの正規分布に従っているとして、母分散の信頼係数95%の信頼区間を求め、その最大の標準偏差σによるμ+σの値を算出した。例えば、SiOは、地殻存在度を平均値とする正規母集団において、93.1%が最大値に近いという結果が示された。この値は、おおよそ強珪化岩の値に相当する。また、MgOは、地殻存在度を平均値とする正規母集団において、25.9%が最大値に近いという結果が示された。これについても、マントルの部分溶融のリキッドに含まれるMgOが20%以上に達することから、25.9という数値も妥当であると考えられる。したがって、地殻の主な火成岩の平均化学組成が、地殻存在度を平均値とする正規分布に従っていることが示された。
[Verification of normal distribution]
Next, the results of testing whether the average chemical composition of the main igneous rocks in the crust conforms to a normal distribution with the crustal abundance as an average value will be described. Specifically, assuming that the average chemical composition of the main igneous rocks follows the normal distribution of the average crustal abundance μ in the second area, a confidence interval with a 95% confidence coefficient of population variance is obtained, and μ + σ by its maximum standard deviation σ The value of was calculated. For example, SiO 2 showed a result that 93.1% was close to the maximum value in a normal population having an average value of crustal abundance. This value roughly corresponds to the value of strong silicified rock. In addition, MgO showed a result that 25.9% was close to the maximum value in the normal population with the average crustal abundance. Also regarding this, since the MgO contained in the partially melted liquid of the mantle reaches 20% or more, the numerical value of 25.9 is also considered appropriate. Therefore, it was shown that the average chemical composition of the main igneous rocks in the crust follows a normal distribution with the average crustal abundance.
[第1の実施形態における効果]
 以上のとおり、本実施形態に係る地殻データ解析装置1は、複数のデータから、複数の削除済データのそれぞれについて、削除済データを構成する複数のデータが正規分布に従うか否かを判定し、当該判定結果に基づいて、地化学異常の閾値を決定する。したがって、地殻データ解析装置1は、複数の削除済データを、正規分布に従う削除済データと、正規分布に従わない削除済データとに分類して、後背値の母集団と、異常値の母集団とに分類し、これら母集団の境界値に基づいて地化学異常の閾値を適切に設定することができる。
[Effect in the first embodiment]
As described above, the crustal data analysis apparatus 1 according to the present embodiment determines whether or not the plurality of data constituting the deleted data follows a normal distribution for each of the plurality of deleted data from the plurality of data. Based on the determination result, a threshold for geochemical abnormality is determined. Therefore, the crustal data analysis apparatus 1 classifies the plurality of deleted data into deleted data that conforms to the normal distribution and deleted data that does not conform to the normal distribution, and a population of dorsal values and a population of abnormal values And the threshold value of the geochemical abnormality can be appropriately set based on the boundary values of these populations.
 また、地殻データ解析装置1は、それぞれ異なる第1の閾値を用いて、複数のデータから、当該複数のデータの地殻存在度が第1の閾値以上のデータを削除して、複数の削除済データを生成し、削除済データを構成する複数のデータが、第1エリアよりも広い第2エリアにおける所定元素の平均地殻存在度を平均値とする正規分布に従うか否かを判定し、正規分布に従わないと判定された複数の削除済データのうち、最もデータ数が少ない削除済データにおける最大の地殻存在度の値を地化学異常の閾値に決定する。 In addition, the crustal data analyzing apparatus 1 deletes data having a crustal abundance of the plurality of data equal to or higher than the first threshold from a plurality of data by using different first threshold values. To determine whether or not the plurality of data constituting the deleted data follow a normal distribution having an average value of the average crust presence of the predetermined element in the second area wider than the first area. Among the plurality of deleted data determined not to be followed, the maximum value of the crustal presence in the deleted data with the smallest number of data is determined as the threshold for geochemical abnormality.
 したがって、地殻データ解析装置1は、複数のデータを、第1エリアよりも広い第2エリアにおける所定元素の平均地殻存在度を平均値とする正規分布に従う母集団と、当該正規分布に従わない母集団とに分類するための地化学異常の閾値を適切に設定することができる。 Therefore, the crustal data analyzing apparatus 1 is configured to analyze a plurality of data from a population that follows a normal distribution having an average value of the average crustal abundance of a predetermined element in a second area wider than the first area, and a mother that does not follow the normal distribution. It is possible to appropriately set a threshold of geochemical abnormality for classifying into a group.
 また、地殻データ解析装置1は、複数の削除済データを生成するステップにおいて、それぞれ異なる第1の閾値を用いて、複数のデータから、当該複数のデータの地殻存在度が第1の閾値以上のデータを削除するとともに、第1の閾値よりも低い第2の閾値を用いて、第2の閾値以下のデータを削除して、複数の削除済データを生成する。すなわち、地殻データ解析装置1は、削除済データから、地殻存在度の検出限界値を示す第2の閾値以下のデータを削除した後に、第1の閾値以上のデータを削除することにより削除済データを生成する。このようにすることで、地殻データ解析装置1は、検出限界値よりも低い地殻存在度を削除した削除済データを用いて正規分布に従うか否かを判定するので、精度よく地化学異常の閾値を判定することができる。 In addition, in the step of generating a plurality of deleted data, the crustal data analysis apparatus 1 uses a first threshold value that is different from each other, and the crustal presence of the plurality of data is greater than or equal to the first threshold value. While deleting the data, the second threshold lower than the first threshold is used to delete data equal to or lower than the second threshold to generate a plurality of deleted data. That is, the crustal data analyzing apparatus 1 deletes the data that has been deleted from the deleted data by deleting the data that is equal to or lower than the second threshold value indicating the detection limit value of the crustal presence, and then deletes the data that is equal to or higher than the first threshold value. Is generated. In this way, the crustal data analysis apparatus 1 determines whether or not to follow the normal distribution using the deleted data obtained by deleting the crustal abundance level lower than the detection limit value. Can be determined.
<第2の実施形態>
[二分探索法を用いて第1の閾値を決定する]
 続いて、第2の実施形態について説明する。
 本実施形態の生成部42が、二分探索法に基づいて第1の閾値を決定し、決定した第1の閾値に基づいて、削除済データを生成する点で第1の実施形態と異なり、その他の点では同じである。
<Second Embodiment>
[Determine first threshold using binary search]
Next, the second embodiment will be described.
Unlike the first embodiment, the generation unit 42 of the present embodiment determines the first threshold based on the binary search method, and generates deleted data based on the determined first threshold. The point is the same.
 具体的には、生成部42は、削除済データを、地殻存在度が低い順に並び替える。続いて、生成部42は、第1の閾値の探索範囲を、平均地殻存在度に最も近い地殻存在度に対応するデータから、地殻存在度が最も高いデータまでに設定する。続いて、生成部42は、当該探索範囲の中間値を第1の閾値の初期値に決定する。続いて、生成部42は、対象データから、決定した第1の閾値以上のデータを削除して削除済データを生成する。
 続いて、判定部43は、削除済データが第2エリアにおける所定元素の平均地殻存在度を平均値とする正規分布に従うか否かを判定する。
Specifically, the generation unit 42 rearranges the deleted data in descending order of crust presence. Subsequently, the generation unit 42 sets the search range of the first threshold from data corresponding to the crustal presence closest to the average crustal presence to data having the highest crustal presence. Subsequently, the generation unit 42 determines an intermediate value of the search range as an initial value of the first threshold value. Subsequently, the generation unit 42 generates deleted data by deleting data that is equal to or greater than the determined first threshold value from the target data.
Subsequently, the determination unit 43 determines whether or not the deleted data follows a normal distribution having the average crustal presence of the predetermined element in the second area as an average value.
 生成部42は、判定部43の判定結果に基づいて、第1の閾値の新たな探索範囲を、直前の探索範囲の半分に縮小し、新たな第1の閾値を決定する。
 具体的には、生成部42は、判定部43が正規分布に従うと判定した場合、現在の探索範囲において第1の閾値よりも大きい範囲を、新たな探索範囲に設定する。また、生成部42は、判定部43が正規分布に従わないと判定した場合、現在の探索範囲において第1の閾値よりも小さい範囲を、新たな探索範囲に設定する。続いて、生成部42は、新たに設定された探索範囲の中間値を新たな第1の閾値に決定する。続いて、生成部42は、決定した第1の閾値以上のデータを削除して削除済データを生成する。
Based on the determination result of the determination unit 43, the generation unit 42 reduces the new search range of the first threshold to half the previous search range, and determines a new first threshold.
Specifically, when the determination unit 43 determines that the normal distribution is followed, the generation unit 42 sets a range larger than the first threshold in the current search range as a new search range. Further, when the determination unit 43 determines that the normal distribution is not followed, the generation unit 42 sets a range smaller than the first threshold in the current search range as a new search range. Subsequently, the generation unit 42 determines the intermediate value of the newly set search range as a new first threshold value. Subsequently, the generation unit 42 deletes data that is equal to or more than the determined first threshold value and generates deleted data.
 生成部42は、探索範囲を縮小できなくなるまで、第1の閾値を決定して削除済データを生成する処理を繰り返す。
 決定部44は、生成部42が削除済データを生成する処理を終了した後、正規分布に従わないと判定された複数の削除済データのうち、最もデータ数が少ない削除済データにおける最大の地殻存在度の値を地化学異常の閾値に決定する。
The generation unit 42 repeats the process of determining the first threshold and generating deleted data until the search range cannot be reduced.
The determination unit 44, after the generation unit 42 finishes generating the deleted data, among the plurality of deleted data determined not to follow the normal distribution, the largest crust in the deleted data with the smallest number of data. The abundance value is determined as the geochemical anomaly threshold.
[処理フロー]
 続いて、制御部40の処理の流れについて説明する。図8は、第2の実施形態に係る地殻データ解析装置1において、地化学異常の閾値を決定するまでの処理の流れの一例を示すフローチャートである。
[Processing flow]
Next, the process flow of the control unit 40 will be described. FIG. 8 is a flowchart illustrating an example of a processing flow until the geochemical abnormality threshold value is determined in the crustal data analysis apparatus 1 according to the second embodiment.
 まず、取得部41は、記憶部30に記憶されている対象データを取得する(S11)。
 続いて、生成部42は、S11において取得された対象データから、地殻存在度が第2の閾値以下のデータを削除する(S12)。
First, the acquisition unit 41 acquires target data stored in the storage unit 30 (S11).
Subsequently, the generation unit 42 deletes data whose crust presence is equal to or less than the second threshold from the target data acquired in S11 (S12).
 続いて、生成部42は、第1の閾値の探索範囲及び第1の閾値を決定する(S13)。例えば、生成部42は、当該処理の実行回数が1回、すなわち、当該処理を初めて実行する場合に、第1の閾値の探索範囲を、平均地殻存在度に最も近い地殻存在度に対応するデータから、地殻存在度が最も高いデータまでに設定する。また、生成部42は、当該処理の実行回数が2回以上である場合に、判定部43による直前の判定結果に基づいて、探索範囲を、直前の探索範囲の半分に設定する。また、生成部42は、設定された探索範囲の中央値を第1の閾値に決定する。 Subsequently, the generation unit 42 determines the search range for the first threshold and the first threshold (S13). For example, the generation unit 42 executes the process once, that is, when the process is executed for the first time, the search range of the first threshold is data corresponding to the crustal presence closest to the average crustal presence. To the data with the highest crustal abundance. In addition, when the number of execution times of the process is two or more, the generation unit 42 sets the search range to half of the previous search range based on the determination result immediately before by the determination unit 43. In addition, the generation unit 42 determines the median value of the set search range as the first threshold value.
 続いて、判定部43は、削除済データが、第2エリアにおける所定元素の平均地殻存在度を平均値とする正規分布に従うか否かを判定する(S15)。
 続いて、生成部42は、第1の閾値の探索範囲を縮小できるか否かを判定する(S16)。生成部42は、探索範囲を縮小できると判定した場合(S16の判定がYesの場合)、S11に処理を移し、探索範囲が縮小できないと判定した場合(S16の判定がNoの場合)、S17に処理を移す。
Subsequently, the determination unit 43 determines whether or not the deleted data follows a normal distribution having an average value of the average crust presence of the predetermined element in the second area (S15).
Subsequently, the generation unit 42 determines whether or not the search range of the first threshold can be reduced (S16). When the generation unit 42 determines that the search range can be reduced (when the determination of S16 is Yes), the process proceeds to S11, and when it is determined that the search range cannot be reduced (when the determination of S16 is No), S17. Move processing to.
 続いて、決定部44は、S14で生成され、正規分布に従わないと判定された複数の削除済データのうち、最もデータが少ない削除済データ、すなわち、直前に生成された削除済データを特定する。続いて、決定部44は、特定した削除済データにおける最大の地殻存在度の値を地化学異常の閾値に決定する(S17)。 Subsequently, the determination unit 44 identifies the deleted data with the smallest data among the plurality of deleted data generated in S14 and determined not to follow the normal distribution, that is, the deleted data generated immediately before. To do. Subsequently, the determination unit 44 determines the maximum value of the crustal presence in the specified deleted data as the threshold for geochemical abnormality (S17).
[第2の実施形態における効果]
 以上、地殻データ解析装置1によれば、生成部42は、二分探索法に基づいて第1の閾値を決定し、決定した第1の閾値に基づいて、削除済データを生成するので、効率的に第1の閾値を決定し、地化学異常の閾値の算出を高速に行うことができる。
[Effects of Second Embodiment]
As described above, according to the crustal data analysis apparatus 1, the generation unit 42 determines the first threshold value based on the binary search method, and generates deleted data based on the determined first threshold value. Thus, the first threshold value can be determined, and the threshold value of the geochemical abnormality can be calculated at high speed.
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更又は改良を加えることが可能であることが当業者に明らかである。 As mentioned above, although this invention was demonstrated using embodiment, the technical scope of this invention is not limited to the range as described in the said embodiment. It will be apparent to those skilled in the art that various modifications or improvements can be added to the above embodiment.
 例えば、上記の実施形態においては、正規分布に従わないと判定された複数の削除済データのうち、最もデータ数が少ない削除済データにおける最大の地殻存在度の値を地化学異常の閾値に決定していたが、最大の地殻存在度の値から所定の範囲内の他の値を閾値に決定してもよい。例えば、正規分布に従うと判定された複数の削除済データのうち、最もデータ数が多い削除済データにおける最大の地殻存在度の値を地化学異常の閾値に決定してもよい。また、正規分布に従わないと判定された複数の削除済データのうち、最もデータ数が少ない削除済データにおける最大の地殻存在度の値から、予め定められた値だけ大きい値を閾値に決定してもよい。 For example, in the above embodiment, among the plurality of deleted data determined not to follow the normal distribution, the maximum crustal abundance value in the deleted data with the smallest number of data is determined as the geochemical abnormality threshold value. However, another value within a predetermined range may be determined as the threshold value from the maximum crustal abundance value. For example, the maximum crustal presence value in the deleted data having the largest number of data among the plurality of deleted data determined to follow the normal distribution may be determined as the geochemical abnormality threshold value. In addition, among a plurality of deleted data determined not to follow the normal distribution, a threshold value that is larger by a predetermined value is determined from the maximum crustal presence value in the deleted data with the smallest number of data. May be.
<第3の実施形態>
 第1の実施形態においては、部分検定として、正規分布に従うまで地殻存在度の値を中心として上位と下位のデータを削除して検定を繰り返し、正規分布に従わない最小件数の母集団の最高値を閾値として求める方法について説明した。本実施形態においては、データ件数が増加した場合にも適用できるように、以下の方法により閾値を決定する。
<Third Embodiment>
In the first embodiment, as a partial test, the test is repeated by deleting the upper and lower data centering on the value of the crustal abundance until the normal distribution is followed, and the highest value of the population of the minimum number not following the normal distribution A method for obtaining the value as a threshold has been described. In the present embodiment, the threshold value is determined by the following method so that it can be applied even when the number of data increases.
 判定部43は、データの件数がn件である場合、n件のデータが自由度nのχ2分布に従うとして、標準偏差σを以下のように算出する。
Figure JPOXMLDOC01-appb-I000004
When the number of data items is n, the determination unit 43 calculates the standard deviation σ as follows, assuming that n items of data follow a χ 2 distribution with n degrees of freedom.
Figure JPOXMLDOC01-appb-I000004
 続いて、判定部43は、χ2分布表から値を読み取ってσ2を計算する。ただし、判定部43は、n>100の場合においては、
Figure JPOXMLDOC01-appb-I000005
が近似的に規準正規分布N(0,1)に従うとしてσ2を計算する。
Subsequently, the determination unit 43 reads a value from the χ 2 distribution table and calculates σ 2 . However, the determination unit 43, when n> 100,
Figure JPOXMLDOC01-appb-I000005
Σ 2 is calculated as approximately following the normal normal distribution N (0,1).
 判定部43は、このようにして求めた最小標準偏差を用いて、平均値と最小標準偏差とを加算した値を実数に戻した値までが、地殻存在度を平均値とする正規分布に従っていると判定し、これより直近上位の値を閾値とする。なお、最大標準偏差を用いない理由は、後背値母集団の上位と異常値母集団の下位は重複していると考えられるので、それらの重複をなるべく少なくするためである。 The determination unit 43 uses a minimum standard deviation obtained in this way, and follows a normal distribution in which the value obtained by adding the average value and the minimum standard deviation to the real number is returned to the real value. And the most recent value is set as the threshold value. The reason why the maximum standard deviation is not used is that the upper part of the dorsal value population and the lower order of the abnormal value population are considered to be overlapped, so that the overlap is minimized.
[実データへの適用例]
 本実施形態に係る手法で、図3に示した採取エリアで採取された岩石試料を分析して得られたPb、Zn、Sの含有量に基づいて、それぞれの元素における地化学異常の閾値の決定を行った。
[Example of application to actual data]
Based on the contents of Pb, Zn, and S obtained by analyzing the rock sample collected in the collection area shown in FIG. 3 with the technique according to the present embodiment, the threshold of geochemical abnormality in each element is calculated. Made a decision.
 Pbに関しては、閾値が45ppmとなり、地化学異常の地点として2点が得られた。
 Znに関しては、閾値が166ppmとなり、地化学異常の地点として5点が得られた。
 Sに関しては、閾値が0.4%となり、地化学異常の地点として70点が得られた。
Regarding Pb, the threshold value was 45 ppm, and two points were obtained as points of geochemical abnormality.
Regarding Zn, the threshold value was 166 ppm, and 5 points were obtained as points of geochemical abnormality.
For S, the threshold was 0.4%, and 70 points were obtained as geochemical abnormality points.
 本実施形態に係る手法は、データ数が1000件を超える場合に、特に有効である。
 図11Aは、北薩・南薩の代表的な鉱床地帯である串木野鉱床におけるAu(金)の分析値の頻度分布図である。2331個のデータを用いた。図11Bは、Auの分析値の累積頻度分布図である。図11Cは、本手法により求めたAuの地殻存在度の地化学異常の閾値に基づき、異常値と判定された採取位置(図中の黒丸)を示す図である。図11Dは、通商産業省の方法により異常値と判定された採取位置(図中の黒丸)を示す図である。
The method according to the present embodiment is particularly effective when the number of data exceeds 1000.
FIG. 11A is a frequency distribution diagram of the analysis value of Au (gold) in the Kushikino deposit, which is a typical deposit in the northern and southern areas. 2331 data were used. FIG. 11B is a cumulative frequency distribution diagram of Au analysis values. FIG. 11C is a diagram showing a sampling position (black circle in the figure) determined as an abnormal value based on the threshold value of the geochemical abnormality of the crustal abundance of Au obtained by this method. FIG. 11D is a diagram showing sampling positions (black circles in the figure) determined as abnormal values by the method of the Ministry of International Trade and Industry.
 本手法によれば、地殻存在度の平均値は1.5ppb、閾値は14ppbであり、132点の地化学異常地点が得られた。これに対して、通商産業省の手法では、地殻存在度の平均値は2ppb、平均値+2×標準偏差は75ppbであり、65点の地化学異常地点が得られた。図11Cと図11Dとを比較すると明らかなように、本手法を用いることで、より多くの地化学異常地点を鉱脈鉱床の近傍にて把握することができた。 According to this method, the average value of crustal abundance was 1.5 ppb, the threshold value was 14 ppb, and 132 geochemical anomaly points were obtained. On the other hand, according to the method of the Ministry of International Trade and Industry, the average value of crustal abundance was 2 ppb, the average value + 2 × standard deviation was 75 ppb, and 65 geochemical abnormalities were obtained. As is clear when FIG. 11C and FIG. 11D are compared, by using this method, it was possible to grasp more geochemical abnormalities in the vicinity of the vein deposit.
 秋田・青森の代表的な鉱床地帯である北鹿地域においても同様の比較分析を行った。
 3666個のPbのデータを用いた場合、本手法によれば、地殻存在度の平均値は17ppm、閾値は57ppmであり、11点の地化学異常地点が得られた。これに対して、通商産業省の手法では、地殻存在度の平均値は12ppm、平均値+2×標準偏差は161ppmであり、8点の地化学異常地点が得られた。したがって、本手法を用いることで、より多くの地化学異常地点を鉱脈鉱床の近傍にて把握することができた。
A similar comparative analysis was conducted in the Kitaka area, which is a typical deposit area in Akita and Aomori.
When 3666 pieces of Pb data were used, according to this method, the average value of the crustal abundance was 17 ppm, the threshold value was 57 ppm, and 11 geochemical anomaly points were obtained. On the other hand, according to the method of the Ministry of International Trade and Industry, the average value of crustal abundance was 12 ppm, the average value + 2 × standard deviation was 161 ppm, and 8 geochemical anomaly points were obtained. Therefore, by using this method, more geochemical abnormalities could be grasped in the vicinity of the vein deposit.
 Znについても、3743個のデータを用いて同様の比較を行った。本手法によれば、地殻存在度の平均値は67ppm、閾値は176ppmであり、12点の地化学異常地点が得られた。これに対して、通商産業省の手法では、地殻存在度の平均値は65ppm、平均値+2×標準偏差は534ppmであり、2点の地化学異常地点が得られた。したがって、本手法を用いることで、より多くの地化学異常地点を鉱脈鉱床の近傍にて把握することができた。 For Zn, the same comparison was performed using 3743 pieces of data. According to this method, the average value of crustal abundance was 67 ppm, the threshold was 176 ppm, and 12 geochemical anomaly points were obtained. On the other hand, in the method of the Ministry of International Trade and Industry, the average value of the crustal abundance was 65 ppm, the average value + 2 × standard deviation was 534 ppm, and two geochemical anomaly points were obtained. Therefore, by using this method, more geochemical abnormalities could be grasped in the vicinity of the vein deposit.
[第3の実施形態における効果]
 以上のとおり、第3の実施形態に係る手法によれば、データ件数が多く、例えば、1000件以上である場合においても、高い精度で閾値を求められるので、より多くの地化学異常地点を鉱脈鉱床の近傍にて把握することができるという効果を奏する。
[Effect in the third embodiment]
As described above, according to the method according to the third embodiment, even when the number of data is large, for example, 1000 or more, a threshold value can be obtained with high accuracy. There is an effect that it can be grasped in the vicinity of the deposit.
1・・・地殻データ解析装置、10・・・表示部、20・・・入力部、30・・・記憶部、40・・・制御部、41・・・取得部、42・・・生成部、43・・・判定部、44・・・決定部 DESCRIPTION OF SYMBOLS 1 ... Crustal data analysis apparatus, 10 ... Display part, 20 ... Input part, 30 ... Memory | storage part, 40 ... Control part, 41 ... Acquisition part, 42 ... Generation part , 43 ... determination part, 44 ... determination part

Claims (8)

  1.  複数の位置における所定の元素又は化合物の地殻存在度を示す複数のデータを取得するステップと、
     前記複数のデータから一部のデータを削除して、複数の削除済データを生成するステップと、
     前記複数の削除済データのそれぞれについて、当該削除済データを構成する複数のデータが正規分布に従うか否かを判定するステップと、
     前記判定した結果に基づいて、地化学異常の閾値を決定するステップと、
     を備える地殻データ解析方法。
    Obtaining a plurality of data indicating the crustal abundance of a predetermined element or compound at a plurality of positions;
    Deleting some data from the plurality of data to generate a plurality of deleted data;
    For each of the plurality of deleted data, determining whether or not the plurality of data constituting the deleted data follows a normal distribution;
    Determining a geochemical abnormality threshold based on the determined result;
    A crustal data analysis method comprising:
  2.  前記複数の削除済データを生成するステップにおいて、それぞれ異なる第1の閾値を用いて、前記複数のデータから、当該複数のデータの地殻存在度が前記第1の閾値以上のデータを削除して、複数の削除済データを生成し、
     前記判定するステップにおいて、前記削除済データを構成する複数のデータが、前記複数の位置を含むエリアよりも広いエリアにおける前記所定の元素又は化合物の平均地殻存在度を平均値とする正規分布に従うか否かを判定し、
     前記閾値を決定するステップにおいて、前記正規分布に従わないと判定された複数の前記削除済データのうち、最もデータ数が少ない削除済データにおける最大の前記地殻存在度の値から所定範囲内の値を地化学異常の閾値に決定する、
     請求項1に記載の地殻データ解析方法。
    In the step of generating the plurality of deleted data, by using different first threshold values, from the plurality of data, deleting the data having a crustal presence of the plurality of data equal to or more than the first threshold, Generate multiple deleted data,
    In the determining step, the plurality of data constituting the deleted data follow a normal distribution having an average value of the average crust abundance of the predetermined element or compound in an area wider than an area including the plurality of positions. Determine whether or not
    In the step of determining the threshold value, a value within a predetermined range from the maximum value of the crust presence in the deleted data having the smallest number of data among the plurality of deleted data determined not to follow the normal distribution To be the threshold for geochemical anomalies,
    The crustal data analysis method according to claim 1.
  3.  前記複数の削除済データを生成するステップにおいて、それぞれ異なる第1の閾値を用いて、前記複数のデータから、当該複数のデータの地殻存在度が第1の閾値以上のデータを削除するとともに、前記第1の閾値よりも低い第2の閾値を用いて、前記第2の閾値以下のデータを削除して、前記複数の削除済データを生成する、
     請求項2に記載の地殻データ解析方法。
    In the step of generating the plurality of deleted data, the data having a crustal presence of the plurality of data having a first threshold value or more is deleted from the plurality of data by using different first threshold values. Using a second threshold value lower than the first threshold value, deleting data equal to or less than the second threshold value to generate the plurality of deleted data items;
    The crustal data analysis method according to claim 2.
  4.  前記第2の閾値は、前記地殻存在度の検出限界値であり、
     前記複数の削除済データを生成するステップにおいて、前記第2の閾値以下のデータを削除した後に、前記第1の閾値以上のデータを削除することにより前記削除済データを生成する、
     請求項3に記載の地殻データ解析方法。
    The second threshold is a detection limit value of the crustal presence,
    In the step of generating the plurality of deleted data, after deleting the data below the second threshold, the deleted data is generated by deleting the data above the first threshold,
    The crustal data analysis method according to claim 3.
  5.  前記複数の削除データを生成するステップにおいて、前記第1の閾値を順番に小さくして、前記複数の削除済データを生成し、
     前記判定するステップにおいて、一の前記削除済データが生成されたことに応じて、前記判定を行う、
     請求項2から4のいずれか1項に記載の地殻データ解析方法。
    In the step of generating the plurality of deleted data, the first threshold value is sequentially reduced to generate the plurality of deleted data,
    In the determining step, the determination is performed in response to the generation of the one deleted data.
    The crustal data analysis method according to any one of claims 2 to 4.
  6.  前記複数の削除データを生成するステップにおいて、二分探索法に基づいて前記第1の閾値を決定し、決定した第1の閾値に基づいて、前記削除済データを生成する、
     請求項2から4のいずれか1項に記載の地殻データ解析方法。
    In the step of generating the plurality of deleted data, the first threshold is determined based on a binary search method, and the deleted data is generated based on the determined first threshold.
    The crustal data analysis method according to any one of claims 2 to 4.
  7.  コンピュータを、
     複数の位置における所定の元素又は化合物の地殻存在度を示す複数のデータを取得する取得部、
     前記複数のデータから一部のデータを削除して、複数の削除済データを生成する生成部、
     前記複数の削除済データのそれぞれについて、当該削除済データを構成する複数のデータが正規分布に従うか否かを判定する判定部、及び
     前記判定した結果に基づいて地化学異常の閾値を決定する決定部、
     として機能させる地殻データ解析プログラム。
    Computer
    An acquisition unit that acquires a plurality of data indicating the crustal abundance of a predetermined element or compound at a plurality of positions,
    A generator that deletes some data from the plurality of data to generate a plurality of deleted data;
    For each of the plurality of deleted data, a determination unit that determines whether or not the plurality of data constituting the deleted data follows a normal distribution, and a determination that determines a threshold value for a geochemical abnormality based on the determined result Part,
    Crustal data analysis program to function as.
  8.  複数の位置における所定の元素又は化合物の地殻存在度を示す複数のデータを取得する取得部と、
     前記複数のデータから一部のデータを削除して、複数の削除済データを生成する生成部と、
     前記複数の削除済データのそれぞれについて、当該削除済データを構成する複数のデータが正規分布に従うか否かを判定する判定部と、
     前記判定した結果に基づいて、地化学異常の閾値を決定する決定部と、
     を備える地殻データ解析装置。
    An acquisition unit for acquiring a plurality of data indicating the crustal abundance of a predetermined element or compound at a plurality of positions;
    A generation unit that deletes some data from the plurality of data and generates a plurality of deleted data;
    For each of the plurality of deleted data, a determination unit that determines whether or not a plurality of data constituting the deleted data follows a normal distribution;
    Based on the determined result, a determination unit that determines a threshold value for geochemical abnormality,
    A crust data analysis device.
PCT/JP2014/065556 2013-08-14 2014-06-12 Crust data analysis method, crust data analysis program, and crust data analysis device WO2015022806A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2014307511A AU2014307511C1 (en) 2013-08-14 2014-06-12 Crust data analysis method, crust data analysis program, and crust data analysis device
JP2015531736A JP6429398B2 (en) 2013-08-14 2014-06-12 Crustal data analysis method, crustal data analysis program, and crustal data analysis apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013168564 2013-08-14
JP2013-168564 2013-08-14

Publications (1)

Publication Number Publication Date
WO2015022806A1 true WO2015022806A1 (en) 2015-02-19

Family

ID=52468196

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/065556 WO2015022806A1 (en) 2013-08-14 2014-06-12 Crust data analysis method, crust data analysis program, and crust data analysis device

Country Status (3)

Country Link
JP (1) JP6429398B2 (en)
AU (1) AU2014307511C1 (en)
WO (1) WO2015022806A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112380308A (en) * 2020-11-17 2021-02-19 中国地质科学院矿产资源研究所 Geochemical anomaly delineating method and system based on data regularization
CN112927767A (en) * 2021-02-22 2021-06-08 中国地质大学(武汉) Multi-element geochemical anomaly identification method based on graph attention self-coding

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55113975A (en) * 1979-02-27 1980-09-02 Dowa Mining Co Ltd Method of searching black mineral deposit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55113975A (en) * 1979-02-27 1980-09-02 Dowa Mining Co Ltd Method of searching black mineral deposit

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HIDEO OTSU ET AL.: "Chikagaku Data no Hindo Bunpu Bunkatsuho", KOZAN CHISHITSU, vol. 34, no. 1, 1984, pages 51 - 56 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112380308A (en) * 2020-11-17 2021-02-19 中国地质科学院矿产资源研究所 Geochemical anomaly delineating method and system based on data regularization
CN112380308B (en) * 2020-11-17 2021-06-29 中国地质科学院矿产资源研究所 Geochemical anomaly delineating method and system based on data regularization
CN112927767A (en) * 2021-02-22 2021-06-08 中国地质大学(武汉) Multi-element geochemical anomaly identification method based on graph attention self-coding
CN112927767B (en) * 2021-02-22 2022-05-13 中国地质大学(武汉) Multi-element geochemical anomaly identification method based on graph attention self-coding

Also Published As

Publication number Publication date
AU2014307511C1 (en) 2018-12-20
AU2014307511B2 (en) 2018-08-09
AU2014307511A1 (en) 2016-02-25
JP6429398B2 (en) 2018-11-28
JPWO2015022806A1 (en) 2017-03-02

Similar Documents

Publication Publication Date Title
KR101922683B1 (en) Method and apparatus for updating a background model used for background subtraction of an image
Carranza Catchment basin modelling of stream sediment anomalies revisited: incorporation of EDA and fractal analysis
Arena et al. A new computational approach to cracks quantification from 2D image analysis: Application to micro-cracks description in rocks
Yousefi et al. Application of staged factor analysis and logistic function to create a fuzzy stream sediment geochemical evidence layer for mineral prospectivity mapping
US10198630B2 (en) Peak detection method
KR101891225B1 (en) Method and apparatus for updating a background model
JP6285640B2 (en) Integrated automatic and manual defect classification
US11455203B2 (en) Abnormality detection support device, abnormality detection support method, and program
US20210142099A1 (en) Pointer recognition for analog instrument image analysis
Leonard et al. The challenges of probabilistic seismic‐hazard assessment in stable continental interiors: An Australian example
Silva et al. Mineral resource classification: a comparison of new and existing techniques
JP7287823B2 (en) Information processing method and information processing system
JP2007334756A (en) Abnormal operation detection device and abnormal operation detection method
Bush et al. Sustained Mesozoic–Cenozoic diversification of marine Metazoa: a consistent signal from the fossil record
CN103679030A (en) Malicious code analysis and detection method based on dynamic semantic features
CN115294332B (en) Image processing method, device, equipment and storage medium
JP6429398B2 (en) Crustal data analysis method, crustal data analysis program, and crustal data analysis apparatus
Allodi The heavy tails of vulnerability exploitation
CN106126882B (en) Element geochemistry data preferred method based on Kendall coefficient of concordance sequence
Velázquez et al. Spatial patterns of sapling mortality in a moist tropical forest: consistency with total density‐dependent effects
CN112462442A (en) Gravity magnetic potential field source position estimation method, system, medium, and electronic device
CN113485615B (en) Method and system for manufacturing typical application intelligent image-text course based on computer vision
KR101557577B1 (en) Method and Apparatus for segmenting Particles of Electron Microscope Images
CN109061726B (en) Method and device for identifying multiples
CN108027969B (en) Method and apparatus for identifying gaps between objects in an image

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14836007

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015531736

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014307511

Country of ref document: AU

Date of ref document: 20140612

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 14836007

Country of ref document: EP

Kind code of ref document: A1