WO2015022781A1 - Cell detection method and cell detection device - Google Patents
Cell detection method and cell detection device Download PDFInfo
- Publication number
- WO2015022781A1 WO2015022781A1 PCT/JP2014/004190 JP2014004190W WO2015022781A1 WO 2015022781 A1 WO2015022781 A1 WO 2015022781A1 JP 2014004190 W JP2014004190 W JP 2014004190W WO 2015022781 A1 WO2015022781 A1 WO 2015022781A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- detection
- detection region
- cell
- microchamber
- unit
- Prior art date
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 315
- 230000005284 excitation Effects 0.000 claims abstract description 75
- 239000000126 substance Substances 0.000 claims abstract description 20
- 238000003384 imaging method Methods 0.000 claims description 22
- 230000001678 irradiating effect Effects 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 11
- 210000004027 cell Anatomy 0.000 description 225
- 208000005443 Circulating Neoplastic Cells Diseases 0.000 description 23
- 238000010586 diagram Methods 0.000 description 22
- 239000006285 cell suspension Substances 0.000 description 17
- 239000000463 material Substances 0.000 description 12
- 230000003287 optical effect Effects 0.000 description 12
- 230000035945 sensitivity Effects 0.000 description 11
- 206010028980 Neoplasm Diseases 0.000 description 10
- 201000011510 cancer Diseases 0.000 description 10
- 239000000243 solution Substances 0.000 description 9
- 210000004369 blood Anatomy 0.000 description 8
- 239000008280 blood Substances 0.000 description 8
- 210000005266 circulating tumour cell Anatomy 0.000 description 8
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 7
- 239000002953 phosphate buffered saline Substances 0.000 description 7
- 239000007788 liquid Substances 0.000 description 6
- 238000002493 microarray Methods 0.000 description 6
- 230000017531 blood circulation Effects 0.000 description 5
- 230000010261 cell growth Effects 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 4
- 210000000130 stem cell Anatomy 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 3
- 238000001917 fluorescence detection Methods 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- -1 polyethylene Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000012114 Alexa Fluor 647 Substances 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 230000003511 endothelial effect Effects 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 210000005259 peripheral blood Anatomy 0.000 description 2
- 239000011886 peripheral blood Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 230000002792 vascular Effects 0.000 description 2
- 210000003556 vascular endothelial cell Anatomy 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- FWBHETKCLVMNFS-UHFFFAOYSA-N 4',6-Diamino-2-phenylindol Chemical compound C1=CC(C(=N)N)=CC=C1C1=CC2=CC=C(C(N)=N)C=C2N1 FWBHETKCLVMNFS-UHFFFAOYSA-N 0.000 description 1
- 239000012099 Alexa Fluor family Substances 0.000 description 1
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 1
- 239000004713 Cyclic olefin copolymer Substances 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 210000001744 T-lymphocyte Anatomy 0.000 description 1
- 230000004308 accommodation Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 210000003855 cell nucleus Anatomy 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 230000001605 fetal effect Effects 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 210000000265 leukocyte Anatomy 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 201000004792 malaria Diseases 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000000284 resting effect Effects 0.000 description 1
- 238000011896 sensitive detection Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000012192 staining solution Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
- G01N21/645—Specially adapted constructive features of fluorimeters
- G01N21/6452—Individual samples arranged in a regular 2D-array, e.g. multiwell plates
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502753—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by bulk separation arrangements on lab-on-a-chip devices, e.g. for filtration or centrifugation
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
- G01N15/1456—Optical investigation techniques, e.g. flow cytometry without spatial resolution of the texture or inner structure of the particle, e.g. processing of pulse signals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/06—Fluid handling related problems
- B01L2200/0647—Handling flowable solids, e.g. microscopic beads, cells, particles
- B01L2200/0668—Trapping microscopic beads
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/08—Geometry, shape and general structure
- B01L2300/0861—Configuration of multiple channels and/or chambers in a single devices
- B01L2300/0877—Flow chambers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/04—Moving fluids with specific forces or mechanical means
- B01L2400/0475—Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure
- B01L2400/0487—Moving fluids with specific forces or mechanical means specific mechanical means and fluid pressure fluid pressure, pneumatics
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2400/00—Moving or stopping fluids
- B01L2400/08—Regulating or influencing the flow resistance
- B01L2400/084—Passive control of flow resistance
- B01L2400/086—Passive control of flow resistance using baffles or other fixed flow obstructions
Definitions
- the present invention relates to a cell detection method and a cell detection apparatus for performing this cell detection method.
- Circulating tumor cells CTC
- CEC Circulating tumor cells
- CEP circulating vascular endothelial progenitor cells
- IR cells various stem cells
- rare cells are detected using a microscope.
- a cell suspension is developed in a flat shape, and then all cells are observed with a microscope to detect rare cells.
- Non-Patent Document 1 a method using a microarray scanner is disclosed (see Non-Patent Document 1).
- a cell suspension is developed on a chip having a plurality of microchambers, cells are accommodated in the microchambers, and rare cells are labeled with a fluorescent substance.
- a microarray scanner scan the irradiation spot of the same size as the cells, irradiate all the cells with excitation light, and detect the fluorescence emitted from the fluorescent material labeled with the rare cells. Detect cells.
- rare cells can be detected with high sensitivity, but the detection time becomes long because the field of view is narrow.
- the field of view is widened and the detection time can be shortened, but the detection sensitivity is lowered, and some rare cells may not be detected.
- Non-Patent Document 1 since the whole cell is analyzed by scanning an irradiation spot having the same size as the cell, the cell can be detected with high sensitivity. The time will be longer.
- the conventional method for detecting rare cells cannot achieve both high detection sensitivity and reduction in detection time.
- the present inventors have found that the above problem can be solved by scanning an irradiation spot having a predetermined size and shape corresponding to the microchamber and irradiating the cells accommodated in the microchamber with excitation light.
- the present invention has been completed through examination.
- the present invention relates to the following cell detection method.
- a plurality of microchamber rows in which a plurality of microchambers are arranged at predetermined intervals in the first direction are arranged, and one or more cells labeled with a fluorescent substance are accommodated in the microchamber.
- the length of the detection region in the second direction is the length of the microchamber in the second direction.
- a plurality of chamber rows including the plurality of micro chambers arranged in the first direction are arranged in the second direction, and the two adjacent chamber rows are arranged in the second direction.
- Each of the included microchambers does not overlap in the first direction, and the length of the detection region in the first direction is the most in the first direction in the two chamber rows.
- the distance between the two adjacent micro chambers in the first direction is equal to or less than the distance between the two micro chambers, and the length of the detection region in the second direction is included in one chamber row of the two chamber rows.
- the second direction and the second of the microchambers included in the other chamber row of the two chamber rows [1], which is equal to or greater than the sum of the length in the direction and the distance in the second direction between the microchamber included in the one chamber row and the microchamber included in the other chamber row.
- the cell detection method as described. [3]
- a plurality of chamber rows including a plurality of the micro chambers arranged in the first direction are arranged in the second direction, and two of the chamber rows adjacent to each other are arranged.
- the micro chamber included in one chamber row and the micro chamber included in the other chamber row and closest to the micro chamber included in the one chamber row are in the first direction.
- the length of the detection region in the second direction overlaps with the length of the microchamber included in the one chamber row in the second direction, and the length of the micro chamber included in the one chamber row.
- the second step further acquires position information of the detected fluorescence at the same time as detecting the fluorescence, and after the second step, based on the detection result of the fluorescence and the position information.
- the detection area is rectangular, the length of the detection area in the first direction is in the range of 10 to 25 ⁇ m, and the length of the detection area in the second direction is 50
- the cell detection method according to any one of [1] to [6] which is in a range of ⁇ 500 ⁇ m.
- the present invention also relates to the following cell detection apparatus.
- a plurality of microchamber rows in which a plurality of microchambers are arranged at predetermined intervals in the first direction are arranged, and one or more cells labeled with a fluorescent substance are accommodated in the microchamber.
- a detection area defining section that is disposed between the light irradiation section and the holder or between the holder and the light detection section and defines the detection area, and for moving the position of the detection area on the chip
- the length of the detection region is equal to or less than the interval between the two microchambers adjacent to each other in the first direction, and the length of
- a cell detection device that is longer than the length of the cell. [10] Based on a position information acquisition unit that acquires position information of the fluorescent substance detected by the light detection unit, a detection result of the fluorescence by the light detection unit, and the position information acquired by the position information acquisition unit The cell detection device according to [9], further comprising: an imaging unit that images the cells labeled with the fluorescent substance housed in the microchamber. [11]
- the detection region defining unit is a diaphragm that is disposed between the light irradiation unit and the holder, and that passes only light that irradiates the detection region among excitation light emitted from the light irradiation unit.
- the detection region defining unit is arranged between the holder and the light detection unit, and allows only the fluorescence emitted from the detection region to pass through the fluorescence emitted from the irradiation spot.
- the cell detection device according to [9] or [10]. [13] The detection area is rectangular, the length of the detection area in the first direction is in the range of 10 to 25 ⁇ m, and the length of the detection area in the second direction is 50 The cell detection device according to any one of [9] to [12], which is in a range of ⁇ 500 ⁇ m. [14] The cell detection device according to any one of [9] to [12], wherein the detection region is a circle having a diameter of 20 to 500 ⁇ m.
- rare cells can be detected from a large number of cells in a short time without leakage.
- FIGS. 1A and 1B are diagrams showing the configuration of a cell deployment device.
- 2A to 2C are diagrams showing the configuration of a cell deployment device.
- FIG. 3 is a partially enlarged sectional view of the chip.
- FIG. 4 is a schematic diagram showing the arrangement of microchambers in the chip.
- 5A and 5B are schematic views showing other arrangements of the microchambers.
- FIG. 6 is a schematic diagram of the cell detection device according to the first embodiment.
- 7A and 7B are schematic diagrams for explaining the size of the detection region.
- 8A and 8B are schematic diagrams for explaining the size of the detection region.
- 9A to 9C are schematic views for explaining the relationship between the irradiation spot and the detection region.
- FIG. 10A to 10C are schematic diagrams for explaining the relationship between the irradiation spot and the detection region.
- FIG. 11 is a diagram for explaining scanning and movement of the irradiation spot.
- FIG. 12 is a diagram for explaining another scanning and movement of the irradiation spot.
- FIG. 13 is a schematic diagram of the cell detection device according to the second embodiment.
- 14A to 14D show detection results of circulating tumor cells in Example 1.
- FIG. 15A and 15B are detection results of circulating tumor cells in Example 2.
- FIG. 16A to C are detection results of circulating tumor cells in Example 3.
- the cell detection apparatus in the first embodiment is used in a state in which a cell expansion device is mounted.
- the cell detection device will be explained after explaining the cell deployment device (chip).
- FIG. 1A is a plan view of the cell deployment device 160
- FIG. 1B is a cross-sectional view taken along line AA shown in FIG. 1A.
- the cell deployment device 160 includes a chip 161, a frame body 162, and a top plate 163.
- 2A is a plan view of the chip 161
- FIG. 2B is a plan view of the frame body 162
- FIG. 2C is a plan view of the top plate 163.
- the chip 161 has a plurality of microchambers 165 on one surface (see FIG. 1B).
- the chip 161 having the plurality of micro chambers 165 is also referred to as a micro chamber array (MCA).
- MCA micro chamber array
- the “microchamber” means a fine bottomed recess (microwell) for containing and holding one or more cells.
- holding cells means that the cells accommodated in the microchamber 165 are difficult to get out of the microchamber 165 when a liquid flows in a flow path 164 described later.
- the surface of the chip 161 on which the microchamber 165 is formed is the bottom surface of the channel 164 of the cell deployment device 160.
- Each microchamber 165 is open to the flow path 164.
- the configuration of the chip 161 will be described in detail separately.
- the frame body 162 is a thin plate having a through-hole disposed between the chip 161 and the top plate 163 (see FIG. 2B). This through-hole becomes a flow path 164 for flowing a cell suspension derived from the specimen.
- the shape of the channel 164 (through hole) is not particularly limited as long as the cell suspension can flow over the microchamber 165, and can be appropriately selected depending on the application.
- the thickness of the frame body 162 is not particularly limited, and is appropriately set according to the desired height (depth) of the flow path. For example, the thickness of the frame body 162 is in the range of 50 to 500 ⁇ m, and the height of the flow path 164 is in the range of 50 to 500 ⁇ m.
- the material of the frame 162 is not particularly limited, and may be the same material as a known microplate.
- Examples of the material of the frame body 162 include resins such as polystyrene, polyethylene, polypropylene, polyamide, polycarbonate, polydimethylsiloxane, polymethyl methacrylate, and cyclic olefin copolymer.
- the top plate 163 is a thin plate having two through holes arranged on the frame body 162 (see FIG. 2C). These through-holes are respectively an introduction port 166 for introducing a liquid (for example, a cell suspension, a washing solution, a staining solution, etc.) into the flow channel 164 and a discharge port for discharging the liquid from the flow channel 164. 167.
- a liquid for example, a cell suspension, a washing solution, a staining solution, etc.
- a discharge port for discharging the liquid from the flow channel 164.
- the introduction port 166 communicates with one end of the flow channel 164
- the discharge port 167 communicates with the other end of the flow channel 164.
- the shapes of the inlet 166 and the outlet 167 are not particularly limited.
- the thickness of the top plate 163 is not particularly limited as long as necessary strength can be secured.
- the material of the top plate 163 is not particularly limited, but is preferably a light-transmitting material from the viewpoint of transmitting excitation light irradiated by the cell detection device 100 described later.
- the same resin as that of the frame body 162 can be used.
- the chip 161, the frame body 162, and the top plate 163 are stacked in this order and are fixed to each other.
- the method for fixing them is not particularly limited, but from the viewpoint of observation and maintenance, it is preferable to fix them so as to be removable from each other.
- Examples of the fixing method include fixing by engagement, fixing using a screw, and fixing using an adhesive.
- the flow path 164 formed in the cell deployment device 160 communicates with the outside through the inlet 166 and the outlet 167.
- a liquid for example, a cell suspension
- the flow path 164 can be filled with the liquid.
- the liquid flows in the flow path 164 from the introduction port 166 toward the discharge port 167.
- the channel 164 is filled with the cell suspension, the cells settle on the chip 161 and adhere to the bottom surface of the microchamber 165. That is, the cells are accommodated in the microchamber 165. Thereafter, washing and staining are performed, and various analyzes can be performed by observing cells housed in the microchamber 165 from the outside using the cell detection device 100 or the like.
- Chip configuration Next, the chip 161 will be described in detail with reference to the drawings.
- FIG. 3 is a partial enlarged cross-sectional view of the chip 161.
- a plurality of microchambers 165 bottomed recesses are formed on one surface of the chip 161.
- the material of the chip 161 is not particularly limited, but it is preferable that the material has light transmittance like the top plate 163.
- the same resin as that of the frame body 162 and the top plate 163 can be used.
- the thickness of the chip 161 is not particularly limited as long as necessary strength can be ensured.
- FIG. 4 is a view showing an example of the arrangement of a plurality of microchambers 165 in the chip 161.
- 1 to n written on the left side indicate the numbers of the chamber rows.
- m is an integer satisfying 1 ⁇ m ⁇ n, and indicates an arbitrary chamber row number.
- each chamber row has 200 micro chambers 165.
- the number of chamber rows is not particularly limited.
- the chip 161 has 100 chamber rows. That is, the chip 161 has 20000 microchambers 165.
- the shape of the opening of the micro chamber 165 is not particularly limited. Examples of the shape of the opening of the microchamber 165 include a circle, an ellipse, and a polygon. In the present embodiment, the shape of the opening is circular.
- the size of the opening of the microchamber 165 is not particularly limited, and can be appropriately set according to the type of cells to be accommodated, the number of cells to be accommodated in one microchamber 165, and the like. Usually, the size of the opening is preferably such that about 10 to 15 cells can adhere to the bottom surface of the microchamber 165.
- the diameter of the opening is in the range of 20 to 500 ⁇ m
- the depth of the microchamber 165 is in the range of 20 to 100 ⁇ m. Note that the diameters of the openings may be the same in the plurality of microchambers 165, or may be different from each other. In the present embodiment, the diameter of the opening is the same in all the microchambers 165.
- the distance d1 between the microchambers 165 adjacent to each other in the first direction D1 is not particularly limited.
- the distance d1 may be the same or different.
- the interval d1 is constant. That is, in each chamber row, the plurality of micro chambers 165 are arranged at equal intervals.
- the interval d2 between the chamber rows in the second direction D2 is not particularly limited and is set as appropriate. In the present embodiment, the interval d2 is constant. That is, the plurality of chamber rows are arranged at equal intervals.
- Each of the micro chambers 165 included in two chamber rows adjacent to each other in the second direction D2 does not overlap in the first direction D1. That is, as shown in FIG. 4, the specific microchamber 165 included in the mth chamber row and the closest (m + 1) th chamber row to the specific microchamber 165 When the microchamber 165 to be viewed is viewed from the side surface of the chip 161, a gap d3 is provided between them.
- the length of the interval d3 is not particularly limited. The length of the interval d3 may be as long as the fluorescence signals do not overlap in the fluorescence detection described later. Thereby, for example, even if the irradiation spot straddling two chamber rows is scanned in the first direction D1, fluorescence can be detected for each microchamber 165.
- the plurality of micro chambers 165 are arranged in a regular triangular lattice (hexagonal lattice). That is, as shown in FIG. 4, a straight line L1 passing through the center of each of the plurality of microchambers 165 included in the chamber row and a straight line passing through the center of the microchamber 165 in each chamber row, On the other hand, a straight line L2 having the largest inclination angle is considered. In this case, of the angles formed by the straight line L1 and the straight line L2, the small angle ⁇ 1 is 60 °.
- the three microchambers 165 adjacent to each other are arranged so as to be located at the vertices of an equilateral triangle.
- the closed system cell deployment device 160 having the flow path 164 is used.
- an open system cell deployment device having no flow path 164 may be used. That is, the chip 161 can also be used as a device for cell deployment.
- the cell deployment device 160 in which a plurality of microchambers 165 are arranged as shown in FIG. 4 is used, but the arrangement of the plurality of microchambers 165 is not limited to this.
- the specific micro chamber 165 included in the m-th chamber row and the specific micro-chamber 165 included in the (m + 1) -th chamber row and the specific micro-chamber 165 included in the m-th chamber row most The adjacent microchamber 165 may partially overlap in the first direction (see FIG. 5A), or all may overlap (see FIG. 5B).
- the plurality of microchambers 165 are arranged in a rectangular lattice (square lattice).
- the cell detection apparatus 100 irradiates all cells including rare cells labeled with a fluorescent substance, housed in the microchamber 165 of the cell deployment device 160, from the detection region in the excitation light irradiation spot. It is an apparatus for detecting rare cells contained in whole cells by detecting emitted fluorescence.
- FIG. 6 is a schematic diagram of the cell detection device 100.
- the cell detection device 100 includes a holder 110, a light irradiation unit 120, a light detection unit 130, a detection region defining unit 140, a moving unit 150, and a control unit (not shown).
- a cell deployment device 160 including a chip 161 is attached to the cell detection apparatus 100.
- the holder 110 holds the cell deployment device 160 in a predetermined position. As will be described later, the holder 110 is moved in the horizontal direction by the moving unit 150 while holding the cell expansion device 160.
- the light irradiation unit 120 and the light detection unit 130 are disposed above the holder 110.
- the light irradiation unit 120 irradiates the cell deployment device 160 (chip 161) held by the holder 110 with excitation light.
- the light detection unit 130 detects fluorescence emitted from the cell deployment device 160 (chip 161).
- the type of the light source for irradiating the excitation light contained in the light irradiation unit 120 is not particularly limited, and may be appropriately selected according to the type of the fluorescent material to be used.
- the light source is, for example, a laser diode.
- the wavelength of the excitation light is preferably a long wavelength from the viewpoint of eliminating the influence of autofluorescence of the cell deployment device 160.
- the wavelength of the excitation light is in the range of 600 to 780 nm, for example.
- the type of the light detection unit 130 is not particularly limited as long as weak fluorescence can be detected.
- Examples of the light detection unit 130 include a photomultiplier tube (PMT) and a photodiode.
- the light detection unit 130 is a photomultiplier tube.
- the first lens 121, the detection region defining unit 140, the second lens 122, the dichroic mirror 123, and the objective lens 124 are on the light irradiation unit 120 side. Are arranged in order.
- the excitation light emitted from the light irradiation unit 120 passes through the first lens 121, the detection region defining unit 140, and the second lens 122 and is then reflected by the dichroic mirror 123 toward the cell deployment device 160.
- the excitation light reflected by the dichroic mirror 123 is condensed near the bottom surface of the microchamber 165 of the cell deployment device 160 (chip 161) by the objective lens 124.
- the detection area defining unit 140 will be described separately.
- the objective lens 124, the dichroic mirror 123, the filter 131, the pinhole 132, and the third lens 133 are sequentially arranged from the cell deployment device 160 side. Is arranged.
- the fluorescence emitted from the cell deployment device 160 passes through the objective lens 124, the dichroic mirror 123, the filter 131, and the pinhole 132, and then is imaged on the light receiving surface of the light detection unit 130 by the third lens 133.
- the filter 131 is, for example, an excitation light cut filter or a neutral density filter. The excitation light cut filter blocks excitation light and external light, and improves the S / N ratio.
- the neutral density filter adjusts the fluorescence intensity according to the light detection unit 130.
- the pinhole 132 blocks light other than fluorescence emitted from the focal point of the excitation light (near the bottom surface of the microchamber 165) and improves the S / N ratio.
- the shape of the pinhole 132 is not particularly limited, and is, for example, a circle or a rectangle.
- the size of the pinhole 132 is appropriately set according to the shape of the excitation light irradiation spot and the optical element used.
- the detection region defining unit 140 is disposed between the light irradiation unit 120 and the cell deployment device 160 (holder 110), or between the cell deployment device 160 (holder 110) and the light detection unit 130, and is disposed on the chip 161.
- the detection area A is defined.
- the “detection region” means a region where fluorescence is detected by the light detection unit 130. Normally, the fluorescence to be detected is not emitted from outside the excitation light irradiation spot S, and therefore the detection region A is set in the excitation light irradiation spot S on the chip 161.
- the detection area A may coincide with the irradiation spot S of the excitation light, or may be a part of the irradiation spot S.
- the detection region defining unit 140 is disposed between the light irradiation unit 120 and the cell deployment device 160 (holder 110), and light that irradiates the detection region A out of the excitation light emitted from the light irradiation unit 120.
- a diaphragm such as a slit or an aperture
- the detection area A coincides with the irradiation spot S of the excitation light.
- the detection region defining unit 140 is disposed between the cell deployment device 160 (holder 110) and the light irradiation unit 120, and is emitted from the detection region A out of the fluorescence emitted from the irradiation spot S of the excitation light.
- a diaphragm (such as a slit or an aperture) that allows only fluorescent light to pass through may also be used.
- the detection area A is a part of the excitation light irradiation spot S.
- the detection region defining unit 140 is disposed between the light irradiation unit 120 and the cell deployment device 160 (holder 110).
- the size of the excitation light irradiation spot S is not particularly limited as long as it is equal to or larger than the size of the detection region A. Further, the shape of the excitation light irradiation spot S is not particularly limited. Usually, the shape of the irradiation spot S is circular, but when the detection region defining unit 140 is disposed between the light irradiation unit 120 and the cell deployment device 160 (holder 110) as in the present embodiment. The shape of the irradiation spot S (detection region A) can take various shapes.
- the size and shape of the detection region A are limited according to the arrangement of the microchamber 165 in the cell deployment device 160, as will be described later. At least the length of the detection region A in the first direction of the chip 161 is equal to or less than the distance d1 (see FIG. 4) between the two microchambers 165 adjacent to each other in the first direction, and the detection in the second direction is performed. The length of the region A is not less than the length of the microchamber 165 in the second direction.
- Examples of the shape of the detection region A include a circle, an ellipse, and a rectangle. The shape of the detection region A is preferably elliptical or rectangular from the viewpoint of increasing detection sensitivity.
- the shape of the irradiation spot S is a rectangle having a width of 10 to 25 ⁇ m and a length of 50 to 500 ⁇ m.
- FIG. 7 and 8 are diagrams for explaining the size of the detection area A on the chip 161 in the present embodiment. In these drawings, it is assumed that the scanning of the irradiation spot S (detection region A) is performed for every two chamber rows (two-row irradiation).
- FIG. 7A and FIG. 8A show a more preferable example of the detection region A as compared with FIG. 7B and FIG. 8B.
- the length of the detection region A in the first direction D1 is equal to the two micro chambers that are closest to each other in the first direction D1 in the two adjacent chamber rows. 165 or less in the first direction D1 between 165.
- the length of the detection region A in the first direction D1 is longer than the interval d4, as shown in FIG. 7B, the fluorescence emitted from the two microchambers 165 included in the different chamber rows is simultaneously detected. It will end up.
- the minimum value of the length of the detection region A in the first direction D1 is not particularly limited, but is preferably about the same as the size of the detection target cell from the viewpoint of detection sensitivity.
- the length of the detection region A in the second direction D2 is the length of the microchamber 165 included in one of the two chamber rows adjacent to each other.
- the length d5a in the second direction D2 the length d5b in the second direction of the microchamber 165 included in the other chamber row of the two chamber rows, the microchamber 165 included in one chamber row and the other
- the total is d5 or more with the distance d5c in the second direction between the micro chambers 165 included in the chamber row.
- the length of the detection region A in the second direction D2 is the first d5 (d5a, d5b and d5c) described above and the second microchamber 165 similar to d5c.
- the total is d5 ′ or less with the distance d5d in the direction of 2. If the length of the detection region A in the second direction D2 is not less than d5 and not more than d5 ', the fluorescence emitted from the microchamber 165 included in any one of the chamber rows can be detected.
- FIG. 9 shows the irradiation spot S and the detection region A when the detection region defining unit 140 is arranged on the light irradiation unit 120 side.
- 9A is a schematic diagram showing the optical path of the excitation light
- FIG. 9B is a schematic diagram when the irradiation spot S and the detection region A are viewed from above
- FIG. 9C is a schematic diagram showing the optical path of fluorescence. is there.
- FIG. 9A is a schematic diagram showing the optical path of the excitation light
- FIG. 9B is a schematic diagram when the irradiation spot S and the detection region A are viewed from above
- FIG. 9C is a schematic diagram showing the optical path of fluorescence. is there.
- FIG. 9A is a schematic diagram showing the optical path of the excitation light
- FIG. 9B is a schematic diagram when the irradiation spot S and the detection region A are viewed from above
- FIG. 9C is a schematic diagram showing the optical path of fluorescence.
- 10 shows the irradiation spot S and the detection region A when the detection region defining unit 140 is arranged on the light detection unit 130 side.
- 10A is a schematic diagram showing an optical path of excitation light
- FIG. 10B is a schematic diagram when the irradiation spot S and the detection region A are viewed from above
- FIG. 10C is a schematic diagram showing an optical path of fluorescence. is there.
- the detection region defining unit 140 is arranged on the light irradiation unit 120 side
- a part of the excitation light emitted from the light irradiation unit 120 is a through hole having the same shape as the detection region A. Only the excitation light that has been blocked by the detection region defining unit 140 having passed through the through hole of the detection region defining unit 140 is irradiated onto the chip 161.
- the shape of the excitation light irradiation spot S and the shape of the detection region A match.
- the detection area defining unit 140 is arranged on the light detection unit 130 side
- the excitation light emitted from the light irradiation unit 120 is irradiated to the chip 161 as it is.
- the size of the irradiation spot S is larger than that of the detection region A.
- fluorescence is emitted from the fluorescent material in the irradiation spot S including the detection region A.
- the detection area A can be set, for example, by limiting the area where the excitation light is irradiated, limiting the area where fluorescence is detected, or a combination thereof. Further, from the viewpoint of fluorescence detection accuracy, fluorescence loss, and the like, the detection area A is preferably set as an excitation light irradiation area.
- the moving part 150 moves the device 110 for cell expansion
- the moving unit 150 includes an X-axis moving mechanism 152 that moves the holder 110 in the X-axis direction (for example, the first direction D1), and a holder 110 that moves in the Y-axis direction (for example, the second direction orthogonal to the first direction). And a Y-axis moving mechanism 154 that moves to D2).
- the moving unit 150 drives the X-axis moving mechanism 152 and the Y-axis moving mechanism 154 to move the holder 110 in an arbitrary direction.
- FIG. 11 is a diagram for explaining scanning and movement of the irradiation spot S (detection region A).
- the moving unit 150 is configured such that the irradiation spot S (detection region A) has one end of two chamber rows (the m-th row and the (m + 1) -th chamber row) adjacent to each other.
- the cell deployment device 160 is moved so as to move in the first direction D1 from the portion (movement start position) to the other end (movement end position) (see the solid line arrow in FIG. 11).
- the irradiation spot S (detection area A) is moved in the second direction D2. Specifically, as shown in FIG. 11, the irradiation spot S (detection region A) that has reached the movement end position of the two chamber rows (the m-th row and the (m + 1) -th chamber row) is detected. Then, it is moved to the movement start position of the next two chamber rows (the (m + 2) -th row and the (m + 3) -th chamber row) (see the dotted arrows in FIG. 11). At this time, the light irradiation part 120 may continue irradiating excitation light, and does not need to irradiate.
- the irradiation spot S (detection region A) is moved so that the once-scanned chamber row is not scanned again and there is no chamber row that is not scanned. These steps are repeated until the last chamber row (the nth chamber row) has been scanned.
- the control unit (not shown) is connected to the light irradiation unit 120, the light detection unit 130, and the moving unit 150, and controls the cell detection device 100 in an integrated manner.
- the cell detection apparatus 100 continuously examines the cells accommodated in the plurality of microchambers 165 formed on the chip 161 by detecting the fluorescence while scanning the irradiation spot of the excitation light.
- Cell detection method Next, a method for detecting a target rare cell from a large number of cells using the cell detection device 100 will be described.
- a chip 161 (cell deployment device 160) in which cells are housed in a plurality of microchambers 165 is prepared (first step). For example, after filling the channel 164 with a cell suspension (for example, blood or a diluted solution thereof), the cell suspension is aspirated 20 times so that the cells in the cell suspension move slightly. Repeat (stop for 10 seconds after a single aspiration) to house cells in microchamber 165. And the chip
- a cell suspension for example, blood or a diluted solution thereof
- the chip 161 is irradiated with excitation light, and fluorescence emitted from the detection area A in the excitation light irradiation spot is detected (second step).
- the moving unit 150 moves the cell deployment device 160 via the holder 110 so that the excitation light irradiation spot S is located at the movement start position.
- the moving unit 150 moves the irradiation spot S (detection region A) from the movement start position to the movement end position of two adjacent chamber rows (the m-th row and the (m + 1) -th chamber row).
- the cell deployment device 160 is moved in the direction opposite to the first direction D1 by 180 °.
- the light irradiation unit 120 continues to emit excitation light having a predetermined wavelength while the moving unit 150 moves the holder 110 in the direction opposite to the first direction D1 by 180 °. That is, the light irradiation unit 120 continuously irradiates the cells (fluorescent substances) accommodated in the plurality of micro chambers 165 included in the chamber row with excitation light.
- the fluorescent substance emits fluorescence simultaneously with the excitation light irradiation.
- the light detection unit 130 continuously detects the emitted fluorescence.
- the moving unit 150 starts moving the excitation light irradiation spot S (detection region A) next to the two adjacent chamber rows (the (m + 2) th row and the (m + 3) th chamber row).
- the cell deployment device 160 is moved so as to move to the position.
- the scanning and movement of the irradiation spot S described above are repeated, and rare cells are detected by detecting fluorescence while irradiating the chip 161 with excitation light.
- target rare cells can be detected from a large number of cells with high sensitivity and in a short time.
- the kind of rare cell used as a detection target is not specifically limited.
- cells to be detected include blood circulating cancer cells (CTC), circulating vascular endothelial cells (CEC), circulating vascular endothelial progenitor cells (CEP), circulating fetal cells, antigen-specific T cells, various stem cells, and the like.
- CTC blood circulating cancer cells
- CEC circulating vascular endothelial cells
- CEP circulating vascular endothelial progenitor cells
- fetal cells antigen-specific T cells
- various stem cells and the like.
- the irradiation spot may be scanned twice for each chamber row.
- the detection region A in the second direction D2 is a length that does not span two adjacent chamber rows in the second direction D2.
- the length of the detection region A in the second direction D2 is equal to the length in the second direction D2 of the microchamber 165 included in one of the two chamber rows adjacent to each other, and the one chamber. It is less than or equal to the sum of the distances in the second direction between the microchambers 165 included in the row and the microchambers 165 included in the other chamber row.
- the length of the detection region A in the second direction D2 is equal to or shorter than the above-described length, the fluorescence emitted from the two microchambers 165 included in the different chamber rows is not detected at the same time.
- the length of the detection region in the first direction D1 is as described above.
- the moving unit 150 moves the cell deployment device 160 in the first direction so that the irradiation spot S (detection region A) of the excitation light moves from the movement start position to the movement end position of one m-th chamber row. Move in the direction 180 ° opposite to D1. Next, the moving unit 150 moves the cell deployment device 160 so that the irradiation spot S (detection region A) moves to the movement start position of the next chamber row (the (m + 1) th row).
- the movement start position and the movement end position may be set at opposite positions in the chamber rows adjacent to each other (the m-th row and the (m + 1) -th chamber row).
- the moving unit 150 has the irradiation spot S (detection region A) in the first direction from one end (movement start position) to the other end (movement end position) of the m-th chamber row.
- the cell deployment device 160 is moved so as to move toward D1.
- the irradiation spot S (detection region A) that has reached the movement end position of the other end of the m-th chamber row is moved to the movement start position of the (m + 1) -th chamber row.
- the movement start position of the (m + 1) -th chamber row is an end located adjacent to the movement end position of the m-th chamber row.
- the irradiation spot S (detection region A) that has reached the movement start position of the (m + 1) -th chamber row is moved to the movement end position located at the other end of the chamber row.
- the movement end position of the (m + 1) -th chamber row is an end located adjacent to the movement start position of the m-th chamber row.
- the cell detection apparatus 200 includes an imaging unit 250 for imaging the microchamber 165 and is configured to be capable of irradiating excitation light with two types of wavelengths. Different from the cell detection device 100 according to the first embodiment. Therefore, the difference from the cell detection device 100 according to Embodiment 1 will be mainly described.
- FIG. 13 is a schematic diagram of the cell detection device 200 according to the second embodiment.
- the cell detection device 200 includes a holder 110, two light irradiation units 120, two light detection units 130, a detection region defining unit 140, a moving unit 150, an imaging unit 250, and a control unit (not illustrated). ). Note that the same cell deployment device 160 as in the first embodiment can be used for the cell detection apparatus 200.
- the two light irradiators 120 irradiate the chip 161 with excitation light having different wavelengths.
- the two light detection units 130 detect fluorescence having different wavelengths corresponding to the two types of excitation light.
- two first lenses 121, a first dichroic mirror 134, a detection region defining unit 140, a second lens 122, a second dichroic mirror 123 and the objective lens 124 are sequentially arranged from the light irradiation unit 120 side.
- Excitation light emitted from the two light irradiation units 120 passes through the first lens 122 and is coupled by the first dichroic mirror 134.
- the combined excitation light passes through the detection region defining unit 140 and the second lens 122 and is then reflected by the second dichroic mirror 123 toward the cell deployment device 160.
- the excitation light reflected by the dichroic mirror 123 is condensed near the bottom surface of the microchamber 165 of the cell deployment device 160 (chip 161) by the objective lens 124.
- An objective lens 124, a second dichroic mirror 123, and a third dichroic are disposed on the optical path of fluorescence from the cell deployment device 160 to one of the light detection units 130 (the light detection unit 130 illustrated on the lower side in FIG. 13).
- a mirror 139, a fourth lens 135, a pinhole 132, and a fifth lens 136 are disposed.
- an objective lens 124, a second dichroic mirror 123, and a third optical path are arranged on the fluorescence optical path from the cell deployment device 160 to the other light detection unit 130 (the light detection unit 130 shown on the upper side in FIG. 13).
- a dichroic mirror 139, a filter 131, a half mirror 137, a fourth lens 135, a pinhole 132, and a fifth lens 136 are disposed.
- an objective lens 124, a second dichroic mirror 123, a third dichroic mirror 139, a filter 131, a half mirror 137, and a sixth lens 138 are disposed on the fluorescence optical path from the cell deployment device 160 to the imaging unit 250. ing.
- Fluorescence emitted from the cell deployment device 160 passes through the objective lens 124 and the second dichroic mirror 123. A part of the fluorescence that has passed through the second dichroic mirror 123 is reflected by the third dichroic mirror 139 toward the one light detection unit 130, and the remaining part of the fluorescence passes through the third dichroic mirror 139. Part of the fluorescence that has passed through the third dichroic mirror 139 passes through the filter 131 and is then reflected by the half mirror 137 toward the other light detection unit 130. The remaining part of the fluorescence that has passed through the third dichroic mirror 139 passes through the half mirror 137 and travels toward the imaging unit 250.
- the fluorescence reflected by the third dichroic mirror 139 or the half mirror 137 passes through the fourth lens 135, the pinhole 132, and the fifth lens 136, respectively, and reaches the light detection unit 130.
- the fluorescence that has passed through the half mirror 137 passes through the sixth lens 138 and reaches the imaging unit 250.
- the imaging unit 250 is disposed integrally with the light irradiation unit 120 and the light detection unit 130.
- the imaging unit 250 images the cells accommodated in the microchamber 165 in which the fluorescence is detected based on the fluorescence detection result by the light detection unit 120 and the position information acquired by the control unit (position information acquisition unit).
- the type of the imaging unit 250 is not particularly limited.
- the imaging unit 250 is, for example, a CCD camera.
- the control unit also functions as a position information acquisition unit that records position information transmitted from the moving unit 150.
- the control unit position information acquisition unit
- the operation of the cell detection apparatus 200 according to the second embodiment is the operation of the cell detection apparatus 100 according to the first embodiment in that the position information of fluorescence is acquired and the microchamber 165 containing rare cells is imaged. And different. Therefore, the difference from the operation of the cell detection device 100 according to Embodiment 1 will be mainly described.
- the cell detection apparatus 200 irradiates excitation light of two types of wavelengths, detects fluorescence of two types of wavelengths, and acquires fluorescence position information.
- the position information of the fluorescence is acquired as, for example, the moving distance of the holder 110 (cell deployment device 160) with respect to the reference position.
- the imaging unit 250 images the cells accommodated in the microchamber 165 in which fluorescence is detected.
- the moving unit 150 moves the cell deployment device 160 based on the positional information of the microchamber 165 where the fluorescence is detected so that the imaging unit 250 moves directly above the microchamber 165.
- the imaging unit 250 images the cells in the microchamber 165 after the target microchamber 165 moves immediately below.
- the cell detection device 200 according to the second embodiment can also acquire a rare cell image.
- the cell detection apparatus 200 according to Embodiment 2 can also detect two wavelengths of fluorescence simultaneously by irradiating two wavelengths of excitation light.
- the third dichroic mirror 139 can be removed and the color of the filter 131 can be exchanged according to the color to be observed.
- the imaging unit 250 may be arranged to be switchable at a portion where the light detection unit 130 is arranged, and light detection and imaging may be performed respectively.
- Example 1 blood circulating cancer cells (CTC) contained in peripheral blood collected from cancer patients were detected using the cell detection device 200 according to Embodiment 2.
- CTC cancer cells
- CTC blood circulating cancer cells
- a frame 162 and a top plate 163 are arranged on a chip 161 having a plurality of microchambers 165, width: 5 mm, height :
- a cell deployment device 160 having a channel 164 of 500 ⁇ m was produced.
- the plurality of microchambers 165 are arranged at intervals of 300 ⁇ m in the first direction, and are arranged at intervals of 150 ⁇ m in the second direction.
- a blocking solution (PBS containing 3% BSA) was fed into the flow path 164 at 16 mL / min. Thereafter, PBS was fed into the channel 164 to remove excess blocking solution from the channel 164.
- CTC blood circulation cancer cells
- the excitation light He—Ne laser light (wavelength 633 nm) for exciting Alexa Fluor 647 labeled with CTC was used.
- the shape of the irradiation spot S was made a rectangle of 10 ⁇ m ⁇ 100 ⁇ m.
- the irradiation spot S and the detection area A coincide with each other.
- the irradiation spot S was scanned for each chamber row (one row irradiation).
- the time required for scanning of the irradiation spot S (irradiation of excitation light and detection of fluorescence) and movement of the scanning spot S between the chamber rows was about 2 minutes.
- the cells housed in the microchamber 165 where fluorescence was detected were imaged by the imaging unit 250.
- FIG. 14 shows CTC detection results.
- 14A and 14B are graphs showing the relationship between the scanning distance of the irradiation spot S and the fluorescence intensity.
- FIG. 14A shows a range including 13 microchambers 165.
- FIG. 14B shows an enlarged range including one microchamber 165.
- the curve C1 in the graph of FIG. 14A has shown fluorescence
- the curve C2 has shown the reflected light from the device 160 for cell expansion.
- the intensity of the reflected light changes periodically according to the microchamber 165.
- 14C is a photograph of the microchamber 165 in which fluorescence is detected
- FIG. 14D is a schematic view of the photograph shown in FIG. 14C.
- cells that emit fluorescence (CTC) are shown in black, and cells that do not emit fluorescence are shown in white.
- blood circulation cancer cells could be detected with high sensitivity in a short time (about 2 minutes) by the method of the present embodiment. Further, the number of detected CTCs completely coincided with the number of CTCs introduced into the cell deployment device 160 (100%).
- Example 2 Cell Detection Also in Example 2, blood circulation cancer cells (CTC) were detected using the cell detection apparatus 200 according to Embodiment 2.
- the detection area defining unit 140 is arranged on the light detection unit 130 side, not on the light irradiation unit 120 side.
- a rectangular slit was used as the detection area defining unit 140.
- the shape of the irradiation spot S is an ellipse having a major axis of 300 ⁇ m and a minor axis of 50 ⁇ m, but the shape of the detection region A is a rectangle of 10 ⁇ m ⁇ 300 ⁇ m.
- the irradiation spot S was scanned every two chamber rows (see FIG. 11; two rows irradiation).
- the time required for scanning of the irradiation spot S (irradiation of excitation light and detection of fluorescence) and movement of the scanning spot S between the chamber rows was about 1 minute.
- the cells housed in the microchamber 165 where fluorescence was detected were imaged.
- the same cell deployment device 160 as in Example 1 was used.
- FIG. 15 shows CTC detection results.
- FIG. 15A is a graph showing the relationship between the scanning distance of the irradiation spot S and the fluorescence intensity in a range including 12 microchambers 165.
- a curve C1 in the graph indicates fluorescence, and a curve C2 indicates reflected light.
- FIG. 15B is a photograph of the cell deployment device 160 (microchamber 165) in the region corresponding to the graph of FIG. 15A.
- the black circle is the microchamber 165, and the white dots in the black circle are cells emitting fluorescence (CTC).
- CTC cells emitting fluorescence
- the fluorescence signals could be detected separately for each microchamber 165 without overlapping the fluorescence signals of the microchambers 165 of two adjacent chamber rows. Further, the number of detected CTCs completely coincided with the number of CTCs introduced into the cell deployment device 160 (100%).
- Example 3 Cell Detection Also in Example 3, blood circulation cancer cells (CTC) were detected using the cell detection device 200 according to Embodiment 2.
- the detection region defining unit 140 a circular slit is arranged on the light irradiation unit 120 side, so that the shape of the irradiation spot S is a circle having a diameter of 100 ⁇ m.
- the irradiation spot S and the detection area A coincide with each other.
- the irradiation spot was scanned for each chamber row (one row irradiation). At this time, the time required for scanning of the irradiation spot S (irradiation of excitation light and detection of fluorescence) and movement of the scanning spot S between the chamber rows was about 2 minutes.
- FIG. 16 shows CTC detection results.
- FIG. 16A is a graph showing the relationship between the scanning position of the irradiation spot S and the fluorescence intensity, in which the range including the two microchambers 165 is enlarged.
- FIG. 16B is a photograph of these microchambers 165, and
- FIG. 16C is a schematic view of the photograph shown in FIG. 16B.
- Example 1 and Example 2 CTC could be detected in a short time and with high sensitivity. Further, the number of detected CTCs almost coincided with the number of CTCs introduced into the cell deployment device 160 (98%).
- CTC circulating tumor cells
- a cell suspension was developed on a flat substrate.
- the shape of the irradiation spot S is a circle having a diameter of 5 ⁇ m.
- the time required for detecting fluorescence on the entire surface of the substrate was about 15 minutes.
- CTC could be detected in the same manner as in Examples 1 to 3. Further, the number of detected CTCs almost coincided with the number of CTCs introduced into the cell deployment device 160 (98%). However, because of the detection using a microarray scanner with an irradiation spot having a diameter of 5 ⁇ m, the detection time is as long as about 15 minutes.
- the cell detection device according to the present invention and the cell detection method using this cell detection device have sensitivity equal to or higher than that of cell detection using a microarray scanner with an irradiation spot of about 5 ⁇ m in diameter, and in a short time. It can be seen that rare cells can be detected.
- the cell detection method and cell detection apparatus of the present invention are highly sensitive and can detect rare cells in a short time, and thus are useful for, for example, examination of diseases.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Dispersion Chemistry (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Hematology (AREA)
- Clinical Laboratory Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Molecular Biology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Optical Measuring Cells (AREA)
Abstract
A chip is prepared that has a plurality of microchamber columns disposed therein. In each microchamber column, a plurality of microchambers are arranged at a prescribed interval in a first direction. Each of the microchambers accommodates at least one cell that has been labeled with a fluorescent substance. After the chip is prepared, the chip is irradiated with excitation light, and the fluorescence of a fluorescent substance in a detection region is detected. The detection of the fluorescence is carried out through the scanning of the detection region along the first direction and a second direction that is orthogonal to the first direction. The length of the detection region in the first direction is not greater than the interval between two microchambers that are adjacent in the first direction. The length of the detection region in the second direction is at least as long as the length of a microchamber in the second direction.
Description
本発明は、細胞検出方法およびこの細胞検出方法を行うための細胞検出装置に関する。
The present invention relates to a cell detection method and a cell detection apparatus for performing this cell detection method.
循環腫瘍細胞(CTC)や循環血管内皮細胞(CEC)、循環血管内皮前駆細胞(CEP)、各種幹細胞など(以下「希少細胞」ともいう)は、病態に応じて血液中に極めて稀に存在する。このような希少細胞の検出は、臨床的に有用であることは明らかであるが、極めて難しい。近年、様々な細胞分離手法を応用して希少細胞の検出が試みられており、様々な検出装置が製品化されている。たとえば、血液などの検体中に対象の希少細胞が存在するかどうかを検査する場合に、検体に由来する細胞懸濁液をデバイスに展開した後、展開された全細胞を解析することが提案されている。
Circulating tumor cells (CTC), circulating vascular endothelial cells (CEC), circulating vascular endothelial progenitor cells (CEP), various stem cells (hereinafter also referred to as “rare cells”) are very rarely present in the blood depending on the pathological condition. . The detection of such rare cells is obviously difficult, but is extremely difficult. In recent years, various cell separation techniques have been applied to detect rare cells, and various detection devices have been commercialized. For example, when examining whether or not a target rare cell is present in a sample such as blood, it is proposed to analyze a whole cell after the cell suspension derived from the sample is developed on the device. ing.
一般的に、希少細胞の検出は、顕微鏡を用いて行われている。この方法では、細胞懸濁液を平面状に展開した後、顕微鏡により全細胞を観察して、希少細胞を検出する。
Generally, rare cells are detected using a microscope. In this method, a cell suspension is developed in a flat shape, and then all cells are observed with a microscope to detect rare cells.
また、希少細胞の他の検出方法として、マイクロアレイスキャナーを用いた方法が開示されている(非特許文献1参照)。この方法では、複数のマイクロチャンバーを有するチップに細胞懸濁液を展開してマイクロチャンバー内に細胞を収容し、希少細胞を蛍光物質で標識する。そして、マイクロアレイスキャナーを用いて、細胞と同じ程度の大きさの照射スポットを走査して励起光を全細胞に照射し、希少細胞を標識した蛍光物質から放出された蛍光を検出することで、希少細胞を検出する。
Also, as another method for detecting rare cells, a method using a microarray scanner is disclosed (see Non-Patent Document 1). In this method, a cell suspension is developed on a chip having a plurality of microchambers, cells are accommodated in the microchambers, and rare cells are labeled with a fluorescent substance. Then, using a microarray scanner, scan the irradiation spot of the same size as the cells, irradiate all the cells with excitation light, and detect the fluorescence emitted from the fluorescent material labeled with the rare cells. Detect cells.
顕微鏡を用いた希少細胞の検出方法では、例えば高い倍率で全細胞を観察すると、高感度で希少細胞を検出することができるが、視野が狭いため検出時間が長くなってしまう。一方、低い倍率で全細胞を観察すると、視野が広くなるため検出時間を短縮することができるが、検出感度が下がってしまい、一部の希少細胞を検出できないおそれがある。
In the method for detecting rare cells using a microscope, for example, when all cells are observed at a high magnification, rare cells can be detected with high sensitivity, but the detection time becomes long because the field of view is narrow. On the other hand, when all cells are observed at a low magnification, the field of view is widened and the detection time can be shortened, but the detection sensitivity is lowered, and some rare cells may not be detected.
また、非特許文献1に記載の希少細胞の検出方法では、細胞と同じ程度の大きさの照射スポットを走査して全細胞を解析するため、高感度で細胞を検出することができるが、検出時間が長くなってしまう。
Further, in the rare cell detection method described in Non-Patent Document 1, since the whole cell is analyzed by scanning an irradiation spot having the same size as the cell, the cell can be detected with high sensitivity. The time will be longer.
このように、従来の希少細胞の検出方法では、高い検出感度および検出時間の短縮を両立することができなかった。
As described above, the conventional method for detecting rare cells cannot achieve both high detection sensitivity and reduction in detection time.
本発明の目的は、複数のマイクロチャンバーを有するチップを用いて、多数の細胞から目的の希少細胞を高感度かつ短時間で検出することができる細胞検出方法を提供することである。また、本発明の目的は、この細胞検出方法を行うための細胞検出装置を提供することでもある。
An object of the present invention is to provide a cell detection method capable of detecting a target rare cell from a large number of cells with high sensitivity and in a short time using a chip having a plurality of microchambers. Another object of the present invention is to provide a cell detection apparatus for performing this cell detection method.
本発明者らは、マイクロチャンバーに対応した所定の大きさおよび形状の照射スポットを走査して、マイクロチャンバー内に収容された細胞に励起光を照射することで上記課題を解決できることを見出し、さらに検討を加えて本発明を完成させた。
The present inventors have found that the above problem can be solved by scanning an irradiation spot having a predetermined size and shape corresponding to the microchamber and irradiating the cells accommodated in the microchamber with excitation light. The present invention has been completed through examination.
すなわち、本発明は、以下の細胞検出方法に関する。
That is, the present invention relates to the following cell detection method.
[1]第1の方向に所定の間隔で複数のマイクロチャンバーが配列されているマイクロチャンバー列が複数列配置され、かつ前記マイクロチャンバーに蛍光物質で標識された1または2以上の細胞が収容されているチップを準備する第1工程と、前記チップに励起光を照射して、検出領域における蛍光物質の蛍光を検出する第2工程と、を有し、前記第2工程は、前記検出領域を前記第1の方向に走査することと、前記第1の方向に直交する第2の方向に移動することとを繰り返すことにより行い、前記第1の方向における前記検出領域の長さは、前記第1の方向において互いに隣接する2つの前記マイクロチャンバー間の間隔以下であり、前記第2の方向における前記検出領域の長さは、前記第2の方向における前記マイクロチャンバーの長さ以上である、細胞検出方法。
[2]前記チップには、前記第1の方向に配列された複数の前記マイクロチャンバーを含むチャンバー列が、前記第2の方向に複数列配置されており、互いに隣接する2つの前記チャンバー列に含まれる、前記マイクロチャンバーのそれぞれは、前記第1の方向において重複しておらず、前記第1の方向における前記検出領域の長さは、前記2つのチャンバー列内で前記第1の方向において最も近接する2つの前記マイクロチャンバー間の前記第1の方向における間隔以下であり、前記第2の方向における前記検出領域の長さは、前記2つのチャンバー列の一方のチャンバー列に含まれる前記マイクロチャンバーの前記第2の方向における長さと、前記2つのチャンバー列の他方のチャンバー列に含まれる前記マイクロチャンバーの前記第2の方向における長さと、前記一方のチャンバー列に含まれる前記マイクロチャンバーと前記他方のチャンバー列に含まれる前記マイクロチャンバーとの間の前記第2の方向における間隔との合計以上である、[1]に記載の細胞検出方法。
[3]前記チップには、前記第1の方向に配列された複数の前記マイクロチャンバーを含むチャンバー列が、前記第2の方向に複数列配置されており、互いに隣接する2つの前記チャンバー列のうち、一方のチャンバー列に含まれる前記マイクロチャンバーと、他方のチャンバー列に含まれ、かつ前記一方のチャンバー列に含まれる前記マイクロチャンバーと最も近接する前記マイクロチャンバーとは、前記第1の方向において重複しており、前記第2の方向における前記検出領域の長さは、前記一方のチャンバー列に含まれる前記マイクロチャンバーの前記第2の方向における長さと、前記一方のチャンバー列に含まれる前記マイクロチャンバーと前記他方のチャンバー列に含まれる前記マイクロチャンバーとの間の前記第2の方向における間隔との合計未満である、[1]に記載の細胞検出方法。
[4]前記第2工程は、前記蛍光を検出するのと同時に、検出された前記蛍光の位置情報をさらに取得し、前記第2工程の後、前記蛍光の検出結果および前記位置情報に基づいて、前記蛍光が検出された前記マイクロチャンバーに収容された前記細胞を撮像する第3工程をさらに有する、[1]~[3]のいずれか一項に記載の細胞検出方法。
[5]前記検出領域は、前記励起光の照射スポットに一致する、[1]~[4]のいずれか一項に記載の細胞検出方法。
[6]前記検出領域は、前記励起光の照射スポットの一部である、[1]~[4]のいずれか一項に記載の細胞検出方法。
[7]前記検出領域は、矩形であり、前記第1の方向における前記検出領域の長さは、10~25μmの範囲内であり、前記第2の方向における前記検出領域の長さは、50~500μmの範囲内である、[1]~[6]のいずれか一項に記載の細胞検出方法。
[8]前記検出領域は、直径が20~500μmの円形である、[1]~[6]のいずれか一項に記載の細胞検出方法。 [1] A plurality of microchamber rows in which a plurality of microchambers are arranged at predetermined intervals in the first direction are arranged, and one or more cells labeled with a fluorescent substance are accommodated in the microchamber. A first step of preparing a chip, and a second step of irradiating the chip with excitation light to detect fluorescence of a fluorescent substance in the detection region, wherein the second step includes the detection region. The scanning in the first direction and the movement in a second direction orthogonal to the first direction are repeated, and the length of the detection region in the first direction is the first direction. Is less than or equal to the distance between the two microchambers adjacent to each other in one direction, and the length of the detection region in the second direction is the length of the microchamber in the second direction. At least a cell detection method.
[2] In the chip, a plurality of chamber rows including the plurality of micro chambers arranged in the first direction are arranged in the second direction, and the two adjacent chamber rows are arranged in the second direction. Each of the included microchambers does not overlap in the first direction, and the length of the detection region in the first direction is the most in the first direction in the two chamber rows. The distance between the two adjacent micro chambers in the first direction is equal to or less than the distance between the two micro chambers, and the length of the detection region in the second direction is included in one chamber row of the two chamber rows. In the second direction and the second of the microchambers included in the other chamber row of the two chamber rows [1], which is equal to or greater than the sum of the length in the direction and the distance in the second direction between the microchamber included in the one chamber row and the microchamber included in the other chamber row. The cell detection method as described.
[3] In the chip, a plurality of chamber rows including a plurality of the micro chambers arranged in the first direction are arranged in the second direction, and two of the chamber rows adjacent to each other are arranged. Among these, the micro chamber included in one chamber row and the micro chamber included in the other chamber row and closest to the micro chamber included in the one chamber row are in the first direction. The length of the detection region in the second direction overlaps with the length of the microchamber included in the one chamber row in the second direction, and the length of the micro chamber included in the one chamber row. In the second direction between the chamber and the microchamber included in the other chamber row. Is less than the total of the intervals, the cell detection method according to [1].
[4] The second step further acquires position information of the detected fluorescence at the same time as detecting the fluorescence, and after the second step, based on the detection result of the fluorescence and the position information. The cell detection method according to any one of [1] to [3], further comprising a third step of imaging the cell accommodated in the microchamber in which the fluorescence is detected.
[5] The cell detection method according to any one of [1] to [4], wherein the detection region coincides with an irradiation spot of the excitation light.
[6] The cell detection method according to any one of [1] to [4], wherein the detection region is a part of the irradiation spot of the excitation light.
[7] The detection area is rectangular, the length of the detection area in the first direction is in the range of 10 to 25 μm, and the length of the detection area in the second direction is 50 The cell detection method according to any one of [1] to [6], which is in a range of ˜500 μm.
[8] The cell detection method according to any one of [1] to [6], wherein the detection region is a circle having a diameter of 20 to 500 μm.
[2]前記チップには、前記第1の方向に配列された複数の前記マイクロチャンバーを含むチャンバー列が、前記第2の方向に複数列配置されており、互いに隣接する2つの前記チャンバー列に含まれる、前記マイクロチャンバーのそれぞれは、前記第1の方向において重複しておらず、前記第1の方向における前記検出領域の長さは、前記2つのチャンバー列内で前記第1の方向において最も近接する2つの前記マイクロチャンバー間の前記第1の方向における間隔以下であり、前記第2の方向における前記検出領域の長さは、前記2つのチャンバー列の一方のチャンバー列に含まれる前記マイクロチャンバーの前記第2の方向における長さと、前記2つのチャンバー列の他方のチャンバー列に含まれる前記マイクロチャンバーの前記第2の方向における長さと、前記一方のチャンバー列に含まれる前記マイクロチャンバーと前記他方のチャンバー列に含まれる前記マイクロチャンバーとの間の前記第2の方向における間隔との合計以上である、[1]に記載の細胞検出方法。
[3]前記チップには、前記第1の方向に配列された複数の前記マイクロチャンバーを含むチャンバー列が、前記第2の方向に複数列配置されており、互いに隣接する2つの前記チャンバー列のうち、一方のチャンバー列に含まれる前記マイクロチャンバーと、他方のチャンバー列に含まれ、かつ前記一方のチャンバー列に含まれる前記マイクロチャンバーと最も近接する前記マイクロチャンバーとは、前記第1の方向において重複しており、前記第2の方向における前記検出領域の長さは、前記一方のチャンバー列に含まれる前記マイクロチャンバーの前記第2の方向における長さと、前記一方のチャンバー列に含まれる前記マイクロチャンバーと前記他方のチャンバー列に含まれる前記マイクロチャンバーとの間の前記第2の方向における間隔との合計未満である、[1]に記載の細胞検出方法。
[4]前記第2工程は、前記蛍光を検出するのと同時に、検出された前記蛍光の位置情報をさらに取得し、前記第2工程の後、前記蛍光の検出結果および前記位置情報に基づいて、前記蛍光が検出された前記マイクロチャンバーに収容された前記細胞を撮像する第3工程をさらに有する、[1]~[3]のいずれか一項に記載の細胞検出方法。
[5]前記検出領域は、前記励起光の照射スポットに一致する、[1]~[4]のいずれか一項に記載の細胞検出方法。
[6]前記検出領域は、前記励起光の照射スポットの一部である、[1]~[4]のいずれか一項に記載の細胞検出方法。
[7]前記検出領域は、矩形であり、前記第1の方向における前記検出領域の長さは、10~25μmの範囲内であり、前記第2の方向における前記検出領域の長さは、50~500μmの範囲内である、[1]~[6]のいずれか一項に記載の細胞検出方法。
[8]前記検出領域は、直径が20~500μmの円形である、[1]~[6]のいずれか一項に記載の細胞検出方法。 [1] A plurality of microchamber rows in which a plurality of microchambers are arranged at predetermined intervals in the first direction are arranged, and one or more cells labeled with a fluorescent substance are accommodated in the microchamber. A first step of preparing a chip, and a second step of irradiating the chip with excitation light to detect fluorescence of a fluorescent substance in the detection region, wherein the second step includes the detection region. The scanning in the first direction and the movement in a second direction orthogonal to the first direction are repeated, and the length of the detection region in the first direction is the first direction. Is less than or equal to the distance between the two microchambers adjacent to each other in one direction, and the length of the detection region in the second direction is the length of the microchamber in the second direction. At least a cell detection method.
[2] In the chip, a plurality of chamber rows including the plurality of micro chambers arranged in the first direction are arranged in the second direction, and the two adjacent chamber rows are arranged in the second direction. Each of the included microchambers does not overlap in the first direction, and the length of the detection region in the first direction is the most in the first direction in the two chamber rows. The distance between the two adjacent micro chambers in the first direction is equal to or less than the distance between the two micro chambers, and the length of the detection region in the second direction is included in one chamber row of the two chamber rows. In the second direction and the second of the microchambers included in the other chamber row of the two chamber rows [1], which is equal to or greater than the sum of the length in the direction and the distance in the second direction between the microchamber included in the one chamber row and the microchamber included in the other chamber row. The cell detection method as described.
[3] In the chip, a plurality of chamber rows including a plurality of the micro chambers arranged in the first direction are arranged in the second direction, and two of the chamber rows adjacent to each other are arranged. Among these, the micro chamber included in one chamber row and the micro chamber included in the other chamber row and closest to the micro chamber included in the one chamber row are in the first direction. The length of the detection region in the second direction overlaps with the length of the microchamber included in the one chamber row in the second direction, and the length of the micro chamber included in the one chamber row. In the second direction between the chamber and the microchamber included in the other chamber row. Is less than the total of the intervals, the cell detection method according to [1].
[4] The second step further acquires position information of the detected fluorescence at the same time as detecting the fluorescence, and after the second step, based on the detection result of the fluorescence and the position information. The cell detection method according to any one of [1] to [3], further comprising a third step of imaging the cell accommodated in the microchamber in which the fluorescence is detected.
[5] The cell detection method according to any one of [1] to [4], wherein the detection region coincides with an irradiation spot of the excitation light.
[6] The cell detection method according to any one of [1] to [4], wherein the detection region is a part of the irradiation spot of the excitation light.
[7] The detection area is rectangular, the length of the detection area in the first direction is in the range of 10 to 25 μm, and the length of the detection area in the second direction is 50 The cell detection method according to any one of [1] to [6], which is in a range of ˜500 μm.
[8] The cell detection method according to any one of [1] to [6], wherein the detection region is a circle having a diameter of 20 to 500 μm.
また、本発明は、以下の細胞検出装置に関する。
The present invention also relates to the following cell detection apparatus.
[9]第1の方向に所定の間隔で複数のマイクロチャンバーが配列されているマイクロチャンバー列が複数列配置され、かつ前記マイクロチャンバーに蛍光物質で標識された1または2以上の細胞が収容されているチップを保持するためのホルダーと、前記チップに励起光を照射する光照射部と、前記光照射部から照射された励起光により検出領域における蛍光物質の蛍光を検出する光検出部と、前記光照射部と前記ホルダーとの間、または前記ホルダーと前記光検出部との間に配置され、前記検出領域を規定する検出領域規定部と、前記チップにおける前記検出領域の位置を移動させるために、前記ホルダーと、前記光照射部、前記検出領域規定部および前記光検出部とを相対的に移動させる移動部と、を有し、前記第1の方向における前記検出領域の長さは、前記第1の方向において互いに隣接する2つの前記マイクロチャンバー間の間隔以下であり、第2の方向における前記検出領域の長さは、前記第2の方向における前記マイクロチャンバーの長さ以上である、細胞検出装置。
[10]前記光検出部により検出した前記蛍光物質の位置情報を取得する位置情報取得部と、前記光検出部による前記蛍光の検出結果および前記位置情報取得部により取得した前記位置情報に基づいて、前記マイクロチャンバーに収容された前記蛍光物質で標識された細胞を撮像する撮像部と、をさらに有する、[9]に記載の細胞検出装置。
[11]前記検出領域規定部は、前記光照射部と前記ホルダーとの間に配置され、前記光照射部から出射された励起光のうち、前記検出領域に照射する光のみを通過させる絞りである、[9]または[10]に記載の細胞検出装置。
[12]前記検出領域規定部は、前記ホルダーと前記光検出部との間に配置され、前記照射スポットから放出された前記蛍光のうち、前記検出領域から放出された前記蛍光のみを通過させる絞りである、[9]または[10]に記載の細胞検出装置。
[13]前記検出領域は、矩形であり、前記第1の方向における前記検出領域の長さは、10~25μmの範囲内であり、前記第2の方向における前記検出領域の長さは、50~500μmの範囲内である、[9]~[12]のいずれか一項に記載の細胞検出装置。
[14]前記検出領域は、直径が20~500μmの円形である、[9]~[12]のいずれか一項に記載の細胞検出装置。 [9] A plurality of microchamber rows in which a plurality of microchambers are arranged at predetermined intervals in the first direction are arranged, and one or more cells labeled with a fluorescent substance are accommodated in the microchamber. A holder for holding the chip, a light irradiation unit for irradiating the chip with excitation light, a light detection unit for detecting fluorescence of the fluorescent substance in the detection region by the excitation light irradiated from the light irradiation unit, A detection area defining section that is disposed between the light irradiation section and the holder or between the holder and the light detection section and defines the detection area, and for moving the position of the detection area on the chip And a moving part that relatively moves the light irradiating part, the detection region defining part, and the light detecting part, and the front in the first direction The length of the detection region is equal to or less than the interval between the two microchambers adjacent to each other in the first direction, and the length of the detection region in the second direction is the microchamber in the second direction. A cell detection device that is longer than the length of the cell.
[10] Based on a position information acquisition unit that acquires position information of the fluorescent substance detected by the light detection unit, a detection result of the fluorescence by the light detection unit, and the position information acquired by the position information acquisition unit The cell detection device according to [9], further comprising: an imaging unit that images the cells labeled with the fluorescent substance housed in the microchamber.
[11] The detection region defining unit is a diaphragm that is disposed between the light irradiation unit and the holder, and that passes only light that irradiates the detection region among excitation light emitted from the light irradiation unit. The cell detection device according to [9] or [10].
[12] The detection region defining unit is arranged between the holder and the light detection unit, and allows only the fluorescence emitted from the detection region to pass through the fluorescence emitted from the irradiation spot. The cell detection device according to [9] or [10].
[13] The detection area is rectangular, the length of the detection area in the first direction is in the range of 10 to 25 μm, and the length of the detection area in the second direction is 50 The cell detection device according to any one of [9] to [12], which is in a range of ˜500 μm.
[14] The cell detection device according to any one of [9] to [12], wherein the detection region is a circle having a diameter of 20 to 500 μm.
[10]前記光検出部により検出した前記蛍光物質の位置情報を取得する位置情報取得部と、前記光検出部による前記蛍光の検出結果および前記位置情報取得部により取得した前記位置情報に基づいて、前記マイクロチャンバーに収容された前記蛍光物質で標識された細胞を撮像する撮像部と、をさらに有する、[9]に記載の細胞検出装置。
[11]前記検出領域規定部は、前記光照射部と前記ホルダーとの間に配置され、前記光照射部から出射された励起光のうち、前記検出領域に照射する光のみを通過させる絞りである、[9]または[10]に記載の細胞検出装置。
[12]前記検出領域規定部は、前記ホルダーと前記光検出部との間に配置され、前記照射スポットから放出された前記蛍光のうち、前記検出領域から放出された前記蛍光のみを通過させる絞りである、[9]または[10]に記載の細胞検出装置。
[13]前記検出領域は、矩形であり、前記第1の方向における前記検出領域の長さは、10~25μmの範囲内であり、前記第2の方向における前記検出領域の長さは、50~500μmの範囲内である、[9]~[12]のいずれか一項に記載の細胞検出装置。
[14]前記検出領域は、直径が20~500μmの円形である、[9]~[12]のいずれか一項に記載の細胞検出装置。 [9] A plurality of microchamber rows in which a plurality of microchambers are arranged at predetermined intervals in the first direction are arranged, and one or more cells labeled with a fluorescent substance are accommodated in the microchamber. A holder for holding the chip, a light irradiation unit for irradiating the chip with excitation light, a light detection unit for detecting fluorescence of the fluorescent substance in the detection region by the excitation light irradiated from the light irradiation unit, A detection area defining section that is disposed between the light irradiation section and the holder or between the holder and the light detection section and defines the detection area, and for moving the position of the detection area on the chip And a moving part that relatively moves the light irradiating part, the detection region defining part, and the light detecting part, and the front in the first direction The length of the detection region is equal to or less than the interval between the two microchambers adjacent to each other in the first direction, and the length of the detection region in the second direction is the microchamber in the second direction. A cell detection device that is longer than the length of the cell.
[10] Based on a position information acquisition unit that acquires position information of the fluorescent substance detected by the light detection unit, a detection result of the fluorescence by the light detection unit, and the position information acquired by the position information acquisition unit The cell detection device according to [9], further comprising: an imaging unit that images the cells labeled with the fluorescent substance housed in the microchamber.
[11] The detection region defining unit is a diaphragm that is disposed between the light irradiation unit and the holder, and that passes only light that irradiates the detection region among excitation light emitted from the light irradiation unit. The cell detection device according to [9] or [10].
[12] The detection region defining unit is arranged between the holder and the light detection unit, and allows only the fluorescence emitted from the detection region to pass through the fluorescence emitted from the irradiation spot. The cell detection device according to [9] or [10].
[13] The detection area is rectangular, the length of the detection area in the first direction is in the range of 10 to 25 μm, and the length of the detection area in the second direction is 50 The cell detection device according to any one of [9] to [12], which is in a range of ˜500 μm.
[14] The cell detection device according to any one of [9] to [12], wherein the detection region is a circle having a diameter of 20 to 500 μm.
本発明によれば、多数の細胞中から希少細胞を短時間で漏れなく検出することができる。
According to the present invention, rare cells can be detected from a large number of cells in a short time without leakage.
以下、本発明の実施の形態について、図面を参照して詳細に説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[実施の形態1]
実施の形態1における細胞検出装置は、細胞展開用デバイスを装着した状態で使用される。説明の便宜のため、以下の説明では、細胞展開用デバイス(チップ)を説明した後、細胞検出装置について説明する。 [Embodiment 1]
The cell detection apparatus in the first embodiment is used in a state in which a cell expansion device is mounted. For the convenience of explanation, in the following explanation, the cell detection device will be explained after explaining the cell deployment device (chip).
実施の形態1における細胞検出装置は、細胞展開用デバイスを装着した状態で使用される。説明の便宜のため、以下の説明では、細胞展開用デバイス(チップ)を説明した後、細胞検出装置について説明する。 [Embodiment 1]
The cell detection apparatus in the first embodiment is used in a state in which a cell expansion device is mounted. For the convenience of explanation, in the following explanation, the cell detection device will be explained after explaining the cell deployment device (chip).
(細胞展開用デバイスの構成)
図1および図2は、細胞展開用デバイス160の構成を示す図である。図1Aは、細胞展開用デバイス160の平面図であり、図1Bは、図1Aに示されるA-A線の断面図である。 (Configuration of cell deployment device)
1 and 2 are diagrams showing the configuration of thecell deployment device 160. FIG. 1A is a plan view of the cell deployment device 160, and FIG. 1B is a cross-sectional view taken along line AA shown in FIG. 1A.
図1および図2は、細胞展開用デバイス160の構成を示す図である。図1Aは、細胞展開用デバイス160の平面図であり、図1Bは、図1Aに示されるA-A線の断面図である。 (Configuration of cell deployment device)
1 and 2 are diagrams showing the configuration of the
図1Aに示されるように、細胞展開用デバイス160は、チップ161、枠体162および天板163を有する。図2Aは、チップ161の平面図であり、図2Bは、枠体162の平面図であり、図2Cは、天板163の平面図である。
As shown in FIG. 1A, the cell deployment device 160 includes a chip 161, a frame body 162, and a top plate 163. 2A is a plan view of the chip 161, FIG. 2B is a plan view of the frame body 162, and FIG. 2C is a plan view of the top plate 163.
図1および図2に示されるように、チップ161は、一方の面に複数のマイクロチャンバー165を有する(図1B参照)。このように、複数のマイクロチャンバー165を有するチップ161は、マイクロチャンバーアレイ(MCA)とも言われる。ここで、「マイクロチャンバー」とは、1個または2個以上の細胞を収容し、保持するための微細な有底の凹部(マイクロウェル)を意味する。また、「細胞を保持する」とは、マイクロチャンバー165に収容された細胞が、後述する流路164内に液体を流したときにマイクロチャンバー165外に出難くすることを意味する。チップ161のマイクロチャンバー165が形成されている面は、細胞展開用デバイス160の流路164の底面となる。各マイクロチャンバー165は、流路164に対して開口している。チップ161の構成については、別途詳細に説明する。
As shown in FIGS. 1 and 2, the chip 161 has a plurality of microchambers 165 on one surface (see FIG. 1B). Thus, the chip 161 having the plurality of micro chambers 165 is also referred to as a micro chamber array (MCA). Here, the “microchamber” means a fine bottomed recess (microwell) for containing and holding one or more cells. Further, “holding cells” means that the cells accommodated in the microchamber 165 are difficult to get out of the microchamber 165 when a liquid flows in a flow path 164 described later. The surface of the chip 161 on which the microchamber 165 is formed is the bottom surface of the channel 164 of the cell deployment device 160. Each microchamber 165 is open to the flow path 164. The configuration of the chip 161 will be described in detail separately.
枠体162は、チップ161と天板163との間に配置された、貫通孔を有する薄板である(図2B参照)。この貫通孔は、検体に由来する細胞懸濁液を流すための流路164となる。流路164(貫通孔)の形状は、マイクロチャンバー165上に細胞懸濁液を流すことが可能であれば、特に限定されず、用途に応じて適宜選択されうる。また、枠体162の厚みは、特に限定されず、所望の流路の高さ(深さ)に応じて適宜設定される。たとえば、枠体162の厚みは、50~500μmの範囲内であり、流路164の高さは、50~500μmの範囲内である。枠体162の素材は、特に限定されず、公知のマイクロプレートなどと同じ素材であってもよい。枠体162の素材の例には、ポリスチレン、ポリエチレン、ポリプロピレン、ポリアミド、ポリカーボネート、ポリジメチルシロキサン、ポリメチルメタクリレート、環状オレフィンコポリマーなどの樹脂が含まれる。
The frame body 162 is a thin plate having a through-hole disposed between the chip 161 and the top plate 163 (see FIG. 2B). This through-hole becomes a flow path 164 for flowing a cell suspension derived from the specimen. The shape of the channel 164 (through hole) is not particularly limited as long as the cell suspension can flow over the microchamber 165, and can be appropriately selected depending on the application. In addition, the thickness of the frame body 162 is not particularly limited, and is appropriately set according to the desired height (depth) of the flow path. For example, the thickness of the frame body 162 is in the range of 50 to 500 μm, and the height of the flow path 164 is in the range of 50 to 500 μm. The material of the frame 162 is not particularly limited, and may be the same material as a known microplate. Examples of the material of the frame body 162 include resins such as polystyrene, polyethylene, polypropylene, polyamide, polycarbonate, polydimethylsiloxane, polymethyl methacrylate, and cyclic olefin copolymer.
天板163は、枠体162の上に配置された、2つの貫通孔を有する薄板である(図2C参照)。これらの貫通孔は、それぞれ、流路164内に液体(例えば細胞懸濁液や洗浄液、染色液など)を導入するための導入口166と、流路164内から液体を排出するための排出口167となる。通常、導入口166は、流路164の一端に連通し、排出口167は、流路164の他端に連通する。導入口166および排出口167の形状は、特に限定されない。また、天板163の厚みも、必要な強度を確保できれば特に限定されない。天板163の素材は、特に限定されないが、後述の細胞検出装置100により照射される励起光を透過する観点からは、光透過性を有する素材であることが好ましい。天板163の素材としては、枠体162と同じ樹脂を使用することができる。
The top plate 163 is a thin plate having two through holes arranged on the frame body 162 (see FIG. 2C). These through-holes are respectively an introduction port 166 for introducing a liquid (for example, a cell suspension, a washing solution, a staining solution, etc.) into the flow channel 164 and a discharge port for discharging the liquid from the flow channel 164. 167. Usually, the introduction port 166 communicates with one end of the flow channel 164, and the discharge port 167 communicates with the other end of the flow channel 164. The shapes of the inlet 166 and the outlet 167 are not particularly limited. Moreover, the thickness of the top plate 163 is not particularly limited as long as necessary strength can be secured. The material of the top plate 163 is not particularly limited, but is preferably a light-transmitting material from the viewpoint of transmitting excitation light irradiated by the cell detection device 100 described later. As the material of the top plate 163, the same resin as that of the frame body 162 can be used.
チップ161、枠体162および天板163は、この順番で積層され、互いに固定されている。これらを固定する方法は特に限定されないが、観察やメンテナンスの観点からは、互いに取り外し可能に固定されることが好ましい。固定方法の例には、係合による固定、螺子を用いた固定、粘着剤を用いた固定が含まれる。
The chip 161, the frame body 162, and the top plate 163 are stacked in this order and are fixed to each other. The method for fixing them is not particularly limited, but from the viewpoint of observation and maintenance, it is preferable to fix them so as to be removable from each other. Examples of the fixing method include fixing by engagement, fixing using a screw, and fixing using an adhesive.
図1Aおよび図2Bに示されるように、細胞展開用デバイス160内に形成された流路164は、導入口166および排出口167を介して外部に連通している。導入口166から液体(例えば細胞懸濁液)を導入することで、流路164内に液体を満たすことができる。このとき、液体は、導入口166から排出口167に向かって流路164内を流れる。細胞懸濁液で流路164内を満たした場合、細胞はチップ161上に沈降し、マイクロチャンバー165の底面に付着する。すなわち、細胞は、マイクロチャンバー165内に収容される。この後、洗浄や染色などを行い、外部からマイクロチャンバー165内に収容されている細胞を、細胞検出装置100などを用いて観察することで、各種分析を行うことができる。
As shown in FIG. 1A and FIG. 2B, the flow path 164 formed in the cell deployment device 160 communicates with the outside through the inlet 166 and the outlet 167. By introducing a liquid (for example, a cell suspension) from the introduction port 166, the flow path 164 can be filled with the liquid. At this time, the liquid flows in the flow path 164 from the introduction port 166 toward the discharge port 167. When the channel 164 is filled with the cell suspension, the cells settle on the chip 161 and adhere to the bottom surface of the microchamber 165. That is, the cells are accommodated in the microchamber 165. Thereafter, washing and staining are performed, and various analyzes can be performed by observing cells housed in the microchamber 165 from the outside using the cell detection device 100 or the like.
(チップの構成)
次に、チップ161について、図面を用いて詳細に説明する。 (Chip configuration)
Next, thechip 161 will be described in detail with reference to the drawings.
次に、チップ161について、図面を用いて詳細に説明する。 (Chip configuration)
Next, the
図3は、チップ161の部分拡大断面図である。図2Aおよび図3に示されるように、チップ161の一方の面には、複数のマイクロチャンバー165(有底の凹部)が形成されている。チップ161の素材は、特に限定されないが、天板163と同様に光透過性を有する素材であることが好ましい。チップ161の素材は、枠体162および天板163と同じ樹脂を使用することができる。チップ161の厚みは、必要な強度を確保できれば特に限定されない。
FIG. 3 is a partial enlarged cross-sectional view of the chip 161. As shown in FIGS. 2A and 3, a plurality of microchambers 165 (bottomed recesses) are formed on one surface of the chip 161. The material of the chip 161 is not particularly limited, but it is preferable that the material has light transmittance like the top plate 163. As a material of the chip 161, the same resin as that of the frame body 162 and the top plate 163 can be used. The thickness of the chip 161 is not particularly limited as long as necessary strength can be ensured.
図4は、チップ161における複数のマイクロチャンバー165の配置の一例を示した図である。図4において、左側に記載されている1~nは、チャンバー列の番号を示している。mは、1≦m<nを満たす整数であり、任意のチャンバー列の番号を示している。
FIG. 4 is a view showing an example of the arrangement of a plurality of microchambers 165 in the chip 161. In FIG. 4, 1 to n written on the left side indicate the numbers of the chamber rows. m is an integer satisfying 1 ≦ m <n, and indicates an arbitrary chamber row number.
図4に示されるように、チップ161には、第1の方向D1において所定の間隔で配列された複数のマイクロチャンバー165を含むチャンバー列が、第2の方向D2に複数列配置されている。各チャンバー列に含まれるマイクロチャンバー165の数は、特に限定されない。本実施の形態では、各チャンバー列は、200個のマイクロチャンバー165を有する。また、チャンバー列の数も、特に限定されない。本実施の形態では、チップ161は、100列のチャンバー列を有する。すなわち、チップ161は、20000個のマイクロチャンバー165を有する。
As shown in FIG. 4, on the chip 161, a plurality of chamber rows including a plurality of micro chambers 165 arranged at predetermined intervals in the first direction D1 are arranged in the second direction D2. The number of micro chambers 165 included in each chamber row is not particularly limited. In the present embodiment, each chamber row has 200 micro chambers 165. Further, the number of chamber rows is not particularly limited. In the present embodiment, the chip 161 has 100 chamber rows. That is, the chip 161 has 20000 microchambers 165.
マイクロチャンバー165の開口部の形状は、特に限定されない。マイクロチャンバー165の開口部の形状の例には、円形、楕円形および多角形が含まれる。本実施の形態では、開口部の形状は、円形である。また、マイクロチャンバー165の開口部の大きさは、特に限定されず、収容する細胞の種類や1個のマイクロチャンバー165に収容する細胞の数などに応じて適宜設定されうる。通常は、開口部の大きさは、マイクロチャンバー165の底面に10~15個程度の細胞が付着できる大きさであることが好ましい。たとえば、開口部の直径は、20~500μmの範囲内であり、マイクロチャンバー165の深さは、20~100μmの範囲内である。なお、開口部の直径は、複数のマイクロチャンバー165において同じであってもよいし、それぞれ異なっていてもよい。本実施の形態では、開口部の直径は、すべてのマイクロチャンバー165で同じである。
The shape of the opening of the micro chamber 165 is not particularly limited. Examples of the shape of the opening of the microchamber 165 include a circle, an ellipse, and a polygon. In the present embodiment, the shape of the opening is circular. In addition, the size of the opening of the microchamber 165 is not particularly limited, and can be appropriately set according to the type of cells to be accommodated, the number of cells to be accommodated in one microchamber 165, and the like. Usually, the size of the opening is preferably such that about 10 to 15 cells can adhere to the bottom surface of the microchamber 165. For example, the diameter of the opening is in the range of 20 to 500 μm, and the depth of the microchamber 165 is in the range of 20 to 100 μm. Note that the diameters of the openings may be the same in the plurality of microchambers 165, or may be different from each other. In the present embodiment, the diameter of the opening is the same in all the microchambers 165.
第1の方向D1において互いに隣接するマイクロチャンバー165間の間隔d1は、特に限定されない。間隔d1は、同じであってもよいし、それぞれ異なっていてもよい。本実施の形態では、間隔d1は、一定である。すなわち、各チャンバー列において、複数のマイクロチャンバー165は、等間隔に配置されている。第2の方向D2におけるチャンバー列間の間隔d2は、特に限定されず、適宜設定される。本実施の形態では、間隔d2は、一定である。すなわち、複数のチャンバー列は、等間隔に配置されている。
The distance d1 between the microchambers 165 adjacent to each other in the first direction D1 is not particularly limited. The distance d1 may be the same or different. In the present embodiment, the interval d1 is constant. That is, in each chamber row, the plurality of micro chambers 165 are arranged at equal intervals. The interval d2 between the chamber rows in the second direction D2 is not particularly limited and is set as appropriate. In the present embodiment, the interval d2 is constant. That is, the plurality of chamber rows are arranged at equal intervals.
第2の方向D2において互いに隣接する2つのチャンバー列に含まれるマイクロチャンバー165のそれぞれは、第1の方向D1において重複していない。すなわち、図4に示されるように、第m列目のチャンバー列に含まれる特定のマイクロチャンバー165と、第(m+1)列目のチャンバー列に含まれ、かつ前記特定のマイクロチャンバー165に最も近接するマイクロチャンバー165とをチップ161の側面から見た場合、これらの間には間隔d3が設けられている。間隔d3の長さは、特に限定されない。間隔d3の長さは、後述する蛍光の検出において蛍光のシグナルが重ならない程度であればよい。これにより、例えば2つのチャンバー列に跨がる照射スポットを第1の方向D1に走査しても、1つのマイクロチャンバー165ごとに蛍光を検出することができる。
Each of the micro chambers 165 included in two chamber rows adjacent to each other in the second direction D2 does not overlap in the first direction D1. That is, as shown in FIG. 4, the specific microchamber 165 included in the mth chamber row and the closest (m + 1) th chamber row to the specific microchamber 165 When the microchamber 165 to be viewed is viewed from the side surface of the chip 161, a gap d3 is provided between them. The length of the interval d3 is not particularly limited. The length of the interval d3 may be as long as the fluorescence signals do not overlap in the fluorescence detection described later. Thereby, for example, even if the irradiation spot straddling two chamber rows is scanned in the first direction D1, fluorescence can be detected for each microchamber 165.
本実施の形態では、複数のマイクロチャンバー165は、正三角格子(六角格子)状に配列されている。すなわち、図4に示されるように、チャンバー列に含まれる複数のマイクロチャンバー165のそれぞれの中心を通る直線L1と、各チャンバー列のマイクロチャンバー165の中心を通る直線であって、前記直線L1に対して最も傾斜角が大きい直線L2とを考える。この場合、直線L1と直線L2とのなす角度のうち、小さい角度θ1は、60°である。互いに隣接する3つのマイクロチャンバー165は、正三角形の頂点に位置するように配置されている。
In the present embodiment, the plurality of micro chambers 165 are arranged in a regular triangular lattice (hexagonal lattice). That is, as shown in FIG. 4, a straight line L1 passing through the center of each of the plurality of microchambers 165 included in the chamber row and a straight line passing through the center of the microchamber 165 in each chamber row, On the other hand, a straight line L2 having the largest inclination angle is considered. In this case, of the angles formed by the straight line L1 and the straight line L2, the small angle θ1 is 60 °. The three microchambers 165 adjacent to each other are arranged so as to be located at the vertices of an equilateral triangle.
なお、本実施の形態では、流路164を有する閉鎖系の細胞展開用デバイス160を使用したが、流路164を有さない解放系の細胞展開用デバイスを使用してもよい。すなわち、チップ161を細胞展開用デバイスとしても使用することもできる。
In this embodiment, the closed system cell deployment device 160 having the flow path 164 is used. However, an open system cell deployment device having no flow path 164 may be used. That is, the chip 161 can also be used as a device for cell deployment.
また、本実施の形態では、複数のマイクロチャンバー165が図4に示されるように配列されている細胞展開用デバイス160を使用したが、複数のマイクロチャンバー165の配置はこれに限定されない。たとえば、第m列目のチャンバー列に含まれる特定のマイクロチャンバー165と、第(m+1)列目のチャンバー列に含まれ、第m列目のチャンバー列に含まれる前記特定のマイクロチャンバー165と最も近接するマイクロチャンバー165とは、第1の方向において部分的に重複していてもよいし(図5A参照)、全部が重複していてもよい(図5B参照)。後者の場合は、複数のマイクロチャンバー165は、矩形格子(正方格子)状に配列される。
In this embodiment, the cell deployment device 160 in which a plurality of microchambers 165 are arranged as shown in FIG. 4 is used, but the arrangement of the plurality of microchambers 165 is not limited to this. For example, the specific micro chamber 165 included in the m-th chamber row and the specific micro-chamber 165 included in the (m + 1) -th chamber row and the specific micro-chamber 165 included in the m-th chamber row most The adjacent microchamber 165 may partially overlap in the first direction (see FIG. 5A), or all may overlap (see FIG. 5B). In the latter case, the plurality of microchambers 165 are arranged in a rectangular lattice (square lattice).
(細胞検出装置の構成)
次に、上述した細胞展開用デバイス160を装着して使用される本発明の実施の形態1に係る細胞検出装置100について説明する。細胞検出装置100は、細胞展開用デバイス160のマイクロチャンバー165内に収容された、蛍光物質で標識された希少細胞を含む全細胞に励起光を照射し、励起光の照射スポット内の検出領域から放出された蛍光を検出することで、全細胞中に含まれる希少細胞を検出するための装置である。 (Configuration of cell detector)
Next, thecell detection apparatus 100 according to Embodiment 1 of the present invention that is used with the above-described cell deployment device 160 will be described. The cell detection apparatus 100 irradiates all cells including rare cells labeled with a fluorescent substance, housed in the microchamber 165 of the cell deployment device 160, from the detection region in the excitation light irradiation spot. It is an apparatus for detecting rare cells contained in whole cells by detecting emitted fluorescence.
次に、上述した細胞展開用デバイス160を装着して使用される本発明の実施の形態1に係る細胞検出装置100について説明する。細胞検出装置100は、細胞展開用デバイス160のマイクロチャンバー165内に収容された、蛍光物質で標識された希少細胞を含む全細胞に励起光を照射し、励起光の照射スポット内の検出領域から放出された蛍光を検出することで、全細胞中に含まれる希少細胞を検出するための装置である。 (Configuration of cell detector)
Next, the
図6は、細胞検出装置100の模式図である。図6に示されるように、細胞検出装置100は、ホルダー110、光照射部120、光検出部130、検出領域規定部140、移動部150および制御部(図示省略)を有する。細胞検出装置100には、チップ161を含む細胞展開用デバイス160が装着される。
FIG. 6 is a schematic diagram of the cell detection device 100. As illustrated in FIG. 6, the cell detection device 100 includes a holder 110, a light irradiation unit 120, a light detection unit 130, a detection region defining unit 140, a moving unit 150, and a control unit (not shown). A cell deployment device 160 including a chip 161 is attached to the cell detection apparatus 100.
ホルダー110は、細胞展開用デバイス160を所定の位置に保持する。この後説明するように、ホルダー110は、細胞展開用デバイス160を保持した状態で、移動部150により水平方向に移動させられる。
The holder 110 holds the cell deployment device 160 in a predetermined position. As will be described later, the holder 110 is moved in the horizontal direction by the moving unit 150 while holding the cell expansion device 160.
光照射部120および光検出部130は、ホルダー110の上方に配置されている。光照射部120は、ホルダー110に保持された細胞展開用デバイス160(チップ161)に励起光を照射する。光検出部130は、細胞展開用デバイス160(チップ161)から放出された蛍光を検出する。
The light irradiation unit 120 and the light detection unit 130 are disposed above the holder 110. The light irradiation unit 120 irradiates the cell deployment device 160 (chip 161) held by the holder 110 with excitation light. The light detection unit 130 detects fluorescence emitted from the cell deployment device 160 (chip 161).
光照射部120に含まれる励起光を照射するための光源の種類は、特に限定されず、使用する蛍光物質の種類などに応じて適宜選択すればよい。光源は、例えばレーザーダイオードである。励起光の波長は、細胞展開用デバイス160の自家蛍光の影響を排除する観点からは、長波長であることが好ましい。励起光の波長は、例えば600~780nmの範囲内である。
The type of the light source for irradiating the excitation light contained in the light irradiation unit 120 is not particularly limited, and may be appropriately selected according to the type of the fluorescent material to be used. The light source is, for example, a laser diode. The wavelength of the excitation light is preferably a long wavelength from the viewpoint of eliminating the influence of autofluorescence of the cell deployment device 160. The wavelength of the excitation light is in the range of 600 to 780 nm, for example.
光検出部130の種類は、微弱な蛍光を検出することが可能であれば特に限定されない。光検出部130の例には、光電子増倍管(PMT:photo-multiplier tube)やフォトダイオードなどが含まれる。本実施の形態では、光検出部130は、光電子増倍管である。
The type of the light detection unit 130 is not particularly limited as long as weak fluorescence can be detected. Examples of the light detection unit 130 include a photomultiplier tube (PMT) and a photodiode. In the present embodiment, the light detection unit 130 is a photomultiplier tube.
光照射部120から細胞展開用デバイス160までの励起光の光路上には、第1レンズ121、検出領域規定部140、第2レンズ122、ダイクロイックミラー123および対物レンズ124が、光照射部120側から順番に配置されている。光照射部120から出射された励起光は、第1レンズ121、検出領域規定部140および第2レンズ122を通過した後、ダイクロイックミラー123で細胞展開用デバイス160に向けて反射される。ダイクロイックミラー123で反射した励起光は、対物レンズ124により細胞展開用デバイス160(チップ161)のマイクロチャンバー165の底面近傍に集光される。検出領域規定部140については、別途改めて説明する。
On the optical path of the excitation light from the light irradiation unit 120 to the cell deployment device 160, the first lens 121, the detection region defining unit 140, the second lens 122, the dichroic mirror 123, and the objective lens 124 are on the light irradiation unit 120 side. Are arranged in order. The excitation light emitted from the light irradiation unit 120 passes through the first lens 121, the detection region defining unit 140, and the second lens 122 and is then reflected by the dichroic mirror 123 toward the cell deployment device 160. The excitation light reflected by the dichroic mirror 123 is condensed near the bottom surface of the microchamber 165 of the cell deployment device 160 (chip 161) by the objective lens 124. The detection area defining unit 140 will be described separately.
また、細胞展開用デバイス160から光検出部130までの蛍光の光路上には、対物レンズ124、ダイクロイックミラー123、フィルター131、ピンホール132および第3レンズ133が、細胞展開用デバイス160側から順番に配置されている。細胞展開用デバイス160から放出された蛍光は、対物レンズ124、ダイクロイックミラー123、フィルター131およびピンホール132を通過した後、第3レンズ133により光検出部130の受光面に結像させられる。フィルター131は、例えば励起光カットフィルターや減光フィルターなどである。励起光カットフィルターは、励起光や外光などを遮断し、S/N比を向上させる。減光フィルターは、蛍光強度を光検出部130に合わせて調整する。ピンホール132は、励起光の焦点(マイクロチャンバー165の底面近傍)から放出された蛍光以外の光を遮断し、S/N比を向上させる。ピンホール132の形状は、特に限定されず、例えば円形や矩形などである。ピンホール132の大きさは、励起光の照射スポットの形状や使用する光学素子に応じて適宜設定される。
In addition, on the fluorescence optical path from the cell deployment device 160 to the light detection unit 130, the objective lens 124, the dichroic mirror 123, the filter 131, the pinhole 132, and the third lens 133 are sequentially arranged from the cell deployment device 160 side. Is arranged. The fluorescence emitted from the cell deployment device 160 passes through the objective lens 124, the dichroic mirror 123, the filter 131, and the pinhole 132, and then is imaged on the light receiving surface of the light detection unit 130 by the third lens 133. The filter 131 is, for example, an excitation light cut filter or a neutral density filter. The excitation light cut filter blocks excitation light and external light, and improves the S / N ratio. The neutral density filter adjusts the fluorescence intensity according to the light detection unit 130. The pinhole 132 blocks light other than fluorescence emitted from the focal point of the excitation light (near the bottom surface of the microchamber 165) and improves the S / N ratio. The shape of the pinhole 132 is not particularly limited, and is, for example, a circle or a rectangle. The size of the pinhole 132 is appropriately set according to the shape of the excitation light irradiation spot and the optical element used.
検出領域規定部140は、光照射部120と細胞展開用デバイス160(ホルダー110)との間、または細胞展開用デバイス160(ホルダー110)と光検出部130との間に配置され、チップ161上の検出領域Aを規定する。ここで「検出領域」とは、光検出部130により蛍光を検出される領域を意味する。通常、励起光の照射スポットS外からは検出すべき蛍光は放出されないため、検出領域Aはチップ161上の励起光の照射スポットS内に設定される。検出領域Aは、励起光の照射スポットSと一致していてもよいし、照射スポットSの一部であってもよい。
The detection region defining unit 140 is disposed between the light irradiation unit 120 and the cell deployment device 160 (holder 110), or between the cell deployment device 160 (holder 110) and the light detection unit 130, and is disposed on the chip 161. The detection area A is defined. Here, the “detection region” means a region where fluorescence is detected by the light detection unit 130. Normally, the fluorescence to be detected is not emitted from outside the excitation light irradiation spot S, and therefore the detection region A is set in the excitation light irradiation spot S on the chip 161. The detection area A may coincide with the irradiation spot S of the excitation light, or may be a part of the irradiation spot S.
たとえば、検出領域規定部140は、光照射部120と細胞展開用デバイス160(ホルダー110)との間に配置され、光照射部120から出射された励起光のうち、検出領域Aに照射する光のみを通過させる絞り(スリットやアパーチャーなど)であってもよい。この場合、検出領域Aは、励起光の照射スポットSと一致する。また、検出領域規定部140は、細胞展開用デバイス160(ホルダー110)と光照射部120との間に配置され、励起光の照射スポットSから放出された蛍光のうち、検出領域Aから放出された蛍光のみを通過させる絞り(スリットやアパーチャーなど)であってもよい。この場合、検出領域Aは、励起光の照射スポットSの一部である。図6に示されるように、本実施の形態では、検出領域規定部140は、光照射部120と細胞展開用デバイス160(ホルダー110)との間に配置されている。
For example, the detection region defining unit 140 is disposed between the light irradiation unit 120 and the cell deployment device 160 (holder 110), and light that irradiates the detection region A out of the excitation light emitted from the light irradiation unit 120. A diaphragm (such as a slit or an aperture) that allows only the light to pass therethrough may be used. In this case, the detection area A coincides with the irradiation spot S of the excitation light. The detection region defining unit 140 is disposed between the cell deployment device 160 (holder 110) and the light irradiation unit 120, and is emitted from the detection region A out of the fluorescence emitted from the irradiation spot S of the excitation light. A diaphragm (such as a slit or an aperture) that allows only fluorescent light to pass through may also be used. In this case, the detection area A is a part of the excitation light irradiation spot S. As shown in FIG. 6, in the present embodiment, the detection region defining unit 140 is disposed between the light irradiation unit 120 and the cell deployment device 160 (holder 110).
励起光の照射スポットSの大きさは、検出領域Aの大きさ以上であれば特に限定されない。また、励起光の照射スポットSの形状も、特に限定されない。通常、照射スポットSの形状は円形であるが、本実施の形態のように光照射部120と細胞展開用デバイス160(ホルダー110)との間に検出領域規定部140が配置されている場合は、照射スポットS(検出領域A)の形状は、様々な形状を採りうる。
The size of the excitation light irradiation spot S is not particularly limited as long as it is equal to or larger than the size of the detection region A. Further, the shape of the excitation light irradiation spot S is not particularly limited. Usually, the shape of the irradiation spot S is circular, but when the detection region defining unit 140 is disposed between the light irradiation unit 120 and the cell deployment device 160 (holder 110) as in the present embodiment. The shape of the irradiation spot S (detection region A) can take various shapes.
一方、検出領域Aの大きさおよび形状は、この後説明するように、細胞展開用デバイス160におけるマイクロチャンバー165の配置に応じて制限される。少なくとも、チップ161の第1の方向における検出領域Aの長さは、第1の方向において互いに隣接する2つのマイクロチャンバー165間の間隔d1(図4参照)以下であり、第2の方向における検出領域Aの長さは、第2の方向におけるマイクロチャンバー165の長さ以上である。検出領域Aの形状の例には、円形、楕円形および矩形が含まれる。検出領域Aの形状は、検出感度を高める観点からは、楕円形または矩形であることが好ましい。本実施の形態では、照射スポットSの形状は、横10~25μm×縦50~500μmの矩形である。
On the other hand, the size and shape of the detection region A are limited according to the arrangement of the microchamber 165 in the cell deployment device 160, as will be described later. At least the length of the detection region A in the first direction of the chip 161 is equal to or less than the distance d1 (see FIG. 4) between the two microchambers 165 adjacent to each other in the first direction, and the detection in the second direction is performed. The length of the region A is not less than the length of the microchamber 165 in the second direction. Examples of the shape of the detection region A include a circle, an ellipse, and a rectangle. The shape of the detection region A is preferably elliptical or rectangular from the viewpoint of increasing detection sensitivity. In the present embodiment, the shape of the irradiation spot S is a rectangle having a width of 10 to 25 μm and a length of 50 to 500 μm.
図7および図8は、本実施の形態における、チップ161上の検出領域Aの大きさを説明するための図である。これらの図では、照射スポットS(検出領域A)の走査を、2列のチャンバー列ごとに行うことを前提としている(2列照射)。図7Aおよび図8Aは、図7Bおよび図8Bと比較して、検出領域Aのより好ましい例を示している。
7 and 8 are diagrams for explaining the size of the detection area A on the chip 161 in the present embodiment. In these drawings, it is assumed that the scanning of the irradiation spot S (detection region A) is performed for every two chamber rows (two-row irradiation). FIG. 7A and FIG. 8A show a more preferable example of the detection region A as compared with FIG. 7B and FIG. 8B.
本実施の形態では、図7Aに示されるように、第1の方向D1における検出領域Aの長さは、互いに隣接する2つのチャンバー列内で第1の方向D1において最も近接する2つのマイクロチャンバー165間の第1の方向D1における間隔d4以下である。第1の方向D1における検出領域Aの長さが間隔d4よりも長い場合、図7Bに示されるように、それぞれ異なるチャンバー列に含まれる2つのマイクロチャンバー165から放出される蛍光を同時に検出してしまうことになる。一方、第1の方向D1における検出領域Aの長さの最小値は、特に限定されないが、検出感度の観点からは、検出対象の細胞の大きさと同程度が好ましい。
In the present embodiment, as shown in FIG. 7A, the length of the detection region A in the first direction D1 is equal to the two micro chambers that are closest to each other in the first direction D1 in the two adjacent chamber rows. 165 or less in the first direction D1 between 165. When the length of the detection region A in the first direction D1 is longer than the interval d4, as shown in FIG. 7B, the fluorescence emitted from the two microchambers 165 included in the different chamber rows is simultaneously detected. It will end up. On the other hand, the minimum value of the length of the detection region A in the first direction D1 is not particularly limited, but is preferably about the same as the size of the detection target cell from the viewpoint of detection sensitivity.
また、本実施の形態では、図8Aに示されるように、第2の方向D2における検出領域Aの長さは、相互に隣接する2つのチャンバー列の一方のチャンバー列に含まれるマイクロチャンバー165の第2の方向D2における長さd5aと、2つのチャンバー列の他方のチャンバー列に含まれるマイクロチャンバー165の第2の方向における長さd5bと、一方のチャンバー列に含まれるマイクロチャンバー165と他方のチャンバー列に含まれるマイクロチャンバー165との間の第2の方向における間隔d5cとの合計d5以上である。また、図8Bに示されるように、第2の方向D2における検出領域Aの長さは、上述したd5(d5a、d5bおよびd5c)と、d5cと同様の2つのマイクロチャンバー165との間の第2の方向における間隔d5dとの合計d5’以下である。第2の方向D2における検出領域Aの長さがd5以上であって、かつd5’以下であれば、いずれかのチャンバー列に含まれるマイクロチャンバー165から放出された蛍光を検出することができる。
Further, in the present embodiment, as shown in FIG. 8A, the length of the detection region A in the second direction D2 is the length of the microchamber 165 included in one of the two chamber rows adjacent to each other. The length d5a in the second direction D2, the length d5b in the second direction of the microchamber 165 included in the other chamber row of the two chamber rows, the microchamber 165 included in one chamber row and the other The total is d5 or more with the distance d5c in the second direction between the micro chambers 165 included in the chamber row. Further, as shown in FIG. 8B, the length of the detection region A in the second direction D2 is the first d5 (d5a, d5b and d5c) described above and the second microchamber 165 similar to d5c. The total is d5 ′ or less with the distance d5d in the direction of 2. If the length of the detection region A in the second direction D2 is not less than d5 and not more than d5 ', the fluorescence emitted from the microchamber 165 included in any one of the chamber rows can be detected.
次に、照射スポットSおよび検出領域Aの関係について、図面を参照して詳細に説明する。図9および図10は、照射スポットSと、検出領域Aとの関係を示す模式図である。図9は、光照射部120側に検出領域規定部140を配置した場合の照射スポットSおよび検出領域Aを示している。図9Aは、励起光の光路を示す模式図であり、図9Bは、照射スポットSおよび検出領域Aを上側から見たときの模式図であり、図9Cは、蛍光の光路を示す模式図である。図10は、光検出部130側に検出領域規定部140を配置した場合の照射スポットSおよび検出領域Aを示している。図10Aは、励起光の光路を示す模式図であり、図10Bは、照射スポットSおよび検出領域Aを上側から見たときの模式図であり、図10Cは、蛍光の光路を示す模式図である。
Next, the relationship between the irradiation spot S and the detection area A will be described in detail with reference to the drawings. 9 and 10 are schematic diagrams showing the relationship between the irradiation spot S and the detection area A. FIG. FIG. 9 shows the irradiation spot S and the detection region A when the detection region defining unit 140 is arranged on the light irradiation unit 120 side. 9A is a schematic diagram showing the optical path of the excitation light, FIG. 9B is a schematic diagram when the irradiation spot S and the detection region A are viewed from above, and FIG. 9C is a schematic diagram showing the optical path of fluorescence. is there. FIG. 10 shows the irradiation spot S and the detection region A when the detection region defining unit 140 is arranged on the light detection unit 130 side. 10A is a schematic diagram showing an optical path of excitation light, FIG. 10B is a schematic diagram when the irradiation spot S and the detection region A are viewed from above, and FIG. 10C is a schematic diagram showing an optical path of fluorescence. is there.
まず、図9を参照して、光照射部120側に検出領域規定部140が配置されている場合について説明する。図9Aに示されるように、光照射部120側に検出領域規定部140が配置されている場合、光照射部120から出射された励起光の一部は、検出領域Aと同じ形状の貫通孔を有する検出領域規定部140によって遮断され、検出領域規定部140の貫通孔を通過した励起光のみがチップ161に照射される。この場合、図9Bに示されるように、励起光の照射スポットSの形状と検出領域Aの形状とは一致する。そして、チップ161に励起光が照射されることによって、検出領域Aにある蛍光物質から蛍光が放出される。このとき、励起光は、検出領域Aのみに照射されているため、検出領域Aのみから蛍光が放出される(図9C参照)。
First, the case where the detection region defining unit 140 is arranged on the light irradiation unit 120 side will be described with reference to FIG. As shown in FIG. 9A, when the detection region defining unit 140 is arranged on the light irradiation unit 120 side, a part of the excitation light emitted from the light irradiation unit 120 is a through hole having the same shape as the detection region A. Only the excitation light that has been blocked by the detection region defining unit 140 having passed through the through hole of the detection region defining unit 140 is irradiated onto the chip 161. In this case, as shown in FIG. 9B, the shape of the excitation light irradiation spot S and the shape of the detection region A match. Then, when the chip 161 is irradiated with excitation light, fluorescence is emitted from the fluorescent substance in the detection region A. At this time, since the excitation light is applied only to the detection region A, fluorescence is emitted only from the detection region A (see FIG. 9C).
次に、図10を参照して、光検出部130側に検出領域規定部140が配置されている場合について説明する。図10Aに示されるように、光検出部130側に検出領域規定部140が配置されている場合、光照射部120から出射された励起光は、そのままチップ161に照射される。この場合、図10Bに示されるように、照射スポットSの大きさは、検出領域Aよりも大きくなる。そして、チップ161に励起光が照射されることによって、検出領域Aを含む照射スポットSにある蛍光物質から蛍光が放出される。図10Cに示されるように、照射スポットSから放出された蛍光のうち、検出領域A以外の領域から放出された蛍光は、検出領域Aと同じ形状の貫通孔を有する検出領域規定部140によって遮断される。したがって、検出領域Aから放出された蛍光のみが、光検出部130により検出される。このように、検出領域Aは、例えば励起光を照射する領域を制限したり、蛍光を検出する領域を制限したり、またはそれらの組み合わせなどによって設定することができる。また、蛍光の検出精度や蛍光損失などの観点からは、検出領域Aは、励起光の照射領域に設定されることが好ましい。
Next, a case where the detection area defining unit 140 is arranged on the light detection unit 130 side will be described with reference to FIG. As shown in FIG. 10A, when the detection region defining unit 140 is arranged on the light detection unit 130 side, the excitation light emitted from the light irradiation unit 120 is irradiated to the chip 161 as it is. In this case, as shown in FIG. 10B, the size of the irradiation spot S is larger than that of the detection region A. Then, when the chip 161 is irradiated with excitation light, fluorescence is emitted from the fluorescent material in the irradiation spot S including the detection region A. As shown in FIG. 10C, among the fluorescence emitted from the irradiation spot S, the fluorescence emitted from the region other than the detection region A is blocked by the detection region defining unit 140 having a through-hole having the same shape as the detection region A. Is done. Accordingly, only the fluorescence emitted from the detection region A is detected by the light detection unit 130. As described above, the detection area A can be set, for example, by limiting the area where the excitation light is irradiated, limiting the area where fluorescence is detected, or a combination thereof. Further, from the viewpoint of fluorescence detection accuracy, fluorescence loss, and the like, the detection area A is preferably set as an excitation light irradiation area.
細胞検出装置100の説明に戻る。移動部150は、ホルダー110を水平方向(XY方向)に移動させることで、ホルダー110に保持された細胞展開用デバイス160を水平方向(XY方向)に移動させる。光照射部120が励起光を細胞展開用デバイス160に照射している状態で、細胞展開用デバイス160を水平方向(XY方向)に移動させることで、励起光の照射スポットSでチップ161を走査することができる。たとえば、移動部150は、ホルダー110をX軸方向(例えば第1の方向D1)に移動するX軸移動機構152と、ホルダー110をY軸方向(例えば第1の方向に直交する第2の方向D2)に移動するY軸移動機構154とを有する。移動部150は、X軸移動機構152およびY軸移動機構154を駆動させてホルダー110を任意の方向に移動させる。
Returning to the description of the cell detection apparatus 100. The moving part 150 moves the device 110 for cell expansion | deployment hold | maintained at the holder 110 to a horizontal direction (XY direction) by moving the holder 110 to a horizontal direction (XY direction). While the light irradiation unit 120 is irradiating the cell deployment device 160 with excitation light, the chip deployment 161 is scanned with the excitation light irradiation spot S by moving the cell deployment device 160 in the horizontal direction (XY direction). can do. For example, the moving unit 150 includes an X-axis moving mechanism 152 that moves the holder 110 in the X-axis direction (for example, the first direction D1), and a holder 110 that moves in the Y-axis direction (for example, the second direction orthogonal to the first direction). And a Y-axis moving mechanism 154 that moves to D2). The moving unit 150 drives the X-axis moving mechanism 152 and the Y-axis moving mechanism 154 to move the holder 110 in an arbitrary direction.
図11は、照射スポットS(検出領域A)の走査および移動を説明するための図である。図11に示されるように、移動部150は、照射スポットS(検出領域A)が、互いに隣接する2つのチャンバー列(第m列目および第(m+1)列目のチャンバー列)の一方の端部(移動開始位置)から他方の端部(移動終了位置)まで第1の方向D1に向かって移動するように、細胞展開用デバイス160を移動させる(図11の実線矢印参照)。
FIG. 11 is a diagram for explaining scanning and movement of the irradiation spot S (detection region A). As shown in FIG. 11, the moving unit 150 is configured such that the irradiation spot S (detection region A) has one end of two chamber rows (the m-th row and the (m + 1) -th chamber row) adjacent to each other. The cell deployment device 160 is moved so as to move in the first direction D1 from the portion (movement start position) to the other end (movement end position) (see the solid line arrow in FIG. 11).
次いで、照射スポットS(検出領域A)を第2の方向D2に移動させる。具体的には、図11に示されるように、前記2つのチャンバー列(第m列目および第(m+1)列目のチャンバー列)の移動終了位置に到達した照射スポットS(検出領域A)を、次の2つのチャンバー列(第(m+2)列目および第(m+3)列目のチャンバー列)の移動開始位置に移動させる(図11の点線矢印参照)。このとき、光照射部120は、励起光を照射し続けていてもよいし、照射していなくてもよい。このように、一度走査したチャンバー列をもう一度走査しないように、かつ走査しないチャンバー列が無いように、照射スポットS(検出領域A)を移動させる。これらの工程を、最後のチャンバー列(第n列目のチャンバー列)を走査し終わるまで繰り返す。
Next, the irradiation spot S (detection area A) is moved in the second direction D2. Specifically, as shown in FIG. 11, the irradiation spot S (detection region A) that has reached the movement end position of the two chamber rows (the m-th row and the (m + 1) -th chamber row) is detected. Then, it is moved to the movement start position of the next two chamber rows (the (m + 2) -th row and the (m + 3) -th chamber row) (see the dotted arrows in FIG. 11). At this time, the light irradiation part 120 may continue irradiating excitation light, and does not need to irradiate. In this way, the irradiation spot S (detection region A) is moved so that the once-scanned chamber row is not scanned again and there is no chamber row that is not scanned. These steps are repeated until the last chamber row (the nth chamber row) has been scanned.
制御部(図示省略)は、光照射部120、光検出部130および移動部150と接続されており、細胞検出装置100を統括的に制御する。
The control unit (not shown) is connected to the light irradiation unit 120, the light detection unit 130, and the moving unit 150, and controls the cell detection device 100 in an integrated manner.
このように、細胞検出装置100は、励起光の照射スポットを走査しながら、蛍光を検出することによって、チップ161に形成された複数のマイクロチャンバー165に収容された細胞を連続して調べる。
As described above, the cell detection apparatus 100 continuously examines the cells accommodated in the plurality of microchambers 165 formed on the chip 161 by detecting the fluorescence while scanning the irradiation spot of the excitation light.
(細胞検出方法)
次に、細胞検出装置100を用いて、多数の細胞から目的の希少細胞を検出する方法について説明する。 (Cell detection method)
Next, a method for detecting a target rare cell from a large number of cells using thecell detection device 100 will be described.
次に、細胞検出装置100を用いて、多数の細胞から目的の希少細胞を検出する方法について説明する。 (Cell detection method)
Next, a method for detecting a target rare cell from a large number of cells using the
まず、複数のマイクロチャンバー165に細胞が収容されたチップ161(細胞展開用デバイス160)を準備する(第1工程)。たとえば、流路164内を細胞懸濁液(例えば、血液またはその希釈液)で満たした後、細胞懸濁液中の細胞がわずかに移動するように細胞懸濁液を吸引することを20回繰り返して(1回の吸引後に10秒間停止)、マイクロチャンバー165内に細胞を収容する。そして、マイクロチャンバー165の開口部が上側を向くように、細胞が収容されたチップ161(細胞展開用デバイス160)をホルダー110に保持させる。
First, a chip 161 (cell deployment device 160) in which cells are housed in a plurality of microchambers 165 is prepared (first step). For example, after filling the channel 164 with a cell suspension (for example, blood or a diluted solution thereof), the cell suspension is aspirated 20 times so that the cells in the cell suspension move slightly. Repeat (stop for 10 seconds after a single aspiration) to house cells in microchamber 165. And the chip | tip 161 (device 160 for cell expansion | deployment) in which the cell was accommodated is hold | maintained at the holder 110 so that the opening part of the micro chamber 165 may face the upper side.
次いで、チップ161に励起光を照射するとともに、励起光の照射スポット内の検出領域Aから放出された蛍光を検出する(第2工程)。まず、移動部150は、励起光の照射スポットSが移動開始位置に位置するように、ホルダー110を介して細胞展開用デバイス160を移動させる。そして、移動部150は、照射スポットS(検出領域A)が、互いに隣接する2つのチャンバー列(第m列目および第(m+1)列目のチャンバー列)の移動開始位置から移動終了位置まで移動するように、細胞展開用デバイス160を第1の方向D1と180°逆方向に移動させる。
Next, the chip 161 is irradiated with excitation light, and fluorescence emitted from the detection area A in the excitation light irradiation spot is detected (second step). First, the moving unit 150 moves the cell deployment device 160 via the holder 110 so that the excitation light irradiation spot S is located at the movement start position. Then, the moving unit 150 moves the irradiation spot S (detection region A) from the movement start position to the movement end position of two adjacent chamber rows (the m-th row and the (m + 1) -th chamber row). As described above, the cell deployment device 160 is moved in the direction opposite to the first direction D1 by 180 °.
このとき、光照射部120は、移動部150がホルダー110を第1の方向D1と180°逆方向に移動させている間、所定の波長の励起光を出射し続ける。すなわち、光照射部120は、チャンバー列に含まれる複数のマイクロチャンバー165に収容された細胞(蛍光物質)に対して連続して励起光を照射する。蛍光物質は、励起光が照射されると同時に蛍光を発する。光検出部130は、このように放出される蛍光を連続して検出する。
At this time, the light irradiation unit 120 continues to emit excitation light having a predetermined wavelength while the moving unit 150 moves the holder 110 in the direction opposite to the first direction D1 by 180 °. That is, the light irradiation unit 120 continuously irradiates the cells (fluorescent substances) accommodated in the plurality of micro chambers 165 included in the chamber row with excitation light. The fluorescent substance emits fluorescence simultaneously with the excitation light irradiation. The light detection unit 130 continuously detects the emitted fluorescence.
次いで、移動部150は、励起光の照射スポットS(検出領域A)が、次に互いに隣接する2つのチャンバー列(第(m+2)列目および第(m+3)列目のチャンバー列)の移動開始位置に移動するように、細胞展開用デバイス160を移動させる。
Next, the moving unit 150 starts moving the excitation light irradiation spot S (detection region A) next to the two adjacent chamber rows (the (m + 2) th row and the (m + 3) th chamber row). The cell deployment device 160 is moved so as to move to the position.
以上の照射スポットSの走査および移動を繰り返すとともに、チップ161に励起光を照射しながら蛍光を検出することで、希少細胞を検出する。
The scanning and movement of the irradiation spot S described above are repeated, and rare cells are detected by detecting fluorescence while irradiating the chip 161 with excitation light.
以上の手順により、多数の細胞から目的の希少細胞を高感度、かつ短時間で検出することができる。なお、検出対象となる希少細胞の種類は、特に限定されない。検出対象の細胞の例には、血液循環癌細胞(CTC)や循環血管内皮細胞(CEC)、循環血管内皮前駆細胞(CEP)、循環胎児細胞、抗原特異的T細胞、各種幹細胞などが含まれる。
By the above procedure, target rare cells can be detected from a large number of cells with high sensitivity and in a short time. In addition, the kind of rare cell used as a detection target is not specifically limited. Examples of cells to be detected include blood circulating cancer cells (CTC), circulating vascular endothelial cells (CEC), circulating vascular endothelial progenitor cells (CEP), circulating fetal cells, antigen-specific T cells, various stem cells, and the like. .
なお、本実施の形態では、各チャンバー列について照射スポットが1回走査する例について説明したが、図12に示されるように、各チャンバー列について照射スポットが2回走査するようにしてもよい。このようにすることで、より確実に希少細胞を検出することができる。
In the present embodiment, the example in which the irradiation spot is scanned once for each chamber row has been described. However, as shown in FIG. 12, the irradiation spot may be scanned twice for each chamber row. By doing in this way, a rare cell can be detected more reliably.
また、図5Aまたは図5Bに示されるように、第1の方向D1において、互いに隣接するマイクロチャンバー165の少なくとも一部が重複して配置されている場合、第2の方向D2における検出領域Aの長さは、第2の方向D2において隣接する2つのチャンバー列に同時に架からない長さである。具体的には、第2の方向D2における検出領域Aの長さは、互いに隣接する2つのチャンバー列の一方のチャンバー列に含まれるマイクロチャンバー165の第2の方向D2における長さと、一方のチャンバー列に含まれるマイクロチャンバー165と他方のチャンバー列に含まれるマイクロチャンバー165との間の第2の方向における間隔との合計以下である。第2の方向D2における検出領域Aの長さが、前述の長さ以下であれば、それぞれ異なるチャンバー列に含まれる2つのマイクロチャンバー165から放出される蛍光を同時に検出してしまうことがない。検出領域の第1の方向D1における長さについては、前述のとおりである。
Further, as shown in FIG. 5A or FIG. 5B, in the first direction D1, when at least a part of the micro chambers 165 adjacent to each other overlaps, the detection region A in the second direction D2 The length is a length that does not span two adjacent chamber rows in the second direction D2. Specifically, the length of the detection region A in the second direction D2 is equal to the length in the second direction D2 of the microchamber 165 included in one of the two chamber rows adjacent to each other, and the one chamber. It is less than or equal to the sum of the distances in the second direction between the microchambers 165 included in the row and the microchambers 165 included in the other chamber row. If the length of the detection region A in the second direction D2 is equal to or shorter than the above-described length, the fluorescence emitted from the two microchambers 165 included in the different chamber rows is not detected at the same time. The length of the detection region in the first direction D1 is as described above.
また、このようなチップ161を装着した細胞検出装置100を用いた細胞検出方法では、1つのチャンバー列ずつ希少細胞を検出することが好ましい。移動部150は、励起光の照射スポットS(検出領域A)が、1つのチャンバー列第m列目の移動開始位置から移動終了位置まで移動するように、細胞展開用デバイス160を第1の方向D1と180°逆方向に移動する。次いで、移動部150は、照射スポットS(検出領域A)が、次のチャンバー列(第(m+1)列目)の移動開始位置に移動するように、細胞展開用デバイス160を移動する。このように、本実施の形態の細胞検出装置100では、照射スポットS(検出領域A)の走査をチャンバー列ごとに行ってもよい(1列照射)。
Further, in the cell detection method using the cell detection apparatus 100 equipped with such a chip 161, it is preferable to detect rare cells for each chamber row. The moving unit 150 moves the cell deployment device 160 in the first direction so that the irradiation spot S (detection region A) of the excitation light moves from the movement start position to the movement end position of one m-th chamber row. Move in the direction 180 ° opposite to D1. Next, the moving unit 150 moves the cell deployment device 160 so that the irradiation spot S (detection region A) moves to the movement start position of the next chamber row (the (m + 1) th row). Thus, in the cell detection apparatus 100 of this Embodiment, you may scan the irradiation spot S (detection area A) for every chamber row | line | column (one row irradiation).
また、特に図示しないが、互いに隣接するチャンバー列(第m列目および第(m+1)列目のチャンバー列)において、移動開始位置および移動終了位置は、互いに逆の位置に設定されていてもよい。この場合、移動部150は、照射スポットS(検出領域A)が、第m列目のチャンバー列の一方の端部(移動開始位置)から他方の端部(移動終了位置)まで第1の方向D1に向かって移動するように、細胞展開用デバイス160を移動させる。次いで、第m列目のチャンバー列の他方の端部の移動終了位置に到達した照射スポットS(検出領域A)を、第(m+1)列目のチャンバー列の移動開始位置に移動させる。このとき、第(m+1)列目のチャンバー列の移動開始位置は、第m列目のチャンバー列の移動終了位置に隣接して位置する端部である。最後に、第(m+1)列目のチャンバー列の移動開始位置に到達した照射スポットS(検出領域A)を、そのチャンバー列の他方の端部に位置する移動終了位置に移動させる。このとき、第(m+1)列目のチャンバー列の移動終了位置は、第m列目のチャンバー列の移動開始位置に隣接して位置する端部である。これらの工程を、最後のチャンバー列を走査し終わるまで繰り返す。
Although not particularly illustrated, the movement start position and the movement end position may be set at opposite positions in the chamber rows adjacent to each other (the m-th row and the (m + 1) -th chamber row). . In this case, the moving unit 150 has the irradiation spot S (detection region A) in the first direction from one end (movement start position) to the other end (movement end position) of the m-th chamber row. The cell deployment device 160 is moved so as to move toward D1. Next, the irradiation spot S (detection region A) that has reached the movement end position of the other end of the m-th chamber row is moved to the movement start position of the (m + 1) -th chamber row. At this time, the movement start position of the (m + 1) -th chamber row is an end located adjacent to the movement end position of the m-th chamber row. Finally, the irradiation spot S (detection region A) that has reached the movement start position of the (m + 1) -th chamber row is moved to the movement end position located at the other end of the chamber row. At this time, the movement end position of the (m + 1) -th chamber row is an end located adjacent to the movement start position of the m-th chamber row. These steps are repeated until the last chamber row has been scanned.
[実施の形態2]
(細胞検出装置)
本発明の実施の形態2における細胞検出装置200は、マイクロチャンバー165を撮像するための撮像部250を有し、かつ2種類の波長の励起光を照射可能に構成されている点において、実施の形態1に係る細胞検出装置100と異なる。そこで、主として実施の形態1に係る細胞検出装置100と異なる部分について説明する。 [Embodiment 2]
(Cell detector)
Thecell detection apparatus 200 according to the second embodiment of the present invention includes an imaging unit 250 for imaging the microchamber 165 and is configured to be capable of irradiating excitation light with two types of wavelengths. Different from the cell detection device 100 according to the first embodiment. Therefore, the difference from the cell detection device 100 according to Embodiment 1 will be mainly described.
(細胞検出装置)
本発明の実施の形態2における細胞検出装置200は、マイクロチャンバー165を撮像するための撮像部250を有し、かつ2種類の波長の励起光を照射可能に構成されている点において、実施の形態1に係る細胞検出装置100と異なる。そこで、主として実施の形態1に係る細胞検出装置100と異なる部分について説明する。 [Embodiment 2]
(Cell detector)
The
図13は、実施の形態2における細胞検出装置200の模式図である。図13に示されるように、細胞検出装置200は、ホルダー110、2つの光照射部120、2つの光検出部130、検出領域規定部140、移動部150、撮像部250および制御部(図示省略)を有する。なお、細胞検出装置200には、実施の形態1と同じ細胞展開用デバイス160を使用することができる。
FIG. 13 is a schematic diagram of the cell detection device 200 according to the second embodiment. As illustrated in FIG. 13, the cell detection device 200 includes a holder 110, two light irradiation units 120, two light detection units 130, a detection region defining unit 140, a moving unit 150, an imaging unit 250, and a control unit (not illustrated). ). Note that the same cell deployment device 160 as in the first embodiment can be used for the cell detection apparatus 200.
2つの光照射部120は、チップ161に対してそれぞれ異なる波長の励起光を照射する。2つの光検出部130は、2種類の励起光に対応するそれぞれ異なる波長の蛍光を検出する。
The two light irradiators 120 irradiate the chip 161 with excitation light having different wavelengths. The two light detection units 130 detect fluorescence having different wavelengths corresponding to the two types of excitation light.
2つの光照射部120から細胞展開用デバイス160までの励起光の光路上には、2つの第1レンズ121、第1ダイクロイックミラー134、検出領域規定部140、第2レンズ122、第2ダイクロイックミラー123および対物レンズ124が光照射部120側から順番に配置されている。2つの光照射部120から出射された励起光は、第1レンズ122を通過して、第1ダイクロイックミラー134により結合される。そして結合した励起光は、検出領域規定部140および第2レンズ122を通過した後、第2ダイクロイックミラー123で細胞展開用デバイス160に向けて反射される。ダイクロイックミラー123で反射した励起光は、対物レンズ124により細胞展開用デバイス160(チップ161)のマイクロチャンバー165の底面近傍に集光される。
On the optical path of the excitation light from the two light irradiation units 120 to the cell deployment device 160, two first lenses 121, a first dichroic mirror 134, a detection region defining unit 140, a second lens 122, a second dichroic mirror 123 and the objective lens 124 are sequentially arranged from the light irradiation unit 120 side. Excitation light emitted from the two light irradiation units 120 passes through the first lens 122 and is coupled by the first dichroic mirror 134. The combined excitation light passes through the detection region defining unit 140 and the second lens 122 and is then reflected by the second dichroic mirror 123 toward the cell deployment device 160. The excitation light reflected by the dichroic mirror 123 is condensed near the bottom surface of the microchamber 165 of the cell deployment device 160 (chip 161) by the objective lens 124.
細胞展開用デバイス160から一方の光検出部130(図13において下側に図示されている光検出部130)までの蛍光の光路上には、対物レンズ124、第2ダイクロイックミラー123、第3ダイクロイックミラー139、第4レンズ135、ピンホール132および第5レンズ136が配置されている。また、細胞展開用デバイス160から他方の光検出部130(図13において上側に図示されている光検出部130)までの蛍光の光路上には、対物レンズ124、第2ダイクロイックミラー123、第3ダイクロイックミラー139、フィルター131、ハーフミラー137、第4レンズ135、ピンホール132および第5レンズ136が配置されている。また、細胞展開用デバイス160から撮像部250までの蛍光の光路上には、対物レンズ124、第2ダイクロイックミラー123、第3ダイクロイックミラー139、フィルター131、ハーフミラー137、第6レンズ138が配置されている。
An objective lens 124, a second dichroic mirror 123, and a third dichroic are disposed on the optical path of fluorescence from the cell deployment device 160 to one of the light detection units 130 (the light detection unit 130 illustrated on the lower side in FIG. 13). A mirror 139, a fourth lens 135, a pinhole 132, and a fifth lens 136 are disposed. Further, an objective lens 124, a second dichroic mirror 123, and a third optical path are arranged on the fluorescence optical path from the cell deployment device 160 to the other light detection unit 130 (the light detection unit 130 shown on the upper side in FIG. 13). A dichroic mirror 139, a filter 131, a half mirror 137, a fourth lens 135, a pinhole 132, and a fifth lens 136 are disposed. In addition, an objective lens 124, a second dichroic mirror 123, a third dichroic mirror 139, a filter 131, a half mirror 137, and a sixth lens 138 are disposed on the fluorescence optical path from the cell deployment device 160 to the imaging unit 250. ing.
細胞展開用デバイス160から放出された蛍光は、対物レンズ124および第2ダイクロイックミラー123を通過する。第2ダイクロイックミラー123を通過した蛍光の一部は、第3ダイクロイックミラー139で一方の光検出部130に向けて反射され、蛍光の残部は、第3ダイクロイックミラー139を通過する。第3ダイクロイックミラー139を通過した蛍光の一部は、フィルター131を通過した後、ハーフミラー137で他方の光検出部130に向けて反射される。第3ダイクロイックミラー139を通過した蛍光の残部は、ハーフミラー137を通過し、撮像部250に向かう。第3ダイクロイックミラー139またはハーフミラー137で反射した蛍光は、それぞれ、第4レンズ135、ピンホール132および第5レンズ136を通過して、光検出部130に到達する。ハーフミラー137を通過した蛍光は、第6レンズ138を通過して、撮像部250に到達する。
Fluorescence emitted from the cell deployment device 160 passes through the objective lens 124 and the second dichroic mirror 123. A part of the fluorescence that has passed through the second dichroic mirror 123 is reflected by the third dichroic mirror 139 toward the one light detection unit 130, and the remaining part of the fluorescence passes through the third dichroic mirror 139. Part of the fluorescence that has passed through the third dichroic mirror 139 passes through the filter 131 and is then reflected by the half mirror 137 toward the other light detection unit 130. The remaining part of the fluorescence that has passed through the third dichroic mirror 139 passes through the half mirror 137 and travels toward the imaging unit 250. The fluorescence reflected by the third dichroic mirror 139 or the half mirror 137 passes through the fourth lens 135, the pinhole 132, and the fifth lens 136, respectively, and reaches the light detection unit 130. The fluorescence that has passed through the half mirror 137 passes through the sixth lens 138 and reaches the imaging unit 250.
撮像部250は、光照射部120および光検出部130と一体に配置されている。撮像部250は、光検出部120による蛍光の検出結果および制御部(位置情報取得部)により取得した位置情報に基づいて、蛍光が検出されたマイクロチャンバー165に収容された細胞を撮像する。撮像部250の種類は、特に限定されない。撮像部250は、例えばCCDカメラである。
The imaging unit 250 is disposed integrally with the light irradiation unit 120 and the light detection unit 130. The imaging unit 250 images the cells accommodated in the microchamber 165 in which the fluorescence is detected based on the fluorescence detection result by the light detection unit 120 and the position information acquired by the control unit (position information acquisition unit). The type of the imaging unit 250 is not particularly limited. The imaging unit 250 is, for example, a CCD camera.
制御部は、移動部150から送信される位置情報を記録する位置情報取得部としても機能する。制御部(位置情報取得部)は、光検出部130により検出された蛍光の強度と、位置情報とを関連付けて記録する。
The control unit also functions as a position information acquisition unit that records position information transmitted from the moving unit 150. The control unit (position information acquisition unit) records the fluorescence intensity detected by the light detection unit 130 in association with the position information.
(細胞検出方法)
実施の形態2に係る細胞検出装置200の動作は、蛍光の位置情報を取得する点および希少細胞が収容されたマイクロチャンバー165を撮像する点において、実施の形態1に係る細胞検出装置100の動作と異なる。そこで、実施の形態1に係る細胞検出装置100の動作と異なる部分について主に説明する。 (Cell detection method)
The operation of thecell detection apparatus 200 according to the second embodiment is the operation of the cell detection apparatus 100 according to the first embodiment in that the position information of fluorescence is acquired and the microchamber 165 containing rare cells is imaged. And different. Therefore, the difference from the operation of the cell detection device 100 according to Embodiment 1 will be mainly described.
実施の形態2に係る細胞検出装置200の動作は、蛍光の位置情報を取得する点および希少細胞が収容されたマイクロチャンバー165を撮像する点において、実施の形態1に係る細胞検出装置100の動作と異なる。そこで、実施の形態1に係る細胞検出装置100の動作と異なる部分について主に説明する。 (Cell detection method)
The operation of the
実施の形態2に係る細胞検出装置200では、2種類の波長の励起光を照射し、2種類の波長の蛍光の検出を行うとともに、蛍光の位置情報を取得する。蛍光の位置情報は、例えば、基準位置に対するホルダー110(細胞展開用デバイス160)の移動距離として取得される。
The cell detection apparatus 200 according to Embodiment 2 irradiates excitation light of two types of wavelengths, detects fluorescence of two types of wavelengths, and acquires fluorescence position information. The position information of the fluorescence is acquired as, for example, the moving distance of the holder 110 (cell deployment device 160) with respect to the reference position.
そして、マイクロチャンバー165に収容された希少細胞を検出した後、撮像部250により、蛍光が検出されたマイクロチャンバー165内に収容された細胞を撮像する。移動部150は、蛍光が検出されたマイクロチャンバー165の位置情報に基づいて、撮像部250が当該マイクロチャンバー165の直上部に移動するように、細胞展開用デバイス160を移動させる。撮像部250は、直下に目的のマイクロチャンバー165が移動した後、マイクロチャンバー165内の細胞を撮像する。
Then, after detecting the rare cells accommodated in the microchamber 165, the imaging unit 250 images the cells accommodated in the microchamber 165 in which fluorescence is detected. The moving unit 150 moves the cell deployment device 160 based on the positional information of the microchamber 165 where the fluorescence is detected so that the imaging unit 250 moves directly above the microchamber 165. The imaging unit 250 images the cells in the microchamber 165 after the target microchamber 165 moves immediately below.
以上のように、実施の形態2に係る細胞検出装置200は、実施の形態1に係る細胞検出装置100の効果に加えて、希少細胞の画像を取得することもできる。また、実施の形態2に係る細胞検出装置200は、2波長の励起光を照射して、2波長の蛍光を同時に検出することもできる。
As described above, in addition to the effects of the cell detection device 100 according to the first embodiment, the cell detection device 200 according to the second embodiment can also acquire a rare cell image. Moreover, the cell detection apparatus 200 according to Embodiment 2 can also detect two wavelengths of fluorescence simultaneously by irradiating two wavelengths of excitation light.
なお、撮像部250で複数色を観察する場合には、例えば第3ダイクロイックミラー139を取り外し、観察する色に対応してフィルター131の色を交換することによって行うことができる。また、例えば光検出部130が配置されている部分に撮像部250を切り替え可能に配置して、光検出と撮像とをそれぞれ行うようにしてもよい。
In addition, when observing a plurality of colors with the imaging unit 250, for example, the third dichroic mirror 139 can be removed and the color of the filter 131 can be exchanged according to the color to be observed. Further, for example, the imaging unit 250 may be arranged to be switchable at a portion where the light detection unit 130 is arranged, and light detection and imaging may be performed respectively.
以下、本発明の実施例を参照して詳細に説明するが、本発明はこれらの実施例により限定されない。
Hereinafter, the present invention will be described in detail with reference to examples, but the present invention is not limited to these examples.
[実施例1]
実施例1では、実施の形態2に係る細胞検出装置200を用いて、がん患者から採血された末梢血に含まれる血液循環癌細胞(CTC)の検出を行った。 [Example 1]
In Example 1, blood circulating cancer cells (CTC) contained in peripheral blood collected from cancer patients were detected using thecell detection device 200 according to Embodiment 2.
実施例1では、実施の形態2に係る細胞検出装置200を用いて、がん患者から採血された末梢血に含まれる血液循環癌細胞(CTC)の検出を行った。 [Example 1]
In Example 1, blood circulating cancer cells (CTC) contained in peripheral blood collected from cancer patients were detected using the
1.細胞懸濁液の調製
がん患者から採血した末梢血をリン酸緩衝食塩水(PBS)で希釈して血液の希釈液を得た。次いで、血液の希釈液1mLにパラホルムアルデヒド(和光純薬工業株式会社)を4%の濃度となるように添加した後、緩やかに混和して、室温暗所にて15分間反応させた。さらにPBSを十分量添加して混和した後、懸濁液を遠心分離器により遠心分離した。遠心分離後の沈澱物に0.1%Tweenを含むPBSを1mL、血液循環癌細胞(CTC)標識用にAlexa Fluor 647で標識した抗CK抗体(Micromet社)溶液10μL、白血球標識用にAlexa Fluor 488(ライフテクノロジーズ・ジャパン株式会社)で標識した抗CD45抗体10μLをそれぞれ添加した。混合溶液を緩やかに混和しながら、室温暗所にて25分間反応させた。さらに、細胞核染色用にDAPI溶液(同仁化学研究所)を10μL添加して、緩やかに混和しながら、室温暗所にて5分間反応させた。そして、遠心分離後に上澄み液とともに、細胞に結合していない抗体および蛍光色素を除去した。沈澱物にPBSを添加して再び懸濁させて、細胞懸濁液を得た。なお、この細胞懸濁液に含まれている血液循環癌細胞(CTC)の数は、他の検出方法により特定されている。 1. Preparation of Cell Suspension Peripheral blood collected from cancer patients was diluted with phosphate buffered saline (PBS) to obtain a diluted blood solution. Next, paraformaldehyde (Wako Pure Chemical Industries, Ltd.) was added to 1 mL of a diluted blood solution to a concentration of 4%, and then gently mixed and allowed to react for 15 minutes in the dark at room temperature. Further, after adding a sufficient amount of PBS and mixing, the suspension was centrifuged with a centrifuge. 1 mL of PBS containing 0.1% Tween in the precipitate after centrifugation, 10 μL of anti-CK antibody (Micromet) solution labeled with Alexa Fluor 647 for blood circulation cancer cell (CTC) labeling, Alexa Fluor for leukocyte labeling 10 μL of anti-CD45 antibody labeled with 488 (Life Technologies Japan Inc.) was added. The mixed solution was allowed to react for 25 minutes in the dark at room temperature while gently mixing. Furthermore, 10 μL of DAPI solution (Dojindo Laboratories) was added for cell nucleus staining and allowed to react for 5 minutes in the dark at room temperature while gently mixing. Then, the antibody and fluorescent dye not bound to the cells were removed together with the supernatant after centrifugation. PBS was added to the precipitate and suspended again to obtain a cell suspension. The number of blood circulating cancer cells (CTC) contained in this cell suspension is specified by other detection methods.
がん患者から採血した末梢血をリン酸緩衝食塩水(PBS)で希釈して血液の希釈液を得た。次いで、血液の希釈液1mLにパラホルムアルデヒド(和光純薬工業株式会社)を4%の濃度となるように添加した後、緩やかに混和して、室温暗所にて15分間反応させた。さらにPBSを十分量添加して混和した後、懸濁液を遠心分離器により遠心分離した。遠心分離後の沈澱物に0.1%Tweenを含むPBSを1mL、血液循環癌細胞(CTC)標識用にAlexa Fluor 647で標識した抗CK抗体(Micromet社)溶液10μL、白血球標識用にAlexa Fluor 488(ライフテクノロジーズ・ジャパン株式会社)で標識した抗CD45抗体10μLをそれぞれ添加した。混合溶液を緩やかに混和しながら、室温暗所にて25分間反応させた。さらに、細胞核染色用にDAPI溶液(同仁化学研究所)を10μL添加して、緩やかに混和しながら、室温暗所にて5分間反応させた。そして、遠心分離後に上澄み液とともに、細胞に結合していない抗体および蛍光色素を除去した。沈澱物にPBSを添加して再び懸濁させて、細胞懸濁液を得た。なお、この細胞懸濁液に含まれている血液循環癌細胞(CTC)の数は、他の検出方法により特定されている。 1. Preparation of Cell Suspension Peripheral blood collected from cancer patients was diluted with phosphate buffered saline (PBS) to obtain a diluted blood solution. Next, paraformaldehyde (Wako Pure Chemical Industries, Ltd.) was added to 1 mL of a diluted blood solution to a concentration of 4%, and then gently mixed and allowed to react for 15 minutes in the dark at room temperature. Further, after adding a sufficient amount of PBS and mixing, the suspension was centrifuged with a centrifuge. 1 mL of PBS containing 0.1% Tween in the precipitate after centrifugation, 10 μL of anti-CK antibody (Micromet) solution labeled with Alexa Fluor 647 for blood circulation cancer cell (CTC) labeling, Alexa Fluor for leukocyte labeling 10 μL of anti-CD45 antibody labeled with 488 (Life Technologies Japan Inc.) was added. The mixed solution was allowed to react for 25 minutes in the dark at room temperature while gently mixing. Furthermore, 10 μL of DAPI solution (Dojindo Laboratories) was added for cell nucleus staining and allowed to react for 5 minutes in the dark at room temperature while gently mixing. Then, the antibody and fluorescent dye not bound to the cells were removed together with the supernatant after centrifugation. PBS was added to the precipitate and suspended again to obtain a cell suspension. The number of blood circulating cancer cells (CTC) contained in this cell suspension is specified by other detection methods.
2.チャンバーの前処理および細胞の収容
深さ:50μm、開口部の直径:100μmのマイクロチャンバー165を複数有するチップ161の上に、枠体162および天板163を配置して、幅:5mm、高さ:500μmの流路164を有する細胞展開用デバイス160を作製した。複数のマイクロチャンバー165は、第1の方向に300μmの間隔で配置されており、第2の方向に150μmの間隔で配置されている。流路164内にブロッキング溶液(3%BSAを含むPBS)を16mL/minで送液した。その後、PBSを流路164内に送液することで、余分なブロッキング液を流路164内から除去した。ブロッキング液を除去した流路164内に16mL/minの流速で上記の細胞懸濁液を10μL送液し、10秒間静止した。細胞懸濁液の送液および静止を繰り返すことで、マイクロチャンバー165内にすべての細胞を収容した。 2. Pretreatment of chamber and cell accommodation Depth: 50 μm, opening diameter: 100μm A frame 162 and a top plate 163 are arranged on a chip 161 having a plurality of microchambers 165, width: 5 mm, height : A cell deployment device 160 having a channel 164 of 500 μm was produced. The plurality of microchambers 165 are arranged at intervals of 300 μm in the first direction, and are arranged at intervals of 150 μm in the second direction. A blocking solution (PBS containing 3% BSA) was fed into the flow path 164 at 16 mL / min. Thereafter, PBS was fed into the channel 164 to remove excess blocking solution from the channel 164. 10 μL of the above cell suspension was fed into the flow channel 164 from which the blocking solution had been removed at a flow rate of 16 mL / min, and rested for 10 seconds. All the cells were accommodated in the microchamber 165 by repeatedly feeding and resting the cell suspension.
深さ:50μm、開口部の直径:100μmのマイクロチャンバー165を複数有するチップ161の上に、枠体162および天板163を配置して、幅:5mm、高さ:500μmの流路164を有する細胞展開用デバイス160を作製した。複数のマイクロチャンバー165は、第1の方向に300μmの間隔で配置されており、第2の方向に150μmの間隔で配置されている。流路164内にブロッキング溶液(3%BSAを含むPBS)を16mL/minで送液した。その後、PBSを流路164内に送液することで、余分なブロッキング液を流路164内から除去した。ブロッキング液を除去した流路164内に16mL/minの流速で上記の細胞懸濁液を10μL送液し、10秒間静止した。細胞懸濁液の送液および静止を繰り返すことで、マイクロチャンバー165内にすべての細胞を収容した。 2. Pretreatment of chamber and cell accommodation Depth: 50 μm, opening diameter: 100
3.細胞の検出
実施の形態2に係る細胞検出装置200を用いて、血液循環癌細胞(CTC)の検出を行った。励起光は、CTCを標識したAlexa Fluor 647を励起するHe-Neレーザー光(波長633nm)を使用した。検出領域規定部140として光照射部120側に矩形スリットを配置することで、照射スポットSの形状を10μm×100μmの矩形とした。本実施例では、照射スポットSおよび検出領域Aは、一致している。照射スポットSの走査は、チャンバー列ごとに行った(1列照射)。このとき、照射スポットSの走査(励起光の照射および蛍光の検出)およびチャンバー列間の走査スポットSの移動に要した時間は、約2分であった。次いで、蛍光が検出されたマイクロチャンバー165に収容された細胞を、撮像部250により撮像した。 3. Cell Detection Using thecell detection apparatus 200 according to Embodiment 2, blood circulation cancer cells (CTC) were detected. As the excitation light, He—Ne laser light (wavelength 633 nm) for exciting Alexa Fluor 647 labeled with CTC was used. By arranging a rectangular slit on the light irradiation unit 120 side as the detection region defining unit 140, the shape of the irradiation spot S was made a rectangle of 10 μm × 100 μm. In the present embodiment, the irradiation spot S and the detection area A coincide with each other. The irradiation spot S was scanned for each chamber row (one row irradiation). At this time, the time required for scanning of the irradiation spot S (irradiation of excitation light and detection of fluorescence) and movement of the scanning spot S between the chamber rows was about 2 minutes. Next, the cells housed in the microchamber 165 where fluorescence was detected were imaged by the imaging unit 250.
実施の形態2に係る細胞検出装置200を用いて、血液循環癌細胞(CTC)の検出を行った。励起光は、CTCを標識したAlexa Fluor 647を励起するHe-Neレーザー光(波長633nm)を使用した。検出領域規定部140として光照射部120側に矩形スリットを配置することで、照射スポットSの形状を10μm×100μmの矩形とした。本実施例では、照射スポットSおよび検出領域Aは、一致している。照射スポットSの走査は、チャンバー列ごとに行った(1列照射)。このとき、照射スポットSの走査(励起光の照射および蛍光の検出)およびチャンバー列間の走査スポットSの移動に要した時間は、約2分であった。次いで、蛍光が検出されたマイクロチャンバー165に収容された細胞を、撮像部250により撮像した。 3. Cell Detection Using the
4.結果
図14にCTCの検出結果を示す。図14Aおよび図14Bは、照射スポットSの走査距離と、蛍光強度との関係を示すグラフである。図14Aは、13個のマイクロチャンバー165を含む範囲を示している。図14Bは、1個のマイクロチャンバー165を含む範囲を拡大して示している。なお、図14Aのグラフ中の曲線C1は、蛍光を示しており、曲線C2は、細胞展開用デバイス160からの反射光を示している。反射光の強度は、マイクロチャンバー165に応じて周期的に変化している。また、図14Cは、蛍光が検出されたマイクロチャンバー165の写真であり、図14Dは、図14Cに示される写真の模式図である。なお、図14Dでは、蛍光を発している細胞(CTC)を黒色で示し、蛍光を発していない細胞を白色で示している。 4). Results FIG. 14 shows CTC detection results. 14A and 14B are graphs showing the relationship between the scanning distance of the irradiation spot S and the fluorescence intensity. FIG. 14A shows a range including 13 microchambers 165. FIG. 14B shows an enlarged range including onemicrochamber 165. In addition, the curve C1 in the graph of FIG. 14A has shown fluorescence, and the curve C2 has shown the reflected light from the device 160 for cell expansion. The intensity of the reflected light changes periodically according to the microchamber 165. 14C is a photograph of the microchamber 165 in which fluorescence is detected, and FIG. 14D is a schematic view of the photograph shown in FIG. 14C. In FIG. 14D, cells that emit fluorescence (CTC) are shown in black, and cells that do not emit fluorescence are shown in white.
図14にCTCの検出結果を示す。図14Aおよび図14Bは、照射スポットSの走査距離と、蛍光強度との関係を示すグラフである。図14Aは、13個のマイクロチャンバー165を含む範囲を示している。図14Bは、1個のマイクロチャンバー165を含む範囲を拡大して示している。なお、図14Aのグラフ中の曲線C1は、蛍光を示しており、曲線C2は、細胞展開用デバイス160からの反射光を示している。反射光の強度は、マイクロチャンバー165に応じて周期的に変化している。また、図14Cは、蛍光が検出されたマイクロチャンバー165の写真であり、図14Dは、図14Cに示される写真の模式図である。なお、図14Dでは、蛍光を発している細胞(CTC)を黒色で示し、蛍光を発していない細胞を白色で示している。 4). Results FIG. 14 shows CTC detection results. 14A and 14B are graphs showing the relationship between the scanning distance of the irradiation spot S and the fluorescence intensity. FIG. 14A shows a range including 13 microchambers 165. FIG. 14B shows an enlarged range including one
図14A~Dに示されるように、本実施の形態の方法により、血液循環癌細胞(CTC)を短時間(約2分間)かつ高感度に検出することができた。また、検出したCTCの数は、細胞展開用デバイス160内に導入したCTCの数と完全に一致した(100%)。
As shown in FIGS. 14A to 14D, blood circulation cancer cells (CTC) could be detected with high sensitivity in a short time (about 2 minutes) by the method of the present embodiment. Further, the number of detected CTCs completely coincided with the number of CTCs introduced into the cell deployment device 160 (100%).
[実施例2]
1.細胞の検出
実施例2でも、実施の形態2に係る細胞検出装置200を用いて、血液循環癌細胞(CTC)の検出を行った。本実施例では、検出領域規定部140を光照射部120側ではなく光検出部130側に配置した。検出領域規定部140としては、矩形スリットを使用した。照射スポットSの形状は、長径が300μm、短径が50μmの楕円形であるが、検出領域Aの形状は、10μm×300μmの矩形である。照射スポットSの走査は、2列のチャンバー列ごとに行った(図11参照;2列照射)。このとき、照射スポットSの走査(励起光の照射および蛍光の検出)およびチャンバー列間の走査スポットSの移動に要した時間は、約1分であった。次いで、蛍光が検出されたマイクロチャンバー165に収容された細胞を撮像した。なお、実施例1と同じ細胞展開用デバイス160を使用した。 [Example 2]
1. Cell Detection Also in Example 2, blood circulation cancer cells (CTC) were detected using thecell detection apparatus 200 according to Embodiment 2. In the present embodiment, the detection area defining unit 140 is arranged on the light detection unit 130 side, not on the light irradiation unit 120 side. A rectangular slit was used as the detection area defining unit 140. The shape of the irradiation spot S is an ellipse having a major axis of 300 μm and a minor axis of 50 μm, but the shape of the detection region A is a rectangle of 10 μm × 300 μm. The irradiation spot S was scanned every two chamber rows (see FIG. 11; two rows irradiation). At this time, the time required for scanning of the irradiation spot S (irradiation of excitation light and detection of fluorescence) and movement of the scanning spot S between the chamber rows was about 1 minute. Next, the cells housed in the microchamber 165 where fluorescence was detected were imaged. The same cell deployment device 160 as in Example 1 was used.
1.細胞の検出
実施例2でも、実施の形態2に係る細胞検出装置200を用いて、血液循環癌細胞(CTC)の検出を行った。本実施例では、検出領域規定部140を光照射部120側ではなく光検出部130側に配置した。検出領域規定部140としては、矩形スリットを使用した。照射スポットSの形状は、長径が300μm、短径が50μmの楕円形であるが、検出領域Aの形状は、10μm×300μmの矩形である。照射スポットSの走査は、2列のチャンバー列ごとに行った(図11参照;2列照射)。このとき、照射スポットSの走査(励起光の照射および蛍光の検出)およびチャンバー列間の走査スポットSの移動に要した時間は、約1分であった。次いで、蛍光が検出されたマイクロチャンバー165に収容された細胞を撮像した。なお、実施例1と同じ細胞展開用デバイス160を使用した。 [Example 2]
1. Cell Detection Also in Example 2, blood circulation cancer cells (CTC) were detected using the
2.結果
図15にCTCの検出結果を示す。図15Aは、12個のマイクロチャンバー165を含む範囲における、照射スポットSの走査距離と、蛍光強度との関係を示すグラフである。グラフ中の曲線C1は、蛍光を示しており、曲線C2は、反射光を示している。また、図15Bは、図15Aのグラフに対応する領域の細胞展開用デバイス160(マイクロチャンバー165)の写真である。黒い円は、マイクロチャンバー165であり、黒い円の中にある白い点は、蛍光を放出している細胞(CTC)である。図15に示されるように、隣接する2つのチャンバー列のマイクロチャンバー165の蛍光シグナルが重なることなく、マイクロチャンバー165ごとに区別して蛍光を検出することができた。また、検出したCTCの数は、細胞展開用デバイス160内に導入したCTCの数と完全に一致した(100%)。 2. Results FIG. 15 shows CTC detection results. FIG. 15A is a graph showing the relationship between the scanning distance of the irradiation spot S and the fluorescence intensity in a range including 12 microchambers 165. A curve C1 in the graph indicates fluorescence, and a curve C2 indicates reflected light. FIG. 15B is a photograph of the cell deployment device 160 (microchamber 165) in the region corresponding to the graph of FIG. 15A. The black circle is themicrochamber 165, and the white dots in the black circle are cells emitting fluorescence (CTC). As shown in FIG. 15, the fluorescence signals could be detected separately for each microchamber 165 without overlapping the fluorescence signals of the microchambers 165 of two adjacent chamber rows. Further, the number of detected CTCs completely coincided with the number of CTCs introduced into the cell deployment device 160 (100%).
図15にCTCの検出結果を示す。図15Aは、12個のマイクロチャンバー165を含む範囲における、照射スポットSの走査距離と、蛍光強度との関係を示すグラフである。グラフ中の曲線C1は、蛍光を示しており、曲線C2は、反射光を示している。また、図15Bは、図15Aのグラフに対応する領域の細胞展開用デバイス160(マイクロチャンバー165)の写真である。黒い円は、マイクロチャンバー165であり、黒い円の中にある白い点は、蛍光を放出している細胞(CTC)である。図15に示されるように、隣接する2つのチャンバー列のマイクロチャンバー165の蛍光シグナルが重なることなく、マイクロチャンバー165ごとに区別して蛍光を検出することができた。また、検出したCTCの数は、細胞展開用デバイス160内に導入したCTCの数と完全に一致した(100%)。 2. Results FIG. 15 shows CTC detection results. FIG. 15A is a graph showing the relationship between the scanning distance of the irradiation spot S and the fluorescence intensity in a range including 12 microchambers 165. A curve C1 in the graph indicates fluorescence, and a curve C2 indicates reflected light. FIG. 15B is a photograph of the cell deployment device 160 (microchamber 165) in the region corresponding to the graph of FIG. 15A. The black circle is the
[実施例3]
1.細胞の検出
実施例3でも、実施の形態2に係る細胞検出装置200を用いて、血液循環癌細胞(CTC)の検出を行った。本実施例では、検出領域規定部140として、光照射部120側に円形スリットを配置することで、照射スポットSの形状を直径100μmの円形とした。本実施例では、照射スポットSおよび検出領域Aは、一致している。照射スポットの走査は、チャンバー列ずつ行った(1列照射)。このとき、照射スポットSの走査(励起光の照射および蛍光の検出)およびチャンバー列間の走査スポットSの移動に要した時間は、約2分であった。 [Example 3]
1. Cell Detection Also in Example 3, blood circulation cancer cells (CTC) were detected using thecell detection device 200 according to Embodiment 2. In the present embodiment, as the detection region defining unit 140, a circular slit is arranged on the light irradiation unit 120 side, so that the shape of the irradiation spot S is a circle having a diameter of 100 μm. In the present embodiment, the irradiation spot S and the detection area A coincide with each other. The irradiation spot was scanned for each chamber row (one row irradiation). At this time, the time required for scanning of the irradiation spot S (irradiation of excitation light and detection of fluorescence) and movement of the scanning spot S between the chamber rows was about 2 minutes.
1.細胞の検出
実施例3でも、実施の形態2に係る細胞検出装置200を用いて、血液循環癌細胞(CTC)の検出を行った。本実施例では、検出領域規定部140として、光照射部120側に円形スリットを配置することで、照射スポットSの形状を直径100μmの円形とした。本実施例では、照射スポットSおよび検出領域Aは、一致している。照射スポットの走査は、チャンバー列ずつ行った(1列照射)。このとき、照射スポットSの走査(励起光の照射および蛍光の検出)およびチャンバー列間の走査スポットSの移動に要した時間は、約2分であった。 [Example 3]
1. Cell Detection Also in Example 3, blood circulation cancer cells (CTC) were detected using the
2.結果
図16にCTCの検出結果を示す。図16Aは、2つのマイクロチャンバー165を含む範囲を拡大した、照射スポットSの走査位置と蛍光強度との関係を示すグラフである。図16Bは、これらのマイクロチャンバー165の写真であり、図16Cは、図16Bに示される写真の模式図である。 2. Results FIG. 16 shows CTC detection results. FIG. 16A is a graph showing the relationship between the scanning position of the irradiation spot S and the fluorescence intensity, in which the range including the twomicrochambers 165 is enlarged. FIG. 16B is a photograph of these microchambers 165, and FIG. 16C is a schematic view of the photograph shown in FIG. 16B.
図16にCTCの検出結果を示す。図16Aは、2つのマイクロチャンバー165を含む範囲を拡大した、照射スポットSの走査位置と蛍光強度との関係を示すグラフである。図16Bは、これらのマイクロチャンバー165の写真であり、図16Cは、図16Bに示される写真の模式図である。 2. Results FIG. 16 shows CTC detection results. FIG. 16A is a graph showing the relationship between the scanning position of the irradiation spot S and the fluorescence intensity, in which the range including the two
本実施例においても、実施例1および実施例2と同様に、CTCを短時間でかつ高感度に検出することができた。また、検出したCTCの数は、細胞展開用デバイス160内に導入したCTCの数とほぼ一致した(98%)。
Also in this example, as in Example 1 and Example 2, CTC could be detected in a short time and with high sensitivity. Further, the number of detected CTCs almost coincided with the number of CTCs introduced into the cell deployment device 160 (98%).
[比較例]
1.細胞の検出
比較例では、マイクロアレイスキャナーを用いて、循環腫瘍細胞(CTC)の検出を行った。比較例では、細胞展開用デバイス160の代わりに、平面基板上に細胞懸濁液を展開した。照射スポットSの形状は、直径5μmの円形である。基板全面(25mm×75mm)における蛍光の検出に要した時間は、約15分であった。 [Comparative example]
1. Cell Detection In the comparative example, circulating tumor cells (CTC) were detected using a microarray scanner. In the comparative example, instead of thecell deployment device 160, a cell suspension was developed on a flat substrate. The shape of the irradiation spot S is a circle having a diameter of 5 μm. The time required for detecting fluorescence on the entire surface of the substrate (25 mm × 75 mm) was about 15 minutes.
1.細胞の検出
比較例では、マイクロアレイスキャナーを用いて、循環腫瘍細胞(CTC)の検出を行った。比較例では、細胞展開用デバイス160の代わりに、平面基板上に細胞懸濁液を展開した。照射スポットSの形状は、直径5μmの円形である。基板全面(25mm×75mm)における蛍光の検出に要した時間は、約15分であった。 [Comparative example]
1. Cell Detection In the comparative example, circulating tumor cells (CTC) were detected using a microarray scanner. In the comparative example, instead of the
2.結果
比較例においても、実施例1~実施例3と同様に、CTCを検出することができた。また、検出したCTCの数は、細胞展開用デバイス160内に導入したCTCの数とほぼ一致した(98%)。しかし、照射スポットが直径5μmのマイクロアレイスキャナーを用いた検出のため、検出時間が約15分と非常に長くなってしまった。 2. Results In the comparative example, CTC could be detected in the same manner as in Examples 1 to 3. Further, the number of detected CTCs almost coincided with the number of CTCs introduced into the cell deployment device 160 (98%). However, because of the detection using a microarray scanner with an irradiation spot having a diameter of 5 μm, the detection time is as long as about 15 minutes.
比較例においても、実施例1~実施例3と同様に、CTCを検出することができた。また、検出したCTCの数は、細胞展開用デバイス160内に導入したCTCの数とほぼ一致した(98%)。しかし、照射スポットが直径5μmのマイクロアレイスキャナーを用いた検出のため、検出時間が約15分と非常に長くなってしまった。 2. Results In the comparative example, CTC could be detected in the same manner as in Examples 1 to 3. Further, the number of detected CTCs almost coincided with the number of CTCs introduced into the cell deployment device 160 (98%). However, because of the detection using a microarray scanner with an irradiation spot having a diameter of 5 μm, the detection time is as long as about 15 minutes.
以上の結果から、本発明に係る細胞検出装置およびこの細胞検出装置を用いた細胞検出方法は、照射スポットが直径5μm程度のマイクロアレイスキャナーを用いた細胞検出と同程度以上の感度で、かつ短時間に希少細胞を検出することができることがわかる。
From the above results, the cell detection device according to the present invention and the cell detection method using this cell detection device have sensitivity equal to or higher than that of cell detection using a microarray scanner with an irradiation spot of about 5 μm in diameter, and in a short time. It can be seen that rare cells can be detected.
本発明の細胞検出方法および細胞検出装置は、高感度、かつ短時間で希少細胞を検出することができるため、例えば疾患の検査などに有用である。
The cell detection method and cell detection apparatus of the present invention are highly sensitive and can detect rare cells in a short time, and thus are useful for, for example, examination of diseases.
本出願は、2013年8月15日出願の特願2013-168778に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。
This application claims priority based on Japanese Patent Application No. 2013-168778 filed on August 15, 2013. The contents described in the application specification and the drawings are all incorporated herein.
100,200 細胞検出装置
110 ホルダー
120 光照射部
121 第1レンズ
122 第2レンズ
123 ダイクロイックミラー(第2ダイクロイックミラー)
124 対物レンズ
130 光検出部
131 フィルター
132 ピンホール
133 第3レンズ
134 第1ダイクロイックミラー
135 第4レンズ
136 第5レンズ
137 ハーフミラー
138 第6レンズ
139 第3ダイクロイックミラー
140 検出領域規定部
150 移動部
152 X軸移動機構
154 Y軸移動機構
160 細胞展開用デバイス
161 チップ
162 枠体
163 天板
164 流路
165 マイクロチャンバー
166 導入口
167 排出口
250 撮像部
A 検出領域
S 照射スポット DESCRIPTION OF SYMBOLS 100,200Cell detection apparatus 110 Holder 120 Light irradiation part 121 1st lens 122 2nd lens 123 Dichroic mirror (2nd dichroic mirror)
124objective lens 130 light detection unit 131 filter 132 pinhole 133 third lens 134 first dichroic mirror 135 fourth lens 136 fifth lens 137 half mirror 138 sixth lens 139 third dichroic mirror 140 detection region defining unit 150 moving unit 152 X-axis moving mechanism 154 Y-axis moving mechanism 160 Cell deployment device 161 Chip 162 Frame body 163 Top plate 164 Channel 165 Microchamber 166 Inlet 167 Outlet 250 Imaging unit A Detection area S Irradiation spot
110 ホルダー
120 光照射部
121 第1レンズ
122 第2レンズ
123 ダイクロイックミラー(第2ダイクロイックミラー)
124 対物レンズ
130 光検出部
131 フィルター
132 ピンホール
133 第3レンズ
134 第1ダイクロイックミラー
135 第4レンズ
136 第5レンズ
137 ハーフミラー
138 第6レンズ
139 第3ダイクロイックミラー
140 検出領域規定部
150 移動部
152 X軸移動機構
154 Y軸移動機構
160 細胞展開用デバイス
161 チップ
162 枠体
163 天板
164 流路
165 マイクロチャンバー
166 導入口
167 排出口
250 撮像部
A 検出領域
S 照射スポット DESCRIPTION OF SYMBOLS 100,200
124
Claims (14)
- 第1の方向に所定の間隔で複数のマイクロチャンバーが配列されているマイクロチャンバー列が複数列配置され、かつ前記マイクロチャンバーに蛍光物質で標識された1または2以上の細胞が収容されているチップを準備する第1工程と、
前記チップに励起光を照射して、検出領域における蛍光物質の蛍光を検出する第2工程と、
を有し、
前記第2工程は、前記検出領域を前記第1の方向に走査することと、前記第1の方向に直交する第2の方向に移動することとを繰り返すことにより行い、
前記第1の方向における前記検出領域の長さは、前記第1の方向において互いに隣接する2つの前記マイクロチャンバー間の間隔以下であり、
前記第2の方向における前記検出領域の長さは、前記第2の方向における前記マイクロチャンバーの長さ以上である、
細胞検出方法。 A chip in which a plurality of microchamber rows in which a plurality of microchambers are arranged at predetermined intervals in the first direction are arranged, and one or more cells labeled with a fluorescent substance are accommodated in the microchamber. A first step of preparing
A second step of irradiating the chip with excitation light to detect fluorescence of the fluorescent substance in the detection region;
Have
The second step is performed by repeatedly scanning the detection area in the first direction and moving in a second direction orthogonal to the first direction,
A length of the detection region in the first direction is equal to or less than an interval between the two microchambers adjacent to each other in the first direction;
The length of the detection region in the second direction is not less than the length of the microchamber in the second direction.
Cell detection method. - 前記チップには、前記第1の方向に配列された複数の前記マイクロチャンバーを含むチャンバー列が、前記第2の方向に複数列配置されており、
互いに隣接する2つの前記チャンバー列に含まれる、前記マイクロチャンバーのそれぞれは、前記第1の方向において重複しておらず、
前記第1の方向における前記検出領域の長さは、前記2つのチャンバー列内で前記第1の方向において最も近接する2つの前記マイクロチャンバー間の前記第1の方向における間隔以下であり、
前記第2の方向における前記検出領域の長さは、前記2つのチャンバー列の一方のチャンバー列に含まれる前記マイクロチャンバーの前記第2の方向における長さと、前記2つのチャンバー列の他方のチャンバー列に含まれる前記マイクロチャンバーの前記第2の方向における長さと、前記一方のチャンバー列に含まれる前記マイクロチャンバーと前記他方のチャンバー列に含まれる前記マイクロチャンバーとの間の前記第2の方向における間隔との合計以上である、
請求項1に記載の細胞検出方法。 In the chip, a plurality of chamber rows including the plurality of micro chambers arranged in the first direction are arranged in the second direction,
Each of the microchambers included in the two adjacent chamber rows does not overlap in the first direction,
The length of the detection region in the first direction is less than or equal to the interval in the first direction between the two microchambers that are closest in the first direction in the two chamber rows,
The length of the detection region in the second direction is the length in the second direction of the microchamber included in one chamber row of the two chamber rows and the other chamber row of the two chamber rows. The length of the microchamber included in the second direction and the distance in the second direction between the microchamber included in the one chamber row and the microchamber included in the other chamber row And more than the sum of
The cell detection method according to claim 1. - 前記チップには、前記第1の方向に配列された複数の前記マイクロチャンバーを含むチャンバー列が、前記第2の方向に複数列配置されており、
互いに隣接する2つの前記チャンバー列のうち、一方のチャンバー列に含まれる前記マイクロチャンバーと、他方のチャンバー列に含まれ、かつ前記一方のチャンバー列に含まれる前記マイクロチャンバーと最も近接する前記マイクロチャンバーとは、前記第1の方向において重複しており、
前記第2の方向における前記検出領域の長さは、前記一方のチャンバー列に含まれる前記マイクロチャンバーの前記第2の方向における長さと、前記一方のチャンバー列に含まれる前記マイクロチャンバーと前記他方のチャンバー列に含まれる前記マイクロチャンバーとの間の前記第2の方向における間隔との合計未満である、
請求項1に記載の細胞検出方法。 In the chip, a plurality of chamber rows including the plurality of micro chambers arranged in the first direction are arranged in the second direction,
Of the two chamber rows adjacent to each other, the micro chamber included in one chamber row, and the micro chamber included in the other chamber row and closest to the micro chamber included in the one chamber row Are overlapping in the first direction,
The length of the detection region in the second direction is the length of the microchamber included in the one chamber row in the second direction, the microchamber included in the one chamber row, and the other of the microchamber. Less than the sum of the spacing in the second direction between the microchambers included in the chamber row,
The cell detection method according to claim 1. - 前記第2工程は、前記蛍光を検出するのと同時に、検出された前記蛍光の位置情報をさらに取得し、
前記第2工程の後、前記蛍光の検出結果および前記位置情報に基づいて、前記蛍光が検出された前記マイクロチャンバーに収容された前記細胞を撮像する第3工程をさらに有する、
請求項1~3のいずれか一項に記載の細胞検出方法。 In the second step, the position information of the detected fluorescence is further acquired simultaneously with the detection of the fluorescence.
After the second step, the method further includes a third step of imaging the cells housed in the microchamber in which the fluorescence is detected based on the detection result of the fluorescence and the position information.
The cell detection method according to any one of claims 1 to 3. - 前記検出領域は、前記励起光の照射スポットに一致する、請求項1~4のいずれか一項に記載の細胞検出方法。 The cell detection method according to any one of claims 1 to 4, wherein the detection region coincides with an irradiation spot of the excitation light.
- 前記検出領域は、前記励起光の照射スポットの一部である、請求項1~4のいずれか一項に記載の細胞検出方法。 The cell detection method according to any one of claims 1 to 4, wherein the detection region is a part of an irradiation spot of the excitation light.
- 前記検出領域は、矩形であり、
前記第1の方向における前記検出領域の長さは、10~25μmの範囲内であり、
前記第2の方向における前記検出領域の長さは、50~500μmの範囲内である、
請求項1~6のいずれか一項に記載の細胞検出方法。 The detection area is rectangular;
The length of the detection region in the first direction is in the range of 10-25 μm;
The length of the detection region in the second direction is in the range of 50 to 500 μm.
The cell detection method according to any one of claims 1 to 6. - 前記検出領域は、直径が20~500μmの円形である、請求項1~6のいずれか一項に記載の細胞検出方法。 The cell detection method according to any one of claims 1 to 6, wherein the detection region is a circle having a diameter of 20 to 500 µm.
- 第1の方向に所定の間隔で複数のマイクロチャンバーが配列されているマイクロチャンバー列が複数列配置され、かつ前記マイクロチャンバーに蛍光物質で標識された1または2以上の細胞が収容されているチップを保持するためのホルダーと、
前記チップに励起光を照射する光照射部と、
前記光照射部から照射された励起光により検出領域における蛍光物質の蛍光を検出する光検出部と、
前記光照射部と前記ホルダーとの間、または前記ホルダーと前記光検出部との間に配置され、前記検出領域を規定する検出領域規定部と、
前記チップにおける前記検出領域の位置を移動させるために、前記ホルダーと、前記光照射部、前記検出領域規定部および前記光検出部とを相対的に移動させる移動部と、
を有し、
前記第1の方向における前記検出領域の長さは、前記第1の方向において互いに隣接する2つの前記マイクロチャンバー間の間隔以下であり、
第2の方向における前記検出領域の長さは、前記第2の方向における前記マイクロチャンバーの長さ以上である、
細胞検出装置。 A chip in which a plurality of microchamber rows in which a plurality of microchambers are arranged at predetermined intervals in the first direction are arranged, and one or more cells labeled with a fluorescent substance are accommodated in the microchamber. A holder for holding,
A light irradiation unit for irradiating the chip with excitation light;
A light detection unit that detects fluorescence of a fluorescent substance in a detection region by excitation light emitted from the light irradiation unit;
A detection region defining unit that is disposed between the light irradiation unit and the holder or between the holder and the light detection unit and defines the detection region;
In order to move the position of the detection region in the chip, a moving unit that relatively moves the holder, the light irradiation unit, the detection region defining unit, and the light detection unit,
Have
A length of the detection region in the first direction is equal to or less than an interval between the two microchambers adjacent to each other in the first direction;
The length of the detection region in the second direction is not less than the length of the microchamber in the second direction.
Cell detection device. - 前記光検出部により検出した前記蛍光物質の位置情報を取得する位置情報取得部と、
前記光検出部による前記蛍光の検出結果および前記位置情報取得部により取得した前記位置情報に基づいて、前記マイクロチャンバーに収容された前記蛍光物質で標識された細胞を撮像する撮像部と、
をさらに有する、請求項9に記載の細胞検出装置。 A position information acquisition unit for acquiring position information of the fluorescent substance detected by the light detection unit;
Based on the detection result of the fluorescence by the light detection unit and the position information acquired by the position information acquisition unit, an imaging unit that images the cells labeled with the fluorescent substance housed in the microchamber,
The cell detection device according to claim 9, further comprising: - 前記検出領域規定部は、前記光照射部と前記ホルダーとの間に配置され、前記光照射部から出射された励起光のうち、前記検出領域に照射する光のみを通過させる絞りである、請求項9または請求項10に記載の細胞検出装置。 The detection region defining unit is a diaphragm that is disposed between the light irradiation unit and the holder and allows only light that irradiates the detection region among excitation light emitted from the light irradiation unit to pass. The cell detection device according to claim 9 or 10.
- 前記検出領域規定部は、前記ホルダーと前記光検出部との間に配置され、前記照射スポットから放出された前記蛍光のうち、前記検出領域から放出された前記蛍光のみを通過させる絞りである、請求項9または請求項10に記載の細胞検出装置。 The detection region defining unit is a diaphragm that is disposed between the holder and the light detection unit, and allows only the fluorescence emitted from the detection region to pass among the fluorescence emitted from the irradiation spot. The cell detection device according to claim 9 or 10.
- 前記検出領域は、矩形であり、
前記第1の方向における前記検出領域の長さは、10~25μmの範囲内であり、
前記第2の方向における前記検出領域の長さは、50~500μmの範囲内である、
請求項9~12のいずれか一項に記載の細胞検出装置。 The detection area is rectangular;
The length of the detection region in the first direction is in the range of 10-25 μm;
The length of the detection region in the second direction is in the range of 50 to 500 μm.
The cell detection device according to any one of claims 9 to 12. - 前記検出領域は、直径が20~500μmの円形である、請求項9~12のいずれか一項に記載の細胞検出装置。 The cell detection device according to any one of claims 9 to 12, wherein the detection region is a circle having a diameter of 20 to 500 µm.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015531727A JP6439693B2 (en) | 2013-08-15 | 2014-08-14 | Cell detection method and cell detection apparatus |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013-168778 | 2013-08-15 | ||
JP2013168778 | 2013-08-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015022781A1 true WO2015022781A1 (en) | 2015-02-19 |
Family
ID=52468174
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/004190 WO2015022781A1 (en) | 2013-08-15 | 2014-08-14 | Cell detection method and cell detection device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6439693B2 (en) |
WO (1) | WO2015022781A1 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3300801A1 (en) * | 2016-09-30 | 2018-04-04 | Roche Diagniostics GmbH | Microfluidic device and method for manufacturing the same |
WO2018132610A1 (en) * | 2017-01-13 | 2018-07-19 | Cellular Research, Inc. | Hydrophilic coating of fluidic channels |
CN108698967A (en) * | 2016-02-22 | 2018-10-23 | 昭和电工株式会社 | Fluorine-containing ether compound, lubricant for magnetic recording medium and magnetic recording media |
JP2021505842A (en) * | 2018-01-24 | 2021-02-18 | イラミーナ インコーポレーテッド | Dimensional reduced structured illumination microscope with nanowell patterned array |
JP2021526647A (en) * | 2018-09-20 | 2021-10-07 | 牛尾▲電▼机(▲蘇▼州)有限公司Ushio(Suzhou)Co., Ltd. | Fluorescence measuring container and fluorescence measuring device |
US12057151B2 (en) | 2019-12-23 | 2024-08-06 | Resonac Corporation | Fluorine-containing ether compound, lubricant for magnetic recording medium, and magnetic recording medium |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003042956A (en) * | 2001-07-31 | 2003-02-13 | Fuji Photo Film Co Ltd | Data read method and scanner used therefor |
JP2006337245A (en) * | 2005-06-03 | 2006-12-14 | Matsushita Electric Ind Co Ltd | Fluorescence reading device |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2002357791B9 (en) * | 2001-12-05 | 2008-09-25 | The J. David Gladstone Institutes | Robotic microscopy systems |
JP5290690B2 (en) * | 2008-10-02 | 2013-09-18 | 古河電気工業株式会社 | Fine particle screening device |
JP2010197251A (en) * | 2009-02-25 | 2010-09-09 | Fujitsu Ltd | Image capturing apparatus, method and program |
JPWO2014097991A1 (en) * | 2012-12-18 | 2017-01-12 | コニカミノルタ株式会社 | Rare cell detection device, rare cell detection method, rare cell observation system, and device for cell deployment |
-
2014
- 2014-08-14 JP JP2015531727A patent/JP6439693B2/en not_active Expired - Fee Related
- 2014-08-14 WO PCT/JP2014/004190 patent/WO2015022781A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003042956A (en) * | 2001-07-31 | 2003-02-13 | Fuji Photo Film Co Ltd | Data read method and scanner used therefor |
JP2006337245A (en) * | 2005-06-03 | 2006-12-14 | Matsushita Electric Ind Co Ltd | Fluorescence reading device |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108698967B (en) * | 2016-02-22 | 2022-03-04 | 昭和电工株式会社 | Fluorinated ether compound, lubricant for magnetic recording medium, and magnetic recording medium |
CN108698967A (en) * | 2016-02-22 | 2018-10-23 | 昭和电工株式会社 | Fluorine-containing ether compound, lubricant for magnetic recording medium and magnetic recording media |
US11292979B2 (en) | 2016-02-22 | 2022-04-05 | Showa Denko K.K. | Fluorine-containing ether compound, lubricant for magnetic recording medium and magnetic recording medium |
US10967370B2 (en) | 2016-09-30 | 2021-04-06 | Roche Molecular Systems, Inc. | Microfluidic device and method for manufacturing the same |
CN107876110B (en) * | 2016-09-30 | 2020-04-14 | 豪夫迈·罗氏有限公司 | Microfluidic device and method of manufacturing the same |
CN107876110A (en) * | 2016-09-30 | 2018-04-06 | 豪夫迈·罗氏有限公司 | Microfluidic device and its manufacture method |
EP3300801A1 (en) * | 2016-09-30 | 2018-04-04 | Roche Diagniostics GmbH | Microfluidic device and method for manufacturing the same |
WO2018132610A1 (en) * | 2017-01-13 | 2018-07-19 | Cellular Research, Inc. | Hydrophilic coating of fluidic channels |
JP2021505842A (en) * | 2018-01-24 | 2021-02-18 | イラミーナ インコーポレーテッド | Dimensional reduced structured illumination microscope with nanowell patterned array |
US11150455B2 (en) | 2018-01-24 | 2021-10-19 | Illumina, Inc. | Reduced dimensionality structured illumination microscopy with patterned arrays of nanowells |
US11650156B2 (en) | 2018-01-24 | 2023-05-16 | Illumina, Inc. | Reduced dimensionality structured illumination microscopy with patterned arrays of nanowells |
US11933728B2 (en) | 2018-01-24 | 2024-03-19 | Illumina, Inc. | Reduced dimensionality structured illumination microscopy with patterned arrays of nanowells |
JP2021526647A (en) * | 2018-09-20 | 2021-10-07 | 牛尾▲電▼机(▲蘇▼州)有限公司Ushio(Suzhou)Co., Ltd. | Fluorescence measuring container and fluorescence measuring device |
US12057151B2 (en) | 2019-12-23 | 2024-08-06 | Resonac Corporation | Fluorine-containing ether compound, lubricant for magnetic recording medium, and magnetic recording medium |
Also Published As
Publication number | Publication date |
---|---|
JP6439693B2 (en) | 2018-12-19 |
JPWO2015022781A1 (en) | 2017-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6439693B2 (en) | Cell detection method and cell detection apparatus | |
AU2007229975B2 (en) | Device and method for detection of fluorescence labelled biological components | |
JP5129347B2 (en) | Method and apparatus for analyzing particles in a liquid sample | |
ES2913335T3 (en) | Image analysis and measurement of biological samples | |
JP6229174B2 (en) | Diagnostic kit and method of use thereof | |
KR102287272B1 (en) | Test Apparatus and Control Method thereof | |
JP2011059095A (en) | Light detection device | |
US20090185734A1 (en) | Apparatus and method for analysis of particles in a liquid sample | |
US20220299436A1 (en) | Microscopy unit | |
JP2019534458A (en) | System for optical monitoring of operating conditions in a sample analyzer | |
JP2021113806A (en) | Device for thermocycling biological samples, monitoring instrument comprising the same, and method of thermocycling biological samples using such device | |
CN116438438A (en) | Method and apparatus for flow-based single particle and/or single molecule analysis | |
KR20170120117A (en) | Microchip, analyzer, and analysis method | |
JP5107003B2 (en) | Evanescent wave generator and observation apparatus using the same | |
WO2014097991A1 (en) | Rare cell detection apparatus, rare cell detection method, rare cell observation system, and cell mass expansion device | |
JP6489022B2 (en) | Cell detection method and cell detection apparatus | |
JP2004354345A (en) | Biomolecule analysis apparatus | |
EP2522981A1 (en) | Compact 2D light detection system for on-chip analysis | |
JP2009145102A (en) | Evanescent wave generator and observation apparatus using the same | |
JP2007124971A (en) | Vessel, method for immobilizing cell in the vessel, method for measurement of intracellular molecular dynamics of cell immobilized by the method and apparatus for measuring intracellular molecular dynamics | |
US20170307528A1 (en) | Methods and systems for optical-based measurement with selectable excitation light paths | |
JP6875375B2 (en) | PCR container | |
JP6172021B2 (en) | Cell alignment chip, manufacturing method thereof, target cell detection method, target cell detection device, and cell capture defect region detection method | |
JP2005006553A (en) | Apparatus for cell culture detection | |
KR102624827B1 (en) | High resolution fluorescence imaging device and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14836018 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015531727 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14836018 Country of ref document: EP Kind code of ref document: A1 |