WO2015020487A1 - Apparatus and method for forming electronic material film - Google Patents

Apparatus and method for forming electronic material film Download PDF

Info

Publication number
WO2015020487A1
WO2015020487A1 PCT/KR2014/007398 KR2014007398W WO2015020487A1 WO 2015020487 A1 WO2015020487 A1 WO 2015020487A1 KR 2014007398 W KR2014007398 W KR 2014007398W WO 2015020487 A1 WO2015020487 A1 WO 2015020487A1
Authority
WO
WIPO (PCT)
Prior art keywords
material film
electronic material
sputtering
distance
target
Prior art date
Application number
PCT/KR2014/007398
Other languages
French (fr)
Korean (ko)
Inventor
홍문표
이준영
장진녕
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2015020487A1 publication Critical patent/WO2015020487A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/351Sputtering by application of a magnetic field, e.g. magnetron sputtering using a magnetic field in close vicinity to the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/34Gas-filled discharge tubes operating with cathodic sputtering
    • H01J37/3411Constructional aspects of the reactor
    • H01J37/345Magnet arrangements in particular for cathodic sputtering apparatus

Definitions

  • the present invention relates to an electronic material film forming apparatus and method, and more particularly to an oxide electronic material film forming apparatus and method that does not require heat treatment.
  • TCOs Transparent conducting oxides
  • OxSCs Oxide Semiconductors
  • the deposition process using the sputtering technique is most commonly used for the deposition of TCO and OS thin films.
  • the sputtering technique which is the easiest to secure productivity and stability, and the characteristics of the thin films, is a conductive oxide depending on the material of the deposited TCO and OS thin films.
  • An additional high temperature heat treatment is required before coating the substrate on the substrate and / or after forming the transparent conductive thin film layer.
  • the ITO thin film which is known to have the highest light transmittance and electrical conductivity, is known to have more than 85% visible light transmittance and excellent resistivity of 4x10 -4 ⁇ cm, but after the ITO thin film is deposited on the substrate, An additional high temperature heat treatment process of 200 ° C. to 500 ° C. is necessary to improve the thin film properties.
  • the organic light emitting device and the organic solar cell using the plasma buffer layer and the layer having the same role do not require additional heat treatment. It can be called a process.
  • the present invention has been made to solve the above problems, and an object of the present invention is to provide an apparatus and method for forming an electronic material film having excellent resistivity even without a heat treatment process.
  • the electronic material film is formed under the condition that the ratio (D / ⁇ ) of the average free path ( ⁇ ) to the distance (D) between the sputtering target and the object satisfying the ⁇ ⁇ 1) relationship is secured. It is characterized by.
  • the ratio (D / ⁇ ) of the average free path to the distance between the spattering target and the object is adjusted by adjusting the value (P ⁇ D) of the sputtering pressure P multiplied by the distance (D) between the target and the object. It can be secured.
  • the value (P ⁇ D) multiplied is adjusted to 0.01 Torr ⁇ mm or more and 0.42 Torr ⁇ mm or less.
  • An electronic material film forming apparatus is a chamber in which a sputtering process is performed, a sputtering means fixedly disposed on one surface of the chamber, and equipped with an electronic material film target, and one surface inside the chamber in which the sputtering means is disposed.
  • a holding means disposed on an opposite surface to the object on which the electronic material film is formed, and disposed between the sputtering means and the holding means to block the influence of oxygen anions and secondary electrons generated in the sputtering process.
  • a limiter having a plurality of slits through which the material film forming particles can pass and magnets generating a magnetic field in a direction perpendicular to the moving direction of the electronic material film forming particles in each slit. It is movable in the direction crossing the slit, the sputtering target and the object
  • the ratio D / ⁇ of the average free path ⁇ with respect to the distance D between the target and the object is controlled to be less than 1.
  • the distance D between the target and the object has a value of 0.9 times or less of the average free path ⁇ .
  • the distance between the limiter and the object is preferably smaller than the distance between the target and the limiter.
  • the limiter preferably has a curved structure in cross section between the plurality of slits and outside the slits at both ends.
  • the value P ⁇ D obtained by multiplying the distance D between the target and the object by the sputtering pressure P is preferably 0.01 Torr ⁇ mm or more and 0.42 Torr ⁇ mm or less.
  • the present invention blocks the high-energy oxygen anion and secondary electrons that cause damage to the electronic material film while maintaining the condition that plasma cations, sputtered particles and neutral particles can supply sufficient activation and crystallization energy to the electronic material film. It has the effect of forming an electronic material film having excellent characteristics even at room temperature to low temperature without high temperature heat treatment.
  • FIG. 1 is a cross-sectional view illustrating an electronic material film forming apparatus according to an embodiment of the present invention.
  • FIG. 2 is a plan view of the limiter shown in FIG. 1.
  • FIG. 2 is a plan view of the limiter shown in FIG. 1.
  • 3 and 4 are sectional views showing the cap provided in the limiter.
  • FIG. 6 illustrates a general DC magnetron sputtering (DMS) technique according to pressure * distance (P ⁇ D) conditions when argon is used as a process gas, and the magnetic field shielded sputtering (MFSS) proposed by the present invention.
  • DMS DC magnetron sputtering
  • MFSS magnetic field shielded sputtering
  • the get invention relates to an apparatus and method for forming an electronic material film using a sputtering process.
  • the present invention is to ensure that the high energy oxygen anion and secondary electrons generated in the electronic material film target during the sputtering process to reach the object in a state in which the blocking or energy is reduced so as not to damage the electronic material film formed on the object Plasma cations such as argon and helium ions, and kinetic energy of the electron material film-forming particles required to form the electronic material film, such as reflected neutral atoms formed by reflecting after collision on the target surface, are preserved without loss. It is characterized in that to maintain the appropriate level of energy required for forming a thin film of good quality.
  • FIG. 1 is a cross-sectional view of an electronic material film forming apparatus according to an embodiment of the present invention.
  • sputtering means 21 and sputtering in which an electronic material film target 23 is mounted on one surface of a chamber 10 in which a sputtering process is performed.
  • generates is arrange
  • the limiter 40 is disposed between the sputtering means and the holding means so that high energy oxygen anions and secondary electrons do not physically damage the electronic material film formed on the object.
  • magnets of different magnetic poles are attached to both sides of the slit 45, which is a space in which ions and electrons generated in the sputtering process can move, thereby generating a magnetic field perpendicular to the direction of movement of ions and electrons.
  • the holding means 31 on which the object 33 is mounted crosses the length direction of the slit as shown in FIG. And orthogonal to each other).
  • the limiter when the limiter is configured as shown in FIG. 2, the electronic material film-forming particles are deposited on the upper limiter, and the stressed material film is peeled off and falls off at the edge portion to contaminate the electronic material film formed on the object and cause defects. .
  • the cross section between the slit and the slit and both end slits outside has a curved structure which does not form an edge.
  • the bar region between the slit and the slit and the outer portion of the slit located at both ends form a cap 50 having a circular or semicircular cross section as shown in Figs.
  • Its shape can be configured such that the cross-section is in the form of a circle or semi-circle, by this structure it is possible to minimize the peeling of the thin film deposited on the upper limiter falling on the object.
  • the electronic material film may be formed without physical damage by restricting the high energy oxygen anion and the secondary electrons generated from the electronic material film target 23 using the limiter or limiting the energy to reach the object in a decelerated state. have.
  • the sputtering pressure P and the distance D between the target and the object are appropriately adjusted so that the electronic material film forming materials have sufficient energy to form a high quality electronic material film without heat treatment.
  • the ratio D / ⁇ of the mean free path ( ⁇ ) with respect to the distance D between the target and the target that may reach the object may be controlled to be less than 1.
  • the probability that energy is conserved when the electronic material film-forming material collides with the sputtering process gas is as follows.
  • I is the energy of the electronic material film-forming particles upon reaching the object
  • IO is the initial energy of the electronic material film-forming particles
  • D is the distance between the target and the object
  • is the mean free path
  • is the electron material film-forming particle.
  • the present invention aims to ensure physical and electrical properties of the formed electronic material film even if the object is not subjected to high temperature treatment before and / or after the formation of the electronic material film.
  • the range of ⁇ is preferably 0.4 ⁇ ⁇ 1. .
  • Equation 1 ⁇ has the following relationship with the distance D between the target and the object and the average free path ⁇ .
  • the distance D between the target and the object should have a value of 0.9 times or less of the average free path ⁇ .
  • the ⁇ value has the following relationship with the sputtering pressure P and the distance D between the target and the object.
  • sigma is the collision cross-section of the electron material film-forming particles and the sputtering process gas particles
  • n g is the density of the process gas particles.
  • the process gas that is the impingement cross section area ⁇ and the number of process gas particles per unit volume as shown in Equation 2 above.
  • the product of the particle density (n g ) is the inverse of the product, and the product of the impingement cross section ( ⁇ ) and the density of the process gas particles (n g ) is equal to the sputtering pressure (P), which is the pressure of the sputtering process particles between the electronic material film target and the object. Proportional.
  • the distance D and the sputtering pressure P between the electronic material film target and the object are controllable values.
  • there are limiting factors such as the minimum sputtering pressure to perform the sputtering process and the minimum distance to be maintained between the target and the object in order to have the limiter, and the average free path when the pressure P is high even though the distance D is minimized.
  • the energy is not sufficiently conserved due to the long length, and even if the pressure P is minimized, the energy is not sufficiently conserved when the distance D is relatively long compared to the average free path.
  • the distance D between the target and the object and the sputtering pressure P are controlled together to form a high quality electronic material film without heat treatment. It should be possible to ensure a ratio (D / ⁇ ) of the average free path ( ⁇ ) to a distance (D) of less than 1 to reach the object with sufficient energy.
  • the distance between the limiter 40 and the object 33 is increased. It is preferred to be smaller than the distance between the target 23 and the limiter 40.
  • the initial energy or the optimal attained energy of the particles has different values depending on the material, which is determined by the power or voltage applied to the sputtering gun but can only be changed linearly in conventional equipment.
  • the energy decay due to the collision changes exponentially, and the ⁇ value for each collision number decreases sharply to 0.37 at one time, 0.14 at two times, and 0.05 at three times.
  • FIG. 5 shows energy graphs of sputtered particles and process gas particles incident on an object when a direct current of ⁇ 300 V is applied to the sputter gun.
  • the energy of the oxygen anion has high energy which damages the electronic material film, but in the present invention, the oxygen anion having high energy is blocked using a limiter or the energy is damaged in the electronic material film. It is reduced to the extent that it does not cause the physical damage of the electronic water film.
  • FIG. 6 illustrates a general DC magnetron sputtering (DMS) technique according to pressure * distance (P ⁇ D) conditions when argon is used as a process gas, and the magnetic field shielded sputtering (MFSS) proposed by the present invention.
  • DMS DC magnetron sputtering
  • MFSS magnetic field shielded sputtering
  • the resistivity, the carrier charge density, and the mobility value change according to the pressure * distance P ⁇ D value.
  • the resistivity value of the ITO thin film used in the organic light emitting device, the flexible electronic device, and the organic solar cell is 10 ⁇ . Although it can be used as a wiring only in the range of 3 ⁇ cm, referring to FIG. 6, in all cases using the DMS technique, it can be seen that the specific resistance value is greater than 10 ⁇ 3 ⁇ cm. In the case of using the MFSS technique, the resistivity value is 10 -3 ⁇ cm or less when the pressure * distance (P ⁇ D) is below a certain size, but when the pressure * distance (P ⁇ D) is further increased, the resistivity is 10. It can be confirmed that it becomes -3 ⁇ cm or more.
  • the P ⁇ D value is 0 Torr ⁇ mm, which means that the energy of the particles incident on the substrate is 100% conserved, which means that the object lies directly in front of the sputter or the pressure drops below 0.1 mTorr. Since the average free path is impossible if it is not several ten times larger than the distance from the sputter to the object, the minimum value of P ⁇ D is 0.01 Torr ⁇ mm when calculating the minimum distance and minimum pressure at which the limiter can be used.
  • FIG. 7 shows a TEM image and an electron diffraction pattern of an ITO thin film formed by the DMS technique and the MFSS technique when the pressure * distance (P ⁇ D) value is 0.24.
  • the MFSS technique which is equipped with a limiter capable of charging oxygen ions with high energy
  • the nanocrystal structure is distinct in ITO thin film deposited at room temperature under 0.24 Torr ⁇ mm condition where the pressure * distance (P ⁇ D) value is 0.42 Torr ⁇ mm or less. You can check it.
  • Thin films deposited by the MFSS technique using a limiter under the same pressure * distance (PD) conditions formed nanocrystalline structures, but thin films deposited using the conventional DMS sputtering method were deposited as amorphous thin films. This determines whether the deposited thin film is damaged by the blocking of high energy oxygen anions, and preserves the energy of neutral particles or cations other than the deposited oxygen anions up to the substrate to be deposited. Show results that can be formed.
  • the present invention it is possible to form a high quality electronic material film without heat treatment in a state in which a high energy oxygen anion generated from forming an electronic material film using TCO or OxSC material is blocked from reaching an object or reaches a state where energy is lowered. It is the invention of the most suitable sputtering process environment possible. Therefore, although ITO (Indium Tin Oxide) has been described as an electronic material in the above description, the Indium Zinc Oxide (IZO), the Indium Zinc Tin Oxide (IZTO), and AZO (Aluminium) are used as electronic materials for forming an electronic material film according to the present invention. Both TCO and OS such as Zinc Oxide) may be used, and metal thin film deposition which does not generate oxygen anions is not included in the scope of the present invention.
  • ITO Indium Tin Oxide
  • IZTO Indium Zinc Oxide
  • IZTO Indium Zinc Tin Oxide
  • AZO Al
  • metal thin film deposition which does not generate oxygen anions is not included in the scope
  • the sputtering process gas is described based on Ar gas, which is a representative non-reactive gas, but may include all plasma forming gases such as Xe, Kr, N2, and He.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

The present invention relates to a method and an apparatus for forming an electronic material film using a sputtering process. The present invention is characterized by blocking an oxygen anion and a secondary electron generated in the sputtering process and controlling a value (P·D) obtained by multiplying the sputtering pressure (P) and the distance (D) between a sputtering target and an object to ensure a ratio (D/λ) of the distance (D) between a sputtering target and an object to the average free path (λ), the ratio being lower than 1 and satisfying a relationship between the initial energy (IO) of an electronic material film forming particle and the energy (I) of when the electronic material film forming particle reaches an object, the relationship satisfying I=αIO (0.4<α<1).

Description

타자 물질막 형성 장치 및 방법Other material film forming apparatus and method
본 발명은 전자 물질막 형성 장치 및 방법에 관한 것으로, 보다 구체적으로는 열처리가 필요없는 산화물 전자 물질막 형성 장치 및 방법에 관한 것이다.The present invention relates to an electronic material film forming apparatus and method, and more particularly to an oxide electronic material film forming apparatus and method that does not require heat treatment.
투명 전도성 산화물(Transparent Conducting Oxide, TCO) 및 산화물 반도체(Oxide Semiconductor, OxSC)는 대표적인 전자 물질막 소재로서 매우 다양한 반도체 소자, 디스플레이 소자, 태양광 소자 등에 사용되고 있다.Transparent conducting oxides (TCOs) and oxide semiconductors (Oxide Semiconductors, OxSCs) are representative materials for electronic materials and are used in a wide variety of semiconductor devices, display devices, and solar devices.
일반적으로 TCO 및 OS 박막의 성막 공정은 스퍼터링 기법을 사용한 증착 공정이 가장 보편적으로 사용되고 있는데, 생산성과 안정성 그리고 박막의 특성 확보가 가장 용이한 스퍼터링 기법은 증착되는 TCO 및 OS 박막의 재료에 따라서 전도성 산화물을 기판 상에 코팅하기 전 및/또는 투명성 전도박막층을 형성한 후에추가적인 고온의 열처리를 필요로 한다.In general, the deposition process using the sputtering technique is most commonly used for the deposition of TCO and OS thin films. The sputtering technique, which is the easiest to secure productivity and stability, and the characteristics of the thin films, is a conductive oxide depending on the material of the deposited TCO and OS thin films. An additional high temperature heat treatment is required before coating the substrate on the substrate and / or after forming the transparent conductive thin film layer.
특히 TCO 박막 가운데 광 투과도와 전기 전도도가 가장 뛰어난 것으로 알려진 ITO 박막은, 85%이상의 가시광선 투과도와 4x10-4Ω㎝이하의 우수한 비저항 특성을 갖는 것으로 알려져 있으나, 기판 위에 ITO 박막이 증착된 후에는 박막 특성 향상을 위한 200℃~ 500℃의 추가적인 고온 열처리 공정이 반드시 필요로 하게 된다.In particular, the ITO thin film, which is known to have the highest light transmittance and electrical conductivity, is known to have more than 85% visible light transmittance and excellent resistivity of 4x10 -4 Ωcm, but after the ITO thin film is deposited on the substrate, An additional high temperature heat treatment process of 200 ° C. to 500 ° C. is necessary to improve the thin film properties.
그러나 이러한 고온의 열처리 공정은 유기발광소자 및 플라스틱 기판에 매우 치명적인 손상을 초래하기 때문에 플라스틱 기판 기반의 플렉시블 전자 소자의 제조 공정으로 매우 부적합하며 이를 개선하기 위한 상온 또는 저온 TCO 및 OS 박막의 형성 및 전극 형성 방법에 대한 새로운 공정 개발이 매우 필요한 상황이다.However, since the high temperature heat treatment process causes very fatal damage to the organic light emitting device and the plastic substrate, it is very unsuitable for the manufacturing process of the flexible electronic device based on the plastic substrate. There is a great need for new process development for formation methods.
또한, 상기 플라스틱 기판 기반의 플렉시블 전자소자 외에도 플라즈마 버퍼층 및 이와 같은 역할을 하는 층을 사용하는 유기발광소자와 유기태양전지에서도 추가적인 열처리를 필요로 하지 않는 고특성 상온 TCO 및 OS 박막 형성 공정은 매우 필요한 공정이라고 할 수 있다.In addition, in addition to the plastic substrate-based flexible electronic device, the organic light emitting device and the organic solar cell using the plasma buffer layer and the layer having the same role do not require additional heat treatment. It can be called a process.
특히, 플렉시블 전자소자에 사용되는 투명전극의 경우 구부러지는 특성에 대한 내구성을 만족해야 하기 때문에 사용되는 투명전극의 굽힘에 대한 내구 특성이 매우 중요하며, 이에 따라서 고 전도성과 굽힘에 대한 고 내구성을 함께 만족시킬 수 있기 위하여 박막 스트레스가 작은 나노 결정 구조의 TCO 박막 형성 공정에 대한 개발도 함께 이루어져야 한다.Particularly, in the case of the transparent electrode used in the flexible electronic device, durability of bending characteristics must be satisfied, so durability characteristics of bending of the transparent electrode used are very important, and thus high conductivity and high durability against bending In order to be satisfied, the development of TCO thin film formation process with nanocrystalline structure with low thin film stress should also be made.
상기 특성을 만족시키는 고특성 투명전극을 형성하기 위해서는, 먼저 상온 영역에서 스퍼터링 기법을 통한 TCO 박막 성막 시에 대부분의 TCO 박막의 스퍼터링 과정에서 발생되는 매우 높은 에너지의 산소 음이온 및 2차 전자에 의한 박막의 물리적 손상을 효과적으로 억제할 수 있어야 한다.In order to form a highly transparent electrode that satisfies the above characteristics, first, a thin film by very high energy of oxygen anion and secondary electrons generated during sputtering of most TCO thin films during sputtering of TCO thin films by sputtering technique in a room temperature region It must be possible to effectively suppress the physical damage of
이를 위해 본 발명의 발명자는 스퍼터링 공정이 수행되는 챔버 내에 스퍼터링 수단과 전자 물질막이 형성되는 대상체 사이에 산소 음이온을 차단하는 리미터를 구비하는 전자 물질막 형성 장치를 개발하여 특허 출원하였다(대한민국 공개특허 제10-2012-0000317호)To this end, the inventor of the present invention has developed and applied for a patent application of an electronic material film forming apparatus having a limiter for blocking oxygen anions between a sputtering means and an object on which an electronic material film is formed in a chamber in which a sputtering process is performed. 10-2012-0000317)
그러나, 여러 조건에서 반복 실험을 한 결과 이러한 리미터로 산소 음이온의 일부를 차단하더라도 전자 물질막이 항상 추가적인 열처리 공정이 필요하지 않을 정도의 우수한 전자 물질막을 형성하지는 못하였고, 여전히 추가적인 열처리 공정을 필요로 함을 확인하였다.However, after repeated experiments under various conditions, even if some of the oxygen anions were blocked by these limiters, the electronic material film did not always form an excellent electronic material film that does not require an additional heat treatment process, and still requires an additional heat treatment process. It was confirmed.
본 발명은 상기와 같은 문제점을 해결하기 위해 안출한 것으로서, 본 발명의 목적은 열처리 공정 없이도 우수한 비저항 특성을 갖는 전자 물질막을 형성할 수 있는 장치 및 방법을 제공하는 것이다.SUMMARY OF THE INVENTION The present invention has been made to solve the above problems, and an object of the present invention is to provide an apparatus and method for forming an electronic material film having excellent resistivity even without a heat treatment process.
본 발명의 다른 목적은 전자 물질막에 손상을 초래하는 높은 에너지의 산소 음이온, 2차 전자 등을 차단하면서, 플라즈마 양이온, 스퍼터된 입자 및 중성입자들이 전자 물질막에 충분한 활성화 및 결정화 에너지를 공급할 수 있는 조건 하에서 전자 물질막을 형성할 수 있는 장치 및 방법을 제공하는 것이다.It is another object of the present invention to provide plasma ions, sputtered particles and neutral particles with sufficient activation and crystallization energy to the electronic material film, while blocking high-energy oxygen anions, secondary electrons, etc. which cause damage to the electronic material film. It is an object of the present invention to provide an apparatus and a method capable of forming an electronic material film under certain conditions.
본 발명의 또 다른 목적은 전자 물질막에 손상을 초래하는 산소 음이온을 차단하기 위하여 스퍼터링 수단과 기판 홀딩 수단 사이에 리미터를 설치하는 경우 누적 파티클 발생을 최소화 할 수 있는 전자 물질막 형성 장치 및 방법을 제공하는 것이다.It is still another object of the present invention to provide an electronic material film forming apparatus and method capable of minimizing accumulation of particles when a limiter is provided between a sputtering means and a substrate holding means to block oxygen anions causing damage to the electronic material film. To provide.
본 발명의 또 다른 목적은 상온 내지 저온에서도 우수한 특성을 갖는 전자 물질막을 형성할 수 있는 방법을 제공하는 것이다.It is still another object of the present invention to provide a method for forming an electronic material film having excellent properties even at room temperature to low temperature.
본 발명의 일 실시예에 따른 전자 물질막 형성 방법은 스퍼터링 공정을 이용하여 대상체에 전자 물질막을 형성하는 방법으로서, 스퍼터링 공정 중 전자 물질막 타겟에서 발생하는 산소 음이온 및 2차 전자가 대상체로 이동하는 것을 차단하거나 감속되어 도달하도록 하고, 전자 물질막 형성 입자들이 가진 최초 운동에너지(IO)와 상기 전자 물질막 형성 입자들이 상기 대상체에 도달할 때 에너지(I) 사이에 I=αIO 의(0.4<α<1) 관계를 만족하는 스파터링 타겟과 대상체 사이의 거리(D)에 대한 평균 자유 행로(λ)의 비율(D/λ)이 1보다 작은 조건이 확보된 상태에서 전자 물질막을 형성하는 것을 특징으로 한다.An electronic material film forming method according to an embodiment of the present invention is a method of forming an electronic material film on an object by using a sputtering process, in which oxygen anion and secondary electrons generated in an electronic material film target during a sputtering process are moved to an object. and to reach the block or deceleration that, in between the first kinetic energy (I O) and said electronic material layer formed particles having as electronic material film-forming particles of energy (I) to reach the target object I = αI O (0.4 The electronic material film is formed under the condition that the ratio (D / λ) of the average free path (λ) to the distance (D) between the sputtering target and the object satisfying the <α <1) relationship is secured. It is characterized by.
상기 스파터링 타겟과 대상체 사이의 거리에 대한 평균 자유 행로의 비율(D/λ)은 스퍼터링 압력(P)에 상기 타겟과 상기 대상체 사이의 거리(D)를 곱한값(P·D)을 조절함으로써 확보할 수 있다.The ratio (D / λ) of the average free path to the distance between the spattering target and the object is adjusted by adjusting the value (P · D) of the sputtering pressure P multiplied by the distance (D) between the target and the object. It can be secured.
공정 가스가 아르곤일 경우 곱한 값(P·D)은 0.01Torr·㎜ 이상 0.42Torr·㎜이하로 조절하는 것이 바람직하다.When the process gas is argon, it is preferable that the value (P · D) multiplied is adjusted to 0.01 Torr · mm or more and 0.42 Torr · mm or less.
본 발명의 일 실시예에 따른 전자 물질막 형성 장치는 스퍼터링 공정이 수행되는 챔버, 상기 챔버 내부 일면에 고정 배치되되, 전자 물질막 타겟을 장착하고 있는 스퍼터링 수단, 상기 스퍼터링 수단이 배치되는 챔버 내부 일면과 반대되는 면에 배치되되 전자 물질막이 형성되는 대상체를 장착하고 있는 홀딩 수단, 및 스퍼터링 공정에서 발생되는 산소 음이온 및 2차 전자의 영향을 차단하기 위해 상기 스퍼터링 수단과 상기 홀딩 수단 사이에 배치되되 전자 물질막 형성 입자들이 통과할 수 있는 복수 개의 슬릿과 각 슬릿 내부에 상기 전자 물질막 형성 입자들의 이동 방향과 수직한 방향으로 자기장을 발생시키는 자석을 구비한 리미터를 포함하여 이루어지고, 상기 홀딩 수단은 상기 슬릿과 교차하는 방향으로 이동 가능하며, 스파터링 타겟과 대상체 사이의 거리(D)와 스퍼터링 공정압력(P)은 상기 전자 물질막 형성에 영향을 미치는 입자들이 대상체에 도달하는 동안 공정 가스와의 충돌 횟수를 1회 미만으로 제한 할 수 있는 조건으로 결정되며, 전자 물질막 형성 입자들이 가진 최초 운동에너지(IO)와 상기 전자 물질막 형성 입자들이 상기 대상체에 도달할 때 에너지(I) 사이에 I=αIO 의(0.4<α<1) 관계를 만족하는 타겟과 대상체 사이의 거리(D)에 대한 평균 자유 행로(λ)의 비율(D/λ)이 1 미만으로 확보된 상태로 제어된 것을 특징으로 한다.An electronic material film forming apparatus according to an embodiment of the present invention is a chamber in which a sputtering process is performed, a sputtering means fixedly disposed on one surface of the chamber, and equipped with an electronic material film target, and one surface inside the chamber in which the sputtering means is disposed. A holding means disposed on an opposite surface to the object on which the electronic material film is formed, and disposed between the sputtering means and the holding means to block the influence of oxygen anions and secondary electrons generated in the sputtering process. And a limiter having a plurality of slits through which the material film forming particles can pass and magnets generating a magnetic field in a direction perpendicular to the moving direction of the electronic material film forming particles in each slit. It is movable in the direction crossing the slit, the sputtering target and the object The distance (D) between the sputtering process pressure (P) is determined as a condition that can limit the number of collisions with the process gas to less than one while the particles affecting the formation of the electronic material film reaches the object, Satisfying the relationship of I = αI O (0.4 <α <1) between the initial kinetic energy (I O ) of the electronic material film-forming particles and the energy (I) when the electronic material film-forming particles reach the object. The ratio D / λ of the average free path λ with respect to the distance D between the target and the object is controlled to be less than 1.
통상적으로 타겟과 대상체 사이의 거리(D)는 상기 평균 자유 행로(λ)의 0.9배이하의 값을 갖는 것이 바람직하다.In general, it is preferable that the distance D between the target and the object has a value of 0.9 times or less of the average free path λ.
또한, 상기 리미터와 상기 대상체 사이의 거리는 상기 타겟과 상기 리미터 사이의 거리 보다 작은 것이 바람직하다.In addition, the distance between the limiter and the object is preferably smaller than the distance between the target and the limiter.
또한, 리미터는 상기 복수 개의 슬릿 사이 및 양단부 슬릿 외측의 단면이 곡면 구조를 갖는 것이 바람직하다.In addition, the limiter preferably has a curved structure in cross section between the plurality of slits and outside the slits at both ends.
스퍼터링 공정의 공정 가스가 아르곤일 경우 스퍼터링 압력(P)에 상기 타겟과 대상체 사이의 거리(D)를 곱한 값(P·D)은 0.01Torr·㎜ 이상 0.42Torr·㎜이하인 것이 바람직하다.When the process gas of the sputtering process is argon, the value P · D obtained by multiplying the distance D between the target and the object by the sputtering pressure P is preferably 0.01 Torr · mm or more and 0.42 Torr · mm or less.
본 발명은 전자 물질막에 손상을 초래하는 높은 에너지의 산소 음이온 및 2차 전자를 차단하면서도 플라즈마 양이온, 스퍼터된 입자 및 중성입자들이 전자 물질막에 충분한 활성화 및 결정화 에너지를 공급할 수 있는 조건을 유지하여 고온의 열처리 없이도 상온 내지 저온에서도 우수한 특성을 갖는 전자 물질막을 형성할 수 있는 효과를 갖는다.The present invention blocks the high-energy oxygen anion and secondary electrons that cause damage to the electronic material film while maintaining the condition that plasma cations, sputtered particles and neutral particles can supply sufficient activation and crystallization energy to the electronic material film. It has the effect of forming an electronic material film having excellent characteristics even at room temperature to low temperature without high temperature heat treatment.
도 1은 본 발명의 일 실시예에 따른 전자 물질막 형성 장치를 보여주는 단면도이다.1 is a cross-sectional view illustrating an electronic material film forming apparatus according to an embodiment of the present invention.
도 2는 도 1에 도시된 리미터의 평면도이다.FIG. 2 is a plan view of the limiter shown in FIG. 1. FIG.
도 3 및 도 4는 리미터에 구비된 캡을 보여주는 단면도이다.3 and 4 are sectional views showing the cap provided in the limiter.
도 5는 스퍼터건에 직류 -300V를 인가하였을 때 압력*거리(P·D)값에 따른 대상체에 입사되는 스퍼터된 입자와 공정가스 입자의 에너지 그래프이다.5 is an energy graph of sputtered particles and process gas particles incident on an object according to a pressure * distance (P · D) value when a direct current −300 V is applied to a sputter gun.
도 6은 아르곤을 공정가스로 사용할 때 압력*거리(P·D) 조건에 따라 일반적인 직류 마그네트론 스퍼터링 (DC Magnetron Sputtering, DMS) 기법과, 본 발명에서 제안한 자계차단 스퍼터링 (Magnetic Field Shielded Sputtering, MFSS) 기법으로 형성된 ITO 박막의 전기적 특성을 보여주는 그래프이다.6 illustrates a general DC magnetron sputtering (DMS) technique according to pressure * distance (P · D) conditions when argon is used as a process gas, and the magnetic field shielded sputtering (MFSS) proposed by the present invention. A graph showing the electrical properties of ITO thin films formed by the technique.
도 7은 아르곤을 공정가스로 사용하고 압력*거리(P·D)값이 0.24일 때, 또는 α가 0.59일 때 DMS 기법과 MFSS 기법으로 형성한 ITO 박막의 TEM 이미지와 전자회절무늬를 보여주는 도면이다.7 shows TEM images and electron diffraction patterns of ITO thin films formed by DMS and MFSS techniques when argon is used as a process gas and pressure * distance (P · D) is 0.24, or α is 0.59. to be.
겟 발명은 스퍼터링 공정을 이용하여 전자 물질막을 형성하는 장치 및 방법에 관한 것이다.The get invention relates to an apparatus and method for forming an electronic material film using a sputtering process.
특히, 본 발명은 스퍼터링 공정 중 전자 물질막 타겟에서 발생되는 높은 에너지의 산소 음이온 및 2차 전자가 대상체에 형성되는 전자 물질막에 손상을 입히지 않도록 차단 또는 에너지가 감속된 상태로 대상체에 도달하도록 하면서 아르곤, 헬륨 이온과 같은 플라즈마 양이온, 양이온들이 타겟 표면에서 충돌 후 반사되어 형성되는 중성입자(Reflected Neutral Atom) 등 전자 물질막 형성에 필요한 전자 물질막 형성 입자들의 운동에너지는 손실 없이 보전함으로써 대상체 표면에 양질의 박막 형성에 필요한 적정한 수준의 에너지를 그대로 유지할 수 있도록 하는 것을 특징으로 한다.In particular, the present invention is to ensure that the high energy oxygen anion and secondary electrons generated in the electronic material film target during the sputtering process to reach the object in a state in which the blocking or energy is reduced so as not to damage the electronic material film formed on the object Plasma cations such as argon and helium ions, and kinetic energy of the electron material film-forming particles required to form the electronic material film, such as reflected neutral atoms formed by reflecting after collision on the target surface, are preserved without loss. It is characterized in that to maintain the appropriate level of energy required for forming a thin film of good quality.
이러한 본 발명의 일 실시예에 따른 전자 물질막 형성 장치의 단면도가 도 1에 도시되어 있다.1 is a cross-sectional view of an electronic material film forming apparatus according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 일 실시예에 따른 전자 물질막 형성장치에는 스퍼터링 공정이 수행되는 챔버(10) 내부 일면에 전자 물질막 타겟(23)을 장착하고 있는 스퍼터링 수단(21), 스퍼터링 수단과 반대되는 면에 전자 물질막이 형성되는 대상체(33)를 장착하고 있는 홀딩 수단(31), 그리고 스퍼터링 수단과 홀딩 수단 사이에 스퍼터링 공정에서 발생하는 이온 및 전자들의 이동 방향과 수직한 방향으로 자기장을 발생시키는 리미터(40)가 배치되어 있다.Referring to FIG. 1, in an electronic material film forming apparatus according to an embodiment of the present invention, sputtering means 21 and sputtering, in which an electronic material film target 23 is mounted on one surface of a chamber 10 in which a sputtering process is performed. A magnetic field in a direction perpendicular to the moving direction of the ions and electrons generated in the sputtering process between the holding means 31 and the sputtering means and the holding means. The limiter 40 which produces | generates is arrange | positioned.
본 발명에서는 높은 에너지의 산소 음이온 및 2차 전자가 대상체에 형성된 전자 물질막에 물리적 손상을 입히지 않도록 도 1에 도시된 바와 같이 리미터(40)를 스퍼터링 수단과 홀딩 수단 사이에 배치한다.In the present invention, as shown in FIG. 1, the limiter 40 is disposed between the sputtering means and the holding means so that high energy oxygen anions and secondary electrons do not physically damage the electronic material film formed on the object.
리미터는 도 2에 도시된 바와 같이 스퍼터링 공정에서 발생하는 이온 및 전자들이 이동할 수 있는 공간인 슬릿(45) 양측에 서로 다른 자극의 자석이 부착되어 이온 및 전자들의 이동 방향과 수직한 방향으로 자기장을 발생시켜 플라즈마 내의 전자를 구속하여 음의 전기포텐셜을 가지게 되며, 이러한 음의 전기포텐셜이 대상체(33)에 형성되는 전자 물질막에 손상을 입히는 높은 에너지를 갖는 입자들(산소음이온 및 2차 전자)을 차단하거나 에너지가 낮아지도록 감속된 상태로 대상체에 도달하도록 한다.As shown in FIG. 2, magnets of different magnetic poles are attached to both sides of the slit 45, which is a space in which ions and electrons generated in the sputtering process can move, thereby generating a magnetic field perpendicular to the direction of movement of ions and electrons. Generated and constrains electrons in the plasma to have negative electric potential, and the particles having high energy (oxygen anion and secondary electrons) that damage the electronic material film formed on the object 33 by the negative electric potential Block or slow down to reach the subject.
또한, 이러한 리미터에 의해 전자 물질들이 대상체(33)에 균일하게 증착되지 못하기 때문에, 대상체(33)를 장착하고 있는 홀딩 수단(31)은 도 1에 도시 된 바와 같이 슬릿의 길이 방향과 교차(직교하는 것이 바람직함)하는 방향으로 챔버 내에서 왕복 운동하도록 구성한다.In addition, since the electronic materials are not uniformly deposited on the object 33 by the limiter, the holding means 31 on which the object 33 is mounted crosses the length direction of the slit as shown in FIG. And orthogonal to each other).
이러한 각 구성요소의 구성 및 기능은 본 출원인의 대한민국 공개특허 제10-2012-0000317호에 상세히 설명되어 있으며, 이에 대한 상세한 설명의 본 발명의 요지를 흩트릴 수 있으므로 본 발명에서 그 구체적인 설명은 생략하기로 한다.The configuration and function of each of these components is described in detail in the applicant's Republic of Korea Patent Application Publication No. 10-2012-0000317, it may distract the subject matter of the present invention of the detailed description thereof will not be described in detail in the present invention Let's do it.
다만, 도 2에 도시된 바와 같이 리미터를 구성할 경우 리미터 상부에 전자 물질막 형성 입자들이 증착하게 되고 에지 부분에서 스트레스를 받은 물질막이 박리되어 떨어지면서 대상체 위에 형성된 전자 물질막을 오염시키고 불량을 유발한다.However, when the limiter is configured as shown in FIG. 2, the electronic material film-forming particles are deposited on the upper limiter, and the stressed material film is peeled off and falls off at the edge portion to contaminate the electronic material film formed on the object and cause defects. .
따라서, 슬릿과 슬릿 사이 및 양단부 슬릿 외측의 단면이 에지를 형성하지 않는 곡면 구조를 갖도록 하는 것이 바람직하다.Therefore, it is preferable that the cross section between the slit and the slit and both end slits outside has a curved structure which does not form an edge.
예를 들어, 슬릿과 슬릿 사이의 바(bar) 영역 및 양쪽 단부에 위치한 슬릿의 외측부에 도 3과 도 4에 도시된 바와 같은 단면이 원 또는 반원 형태인 캡(50)을 형성하거나 바와 외측부 영역 자체의 형상을 단면이 원 또는 반원 형태가 되도록 구성할 수 있으며, 이러한 구조에 의해 리미터 상부에 증착된 박막이 박리되어 대상체 위로 떨어지는 것을 최소화할 수 있다.For example, the bar region between the slit and the slit and the outer portion of the slit located at both ends form a cap 50 having a circular or semicircular cross section as shown in Figs. Its shape can be configured such that the cross-section is in the form of a circle or semi-circle, by this structure it is possible to minimize the peeling of the thin film deposited on the upper limiter falling on the object.
위와 같이 전자 물질막 타겟(23)에서 발생되는 높은 에너지의 산소 음이온 및 2차 전자를 리미터를 이용하여 차단 또는 에너지가 감속된 상태로 대상체에 도달하도록 하도록 제한함으로써 물리적 손상 없이 전자 물질막을 형성할 수 있다.As described above, the electronic material film may be formed without physical damage by restricting the high energy oxygen anion and the secondary electrons generated from the electronic material film target 23 using the limiter or limiting the energy to reach the object in a decelerated state. have.
그러나 이러한 제한된 상태에서 전자 물질막을 형성하더라도 스퍼터 된 입자(sputtered atom), 공정 가스의 양이온, 양이온이 스퍼터 표면에 충돌하고 반사되어 나오는 중성입자 등 전자 물질막 형성에 영향을 미치는 입자들이 스퍼터링 공정 가스와의 충돌에 의해 에너지를 손실할 경우 많은 양의 전자 물질막 형성 입자가 대상체에 도달하더라도 단순히 쌓일 뿐 양질의 전자 물질막을 형성하지 못하여 양질의 전자 물질막을 형성하기 위한 열처리가 필요함을 확인하였다.However, even when the electronic material film is formed in such a limited state, particles affecting the formation of the electronic material film, such as sputtered particles, positive ions of the process gas, and neutral particles, which impinge and reflect on the surface of the sputter, are affected by the sputtering process gas. When the energy is lost due to the collision of, it is confirmed that even if a large amount of particles forming the electronic material film reaches the object, they simply accumulate and fail to form a high quality electronic material film, and thus heat treatment is required to form a high quality electronic material film.
이에 본 발명에서는 도 1에 도시된 바와 같이 스퍼터링 압력(P)과 타겟과 대상체 사이의 거리(D)를 적절하게 조절하여 열처리 없이도 전자 물질막 형성 물질들이 양질의 전자 물질막을 형성하기 충분한 에너지를 가지고 대상체에 도달할 수 있는 타겟과 대상체 사이의 거리(D)에 대한 평균 자유 행로(Mean Free Path, λ) 의 비율(D/λ)이 1 미만의 값이 되도록 제어하는 것을 특징으로 한다.Accordingly, in the present invention, as shown in FIG. 1, the sputtering pressure P and the distance D between the target and the object are appropriately adjusted so that the electronic material film forming materials have sufficient energy to form a high quality electronic material film without heat treatment. The ratio D / λ of the mean free path (λ) with respect to the distance D between the target and the target that may reach the object may be controlled to be less than 1.
보다 상세히 설명하면, 전자 물질막 형성 물질이 스퍼터링 공정 가스와의 충돌 시 에너지가 보존될 확률은 다음과 같다.In more detail, the probability that energy is conserved when the electronic material film-forming material collides with the sputtering process gas is as follows.
I = I0e-(D/λ).= αI0.............................(수학식 1)I = I 0 e- (D / λ) . = ΑI 0 ............................. (Equation 1)
여기서, I는 대상체 도달시 전자 물질막 형성 입자의 에너지, IO는 전자 물질막 형성 입자의 최초 에너지, D는 타겟과 대상체 사이의 거리, λ는 평균 자유 행로, α는 전자 물질막 형성 입자가 대상체에 도달될 때까지 공정 가스와 충돌에 의한 에너지 감쇄율이다.Where I is the energy of the electronic material film-forming particles upon reaching the object, IO is the initial energy of the electronic material film-forming particles, D is the distance between the target and the object, λ is the mean free path, and α is the electron material film-forming particle. The energy decay rate by collision with the process gas until it is reached.
본 발명은 전자 물질막을 형성하기 전 및/또는 후에 대상체를 고온처리하지 않더라도 형성된 전자 물질막의 물리적, 전기적 특성을 확보하는 것을 목적으로 하며, 이를 위해 α의 범위는 0.4<α<1인 것이 바람직하다.The present invention aims to ensure physical and electrical properties of the formed electronic material film even if the object is not subjected to high temperature treatment before and / or after the formation of the electronic material film. For this purpose, the range of α is preferably 0.4 <α <1. .
이러한 α의 범위는 물질막 형성에 영향을 미치는 입자들이 대상체에 도달하는 동안 공정 가스와의 충돌 횟수를 1회 미만 (1회 충돌 시 에너지 감쇄율 α=e-1 = 0.37)이어야 하는 기본 조건과 본 발명을 적용하여 증착한 실험결과를 근거로 도출한 범위이다.This range of α is based on the basic condition that the number of collisions with the process gas must be less than one time (energy attenuation rate α = e -1 = 0.37 in one collision) while the particles affecting the formation of the material film reach the object. It is the range derived based on the experimental results deposited by applying the invention.
상기 수학식 1에서 α는 타겟과 대상체 사이의 거리(D) 및 평균 자유 행로(λ)와 다음과 같은 관계를 갖는다.In Equation 1, α has the following relationship with the distance D between the target and the object and the average free path λ.
-Ln(α) = D/λ ..............................(수학식 2)-Ln (α) = D / λ ........................ (Equation 2)
따라서, 0.5<α<1 범위를 만족하기 위해서는 타겟과 대상체 사이의 거리(D)가 평균 자유 행로(λ)의 0.9배 이하의 값을 가져야 한다.Therefore, in order to satisfy the range of 0.5 <α <1, the distance D between the target and the object should have a value of 0.9 times or less of the average free path λ.
또한 α값은 스퍼터링 압력(P) 및 타겟과 대상체 사이의 거리(D)와 다음과 같은 관계가 있다.In addition, the α value has the following relationship with the sputtering pressure P and the distance D between the target and the object.
-Ln(α) = D/λ = D(σng) ∝ D·P ....................(수학식 3)-Ln (α) = D / λ = D (σn g ) ∝ DP ... (Equation 3)
여기서, σ는 전자 물질막 형성 입자와 스퍼터링 공정 가스 입자의 충돌 단면적(Collisional Cross-Section)이고, ng는 공정 가스 입자의 밀도이다.Here, sigma is the collision cross-section of the electron material film-forming particles and the sputtering process gas particles, and n g is the density of the process gas particles.
평균 자유 행로(λ)는 전자 물질막 형성 입자가 공정 가스 입자와 충돌하지 않고 이동할 수 있는 최대거리이기 때문에 위 수학식 2에서와 같이 충돌 단면적(σ)과 단위 부피당 공정 가스 입자의 개수인 공정 가스 입자의 밀도(ng)의 곱의 역수이며, 충돌 단면적(σ)과 공정 가스 입자의 밀도(ng)의 곱은 전자 물질막 타겟과 대상체 사이의 스퍼터링 공정 입자의 압력인 스퍼터링 압력(P)에 비례한다.Since the average free path λ is the maximum distance that the electronic material film-forming particles can move without colliding with the process gas particles, the process gas that is the impingement cross section area σ and the number of process gas particles per unit volume, as shown in Equation 2 above. The product of the particle density (n g ) is the inverse of the product, and the product of the impingement cross section (σ) and the density of the process gas particles (n g ) is equal to the sputtering pressure (P), which is the pressure of the sputtering process particles between the electronic material film target and the object. Proportional.
전자 물질막 형성 공정에서 전자 물질막 타겟과 대상체 사이의 거리(D) 및 스퍼터링 압력(P)은 제어 가능한 값이다. 그러나 스퍼터링 공정을 수행하기 위해 스퍼터링 최소 압력, 리미터를 구비하기 위해 타겟과 대상체 사이에 유지해야 할 최소 거리 등의 제한 요소가 있으며, 거리(D)를 최소화하더라도 압력(P)이 높을 경우 평균 자유 행로가 길어 에너지가 충분히 보존되지 못하고, 압력(P)을 최소화하더라도 거리(D)가 평균 자유 행로에 비해 상대적으로 길 경우 에너지가 충분히 보존되지 못한다.In the electronic material film forming process, the distance D and the sputtering pressure P between the electronic material film target and the object are controllable values. However, there are limiting factors such as the minimum sputtering pressure to perform the sputtering process and the minimum distance to be maintained between the target and the object in order to have the limiter, and the average free path when the pressure P is high even though the distance D is minimized. The energy is not sufficiently conserved due to the long length, and even if the pressure P is minimized, the energy is not sufficiently conserved when the distance D is relatively long compared to the average free path.
따라서, 어느 한쪽 값만을 조절하여 0.4<α<1을 만족할 수 없으므로 타겟과 대상체 사이의 거리(D)와 스퍼터링 압력(P)을 함께 제어하여 열처리 없이도 전자 물질막 형성 물질들이 양질의 전자 물질막을 형성하기 충분한 에너지를 가지고 대상체에 도달할 수 있는 1 미만의 거리(D)에 대한 평균 자유 행로(λ)의 비율(D/λ)을 확보할 수 있도록 하여야 한다.Therefore, since only one value can be adjusted to satisfy 0.4 <α <1, the distance D between the target and the object and the sputtering pressure P are controlled together to form a high quality electronic material film without heat treatment. It should be possible to ensure a ratio (D / λ) of the average free path (λ) to a distance (D) of less than 1 to reach the object with sufficient energy.
또한, 리미터(40)에서 형성된 전자층에 의해 산소 음이온의 일부가 차단 또는 감속되더라도, 리미터(40)를 통과한 산소 음이온은 다시 가속되기 때문에, 리미터(40)와 대상체(33) 사이의 거리가 타겟(23)과 리미터(40) 사이의 거리 보다 작은 것이 바람직하다.In addition, even if a part of the oxygen anions are blocked or decelerated by the electron layer formed in the limiter 40, since the oxygen anions passing through the limiter 40 are accelerated again, the distance between the limiter 40 and the object 33 is increased. It is preferred to be smaller than the distance between the target 23 and the limiter 40.
또한, 입자의 최초 에너지 또는 최적의 도달 에너지는 물질에 따라 다른 값을 가지며, 이 값은 스퍼터링 건에 가해지는 전력 또는 전압에 의해 결정되나 통상적인 장비에서는 선형적으로만 변화시킬 수 있다. 반면, 충돌에 의한 에너지 감쇄는 지수적으로 변하여 충돌 횟수별 α값은 1회에 0.37, 2회에 0.14, 3회에 0.05로 급격히 줄어들어 대상체에 도달되는 최종 에너지에 미치는 영향은 D·P값이 절대적으로 크다. 따라서, 전자 물질막 타겟과 대상체 사이의 거리(D) 및 스퍼터링 압력(P)을 제어하여 전자물질막 형성 물질들이 양질의 전자 물질막을 형성하기 충분한 에너지를 갖도록 하는 것이 바람직하다.In addition, the initial energy or the optimal attained energy of the particles has different values depending on the material, which is determined by the power or voltage applied to the sputtering gun but can only be changed linearly in conventional equipment. On the other hand, the energy decay due to the collision changes exponentially, and the α value for each collision number decreases sharply to 0.37 at one time, 0.14 at two times, and 0.05 at three times. Absolutely big. Therefore, it is preferable to control the distance D and the sputtering pressure P between the electronic material film target and the object so that the electronic material film forming materials have sufficient energy to form a high quality electronic material film.
도 5에는 스퍼터건에 직류 -300V를 인가하였을 때 대상체에 입사되는 스퍼터된 입자와 공정가스 입자의 에너지 그래프가 도시되어 있다.FIG. 5 shows energy graphs of sputtered particles and process gas particles incident on an object when a direct current of −300 V is applied to the sputter gun.
도 5를 참조하면, 압력*거리(P·D)값이 커짐에 따라 대상체에 입사되는 입자의 에너지가 감소하며, 압력*거리(P·D)값이 0.42보다 큰 0.48, 0.72일 때 일부 입자는 양질의 전자 물질막을 형성하기 충분한 에너지(Activation Energy) 보다 낮은 에너지를 가짐을 확인할 수 있다.Referring to FIG. 5, as the pressure * distance P · D increases, the energy of particles incident on the object decreases, and when the pressure * distance P · D is greater than 0.42, 0.48 and 0.72, some particles It can be seen that has a lower energy (Activation Energy) enough to form a high quality electronic material film.
모든 압력*거리(P·D)값에서 산소 음이온의 에너지는 전자 물질막에 손상을 입히는 높은 에너지를 가지나 본 발명에서는 높은 에너지를 갖는 산소 음이온을 리미터를 이용하여 차단하거나 에너지가 전자 물질막에 손상을 입히지 않을 정도로 감소되도록 하여 전자 물직막의 물리적 손상을 방지한다.At all pressure * distance (P · D) values, the energy of the oxygen anion has high energy which damages the electronic material film, but in the present invention, the oxygen anion having high energy is blocked using a limiter or the energy is damaged in the electronic material film. It is reduced to the extent that it does not cause the physical damage of the electronic water film.
도 6은 아르곤을 공정가스로 사용할 때 압력*거리(P·D) 조건에 따라 일반적인 직류 마그네트론 스퍼터링 (DC Magnetron Sputtering, DMS) 기법과, 본 발명에서 제안한 자계차단 스퍼터링 (Magnetic Field Shielded Sputtering, MFSS) 기법으로 형성된 ITO 박막의 전기적 특성을 보여주는 그래프이다.6 illustrates a general DC magnetron sputtering (DMS) technique according to pressure * distance (P · D) conditions when argon is used as a process gas, and the magnetic field shielded sputtering (MFSS) proposed by the present invention. A graph showing the electrical properties of ITO thin films formed by the technique.
도 6을 참조하면, 압력*거리(P·D)값에 따라 비저항(Resistivity), 이동전하밀도(Carrier Density) 및 전하이동도(Mobility) 값이 변화한다.Referring to FIG. 6, the resistivity, the carrier charge density, and the mobility value change according to the pressure * distance P · D value.
보다 자세히 살펴보면, 압력*거리(P·D)값이 커질수록 이동전하밀도 및 전하이동도가 낮아지며, 특히 유기발광소자, 플렉시블 전자소자, 유기태양전지에 사용되는 ITO 박막의 경우 비저항값이 10-3Ω㎝ 범위여야 배선으로 사용할 수 있으나, 도 6을 참조하면 DMS 기법을 사용한 모든 경우 비저항값이 10-3Ω㎝ 보다 크다는 것을 확인할 수 있다. 그리고, MFSS 기법을 사용한 경우, 압력*거리(P·D)값이 일정 크기 이하에는 비저항값이 10-3Ω㎝ 이하이지만, 압력*거리(P·D)값이 더 증가하면 비저항값이 10-3Ω㎝ 이상이 되는 것을 확인할 수 있다.In more detail, the larger the pressure * distance (P · D) value, the lower the moving charge density and the charge mobility. In particular, the resistivity value of the ITO thin film used in the organic light emitting device, the flexible electronic device, and the organic solar cell is 10 −. Although it can be used as a wiring only in the range of 3 Ωcm, referring to FIG. 6, in all cases using the DMS technique, it can be seen that the specific resistance value is greater than 10 −3 Ωcm. In the case of using the MFSS technique, the resistivity value is 10 -3 Ωcm or less when the pressure * distance (P · D) is below a certain size, but when the pressure * distance (P · D) is further increased, the resistivity is 10. It can be confirmed that it becomes -3 Ωcm or more.
도 6의 결과가 얻어진 아르곤 플라즈마 스퍼터링의 경우, 아르곤(Ar) 입자에 대해 압력*거리(P·D)값 0.24, 0.48, 0.72는 각각 α값 0.59, 0.35, 0.21로 환산된다. 따라서, α값이 0.4<α<1을 만족하는 경우 열처리 없이 양질의 ITO 박막이 형성됨을 확인할 수 있으며, 스퍼터링 공정의 공정 가스가 아르곤일 경우 그 범위는 0.01Torr·㎜ ≤ P·D ≤ 0.42Torr·㎜이다. α=1일 때 P·D 값은 0 Torr·㎜이나 이는 기판에 입사되는 입자의 에너지가 100% 보존된 상태를 의미하며, 이러한 상태는 스퍼터 바로 앞에 대상체가 놓여 있거나 압력이 0.1mTorr 이하로 떨어져서 평균자유 행로가 스퍼터로부터 대상체까지의 거리보다 수 십배 이상 크지 않으면 불가능한 상태이므로 리미터를 사용할 수 있는 최소 거리와 최소 압력을 산정할 때 P·D의 최소값은 0.01 Torr·㎜이다.In the case of argon plasma sputtering from which the results of FIG. 6 were obtained, the pressure * distance (P · D) values 0.24, 0.48, and 0.72 were converted into α values 0.59, 0.35, and 0.21 for the argon (Ar) particles, respectively. Therefore, when the α value satisfies 0.4 <α <1, it can be seen that a good quality ITO thin film is formed without heat treatment. When the process gas of the sputtering process is argon, the range is 0.01Torr · mm ≤ P · D ≤ 0.42 Torr. Mm. When α = 1, the P · D value is 0 Torr · mm, which means that the energy of the particles incident on the substrate is 100% conserved, which means that the object lies directly in front of the sputter or the pressure drops below 0.1 mTorr. Since the average free path is impossible if it is not several ten times larger than the distance from the sputter to the object, the minimum value of P · D is 0.01 Torr · mm when calculating the minimum distance and minimum pressure at which the limiter can be used.
도 7에 압력*거리(P·D)값이 0.24일 때 DMS 기법과 MFSS 기법으로 형성한 ITO 박막의 TEM 이미지와 전자회절무늬가 도시되어 있다. 높은 에너지를 갖는 산소 음이온을 차달 할 수 있는 리미터가 설치된 MFSS 기법에서 압력*거리(P·D)값이 0.42Torr·㎜이하인 0.24Torr·㎜ 조건에선 상온에서 증착된 ITO 박막에서도 뚜렷한 나노크리스탈 구조를 확인할 수 있다.FIG. 7 shows a TEM image and an electron diffraction pattern of an ITO thin film formed by the DMS technique and the MFSS technique when the pressure * distance (P · D) value is 0.24. In the MFSS technique, which is equipped with a limiter capable of charging oxygen ions with high energy, the nanocrystal structure is distinct in ITO thin film deposited at room temperature under 0.24 Torr · mm condition where the pressure * distance (P · D) value is 0.42 Torr · mm or less. You can check it.
같은 압력*거리(PD) 조건에서 리미터를 사용한 MFSS 기법으로 증착한 박막은 나노결정 구조가 형성되었지만 일반적인 DMS 스퍼터링 방법을 사용하여 증착한 박막은 아몰포스한 박막으로 증착되었다. 이는 높은 에너지의 산소 음이온의 차단여부에 따라 증착되는 박막의 손상 여부가 결정되고, 증착되는 산소 음이온을 제외한 다른 중성입자 또는 양이온의 에너지를 증착되는 기판까지 보존하여 저온공정임에도 불구하고 나노 결정 구조를 형성할 수 있다는 결과를 보여준다.Thin films deposited by the MFSS technique using a limiter under the same pressure * distance (PD) conditions formed nanocrystalline structures, but thin films deposited using the conventional DMS sputtering method were deposited as amorphous thin films. This determines whether the deposited thin film is damaged by the blocking of high energy oxygen anions, and preserves the energy of neutral particles or cations other than the deposited oxygen anions up to the substrate to be deposited. Show results that can be formed.
지금까지 첨부된 도면을 참조로 본 발명에 따른 전자 물질막 형성 장치 및 방법에 대해 상세히 설명하였다.So far it has been described in detail with respect to the electronic material film forming apparatus and method according to the present invention with reference to the accompanying drawings.
발명은 TCO 또는 OxSC 물질을 사용하여 전자 물질막을 형성함에 있어 발생하는 고에너지의 산소 음이온가 대상체에 도달하는 것을 차단하거나 에너지가 낮춰진 상태로 도달하도록 한 상태에서 열 처리 없이 양질의 전자 물질막을 형성할 수 있는 가장 적절한 스퍼터링 공정 환경에 대한 발명이다. 따라서 상기 설명에서 전자물질로 ITO(Indium Tin Oxide)를 예를 들어 설명하였으나 본 발명에 따라 전자 물질막을 형성하기 위한 전자 물질로서 IZO(Indium Zinc Oxide), IZTO(Indium Zinc Tin Oxide), AZO(Aluminium Zinc Oxide)등과 같은 TCO 및 OS를 모두 사용될 수 있으며, 산소 음이온이 발생하지 않는 금속 박막 증착은 본 발명의 범위에 포함되지 않는다.According to the present invention, it is possible to form a high quality electronic material film without heat treatment in a state in which a high energy oxygen anion generated from forming an electronic material film using TCO or OxSC material is blocked from reaching an object or reaches a state where energy is lowered. It is the invention of the most suitable sputtering process environment possible. Therefore, although ITO (Indium Tin Oxide) has been described as an electronic material in the above description, the Indium Zinc Oxide (IZO), the Indium Zinc Tin Oxide (IZTO), and AZO (Aluminium) are used as electronic materials for forming an electronic material film according to the present invention. Both TCO and OS such as Zinc Oxide) may be used, and metal thin film deposition which does not generate oxygen anions is not included in the scope of the present invention.
또한, 스퍼터링 공정 가스로서는 대표적인 비반응성 가스인 Ar 가스를 기준으로 설명하였으나 Xe, Kr, N2,He 등의 플라즈마 형성용 가스를 모두 포함할 수 있다.In addition, the sputtering process gas is described based on Ar gas, which is a representative non-reactive gas, but may include all plasma forming gases such as Xe, Kr, N2, and He.
이러한 본 발명의 권리범위는 상술한 실시예에 한정되는 것이 아니라 첨부된 특허청구범위 내에서 다양한 형태의 실시예로 구현될 수 있다. 특허청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 누구든지 변형 가능한 다양한 범위까지 본 발명의 청구범위 기재의 범위 내에 있는 것으로 본다.The scope of the present invention is not limited to the above-described embodiment, but may be implemented in various forms of embodiments within the scope of the appended claims. Without departing from the gist of the invention claimed in the claims, it is intended that any person skilled in the art to which the present invention pertains falls within the scope of the claims described in the present invention to various extents which can be modified.

Claims (8)

  1. 스퍼터링 공정을 이용하여 대상체에 전자 물질막을 형성하는 방법으로서,A method of forming an electronic material film on an object using a sputtering process,
    스퍼터링 공정 중 전자 물질막 타겟에서 발생하는 산소 음이온이 대상체로 이동하는 것을 차단하거나 감속되어 도달하도록 하고,To prevent the oxygen anion generated from the electronic material film target during the sputtering process to block or slow down to reach the object,
    전자 물질막 형성 입자들이 가진 최초 운동에너지(IO)와 상기 전자 물질막 형성 입자들이 상기 대상체에 도달할 때 에너지(I) 사이에 I=αIO 의(0.4<α<1) 관계를 만족하는 스파터링 타겟과 대상체 사이의 거리(D)에 대한 평균 자유 행로(λ)의 비율(D/λ)이 1보다 작은 조건이 확보된 상태에서 전자 물질막을 형성하는 것을 특징으로 하는 전자 물질막 형성 방법.A spar satisfies the relationship of I = αI O (0.4 <α <1) between the initial kinetic energy (IO) of the electron-forming film-forming particles and the energy (I) when the electron-forming film-forming particles reach the object An electronic material film forming method, wherein the electronic material film is formed under a condition that a ratio (D / λ) of the average free path (λ) to the distance (D) between the turing target and the object is secured.
  2. 제1항에 있어서,The method of claim 1,
    상기 평균 자유 행로는 스퍼터링 압력(P)에 상기 타겟과 상기 대상체 사이의 거리(D)를 곱한 값(P·D)을 조절함으로써 확보하는 것을 특징으로 하는 전자 물질막 형성 방법.The average free path is secured by adjusting a value (P · D) obtained by multiplying a distance (D) between the target and the object by a sputtering pressure (P).
  3. 제2항에 있어서,The method of claim 2,
    상기 공정 가스 입자는 아르곤이며, 상기 곱한 값(P·D)은 0.01 Torr·㎜ 이상 0.42 Torr·㎜이하인 것을 특징으로 하는 전자 물질막 형성 방법.The said process gas particle is argon, The said product (P * D) is 0.01 Torr * mm or more and 0.42 Torr * mm or less, The electronic material film formation method characterized by the above-mentioned.
  4. 스퍼터링 공정이 수행되는 챔버;A chamber in which a sputtering process is performed;
    상기 챔버 내부 일면에 고정 배치되되, 전자 물질막 타겟을 장착하고 있는 스퍼터링 수단;Sputtering means fixedly disposed on one surface of the chamber, the sputtering means mounting an electronic material film target;
    상기 스퍼터링 수단이 배치되는 챔버 내부 일면과 반대되는 면에 배치되되, 전자 물질막이 형성되는 대상체를 장착하고 있는 홀딩 수단; 및Holding means disposed on a surface opposite to one surface of the chamber in which the sputtering means is disposed, and holding an object on which an electronic material film is formed; And
    상기 스퍼터링 공정에서 발생되는 산소 음이온을 차단하기 위해 상기 스퍼터링 수단과 상기 홀딩 수단 사이에 배치되되, 전자 물질막 형성 입자들이 통과할 수 있는 복수 개의 슬릿과, 각 슬릿 내부에 상기 전자 물질막 형성 입자들의 이동 방향과 수직한 방향으로 자기장을 발생시키는 자석을 구비한 리미터;를 포함하여 이루어지고,Disposed between the sputtering means and the holding means to block oxygen anions generated in the sputtering process, a plurality of slits through which electronic material film forming particles can pass, and inside of each slit of the electronic material film forming particles And a limiter having a magnet for generating a magnetic field in a direction perpendicular to the moving direction.
    상기 홀딩 수단은 상기 슬릿과 교차하는 방향으로 이동 가능하며,The holding means is movable in a direction crossing the slit,
    상기 타겟과 대상체 사이의 거리(D)와 스퍼터링 압력(P)은 상기 전자 물질막 형성 입자들이 가진 최초 운동에너지(IO)와 상기 전자 물질막 형성 입자들이 상기 대상체에 도달할 때 에너지(I) 사이에 I=αIO 의(0.4<α<1) 관계를 만족하는 평균 자유 행로(λ)가 확보된 상태로 제어된 것을 특징으로 하는 전자 물질막 형성 장치.The distance (D) and the sputtering pressure (P) between the target and the object are between the initial kinetic energy (IO) of the electronic material film forming particles and the energy (I) when the electronic material film forming particles reach the object. And an average free path λ satisfying a relationship of I = αI O (0.4 <α <1) is secured.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 타겟과 대상체 사이의 거리(D)는 상기 평균 자유 행로(λ)의 0.9배 이하의 값을 갖는 것을 특징으로 하는 전자 물질막 형성 장치.The distance (D) between the target and the object has a value of 0.9 times or less of the average free path (λ).
  6. 제5항에 있어서,The method of claim 5,
    상기 리미터와 상기 대상체 사이의 거리는 상기 타겟과 상기 리미터 사이의 거리 보다 작은 것을 특징으로 하는 전자 물질막 형성 장치.And a distance between the limiter and the object is smaller than a distance between the target and the limiter.
  7. 제4항에 있어서,The method of claim 4, wherein
    상기 리미터는 상기 복수 개의 슬릿 사이 및 양단부 슬릿 외측의 단면이 곡면 구조를 갖는 것을 특징으로 하는 전자 물질막 형성 장치.The limiter is an electronic material film forming apparatus, characterized in that the cross section between the plurality of slits and the outside of the both ends slits have a curved structure.
  8. 제4항에 있어서,The method of claim 4, wherein
    상기 스퍼터링 공정의 공정 가스 입자는 아르곤이며, 상기 스퍼터링 압력(P)에 상기 타겟과 대상체 사이의 거리(D)를 곱한 값(P·D)은 0.01Torr·㎜ 이상 0.42Torr·㎜ 이하인 것을 특징으로 하는 전자 물질막 형성 장치.The process gas particle of the said sputtering process is argon, The value (P * D) which multiplied the distance (D) between the said target and the object by the said sputtering pressure (P) is 0.01 Torr * mm or more, 0.42Torr * mm or less, It is characterized by the above-mentioned. Electronic material film forming apparatus.
PCT/KR2014/007398 2013-08-08 2014-08-08 Apparatus and method for forming electronic material film WO2015020487A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0093973 2013-08-08
KR20130093973 2013-08-08

Publications (1)

Publication Number Publication Date
WO2015020487A1 true WO2015020487A1 (en) 2015-02-12

Family

ID=52461703

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/007398 WO2015020487A1 (en) 2013-08-08 2014-08-08 Apparatus and method for forming electronic material film

Country Status (1)

Country Link
WO (1) WO2015020487A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100274709B1 (en) * 1996-11-20 2000-12-15 가네꼬 히사시 The coating method and sputtering apparatus
KR20120000317A (en) * 2010-06-25 2012-01-02 고려대학교 산학협력단 Apparatus for forming electronic material layer
KR101140195B1 (en) * 2007-03-16 2012-05-02 도쿄엘렉트론가부시키가이샤 Magnetron sputtering apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100274709B1 (en) * 1996-11-20 2000-12-15 가네꼬 히사시 The coating method and sputtering apparatus
KR101140195B1 (en) * 2007-03-16 2012-05-02 도쿄엘렉트론가부시키가이샤 Magnetron sputtering apparatus
KR20120000317A (en) * 2010-06-25 2012-01-02 고려대학교 산학협력단 Apparatus for forming electronic material layer

Similar Documents

Publication Publication Date Title
Minami et al. Highly conductive and transparent zinc oxide films prepared by rf magnetron sputtering under an applied external magnetic field
WO2015178297A1 (en) Transparent conductive film
US8845866B2 (en) Optoelectronic devices having electrode films and methods and system for manufacturing the same
JP2006281726A (en) Non-conductive metal gloss plating, case for electronic device with non-conductive metal gloss plating, and method of forming non-conductive metal glass plating
WO2016181776A1 (en) Reactive sputtering method and laminate film production method
JP5527894B2 (en) Sputtering equipment
KR100336621B1 (en) Method of depositing an io or ito thin film on polymer substrate
WO2015020487A1 (en) Apparatus and method for forming electronic material film
JP2018083971A (en) Magnetron sputtering device, and method for forming a transparent electrically conductive oxide film
WO2010016648A1 (en) Method for manufacturing an instant pulse filter using anodic oxidation and instant pulse filter manufactured by said method
US20160300700A1 (en) Anode Shield
CN203976900U (en) A kind of target material structure of sputter coating
KR20220155285A (en) Light-transmitting conductive film and transparent conductive film
KR101174359B1 (en) Multi-component metal oxide based transparency electrode having metal layer and manufacturing method thereof
WO2021187577A1 (en) Transparent conductive film
WO2021187576A1 (en) Transparent conductive film
WO2021187578A1 (en) Light-transmitting electroconductive film and transparent electroconductive film
KR20120000317A (en) Apparatus for forming electronic material layer
WO2021187574A1 (en) Production method for transparent conductive film
WO2023211160A1 (en) Electromagnetic wave shielding material and method for manufacturing same
KR101205005B1 (en) Transparent and conductive substrate and manufacturing method thereof
WO2022092190A2 (en) Transparent conductive film, and production method for transparent conductive film
JP6716863B2 (en) Sputtering target and sputtering film forming method using the same
Huang et al. ITO/Cu-mesh transparent conductive film with high weather resistance and electromagnetic interference shielding effectiveness
KR101058156B1 (en) Heat sink manufacturing method and heat sink manufactured by the method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14834320

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14834320

Country of ref document: EP

Kind code of ref document: A1