WO2015020461A1 - Method and apparatus for transmitting buffer state report in wireless communication system - Google Patents

Method and apparatus for transmitting buffer state report in wireless communication system Download PDF

Info

Publication number
WO2015020461A1
WO2015020461A1 PCT/KR2014/007337 KR2014007337W WO2015020461A1 WO 2015020461 A1 WO2015020461 A1 WO 2015020461A1 KR 2014007337 W KR2014007337 W KR 2014007337W WO 2015020461 A1 WO2015020461 A1 WO 2015020461A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
buffer
status report
base stations
buffer status
Prior art date
Application number
PCT/KR2014/007337
Other languages
French (fr)
Korean (ko)
Inventor
권기범
Original Assignee
주식회사 팬택
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 팬택 filed Critical 주식회사 팬택
Publication of WO2015020461A1 publication Critical patent/WO2015020461A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Definitions

  • the present invention relates to a wireless communication, and more particularly, when a terminal is dually connected to two or more different base stations and a single bearer is configured or formed between the two or more different base stations and the terminal.
  • a method and apparatus for operating a state report (buffer state report).
  • a terminal may perform wireless communication through two or more base stations of at least one base station constituting at least one serving cell. This is called dual connectivity.
  • dual connectivity may be referred to as an operation in which a terminal consumes radio resources provided by at least two other network points.
  • the at least two other network points may be a plurality of base stations physically or logically separated.
  • One of the plurality of base stations may be a macro base station, and the other base stations may be small base stations.
  • each base station transmits downlink data and receives uplink data through an evolved packet system bearer or a radio bearer (RB) configured for one terminal.
  • RB radio bearer
  • one RB may be configured in one base station or may be configured through two or more different base stations.
  • uplink data generated in each RB in the terminal should be delivered to the base station in which the RB corresponding to the corresponding RB is configured.
  • the BSR is transmitted in the LC unit mapped to the RB allocated to the specific base station.
  • the terminal should select a target base station to which the buffer status information is transmitted. There was no.
  • An object of the present invention is to provide a buffer status report transmission method and apparatus in a wireless communication system.
  • Another technical problem of the present invention is to provide a signaling request and a buffer state for a logical channel mapped to a single radio bearer configured by a terminal through a plurality of base stations in a wireless communication system. It provides a method for transmitting a report).
  • Another technical problem of the present invention is that if a terminal is dually connected to two or more different base stations and a single radio bearer is configured in the terminal through the two or more different base stations, the logical channel mapped to the single radio bearer
  • the present invention provides a reference for a base station to transmit a scheduling request and a buffer status report.
  • a method for transmitting a buffer status report of a terminal in a wireless communication system includes configuring a single radio bearer between base stations and the terminal based on dual connectivity, wherein the single radio Generating buffer size information that identifies the amount of available uplink data with respect to a logical channel group corresponding to a bearer and defined for each of the base stations And generating a buffer state report including an ID for identifying the logical channel group and the buffer size information, and transmitting the buffer state report.
  • a method for transmitting a buffer status report of a terminal in a wireless communication system includes a single radio bearer configured in at least two or more base stations having dual connectivity with the terminal and an RLC of the base stations. (Radio Link Control)
  • the base station for transmitting the buffer status report according to the priority of the data arrived in the buffer based on the uplink resource situation, uplink reliability and uplink transmission rate of each base station. And transmitting a buffer status report to the selected base station.
  • a terminal transmitting a buffer status report in a wireless communication system corresponds to a single radio bearer configured between base stations and the terminal based on dual connectivity and the base stations Regarding the logical channel group defined for each, generating buffer size information that identifies the amount of available uplink data and identifying the logical channel group It may include a generation unit for generating a buffer state report including an ID and the buffer size information, and a transmission unit for transmitting the buffer state report.
  • a terminal for transmitting a buffer status report in a wireless communication system is configured in at least two or more base stations having a single radio bearer (dual connectivity) with the terminal and the When the radio link control (RLC) layers are connected to each other, the base station to transmit the buffer status report is selected according to the priority of the data arriving in the buffer based on the uplink resource status of each base station, the reliability of the uplink, and the uplink transmission rate. And a transmitter for transmitting a buffer status report to the selected base station.
  • RLC radio link control
  • a terminal may transmit a buffer state report in logical channel units mapped to a radio bearer allocated to a specific base station.
  • Request and the base station to send the buffer status report can be determined.
  • FIG. 1 is a diagram illustrating a network structure of a wireless communication system to which the present invention is applied.
  • FIG. 2 is a block diagram illustrating a radio protocol architecture for a user plane.
  • FIG. 3 is a block diagram illustrating a radio protocol architecture for a control plane.
  • FIG. 4 is a diagram illustrating a structure of a bearer service in a wireless communication system to which the present invention is applied.
  • FIG. 5 is a diagram illustrating a dual connection situation of a terminal applied to the present invention.
  • FIG. 6 is a diagram illustrating a process of transmitting data to a base station by a terminal applied to the present invention.
  • FIG. 7 is a diagram illustrating a case in which a terminal applied to the present invention fails to transmit data.
  • FIG. 8 illustrates a MAC control element of a buffer status report to which the present invention is applied.
  • FIG. 9 is a diagram illustrating logical channel configuration information to which the present invention is applied.
  • 10 is a diagram illustrating buffer status report related parameters.
  • FIG. 11 is a diagram illustrating an Infinite Source Delay System.
  • FIG. 12 is a diagram illustrating a Tandem Queuing System.
  • 13 to 15 are exemplary diagrams illustrating a case in which a terminal is dually connected to a small base station and a macro base station.
  • 16 is a flowchart illustrating an example of a method of transmitting a buffer status report according to the present invention.
  • FIG. 17 illustrates a format of a buffer status report according to the present invention.
  • FIG. 18 is a diagram illustrating a case where a base station for transmitting a buffer status report is determined by a network.
  • 19 is a diagram illustrating a case where a base station for transmitting a buffer status report is determined by a determination of a terminal.
  • 20 is a block diagram illustrating an example of an apparatus for transmitting a buffer status report according to the present invention.
  • the present specification describes a wireless communication network
  • the operation performed in the wireless communication network is performed in the process of controlling the network and transmitting data in the system (for example, the base station) that is in charge of the wireless communication network, or the corresponding wireless Work may be performed in a terminal included in the network.
  • FIG. 1 is a diagram illustrating a network structure of a wireless communication system to which the present invention is applied.
  • E-UMTS system an Evolved-Universal Mobile Telecommunications System
  • the E-UMTS system may be an Evolved-UMTS Terrestrial Radio Access (E-UTRA) or Long Term Evolution (LTE) or LTE-A (Advanced) system.
  • Wireless communication systems include Code Division Multiple Access (CDMA), Time Division Multiple Access (TDMA), Frequency Division Multiple Access (FDMA), Orthogonal Frequency Division Multiple Access (OFDMA), Single Carrier-FDMA (SC-FDMA), and OFDM-FDMA
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier-FDMA
  • OFDM-FDMA OFDM-FDMA
  • OFDM-FDMA OFDM-FDMA
  • OFDM-FDMA Various multiple access schemes such as OFDM, TDMA, and OFDM-CDMA may be used.
  • an Evolved-UMTS Terrestrial Radio Access Network is a base station providing a control plane (CP) and a user plane (UP) to a user equipment (UE) 10.
  • CP control plane
  • UP user plane
  • UE user equipment
  • eNB evolved NodeB
  • the terminal 10 may be fixed or mobile, and may be called by other terms such as mobile station (MS), advanced MS (AMS), user terminal (UT), subscriber station (SS), and wireless device (Wireless Device). have.
  • MS mobile station
  • AMS advanced MS
  • UT user terminal
  • SS subscriber station
  • Wireless Device Wireless Device
  • the base station 20 generally refers to a station for communicating with the terminal 10, and includes a base station (BS), a base transceiver system (BTS), an access point, an femto base station, and a pico-eNB. It may be called other terms such as a base station (pico-eNB), a home base station (Home eNB), a relay, and the like.
  • the base stations 20 are physically connected through an optical cable or a digital subscriber line (DSL), and may exchange signals or messages with each other through an X2 interface.
  • DSL digital subscriber line
  • the base station 20 is connected to an Evolved Packet Core (EPC) 30 through an S1 interface. More specifically, the base station 20 is connected to the Mobility Management Entity (MME) through the S1-MME interface, and is connected to the Serving Gateway (S-GW) through the S1-U interface. The base station 20 exchanges contents information of the MME and context information of the terminal 10 and information for supporting mobility of the terminal 10 through the S1-MME interface. In addition, the S-GW and the data to be serviced to each terminal 10 through the S1-U interface.
  • EPC Evolved Packet Core
  • the EPC 30 includes MME, S-GW, and Packet Data Network Gateway (P-GW).
  • the MME has access information of the terminal 10 or information on the capability of the terminal 10, and this information is mainly used for mobility management of the terminal 10.
  • the S-GW is a gateway having an E-UTRAN as an endpoint
  • the P-GW is a gateway having a PDN (Packet Data Network) as an endpoint.
  • the E-UTRAN and the EPC 30 may be integrated to be referred to as EPS (Evolved Packet System), and the traffic flows from the radio link to which the terminal 10 connects to the base station 20 to the PDN connected to the service entity are all IP. It works based on (Internet Protocol).
  • EPS Evolved Packet System
  • the air interface between the terminal 10 and the base station 20 is called a "Uu interface".
  • Layers of the radio interface protocol between the terminal 10 and the network may include a first layer L1 defined in a 3GPP (3rd Generation Partnership Project) -based wireless communication system (UMTS, LTE, LTE-Advanced, etc.), It may be divided into a second layer L2 and a third layer L3.
  • the physical layer belonging to the first layer provides an information transfer service using a physical channel
  • the RRC (Radio Resource Control) layer located in the third layer exchanges an RRC message for the UE. Control radio resources between the network and the 10.
  • FIG. 2 is a block diagram showing a radio protocol architecture for a user plane
  • FIG. 3 is a block diagram showing a radio protocol architecture for a control plane.
  • the user plane is a protocol stack for user data transmission
  • the control plane is a protocol stack for control signal transmission.
  • a physical layer (PHY) layer provides an information transfer service to a higher layer using a physical channel.
  • the physical layer is connected to the upper layer by a medium access control (MAC) layer through a transport channel.
  • MAC medium access control
  • Data is transmitted through a transport channel between the MAC layer and the physical layer. Transport channels are classified according to how data is transmitted over the air interface.
  • data is transmitted over a physical channel between different physical layers (ie, between physical layers of a transmitter and a receiver).
  • the physical channel may be modulated by an orthogonal frequency division multiplexing (OFDM) scheme and utilizes space generated by time, frequency, and a plurality of antennas as radio resources.
  • OFDM orthogonal frequency division multiplexing
  • a physical downlink control channel (PDCCH) of a physical channel informs a terminal of resource allocation of a PCH (Paging CHannel) and DL-SCH (DownLink Shared CHannel) and HARQ (Hybrid Automatic Repeat Request) information related to the DL-SCH,
  • the terminal may carry an uplink scheduling grant informing of resource allocation of uplink transmission.
  • the Physical Control Format Indicator CHannel (PCFICH) informs the UE of the number of OFDM symbols used for the PDCCHs and is transmitted every subframe.
  • the PHICH Physical Hybrid ARQ Indicator CHannel
  • the physical uplink control channel (PUCCH) carries uplink control information such as HARQ ACK / NAK, scheduling request, and CQI for downlink transmission.
  • the PUSCH Physical Uplink Shared CHannel
  • the PUSCH may include channel state information (CSI) information such as HARQ ACK / NACK and CQI.
  • CSI channel state information
  • the MAC layer may perform multiplexing or demultiplexing into a transport block provided as a physical channel on a transport channel of a MAC service data unit (SDU) belonging to the logical channel and mapping between the logical channel and the transport channel.
  • the MAC layer provides a service to a Radio Link Control (RLC) layer through a logical channel.
  • RLC Radio Link Control
  • the logical channel may be divided into a control channel for transmitting control region information and a traffic channel for delivering user region information.
  • services provided from the MAC layer to a higher layer include data transfer or radio resource allocation.
  • the RLC layer uses a transparent mode (TM), an unacknowledged mode (UM), and an acknowledgment mode (AM) in order to guarantee various quality of services (QoS) required by a radio bearer (RB).
  • TM transparent mode
  • UM unacknowledged mode
  • AM acknowledgment mode
  • QoS quality of services
  • RB radio bearer
  • transparent mode is used to set up an initial connection.
  • Unacknowledged mode is for real-time data transmission, such as data streaming or Voice over Internet Protocol (VoIP), which focuses on speed rather than reliability of data.
  • the acknowledgment mode focuses on the reliability of the data and is suitable for large data transmissions or data transmissions that are less sensitive to transmission delays.
  • the base station determines the mode of the RLC in the RB corresponding to each EPS bearer based on the Quality of Service (QoS) information of each EPS bearer configured to be connected to the terminal, and configures the parameters in the RLC to satisfy the QoS.
  • QoS Quality of Service
  • the RLC SDUs are supported in various sizes, and for example, may be supported in units of bytes.
  • RLC Protocol Data Units are defined only when a transmission opportunity is notified from a lower layer (eg, MAC layer) and delivered to the lower layer.
  • the transmission opportunity may be informed with the size of the total RLC PDUs to be transmitted.
  • the transmission opportunity and the size of the total RLC PDUs to be transmitted may be separately informed.
  • Functions of the Packet Data Convergence Protocol (PDCP) layer in the user plane include the transfer of user data, header compression and ciphering, and the transfer and control of encryption / integrity protection of control plane data.
  • PDCP Packet Data Convergence Protocol
  • the RRC layer is responsible for the control of logical channels, transport channels, and physical channels in connection with configuration, re-configuration, and release of RBs.
  • a radio bearer (RB) refers to a logical path provided by a first layer (PHY layer) and a second layer (MAC layer, RLC layer, PDCP layer) for data transmission between the terminal and the network.
  • the configuration of the RB means a process of defining characteristics of a radio protocol layer and a channel to provide a specific service, and setting each specific parameter and operation method.
  • the RB may be classified into a signaling RB (SRB) and a data RB (DRB).
  • SRB signaling RB
  • DRB data RB
  • the non-access stratum (NAS) layer located above the RRC layer performs functions such as session management and mobility management. If there is an RRC connection between the RRC layer of the UE and the RRC layer of the E-UTRAN, the UE is in an RRC connected state, otherwise it is in an RRC idle state. do.
  • NAS non-access stratum
  • a terminal In order for a terminal to transmit user data (eg, an IP packet) to an external internet network or to receive user data from an external internet network, the terminal exists between mobile communication network entities existing between the terminal and the external internet network. Resources must be allocated to different paths. Thus, a path in which resources are allocated between mobile communication network entities and data transmission and reception is possible is called a bearer.
  • a bearer a path in which resources are allocated between mobile communication network entities and data transmission and reception is possible.
  • FIG. 4 is a diagram illustrating a structure of a bearer service in a wireless communication system to which the present invention is applied.
  • the end-to-end service refers to a service that requires a path between the terminal and the P-GW (EPS Bearer) and a P-GW and an external bearer for the Internet network and data service.
  • the external path is a bearer between the P-GW and the Internet network.
  • the terminal When the terminal transmits data to the external internet network, the terminal first transmits the data to the base station eNB through the RB. Then, the base station transmits the data received from the terminal to the S-GW through the S1 bearer. The S-GW delivers the data received from the base station to the P-GW via the S5 / S8 bearer, and finally the data is delivered through the external bearer to a destination existing in the P-GW and the external Internet network.
  • the data can be delivered to the terminal through each bearer in the reverse direction as described above.
  • each bearer is defined for each interface to ensure independence between the interfaces.
  • the bearer at each interface will be described in more detail as follows.
  • the bearers provided by the wireless communication system are collectively called an Evolved Packet System (EPS) bearer.
  • An EPS bearer is a delivery path established between a UE and a P-GW for transmitting IP traffic with a specific QoS.
  • the P-GW may receive IP flows from the Internet or send IP flows to the Internet.
  • Each EPS bearer is set with QoS decision parameters that indicate the nature of the delivery path.
  • One or more EPS bearers may be configured per UE, and one EPS bearer uniquely represents a concatenation of one E-UTRAN Radio Access Bearer (E-RAB) and one S5 / S8 bearer.
  • E-RAB E-UTRAN Radio Access Bearer
  • the S5 / S8 bearer is a bearer of the S5 / S8 interface. Both S5 and S8 are bearers present at the interface between the S-GW and the P-GW.
  • the S5 interface exists when the S-GW and the P-GW belong to the same operator, and the S8 interface belongs to the provider (Visited PLMN) roamed by the S-GW, and the P-GW has subscribed to the original service (Home). PLMN).
  • the E-RAB uniquely represents the concatenation of the S1 bearer and the corresponding RB.
  • one-to-one mapping is established between the E-RAB and one EPS bearer. That is, one EPS bearer corresponds to one RB, S1 bearer, and S5 / S8 bearer, respectively.
  • the S1 bearer is a bearer at the interface between the base station and the S-GW.
  • RB means two types of data radio bearer (DRB) and signaling radio bearer (SRB).
  • DRB data radio bearer
  • SRB signaling radio bearer
  • RB is a DRB provided in the Uu interface to support a service of a user. . Therefore, the RB expressed without distinction is distinguished from the SRB.
  • the RB is a path through which data of the user plane is transmitted
  • the SRB is a path through which data of the control plane, such as the RRC layer and NAS control messages, are delivered.
  • One-to-one mapping is established between RB, E-RAB and EPS bearer.
  • EPS bearer types include a default bearer and a dedicated bearer.
  • an IP address is assigned, a PDN connection is created, and a default EPS bearer is created at the same time. That is, a default bearer is first created when a new PDN connection is created.
  • a service for example, the Internet, etc.
  • VoD for example, VoD, etc.
  • a dedicated bearer is created. In this case, the dedicated bearer may be set to a different QoS from the bearer that is already set.
  • QoS decision parameters applied to the dedicated bearer are provided by a Policy and Charging Rule Function (PCRF).
  • PCRF Policy and Charging Rule Function
  • the PCRF may receive subscription information of a user from a Subscriber Profile Repository (SPR) to determine QoS determination parameters.
  • SPR Subscriber Profile Repository
  • Up to 15 dedicated bearers may be created, for example. However, four of the above 15 are not used in the LTE system. Therefore, up to 11 dedicated bearers may be generated in an LTE system.
  • the EPS bearer includes a QoS Class Identifier (QCI) and Allocation and Retention Priority (ARP) as basic QoS decision parameters.
  • EPS bearers are classified into GBR (Guaranteed Bit Rate) bearers and non-GBR bearers according to QCI resource types.
  • the default bearer is always set to a non-GBR type bearer, and the dedicated bearer may be set to a GBR type or non-GBR type bearer.
  • the GBR bearer has GBR and MBR (Maximum Bit Rate) as QoS decision parameters in addition to QCI and ARP.
  • FIG. 5 is a diagram illustrating an example of a dual connectivity situation of a terminal applied to an embodiment of the present invention.
  • the terminal 550 enters an area in which the service area of the macro cell F2 in the macro base station 500 and the service area of the small cell F1 in the small base station 510 overlap. The case is shown.
  • the terminal 550 may receive the service through the F2 frequency band from the macro base station 500 and may receive the service through the F1 frequency band from the small base station 510.
  • the macro base station 500 uses F2 and the small base station 510 is described as using the F1 frequency band.
  • the present invention is not limited thereto, and both the macro base station 500 and the small base station 510 have the same F1 or F2 frequency. Bands can also be used.
  • FIG. 6 is a diagram illustrating a process in which a terminal to which an embodiment of the present invention is applied transmits data to a base station
  • FIG. 7 is a diagram illustrating a case in which a terminal to which the embodiment of the present invention is applied fails to transmit data.
  • SR scheduling request
  • the terminal When the terminal receives an uplink grant (UL grant) for the SR from the base station (S630), and transmits the BSR (S640).
  • the BSR is for informing the base station that there is data to be transmitted by the terminal through the uplink, and to provide QoS aware packet scheduling support for the uplink.
  • the BSR procedure is performed after the SR transmission and is used to provide the serving base station with information about the amount of available data in the uplink buffer of the terminal.
  • the terminal configures a BSR based on data buffered in each logical channel group (LCG) in the terminal. Up to four LCGs may be configured in the terminal.
  • the BSR has a short format for reporting the buffer status of one LCG and a long format for reporting the buffer status of four LCGs.
  • the format of the BSR may refer to FIG. 8 to be described later.
  • the base station may configure a periodic BSR timer (periodicBSR-Timer) and a retransmission BSR timer (retxBSR-Timer) through signaling defined in the RRC layer, and control a BSR procedure for a logical channel in each terminal. That is, since the BSR is performed for the LCG, the base station may transmit logical channel configuration information including the syntaxes of FIGS. 9 and 10 to the terminal.
  • periodicBSR timer periodic BSR timer
  • retxBSR-Timer retransmission BSR timer
  • the UE should consider a suspended radio bearer (RB) and all unreserved RBs.
  • RB suspended radio bearer
  • BSRs include a regular BSR, a padding BSR, and a periodic BSR.
  • the general BSR is triggered when the uplink data that can be transmitted to a logical channel having a higher priority than other logical channels that already have transmittable data is present in the RLC entity or PDCP entity for the logical channel included in the LCG.
  • the general BSR is triggered even when the retxBSR-Timer expires and the UE has data that can be transmitted on a logical channel in the LCG.
  • the padding BSR is triggered when uplink resources are allocated and the number of padding bits is equal to or greater than the size for BSR transmission.
  • Periodic BSR is triggered when the periodicBSR-Timer expires.
  • the UE performs a BSR procedure when at least one of the BSRs is triggered and is not canceled. If an uplink resource for a new transmission is allocated to this transmission time interval (TTI), the UE instructs a multiplexing and assembly procedure for generating a BSR MAC control element, starts or restarts a periodicBSR-Timer. Start or restart the retxBSR-Timer.
  • TTI transmission time interval
  • the procedure of starting or restarting the periodicBSR-Timer is excluded when a shortened BSR (Truncated BSR) is generated.
  • the SR is It must be triggered. That is, the SR is triggered when a general BSR is triggered by a specific logical channel for which SR masking is not set up.
  • one MAC PDU should include only one MAC control element even if multiple BSRs are triggered. And, if a general BSR and a periodic BSR can be transmitted, this always takes precedence over the padding BSR.
  • the terminal upon confirming receipt of an indicator indicating transmission of new data for all UL-SCHs, the terminal should restart the retxBSR-Timer. All triggered BSRs should be canceled when they receive an UL grant that can send all pending data but cannot send additional BSR MAC control elements. In addition, all triggered BSRs must be canceled when the BSR is included in the MAC PDU.
  • the terminal should transmit one general / periodic BSR in one TTI.
  • one padding BSR may be included in any MAC PDUs that do not include a general / periodic BSR. All BSRs always reflect the buffer status after all MAC PDUs are configured in the TTI over which the BSR is sent. Each LCG must report one buffer status value per TTI, and the buffer status values must be reported through the BSR for the LCG within every BSR. That is, one BSR value should be transmitted for each LCG in the same TTI, and the buffer status value for the LCG should be the same value for all BSRs transmitted in the same TTI.
  • the padding BSR is not allowed to cancel the general / periodic BSR. The padding BSR is triggered for a specific MAC PDU, and the trigger of the padding BSR is canceled when a specific MAC PDU is generated.
  • the terminal may not be allocated an SR resource.
  • uplink resource allocation from the base station may be performed after a specific period, or data transmission may not be performed even if the number of SR transmissions exceeds a specific number.
  • the UE starts a contention-based random access (RA) procedure through the primary serving cell or the serving cell transmitting the corresponding SR as an alternative corresponding to the purpose of the SR.
  • RA contention-based random access
  • the terminal sets the SR count (SR_COUNTER) to zero. However, the SR is pending and there is a valid PUCCH resource to send the SR in this Transmission Time Interval (TTI), this TTI is not part of the measurement gap and a timer (sr) to prohibit SR transmission. If ProhibitTimer is not in progress, if the SR_COUNTER value is less than the maximum number of transmissions of the SR, the SR count value is increased by 1 and the physical layer is instructed to transmit the SR signal through the PUCCH, and then sr-ProhibitTimer is started.
  • TTI Transmission Time Interval
  • sr timer
  • RRC is notified of the release of PUCCH and SRS (Sounding Reference Signal), and all configured downlink allocations and uplink grants are cleared. It then initializes the random access procedure and cancels all pending SRs.
  • the UE initializes the random access procedure and cancels all the pending SRs.
  • the UE transmits the SR until the SR_COUNTER value is equal to the maximum number of transmissions of the SR (S720 and S730). If the SR_COUNTER value is equal to the maximum number of transmissions of the SR, the terminal releases uplink resources and initializes a random access procedure (S740), and then transmits a random access preamble (S750).
  • FIG. 8 illustrates a MAC control element of a buffer status report to which an embodiment of the present invention is applied.
  • the MAC control element (a) of the short BSR and the divided BSR includes an LCG ID field and a buffer size (BS) field.
  • the MAC control element (b) of the long BSR is composed of four buffer size fields corresponding to four LCG IDs (LCG ID # 0 to LCD ID # 3).
  • the BSR format is identified by a value of a logical channel identifier (LCID) included in a sub header of a MAC PDU as shown in Table 1 below.
  • Table 1 index LCID value 00000 CCCH 00001-01010 Logical Channel Identification 01011-11000 Spare 11001 Extended Power Remaining Report 11010 Power Remaining Report 11011 C-RNTI 11100 Partitioned BSR 11101 Short BSR 11110 Long BSR 11111 padding
  • the LCG ID field is for identifying a group of logical channels whose buffer status is reported to the base station.
  • the LCD ID field is 2 bits long.
  • the buffer size field is used to identify the total amount of data available on all logical channels in the LCG after all MAC PDUs for the TTI have been established, and contains information about all data that can be transmitted in the RLC layer and the PDCP layer. do. Here, the RLC header and PDCP header are not taken into account in the buffer size calculation.
  • the length of the buffer size field is 6 bits. In the case of not the extended BSR size (extendedBSR-size), the value of the buffer size field is shown in Table 2, and in the case of the extended BSR size, the value of the buffer size field is shown in Table 3.
  • FIG. 9 is a diagram illustrating logical channel configuration information to which an embodiment of the present invention is applied, and FIG. 10 is a diagram illustrating parameters related to buffer status reporting.
  • logical channel configuration information includes information elements included in logical channel configuration.
  • "priority" indicates a logical channel priority.
  • the terminal is a MAC control element for data from UL-CCCH (Uplink-Common Control Channel) or Cell-Radio Network Temporary Identifier (C-RNTI), MAC control element for BSR except for BSR with padding, extended PHR or The MAC control element for the PHR takes precedence over the data in all logical channels for transmitting user data separately from the priority of the logical channel. In the case of the MAC control element for the BSR with padding, it has a lower priority than the data in all the logical channels.
  • “prioritisedBitRate” represents the priority bit rate for the priority of the logical channel.
  • the value of "prioritisedBitRate” is in kilobytes / second, kBps8 corresponds to 8 kB / second, and kBps16 corresponds to 16 kB / second.
  • the value of “prioritisedBitRate” applies infinity for SRB1 and SRB2.
  • “BucketSizeDuration” represents bucket size time for logical channel priority.
  • the value of “BucketSizeDuration” is in milliseconds, ms50 corresponds to 50ms, ms100 corresponds to 100ms.
  • “logicalChannelGroup” represents a logical channel mapped to LCG for BSR reporting.
  • logicalChannelSR-Mask controls SR triggering based on a logical channel when an uplink grant is configured.
  • SRmask and “UL” fields may exist conditionally in the logical channel configuration.
  • the "SRmask” field is optionally present depending on the existence of an uplink specific parameter (ul-SepcificParameter).
  • the "UL” field is mandatory when an uplink logical channel exists and does not exist when an uplink logical channel does not exist.
  • the MAC main setting includes information about an extended BSR size (extendedBSR-Sizes-r10).
  • the default MAC main configuration parameters are "maxHARQ-tx”, "periodicBSR-Timer”, “retxBSR-Timer”, “ttiBunding”, “drx-Config”, “phr-Config” and "sr-ProhibitTimer”. have.
  • the UE may perform retransmission in RLC AM mode among RLC SDUs or segments of the RLC SDUs and RLC data PDUs or portions of RLC data PDUs.
  • the reserved data should be considered as data that can be transmitted in the RLC layer. If the STATUS PDU is triggered and the t-StatusProhibit timer is not in progress or has expired, the UE must estimate the size of the STATUS PDU to be transmitted at the next transmission opportunity, and this can also be transmitted in the RLC layer included in the MAC buffer status report. Consider data.
  • the UE is not yet processed by PDCP for the SDUs for the PDUs that are not delivered to the lower layer, or PDCP control PDUs as well as the PDU in which the SDU is processed by the PDCP layer
  • the UE has not yet been processed by the PDCP in the SDU,
  • the PDUs processed once by the PDU should be considered as data transmittable at the PDCP layer.
  • the PDCP status report is received from the SDUs starting from the first SDU whose delivery of the PDUs is not confirmed from the lower layer among the SDUs corresponding to the PDUs delivered only to the lower layer prior to the PDCP re-establishment. SDUs that have been successfully delivered through PDCP status reporting are excluded.
  • FIG. 11 is a diagram illustrating an Infinite Source Delay System
  • FIG. 12 is a diagram illustrating a Tandem Queuing System.
  • the traffic arriving at the buffer first may be formulated as in Equation 1 below.
  • T A is the random inter-arrival time
  • a (t) is the cumulative distribution function (CDF) for the arrival time interval
  • a '(t) is the probability for the arrival time interval.
  • PDF Probability Density Function
  • E [TA] is the average arrival time interval and ⁇ is the arrival rate.
  • the serviced traffic may be formulated as in Equation 2 below.
  • T H is the Random Service (holding time)
  • H (t) is the cumulative distribution function for the arrival time interval
  • H '(t) is the probability density function for the arrival time interval
  • E [T H ] Represents the expected average time between arrivals
  • represents the termination rate.
  • Equation 5 Equation 5
  • Equation 5 the total buffer state for BSR transmission may be calculated using Equation 5.
  • 13 to 15 are exemplary diagrams illustrating a case in which a terminal is dually connected to a small base station and a macro base station.
  • both the macro base station and the small base station include a PDCP, RLC, MAC, and PHY layers.
  • the first RB (# 1 RB) is configured through the PDCP layer and RLC layer of the terminal and the PDCP layer and RLC layer of the macro base station
  • the second RB (# 2 RB) is the PDCP layer, RLC layer and small base station of the terminal It is composed of PDCP layer and RLC layer.
  • the RBs may be configured to include a part of MAC layer related to logical channel configuration.
  • the terminal is connected to the P-GW through a first EPS bearer (# 1 EPS bearer) and is connected to the P-GW through a second EPS bearer (# 2 EPS bearer).
  • each base station receives CN data through an EPS bearer (# 1 EPS bearer and # 2 EPS bearer) or RB (# 1 RB and # 2 RB) configured for one UE. Also called).
  • the bearer split refers to a structure in which one RB is configured through a plurality of base stations to divide and transmit data into two flows (or more flows).
  • a logical channel group defined for each of the base stations corresponding to the single radio bearer may be defined as a bearer split.
  • the bearer split may be called multi flow, multiple node (eNB) transmission, inter-eNB carrier aggregation, etc. in that information is transmitted through a plurality of flows. Can be.
  • each base station may include a PDCP layer, a MAC layer and an RLC layer, but the layer responsible for flow control is included in only one base station (ie, macro base station). If the layer in charge of the flow control is a PDCP layer, the PDCP layer is included only in the macro base station.
  • the MAC layer of the base station in the existing LTE system delivers information on the amount of data, transmission opportunities, etc. to the RLC layer.
  • the RLC layer configures an RLC PDU by splitting or combining the RLC SDU data received from the PDCP layer located in the same base station based on the information received from the MAC layer. Thereafter, the MAC layer receives the RLC PDU configured in the RLC from the RLC layer in the form of a MAC SDU.
  • a bearer split even if the RLC layer in the small base station processes the data according to the data amount and the transmission opportunity required by the MAC layer in the small base station, information on the processed data amount and the transmission opportunity exists in the upper RLC layer. Inform macro flow control layer in the macro base station.
  • the PDCP layer of the macro base station may be connected to the RLC layer of the small base station using the Xn interface protocol, as shown in FIG. 14.
  • the Xn interface protocol is defined as an interface between the MeNB and the SeNB.
  • the Xn interface protocol may be an X2 interface protocol defined between base stations in the LTE system.
  • the PDCP layer of one macro base station is connected to both the RLC layer of the macro base station and the RLC layer of the small base station.
  • the RLC layer of the macro base station is referred to as # 1 sub-entity
  • the RLC layer of the small base station is referred to as # 2 sub-entity.
  • Sub-entities are divided into one-to-one matching between transmission and reception.
  • the sub-entity may be called an entity.
  • the RLC layer exists in a duplicated form.
  • Each sub entity is independent but there are two sub entities (# 1 sub entity and # 2 sub entity) within one RB (ie, # 1 RB).
  • RLC parameters should be configured separately for the RLC-AM # 1 sub-entity and the RLC-AM # 2 sub-entity, respectively. Because delay time that occurs when data serviced through each RLC-AM sub-entity is delivered to the UE may be different, timer values to be set in consideration of the delay time are different from each other. Because you can. If the delay times of the data transmitted through each sub-entity are the same, values of timers to be set for each sub-entity may be the same.
  • This may be determined at the macro base station or at the small base station, or may be determined at a network including the macro base station and the small base station. Accordingly, data to be delivered via PDCP in the same RB may be transmitted through one of the RLC-AM # 1 sub-entities or the RLC-AM # 2 sub-entity.
  • an identifier may be further transmitted by the terminal that receives the data to identify which sub-entity the data is transmitted through.
  • the example of FIG. 14 is also called a sub-entity RLC type, a separated RLC type, or an independent RLC type among bearer split cases. However, the example of FIG. 14 is not necessarily applied only to the bearer split.
  • the macro base station includes the PDCP, RLC, MAC, and PHY layers, but the small base station includes the RLC, MAC, and PHY layers.
  • the RLC layer of the macro base station is connected to the RLC layer of the small base station using the Xn interface protocol.
  • the RLC layer of the macro base station is called a master RLC layer
  • the RLC layer of the small base station is called a slave RLC layer.
  • the splitting operation of the slave RLC includes a grouping of a plurality of RLC PDUs or a grouping of AMD PDU segments divided in a macro RLC.
  • concatenation is possible for the AMD / UM PDU of the slave RLC layer of the base station.
  • uplink transmission between the terminal and the base station may be a single transmission instead of TDM transmission.
  • the dynamic scheduling of radio resources is mainly responsible for the MAC scheduler in each base station. Since the situation of the MAC layer of the macro base station and the situation of the MAC layer of the small base station are different, the master RLC layer allocates (or splits, concatenates, or recombines) PDUs based on information provided by the MAC layer of the macro base station, and the slave RLC layer. Splits or connects based on information provided by the MAC layer of the small base station.
  • the dually connected UE includes only one PDCP layer and RLC layer in a single RB for data to be transmitted to two or more different base stations during uplink transmission.
  • only one MAC layer may control uplink transmission according to uplink resource allocation information received from two or more different base stations for uplink transmission. Therefore, it is also possible to perform uplink transmission only to the macro base station in terms of uplink data transmission (for example, PUSCH) (also referred to as “single uplink").
  • uplink data transmission for example, PUSCH
  • FIG. 15 is also called a master-slave RLC type among bearer split cases. However, the example of FIG. 15 is not necessarily applied only to the bearer split.
  • each base station transmits downlink data through each component of an RB configured in each base station or a single RB configured redundantly in each base station for one UE and Process reception of uplink data. Therefore, data generated in each RB in the terminal should be delivered to the base station in which the RB corresponding to the corresponding RB is configured. Therefore, the terminal should generate a BSR based on the data present in the PDCP / RLC constituting each RB in the terminal and deliver it to each base station.
  • the BSR could not be transmitted in the LC unit mapped to the RB allocated to the specific BS.
  • the BSR may be transmitted in the LC unit mapped to each RB allocated to a specific base station, in the case of a bearer split, since the same RB and LC may be configured in a plurality of base stations, the base station to which the SR and the BSR should be transmitted should be selected. There was no standard for that.
  • the present invention provides a method for transmitting a scheduling request and a buffer status report for an LC mapped to a single RB when a single RB is configured through a plurality of base stations, that is, a bearer split.
  • each base station can independently schedule uplink with respect to the terminal, that is, when a dynamic resource allocation (DRA) packet scheduling function exists independently for each base station among RRM functions, one of the following embodiments BSR can be sent.
  • DRA dynamic resource allocation
  • the PDCP layer or the master RLC layer performs the flow control function of the flow control layer.
  • the flow control layer may be configured in the macro base station separately from the PDCP layer or the master RLC layer.
  • a terminal configures dual connectivity with a macro cell in a macro base station and a small cell in a small base station and configures RRC (Radio Resource Control) for supporting the dual connection.
  • RRC Radio Resource Control
  • a bearer split for a signaling radio bearer may be configured, and in this case, a user plane (UP)
  • the defined bearer split scheme can be equally applied to SRBs defined in the control plane. That is, the configuration may be the same.
  • the terminal applied to the present invention may provide information distinguished for each RB (that is, information on whether or not a bearer split is applied in each RB) or a plurality of RBs (eg, logical channel groups). (logical channel group) may be used to provide common information.
  • the configuration information for each RB is independent of each other.
  • the first RB includes information for configuring a bearer split (eg, "MF on")
  • the information on the second RB transmitted simultaneously with the information on the first RB may be RB flow reconfiguration ( RB flow reconfiguration) information (eg, "MF off”) may be included.
  • each base station needs to know which uplink data is to be preferentially processed according to a priority value set for each logical channel in each LCG. Therefore, BSRs for all RBs (# 1 RB and # 2 RB) configured in all base stations (macro base station and small base station) included in the dual connection may be shared among all the base stations. Furthermore, when the terminal can simultaneously transmit uplink to each base station, when the base station allocates uplink resources to the corresponding terminal, transmission power for allocating the uplink resources is allocated, so that other base stations allocate uplink resources to the corresponding terminal. This should be considered. Accordingly, the schedulers in each base station may share the BSR received from the terminal with each other to determine the amount of uplink resources to be set in the base station using the priority value and the BSR value of the logical channel for the counterpart base station.
  • the terminal cannot transmit uplink data to two or more base stations at the same time. That is, time slots (subframes or radio frame units) allocated to each base station are distinguished from each other. Therefore, in this case, it may not be a problem even if the BSR for the logical channel allocated to the counterpart base station is not shared.
  • Second Embodiment When a Bearer is Split and Separated PDCP or Separate RLC Type
  • FIG. 16 is a flowchart illustrating an example of a method of transmitting a buffer status report according to the present invention
  • FIG. 17 is a diagram illustrating a format of a buffer status report according to the present invention.
  • a single RB is configured in at least two or more base stations dually connected with the terminal, and a single RB in the terminal is split into a plurality of separate PDCP entities or separate RLC entities.
  • a method of generating and transmitting a BSR is described.
  • a terminal configures a single radio bearer between a macro base station / small base station and the terminal based on dual connectivity (S1610).
  • the terminal calculates a buffer size that identifies the amount of available uplink data with respect to a logical channel group defined for each of the macro base station and the small base station by the bearer split, and indicates the buffer size.
  • Buffer size information is generated (S1620).
  • the LCGs may be defined for different base stations. For example, if a logical channel consisting of a bearer split is # 4 LC, # 5 LC, # 7 LC, the LCG including the LCs may be divided into LCG 2 to be transmitted to the macro base station and LCG 3 to be transmitted to the small base station. . At this time, the terminal generates first buffer size information on LCG 2 and generates second buffer size information on LCG 3.
  • a method of generating buffer size information may be various. There can be.
  • the UE may generate buffer size information based on the sum of the buffer size of a single PDCP layer and the buffer size of one RLC entity among a plurality of RLC entities, as shown in FIG. 17 (a).
  • the UE has a value different from a 'a' corresponding to the ratio of the buffer size of one RLC entity among the buffer sizes of the plurality of RLC entities in the buffer size of the single PDCP layer.
  • the buffer size of the single PDCP layer is separated by a value '(1-a)' corresponding to the ratio of the buffer size of the RLC entity of the unit, and the ratio of the buffer size of the one RLC entity to the buffer size corresponding to the RLC entity
  • Buffer size information for each LCG may be generated based on the sum of the buffer sizes of the single PDCP layer separated by a value corresponding to.
  • the UE may generate the buffer size information using only buffer size information for each RLC entity.
  • the terminal generates an ID (eg, LCG 2 and LCG 3) identifying each logical channel group and a buffer status report including the buffer size information, respectively (S1630).
  • the terminal may generate a first buffer status report including LCG2 and first buffer size information and a second buffer status report including LCG3 and second buffer size information.
  • the terminal may transmit the buffer status report generated for each base station to the corresponding base station, respectively (S1640 and S1650).
  • the terminal may generate and generate buffer size information to be reported to each base station.
  • the BSR for a single RB configured in all base stations included in the dual connection may be transmitted only to one of the base stations.
  • the subject that determines which base station the BSR is transmitted to may be a terminal or a base station.
  • FIG. 18 is a diagram illustrating a case where a base station to which a terminal transmits a buffer status report is determined by a network
  • FIG. 19 is a diagram illustrating a case where a base station to transmit a buffer status report is determined by a terminal.
  • a terminal transmits a buffer status report to a small base station by the macro base station.
  • the macro base station receives a measurement report from the terminal (S1810), after determining the dual connectivity configuration, and determines the uplink transmission through the small base station for the RB consisting of the bearer split (S1820).
  • the macro base station delivers the SR resource configuration information to the terminal through an RRC reconfiguration procedure (S1850).
  • the terminal may confirm that the base station to which the BSR is to be transmitted is the small base station based on the SR resource configuration information.
  • the RRC reconfiguration procedure may be performed by the small base station.
  • the terminal transmits an SR to the small base station (S1870).
  • an uplink grant is received from the small base station (S1880)
  • the BSR is transmitted (S1890).
  • FIG. 19 illustrates a case in which the terminal transmits a buffer status report to the small base station by the determination of the terminal.
  • the macro base station when the macro base station receives a measurement report from the terminal (S1910), it transmits a dual connection establishment request to the small base station (S1920).
  • the SR resource configuration information is transmitted to the terminal through the RRC reconfiguration procedure (S1940).
  • the RRC reconfiguration procedure may be performed by the small base station.
  • the terminal identifies traffic arriving at the RLC / PDCP buffer (S1950), and determines an uplink path for user data to a base station that is advantageous for uplink transmission according to the priority of the traffic (S1960). At this time, if the determined path is a path through the small base station, the terminal transmits the SR to the small base station (S1970), and when receiving the uplink grant (S1980), and transmits the BSR to the small base station (S1990).
  • the terminal may transmit a BSR to a base station that can easily receive uplink resource allocation. That is, the terminal may transmit the BSR to the base station determined by the network as shown in FIG. 18 or transmit the BSR to the base station determined to be advantageous in uplink transmission as determined by the terminal as shown in FIG. 19.
  • the UE includes a serving cell configured with a PUCCH (for example, a primary cell or a special cell) or a serving cell configured with a PUCCH configured to transmit a PRACH to replace a serving cell or a scheduling request allocated with SR resources.
  • the BSR can be transmitted to the established base station.
  • the UE is (1) which base station is most likely to be allocated an uplink resource (2) which base station uplink transmission is efficient (throughput) (3) which base station uplink transmission can be performed quickly (delay ) May determine a base station advantageous for uplink transmission and transmit the BSR to the determined base station.
  • the uplink situation may be affected by feedback information for downlink transmission. Accordingly, a low loading factor having a good uplink resource situation is a base station having a small number of RRC connected users. Therefore, the terminal has a high probability of being allocated uplink resources from a small base station having a small number of terminals.
  • the base station that can be allocated more time slots may vary according to the actual time slot allocation configuration.
  • uplink transmission is efficient for a high SINR of uplink reliability.
  • a base station relatively close to the terminal, it is highly likely to maintain a high reliability due to low PL. Therefore, a small base station having a probability small service radius has high reliability of uplink.
  • the base station that can be allocated more time slots has a higher uplink reliability. Therefore, this case may be determined differently according to the actual time slot allocation configuration.
  • the BSR when the BSR is directly transmitted to the macro base station, since the delay time between the non-ideal backhaul existing between the macro base station and the small base station does not have to be considered, it can be quickly delivered.
  • the terminal may transmit a BSR to a small base station or a base station with many uplink time slot assignments when the first data that arrives in the buffer corresponds to a low priority logical channel.
  • the triggered BSR is transmitted to the macro base station because the high priority data must be delivered quickly.
  • the BSR for the SRB may be transmitted limited to the base station capable of RRC transmission. If the base station capable of RRC transmission is a plurality of base stations, the BSR for the SRB may be determined based on the same criteria as the BSR for the DRB, and specific for each logical channel for each SRB based on the RRC message previously received from the base station. It may be limited to the base station and transmitted. For example, the BSR for the LCG including LC0, LC1, and LC2 corresponding to SRB0,1,2 may be transmitted to the macro base station, and the BSR for the LCG included in LC3 corresponding to SRB3 may be transmitted to the small base station. It can be transmitted in a limited manner.
  • the buffer size information may be shared among all base stations included in the dual connection.
  • a plurality of logical channels included in a single LCG may be configured with a bearer split.
  • BSR total which is a BSR for the single LCG
  • BSR MeNB + BSR SeNB BSR MeNB + BSR SeNB .
  • the uplink resource allocation scheduled by all base stations included in the dual connection may be 2BSR total , which may cause inefficiency of uplink resources. have.
  • the base station can further inform the base station that the current buffer size value is 0 by transmitting a padding BSR for the uplink grant, so that the base station no longer transmits to the corresponding user equipment. Do not proceed with link resource allocation. Therefore, inefficiency of uplink resources is not a big problem.
  • the buffer size information reported to the base stations is only BSR total . Due to the sharing of the buffer size information between the total uplink resources allocated by the macro base station and the small base station may be allocated twice, that is, 100 times the actual reported buffer size. In this case, 50 resources are used for uplink data transmission by the small base station, but since the uplink data to be transmitted to the macro base station is 0, the remaining 50 resources are not used. Accordingly, when the terminal receives an uplink grant from the macro base station, the terminal transmits a padding BSR and reports 50 as the padding BSR value. At this time, when the scheduler of each base station receives the padding BSR by checking the received uplink data, the scheduler of the base station ignores the value of the data in the padding BSR and determines that the buffer size information of the base station is 0.
  • the terminal 2000 may include a generator 2010 and a transmitter 2020.
  • the generation unit 2010 generates a buffer state report (BSR) to provide the serving base station with information about the amount of data that can be transmitted to the uplink buffer of the terminal 2000.
  • BSR buffer state report
  • the generation unit 2010 corresponds to a single RB configured between the base stations and the terminal 2000 based on dual connectivity and is defined for each of the base stations.
  • a buffer size identifying the amount of available uplink data is calculated and information indicating the buffer size is generated.
  • a BSR including an ID for identifying each LCG and the buffer size information is generated, respectively.
  • the transmitter 2020 may transmit the BSR configured for each base station to the corresponding base station.
  • buffer size information is generated based on the sum of the buffer size of a single PDCP layer and the buffer size of one RLC entity among the plurality of RLC entities, or shown in FIG. 17 (b).
  • the buffer size is based on the sum of the buffer sizes of one RLC entity and the buffer size of one of the plurality of RLC entities in the buffer size of a single PDCP layer.
  • Information can be generated.
  • the buffer size information may be generated as the buffer size information for the RLC entity.
  • each base station may share the BSR received from the terminal 2000 with each other.
  • the BSR is a padding buffer status report (padding BSR)
  • the base station may ignore the data value in the padding BSR and determine that the buffer size information for the base station is zero.
  • the uplink resource situation of each base station, the reliability of the uplink, and the uplink It may include a selection unit (not shown) for selecting a base station to transmit the buffer status report according to the priority of the data arriving in the buffer based on the link transmission speed.
  • the transmitter 2020 may transmit a buffer status report to the base station selected by the selector.

Abstract

Disclosed are a method and an apparatus for transmitting a buffer state report in a wireless communication system. A method for transmitting a buffer state report of a terminal in a wireless communication system comprises the steps of: configuring a single radio bearer between base stations and the terminal on the basis of a dual connectivity; generating buffer size information which identifies the amount of uplink data available on a logical channel group corresponding to the single radio bearer and defined for each of the base stations; generating a buffer state report which includes an ID identifying the logical channel group and the buffer size information; and transmitting the buffer state report.

Description

무선 통신 시스템에서 버퍼상태보고 전송 방법 및 장치Buffer status report transmission method and device in wireless communication system
본 발명은 무선 통신에 관한 것으로서, 보다 상세하게는 단말이 둘 이상의 서로 다른 기지국들에 이중 연결되어 있으며 단일 베어러(bearer)가 상기 둘 이상의 서로 다른 기지국들과 상기 단말간에 구성 또는 형성되어 있는 경우 버퍼상태보고(buffer state report)를 운용하는 방법 및 장치에 관한 것이다.The present invention relates to a wireless communication, and more particularly, when a terminal is dually connected to two or more different base stations and a single bearer is configured or formed between the two or more different base stations and the terminal. A method and apparatus for operating a state report (buffer state report).
무선 통신 시스템에서 단말은 적어도 하나의 서빙셀(serving cell)을 구성하는 기지국들 중 둘 이상의 기지국을 통하여 무선 통신을 수행할 수 있다. 이를 이중 연결(dual connectivity)라 한다. 다시 말하면, 이중 연결은 단말이 적어도 둘 이상의 다른 네트워크 지점(network points)들에 의해 제공되는 무선 자원을 소비하는 동작이라 할 수 있다. 여기서, 적어도 둘 이상의 다른 네트워크 지점들은 물리적으로 또는 논리적으로 구분된 복수의 기지국들일 수 있다. 복수의 기지국들 중 하나는 매크로(macro) 기지국이고, 나머지 기지국들은 스몰(small) 기지국일 수 있다.In a wireless communication system, a terminal may perform wireless communication through two or more base stations of at least one base station constituting at least one serving cell. This is called dual connectivity. In other words, dual connectivity may be referred to as an operation in which a terminal consumes radio resources provided by at least two other network points. Here, the at least two other network points may be a plurality of base stations physically or logically separated. One of the plurality of base stations may be a macro base station, and the other base stations may be small base stations.
이중 연결에 있어서 각 기지국은 하나의 단말에 대하여 구성된 EPS 베어러(Evolved Packet System bearer) 또는 무선 베어러(RB: Radio Bearer)를 통해 하향링크(downlink) 데이터를 송신하고 상향링크(uplink) 데이터를 수신한다. 이때, 하나의 RB는 하나의 기지국에 구성되어 있거나, 상기 둘 이상의 서로 다른 기지국을 통해 구성되어 있을 수 있다.In dual connectivity, each base station transmits downlink data and receives uplink data through an evolved packet system bearer or a radio bearer (RB) configured for one terminal. . In this case, one RB may be configured in one base station or may be configured through two or more different base stations.
이 경우, 기본적으로 단말 내 각 RB에서 발생한 상향링크 데이터들은 해당 RB에 상응하는 RB가 구성되어 있는 기지국으로 전달되어야 한다. 그러나, 기존에는 단말 내 논리 채널 그룹(LCG: Logical Channel Group) 단위로 정의된 버퍼상태정보를 단말 단위로 전송하는 형태만이 지원되었기 때문에 특정 기지국에 할당된 RB에 매핑된 LC 단위로 BSR를 전송할 수 없었다. 만일, 특정 기지국에 할당된 RB마다 매핑된 LC 단위로 버퍼상태정보를 전송할 수 있다 하더라도 단일 RB가 복수의 기지국에 의해 구성되어 있는 경우 단말은 버퍼상태정보를 전송할 대상 기지국을 선택해야 하지만 이에 대한 기준이 없었다.In this case, basically, uplink data generated in each RB in the terminal should be delivered to the base station in which the RB corresponding to the corresponding RB is configured. However, since only the form of transmitting the buffer state information defined in the logical channel group (LCG) unit in the terminal is supported, the BSR is transmitted in the LC unit mapped to the RB allocated to the specific base station. Could not. Although, even though the buffer status information may be transmitted in units of LCs mapped to each RB allocated to a specific base station, when a single RB is configured by a plurality of base stations, the terminal should select a target base station to which the buffer status information is transmitted. There was no.
본 발명의 기술적 과제는 무선 통신 시스템에서 버퍼상태보고 전송 방법 및 장치를 제공함에 있다. An object of the present invention is to provide a buffer status report transmission method and apparatus in a wireless communication system.
본 발명의 다른 기술적 과제는 무선 통신 시스템에서 단말이 복수의 기지국들을 통해 구성된 단일 무선 베어러(radio bearer)에 매핑된 논리 채널(logical channel)에 대한 시그널링 요청(signaling request) 및 버퍼상태보고(buffer state report)를 전송하는 방법을 제공함에 있다.Another technical problem of the present invention is to provide a signaling request and a buffer state for a logical channel mapped to a single radio bearer configured by a terminal through a plurality of base stations in a wireless communication system. It provides a method for transmitting a report).
본 발명의 또 다른 기술적 과제는 단말이 둘 이상의 서로 다른 기지국들에 이중 연결되어 있으며 단일 무선 베어러가 상기 둘 이상의 서로 다른 기지국들을 통해 단말에 구성되어 있는 경우, 상기 단일 무선 베어러에 매핑된 논리 채널에 대한 스케줄링 요청(scheduling request) 및 버퍼상태보고를 전송할 기지국에 대한 기준을 제공함에 있다.Another technical problem of the present invention is that if a terminal is dually connected to two or more different base stations and a single radio bearer is configured in the terminal through the two or more different base stations, the logical channel mapped to the single radio bearer The present invention provides a reference for a base station to transmit a scheduling request and a buffer status report.
본 발명의 일 양태에 따르면, 무선 통신 시스템에서 단말의 버퍼상태보고 전송 방법은 이중 연결(dual connectivity)에 기반하여 기지국들과 상기 단말간에 단일 무선 베어러(radio bearer)를 구성하는 단계, 상기 단일 무선 베어러에 대응하고 상기 기지국들 각각에 대해 정의되는 논리 채널 그룹(logical channel group)에 관하여, 가용한(available) 상향링크 데이터의 양을 식별하는(identifies) 버퍼크기(buffer size) 정보를 생성하는 단계, 상기 논리 채널 그룹을 식별하는 ID 및 상기 버퍼크기 정보를 포함하는 버퍼상태보고(buffer state report)를 생성하는 단계 및 상기 버퍼상태보고를 전송하는 단계를 포함할 수 있다.According to an aspect of the present invention, a method for transmitting a buffer status report of a terminal in a wireless communication system includes configuring a single radio bearer between base stations and the terminal based on dual connectivity, wherein the single radio Generating buffer size information that identifies the amount of available uplink data with respect to a logical channel group corresponding to a bearer and defined for each of the base stations And generating a buffer state report including an ID for identifying the logical channel group and the buffer size information, and transmitting the buffer state report.
본 발명의 다른 양태에 따르면, 무선 통신 시스템에서 단말의 버퍼상태보고 전송 방법은 단일 무선 베어러(radio bearer)가 상기 단말과 이중 연결(dual connectivity)된 적어도 둘 이상의 기지국들에 구성되고 상기 기지국들의 RLC(Radio Link Control) 계층이 서로 연결되어 있는 경우 각 기지국의 상향링크 자원 상황, 상향링크의 신뢰도 및 상향링크 전송 속도를 기초로 버퍼에 도착한 데이터의 우선순위에 따라 버퍼상태보고를 전송할 기지국을 선택하는 단계 및 상기 선택한 기지국으로 버퍼상태보고를 전송하는 단계를 포함할 수 있다.According to another aspect of the present invention, a method for transmitting a buffer status report of a terminal in a wireless communication system includes a single radio bearer configured in at least two or more base stations having dual connectivity with the terminal and an RLC of the base stations. (Radio Link Control) When the layers are connected to each other, the base station for transmitting the buffer status report according to the priority of the data arrived in the buffer based on the uplink resource situation, uplink reliability and uplink transmission rate of each base station. And transmitting a buffer status report to the selected base station.
본 발명의 또 다른 양태에 따르면, 무선 통신 시스템에서 버퍼상태보고를 전송하는 단말은 이중 연결(dual connectivity)에 기반하여 기지국들과 상기 단말간에 구성된 단일 무선 베어러(radio bearer)에 대응하고 상기 기지국들 각각에 대해 정의되는 논리 채널 그룹(logical channel group)에 관하여, 가용한(available) 상향링크 데이터의 양을 식별하는(identifies) 버퍼크기(buffer size) 정보를 생성하고, 상기 논리 채널 그룹을 식별하는 ID 및 상기 버퍼크기 정보를 포함하는 버퍼상태보고(buffer state report)를 생성하는 생성부 및 상기 버퍼상태보고를 전송하는 전송부를 포함할 수 있다.According to another aspect of the present invention, a terminal transmitting a buffer status report in a wireless communication system corresponds to a single radio bearer configured between base stations and the terminal based on dual connectivity and the base stations Regarding the logical channel group defined for each, generating buffer size information that identifies the amount of available uplink data and identifying the logical channel group It may include a generation unit for generating a buffer state report including an ID and the buffer size information, and a transmission unit for transmitting the buffer state report.
본 발명의 또 다른 양태에 따르면, 무선 통신 시스템에서 버퍼상태보고를 전송하는 단말은 단일 무선 베어러(radio bearer)가 상기 단말과 이중 연결(dual connectivity)된 적어도 둘 이상의 기지국들에 구성되고 상기 기지국들의 RLC(Radio Link Control) 계층이 서로 연결되어 있는 경우 각 기지국의 상향링크 자원 상황, 상향링크의 신뢰도 및 상향링크 전송 속도를 기초로 버퍼에 도착한 데이터의 우선순위에 따라 버퍼상태보고를 전송할 기지국을 선택하는 선택부 및 상기 선택한 기지국으로 버퍼상태보고를 전송하는 전송부를 포함할 수 있다.According to another aspect of the present invention, a terminal for transmitting a buffer status report in a wireless communication system is configured in at least two or more base stations having a single radio bearer (dual connectivity) with the terminal and the When the radio link control (RLC) layers are connected to each other, the base station to transmit the buffer status report is selected according to the priority of the data arriving in the buffer based on the uplink resource status of each base station, the reliability of the uplink, and the uplink transmission rate. And a transmitter for transmitting a buffer status report to the selected base station.
무선 통신 시스템에서 단말이 특정 기지국에 할당된 무선 베어러(radio bearer)에 매핑된 논리 채널(logical channel) 단위로 버퍼상태보고(buffer state report)를 전송할 수 있다.In a wireless communication system, a terminal may transmit a buffer state report in logical channel units mapped to a radio bearer allocated to a specific base station.
단말이 둘 이상의 서로 다른 기지국들에 이중 연결되어 있으며 단일 무선 베어러(radio bearer)가 상기 둘 이상의 서로 다른 기지국들을 통해 단말에 구성되어 있는 경우 상기 단일 무선 베어러에 매핑된 논리 채널에 대한 스케줄링 요청(Scheduling Request) 및 버퍼상태보고를 전송할 기지국을 결정할 수 있다.Scheduling request for a logical channel mapped to the single radio bearer when the terminal is dually connected to two or more different base stations and a single radio bearer is configured in the terminal through the two or more different base stations. Request and the base station to send the buffer status report can be determined.
도 1은 본 발명이 적용되는 무선 통신 시스템의 네트워크 구조를 나타내는 도면이다.1 is a diagram illustrating a network structure of a wireless communication system to which the present invention is applied.
도 2는 사용자 평면에 대한 무선 프로토콜 구조를 나타내는 블록도이다.2 is a block diagram illustrating a radio protocol architecture for a user plane.
도 3은 제어 평면에 대한 무선 프로토콜 구조를 나타내는 블록도이다.3 is a block diagram illustrating a radio protocol architecture for a control plane.
도 4는 본 발명이 적용되는 무선통신 시스템에서 베어러 서비스의 구조를 나타내는 도면이다.4 is a diagram illustrating a structure of a bearer service in a wireless communication system to which the present invention is applied.
도 5는 본 발명에 적용되는 단말의 이중 연결 상황을 나타내는 도면이다.5 is a diagram illustrating a dual connection situation of a terminal applied to the present invention.
도 6은 본 발명에 적용되는 단말이 기지국으로 데이터를 전송하는 과정을 나타내는 도면이다.6 is a diagram illustrating a process of transmitting data to a base station by a terminal applied to the present invention.
도 7은 본 발명에 적용되는 단말이 데이터 전송에 실패하는 경우를 나타내는 도면이다.7 is a diagram illustrating a case in which a terminal applied to the present invention fails to transmit data.
도 8은 본 발명이 적용되는 버퍼상태보고의 MAC 제어 요소를 나타내는 도면이다.8 illustrates a MAC control element of a buffer status report to which the present invention is applied.
도 9는 본 발명이 적용되는 논리채널 구성정보를 나타내는 도면이다.9 is a diagram illustrating logical channel configuration information to which the present invention is applied.
도 10은 버퍼상태보고 관련 파라미터를 나타내는 도면이다.10 is a diagram illustrating buffer status report related parameters.
도 11은 인피니트 소스 딜레이 시스템(Infinite Source Delay System)을 나타내는 도면이다.FIG. 11 is a diagram illustrating an Infinite Source Delay System. FIG.
도 12는 탠덤 큐잉 시스템(Tandem Queuing System)을 나타내는 도면이다.FIG. 12 is a diagram illustrating a Tandem Queuing System. FIG.
도 13 내지 도 15는 단말이 스몰 기지국 및 매크로 기지국과 이중 연결된 경우를 나타내는 예시도이다.13 to 15 are exemplary diagrams illustrating a case in which a terminal is dually connected to a small base station and a macro base station.
도 16은 본 발명에 따라서 버퍼상태보고를 전송하는 방법의 일 예를 나타내는 흐름도이다.16 is a flowchart illustrating an example of a method of transmitting a buffer status report according to the present invention.
도 17은 본 발명에 따른 버퍼상태보고의 포맷을 나타내는 도면이다.17 illustrates a format of a buffer status report according to the present invention.
도 18은 네트워크에 의해 단말이 버퍼상태보고를 전송할 기지국이 결정되는 경우를 나타내는 도면이다.18 is a diagram illustrating a case where a base station for transmitting a buffer status report is determined by a network.
도 19는 단말의 판단에 의해 버퍼상태보고를 전송할 기지국을 결정하는 경우를 나타내는 도면이다.19 is a diagram illustrating a case where a base station for transmitting a buffer status report is determined by a determination of a terminal.
도 20은 본 발명에 따라서 버퍼상태보고를 전송하는 장치의 일 예를 나타내는 블록도이다.20 is a block diagram illustrating an example of an apparatus for transmitting a buffer status report according to the present invention.
이하, 본 명세서에서는 본 발명과 관련된 내용을 본 발명의 내용과 함께 예시적인 도면과 실시 예를 통해 상세하게 설명한다. 각 도면의 구성 요소들에 참조 부호를 부가함에 있어서, 동일한 구성 요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 명세서의 실시 예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 명세서의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, the present disclosure will be described in detail with reference to the accompanying drawings and examples, together with the contents of the present disclosure. In adding reference numerals to the components of each drawing, it should be noted that the same reference numerals are used as much as possible even though they are shown in different drawings. In addition, in describing the embodiments of the present specification, when it is determined that a detailed description of a related well-known configuration or function may obscure the gist of the present specification, the detailed description thereof will be omitted.
또한 본 명세서는 무선 통신 네트워크를 대상으로 설명하며, 무선 통신 네트워크에서 이루어지는 작업은 해당 무선 통신 네트워크를 관할하는 시스템(예를 들어 기지국)에서 네트워크를 제어하고 데이터를 송신하는 과정에서 이루어지거나, 해당 무선 네트워크에 포함된 단말에서 작업이 이루어질 수 있다.In addition, the present specification describes a wireless communication network, the operation performed in the wireless communication network is performed in the process of controlling the network and transmitting data in the system (for example, the base station) that is in charge of the wireless communication network, or the corresponding wireless Work may be performed in a terminal included in the network.
도 1은 본 발명이 적용되는 무선 통신 시스템의 네트워크 구조를 나타내는 도면이다.1 is a diagram illustrating a network structure of a wireless communication system to which the present invention is applied.
도 1에는 무선 통신 시스템의 일 예로 E-UMTS 시스템(Evolved-Universal Mobile Telecommunications System)의 네트워크 구조가 도시되어 있다. E-UMTS 시스템은 E-UTRA(Evolved-UMTS Terrestrial Radio Access) 또는 LTE(Long Term Evolution) 또는 LTE-A(advanced) 시스템일 수 있다. 무선 통신 시스템은 CDMA(Code Division Multiple Access), TDMA(Time Division Multiple Access), FDMA(Frequency Division Multiple Access), OFDMA(Orthogonal Frequency Division Multiple Access), SC-FDMA(Single Carrier-FDMA), OFDM-FDMA, OFDM-TDMA, OFDM-CDMA와 같은 다양한 다중 접속 기법을 사용할 수 있다.1 illustrates a network structure of an Evolved-Universal Mobile Telecommunications System (E-UMTS system) as an example of a wireless communication system. The E-UMTS system may be an Evolved-UMTS Terrestrial Radio Access (E-UTRA) or Long Term Evolution (LTE) or LTE-A (Advanced) system. Wireless communication systems include Code Division Multiple Access (CDMA), Time Division Multiple Access (TDMA), Frequency Division Multiple Access (FDMA), Orthogonal Frequency Division Multiple Access (OFDMA), Single Carrier-FDMA (SC-FDMA), and OFDM-FDMA Various multiple access schemes such as OFDM, TDMA, and OFDM-CDMA may be used.
도 1을 참조하면, E-UTRAN(Evolved-UMTS Terrestrial Radio Access Network)은 단말(UE: User Equipment, 10)에게 제어 평면(CP: Control Plane)과 사용자 평면(UP: User Plane)을 제공하는 기지국(eNB: evolved NodeB, 20)을 포함한다.Referring to FIG. 1, an Evolved-UMTS Terrestrial Radio Access Network (E-UTRAN) is a base station providing a control plane (CP) and a user plane (UP) to a user equipment (UE) 10. (eNB: evolved NodeB, 20).
단말(10)은 고정되거나 이동성을 가질 수 있으며, MS(Mobile station), AMS(Advanced MS), UT(User Terminal), SS(Subscriber Station), 무선기기(Wireless Device) 등의 다른 용어로 불릴 수 있다.The terminal 10 may be fixed or mobile, and may be called by other terms such as mobile station (MS), advanced MS (AMS), user terminal (UT), subscriber station (SS), and wireless device (Wireless Device). have.
기지국(20)은 일반적으로 단말(10)과 통신하는 지점(station)을 말하며, BS(Base Station), BTS(Base Transceiver System), 액세스 포인트(Access Point), 펨토 기지국(femto-eNB), 피코 기지국(pico-eNB), 홈기지국(Home eNB), 릴레이(relay) 등의 다른 용어로 불릴 수 있다. 기지국(20)들은 광케이블 또는 DSL(Digital Subscriber Line) 등을 통해 물리적으로 연결되어 있으며, X2 인터페이스를 통하여 서로 신호 또는 메시지를 주고 받을 수 있다. 이하에서는 물리적 연결에 대한 설명은 생략하고 논리적 연결에 대해 설명한다. 도 1에 도시된 것과 같이, 기지국(20)은 S1 인터페이스를 통해 EPC(Evolved Packet Core, 30)와 연결된다. 보다 상세하게는 기지국(20)은 S1-MME 인터페이스를 통해 MME(Mobility Management Entity)와 연결되고, S1-U 인터페이스를 통해 S-GW(Serving Gateway)와 연결된다. 기지국(20)은 S1-MME 인터페이스를 통해 MME와 단말(10)의 목차(context) 정보 및 단말(10)의 이동성을 지원하기 위한 정보를 주고받는다. 또한 S1-U 인터페이스를 통해 S-GW와 각 단말(10)에 서비스할 데이터를 주고 받는다.The base station 20 generally refers to a station for communicating with the terminal 10, and includes a base station (BS), a base transceiver system (BTS), an access point, an femto base station, and a pico-eNB. It may be called other terms such as a base station (pico-eNB), a home base station (Home eNB), a relay, and the like. The base stations 20 are physically connected through an optical cable or a digital subscriber line (DSL), and may exchange signals or messages with each other through an X2 interface. Hereinafter, the description of the physical connection will be omitted and the logical connection will be described. As shown in FIG. 1, the base station 20 is connected to an Evolved Packet Core (EPC) 30 through an S1 interface. More specifically, the base station 20 is connected to the Mobility Management Entity (MME) through the S1-MME interface, and is connected to the Serving Gateway (S-GW) through the S1-U interface. The base station 20 exchanges contents information of the MME and context information of the terminal 10 and information for supporting mobility of the terminal 10 through the S1-MME interface. In addition, the S-GW and the data to be serviced to each terminal 10 through the S1-U interface.
EPC(30)는 도 1에는 도시되지 않았지만, MME, S-GW 및 P-GW(Packet data network-Gateway)를 포함한다. MME는 단말(10)의 접속 정보나 단말(10)의 능력에 관한 정보를 가지고 있으며, 이러한 정보는 단말(10)의 이동성 관리에 주로 사용된다. S-GW는 E-UTRAN을 종단점으로 갖는 게이트웨이며, P-GW는 PDN(Packet Data Network)을 종단점으로 갖는 게이트웨이다.Although not shown in FIG. 1, the EPC 30 includes MME, S-GW, and Packet Data Network Gateway (P-GW). The MME has access information of the terminal 10 or information on the capability of the terminal 10, and this information is mainly used for mobility management of the terminal 10. The S-GW is a gateway having an E-UTRAN as an endpoint, and the P-GW is a gateway having a PDN (Packet Data Network) as an endpoint.
E-UTRAN과 EPC(30)를 통합하여 EPS(Evolved Packet System)라 부를 수 있으며, 단말(10)이 기지국(20)에 접속하는 무선링크로부터 서비스 엔티티로 연결해주는 PDN까지의 트래픽 흐름은 모두 IP(Internet Protocol) 기반으로 동작한다.The E-UTRAN and the EPC 30 may be integrated to be referred to as EPS (Evolved Packet System), and the traffic flows from the radio link to which the terminal 10 connects to the base station 20 to the PDN connected to the service entity are all IP. It works based on (Internet Protocol).
단말(10)과 기지국(20) 간의 무선 인터페이스를 "Uu 인터페이스"라 한다. 단말(10)과 네트워크 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 계층들은 3GPP(3rd Generation Partnership Project) 계열의 무선통신 시스템(UMTS, LTE, LTE-Advanced 등)에서 정의한 제1 계층(L1), 제2 계층(L2) 및 제3 계층(L3)으로 구분될 수 있다. 이 중에서 제1 계층에 속하는 물리계층은 물리채널(Physical Channel)을 이용한 정보전송서비스(Information Transfer Service)를 제공하며, 제3 계층에 위치하는 RRC(Radio Resource Control) 계층은 RRC 메시지를 교환하여 단말(10)과 네트워크 간에 무선자원을 제어한다.The air interface between the terminal 10 and the base station 20 is called a "Uu interface". Layers of the radio interface protocol between the terminal 10 and the network may include a first layer L1 defined in a 3GPP (3rd Generation Partnership Project) -based wireless communication system (UMTS, LTE, LTE-Advanced, etc.), It may be divided into a second layer L2 and a third layer L3. Among these, the physical layer belonging to the first layer provides an information transfer service using a physical channel, and the RRC (Radio Resource Control) layer located in the third layer exchanges an RRC message for the UE. Control radio resources between the network and the 10.
도 2는 사용자 평면(user plane)에 대한 무선 프로토콜 구조(radio protocol architecture)를 나타낸 블록도이고, 도 3은 제어 평면(control plane)에 대한 무선 프로토콜 구조를 나타낸 블록도이다. 사용자 평면은 사용자 데이터 전송을 위한 프로토콜 스택(protocol stack)이고, 제어 평면은 제어신호 전송을 위한 프로토콜 스택이다.FIG. 2 is a block diagram showing a radio protocol architecture for a user plane, and FIG. 3 is a block diagram showing a radio protocol architecture for a control plane. The user plane is a protocol stack for user data transmission, and the control plane is a protocol stack for control signal transmission.
도 2 및 도 3을 참조하면, 물리계층(PHY(physical) layer)은 물리채널(physical channel)을 이용하여 상위 계층에게 정보 전송 서비스(information transfer service)를 제공한다. 물리계층은 상위 계층인 매체접근제어(MAC: Medium Access Control) 계층과 전송채널(transport channel)을 통해 연결된다. 데이터는 MAC 계층과 물리계층 사이에서 전송채널을 통해 전달된다. 전송채널은 무선 인터페이스를 통해 데이터가 어떻게 전송되는가에 따라 분류된다.2 and 3, a physical layer (PHY) layer provides an information transfer service to a higher layer using a physical channel. The physical layer is connected to the upper layer by a medium access control (MAC) layer through a transport channel. Data is transmitted through a transport channel between the MAC layer and the physical layer. Transport channels are classified according to how data is transmitted over the air interface.
또한, 데이터는 서로 다른 물리계층 사이(즉, 송신기와 수신기의 물리계층 사이)에서 물리채널을 통해 전달된다. 상기 물리채널은 OFDM(Orthogonal Frequency Division Multiplexing) 방식으로 변조될 수 있으며, 시간과 주파수 및 복수의 안테나로 생성된 공간을 무선자원으로 활용한다.In addition, data is transmitted over a physical channel between different physical layers (ie, between physical layers of a transmitter and a receiver). The physical channel may be modulated by an orthogonal frequency division multiplexing (OFDM) scheme and utilizes space generated by time, frequency, and a plurality of antennas as radio resources.
일 예로, 물리채널 중 PDCCH(Physical Downlink Control CHannel)는 단말에게 PCH(Paging CHannel)와 DL-SCH(DownLink Shared CHannel)의 자원 할당 및 DL-SCH와 관련된 HARQ(Hybrid Automatic Repeat Request) 정보를 알려주며, 단말로 상향링크 전송의 자원 할당을 알려주는 상향링크 스케줄링 그랜트를 나를 수 있다. 또한, PCFICH(Physical Control Format Indicator CHannel)는 단말에게 PDCCH들에 사용되는 OFDM 심벌의 수를 알려주고, 매 서브프레임마다 전송된다. 또한, PHICH(Physical Hybrid ARQ Indicator CHannel)는 상향링크 전송의 응답으로 HARQ ACK/NAK 신호를 나른다. 또한, PUCCH(Physical Uplink Control CHannel)는 하향링크 전송에 대한 HARQ ACK/NAK, 스케줄링 요청 및 CQI와 같은 상향링크 제어 정보를 나른다. 또한, PUSCH(Physical Uplink Shared CHannel)는 UL-SCH(UpLink Shared CHannel)을 나른다. 기지국의 설정 및 요청에 따라 필요 시 PUSCH는 HARQ ACK/NACK 및 CQI와 같은 CSI(Channel State Information) 정보를 포함할 수 있다.For example, a physical downlink control channel (PDCCH) of a physical channel informs a terminal of resource allocation of a PCH (Paging CHannel) and DL-SCH (DownLink Shared CHannel) and HARQ (Hybrid Automatic Repeat Request) information related to the DL-SCH, The terminal may carry an uplink scheduling grant informing of resource allocation of uplink transmission. In addition, the Physical Control Format Indicator CHannel (PCFICH) informs the UE of the number of OFDM symbols used for the PDCCHs and is transmitted every subframe. In addition, the PHICH (Physical Hybrid ARQ Indicator CHannel) carries a HARQ ACK / NAK signal in response to the uplink transmission. In addition, the physical uplink control channel (PUCCH) carries uplink control information such as HARQ ACK / NAK, scheduling request, and CQI for downlink transmission. In addition, the PUSCH (Physical Uplink Shared CHannel) carries an UL-SCH (UpLink Shared CHannel). If necessary according to the configuration and request of the base station, the PUSCH may include channel state information (CSI) information such as HARQ ACK / NACK and CQI.
MAC 계층은 논리채널과 전송채널 간의 매핑 및 논리채널에 속하는 MAC SDU(Service Data Unit)의 전송채널 상으로 물리채널로 제공되는 전송블록(transport block)으로의 다중화 또는 역다중화를 수행할 수 있다. MAC 계층은 논리채널을 통해 RLC(Radio Link Control) 계층에 서비스를 제공한다. 논리채널은 제어 영역 정보의 전달을 위한 제어채널과 사용자 영역 정보의 전달을 위한 트래픽 채널로 나눌 수 있다. 일 예로, MAC 계층에서 상위 계층으로 제공되는 서비스들로서 데이터 전송(data transfer) 또는 무선 자원 할당(radio resource allocation)이 있다.The MAC layer may perform multiplexing or demultiplexing into a transport block provided as a physical channel on a transport channel of a MAC service data unit (SDU) belonging to the logical channel and mapping between the logical channel and the transport channel. The MAC layer provides a service to a Radio Link Control (RLC) layer through a logical channel. The logical channel may be divided into a control channel for transmitting control region information and a traffic channel for delivering user region information. As an example, services provided from the MAC layer to a higher layer include data transfer or radio resource allocation.
RLC 계층의 기능은 RLC SDU의 연결(concatenation), 분할(segmentation) 및 재결합(reassembly)을 포함한다. RLC 계층은 무선 베어러(RB: Radio Bearer)가 요구하는 다양한 QoS(Quality of Service)를 보장하기 위해, 투명모드(TM: Transparent Mode), 비확인 모드(UM: Unacknowledged Mode) 및 확인모드(AM: Acknowledged Mode)의 세 가지 동작모드를 제공한다.Functions of the RLC layer include concatenation, segmentation, and reassembly of RLC SDUs. The RLC layer uses a transparent mode (TM), an unacknowledged mode (UM), and an acknowledgment mode (AM) in order to guarantee various quality of services (QoS) required by a radio bearer (RB). Three modes of operation are provided: Acknowledgment Mode.
일반적으로 투명모드는 초기 연결(initial connection)을 설정할 때 사용된다. In general, transparent mode is used to set up an initial connection.
비확인 모드는 데이터 스트리밍 또는 VoIP(Voice over Internet Protocol)과 같은 실시간 데이터 전송을 위한 것으로, 데이터의 신뢰도 보다는 속도에 중점을 둔 모드이다. 반면, 확인 모드는 데이터의 신뢰도에 중점을 둔 모드이며, 대용량 데이터 전송 또는 전송 지연에 덜 민감한 데이터 전송에 적합하다. 기지국은 단말과 연결 설정되어 있는 각 EPS 베어러의 QoS(Quality of Service) 정보를 기반으로 각 EPS 베어러에 상응하는 RB 내 RLC의 모드를 결정하고 QoS를 만족할 수 있도록 RLC 내 파라미터들을 구성한다.Unacknowledged mode is for real-time data transmission, such as data streaming or Voice over Internet Protocol (VoIP), which focuses on speed rather than reliability of data. The acknowledgment mode, on the other hand, focuses on the reliability of the data and is suitable for large data transmissions or data transmissions that are less sensitive to transmission delays. The base station determines the mode of the RLC in the RB corresponding to each EPS bearer based on the Quality of Service (QoS) information of each EPS bearer configured to be connected to the terminal, and configures the parameters in the RLC to satisfy the QoS.
RLC SDU들은 다양한 사이즈로 지원되며, 일 예로 바이트(byte) 단위로 지원될 수 있다. RLC PDU(Protocol Data Unit)들은 하위계층(예, MAC 계층)으로부터 전송 기회(transmission opportunity)가 통보(notify)될 때에만 규정되며 하위계층으로 전달된다. 상기 전송 기회는 전송될 총 RLC PDU들의 크기와 함께 통보될 수 있다. 또한, 상기 전송 기회와 상기 전송될 총 RLC PDU들의 크기는 각각 분리되어 통보될 수도 있다.The RLC SDUs are supported in various sizes, and for example, may be supported in units of bytes. RLC Protocol Data Units (PDUs) are defined only when a transmission opportunity is notified from a lower layer (eg, MAC layer) and delivered to the lower layer. The transmission opportunity may be informed with the size of the total RLC PDUs to be transmitted. In addition, the transmission opportunity and the size of the total RLC PDUs to be transmitted may be separately informed.
사용자 평면에서의 PDCP(Packet Data Convergence Protocol) 계층의 기능은 사용자 데이터의 전달, 헤더 압축(header compression) 및 암호화(ciphering)와 제어 평면 데이터의 전달 및 암호화/무결성 보호(integrity protection)를 포함한다.Functions of the Packet Data Convergence Protocol (PDCP) layer in the user plane include the transfer of user data, header compression and ciphering, and the transfer and control of encryption / integrity protection of control plane data.
RRC 계층은 RB들의 구성(configuration), 재구성(re-configuration) 및 해제(release)와 관련되어 논리채널, 전송채널 및 물리채널들의 제어를 담당한다. 무선 베어러(RB: Radio Bearer)는 단말과 네트워크간의 데이터 전달을 위해 제1 계층(PHY 계층) 및 제2 계층(MAC 계층, RLC 계층, PDCP 계층)에 의해 제공되는 논리적 경로를 의미한다. RB가 구성된다는 것은 특정 서비스를 제공하기 위해 무선 프로토콜 계층 및 채널의 특성을 규정하고, 각각의 구체적인 파라미터 및 동작 방법을 설정하는 과정을 의미한다. RB는 SRB(Signaling RB), DRB(Data RB)로 구분될 수 있다. SRB는 제어 평면에서 RRC 메시지 및 NAS(Non-Access Stratum) 메시지를 전송하는 통로로 사용되며, DRB는 사용자 평면에서 사용자 데이터를 전송하는 통로로 사용된다.The RRC layer is responsible for the control of logical channels, transport channels, and physical channels in connection with configuration, re-configuration, and release of RBs. A radio bearer (RB) refers to a logical path provided by a first layer (PHY layer) and a second layer (MAC layer, RLC layer, PDCP layer) for data transmission between the terminal and the network. The configuration of the RB means a process of defining characteristics of a radio protocol layer and a channel to provide a specific service, and setting each specific parameter and operation method. The RB may be classified into a signaling RB (SRB) and a data RB (DRB). The SRB is used as a path for transmitting RRC messages and non-access stratum (NAS) messages in the control plane, and the DRB is used as a path for transmitting user data in the user plane.
RRC 계층 상위에 위치하는 NAS(Non-Access Stratum) 계층은 연결관리(Session Management)와 이동성 관리(Mobility Management) 등의 기능을 수행한다. 단말의 RRC 계층과 E-UTRAN의 RRC 계층 사이에 RRC 연결(RRC Connection)이 있을 경우, 단말은 RRC 연결 상태(RRC connected state)에 있게 되고, 그렇지 못할 경우 RRC 휴지 상태(RRC idle state)에 있게 된다.The non-access stratum (NAS) layer located above the RRC layer performs functions such as session management and mobility management. If there is an RRC connection between the RRC layer of the UE and the RRC layer of the E-UTRAN, the UE is in an RRC connected state, otherwise it is in an RRC idle state. do.
단말이 외부 인터넷 망으로 사용자 데이터(user data: 예, IP 패킷)를 송신하거나 외부 인터넷 망으로부터 사용자 데이터를 수신하기 위해서는, 단말과 외부 인터넷 망 사이에 존재하는 이동통신 네트워크 엔티티(entity)들 간에 존재하는 여러 경로에 자원이 할당되어야 한다. 이렇게 이동통신 네트워크 엔티티들 사이에 자원이 할당되어 데이터 송수신이 가능해진 경로를 베어러(Bearer)라고 한다.In order for a terminal to transmit user data (eg, an IP packet) to an external internet network or to receive user data from an external internet network, the terminal exists between mobile communication network entities existing between the terminal and the external internet network. Resources must be allocated to different paths. Thus, a path in which resources are allocated between mobile communication network entities and data transmission and reception is possible is called a bearer.
도 4는 본 발명이 적용되는 무선통신 시스템에서 베어러 서비스의 구조를 나타내는 도면이다.4 is a diagram illustrating a structure of a bearer service in a wireless communication system to which the present invention is applied.
도 4에는 단말과 인터넷 망 사이에 종단간 서비스(End-to-End service)가 제공되는 경로가 도시되어 있다. 여기서, 종단간 서비스라 함은 단말이 인터넷 망과 데이터 서비스를 위해서 단말과 P-GW 간의 경로(EPS Bearer)와 P-GW와 외부까지의 경로(External Bearer)가 필요한 서비스를 의미한다. 여기서, 외부의 경로는 P-GW와 인터넷 망 사이의 베어러이다.4 shows a path in which end-to-end service is provided between a terminal and an internet network. Here, the end-to-end service refers to a service that requires a path between the terminal and the P-GW (EPS Bearer) and a P-GW and an external bearer for the Internet network and data service. Here, the external path is a bearer between the P-GW and the Internet network.
단말이 외부 인터넷 망으로 데이터를 전달하는 경우, 우선 단말은 RB를 통해서 기지국(eNB)에게 데이터를 전달한다. 그리면, 기지국은 단말로부터 수신한 데이터를 S1 베어러를 통해서 S-GW로 전달한다. S-GW는 S5/S8 베어러를 통해서 기지국으로부터 수신한 데이터를 P-GW로 전달하며, 최종적으로 데이터는 P-GW와 외부 인터넷 망에 존재하는 목적지까지 외부 베어러(External Bearer)를 통해서 전달된다.When the terminal transmits data to the external internet network, the terminal first transmits the data to the base station eNB through the RB. Then, the base station transmits the data received from the terminal to the S-GW through the S1 bearer. The S-GW delivers the data received from the base station to the P-GW via the S5 / S8 bearer, and finally the data is delivered through the external bearer to a destination existing in the P-GW and the external Internet network.
마찬가지로, 외부 인터넷 망에서 단말로 데이터가 전달되려면 위의 설명과 역방향으로 각각의 베어러를 거쳐서 단말에 전달이 될 수 있다.Similarly, in order to transmit data from the external Internet network to the terminal, the data can be delivered to the terminal through each bearer in the reverse direction as described above.
이와 같이 무선통신 시스템에서는 각 인터페이스마다 각각의 베어러를 정의하여, 인터페이스들간의 독립성을 보장하고 있다. 각 인터페이스에서의 베어러를 보다 상세히 설명하면 다음과 같다.As described above, in the wireless communication system, each bearer is defined for each interface to ensure independence between the interfaces. The bearer at each interface will be described in more detail as follows.
무선통신 시스템이 제공하는 베어러를 총칭하여 EPS(Evolved Packet System) 베어러라고 한다. EPS 베어러는 특정 QoS로 IP 트래픽을 전송하기 위하여 UE와 P-GW 간에 설정된 전달 경로이다. P-GW는 인터넷으로부터 IP 플로우를 수신하거나 인터넷으로 IP 플로우를 전송할 수 있다. 각 EPS 베어러는 전달 경로의 특성을 나타내는 QoS 결정 파라미터들로 설정된다. EPS 베어러는 단말당 하나 이상 구성될 수 있으며, 하나의 EPS 베어러는 하나의 E-RAB(E-UTRAN Radio Access Bearer)와 하나의 S5/S8 베어러의 연결된 값(concatenation)을 고유하게 표현한다.The bearers provided by the wireless communication system are collectively called an Evolved Packet System (EPS) bearer. An EPS bearer is a delivery path established between a UE and a P-GW for transmitting IP traffic with a specific QoS. The P-GW may receive IP flows from the Internet or send IP flows to the Internet. Each EPS bearer is set with QoS decision parameters that indicate the nature of the delivery path. One or more EPS bearers may be configured per UE, and one EPS bearer uniquely represents a concatenation of one E-UTRAN Radio Access Bearer (E-RAB) and one S5 / S8 bearer.
S5/S8 베어러는 S5/S8 인터페이스의 베어러이다. S5와 S8 모두 S-GW와 P-GW 사이의 인터페이스에 존재하는 베어러이다. S5 인터페이스는 S-GW와 P-GW가 동일한 사업자에 속해 있을 경우에 존재하며, S8 인터페이스는 S-GW가 로밍해 들어간 사업자(Visited PLMN)에 속하며 P-GW가 원래 서비스에 가입한 사업자(Home PLMN)에 속하는 경우에 존재한다.The S5 / S8 bearer is a bearer of the S5 / S8 interface. Both S5 and S8 are bearers present at the interface between the S-GW and the P-GW. The S5 interface exists when the S-GW and the P-GW belong to the same operator, and the S8 interface belongs to the provider (Visited PLMN) roamed by the S-GW, and the P-GW has subscribed to the original service (Home). PLMN).
E-RAB는 S1 베어러와 그에 상응하는 RB의 연결된 값(concatenation)을 고유하게 표현한다. 하나의 E-RAB가 존재할 때, 해당 E-RAB와 하나의 EPS 베어러 간에 1대1 매핑이 성립한다. 즉, 하나의 EPS 베어러는 각각 하나의 RB, S1 베어러, S5/S8 베어러에 대응된다. S1 베어러는 기지국과 S-GW 사이의 인터페이스에서의 베어러이다.The E-RAB uniquely represents the concatenation of the S1 bearer and the corresponding RB. When there is one E-RAB, one-to-one mapping is established between the E-RAB and one EPS bearer. That is, one EPS bearer corresponds to one RB, S1 bearer, and S5 / S8 bearer, respectively. The S1 bearer is a bearer at the interface between the base station and the S-GW.
RB는 데이터 RB(DRB: Data Radio Bearer)와 시그널링 RB(SRB: Signaling Radio Bearer) 두 가지를 의미하지만 본 발명에서 구분 없이 RB라 표현하는 것은 사용자의 서비스를 지원하기 위해 Uu 인터페이스에서 제공되는 DRB이다. 따라서 따로 구분 없이 표현하는 RB는 SRB와 구별된다. RB는 사용자 평면의 데이터가 전달되는 경로이며, SRB는 RRC 계층과 NAS 제어 메시지 등 제어 평면의 데이터가 전달되는 경로이다. RB와 E-RAB 그리고 EPS 베어러 간에는 1대1 매핑이 성립한다.RB means two types of data radio bearer (DRB) and signaling radio bearer (SRB). However, in the present invention, RB is a DRB provided in the Uu interface to support a service of a user. . Therefore, the RB expressed without distinction is distinguished from the SRB. The RB is a path through which data of the user plane is transmitted, and the SRB is a path through which data of the control plane, such as the RRC layer and NAS control messages, are delivered. One-to-one mapping is established between RB, E-RAB and EPS bearer.
EPS 베어러 종류로는 디폴트(default) 베어러와 전용(dedicated) 베어러가 있다. 단말이 무선 통신망에 접속하면 IP 주소를 할당받고 PDN 연결이 생성되면서 동시에 디폴트 EPS 베어러가 생성된다. 즉, 디폴트 베어러는 새로운 PDN 연결이 생성될 때 처음 생성된다. 사용자가 디폴트 베어러를 통해 서비스(예를 들어, 인터넷 등)를 이용하다가 디폴트 베어러로는 QoS를 제대로 제공받을 수 없는 서비스(예를 들어 VoD 등)를 이용하게 되면 온-디맨드(on-demand)로 전용 베어러가 생성된다. 이 경우 전용 베어러는 이미 설정되어 있는 베어러와는 다른 QoS로 설정될 수 있다. 전용 베어러에 적용되는 QoS 결정 파라미터들은 PCRF(Policy and Charging Rule Function)에 의해 제공된다. 전용 베어러 생성시 PCRF는 SPR(Subscriber Profile Repository)로부터 사용자의 가입정보를 수신하여 QoS 결정 파라미터를 결정할 수 있다. 전용 베어러는 예를 들어, 최대 15개까지 생성될 수 있다. 그러나, LTE 시스템에서는 상기 15개 중 4개는 사용하지 않는다. 따라서 LTE 시스템에서 전용 베어러는 최대 11개까지 생성될 수 있다.EPS bearer types include a default bearer and a dedicated bearer. When the terminal accesses the wireless communication network, an IP address is assigned, a PDN connection is created, and a default EPS bearer is created at the same time. That is, a default bearer is first created when a new PDN connection is created. When a user uses a service (for example, the Internet, etc.) through a default bearer, and uses a service (for example, VoD, etc.) that the default bearer cannot provide QoS properly, the user may be on-demand. A dedicated bearer is created. In this case, the dedicated bearer may be set to a different QoS from the bearer that is already set. QoS decision parameters applied to the dedicated bearer are provided by a Policy and Charging Rule Function (PCRF). Upon creation of a dedicated bearer, the PCRF may receive subscription information of a user from a Subscriber Profile Repository (SPR) to determine QoS determination parameters. Up to 15 dedicated bearers may be created, for example. However, four of the above 15 are not used in the LTE system. Therefore, up to 11 dedicated bearers may be generated in an LTE system.
EPS 베어러는 기본 QoS 결정 파라미터로서 QCI(QoS Class Identifier)와 ARP(Allocation and Retention Priority)를 포함한다. EPS 베어러는 QCI 자원 형태에 따라 GBR(Guaranteed Bit Rate)형 베어러와 non-GBR형 베어러로 구분된다. 디폴트 베어러는 항상 non-GBR형 베어러로 설정되고, 전용 베어러는 GBR형 또는 non-GBR형 베어러로 설정될 수 있다. GBR형 베어러는 QCI와 ARP 이외에 QoS 결정 파라미터로 GBR과 MBR(Maximum Bit Rate)를 가진다. 무선통신 시스템이 전체적으로 제공해야 하는 QoS가 EPS 베어러로 정의되고 나면, 각 인터페이스마다 각각의 QoS가 정해진다. 각 인터페이스는 자신이 제공해야 하는 QoS에 맞춰 베어러를 설정한다.The EPS bearer includes a QoS Class Identifier (QCI) and Allocation and Retention Priority (ARP) as basic QoS decision parameters. EPS bearers are classified into GBR (Guaranteed Bit Rate) bearers and non-GBR bearers according to QCI resource types. The default bearer is always set to a non-GBR type bearer, and the dedicated bearer may be set to a GBR type or non-GBR type bearer. The GBR bearer has GBR and MBR (Maximum Bit Rate) as QoS decision parameters in addition to QCI and ARP. After the QoS that the wireless communication system must provide as a whole is defined as an EPS bearer, each QoS is determined for each interface. Each interface sets up a bearer according to the QoS it needs to provide.
도 5는 본 발명의 실시예에 적용되는 단말의 이중 연결 상황의 일 예를 나타내는 도면이다.5 is a diagram illustrating an example of a dual connectivity situation of a terminal applied to an embodiment of the present invention.
도 5에는 일 예로, 단말(550)이 매크로 기지국(500) 내 매크로 셀(F2)의 서비스 지역과 스몰 기지국(510) 내 스몰 셀(F1)의 서비스 지역이 중첩된(overlaid) 지역으로 진입한 경우가 도시되어 있다.In FIG. 5, for example, the terminal 550 enters an area in which the service area of the macro cell F2 in the macro base station 500 and the service area of the small cell F1 in the small base station 510 overlap. The case is shown.
이 경우, 매크로 기지국(500) 내 매크로 셀(F2)을 통한 기존 무선 연결 및 데이터 서비스 연결을 유지한 채로 스몰 기지국(510) 내 스몰 셀(F1)을 통한 추가적인 데이터 서비스를 지원하기 위하여, 네트워크는 단말(550)에 대하여 이중 연결을 구성한다. 이에 따라, 매크로 기지국(500)에 도착한 사용자 데이터는 스몰 기지국(510)을 통해 단말에게 전달될 수 있다. 구체적으로, F2 주파수 대역이 매크로 기지국(500)에 할당되고, F1 주파수 대역이 스몰 기지국(510)에 할당된다. 단말(550)은 매크로 기지국(500)으로부터 F2 주파수 대역을 통해 서비스를 수신하는 동시에, 스몰 기지국(510)으로부터 F1 주파수 대역을 통해 서비스를 수신할 수 있다. 상기의 예에서 매크로 기지국(500)은 F2, 스몰 기지국(510)은 F1 주파수 대역을 사용하는 것으로 설명하였으나 이에 한정되는 것은 아니며 상기 매크로 기지국(500) 및 스몰 기지국(510) 모두 동일한 F1 또는 F2 주파수 대역을 사용할 수도 있다.In this case, in order to support an additional data service through the small cell F1 in the small base station 510 while maintaining the existing wireless connection and data service connection through the macro cell F2 in the macro base station 500, Configure a dual connection for the terminal 550. Accordingly, user data arriving at the macro base station 500 may be transmitted to the terminal through the small base station 510. Specifically, the F2 frequency band is allocated to the macro base station 500, and the F1 frequency band is allocated to the small base station 510. The terminal 550 may receive the service through the F2 frequency band from the macro base station 500 and may receive the service through the F1 frequency band from the small base station 510. In the above example, the macro base station 500 uses F2 and the small base station 510 is described as using the F1 frequency band. However, the present invention is not limited thereto, and both the macro base station 500 and the small base station 510 have the same F1 or F2 frequency. Bands can also be used.
도 6은 본 발명의 실시예가 적용되는 단말이 기지국으로 데이터를 전송하는 과정을 나타내는 도면이고, 도 7은 본 발명의 실시예가 적용되는 단말이 데이터 전송에 실패하는 경우를 나타내는 도면이다.6 is a diagram illustrating a process in which a terminal to which an embodiment of the present invention is applied transmits data to a base station, and FIG. 7 is a diagram illustrating a case in which a terminal to which the embodiment of the present invention is applied fails to transmit data.
도 6에 도시된 것과 같이 단말은 상향링크를 통해 전송할 데이터가 존재하여 버퍼상태보고(BSR: Buffer State Report)가 트리거(trigger)되는 경우(S610), 기지국이 상향링크 자원을 할당하도록 유도하기 위해 스케줄링 요청(SR: Scheduling Request)을 전송한다(S620). SR은 PUCCH를 통해 전송되며, 기지국은 각 단말마다 SR을 전송할 자원을 할당한다.As shown in FIG. 6, when the UE has data to be transmitted through uplink and a buffer state report (BSR) is triggered (S610), the UE induces the base station to allocate uplink resources. A scheduling request (SR) is transmitted (S620). The SR is transmitted through the PUCCH, and the base station allocates resources for transmitting the SR to each terminal.
단말은 기지국으로부터 SR에 대한 상향링크 그랜트(UL grant)를 수신하면(S630), BSR을 전송한다(S640). BSR은 단말이 상향링크를 통해 전송할 데이터가 있음을 기지국에게 알리기 위한 것으로, 상향링크에 대한 QoS 인지(aware) 패킷 스케줄링 지원을 제공하기 위한 것이다. 다시 말해, BSR 절차는 SR 전송 이후에 수행되며, 단말의 상향링크 버퍼에서 전송 가능한(available) 데이터의 양에 대한 정보를 서빙 기지국에 제공하기 위해 사용된다. When the terminal receives an uplink grant (UL grant) for the SR from the base station (S630), and transmits the BSR (S640). The BSR is for informing the base station that there is data to be transmitted by the terminal through the uplink, and to provide QoS aware packet scheduling support for the uplink. In other words, the BSR procedure is performed after the SR transmission and is used to provide the serving base station with information about the amount of available data in the uplink buffer of the terminal.
단말은 단말 내 각 논리 채널 그룹(LCG: Logical Channel Group)에 버퍼링된 데이터들을 기반으로 BSR을 구성한다. 단말에는 최대 4개의 LCG가 구성될 수 있다. BSR는 하나의 LCG의 버퍼상태를 보고하기 위한 짧은(short) 포맷과 4개의 LCG의 버퍼상태를 보고하기 위한 긴(long) 포맷이 있다. BSR의 포맷은 후술될 도 8을 참조할 수 있다. The terminal configures a BSR based on data buffered in each logical channel group (LCG) in the terminal. Up to four LCGs may be configured in the terminal. The BSR has a short format for reporting the buffer status of one LCG and a long format for reporting the buffer status of four LCGs. The format of the BSR may refer to FIG. 8 to be described later.
기지국은 RRC 계층에서 정의된 시그널링을 통해 주기적 BSR 타이머(periodicBSR-Timer)와 재전송 BSR 타이머(retxBSR-Timer)를 구성하고, 각 단말 내 논리채널(logical channel)에 대한 BSR 절차를 제어할 수 있다. 즉, BSR은 LCG를 대상으로 수행되므로, 기지국은 도 9 및 도 10의 구문을 포함하는 논리채널 구성정보를 단말로 전송할 수 있다. The base station may configure a periodic BSR timer (periodicBSR-Timer) and a retransmission BSR timer (retxBSR-Timer) through signaling defined in the RRC layer, and control a BSR procedure for a logical channel in each terminal. That is, since the BSR is performed for the LCG, the base station may transmit logical channel configuration information including the syntaxes of FIGS. 9 and 10 to the terminal.
BSR 절차에서 단말은 유보된(suspended) 무선 베어러(RB: Radio Bearer)와 유보되지 않은 모든 RB를 고려해야 한다.In the BSR procedure, the UE should consider a suspended radio bearer (RB) and all unreserved RBs.
한편, BSR로는 일반 BSR(Regular BSR), 패딩 BSR(Padding BSR) 및 주기적 BSR(Periodic BSR)가 있다. 일반 BSR는 LCG에 포함된 논리 채널에 대하여, 이미 전송 가능한 데이터가 존재하는 다른 논리 채널들보다 높은 우선순위를 갖는 논리 채널에 전송 가능한 상향링크 데이터가 RLC 엔티티 또는 PDCP 엔티티에 존재하게 되었을 때 트리거링된다. 또한, 일반 BSR는 retxBSR-Timer가 만료되고 단말이 LCG 내의 논리 채널에 전송 가능한 데이터를 가지고 있는 경우에도 트리거링된다. 패딩 BSR는 상향링크 자원이 할당되고 패딩 비트들의 수가 BSR 전송을 위한 크기와 같거나 큰 경우 트리거링된다. 주기적 BSR는 periodicBSR-Timer가 만료된 경우 트리거링된다.On the other hand, BSRs include a regular BSR, a padding BSR, and a periodic BSR. The general BSR is triggered when the uplink data that can be transmitted to a logical channel having a higher priority than other logical channels that already have transmittable data is present in the RLC entity or PDCP entity for the logical channel included in the LCG. . In addition, the general BSR is triggered even when the retxBSR-Timer expires and the UE has data that can be transmitted on a logical channel in the LCG. The padding BSR is triggered when uplink resources are allocated and the number of padding bits is equal to or greater than the size for BSR transmission. Periodic BSR is triggered when the periodicBSR-Timer expires.
단말은 상기 BSR 중 적어도 하나의 BSR이 트리거되고 취소되지 않는 경우 BSR 절차를 수행한다. 단말은 만약 이번 전송 시간 구간(TTI: Transmission Time Interval)에 새로운 전송에 대한 상향링크 자원이 할당되면 BSR MAC 제어 요소의 생성을 위한 멀티플렉싱 및 어셈블리 절차를 지시하고, periodicBSR-Timer를 시작 또는 재시작하며, retxBSR-Timer를 시작 또는 재시작한다. 여기서, periodicBSR-Timer를 시작 또는 재시작하는 절차는 단축 BSR(Truncated BSR)이 생성되는 경우에는 제외된다. 일반 BSR이 트리거링 되었을 때, 상향링크 그랜트가 설정(configure)되지 않았거나 상기 일반 BSR이 상위계층에 의해 SR 마스킹이 셋업된 특정 논리채널에 전송 가능한 상향링크 데이터가 존재함으로 인해 트리거링된 것이 아니라면 SR은 반드시 트리거링 되어야 한다. 즉, SR은 SR 마스킹이 셋업되지 않은 특정 논리채널에 의해 일반 BSR이 트리거링 되었을 때 트리거링 된다. The UE performs a BSR procedure when at least one of the BSRs is triggered and is not canceled. If an uplink resource for a new transmission is allocated to this transmission time interval (TTI), the UE instructs a multiplexing and assembly procedure for generating a BSR MAC control element, starts or restarts a periodicBSR-Timer. Start or restart the retxBSR-Timer. Here, the procedure of starting or restarting the periodicBSR-Timer is excluded when a shortened BSR (Truncated BSR) is generated. When a normal BSR is triggered, if the uplink grant is not configured or if the normal BSR is not triggered due to the presence of uplink data that can be transmitted on a specific logical channel for which SR masking is set up by a higher layer, then the SR is It must be triggered. That is, the SR is triggered when a general BSR is triggered by a specific logical channel for which SR masking is not set up.
이때, 하나의 MAC PDU는 다수의 BSR이 트리거링 되더라도 하나의 MAC 제어 요소만을 포함해야 한다. 그리고, 일반 BSR과 주기적 BSR을 전송할 수 있는 경우, 이는 언제나 패딩 BSR보다 우선한다. 또한, 모든 UL-SCH에 대한 새로운 데이터의 전송을 지시하는 지시자의 수신을 확인하면 단말은 retxBSR-Timer를 재시작해야 한다. 모든 트리거링된 BSR들은 모든 펜딩된 데이터를 보낼 수는 있지만 BSR MAC 제어 요소를 추가로 보낼 수는 없는 상향링크 그랜트(UL grant)를 수신한 경우 취소되어야 한다. 또한, 모든 트리거링된 BSR들은 BSR을 MAC PDU에 포함시켰을 때 취소되어야 한다. 단말은 하나의 TTI내에 하나의 일반/주기적 BSR을 전송해야 한다. 만일 단말이 하나의 TTI내에 다수의 MAC PDU들의 전송을 요구 받았다면, 일반/주기적 BSR이 포함되지 않은 임의의 MAC PDU들 내에 하나의 패딩 BSR이 포함될 수도 있다. 모든 BSR들은 언제나 상기 BSR이 전송되는 TTI에 모든 MAC PDU들이 구성된 후 버퍼 상태를 반영한다. LCG 각각은 하나의 TTI 마다 하나의 버퍼 상태 값을 보고해야 하고, 상기 버퍼 상태 값은 모든 BSR 내에 상기 LCG에 대한 BSR을 통해 보고되어야 한다. 즉, 동일 TTI에서는 LCG 마다 하나의 BSR값이 전송되어야 하며, 동일 TTI에서 전송되는 모든 BSR에서 LCG에 대한 버퍼 상태 값은 동일한 값이어야 한다. 한편, 패딩 BSR이 일반/주기적 BSR을 취소(cancel)시키는 것은 허용되지 않는다. 패딩 BSR은 특정 MAC PDU에 대해 트리거되고, 상기 패딩 BSR의 트리거는 특정 MAC PDU가 생성될 때 취소된다.At this time, one MAC PDU should include only one MAC control element even if multiple BSRs are triggered. And, if a general BSR and a periodic BSR can be transmitted, this always takes precedence over the padding BSR. In addition, upon confirming receipt of an indicator indicating transmission of new data for all UL-SCHs, the terminal should restart the retxBSR-Timer. All triggered BSRs should be canceled when they receive an UL grant that can send all pending data but cannot send additional BSR MAC control elements. In addition, all triggered BSRs must be canceled when the BSR is included in the MAC PDU. The terminal should transmit one general / periodic BSR in one TTI. If the UE is required to transmit a plurality of MAC PDUs in one TTI, one padding BSR may be included in any MAC PDUs that do not include a general / periodic BSR. All BSRs always reflect the buffer status after all MAC PDUs are configured in the TTI over which the BSR is sent. Each LCG must report one buffer status value per TTI, and the buffer status values must be reported through the BSR for the LCG within every BSR. That is, one BSR value should be transmitted for each LCG in the same TTI, and the buffer status value for the LCG should be the same value for all BSRs transmitted in the same TTI. On the other hand, the padding BSR is not allowed to cancel the general / periodic BSR. The padding BSR is triggered for a specific MAC PDU, and the trigger of the padding BSR is canceled when a specific MAC PDU is generated.
다시 도 6에서, 단말이 기지국으로부터 버퍼상태보고에 대한 상향링크 그랜트를 수신하면(S650), 상향링크 데이터의 전송을 위한 자원이 할당되므로, 이후 실질적인 데이터 전송이 수행된다(S660).6 again, when the terminal receives an uplink grant for the buffer status report from the base station (S650), since resources for the transmission of the uplink data are allocated, substantial data transmission is then performed (S660).
다음으로, 도 7을 참조하면, 만일 기지국에 SR을 전송할 자원량보다 현재 접속중인 단말의 수가 많은 경우 단말은 SR 자원을 할당 받지 못할 수 있다. 또는, SR을 전송하였으나 기지국으로부터의 상향링크 자원할당이 특정 기간 이후에 이루어 지거나, SR 전송 횟수가 특정 횟수를 초과하는 경우에도 데이터 전송이 이루어지지 않을 수 있다. 이 경우 단말은 SR의 목적에 부합하는 대안으로 주서빙셀 또는 해당 SR을 전송한 서빙셀을 통해 경쟁기반 랜덤 액세스(RA: Random Access) 절차를 시작한다.Next, referring to FIG. 7, if the number of terminals currently connected to the base station is greater than the amount of resources to transmit the SR to the base station, the terminal may not be allocated an SR resource. Alternatively, even though the SR is transmitted, uplink resource allocation from the base station may be performed after a specific period, or data transmission may not be performed even if the number of SR transmissions exceeds a specific number. In this case, the UE starts a contention-based random access (RA) procedure through the primary serving cell or the serving cell transmitting the corresponding SR as an alternative corresponding to the purpose of the SR.
구체적으로, 단말은 SR이 트리거되었으며 현재 펜딩(pending)된 SR이 없는 경우, SR 카운트(SR_COUNTER) 값을 0으로 설정한다. 그러나, SR이 펜딩되어 있고 이번 전송 시간 구간(TTI: Transmission Time Interval)에서 SR을 보낼 유효한 PUCCH 자원이 있으며, 이번 TTI가 측정 갭(measurement gap)의 일부가 아니고 SR 전송의 금지를 위한 타이머(sr-ProhibitTimer)가 진행중이지 않는 경우, SR_COUNTER 값이 SR의 최대 전송 횟수 보다 작으면 SR 카운트 값을 1 증가시키고 물리계층에 PUCCH를 통해 SR 신호를 전송하라고 지시한 후 sr-ProhibitTimer를 시작한다. 그러나, SR_COUNTER 값이 최대 전송 횟수 보다 크거나 같으면 RRC에 PUCCH 및 SRS(Sounding Reference Signal)의 해제(release)를 알리고, 모든 구성된 하향링크 할당들과 상향링크 그랜트들을 지운다(clear). 그리고, 랜덤 액세스 절차를 초기화하고 모든 펜딩된 SR들을 취소한다.In detail, when the SR is triggered and there is no SR currently pending, the terminal sets the SR count (SR_COUNTER) to zero. However, the SR is pending and there is a valid PUCCH resource to send the SR in this Transmission Time Interval (TTI), this TTI is not part of the measurement gap and a timer (sr) to prohibit SR transmission. If ProhibitTimer is not in progress, if the SR_COUNTER value is less than the maximum number of transmissions of the SR, the SR count value is increased by 1 and the physical layer is instructed to transmit the SR signal through the PUCCH, and then sr-ProhibitTimer is started. However, if the SR_COUNTER value is greater than or equal to the maximum number of transmissions, RRC is notified of the release of PUCCH and SRS (Sounding Reference Signal), and all configured downlink allocations and uplink grants are cleared. It then initializes the random access procedure and cancels all pending SRs.
한편, 단말은 SR이 펜딩되어 있으나 어떠한 TTI에도 전송을 위해 가용한 UL-SCH 자원이 없는 경우 랜덤 액세스 절차를 초기화하고 모든 펜딩된 SR들을 취소한다.Meanwhile, if the SR is pending but there is no UL-SCH resource available for transmission in any TTI, the UE initializes the random access procedure and cancels all the pending SRs.
따라서, 도 7과 같이 기지국으로부터 잘못된(wrong) 전력이 설정되는 경우(S710), 단말은 SR_COUNTER 값이 SR의 최대 전송 횟수와 같아질 때까지 SR을 전송하게 된다(S720, S730). SR_COUNTER 값이 SR의 최대 전송 횟수와 같아지면 단말은 상향링크 자원을 해제하고 랜덤 액세스 절차를 초기화한 후(S740), 랜덤 액세스 프리앰블(random access preamble)을 전송한다(S750).Therefore, when the wrong power is set from the base station as shown in FIG. 7 (S710), the UE transmits the SR until the SR_COUNTER value is equal to the maximum number of transmissions of the SR (S720 and S730). If the SR_COUNTER value is equal to the maximum number of transmissions of the SR, the terminal releases uplink resources and initializes a random access procedure (S740), and then transmits a random access preamble (S750).
도 8은 본 발명의 실시예가 적용되는 버퍼상태보고의 MAC 제어 요소를 나타내는 도면이다.8 illustrates a MAC control element of a buffer status report to which an embodiment of the present invention is applied.
도 8을 참조하면, 짧은 BSR 및 분할된 BSR의 MAC 제어 요소(a)는 LCG ID 필드와 버퍼 크기(BS: Buffer Size) 필드로 구성된다. 그리고, 긴 BSR의 MAC 제어 요소(b)는 4개의 LCG ID(LCG ID #0 내지 LCD ID #3)에 해당하는 4개의 버퍼 크기 필드로 구성된다. BSR 포맷은 다음의 표 1과 같이 MAC PDU의 서브 헤더에 포함된 논리 채널 식별자(LCID)의 값에 의해 식별된다.Referring to FIG. 8, the MAC control element (a) of the short BSR and the divided BSR includes an LCG ID field and a buffer size (BS) field. In addition, the MAC control element (b) of the long BSR is composed of four buffer size fields corresponding to four LCG IDs (LCG ID # 0 to LCD ID # 3). The BSR format is identified by a value of a logical channel identifier (LCID) included in a sub header of a MAC PDU as shown in Table 1 below.
표 1
인덱스 LCID 값
00000 CCCH
00001-01010 논리 채널 식별
01011-11000 예비
11001 확장된 전력 잔여량 보고
11010 전력 잔여량 보고
11011 C-RNTI
11100 분할된 BSR
11101 짧은 BSR
11110 긴 BSR
11111 패딩
Table 1
index LCID value
00000 CCCH
00001-01010 Logical Channel Identification
01011-11000 Spare
11001 Extended Power Remaining Report
11010 Power Remaining Report
11011 C-RNTI
11100 Partitioned BSR
11101 Short BSR
11110 Long BSR
11111 padding
LCG ID 필드는 기지국으로 버퍼 상태가 보고되는 논리 채널 그룹을 식별하기 위한 것으로, LCD ID 필드의 길이는 2 비트이다. 버퍼 크기 필드는 TTI에 대한 모든 MAC PDU들이 구축된 후 LCG 내의 모든 논리 채널에서 사용 가능한(available) 데이터의 전체양을 식별하기 위한 것으로, RLC 계층과 PDCP 계층에서 전송 가능한 모든 데이터에 대한 정보를 포함한다. 여기서, RLC 헤더 및 PDCP 헤더는 버퍼 크기 계산에 고려되지 않는다. 버퍼 크기 필드의 길이는 6 비트이다. 확장 BSR 크기(extendedBSR-size)가 아닌 경우 버퍼 크기 필드의 값은 표 2와 같고, 확장 BSR 크기인 경우 버퍼 크기 필드의 값은 표 3과 같다.The LCG ID field is for identifying a group of logical channels whose buffer status is reported to the base station. The LCD ID field is 2 bits long. The buffer size field is used to identify the total amount of data available on all logical channels in the LCG after all MAC PDUs for the TTI have been established, and contains information about all data that can be transmitted in the RLC layer and the PDCP layer. do. Here, the RLC header and PDCP header are not taken into account in the buffer size calculation. The length of the buffer size field is 6 bits. In the case of not the extended BSR size (extendedBSR-size), the value of the buffer size field is shown in Table 2, and in the case of the extended BSR size, the value of the buffer size field is shown in Table 3.
표 2
인덱스 버퍼 크기 값(bytes) 인덱스 버퍼 크기 값(bytes)
0 BS = 0 32 1132 < BS <= 1326
1 0 < BS <= 10 33 1326 < BS <= 1552
2 10 < BS <= 12 34 1552 < BS <= 1817
3 12 < BS <= 14 35 1817 < BS <= 2127
4 14 < BS <= 17 36 2127 < BS <= 2490
5 17 < BS <= 19 37 2490 < BS <= 2915
6 19 < BS <= 22 38 2915 < BS <= 3413
7 22 < BS <= 26 39 3413 < BS <= 3995
8 26 < BS <= 31 40 3995 < BS <= 4677
9 31 < BS <= 36 41 4677 < BS <= 5476
10 36 < BS <= 42 42 5476 < BS <= 6411
11 42 < BS <= 49 43 6411 < BS <= 7505
12 49 < BS <= 57 44 7505 < BS <= 8787
13 57 < BS <= 67 45 8787 < BS <= 10287
14 67 < BS <= 78 46 10287 < BS <= 12043
15 78 < BS <= 91 47 12043 < BS <= 14099
16 91 < BS <= 107 48 14099 < BS <= 16507
17 107 < BS <= 125 49 16507 < BS <= 19325
18 125 < BS <= 146 50 19325 < BS <= 22624
19 146 < BS <= 171 51 22624 < BS <= 26487
20 171 < BS <= 200 52 26487 < BS <= 31009
21 200 < BS <= 234 53 31009 < BS <= 36304
22 234 < BS <= 274 54 36304 < BS <= 42502
23 274 < BS <= 321 55 42502 < BS <= 49759
24 321 < BS <= 376 56 49759 < BS <= 58255
25 376 < BS <= 440 57 58255 < BS <= 68201
26 440 < BS <= 515 58 68201 < BS <= 79846
27 515 < BS <= 603 59 79846 < BS <= 93479
28 603 < BS <= 706 60 93479 < BS <= 109439
29 706 < BS <= 826 61 109439 < BS <= 128125
30 826 < BS <= 967 62 128125 < BS <= 150000
31 967 < BS <=1132 63 BS > 150000
TABLE 2
index Buffer size value (bytes) index Buffer size value (bytes)
0 BS = 0 32 1132 <BS <= 1326
One 0 <BS <= 10 33 1326 <BS <= 1552
2 10 <BS <= 12 34 1552 <BS <= 1817
3 12 <BS <= 14 35 1817 <BS <= 2127
4 14 <BS <= 17 36 2127 <BS <= 2490
5 17 <BS <= 19 37 2490 <BS <= 2915
6 19 <BS <= 22 38 2915 <BS <= 3413
7 22 <BS <= 26 39 3413 <BS <= 3995
8 26 <BS <= 31 40 3995 <BS <= 4677
9 31 <BS <= 36 41 4677 <BS <= 5476
10 36 <BS <= 42 42 5476 <BS <= 6411
11 42 <BS <= 49 43 6411 <BS <= 7505
12 49 <BS <= 57 44 7505 <BS <= 8787
13 57 <BS <= 67 45 8787 <BS <= 10287
14 67 <BS <= 78 46 10287 <BS <= 12043
15 78 <BS <= 91 47 12043 <BS <= 14099
16 91 <BS <= 107 48 14099 <BS <= 16507
17 107 <BS <= 125 49 16507 <BS <= 19325
18 125 <BS <= 146 50 19325 <BS <= 22624
19 146 <BS <= 171 51 22624 <BS <= 26487
20 171 <BS <= 200 52 26487 <BS <= 31009
21 200 <BS <= 234 53 31009 <BS <= 36304
22 234 <BS <= 274 54 36304 <BS <= 42502
23 274 <BS <= 321 55 42502 <BS <= 49759
24 321 <BS <= 376 56 49759 <BS <= 58255
25 376 <BS <= 440 57 58255 <BS <= 68201
26 440 <BS <= 515 58 68201 <BS <= 79846
27 515 <BS <= 603 59 79846 <BS <= 93479
28 603 <BS <= 706 60 93479 <BS <= 109439
29 706 <BS <= 826 61 109439 <BS <= 128 125
30 826 <BS <= 967 62 128 125 <BS <= 150000
31 967 <BS <= 1132 63 BS> 150000
표 3
인덱스 버퍼 크기 값(bytes) 인덱스 버퍼 크기 값(bytes)
0 BS = 0 32 4940 < BS <= 6074
1 0 < BS <= 10 33 6074 < BS <= 7469
2 10 < BS <= 13 34 7469 < BS <= 9185
3 13 < BS <= 16 35 9185 < BS <= 11294
4 16 < BS <= 19 36 11294 < BS <= 13888
5 19 < BS <= 23 37 13888 < BS <= 17077
6 23 < BS <= 29 38 17077 < BS <= 20999
7 29 < BS <= 35 39 20999 < BS <= 25822
8 35 < BS <= 43 40 25822 < BS <= 31752
9 43 < BS <= 53 41 31752 < BS <= 39045
10 53 < BS <= 65 42 39045 < BS <= 48012
11 65 < BS <= 80 43 48012 < BS <= 59039
12 80 < BS <= 98 44 59039 < BS <= 72598
13 98 < BS <= 120 45 72598 < BS <= 89272
14 120 < BS <= 147 46 89272 < BS <= 109774
15 147 < BS <= 181 47 109774 < BS <= 134986
16 181 < BS <= 223 48 134986 < BS <= 165989
17 223 < BS <= 274 49 165989 < BS <= 204111
18 274 < BS <= 337 50 204111 < BS <= 250990
19 337 < BS <= 414 51 250990 < BS <= 308634
20 414 < BS <= 509 52 308634 < BS <= 379519
21 509 < BS <= 625 53 379519 < BS <= 466683
22 625 < BS <= 769 54 466683 < BS <= 573866
23 769 < BS <= 945 55 573866 < BS <= 705666
24 945 < BS <= 1162 56 705666 < BS <= 867737
25 1162 < BS <= 1429 57 867737 < BS <= 1067031
26 1429 < BS <= 1757 58 1067031 < BS <= 1312097
27 1757 < BS <= 2161 59 1312097 < BS <= 1613447
28 2161 < BS <= 2657 60 1613447 < BS <= 1984009
29 2657 < BS <= 3267 61 1984009 < BS <= 2439678
30 3267 < BS <= 4017 62 2439678 < BS <= 3000000
31 4017 < BS <= 4940 63 BS > 3000000
TABLE 3
index Buffer size value (bytes) index Buffer size value (bytes)
0 BS = 0 32 4940 <BS <= 6074
One 0 <BS <= 10 33 6074 <BS <= 7469
2 10 <BS <= 13 34 7469 <BS <= 9185
3 13 <BS <= 16 35 9185 <BS <= 11294
4 16 <BS <= 19 36 11294 <BS <= 13888
5 19 <BS <= 23 37 13888 <BS <= 17077
6 23 <BS <= 29 38 17077 <BS <= 20999
7 29 <BS <= 35 39 20999 <BS <= 25822
8 35 <BS <= 43 40 25822 <BS <= 31752
9 43 <BS <= 53 41 31752 <BS <= 39045
10 53 <BS <= 65 42 39045 <BS <= 48012
11 65 <BS <= 80 43 48012 <BS <= 59039
12 80 <BS <= 98 44 59039 <BS <= 72598
13 98 <BS <= 120 45 72598 <BS <= 89272
14 120 <BS <= 147 46 89272 <BS <= 109774
15 147 <BS <= 181 47 109774 <BS <= 134986
16 181 <BS <= 223 48 134986 <BS <= 165989
17 223 <BS <= 274 49 165989 <BS <= 204111
18 274 <BS <= 337 50 204111 <BS <= 250990
19 337 <BS <= 414 51 250990 <BS <= 308634
20 414 <BS <= 509 52 308634 <BS <= 379519
21 509 <BS <= 625 53 379519 <BS <= 466683
22 625 <BS <= 769 54 466683 <BS <= 573866
23 769 <BS <= 945 55 573866 <BS <= 705666
24 945 <BS <= 1162 56 705666 <BS <= 867737
25 1162 <BS <= 1429 57 867737 <BS <= 1067031
26 1429 <BS <= 1757 58 1067031 <BS <= 1312097
27 1757 <BS <= 2161 59 1312097 <BS <= 1613447
28 2161 <BS <= 2657 60 1613447 <BS <= 1984009
29 2657 <BS <= 3267 61 1984009 <BS <= 2439678
30 3267 <BS <= 4017 62 2439678 <BS <= 3000000
31 4017 <BS <= 4940 63 BS> 3000000
도 9는 본 발명의 실시예가 적용되는 논리채널 구성정보를 나타내는 도면이고, 도 10은 버퍼상태보고 관련 파라미터를 나타내는 도면이다.9 is a diagram illustrating logical channel configuration information to which an embodiment of the present invention is applied, and FIG. 10 is a diagram illustrating parameters related to buffer status reporting.
도 9를 참조하면, 논리채널 구성정보는 논리 채널 구성에 포함되는 정보 요소들을 포함한다. "priority"는 논리 채널의 우선 순위를 나타낸다. 단말은 UL-CCCH(Uplink-Common Control Channel)로부터의 데이터 또는 C-RNTI(Cell-Radio Network Temporary Identifier)에 대한 MAC 제어 요소, 패딩이 포함된 BSR을 제외한 BSR에 대한 MAC 제어 요소, 확장 PHR 또는 PHR에 대한 MAC 제어 요소는 상기 논리 채널의 우선 순위와 별개로 사용자 데이터를 전송하기 위한 모든 논리채널들 내 데이터들보다 우선시한다. 패딩이 포함된 BSR에 대한 MAC 제어 요소의 경우, 상기 모든 논리채널들 내 데이터들보다 낮은 우선순위를 갖는다. "prioritisedBitRate"는 논리 채널의 우선 순위에 대한 우선 순위 비트율을 나타낸다. "prioritisedBitRate"의 값은 킬로바이트/세컨드로, kBps8은 8 kB/second에 해당하고, kBps16은 16kB/second에 해당한다. "prioritisedBitRate"의 값은 SRB1 및 SRB2에 대해서 무한대(infinity)로 적용된다. "BucketSizeDuration"은 논리 채널 우선 순위에 대한 버킷 크기 시간을 나타낸다. "BucketSizeDuration"의 값은 밀리세컨드(millisecond)로, ms50은 50ms에 해당하고, ms100은 100ms에 해당한다. "logicalChannelGroup"은 BSR 보고를 위해 LCG에 매핑된 논리 채널을 나타낸다. "logicalChannelSR-Mask"은 상향링크 그랜트가 구성될 때 논리 채널을 기반으로 SR 트리거링을 제어한다. 한편, 논리 채널 설정에는 조건부로 "SRmask" 및 "UL" 필드가 존재할 수 있다. "SRmask" 필드는 상향링크 특정 파라미터(ul-SepcificParameter)의 존재 여부에 따라 선택적으로 존재한다. "UL" 필드는 상향링크 논리 채널이 존재할 경우 의무적으로 존재하고, 상향링크 논리 채널이 존재하지 않을 경우 존재하지 않는다.Referring to FIG. 9, logical channel configuration information includes information elements included in logical channel configuration. "priority" indicates a logical channel priority. The terminal is a MAC control element for data from UL-CCCH (Uplink-Common Control Channel) or Cell-Radio Network Temporary Identifier (C-RNTI), MAC control element for BSR except for BSR with padding, extended PHR or The MAC control element for the PHR takes precedence over the data in all logical channels for transmitting user data separately from the priority of the logical channel. In the case of the MAC control element for the BSR with padding, it has a lower priority than the data in all the logical channels. "prioritisedBitRate" represents the priority bit rate for the priority of the logical channel. The value of "prioritisedBitRate" is in kilobytes / second, kBps8 corresponds to 8 kB / second, and kBps16 corresponds to 16 kB / second. The value of "prioritisedBitRate" applies infinity for SRB1 and SRB2. "BucketSizeDuration" represents bucket size time for logical channel priority. The value of "BucketSizeDuration" is in milliseconds, ms50 corresponds to 50ms, ms100 corresponds to 100ms. "logicalChannelGroup" represents a logical channel mapped to LCG for BSR reporting. "logicalChannelSR-Mask" controls SR triggering based on a logical channel when an uplink grant is configured. Meanwhile, "SRmask" and "UL" fields may exist conditionally in the logical channel configuration. The "SRmask" field is optionally present depending on the existence of an uplink specific parameter (ul-SepcificParameter). The "UL" field is mandatory when an uplink logical channel exists and does not exist when an uplink logical channel does not exist.
다음으로 도 10을 참조하면, MAC 메인 설정(MAC-MainConfig)은 확장 BSR 사이즈(extendedBSR-Sizes-r10)에 대한 정보를 포함한다. 디폴트(default) MAC 메인 설정 파라미터로는 "maxHARQ-tx", "periodicBSR-Timer", "retxBSR-Timer", "ttiBunding", "drx-Config", "phr-Config" 및 "sr-ProhibitTimer"가 있다.Next, referring to FIG. 10, the MAC main setting (MAC-MainConfig) includes information about an extended BSR size (extendedBSR-Sizes-r10). The default MAC main configuration parameters are "maxHARQ-tx", "periodicBSR-Timer", "retxBSR-Timer", "ttiBunding", "drx-Config", "phr-Config" and "sr-ProhibitTimer". have.
MAC 버퍼상태보고의 목적을 위해 단말은 RLC SDU들 또는 상기 RLC SDU들의 세그먼트들 중 RLC 데이터 PDU에 포함되지 않은 데이터들 및 RLC data PDU들 또는 RLC 데이터 PDU의 일부분들 중 RLC AM 모드에서 재전송을 위해 보류된 데이터들을 RLC 계층에서 전송 가능한 데이터들로 고려해야 한다. 만일, STATUS PDU가 트리거되어 있고 t-StatusProhibit 타이머가 진행 중이지 않거나 만료된 경우, 단말은 반드시 다음 송신 기회에 전송될 STATUS PDU의 크기를 추정하고 이 또한 MAC 버퍼상태보고에 포함될 RLC 계층에서 전송 가능한 데이터들로 고려해야 한다.For the purpose of MAC buffer status reporting, the UE may perform retransmission in RLC AM mode among RLC SDUs or segments of the RLC SDUs and RLC data PDUs or portions of RLC data PDUs. The reserved data should be considered as data that can be transmitted in the RLC layer. If the STATUS PDU is triggered and the t-StatusProhibit timer is not in progress or has expired, the UE must estimate the size of the STATUS PDU to be transmitted at the next transmission opportunity, and this can also be transmitted in the RLC layer included in the MAC buffer status report. Consider data.
또한, 단말은 하위계층으로 전달되지 않은 PDU들에 대한 SDU들에 대하여 상기 SDU 자체가 PDCP에 의해 아직 처리되지 않았거나, 상기 SDU가 PDCP에 의해 처리된 상기 PDU 뿐만 아니라 PDCP 제어 PDU들도 PDCP 계층에서 전송 가능한 데이터들로 고려해야 한다.In addition, the UE is not yet processed by PDCP for the SDUs for the PDUs that are not delivered to the lower layer, or PDCP control PDUs as well as the PDU in which the SDU is processed by the PDCP layer Consider data that can be transferred from
추가로, RLC의 동작 모드 중 확인 모드로 맵핑된 무선 베어러들에 대하여 이전에 PDCP 엔티티가 재설정(re-establishment) 절차를 실행하였다면, 단말은 상기 SDU 중 PDCP에 의해 아직 처리되지 않은 것이거나, PDCP에 의해 한번 처리된 상기 PDU들을 PDCP 계층에서 전송 가능한 데이터들로 고려해야 한다. 이때, PDCP 재설정(re-establishment)에 앞서서 하위 계층으로 전달만 된 PDU에 상응하는 SDU들 중에서 상기 PDU들의 전달이 하위계층으로부터 확인되지 않은 첫번째 SDU부터 시작하는 SDU들 중에서 PDCP 상태보고를 수신하였다면 상기 PDCP 상태보고를 통해 성공적으로 전달되었음이 확인된 SDU들은 제외한다.In addition, if the PDCP entity previously performed a re-establishment procedure for radio bearers mapped to the confirmation mode among the RLC's operating modes, the UE has not yet been processed by the PDCP in the SDU, The PDUs processed once by the PDU should be considered as data transmittable at the PDCP layer. In this case, if the PDCP status report is received from the SDUs starting from the first SDU whose delivery of the PDUs is not confirmed from the lower layer among the SDUs corresponding to the PDUs delivered only to the lower layer prior to the PDCP re-establishment. SDUs that have been successfully delivered through PDCP status reporting are excluded.
도 11은 인피니트 소스 딜레이 시스템(Infinite Source Delay System)을 나타내는 도면이고, 도 12는 탠덤 큐잉 시스템(Tandem Queuing System)을 나타내는 도면이다.FIG. 11 is a diagram illustrating an Infinite Source Delay System, and FIG. 12 is a diagram illustrating a Tandem Queuing System.
BSR을 위한 전체 버퍼 상태를 계산하기 위해 먼저 버퍼에 도착하는 트래픽은 다음의 수학식 1과 같이 수식화될 수 있다.In order to calculate the total buffer state for the BSR, the traffic arriving at the buffer first may be formulated as in Equation 1 below.
수학식 1
Figure PCTKR2014007337-appb-M000001
Equation 1
Figure PCTKR2014007337-appb-M000001
여기서, TA는 랜덤 도착 시간 간격(random inter-arrival time), A(t)는 도착 시간 간격에 대한 누적 분포 함수(CDF: Cumulative Distribution Function), A'(t)는 도착 시간 간격에 대한 확률 밀도 함수(PDF: Probability Density Function) E[TA]는 평균 도착 시간 간격, λ는 도착률(Arrival rate)을 각각 나타낸다.Where T A is the random inter-arrival time, A (t) is the cumulative distribution function (CDF) for the arrival time interval, and A '(t) is the probability for the arrival time interval. Probability Density Function (PDF) E [TA] is the average arrival time interval and λ is the arrival rate.
또한, 서비스되는 트래픽은 다음의 수학식 2와 같이 수식화될 수 있다.In addition, the serviced traffic may be formulated as in Equation 2 below.
수학식 2
Figure PCTKR2014007337-appb-M000002
Equation 2
Figure PCTKR2014007337-appb-M000002
여기서, TH는 랜덤 서비스 시간 간격(Random Service(holding time), H(t)는 도착 시간 간격에 대한 누적 분포 함수, H'(t)는 도착 시간 간격에 대한 확률 밀도 함수, E[TH]는 예상되는 평균 도착 시간 간격, ε는 접속률(termination rate)을 각각 나타낸다.Where T H is the Random Service (holding time), H (t) is the cumulative distribution function for the arrival time interval, H '(t) is the probability density function for the arrival time interval, and E [T H ] Represents the expected average time between arrivals, and ε represents the termination rate.
따라서, 도 11에 도시된 것과 같은 단일 버퍼를 가지는 인피니트 소스 딜레이 시스템의 경우 도착 프로세스(Arrival Process(M))와 서비스 프로세스(Service Process(M))는 각각 다음의 수학식 3 및 수학식 4과 같이 표현할 수 있다.Therefore, in the case of the Infinite source delay system having a single buffer as shown in FIG. 11, the arrival process (Arrival Process (M)) and the service process (Service Process (M)) are shown in Equations 3 and 4, respectively. Can be expressed as:
수학식 3
Figure PCTKR2014007337-appb-M000003
Equation 3
Figure PCTKR2014007337-appb-M000003
수학식 4
Figure PCTKR2014007337-appb-M000004
Equation 4
Figure PCTKR2014007337-appb-M000004
이를 기반으로 PDCP 버퍼와 RLC 버퍼를 가지는 탬덤 큐잉 시스템은 도 12와 같이 표현할 수 있다. 그러므로, 상태고정확률(Stationary probabilities of state)에 대한 평형상태(equilibrium state)에 대한 상태 수식
Figure PCTKR2014007337-appb-I000001
을 기반으로 Station i 에서의 평균 데이터의 개수는 다음의 수학식 5와 같다.
Based on this, the tamdom queuing system having a PDCP buffer and an RLC buffer may be expressed as shown in FIG. 12. Therefore, state equations for equilibrium state for stationary probabilities of state
Figure PCTKR2014007337-appb-I000001
Based on the number of average data in Station i is shown in Equation 5 below.
수학식 5
Figure PCTKR2014007337-appb-M000005
Equation 5
Figure PCTKR2014007337-appb-M000005
따라서, 수학식 5를 이용하여 BSR 전송을 위한 전체 버퍼 상태를 계산할 수 있다.Therefore, the total buffer state for BSR transmission may be calculated using Equation 5.
도 13 내지 도 15는 단말이 스몰 기지국 및 매크로 기지국과 이중 연결된 경우를 나타내는 예시도이다.13 to 15 are exemplary diagrams illustrating a case in which a terminal is dually connected to a small base station and a macro base station.
먼저 도 13를 참조하면, 매크로 기지국과 스몰 기지국은 모두 PDCP, RLC, MAC 및 PHY 계층을 포함한다. 제1 RB(#1 RB)는 단말의 PDCP 계층과 RLC 계층 및 매크로 기지국의 PDCP 계층과 RLC 계층을 통해서 구성되어 있고, 제2 RB(#2 RB)는 단말의 PDCP 계층과 RLC 계층 및 스몰 기지국의 PDCP 계층과 RLC 계층을 통해서 구성되어 있다. 상기 RB들은 논리채널 구성과 관련된 MAC 계층 일부를 포함하여 구성되어 있을 수 있다. 단말은 제1 EPS 베어러(#1 EPS 베어러)를 통해서 P-GW와 연결되고, 제2 EPS 베어러(#2 EPS 베어러)를 통해서 P-GW와 연결된다. 이와 같이 각 기지국이 하나의 단말에 대해서 구성된 EPS 베어러(#1 EPS bearer 및 #2 EPS bearer) 또는 RB(#1 RB 및 #2 RB)를 통해 상향링크 데이터를 수신하는 것을 CN 스플릿(Core Network split)이라고도 부른다.First, referring to FIG. 13, both the macro base station and the small base station include a PDCP, RLC, MAC, and PHY layers. The first RB (# 1 RB) is configured through the PDCP layer and RLC layer of the terminal and the PDCP layer and RLC layer of the macro base station, and the second RB (# 2 RB) is the PDCP layer, RLC layer and small base station of the terminal It is composed of PDCP layer and RLC layer. The RBs may be configured to include a part of MAC layer related to logical channel configuration. The terminal is connected to the P-GW through a first EPS bearer (# 1 EPS bearer) and is connected to the P-GW through a second EPS bearer (# 2 EPS bearer). As such, each base station receives CN data through an EPS bearer (# 1 EPS bearer and # 2 EPS bearer) or RB (# 1 RB and # 2 RB) configured for one UE. Also called).
다음으로, 도 14 및 도 15에는 베어러 스플릿 케이스(bearer split case)가 도시되어 있다. 베어러 스플릿은 하나의 RB가 복수의 기지국을 통해 구성되어 데이터를 두 가지 플로우(또는 그 이상의 플로우)로 나누어 전송하는 구조를 말한다. 또는 이중 연결에 기반하여 기지국들과 단말간에 단일 무선 베어러가 구성된 경우, 상기 단일 무선 베어러에 대응하여 상기 기지국들 각각에 대해 논리 채널 그룹이 정의된 것을 베어러 스플릿이라 정의할 수도 있다. 복수의 플로우를 통해서 정보가 전달되는 점에서 베어러 스플릿은 멀티 플로우(multi flow), 다중 노드(기지국) 전송(multiple nodes(eNB) transmission), 기지국간 반송파 집성(inter-eNB carrier aggregation) 등으로 불릴 수 있다.Next, a bearer split case is shown in FIGS. 14 and 15. The bearer split refers to a structure in which one RB is configured through a plurality of base stations to divide and transmit data into two flows (or more flows). Alternatively, when a single radio bearer is configured between the base stations and the terminal based on dual connectivity, a logical channel group defined for each of the base stations corresponding to the single radio bearer may be defined as a bearer split. The bearer split may be called multi flow, multiple node (eNB) transmission, inter-eNB carrier aggregation, etc. in that information is transmitted through a plurality of flows. Can be.
베어러 스플릿의 경우, 각 기지국은 PDCP 계층, MAC 계층 및 RLC 계층을 포함할 수 있지만, 흐름제어를 담당하는 계층은 하나의 기지국(즉, 매크로 기지국)에만 포함된다. 만일 상기 흐름제어를 담당하는 계층이 PDCP 계층인 경우, 상기 PDCP 계층은 매크로 기지국에만 포함된다.In the case of a bearer split, each base station may include a PDCP layer, a MAC layer and an RLC layer, but the layer responsible for flow control is included in only one base station (ie, macro base station). If the layer in charge of the flow control is a PDCP layer, the PDCP layer is included only in the macro base station.
기존 LTE 시스템 내 기지국의 MAC 계층은 데이터양, 전송기회 등에 관한 정보를 RLC 계층에게 전달한다. RLC 계층은 동일 기지국 내에 위치한 PDCP 계층으로부터 전달받은 RLC SDU 데이터들을 상기 MAC계층으로부터 전달받은 정보들을 기반으로 분할 또는 결합하여 RLC PDU를 구성한다. 이후, MAC 계층은 RLC에서 구성한 RLC PDU를 MAC SDU 형태로 RLC 계층으로부터 전달 받는다. 그러나, 베어러 스플릿의 경우에는 스몰 기지국내 RLC 계층이 스몰 기지국내 MAC 계층이 요구한 데이터양 및 전송기회에 따라 데이터를 처리하더라도 상기 처리한 데이터양 및 전송기회 등에 대한 정보를 상기 RLC 계층 상위에 존재하는 매크로 기지국내 흐름제어 담당 계층에게 알려야 한다.The MAC layer of the base station in the existing LTE system delivers information on the amount of data, transmission opportunities, etc. to the RLC layer. The RLC layer configures an RLC PDU by splitting or combining the RLC SDU data received from the PDCP layer located in the same base station based on the information received from the MAC layer. Thereafter, the MAC layer receives the RLC PDU configured in the RLC from the RLC layer in the form of a MAC SDU. However, in the case of a bearer split, even if the RLC layer in the small base station processes the data according to the data amount and the transmission opportunity required by the MAC layer in the small base station, information on the processed data amount and the transmission opportunity exists in the upper RLC layer. Inform macro flow control layer in the macro base station.
이를 위하여 매크로 기지국의 PDCP 계층은 도 14에 도시된 것과 같이, Xn 인터페이스 프로토콜을 이용하여 스몰 기지국의 RLC 계층과 연결될 수 있다. 이때, 상기 Xn 인터페이스 프로토콜은 MeNB와 SeNB간의 인터페이스로 정의된다. 상기 Xn 인터페이스 프로토콜은 LTE 시스템 내 기지국간에 정의된 X2 인터페이스 프로토콜이 될 수도 있다. 이 경우, 하나의 매크로 기지국의 PDCP 계층은 매크로 기지국의 RLC 계층 및 스몰 기지국의 RLC 계층 모두에 연결된다. 여기서, 매크로 기지국의 RLC 계층은 #1 서브 엔티티(sub-entity)라 하고, 스몰 기지국의 RLC 계층은 #2 서브 엔티티라 한다. 서브 엔티티는 송신과 수신이 일대일 매칭으로 구분된다. 상기 서브 엔티티는 엔티티로 불릴 수 있다.To this end, the PDCP layer of the macro base station may be connected to the RLC layer of the small base station using the Xn interface protocol, as shown in FIG. 14. In this case, the Xn interface protocol is defined as an interface between the MeNB and the SeNB. The Xn interface protocol may be an X2 interface protocol defined between base stations in the LTE system. In this case, the PDCP layer of one macro base station is connected to both the RLC layer of the macro base station and the RLC layer of the small base station. Here, the RLC layer of the macro base station is referred to as # 1 sub-entity, and the RLC layer of the small base station is referred to as # 2 sub-entity. Sub-entities are divided into one-to-one matching between transmission and reception. The sub-entity may be called an entity.
도 14의 경우 RLC 계층은 듀플리케이트(duplicate) 형태로 존재한다. 각 서브 엔티티는 독립적(independent)이지만 하나의 RB(즉, #1 RB)내에 2개의 서브 엔티티(#1 서브 엔티티 및 #2 서브 엔티티)가 존재한다. 이 경우, RLC-AM #1 서브 엔티티 및 RLC-AM #2 서브 엔티티에 대하여 각각 별도로 RLC 파라미터들이 구성되어야 한다. 왜냐하면 각 RLC-AM 서브 엔티티를 통해 서비스되는 데이터들이 단말에게 전달될 때 발생하는 지연(delay)시간이 서로 다를 수 있기 때문에 상기 각 서브 엔티티마다 상기 지연시간을 고려하여 설정될 타이머들 값이 서로 상이할 수 있기 때문이다. 만약 상기 각 서브 엔티티를 통해 전송되는 데이터들의 지연시간이 동일하다면 상기 각 서브 엔티티마다 설정될 타이머들의 값이 동일할 수도 있다. 이는 상기 매크로 기지국에서 결정되거나 스몰 기지국에서 결정될 수도 있으며, 매크로 기지국과 스몰 기지국을 포함한 네트워크에서 결정될 수도 있다. 따라서, 동일한 RB내 PDCP를 통해 전달될 데이터들은 RLC-AM #1 서브 엔티티 또는 RLC-AM #2 서브 엔티티 중 하나의 서브 엔티티를 통해 전송될 수 있다. 여기서 상기 데이터들을 수신한 단말에 의해 상기 데이터들이 어느 서브 엔티티를 통해 전송되는지를 구별할 수 있도록 하는 구분자(identifier)가 더 전송될 수 있다.In the case of FIG. 14, the RLC layer exists in a duplicated form. Each sub entity is independent but there are two sub entities (# 1 sub entity and # 2 sub entity) within one RB (ie, # 1 RB). In this case, RLC parameters should be configured separately for the RLC-AM # 1 sub-entity and the RLC-AM # 2 sub-entity, respectively. Because delay time that occurs when data serviced through each RLC-AM sub-entity is delivered to the UE may be different, timer values to be set in consideration of the delay time are different from each other. Because you can. If the delay times of the data transmitted through each sub-entity are the same, values of timers to be set for each sub-entity may be the same. This may be determined at the macro base station or at the small base station, or may be determined at a network including the macro base station and the small base station. Accordingly, data to be delivered via PDCP in the same RB may be transmitted through one of the RLC-AM # 1 sub-entities or the RLC-AM # 2 sub-entity. Here, an identifier may be further transmitted by the terminal that receives the data to identify which sub-entity the data is transmitted through.
상기 도 14의 예를 베어러 스플릿 케이스 중 서브 엔티티 RLC 타입 또는 분리된(separated) RLC 타입 또는 독립(independent) RLC 타입이라고도 부른다. 단, 상기 도 14의 예가 반드시 베어러 스플릿에만 적용되는 것은 아니다.The example of FIG. 14 is also called a sub-entity RLC type, a separated RLC type, or an independent RLC type among bearer split cases. However, the example of FIG. 14 is not necessarily applied only to the bearer split.
한편, 도 15를 참조하면 매크로 기지국은 PDCP, RLC, MAC, PHY 계층을 포함하지만, 스몰 기지국은 RLC, MAC 및 PHY 계층을 포함한다. 매크로 기지국의 RLC 계층은 Xn 인터페이스 프로토콜을 이용하여 스몰 기지국의 RLC 계층과 연결된다. 이 경우, 매크로 기지국의 RLC 계층을 마스터(master) RLC 계층이라 하고, 스몰 기지국의 RLC 계층을 슬레이브(slave) RLC 계층이라 한다.Meanwhile, referring to FIG. 15, the macro base station includes the PDCP, RLC, MAC, and PHY layers, but the small base station includes the RLC, MAC, and PHY layers. The RLC layer of the macro base station is connected to the RLC layer of the small base station using the Xn interface protocol. In this case, the RLC layer of the macro base station is called a master RLC layer, and the RLC layer of the small base station is called a slave RLC layer.
하향링크의 경우, 단말의 슬레이브 RLC 계층의 AMD/UM PDU에 대하여 추가적인 분할이 가능하다. 상기 슬레이브 RLC의 분할 동작은 복수의 RLC PDU들을 묶는 동작 또는 매크로 RLC에서 분할된 AMD PDU 세그먼트를 묶는 동작을 포함한다. 또한, 기지국의 슬레이브 RLC 계층의 AMD/UM PDU에 대하여 재결합(concatenation)이 가능하다.In the case of downlink, additional division is possible for the AMD / UM PDU of the slave RLC layer of the UE. The splitting operation of the slave RLC includes a grouping of a plurality of RLC PDUs or a grouping of AMD PDU segments divided in a macro RLC. In addition, concatenation is possible for the AMD / UM PDU of the slave RLC layer of the base station.
상향링크의 경우, 스몰 기지국은 슬레이브 RLC 계층을 통해 데이터가 수신되면 이를 매크로 RLC 계층으로 포워딩(forwarding)한다. 따라서 마스터 RLC 계층으로 동일한 데이터가 슬레이브 RLC 계층을 통해 수신되거나 매크로 기지국의 MAC을 통해 수신되더라도 상관없다. 그러므로 단말과 기지국 간의 상향링크 전송은 TDM 전송 대신 단일 전송도 가능하다.In the case of uplink, when the base station receives data through the slave RLC layer, the small base station forwards it to the macro RLC layer. Therefore, the same data may be received through the slave RLC layer or the MAC of the macro base station to the master RLC layer. Therefore, uplink transmission between the terminal and the base station may be a single transmission instead of TDM transmission.
한편, 무선 자원의 동적 스케줄링은 각 기지국 내 MAC 스케줄러가 주로 담당한다. 매크로 기지국의 MAC 계층의 상황과 스몰 기지국의 MAC 계층의 상황이 다르기 때문에 마스터 RLC 계층은 매크로 기지국의 MAC 계층에서 제공하는 정보를 기준으로 PDU를 할당(또는 분할 또는 연결 또는 재결합)하고, 슬레이브 RLC 계층은 스몰 기지국의 MAC 계층에서 제공하는 정보를 기준으로 분할 또는 연결을 수행한다.On the other hand, the dynamic scheduling of radio resources is mainly responsible for the MAC scheduler in each base station. Since the situation of the MAC layer of the macro base station and the situation of the MAC layer of the small base station are different, the master RLC layer allocates (or splits, concatenates, or recombines) PDUs based on information provided by the MAC layer of the macro base station, and the slave RLC layer. Splits or connects based on information provided by the MAC layer of the small base station.
상향링크는 단말 입장에서 RLC 계층이 하나만 존재한다. 하향링크에서는 MAC 계층이 서로 다른 2개 이상의 기지국들로 구분되어 있으며 각 기지국마다 하향링크 무선 상황의 차이가 발생하기 때문에 RLC 계층에서 하향링크 데이터를 서로 다른 방식으로 분할 또는 재결합하는 반면, 상향링크에서는 스몰 기지국 내 슬레이브 RLC 계층이 수신된 데이터들을 매크로 RLC 계층으로 단순 전달(forwarding)만 하기 때문에 상향링크 데이터를 처리하는 RLC 계층은 마스터 RLC 계층뿐이다. 따라서 이중 연결된 단말은 상향링크 전송 시 서로 다른 2개 이상의 기지국들로 전송할 데이터를 위해 단일 RB내에 하나의 PDCP 계층과 RLC 계층만 포함한다. 또한 상향링크 전송을 위해 상기 서로 다른 2개 이상의 기지국들로부터 수신한 상향링크 자원할당정보에 따라 상향링크 전송을 제어할 MAC 계층도 하나만 존재할 수 있다. 그러므로 상향링크 데이터 전송(예를 들어 PUSCH) 관점에서 매크로 기지국으로만 상향링크 전송을 수행하는 것도 가능하다(이를 "싱글 업링크"라고도 한다).In the uplink, only one RLC layer exists from the terminal's point of view. In downlink, since the MAC layer is divided into two or more different base stations, and there is a difference in downlink radio conditions for each base station, the downlink data is divided or recombined in different ways in the RLC layer, whereas in uplink Since the slave RLC layer in the small base station simply forwards the received data to the macro RLC layer, only the RLC layer processing uplink data is the master RLC layer. Therefore, the dually connected UE includes only one PDCP layer and RLC layer in a single RB for data to be transmitted to two or more different base stations during uplink transmission. In addition, only one MAC layer may control uplink transmission according to uplink resource allocation information received from two or more different base stations for uplink transmission. Therefore, it is also possible to perform uplink transmission only to the macro base station in terms of uplink data transmission (for example, PUSCH) (also referred to as "single uplink").
상기 도 15의 예를 베어러 스플릿 케이스 중 마스터-슬레이브 RLC 타입이라고도 부른다. 단, 상기 도 15의 예가 반드시 베어러 스플릿에만 적용되는 것은 아니다.The example of FIG. 15 is also called a master-slave RLC type among bearer split cases. However, the example of FIG. 15 is not necessarily applied only to the bearer split.
도 13 내지 도 15를 통해 상술한 바와 같이, 이중 연결의 경우 각 기지국은 하나의 단말에 대하여 각 기지국에 구성된 RB 또는 각 기지국에 중복되어 구성된 단일 RB의 각 구성요소를 통해 하향링크 데이터의 송신 및 상향링크 데이터의 수신을 처리한다. 따라서, 단말 내 각 RB에서 발생한 데이터들은 해당 RB에 상응하는 RB가 구성되어 있는 기지국으로 전달되어야 한다. 그러므로, 단말은 단말 내에서 각 RB를 구성하는 PDCP / RLC 내에 존재하는 데이터들을 기준으로 BSR를 생성하고 이를 각 기지국에 전달하여야 한다.As described above with reference to FIGS. 13 to 15, in case of dual connectivity, each base station transmits downlink data through each component of an RB configured in each base station or a single RB configured redundantly in each base station for one UE and Process reception of uplink data. Therefore, data generated in each RB in the terminal should be delivered to the base station in which the RB corresponding to the corresponding RB is configured. Therefore, the terminal should generate a BSR based on the data present in the PDCP / RLC constituting each RB in the terminal and deliver it to each base station.
그러나, 기존에는 단말 내 LCG 단위로 정의된 BSR를 단말 단위로 전송하는 형태만이 지원되었기 때문에 특정 기지국에 할당된 RB에 매핑된 LC 단위로 BSR를 전송할 수 없었다. 만일, 특정 기지국에 할당된 RB마다 매핑된 LC단위로 BSR를 전송할 수 있다 하더라도 베어러 스플릿의 경우, 복수의 기지국에서 동일한 RB 및 LC가 구성될 수 있으므로 SR 및 BSR을 전송할 대상 기지국을 선택해야 하지만 이에 대한 기준이 없었다.However, in the past, since only BSR defined in the UE-specific LCG unit was transmitted in the UE unit, the BSR could not be transmitted in the LC unit mapped to the RB allocated to the specific BS. Although the BSR may be transmitted in the LC unit mapped to each RB allocated to a specific base station, in the case of a bearer split, since the same RB and LC may be configured in a plurality of base stations, the base station to which the SR and the BSR should be transmitted should be selected. There was no standard for that.
따라서, 본 발명은 복수의 기지국들을 통해 단일 RB가 구성되는 경우 즉, 베어러 스플릿의 경우 상기 단일 RB에 매핑된 LC에 대한 스케줄링 요청 및 버퍼상태보고를 전송하는 방법을 제공한다.Accordingly, the present invention provides a method for transmitting a scheduling request and a buffer status report for an LC mapped to a single RB when a single RB is configured through a plurality of base stations, that is, a bearer split.
단말은 각 기지국의 스케줄러가 단말에 대하여 독립적으로 상향링크에 대한 스케줄링이 가능한 경우, 즉 RRM 기능 중 DRA(Dynamic Resource Allocation) 패킷 스케줄링 기능이 각 기지국마다 독립적으로 존재하는 경우 다음의 실시예들 중 하나로 BSR를 전송할 수 있다.When the scheduler of each base station can independently schedule uplink with respect to the terminal, that is, when a dynamic resource allocation (DRA) packet scheduling function exists independently for each base station among RRM functions, one of the following embodiments BSR can be sent.
이하의 실시예에서는 PDCP 계층 또는 마스터 RLC 계층이 흐름제어 담당 계층의 흐름제어 기능을 수행하는 것을 가정한다. 그러나 흐름제어 담당 계층이 상기 PDCP 계층 또는 마스터 RLC 계층과 분리되어 매크로 기지국에 구성될 수 있음을 배제하는 것은 아니다. 또한, 단말이 매크로 기지국 내 매크로 셀 및 스몰 기지국 내 스몰 셀과 이중 연결(dual connectivity)을 설정하고 상기 이중 연결을 지원하기 위한 RRC(Radio Resource Control)를 구성(configuration)한 상황을 가정한다. 특히, 단일 RB에 국한되는 베어러 스플릿 구성을 예로 설명하지만 본 발명의 범위가 이에 제한되는 것은 아니고, 복수의 RB에 대한 베어러 스플릿에도 적용될 수 있다.In the following embodiment, it is assumed that the PDCP layer or the master RLC layer performs the flow control function of the flow control layer. However, it is not excluded that the flow control layer may be configured in the macro base station separately from the PDCP layer or the master RLC layer. In addition, it is assumed that a terminal configures dual connectivity with a macro cell in a macro base station and a small cell in a small base station and configures RRC (Radio Resource Control) for supporting the dual connection. In particular, although a configuration of a bearer split limited to a single RB is described as an example, the scope of the present invention is not limited thereto, and the present invention may be applied to a bearer split for a plurality of RBs.
이때, 제어 평면(CP: Control Plane)의 경우(예, RRC 시그널링의 생성 및 전송) 시그널링 무선 베어러(Signaling Radio bearer)에 대한 베어러 스플릿이 구성될 수 있으며, 이때 사용자 평면(UP: User Plane)에서 정의한 베어러 스플릿 방식이 제어 평면에서 정의되는 SRB들에게도 동일하게 적용될 수 있다. 즉, 구성방식이 동일할 수 있다.In this case, in the case of a control plane (CP) (eg, generation and transmission of RRC signaling), a bearer split for a signaling radio bearer may be configured, and in this case, a user plane (UP) The defined bearer split scheme can be equally applied to SRBs defined in the control plane. That is, the configuration may be the same.
또한, 본 발명에 적용되는 단말은 각 RB마다 구분되는 정보(즉, 각 RB에서 베어러 스플릿이 적용되는지 또는 적용되지 않는지에 관한 정보)를 제공할 수도 있고, 복수의 RB들(예, 논리 채널 그룹(logical channel group))에 대해 공통적으로 적용되는 정보를 제공할 수도 있다. 이때, 각 RB들에 대한 구성 정보는 서로 독립적이다. 예를 들어, 제1 RB가 베어러 스플릿을 구성하기 위한 정보(예, "MF on")를 포함할 때, 상기 제1 RB에 대한 정보와 동시에 전송되는 제2 RB에 대한 정보는 RB 플로우 재구성(RB flow reconfiguration) 정보(예, "MF off")를 포함할 수 있다.In addition, the terminal applied to the present invention may provide information distinguished for each RB (that is, information on whether or not a bearer split is applied in each RB) or a plurality of RBs (eg, logical channel groups). (logical channel group) may be used to provide common information. At this time, the configuration information for each RB is independent of each other. For example, when the first RB includes information for configuring a bearer split (eg, "MF on"), the information on the second RB transmitted simultaneously with the information on the first RB may be RB flow reconfiguration ( RB flow reconfiguration) information (eg, "MF off") may be included.
제1 실시예: 베어러가 스플릿되지 않은 경우First embodiment: when the bearer is not split
일 예로, 도 13에 도시된 것과 같은 CN 스플릿의 경우, 각 기지국은 각 LCG내의 각 논리 채널마다 설정된 우선순위(priority) 값에 따라 어떠한 상향링크 데이터를 우선적으로 처리할 것인지를 알아야 한다. 따라서, 이중 연결에 포함된 모든 기지국들(매크로 기지국 및 스몰 기지국)에 구성된 모든 RB들(#1 RB 및 #2 RB)에 대한 BSR은 상기 모든 기지국간에 공유될 수 있다. 더욱이, 단말이 각 기지국으로 동시에 상향링크 전송이 가능한 경우, 각 기지국이 해당 단말로 상향링크 자원을 할당할 때 이를 지원하기 위한 송신전력을 할당하게 되므로 이는 다른 기지국이 해당 단말에 대한 상향링크 자원할당 시 고려되어야 하는 부분이다. 따라서, 각 기지국 내의 스케줄러들은 단말로부터 수신한 BSR을 서로 공유함으로써 상대 기지국에 대한 논리 채널의 우선순위 값과 BSR 값 등을 이용하여 해당 기지국에서 설정해야 할 상향링크 자원의 양을 결정할 수 있다.For example, in the case of a CN split as shown in FIG. 13, each base station needs to know which uplink data is to be preferentially processed according to a priority value set for each logical channel in each LCG. Therefore, BSRs for all RBs (# 1 RB and # 2 RB) configured in all base stations (macro base station and small base station) included in the dual connection may be shared among all the base stations. Furthermore, when the terminal can simultaneously transmit uplink to each base station, when the base station allocates uplink resources to the corresponding terminal, transmission power for allocating the uplink resources is allocated, so that other base stations allocate uplink resources to the corresponding terminal. This should be considered. Accordingly, the schedulers in each base station may share the BSR received from the terminal with each other to determine the amount of uplink resources to be set in the base station using the priority value and the BSR value of the logical channel for the counterpart base station.
그러나 만일 단말이 상향링크 전송 시 TDM으로 동작하는 경우, 단말은 동일 시점에서 두 개 이상의 기지국으로 상향링크 데이터를 전송할 수 없다. 즉, 각 기지국마다 할당된 타임 슬롯(서브 프레임 또는 무선 프레임 단위)은 서로 구별된다. 따라서 이 경우에는 상대 기지국에 할당된 논리 채널에 대한 BSR이 공유되지 않더라도 문제되지 않을 수 있다.However, if the terminal operates in TDM during uplink transmission, the terminal cannot transmit uplink data to two or more base stations at the same time. That is, time slots (subframes or radio frame units) allocated to each base station are distinguished from each other. Therefore, in this case, it may not be a problem even if the BSR for the logical channel allocated to the counterpart base station is not shared.
제2 실시예: 베어러가 스플릿되고 분리된(separated) PDCP 또는 분리된 RLC 타입인 경우Second Embodiment: When a Bearer is Split and Separated PDCP or Separate RLC Type
도 16은 본 발명에 따라서 버퍼상태보고를 전송하는 방법의 일 예를 나타내는 흐름도이고, 도 17은 본 발명에 따른 버퍼상태보고의 포맷을 나타내는 도면이다. 이하, 도 14, 도 16 및 도 17을 참조하여, 단일 RB가 상기 단말과 이중 연결된 적어도 둘 이상의 기지국들에 구성되고, 단말 내 단일 RB가 스플릿되어 복수개의 분리된 PDCP 엔티티 또는 분리된 RLC 엔티티로 구성되는 경우, BSR을 생성하고 전송하는 방법에 대해 설명한다.16 is a flowchart illustrating an example of a method of transmitting a buffer status report according to the present invention, and FIG. 17 is a diagram illustrating a format of a buffer status report according to the present invention. Hereinafter, referring to FIGS. 14, 16, and 17, a single RB is configured in at least two or more base stations dually connected with the terminal, and a single RB in the terminal is split into a plurality of separate PDCP entities or separate RLC entities. When configured, a method of generating and transmitting a BSR is described.
도 16을 참조하면, 단말은 이중 연결에 기반하여 매크로 기지국/스몰 기지국과 상기 단말간에 단일 무선 베어러(radio bearer)를 구성한다(S1610).Referring to FIG. 16, a terminal configures a single radio bearer between a macro base station / small base station and the terminal based on dual connectivity (S1610).
그리고 단말은 베어러 스플릿에 의해 매크로 기지국과 스몰 기지국 각각에 대해 정의되는 논리 채널 그룹에 관하여, 가용한(available) 상향링크 데이터의 양을 식별하는(identifies) 버퍼크기를 계산하고, 상기 버퍼크기를 지시하는 버퍼크기 정보를 생성한다(S1620).The terminal calculates a buffer size that identifies the amount of available uplink data with respect to a logical channel group defined for each of the macro base station and the small base station by the bearer split, and indicates the buffer size. Buffer size information is generated (S1620).
분리된 RLC 또는 분리된 PDCP의 경우, 단말에는 베어러 스플릿으로 구성된 논리 채널들에 대하여 서로 구분된 복수개의 LCG가 존재한다. 여기서 LCG들은 서로 다른 기지국에 대해 정의될 수 있다. 예를 들어, 베어러 스플릿으로 구성된 논리 채널이 #4 LC, #5 LC, #7 LC인 경우, 상기 LC들이 포함된 LCG는 매크로 기지국으로 전송할 LCG 2와 스몰 기지국으로 전송할 LCG 3로 구분될 수 있다. 이때, 단말은 LCG 2에 관한 제1 버퍼크기 정보를 생성하고, LCG 3에 관한 제2 버퍼크기 정보를 생성한다. In the case of the separated RLC or the separated PDCP, there are a plurality of LCGs separated from each other for logical channels configured as bearer splits. Here, the LCGs may be defined for different base stations. For example, if a logical channel consisting of a bearer split is # 4 LC, # 5 LC, # 7 LC, the LCG including the LCs may be divided into LCG 2 to be transmitted to the macro base station and LCG 3 to be transmitted to the small base station. . At this time, the terminal generates first buffer size information on LCG 2 and generates second buffer size information on LCG 3.
도 14에서 도시된 것과 같이 단말 내에서 단일 무선 베어러가 기지국들 모두에 대응하는 단일 PDCP 계층과 상기 기지국들 각각에 개별적으로 대응하는 복수의 RLC 엔티티들로서 구성된 경우, 버퍼크기 정보를 생성하는 방법은 여러가지가 있을 수 있다.As shown in FIG. 14, when a single radio bearer is configured as a single PDCP layer corresponding to all of the base stations and a plurality of RLC entities respectively corresponding to each of the base stations, a method of generating buffer size information may be various. There can be.
일 예로, 단말은 도 17(a)에 도시된 것과 같이 단일 PDCP 계층의 버퍼크기와, 복수의 RLC 엔티티들 중 하나의 RLC 엔티티의 버퍼크기의 합을 기반으로 버퍼크기 정보를 생성할 수 있다.For example, the UE may generate buffer size information based on the sum of the buffer size of a single PDCP layer and the buffer size of one RLC entity among a plurality of RLC entities, as shown in FIG. 17 (a).
다른 예로, 도 17(b)에 도시된 것과 같이 단말은 단일 PDCP 계층의 버퍼크기에서 복수의 RLC 엔티티들의 버퍼크기들 중 하나의 RLC 엔티티의 버퍼크기의 비율에 해당하는 값 'a'와 다른 하나의 RLC 엔티티의 버퍼크기의 비율에 해당하는 값 '(1-a)' 으로 상기 단일 PDCP 계층의 버퍼크기를 분리하고, 상기 하나의 RLC 엔티티의 버퍼크기와 상기 RLC 엔티티에 상응하는 버퍼크기의 비율에 해당하는 값으로 분리한 상기 단일 PDCP 계층의 버퍼크기의 합을 기반으로 각 LCG에 대한 버퍼크기 정보를 생성할 수 있다. As another example, as shown in FIG. 17B, the UE has a value different from a 'a' corresponding to the ratio of the buffer size of one RLC entity among the buffer sizes of the plurality of RLC entities in the buffer size of the single PDCP layer. The buffer size of the single PDCP layer is separated by a value '(1-a)' corresponding to the ratio of the buffer size of the RLC entity of the unit, and the ratio of the buffer size of the one RLC entity to the buffer size corresponding to the RLC entity Buffer size information for each LCG may be generated based on the sum of the buffer sizes of the single PDCP layer separated by a value corresponding to.
또 다른 예로, 도 17(c)에 도시된 것과 같이 단말은 각 RLC 엔티티에 대한 버퍼크기 정보만으로 상기 버퍼크기 정보를 생성할 수 있다. As another example, as shown in FIG. 17C, the UE may generate the buffer size information using only buffer size information for each RLC entity.
상기의 실시예들에서, 단말이 버퍼크기를 계산함에 있어서, 전술된 도 11 및 도 12, 그리고 수학식 1 내지 5에서 설명된 방법이 사용될 수 있다. In the above embodiments, when the UE calculates the buffer size, the method described with reference to FIGS. 11 and 12 and Equations 1 to 5 may be used.
다시 도 16을 참조하면, 단말은 각 논리 채널 그룹을 식별하는 ID(예를 들어 LCG 2 및 LCG 3) 및 상기 버퍼크기 정보를 포함하는 버퍼상태보고를 각각 생성한다(S1630). 예를 들어, 상기 예에서 단말은 LCG2 및 제1 버퍼크기 정보를 포함하는 제1 버퍼상태보고와, LCG3 및 제2 버퍼크기 정보를 포함하는 제2 버퍼상태보고를 생성할 수 있다. Referring back to FIG. 16, the terminal generates an ID (eg, LCG 2 and LCG 3) identifying each logical channel group and a buffer status report including the buffer size information, respectively (S1630). For example, in the above example, the terminal may generate a first buffer status report including LCG2 and first buffer size information and a second buffer status report including LCG3 and second buffer size information.
그리고 단말은 각 기지국에 대해 생성한 버퍼상태보고를 각각 해당하는 기지국으로 전송할 수 있다(S1640, S1650).The terminal may transmit the buffer status report generated for each base station to the corresponding base station, respectively (S1640 and S1650).
즉, 도 14에 도시된 것과 같이 베어러 스플릿 케이스 중 분리된 RLC의 경우, 단말은 각 기지국으로 보고되어야 할 버퍼크기 정보를 구분하여 생성할 수 있다. That is, as shown in FIG. 14, in the case of the separated RLC among the bearer split cases, the terminal may generate and generate buffer size information to be reported to each base station.
제3 실시예: 베어러 스플릿이고 마스터-슬레이브 RLC 타입인 경우Third Embodiment: Bearer Split and Master-Slave RLC Type
도 15에 도시된 것과 같은 마스터-슬레이브 RLC 방식의 경우, 이중 연결에 포함된 모든 기지국들에 구성된 단일 RB에 대한 BSR는 상기 기지국들 중 어느 하나의 기지국에만 전송될 수 있다. BSR이 어느 기지국으로 전송될지를 결정하는 주체는 단말일 수도 있고, 기지국일 수도 있다. In the master-slave RLC scheme as shown in FIG. 15, the BSR for a single RB configured in all base stations included in the dual connection may be transmitted only to one of the base stations. The subject that determines which base station the BSR is transmitted to may be a terminal or a base station.
도 18은 네트워크에 의해 단말이 버퍼상태보고를 전송할 기지국이 결정되는 경우를 나타내는 도면이고, 도 19는 단말의 판단에 의해 버퍼상태보고를 전송할 기지국이 결정되는 경우를 나타내는 도면이다.FIG. 18 is a diagram illustrating a case where a base station to which a terminal transmits a buffer status report is determined by a network, and FIG. 19 is a diagram illustrating a case where a base station to transmit a buffer status report is determined by a terminal.
도 18에는 일 예로, 매크로 기지국의 판단에 의해 단말이 스몰 기지국으로 버퍼상태보고를 전송하는 경우가 도시되어 있다. 이 경우, 매크로 기지국은 단말로부터 측정 보고(measurement report)를 수신하면(S1810), 이중연결 설정을 결정한 후에 베어러 스플릿으로 구성된 RB에 대하여 스몰 기지국을 통한 상향링크 전송을 결정한다(S1820). 그리고, 이중 연결 설정 요청을 통해 스몰 기지국내 특정 서빙셀내 PUCCH 자원 중 해당 단말에 대한 SR 자원의 할당을 요청하는 정보를 전송한다(S1830). 이후, 스몰 기지국으로부터 이중 연결 설정 요청에 대한 응답을 수신하면(S1840), 매크로 기지국은 RRC 재구성 절차를 통해 SR 자원구성정보를 단말로 전달한다(S1850). 단말은 SR 자원구성정보를 기반으로 BSR을 전송할 기지국이 스몰 기지국임이 확인할 수 있다. 이때, 이중연결 구성 방식에 따라 스몰 기지국 내에 RRC 계층이 존재하는 경우, RRC 재구성 절차는 스몰 기지국에 의해 수행될 수 있다. 이후, 단말은 RLC/PDCP 버퍼에 도착하는 트래픽이 식별되면(S1860), 스몰 기지국으로 SR을 전송한다(S1870). 그리고, 스몰 기지국으로부터 상향링크 그랜트가 수신되면(S1880), BSR를 전송한다(S1890). 한편, 도 19에는 단말의 판단에 의해 단말이 스몰 기지국으로 버퍼상태보고를 전송하는 경우가 도시되어 있다. 18 illustrates an example in which a terminal transmits a buffer status report to a small base station by the macro base station. In this case, when the macro base station receives a measurement report from the terminal (S1810), after determining the dual connectivity configuration, and determines the uplink transmission through the small base station for the RB consisting of the bearer split (S1820). In operation S1830, information for requesting allocation of an SR resource for a corresponding UE from among PUCCH resources in a specific serving cell in the small base station is transmitted through the dual connection establishment request. Thereafter, upon receiving a response to the dual connectivity establishment request from the small base station (S1840), the macro base station delivers the SR resource configuration information to the terminal through an RRC reconfiguration procedure (S1850). The terminal may confirm that the base station to which the BSR is to be transmitted is the small base station based on the SR resource configuration information. In this case, when the RRC layer exists in the small base station according to the dual connectivity configuration, the RRC reconfiguration procedure may be performed by the small base station. Thereafter, if the traffic arriving at the RLC / PDCP buffer is identified (S1860), the terminal transmits an SR to the small base station (S1870). When an uplink grant is received from the small base station (S1880), the BSR is transmitted (S1890). Meanwhile, FIG. 19 illustrates a case in which the terminal transmits a buffer status report to the small base station by the determination of the terminal.
이 경우, 매크로 기지국은 단말로부터 측정 보고(measurement report)를 수신하면(S1910), 스몰 기지국으로 이중 연결 설정 요청을 전송한다(S1920). 그리고, 스몰 기지국으로부터 이중 연결 설정에 대한 수락을 수신하면(S1930), RRC 재구성 절차를 통해 SR 자원구성정보를 단말로 전달한다(S1940). 이때, 이중연결 구성 방식에 따라 스몰 기지국 내에 RRC 계층이 존재하는 경우, RRC 재구성 절차는 스몰 기지국에 의해 수행될 수 있다.In this case, when the macro base station receives a measurement report from the terminal (S1910), it transmits a dual connection establishment request to the small base station (S1920). When receiving the acceptance of the dual connectivity configuration from the small base station (S1930), the SR resource configuration information is transmitted to the terminal through the RRC reconfiguration procedure (S1940). In this case, when the RRC layer exists in the small base station according to the dual connectivity configuration, the RRC reconfiguration procedure may be performed by the small base station.
이후, 단말은 RLC/PDCP 버퍼에 도착하는 트래픽을 식별하여(S1950), 상기 트래픽의 우선순위 따라 상향링크 전송에 유리한 기지국으로 사용자 데이터에 대한 상향링크 경로를 결정한다(S1960). 이 때, 결정된 경로가 스몰 기지국을 통한 경로인 경우, 단말은 스몰 기지국으로 SR을 전송하고(S1970), 이에 대한 상향링크 그랜트를 수신하면(S1980), 스몰 기지국으로 BSR을 전송한다(S1990).Thereafter, the terminal identifies traffic arriving at the RLC / PDCP buffer (S1950), and determines an uplink path for user data to a base station that is advantageous for uplink transmission according to the priority of the traffic (S1960). At this time, if the determined path is a path through the small base station, the terminal transmits the SR to the small base station (S1970), and when receiving the uplink grant (S1980), and transmits the BSR to the small base station (S1990).
이와 같이 마스터-슬레이브 RLC 방식의 경우, 매크로 기지국의 RLC 엔티티와 스몰 기지국의 RLC 엔티티가 연결되어 있기 때문에 RLC 상태 보고를 포함한 모든 PDCP 제어 PDU 및 RLC 제어 PDU들이 어떠한 기지국으로 전송되던지 문제되지 않는다. 따라서, 단말은 상향링크 자원할당을 용이하게 받을 수 있는 기지국으로 BSR을 전송할 수 있다. 즉, 단말은 도 18과 같이 네트워크의 의해 결정된 기지국으로 BSR을 전송하거나, 도 19와 같이 단말의 판단에 의해 상향링크 전송이 유리한 것으로 판단되는 기지국으로의 BSR을 전송할 수 있다. 일 예로, 단말은 PUCCH가 구성된 서빙셀(예를 들어, Primary Cell 또는 Special Cell 등) 또는 PUCCH가 구성되어 있으며 SR자원을 할당받은 서빙셀 또는 스케줄링 요청을 대신할 PRACH를 전송할 수 있는 서빙셀이 포함된 기지국으로 BSR을 전송할 수 있다.As described above, in the master-slave RLC scheme, since the RLC entity of the macro base station and the RLC entity of the small base station are connected, it does not matter to which base station, all PDCP control PDUs and RLC control PDUs including the RLC status report are transmitted. Accordingly, the terminal may transmit a BSR to a base station that can easily receive uplink resource allocation. That is, the terminal may transmit the BSR to the base station determined by the network as shown in FIG. 18 or transmit the BSR to the base station determined to be advantageous in uplink transmission as determined by the terminal as shown in FIG. 19. For example, the UE includes a serving cell configured with a PUCCH (for example, a primary cell or a special cell) or a serving cell configured with a PUCCH configured to transmit a PRACH to replace a serving cell or a scheduling request allocated with SR resources. The BSR can be transmitted to the established base station.
단말은 (1)어느 기지국에서 상향링크 자원을 할당받을 확률이 높은가 (2)어느 기지국을 통한 상향링크 전송이 효율적인가(throughput) (3)어느 기지국을 통한 상향링크 전송이 빠르게 수행될 수 있는가(delay)에 따라 상향링크 전송에 유리한 기지국을 결정하고 결정된 기지국으로 BSR을 전송할 수 있다.The UE is (1) which base station is most likely to be allocated an uplink resource (2) which base station uplink transmission is efficient (throughput) (3) which base station uplink transmission can be performed quickly (delay ) May determine a base station advantageous for uplink transmission and transmit the BSR to the determined base station.
상향링크 상황은 하향링크 전송을 위한 피드백 정보로 인해 영향을 받을 수 있다. 따라서, 상향링크 자원상황이 좋은 기지국(low loading factor)은 RRC 연결 설정된 사용자 수가 적은 기지국이다. 그러므로, 단말은 확률적으로 적은 단말을 수용하고 있는 스몰 기지국으로부터 상향링크 자원을 할당 받을 확률이 높다. 그러나, TDM인 경우에는 실제 타임 슬롯 할당 구성에 따라 타임 슬롯을 더 많이 할당받을 수 있는 기지국이 달라질 수 있다.The uplink situation may be affected by feedback information for downlink transmission. Accordingly, a low loading factor having a good uplink resource situation is a base station having a small number of RRC connected users. Therefore, the terminal has a high probability of being allocated uplink resources from a small base station having a small number of terminals. However, in the case of TDM, the base station that can be allocated more time slots may vary according to the actual time slot allocation configuration.
한편, 상향링크의 신뢰도가 높은 기지국(high SINR)은 상향링크 전송이 효율적이다. 단말과 상대적으로 거리가 가까운 기지국의 경우 낮은 PL로 인해 확률적으로 높은 신뢰도를 유지할 가능성이 높다. 따라서, 확률적으로 작은 서비스 반경을 가지고 있는 스몰 기지국이 상향링크의 신뢰도가 높다. 그러나, TDM인 경우, 타임 슬롯을 더 많이 할당받을 수 있는 기지국이 상향링크의 신뢰로가 높다. 따라서, 이 경우는 실제 타임 슬롯 할당 구성에 따라 다르게 판단될 수 있다.Meanwhile, uplink transmission is efficient for a high SINR of uplink reliability. In the case of a base station relatively close to the terminal, it is highly likely to maintain a high reliability due to low PL. Therefore, a small base station having a probability small service radius has high reliability of uplink. However, in the case of TDM, the base station that can be allocated more time slots has a higher uplink reliability. Therefore, this case may be determined differently according to the actual time slot allocation configuration.
또한, 매크로 기지국으로 BSR을 바로 전송하는 경우 매크로 기지국과 스몰 기지국 간에 존재하는 백홀(non-ideal backhaul) 간의 지연시간을 고려하지 않아도 되므로 빠르게 전달 가능하다.In addition, when the BSR is directly transmitted to the macro base station, since the delay time between the non-ideal backhaul existing between the macro base station and the small base station does not have to be considered, it can be quickly delivered.
이와 같은 사항들을 고려하면, 단말은 최초로 버퍼에 도착한 데이터들이 우선순위가 낮은 논리 채널에 해당되는 경우 스몰 기지국 또는 상향링크 타임 슬롯 할당이 많은 기지국으로 BSR을 전송할 수 있다. 하지만, 현재 버퍼에 저장되어 있는 데이터들보다 우선순위가 높은 데이터가 수신되어 BSR이 트리거링되는 경우, 우선순위가 높은 데이터는 빠르게 전달되어야 하므로 상기 트리거링된 BSR는 매크로 기지국으로 전송한다.In consideration of such matters, the terminal may transmit a BSR to a small base station or a base station with many uplink time slot assignments when the first data that arrives in the buffer corresponds to a low priority logical channel. However, when data having a higher priority than data currently stored in the buffer is received and the BSR is triggered, the triggered BSR is transmitted to the macro base station because the high priority data must be delivered quickly.
한편, SRB에 대한 BSR는 RRC 전송이 가능한 기지국에 한정되어 전송될 수 있다. 만일 RRC 전송이 가능한 기지국이 복수의 기지국인 경우, SRB에 대한 BSR은 DRB에 대한 BSR과 동일한 기준으로 판단될 수도 있으며, 이전에 기지국으로부터 수신된 RRC 메시지를 기준으로 각 SRB에 대한 논리 채널마다 특정 기지국에 한정되어 전송될 수도 있다. 예를 들어, SRB0,1,2에 해당하는 LC0, LC1, LC2가 포함된 LCG에 대한 BSR은 매크로 기지국에 한정되어 전송될 수 있으며 SRB3에 해당하는 LC3에 포함된 LCG에 대한 BSR은 스몰 기지국에 한정되어 전송될 수 있다.On the other hand, the BSR for the SRB may be transmitted limited to the base station capable of RRC transmission. If the base station capable of RRC transmission is a plurality of base stations, the BSR for the SRB may be determined based on the same criteria as the BSR for the DRB, and specific for each logical channel for each SRB based on the RRC message previously received from the base station. It may be limited to the base station and transmitted. For example, the BSR for the LCG including LC0, LC1, and LC2 corresponding to SRB0,1,2 may be transmitted to the macro base station, and the BSR for the LCG included in LC3 corresponding to SRB3 may be transmitted to the small base station. It can be transmitted in a limited manner.
제4 실시예: 베어러 스플릿의 경우Fourth Embodiment: Bearer Split
단말이 둘 이상의 서로 다른 기지국들에 이중 연결되어 있으며 단일 RB가 상기 둘 이상의 서로 다른 기지국들을 통해 상기 단말에 구성되어 있는 경우, 버퍼크기 정보는 이중 연결에 포함된 모든 기지국간에 공유될 수 있다.When the terminal is dually connected to two or more different base stations and a single RB is configured in the terminal through the two or more different base stations, the buffer size information may be shared among all base stations included in the dual connection.
일 예로, 단일 LCG내에 포함된 다수의 논리 채널들은 모두 베어러 스플릿이 구성될 수 있으며 이 경우, 상기 단일 LCG에 대한 BSR인 BSRtotal은 BSRMeNB + BSRSeNB 일 수 있다. 이 경우, 각 기지국에 BSRtotal에 대한 버퍼크기 정보가 공유됨으로 인해 이중 연결에 포함된 모든 기지국에 의해 스케줄링된 전체 상향링크 자원할당량은 2BSRtotal가 될 수 있기 때문에 상향링크 자원의 비효율성이 발생할 수 있다. 하지만 더 이상 전송할 데이터가 없음에도 상향링크 그랜트가 수신된 경우, 단말은 상기 상향링크 그랜트에 대해 패딩 BSR을 전송함으로써 현재 버퍼크기 값이 0임을 각 기지국에게 알려줄 수 있으므로 기지국은 더 이상 해당 단말에게 상향링크 자원할당을 진행하지 않는다. 그러므로 상향링크 자원의 비효율성은 크게 문제되지 않는다.For example, a plurality of logical channels included in a single LCG may be configured with a bearer split. In this case, BSR total, which is a BSR for the single LCG, may be BSR MeNB + BSR SeNB . In this case, because the buffer size information of the BSR total is shared to each base station, the uplink resource allocation scheduled by all base stations included in the dual connection may be 2BSR total , which may cause inefficiency of uplink resources. have. However, when an uplink grant is received even when there is no data to be transmitted, the base station can further inform the base station that the current buffer size value is 0 by transmitting a padding BSR for the uplink grant, so that the base station no longer transmits to the corresponding user equipment. Do not proceed with link resource allocation. Therefore, inefficiency of uplink resources is not a big problem.
그러나, 분리된 PDCP / 분리된 RLC 방식의 경우, 만일 BSRtotal(50) = BSRMeNB(0) + BSRSeNB(50)라고 가정하면, 기지국들로 보고되는 버퍼크기 정보는 BSRtotal 뿐이므로 기지국들 간의 버퍼크기 정보의 공유로 인해 매크로 기지국과 스몰 기지국에 의해 할당되는 전체 상향링크 자원은 실제 보고된 버퍼크기의 2배, 즉 100이 할당될 수 있다. 이 경우, 스몰 기지국에 의한 상향링크 데이터 전송에 50의 자원이 사용되지만, 매크로 기지국으로 전송할 상향링크 데이터는 0이므로 나머지 50의 자원은 사용되지 않는다. 따라서, 단말은 매크로 기지국으로부터 상향링크 그랜트를 받으면 패딩 BSR을 전송하고 상기 패딩 BSR 값으로 50을 보고한다. 이 때, 각 기지국의 스케줄러는 수신된 상향링크 데이터를 확인하여 패딩 BSR을 수신하는 경우, 패딩 BSR내 데이터의 값을 무시하고 해당 기지국에 대한 버퍼크기 정보는 0이라고 판단한다.However, in case of the separated PDCP / separated RLC scheme, if BSR total (50) = BSR MeNB (0) + BSR SeNB (50), the buffer size information reported to the base stations is only BSR total . Due to the sharing of the buffer size information between the total uplink resources allocated by the macro base station and the small base station may be allocated twice, that is, 100 times the actual reported buffer size. In this case, 50 resources are used for uplink data transmission by the small base station, but since the uplink data to be transmitted to the macro base station is 0, the remaining 50 resources are not used. Accordingly, when the terminal receives an uplink grant from the macro base station, the terminal transmits a padding BSR and reports 50 as the padding BSR value. At this time, when the scheduler of each base station receives the padding BSR by checking the received uplink data, the scheduler of the base station ignores the value of the data in the padding BSR and determines that the buffer size information of the base station is 0.
도 20은 본 발명에 따라서 버퍼상태보고를 전송하는 장치의 일 예를 나타내는 블록도이다. 도 20을 참조하면, 단말(2000)은 생성부(2010) 및 전송부(2020)을 포함할 수 있다.20 is a block diagram illustrating an example of an apparatus for transmitting a buffer status report according to the present invention. Referring to FIG. 20, the terminal 2000 may include a generator 2010 and a transmitter 2020.
생성부(2010)는 단말(2000)의 상향링크 버퍼에 전송 가능한 데이터의 양에 대한 정보를 서빙 기지국에 제공하기 위해 버퍼상태보고(BSR: Buffer State Report)를 생성한다. 일 예로, 생성부(2010)는 분리된 RLC 또는 분리된 PDCP의 경우, 이중 연결에 기반하여 기지국들과 단말(2000)간에 구성된 단일 RB에 대응하고 상기 기지국들 각각에 대해 정의되는 LCG 에 관하여, 가용한 상향링크 데이터의 양을 식별하는 버퍼크기를 계산하고, 상기 버퍼크기를 지시하는 정보를 생성한다. 그리고, 각 LCG 식별하는 ID 및 상기 버퍼크기 정보를 포함하는 BSR를 각각 생성한다. 이 경우, 전송부(2020)는 각 기지국에 대해 구성된 BSR을 각각 해당하는 기지국으로 전송할 수 있다. 여기서, 도 14에서 도시된 것과 같이 단말(2000) 내에서 단일 RB가 기지국들 모두에 대응하는 단일 PDCP 계층과 상기 기지국들 각각에 개별적으로 대응하는 복수의 RLC 엔티티들로서 구성된 경우, 생성부(2010)는 도 17(a)에 도시된 것과 같이 단일 PDCP 계층의 버퍼크기와, 복수의 RLC 엔티티들 중 하나의 RLC 엔티티의 버퍼크기의 합을 기반으로 버퍼크기 정보를 생성하거나, 도 17(b)에 도시된 것과 같이 단일 PDCP 계층의 버퍼크기에서 복수의 RLC 엔티티들의 버퍼크기들 중 하나의 RLC 엔티티의 버퍼크기의 비율에 해당하는 값과, 상기 하나의 RLC 엔티티의 버퍼크기의 합을 기반으로 버퍼크기 정보를 생성할 수 있다. 또한, 도 17(c)에 도시된 것과 같이 RLC 엔티티에 대한 버퍼크기 정보로 상기 버퍼크기 정보를 생성할 수도 있다.The generation unit 2010 generates a buffer state report (BSR) to provide the serving base station with information about the amount of data that can be transmitted to the uplink buffer of the terminal 2000. As an example, in the case of the separated RLC or the separated PDCP, the generation unit 2010 corresponds to a single RB configured between the base stations and the terminal 2000 based on dual connectivity and is defined for each of the base stations. A buffer size identifying the amount of available uplink data is calculated and information indicating the buffer size is generated. A BSR including an ID for identifying each LCG and the buffer size information is generated, respectively. In this case, the transmitter 2020 may transmit the BSR configured for each base station to the corresponding base station. Here, as illustrated in FIG. 14, when a single RB is configured as a single PDCP layer corresponding to all of the base stations and a plurality of RLC entities corresponding to each of the base stations, as illustrated in FIG. 14, the generation unit 2010. As shown in FIG. 17 (a), buffer size information is generated based on the sum of the buffer size of a single PDCP layer and the buffer size of one RLC entity among the plurality of RLC entities, or shown in FIG. 17 (b). As shown, the buffer size is based on the sum of the buffer sizes of one RLC entity and the buffer size of one of the plurality of RLC entities in the buffer size of a single PDCP layer. Information can be generated. In addition, as shown in FIG. 17C, the buffer size information may be generated as the buffer size information for the RLC entity.
이때, 각 기지국은 단말(2000)로부터 수신한 BSR을 서로 공유할 수 있다. 이 경우, 각 기지국은 상기 BSR이 패딩 버퍼상태보고(padding BSR)이면, 상기 패딩 BSR 내의 데이터 값을 무시하고 해당 기지국에 대한 버퍼크기 정보는 0이라고 판단할 수 있다.In this case, each base station may share the BSR received from the terminal 2000 with each other. In this case, if the BSR is a padding buffer status report (padding BSR), the base station may ignore the data value in the padding BSR and determine that the buffer size information for the base station is zero.
한편, 단말(2000)은 단일 RB가 단말(2000)과 이중 연결된 적어도 둘 이상의 기지국들에 구성되고 상기 기지국들의 RLC 계층이 서로 연결되어 있는 경우 각 기지국의 상향링크 자원 상황, 상향링크의 신뢰도 및 상향링크 전송 속도를 기초로 버퍼에 도착한 데이터의 우선순위에 따라 버퍼상태보고를 전송할 기지국을 선택하는 선택부(도시되지 않음)를 포함할 수 있다. 이 경우, 전송부(2020)는 선택부에 의해 선택된 기지국으로 버퍼상태보고를 전송할 수 있다.Meanwhile, when a single RB is configured in at least two or more base stations dually connected to the terminal 2000 and the RLC layers of the base stations are connected to each other, the uplink resource situation of each base station, the reliability of the uplink, and the uplink It may include a selection unit (not shown) for selecting a base station to transmit the buffer status report according to the priority of the data arriving in the buffer based on the link transmission speed. In this case, the transmitter 2020 may transmit a buffer status report to the base station selected by the selector.
상술한 예시적인 시스템에서, 방법들은 일련의 단계 또는 블록으로써 순서도를 기초로 설명되고 있지만, 본 발명은 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당업자라면 순서도에 나타낸 단계들이 배타적이지 않고, 다른 단계가 포함되거나 순서도의 하나 또는 그 이상의 단계가 본 발명의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다. In the exemplary system described above, the methods are described based on a flowchart as a series of steps or blocks, but the invention is not limited to the order of steps, and certain steps may occur in a different order or concurrently with other steps than those described above. Can be. In addition, those skilled in the art will appreciate that the steps shown in the flowcharts are not exclusive and that other steps may be included or one or more steps in the flowcharts may be deleted without affecting the scope of the present invention.
상술한 실시예들은 다양한 양태의 예시들을 포함한다. 다양한 양태들을 나타내기 위한 모든 가능한 조합을 기술할 수는 없지만, 해당 기술 분야의 통상의 지식을 가진 자는 다른 조합이 가능함을 인식할 수 있을 것이다. 따라서, 본 발명은 이하의 특허청구범위 내에 속하는 모든 다른 교체, 수정 및 변경을 포함한다고 할 것이다.The above-described embodiments include examples of various aspects. Although not all possible combinations may be described to represent the various aspects, one of ordinary skill in the art will recognize that other combinations are possible. Accordingly, the invention is intended to embrace all other replacements, modifications and variations that fall within the scope of the following claims.

Claims (20)

  1. 무선 통신 시스템에서 둘 이상의 기지국들과 이중 연결(dual connectivity)이 구성된 단말이 버퍼상태보고를 전송하는 방법에 있어서,A method for transmitting a buffer status report by a terminal having dual connectivity with two or more base stations in a wireless communication system,
    제1 논리 채널 그룹(logical channel group, LCG)에 대한 버퍼크기(buffer size) 정보와 상기 제1 LCG의 식별자(ID)를 포함하는 제1 버퍼상태보고(buffer state report)를 생성하고, 제2 LCG에 대한 버퍼크기 정보와 상기 제2 LCG의 ID를 포함하는 제2 버퍼상태보고를 생성하는 단계; 및Generate a first buffer state report including buffer size information for a first logical channel group (LCG) and an identifier (ID) of the first LCG, and generate a second buffer state report Generating a second buffer status report comprising buffer size information for an LCG and an ID of the second LCG; And
    상기 제1 LCG ID를 기반으로 상기 제1 버퍼상태보고를 제1 기지국으로 전송하고, 상기 제2 LCG ID를 기반으로 상기 제2 버퍼상태보고를 상기 제2 기지국으로 전송하는 단계를 포함하는 버퍼상태보고 전송 방법.Transmitting the first buffer status report to the first base station based on the first LCG ID, and transmitting the second buffer status report to the second base station based on the second LCG ID. Report transmission method.
  2. 제1항에 있어서,The method of claim 1,
    상기 제1 기지국으로부터 수신한 논리채널 구성정보를 기초로 상기 제1 기지국과 상기 제2 기지국 모두에 대응하는 단일 무선 베어러를 구성하는 단계를 더 포함하고,Configuring a single radio bearer corresponding to both the first base station and the second base station based on the logical channel configuration information received from the first base station,
    상기 제1 LCG 및 상기 제2 LCG는 상기 단일 무선 베어러에 매핑되는 것을 특징으로 하는 버퍼상태보고 전송 방법.And the first LCG and the second LCG are mapped to the single radio bearer.
  3. 제2항에 있어서,The method of claim 2,
    상기 논리채널 구성정보는,The logical channel configuration information,
    상기 제1 LCG 및 상기 제2 LCG가 각각 대응하는 기지국을 지시하는 것을 특징으로 하는 버퍼상태보고 전송 방법.And the first LCG and the second LCG indicate corresponding base stations.
  4. 제2항에 있어서,The method of claim 2,
    상기 제1 버퍼크기 정보 및 상기 제2 버퍼크기 정보는,The first buffer size information and the second buffer size information,
    상기 단일 무선 베어러가 상기 기지국들 모두에 대응하는 단일 PDCP(Packet Data Convergence Protocol) 계층과 상기 기지국들 각각에 개별적으로 대응하는 복수의 RLC(Radio Link Control) 엔티티(entity)들로 구성된 경우, When the single radio bearer is composed of a single Packet Data Convergence Protocol (PDCP) layer corresponding to all of the base stations and a plurality of Radio Link Control (RLC) entities corresponding to each of the base stations,
    상기 단일 PDCP 계층의 버퍼크기와, 상기 복수의 RLC 엔티티들 중 하나의 RLC 엔티티의 버퍼크기의 합을 기반으로 생성됨을 특징으로 하는 버퍼상태보고 전송 방법.And a buffer size of the single PDCP layer and a buffer size of one RLC entity among the plurality of RLC entities.
  5. 제2항에 있어서,The method of claim 2,
    상기 제1 버퍼크기 정보 및 상기 제2 버퍼크기 정보는,The first buffer size information and the second buffer size information,
    상기 단일 무선 베어러가 상기 기지국들 모두에 대응하는 단일 PDCP 계층과 상기 기지국들 각각에 개별적으로 대응하는 복수의 RLC 엔티티들로 구성된 경우, If the single radio bearer is composed of a single PDCP layer corresponding to all of the base stations and a plurality of RLC entities respectively corresponding to each of the base stations,
    상기 단일 PDCP 계층의 버퍼크기에서 상기 복수의 RLC 엔티티들의 버퍼크기들 중 하나의 RLC 엔티티의 버퍼크기의 비율에 해당하는 값과, 상기 하나의 RLC 엔티티의 버퍼크기의 합을 기반으로 생성됨을 특징으로 하는 버퍼상태보고 전송 방법.And a value corresponding to a ratio of the buffer size of one RLC entity among the buffer sizes of the plurality of RLC entities to the buffer size of the single PDCP layer, and the sum of the buffer sizes of the one RLC entity. Buffer status report transmission method.
  6. 제2항에 있어서,The method of claim 2,
    상기 제1 버퍼크기 정보 및 상기 제2 버퍼상태보고는,The first buffer size information and the second buffer status report,
    상기 단일 무선 베어러가 상기 기지국들 모두에 대응하는 단일 PDCP 계층과 상기 기지국들 각각에 개별적으로 대응하는 복수의 RLC 엔티티들로 구성된 경우,If the single radio bearer is composed of a single PDCP layer corresponding to all of the base stations and a plurality of RLC entities respectively corresponding to each of the base stations,
    상기 복수의 RLC 엔티티들 중 하나의 RLC 엔티티에 대한 버퍼크기를 기반으로 생성됨을 특징으로 하는 버퍼상태보고 전송 방법.And generating a buffer status report based on a buffer size of one of the plurality of RLC entities.
  7. 제1항에 있어서,The method of claim 1,
    상기 제1 버퍼상태보고 및 상기 제2 버퍼상태보고는,The first buffer status report and the second buffer status report,
    상기 기지국들 간에 공유되는 것을 특징으로 하는 버퍼상태보고 전송 방법.The buffer status report transmission method, characterized in that shared between the base stations.
  8. 제1항에 있어서,The method of claim 1,
    상기 제1 버퍼상태보고 및 상기 제2 버퍼상태보고는,The first buffer status report and the second buffer status report,
    패딩 버퍼상태보고(padding BSR)인 경우, 상기 패딩 버퍼상태보고 내의 데이터 값이 무시되는 것을 특징으로 하는 버퍼상태보고 전송 방법.And a padding buffer status report, wherein the data value in the padding buffer status report is ignored.
  9. 무선 통신 시스템에서 둘 이상의 기지국들과 이중 연결(dual connectivity)이 구성된 단말이 버퍼상태보고를 전송하는 방법에 있어서,A method for transmitting a buffer status report by a terminal having dual connectivity with two or more base stations in a wireless communication system,
    상기 단말에 상기 기지국들 모두에 대응하는 단일 무선 베어러(radio bearer)가 구성되고 상기 기지국들의 RLC(Radio Link Control) 계층이 서로 연결되어 있는 경우 각 기지국의 상향링크 자원 상황, 상향링크의 신뢰도 및 상향링크 전송 속도 중 적어도 하나를 기초로 버퍼에 도착한 데이터의 우선순위에 따라 버퍼상태보고를 전송할 기지국을 선택하는 단계; 및When the terminal is configured with a single radio bearer (radio bearer) corresponding to all of the base stations and the Radio Link Control (RLC) layers of the base stations are connected to each other, the uplink resource situation of each base station, uplink reliability and uplink Selecting a base station to transmit a buffer status report according to the priority of data arriving at the buffer based on at least one of the link transmission rates; And
    상기 선택한 기지국으로 버퍼상태보고를 전송하는 단계를 포함하는 버퍼상태보고 전송 방법.And transmitting a buffer status report to the selected base station.
  10. 제9항에 있어서,The method of claim 9,
    상기 버퍼상태보고는,The buffer status report,
    상기 기지국들 간에 공유되는 것을 특징으로 하는 버퍼상태보고 전송 방법.The buffer status report transmission method, characterized in that shared between the base stations.
  11. 제9항에 있어서,The method of claim 9,
    상기 버퍼상태보고는,The buffer status report,
    패딩 버퍼상태보고(padding BSR)인 경우, 상기 패딩 버퍼상태보고 내의 데이터 값이 무시되는 것을 특징으로 하는 버퍼상태보고 전송 방법.And a padding buffer status report, wherein the data value in the padding buffer status report is ignored.
  12. 무선 통신 시스템에서 둘 이상의 기지국들과 이중 연결(dual connectivity)이 구성된 단말에 있어서,A terminal configured with dual connectivity with two or more base stations in a wireless communication system,
    제1 논리 채널 그룹(logical channel group, LCG)에 대한 버퍼크기(buffer size) 정보와 상기 제1 LCG의 ID를 포함하는 제1 버퍼상태보고(buffer state report)를 생성하고, 제2 LCG에 대한 버퍼크기 정보와 상기 제2 LCG의 ID를 포함하는 제2 버퍼상태보고를 생성하는 생성부; 및Generate a first buffer state report including buffer size information for a first logical channel group (LCG) and an ID of the first LCG, and generate a first buffer state report for the second LCG A generation unit for generating a second buffer status report including buffer size information and an ID of the second LCG; And
    상기 제1 LCG ID를 기반으로 상기 제1 버퍼상태보고를 제1 기지국으로 전송하고, 상기 제2 LCG ID를 기반으로 상기 제2 버퍼상태보고를 상기 제2 기지국으로 전송하는 전송부를 포함하는 단말.And a transmitter configured to transmit the first buffer status report to the first base station based on the first LCG ID and to transmit the second buffer status report to the second base station based on the second LCG ID.
  13. 제12항에 있어서,The method of claim 12,
    상기 기지국들과 상기 단말 간에는 단일 무선 베어러가 구성되고, 상기 제1 LCG 및 상기 제2 LCG는 상기 단일 무선 베어러에 매핑되는 것을 특징으로 하는 단말.And a single radio bearer is configured between the base stations and the terminal, and the first LCG and the second LCG are mapped to the single radio bearer.
  14. 제13항에 있어서,The method of claim 13,
    상기 단일 무선 베어러는, The single radio bearer is,
    상기 제1 기지국으로부터 수신한 논리채널 구성정보를 기초로 구성되는 것을 특징으로 하는 단말.And a terminal configured based on logical channel configuration information received from the first base station.
  15. 제14항에 있어서,The method of claim 14,
    상기 논리채널 구성정보는,The logical channel configuration information,
    상기 제1 LCG 및 상기 제2 LCG가 각각 대응하는 기지국을 지시하는 것을 특징으로 하는 단말.And the first LCG and the second LCG each indicate a corresponding base station.
  16. 제13항에 있어서,The method of claim 13,
    상기 생성부는,The generation unit,
    상기 단일 무선 베어러가 상기 기지국들 모두에 대응하는 단일 PDCP(Packet Data Convergence Protocol) 계층과 상기 기지국들 각각에 개별적으로 대응하는 복수의 RLC(Radio Link Control) 엔티티(entity)들로 구성된 경우, When the single radio bearer is composed of a single Packet Data Convergence Protocol (PDCP) layer corresponding to all of the base stations and a plurality of Radio Link Control (RLC) entities corresponding to each of the base stations,
    상기 단일 PDCP 계층의 버퍼크기와, 상기 복수의 RLC 엔티티들 중 하나의 RLC 엔티티의 버퍼크기의 합을 기반으로 상기 버퍼크기 정보를 생성하는 것을 특징으로 하는 단말.And generating the buffer size information based on a sum of the buffer size of the single PDCP layer and the buffer size of one RLC entity among the plurality of RLC entities.
  17. 제13항에 있어서,The method of claim 13,
    상기 생성부는,The generation unit,
    상기 단일 무선 베어러가 상기 기지국들 모두에 대응하는 단일 PDCP 계층과 상기 기지국들 각각에 개별적으로 대응하는 복수의 RLC 엔티티들로 구성된 경우, If the single radio bearer is composed of a single PDCP layer corresponding to all of the base stations and a plurality of RLC entities respectively corresponding to each of the base stations,
    상기 단일 PDCP 계층의 버퍼크기에서 상기 복수의 RLC 엔티티들의 버퍼크기들 중 하나의 RLC 엔티티의 버퍼크기의 비율에 해당하는 값과, 상기 하나의 RLC 엔티티의 버퍼크기의 합을 기반으로 상기 버퍼크기 정보를 생성하는 것을 특징으로 하는 단말.The buffer size information based on a sum of a buffer size of one RLC entity among the buffer sizes of the plurality of RLC entities and a buffer size of the one RLC entity in the buffer size of the single PDCP layer; Terminal, characterized in that for generating.
  18. 제12항에 있어서,The method of claim 12,
    상기 생성부는,The generation unit,
    상기 단일 무선 베어러가 상기 기지국들 모두에 대응하는 단일 PDCP 계층과 상기 기지국들 각각에 개별적으로 대응하는 복수의 RLC 엔티티들로 구성된 경우,If the single radio bearer is composed of a single PDCP layer corresponding to all of the base stations and a plurality of RLC entities respectively corresponding to each of the base stations,
    상기 복수의 RLC 엔티티들 중 하나의 RLC 엔티티에 대한 버퍼크기를 기반으로 상기 버퍼크기 정보를 생성하는 것을 특징으로 하는 단말.And generating the buffer size information based on a buffer size of one RLC entity among the plurality of RLC entities.
  19. 제12항에 있어서,The method of claim 12,
    상기 제1 버퍼상태보고 및 상기 제2 버퍼상태보고는,The first buffer status report and the second buffer status report,
    상기 기지국들 간에 공유되는 것을 특징으로 하는 단말.The terminal characterized in that shared between the base stations.
  20. 제12항에 있어서,The method of claim 12,
    상기 제1 버퍼상태보고 및 상기 제2 버퍼상태보고는,The first buffer status report and the second buffer status report,
    패딩 버퍼상태보고(padding BSR)인 경우, 상기 패딩 버퍼상태보고 내의 데이터 값이 무시되는 것을 특징으로 하는 단말.In case of padding buffer status report (padding BSR), characterized in that the data value in the padding buffer status report is ignored.
PCT/KR2014/007337 2013-08-07 2014-08-07 Method and apparatus for transmitting buffer state report in wireless communication system WO2015020461A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0093737 2013-08-07
KR1020130093737A KR102082000B1 (en) 2013-08-07 2013-08-07 Method and apparatus for transmitting buffer status report in wireless communication system

Publications (1)

Publication Number Publication Date
WO2015020461A1 true WO2015020461A1 (en) 2015-02-12

Family

ID=52461685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/007337 WO2015020461A1 (en) 2013-08-07 2014-08-07 Method and apparatus for transmitting buffer state report in wireless communication system

Country Status (2)

Country Link
KR (1) KR102082000B1 (en)
WO (1) WO2015020461A1 (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017003118A1 (en) * 2015-07-01 2017-01-05 Lg Electronics Inc. Method for transmitting data in dual connectivity and a device therefor
WO2018164499A1 (en) * 2017-03-10 2018-09-13 주식회사 케이티 Buffer state report transmission method and device therefor
WO2019015513A1 (en) * 2017-07-21 2019-01-24 夏普株式会社 Wireless communication method and device
CN110139388A (en) * 2018-02-08 2019-08-16 电信科学技术研究院有限公司 The reporting of buffer state, data dispatching method, terminal and network side equipment
CN110612739A (en) * 2017-04-28 2019-12-24 三星电子株式会社 Method and apparatus for communication in a wireless communication system
CN110881223A (en) * 2017-09-29 2020-03-13 华为技术有限公司 Scheduling request processing method and terminal equipment
CN111034318A (en) * 2017-06-16 2020-04-17 瑞典爱立信有限公司 Method and apparatus related to buffer status reporting in a wireless communication network
CN112512084A (en) * 2019-09-16 2021-03-16 中磊电子股份有限公司 Base station and data transmission adjusting method
US10986530B2 (en) 2017-03-10 2021-04-20 Kt Corporation Buffer state report transmission method and device therefor
US11272393B2 (en) 2017-04-28 2022-03-08 Beijing Xiaomi Mobile Software Co., Ltd. Method and apparatus for sending buffer state
WO2023217009A1 (en) * 2022-05-09 2023-11-16 维沃移动通信有限公司 Data transmission method and apparatus and communication device
US11924674B2 (en) * 2018-02-09 2024-03-05 Huawei Technologies Co., Ltd. Data transmission method and apparatus

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108702647A (en) * 2016-03-30 2018-10-23 英特尔公司 The service quality processing of uplink transmission
CN108632889A (en) * 2017-03-24 2018-10-09 中兴通讯股份有限公司 A kind of triggering method of Buffer Status Report, device, terminal
US11171874B2 (en) 2018-09-27 2021-11-09 Electronics And Telecommunications Research Institute Methods of lossless traffic forwarding using distributed delay offset matching

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090094760A (en) * 2008-03-03 2009-09-08 이노베이티브 소닉 리미티드 Method and apparatus for performing buffer status reporting
KR20100121894A (en) * 2009-05-11 2010-11-19 삼성전자주식회사 Apparatus and method for reporting buffer status of ue in mobile communication system
KR20120066667A (en) * 2009-12-25 2012-06-22 후아웨이 테크놀러지 컴퍼니 리미티드 Method and apparatus for reporting buffer status
EP2584714A2 (en) * 2010-06-18 2013-04-24 LG Electronics Inc. Method for transmitting buffer state report from terminal in wireless communication system, and apparatus therefor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090094760A (en) * 2008-03-03 2009-09-08 이노베이티브 소닉 리미티드 Method and apparatus for performing buffer status reporting
KR20100121894A (en) * 2009-05-11 2010-11-19 삼성전자주식회사 Apparatus and method for reporting buffer status of ue in mobile communication system
KR20120066667A (en) * 2009-12-25 2012-06-22 후아웨이 테크놀러지 컴퍼니 리미티드 Method and apparatus for reporting buffer status
EP2584714A2 (en) * 2010-06-18 2013-04-24 LG Electronics Inc. Method for transmitting buffer state report from terminal in wireless communication system, and apparatus therefor

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10512096B2 (en) 2015-07-01 2019-12-17 Lg Electronics Inc. Method for transmitting data in dual connectivity and a device therefor
WO2017003118A1 (en) * 2015-07-01 2017-01-05 Lg Electronics Inc. Method for transmitting data in dual connectivity and a device therefor
WO2018164499A1 (en) * 2017-03-10 2018-09-13 주식회사 케이티 Buffer state report transmission method and device therefor
US10986530B2 (en) 2017-03-10 2021-04-20 Kt Corporation Buffer state report transmission method and device therefor
CN110612739B (en) * 2017-04-28 2024-05-03 三星电子株式会社 Method and apparatus for communication in a wireless communication system
CN110612739A (en) * 2017-04-28 2019-12-24 三星电子株式会社 Method and apparatus for communication in a wireless communication system
US11272393B2 (en) 2017-04-28 2022-03-08 Beijing Xiaomi Mobile Software Co., Ltd. Method and apparatus for sending buffer state
CN111034318A (en) * 2017-06-16 2020-04-17 瑞典爱立信有限公司 Method and apparatus related to buffer status reporting in a wireless communication network
CN111034318B (en) * 2017-06-16 2024-04-02 瑞典爱立信有限公司 Methods and apparatus related to buffer status reporting in a wireless communication network
WO2019015513A1 (en) * 2017-07-21 2019-01-24 夏普株式会社 Wireless communication method and device
CN110881223A (en) * 2017-09-29 2020-03-13 华为技术有限公司 Scheduling request processing method and terminal equipment
US11937121B2 (en) 2017-09-29 2024-03-19 Huawei Technologies Co., Ltd. Scheduling request processing method and terminal device
CN110881223B (en) * 2017-09-29 2022-04-29 华为技术有限公司 Scheduling request processing method and terminal equipment
CN110139388B (en) * 2018-02-08 2022-05-03 大唐移动通信设备有限公司 Buffer state reporting and data scheduling method, terminal and network side equipment
CN110139388A (en) * 2018-02-08 2019-08-16 电信科学技术研究院有限公司 The reporting of buffer state, data dispatching method, terminal and network side equipment
US11924674B2 (en) * 2018-02-09 2024-03-05 Huawei Technologies Co., Ltd. Data transmission method and apparatus
CN112512084A (en) * 2019-09-16 2021-03-16 中磊电子股份有限公司 Base station and data transmission adjusting method
WO2023217009A1 (en) * 2022-05-09 2023-11-16 维沃移动通信有限公司 Data transmission method and apparatus and communication device

Also Published As

Publication number Publication date
KR102082000B1 (en) 2020-02-26
KR20150017592A (en) 2015-02-17

Similar Documents

Publication Publication Date Title
WO2015020461A1 (en) Method and apparatus for transmitting buffer state report in wireless communication system
WO2018128462A1 (en) Method and device for transmitting rule for qos flow to drb mapping
WO2017026671A1 (en) Method for performing a buffer status reporting in a d2d communication system and device therefor
WO2018128452A1 (en) Method for transmitting lossless data packet based on quality of service (qos) framework in wireless communication system and a device therefor
WO2017078297A1 (en) Method for transmitting a sidelink buffer status reporting in a d2d communication system and device therefor
WO2018044079A1 (en) Method for terminal transmitting sidelink control information in wireless communication system and terminal using same
WO2015020344A1 (en) Apparatus and method for transmitting data in heterogeneous network radio communication system
WO2015046923A1 (en) Method and apparatus for performing activation/deactivation of serving cell in wireless communication system supporting dual connectivity
WO2015142082A1 (en) Method and apparatus for configuring buffer status report for public safety transmission or vehicle-related transmission in wireless communication system
WO2019022530A1 (en) Method and apparatus for performing edt
WO2015142081A1 (en) Method and apparatus for canceling triggered buffer status report for device-to-device transmission in wireless communication system
WO2019022477A1 (en) Method and apparatus for selecting carrier for sidelink transmission in wireless communication system
WO2017003118A1 (en) Method for transmitting data in dual connectivity and a device therefor
WO2019160310A1 (en) Method and apparatus for modifying mapping rule
WO2017007147A1 (en) Method for triggering buffer status report in dual connectivity and a device therefor
WO2017007148A1 (en) Method for cancelling a buffer status report or a scheduling request in dual connectivity and a device therefor
WO2019022468A1 (en) Method and apparatus for selecting carrier
WO2019059729A1 (en) Method and apparatus for activating bandwidth part
WO2019022471A1 (en) Method and apparatus for selecting carrier
WO2019022480A1 (en) Method and apparatus for allocating resource based on anchor carrier in wireless communication system
WO2018236108A1 (en) Method for requesting an uplink resource in a wireless communication system and a device therefor
WO2016117886A1 (en) Method for initiating a random access procedure in a carrier aggregation system and a device therefor
WO2018230995A1 (en) Method for performing a random access procedure in wireless communication system and a device therefor
WO2019070107A1 (en) Method and apparatus for controlling packet duplication
WO2015005741A1 (en) Method and apparatus for controlling data in radio link control layer in wireless communication system supporting dual connectivity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14835368

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14835368

Country of ref document: EP

Kind code of ref document: A1