WO2015020478A1 - 무선 통신 시스템에서 스케줄링 요청을 송수신하는 방법, 단말 및 기지국 - Google Patents

무선 통신 시스템에서 스케줄링 요청을 송수신하는 방법, 단말 및 기지국 Download PDF

Info

Publication number
WO2015020478A1
WO2015020478A1 PCT/KR2014/007376 KR2014007376W WO2015020478A1 WO 2015020478 A1 WO2015020478 A1 WO 2015020478A1 KR 2014007376 W KR2014007376 W KR 2014007376W WO 2015020478 A1 WO2015020478 A1 WO 2015020478A1
Authority
WO
WIPO (PCT)
Prior art keywords
scheduling request
terminal
base station
base stations
configuration information
Prior art date
Application number
PCT/KR2014/007376
Other languages
English (en)
French (fr)
Inventor
권기범
안재현
허강석
Original Assignee
주식회사 팬택
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 팬택 filed Critical 주식회사 팬택
Publication of WO2015020478A1 publication Critical patent/WO2015020478A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/231Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the layers above the physical layer, e.g. RRC or MAC-CE signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections

Definitions

  • the present invention relates to a wireless communication system, and more particularly, to a technique for transmitting a scheduling request by a terminal dually connected to different base stations and a technique for receiving a scheduling request by a base station.
  • LTE Long Term Evolution
  • LTE-A LTE Advanced
  • the scheduling request signal is a message transmitted by the terminal to inform the base station if there is data to be transmitted through the uplink to request uplink resource allocation.
  • an uplink resource must be allocated from the base station, and for this purpose, an uplink resource allocation must be requested.
  • an efficient configuration and transmission scheme of a scheduling request message of a terminal dually connected to a plurality of different base stations is required.
  • the present invention provides a technique for transmitting a scheduling request by a terminal dually connected to different base stations and a technique for receiving a scheduling request by a base station.
  • the present invention provides a description of the operation of the terminal in the transmission and transmission failure of the scheduling request, according to the configuration of each of the dual base stations connected.
  • a method for receiving a scheduling request from a terminal by a base station allocating scheduling request resources for each of a base station dually connected to the terminal and one or more other base stations, and the assigned scheduling request Generating second configuration information including first configuration information including resource information and RRC connection reconfiguration information for scheduling request configuration, and transmitting the first configuration information and the second configuration information to the terminal through higher layer signaling. It provides a method comprising the steps of receiving a scheduling request from the terminal.
  • first configuration information including scheduling request resource information allocated to each of the plurality of base stations, respectively.
  • second configuration information including RRC connection reconfiguration information for scheduling request configuration through higher layer signaling and triggering a scheduling request for data transmission in any one of the serving cells provided from the plurality of base stations. If so, the step of confirming a condition for the transmission of the scheduling request based on the first configuration information and the second configuration information and the step of transmitting the scheduling request to at least one of the plurality of base stations according to the result of checking the condition; Provide a method.
  • the base station allocates scheduling request resources for each of the base station and the one or more other base stations dually connected to the terminal, and the first configuration information and scheduling request including the assigned scheduling request resource information
  • the terminal may include first configuration information including scheduling request resource information allocated to a plurality of base stations and second configuration information including RRC connection reconfiguration information for scheduling request configuration. If triggering of a scheduling request for data transmission occurs in any one of a receiving unit receiving through higher layer signaling and a serving cell provided from a plurality of base stations, the scheduling request is transmitted based on the first configuration information and the second configuration information. And a transmitter for transmitting a scheduling request to at least one of a plurality of base stations according to a result of checking the condition for the controller and a condition for checking the condition.
  • the present invention has the effect of providing a technique for transmitting a scheduling request between the terminal and the dual base station and the dual base station receives the scheduling request.
  • the present invention has the effect of providing a description of the operation of the terminal when the transmission of the scheduling request and the transmission failure, depending on the configuration of each of the dual base stations.
  • FIG. 1 is a diagram illustrating an example of a terminal dually connected to different base stations to which the present invention can be applied.
  • FIG. 2 is a diagram illustrating an example of an uplink scheduling request procedure to which the present invention can be applied.
  • FIG. 3 is a diagram illustrating an example of a procedure when an uplink scheduling request fails to which the present invention can be applied.
  • FIG. 4 is a diagram illustrating an embodiment of a dual connection setup for forming a plurality of radio bearers to which the present invention can be applied.
  • FIG. 5 is a diagram illustrating another embodiment of a dual connection setup forming a single radio bearer to which the present invention can be applied.
  • FIG. 6 is a diagram illustrating another embodiment of a dual connection setup forming a single radio bearer to which the present invention can be applied.
  • FIG. 7 is a flowchart illustrating the operation of a base station according to the first embodiment of the present invention.
  • FIG. 8 is a flowchart illustrating the operation of a terminal according to the first embodiment of the present invention.
  • FIG. 9 is a flowchart illustrating the operation of a base station according to the second embodiment of the present invention.
  • FIG. 10 is a flowchart illustrating the operation of a terminal according to the second embodiment of the present invention.
  • FIG. 11 is a signal diagram illustrating operations of a terminal and a base station according to the first embodiment of the present invention.
  • FIG. 12 is a signal diagram illustrating operations of a terminal and a base station according to the second embodiment of the present invention.
  • FIG. 13 is a block diagram of a base station to which embodiments of the present invention can be applied.
  • FIG. 14 is a block diagram of a terminal to which embodiments of the present invention can be applied.
  • the wireless communication system includes a user equipment (UE) and a base station (base station, BS, or eNB).
  • a user terminal is a generic concept meaning a terminal in wireless communication.
  • user equipment (UE) in WCDMA, LTE, and HSPA, as well as mobile station (MS) in GSM, user terminal (UT), and SS It should be interpreted as a concept that includes a subscriber station, a wireless device, and the like.
  • a base station or a cell generally refers to a station that communicates with a user terminal, and includes a Node-B, an evolved Node-B, an Sector, a Site, and a BTS. It may be called other terms such as Base Transceiver System, Access Point, Relay Node.
  • a base station or a cell is interpreted in a comprehensive sense to indicate some areas or functions covered by a base station controller (BSC) in CDMA, a NodeB in WCDMA, an eNB or a sector (site) in LTE, and the like. It is meant to cover various coverage areas such as megacell, macrocell, microcell, picocell, femtocell and relay node communication range.
  • BSC base station controller
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFTMA Orthogonal Frequency Division Multiple Access
  • One embodiment of the present invention can be applied to resource allocation in the fields of asynchronous wireless communication evolving to LTE and LTE-advanced through GSM, WCDMA, HSPA, and synchronous wireless communication evolving to CDMA, CDMA-2000 and UMB.
  • the present invention should not be construed as being limited or limited to a specific wireless communication field, but should be construed as including all technical fields to which the spirit of the present invention can be applied.
  • the uplink transmission and the downlink transmission may use a time division duplex (TDD) scheme that is transmitted using different times, or may use a frequency division duplex (FDD) scheme that is transmitted using different frequencies.
  • TDD time division duplex
  • FDD frequency division duplex
  • the user terminal and the base station are used in a comprehensive sense as two entities (uplink or downlink) transmitting and receiving subjects used to implement the technology or technical idea described in the present invention, and are not limited by the terms or words specifically referred to. Do not.
  • the user terminal may be abbreviated as a terminal and indicated.
  • a standard is configured by configuring uplink and downlink based on one carrier or carrier pair.
  • the uplink and downlink transmit control information through control channels such as Physical Downlink Control CHannel (PDCCH), Physical Control Format Indicator CHannel (PCFICH), Physical Hybrid ARQ Indicator CHannel (PHICH), and Physical Uplink Control CHannel (PUCCH).
  • a data channel is configured such as PDSCH (Physical Downlink Shared CHannel), PUSCH (Physical Uplink Shared CHannel) and the like to transmit data.
  • FIG. 1 is a diagram illustrating an example of a terminal dually connected to different base stations to which the present invention can be applied.
  • base stations eg, macronodes or piconodes 110, 120
  • the wireless communication system includes at least one base station (eg, macronode or picone node 110, 120).
  • Each base station (110, 120) provides a communication service for a particular cell.
  • the base stations 110 and 120 may communicate with multiple terminals in a specific cell.
  • the terminal 112 which is dually connected to different base stations (for example, macro nodes or picone nodes 110 and 120) to which the present invention can be applied, communicates with the respective macro nodes 110 and the picone nodes 120, respectively. Can be performed.
  • base stations for example, macro nodes or picone nodes 110 and 120
  • the macro node 110 may be a master base station (hereinafter referred to as a MeNB), and the picone node 120 may be a secondary base station (hereinafter referred to as a SeNB).
  • MeNB master base station
  • SeNB secondary base station
  • the reverse is also possible.
  • FIG. 2 is a diagram illustrating an example of an uplink scheduling request procedure to which the present invention can be applied.
  • Scheduling Request refers to signaling transmitted by the UE to inform the base station when there is data to be transmitted through uplink to induce uplink resource allocation.
  • the SR may be transmitted through a physical uplink control channel (PUCCH), and the base station allocates a resource for transmitting the SR to each terminal.
  • PUCCH physical uplink control channel
  • the terminal 210 transmits an SR requesting uplink resource allocation to the base station 202 for uplink data transmission (S210).
  • the base station 202 receives the SR of the terminal and transmits an uplink grant (S220).
  • the terminal 201 transmits a buffer status report (hereinafter referred to as a BSR) including information on the amount of data to be transmitted by the terminal 201 to the base station 202 (S230).
  • a BSR buffer status report
  • the base station 202 receives and confirms the BSR from the terminal 201 and transmits an uplink grant by allocating an uplink resource so that the terminal 201 can transmit data (S240).
  • the terminal 201 When the uplink grant is received from the base station 202, the terminal 201 starts uplink data transmission (S250).
  • the uplink resource allocation may not be performed even if the uplink resource allocation is performed after a predetermined period from the base station or if the number of SR transmissions exceeds the predetermined number.
  • SR When an SR is triggered, it is suspended until it is canceled.
  • a suspended SR When a suspended SR is canceled 1)
  • a UE receives an UL grant that can transmit all reserved data. It is when.
  • the SR Block Timer stops. The case where all reserved SRs are canceled is when the SR initiates a random access procedure. If the SR is still held, notify the RRC (Radio Resource Control) to release the PUCCH or SRS, clear all configured downlink and uplink grants, and initiate a random access procedure to initiate the held SR. Cancel.
  • RRC Radio Resource Control
  • the UE may alternatively start a contention-based random access procedure.
  • FIG. 3 is a diagram illustrating an example of a procedure when an uplink scheduling request fails to which the present invention can be applied.
  • the terminal 301 fails in transmitting a scheduling request to the base station 302.
  • the terminal 301 sets the transmission power of the terminal according to the power setting of the base station.
  • the terminal 301 transmits a scheduling request (hereinafter referred to as D-SR) to the base station 302 (S330). ).
  • D-SR scheduling request
  • the terminal 301 transmits a scheduling request and adds 1 to the D-SR transmission count (S320). Adding one to the D-SR transmission count may occur concurrently with the D-SR transmission step, or may occur before or after the D-SR transmission step.
  • the terminal 301 transmits the D-SR again after a predetermined time interval (S350). Even in this case, the terminal adds 1 to the D-SR transmission count (S340). If the second D-SR transmission fails (S351), the terminal 301 transmits the D-SR again after a predetermined time interval (S370). Even in this case, the terminal adds 1 to the D-SR transmission count (S360).
  • the UE transmits the D-SR at a predetermined time interval, but if it fails, if the D-SR transmission count reaches the maximum transmission count value (S380), the UE releases uplink resources without additional D-SR transmission and random access procedure. Start (S390).
  • the random access procedure may be a contention based random access procedure as described above.
  • the terminal 301 transmits a random access preamble to the base station 302 (S395).
  • the terminal should set the transmission count value SR_COUNTER to zero.
  • TTI time interval
  • the UE If the UE does not have a valid uplink control channel (PUCCH) resource to send an SR in any TTI, it initiates a random access procedure and cancels all pending SRs.
  • PUCCH uplink control channel
  • SR_COUNTER is greater than or equal to dsr-TransMax, RRC is notified of PUCCH and SRS (Sounding Reference Signal) release. Thereafter, all configured downlink assignments and uplink grants are cleared. It also initiates a random access procedure and cancels all pending SRs.
  • the terminal may transmit the SR through the above procedure, or may fail the SR transmission and perform a random access procedure.
  • a method for transmitting and receiving a scheduling request between a terminal and a base station when a terminal to which the present invention can be applied are dually connected to a plurality of base stations to transmit and receive data.
  • the terminal is wirelessly connected to two or more different base stations with respect to uplink, and a specific EPS (Evolved Packet Switched System) bearer or radio bearer (RB) is a plurality of base stations, respectively.
  • EPS Evolved Packet Switched System
  • RB radio bearer
  • Each may be configured separately.
  • a single EPS bearer or radio bearer may be configured through two or more different base stations.
  • 4 to 6 illustrate various examples of uplink transmission when establishing a radio bearer based data service connection configured for each base station to which the present invention can be applied.
  • each base station is configured by overlapping all radio bearers (FIG. 4) or some components of the radio bearers configured in each base station with respect to one terminal (FIG. 5/6).
  • a radio bearer configured at each base station and a corresponding radio bearer are configured in the terminal, and the terminal is configured with corresponding radio bearers for all radio bearers associated with the terminal configured in all of the base stations. That is, the end point of each radio bearer in the terminal is a radio bearer having the same radio bearer ID of each base station.
  • data generated from each radio bearer in the terminal should be delivered to the base station where the radio bearer is configured. Therefore, the terminal should trigger the SR based on the data existing in the PDCP / RLC layer in each radio bearer, the uplink data generated in the upper layer or the application layer in the terminal and deliver it to each base station.
  • the UE must be allocated SR resources in advance from the network (that is, each base station) to transmit the SR.
  • CA carrier aggregation
  • the base station since a single base station could configure a plurality of serving cells, there was enough one serving cell to allocate SR resources. Accordingly, the base station was able to confirm whether the UL resource allocation for each serving cell needs to be received through a primary cell (PCell) capable of transmitting a PUCCH including SR resources for a specific UE.
  • PCell primary cell
  • the dual connectivity environment assumes that a scheduler for radio resource control is operated independently of a plurality of base stations connected through non-ideal backhaul. Therefore, in order to achieve the basic purpose of the SR, which must be delivered to the scheduler as soon as possible to confirm that uplink resource allocation is required, the SR must be delivered directly by using radio resources of each base station.
  • the scheduler of each base station can independently schedule uplink with respect to a corresponding UE configured with dual connectivity, that is, a dynamic resource allocation (DRA) packet scheduling function of each of RRM (Radio Resource Management) functions is provided. It is further required when each base station exists independently.
  • DRA dynamic resource allocation
  • FIG. 4 is a diagram illustrating an embodiment of a dual connection setup for forming a plurality of radio bearers to which the present invention can be applied.
  • the terminal 401 is dually connected to the plurality of base stations 402 and 403, and is connected to the plurality of bearers 410 and 420.
  • Packet Data Convergence Protocol (hereinafter referred to as PDCP) is one of the layers of the radio traffic stack, and performs IP header compression and decompression, transmission of user data, and maintenance of sequence numbers for radio bearers.
  • Radio Link Control (hereinafter referred to as RLC) is one of the layers of the radio traffic stack responsible for scheduling and retransmission of data.
  • data is transmitted to the PDCP in the upper layer, and then compressed to the RLC after the compression process in the PDCP.
  • RLC performs scheduling and retransmission of data transmission.
  • the data is transferred to the base station through the physical (hereinafter PHY) layer through the Media Access Control (hereinafter referred to as MAC) layer.
  • PHY physical
  • MAC Media Access Control
  • FIG. 4 a case where the terminal 401 is dually connected to the plurality of base stations 402 and 403 is briefly illustrated.
  • the terminal 401 and the base station 402 are connected to one radio bearer 410, and the other base station 403 is also connected to one radio bearer 420 independent of the terminal.
  • the terminal configures two PDCP and RLC in independent radio bearers, respectively, and performs data transmission and reception with a base station connected to a radio bearer such as each PDCP and RLC.
  • each radio bearer is part of a different EPS bearer.
  • the core network is connected to the core network through the S-gate (S-GW) and the P-gate (P-GW) through the remaining periods (S1 bearer, S5 / S8 bearer) of the EPS bearer.
  • FIG. 5 is a diagram illustrating another embodiment of a dual connection setup forming a single radio bearer to which the present invention can be applied.
  • the terminal 501 configures different base stations 502 and 503 and one radio bearer (# 1 radio bearer) 510.
  • each of the base stations 502 and 503 overlaps one component of the radio bearer configured in each base station with respect to one terminal 501 to process reception of uplink data through each component.
  • the physical layer, the MAC layer, and the RLC layer are configured in each of the base stations 502 and 503, but the PDCP layer is configured in only one base station 502.
  • the radio bearer corresponding to the radio bearer configured in each of the base stations 502 and 503 is configured in the terminal 501, and the terminal 501 corresponds to the radio bearers corresponding to all radio bearers configured in both the base stations 502 and 503. Configure bearers.
  • data generated from a radio bearer (eg, # 1 radio bearer) in the terminal 501 is transferred to the base stations 502 and 503 configured with the radio bearer.
  • a radio bearer eg, # 1 radio bearer
  • a plurality of base stations are connected to each other through an interface between base stations (eg, an Xn interface 530 defined between MeNB and SeNB).
  • base stations eg, an Xn interface 530 defined between MeNB and SeNB.
  • the terminal 501 generates buffer status information based on respective data in which uplink data generated in an upper layer or an application layer in the terminal 501 exists in the PDCP / RLC entity in the radio bearer, 502, 503).
  • the scheduling request may be made for each base station in one radio bearer. Therefore, when a data transmission request occurs in a serving cell provided by each base station, a method of transmitting a scheduling request to each base station is required.
  • FIG. 6 is a diagram illustrating another embodiment of a dual connection configuration forming a single radio bearer to which the present invention can be applied.
  • FIG. 6 shows a case in which a single radio bearer is configured in a plurality of base stations 602 and 603 according to another embodiment of the present invention.
  • FIG. 6 illustrates a case in which one RLC layer is configured differently from FIG. 5.
  • the PDCP layer is configured only in the master base station (eg, MeNB, 602), and the RLC layer of the additional base station (eg, SeNB, 603) is configured to transmit information received from the terminal 601 to the RLC of the MeNB 602. It is in charge of forwarding function.
  • the master base station eg, MeNB, 602
  • the RLC layer of the additional base station eg, SeNB, 603
  • the RLC of the MeNB 602 may be a Master RLC
  • the RLC of the SeNB 603 may be a Slave RLC.
  • the SeNB 603 does not need to be one, as shown, and may exist in plural.
  • the transmission of the information received from the terminal 601 is transmitted through the Xn interface (or X2 interface).
  • the terminal 601 also has the same radio bearer configuration as that of the base station, it consists of one RLC and PDCP.
  • the radio bearer since a radio bearer corresponding to the radio bearer configured in each base station is configured in the terminal, the radio bearer may be configured in the same PDCP / RLC entity as the base station. Since the base station has one PDCP entity, the terminal also constitutes one PDCP entity, and since the RLC entity of the base station is a master / slave relationship, the terminal may also have only one RLC entity. Therefore, in this case, when data from the upper layer is generated, the terminal can transmit one scheduling request, and it is required to determine to which base station to send the generated scheduling request.
  • FIGS. 4 to 6 the embodiments of the method for transmitting a UE scheduling request according to the present invention will be described when the UE is dually connected to a plurality of base stations.
  • SR resource allocation authority for a dual base station A base station (eg, MeNB) that allocates SR resources to each base station, and the terminal operates the SR independently for each base station.
  • MeNB base station
  • FIG. 7 is a flowchart illustrating the operation of a base station according to the first embodiment of the present invention.
  • the base station in charge of SR resource configuration allocates scheduling request resources for each of the base station and one or more other base stations dually connected to the terminal (S710), and includes a first configuration including the allocated scheduling request resource information.
  • second configuration information including information and RRC connection reconfiguration information for scheduling request establishment is generated.
  • the first configuration information and the second configuration information are transmitted to the terminal through higher layer signaling (eg, RRC) (S730). If SR triggering occurs in the terminal, a scheduling request is received from the terminal (S740).
  • RRC higher layer signaling
  • a base station eg, MeNB or SeNB
  • a base station is an inter-base station for determining whether to allocate SR resources using cooperative communication (eg, communication through an Xn interface or an X2 interface) with another base station dually connected to the terminal.
  • the negotiation proceeds and the SR resource of the terminal is allocated based on the uplink traffic information of the base station based on the negotiation result.
  • Information provided by each base station in the negotiation process includes a loading factor of uplink resources of each base station or reliability of an uplink radio link of each base station (for example, 'SIR: signal-to-interference ratio'). This can be
  • each of the plurality of base stations may transmit information by including information on resources allocated to the UE in the first configuration information. Only one base station having an RRC layer among the base stations may transmit information on SR resources for which allocation is determined in consultation with all base stations included in the dual connectivity (S730).
  • the UE In order to transmit the SR, the UE requires not only information on SR resources allocated on the PUCCH but also information on functions for controlling SR transmission.
  • the base station includes the SR transmission related information (eg, SchedulingRequestConfig) in the second configuration information and transmits it to the terminal (S730).
  • SR transmission related information eg, SchedulingRequestConfig
  • the second configuration information may include transmission request configuration information (SchedulingRequestConfig), scheduling request prohibit timer information (sr-ProhobitTimer).
  • SchedulingRequestConfig transmission request configuration information
  • sr-ProhobitTimer scheduling request prohibit timer information
  • the scheduling request prohibit timer information may be transmitted as the following parameter.
  • the scheduling request prohibit timer is a parameter including time information for prohibiting the terminal from transmitting a scheduling request for a predetermined time after sending a scheduling request to the base station.
  • the scheduling request prohibit timer is included in the MAC-MainConfig information and transmitted as an RRC parameter.
  • the transmission request setting information may be transmitted by the following parameter.
  • sr-PUCCH-ResourceIndex is used for antenna ports P0 and P1.
  • sr-ConfigIndex is a parameter including information on an I SR .
  • dsr-TransMAX is a parameter including information on a maximum transfer count value of a scheduling request.
  • a timer value and a scheduling request transmission maximum value for transmission of the scheduling request included in the second configuration information may be It may be set equal to one or more other base stations.
  • a timer value and a scheduling request transmission maximum value included in the second configuration information may be respectively set. It can be set independently for each base station.
  • a value included in the second configuration information may be generated differently (S720).
  • the base station receives the uplink scheduling independently triggered and transmitted according to the generation of uplink traffic generated for each serving cell from the terminal.
  • An operation of independently transmitting uplink scheduling triggered by the UE will be described with reference to FIG. 8.
  • FIG. 8 is a flowchart illustrating the operation of a terminal according to the first embodiment of the present invention.
  • the first configuration information and scheduling including scheduling request resource information allocated to each of the plurality of base stations, respectively.
  • Step S840 is included.
  • the terminal receives first configuration information including scheduling request resource information allocated to each of the plurality of base stations, and receives second configuration information including the aforementioned parameters from each of the plurality of base stations (S810).
  • the first configuration information and the second configuration information for each of the plurality of base stations may be received from one of the plurality of base stations (eg, MeNB).
  • the terminal checks the conditions for the transmission of the scheduling request based on the first configuration information and the second configuration information (S830).
  • the terminal groups a plurality of serving cells by base station based on a timing advance value, and when scheduling request triggering occurs in any one of the serving cells, The method may further include determining information on a base station to which one serving cell belongs (S820).
  • Operation S820 may be performed before operation S830 and may be performed simultaneously.
  • the terminal may be connected to a plurality of serving cells to perform communication, and the plurality of serving cells connected to the terminal may be configured into a plurality of groups based on the timing advance value as described above.
  • the terminal checks the above-described condition, the UE cannot proceed with the scheduling request transmission to any one serving cell, and if the UE cannot perform the contention-based random access procedure for the base station to which one serving cell belongs,
  • the time alignment timer (hereinafter referred to as TAT) of the base station to which the serving cell belongs may expire and release the physical uplink control channel (S830).
  • timing advance and the timing alignment which are the criteria for grouping the serving cells by the UE, will be described in detail.
  • the base station manages the transmission timing of the terminal. More specifically, the terminal may exist in any area within the cell, which means that the time the data transmitted from the terminal arrives at the base station may vary depending on the location of the terminal.
  • OFDM Orthogonal Frequency Division Multiplex
  • the time that the transmission reaches the base station will be longer than the arrival time of the transmission of the terminal in the center of the cell.
  • the transmission time of the terminal in the cell center to the base station will be relatively shorter than the transmission of the terminal at the cell edge.
  • the base station in order to prevent interference effects, data or signals transmitted by all terminals in a cell must be received within a boundary at every time, so the base station must adjust the transmission timing of the terminal appropriately according to the situation such as the position of the terminal. This adjustment is called time-synchronous management.
  • One way to manage time synchronization is random access operation. That is, the base station receives a random access preamble transmitted by the terminal through a random access operation process, and calculates a time synchronization value for speeding up or slowing down the transmission timing of the terminal using the reception information of the random access preamble. The time synchronization value is then informed to the terminal through a random access response, and the terminal updates the transmission timing by using the value.
  • the base station receives a Sounding Reference Symbol (SRS) transmitted periodically or arbitrarily by the terminal, calculates a time synchronization value of the terminal through the received signal, and informs the terminal. Accordingly, the terminal updates its transmission timing.
  • SRS Sounding Reference Symbol
  • the base station measures the transmission timing of the terminal through a random access preamble or a sounding reference symbol, calculates a timing value to be corrected, and informs the terminal.
  • a time synchronization value ie, a timing value to be corrected
  • the TAC is also processed at the MAC layer.
  • the transmission timing of the terminal is changed every time according to the speed and position of the terminal.
  • the UE should assume that the time synchronization command is valid only for a specific time without receiving the time synchronization command from the base station for an infinite time.
  • the timing alignment timer (hereinafter referred to as TAT) is used for this purpose.
  • the terminal when the terminal receives the TAC from the base station, it starts the TAT. And, it is assumed that the terminal is in time synchronization with the base station only while the TAT is in operation.
  • the TAT value may be transmitted through an RRC signal such as system information or RRC connection reconfiguration.
  • the terminal restarts the TAT if a new TAC is received from the base station while the TAT is in operation.
  • the UE assumes that time synchronization does not coincide with the base station, and any uplink data or control signal except for the random access preamble (for example, PUSCH data and PUCCH control signal) is excluded. Do not send.
  • the base station may configure serving cells having the same or within a predetermined range of timing advances as a group based on the timing advance value of each serving cell configured in the terminal.
  • the serving cells included in the group may be included as a group regardless of whether uplink is configured.
  • the base station compares the downlink synchronization time points of the timing reference cells in each group with respect to the serving cells having no uplink, and configures the serving cells having the same or a downlink synchronization time point within a predetermined range in the same group.
  • the serving cells without uplink may be configured to be included in the pTAG.
  • the serving cells in the terminal may be grouped in units of base stations.
  • pTAG and sTAG # 1 may be a criterion for distinguishing serving cells included in different base stations.
  • the UE may determine the serving cells included in the pTAG as serving cells included in the MeNB and the serving cells included in sTAG # 1 as the serving cells included in the SeNB.
  • the UE independently operates scheduling requests generated for each serving cell. That is, the scheduling request can be independently triggered for each serving cell, and the scheduling count and pending SR cancellation operate independently.
  • the UE checks the aforementioned triggering conditions (for example, SR triggering cancellation condition, etc.) and determines whether to transmit a scheduling request to the base station of the serving cell in which the SR triggering occurs.
  • the SR is transmitted (S840).
  • the terminal checks the serving cell in which the SR triggering has occurred among the plurality of serving cells, and checks the triggering condition.
  • the SR transmission is performed. If the SR count value is greater than or equal to the maximum transmission count value, it is determined whether the serving cell in which the triggering occurs using the aforementioned TAG is a serving cell in the SeNB. do.
  • the mapping information between each serving cell and each base station provided by the base station through RRC signaling may be used.
  • the UE If the UE confirms with SeNB, the UE expires the time alignment timer, flushes all HARQ (Hybrid-ARQ) buffers, and releases the PUCCH and SRS. In this case, contention-based random access cannot be performed.
  • HARQ Hybrid-ARQ
  • the contention-based random access procedure is performed through the PCell in the MeNB.
  • the scheduling request may be transmitted and received by a method different from the above-described first embodiment.
  • Second Embodiment SR Resource Allocation for a Specific Base Station Included in Dual Connectivity
  • the authorized base station allocates SR resources based on uplink traffic distribution information, and when the SR is triggered in a specific serving cell, the UE transmits the SR by simultaneously triggering all SR resources.
  • FIG. 9 is a flowchart illustrating the operation of a base station according to the second embodiment of the present invention.
  • the scheduling request resource for each of the base station dually connected with the terminal and one or more other base stations is allocated (S910) and assigned.
  • the base station forms a single radio bearer with one or more other base stations, and the RLC of the base station is a master RLC (for example, in FIG. 6).
  • each step when the base station (eg, MeNB) allocates scheduling request resources, information on uplink traffic distribution, information on whether contention-based random access of the terminal is possible (eg, the terminal is a corresponding base station)
  • the SR resource may be allocated based on at least one of information on whether contention-based random access is possible and dual connection configuration information (eg, information on whether the corresponding base station is MeNB or SeNB).
  • first configuration information including information on the allocated SR resource, and generate the aforementioned information for SR transmission (for example, transmission request configuration information (SchedulingRequestConfig) and scheduling request prohibit timer information (sr-ProhobitTimer)).
  • the second setting information including the second setting information is generated.
  • the base station eg, MeNB
  • the terminal receives the first configuration information and the second configuration information described above from the base station, and if SR triggering occurs, and transmits the SR (S940). The operation of the terminal will be described in detail with reference to FIG. 10.
  • FIG. 10 is a flowchart illustrating the operation of a terminal according to the second embodiment of the present invention.
  • the first configuration information including scheduling request resource allocation information allocated to each of the plurality of base stations and Receiving second configuration information including RRC connection reconfiguration information for scheduling request configuration through higher layer signaling (S1010) and scheduling request for data transmission in any one of the serving cells provided from the plurality of base stations
  • S1010 higher layer signaling
  • the triggering occurs, based on the first configuration information and the second configuration information to determine the conditions for the transmission of the scheduling request to trigger the SR requests of all the serving cells (S1020) and a plurality of according to the scheduling request triggers of all the serving cells Transmitting a scheduling request to at least one base station of the base station (S) 1030).
  • the plurality of base stations form a single radio bearer with the terminal, and the RLC of any one of the plurality of base stations is applied to the case of the master RLC (for example, in case of FIG. 6).
  • the scheduling request resource received by the terminal may be information allocated based on at least one or more of uplink traffic distribution information, contention-based random access availability of the terminal, and dual connection configuration information.
  • the terminal may transmit a scheduling request to the entire base station (S1030). ).
  • the terminal when the terminal is assigned an SR resource for each base station, when the regular buffer status report (regular BSR) is triggered due to the data for a single logical channel, all SR resources are triggered at the same time.
  • the SR procedure may proceed as a single procedure in the terminal, but the triggered and transmitted SR resource is targeted to all base stations (S1030).
  • FIG. 11 is a signal diagram illustrating operations of a terminal and a base station according to the first embodiment of the present invention.
  • the first embodiment may be applied regardless of bearer formation types of a plurality of base stations dually connected to a terminal. That is, it applies to all of FIGS. 4 to 6.
  • the base station 1102 performs scheduling request resource allocation with a plurality of other base stations 1103 (S1110).
  • the base station 1102 and the plurality of other base stations 1103 generate first configuration information including information on the allocated scheduling request resource and second configuration information including related information for SR transmission (S1120).
  • each of the base station 1102 and the other base station 1103 transmits the first configuration information and the second configuration information to the terminal 1101 (S1130 and S1135).
  • the base station 1102 may transmit resource allocation information and SR transmission related information of another base station 1103 to the terminal 1101.
  • the terminal 1101 After receiving the above-described first configuration information and second configuration information from a plurality of base stations, the terminal 1101 triggers a scheduling request in a specific serving cell (S1140).
  • the parameters included in the second configuration information for example, On the basis of the scheduling prohibit timer, the scheduling request setting information, etc.) (S1150).
  • the terminal transmits the SR to the base station to which the serving cell triggered by the SR belongs (S1160).
  • a TAG is generated by dividing a plurality of serving cells into base units based on a time advance value according to a TAG configured by the base station, and when the SR is triggered in a specific serving cell, the terminal may perform SR to any base station based on the TAG. You can check whether it is a transmission.
  • FIG. 12 is a signal diagram illustrating operations of a terminal and a base station according to the second embodiment of the present invention.
  • a terminal is connected to a plurality of base stations in a bearer split form, wherein an RLC of one base station is a master RLC and another base station is a slave RLC. Is applied in the case (eg, in the case of FIG. 6).
  • the base station 1202 allocates scheduling request resources of a plurality of other base stations 1203 (S1210). At this time, the base station may be allocated based on at least one or more information of uplink traffic distribution information, whether contention-based random access of the terminal is possible, and dual connection configuration information.
  • the base stations 1202 and 1203 generate first configuration information including the allocated resource information and second configuration information including the SR transmission related information (S1220) and transmit them to the terminal 1201 (S1230 and S1235).
  • only one base station (eg, MeNB, 1202) to which the resource is allocated may transmit the first configuration information and the second configuration information to the terminal 1201.
  • the terminal 1201 triggers the scheduling request of all serving cells (S1250).
  • the terminal 1201 checks transmission conditions for scheduling requests of all serving cells (S1260), and transmits an SR to each base station to which all serving cells belong (S1270 and S1280).
  • the terminal 1201 may generate SR triggering in all serving cells to transmit the SR to a plurality of base stations dually connected to the terminal.
  • the SR procedure may be performed in a single procedure in the terminal, but the triggered SR resource may be targeted to all base stations.
  • FIG. 13 is a block diagram of a base station to which embodiments of the present invention can be applied.
  • the base station 1300 is composed of a control unit 1320, a receiving unit 1310 and a transmitting unit 1330.
  • the controller 1320 generates SR resource allocation for the plurality of base stations, and generates first configuration information and second configuration information.
  • the receiver 1310 receives an uplink signal from the terminal.
  • the transmitter 1330 transmits the generated first configuration information and the second configuration information to the terminal through higher layer signaling (eg, an RRC connection reconfiguration message).
  • higher layer signaling eg, an RRC connection reconfiguration message
  • control unit 1320 may generate transmission information necessary for transmitting and receiving a signal with another base station and control to receive a signal received from another base station according to embodiments of the present invention.
  • the exchange of information between the base station and another base station may be through the Xn interface, or may be through the X2 interface.
  • FIG. 14 is a block diagram of a terminal to which embodiments of the present invention can be applied.
  • the terminal 1400 is composed of a controller 1420, a receiver 1410 and a transmitter 1430.
  • the controller 1420 sets the SR transmission condition and the SR transmission target based on the information received from the base station (eg, MeNB). For example, in the first embodiment, after the serving cells are grouped by TAG, each base station to which each serving cell belongs, and the SR is triggered in a specific serving cell, the SR transmission procedure is controlled to operate independently.
  • the base station eg, MeNB
  • the SR when the SR is triggered in a particular serving cell, it may be controlled to transmit the SR to all base stations by triggering the SR of all serving cells.
  • the transmitter 1430 transmits the generated scheduling request to the base station (eg, MeNB) and / or another base station (eg, SeNB), and transmits a signal generated from the terminal to the base station.
  • the base station eg, MeNB
  • SeNB another base station
  • the receiver 1410 receives a signal transmitted from a base station or another base station.
  • the present invention has an effect of providing a method and apparatus for transmitting a scheduling request to a specific base station when a scheduling request occurs in one of serving cells in different base stations forming a dual connection with the terminal. .
  • the present invention has the effect of providing a method and apparatus for operating a terminal upon transmission and failure of a scheduling request according to the configuration of each of the dual base stations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명은 서로 다른 기지국과 이중 연결된 단말이 스케줄링 요청을 전송하는 방법 및 장치에 관한 것으로서, 보다 자세하게는 복수의 기지국에 각각 할당된 스케줄링 요청 자원 정보를 포함하는 제 1 설정정보 및 스케줄링 요청 설정을 위한 RRC 연결 재구성 정보를 포함하는 제 2 설정정보를 상위계층 시그널링을 통해서 수신하는 단계와 복수의 기지국으로부터 제공되는 서빙 셀 중 어느 하나의 서빙 셀에서 데이터 전송을 위한 스케줄링 요청 트리거링이 발생하면, 제 1 설정정보 및 제 2 설정정보에 기초하여 스케줄링 요청 전송을 위한 조건을 확인하는 단계 및 조건을 확인한 결과에 따라 복수의 기지국 중 적어도 하나의 기지국으로 스케줄링 요청을 전송하는 단계를 포함하는 방법 및 장치에 관한 것이다.

Description

무선 통신 시스템에서 스케줄링 요청을 송수신하는 방법, 단말 및 기지국
본 발명은 무선 통신 시스템에 관한 것으로서, 보다 자세하게는 서로 다른 기지국과 이중 연결된 단말이 스케줄링 요청을 전송하는 기술 및 기지국이 그 스케줄링 요청을 수신하는 기술에 관한 것이다.
통신 시스템이 발전해나감에 따라 사업체들 및 개인들과 같은 소비자들은 매우 다양한 무선 단말기들을 사용하게 되었다.
현재의 3GPP 계열의 LTE(Long Term Evolution), LTE-A(LTE Advanced)등의 이동 통신 시스템에서는 음성 위주의 서비스를 벗어나 영상, 무선 데이터 등의 다양한 데이터를 송수신할 수 있는 고속 대용량의 통신 시스템이 요구되고 있다.
이러한 고속 대용량의 통신 시스템을 위해서 소형 셀을 활용하여 단말의 용량을 늘릴 수 있는 기술이 요구된다.
이와 같이 고속 대용량의 통신 시스템을 위해서 하나의 단말과 복수의 서로 다른 기지국이 이중 연결되어 통신을 수행하는 기술이 요구되고 있다.
한편, 스케줄링 요청 신호는 단말이 상향링크를 통해 전송할 데이터가 존재하는 경우, 이를 기지국에 알려 상향링크 자원할당을 요구하기 위해 전송하는 메시지이다.
즉, 단말이 기지국과 상향링크를 연결하여 데이터를 송신하기 위해서는 기지국으로부터 상향링크 자원을 할당 받아야 하며, 이를 위해서 상향링크 자원할당을 요청해야 한다. 이때, 서로 다른 복수의 기지국과 이중 연결되어 있는 단말의 스케줄링 요구 메시지의 효율적인 구성 및 전송 방안이 요구된다.
전술한 요구에 따라 본 발명은 서로 다른 기지국과 이중 연결된 단말이 스케줄링 요청을 전송하는 기술 및 기지국이 그 스케줄링 요청을 수신하는 기술을 제공한다.
또한, 본 발명은 이중 연결된 각 기지국의 구성에 따라서, 스케줄링 요청의 전송 및 전송 실패 시 단말의 동작에 관한 기술을 제공한다.
본 발명의 일 실시예에 따른, 기지국이 단말로부터 스케줄링 요청(Scheduling Request)을 수신하는 방법에 있어서, 단말과 이중 연결된 기지국 및 하나 이상의 다른 기지국 각각에 대한 스케줄링 요청 자원을 할당하고, 할당된 스케줄링 요청 자원 정보를 포함하는 제 1 설정정보 및 스케줄링 요청 설정을 위한 RRC 연결 재구성 정보를 포함하는 제 2 설정정보를 생성하는 단계와 제 1 설정 정보 및 제 2 설정정보를 상위계층 시그널링을 통해서 단말로 전송하는 단계 및 단말로부터 스케줄링 요청을 수신하는 단계를 포함하는 방법을 제공한다.
또한, 본 발명의 다른 실시예에 따른, 복수의 기지국에 이중 연결된 단말이 스케줄링 요청(Scheduling Request)을 전송하는 방법에 있어서, 복수의 기지국에 각각 할당된 스케줄링 요청 자원 정보를 포함하는 제 1 설정정보 및 스케줄링 요청 설정을 위한 RRC 연결 재구성 정보를 포함하는 제 2 설정정보를 상위계층 시그널링을 통해서 수신하는 단계와 복수의 기지국으로부터 제공되는 서빙 셀 중 어느 하나의 서빙 셀에서 데이터 전송을 위한 스케줄링 요청 트리거링이 발생하면, 제 1 설정정보 및 제 2 설정정보에 기초하여 스케줄링 요청 전송을 위한 조건을 확인하는 단계 및 조건을 확인한 결과에 따라 복수의 기지국 중 적어도 하나의 기지국으로 스케줄링 요청을 전송하는 단계를 포함하는 방법을 제공한다.
또한, 본 발명의 또 다른 실시예에 따른, 기지국은 단말과 이중 연결된 기지국 및 하나 이상의 다른 기지국 각각에 대한 스케줄링 요청 자원을 할당하고, 할당된 스케줄링 요청 자원 정보를 포함하는 제 1 설정정보 및 스케줄링 요청 설정을 위한 RRC 연결 재구성 정보를 포함하는 제 2 설정정보를 생성하는 제어부와 제 1 설정 정보 및 제 2 설정정보를 상위계층 시그널링을 통해서 단말로 전송하는 송신부 및 단말로부터 스케줄링 요청을 수신하는 수신부를 포함한다.
또한, 본 발명의 또 다른 실시예에 다른, 단말은 복수의 기지국에 각각 할당된 스케줄링 요청 자원 정보를 포함하는 제 1 설정정보 및 스케줄링 요청 설정을 위한 RRC 연결 재구성 정보를 포함하는 제 2 설정정보를 상위계층 시그널링을 통해서 수신하는 수신부와 복수의 기지국으로부터 제공되는 서빙 셀 중 어느 하나의 서빙 셀에서 데이터 전송을 위한 스케줄링 요청 트리거링이 발생하면, 제 1 설정정보 및 제 2 설정정보에 기초하여 스케줄링 요청 전송을 위한 조건을 확인하는 제어부 및 조건을 확인한 결과에 따라 복수의 기지국 중 적어도 하나의 기지국으로 스케줄링 요청을 전송하는 송신부를 포함한다.
본 발명은 서로 다른 기지국과 이중 연결된 단말이 스케줄링 요청을 전송하는 기술 및 기지국이 그 스케줄링 요청을 수신하는 기술을 제공하는 효과가 있다.
또한, 본 발명은 이중 연결된 각 기지국의 구성에 따라서, 스케줄링 요청의 전송 및 전송 실패 시 단말의 동작에 관한 기술을 제공하는 효과가 있다.
도 1은 본 발명이 적용될 수 있는 서로 다른 기지국과 이중 연결되어 있는 단말의 일 예를 도시한 도면이다.
도 2는 본 발명이 적용될 수 있는 상향링크 스케줄링 요청 절차의 일 예를 도시한 도면이다.
도 3은 본 발명이 적용될 수 있는 상향링크 스케줄링 요청 실패 시의 절차에 대한 일 예를 도시한 도면이다.
도 4는 본 발명이 적용될 수 있는 복수의 무선 베어러를 형성하는 이중 연결 설정의 일 실시예를 도시한 도면이다.
도 5은 본 발명이 적용될 수 있는 단일 무선 베어러를 형성하는 이중 연결 설정의 다른 실시예를 도시한 도면이다.
도 6은 본 발명이 적용될 수 있는 단일 무선 베어러를 형성하는 이중 연결 설정의 또 다른 실시예를 도시한 도면이다.
도 7은 본 발명의 제 1 실시예에 따른 기지국의 동작을 도시한 흐름도이다.
도 8은 본 발명의 제 1 실시예에 따른 단말의 동작을 도시한 흐름도이다.
도 9는 본 발명의 제 2 실시예에 따른 기지국의 동작을 도시한 흐름도이다.
도 10은 본 발명의 제 2 실시예에 따른 단말의 동작을 도시한 흐름도이다.
도 11은 본 발명의 제 1 실시예에 따른 단말 및 기지국의 동작을 도시한 신호도이다.
도 12는 본 발명의 제 2 실시예에 따른 단말 및 기지국의 동작을 도시한 신호도이다.
도 13은 본 발명의 실시예들이 적용될 수 있는 기지국의 블록도이다.
도 14는 본 발명의 실시예들이 적용될 수 있는 단말의 블록도이다.
이하, 본 발명의 일부 실시예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
무선통신시스템은 사용자 단말(User Equipment, UE) 및 기지국(Base Station, BS, 또는 eNB)을 포함한다. 본 명세서에서의 사용자 단말은 무선 통신에서의 단말을 의미하는 포괄적 개념으로서, WCDMA 및 LTE, HSPA 등에서의 UE(User Equipment)는 물론, GSM에서의 MS(Mobile Station), UT(User Terminal), SS(Subscriber Station), 무선기기(wireless device) 등을 모두 포함하는 개념으로 해석되어야 할 것이다.
기지국 또는 셀(cell)은 일반적으로 사용자 단말과 통신하는 지점(station)을 말하며, 노드-B(Node-B), eNB(evolved Node-B), 섹터(Sector), 싸이트(Site), BTS(Base Transceiver System), 액세스 포인트(Access Point), 릴레이 노드(Relay Node) 등 다른 용어로 불릴 수 있다.
즉, 본 명세서에서 기지국 또는 셀(cell)은 CDMA에서의 BSC(Base Station Controller), WCDMA의 NodeB, LTE에서의 eNB 또는 섹터(싸이트) 등이 커버하는 일부 영역 또는 기능을 나타내는 포괄적인 의미로 해석되어야 하며, 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀 및 릴레이 노드(relay node) 통신범위 등 다양한 커버리지 영역을 모두 포괄하는 의미이다.
무선통신시스템에 적용되는 다중 접속 기법에는 제한이 없다. CDMA(Code
Division Multiple Access), TDMA(Time Division Multiple Access), FDMA(Frequency Division Multiple Access), OFDMA(Orthogonal Frequency Division
Multiple Access), OFDM-FDMA, OFDM-TDMA, OFDM-CDMA와 같은 다양한 다중 접속 기법을 사용할 수 있다. 본 발명의 일 실시예는 GSM, WCDMA, HSPA를 거쳐 LTE 및 LTE-advanced로 진화하는 비동기 무선통신과, CDMA, CDMA-2000 및 UMB로 진화하는 동기식 무선 통신 분야 등의 자원할당에 적용될 수 있다. 본 발명은 특정한 무선통신 분야에 한정되거나 제한되어 해석되어서는 아니 되며, 본 발명의 사상이 적용될 수 있는 모든 기술분야를 포함하는 것으로 해석되어야 할 것이다.
상향링크 전송 및 하향링크 전송은 서로 다른 시간을 사용하여 전송되는TDD(Time Division Duplex) 방식이 사용될 수 있고, 또는 서로 다른 주파수를 사용하여 전송되는 FDD(Frequency Division Duplex) 방식이 사용될 수 있다.
본 명세서에서 사용자 단말과 기지국은, 본 발명에서 기술되는 기술 또는 기술적 사상을 구현하는데 사용되는 두 가지(Uplink 또는 Downlink) 송수신 주체로 포괄적인 의미로 사용되며 특정하게 지칭되는 용어 또는 단어에 의해 한정되지 않는다. 이하 사용자 단말은 단말로 약칭하여 지시할 수 있다.
본 발명이 적용될 수 있는 LTE LTE-A와 같은 시스템에서는 하나의 반송파(carrier) 또는 반송파 쌍을 기준으로 업링크와 다운링크를 구성하여 규격을 구성한다. 업링크와 다운링크는, PDCCH(Physical Downlink Control CHannel), PCFICH(Physical Control Format Indicator CHannel), PHICH(Physical Hybrid ARQ Indicator CHannel), PUCCH(Physical Uplink Control CHannel) 등과 같은 제어채널을 통하여 제어정보를 전송하고, PDSCH(Physical Downlink Shared CHannel), PUSCH(Physical Uplink Shared CHannel) 등과 같은 데이터채널로 구성되어 데이터를 전송한다.
도 1은 본 발명이 적용될 수 있는 서로 다른 기지국과 이중 연결되어 있는 단말의 일 예를 도시한 도면이다.
도 1을 참조하면, 기지국(예를 들어, 매크로노드 또는 피코노드, 110, 120)은 음성, 패킷 데이터 등과 같은 다양한 통신 서비스를 제공하기 위해 널리 배치된다. 무선 통신 시스템은 적어도 하나의 기지국(예를 들어, 매크로노드 또는 피코노드, 110, 120)을 포함한다. 각 기지국(110, 120)은 특정한 셀에 대해서 통신 서비스를 제공한다.
또한, 기지국(110, 120)은 특정한 셀 내의 다수 단말과 통신을 수행할 수 있다.
본 발명이 적용될 수 있는 서로 다른 기지국(예를 들어, 매크로노드 또는 피코노드, 110, 120)과 이중 연결되어 있는 단말(112)은 각각의 매크로노드(110) 및 피코노드(120)와 각각 통신을 수행할 수 있다.
이 경우, 매크로노드(110)가 마스터기지국(Master eNB, 이하 MeNB라 함)이 될 수 있으며, 피코노드(120)가 부가기지국(Secondary eNB, 이하 SeNB라 함)이 될 수 있다. 그 반대의 경우도 가능하다.
도 2는 본 발명이 적용될 수 있는 상향링크 스케줄링 요청 절차의 일 예를 도시한 도면이다.
스케줄링 요청(Scheduling Request, 이하 SR이라 함)은 단말이 상향링크를 통해 전송할 데이터가 존재하는 경우 기지국에게 이를 알려서 상향링크 자원할당을 유도하기 위해 전송하는 시그널링을 말한다. SR은 물리 상향 제어채널(PUCCH)를 통해 전송될 수 있으며, 기지국은 각 단말마다 SR을 전송할 자원을 할당한다.
단말(201)의 버퍼상태보고가 트리거링 되면(S200), 단말(210)은 상향링크 데이터 전송을 위해 기지국(202)으로 상향링크 자원할당을 요청하는 SR을 전송한다(S210).
기지국(202)은 단말의 SR을 수신하여 상향링크 그랜트를 전송한다(S220).
이후, 단말(201)은 기지국(202)으로 단말(201)이 전송할 데이터 양에 대한 정보를 포함하는 버퍼상태보고(Buffer Status Report, 이하 BSR이라 함)를 전송한다(S230).
기지국(202)은 단말(201)로부터 BSR을 수신하여 확인하고, 단말(201)이 데이터를 전송할 수 있도록 상향링크 자원을 할당하여 상향링크 그랜트를 전송한다(S240).
단말(201)은 기지국(202)으로부터 상향링크 그랜트가 수신되면, 상향링크 데이터 전송을 시작한다(S250).
만약 SR 자원보다 접속중인 단말의 수가 많다면, 일부 단말은 SR 자원을 할당 받을 수 없는 경우가 발생할 수 있다. 또는, 단말이 SR을 전송하였으나, 기지국으로부터 상향링크 자원할당이 소정의 기간 이후 수행되거나, SR 전송 횟수가 소정의 횟수를 초과하는 경우에도 상향링크 자원할당이 이루어지지 않을 수 있다.
SR이 트리거링 되면, 취소될 때까지 보류(pending)된다. 보류된 SR이 취소되는 경우는 1) MAC PDU(Packet Data Unit) 구성에서 MAC PDU에 트리거링 된 BSR이 포함될 때, 2) 단말이 모든 보류된 데이터를 전송할 수 있는 상향링크 그랜트(UL grant)를 수신했을 때이다. 모든 보류된 SR이 취소될 때, SR 차단 타이머가 중지된다. 모든 보류된 SR이 취소되는 경우는 SR로 인해 랜덤 액세스 절차가 초기화될 때이다. 만약 SR이 계속 보류되면, RRC(Radio Resource Control)에 PUCCH 또는 SRS를 해제(release)하라고 통보하고, 구성된 하향링크 및 상향링크 그랜트를 모두 클리어(clear)하고, 랜덤액세스 절차를 초기화하여 보류된 SR를 취소한다.
이와 같이 단말은 SR을 전송할 수 없거나, 전송에 실패하는 경우 대안으로 경쟁기반 랜덤 접속(Random Access) 절차를 시작할 수 있다.
도 3은 본 발명이 적용될 수 있는 상향링크 스케줄링 요청 실패 시의 절차에 대한 일 예를 도시한 도면이다.
단말(301)이 기지국(302)으로 스케줄링 요청을 전송함에 있어서 실패하는 경우는 다양한 이유가 있을 수 있다.
그 일 예로, 기지국(302)이 단말(301)로 잘못된 파워를 설정해주는 경우에 대해서 설명한다.
기지국(302)이 단말에게 잘못된 파워 설정을 전송하면(S310), 단말(301) 기지국의 파워 설정에 따라 단말의 전송 파워를 설정한다.
이후, 단말(301)에 버퍼상태보고가 트리거되어 스케줄링 요청 전송이 요구되는 경우, 단말(301)은 기지국(302)으로 스케줄링 요청(Dedicated Scheduling Request, 이하 D-SR이라 함)을 전송한다(S330). 단말(301)은 스케줄링 요청을 전송하고 D-SR 전송 카운트에 1을 더한다(S320). D-SR 전송 카운트에 1을 더하는 단계는 D-SR 전송 단계와 동시에 일어날 수도 있고, D-SR 전송 단계 이전 또는 이후에 발생할 수도 있다.
이후, 단말(301)의 첫 번째 D-SR 전송이 실패하면(S331), 단말은 일정 시간 간격 후에 다시 D-SR을 전송한다(S350). 이 경우에도 단말은 D-SR 전송 카운트에 1을 더한다(S340). 두 번째 D-SR 전송이 실패하면(S351), 단말(301)은 일정 시간 간격 후에 다시 D-SR을 전송한다(S370). 이 경우에도 단말은 D-SR 전송 카운트에 1을 더한다(S360).
이와 같이 단말은 일정 시간 간격으로 D-SR 전송을 하였으나, 실패하는 경우에 D-SR 전송 카운트가 최대 전송 카운트 값에 도달하면(S380) 추가적인 D-SR 전송 없이 상향링크 리소스를 해제하고 랜덤 접속 절차를 개시한다(S390).
랜덤 접속 절차는 위에서 설명한 바와 같이 경쟁 기반 랜덤 접속 절차일 수 있다.
랜덤 접속 절차를 위해서 단말(301)은 기지국(302)으로 랜덤 접속 프리앰블을 전송한다(S395).
위에서는 기지국(302)이 단말(301)에 잘못된 파워 설정을 전송하여 SR 전송이 실패하는 경우를 설명하였으나, 이하에서는 구체적으로 SR 전송이 실패하는 다른 경우 및 단말의 동작에 대해서 설명한다.
만일 SR이 트리거되었고, 대기중인 SR(pending SR)이 없는 경우에 단말은 전송 카운트(SR_COUNTER) 값을 0으로 설정해야 한다.
하나의 SR이 pending되어 있는 한, 단말은 각 시간 간격(Time To Interval, 이하 TTI라 함)에 대하여 아래와 같은 절차를 진행한다.
이번 TTI에서 전송을 위해 가용한 UL-SCH 자원이 없는 경우를 가정한다.
1) 만일 단말이 어떤 TTI에서도 SR을 보낼 유효한 상향링크 제어채널(PUCCH) 자원이 없는 경우에 랜덤 액세스 절차를 초기화하고 모든 pending된 SR들을 취소한다.
2) 위의 1) 조건을 만족하지 않으면서 만일 단말이 이번 TTI에서 SR을 보낼 유효한 PUCCH 자원이 있고, 이번 TTI가 측정 갭(measurement gap)의 일부가 아니고 스케줄링 요청을 일정 시간 전송하지 않기 위한 타이머 (예를 들어, 스케줄링 요청 금지 타이머, sr-ProhibitTimer)가 진행 중이지 않는 경우에 스케줄링 전송 카운트 값이 최대 전송 카운트 값보다 작으면(예를 들어, SR_COUNTER < dsr-TransMax) SR_COUNTER 값을 1 증가시킨다. 이후, 물리계층에 PUCCH를 통해 SR 신호를 전송하라고 지시한다. 또한, 스케줄링 요청 금지 타이머(예를 들어, sr-ProhibitTimer)를 시작한다.
만일, SR_COUNTER가 dsr-TransMax 보다 크거나 같으면, RRC에 PUCCH 및 SRS(Sounding Reference Signal)의 해제(release)를 알린다. 이후, 모든 구성된 하향링크 할당들과 업링크 그랜트(grant)들을 지운다(clear). 또한, 랜덤 액세스 절차를 초기화하고 모든 pending된 SR들을 취소한다.
위에서 설명한 바와 같이 단말은 SR이 트리거되면, 위와 같은 절차를 거쳐서 SR을 전송하거나, SR 전송을 실패처리하고 랜덤 접속 절차를 수행할 수 있다.
이하에서는, 본 발명이 적용될 수 있는 단말이 복수의 기지국과 이중 연결되어 데이터를 송수신하는 경우에 단말 및 기지국의 스케줄링 요청 송수신 방법에 대해서 설명한다.
구체적으로 본 발명은 단말이 두 개 이상의 서로 다른 기지국과 상향링크에 대하여 무선연결이 되어 있으며, 특정 EPS(Evolved Packet switched System) 베어러(bearer) 또는 무선 베어러(Radio Bearer, RB)는 복수의 기지국 각각마다 분리되어 구성되어 있을 수 있다. 또는 단일 EPS 베어러 또는 무선 베어러가 2개 이상의 서로 다른 기지국을 통해 구성되어 있을 수 있다.
도 4 내지 도 6에서는 본 발명이 적용될 수 있는 각 기지국마다 구성된 무선 베어러 기반 데이터 서비스 연결 성정 시 상향링크 전송의 다양한 예를 설명한다.
도 4 내지 도 6에서 각 기지국은 하나의 단말에 대하여 각 기지국에 구성된 전체 무선 베어러(도 4) 또는 무선 베어러의 일부 구성요소들이 각 기지국에서 중복되어 구성되어 (도 5/6)각 구성요소를 통해 하향링크 데이터의 송신 및 상향링크 데이터의 수신을 처리할 수 있다. 각 기지국에서 구성된 무선 베어러와 상응하는 무선 베어러는 단말에 구성되며 단말은 기지국들 모두에 구성된 상기 단말과 관련된 모든 무선 베어러들에 대하여 상응하는 무선 베어러들이 구성된다. 즉, 단말 내 각 무선 베어러의 종단점은 각 기지국의 동일한 무선 베어러 ID를 가지는 무선 베어러이다.
기본적으로 단말 내 각 무선 베어러에서 발생한 데이터들은 해당 무선 베어러가 구성되어 있는 기지국으로 전달되어야 한다. 따라서 단말은 단말 내 상위 계층 또는 어플리케이션 계층에서 발생한 상향링크 데이터가 각 무선 베어러 내 PDCP / RLC 계층 내 존재하는 데이터들을 기준으로 SR를 트리거링하고 이를 각 기지국에 전달하여야 한다.
그러나 단말은 SR를 전송하기 위해 네트워크(즉, 각 기지국)로부터 SR자원을 미리 할당 받아야 한다. 기존 캐리어 집합(Carrier Aggregation, CA)의 경우, 단일 기지국이 복수의 서빙 셀을 구성할 수 있었으므로 SR 자원을 할당해야 할 서빙셀은 하나로 충분했다. 따라서 기지국은 특정 단말을 위해 각 서빙 셀에 대한 상향링크 자원 할당 필요여부를 SR 자원을 포함하는 PUCCH를 전송할 수 있는 프라이머리 셀(Primary Cell, PCell)을 통해 SR을 수신함으로써 확인할 수 있었다.
그러나 이중연결 환경은 비이상 백하울(non-ideal backhaul)을 통해 연결되어 있는 복수의 기지국들 각각 독립적으로 무선자원제어를 위한 스케줄러가 운용되는 것을 가정하고 있다. 따라서 가능한 빠르게 스케줄러에게 전달되어 상향링크 자원할당이 필요함을 확인하도록 해야 하는 SR의 기본 목적을 달성하기 위해서 SR은 각 기지국의 무선자원을 이용하여 직접 전달되어야 한다. 이는, 이중연결을 구성한 해당 단말에 대하여 각 기지국의 스케줄러가 독립적으로 상향링크에 대한 스케줄링이 가능한 경우, 즉 RRM(Radio Resource Management) 기능 중 DRA(dynamic resource allocation) 패킷 스케줄링(packet scheduling) 기능이 각 기지국마다 독립적으로 존재하는 경우에 더욱 요구된다.
따라서 기존 CA와는 다른 환경인 복수의 기지국으로 단일 단말에서 발생한 상향링크 트래픽에 대한 자원할당을 요구하기 위한 새로운 방법이 요구된다.
이하에서는, 도 4 내지 도 6을 참조하여 복수의 기지국에 설정된 무선 베어러의 구성에 따라 본 발명이 적용될 수 있는 실시예들을 설명한다.
도 4는 본 발명이 적용될 수 있는 복수의 무선 베어러를 형성하는 이중 연결 설정의 일 실시예를 도시한 도면이다.
도 4를 참조하면, 단말(401)은 복수의 기지국(402, 403)과 이중 연결 설정되어 있으며, 복수의 베어러(410, 420)로 연결되어 있다.
Packet Data Convergence Protocol(이하, PDCP)는 무선 트래픽 스택의 계층 중 하나이며, IP헤더 압축 및 압축 해지, 사용자 데이터의 전송 및 무선 베어러에 대한 시퀀스 번호 유지 등을 수행한다.
Radio Link Control(이하, RLC)는 스케줄링과 데이터의 재전송을 담당하는 무선 트래픽 스택의 계층 중 하나이다.
즉, 데이터는 상위계층에서 PDCP로 전송되고 PDCP에서 압축 등의 과정을 거친 후 RLC로 전송된다. RLC에서는 데이터 전송에 대한 스케줄링과 재전송 여부를 수행한다.
이후 데이터는 Media Access Control(이하, MAC) 계층을 거쳐서 Physical(이하, PHY) 계층을 통해서 기지국으로 전달된다. 하향링크에 따라 데이터가 단말로 전송되는 경우에도 같은 절차를 거칠 수 있다.
도 4에서는, 단말(401)이 복수의 기지국(402, 403)과 이중 연결된 경우를 간략히 도시하고 있다. 이 경우, 단말(401)과 기지국(402)은 하나의 무선 베어러(410)로 연결되어 있고, 다른 기지국(403)도 단말과 독립적인 하나의 무선 베어러(420)로 연결되어 있다.
즉, 단말은 2개의 PDCP 및 RLC를 각각 독립적인 무선 베어러내에 구성하여, 각 PDCP 및 RLC와 같은 무선 베어러로 연결된 기지국과 데이터 송수신을 수행한다.
또한, 각각의 무선 베어러는 서로 다른 EPS 베어러의 일부구간이다. 따라서 상기 EPS 베어러의 나머지 구간(S1 bearer, S5/S8 bearer)을 통해 S-게이트(S-GW)와 P-게이트(P-GW)를 거쳐서 코어 망과 연결된다.
도 5은 본 발명이 적용될 수 있는 단일 무선 베어러를 형성하는 이중 연결 설정의 다른 실시예를 도시한 도면이다.
도 5를 참조하면 단말(501)은 서로 다른 기지국(502, 503)과 하나의 무선 베어러(#1 무선 베어러, 510)를 구성한다.
즉, 각 기지국(502, 503)은 하나의 단말(501)에 대하여 각 기지국에 구성된 무선 베어러의 일부 구성요소들이 각 기지국에서 중복되어 구성되어 각 구성요소를 통해 상향링크 데이터의 수신을 처리한다.
즉, 도 5에서의 일 실시예에 따르면, 물리계층, MAC계층 및 RLC계층은 각 기지국(502, 503)에 각각 구성되어 있으나, PDCP계층은 하나의 기지국(502)에만 구성되어 있다.
상기 각 기지국(502, 503)에서 구성된 무선 베어러와 상응하는 무선 베어러는 단말(501)에 구성되며, 단말(501)은 기지국들(502, 503) 모두에 구성된 모든 무선 베어러들에 대하여 상응하는 무선 베어러들을 구성한다.
기본적으로 단말(501) 내 무선 베어러(예를들어, #1 무선베어러)에서 발생한 데이터들은 해당 무선 베어러가 구성되어 있는 기지국(502, 503)으로 전달된다.
복수의 기지국 상호간에는 기지국 간의 인터페이스(예를 들어, MeNB와 SeNB간에 정의되는 Xn 인터페이스, 530)를 통해서 연결된다.
따라서, 단말(501)은 단말(501) 내 상위계층 또는 어플리케이션 계층에서 발생한 상향링크 데이터가 무선 베어러 내 PDCP/RLC 엔티티 내에 존재하는 각각의 데이터들을 기준으로 버퍼상태정보를 생성하고, 이를 각 기지국(502, 503)에 전달한다.
그러나, 이 경우에도 스케줄링 요청은 하나의 무선 베어러 내의 각각의 기지국마다 이루어질 수 있다. 따라서, 각 기지국이 제공하는 서빙 셀에서 데이터 전송 요청이 발생한 경우 각 기지국으로 스케줄링 요청을 전송하는 방법이 요구된다.
도 6는 본 발명이 적용될 수 있는 단일 무선 베어러를 형성하는 이중 연결 설정의 또 다른 실시예를 도시한 도면이다.
도 6은 본 발명의 다른 실시예에 따른 단일 무선 베어러가 복수의 기지국(602, 603)에 구성되어 있는 경우를 보여준다.
그러나, 도 6은 도 5와 달리 하나의 RLC 계층을 구성하는 경우를 도시한다.
즉, PDCP 계층은 마스터 기지국(예를 들어, MeNB, 602)에만 구성되며, 부가 기지국(예를 들어, SeNB, 603)의 RLC 계층은 단말(601)로부터 수신한 정보를 MeNB(602)의 RLC로 전달(forwarding)하는 기능을 담당한다.
즉, MeNB(602)의 RLC가 Master RLC이고, SeNB(603)의 RLC는 Slave RLC일 수 있다.
SeNB(603)은 도시된 바와 같이 하나일 필요는 없고 다수 존재할 수도 있다.
이 경우, 단말(601)로부터 수신한 정보의 전달은 Xn 인터페이스(또는, X2 인터페이스)를 통해서 전달된다.
단말(601)도 기지국의 무선 베어러와 동일한 무선 베어러 구성을 갖기 때문에, 하나의 RLC 및 PDCP로 구성된다.
즉, 일 예로, 전술한 바와 같이 각 기지국에서 구성된 무선 베어러와 상응하는 무선 베어러가 단말에 구성되므로, 기지국과 동일한 PDCP/RLC 엔티티의 형태로 구성될 수 있다. 기지국이 하나의 PDCP 엔티티를 갖으므로, 단말도 하나의 PDCP 엔티티를 구성하고, 기지국의 RLC 엔티티는 마스터/슬레이브의 관계이므로, 단말도 하나의 RLC 엔티티만을 가질 수 있다. 따라서, 이 경우에는 상위계층으로부터의 데이터가 발생하면, 단말은 하나의 스케줄링 요청을 전송할 수 있고, 발생된 스케줄링 요청을 어느 기지국으로 전송할 것인가의 결정이 요구된다.
이하에서는, 도 4 내지 도 6에서 도시된 바와 같이 단말이 복수의 기지국과 이중 연결된 경우에 본 발명의 단말 스케줄링 요청을 전송하는 방법의 각 실시예들을 살펴본다.
제 1 실시예 : 이중 연결된 특정 기지국에 대한 SR 자원 할당 권한이 있는 기지국(예를 들어, MeNB)은 각 기지국에 SR 자원을 할당하고, 단말은 각 기지국에 대해 독립적으로 SR을 운용하는 방법.
도 7 및 도 8을 참조하여 기지국 및 단말의 동작에 대해서 구체적으로 설명한다.
도 7은 본 발명의 제 1 실시예에 따른 기지국의 동작을 도시한 흐름도이다.
도 7을 참조하면, SR 자원 구성을 담당하는 기지국은 단말과 이중 연결된 상기 기지국 및 하나 이상의 다른 기지국 각각에 대한 스케줄링 요청 자원을 할당하고(S710), 할당된 스케줄링 요청 자원 정보를 포함하는 제 1 설정정보 및 스케줄링 요청 설정을 위한 RRC 연결 재구성 정보를 포함하는 제 2 설정정보를 생성한다(S720).
이후, 제 1 설정 정보 및 제 2 설정정보를 상위계층 시그널링(예를 들어, RRC )을 통해서 단말로 전송한다(S730). 단말에 SR 트리거링이 발생하면, 단말로부터 스케줄링 요청을 수신한다(S740).
즉, 기지국(예를 들어, MeNB 또는 SeNB)는 단말과 이중 연결된 다른 기지국과의 협력통신(예를 들어, Xn 인터페이스 또는 X2 인터페이스를 통한 통신)을 이용하여 SR 자원할당 여부를 결정하기 위한 기지국간 협의(또는 조정)를 진행하고 협의결과를 바탕으로 기지국의 상향링크 트래픽 정보들에 기초하여 단말의 SR 자원을 할당한다. 상기 협의 과정에서 각 기지국이 제공하는 정보로는 각 기지국의 상향링크 자원에 대한 부하율(loading factor) 또는 각 기지국의 상향링크 무선링크의 신뢰도(예를 들어 'SIR: 신호 대 간섭비' 등) 등이 될 수 있다.
SR 자원은 각 단말마다 배타적으로(즉, 독립적이며 중복되지 않도록) 할당될 수 있으므로, 복수의 기지국 각각은 단말에게 할당된 자원에 대한 정보를 제 1 설정정보에 포함시켜 각각 전송할 수 있고, 복수의 기지국 중 RRC 계층이 존재하는 어느 하나의 기지국만이 이중연결에 포함된 전체 기지국들과 협의하여 할당이 결정된 SR 자원들에 대한 정보를 전송할 수도 있다(S730).
단말이 SR을 전송하기 위해서는 PUCCH 상에 할당되는 SR 자원에 대한 정보 뿐만 아니라 SR 전송을 제어하기 위한 기능들에 대한 정보도 요구된다.
기지국은 이러한 SR 전송 관련 정보(예를 들어, SchedulingRequestConfig)를 제 2 설정정보에 포함시켜 단말로 전송한다(S730).
구체적으로 예를 들면, 제 2 설정정보에는 전송요청설정정보(SchedulingRequestConfig), 스케줄링요청 금지타이머 정보(sr-ProhobitTimer) 등이 포함될 수 있다.
스케줄링요청 금지타이머 정보는 아래 파라미터로 전송될 수 있다.
MAC-MainConfig
Figure PCTKR2014007376-appb-I000001
스케줄링 요청 금지 타이머는 단말이 기지국으로 스케줄링 요청을 보낸 후 일정 시간 동안 스케줄링 요청을 전송하는 것을 금지하기 위한 시간 정보를 포함하는 파라미터로 MAC-MainConfig 정보에 포함되어 RRC 파라미터로 전송된다.
전송요청설정정보는 아래 파라미터로 전송될 수 있다.
Figure PCTKR2014007376-appb-I000002
주요 파라미터에 대해서 설명한다.
sr-PUCCH-ResourceIndex는 안테나 포트 P0 및 P1을 위한
Figure PCTKR2014007376-appb-I000003
파라미터이다.
sr-ConfigIndex는 ISR 에 대한 정보를 포함하는 파라미터이다.
dsr-TransMAX는 스케줄링 요청의 최대 전송 카운트 값에 대한 정보를 포함하는 파라미터이다.
한편, 기지국 및 하나 이상의 기지국이 단말과 단일 무선 베어러로 연결된 경우(예를 들어, 도 5 및 도 6의 경우)에는 제 2 설정정보에 포함되는 스케줄링 요청 전송을 위한 타이머 값 및 스케줄링 요청 전송 최댓값은 하나 이상의 다른 기지국과 동일하게 설정될 수 있다.
만약, 기지국 및 하나 이상의 기지국이 단말과 각각의 개별 무선 베어러로 연결된 경우(예를 들어, 도 4의 경우)에는 제 2 설정정보에 포함되는 스케줄링 요청 전송을 위한 타이머 값 및 스케줄링 요청 전송 최댓값이 각 기지국 별로 독립적으로 설정될 수 있다.
위와 같이 복수의 기지국이 단말과 단일한 무선 베어러로 연결되어있는지 또는 각각의 독립적인 무선 베어러로 연결되어있는지에 따라서, 제 2 설정정보에 포함된 값은 다르게 생성될 수 있다(S720).
S730 단계 이후에, 기지국은 단말로부터 각 서빙 셀 마다 발생한 상향링크 트래픽의 발생에 따라 독립적으로 트리거링되어 전송된 상향링크 스케줄링을 수신한다. 단말이 독립적으로 트리거링된 상향링크 스케줄링을 송신하는 동작은 도 8을 참조하여 설명한다.
도 8은 본 발명의 제 1 실시예에 따른 단말의 동작을 도시한 흐름도이다.
본 발명의 제 1 실시예에 따른 복수의 기지국에 이중 연결된 단말이 스케줄링 요청(Scheduling Request)을 전송하는 방법에 있어서, 복수의 기지국에 각각 할당된 스케줄링 요청 자원 정보를 포함하는 제 1 설정정보 및 스케줄링 요청 설정을 위한 RRC 연결 재구성 정보를 포함하는 제 2 설정정보를 상위계층 시그널링을 통해서 수신하는 단계(S810)와 복수의 기지국으로부터 제공되는 서빙 셀 중 어느 하나의 서빙 셀에서 데이터 전송을 위한 스케줄링 요청 트리거링이 발생하면, 제 1 설정정보 및 제 2 설정정보에 기초하여 스케줄링 요청 전송을 위한 조건을 확인하는 단계(S830) 및 조건을 확인한 결과에 따라 복수의 기지국 중 적어도 하나의 기지국으로 스케줄링 요청을 전송하는 단계(S840)를 포함한다.
즉, 단말은 복수의 기지국에 각각 할당된 스케줄링 요청 자원 정보를 포함하는 제 1 설정정보를 수신하며, 전술한 파라미터들이 포함된 제 2 설정정보를 복수의 기지국 각각으로부터 수신한다(S810). 또는 복수의 기지국 중 어느 하나의 기지국(예를 들어, MeNB)으로부터 복수의 기지국 각각에 대한 제 1 설정정보 및 제 2 설정정보를 수신할 수도 있다.
한편, 단말은 제 1 설정정보 및 제 2 설정정보에 기초하여 스케줄링 요청 전송을 위한 조건을 확인한다(S830).
이 경우, 단말은 스케줄링 요청을 위한 조건을 확인하는 단계에 있어서, 타이밍 어드밴스(Timing Advance) 값에 기초하여 복수의 서빙 셀을 기지국 별로 그룹화하고, 어느 하나의 서빙 셀에서 스케줄링 요청 트리거링이 발생하면, 어느 하나의 서빙 셀이 속한 기지국에 대한 정보를 확인하는 것을 특징으로 하는 방법을 더 포함할 수 있다(S820).
S820 단계는 S830 단계 이전에 수행될 수 있고, 동시에 수행될 수도 있다.
단말은 복수의 서빙 셀과 연결되어 통신을 수행할 수 있으며, 단말에 연결된 복수의 서빙 셀은 전술한 바와 같이 타이밍 어드밴스 값에 기초하여 복수의 그룹으로 설정될 수 있다.
또한, 단말은 전술한 조건을 확인한 결과 어느 하나의 서빙 셀에 대한 스케줄링 요청 전송을 진행할 수 없고, 어느 하나의 서빙 셀이 속하는 기지국에 대한 경쟁기반 랜덤 접속 절차도 수행할 수 없는 경우, 어느 하나의 서빙 셀이 속하는 기지국의 타임 얼라이먼트 타이머(Time Alignment Timer,이하 TAT라 함)를 만료시키고 물리 상향링크 제어채널을 해제할 수 있다(S830).
이하에서는 단말이 서빙 셀을 그룹화하는 기준인 타이밍 어드밴스 및 타이밍 얼라이먼트에 대해서 구체적으로 알아본다.
OFDM (Orthogonal Frequency Division Multiplex) 기술을 기반으로 하는 LTE 시스템에서는 단말(UE)과 기지국간의 통신이 다른 사용자들의 통신상에 간섭 작용을 발생시킬 가능성이 존재한다. 이러한 간섭작용을 최소화하기 위해, 기지국이 단말의 전송 타이밍을 관리하는 것이 매우 중요하다. 좀 더 구체적으로 설명하면, 단말은 셀 내의 임의의 영역에 존재할 수 있으며, 이는 단말이 송신한 데이터가 기지국에 도달하는 시간이 각각 단말의 위치에 따라 다를 수 있다는 것을 의미한다.
즉, 셀 가장자리에서 송신을 시도하는 단말의 경우, 송신이 기지국에 도달하는 시간은 셀 중앙에 있는 단말의 송신의 도달 시간보다 길 것이다. 반대로 셀 중앙에 있는 단말의 송신이 기지국에 도착하는 시간은 셀 가장자리에 있는 단말의 송신보다 상대적으로 짧을 것이다. 기지국 측면에서는 간섭영향을 막기 위하여 셀 내의 모든 단말들이 전송한 데이터 또는 신호들이 매 시간 boundary안에서 수신될 수 있도록 해야 하기 때문에, 기지국은 단말의 위치 등과 같은 상황에 맞춰 단말의 전송 타이밍을 적절히 조절해야만 하고, 이러한 조절을 시간 동기 관리라고 한다.
시간 동기를 관리하는 한가지 방법으로 랜덤 액세스 동작이 있다. 즉, 랜덤 액세스 동작과정을 통해 기지국은 단말이 전송하는 랜덤 액세스 프리앰블을 수신하게 되고, 랜덤 액세스 프리앰블의 수신 정보를 이용하여, 단말의 전송 타이밍을 빠르게 혹은 느리게 하기 위한 시간 동기 값을 계산한다. 그리고 랜덤 액세스 응답을 통해 단말에게 계산된 시간 동기 값을 알려주고, 단말은 값을 이용하여, 전송 타이밍을 갱신하게 된다.
또 다른 방법으로는, 기지국은 단말이 주기적 혹은 임의적으로 전송하는 Sounding Reference Symbol (SRS)를 수신하고, 수신된 신호를 통해 단말의 시간 동기 값을 계산하여, 단말에게 알려준다. 이에 따라, 단말은 자시의 전송타이밍을 갱신하게 된다.
앞에서 설명한 바와 같이 기지국은 랜덤 액세스 프리앰블 또는 Sounding Reference Symbol을 통해 단말의 전송타이밍을 측정하고, 보정 할 타이밍 값을 계산하여 단말에게 알려준다. 상기처럼 기지국이 단말에게 전송하는 시간 동기 값 (즉, 보정할 타이밍 값)을 타이밍 어드밴스 명령(Timing Advance Command, 이하 TAC라 함)라고 부른다. 또한 상기TAC는 MAC 계층에서 처리한다. 그리고, 단말은 항상 고정된 위치에만 존재하지 않기 때문에, 단말이 이동하는 속도와 위치 등에 따라 단말의 전송 타이밍은 매번 바뀌게 된다. 이런 점을 고려하여, 단말은 기지국으로부터 한번 시간동기명령을 받으면 무한한 시간 동안 시간동기 명령이 유효하다가 보지 않고, 특정 시간 동안에만 시간동기 명령이 유효하다고 가정해야 한다. 이를 위해 사용되는 것이 타이밍 얼라이먼트 타이머(Time Alignment Timer, 이하 TAT라 함)이다.
즉, 단말은 기지국으로부터 TAC를 수신하면, TAT를 개시하게 된다. 그리고, TAT가 동작 중에만, 단말은 기지국과 시간 동기가 맞아 있다고 가정한다. TAT값은 시스템 정보 또는 RRC 연결 재구성(RRC connection Reconfiguration)등과 같은 RRC 신호를 통해 전달 될 수 있다. 또한, 단말은 TAT가 동작 중에, 새로운 TAC를 기지국으로부터 수신하였다면, TAT를 재시작 하게 된다. 그리고, TAT가 만료되거나, TAT가 동작하지 않는 때에는 단말은 기지국과 시간동기가 맞지 않다고 가정하고, 랜덤 액세스 프리앰블을 제외한 어떠한 상향링크 데이터 또는 제어 신호 (예를 들면, PUSCH 데이터와 PUCCH 제어신호)의 전송을 하지 않는다.
이와 같이 기지국은 단말에 구성한 각 서빙셀의 타이밍 어드밴스 값에 기초하여 동일하거나 일정 범위내의 타이밍 어드밴스를 갖는 서빙 셀들을 하나의 그룹으로 구성할 수 있다. 이 때 상기 그룹에 포함되는 서빙 셀들은 업링크 구성여부와 관계없이 그룹으로 포함될 수 있다. 예를 들어, 기지국은 업링크가 구성되지 않은 서빙셀들에 대하여 각 그룹 내 타이밍 참조 셀의 다운링크 동기 시점을 비교하여 동일하거나 일정 범위내의 다운링크 동기 시점을 가지는 서빙셀을 동일 그룹으로 구성할 수 있다. 또는 업링크가 구성되지 않은 서빙셀들은 모두 pTAG에 포함되도록 구성할 수도 있다.
이 경우, 복수의 기지국이 단말에 제공하는 복수의 서빙 셀 들을 타이밍 어드밴스 그룹(TAG)으로 그룹화하면, 단말 내의 서빙 셀들이 기지국 단위로 그룹화 될 수 있다.
즉, 예를 들어 pTAG 와 sTAG #1은 서로 다른 기지국내에 포함된 서빙 셀들을 구분하는 기준이 될 수 있다. 예를 들어, 단말은 pTAG에 포함된 서빙 셀들을 MeNB에 포함된 서빙 셀들로 판단할 수 있으며 sTAG#1에 포함된 서빙 셀들을 SeNB에 포함된 서빙 셀들로 판단할 수 있다.
이후, 단말은 각 서빙 셀 별로 발생하는 스케줄링 요청에 대해서는 독립적으로 운용한다. 즉, 각 서빙 셀 별로 스케줄링 요청이 독립적으로 트리거링 될 수 있으며, 스케줄링 카운트 및 pending SR 취소 등은 독립적으로 동작한다.
만약, 특정 서빙 셀에서 SR 트리거링이 발생하는 경우, 단말은 전술한 트리거링 조건(예를 들어, SR 트리거링 취소 조건 등) 등을 확인하여 스케줄링 요청을 전송할 것인지 판단하여 SR 트리거링이 발생한 서빙 셀의 기지국으로 SR을 전송한다(S840).
만약, 단말이 조건을 확인한 결과 어느 하나의 서빙 셀에 대한 스케줄링 요청 전송을 진행할 수 없고, 트리거링이 발생한 어느 하나의 서빙 셀이 속하는 기지국에 대한 경쟁기반 랜덤 접속 절차도 수행할 수 없는 경우에는, 트리거링이 발생한 어느 하나의 서빙 셀이 속하는 기지국의 타임 얼라이먼트 타이머를 만료시키고 물리 상향링크 제어채널을 해제한다(S840).
즉, 단말은 복수의 서빙 셀 중 SR 트리거링이 발생한 서빙 셀을 확인하고, 트리거링 조건을 확인한다.
다시 말해서, SR 카운트 값이 최대 전송 카운트 값 보다 작으면 SR 전송을 진행하고, SR 카운트 값이 최대 전송 카운트 값 보다 같거나 크면 전술한 TAG를 이용해서 트리거링이 발생한 서빙 셀이 SeNB내의 서빙 셀인지 확인한다. 여기서 트리거링이 발생한 서빙 셀이 SeNB내의 서빙 셀인지 확인하기 위한 정보로 TAG만을 사용하는 것으로 한정하는 것은 아니다. 즉, 기지국이 RRC 시그널링을 통해 제공한 각 서빙셀과 각 기지국간 매핑 정보를 이용할 수도 있다.
확인 결과 SeNB로 확인되면, 단말은 타임 얼라이먼트 타이머를 만료시키고, 모든 HARQ(Hybrid-ARQ) 버퍼를 flush하며, PUCCH 및 SRS를 해제한다. 이 경우는 경쟁 기반 랜덤 접속을 진행할 수 없는 경우이다.
만약, SeNB가 아닌 것으로 확인되면, MeNB 내 PCell을 통해 경쟁 기반 랜덤 접속 절차를 진행한다.
전술한 제 1 실시예와 다른 방법에 의해서 스케줄링 요청을 송수신할 수도 있다.
제 2 실시예 : 이중 연결에 포함된 특정 기지국에 대한 SR 자원 할당 권한이 있는 기지국은 상향링크 트래픽 분배 정보에 기초하여 SR 자원을 할당하고, 단말은 특정 서빙 셀에 SR이 트리거링 되면, 모든 SR 자원을 동시에 트리거링하여 SR을 전송하는 방법.
도 9는 본 발명의 제 2 실시예에 따른 기지국의 동작을 도시한 흐름도이다.
본 발명의 제 2 실시예에 따른 기지국이 단말로부터 스케줄링 요청(Scheduling Request)을 수신하는 방법에 있어서, 단말과 이중 연결된 기지국 및 하나 이상의 다른 기지국 각각에 대한 스케줄링 요청 자원을 할당하고(S910), 할당된 스케줄링 요청 자원 정보를 포함하는 제 1 설정정보 및 스케줄링 요청 설정을 위한 RRC 연결 재구성 정보를 포함하는 제 2 설정정보를 생성하는 단계(S920)와 제 1 설정 정보 및 제 2 설정정보를 상위계층 시그널링을 통해서 단말로 전송하는 단계(S930) 및 단말로부터 스케줄링 요청을 수신하는 단계를 포함한다(S940).
이 경우, 기지국은, 하나 이상의 다른 기지국과 단일 무선 베어러를 형성하며, 기지국의 RLC는 마스터 RLC인 경우이다(예를 들어, 도 6의 경우).
구체적으로 각 단계를 살펴보면, 기지국(예를 들어, MeNB)은 스케줄링 요청 자원을 할당함에 있어서, 상향링크 트래픽 분배 정보, 단말의 경쟁 기반 랜덤접속 가능 여부에 대한 정보(예를 들어, 단말이 해당 기지국을 대상으로 경쟁 기반 랜덤 접속의 가능여부) 및 이중 연결 설정 정보(예를 들어, 해당 기지국이 MeNB인지 SeNB인지에 대한 정보) 중 적어도 하나 이상의 정보에 기초하여 SR 자원을 할당할 수 있다.
할당된 SR 자원에 대한 정보를 포함하는 제 1 설정정보를 생성하고, 전술한 SR 전송을 위한 정보(예를 들어, 전송요청설정정보(SchedulingRequestConfig) 및 스케줄링요청 금지타이머 정보(sr-ProhobitTimer))를 포함하는 제 2 설정정보를 생성한다(S920).
이후, 상위계층 시그널링(예를 들어, RRC 연결 재구성 메시지)을 통해서 이를 단말에 전송한다(S930). 기지국(예를 들어, MeNB)이 전송할 수도 있고, 다른 기지국(SeNB)과 기지국 각각 전송할 수도 있다.
단말은 기지국으로부터 전술한 제 1 설정정보 및 제 2 설정정보를 수신하여 SR 트리거링이 발생하면, SR을 전송한다(S940). 단말의 동작에 대해서는 도 10을 참조하여 상세히 설명한다.
도 10은 본 발명의 제 2 실시예에 따른 단말의 동작을 도시한 흐름도이다.
본 발명의 제 2 실시예에 따른 복수의 기지국에 이중 연결된 단말이 스케줄링 요청(Scheduling Request)을 전송하는 방법에 있어서, 복수의 기지국에 각각 할당된 스케줄링 요청 자원 할당 정보를 포함하는 제 1 설정정보 및 스케줄링 요청 설정을 위한 RRC 연결 재구성 정보를 포함하는 제 2 설정정보를 상위계층 시그널링을 통해서 수신하는 단계(S1010)와 복수의 기지국으로부터 제공되는 서빙 셀 중 어느 하나의 서빙 셀에서 데이터 전송을 위한 스케줄링 요청 트리거링이 발생하면, 제 1 설정정보 및 제 2 설정정보에 기초하여 스케줄링 요청 전송을 위한 조건을 확인하여 모든 서빙 셀의 SR 요청을 트리거링하는 단계(S1020) 및 모든 서빙 셀의 스케줄링 요청 트리거에 따라 복수의 기지국 중 적어도 하나의 기지국으로 스케줄링 요청을 전송하는 단계를 포함한다(S1030).
제 2 실시예의 경우, 복수의 기지국은 단말과 단일 무선 베어러를 형성하며, 복수의 기지국 중 어느 하나의 기지국의 RLC는 마스터 RLC인 경우에 적용된다(예를 들어, 도 6의 경우).
단말이 수신하는 스케줄링 요청 자원은 상향링크 트래픽 분배정보, 단말의 경쟁기반 랜덤접속 가능 여부 및 이중 연결 설정 정보 중 적어도 하나 이상의 정보에 기초하여 할당된 정보일 수 있다.
단말은 S1010 단계 이후에, 어느 하나의 셀에 대한 스케줄링 요청이 트리거링 되면, 단말과 이중 연결된 모든 서빙 셀의 스케줄링 요청을 트리거링)하여(S1020), 복수의 기지국 전체로 스케줄링 요청을 전송할 수 있다(S1030).
즉, 단말이 각 기지국마다 SR 자원을 할당 받은 경우, 단일 논리채널에 대한 데이터로 인해서 보통 버퍼상태보고(regular BSR)가 트리거링되면, 모든 SR 자원이 동시에 트리거링 된다. SR 절차는 단말 내 단일 절차로 진행될 수도 있으나, 트리거링되어 전송되는 SR 자원은 모든 기지국을 대상으로 한다(S1030).
위에서는 본 발명의 제 1 실시예 및 제 2 실시예에 대하여 단말 및 기지국의 동작에 대해서 설명하였다. 이하에서는 각 실시예들에 대한 단말 및 기지국의 신호 흐름에 기초한 동작을 살펴본다.
전술한 동작들은 이하에서 설명하는 각 기지국 및 단말에서 모두 동작될 수 있다.
도 11은 본 발명의 제 1 실시예에 따른 단말 및 기지국의 동작을 도시한 신호도이다.
도 7 및 도 8에서 설명한 바와 같이 제 1 실시예는 단말과 이중 연결된 복수의 기지국의 베어러 형성 종류와 관계없이 모두 적용될 수 있다. 즉, 도 4 내지 도 6에 모두 적용된다.
도 7을 참조하면, 기지국(1102)는 복수의 다른 기지국(1103)과 스케줄링 요청 자원 할당을 진행한다(S1110).
기지국(1102) 및 복수의 다른 기지국(1103)은 할당된 스케줄링 요청 자원에 대한 정보를 포함하는 제 1 설정정보 및 SR 전송을 위한 관련 정보를 포함하는 제 2 설정정보를 생성한다(S1120).
이후, 기지국(1102) 및 다른 기지국(1103) 각각은 단말(1101)에게 제 1 설정정보 및 제 2 설정정보를 전송한다(S1130, S1135). 또는 기지국(1102)이 다른 기지국(1103)의 자원 할당 정보 및 SR 전송 관련 정보를 단말(1101)로 송신할 수도 있다.
단말(1101)은 복수의 기지국으로부터 전술한 제 1 설정정보 및 제 2 설정정보를 수신한 후, 특정 서빙 셀에서 스케줄링 요청이 트리거링 되면(S1140) 제 2 설정정보에 포함된 파라미터들(예를 들어, 스케줄링 금지 타이머, 스케줄링 요청 설정정보 등)에 기초하여 SR 전송 가능 여부의 조건을 확인한다(S1150).
만약, SR 전송이 가능하면 단말은 SR이 트리거링 된 서빙 셀이 속하는 기지국으로 SR을 전송한다(S1160).
앞에서 설명한 바와 같이, 기지국이 구성한 TAG에 따라 복수의 서빙 셀을 타임 어드밴스 값에 기초하여 기지국 단위로 나뉜 TAG가 생성되고, 단말은 특정 서빙 셀에서 SR이 트리거링 되면 TAG에 기초하여 어느 기지국으로의 SR 전송인지 확인할 수 있다.
만약, 조건을 확인한 결과 SR 카운트 값이 최대 카운트 값에 도달하거나, 최대 카운트 값 이상이고, 경쟁 기반 랜덤 접속 절차를 수행할 수 없는 기지국으로의 SR 전송인 경우, 해당 서빙 셀이 속하는 TAG내의 타임 얼라이먼트를 만료시키고 PUCCH 및 SRS를 해제한다.
도 12는 본 발명의 제 2 실시예에 따른 단말 및 기지국의 동작을 도시한 신호도이다.
도 9 및 도 10에서 설명한 바와 같이 본 발명의 제 2 실시예는 단말이 복수의 기지국과 베어러 스플리트(Split) 형태로 연결되어 있고, 하나의 기지국의 RLC가 마스터 RLC고 다른 기지국이 슬레이브 RLC인 경우에 적용된다(예를 들어, 도 6의 경우).
도 12를 참조하면, 기지국(1202)은 복수의 다른 기지국(1203)의 스케줄링 요청 자원을 할당한다(S1210). 이 때 기지국은 상향링크 트래픽 분배정보, 단말의 경쟁기반 랜덤접속 가능 여부 및 이중 연결 설정 정보 중 적어도 하나 이상의 정보에 기초하여 할당할 수 있다.
기지국(1202, 1203)은 할당된 자원 정보를 포함하는 제 1 설정정보 및 SR 전송 관련 정보를 포함하는 제 2 설정정보를 생성하여(S1220), 단말(1201)로 전송한다(S1230, S1235).
이때, 자원을 할당한 하나의 기지국(예를 들어, MeNB, 1202)만이 단말(1201)로 제 1 설정정보 및 제 2 설정정보를 전송할 수도 있다.
이후, 단말(1201)은 특정 서빙 셀에서 스케줄링 요청이 트리거링되면(S1240), 모든 서빙 셀의 스케줄링 요청을 트리거링 한다(S1250).
단말(1201)은 모든 서빙 셀의 스케줄링 요청에 대한 전송 조건을 확인하고(S1260), 모든 서빙 셀이 속하는 각 기지국으로 SR을 전송한다(S1270, S1280).
즉, 단말(1201) 특정 서빙 셀에 SR 트리거링이 발생하면 모든 서빙 셀에 SR 트리거링을 발생시켜 단말과 이중 연결된 복수의 기지국으로 SR을 전송할 수 있다.
또는 SR 절차는 단말 내에서 단일 절차로 진행될 수 있으나, 트리거링 되어 전송되는 SR 자원은 모든 기지국을 대상으로 할 수 있다.
도 13은 본 발명의 실시예들이 적용될 수 있는 기지국의 블록도이다.
기지국(1300)의 구성을 살펴보면, 제어부(1320), 수신부(1310) 및 송신부(1330)로 구성된다.
제어부(1320)는 복수의 기지국에 대한 SR 자원할당 및 제 1 설정정보와 제 2 설정정보를 생성한다.
수신부(1310)는 단말로부터 상향링크 신호를 수신한다.
송신부(1330)는 생성된 제 1 설정정보 및 제 2 설정정보를 단말로 상위계층 시그널링(예를 들어, RRC 연결 재구성 메시지)을 통해서 전송한다.
또한, 전술한 제어부(1320)는 본 발명의 실시예들에 따라서 다른 기지국과의 신호를 송수신하는데 필요한 송신 정보를 생성하고, 다른 기지국으로부터 수신되는 신호를 수신하도록 제어할 수 있다.
기지국과 다른 기지국간의 정보교환은 Xn인터페이스를 통해서 이루어질 수 있으며, 또는 X2인터페이스를 통해서 이루어질 수 있다.
도 14는 본 발명의 실시예들이 적용될 수 있는 단말의 블록도이다.
단말(1400)의 구성을 살펴보면, 제어부(1420), 수신부(1410) 및 송신부(1430)으로 구성된다.
제어부(1420)는 기지국(예를 들어, MeNB)으로부터 수신되는 정보에 기초하여 SR 전송 조건 및 SR 전송 대상을 설정한다. 예를 들어, 제 1 실시예의 경우, 서빙 셀이 TAG 단위로 그룹화되고, 각 서빙 셀이 속하는 기지국을 구분된 후, 특정 서빙 셀에서 SR이 트리거링되면, SR 전송 절차가 독립적으로 운용되도록 제어한다.
또한, 제 2 실시예의 경우, 특정 서빙 셀에서 SR이 트리거링되면, 모든 서빙 셀의 SR을 트리거링하여 SR을 모든 기지국으로 전송하도록 제어할 수 있다.
송신부(1430)는 생성된 스케줄링 요청을 기지국(예를 들어, MeNB) 및/또는 다른 기지국(예를 들어, SeNB)으로 송신하며, 단말로부터 생성된 신호를 기지국 등으로 송신하는 역할을 한다.
수신부(1410)는 기지국 또는 다른 기지국으로부터 전송되는 신호를 수신한다.
이상에서 살펴본 바와 같이 본 발명은 단말이 단말과 이중 연결을 구성하는 서로 다른 기지국 내의 서빙 셀들 중 하나에 스케줄링 요청이 발생하면, 특정 기지국으로 스케줄링 요청을 전송할 수 있는 방법 및 장치를 제공하는 효과가 있다.
또한, 본 발명은 이중 연결된 각 기지국의 구성에 따라서, 스케줄링 요청의 전송 및 전송 실패 시 단말의 동작 방법 및 장치를 제공하는 효과가 있다.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.
CROSS-REFERENCE TO RELATED APPLICATION
본 특허출원은 2013년 8월 9일 한국에 출원한 특허출원번호 제 10-2013-0094996 호에 대해 미국 특허법 119(a)조 (35 U.S.C § 119(a))에 따라 우선권을 주장하며, 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다. 아울러, 본 특허출원은 미국 이외에 국가에 대해서도 위와 동일한 이유로 우선권을 주장하면 그 모든 내용은 참고문헌으로 본 특허출원에 병합된다.

Claims (15)

  1. 기지국이 단말로부터 스케줄링 요청(Scheduling Request)을 수신하는 방법에 있어서,
    상기 기지국 및 상기 단말과 이중 연결된 하나 이상의 다른 기지국 각각에 대한 스케줄링 요청 자원을 할당하고, 할당된 상기 스케줄링 요청 자원 정보를 포함하는 제 1 설정정보 및 스케줄링 요청 설정을 위한 RRC 연결 재구성 정보를 포함하는 제 2 설정정보를 생성하는 단계;
    상기 제 1 설정 정보 및 상기 제 2 설정정보를 상위계층 시그널링을 통해서 상기 단말로 전송하는 단계; 및
    상기 단말로부터 상기 스케줄링 요청을 수신하는 단계를 포함하는 방법.
  2. 제 1 항에 있어서,
    상기 기지국 및 상기 하나 이상의 다른 기지국이 상기 단말과 단일 무선 베어러로 연결된 경우,
    상기 제 2 설정정보에 포함되는 스케줄링 요청 전송을 위한 타이머 값 및 스케줄링 요청 전송 최댓값은 상기 하나 이상의 다른 기지국과 동일하게 설정되는 것을 특징으로 하는 방법.
  3. 제 1 항에 있어서,
    상기 기지국 및 상기 하나 이상의 다른 기지국이 상기 단말과 각각 독립적인 무선 베어러로 연결된 경우,
    상기 제 2 설정정보에 포함되는 스케줄링 요청 전송을 위한 타이머 값 및 스케줄링 요청 전송 최댓값은 상기 하나 이상의 다른 기지국과 독립적으로 설정되는 것을 특징으로 하는 방법.
  4. 제 1 항에 있어서,
    상기 스케줄링 요청은,
    상기 하나 이상의 다른 기지국과는 독립적으로 트리거링되어 수신되는 것을 특징으로 하는 방법.
  5. 제 1 항에 있어서,
    상기 기지국은,
    상기 하나 이상의 다른 기지국과 단일 무선 베어러를 형성하며, 상기 기지국의 RLC는 마스터 RLC인 것을 특징으로 하는 방법.
  6. 제 5 항에 있어서,
    상기 스케줄링 요청 자원은,
    상향링크 트래픽 분배정보, 상기 단말의 경쟁기반 랜덤접속 가능 여부 및 이중 연결 설정 정보 중 적어도 하나 이상의 정보에 기초하여 할당되는 것을 특징으로 하는 방법.
  7. 복수의 기지국에 이중 연결된 단말이 스케줄링 요청(Scheduling Request)을 전송하는 방법에 있어서,
    상기 복수의 기지국에 각각 할당된 스케줄링 요청 자원 정보를 포함하는 제 1 설정정보 및 스케줄링 요청 설정을 위한 RRC 연결 재구성 정보를 포함하는 제 2 설정정보를 상위계층 시그널링을 통해서 수신하는 단계;
    상기 복수의 기지국으로부터 제공되는 서빙 셀 중 어느 하나의 서빙 셀에서 데이터 전송을 위한 스케줄링 요청 트리거링이 발생하면, 상기 제 1 설정정보 및 상기 제 2 설정정보에 기초하여 스케줄링 요청 전송을 위한 조건을 확인하는 단계; 및
    상기 조건을 확인한 결과에 따라 상기 복수의 기지국 중 적어도 하나의 기지국으로 상기 스케줄링 요청을 전송하는 단계를 포함하는 방법.
  8. 제 7 항에 있어서,
    상기 복수의 기지국과 단일 무선 베어러로 연결된 경우,
    상기 제 2 설정정보에 포함된 스케줄링 요청 전송을 위한 타이머 값 및 스케줄링 요청 전송 최댓값은 상기 복수의 기지국 모두 동일하게 설정된 것을 특징으로 하는 방법.
  9. 제 7 항에 있어서,
    상기 복수의 기지국과 각각 독립적인 무선 베어러로 연결된 경우,
    상기 제 2 설정정보에 포함된 스케줄링 요청 전송을 위한 타이머 값 및 스케줄링 요청 전송 최댓값은 상기 복수의 기지국 각각 독립적으로 설정된 것을 특징으로 하는 방법.
  10. 제 7 항에 있어서,
    상기 스케줄링 요청을 위한 조건을 확인하는 단계에 있어서,
    타이밍 어드밴스(Timing Advance) 값에 기초하여 상기 복수의 서빙 셀이 기지국 별로 그룹화되고, 상기 어느 하나의 서빙 셀에서 스케줄링 요청 트리거링이 발생하면, 상기 어느 하나의 서빙 셀이 속한 기지국에 대한 정보를 확인하는 것을 특징으로 하는 방법.
  11. 제 10 항에 있어서,
    상기 조건을 확인한 결과 상기 어느 하나의 서빙 셀에 대한 상기 스케줄링 요청 전송을 진행할 수 없고, 상기 어느 하나의 서빙 셀이 속하는 기지국에 대한 경쟁기반 랜덤 접속 절차를 수행할 수 없는 경우,
    상기 어느 하나의 서빙 셀이 속하는 기지국의 타임 얼라이먼트 타이머를 만료시키고 물리 상향링크 제어채널을 해제하는 것을 특징으로 하는 방법.
  12. 제 7 항에 있어서,
    상기 복수의 기지국은,
    상기 단말과 단일 무선 베어러를 형성하며, 상기 복수의 기지국 중 어느 하나의 기지국의 RLC는 마스터 RLC인 것을 특징으로 하는 방법.
  13. 제 12 항에 있어서,
    상기 스케줄링 요청 자원은,
    상향링크 트래픽 분배정보, 상기 단말의 경쟁기반 랜덤접속 가능 여부 및 이중 연결 설정 정보 중 적어도 하나 이상의 정보에 기초하여 할당된 것을 특징으로 하는 방법.
  14. 단말로부터 스케줄링 요청(Scheduling Request)을 수신하는 기지국에 있어서,
    상기 기지국 및 상기 단말과 이중 연결된 하나 이상의 다른 기지국 각각에 대한 스케줄링 요청 자원을 할당하고, 할당된 상기 스케줄링 요청 자원 정보를 포함하는 제 1 설정정보 및 스케줄링 요청 설정을 위한 RRC 연결 재구성 정보를 포함하는 제 2 설정정보를 생성하는 제어부;
    상기 제 1 설정 정보 및 상기 제 2 설정정보를 상위계층 시그널링을 통해서 상기 단말로 전송하는 송신부; 및
    상기 단말로부터 상기 스케줄링 요청을 수신하는 수신부를 포함하는 기지국.
  15. 복수의 기지국에 이중 연결되어 스케줄링 요청(Scheduling Request)을 전송하는 단말에 있어서,
    상기 복수의 기지국에 각각 할당된 스케줄링 요청 자원 정보를 포함하는 제 1 설정정보 및 스케줄링 요청 설정을 위한 RRC 연결 재구성 정보를 포함하는 제 2 설정정보를 상위계층 시그널링을 통해서 수신하는 수신부;
    상기 복수의 기지국으로부터 제공되는 서빙 셀 중 어느 하나의 서빙 셀에서 데이터 전송을 위한 스케줄링 요청 트리거링이 발생하면, 상기 제 1 설정정보 및 상기 제 2 설정정보에 기초하여 스케줄링 요청 전송을 위한 조건을 확인하는 제어부; 및
    상기 조건을 확인한 결과에 따라 상기 복수의 기지국 중 적어도 하나의 기지국으로 상기 스케줄링 요청을 전송하는 송신부를 포함하는 단말.
PCT/KR2014/007376 2013-08-09 2014-08-08 무선 통신 시스템에서 스케줄링 요청을 송수신하는 방법, 단말 및 기지국 WO2015020478A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130094996A KR102148242B1 (ko) 2013-08-09 2013-08-09 무선 통신 시스템에서 단말의 스케줄링 요청 전송방법 및 장치
KR10-2013-0094996 2013-08-09

Publications (1)

Publication Number Publication Date
WO2015020478A1 true WO2015020478A1 (ko) 2015-02-12

Family

ID=52461696

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/007376 WO2015020478A1 (ko) 2013-08-09 2014-08-08 무선 통신 시스템에서 스케줄링 요청을 송수신하는 방법, 단말 및 기지국

Country Status (2)

Country Link
KR (1) KR102148242B1 (ko)
WO (1) WO2015020478A1 (ko)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017052206A1 (ko) * 2015-09-23 2017-03-30 주식회사 케이티 단말의 이동성 제어 방법 및 그 장치
WO2017086667A1 (en) * 2015-11-16 2017-05-26 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving scheduling request
WO2018030842A1 (ko) * 2016-08-11 2018-02-15 삼성전자 주식회사 무선 셀룰라 통신 시스템에서 지연감소를 위한 전송 방법 및 장치
WO2018208071A1 (ko) * 2017-05-11 2018-11-15 삼성전자 주식회사 단말 및 기지국 간의 연결 설정 방법 및 장치
US10462709B2 (en) 2015-09-23 2019-10-29 Kt Corporation Method for controlling mobility of terminal, and device therefor
CN112586073A (zh) * 2019-01-31 2021-03-30 Oppo广东移动通信有限公司 一种调度请求处理方法、终端设备及存储介质
US20210321425A1 (en) * 2018-12-28 2021-10-14 Fujitsu Limited Terminal device, base station device, and wireless communication system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10321504B2 (en) 2015-03-04 2019-06-11 Lg Electronics Inc. Method and device for searching for alternative link in wireless communication system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100058146A (ko) * 2008-11-24 2010-06-03 한국전자통신연구원 음성 패킷망 서비스에서 상향 링크 데이터 전송을 위한 자원 할당 방법
WO2011079210A1 (en) * 2009-12-23 2011-06-30 Interdigital Patent Holdings, Inc. Ferforming measurements in wireless communications using multiple carriers
US20120106510A1 (en) * 2010-11-02 2012-05-03 Innovative Sonic Corporation Method and apparatus for secondary cell release during handover in a wireless communication system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090038752A (ko) * 2007-10-16 2009-04-21 엘지전자 주식회사 데이터 전송 서비스를 위한 무선연결 설정방법
US8660076B2 (en) * 2010-08-12 2014-02-25 Lg Electronics Inc. Apparatus and method of transmitting scheduling request in wireless communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100058146A (ko) * 2008-11-24 2010-06-03 한국전자통신연구원 음성 패킷망 서비스에서 상향 링크 데이터 전송을 위한 자원 할당 방법
WO2011079210A1 (en) * 2009-12-23 2011-06-30 Interdigital Patent Holdings, Inc. Ferforming measurements in wireless communications using multiple carriers
US20120106510A1 (en) * 2010-11-02 2012-05-03 Innovative Sonic Corporation Method and apparatus for secondary cell release during handover in a wireless communication system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
INTERDIGITAL COMMUNICATIONS: "Dual Connectivity for Small Cell Deployments", 3GPP TSG-RAN WG2 #81,R2-131328, 15 April 2013 (2013-04-15), CHICAGO, USA, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_81bis/Docs/R2-131328.zip> *
TSGRAN; E-UTRA: "Study on Small Cell Enhancements for E-UTRA and E-UTRAN - Higher layer aspects (Release 12", 3GPP TR 36.842 V0.2.0, 7 June 2013 (2013-06-07), Retrieved from the Internet <URL:http://www.3gpp.org/ftp/Specs/archive/36_series/36.842/36842-020.zip> *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10462709B2 (en) 2015-09-23 2019-10-29 Kt Corporation Method for controlling mobility of terminal, and device therefor
WO2017052206A1 (ko) * 2015-09-23 2017-03-30 주식회사 케이티 단말의 이동성 제어 방법 및 그 장치
WO2017086667A1 (en) * 2015-11-16 2017-05-26 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving scheduling request
US11166302B2 (en) 2015-11-16 2021-11-02 Samsung Electronics Co., Ltd. Method and apparatus for transmitting and receiving scheduling request
WO2018030842A1 (ko) * 2016-08-11 2018-02-15 삼성전자 주식회사 무선 셀룰라 통신 시스템에서 지연감소를 위한 전송 방법 및 장치
US11950269B2 (en) 2016-08-11 2024-04-02 Samsung Electronics Co., Ltd Transmission method and apparatus for reducing latency in wireless cellular communication
US11252743B2 (en) 2016-08-11 2022-02-15 Samsung Electronics Co., Ltd Transmission method and apparatus for reducing latency in wireless cellular communication
US11582810B2 (en) 2017-05-11 2023-02-14 Samsung Electronics Co., Ltd. Method and apparatus for establishing connection between terminal and base station
WO2018208071A1 (ko) * 2017-05-11 2018-11-15 삼성전자 주식회사 단말 및 기지국 간의 연결 설정 방법 및 장치
KR20180124331A (ko) * 2017-05-11 2018-11-21 삼성전자주식회사 단말 및 기지국 간의 연결 설정 방법 및 장치
US11039482B2 (en) 2017-05-11 2021-06-15 Samsung Electronics Co., Ltd. Method and apparatus for establishing connection between terminal and base station
KR102309120B1 (ko) * 2017-05-11 2021-10-06 삼성전자 주식회사 단말 및 기지국 간의 연결 설정 방법 및 장치
US20210321425A1 (en) * 2018-12-28 2021-10-14 Fujitsu Limited Terminal device, base station device, and wireless communication system
CN112586073B (zh) * 2019-01-31 2023-09-29 Oppo广东移动通信有限公司 一种调度请求处理方法、终端设备及存储介质
CN112586073A (zh) * 2019-01-31 2021-03-30 Oppo广东移动通信有限公司 一种调度请求处理方法、终端设备及存储介质

Also Published As

Publication number Publication date
KR20150018285A (ko) 2015-02-23
KR102148242B1 (ko) 2020-08-26

Similar Documents

Publication Publication Date Title
WO2015020478A1 (ko) 무선 통신 시스템에서 스케줄링 요청을 송수신하는 방법, 단말 및 기지국
WO2018186667A1 (ko) 무선 통신 시스템에서 단말의 d2d 동작 방법 및 상기 방법을 이용하는 단말
WO2020045920A1 (ko) 비면허 대역에서의 채널 접속 실패를 처리하는 방법 및 장치
WO2013162345A1 (ko) 무선 통신 시스템에서 장치-대-장치 통신을 수행하는 방법 및 장치
WO2012169837A2 (en) Apparatus and method for performing random access in wireless communication system
WO2014112850A1 (ko) Tdd을 지원하는 이동통신 시스템에서 tdd 설정 정보를 단말에게 효과적으로 제공하고 상향링크 전송 타이밍을 결정하기 위한 방법 및 장치
WO2017003118A1 (en) Method for transmitting data in dual connectivity and a device therefor
WO2014027804A1 (ko) 상향링크 제어 채널 및 사운딩 참조신호의 전송 제어 방법 및 장치
WO2014163288A1 (en) Method for performing a logical channel prioritization and communication device thereof
WO2015115835A1 (ko) 이동 통신 시스템에서 단말이 복수의 캐리어들을 이용하는 데이터 송수신 방법 및 장치
WO2016126029A1 (en) Method for applying a new pucch configuration in a carrier aggregation system and a device therefor
WO2019022477A1 (en) CARRIER SELECTION METHOD AND APPARATUS FOR LATERAL LINK TRANSMISSION IN A WIRELESS COMMUNICATION SYSTEM
WO2015111965A1 (ko) Lte 복수 기지국의 우선순위 데이터 전송 시스템 및 방법
WO2017007148A1 (en) Method for cancelling a buffer status report or a scheduling request in dual connectivity and a device therefor
WO2016117889A1 (en) Method for initiating a random access procedure in a carrier aggregation system and a device therefor
WO2019160281A1 (en) Method and apparatus for performing dc based handover
WO2015046787A1 (ko) 논리채널 우선순위 처리 방법 및 그 장치
WO2017196095A2 (ko) 단말의 듀얼 커넥티비티 구성 방법 및 그 장치
WO2016013781A1 (ko) 비면허대역 셀에서 업링크 데이터를 전송하는 방법 및 그 장치
WO2018230995A1 (en) Method for performing a random access procedure in wireless communication system and a device therefor
WO2017135580A1 (ko) 차량 통신 제어 방법 및 그 장치
WO2021187933A1 (ko) 릴레이 노드를 제어하는 방법 및 그 장치
WO2016117886A1 (en) Method for initiating a random access procedure in a carrier aggregation system and a device therefor
WO2016117937A1 (en) Method for initiating a random access procedure in a carrier aggregation system and a device therefor
WO2014163319A1 (ko) 무선 통신 시스템에서 단말의 버퍼상태보고 전송방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14833649

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14833649

Country of ref document: EP

Kind code of ref document: A1