WO2015020206A1 - Tissue swelling material - Google Patents

Tissue swelling material Download PDF

Info

Publication number
WO2015020206A1
WO2015020206A1 PCT/JP2014/071058 JP2014071058W WO2015020206A1 WO 2015020206 A1 WO2015020206 A1 WO 2015020206A1 JP 2014071058 W JP2014071058 W JP 2014071058W WO 2015020206 A1 WO2015020206 A1 WO 2015020206A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
gag
derivative
reactive
molecule
Prior art date
Application number
PCT/JP2014/071058
Other languages
French (fr)
Japanese (ja)
Inventor
奨 舩山
Original Assignee
生化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 生化学工業株式会社 filed Critical 生化学工業株式会社
Publication of WO2015020206A1 publication Critical patent/WO2015020206A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • A61K31/726Glycosaminoglycans, i.e. mucopolysaccharides
    • A61K31/728Hyaluronic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/715Polysaccharides, i.e. having more than five saccharide radicals attached to each other by glycosidic linkages; Derivatives thereof, e.g. ethers, esters
    • A61K31/737Sulfated polysaccharides, e.g. chondroitin sulfate, dermatan sulfate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/20Polysaccharides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/52Hydrogels or hydrocolloids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • A61P13/02Drugs for disorders of the urinary system of urine or of the urinary tract, e.g. urine acidifiers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0063Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
    • C08B37/0072Hyaluronic acid, i.e. HA or hyaluronan; Derivatives thereof, e.g. crosslinked hyaluronic acid (hylan) or hyaluronates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/22Materials or treatment for tissue regeneration for reconstruction of hollow organs, e.g. bladder, esophagus, urether, uterus

Definitions

  • the present invention relates to a cross-linked glycosaminoglycan (GAG), a raw material composition thereof, and a use thereof.
  • GAG cross-linked glycosaminoglycan
  • Glycosaminoglycan composed of amino sugar and uronic acid that is, GAG is widely used as a medical material because of its excellent biocompatibility.
  • GAG hydrogels obtained by crosslinking GAG are also widely used as medical materials.
  • Japanese Patent Application Publication No. 2010-502824 discloses that hyaluronic acid in which a crosslinkable group is bonded to a carboxy group of D-glucuronic acid constituting hyaluronic acid is subjected to crosslinking by a click-type reaction.
  • a SPAAC that does not require a copper catalyst and uses a crosslinkable group such as cycloalkynylene that reacts quickly and highly selectively as a reactive group due to the strain of the ring structure, and the crosslink reaction proceeds rapidly due to the strain. It is described in WO2012 / 165462 that a hydrogel of a polysaccharide such as hyaluronic acid is obtained by a (strain-promoted azide-alkyne cycloaddition) type reaction.
  • hydrogel of WO2012 / 165462 has a crosslinkable group bonded to the hydroxy group of N-acetyl-glucosamine constituting hyaluronic acid via an alkylene chain, the remaining period after gel formation in vivo was as short as one week, and its use was limited.
  • VUR vesicoureteral reflux
  • the treatment includes antibacterial drugs; laparotomy such as extravesical reconstruction; a high-viscosity gel in which dextranomer beads are mixed with sodium hyaluronate, a carrier gel, at the connection between the bladder and ureter Endoscopic treatment that produces a long-term bulging effect is performed by injecting and surrounding the staying site with connective tissue (Deflux package insert).
  • Stress urinary incontinence refers to a state in which the increase in bladder pressure during abdominal pressure exceeds the urethral resistance due to a decrease in urethral resistance, and urine leaks without bladder contraction.
  • a characteristic symptom is that urine leaks without intention of urine when coughing, sneezing, having a heavy object, running, or climbing stairs.
  • symptom evaluation and physical examination are important, but subjective symptoms and pathological conditions may not always match, and various objective tests are required in specialized practice.
  • Surgical treatment of stress urinary incontinence can be broadly divided into bladder neck lifting such as retropubic surgery, bladder neck sling surgery, and periurethral collagen injection therapy.
  • bladder neck lifting such as retropubic surgery, bladder neck sling surgery, and periurethral collagen injection therapy.
  • comparison of treatment results of various surgical procedures has a large variation in the definition of urinary incontinence improvement, few papers have examined long-term results, surgical procedures are not constant, and there are many changes by the surgeon, no It is not easy because there are very few randomized comparative studies.
  • periurethral collagen injection therapy collagen is injected into the bladder neck and proximal urethral mucosa to ensure close contact between the bladder neck and proximal urethra. Injection by needle puncture is performed. Although it is the least invasive and simple method among surgical treatments, the recurrence rate is high, and it is said that more than two injections are often required to obtain a stable effect (urinary incontinence based on EBM) Clinical guidelines). In fact, there were products (such as Coaptite (registered trademark) Injectable Implant) used for periurethral injection therapy using collagen as a material, but the current situation is withdrawing from the market from the viewpoint of long-term therapeutic effects. .
  • Coaptite registered trademark
  • PTFE Polytetrafluoroethylene
  • the present invention provides a long-term residual tissue swelling material that is highly safe in the living body and remains in the body for a long time, and is useful for diseases requiring treatment with a long-term residual tissue swelling material such as vesicoureteral reflux disease. Is an issue.
  • the present inventor has attached a SPAG reaction to a GAG derivative in which a SPAAC type reactive group is introduced into the carboxy group of GAG represented by hyaluronic acid via an amide bond. It is found that the cross-linked GAG obtained by the above method has excellent safety in the living body and remains stable in the living body for a long period of time, and further requires treatment with a long-term residual tissue swelling material such as vesicoureteral reflux disease. As a result, the present invention has been found to be useful as a material for treating diseases.
  • the first GAG molecule and the second GAG molecule are represented by the following crosslinking group: —CONH—R 1 —XR 2 —NHCO—, or —CONH—R 3 —XR 4 —X′—R 5 —NHCO—
  • R 1 to R 5 are the same or different and each represents an alkylene group, an alkenylene group, or an alkynylene group, and —CH 2 — in the group represents> C ⁇ O, —CONH—, arylene, —O—, or May be replaced by -S-
  • X and X ′ are the same or different and have the formula:
  • the direction of A and B bonds may be either Here, A and B each represent a binding site with any of R 1 to R 5 to which X or X ′ is bound; Y 1 ⁇ Y 6 are the same or different, -
  • alkenyl group, alkynyl group or alkoxy group represents> C ⁇ O, —CONH—, arylene, —O—.
  • R 7 represents an alkyl group, an alkenyl group or an alkynyl group, and —CH 2 — in the alkyl group, alkenyl group or alkynyl group represents> C ⁇ O, —CONH—, arylene, —O— or —S—.
  • the first GAG molecule and the second GAG molecule may be the same molecule bound via a GAG.
  • the present invention further includes a composition comprising the following (1) GAG derivative A and (2) GAG derivative B or (3) compound C: (1) GAG derivative A in which a SPAAC type reactive group is introduced into a GAG molecule via an amide bond derived from a carboxy group of the GAG molecule and a divalent spacer group; (2) GAG derivative B in which a reactive group complementary to the reactive group of GAG derivative A is introduced into the GAG molecule via an amide bond derived from a carboxy group of the GAG molecule and a divalent spacer group; (3) Compound C defined by the following structure having at least two reactive groups complementary to the reactive group of GAG derivative A; [Where: Y is the same or different and is a reactive group complementary to the reactive group of GAG derivative A; Z is an n-valent spacer group, n is an integer of 2 or more] About.
  • the present invention also relates to a tissue swelling material kit comprising the tissue swelling material comprising the composition; the GAG derivative A and the GAG derivative B or the compound C.
  • the present invention is also the GAG derivative A or the GAG derivative B, A GAG derivative in which an amino group of an amine selected from the group consisting of an amino group of an amine and a carboxy group of a GAG molecule is amide-bonded; and an intermediate compound for obtaining the GAG derivative.
  • a cyclooctyne derivative amine selected from the group consisting of:
  • the GAG cross-linked product of the present invention obtained by subjecting the composition of the present invention to a SPAAC type reaction is useful as a material for treating a disease requiring treatment with a long-term residual tissue swelling material such as vesicoureteral reflux. .
  • FIG. 6 is a graph showing a change with time in viscosity value after mixing according to Example 21. It is a figure which shows the time-dependent change of the viscosity value after mixing by Example 22. It is a figure which shows the relationship between the distortion
  • 2.2% HA (N 3 + DIMAC ) is a diagram showing the histology after injection 4 weeks.
  • 2.2% HA (N 3 + DIMAC ) is a diagram showing the histology after injection 24 weeks.
  • an alkyl group means a monovalent linear or branched saturated aliphatic hydrocarbon group having 1 to 14 carbon atoms, preferably 1 to 8 carbon atoms.
  • An alkenyl group is a monovalent linear or branched unsaturated aliphatic hydrocarbon group having 2 to 14 carbon atoms, preferably 2 to 8 carbon atoms, having at least one double bond.
  • the alkenylene group means a divalent linear or branched unsaturated aliphatic hydrocarbon having 2 to 14 carbon atoms, preferably 2 to 8 carbon atoms, having at least one double bond. Refers to the group.
  • the alkynyl group refers to a monovalent linear or branched unsaturated aliphatic hydrocarbon group having 2 to 14 carbon atoms, preferably 2 to 8 carbon atoms, having at least one triple bond.
  • the alkynylene group is a divalent linear or branched unsaturated aliphatic hydrocarbon group having 2 to 14 carbon atoms, preferably 2 to 8 carbon atoms, having at least one triple bond.
  • An alkoxy group refers to a monovalent group formed by an oxygen atom to which the above alkyl group is bonded.
  • An arylene group refers to a divalent monocyclic or polycyclic aromatic hydrocarbon group having 6 to 20 carbon atoms as ring-constituting atoms. Specific examples include phenylene (1,2-, 1,3- or 1,4-phenylene), naphthylene, and the like.
  • complementary reactive group refers to a functional group that can react with a reactive functional group to form a chemical bond such as a covalent bond. It refers to any one functional group in a triple bond combination.
  • the amount of each component in the composition is the total amount of the plurality of substances present in the composition unless there is a specific indication when there are a plurality of substances corresponding to each component in the composition. means.
  • the first GAG molecule and the second GAG molecule have the following cross-linking group: —CONH—R 1 —XR 2 —NHCO—, or —CONH—R 3 —XR 4 —X′—R 5 —NHCO—
  • the GAG cross-linked product is linked via the formula, and each symbol in the formula is also as described above, and the first GAG molecule and the second GAG molecule may be the same molecule.
  • GAG that is, glycosaminoglycan has a repeating structural unit of an amino sugar (glucosamine, galactosamine) and a disaccharide consisting of uronic acid or galactose, and its hydroxy group may be sulfated. It is an acidic polysaccharide of 5 to 2,000 kDa.
  • GAGs include hyaluronic acid, chondroitin, chondroitin sulfate, heparin, heparan sulfate, dermatan sulfate and keratan sulfate.
  • GAGs may be pharmaceutically acceptable salts thereof.
  • examples of such salts include sodium salts, potassium salts, magnesium salts and calcium salts, among which sodium salts are preferred.
  • the origin of GAG is not particularly limited, and may be derived from animals or microorganisms, or may be chemically synthesized.
  • the molecular weight of GAG is not particularly limited, but the weight average molecular weight is preferably 5 to 2,000 kDa, more preferably 10 to 500 kDa.
  • hyaluronic acid or a pharmaceutically acceptable salt thereof is used as GAG, its weight average molecular weight is preferably 5 to 2,000 kDa, more preferably 10 to 500 kDa.
  • chondroitin sulfate or a pharmaceutically acceptable salt thereof is used as GAG, its weight average molecular weight is 5 to 200 kDa, more preferably 10 to 100 kDa.
  • GAG molecule of the present invention has the formula: [Where: R 8 and R 9 represent a hydrogen atom or a hydroxy group; provided that when R 8 is a hydroxy group, R 9 is a hydrogen atom, and when R 8 is a hydrogen atom, R 9 is a hydroxy group; R 10 is ONa or OH], In the case where R 8 is a hydroxy group, at least one of the hydroxy groups in the structural unit is —OSO 3 Na or —OSO 3 H. GAG can be preferably mentioned.
  • the GAG cross-linked product of the present invention comprises a first GAG molecule and a second GAG molecule having the following cross-linking group: —CONH—R 1 —XR 2 —NHCO—, or —CONH—R 3 —XR 4 —X′—R 5 —NHCO—
  • the first GAG molecule and the second GAG molecule may be the same molecule.
  • R 1 to R 5 are the same or different and each represents an alkylene group, an alkenylene group, or an alkynylene group, and —CH 2 — in the group represents> C ⁇ O, —CONH—, arylene, —O -Or -S- may be substituted.
  • Preferred alkylene, alkenylene or alkynylene groups are each a divalent linear or branched aliphatic hydrocarbon as defined above, each consisting of 1 to 14, more preferably 1 to 8 carbon atoms. It is a group.
  • X and X ′ may be the same or different and have the formula:
  • the direction of A and B bonds may be either
  • a and B each represent a binding site with any of R 1 to R 5 to which X or X ′ is bound
  • R 6 and R 6 ′ are the same or different and are a hydrogen atom, a halogen atom, a hydroxy group, an amino group, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group or a carboxy group, which may be mono- or di-substituted with alkyl.
  • alkenyl group, alkynyl group or alkoxy group represents> C ⁇ O, —CONH—, arylene, —O—.
  • R 7 represents an alkyl group, an alkenyl group or an alkynyl group, and —CH 2 — in the alkyl group, alkenyl group or alkynyl group represents> C ⁇ O, —CONH—, arylene, —O— or —S—.
  • R 6 in R 6 and the other group of one group is a saturated or 3-unsaturated together with the ring atoms to which each is attached
  • a 6-membered ring can be formed, and the bond B can be bonded to the 3- to 6-membered ring.
  • the 3- to 6-membered ring include a cycloalkyl ring having 3 to 6 members, a phenyl ring, or a 5- to 6-membered heteroaryl ring.
  • Preferred examples of X and X ′ include the following groups.
  • X and X ′ include the following groups.
  • crosslinking group in the GAG crosslinked product of the present invention include the following, wherein m is an integer of 3 to 8 (the spacer actually used in the examples).
  • m is an integer of 3 to 8 (the spacer actually used in the examples).
  • X is preferably selected from the group consisting of the following groups. More preferably, it is the following group: More preferably, they are the following groups.
  • one of the nitrogen atoms at both ends of the three nitrogen atoms of the triazolyl ring moiety can have a bond.
  • the ratio of the number of moles of linked bridging groups to the number of moles of GAG disaccharide repeating units (hereinafter referred to as “introduction ratio”) is the type of GAG, the viscosity required for use as a tissue swelling material, It can be determined appropriately according to the necessary stress, administration site, and the like.
  • introduction ratio is preferably 0.1 to 80%, and more preferably 0.5 to 20%, relative to the number of moles of GAG disaccharide repeating units. It is.
  • compositions comprising at least one of the following (1) GAG derivative A and (2) at least one of GAG derivative B or (3) compound C.
  • GAG derivative A in which a SPAAC type reactive group is introduced into a GAG molecule via an amide bond derived from a carboxy group of GAG and a divalent spacer group
  • GAG derivative B in which a reactive group complementary to the reactive group of GAG derivative A is introduced into the GAG molecule via an amide bond derived from a carboxy group of the GAG molecule and a divalent spacer group
  • Compound C defined by the following structure having at least two reactive groups complementary to the reactive group of GAG derivative A; [Where: Y is the same or different and is a reactive group complementary to the reactive group of GAG derivative A; Z is an n-valent spacer group, n is an integer of 2 or more]. That is, the composition of the present invention includes (1) a combination of GAG derivative A and (2) GAG derivative B; or (1) a combination of GAG derivative
  • GAG derivatives A and B constituting the composition of the present invention the same GAG as the GAG described for the above-mentioned GAG cross-linked product can be used as GAG, and consists of hyaluronic acid, chondroitin sulfate and chondroitin.
  • GAG selected from the group can be preferably used, hyaluronic acid or a salt thereof and chondroitin sulfate or a salt thereof can be more preferably used, and hyaluronic acid having higher biocompatibility can be particularly preferably used.
  • divalent GAG derivatives A and B constituting the composition of the spacer group, and n valent spacer groups present invention an amide bond and SPAAC type reactive group the carboxy group of the GAG form, a divalent spacer group Are connected through.
  • any chain group can be used as long as it does not inhibit the reaction between the SPAAC type reactive group and the reactive group complementary to the reactive group.
  • groups R 1 to R 5 used in the aforementioned GAG crosslinked product that is, an alkylene group, an alkenylene group, or an alkynylene group can be used, and —CH 2 in the group can be used.
  • May be replaced by> C ⁇ O, —CONH—, arylene, —O—, or —S—.
  • the n-valent spacer group of the compound C constituting the composition of the present invention is the same as the divalent spacer group, and an n-valent group derived from an alkyl group, an alkenyl group, or an alkynyl group can be used.
  • the —CH 2 — in the group may be replaced by> C ⁇ O, —CONH—, arylene, —O—, or —S—.
  • arylene a phenylene group such as 1,2-, 1,3- or 1,4-phenylene can be used, and among them, a 1,4-phenylene group can be preferably used.
  • n is an integer of 2 or more, preferably 2.
  • Compound C has a SPAAC type reactive group, or complementary reactive group and the reactive moiety.
  • the SPAAC-type reaction is a click-type reaction that reacts a triple bond of an azide group and an alkyne to form an 1,2,3-triazole ring quickly and easily without producing an undesirable by-product.
  • the GAG derivatives A and B and the compound C that can be employed in the composition of the present invention can have any SPAAC type reactive group or a reactive group complementary to the reactive group.
  • a combination of a group derived from a cycloalkynyl group having 7 to 9 carbon atoms, preferably 7 or 8 carbon atoms, more preferably 8 carbon atoms, and an azide group can be used.
  • Specific examples of the SPAAC type reactive group or a reactive group complementary to the reactive group preferably include a combination of a reactive group having a skeleton selected from the group consisting of the following skeletons and an azide group. Can do.
  • a combination of a group selected from the group consisting of the following groups and an azide group can be mentioned more preferably.
  • the SPAAC type reactive group and the reactive group complementary to the reactive group are all of the GAG constituent units. It is not necessary to bind to the carboxy group.
  • the ratio of the number of moles of linked crosslinks relative to the number of moles of GAG disaccharide repeating units, that is, the introduction ratio can be appropriately determined according to the type of GAG, the necessary viscosity, the necessary stress, the administration site, and the like.
  • the introduction ratio is preferably 0.1 to 80%, and more preferably 0.5 to 20%, relative to the number of moles of GAG disaccharide repeating units. It is.
  • the GAG derivative having a cycloalkynyl group as a SPAAC type reactive group is preferably the following: following: A GAG derivative in which an amino group of an amine and a carboxy group of GAG are amide-bonded is selected from the group consisting of: Among these, in terms of reactivity and biocompatibility, the following: More preferred cyclooctyne derivatives GAG derivatives in which the amino group of the amine and the carboxy group of GAG are amide-bonded are more preferred, most preferably: A GAG derivative in which the amino group of the amine and the carboxy group of GAG are amide-bonded.
  • the GAG derivative having an azide group as a SPAAC type reactive group is preferably the following: N 3 —CH 2 —CH 2 —NH 2 ; N 3 —CH 2 —CH 2 —CH 2 —NH 2 ; N 3 —CH 2 —CH 2 —CH 2 —NH 2 ; N 3 —CH 2 —C ( ⁇ O) —NH—CH 2 —CH 2 —NH 2 ; N 3 —CH 2 —CH 2 —O—CH 2 —CH 2 —NH 2 ; N 3 —CH 2 — [CH 2 —O—CH 2 ] 2-10 —CH 2 —NH 2 ;
  • a GAG derivative obtained by amide-bonding an amino group of an azidoamine selected from the group consisting of carboxy group of GAG can be given.
  • compound C preferably, the following compounds can be mentioned.
  • composition ratio of GAG derivatives A and B and compound C In the composition of the present invention, the SPAAC type reactive group possessed by GAG derivatives A, B and compound C, and the reactive group complementary to the reactive group are 1
  • the molar ratio is from 1: 1 to 1: 4, preferably from 1: 1 to 1: 2, more preferably 1: 1.
  • the composition of the present invention may contain a medium. Examples of the medium include water, physiological saline, and phosphate buffer.
  • the total content of GAG derivatives A and B and compound C is, for example, 0.5% by mass or more, and preferably 1.0% by mass or more in the composition.
  • Method for Producing GAG Derivatives A and B and Compound C GAG derivatives A and B contained in the composition of the present invention are SPAAC type reactive groups, reactive groups complementary to the reactive groups, and amino groups as spacers.
  • the amino group of the spacer compound bonded via the group can be obtained by condensing with the carboxy group of the GAG molecule.
  • a spacer compound in which a cycloalkynyl group and an amino group, which are typical SPAAC-type reactive groups, are bonded via a spacer group can be synthesized as shown below.
  • Methyl-6-bromo-6-deoxy-2,3-di-O-methyl- ⁇ , D-glucopyranoside 3 was synthesized by the method described in Organic Letter, 2008, Vol. 10, No. 14, 3097-99. To do. After the zinc reduction / reductive amination reaction using 3 as a raw material, the imino group is protected with a t-butoxycarbonyl (Boc) group to give 4. Subsequently, after azacyclooctene 5 is obtained by olefin metathesis reaction, ketone body 6 is obtained by oxidation using pyridinium dichromate (PDC), and 7 is obtained by hydrogenation of 6 under a palladium carbon catalyst.
  • PDC pyridinium dichromate
  • spacer compounds in which a SPAAC type reactive group cycloalkynyl group and amino group are bonded via a spacer group are also described in Org. Biomol. Chem., 2009, 7, 635-638, Bioconjugate Chem. 2010, 21, It can be easily synthesized by the method described in 2076-2085 and the like, and a method analogous thereto.
  • a spacer compound in which an azide group and an amino group, which are SPAAC type reactive groups, are bonded via a spacer group is commercially available or can be easily synthesized from a commercially available compound.
  • the above-mentioned azidoamines are known as Chem. Commun., 2005, 5390-5392; Chem.Commun., 2006, 2012-2014; J. Org. Chem. 2006,71 (17), 6697-6700; Tetrahderon Lett., 2001, 2709-2711; J. Am. Chem. Soc., 2005, 127, 12434-12435; Tetrahderon Lett., 2001, 2709-2711 or a method analogous thereto .
  • Compound C is also commercially available or can be easily synthesized from commercially available compounds.
  • GAG derivatives A and B can be obtained by subjecting to a condensation reaction using a condensing agent such as methylmorpholinium chloride (DMT-MM).
  • GAG derivatives A and B or GAG derivative A and compound C thus obtained are mixed in water, in a mixed solution of an organic solvent that can be arbitrarily mixed with water, and in a solution containing an arbitrary salt.
  • the GAG crosslinked product of the present invention can also be obtained by subjecting it to a SPAAC type reaction at a temperature of 60 ° C.
  • the composition of the present invention can form the crosslinked GAG of the present invention by subjecting it to a SPAAC type reaction in a solvent such as physiological saline or phosphate buffer as necessary. it can. Since the GAG crosslinked body has excellent safety in vivo and can remain stably in the living body for a long time, it is used as a therapeutic material for various diseases requiring treatment with a long-term residual tissue swelling material. be able to. Specifically describing such an application, the composition of the present invention can remain in a living body for a long time after injection, for example, so that functional reconstruction of a living tissue lost or removed for some reason is possible.
  • GSD gastroesophageal reflux disease
  • FI fecal incontinence
  • radical prostatectomy is an operation in which a skin incision of about 7 to 20 cm is made in the lower abdomen, the prostate and seminal vesicle are removed, and the bladder and urethra are anastomosed. After the operation, a catheter is inserted into the bladder, and the catheter is removed after a urethral examination in about one week. In this case, it is known that postoperative complications are accompanied by dysuria in about 70% of patients.
  • the composition of the present invention can be used as a medium to support the urethra. Furthermore, from the situation where total prostatectomy is possible in laparoscopic surgery, it can also be used for tissue reconstruction to prevent postoperative complications after extraction surgery in minimally invasive surgery. Thus, the composition of the present invention can be used as a long-term residual tissue swelling material in various regions.
  • the composition of the present invention is used to treat a disease requiring treatment with a tissue swelling material such as vesicoureteral reflux, stress urinary incontinence, or fecal incontinence in the urological field; tissue after radical prostatectomy It can be used as a long-term residual tissue bulge in reconstruction; tissue reconstruction in the surgical, orthopedic or plastic surgery area.
  • tissue swelling material such as vesicoureteral reflux, stress urinary incontinence, or fecal incontinence in the urological field
  • tissue after radical prostatectomy It can be used as a long-term residual tissue bulge in reconstruction
  • tissue reconstruction in the surgical, orthopedic or plastic surgery area tissue reconstruction in the surgical, orthopedic or plastic surgery area.
  • GAG derivative A and GAG derivative B or compound C which are constituents of the composition of the present invention, can be administered in vivo as, for example, as a powder or as a solution in a solvent.
  • a solvent such as physiological saline or phosphate buffer as necessary to obtain a liquid composition, which can be administered in vivo by means such as injection.
  • concentration in the case of dissolving in a solvent can be appropriately determined according to the viscosity required for use as a long-term residual tissue swelling material.
  • the composition of the present invention when used as an abdominal subcutaneous shape maintaining material used in diseases such as vesicoureteral reflux, the time until the viscosity value reaches 1 Pa ⁇ s is 12 hours or less (measurement conditions:
  • the concentrations of GAG derivative A and GAG derivative B or compound C can be determined to be an E-type rotational viscometer, standard cone (1 ° 34'xR24), 25 ° C, 5 rpm).
  • GAG derivative A and GAG derivative B or compound C are each separately in powder form or dissolved and separately administered as a liquid composition, or immediately before administration, GAG derivative A and GAG derivative B Alternatively, compound C may be mixed and used as a liquid composition in the form of a powder or dissolved, and then crosslinked in a living body by a SPAAC reaction to form a long-term residual tissue swelling material.
  • the dose may be an amount required as a long-term residual tissue swelling material in diseases such as vesicoureteral reflux.
  • Kit for tissue swelling material contains the following (1) GAG derivative A and (2) GAG derivative B or (3) compound C.
  • GAG derivative A in which a SPAAC type reactive group is introduced into a GAG molecule via an amide bond derived from a carboxy group of the GAG molecule and a divalent spacer group
  • GAG derivative B in which a reactive group complementary to the reactive group of GAG derivative A is introduced into the GAG molecule via an amide bond derived from a carboxy group of the GAG molecule and a divalent spacer group
  • Compound C defined by the following structure having at least two reactive groups complementary to the reactive group of GAG derivative A; [Where: Y is the same or different and is a reactive group complementary to the reactive group of GAG derivative A; Z is an n-valent spacer group, n is an integer of 2 or more].
  • kits of the present invention include a GAG derivative A solution and a GAG derivative B solution or a compound C solution, each of which is filled in separate containers, or a GAG derivative A powder, And a powder of GAG derivative B or a powder of compound C, and water for injection, each of which is filled in separate containers.
  • GAG derivative A and GAG derivative B or compound C are mixed as it is in powder form or separately as a liquid composition, or just before administration, and in powder form or liquid form It can be administered as a composition.
  • DIMAC-Amine Hydrochloride represented by was prepared according to the following procedure.
  • Step 1 Synthesis of Compound 4 Compound 3 was synthesized by the method described in Organic Letter, 2008, Vol. 10, No. 14, 3097-99.
  • Step 2 Synthesis of Compound 5 9.00 g (1.00 eq., 28.5 mmol) of Compound 4 was dissolved in anhydrous dichloromethane. In an oil bath at 45 ° C., 1.34 g (0.0550 eq., 1.57 mmol) of Grubbs second generation catalyst (Bis [4- [Bis (tert-butyl) phosphino] -N, N-dimethylbenzenamide] dichloropalladium) was added. The mixture was added and heated to reflux in an oil bath at 50 ° C. for 35 minutes. After confirming disappearance of the starting material by TLC, the reaction solution was concentrated under reduced pressure.
  • Grubbs second generation catalyst Bis [4- [Bis (tert-butyl) phosphino] -N, N-dimethylbenzenamide] dichloropalladium
  • Step 3 Synthesis of Compound 6
  • 10 g of molecular sieves 4A (powder) and anhydrous dichloromethane (500 mL) at room temperature under an argon gas atmosphere to obtain a suspension solution.
  • 13.6 g (1.50 eq., 36.0 mmol) of pyridinium dichromate (PDC) was added and stirred for 5 hours. Thereafter, the mixture was further stirred overnight at room temperature. After confirming disappearance of the starting material by TLC, the reaction solution was filtered, and the residue was washed with chloroform (600 mL).
  • Step 4 Synthesis of Compound 7 5.64 g (1.00 eq., 19.8 mmol) of Compound 6 was dissolved in ethanol (500 mL), 5% palladium / carbon 1.13 g was added, and the reaction system was replaced with hydrogen gas. Stir overnight. After confirming disappearance of the raw material by TLC, the reaction solution was filtered through Celite, and the residue was washed with methanol (700 mL). The filtrate was concentrated under reduced pressure and vacuum-dried to obtain 5.61 g (19.5 mmol) of Compound 7 as a pale yellow transparent viscous liquid.
  • Step 6 Synthesis of Compound 9 4N Hydrogen chloride / 1,4-dioxane (12 mL) was added to 2.99 g (1.00 eq., 7.95 mmol) of Compound 8 in an ice bath, and the mixture was stirred at room temperature for 1.5 hours. The reaction solution became a red-white suspension. After confirming the disappearance of the raw materials by TLC, hexane (80 mL) was added to the reaction solution, and the supernatant was removed four times. Further, diethyl ether (80 mL) was added, and the supernatant was removed three times. Repeatedly, the precipitate was washed.
  • Step 8 Synthesis of DIMAC-amine hydrochloride 11 2.20 g (1.00 eq., 3.96 mmol) of Compound 10 was dissolved in anhydrous toluene (44 mL), and 1.87 g (1.80 eq., 7.14 mmol) of triphenylphosphine was added at room temperature. After refluxing with heating at 130 ° C. for 20 hours, the reaction solution was concentrated under reduced pressure. The residue was diluted with ethyl acetate (60 mL) and extracted five times with water (30 mL). The aqueous layer was concentrated under reduced pressure and vacuum dried to obtain DIMAC-amine as a yellow viscous liquid.
  • the obtained amine compound was dissolved in diethyl ether (25 mL), the solution was vigorously stirred, and 4N hydrogen chloride / 1,4-dioxane (1 mL) was added to precipitate a precipitate. The supernatant was removed, washed with diethyl ether (40 mL) three times, and the precipitate was vacuum-dried to obtain 574 mg (2.19 mmol) of DIMAC-amine hydrochloride as a pale red white powder (yield) 55%).
  • Example 2 Introduction of DIMAC-amine hydrochloride into hyaluronic acid 300 mg of hyaluronic acid (HA: 1,100 kDa, carboxy group 1.00ea, derived from chicken crown, Seikagaku Corporation) and 30 mL of water for injection (WFI) and 19.7 mg (0.100 eq., 75.0 ⁇ mol) of DIMAC-amine hydrochloride 11 prepared in Example 1, Step 8 was added after dissolving in 30 mL of ethanol (EtOH).
  • EtOH ethanol
  • the supernatant was removed and washed twice with 90% ethanol / water for injection, twice with ethanol, and once with diethyl ether.
  • the obtained precipitate was dried under reduced pressure overnight to obtain 220 mg of target DIMAC-introduced hyaluronic acid.
  • the introduction rate was calculated by 1 H-NMR (in D 2 O), it was 10%.
  • the introduction rate was calculated from the integrated value of the peak derived from the raw material GAG skeleton and the integrated ratio of the peak derived from the compound.
  • Example 3 252 mg of DIMAC-introduced hyaluronic acid was obtained in the same manner as in Example 2 except that the molecular weight of the raw material hyaluronic acid was 800 kDa. The introduction rate was 12%.
  • Example 4 241 mg of DIMAC-introduced hyaluronic acid was obtained in the same manner as in Example 2 except that the molecular weight of the raw material hyaluronic acid was 600 kDa. The introduction rate was 7%.
  • Example 5 237 mg of DIMAC-introduced hyaluronic acid was obtained in the same manner as in Example 2 except that the molecular weight of the raw material hyaluronic acid was 170 kDa. The introduction rate was 10%.
  • Example 6 Introduction of DBCO-amine hydrochloride to hyaluronic acid
  • DBCO-C2-amine (Crick Chemistry Tools) represented by is introduced by forming an amide bond in hyaluronic acid according to the following procedure.
  • Hyaluronic acid 250 kDa, carboxy group 1.00 ea, derived from chicken crown, Seikagaku Corporation 500 mg was dissolved in water for injection (WFI) 50 mL and ethanol (EtOH) 50 mL, and DBCO-C2-amine 17.2 mg (.0.1 050 eq., 62.5 ⁇ mol) and 62.5 ⁇ L of 1N hydrochloric acid (0.050 eq., 62.5 ⁇ mol) were added. Further, 29.2 mg (0.085 eq., 106 ⁇ mol) of DMT-MM was added and stirred overnight.
  • Example 7 The added amount of DBCO-C2-amine was 34.4 mg (0.100 eq., 125 ⁇ mol), the added amount of 1N hydrochloric acid was 125 ⁇ L (0.100 eq., 125 ⁇ mol), and the added amount of DMT-MM was 58.4 mg (0. 169 eq., 211 ⁇ mol)
  • 521 mg of the target DBCO-introduced hyaluronic acid was obtained. The introduction rate was 10%.
  • Example 8 Introduction of azido-amine hydrochloride into hyaluronic acid 500 mg of HA (1,100 kDa, carboxy group 1.00 ea, derived from chicken crown, Seikagaku Corporation), 50 mL of water for injection (WFI), and ethanol ( EtOH) was dissolved in 50 mL, and 61.0 mg (0.400 eq., 498 ⁇ mol) of 2-azidoethanamine hydrochloride was added. Further, 234 mg (0.678 eq., 845 ⁇ mol) of 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride n hydrate (DMT-MM) was added.
  • HA 1,100 kDa, carboxy group 1.00 ea, derived from chicken crown, Seikagaku Corporation
  • WFI water for injection
  • EtOH ethanol
  • the mixture was stirred overnight. Thereafter, 7.5 mL of 5% aqueous sodium hydrogen carbonate solution was added and stirred for 4 hours, and then 215 ⁇ L of 50% aqueous acetic acid solution, 2.5 g of sodium chloride / 8.2 mL of water for injection were sequentially added, and ethanol was added to form a precipitate. . The supernatant was removed, and washing with 90% ethanol / water for injection was performed twice, and washing with ethanol was performed three times. The resulting precipitate was dried overnight under reduced pressure to obtain 547 mg of the desired azide-introduced hyaluronic acid. The introduction rate was calculated by analyzing a derivative in which the azide group was coumarin-labeled with SPAAC by GPC-HPLC. The introduction rate was 22%.
  • Example 9 531 mg of azide-introduced hyaluronic acid was obtained in the same manner as in Example 8, except that the amount of 2-azidoethanamine hydrochloride added was changed to 45.8 mg (0.300 eq., 374 ⁇ mol). The introduction rate was 21%.
  • Example 10 535 mg of azide-introduced hyaluronic acid was obtained in the same manner as in Example 8, except that the amount of 2-azidoethanamine hydrochloride added was 30.5 mg (0.200 eq., 249 ⁇ mol). The introduction rate was 16%.
  • Example 11 490 mg of azide-introduced hyaluronic acid was obtained in the same manner as in Example 8, except that the raw material hyaluronic acid was 170 kDa and the amount of 2-azidoethanamine hydrochloride added was 15.3 mg (0.100 eq., 125 ⁇ mol). . The introduction rate was 10%.
  • Example 12 The azide group was introduced in the same manner as in Example 11 except that the amine was changed to 12.7 mg (0.100 eq., 50.0 ⁇ mol) of 11-azido-3,6,9-trioxaundecan-1-amine hydrochloride. 231 mg of hyaluronic acid was obtained. The introduction rate was 4%.
  • Example 13 Except that the amine was O- (2-aminoethyl) -O ′-(2-azidoethyl) heptaethylene glycol hydrochloride 23.7 mg (0.100 eq., 50.0 ⁇ mol), the same procedure as in Example 11 was performed. As a result, 231 mg of azide group-introduced hyaluronic acid was obtained. The introduction rate was 4%.
  • Example 14 Introduction of DIMAC-amine hydrochloride into chondroitin sulfate 500 mg of chondroitin sulfate (CS: 36 kDa, carboxy group 1.00 ea, derived from shark cartilage, Seikagaku Corporation) 5 ml of water for injection (WFI), and Dissolved in 5 mL of ethanol (EtOH), 103 mg (0.400 eq., 391 ⁇ mol) of DIMAC-amine hydrochloride 11 prepared in Step 8 of Example 1 was added. Further, 184 mg (0.678 eq., 666 ⁇ mol) of DMT-MM was added and stirred overnight.
  • CS chondroitin sulfate
  • WFI water for injection
  • EtOH ethanol
  • Example 15 The same method as in Example 14 except that the addition amount of DIMAC-amine hydrochloride 11 was 77.1 mg (0.300 eq., 279 ⁇ mol) and the addition amount of DMT-MM was 138 mg (0.509 eq., 500 ⁇ mol). Thus, 487 mg of the target DIMAC-introduced chondroitin sulfate was obtained. The introduction rate was 33%.
  • Example 16 Example 14 except that the amount of DIMAC-amine hydrochloride 11 added was 51.4 mg (0.200 eq., 196 ⁇ mol) and the amount of DMT-MM added was 91.8 mg (0.339 eq., 331 ⁇ mol). Thus, 487 mg of the target DIMAC-introduced chondroitin sulfate was obtained. The introduction rate was 21%.
  • Example 17 Introduction of DBCO-C2-amine hydrochloride into chondroitin sulfate 3 g of chondroitin sulfate (36 kDa, carboxy group 1.00 ea, derived from shark cartilage, Seikagaku Corporation) in 30 mL of water for injection and 30 mL of ethanol After dissolution, 161 mg (0.100 eq., 583 ⁇ mol) of DBCO-C2-amine and 583 ⁇ L of 1N hydrochloric acid (0.100 eq., 583 ⁇ mol) were added. Further, 276 mg (0.169 eq., 996 ⁇ mol) of DMT-MM was added and stirred overnight.
  • Example 18 DBCO-C2-amine was added in an amount of 81.4 mg (0.100 eq., 295 ⁇ mol), 1N hydrochloric acid was added in an amount of 295 ⁇ L (0.0500 eq., 295 ⁇ mol), and DMT-MM was added in an amount of 137 mg (0.0848 eq., 496 ⁇ mol).
  • the target DBCO-introduced chondroitin sulfate (2.95 g) was obtained in the same manner as in Example 17, except for the above. The introduction rate was 6%.
  • Example 19 Introduction of azido-amine hydrochloride into chondroitin sulfate 3.00 g of chondroitin sulfate (36 kDa, carboxy group 1.00 ea, derived from shark cartilage, Seikagaku Corporation) in 30 mL of water for injection and 30 mL of ethanol After dissolution, 73.1 mg (0.100 eq., 596 ⁇ mol) of 2- (2-azidoethoxy) ethanamine hydrochloride was added. Further, 275 mg (0.169 eq., 994 ⁇ mol) of DMT-MM was added and stirred overnight. 3.00 g of sodium chloride was added and a precipitate was formed using ethanol.
  • the supernatant was removed, and washing with 90% ethanol / water for injection was performed twice, and washing with ethanol was performed three times.
  • the resulting precipitate was dried overnight under reduced pressure to obtain 2.66 g of the desired azide-introduced chondroitin sulfate.
  • the introduction rate was calculated by analyzing a derivative in which the azide group was coumarin-labeled with CuAAC by GPC-HPLC. The introduction rate was 11%.
  • Example 20 Example 2 except that the addition amount of 2- (2-azidoethoxy) ethanamine hydrochloride was 36.0 mg (0.0500 eq., 294 ⁇ mol) and the addition amount of DMT-MM was 139 mg (0.0848 eq., 501 ⁇ mol).
  • the introduction rate was 5%.
  • Example 21 Thickening property after mixing (CS + CS)
  • CS + CS Thickening property after mixing
  • Example 22 The introduction rate of azido introduced chondroitin sulfate is 5% (derived from Example 20), the introduction rate of DBCO introduced chondroitin sulfate is 6% (derived from Example 18), and the concentrations are 1.75 wt%, 2.20 wt%, 3.50 wt%. %, 4.40 wt%, and 7.00 wt%, the thickening properties after mixing were investigated in the same manner as in Example 21. The results are shown in FIG. As in Example 22, an improvement in the viscosity value increasing efficiency depending on the concentration was confirmed.
  • Example 23 Relationship between concentration after mixing and physical properties (CS + CS) According to the following experimental procedure, mixing of azide-introduced chondroitin sulfate (introduction rate 11%, derived from Example 19) solution A and DBCO-introduced chondroitin sulfate (introduction rate 11%, derived from Example 17) solution B (1: 1 (v / The physical properties of the gel solid obtained by v)) were measured. (1) A solution A and a solution B having the following concentrations were prepared in 20 mM phosphate buffered saline (Na 2 HPO 4 + NaH 2 PO 4 + NaCl) (pH 6.5), respectively.
  • Table 2 shows the results of measurement with rat muscle or rat fat as a control.
  • Example 24 Rat abdominal subcutaneous shape maintenance performance evaluation test (in vivo) HA, CS The shape maintenance performance in the rat abdomen subcutaneous was evaluated by the following method. (1) A male Wistar rat (6 weeks old) was injected subcutaneously into the abdomen at 400 ⁇ L / site under isoflurane anesthesia. (2) The height of the bulging portion was measured over time using a height gauge and used as an index of shape maintenance ability. ⁇ Shape maintenance performance test 1: Injection 4 weeks> The test substances are as follows. Each substance was mixed uniformly and then injected subcutaneously into the abdomen of the rat, and the change in the height of the bulge was observed.
  • Example 25 ⁇ Shape maintenance performance test 2: injection 24 weeks> In the same manner as in Example 25, the shape maintenance performance in the rat abdomen was evaluated.
  • the test substances are as follows. Each substance was injected after being uniformly mixed at 1: 1 (v / v).
  • Example 26 Results of biocompatibility evaluation in rat abdominal subcutaneous shape maintenance performance evaluation test (in vivo) In the rat abdominal subcutaneous shape maintenance performance evaluation described in shape maintenance performance test 2 of Example 25, 2 days after injection, After 4 weeks and 24 weeks, the skin at the injection site of 2.2 wt% HA (N 3 + DIMAC) was collected, immersed and fixed in 10% neutral buffered formalin solution, embedded in paraffin, and HE-stained specimens were prepared. Thereafter, histopathological examination was performed with an optical microscope. As a result, only 2 days after the injection, only a slight acute inflammatory reaction was observed as seen in the injection of physiological saline.

Abstract

 Provided is a crosslinked GAG, wherein the crosslinked GAG has the following crosslinking group bonded by an amide bond derived from a carboxyl group of the GAG molecule -CONH-R1-X-R2-NHCO-, or -CONH-R3-X-R4-X'-R5-NHCO- [where the symbols in the formula are defined as indicated in the description].

Description

組織膨隆材Tissue swelling material
 本発明は、架橋グリコサミノグリカン(GAG)、その原料組成物、及びその用途に関する。 The present invention relates to a cross-linked glycosaminoglycan (GAG), a raw material composition thereof, and a use thereof.
 アミノ糖とウロン酸から構成されるグリコサミノグリカンすなわちGAGは、生体適合性に優れるため、医用材料として広く用いられている。GAGを架橋させることによって得られるGAGハイドロゲルもまた、医用材料として広く用いられている。このうち、ヒアルロン酸を構成するD-グルクロン酸のカルボキシ基に架橋性基を結合させたヒアルロン酸を、クリック型反応による架橋に付すことが特表2010-502824号公報に記載されている。しかし、アジド基とアルキン基を反応させて1,2,3-トリアゾール環を形成させるクリック型反応は、銅触媒を要するため、その毒性により、生体系への利用は大きく制限されている。そこで、銅触媒を必要とせず、環構造が有する歪みにより、速やかかつ高選択的に反応するシクロアルキニレンなどの架橋性基を反応性基として用い、その歪みで架橋反応が速やかに進行するSPAAC(strain-promoted azide-alkyne cycloaddition)型反応によりヒアルロン酸などの多糖類のハイドロゲルを得ることが、WO2012/165462号に記載されている。しかし、WO2012/165462号のハイドロゲルは、ヒアルロン酸を構成するN-アセチル-グルコサミンのヒドロキシ基にアルキレン鎖を介して架橋性基を結合しているため、生体内でのゲル形成後の残存期間が1週間程度と短く、その用途が限られていた。 Glycosaminoglycan composed of amino sugar and uronic acid, that is, GAG is widely used as a medical material because of its excellent biocompatibility. GAG hydrogels obtained by crosslinking GAG are also widely used as medical materials. Among them, Japanese Patent Application Publication No. 2010-502824 discloses that hyaluronic acid in which a crosslinkable group is bonded to a carboxy group of D-glucuronic acid constituting hyaluronic acid is subjected to crosslinking by a click-type reaction. However, the click-type reaction in which an azide group and an alkyne group are reacted to form a 1,2,3-triazole ring requires a copper catalyst, and its use in biological systems is greatly limited due to its toxicity. Therefore, a SPAAC that does not require a copper catalyst and uses a crosslinkable group such as cycloalkynylene that reacts quickly and highly selectively as a reactive group due to the strain of the ring structure, and the crosslink reaction proceeds rapidly due to the strain. It is described in WO2012 / 165462 that a hydrogel of a polysaccharide such as hyaluronic acid is obtained by a (strain-promoted azide-alkyne cycloaddition) type reaction. However, since the hydrogel of WO2012 / 165462 has a crosslinkable group bonded to the hydroxy group of N-acetyl-glucosamine constituting hyaluronic acid via an alkylene chain, the remaining period after gel formation in vivo Was as short as one week, and its use was limited.
 一方、膀胱尿管逆流症(VUR)とは腎臓から尿管、そして膀胱へと流れていく尿が、排尿時に膀胱から尿管、腎臓へと逆もどりする状態をいい、尿管と膀胱のつなぎ目の「バルブ」機能が先天的に不十分なために生じると考えられている。その治療法としては、抗菌薬の投与;膀胱外再建法などの開腹手術のほか;膀胱と尿管の接続部分に、担体ゲルであるヒアルロン酸ナトリウムにデキストラノマービーズを混合させた高粘性ゲルを注入し、その滞留部位の周囲を結合組織にとり囲ませることによって長期の膨隆効果を生じさせる内視鏡治療が行われている(デフラックス添付文書)。 On the other hand, vesicoureteral reflux (VUR) is a condition in which urine flowing from the kidney to the ureter and then to the bladder returns from the bladder to the ureter and the kidney when urinating, and the joint between the ureter and the bladder It is thought to arise because the “valve” function is inherently insufficient. The treatment includes antibacterial drugs; laparotomy such as extravesical reconstruction; a high-viscosity gel in which dextranomer beads are mixed with sodium hyaluronate, a carrier gel, at the connection between the bladder and ureter Endoscopic treatment that produces a long-term bulging effect is performed by injecting and surrounding the staying site with connective tissue (Deflux package insert).
 また、腹圧性尿失禁(SUI)とは、尿道抵抗の低下により、腹圧時の膀胱内圧上昇が尿道抵抗を上回り、膀胱収縮を伴わずに尿が漏れる状態をいい、腹圧がかかる時、例えば咳・くしゃみをする、重いものを持つ、走る・階段を上る時などに、尿意を伴わずに尿が漏れることが特徴的な症状である。一般診療における診断では、症状の評価及び身体的検査が重要であるが、必ずしも自覚症状と病態が一致しないこともあり、専門診療において種々の他覚的検査が必要である。しかし、重症度評価、治療法選択、治療効果判定においてQOLの評価の重要性が世界的に指摘されつつある一方で、世界共通の重症度分類はいまだ確立されていない状況にもある(EBMに基づく尿失禁診療ガイドライン)。この腹圧性尿失禁(SUI)の治療は、下部尿路リハビリテーション、薬物治療、膣内装具などの保存的治療と、外科的治療とに分けられる。一般には、軽症から中等症においては下部尿路リハビリテーション、中等症から重症においては外科的治療が適応される。薬物治療は、その有効性評価がいまだ不十分であることなどの理由から補助的な治療と位置づけられる。軽症から中等症における下部尿路リハビリテーションの代表的なものは骨盤底筋訓練法であり、腹圧性尿失禁においては、軽症例では30%~40%程度の消失が報告されている。しかし、指導にはある程度のノウハウが必要なこと、専門的に指導できるコメディカルスタッフが少ないことなどの理由から普及に至っていない。 Stress urinary incontinence (SUI) refers to a state in which the increase in bladder pressure during abdominal pressure exceeds the urethral resistance due to a decrease in urethral resistance, and urine leaks without bladder contraction. For example, a characteristic symptom is that urine leaks without intention of urine when coughing, sneezing, having a heavy object, running, or climbing stairs. In diagnosis in general practice, symptom evaluation and physical examination are important, but subjective symptoms and pathological conditions may not always match, and various objective tests are required in specialized practice. However, while the importance of QOL evaluation is being pointed out worldwide in severity assessment, treatment selection, and treatment effect assessment, there is also a situation in which a global severity classification has not yet been established (in EBM) Based on urinary incontinence clinical practice guidelines). The treatment of stress urinary incontinence (SUI) can be divided into conservative treatment such as lower urinary tract rehabilitation, drug treatment, vaginal interior fitting, and surgical treatment. Generally, lower urinary tract rehabilitation is indicated for mild to moderate disease, and surgical treatment is indicated for moderate to severe disease. Drug therapy is positioned as an adjunct therapy because its effectiveness is still insufficient. A typical example of lower urinary tract rehabilitation from mild to moderate is pelvic floor muscle training, and in cases of stress urinary incontinence, disappearance of about 30% to 40% has been reported in mild cases. However, it has not been popularized because it requires a certain amount of know-how for guidance and there are few comedic staff who can provide specialized guidance.
 腹圧性尿失禁の外科的治療は、大きく恥骨後式手術などの膀胱頚部挙上術、膀胱頚部スリング手術、尿道周囲コラーゲン注入療法に分けられる。外科的治療に関しては、種々の術式の治療成績の比較は、尿失禁改善に関する定義のばらつきが大きく、長期成績を検討した論文が少ない、手術方法が一定でなく術者による変更が多い、無作為比較研究が極めて少ないなどの理由で容易ではない。1997年米国泌尿器科学会作成の女性腹圧性尿失禁の外科的治療に関するガイドラインにおいて行われたメタアナリシスによる長期成績の検討、及び無作為比較試験から、4年以上の長期成績では、恥骨後式膀胱頚部挙上術84%、経膣式膀胱頚部挙上術67%、前膣壁形成術61%、スリング手術83%と示されており、恥骨後式膀胱頚部挙上術とスリング手術が、他の術式に比べ有効であるとされている(Female Stress Urinary Incontinence Clinical Guidelines Panel Summary Report on Surgical Management of Female Stress Urinary Incontinence, The Journal of Urology, Volume 158, Issue 3, September 1997, Pages 875-880)。しかしながら、尿道周囲コラーゲン注入療法よりも低侵襲で簡便な外科的治療法は見出されていない。 Surgical treatment of stress urinary incontinence can be broadly divided into bladder neck lifting such as retropubic surgery, bladder neck sling surgery, and periurethral collagen injection therapy. As for surgical treatment, comparison of treatment results of various surgical procedures has a large variation in the definition of urinary incontinence improvement, few papers have examined long-term results, surgical procedures are not constant, and there are many changes by the surgeon, no It is not easy because there are very few randomized comparative studies. From a study of long-term results by meta-analysis conducted in the guidelines on surgical treatment of female stress urinary incontinence prepared by the American Urological Association in 1997, and from a randomized comparative study, the long-term results of 4 years or more show a retropubic bladder Neck elevation 84%, transvaginal bladder neck elevation 67%, anterior vaginal wall plasticization 61%, sling surgery 83%, retropubic bladder neck elevation and sling surgery, etc. (Female Stress Urinary Incontinence Clinical Guidelines Panel Summary Report on Surgical Management of Female Stress Urinary Incontinence, The Journal of Urology, Volume 158, Issuee 3,880, . However, no surgical treatment that is less invasive and simpler than periurethral collagen injection has been found.
 この尿道周囲コラーゲン注入療法は、膀胱頸部・近位尿道粘膜下にコラーゲンを注入し、膀胱頸部・近位尿道の密着を図るもので、経尿道的内視鏡下あるいは傍外尿道口からの針穿刺による注入が行われている。外科的治療の中で最も低侵襲で簡便な方法であるが、再発率が高く、安定した効果を得るためには2回以上の注入を要することが多いとされている(EBMに基づく尿失禁診療ガイドライン)。実際に、コラーゲンを材料とする尿道周囲注入療法に用いる製品(Coaptite(登録商標)Injectable Implantなど)が存在したが、長期的な治療効果の観点などから市場から撤退しているのが現状である。さらに、この長期的な治療効果をより得るために種々の材料を用いた製品が開発上市されてきた。例えば、カルシウムハイドロキシアパタイトを材料とする製品が見出されたが、コラーゲンの場合と同様の効果であって時間の経過とともに消えていく傾向にあった。カーボンビーズを材料とする製品は、コラーゲンよりも早期の吸収は無かったが、注入に用いる針のゲージがより太いことから、コラーゲンよりも注入が難しい懸念がある。またこの使い勝手の悪さに加え、カーボンビーズ粒子を残してサスペンジョンゲルが最初に注入される傾向にあることが知られている。シリコーンは、美容整形分野の組織膨隆材としては歴史が深いが、腹圧性尿失禁に用いる治療材としては米国では比較的新しく承認されたもので、長期的な効果を示すに至っていない。ポリテトラフルオロエチレン(PTFE)は、肉芽種を形成するプラスチック素材であって組織移行性のリスクから米国未承認であり、エチレンビニルアルコールは、尿道の浸食を含む重篤な合併症が確認されていることから、もはや推奨されていない(Injectable Bulking Agents for Incontinence, Author: Raymond Rackley, Chief Editor: Edward David Kim, May 2, 2011)。
 以上の通り、泌尿器科の臨床用途において例示したが、組織膨隆材として、使い勝手に優れた物質の性状を有し、低侵襲な方法の一つとして注入が可能で、さらに安全性が高く、かつ長期の耐久性、形状維持性を有する物質は、いまだ創りだされていない。
In this periurethral collagen injection therapy, collagen is injected into the bladder neck and proximal urethral mucosa to ensure close contact between the bladder neck and proximal urethra. Injection by needle puncture is performed. Although it is the least invasive and simple method among surgical treatments, the recurrence rate is high, and it is said that more than two injections are often required to obtain a stable effect (urinary incontinence based on EBM) Clinical guidelines). In fact, there were products (such as Coaptite (registered trademark) Injectable Implant) used for periurethral injection therapy using collagen as a material, but the current situation is withdrawing from the market from the viewpoint of long-term therapeutic effects. . Furthermore, in order to obtain this long-term therapeutic effect, products using various materials have been developed and marketed. For example, a product using calcium hydroxyapatite as a material was found, but it had the same effect as that of collagen and tended to disappear with time. Products made of carbon beads did not absorb earlier than collagen, but there is a concern that injection is more difficult than collagen because the needle gauge used for injection is thicker. In addition to this inconvenience, it is known that the suspension gel tends to be injected first, leaving the carbon bead particles. Silicone has a long history as a tissue swelling material in the cosmetic surgery field, but it has been relatively newly approved in the United States as a treatment material for stress urinary incontinence, and has not shown long-term effects. Polytetrafluoroethylene (PTFE) is a plastic material that forms granulation seeds and has not been approved in the United States due to the risk of tissue migration. Ethylene vinyl alcohol has been confirmed to have serious complications including urethral erosion. It is no longer recommended (Injectable Bulking Agents for Incontinence, Author: Raymond Rackley, Chief Editor: Edward David Kim, May 2, 2011).
As described above, exemplified in the clinical use of urology, but as a tissue swelling material, it has the properties of a material that is easy to use, can be injected as one of the minimally invasive methods, and is highly safe, and A substance having long-term durability and shape maintenance has not yet been created.
特表2010-502824号公報Special table 2010-502824 WO2012/165462号WO2012 / 165462
 本発明は、生体における安全性が高く、かつ長期に体内に残留し、膀胱尿管逆流症などの長期残留組織膨隆材による治療を必要とする疾患に有用な長期残留組織膨隆材を提供することを課題とする。 The present invention provides a long-term residual tissue swelling material that is highly safe in the living body and remains in the body for a long time, and is useful for diseases requiring treatment with a long-term residual tissue swelling material such as vesicoureteral reflux disease. Is an issue.
 本発明者は、上記課題を解決すべく鋭意研究を行った結果、ヒアルロン酸に代表されるGAGのカルボキシ基にアミド結合を介してSPAAC型反応性基を導入したGAG誘導体をSPAAC反応に付すことによって得られるGAG架橋体が、生体内で優れた安全性を有するとともに、生体内に長期にわたって安定に残留することを見出し、さらに膀胱尿管逆流症などの長期残留組織膨隆材による治療を必要とする疾患の治療用材料として有用であることを見いだし、本発明を完成するに至った。 As a result of diligent research to solve the above problems, the present inventor has attached a SPAG reaction to a GAG derivative in which a SPAAC type reactive group is introduced into the carboxy group of GAG represented by hyaluronic acid via an amide bond. It is found that the cross-linked GAG obtained by the above method has excellent safety in the living body and remains stable in the living body for a long period of time, and further requires treatment with a long-term residual tissue swelling material such as vesicoureteral reflux disease. As a result, the present invention has been found to be useful as a material for treating diseases.
 本発明は、第一のGAG分子と第二のGAG分子とが、下記架橋基:
-CONH-R-X-R-NHCO-、又は
-CONH-R-X-R-X’-R-NHCO-
[式中、
 両端の-CONH及びNHCO-はGAG分子のカルボキシ基に由来するアミド結合を意味し、
 R~Rは、同一又は異なって、アルキレン基、アルケニレン基、又はアルキニレン基を表し、当該基中の-CH2-は、>C=O、-CONH-、アリーレン、-O-、又は-S-で置き換えられていてもよく;
 X及びX’は、同一又は異なって、式:
Figure JPOXMLDOC01-appb-C000009

で示される構造を表し、A、B結合の向きはどちらでも良く;
 ここで、A及びBは、X又はX’が結合するR~Rのいずれかとの結合部位を示し;
 Y~Yは、同一又は異なって、-CR6’-、-C(-R)=、-NR-、=N-、-O-、又は-S-を表し、-NR-、=N-、-O-、及び-S-が隣接することはなく;
 R及びR6’は、同一又は異なって、水素原子、ハロゲン原子、ヒドロキシ基、アルキルでモノ若しくはジ置換されていてもよいアミノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基若しくはカルボキシ基を表すか、又は一緒になってオキソ基を形成し、当該アルキル基、アルケニル基、アルキニル基、又はアルコキシ基中の-CH2-は、>C=O、-CONH-、アリーレン、-O-又は-S-で置き換えられていてもよく;
 Rは、アルキル基、アルケニル基又はアルキニル基を表し、当該アルキル基、アルケニル基又はアルキニル基中の-CH2-は、>C=O、-CONH-、アリーレン、-O-又は-S-で置き換えられていてもよく;又は、
 Y~Yのうち隣接する2つの基においては、一方の基のR及び他方の基のRは、それぞれが結合している環原子と一緒になって飽和又は不飽和の3~6員環を形成することができ、上記結合Bは、当該3~6員環に結合することもできる]
を介して結合したGAG架橋体(第一のGAG分子と第二のGAG分子は同一分子でもよい)に関する。
In the present invention, the first GAG molecule and the second GAG molecule are represented by the following crosslinking group:
—CONH—R 1 —XR 2 —NHCO—, or —CONH—R 3 —XR 4 —X′—R 5 —NHCO—
[Where:
-CONH and NHCO- at both ends mean an amide bond derived from the carboxy group of the GAG molecule,
R 1 to R 5 are the same or different and each represents an alkylene group, an alkenylene group, or an alkynylene group, and —CH 2 — in the group represents> C═O, —CONH—, arylene, —O—, or May be replaced by -S-;
X and X ′ are the same or different and have the formula:
Figure JPOXMLDOC01-appb-C000009

The direction of A and B bonds may be either
Here, A and B each represent a binding site with any of R 1 to R 5 to which X or X ′ is bound;
Y 1 ~ Y 6 are the same or different, -CR 6 R 6 '-, - C (-R 6) =, - NR 7 -, = N -, - O-, or -S- represents, - NR 7 -, = N -, - O-, and -S- are never adjacent;
R 6 and R 6 ′ are the same or different and are a hydrogen atom, a halogen atom, a hydroxy group, an amino group, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group or a carboxy group, which may be mono- or di-substituted with alkyl. Or together formed an oxo group, and —CH 2 — in the alkyl group, alkenyl group, alkynyl group or alkoxy group represents> C═O, —CONH—, arylene, —O—. Or may be replaced by -S-;
R 7 represents an alkyl group, an alkenyl group or an alkynyl group, and —CH 2 — in the alkyl group, alkenyl group or alkynyl group represents> C═O, —CONH—, arylene, —O— or —S—. May be replaced by; or
In two neighboring groups of Y 1 - Y 6, R 6 in R 6 and the other group of one group is a saturated or 3-unsaturated together with the ring atoms to which each is attached A 6-membered ring can be formed, and the bond B can be bonded to the 3- to 6-membered ring]
The first GAG molecule and the second GAG molecule may be the same molecule bound via a GAG.
 本発明は更に、下記(1)GAG誘導体A、及び(2)GAG誘導体B又は(3)化合物Cを含む組成物:
 (1)GAG分子に、GAG分子のカルボキシ基に由来するアミド結合及び2価のスペーサー基を介してSPAAC型反応性基を導入したGAG誘導体A;
 (2)GAG分子に、GAG誘導体Aの反応性基と相補的な反応性基が、GAG分子のカルボキシ基に由来するアミド結合及び2価のスペーサー基を介して導入されたGAG誘導体B;
 (3)GAG誘導体Aの反応性基と相補的な反応性基を少なくとも2つ有する下記構造から定義される化合物C;
Figure JPOXMLDOC01-appb-C000010

[式中、
 Yは、同一又は異なって、GAG誘導体Aの反応性基と相補的な反応性基であり;
 Zは、n価のスペーサー基であり、
 nは、2又はそれ以上の整数である]
に関する。
The present invention further includes a composition comprising the following (1) GAG derivative A and (2) GAG derivative B or (3) compound C:
(1) GAG derivative A in which a SPAAC type reactive group is introduced into a GAG molecule via an amide bond derived from a carboxy group of the GAG molecule and a divalent spacer group;
(2) GAG derivative B in which a reactive group complementary to the reactive group of GAG derivative A is introduced into the GAG molecule via an amide bond derived from a carboxy group of the GAG molecule and a divalent spacer group;
(3) Compound C defined by the following structure having at least two reactive groups complementary to the reactive group of GAG derivative A;
Figure JPOXMLDOC01-appb-C000010

[Where:
Y is the same or different and is a reactive group complementary to the reactive group of GAG derivative A;
Z is an n-valent spacer group,
n is an integer of 2 or more]
About.
 本発明は更にまた、上記組成物を含む組織膨隆材;上記GAG誘導体A、及び上記GAG誘導体B又は上記化合物Cを含む組織膨隆材用キットにも関する。
 本発明は更にまた、上記GAG誘導体A又は上記GAG誘導体Bである、下記:
Figure JPOXMLDOC01-appb-C000011

からなる群より選択されるシクロオクチン誘導体アミンのアミノ基とGAG分子のカルボキシ基とがアミド結合したGAG誘導体;ならびに上記GAG誘導体を得るための中間体化合物である、
 下記:
Figure JPOXMLDOC01-appb-C000012

からなる群より選択されるシクロオクチン誘導体アミンにも関する。
The present invention also relates to a tissue swelling material kit comprising the tissue swelling material comprising the composition; the GAG derivative A and the GAG derivative B or the compound C.
The present invention is also the GAG derivative A or the GAG derivative B,
Figure JPOXMLDOC01-appb-C000011

A GAG derivative in which an amino group of an amine selected from the group consisting of an amino group of an amine and a carboxy group of a GAG molecule is amide-bonded; and an intermediate compound for obtaining the GAG derivative.
following:
Figure JPOXMLDOC01-appb-C000012

And a cyclooctyne derivative amine selected from the group consisting of:
 本発明の組成物をSPAAC型反応に付すことによって得られる本発明のGAG架橋体は、膀胱尿管逆流症などの長期残留組織膨隆材による治療を必要とする疾患の治療用材料として有用である。 The GAG cross-linked product of the present invention obtained by subjecting the composition of the present invention to a SPAAC type reaction is useful as a material for treating a disease requiring treatment with a long-term residual tissue swelling material such as vesicoureteral reflux. .
実施例21による、混合後の粘度値の経時変化を示す図である。FIG. 6 is a graph showing a change with time in viscosity value after mixing according to Example 21. 実施例22による、混合後の粘度値の経時変化を示す図である。It is a figure which shows the time-dependent change of the viscosity value after mixing by Example 22. 実施例23による、ゲル固体の歪みと応力の関係を示す図である。It is a figure which shows the relationship between the distortion | strain of gel solid, and stress by Example 23. 実施例24の、形状維持性能試験の結果を示す図である。It is a figure which shows the result of the shape maintenance performance test of Example 24. 実施例25の、形状維持性能試験の結果を示す図である。It is a figure which shows the result of the shape maintenance performance test of Example 25. 2.2%HA(N+DIMAC)注入4週後の組織像を示す図である。 2.2% HA (N 3 + DIMAC ) is a diagram showing the histology after injection 4 weeks. 2.2%HA(N+DIMAC)注入24週後の組織像を示す図である。 2.2% HA (N 3 + DIMAC ) is a diagram showing the histology after injection 24 weeks.
 本明細書において、アルキル基とは、1~14個の炭素原子、好ましくは1~8個の炭素原子を有する1価の直鎖又は分岐の飽和脂肪族炭化水素基をいい、アルキレン基とは、1~14個の炭素原子、好ましくは1~8個の炭素原子を有する2価の直鎖又は分岐の飽和脂肪族炭化水素基をいう。 In the present specification, an alkyl group means a monovalent linear or branched saturated aliphatic hydrocarbon group having 1 to 14 carbon atoms, preferably 1 to 8 carbon atoms. A divalent linear or branched saturated aliphatic hydrocarbon group having 1 to 14 carbon atoms, preferably 1 to 8 carbon atoms.
 アルケニル基とは、少なくとも1個の二重結合を有する、2~14個の炭素原子、好ましくは2~8個の炭素原子を有する1価の直鎖又は分岐の不飽和脂肪族炭化水素基をいい、アルケニレン基とは、少なくとも1個の二重結合を有する、2~14個の炭素原子、好ましくは2~8個の炭素原子を有する2価の直鎖又は分岐の不飽和脂肪族炭化水素基をいう。 An alkenyl group is a monovalent linear or branched unsaturated aliphatic hydrocarbon group having 2 to 14 carbon atoms, preferably 2 to 8 carbon atoms, having at least one double bond. The alkenylene group means a divalent linear or branched unsaturated aliphatic hydrocarbon having 2 to 14 carbon atoms, preferably 2 to 8 carbon atoms, having at least one double bond. Refers to the group.
 アルキニル基とは、少なくとも1個の三重結合を有する、2~14個の炭素原子、好ましくは2~8個の炭素原子を有する1価の直鎖又は分岐の不飽和脂肪族炭化水素基をいい、アルキニレン基とは、少なくとも1個の三重結合を有する、2~14個の炭素原子、好ましくは2~8個の炭素原子を有する2価の直鎖又は分岐の不飽和脂肪族炭化水素基をいう。 The alkynyl group refers to a monovalent linear or branched unsaturated aliphatic hydrocarbon group having 2 to 14 carbon atoms, preferably 2 to 8 carbon atoms, having at least one triple bond. The alkynylene group is a divalent linear or branched unsaturated aliphatic hydrocarbon group having 2 to 14 carbon atoms, preferably 2 to 8 carbon atoms, having at least one triple bond. Say.
 アルコキシ基とは、上述のアルキル基が結合した酸素原子が形成する1価の基をいう。 An alkoxy group refers to a monovalent group formed by an oxygen atom to which the above alkyl group is bonded.
 アリーレン基とは、環構成原子として6~20個の炭素原子を有する、2価の単環式又は多環式の芳香族炭化水素基をいう。具体的には、フェニレン(1,2-、1,3-若しくは1,4-フェニレン)、ナフチレンなどを挙げることができる。 An arylene group refers to a divalent monocyclic or polycyclic aromatic hydrocarbon group having 6 to 20 carbon atoms as ring-constituting atoms. Specific examples include phenylene (1,2-, 1,3- or 1,4-phenylene), naphthylene, and the like.
 本明細書において「相補的な反応性基」とは、ある反応性の官能基と反応し、共有結合等の化学結合を形成しうる官能基をいい、本発明では特に、アジド基とアルキンの三重結合の組み合せにおける、いずれか一方の官能基を指す。 As used herein, the term “complementary reactive group” refers to a functional group that can react with a reactive functional group to form a chemical bond such as a covalent bond. It refers to any one functional group in a triple bond combination.
 本明細書において、組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。 In the present specification, the amount of each component in the composition is the total amount of the plurality of substances present in the composition unless there is a specific indication when there are a plurality of substances corresponding to each component in the composition. means.
 以下、本発明について詳述する。 Hereinafter, the present invention will be described in detail.
GAG架橋体
 上述したように本発明は、第一のGAG分子と第二のGAG分子とが、下記架橋基:
 -CONH-R-X-R-NHCO-、又は
 -CONH-R-X-R-X’-R-NHCO-
を介して結合したGAG架橋体であり、式中の各記号も上述のとおりであり、第一のGAG分子と第二のGAG分子は同一分子でもよい。
GAG cross-linked body As described above, in the present invention, the first GAG molecule and the second GAG molecule have the following cross-linking group:
—CONH—R 1 —XR 2 —NHCO—, or —CONH—R 3 —XR 4 —X′—R 5 —NHCO—
The GAG cross-linked product is linked via the formula, and each symbol in the formula is also as described above, and the first GAG molecule and the second GAG molecule may be the same molecule.
GAG
 本発明においては、GAG、すなわちグリコサミノグリカンは、アミノ糖(グルコサミン、ガラクトサミン)及びウロン酸又はガラクトースからなる二糖の繰り返し構造単位を有する、そのヒドロキシ基が硫酸化されていてもよい、分子量5~2,000kDaの酸性多糖である。このようなGAGの例としては、ヒアルロン酸、コンドロイチン、コンドロイチン硫酸、ヘパリン、ヘパラン硫酸、デルマタン硫酸及びケラタン硫酸が挙げられる。本発明においては、これらの中でもヒアルロン酸、コンドロイチン硫酸、及びコンドロイチンからなる群から選択される少なくとも一種が好ましく;ヒアルロン酸及びコンドロイチン硫酸からなる群から選択される少なくとも一種が更に好ましく;ヒアルロン酸が特に好ましい。また、これらのGAGは、薬剤学的に許容しうるその塩であってもよい。このような塩の例としては、ナトリウム塩、カリウム塩、マグネシウム塩及びカルシウム塩が挙げられるが、これらの中でナトリウム塩が好ましい。
GAG
In the present invention, GAG, that is, glycosaminoglycan has a repeating structural unit of an amino sugar (glucosamine, galactosamine) and a disaccharide consisting of uronic acid or galactose, and its hydroxy group may be sulfated. It is an acidic polysaccharide of 5 to 2,000 kDa. Examples of such GAGs include hyaluronic acid, chondroitin, chondroitin sulfate, heparin, heparan sulfate, dermatan sulfate and keratan sulfate. In the present invention, among these, at least one selected from the group consisting of hyaluronic acid, chondroitin sulfate, and chondroitin is preferable; at least one selected from the group consisting of hyaluronic acid and chondroitin sulfate is more preferable; hyaluronic acid is particularly preferable preferable. These GAGs may be pharmaceutically acceptable salts thereof. Examples of such salts include sodium salts, potassium salts, magnesium salts and calcium salts, among which sodium salts are preferred.
 GAGの由来は特に限定されず、動物若しくは微生物由来であっても、又は化学合成したものであってもよい。例えば、ヒアルロン酸ナトリウムを使用する場合、鶏冠由来のものを例示することができ、コンドロイチン硫酸を使用する場合、サメ軟骨由来のものを例示することができる。GAGの分子量は特に限定されないが、その重量平均分子量は、好ましくは5~2,000kDa、更に好ましくは10~500kDaである。GAGとしてヒアルロン酸又は薬剤学的に許容しうるその塩を使用する場合、その重量平均分子量は、好ましくは5~2,000kDa、更に好ましくは10~500kDaである。GAGとしてコンドロイチン硫酸又は薬剤学的に許容しうるその塩を使用する場合、その重量平均分子量は、5~200kDa、更に好ましくは10~100kDaである。 The origin of GAG is not particularly limited, and may be derived from animals or microorganisms, or may be chemically synthesized. For example, when sodium hyaluronate is used, one derived from chicken crown can be exemplified, and when chondroitin sulfate is used, one derived from shark cartilage can be exemplified. The molecular weight of GAG is not particularly limited, but the weight average molecular weight is preferably 5 to 2,000 kDa, more preferably 10 to 500 kDa. When hyaluronic acid or a pharmaceutically acceptable salt thereof is used as GAG, its weight average molecular weight is preferably 5 to 2,000 kDa, more preferably 10 to 500 kDa. When chondroitin sulfate or a pharmaceutically acceptable salt thereof is used as GAG, its weight average molecular weight is 5 to 200 kDa, more preferably 10 to 100 kDa.
 本発明のGAG分子の一態様としては、式:
Figure JPOXMLDOC01-appb-C000013

[式中、
 R及びRは、水素原子又はヒドロキシ基を表し;ただし、Rがヒドロキシ基の場合、Rは水素原子であり、Rが水素原子の場合、Rはヒドロキシ基であり;
 R10は、ONa又はOHである]、
で示される構造単位の繰り返し構造を基本骨格として有し、R8がヒドロキシ基である場合には、当該構造単位中のヒドロキシ基の少なくとも1つは、-OSONa又は-OSOHであるGAGを好ましく挙げることができる。
One embodiment of the GAG molecule of the present invention has the formula:
Figure JPOXMLDOC01-appb-C000013

[Where:
R 8 and R 9 represent a hydrogen atom or a hydroxy group; provided that when R 8 is a hydroxy group, R 9 is a hydrogen atom, and when R 8 is a hydrogen atom, R 9 is a hydroxy group;
R 10 is ONa or OH],
In the case where R 8 is a hydroxy group, at least one of the hydroxy groups in the structural unit is —OSO 3 Na or —OSO 3 H. GAG can be preferably mentioned.
架橋
 本発明のGAG架橋体は、第一のGAG分子と第二のGAG分子とが、下記架橋基:
 -CONH-R-X-R-NHCO-、又は
 -CONH-R-X-R-X’-R-NHCO-
を介して結合しており、第一のGAG分子と第二のGAG分子は同一分子でもよい。
Cross-linking The GAG cross-linked product of the present invention comprises a first GAG molecule and a second GAG molecule having the following cross-linking group:
—CONH—R 1 —XR 2 —NHCO—, or —CONH—R 3 —XR 4 —X′—R 5 —NHCO—
The first GAG molecule and the second GAG molecule may be the same molecule.
 ここで、R~Rは、同一又は異なって、アルキレン基、アルケニレン基、又はアルキニレン基を表し、当該基中の-CH2-は、>C=O、-CONH-、アリーレン、-O-、又は-S-で置き換えられていてもよい。好ましいアルキレン基、アルケニレン基、又はアルキニレン基は、それぞれ1~14個、より好ましくは1~8個の炭素原子から構成される、上記で定義された2価の直鎖又は分岐の脂肪族炭化水素基である。 Here, R 1 to R 5 are the same or different and each represents an alkylene group, an alkenylene group, or an alkynylene group, and —CH 2 — in the group represents> C═O, —CONH—, arylene, —O -Or -S- may be substituted. Preferred alkylene, alkenylene or alkynylene groups are each a divalent linear or branched aliphatic hydrocarbon as defined above, each consisting of 1 to 14, more preferably 1 to 8 carbon atoms. It is a group.
 また、X及びX’は、同一又は異なって、式:
Figure JPOXMLDOC01-appb-C000014

で示される構造を表し、A、B結合の向きはどちらでも良く;
 ここで、A及びBは、X又はX’が結合するR~Rのいずれかとの結合部位を示し;
 Y~Yは、同一又は異なって、-CR6’-、-C(-R)=、-NR-、=N-、-O-、又は-S-を表し、-NR-、=N-、-O-、及び-S-が隣接することはなく;
 R及びR6’は、同一又は異なって、水素原子、ハロゲン原子、ヒドロキシ基、アルキルでモノ若しくはジ置換されていてもよいアミノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基若しくはカルボキシ基を表すか、又は一緒になってオキソ基を形成し、当該アルキル基、アルケニル基、アルキニル基、又はアルコキシ基中の-CH2-は、>C=O、-CONH-、アリーレン、-O-又は-S-で置き換えられていてもよく;
 Rは、アルキル基、アルケニル基又はアルキニル基を表し、当該アルキル基、アルケニル基又はアルキニル基中の-CH2-は、>C=O、-CONH-、アリーレン、-O-又は-S-で置き換えられていてもよく;又は、
 Y~Yのうち隣接する2つの基においては、一方の基のR及び他方の基のRは、それぞれが結合している環原子と一緒になって飽和又は不飽和の3~6員環を形成することができ、上記結合Bは、当該3~6員環に結合することもできる。かかる3~6員環としては、員数3~6のシクロアルキル環、フェニル環、又は5~6員のヘテロアリール環などを挙げることができる。
X and X ′ may be the same or different and have the formula:
Figure JPOXMLDOC01-appb-C000014

The direction of A and B bonds may be either
Here, A and B each represent a binding site with any of R 1 to R 5 to which X or X ′ is bound;
Y 1 ~ Y 6 are the same or different, -CR 6 R 6 '-, - C (-R 6) =, - NR 7 -, = N -, - O-, or -S- represents, - NR 7 -, = N -, - O-, and -S- are never adjacent;
R 6 and R 6 ′ are the same or different and are a hydrogen atom, a halogen atom, a hydroxy group, an amino group, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group or a carboxy group, which may be mono- or di-substituted with alkyl. Or together formed an oxo group, and —CH 2 — in the alkyl group, alkenyl group, alkynyl group or alkoxy group represents> C═O, —CONH—, arylene, —O—. Or may be replaced by -S-;
R 7 represents an alkyl group, an alkenyl group or an alkynyl group, and —CH 2 — in the alkyl group, alkenyl group or alkynyl group represents> C═O, —CONH—, arylene, —O— or —S—. May be replaced by; or
In two neighboring groups of Y 1 - Y 6, R 6 in R 6 and the other group of one group is a saturated or 3-unsaturated together with the ring atoms to which each is attached A 6-membered ring can be formed, and the bond B can be bonded to the 3- to 6-membered ring. Examples of the 3- to 6-membered ring include a cycloalkyl ring having 3 to 6 members, a phenyl ring, or a 5- to 6-membered heteroaryl ring.
 好ましいX及びX’としては、下記の基を挙げることができる。
Figure JPOXMLDOC01-appb-C000015
Preferred examples of X and X ′ include the following groups.
Figure JPOXMLDOC01-appb-C000015
 より好ましいX及びX’としては、具体的には下記の基を挙げることができる。
Figure JPOXMLDOC01-appb-C000016
More preferable examples of X and X ′ include the following groups.
Figure JPOXMLDOC01-appb-C000016
 本発明のGAG架橋体においてより好ましい架橋基としては、例えば下記を挙げることができ、ここでmは、3~8の整数である(実施例で実際に使用したスペーサー)。
-CONH-CH2-CH2-CO-X-CH2-CH2-O-CH2-CH2-NHCO-;
-CONH-CH2-CO-X-CH2-CH2-NHCO-;
-CONH-CH2-CO-X-CH2-CH2-O-CH2-CH2-NHCO-;
-CONH-CH2-CO-X-CH2-(CH2-O-CH2m-CH2-NHCO-;
-CONH-CH2-X-CH2-CH2-NHCO-;
-CONH-CH2-O-X-CH2-CH2-NHCO-
More preferable examples of the crosslinking group in the GAG crosslinked product of the present invention include the following, wherein m is an integer of 3 to 8 (the spacer actually used in the examples).
—CONH—CH 2 —CH 2 —CO—X—CH 2 —CH 2 —O—CH 2 —CH 2 —NHCO—;
—CONH—CH 2 —CO—X—CH 2 —CH 2 —NHCO—;
—CONH—CH 2 —CO—X—CH 2 —CH 2 —O—CH 2 —CH 2 —NHCO—;
—CONH—CH 2 —CO—X—CH 2 — (CH 2 —O—CH 2 ) m —CH 2 —NHCO—;
—CONH—CH 2 —X—CH 2 —CH 2 —NHCO—;
—CONH—CH 2 —O—X—CH 2 —CH 2 —NHCO—
 上記の架橋基においては、Xは、好ましくは、下記の基からなる群から選択される。
Figure JPOXMLDOC01-appb-C000017

 より好ましくは、下記の基であり、
Figure JPOXMLDOC01-appb-C000018

さらに好ましくは、下記の基である。
Figure JPOXMLDOC01-appb-C000019
In the above bridging group, X is preferably selected from the group consisting of the following groups.
Figure JPOXMLDOC01-appb-C000017

More preferably, it is the following group:
Figure JPOXMLDOC01-appb-C000018

More preferably, they are the following groups.
Figure JPOXMLDOC01-appb-C000019
 なお、上述したX及びX’の各種好ましい態様においては、トリアゾリル環部分が有する3個の窒素原子の内、両端の窒素原子のいずれかが、結合手を有することができる。 In the various preferred embodiments of X and X ′ described above, one of the nitrogen atoms at both ends of the three nitrogen atoms of the triazolyl ring moiety can have a bond.
導入率
 本発明のGAG架橋体においては、GAG構成単位の全てのカルボキシ基が上記の架橋基を有している必要はない。GAGの二糖繰り返し単位のモル数に対する結合した架橋基のモル数の割合(本明細書では以降「導入率」と呼ばれる)は、GAGの種類、組織膨隆材として使用するに際しての必要な粘度、必要な応力、投与部位などに応じて適宜決定することができる。例えば、GAGとしてヒアルロン酸又はコンドロイチン硫酸を使用する場合、GAGの二糖繰り返し単位のモル数に対して、導入率は、好ましくは0.1~80%、そして更に好ましくは0.5~20%である。
Introduction rate In the GAG crosslinked product of the present invention, it is not necessary that all carboxy groups of the GAG structural unit have the above-mentioned crosslinking groups. The ratio of the number of moles of linked bridging groups to the number of moles of GAG disaccharide repeating units (hereinafter referred to as “introduction ratio”) is the type of GAG, the viscosity required for use as a tissue swelling material, It can be determined appropriately according to the necessary stress, administration site, and the like. For example, when hyaluronic acid or chondroitin sulfate is used as GAG, the introduction ratio is preferably 0.1 to 80%, and more preferably 0.5 to 20%, relative to the number of moles of GAG disaccharide repeating units. It is.
組成物
 本発明はまた、下記(1)GAG誘導体Aの少なくとも一種、及び(2)GAG誘導体B又は(3)化合物Cの少なくとも一種を含む組成物に関する。
 (1)GAG分子に、GAGのカルボキシ基に由来するアミド結合及び2価のスペーサー基を介してSPAAC型反応性基を導入したGAG誘導体A;
 (2)GAG分子に、GAG誘導体Aの反応性基と相補的な反応性基が、GAG分子のカルボキシ基に由来するアミド結合及び2価のスペーサー基を介して導入されたGAG誘導体B;
 (3)GAG誘導体Aの反応性基と相補的な反応性基を少なくとも2つ有する下記構造から定義される化合物C;
Figure JPOXMLDOC01-appb-C000020

[式中、
 Yは、同一又は異なって、GAG誘導体Aの反応性基と相補的な反応性基であり;
 Zは、n価のスペーサー基であり、
 nは、2又はそれ以上の整数である]。
 すなわち、本発明の上記組成物は、(1)GAG誘導体A及び(2)GAG誘導体Bの組み合わせ;又は(1)GAG誘導体A及び(3)化合物Cの組み合わせ;を含む。
Composition The present invention also relates to a composition comprising at least one of the following (1) GAG derivative A and (2) at least one of GAG derivative B or (3) compound C.
(1) GAG derivative A in which a SPAAC type reactive group is introduced into a GAG molecule via an amide bond derived from a carboxy group of GAG and a divalent spacer group;
(2) GAG derivative B in which a reactive group complementary to the reactive group of GAG derivative A is introduced into the GAG molecule via an amide bond derived from a carboxy group of the GAG molecule and a divalent spacer group;
(3) Compound C defined by the following structure having at least two reactive groups complementary to the reactive group of GAG derivative A;
Figure JPOXMLDOC01-appb-C000020

[Where:
Y is the same or different and is a reactive group complementary to the reactive group of GAG derivative A;
Z is an n-valent spacer group,
n is an integer of 2 or more].
That is, the composition of the present invention includes (1) a combination of GAG derivative A and (2) GAG derivative B; or (1) a combination of GAG derivative A and (3) compound C.
GAGの種類
 本発明の組成物を構成するGAG誘導体A及びBにおいては、GAGとしては、上述のGAG架橋体について述べたGAGと同じGAGを用いることができ、ヒアルロン酸、コンドロイチン硫酸及びコンドロイチンからなる群から選択されるGAGを好ましく用いることができ、ヒアルロン酸若しくはその塩及びコンドロイチン硫酸若しくはその塩をより好ましく用いることができ、より生体適合性の高いヒアルロン酸を特に好ましく用いることができる。
Type of GAG In the GAG derivatives A and B constituting the composition of the present invention, the same GAG as the GAG described for the above-mentioned GAG cross-linked product can be used as GAG, and consists of hyaluronic acid, chondroitin sulfate and chondroitin. GAG selected from the group can be preferably used, hyaluronic acid or a salt thereof and chondroitin sulfate or a salt thereof can be more preferably used, and hyaluronic acid having higher biocompatibility can be particularly preferably used.
2価のスペーサー基及びn価のスペーサー基
 本発明の組成物を構成するGAG誘導体A及びBにおいては、GAGのカルボキシ基が形成するアミド結合とSPAAC型反応性基が、2価のスペーサー基を介して結合している。かかる2価のスペーサー基は、SPAAC型反応性基と、当該反応性基と相補的な反応性基との反応を阻害するものでない限り、任意の鎖状基を使用することができる。このような2価のスペーサー基としては、上述のGAG架橋体において使用される基R1~R5、すなわちアルキレン基、アルケニレン基、又はアルキニレン基を用いることができ、当該基中の-CH2-は、>C=O、-CONH-、アリーレン、-O-、又は-S-で置き換えられていてもよい。
In the divalent GAG derivatives A and B constituting the composition of the spacer group, and n valent spacer groups present invention, an amide bond and SPAAC type reactive group the carboxy group of the GAG form, a divalent spacer group Are connected through. As the divalent spacer group, any chain group can be used as long as it does not inhibit the reaction between the SPAAC type reactive group and the reactive group complementary to the reactive group. As such a divalent spacer group, groups R 1 to R 5 used in the aforementioned GAG crosslinked product, that is, an alkylene group, an alkenylene group, or an alkynylene group can be used, and —CH 2 in the group can be used. — May be replaced by> C═O, —CONH—, arylene, —O—, or —S—.
 本発明の組成物を構成する化合物Cが有するn価のスペーサー基も2価のスペーサー基と同様であり、アルキル基、アルケニル基、又はアルキニル基から誘導されるn価の基を用いることができ、当該基中の-CH2-は、>C=O、-CONH-、アリーレン、-O-、又は-S-で置き換えられていてもよい。ここでアリーレンとしては、1,2-、1,3-若しくは1,4-フェニレンなどのフェニレン基を用いることができ、なかでも1,4-フェニレン基を好ましく用いることができる。ここで、nは、2又はそれ以上の整数であるが、好ましくは2である。 The n-valent spacer group of the compound C constituting the composition of the present invention is the same as the divalent spacer group, and an n-valent group derived from an alkyl group, an alkenyl group, or an alkynyl group can be used. The —CH 2 — in the group may be replaced by> C═O, —CONH—, arylene, —O—, or —S—. Here, as the arylene, a phenylene group such as 1,2-, 1,3- or 1,4-phenylene can be used, and among them, a 1,4-phenylene group can be preferably used. Here, n is an integer of 2 or more, preferably 2.
SPAAC型反応性基
 本発明の組成物においては、GAG誘導体A及びB、化合物Cは、SPAAC型反応性基、又は当該反応性基と相補的な反応性基を有する。SPAAC型反応とは、アジド基とアルキンの三重結合を反応させて、望ましくない副生成物を生じさせず、急速かつ簡単に、効率的に1,2,3-トリアゾール環を形成させるクリック型反応において、アルキンとして、銅触媒を必要とせず、環構造が有する歪みのため、速やかかつ高選択的に架橋反応が進行するシクロアルキニル基を有する化合物を用いる反応をいう。本発明の組成物において採用しうるGAG誘導体A及びB、化合物Cは、任意のSPAAC型反応性基、又は当該反応性基と相補的な反応性基を有することができるが、具体的には、炭素数7~9、好ましくは炭素数7又は8、より好ましくは炭素数8のシクロアルキニル基から誘導される基と、アジド基の組み合わせを用いることができる。当該シクロアルキニル基としては、式:
Figure JPOXMLDOC01-appb-C000021

[式中、
 ここで、Bは、2価又はn価のスペーサー基との結合部位を示し;
 Y~Yは、同一又は異なって、-CR6’-、-C(-R)=、-NR-、=N-、-O-、又は-S-を表し、-NR-、=N-、-O-、及び-S-が隣接することはなく;
 R及びR6’は、同一又は異なって、水素原子、ハロゲン原子、ヒドロキシ基、アルキルでモノ若しくはジ置換されていてもよいアミノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基若しくはカルボキシ基を表すか、又は一緒になってオキソ基を形成し、当該アルキル基、アルケニル基、アルキニル基、又はアルコキシ基中の-CH2-は、>C=O、-CONH-、アリーレン、-O-、又は-S-で置き換えられていてもよく;
 Rは、アルキル基、アルケニル基又はアルキニル基を表し、当該アルキル基、アルケニル基又はアルキニル基中の-CH2-は、>C=O、-CONH-、アリーレン、-O-、又は-S-で置き換えられていてもよく;又は、
 Y~Yのうち隣接する2つの基においては、一方の基のR及び他方の基のRは、それぞれが結合している環原子と一緒になって飽和又は不飽和の3~6員環を形成することができ、上記結合Bは、当該3~6員環に結合することもできる]
で示される環状基を挙げることができる。かかる3~6員環としては、員数3~6のシクロアルキル環、フェニル環、又は5~6員のヘテロアリール環などを挙げることができる。
In the compositions of SPAAC type reactive groups present invention, GAG derivatives A and B, Compound C has a SPAAC type reactive group, or complementary reactive group and the reactive moiety. The SPAAC-type reaction is a click-type reaction that reacts a triple bond of an azide group and an alkyne to form an 1,2,3-triazole ring quickly and easily without producing an undesirable by-product. The reaction using a compound having a cycloalkynyl group, which does not require a copper catalyst and does not require a copper catalyst, and allows the crosslinking reaction to proceed rapidly and highly selectively due to the distortion of the ring structure. The GAG derivatives A and B and the compound C that can be employed in the composition of the present invention can have any SPAAC type reactive group or a reactive group complementary to the reactive group. Specifically, A combination of a group derived from a cycloalkynyl group having 7 to 9 carbon atoms, preferably 7 or 8 carbon atoms, more preferably 8 carbon atoms, and an azide group can be used. The cycloalkynyl group has the formula:
Figure JPOXMLDOC01-appb-C000021

[Where:
Here, B represents a binding site with a divalent or n-valent spacer group;
Y 1 ~ Y 6 are the same or different, -CR 6 R 6 '-, - C (-R 6) =, - NR 7 -, = N -, - O-, or -S- represents, - NR 7 -, = N -, - O-, and -S- are never adjacent;
R 6 and R 6 ′ are the same or different and are a hydrogen atom, a halogen atom, a hydroxy group, an amino group, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group or a carboxy group, which may be mono- or di-substituted with alkyl. Or together formed an oxo group, and —CH 2 — in the alkyl group, alkenyl group, alkynyl group or alkoxy group represents> C═O, —CONH—, arylene, —O—. Or may be replaced by -S-;
R 7 represents an alkyl group, an alkenyl group, or an alkynyl group, and —CH 2 — in the alkyl group, alkenyl group, or alkynyl group represents> C═O, —CONH—, arylene, —O—, or —S May be replaced by; or
In two neighboring groups of Y 1 - Y 6, R 6 in R 6 and the other group of one group is a saturated or 3-unsaturated together with the ring atoms to which each is attached A 6-membered ring can be formed, and the bond B can be bonded to the 3- to 6-membered ring]
The cyclic group shown by these can be mentioned. Examples of the 3- to 6-membered ring include a cycloalkyl ring having 3 to 6 members, a phenyl ring, or a 5- to 6-membered heteroaryl ring.
 かかるSPAAC型反応性基、又は当該反応性基と相補的な反応性基の具体例としては、下記の骨格からなる群より選択される骨格を有する反応性基とアジド基の組み合わせを好ましく挙げることができる。
Figure JPOXMLDOC01-appb-C000022
Specific examples of the SPAAC type reactive group or a reactive group complementary to the reactive group preferably include a combination of a reactive group having a skeleton selected from the group consisting of the following skeletons and an azide group. Can do.
Figure JPOXMLDOC01-appb-C000022
 更により好ましくは、下記の基からなる群より選択される基とアジド基の組み合わせをより好ましく挙げることができる。
Figure JPOXMLDOC01-appb-C000023
Even more preferably, a combination of a group selected from the group consisting of the following groups and an azide group can be mentioned more preferably.
Figure JPOXMLDOC01-appb-C000023
GAGへの反応性基の導入率
 本発明の組成物を構成するGAG誘導体A及びBにおいては、SPAAC型反応性基と、当該反応性基と相補的な反応性基は、GAG構成単位の全てのカルボキシ基に結合している必要はない。GAGの二糖繰り返し単位のモル数に対する結合した架橋のモル数の割合、すなわち導入率は、GAGの種類、必要な粘度、必要な応力、投与部位などに応じて適宜決定することができる。例えば、GAGとしてヒアルロン酸又はコンドロイチン硫酸を使用する場合、GAGの二糖繰り返し単位のモル数に対して、導入率は、好ましくは0.1~80%、そして更に好ましくは0.5~20%である。
Rate of introduction of reactive group into GAG In the GAG derivatives A and B constituting the composition of the present invention, the SPAAC type reactive group and the reactive group complementary to the reactive group are all of the GAG constituent units. It is not necessary to bind to the carboxy group. The ratio of the number of moles of linked crosslinks relative to the number of moles of GAG disaccharide repeating units, that is, the introduction ratio can be appropriately determined according to the type of GAG, the necessary viscosity, the necessary stress, the administration site, and the like. For example, when hyaluronic acid or chondroitin sulfate is used as GAG, the introduction ratio is preferably 0.1 to 80%, and more preferably 0.5 to 20%, relative to the number of moles of GAG disaccharide repeating units. It is.
GAG誘導体A及びB並びに化合物C
 GAG誘導体A及びBのうち、SPAAC型反応性基としてシクロアルキニル基を有するGAG誘導体としては、好ましくは下記:
 下記:
Figure JPOXMLDOC01-appb-C000024

からなる群より選択されるシクロオクチン誘導体アミンのアミノ基とGAGのカルボキシ基とがアミド結合したGAG誘導体を挙げることができる。
 これらの中でも、反応性、生体適合性の点で、下記:
Figure JPOXMLDOC01-appb-C000025

より選択されるシクロオクチン誘導体アミンのアミノ基とGAGのカルボキシ基とがアミド結合したGAG誘導体がより好ましく、最も好ましくは、下記:
Figure JPOXMLDOC01-appb-C000026

で示されるシクロオクチン誘導体アミンのアミノ基とGAGのカルボキシ基とがアミド結合したGAG誘導体である。
GAG derivatives A and B and compound C
Among the GAG derivatives A and B, the GAG derivative having a cycloalkynyl group as a SPAAC type reactive group is preferably the following:
following:
Figure JPOXMLDOC01-appb-C000024

A GAG derivative in which an amino group of an amine and a carboxy group of GAG are amide-bonded is selected from the group consisting of:
Among these, in terms of reactivity and biocompatibility, the following:
Figure JPOXMLDOC01-appb-C000025

More preferred cyclooctyne derivatives GAG derivatives in which the amino group of the amine and the carboxy group of GAG are amide-bonded are more preferred, most preferably:
Figure JPOXMLDOC01-appb-C000026

A GAG derivative in which the amino group of the amine and the carboxy group of GAG are amide-bonded.
 また、GAG誘導体A及びBのうち、SPAAC型反応性基としてアジド基を有するGAG誘導体としては、好ましくは下記:
3-CH2-CH2-NH2
3-CH2-CH2-CH2-NH2
3-CH2-CH2-CH2-CH2-NH2
3-CH2-C(=O)-NH-CH2-CH2-NH2
3-CH2-CH2-O-CH2-CH2-NH2
3-CH2-[CH2-O-CH22-10-CH2-NH2
からなる群より選択されるアジドアミンのアミノ基をGAGのカルボキシ基とアミド結合させることにより得られるGAG誘導体を挙げることができる。
Of the GAG derivatives A and B, the GAG derivative having an azide group as a SPAAC type reactive group is preferably the following:
N 3 —CH 2 —CH 2 —NH 2 ;
N 3 —CH 2 —CH 2 —CH 2 —NH 2 ;
N 3 —CH 2 —CH 2 —CH 2 —CH 2 —NH 2 ;
N 3 —CH 2 —C (═O) —NH—CH 2 —CH 2 —NH 2 ;
N 3 —CH 2 —CH 2 —O—CH 2 —CH 2 —NH 2 ;
N 3 —CH 2 — [CH 2 —O—CH 2 ] 2-10 —CH 2 —NH 2 ;
A GAG derivative obtained by amide-bonding an amino group of an azidoamine selected from the group consisting of carboxy group of GAG can be given.
 また、化合物Cとしては、好ましくは下記の化合物を挙げることができる。
Figure JPOXMLDOC01-appb-C000027
As compound C, preferably, the following compounds can be mentioned.
Figure JPOXMLDOC01-appb-C000027
GAG誘導体A、B及び化合物Cの組成比
 本発明の組成物においては、GAG誘導体A、B及び化合物Cが有するSPAAC型反応性基、及び当該反応性基と相補的な反応性基は、1:1~1:4のモル比、好ましくは、1:1~1:2のモル比、さらに好ましくは1:1のモル比で存在する。
 また、本発明の組成物は媒体を含んでいてもよい。媒体としては、水、生理食塩水、リン酸緩衝液等を挙げることができる。組成物が媒体を含む場合、GAG誘導体A、B及び化合物Cの総含有量は、組成物中に例えば、0.5質量%以上であり、好ましくは1.0質量%以上である。
Composition ratio of GAG derivatives A and B and compound C In the composition of the present invention, the SPAAC type reactive group possessed by GAG derivatives A, B and compound C, and the reactive group complementary to the reactive group are 1 The molar ratio is from 1: 1 to 1: 4, preferably from 1: 1 to 1: 2, more preferably 1: 1.
The composition of the present invention may contain a medium. Examples of the medium include water, physiological saline, and phosphate buffer. When the composition includes a medium, the total content of GAG derivatives A and B and compound C is, for example, 0.5% by mass or more, and preferably 1.0% by mass or more in the composition.
GAG誘導体A、B及び化合物Cの製造方法
 本発明の組成物に含まれるGAG誘導体A及びBは、SPAAC型反応性基、又は当該反応性基と相補的な反応性基、及びアミノ基がスペーサー基を介して結合したスペーサー化合物のアミノ基を、GAG分子のカルボキシ基と縮合させることによって得ることができる。
Method for Producing GAG Derivatives A and B and Compound C GAG derivatives A and B contained in the composition of the present invention are SPAAC type reactive groups, reactive groups complementary to the reactive groups, and amino groups as spacers. The amino group of the spacer compound bonded via the group can be obtained by condensing with the carboxy group of the GAG molecule.
 例えば、代表的なSPAAC型反応性基であるシクロアルキニル基及びアミノ基がスペーサー基を介して結合したスペーサー化合物は、下記に示すように合成することができる。 For example, a spacer compound in which a cycloalkynyl group and an amino group, which are typical SPAAC-type reactive groups, are bonded via a spacer group can be synthesized as shown below.
 メチル-6-ブロモ-6-デオキシ-2,3-ジ-O-メチル-α,D-グルコピラノシド3は、Organic Letter, 2008, Vol.10, No.14,3097-99に記載の方法により合成する。3を原料とした亜鉛還元/還元的アミノ化反応の後、イミノ基をt-ブトキシカルボニル(Boc)基で保護することで4とする。続いて、オレフィンメタセシス反応によりアザシクロオクテン5とした後、二クロム酸ピリジニウム(PDC)を用いた酸化によりケトン体6とし、6をパラジウム炭素触媒下、水素添加することで7が得られる。7に対してセミカルバジド塩酸塩を付加させた後、二酸化セレンで処理する事で、セレナジアゾール8が得られる。続いて8のBoc基を酸性条件下で除去することでイミン塩酸塩9へと変換し、9-フルオレニルメチルオキシカルボニル(Fmoc)化グリシンと縮合する事で、10とする。最後に、加熱還流下、トリフェニルフォスフィンで処理することで、Fmoc基を除去しつつアザシクロオクチンへと変換し、塩酸処理することで、DIMAC-アミン塩酸塩11が合成される。
Figure JPOXMLDOC01-appb-C000028
Methyl-6-bromo-6-deoxy-2,3-di-O-methyl-α, D-glucopyranoside 3 was synthesized by the method described in Organic Letter, 2008, Vol. 10, No. 14, 3097-99. To do. After the zinc reduction / reductive amination reaction using 3 as a raw material, the imino group is protected with a t-butoxycarbonyl (Boc) group to give 4. Subsequently, after azacyclooctene 5 is obtained by olefin metathesis reaction, ketone body 6 is obtained by oxidation using pyridinium dichromate (PDC), and 7 is obtained by hydrogenation of 6 under a palladium carbon catalyst. After adding semicarbazide hydrochloride to 7, treatment with selenium dioxide gives selenodiazole 8. Subsequently, the Boc group of 8 is removed under acidic conditions to convert to imine hydrochloride 9 and condensed with 9-fluorenylmethyloxycarbonyl (Fmoc) glycine to be 10. Finally, it is converted to azacyclooctyne while removing the Fmoc group by treatment with triphenylphosphine under heating under reflux, and DIMAC-amine hydrochloride 11 is synthesized by treatment with hydrochloric acid.
Figure JPOXMLDOC01-appb-C000028
 SPAAC型反応性基であるシクロアルキニル基及びアミノ基がスペーサー基を介して結合したその他のスペーサー化合物もまた、Org. Biomol. Chem., 2009, 7, 635-638、Bioconjugate Chem. 2010, 21, 2076-2085などに記載された方法、及びそれに準じた方法により容易に合成することができる。 Other spacer compounds in which a SPAAC type reactive group cycloalkynyl group and amino group are bonded via a spacer group are also described in Org. Biomol. Chem., 2009, 7, 635-638, Bioconjugate Chem. 2010, 21, It can be easily synthesized by the method described in 2076-2085 and the like, and a method analogous thereto.
 また、SPAAC型反応性基であるアジド基及びアミノ基がスペーサー基を介して結合したスペーサー化合物は、市販されているか、又は市販されている化合物から容易に合成することができる。例えば、上述のアジドアミンは、Chem.Commun., 2005, 5390-5392;Chem.Commun., 2006, 2012-2014;J. Org. Chem. 2006,71(17),6697-6700;Tetrahderon Lett., 2001, 2709-2711;J. Am. Chem. Soc., 2005, 127, 12434-12435;Tetrahderon Lett., 2001, 2709-2711に記載の方法、又はそれに準じた方法で容易に合成することができる。 Further, a spacer compound in which an azide group and an amino group, which are SPAAC type reactive groups, are bonded via a spacer group is commercially available or can be easily synthesized from a commercially available compound. For example, the above-mentioned azidoamines are known as Chem. Commun., 2005, 5390-5392; Chem.Commun., 2006, 2012-2014; J. Org. Chem. 2006,71 (17), 6697-6700; Tetrahderon Lett., 2001, 2709-2711; J. Am. Chem. Soc., 2005, 127, 12434-12435; Tetrahderon Lett., 2001, 2709-2711 or a method analogous thereto .
 化合物Cもまた、市販されているか、又は市販されている化合物から容易に合成することができる。 Compound C is also commercially available or can be easily synthesized from commercially available compounds.
 こうして得られる反応性基を結合させたスペーサー化合物とGAGを、エタノール/水混合溶液中、室温下、4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM)などの縮合剤を用いた縮合反応に付すことにより、GAG誘導体A及びBを得ることができる。 The thus obtained spacer compound to which a reactive group is bonded and GAG are mixed with 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-yl in an ethanol / water mixed solution at room temperature. GAG derivatives A and B can be obtained by subjecting to a condensation reaction using a condensing agent such as methylmorpholinium chloride (DMT-MM).
 更にこうして得られたGAG誘導体AとB、又はGAG誘導体Aと化合物Cを、水中や、水と任意に混合できる有機溶媒と水との混合液中、さらに任意の塩を含む溶液中、5~60℃の温度下で、SPAAC型反応に付すことにより、本発明のGAG架橋体を得ることもできる。 Further, GAG derivatives A and B or GAG derivative A and compound C thus obtained are mixed in water, in a mixed solution of an organic solvent that can be arbitrarily mixed with water, and in a solution containing an arbitrary salt. The GAG crosslinked product of the present invention can also be obtained by subjecting it to a SPAAC type reaction at a temperature of 60 ° C.
本発明の組成物の用途
 本発明の組成物は、必要に応じて生理食塩水、リン酸緩衝液などの溶媒中、SPAAC型反応に付すことにより、本発明のGAG架橋体を形成することができる。当該GAG架橋体は、生体内で優れた安全性を有するとともに、生体内に長期にわたって安定に残留することができるので、長期残留組織膨隆材による治療を必要とする各種疾患の治療用材料として用いることができる。
 かかる用途について具体的に説明すると、本発明の組成物は、例えば、注入後に生体内に長期に残留することができるので、何らかの原因によって失われた、あるいは取り除いた生体組織の機能的な再建を意図する外科又は整形外科領域の用途、失われた組織を審美的に補修する形成外科領域の用途など、各種用途に用いることができる。より具体的には、例えば胃食道逆流症(GERD)、便失禁(FI)などを挙げることができる。さらにより具体的な他の用途についてみると、前立腺全摘術は、下腹部に7~20cmくらいの皮膚切開を入れ、前立腺と精嚢を摘出し、膀胱と尿道を吻合する手術である。そして手術後は膀胱にカテーテルを挿入し、1週間程度で尿道造影検査後にカテーテルを抜く。この場合、術後合併症として約70%の患者において排尿障害を伴うことが知られている。これが、前立腺が存在した組織間隙が無くなることによる排尿障害である場合には、本発明の組成物を、尿道を支持する媒体として使用することができる。さらに腹腔鏡下手術において前立腺の全摘術が可能となってきている状況からも、低侵襲手術における摘出手術後の術後合併症を防ぐための組織再建に用いることもできる。
 このように、本発明の組成物は、各種領域において、長期残留組織膨隆材として使用することができる。なかでも本発明の組成物は、泌尿器科領域での膀胱尿管逆流症、腹圧性尿失禁、又は便失禁などの組織膨隆材による治療を必要とする疾患の処置;前立腺全摘術後の組織再建;外科、整形外科又は形成外科領域での組織再建;において、長期残留組織膨隆材として使用することができる。
Use of the Composition of the Present Invention The composition of the present invention can form the crosslinked GAG of the present invention by subjecting it to a SPAAC type reaction in a solvent such as physiological saline or phosphate buffer as necessary. it can. Since the GAG crosslinked body has excellent safety in vivo and can remain stably in the living body for a long time, it is used as a therapeutic material for various diseases requiring treatment with a long-term residual tissue swelling material. be able to.
Specifically describing such an application, the composition of the present invention can remain in a living body for a long time after injection, for example, so that functional reconstruction of a living tissue lost or removed for some reason is possible. It can be used in a variety of applications, including intended surgical or orthopedic applications, plastic surgery applications that aesthetically repair lost tissue. More specifically, examples include gastroesophageal reflux disease (GERD) and fecal incontinence (FI). As for another more specific use, radical prostatectomy is an operation in which a skin incision of about 7 to 20 cm is made in the lower abdomen, the prostate and seminal vesicle are removed, and the bladder and urethra are anastomosed. After the operation, a catheter is inserted into the bladder, and the catheter is removed after a urethral examination in about one week. In this case, it is known that postoperative complications are accompanied by dysuria in about 70% of patients. If this is a dysuria due to the absence of a tissue gap where the prostate was present, the composition of the present invention can be used as a medium to support the urethra. Furthermore, from the situation where total prostatectomy is possible in laparoscopic surgery, it can also be used for tissue reconstruction to prevent postoperative complications after extraction surgery in minimally invasive surgery.
Thus, the composition of the present invention can be used as a long-term residual tissue swelling material in various regions. Among them, the composition of the present invention is used to treat a disease requiring treatment with a tissue swelling material such as vesicoureteral reflux, stress urinary incontinence, or fecal incontinence in the urological field; tissue after radical prostatectomy It can be used as a long-term residual tissue bulge in reconstruction; tissue reconstruction in the surgical, orthopedic or plastic surgery area.
 使用に際しては、本発明の組成物の構成成分であるGAG誘導体A及びGAG誘導体B又は化合物Cを、そのまま例えば粉状物として、または溶媒に溶解して溶液として生体内に投与することができるが、好ましくは必要に応じて生理食塩水、リン酸緩衝液などの溶媒に溶解して混合して液状の組成物とし、生体内に、注射などの手段によって投与することができる。溶媒に溶解する場合の濃度は、長期残留組織膨隆材としての用途に求められる粘度に応じて適宜決定することができる。すなわち、GAG誘導体A及びGAG誘導体B又は化合物Cを混合することによりSPAAC反応によりGAG架橋体の形成が開始され、混合物の粘度が上昇し始めるが、GAG誘導体A及びGAG誘導体B又は化合物Cの濃度が高い場合には、混合物の粘度も速やかに上昇する。そこで、本発明の組成物を、例えば、膀胱尿管逆流症などの疾患において用いる腹部皮下形状維持材料として用いる場合、粘度値が1Pa・sに到達するまでの時間が12時間以下(測定条件:E型回転粘度計、標準コーン(1°34’xR24)、25℃、5rpm)であるように、GAG誘導体A及びGAG誘導体B又は化合物Cの濃度を決定することができる。 In use, GAG derivative A and GAG derivative B or compound C, which are constituents of the composition of the present invention, can be administered in vivo as, for example, as a powder or as a solution in a solvent. Preferably, it can be dissolved and mixed in a solvent such as physiological saline or phosphate buffer as necessary to obtain a liquid composition, which can be administered in vivo by means such as injection. The concentration in the case of dissolving in a solvent can be appropriately determined according to the viscosity required for use as a long-term residual tissue swelling material. That is, by mixing GAG derivative A and GAG derivative B or compound C, the formation of a GAG cross-linked product is started by the SPAAC reaction, and the viscosity of the mixture starts to increase. However, the concentration of GAG derivative A and GAG derivative B or compound C When the value is high, the viscosity of the mixture also increases rapidly. Therefore, when the composition of the present invention is used as an abdominal subcutaneous shape maintaining material used in diseases such as vesicoureteral reflux, the time until the viscosity value reaches 1 Pa · s is 12 hours or less (measurement conditions: The concentrations of GAG derivative A and GAG derivative B or compound C can be determined to be an E-type rotational viscometer, standard cone (1 ° 34'xR24), 25 ° C, 5 rpm).
 投与に際しては、GAG誘導体A、及びGAG誘導体B又は化合物Cを、それぞれ粉状物のまま、又は溶解して液状組成物として別々に投与することにより、あるいは投与直前にGAG誘導体A及びGAG誘導体B又は化合物Cを混合し、粉状物のまま、又は溶解して液状組成物として投与することにより、生体内でSPAAC反応により架橋させて長期残留組織膨隆材を形成させてもよい。 Upon administration, GAG derivative A and GAG derivative B or compound C are each separately in powder form or dissolved and separately administered as a liquid composition, or immediately before administration, GAG derivative A and GAG derivative B Alternatively, compound C may be mixed and used as a liquid composition in the form of a powder or dissolved, and then crosslinked in a living body by a SPAAC reaction to form a long-term residual tissue swelling material.
 また、投与量は、膀胱尿管逆流症などの疾患において長期残留組織膨隆材として必要とされる量を投与すればよい。 In addition, the dose may be an amount required as a long-term residual tissue swelling material in diseases such as vesicoureteral reflux.
組織膨隆材用キット
 組織膨隆材用キットは、下記の(1)GAG誘導体A、及び(2)GAG誘導体B又は(3)化合物Cを含む。
 (1)GAG分子に、GAG分子のカルボキシ基に由来するアミド結合及び2価のスペーサー基を介してSPAAC型反応性基を導入したGAG誘導体A;
 (2)GAG分子に、GAG誘導体Aの反応性基と相補的な反応性基が、GAG分子のカルボキシ基に由来するアミド結合及び2価のスペーサー基を介して導入されたGAG誘導体B;
 (3)GAG誘導体Aの反応性基と相補的な反応性基を少なくとも2つ有する下記構造から定義される化合物C;
Figure JPOXMLDOC01-appb-C000029

[式中、
 Yは、同一又は異なって、GAG誘導体Aの反応性基と相補的な反応性基であり;
 Zは、n価のスペーサー基であり、
 nは、2又はそれ以上の整数である]。
 本発明の上記キットとしては、例えば、GAG誘導体Aの溶液、及びGAG誘導体Bの溶液又は化合物Cの溶液から構成され、それぞれが別々の容器に充填されている形態、あるいはGAG誘導体Aの粉末、及びGAG誘導体Bの粉末又は化合物Cの粉末、並びに注射用水から構成されており、それぞれが別々の容器に充填されている形態が例示される。使用に際しては、それぞれ粉状物のまま、又は液状組成物として別々に投与することにより、あるいは投与直前にGAG誘導体A、及びGAG誘導体B又は化合物Cを混合し、粉状物のまま、又は液状組成物として投与することができる。
Kit for tissue swelling material The kit for tissue swelling material contains the following (1) GAG derivative A and (2) GAG derivative B or (3) compound C.
(1) GAG derivative A in which a SPAAC type reactive group is introduced into a GAG molecule via an amide bond derived from a carboxy group of the GAG molecule and a divalent spacer group;
(2) GAG derivative B in which a reactive group complementary to the reactive group of GAG derivative A is introduced into the GAG molecule via an amide bond derived from a carboxy group of the GAG molecule and a divalent spacer group;
(3) Compound C defined by the following structure having at least two reactive groups complementary to the reactive group of GAG derivative A;
Figure JPOXMLDOC01-appb-C000029

[Where:
Y is the same or different and is a reactive group complementary to the reactive group of GAG derivative A;
Z is an n-valent spacer group,
n is an integer of 2 or more].
Examples of the kit of the present invention include a GAG derivative A solution and a GAG derivative B solution or a compound C solution, each of which is filled in separate containers, or a GAG derivative A powder, And a powder of GAG derivative B or a powder of compound C, and water for injection, each of which is filled in separate containers. At the time of use, GAG derivative A and GAG derivative B or compound C are mixed as it is in powder form or separately as a liquid composition, or just before administration, and in powder form or liquid form It can be administered as a composition.
 以下、本発明を実施例により具体的に詳説する。しかしながら、これにより本発明の技術的範囲が限定されるべきものではない。また、次の略語は以下に示す意味を表す。
HA ヒアルロン酸
CS コンドロイチン硫酸
DIMAC ジメトキシアザシクロオクチン
DBCO ジベンジルシクロオクチン
CuAAC 銅触媒アジド-アルキン環化付加
SPAAC 環ひずみにより促進させるアジド-シクロアルキン環化付加
Hereinafter, the present invention will be described in detail by way of examples. However, this should not limit the technical scope of the present invention. The following abbreviations have the following meanings.
HA Hyaluronic acid CS Chondroitin sulfate DIMAC Dimethoxyazacyclooctyne DBCO Dibenzylcyclooctyne CuAAC Copper-catalyzed azide-alkyne cycloaddition SPAAC Azide-cycloalkyne cycloaddition promoted by ring strain
[実施例1]:DIMAC-アミン塩酸塩の調製
 下記式:
Figure JPOXMLDOC01-appb-C000030

で示されるDIMAC-アミン塩酸塩を、以下の手順に従って調製した。
Example 1 Preparation of DIMAC-Amine Hydrochloride
Figure JPOXMLDOC01-appb-C000030

The DIMAC-amine hydrochloride represented by was prepared according to the following procedure.
(工程1)化合物4の合成
Figure JPOXMLDOC01-appb-C000031

 化合物3は、Organic Letter, 2008, Vol.10, No.14, 3097-99に記載の方法により合成した。
(Step 1) Synthesis of Compound 4
Figure JPOXMLDOC01-appb-C000031

Compound 3 was synthesized by the method described in Organic Letter, 2008, Vol. 10, No. 14, 3097-99.
 化合物3 24.6g(1.00eq.、86.1mmol)を、1-プロパノール/水=19/1(15mL)に溶解させた。室温下、Zn粉末225g(40.0eq.、3.45mol)、テトラヒドロフラン(THF)(300mL)に溶解させたシアノ水素化ホウ素ナトリウム(NaBHCN)19.0g(3.50eq.、302mmol)、アリルアミン162mL(25.0eq.、2.17mol)を順次添加し、115℃のオイルバス中で1.5時間攪拌しつつ、加熱還流した。薄層クロマトグラフィー(TLC)にて、原料の消失を確認後、冷却した反応液をセライト濾過した。残渣をメタノール(MeOH)で洗浄後、ろ液を減圧濃縮して得られた混合物に対して、メタノール/塩化メチレン/1N HCl水溶液=6/2/1(1350mL)を添加し、室温下で1時間攪拌した。反応液を減圧濃縮し有機溶媒を留去した後、20%水酸化ナトリウム水溶液(123mL)と水(330mL)を添加し、クロロホルムにて分液抽出を5回行い、集めた有機層を硫酸ナトリウムで乾燥し、減圧濾過した結果、中間体であるイミン体を得た。 Compound 3 24.6 g (1.00 eq., 86.1 mmol) was dissolved in 1-propanol / water = 19/1 (15 mL). 19.0 g (3.50 eq., 302 mmol) of sodium cyanoborohydride (NaBH 3 CN) dissolved in Zn powder 225 g (40.0 eq., 3.45 mol), tetrahydrofuran (THF) (300 mL) at room temperature, Allylamine 162 mL (25.0 eq., 2.17 mol) was sequentially added, and the mixture was heated to reflux while stirring in an oil bath at 115 ° C. for 1.5 hours. After confirming the disappearance of the raw materials by thin layer chromatography (TLC), the cooled reaction solution was filtered through Celite. The residue was washed with methanol (MeOH), and the filtrate was concentrated under reduced pressure. To the mixture obtained, methanol / methylene chloride / 1N aqueous HCl solution = 6/2/1 (1350 mL) was added, and 1 at room temperature. Stir for hours. The reaction solution was concentrated under reduced pressure to distill off the organic solvent, 20% aqueous sodium hydroxide solution (123 mL) and water (330 mL) were added, liquid separation extraction was performed 5 times with chloroform, and the collected organic layer was sodium sulfate. As a result of drying under reduced pressure and filtration under reduced pressure, an intermediate imine was obtained.
 得られたイミン体を1,4-ジオキサン(500mL)に溶解させ、室温下、二炭酸ジ-tert-ブチル(BocO)20.7g(1.10eq.、94.6mmol)を加えて、1時間攪拌した。TLCで中間体の消失を確認後、反応液を減圧留去した。得られた残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン=1/3)で精製し、化合物4を21.2g(67.3mmol)、淡黄色透明粘性液体として得た(収率78%)。 The obtained imine compound was dissolved in 1,4-dioxane (500 mL), 20.7 g (1.10 eq., 94.6 mmol) of di-tert-butyl dicarbonate (Boc 2 O) was added at room temperature, Stir for 1 hour. After confirming the disappearance of the intermediate by TLC, the reaction solution was distilled off under reduced pressure. The obtained residue was purified by silica gel column chromatography (ethyl acetate / hexane = 1/3) to obtain 21.2 g (67.3 mmol) of compound 4 as a pale yellow transparent viscous liquid (yield 78%).
 TLC(酢酸エチル/ヘキサン=1/1):R値=0.48(化合物4)
 1H-NMR(500MHz, CDCl3,δ) 1.47(9H, s, Boc), 2.17-2.74(1H, m), 3.14(1H, brs), 3.24(1H, dd. 15Hz, 8Hz), 3.44-3.54(7H, m), 3.64(1H, brs), 3.84(1H, brs), 4.02(1H, m), 4.31(1H, brs), 5.12(2H, m), 5.22(1H, d, 5Hz), 5.37(1H, dt, 18Hz, 2Hz), 5.78(1H, m), 5.94(1H, m)
 ESI-MS: Calcd for C16H29NO5[M+H]+, 316.2; found 316.6
TLC (ethyl acetate / hexane = 1/1): R f value = 0.48 (compound 4)
1 H-NMR (500 MHz, CDCl 3 , δ) 1.47 (9H, s, Boc), 2.17-2.74 (1H, m), 3.14 (1H, brs), 3.24 (1H, dd. 15 Hz, 8 Hz), 3.44- 3.54 (7H, m), 3.64 (1H, brs), 3.84 (1H, brs), 4.02 (1H, m), 4.31 (1H, brs), 5.12 (2H, m), 5.22 (1H, d, 5Hz) , 5.37 (1H, dt, 18Hz, 2Hz), 5.78 (1H, m), 5.94 (1H, m)
ESI-MS: Calcd for C 16 H 29 NO 5 [M + H] + , 316.2; found 316.6
(工程2)化合物5の合成
Figure JPOXMLDOC01-appb-C000032

 化合物4 9.00g(1.00eq.、28.5mmol)を、無水ジクロロメタンに溶解させた。45℃のオイルバス中で、Grubbs第二世代触媒(Bis[4-[Bis(tert-butyl)phosphino]-N, N-Dimethylbenzenamide]dichloropalladium)1.34g(0.0550eq.、1.57mmol)を添加し、50℃のオイルバス中で35分間、加熱還流させた。TLCで原料の消失を確認後、反応液を減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン=1/3)で精製し、化合物5 6.66g(23.2mmol)を、無色透明粘性液体として得た。(収率81%)
 TLC(酢酸エチル/ヘキサン=1/1):R値=0.42(化合物5)
 1H-NMR(500MHz, CDCl3,δ) 1.46-1.51(9H, m, Boc), 2.83-2.95(2H, m), 3.23-3.31(1H, m), 3.42-3.77(9H, m), 4.41-4.44(1.5/2H, m), 4.59(0.5/2H, d, 18Hz), 5.46-5.48(1H, m), 5.56-5.59(1H, m)
 ESI-MS: Calcd for C14H25NO5 [M+H]+, 288.2; found 288.6
(Step 2) Synthesis of Compound 5
Figure JPOXMLDOC01-appb-C000032

9.00 g (1.00 eq., 28.5 mmol) of Compound 4 was dissolved in anhydrous dichloromethane. In an oil bath at 45 ° C., 1.34 g (0.0550 eq., 1.57 mmol) of Grubbs second generation catalyst (Bis [4- [Bis (tert-butyl) phosphino] -N, N-dimethylbenzenamide] dichloropalladium) was added. The mixture was added and heated to reflux in an oil bath at 50 ° C. for 35 minutes. After confirming disappearance of the starting material by TLC, the reaction solution was concentrated under reduced pressure. The residue was purified by silica gel column chromatography (ethyl acetate / hexane = 1/3) to obtain 6.66 g (23.2 mmol) of Compound 5 as a colorless transparent viscous liquid. (Yield 81%)
TLC (ethyl acetate / hexane = 1/1): R f value = 0.42 (compound 5)
1 H-NMR (500 MHz, CDCl 3 , δ) 1.46-1.51 (9H, m, Boc), 2.83-2.95 (2H, m), 3.23-3.31 (1H, m), 3.42-3.77 (9H, m), 4.41-4.44 (1.5 / 2H, m), 4.59 (0.5 / 2H, d, 18Hz), 5.46-5.48 (1H, m), 5.56-5.59 (1H, m)
ESI-MS: Calcd for C 14 H 25 NO 5 [M + H] + , 288.2; found 288.6
(工程3)化合物6の合成
Figure JPOXMLDOC01-appb-C000033

 化合物5 6.90g(1.00eq.、24.0mmol)に、室温、アルゴンガス雰囲気下、モレキュラーシーブス4A(粉末状)10gと無水ジクロロメタン(500mL)を添加し、懸濁溶液とした。40℃のオイルバス中で、二クロム酸ピリジニウム(PDC)13.6g(1.50eq.、36.0mmol)を添加し、5時間攪拌した。その後さらに室温で終夜攪拌した。TLCで原料の消失を確認後、反応液をろ過し、残渣をクロロホルム(600mL)で洗浄した。ろ液を減圧濃縮した後、クロロホルム600mLを添加し、水(300mL)で2回洗浄した。有機層を硫酸ナトリウムで乾燥し、減圧濃縮した。残渣をシリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン=1/3)で精製し、化合物6 5.67g(19.9mmol)を黄色透明粘性液体として得た。(収率83%)
 TLC(酢酸エチル/ヘキサン=1/1):R値=0.38(化合物6)
1H-NMR(500MHz,CDCl3,δ) 1.43-1.46(9H, m, Boc), 3.38-3.55(8H, m), 3.67-3.94(3H, m), 4.02-4.06(1H, m), 5.84-5.95(2H, m)
ESI-MS: Calcd for C14H23NO5[M+H]+, 286.2; found 286.6
(Step 3) Synthesis of Compound 6
Figure JPOXMLDOC01-appb-C000033

To 6.90 g (1.00 eq., 24.0 mmol) of Compound 5 was added 10 g of molecular sieves 4A (powder) and anhydrous dichloromethane (500 mL) at room temperature under an argon gas atmosphere to obtain a suspension solution. In an oil bath at 40 ° C., 13.6 g (1.50 eq., 36.0 mmol) of pyridinium dichromate (PDC) was added and stirred for 5 hours. Thereafter, the mixture was further stirred overnight at room temperature. After confirming disappearance of the starting material by TLC, the reaction solution was filtered, and the residue was washed with chloroform (600 mL). After the filtrate was concentrated under reduced pressure, 600 mL of chloroform was added and washed twice with water (300 mL). The organic layer was dried over sodium sulfate and concentrated under reduced pressure. The residue was purified by silica gel column chromatography (ethyl acetate / hexane = 1/3) to obtain 5.67 g (19.9 mmol) of Compound 6 as a yellow transparent viscous liquid. (Yield 83%)
TLC (ethyl acetate / hexane = 1/1): R f value = 0.38 (compound 6)
1 H-NMR (500 MHz, CDCl 3 , δ) 1.43-1.46 (9H, m, Boc), 3.38-3.55 (8H, m), 3.67-3.94 (3H, m), 4.02-4.06 (1H, m), 5.84-5.95 (2H, m)
ESI-MS: Calcd for C 14 H 23 NO 5 [M + H] + , 286.2; found 286.6
(工程4)化合物7の合成
Figure JPOXMLDOC01-appb-C000034

 化合物6 5.64g(1.00eq.、19.8mmol)をエタノール(500mL)に溶解させ、5%パラジウム/炭素1.13gを添加し、反応系内を水素ガスで置換した後、室温下、終夜攪拌した。TLCで原料の消失を確認後、反応液をセライトろ過し、残渣をメタノール(700mL)で洗浄した。ろ液を減圧濃縮し、真空乾燥することで、化合物7 5.61g(19.5mmol)を、淡黄色透明粘性液体として得た。(収率99%)
 TLC(酢酸エチル/ヘキサン=1/1):R値=0.29(化合物7)
1H-NMR(500MHz,CDCl3,δ) 1.45-1.47(9H, m, Boc), 1.99-2.18(2H, m), 2.34-2.5(2H, m), 2.71-2.76(0.6/1H, m), 2.81-2.89(1H, m), 2.95(0.4/1H, dt, 14Hz, 5Hz), 3.33-3.34(3H, m), 3.55-3.57(3H, m), 3.59-3.64(0.4/1H, m), 3.69-3.89(3H, m), 3.95-3.96(0.6/1H, m)
ESI-MS: Calcd for C14H25NO5 [M+H]+, 288.2; found 288.6
(Step 4) Synthesis of Compound 7
Figure JPOXMLDOC01-appb-C000034

5.64 g (1.00 eq., 19.8 mmol) of Compound 6 was dissolved in ethanol (500 mL), 5% palladium / carbon 1.13 g was added, and the reaction system was replaced with hydrogen gas. Stir overnight. After confirming disappearance of the raw material by TLC, the reaction solution was filtered through Celite, and the residue was washed with methanol (700 mL). The filtrate was concentrated under reduced pressure and vacuum-dried to obtain 5.61 g (19.5 mmol) of Compound 7 as a pale yellow transparent viscous liquid. (Yield 99%)
TLC (ethyl acetate / hexane = 1/1): R f value = 0.29 (compound 7)
1 H-NMR (500 MHz, CDCl 3 , δ) 1.45-1.47 (9H, m, Boc), 1.99-2.18 (2H, m), 2.34-2.5 (2H, m), 2.71-2.76 (0.6 / 1H, m ), 2.81-2.89 (1H, m), 2.95 (0.4 / 1H, dt, 14Hz, 5Hz), 3.33-3.34 (3H, m), 3.55-3.57 (3H, m), 3.59-3.64 (0.4 / 1H, m), 3.69-3.89 (3H, m), 3.95-3.96 (0.6 / 1H, m)
ESI-MS: Calcd for C 14 H 25 NO 5 [M + H] + , 288.2; found 288.6
(工程5)化合物8の合成
Figure JPOXMLDOC01-appb-C000035

 化合物7 3.98g(1.00eq.、13.9mmol)を、エタノール/水=1/1中100mMのアニリン溶液110mL(0.789eq.、11.0mmol)に溶解させ、セミカルバジド塩酸塩15.5g(10.0eq.、139mmol)、酢酸11.2mL(14.0eq.、195mmol)を添加し、室温下、8.5時間攪拌した。TLCで原料の消失を確認後、1Nの水酸化ナトリウム水溶液192mLで、反応液のpHを約6に調整した。反応液中のエタノールを減圧留去し、酢酸エチル(400mL)を添加し、水(100mL)で洗浄した。有機層を硫酸ナトリウムで乾燥後、減圧濃縮、真空乾燥することで、セレナジアゾールの中間体を粗製物として得た。
(Step 5) Synthesis of Compound 8
Figure JPOXMLDOC01-appb-C000035

3.98 g (1.00 eq., 13.9 mmol) of compound 7 was dissolved in 110 mL (0.789 eq., 11.0 mmol) of a 100 mM aniline solution in ethanol / water = 1/1 to give 15.5 g of semicarbazide hydrochloride. (10.0 eq., 139 mmol) and 11.2 mL (14.0 eq., 195 mmol) of acetic acid were added and stirred at room temperature for 8.5 hours. After confirming the disappearance of the raw material by TLC, the pH of the reaction solution was adjusted to about 6 with 192 mL of 1N aqueous sodium hydroxide solution. Ethanol in the reaction solution was distilled off under reduced pressure, ethyl acetate (400 mL) was added, and the mixture was washed with water (100 mL). The organic layer was dried over sodium sulfate, concentrated under reduced pressure, and dried under vacuum to obtain a serenadiazole intermediate as a crude product.
 得られた中間体を1,4-ジオキサン(50mL)に溶解させ、二酸化セレン7.11g(4.60eq.、6.41mmol)を1,4-ジオキサン/水=1/1(30mL)に溶解させた溶液を、室温下、4.5時間かけてゆっくり滴下投入した。その後、室温下、4日間反応させた後、反応液を減圧濃縮した。残渣に酢酸エチル(400mL)を添加し、水(100mL)で洗浄した。有機層を硫酸ナトリウムで乾燥後、減圧濃縮し、シリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン=1/1)で精製する事により、化合物8 4.49g(11.9mmol)を、茶色透明粘性液体として得た(収率86%)。 The obtained intermediate was dissolved in 1,4-dioxane (50 mL), and 7.11 g (4.60 eq., 6.41 mmol) of selenium dioxide was dissolved in 1,4-dioxane / water = 1/1 (30 mL). The resulting solution was slowly added dropwise over 4.5 hours at room temperature. Then, after reacting at room temperature for 4 days, the reaction solution was concentrated under reduced pressure. Ethyl acetate (400 mL) was added to the residue and washed with water (100 mL). The organic layer was dried over sodium sulfate, concentrated under reduced pressure, and purified by silica gel column chromatography (ethyl acetate / hexane = 1/1) to obtain 4.49 g (11.9 mmol) of Compound 8 as a brown transparent viscous liquid. Obtained (yield 86%).
 TLC(酢酸エチル/ヘキサン=1/1):R値=0.53(化合物8)
1H-NMR(500MHz,CDCl3,δ) 1.46-1.49(9H, m, Boc), 2.37(0.4/1H, dd, 14Hz, 10Hz), 2.43(0.6/1H, dd, 15Hz, 10Hz), 2.88-2.98(1H, m), 3.31-3.41(5H, m), 3.57(3H, s), 3.77(0.6/1H, dd, 15Hz, 5Hz), 3.89(0.4/1H, dd, 14Hz, 5Hz), 4.08-4.16(1H, m), 4.24(0.6/1H, ddd, 14Hz, 5Hz, 4Hz), 4.36-4.39(0.4/1H, m), 5.83-5.41(1H, m)
ESI-MS: Calcd for C14H23N3O4Se [M+H]+, 378.1; found 378.6
TLC (ethyl acetate / hexane = 1/1): R f value = 0.53 (compound 8)
1 H-NMR (500 MHz, CDCl 3 , δ) 1.46-1.49 (9 H, m, Boc), 2.37 (0.4 / 1 H, dd, 14 Hz, 10 Hz), 2.43 (0.6 / 1 H, dd, 15 Hz, 10 Hz), 2.88 -2.98 (1H, m), 3.31-3.41 (5H, m), 3.57 (3H, s), 3.77 (0.6 / 1H, dd, 15Hz, 5Hz), 3.89 (0.4 / 1H, dd, 14Hz, 5Hz), 4.08-4.16 (1H, m), 4.24 (0.6 / 1H, ddd, 14Hz, 5Hz, 4Hz), 4.36-4.39 (0.4 / 1H, m), 5.83-5.41 (1H, m)
ESI-MS: Calcd for C 14 H 23 N 3 O 4 Se [M + H] + , 378.1; found 378.6
(工程6)化合物9の合成
Figure JPOXMLDOC01-appb-C000036

 化合物8 2.99g(1.00eq.、7.95mmol)に、氷浴下、4N塩化水素/1,4-ジオキサン(12mL)を添加し、室温で1.5時間攪拌した。反応液は、赤白色の懸濁溶液となった。TLCで原料の消失を確認後、反応液にヘキサン(80mL)を添加し、上清を除去する操作を4回行い、さらにジエチルエーテル(80mL)を添加し、上清を除去する操作を3回繰り返し、沈殿を洗浄した。得られた沈殿を真空乾燥することで、目的物9 2.59g(8.28mmol)を赤白色粉体として得た(収率:定量的)。
1H-NMR(500MHz,D2O,δ) 3.34(3H, s, OMe), 3.39-3.45(1H, m), 3.48-3.57(5H, m), 3.67-3.73(2H, m), 3.91-3.97(1H, m), 4.23(1H, t, 6Hz), 5.58(1H, d, 6Hz)
ESI-MS: Calcd for C9H15N3O2Se [M+H]+, 278.0; found 278.2
(Step 6) Synthesis of Compound 9
Figure JPOXMLDOC01-appb-C000036

4N Hydrogen chloride / 1,4-dioxane (12 mL) was added to 2.99 g (1.00 eq., 7.95 mmol) of Compound 8 in an ice bath, and the mixture was stirred at room temperature for 1.5 hours. The reaction solution became a red-white suspension. After confirming the disappearance of the raw materials by TLC, hexane (80 mL) was added to the reaction solution, and the supernatant was removed four times. Further, diethyl ether (80 mL) was added, and the supernatant was removed three times. Repeatedly, the precipitate was washed. The obtained precipitate was vacuum-dried to obtain 2.59 g (8.28 mmol) of the target product 9 as a red white powder (yield: quantitative).
1 H-NMR (500 MHz, D 2 O, δ) 3.34 (3H, s, OMe), 3.39-3.45 (1H, m), 3.48-3.57 (5H, m), 3.67-3.73 (2H, m), 3.91 -3.97 (1H, m), 4.23 (1H, t, 6Hz), 5.58 (1H, d, 6Hz)
ESI-MS: Calcd for C 9 H 15 N 3 O 2 Se [M + H] + , 278.0; found 278.2
(工程7)化合物10の合成
Figure JPOXMLDOC01-appb-C000037

 Fmoc-グリシン571mg(1.20eq.、1.92mmol)を、メタノール/水=9/1(4mL)に溶解させ、5N水酸化ナトリウム水溶液(384μL、1.20eq.、1.92mmol)を添加した。この溶液に、室温下、化合物9 500mg(1.00eq.、1.60mmol)のメタノール/水=9/1(6mL)溶液を添加し、さらにメタノール/水=1/1(500μL)を追加した。4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウムクロリド(DMT-MM)532mg(1.20eq.、9.40mmol)及び5N水酸化ナトリウム水溶液をpH7付近になるまで添加し、室温下、3時間攪拌した。反応液を減圧濃縮後、残液に酢酸エチル(300mL)を添加し、1N塩酸(100mL)で2回、さらに飽和炭酸水素ナトリウム水溶液(100mL)で洗浄した。有機層を硫酸ナトリウムで乾燥後、シリカゲルカラムクロマトグラフィー(酢酸エチル/ヘキサン=3/2~2/1)で精製し、化合物10 687mg(1.24mmol)を、淡黄白色アモルファスとして得た(収率77%)。
 TLC(酢酸エチル/ヘキサン=3/1):R値=0.37(化合物10)
1H-NMR(500MHz,CDCl3,δ) 2.57(0.4/1H, dd, 14Hz, 5Hz), 3.24-3.60(10H, m), 3.68-3.70(0.6/1H, m), 3.82-4.14(3H, m), 4.22-4.50(4H, m), 5.40-5.48(1H, m, NH), 5.67(0.6/1H, brs, NH)5.84(0.4/1H, brs, NH), 7.29-7.33(2H, m), 7.38-7.42(2H, m), 7.16(2H, t, 7Hz), 7.76(2H, dd, 8Hz, 4Hz)
ESI-MS: Calcd for C26H28N4O5Se [M+H]+, 557.1; found 557.1
(Step 7) Synthesis of Compound 10
Figure JPOXMLDOC01-appb-C000037

Fmoc-glycine 571 mg (1.20 eq., 1.92 mmol) was dissolved in methanol / water = 9/1 (4 mL), and 5N aqueous sodium hydroxide solution (384 μL, 1.20 eq., 1.92 mmol) was added. . To this solution, a solution of 500 mg (1.00 eq., 1.60 mmol) of Compound 9 in methanol / water = 9/1 (6 mL) was added at room temperature, and methanol / water = 1/1 (500 μL) was further added. . 532 mg (1.20 eq., 9.40 mmol) 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride (DMT-MM) and 5N sodium hydroxide The aqueous solution was added until the pH became around 7, and the mixture was stirred at room temperature for 3 hours. The reaction mixture was concentrated under reduced pressure, ethyl acetate (300 mL) was added to the residue, and the mixture was washed twice with 1N hydrochloric acid (100 mL) and further with a saturated aqueous sodium bicarbonate solution (100 mL). The organic layer was dried over sodium sulfate and then purified by silica gel column chromatography (ethyl acetate / hexane = 3/2 to 2/1) to obtain 687 mg (1.24 mmol) of compound 10 as a pale yellow white amorphous (yield). Rate 77%).
TLC (ethyl acetate / hexane = 3/1): R f value = 0.37 (compound 10)
1 H-NMR (500MHz, CDCl 3 , δ) 2.57 (0.4 / 1H, dd, 14Hz, 5Hz), 3.24-3.60 (10H, m), 3.68-3.70 (0.6 / 1H, m), 3.82-4.14 (3H , m), 4.22-4.50 (4H, m), 5.40-5.48 (1H, m, NH), 5.67 (0.6 / 1H, brs, NH) 5.84 (0.4 / 1H, brs, NH), 7.29-7.33 (2H , m), 7.38-7.42 (2H, m), 7.16 (2H, t, 7Hz), 7.76 (2H, dd, 8Hz, 4Hz)
ESI-MS: Calcd for C 26 H 28 N 4 O 5 Se [M + H] + , 557.1; found 557.1
(工程8)DIMAC-アミン塩酸塩11の合成
Figure JPOXMLDOC01-appb-C000038

 化合物10 2.20g(1.00eq.、3.96mmol)を無水トルエン(44mL)に溶解させ、トリフェニルフォスフィン1.87g(1.80eq.、7.14mmol)を室温下、添加した。130℃のオイルバスで、20時間加熱還流させた後、反応液を減圧濃縮した。残液を酢酸エチル(60mL)で希釈し、水(30mL)で5回抽出した。水層を減圧濃縮し、真空乾燥する事で、DIMAC-アミンを黄色粘性液体として得た。
(Step 8) Synthesis of DIMAC-amine hydrochloride 11
Figure JPOXMLDOC01-appb-C000038

2.20 g (1.00 eq., 3.96 mmol) of Compound 10 was dissolved in anhydrous toluene (44 mL), and 1.87 g (1.80 eq., 7.14 mmol) of triphenylphosphine was added at room temperature. After refluxing with heating at 130 ° C. for 20 hours, the reaction solution was concentrated under reduced pressure. The residue was diluted with ethyl acetate (60 mL) and extracted five times with water (30 mL). The aqueous layer was concentrated under reduced pressure and vacuum dried to obtain DIMAC-amine as a yellow viscous liquid.
 得られたアミン体をジエチルエーテル(25mL)に溶解させ、溶液を激しく攪拌し、4N塩化水素/1,4-ジオキサン(1mL)を添加することで、沈殿を析出させた。上清を除去し、ジエチルエーテル(40mL)での洗浄を3回行い、沈殿を真空乾燥する事で、DIMAC-アミン塩酸塩574mg(2.19mmol)を、淡赤白色粉末として得た(収率55%)。
1H-NMR(500MHz,D2O,δ) 2.24-2.39(1H, m), 2.60-2.81(1H, m), 3.16(1H, dd, 15Hz, 9Hz), 3.37-3.44(4H, m), 3.55-3.60(3H, m, OMe), 3.69-3.83(1H, m), 3.93-4.06(2H, m), 4.09-4.20(2H, m), 4.27-4.38(1H, m)
ESI-MS: Calcd for C11H18N2O3 [M+H]+, 227.1; found 227.1
The obtained amine compound was dissolved in diethyl ether (25 mL), the solution was vigorously stirred, and 4N hydrogen chloride / 1,4-dioxane (1 mL) was added to precipitate a precipitate. The supernatant was removed, washed with diethyl ether (40 mL) three times, and the precipitate was vacuum-dried to obtain 574 mg (2.19 mmol) of DIMAC-amine hydrochloride as a pale red white powder (yield) 55%).
1 H-NMR (500 MHz, D 2 O, δ) 2.24-2.39 (1H, m), 2.60-2.81 (1H, m), 3.16 (1H, dd, 15 Hz, 9 Hz), 3.37-3.44 (4H, m) , 3.55-3.60 (3H, m, OMe), 3.69-3.83 (1H, m), 3.93-4.06 (2H, m), 4.09-4.20 (2H, m), 4.27-4.38 (1H, m)
ESI-MS: Calcd for C 11 H 18 N 2 O 3 [M + H] + , 227.1; found 227.1
[実施例2]:DIMAC-アミン塩酸塩のヒアルロン酸への導入
 ヒアルロン酸(HA:1,100kDa、カルボキシ基1.00ea、鶏冠由来、生化学工業株式会社)300mgを注射用水(WFI)30mL及びエタノール(EtOH)30mLに溶解させ、実施例1、工程8で調製したDIMAC-アミン塩酸塩11を19.7mg(0.100eq.、75.0μmol)加えた。さらに、4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウムクロリドn水和物(DMT-MM、株式会社トクヤマ社)35.1mg(0.169eq.、127μmol)を加えて終夜攪拌した。その後、5%炭酸水素ナトリウム水溶液4.50mLを加えて4時間攪拌した後、50%酢酸水溶液129μL、塩化ナトリウム1.50g/注射用水4.92mLを順次加え、エタノールを添加し沈殿を形成させた。上清を除去し、90%エタノール/注射用水での洗浄を2回、エタノールでの洗浄を2回、ジエチルエーテルでの洗浄を1回実施した。得られた沈殿を終夜減圧乾燥し、目的とするDIMAC導入ヒアルロン酸220mgを得た。H-NMR(DO中)にて、導入率を算出したところ、10%であった。
 なお、導入率は、原料GAG骨格由来ピークの積分値と導入された化合物由来ピークの積分比により、算出した。
[Example 2]: Introduction of DIMAC-amine hydrochloride into hyaluronic acid 300 mg of hyaluronic acid (HA: 1,100 kDa, carboxy group 1.00ea, derived from chicken crown, Seikagaku Corporation) and 30 mL of water for injection (WFI) and 19.7 mg (0.100 eq., 75.0 μmol) of DIMAC-amine hydrochloride 11 prepared in Example 1, Step 8 was added after dissolving in 30 mL of ethanol (EtOH). Furthermore, 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride n hydrate (DMT-MM, Tokuyama Corporation) 35.1 mg (0 169 eq., 127 μmol) and stirred overnight. Thereafter, 4.50 mL of 5% aqueous sodium hydrogen carbonate solution was added and stirred for 4 hours, and then 129 μL of 50% aqueous acetic acid solution, 1.50 g of sodium chloride / 4.92 mL of water for injection were added in that order, and ethanol was added to form a precipitate. . The supernatant was removed and washed twice with 90% ethanol / water for injection, twice with ethanol, and once with diethyl ether. The obtained precipitate was dried under reduced pressure overnight to obtain 220 mg of target DIMAC-introduced hyaluronic acid. When the introduction rate was calculated by 1 H-NMR (in D 2 O), it was 10%.
The introduction rate was calculated from the integrated value of the peak derived from the raw material GAG skeleton and the integrated ratio of the peak derived from the compound.
[実施例3]
 原料ヒアルロン酸の分子量を800kDaとした以外は、実施例2と同様の方法でDIMAC導入ヒアルロン酸252mgを得た。導入率は、12%であった。
[Example 3]
252 mg of DIMAC-introduced hyaluronic acid was obtained in the same manner as in Example 2 except that the molecular weight of the raw material hyaluronic acid was 800 kDa. The introduction rate was 12%.
[実施例4]
 原料ヒアルロン酸の分子量を600kDaとした以外は、実施例2と同様の方法でDIMAC導入ヒアルロン酸241mgを得た。導入率は、7%であった。
[Example 4]
241 mg of DIMAC-introduced hyaluronic acid was obtained in the same manner as in Example 2 except that the molecular weight of the raw material hyaluronic acid was 600 kDa. The introduction rate was 7%.
[実施例5]
 原料ヒアルロン酸の分子量を170kDaとした以外は、実施例2と同様の方法でDIMAC導入ヒアルロン酸237mgを得た。導入率は、10%であった。
[Example 5]
237 mg of DIMAC-introduced hyaluronic acid was obtained in the same manner as in Example 2 except that the molecular weight of the raw material hyaluronic acid was 170 kDa. The introduction rate was 10%.
[実施例6]:DBCO-アミン塩酸塩のヒアルロン酸への導入
 以下の構造式:
Figure JPOXMLDOC01-appb-C000039

で示されるDBCO-C2-アミン(Click Chemistry Tools 社)を、以下の手順に従って、ヒアルロン酸にアミド結合を形成させることにより導入した。
Example 6: Introduction of DBCO-amine hydrochloride to hyaluronic acid The following structural formula:
Figure JPOXMLDOC01-appb-C000039

DBCO-C2-amine (Crick Chemistry Tools) represented by is introduced by forming an amide bond in hyaluronic acid according to the following procedure.
 ヒアルロン酸(250kDa、カルボキシ基1.00ea、鶏冠由来、生化学工業株式会社)500mgを注射用水(WFI)50mL、及びエタノール(EtOH)50mLに溶解させ、DBCO-C2-アミン17.2mg(0.050eq.、62.5μmol)、1N塩酸62.5μL(0.050eq.、62.5μmol)を加えた。さらに、DMT-MM 29.2mg(0.085eq.、106μmol)を加えて終夜攪拌した。その後、5%炭酸水素ナトリウム水溶液7.5mLを加えて4時間攪拌した後、50%酢酸水溶液で中和し、塩化ナトリウム2.5g/注射用水8.2mLを順次加え、エタノールを添加し沈殿を形成させた。上清を除去し、90%エタノール/注射用水での洗浄を2回、エタノールでの洗浄を2回、ジエチルエーテル洗浄を1回実施した。得られた沈殿を終夜減圧乾燥し、目的とするDBCO導入ヒアルロン酸498mgを得た。H-NMR(DO中)にて、導入率を算出したところ、5%であった。 Hyaluronic acid (250 kDa, carboxy group 1.00 ea, derived from chicken crown, Seikagaku Corporation) 500 mg was dissolved in water for injection (WFI) 50 mL and ethanol (EtOH) 50 mL, and DBCO-C2-amine 17.2 mg (.0.1 050 eq., 62.5 μmol) and 62.5 μL of 1N hydrochloric acid (0.050 eq., 62.5 μmol) were added. Further, 29.2 mg (0.085 eq., 106 μmol) of DMT-MM was added and stirred overnight. Thereafter, 7.5 mL of 5% aqueous sodium hydrogen carbonate solution was added and stirred for 4 hours, then neutralized with 50% aqueous acetic acid solution, 2.5 g of sodium chloride / 8.2 mL of water for injection were sequentially added, and ethanol was added to precipitate. Formed. The supernatant was removed, and washing with 90% ethanol / water for injection was performed twice, washing with ethanol twice, and washing with diethyl ether once. The obtained precipitate was dried under reduced pressure overnight to obtain 498 mg of the target DBCO-introduced hyaluronic acid. When the introduction rate was calculated by 1 H-NMR (in D 2 O), it was 5%.
[実施例7]
 DBCO-C2-アミンの添加量を34.4mg(0.100eq.、125μmol)、1N塩酸の添加量を125μL(0.100eq.、125μmol)、DMT-MMの添加量を58.4mg(0.169eq.、211μmol)とした以外は、実施例6と同様の方法で、目的とするDBCO導入ヒアルロン酸521mgを得た。導入率は、10%であった。
[Example 7]
The added amount of DBCO-C2-amine was 34.4 mg (0.100 eq., 125 μmol), the added amount of 1N hydrochloric acid was 125 μL (0.100 eq., 125 μmol), and the added amount of DMT-MM was 58.4 mg (0. 169 eq., 211 μmol) In the same manner as in Example 6, 521 mg of the target DBCO-introduced hyaluronic acid was obtained. The introduction rate was 10%.
[実施例8]:アジド-アミン塩酸塩のヒアルロン酸への導入
 HA(1,100kDa、カルボキシ基1.00ea、鶏冠由来、生化学工業株式会社)500mgを注射用水(WFI)50mL、及びエタノール(EtOH)50mLに溶解させ、2-アジドエタンアミン塩酸塩61.0mg(0.400eq.、498μmol)を加えた。さらに、4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホリニウムクロリドn水和物(DMT-MM)234mg(0.678eq.、845μmol)を加えて終夜攪拌した。その後、5%炭酸水素ナトリウム水溶液7.5mLを加えて4時間攪拌した後、50%酢酸水溶液215μL、塩化ナトリウム2.5g/注射用水8.2mLを順次加え、エタノールを添加し沈殿を形成させた。上清を除去し、90%エタノール/注射用水での洗浄を2回、エタノールでの洗浄を3回実施した。得られた沈殿を終夜減圧乾燥し、目的とするアジド導入ヒアルロン酸547mgを得た。導入率は、アジド基をSPAACでクマリン標識した誘導体をGPC-HPLCで解析する事により算出した。導入率は、22%であった。
[Example 8]: Introduction of azido-amine hydrochloride into hyaluronic acid 500 mg of HA (1,100 kDa, carboxy group 1.00 ea, derived from chicken crown, Seikagaku Corporation), 50 mL of water for injection (WFI), and ethanol ( EtOH) was dissolved in 50 mL, and 61.0 mg (0.400 eq., 498 μmol) of 2-azidoethanamine hydrochloride was added. Further, 234 mg (0.678 eq., 845 μmol) of 4- (4,6-dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium chloride n hydrate (DMT-MM) was added. In addition, the mixture was stirred overnight. Thereafter, 7.5 mL of 5% aqueous sodium hydrogen carbonate solution was added and stirred for 4 hours, and then 215 μL of 50% aqueous acetic acid solution, 2.5 g of sodium chloride / 8.2 mL of water for injection were sequentially added, and ethanol was added to form a precipitate. . The supernatant was removed, and washing with 90% ethanol / water for injection was performed twice, and washing with ethanol was performed three times. The resulting precipitate was dried overnight under reduced pressure to obtain 547 mg of the desired azide-introduced hyaluronic acid. The introduction rate was calculated by analyzing a derivative in which the azide group was coumarin-labeled with SPAAC by GPC-HPLC. The introduction rate was 22%.
[実施例9]
 2-アジドエタンアミン塩酸塩の添加量を45.8mg(0.300eq.、374μmol)とした以外は、実施例8と同様の方法で、アジド導入ヒアルロン酸531mgを得た。導入率は、21%であった。
[Example 9]
531 mg of azide-introduced hyaluronic acid was obtained in the same manner as in Example 8, except that the amount of 2-azidoethanamine hydrochloride added was changed to 45.8 mg (0.300 eq., 374 μmol). The introduction rate was 21%.
[実施例10]
 2-アジドエタンアミン塩酸塩の添加量を30.5mg(0.200eq.、249μmol)とした以外は、実施例8と同様の方法で、アジド導入ヒアルロン酸535mgを得た。導入率は、16%であった。
[Example 10]
535 mg of azide-introduced hyaluronic acid was obtained in the same manner as in Example 8, except that the amount of 2-azidoethanamine hydrochloride added was 30.5 mg (0.200 eq., 249 μmol). The introduction rate was 16%.
[実施例11]
 原料ヒアルロン酸を170kDa、2-アジドエタンアミン塩酸塩の添加量を15.3mg(0.100eq.、125μmol)とした以外は、実施例8と同様の方法で、アジド導入ヒアルロン酸490mgを得た。導入率は10%であった。
[Example 11]
490 mg of azide-introduced hyaluronic acid was obtained in the same manner as in Example 8, except that the raw material hyaluronic acid was 170 kDa and the amount of 2-azidoethanamine hydrochloride added was 15.3 mg (0.100 eq., 125 μmol). . The introduction rate was 10%.
[実施例12]
 アミンを11-アジド-3,6,9-トリオキサウンデカン-1-アミン塩酸塩12.7mg(0.100eq.、50.0μmol)とした以外は、実施例11と同様の方法でアジド基導入ヒアルロン酸231mgを得た。導入率は、4%であった。
[Example 12]
The azide group was introduced in the same manner as in Example 11 except that the amine was changed to 12.7 mg (0.100 eq., 50.0 μmol) of 11-azido-3,6,9-trioxaundecan-1-amine hydrochloride. 231 mg of hyaluronic acid was obtained. The introduction rate was 4%.
[実施例13]
 アミンをO-(2-アミノエチル)-O’-(2-アジドエチル)ヘプタエチレングリコール塩酸塩23.7mg(0.100eq.、50.0μmol)とした以外は、実施例11と同様の方法でアジド基導入ヒアルロン酸231mgを得た。導入率は、4%であった。
[Example 13]
Except that the amine was O- (2-aminoethyl) -O ′-(2-azidoethyl) heptaethylene glycol hydrochloride 23.7 mg (0.100 eq., 50.0 μmol), the same procedure as in Example 11 was performed. As a result, 231 mg of azide group-introduced hyaluronic acid was obtained. The introduction rate was 4%.
[実施例14]:DIMAC-アミン塩酸塩のコンドロイチン硫酸への導入
 コンドロイチン硫酸(CS:36kDa、カルボキシ基1.00ea、サメ軟骨由来、生化学工業株式会社)500mgを注射用水(WFI)5mL、及びエタノール(EtOH)5mLに溶解させ、実施例1の工程8で調製したDIMAC-アミン塩酸塩11を103mg(0.400eq.、391μmol)加えた。さらに、DMT-MM 184mg(0.678eq.、666μmol)を加えて終夜攪拌した。その後、10%炭酸ナトリウム水溶液5mLを加えて4時間攪拌した後、50%酢酸水溶液1mL、塩化ナトリウム0.5gを順次加え、エタノールと85%エタノール/注射用水を用いて、沈殿を形成させた。上清を除去し、90%エタノール/注射用水での洗浄を2回、エタノールでの洗浄を2回、ジエチルエーテルでの洗浄を1回実施した。得られた沈殿を終夜減圧乾燥し、目的とするDIMAC導入コンドロイチン硫酸388mgを得た。H-NMR(DO中)にて、導入率を算出したところ、42%であった。
Example 14: Introduction of DIMAC-amine hydrochloride into chondroitin sulfate 500 mg of chondroitin sulfate (CS: 36 kDa, carboxy group 1.00 ea, derived from shark cartilage, Seikagaku Corporation) 5 ml of water for injection (WFI), and Dissolved in 5 mL of ethanol (EtOH), 103 mg (0.400 eq., 391 μmol) of DIMAC-amine hydrochloride 11 prepared in Step 8 of Example 1 was added. Further, 184 mg (0.678 eq., 666 μmol) of DMT-MM was added and stirred overnight. Thereafter, 5 mL of 10% aqueous sodium carbonate solution was added and stirred for 4 hours, and then 1 mL of 50% aqueous acetic acid solution and 0.5 g of sodium chloride were sequentially added to form a precipitate using ethanol and 85% ethanol / water for injection. The supernatant was removed and washed twice with 90% ethanol / water for injection, twice with ethanol, and once with diethyl ether. The obtained precipitate was dried under reduced pressure overnight to obtain 388 mg of the target DIMAC-introduced chondroitin sulfate. The introduction rate was calculated by 1 H-NMR (in D 2 O) to be 42%.
[実施例15]
 DIMAC-アミン塩酸塩11の添加量を77.1mg(0.300eq.、279μmol)、DMT-MMの添加量を138mg(0.509eq.、500μmol)とした以外は、実施例14と同様の方法で、目的とするDIMAC導入コンドロイチン硫酸487mgを得た。導入率は、33%であった。
[Example 15]
The same method as in Example 14 except that the addition amount of DIMAC-amine hydrochloride 11 was 77.1 mg (0.300 eq., 279 μmol) and the addition amount of DMT-MM was 138 mg (0.509 eq., 500 μmol). Thus, 487 mg of the target DIMAC-introduced chondroitin sulfate was obtained. The introduction rate was 33%.
[実施例16]
 DIMAC-アミン塩酸塩11の添加量を51.4mg(0.200eq.、196μmol)、DMT-MMの添加量を91.8mg(0.339eq.、331μmol)とした以外は、実施例14と同様の方法で、目的とするDIMAC導入コンドロイチン硫酸487mgを得た。導入率は、21%であった。
[Example 16]
Example 14 except that the amount of DIMAC-amine hydrochloride 11 added was 51.4 mg (0.200 eq., 196 μmol) and the amount of DMT-MM added was 91.8 mg (0.339 eq., 331 μmol). Thus, 487 mg of the target DIMAC-introduced chondroitin sulfate was obtained. The introduction rate was 21%.
[実施例17]:DBCO-C2-アミン塩酸塩のコンドロイチン硫酸への導入
 コンドロイチン硫酸(36kDa、カルボキシ基1.00ea、サメ軟骨由来、生化学工業株式会社)3gを注射用水30mL、及びエタノール30mLに溶解させ、DBCO-C2-アミン161mg(0.100eq.、583μmol)、1N塩酸583μL(0.100eq.、583μmol)を加えた。さらに、DMT-MM276mg(0.169eq.、996μmol)を加えて終夜攪拌した。その後、10%炭酸ナトリウム水溶液30gを加えて2時間攪拌した後、50%酢酸水溶液6mL、塩化ナトリウム3.0gを順次加え、エタノールと85%エタノール/注射用水を用いて、沈殿を形成させた。上清を除去し、90%エタノール/注射用水での洗浄を2回、エタノールでの洗浄を2回、ジエチルエーテルでの洗浄を1回実施した。得られた沈殿を終夜減圧乾燥し、目的とするDBCO導入コンドロイチン硫酸3.14gを得た。H-NMR(DO中)にて、導入率を算出したところ、11%であった。
[Example 17]: Introduction of DBCO-C2-amine hydrochloride into chondroitin sulfate 3 g of chondroitin sulfate (36 kDa, carboxy group 1.00 ea, derived from shark cartilage, Seikagaku Corporation) in 30 mL of water for injection and 30 mL of ethanol After dissolution, 161 mg (0.100 eq., 583 μmol) of DBCO-C2-amine and 583 μL of 1N hydrochloric acid (0.100 eq., 583 μmol) were added. Further, 276 mg (0.169 eq., 996 μmol) of DMT-MM was added and stirred overnight. Thereafter, 30 g of a 10% aqueous sodium carbonate solution was added and stirred for 2 hours, and then 6 mL of a 50% aqueous acetic acid solution and 3.0 g of sodium chloride were successively added to form a precipitate using ethanol and 85% ethanol / water for injection. The supernatant was removed and washed twice with 90% ethanol / water for injection, twice with ethanol, and once with diethyl ether. The resulting precipitate was dried overnight under reduced pressure to obtain 3.14 g of the target DBCO-introduced chondroitin sulfate. When the introduction rate was calculated by 1 H-NMR (in D 2 O), it was 11%.
[実施例18]
 DBCO-C2-アミンの添加量を81.4mg(0.100eq.、295μmol)、1N塩酸添加量を295μL(0.0500eq.、295μmol)、DMT-MM添加量を137mg(0.0848eq.、496μmol)とした以外は、実施例17と同様の方法で、目的とするDBCO導入コンドロイチン硫酸2.95gを得た。導入率は、6%であった。
[Example 18]
DBCO-C2-amine was added in an amount of 81.4 mg (0.100 eq., 295 μmol), 1N hydrochloric acid was added in an amount of 295 μL (0.0500 eq., 295 μmol), and DMT-MM was added in an amount of 137 mg (0.0848 eq., 496 μmol). The target DBCO-introduced chondroitin sulfate (2.95 g) was obtained in the same manner as in Example 17, except for the above. The introduction rate was 6%.
[実施例19]:アジド-アミン塩酸塩のコンドロイチン硫酸への導入
 コンドロイチン硫酸(36kDa、カルボキシ基1.00ea、サメ軟骨由来、生化学工業株式会社)3.00gを注射用水30mL、及びエタノール30mLに溶解させ、2-(2-アジドエトキシ)エタンアミン塩酸塩73.1mg(0.100eq.、596μmol)を加えた。さらに、DMT-MM 275mg(0.169eq.、994μmol)を加えて終夜攪拌した。塩化ナトリウム3.00gを加え、エタノールを用いて、沈殿を形成させた。上清を除去し、90%エタノール/注射用水での洗浄を2回、エタノールでの洗浄を3回実施した。得られた沈殿を終夜減圧乾燥し、目的とするアジド導入コンドロイチン硫酸2.66gを得た。導入率は、アジド基をCuAACでクマリン標識した誘導体をGPC-HPLCで解析する事により算出した。導入率は、11%であった。
[Example 19]: Introduction of azido-amine hydrochloride into chondroitin sulfate 3.00 g of chondroitin sulfate (36 kDa, carboxy group 1.00 ea, derived from shark cartilage, Seikagaku Corporation) in 30 mL of water for injection and 30 mL of ethanol After dissolution, 73.1 mg (0.100 eq., 596 μmol) of 2- (2-azidoethoxy) ethanamine hydrochloride was added. Further, 275 mg (0.169 eq., 994 μmol) of DMT-MM was added and stirred overnight. 3.00 g of sodium chloride was added and a precipitate was formed using ethanol. The supernatant was removed, and washing with 90% ethanol / water for injection was performed twice, and washing with ethanol was performed three times. The resulting precipitate was dried overnight under reduced pressure to obtain 2.66 g of the desired azide-introduced chondroitin sulfate. The introduction rate was calculated by analyzing a derivative in which the azide group was coumarin-labeled with CuAAC by GPC-HPLC. The introduction rate was 11%.
[実施例20]
 2-(2-アジドエトキシ)エタンアミン塩酸塩の添加量を36.0mg(0.0500eq.、294μmol)、DMT-MMの添加量を139mg(0.0848eq.、501μmol)とした以外は、実施例19と同様の方法で、目的とするアジド導入コンドロイチン硫酸2.74gを得た。導入率は、5%であった。
[Example 20]
Example 2 except that the addition amount of 2- (2-azidoethoxy) ethanamine hydrochloride was 36.0 mg (0.0500 eq., 294 μmol) and the addition amount of DMT-MM was 139 mg (0.0848 eq., 501 μmol). In the same manner as in No. 19, 2.74 g of the target azide-introduced chondroitin sulfate was obtained. The introduction rate was 5%.
[実施例21]:混合後の増粘特性(CS+CS)
 以下の実験手順により、アジド導入コンドロイチン硫酸(導入率11%、実施例19由来)溶液AとDBCO導入コンドロイチン硫酸(導入率11%、実施例17由来)溶液Bの混合後の増粘特性を調査した。
(1)20mMリン酸緩衝生理食塩水(NaHPO+NaHPO+NaCl)(pH6.5)中、それぞれ下記濃度の溶液Aと溶液Bを調製した。
1.10wt%、1.75wt%、2.20wt%、3.50wt%、4.40wt%
(2)Voltex(Scientific Industries社製)により溶液A及びBを1:1(v/v)で均一に混合した。
(3)E型回転粘度計TV-L(コーン:CORD-1、1°34’xR24)(東機産業社製)、25℃、5rpmでの粘度値(Pa・s)の経時変化を追跡した。
 結果を図1に示す。濃度に依存した、粘度値上昇効率の向上が確認された。
[Example 21]: Thickening property after mixing (CS + CS)
According to the following experimental procedure, the thickening characteristics after mixing of azide-introduced chondroitin sulfate (introduction rate 11%, derived from Example 19) solution A and DBCO-introduced chondroitin sulfate (introduction rate 11%, derived from Example 17) solution B were investigated. did.
(1) A solution A and a solution B having the following concentrations were prepared in 20 mM phosphate buffered saline (Na 2 HPO 4 + NaH 2 PO 4 + NaCl) (pH 6.5), respectively.
1.10 wt%, 1.75 wt%, 2.20 wt%, 3.50 wt%, 4.40 wt%
(2) The solutions A and B were uniformly mixed at 1: 1 (v / v) by Voltex (manufactured by Scientific Industries).
(3) E-type rotational viscometer TV-L (Cone: CORD-1, 1 ° 34'xR24) (manufactured by Toki Sangyo Co., Ltd.), tracking changes over time in viscosity value (Pa · s) at 25 ° C, 5 rpm did.
The results are shown in FIG. It was confirmed that the viscosity value increasing efficiency was improved depending on the concentration.
[実施例22]
 アジド導入コンドロイチン硫酸の導入率を5%(実施例20由来)、DBCO導入コンドロイチン硫酸の導入率を6%(実施例18由来)として、濃度を1.75wt%、2.20wt%、3.50wt%、4.40wt%、7.00wt%とした以外は、実施例21と同様の方法で、混合後の増粘特性を調査した。
 結果を図2に示す。実施例22と同様に、濃度に依存した、粘度値上昇効率の向上が確認された。
[Example 22]
The introduction rate of azido introduced chondroitin sulfate is 5% (derived from Example 20), the introduction rate of DBCO introduced chondroitin sulfate is 6% (derived from Example 18), and the concentrations are 1.75 wt%, 2.20 wt%, 3.50 wt%. %, 4.40 wt%, and 7.00 wt%, the thickening properties after mixing were investigated in the same manner as in Example 21.
The results are shown in FIG. As in Example 22, an improvement in the viscosity value increasing efficiency depending on the concentration was confirmed.
[実施例23]:混合後の濃度と物理的性質の関係(CS+CS)
 以下の実験手順により、アジド導入コンドロイチン硫酸(導入率11%、実施例19由来)溶液AとDBCO導入コンドロイチン硫酸(導入率11%、実施例17由来)溶液Bの混合(1:1(v/v))により得られるゲル固体の物性測定を実施した。
(1)20mM リン酸緩衝生理食塩水(NaHPO+NaHPO+NaCl)(pH6.5)中、それぞれ下記濃度の溶液Aと溶液Bを調製した。
1.10wt%、1.75wt%、2.20wt%、3.50wt%、4.40wt%、7.00wt%
(2)Voltex(Scientific Industries社製)により溶液A、Bを1:1(v/v)で均一に混合した。
(3)25mL遠沈管に混合液を1.8g注入し、室温で終夜静置した。
(4)テクスチャーアナライザー(TA.XT plus)(Stable Micro Systems社製)、P/0.5HSプローブ、5kgロードセルにより、歪みと応力の関係を調査した。
 結果を図3及び下記の表1に示す。また、対照としてのラット筋肉又はラット脂肪での測定結果を表2に示す。実施例21と相関して、濃度が高いほど、歪みに対する高い応力が観察された。応力は、ラット筋肉と比較しても顕著に高い値といえる。この応力は、形状維持性能に関連した重要な指標といえる。
[Example 23]: Relationship between concentration after mixing and physical properties (CS + CS)
According to the following experimental procedure, mixing of azide-introduced chondroitin sulfate (introduction rate 11%, derived from Example 19) solution A and DBCO-introduced chondroitin sulfate (introduction rate 11%, derived from Example 17) solution B (1: 1 (v / The physical properties of the gel solid obtained by v)) were measured.
(1) A solution A and a solution B having the following concentrations were prepared in 20 mM phosphate buffered saline (Na 2 HPO 4 + NaH 2 PO 4 + NaCl) (pH 6.5), respectively.
1.10 wt%, 1.75 wt%, 2.20 wt%, 3.50 wt%, 4.40 wt%, 7.00 wt%
(2) The solutions A and B were uniformly mixed at 1: 1 (v / v) by Voltex (manufactured by Scientific Industries).
(3) 1.8 g of the mixed solution was poured into a 25 mL centrifuge tube and allowed to stand overnight at room temperature.
(4) The relationship between strain and stress was investigated using a texture analyzer (TA.XT plus) (manufactured by Stable Micro Systems), a P / 0.5 HS probe, and a 5 kg load cell.
The results are shown in FIG. 3 and Table 1 below. Table 2 shows the results of measurement with rat muscle or rat fat as a control. In correlation with Example 21, the higher the concentration, the higher the strain was observed. It can be said that the stress is significantly higher than that of the rat muscle. This stress can be said to be an important index related to the shape maintenance performance.
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000040
Figure JPOXMLDOC01-appb-T000041
Figure JPOXMLDOC01-appb-T000041
[実施例24]:ラット腹部皮下形状維持性能評価試験(in vivo)HA、CS
 以下の方法により、ラット腹部皮下での形状維持性能を評価した。
(1)雄性Wistarラット(6週齢)に対して、イソフルラン麻酔下、被験物質を400μL/siteにて腹部皮下に注入した。
(2)ハイトゲージを用い経時的に膨隆部の高さを測定し、形状維持能の指標とした。
 <形状維持性能試験1:注入4週>
 被験物質は以下の通りである。各物質とも、均一に混合した後、ラット腹部皮下に注入して、膨隆部の高さの変化を観察した。
(1)1.75wt%アジド導入コンドロイチン硫酸(導入率11%、実施例19由来)生理食塩水溶液と1.75wt%のDBCO導入コンドロイチン硫酸(導入率11%、実施例17由来)生理食塩水溶液の1:1(v/v)均一混合物[1.75%CS(N+DBCO)]。
(2)2.20wt%アジド導入ヒアルロン酸(170kDa)(導入率10%、実施例11由来)生理食塩水溶液と、2.20wt% DIMAC導入ヒアルロン酸(170kDa)(導入率10%、実施例5由来)生理食塩水溶液の1:1(v/v)均一混合物[2.20wt%HA(N+DIMAC)]
(3)1.00wt%ヒアルロン酸水溶液
 結果を図4に示す。(3)の1.00wt%ヒアルロン酸水溶液と比較して、(1)(2)の被験物質は、投与28日後であっても顕著に高い形状維持性能を示した。
[Example 24]: Rat abdominal subcutaneous shape maintenance performance evaluation test (in vivo) HA, CS
The shape maintenance performance in the rat abdomen subcutaneous was evaluated by the following method.
(1) A male Wistar rat (6 weeks old) was injected subcutaneously into the abdomen at 400 μL / site under isoflurane anesthesia.
(2) The height of the bulging portion was measured over time using a height gauge and used as an index of shape maintenance ability.
<Shape maintenance performance test 1: Injection 4 weeks>
The test substances are as follows. Each substance was mixed uniformly and then injected subcutaneously into the abdomen of the rat, and the change in the height of the bulge was observed.
(1) 1.75 wt% azide-introduced chondroitin sulfate (introduction rate 11%, derived from Example 19) physiological saline aqueous solution and 1.75 wt% DBCO-introduced chondroitin sulfate (introduction rate 11%, derived from Example 17) physiological saline aqueous solution 1: 1 (v / v) homogeneous mixture [1.75% CS (N 3 + DBCO)].
(2) 2.20 wt% azide-introduced hyaluronic acid (170 kDa) (introduction rate 10%, derived from Example 11) physiological saline solution and 2.20 wt% DIMAC-introduced hyaluronic acid (170 kDa) (introduction rate 10%, Example 5) Origin) 1: 1 (v / v) homogeneous mixture of physiological saline solution [2.20 wt% HA (N 3 + DIMAC)]
(3) 1.00 wt% hyaluronic acid aqueous solution The results are shown in FIG. Compared with the 1.00 wt% hyaluronic acid aqueous solution of (3), the test substances of (1) and (2) showed a remarkably high shape maintenance performance even 28 days after administration.
[実施例25]
<形状維持性能試験2:注入24週>
 実施例25と同様の方法により、ラット腹部皮下での形状維持性能を評価した。被験物質は以下の通りである。各物質とも、1:1(v/v)で均一に混合した後注入した。
(1)2.20wt%アジド導入ヒアルロン酸(170kDa)(導入率10%、実施例11由来)生理食塩水溶液と、2.20wt% DIMAC導入ヒアルロン酸(導入率10%、実施例5由来)生理食塩水溶液の1:1(v/v)均一混合物[2.20wt%HA(N+DIMAC)]
(2)1.00wt%ヒアルロン酸水溶液
 結果を図5に示す。(2)の1.00wt%ヒアルロン酸水溶液と比較して、(1)の被験物質は、24週という長期間でも顕著に高い形状維持性能を示した。
[Example 25]
<Shape maintenance performance test 2: injection 24 weeks>
In the same manner as in Example 25, the shape maintenance performance in the rat abdomen was evaluated. The test substances are as follows. Each substance was injected after being uniformly mixed at 1: 1 (v / v).
(1) 2.20 wt% azide-introduced hyaluronic acid (170 kDa) (introduction rate 10%, derived from Example 11) physiological saline solution and 2.20 wt% DIMAC-introduced hyaluronic acid (introduction rate 10%, from Example 5) physiology 1: 1 (v / v) homogeneous mixture of saline solution [2.20 wt% HA (N 3 + DIMAC)]
(2) 1.00 wt% hyaluronic acid aqueous solution The results are shown in FIG. Compared with the 1.00 wt% hyaluronic acid aqueous solution of (2), the test substance of (1) showed a remarkably high shape maintenance performance even for a long period of 24 weeks.
[実施例26]:ラット腹部皮下形状維持性能評価試験(in vivo)での生体適合性評価結果
 実施例25の形状維持性能試験2に記載のラット腹部皮下形状維持性能評価において、注入2日後、4週後、24週後に、2.2wt%HA(N+DIMAC)注入部の皮膚を採取し、10%中性緩衝ホルマリン液で浸漬固定後、パラフィン包埋し、HE染色標本を作製した。その後、光学顕微鏡により病理組織学的に検査した。
 その結果、注入2日後では、生理食塩水の注入でも見られるような、ごく軽度の急性炎症反応が認められるのみであった。注入4週後及び注入24週後では、注入物は線維で被包化され、炎症性の反応など、異物反応及び組織反応はいずれも認められなかった(図6及び図7)。以上から、2.2%wtHA(N+DIMAC)は、急性期でも慢性期でも生体適合性は良好であると言える。
[Example 26]: Results of biocompatibility evaluation in rat abdominal subcutaneous shape maintenance performance evaluation test (in vivo) In the rat abdominal subcutaneous shape maintenance performance evaluation described in shape maintenance performance test 2 of Example 25, 2 days after injection, After 4 weeks and 24 weeks, the skin at the injection site of 2.2 wt% HA (N 3 + DIMAC) was collected, immersed and fixed in 10% neutral buffered formalin solution, embedded in paraffin, and HE-stained specimens were prepared. Thereafter, histopathological examination was performed with an optical microscope.
As a result, only 2 days after the injection, only a slight acute inflammatory reaction was observed as seen in the injection of physiological saline. At 4 weeks after injection and 24 weeks after injection, the injection was encapsulated with fibers, and neither foreign body reaction nor tissue reaction such as inflammatory reaction was observed (FIGS. 6 and 7). From the above, it can be said that 2.2% wt HA (N 3 + DIMAC) has good biocompatibility both in the acute phase and in the chronic phase.
 日本国特許出願2013-165116号(出願日:2013年8月8日)の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書に参照により取り込まれる。
The disclosure of Japanese Patent Application No. 2013-165116 (filing date: August 8, 2013) is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually stated to be incorporated by reference, Incorporated herein by reference.

Claims (25)

  1.  第一のGAG分子と第二のGAG分子とが、下記架橋基:
    -CONH-R-X-R-NHCO-、又は
    -CONH-R-X-R-X’-R-NHCO-
    [式中、
     両端の-CONH及びNHCO-はGAG分子のカルボキシ基に由来するアミド結合を意味し、
     R~Rは、同一又は異なって、アルキレン基、アルケニレン基、又はアルキニレン基を表し、当該基中の-CH2-は、>C=O、-CONH-、アリーレン、-O-、又は-S-で置き換えられていてもよく;
     X及びX’は、同一又は異なって、式:
    Figure JPOXMLDOC01-appb-C000001

    で示される構造を表し;
     ここで、A及びBは、X又はX’が結合するR~Rのいずれかとの結合部位を示し;
     Y~Yは、同一又は異なって、-CR6’-、-C(-R)=、-NR-、=N-、-O-、又は-S-を表し、-NR-、=N-、-O-、及び-S-が隣接することはなく;
     R及びR6’は、同一又は異なって、水素原子、ハロゲン原子、ヒドロキシ基、アルキルでモノ若しくはジ置換されていてもよいアミノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基若しくはカルボキシ基を表すか、又は一緒になってオキソ基を形成し、当該アルキル基、アルケニル基、アルキニル基、又はアルコキシ基中の-CH2-は、>C=O、-CONH-、アリーレン、-O-又は-S-で置き換えられていてもよく;
     Rは、アルキル基、アルケニル基又はアルキニル基を表し、当該アルキル基、アルケニル基又はアルキニル基中の-CH2-は、>C=O、-CONH-、アリーレン、-O-又は-S-で置き換えられていてもよく;又は、
     Y~Yのうち隣接する2つの基においては、一方の基のR及び他方の基のRは、それぞれが結合している環原子と一緒になって飽和又は不飽和の3~6員環を形成することができ、上記結合Bは、当該3~6員環に結合することもできる]
    を介して結合したGAG架橋体(第一のGAG分子と第二のGAG分子は同一分子でもよい)。
    The first GAG molecule and the second GAG molecule have the following crosslinking group:
    —CONH—R 1 —XR 2 —NHCO—, or —CONH—R 3 —XR 4 —X′—R 5 —NHCO—
    [Where:
    -CONH and NHCO- at both ends mean an amide bond derived from the carboxy group of the GAG molecule,
    R 1 to R 5 are the same or different and each represents an alkylene group, an alkenylene group, or an alkynylene group, and —CH 2 — in the group represents> C═O, —CONH—, arylene, —O—, or May be replaced by -S-;
    X and X ′ are the same or different and have the formula:
    Figure JPOXMLDOC01-appb-C000001

    Represents the structure shown by;
    Here, A and B each represent a binding site with any of R 1 to R 5 to which X or X ′ is bound;
    Y 1 ~ Y 6 are the same or different, -CR 6 R 6 '-, - C (-R 6) =, - NR 7 -, = N -, - O-, or -S- represents, - NR 7 -, = N -, - O-, and -S- are never adjacent;
    R 6 and R 6 ′ are the same or different and are a hydrogen atom, a halogen atom, a hydroxy group, an amino group, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group or a carboxy group, which may be mono- or di-substituted with alkyl. Or together formed an oxo group, and —CH 2 — in the alkyl group, alkenyl group, alkynyl group or alkoxy group represents> C═O, —CONH—, arylene, —O—. Or may be replaced by -S-;
    R 7 represents an alkyl group, an alkenyl group or an alkynyl group, and —CH 2 — in the alkyl group, alkenyl group or alkynyl group represents> C═O, —CONH—, arylene, —O— or —S—. May be replaced by; or
    In two neighboring groups of Y 1 - Y 6, R 6 in R 6 and the other group of one group is a saturated or 3-unsaturated together with the ring atoms to which each is attached A 6-membered ring can be formed, and the bond B can be bonded to the 3- to 6-membered ring]
    A GAG cross-linked product bound via a (the first GAG molecule and the second GAG molecule may be the same molecule).
  2.  GAG分子が、式:
    Figure JPOXMLDOC01-appb-C000002

    [式中、
     R及びRは、水素原子又はヒドロキシ基を表し;ただし、Rがヒドロキシ基の場合、Rは水素原子であり、Rが水素原子の場合、Rはヒドロキシ基であり;
     R10は、ONa又はOHである]、
     で示される構造単位の繰り返し構造を基本骨格として有し、R8がヒドロキシ基である場合には、当該構造単位中のヒドロキシ基の少なくとも1つは、-OSONa又は-OSOHである、請求項1に記載のGAG架橋体。
    The GAG molecule has the formula:
    Figure JPOXMLDOC01-appb-C000002

    [Where:
    R 8 and R 9 represent a hydrogen atom or a hydroxy group; provided that when R 8 is a hydroxy group, R 9 is a hydrogen atom, and when R 8 is a hydrogen atom, R 9 is a hydroxy group;
    R 10 is ONa or OH],
    In the case where R 8 is a hydroxy group, at least one of the hydroxy groups in the structural unit is —OSO 3 Na or —OSO 3 H. The cross-linked GAG according to claim 1.
  3.  下記(1)GAG誘導体A、及び(2)GAG誘導体B又は(3)化合物Cを含む組成物:
     (1)GAG分子に、GAG分子のカルボキシ基に由来するアミド結合及び2価のスペーサー基を介してSPAAC型反応性基を導入したGAG誘導体A;
     (2)GAG分子に、GAG誘導体Aの反応性基と相補的な反応性基が、GAG分子のカルボキシ基に由来するアミド結合及び2価のスペーサー基を介して導入されたGAG誘導体B;
     (3)GAG誘導体Aの反応性基と相補的な反応性基を少なくとも2つ有する下記構造から定義される化合物C;
    Figure JPOXMLDOC01-appb-C000003

    [式中、
     Yは、同一又は異なって、GAG誘導体Aの反応性基と相補的な反応性基であり;
     Zは、n価のスペーサー基であり、
     nは、2又はそれ以上の整数である]。
    A composition comprising the following (1) GAG derivative A and (2) GAG derivative B or (3) compound C:
    (1) GAG derivative A in which a SPAAC type reactive group is introduced into a GAG molecule via an amide bond derived from a carboxy group of the GAG molecule and a divalent spacer group;
    (2) GAG derivative B in which a reactive group complementary to the reactive group of GAG derivative A is introduced into the GAG molecule via an amide bond derived from a carboxy group of the GAG molecule and a divalent spacer group;
    (3) Compound C defined by the following structure having at least two reactive groups complementary to the reactive group of GAG derivative A;
    Figure JPOXMLDOC01-appb-C000003

    [Where:
    Y is the same or different and is a reactive group complementary to the reactive group of GAG derivative A;
    Z is an n-valent spacer group,
    n is an integer of 2 or more].
  4.  n価のスペーサー基が、アルキル基、アルケニル基又はアルキニル基から誘導されるn価の基であって、当該スペーサー基中の-CH2-が、>C=O、-CONH-、アリーレン、-O-、又は-S-で置き換えられていてもよい、請求項3に記載の組成物。 the n-valent spacer group is an n-valent group derived from an alkyl group, an alkenyl group or an alkynyl group, and —CH 2 — in the spacer group is> C═O, —CONH—, arylene, — The composition according to claim 3, which may be replaced by O- or -S-.
  5.  化合物Cにおけるnが2である、請求項4に記載の組成物。 The composition according to claim 4, wherein n in compound C is 2.
  6.  SPAAC型反応性基及び当該反応性基と相補的な反応性基のいずれか一方がアジド基であり、もう一方が、式:
    Figure JPOXMLDOC01-appb-C000004

    [式中、
     ここで、Bは、2価又はn価のスペーサー基との結合部位を示し;
     Y~Yは、同一又は異なって、-CR6’-、-C(-R)=、-NR-、=N-、-O-、又は-S-を表し、-NR-、=N-、-O-、及び-S-が隣接することはなく;
     R及びR6’は、同一又は異なって、水素原子、ハロゲン原子、ヒドロキシ基、アルキルでモノ若しくはジ置換されていてもよいアミノ基、アルキル基、アルケニル基、アルキニル基、アルコキシ基若しくはカルボキシ基を表すか、又は一緒になってオキソ基を形成し、当該アルキル基、アルケニル基、アルキニル基、又はアルコキシ基中の-CH2-は、>C=O、-CONH-、アリーレン、-O-、又は-S-で置き換えられていてもよく;
     Rは、アルキル基、アルケニル基又はアルキニル基を表し、当該アルキル基、アルケニル基又はアルキニル基中の-CH2-は、>C=O、-CONH-、アリーレン、-O-、又は-S-で置き換えられていてもよく;又は、
     Y~Yのうち隣接する2つの基においては、一方の基のR及び他方の基のRは、それぞれが結合している環原子と一緒になって飽和又は不飽和の3~6員環を形成することができ、上記結合Bは、当該3~6員環に結合することもできる]
    で示される環状基である、請求項4又は5に記載の組成物。
    Either the SPAAC type reactive group or the reactive group complementary to the reactive group is an azide group, and the other is represented by the formula:
    Figure JPOXMLDOC01-appb-C000004

    [Where:
    Here, B represents a binding site with a divalent or n-valent spacer group;
    Y 1 ~ Y 6 are the same or different, -CR 6 R 6 '-, - C (-R 6) =, - NR 7 -, = N -, - O-, or -S- represents, - NR 7 -, = N -, - O-, and -S- are never adjacent;
    R 6 and R 6 ′ are the same or different and are a hydrogen atom, a halogen atom, a hydroxy group, an amino group, an alkyl group, an alkenyl group, an alkynyl group, an alkoxy group or a carboxy group, which may be mono- or di-substituted with alkyl. Or together formed an oxo group, and —CH 2 — in the alkyl group, alkenyl group, alkynyl group or alkoxy group represents> C═O, —CONH—, arylene, —O—. Or may be replaced by -S-;
    R 7 represents an alkyl group, an alkenyl group, or an alkynyl group, and —CH 2 — in the alkyl group, alkenyl group, or alkynyl group represents> C═O, —CONH—, arylene, —O—, or —S May be replaced by; or
    In two neighboring groups of Y 1 - Y 6, R 6 in R 6 and the other group of one group is a saturated or 3-unsaturated together with the ring atoms to which each is attached A 6-membered ring can be formed, and the bond B can be bonded to the 3- to 6-membered ring]
    The composition of Claim 4 or 5 which is a cyclic group shown by these.
  7.  SPAAC型反応性基又は当該反応性基と相補的な反応性基が、
    Figure JPOXMLDOC01-appb-C000005

    からなる群より選択されるシクロオクチン誘導体アミンのアミノ基とGAG分子のカルボキシ基とのアミド結合によりGAG分子に導入されている、請求項3~6のいずれか1項に記載の組成物。
    A SPAAC type reactive group or a reactive group complementary to the reactive group,
    Figure JPOXMLDOC01-appb-C000005

    The composition according to any one of claims 3 to 6, which is introduced into the GAG molecule by an amide bond between an amino group of a cyclooctyne derivative amine selected from the group consisting of and a carboxy group of the GAG molecule.
  8.  GAG分子が、ヒアルロン酸若しくはその塩又はコンドロイチン硫酸若しくはその塩である、請求項3~7のいずれか1項に記載の組成物。 The composition according to any one of claims 3 to 7, wherein the GAG molecule is hyaluronic acid or a salt thereof, or chondroitin sulfate or a salt thereof.
  9.  アジド基の、GAG誘導体の二糖繰り返し単位のモル数に対する置換基導入率が0.1~80%である、請求項6~8のいずれか1項に記載の組成物。 The composition according to any one of claims 6 to 8, wherein the substituent introduction ratio of the azide group to the number of moles of the disaccharide repeating unit of the GAG derivative is 0.1 to 80%.
  10.  アジド基の、GAG誘導体の二糖繰り返し単位のモル数に対する置換基導入率が0.5~20%である、請求項6~8のいずれか1項に記載の組成物。 The composition according to any one of claims 6 to 8, wherein the substituent introduction ratio of the azide group to the number of moles of the disaccharide repeating unit of the GAG derivative is 0.5 to 20%.
  11.  シクロオクチニル基の、GAG誘導体の二糖繰り返し単位のモル数に対する置換基導入率が0.1~80%である、請求項6~10のいずれか1項に記載の組成物。 The composition according to any one of claims 6 to 10, wherein the cyclooctynyl group has a substituent introduction rate of 0.1 to 80% with respect to the number of moles of the disaccharide repeating unit of the GAG derivative.
  12.  シクロオクチニル基の、GAG誘導体の二糖繰り返し単位のモル数に対する置換基導入率が0.5~20%である、請求項6~10のいずれか1項に記載の組成物。 The composition according to any one of claims 6 to 10, wherein the cyclooctynyl group has a substituent introduction rate of 0.5 to 20% with respect to the number of moles of the disaccharide repeating unit of the GAG derivative.
  13.  GAG分子の分子量が5~2,000kDaである、請求項3~12のいずれか1項に記載の組成物。 The composition according to any one of claims 3 to 12, wherein the molecular weight of the GAG molecule is 5 to 2,000 kDa.
  14.  GAG分子の分子量が10~500kDaである、請求項3~12のいずれか1項に記載の組成物。 The composition according to any one of claims 3 to 12, wherein the GAG molecule has a molecular weight of 10 to 500 kDa.
  15.  請求項3~14のいずれか1項に記載の組成物を含む、組織膨隆材。 A tissue swelling material comprising the composition according to any one of claims 3 to 14.
  16.  組成物が投与時に液状である、請求項15に記載の組織膨隆材。 The tissue swelling material according to claim 15, wherein the composition is liquid at the time of administration.
  17.  泌尿器科領域での膀胱尿管逆流症、腹圧性尿失禁又は便失禁処置治療材である、請求項15に記載の組織膨隆材。 The tissue swelling material according to claim 15, which is a treatment material for treatment of vesicoureteral reflux, stress urinary incontinence or fecal incontinence in the urological field.
  18.  前立腺全摘術後の組織再建のための膨隆材である、請求項15に記載の組織膨隆材。 The tissue swelling material according to claim 15, which is a swelling material for tissue reconstruction after radical prostatectomy.
  19.  外科、整形外科又は形成外科領域での組織再建のための組織膨隆材である、請求項15に記載の組織膨隆材。 The tissue swelling material according to claim 15, which is a tissue swelling material for tissue reconstruction in a surgical, orthopedic or plastic surgery region.
  20.  生体内で架橋させる、請求項15~19のいずれか1項に記載の組織膨隆材。 The tissue swelling material according to any one of claims 15 to 19, which is crosslinked in vivo.
  21.  架橋が開始してから、E型回転粘度計、標準コーン(1°34’xR24)、25℃、5rpmでの粘度値が1Pa・sに到達するまでの時間が、12時間以下である、請求項20に記載の組織膨隆材。 The time until the viscosity value reaches 1 Pa · s at the E-type rotational viscometer, standard cone (1 ° 34'xR24), 25 ° C, 5 rpm after the start of crosslinking is 12 hours or less. Item 20. A tissue swelling material according to Item 20.
  22.  下記:
    Figure JPOXMLDOC01-appb-C000006

    より選択されるシクロオクチン誘導体アミンのアミノ基とGAGのカルボキシ基とがアミド結合したGAG誘導体。
    following:
    Figure JPOXMLDOC01-appb-C000006

    A GAG derivative in which the amino group of the amine selected from the cyclooctyne derivative amine and the carboxy group of GAG are amide-bonded.
  23.  下記:
    Figure JPOXMLDOC01-appb-C000007

    より選択されるシクロオクチン誘導体アミン。
    following:
    Figure JPOXMLDOC01-appb-C000007

    A cyclooctyne derivative amine selected from:
  24.  下記(1)GAG誘導体A、及び(2)GAG誘導体B又は(3)化合物Cを含む、組織膨隆材用キット:
     (1)GAG分子に、GAG分子のカルボキシ基に由来するアミド結合及び2価のスペーサー基を介してSPAAC型反応性基を導入したGAG誘導体A;
     (2)GAG分子に、GAG誘導体Aの反応性基と相補的な反応性基が、GAG分子のカルボキシ基に由来するアミド結合及び2価のスペーサー基を介して導入されたGAG誘導体B;
     (3)GAG誘導体Aの反応性基と相補的な反応性基を少なくとも2つ有する下記構造から定義される化合物C;
    Figure JPOXMLDOC01-appb-C000008

    [式中、
     Yは、同一又は異なって、GAG誘導体Aの反応性基と相補的な反応性基であり;
     Zは、n価のスペーサー基であり、
     nは、2又はそれ以上の整数である]。
    A tissue swelling material kit comprising the following (1) GAG derivative A and (2) GAG derivative B or (3) compound C:
    (1) GAG derivative A in which a SPAAC type reactive group is introduced into a GAG molecule via an amide bond derived from a carboxy group of the GAG molecule and a divalent spacer group;
    (2) GAG derivative B in which a reactive group complementary to the reactive group of GAG derivative A is introduced into the GAG molecule via an amide bond derived from a carboxy group of the GAG molecule and a divalent spacer group;
    (3) Compound C defined by the following structure having at least two reactive groups complementary to the reactive group of GAG derivative A;
    Figure JPOXMLDOC01-appb-C000008

    [Where:
    Y is the same or different and is a reactive group complementary to the reactive group of GAG derivative A;
    Z is an n-valent spacer group,
    n is an integer of 2 or more].
  25.  n価のスペーサー基が、アルキル基、アルケニル基又はアルキニル基から誘導されるn価の基であって、当該スペーサー基中の-CH2-は、>C=O、-CONH-、アリーレン、-O-又は-S-で置き換えられていてもよい、請求項24に記載のキット。 the n-valent spacer group is an n-valent group derived from an alkyl group, an alkenyl group or an alkynyl group, and —CH 2 — in the spacer group is> C═O, —CONH—, arylene, — The kit according to claim 24, which may be replaced by O- or -S-.
PCT/JP2014/071058 2013-08-08 2014-08-08 Tissue swelling material WO2015020206A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013165116A JP2016172783A (en) 2013-08-08 2013-08-08 Structure swelling material
JP2013-165116 2013-08-08

Publications (1)

Publication Number Publication Date
WO2015020206A1 true WO2015020206A1 (en) 2015-02-12

Family

ID=52461530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071058 WO2015020206A1 (en) 2013-08-08 2014-08-08 Tissue swelling material

Country Status (2)

Country Link
JP (1) JP2016172783A (en)
WO (1) WO2015020206A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2016159159A1 (en) * 2015-03-31 2018-01-25 キユーピー株式会社 Hyaluronic acid derivative and method for producing the same, and cosmetic, food composition and pharmaceutical composition containing hyaluronic acid derivative
WO2019240219A1 (en) 2018-06-14 2019-12-19 持田製薬株式会社 Novel crosslinked alginic acid
US10751417B2 (en) 2017-04-20 2020-08-25 Novartis Ag Sustained release delivery systems comprising traceless linkers
US10758623B2 (en) 2013-12-09 2020-09-01 Durect Corporation Pharmaceutically active agent complexes, polymer complexes, and compositions and methods involving the same
WO2021125255A1 (en) 2019-12-18 2021-06-24 持田製薬株式会社 Novel crosslinked alginic acid
US11389541B2 (en) 2018-10-03 2022-07-19 Novartis Ag Sustained delivery of angiopoetin-like 3 polypeptides
CN115209926A (en) * 2020-03-25 2022-10-18 学校法人福冈大学 Preparation for endomembrane dissection

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010502824A (en) * 2006-09-11 2010-01-28 フィディア ファルマチェウティチ ソシエタ ペル アチオニ Hyaluronic acid derivatives obtained by "click chemistry" crosslinking
WO2012165462A1 (en) * 2011-05-31 2012-12-06 国立大学法人 東京大学 Hydrogel and method for producing same
WO2013036847A1 (en) * 2011-09-07 2013-03-14 Prolynx Llc Hydrogels with biodegradable crosslinking

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010502824A (en) * 2006-09-11 2010-01-28 フィディア ファルマチェウティチ ソシエタ ペル アチオニ Hyaluronic acid derivatives obtained by "click chemistry" crosslinking
WO2012165462A1 (en) * 2011-05-31 2012-12-06 国立大学法人 東京大学 Hydrogel and method for producing same
WO2013036847A1 (en) * 2011-09-07 2013-03-14 Prolynx Llc Hydrogels with biodegradable crosslinking

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Material Matters", SIGMA- ALDRICH JAPAN, vol. 7, no. 3, December 2012 (2012-12-01), JAPAN, pages 1 - 28, Retrieved from the Internet <URL:http://www.sigmaaldrich.com/japan/materialscience/catalog.html#MM2012> [retrieved on 20141020] *
ALDRICHIMICA ACTA, vol. 43, no. 1, 2010, pages 15 - 23 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10758623B2 (en) 2013-12-09 2020-09-01 Durect Corporation Pharmaceutically active agent complexes, polymer complexes, and compositions and methods involving the same
US11529420B2 (en) 2013-12-09 2022-12-20 Durect Corporation Pharmaceutically active agent complexes, polymer complexes, and compositions and methods involving the same
JPWO2016159159A1 (en) * 2015-03-31 2018-01-25 キユーピー株式会社 Hyaluronic acid derivative and method for producing the same, and cosmetic, food composition and pharmaceutical composition containing hyaluronic acid derivative
US10751417B2 (en) 2017-04-20 2020-08-25 Novartis Ag Sustained release delivery systems comprising traceless linkers
WO2019240219A1 (en) 2018-06-14 2019-12-19 持田製薬株式会社 Novel crosslinked alginic acid
KR20210019441A (en) 2018-06-14 2021-02-22 모찌다 세이야쿠 가부시끼가이샤 New crosslinked alginic acid
JP2022126716A (en) * 2018-06-14 2022-08-30 持田製薬株式会社 Novel crosslinked alginic acid
JP7350940B2 (en) 2018-06-14 2023-09-26 持田製薬株式会社 Novel cross-linked alginic acid
US11932708B2 (en) 2018-06-14 2024-03-19 Mochida Pharmaceutical Co., Ltd. Crosslinked alginic acid
US11389541B2 (en) 2018-10-03 2022-07-19 Novartis Ag Sustained delivery of angiopoetin-like 3 polypeptides
WO2021125255A1 (en) 2019-12-18 2021-06-24 持田製薬株式会社 Novel crosslinked alginic acid
CN115209926A (en) * 2020-03-25 2022-10-18 学校法人福冈大学 Preparation for endomembrane dissection

Also Published As

Publication number Publication date
JP2016172783A (en) 2016-09-29

Similar Documents

Publication Publication Date Title
WO2015020206A1 (en) Tissue swelling material
CN102196805B (en) Heat sterilised injectable composition of hyaluronic acid or one of the salts thereof, polyols and lidocaine
JP2004507586A (en) Percarboxylic esterified polysaccharides and methods for producing them
WO2003087019A1 (en) Hyaluronic acid modification product
CN101538377A (en) Cross-linked hyaluronic acid gel and preparation method thereof
Zhu et al. Metal and light free “click” hydrogels for prevention of post-operative peritoneal adhesions
CN109161037A (en) A kind of hydrogel composites, preparation method and application
CN101759881A (en) Medical cross-linking sodium hyaluronate gel derivative product and preparation method thereof
JP7374133B2 (en) stabilized hyaluronic acid
US8282912B2 (en) Compositions for tissue augmentation
US20150099808A1 (en) Amphiphilic copolymers and compositions containing such polymers
EP3027659B1 (en) Low swell tissue adhesive and sealant formulations
CN113712902A (en) Injectable hydrogel loaded with active oxygen response degradation polymer micelle and preparation method and application thereof
WO1999024070A2 (en) Ester derivatives of hyaluronic acid with viscoelastic properties and their use in the biomedical and healthcare field
JP6046869B1 (en) A crosslinked product of carboxymethyl group-containing modified hyaluronic acid and / or a salt thereof, and a method for producing the same.
JP2010209130A (en) Alginic acid derivative and method for manufacturing the same
US20170340774A1 (en) Polethylene glycol hydrogel injection
AU2017251957B2 (en) Hyaluronic acid conjugates and uses thereof
EP3806917A1 (en) Hydrogel composition comprising a crosslinked polymer
JP2010035744A (en) Adheshion preventive material
EP4286453A1 (en) Nitric oxide-sensitive hydrogel
CN116997371A (en) Implantable or injectable polymer-based products and methods of making same
WO2020075135A1 (en) Polysaccharide for use in regenerative medicine and/or tissue engineering
WO2024030521A1 (en) Click chemistry hydrogel with minimal swelling as a local delivery vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14835321

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14835321

Country of ref document: EP

Kind code of ref document: A1