WO2015020037A1 - Electron holography reproduction device - Google Patents

Electron holography reproduction device Download PDF

Info

Publication number
WO2015020037A1
WO2015020037A1 PCT/JP2014/070594 JP2014070594W WO2015020037A1 WO 2015020037 A1 WO2015020037 A1 WO 2015020037A1 JP 2014070594 W JP2014070594 W JP 2014070594W WO 2015020037 A1 WO2015020037 A1 WO 2015020037A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
lens
electronic
hologram
spatial
Prior art date
Application number
PCT/JP2014/070594
Other languages
French (fr)
Japanese (ja)
Inventor
妹尾 孝憲
光喜 涌波
保之 市橋
久幸 佐々木
健詞 山本
Original Assignee
独立行政法人情報通信研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人情報通信研究機構 filed Critical 独立行政法人情報通信研究機構
Publication of WO2015020037A1 publication Critical patent/WO2015020037A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2202Reconstruction geometries or arrangements
    • G03H1/2205Reconstruction geometries or arrangements using downstream optical component
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2294Addressing the hologram to an active spatial light modulator
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2202Reconstruction geometries or arrangements
    • G03H1/2205Reconstruction geometries or arrangements using downstream optical component
    • G03H2001/221Element having optical power, e.g. field lens
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2223/00Optical components
    • G03H2223/16Optical waveguide, e.g. optical fibre, rod

Definitions

  • the present invention relates to an electronic holography reproducing apparatus for reproducing an electronic hologram.
  • This electronic holography displays interference fringes formed by interference between phase-matched reference light and object light in which the same light is scattered by an object on a hologram display device such as a liquid crystal display.
  • the original object light is reproduced as reproduction light by using a diffraction effect generated by irradiating the hologram display device with illumination light having the same wavelength as the reference light.
  • This electronic holography is an ideal stereoscopic video system that satisfies all the stereoscopic factors.
  • the hologram display device requires a pixel size of about the wavelength of light, the screen is small and the viewing area is narrow at present. There's a problem.
  • Patent Document 1 an electronic holography reproducing device having a large screen and a wide viewing zone has been proposed (for example, Patent Document 1).
  • the invention described in Patent Document 1 is obtained by arranging a plurality of hologram display modules 2 of FIG.
  • the hologram display module 2 uses the point light source array 21 to enlarge the size and viewing area of an electronic holographic image. That is, the hologram display module 2 reflects the light from the point light source array 21 composed of the optical fibers LS1 to LS3 by the beam splitter 22 and irradiates the spatial light modulator 24 such as a liquid crystal display through the lens 23.
  • the hologram display module 2 expanded the reproduced light of the displayed hologram on the screen lens 26 through the lens 23 and the beam splitter 22, shielding the illumination light and the conjugate light at the window of the slit matrix 25.
  • An electronic holographic image is formed.
  • the invention described in Patent Document 1 can reproduce a large-screen electronic holographic image without gaps by arranging a plurality of hologram display modules 2.
  • the invention described in Patent Document 1 divides the hologram display surface of the spatial light modulator 24 by the number of optical fibers LS1 to LS3 in the vertical direction in order to enlarge the horizontal viewing zone, and each has a different view. Play the hologram of the area. Furthermore, the invention described in Patent Document 1 is based on the fact that holograms in all viewing zones are formed at the window positions of the slit matrix 25 by shifting the positions of the optical fibers LS1 to LS3 in the vertical direction according to the display height of each hologram. The reproduction light can be taken out at the same height. As a result, the invention described in Patent Document 1 can expand the horizontal viewing zone.
  • the height of the hologram in each viewing zone is a value obtained by dividing the height of the spatial light modulator 24 by the number of optical fibers.
  • the vertical parallax is almost eliminated by decreasing to a value divided by the number.
  • FIG. 11 is optically equivalent to the hologram display module 2 of FIG. 10 (the same applies to FIG. 12). Further, f2 in FIG. 11 indicates the focal length of the lens 26. In FIG. 12, a region 90 of reproduction light (hologram light) is indicated by hatching, and a region 91 of high-order diffracted light that is unnecessary light other than reproduction light is indicated by a broken line.
  • an object of the present invention is to solve the above-described problems and provide an electronic holography reproducing device having a wide viewing zone, uniform brightness, and high image quality.
  • an electronic holography reproducing apparatus includes a plurality of magnifying optical systems that generate magnified images of divided electronic holograms obtained by dividing one electronic hologram, and each of the magnifying optical systems includes: And a reduction optical system that reduces the generated magnified image and integrates it into a single reproduced image of the electronic hologram, wherein each of the magnified optical systems is arranged at equal intervals in one direction.
  • a light emitting means having a plurality of point light sources, a first lens for converting light emitted from the point light sources into parallel light, and a divided electronic hologram having a viewing zone corresponding to the position of the point light source as the irradiation source of the parallel light
  • a spatial light modulator that generates reproduction light of the divided electronic hologram by irradiating the displayed divided electronic hologram with parallel light from the first lens, and the empty electronic hologram.
  • a reproduction light generated by the optical modulator is disposed on the imaging surface generated by passing through the first lens, and a second image having the same size as the enlarged image generated by the reproduction light imaged on the imaging surface.
  • the reduction optical system includes a third lens that receives reproduction light from all the second lenses, and a window that passes or blocks the reproduction light emitted from the third lens for each point light source.
  • a spatial filter provided; and a fourth lens that generates a reconstructed image of the light that has passed through the window of the spatial filter, and emits light from the point light source, and a divided electronic hologram for each viewing zone in the spatial light modulator.
  • control means for synchronously controlling the opening and closing of the window of the spatial filter the spatial filter is disposed on a common focal plane of the third lens and the fourth lens, and each point light source is From the light emission side end face, the first Equal distance to the optical principal point of the lens is the focal length of the first lens, wherein the optical axis is disposed at an angle that coincides with the center of the spatial light modulator.
  • the electronic holography reproducing device irradiates the spatial light modulator displaying the divided electronic holograms of different viewing zones in a time division manner with a plurality of point light sources arranged in one direction.
  • the electronic holography reproducing device matches the center of the emitted light from each point light source with the center of the spatial light modulator, unevenness in brightness can be eliminated.
  • the electronic holography reproducing device can also block higher-order diffracted light by a spatial filter that allows only hologram reproduction light to pass in synchronization with light emission of each point light source.
  • the electronic holography reproducing device does not need to divide the display surface of the spatial light modulator as in the prior art, the viewing area in the direction in which the display surface is divided is not sacrificed. Can be wide. Furthermore, the electronic holography reproducing device has no unevenness in brightness, and can maintain a reproduced image of the electronic hologram with uniform brightness. Furthermore, since the electronic holography reproducing apparatus can shield high-order diffracted light, it can reproduce high-quality electronic holograms.
  • (a) is a schematic configuration diagram of an electronic holography reproducing device
  • (b) is a schematic configuration diagram of an enlarged optical system.
  • it is explanatory drawing for demonstrating the division
  • it is explanatory drawing for demonstrating the angle of an optical fiber.
  • it is explanatory drawing for demonstrating the viewing zone angle of an enlarged image.
  • it is explanatory drawing for demonstrating reproduction
  • the electronic holography reproducing device 1 reproduces an electronic hologram, and includes an enlarging optical system group 1A, a reducing optical system 1B, a spatial filter 120, a hologram storage unit 130, Control means 140 and hologram reading means 150 are provided.
  • the magnifying optical system group 1 ⁇ / b> A generates a magnified image of a divided electronic hologram obtained by dividing one electronic hologram, and includes a plurality of magnifying optical systems 10.
  • the magnifying optical system group 1A is composed of four magnifying optical systems 10 in total, two in the vertical and horizontal directions.
  • the magnifying optical system 10 includes a light emitting means 14, a first lens 15, a spatial light modulator 16, and a second lens 17, respectively.
  • Electronic hologram 92 is equal to the magnifying optical system 10 (e.g., four) as divided hologram 93 1-93 4 is produced, is equally divided vertically and horizontally. Further, the divided optical holograms 93 1 to 93 4 corresponding to the arrangement positions are input to each magnifying optical system 10.
  • the positional relationship between the divided electronic holograms 93 1 to 93 4 is reversed vertically and horizontally. It is preferable to enter the 93 1-93 4.
  • the upper left enlarging optical system 10 is divided electron hologram 93 4 lower right is input, to expand the image 94 of the subject areas included in the divided electronic hologram 93 4.
  • the lower right magnifying optical system 10 receives the upper left divided electronic hologram 93 1 and enlarges the subject image 94 in the region included in the divided electronic hologram 93 1 .
  • the light emitting means 14 emits diffused light (emitted light) to the first lens 15, and includes an optical fiber group 11, a mirror (reflecting mirror) 12, and a beam splitter 13.
  • the light-emitting means 14 includes a common light-emitting element that emits light of a desired wavelength (not shown) outside, causes the light-emitting element to emit light based on a timing signal described later, and transmits the light to the optical fibers F1 to F1. The light is incident on F3.
  • the optical fibers F1 to F3 are arranged at equal intervals in the horizontal direction at an angle at which the optical axes of the optical fibers (point light sources) F1 to F3 coincide with the center of the spatial light modulator 16. .
  • the optical fiber group 11 includes three optical fibers F1 to F3 so that the exit ports of the optical fibers F1 to F3 face the second lens 17 side. Details of the angles of the optical fibers F1 to F3 will be described later.
  • the mirror 12 is a reflecting mirror formed in a right isosceles triangular prism shape. Specifically, the mirror 12 has a reflecting surface as an inclined surface facing the emission ports of the optical fibers F1 to F3. The mirror 12 reflects the diffused light incident in the horizontal direction from the optical fibers F1 to F3 in the vertical direction.
  • the beam splitter 13 reflects the diffused light reflected by the mirror 12 toward the first lens 15 and transmits the reproduction light generated by the spatial light modulator 16 to the second lens 17. Specifically, in the beam splitter 13, after forming an optical thin film on the inclined surface of one right-angle prism, the inclined surfaces of the two right-angle prisms are joined to each other. Thus, since the light emission means 14 is comprised, the electronic holography reproducing
  • FIG. 3 shows a configuration optically equivalent to the light emitting means 14, the first lens 15, and the spatial light modulator 16 of FIG.
  • the central axis of the spatial light modulator 16 is indicated by a long broken line
  • the emitted light from the optical fiber F3 is indicated by a short broken line
  • the optical axis of the optical fiber F3 is indicated by a solid line.
  • the mirror 12 and the beam splitter 13 are omitted for easy understanding of the drawing, and the emission ports of the optical fibers F1 to F3 are illustrated facing the first lens 15 side.
  • the distance from the light exit side end surface to the optical principal point of the first lens 15 via the mirror 12 and the beam splitter 13 is the focal length f 1 of the first lens 15. Is equal to As a result, when the diffused light from the optical fibers F1 to F3 passes through the first lens 15, it becomes parallel light.
  • the light emitting side end face of the optical fiber F3 is separated from the optical axis of the first lens 15 by a distance p, and is outside the optical axis of the first lens 15 (the same position as the central axis of the spatial light modulator 16). Suppose that it is inclined by an angle ⁇ . In this case, the center of the diffused light from the optical fiber F3 is shifted from the center of the first lens 15 by a distance l as shown in the following formula (1).
  • the distance from the first lens 15 to the spatial light modulator 16 is d (where distance d> focal length f 1 ).
  • the light passing through the central axis of the spatial light modulator 16 is deviated from the optical axis of the first lens 15 as shown in Expression (3).
  • the center of the parallel light can be irradiated to the center of the spatial light modulator 16 by making the expressions (1) and (3) equal. From this condition, the angle ⁇ of the optical fiber F3 can be expressed by Expression (4).
  • the optical fiber F1 is symmetrical to the optical fiber F3 with respect to the central axis of the spatial light modulator 16. Therefore, like the optical fiber F3, the optical fiber F1 is tilted by the angle ⁇ in Expression (4) outside the central axis of the spatial light modulator 16. Therefore, the center of the parallel light from the optical fiber F1 coincides with the center of the spatial light modulator 16 like the optical fiber F3.
  • the optical fiber F2 is located on the central axis of the spatial light modulator 16, it is not necessary to incline it. In this way, the electronic holography reproducing device 1 can uniformly irradiate the spatial light modulator 16 with the diffused light from the optical fibers F1 to F3.
  • the first lens 15 converts diffused light from the optical fiber F1 into parallel light.
  • the first lens 15 emits reproduction light from a spatial light modulator 16 to be described later to the second lens 17.
  • the first lens 15, the distance from the first lens 15 to the light emitting side end face of the optical fiber F1 ⁇ F3 is equal to the focal length f 1.
  • the first lens 15, the distance d is longer than the focal length f 1.
  • the first lens 15 is a rectangular convex lens.
  • the spatial light modulator 16 receives hologram data from a hologram reading means 150, which will be described later, and displays a divided electronic hologram indicated by the hologram data.
  • the spatial light modulator 16 generates reproduction light of the divided electronic hologram by irradiating the displayed divided electronic hologram with the parallel light from the first lens 15.
  • the spatial light modulator 16 includes a display unit 16A and a drive circuit 16B.
  • the display unit 16A is a reflective liquid crystal display that displays a divided electronic hologram.
  • the drive circuit 16B is a drive circuit and a heat radiator for the display unit 16A, and is disposed around the display unit 16A.
  • the second lens 17 is disposed on the imaging surface generated by the reproduction light generated by the spatial light modulator 16 passing through the first lens 15 and is an enlarged image generated by the reproduction light imaged on the imaging surface. Is the same size lens.
  • the second lens 17 has the same size as the enlarged image in order to combine the reproduced images of the electronic hologram without any gap.
  • the second lens 17 is a rectangular convex lens.
  • the reduction optical system 1B reduces the enlargement image generated by each enlargement optical system 10 and integrates it into a reproduction image of one electronic hologram, and includes a third lens 119, a spatial filter 120, and a fourth lens. 122.
  • FIG. 4 shows a configuration optically equivalent to the first lens 15, the spatial light modulator 16, and the second lens 17 in FIG.
  • the drive circuit 16B since the drive circuit 16B is arranged around the display unit 16A, the drive circuit 16B becomes a gap and displays the divided electronic hologram on the entire surface of the spatial light modulator 16. I can't. Therefore, the electronic holography reproducing device 1 generates an enlarged image 95 by enlarging an image generated by the reproduction light from the spatial light modulator 16 so as to fill a gap when the magnifying optical system 10 is adjacently disposed. .
  • the electronic holography reproducing device 1 can combine the reproduced images of the four divided electronic holograms without gaps even if the four magnifying optical systems 10 are arranged adjacent to each other, and can display one large-screen holographic image in a wide viewing area. Can be played.
  • the third lens 119 is a lens for reducing an enlarged image from each of the magnifying optical systems 10 and combining it with a reproduced image of one electronic hologram.
  • the third lens 119 needs to receive the reproduction light from all the second lenses 17.
  • the third lens 119 is preferably disposed adjacent to each second lens 17, and more preferably the distance between the optical principal points of each second lens 17 is zero.
  • the third lens 119 may have a size (diameter) that allows all the light from each of the magnifying optical systems 10 to enter when separated from each second lens 17.
  • the third lens 119 is a circular convex lens.
  • the spatial filter 120 is disposed on the common focal plane of the third lens 119 and the fourth lens 122, and includes a window 121 at the center.
  • the window 121 liquid crystal shutters (windows) S1 to S3 that pass or shield the reproduction light emitted from the third lens 119 are provided for the respective optical fibers F1 to F3.
  • the window 121 opens and closes the liquid crystal shutters S1 to S3 based on the timing signal.
  • Liquid crystal shutter S1 ⁇ S3 is, by the focal length f 3 of the third lens 119 away from the third lens 119, and are spaced apart from the fourth lens 122 by the focal length f 4.
  • the lower end positions of the liquid crystal shutters S1 to S3 are aligned with the optical axes of the third lens 119 and the fourth lens 122.
  • the width w and the height h of the liquid crystal shutters S1 to S3 are such that an image is formed at the principal point of the third lens 119 and diffused at an angle ⁇ / N from the principal point as shown in the following equation (5).
  • the height h of the liquid crystal shutters S1 to S3 is about half of the width w in order to shield unnecessary light such as transmitted light and conjugate light.
  • the fourth lens 122 is a lens for reducing the magnified image from each magnifying optical system 10 and combining it with a reproduced image of one electronic hologram. That is, the fourth lens 122 generates a reproduced image of the light that has passed through the windows S1 to S3 of the spatial filter 120.
  • the diameter R of the fourth lens 122 is such that the width W and height H of the display unit 16A, the number K of spatial light modulators 16 arranged vertically and horizontally, the pixel size q of the display unit 16A, and the light emitting means 14 It is determined by the emission wavelength ⁇ of the light emitting element.
  • the K display portions 16A have a width KW and a height KH.
  • the diameter R of the fourth lens 122 is, as shown in the following formula (6), the width KW and the height KH, respectively, the lateral light spread 2L ⁇ tan (2 ⁇ ) and the longitudinal light. This is a value that can cover the width and height plus the spread of L ⁇ tan ⁇ .
  • N represents the magnification by the first lens 15 and the second lens 17.
  • N is the magnification ratio f2 / f1 between the first lens 15 and the second lens 17, but the width W and height H of the display unit 16A and the display unit 16A when arranged in an array. Equal to the ratio of width W ′ and height H ′.
  • the hologram storage means 130 is a storage device such as a memory or a hard disk that stores hologram data in advance for each of the magnifying optical system 10 and the viewing zone.
  • the hologram storage means 130 has four magnifying optical systems 10 and three viewing zones. Therefore, in order to reproduce a reproduction image of one electronic hologram, the hologram storage means 130 includes 12 divided electronic holograms. Corresponding hologram data is stored.
  • the control unit 140 controls the emission of the optical fibers F1 to F3, the display of the spatial light modulator 16, and the opening and closing of the liquid crystal shutters S1 to S3 in synchronization.
  • the control unit 140 outputs a timing signal indicating the timing of synchronization control to all the light emitting units 14, the spatial filter 120, and the hologram reading unit 150. Details of the synchronization control by the control unit 140 will be described later. Further, in FIG. 1A, only one timing signal input to the light emitting means 14 is shown for easy understanding of the drawing (the same applies to the spatial light modulator 16).
  • the hologram reading means 150 reads out the hologram data stored in the hologram storage means 130 based on the timing signal from the control means 140 and outputs it to all the spatial light modulators 16.
  • the electronic holography reproducing device 1 reproduces electronic holograms in the right viewing area, the middle viewing area, and the left viewing area in a time division manner. With reference to FIG. 5, the reproduction of the electronic hologram in the right viewing area will be described in detail (see FIG. 1 as appropriate).
  • FIG. 5 the viewing zone 90 occupied by the reproduction light generated when the optical fiber F1 irradiates the spatial light modulator 16 from the left is shown by hatching, and the region 91 occupied by the higher-order diffracted light is shown by a broken line ( The same applies to FIGS. 6 and 7.
  • the liquid crystal shutter S1 is shown in black to indicate that it is open.
  • the spatial light modulator 16 Since the spatial light modulator 16 has a periodic structure in which pixels are repeatedly arranged, when irradiated with parallel light, high-order diffracted light due to the periodic structure is generated in addition to the reproduction light of the divided electron hologram. These higher-order diffracted lights can be blocked even if a spatial filter is disposed between the first lens 15 and the second lens 17 of the magnifying optical system 10. However, this arrangement requires as many spatial filters as the number of magnifying optical systems 10, which complicates the configuration of the electronic holography reproducing device 1.
  • the electronic holography reproducing device 1 can shield high-order diffracted light emitted from each magnification optical system 10 with a single spatial filter 120 when the spatial filter 120 is disposed at this location.
  • control means 140 displays the divided electronic hologram in the right viewing area on the spatial light modulator 16, the optical fiber F1 corresponding to the right viewing area emits light, and the liquid crystal shutter at the position where the reproduction light in the right viewing area passes. Synchronous control is performed so that S1 is opened and the liquid crystal shutters S2 and S3 at positions where higher-order diffracted light passes are closed.
  • the light emitted from the right end of the right display unit 16 ⁇ / b> A out of the reproduction light in the right viewing area passes through the first lens 15 and enters the left end of the second lens 17. Then, the reproduction light in the right viewing area passes through the center of the third lens 119 and passes through the opened liquid crystal shutter S1. Thereafter, the reproduction light in the right viewing area passes through the fourth lens 122 and is reduced and becomes light from the center of the image group 96 integrated into one reproduction image. Similarly to the above, the light emitted from the left end of the right display portion 16A passes through the first lens 15, reaches the right ends of the second lens 17 and the third lens 119, and passes through the opened liquid crystal shutter S1.
  • the reproduced light in the right viewing area reaches the left end of the fourth lens 122 and becomes light from the left end of the reproduced image group 96. Furthermore, the light emitted from the other part of the display unit 16A and the light emitted from the left display unit 16A also become the light from the reproduced image group 96.
  • high-order diffracted light is shielded by the closed liquid crystal shutters S2 and S3. In this way, the electronic holography reproducing device 1 can shield the higher-order diffracted light other than the reproduction light in the right viewing area and reproduce the reproduced image of the electronic hologram in the right viewing area.
  • the control means 140 displays the divided electronic hologram of the middle viewing area on the spatial light modulator 16, the optical fiber F2 corresponding to the middle viewing area emits light, and the liquid crystal shutter S2 at the position where the reproduction light of the middle viewing area passes is opened. Synchronous control is performed so that the liquid crystal shutters S1 and S3 at positions where the next diffracted light passes are closed.
  • the light from both ends of the display unit 16 ⁇ / b> A out of the reproduction light in the middle viewing area passes through the first lens 15 and enters both ends of the second lens 17.
  • the reproduction light in the middle viewing area passes through the end or center of the third lens 119 and passes through the opened liquid crystal shutter S2. Thereafter, the reproduction light in the middle viewing area passes through the fourth lens 122 and is then reduced and integrated into one image group 96.
  • light emitted from other parts of the display unit 16A also becomes light from the reproduced image group 96.
  • higher-order diffracted light is shielded by the closed liquid crystal shutters S1 and S3. In this way, the electronic holography reproducing apparatus 1 can reproduce a reproduced image of the electronic hologram in the middle viewing area by shielding higher-order diffracted light other than the reproduced light in the middle viewing area.
  • the control unit 140 displays the divided electronic hologram of the left viewing area on the spatial light modulator 16, the optical fiber F3 corresponding to the left viewing area emits light, and the liquid crystal shutter S3 at the position where the reproduction light of the left viewing area passes. Synchronous control is performed so that the liquid crystal shutters S1 and S2 at the positions where the high-order diffracted light is opened and closed are closed.
  • the reproduction light in the left viewing area As shown in FIG. 7, among the reproduction light in the left viewing area, light from both ends of the display unit 16 ⁇ / b> A passes through the first lens 15 and enters both ends of the second lens 17. Then, the reproduction light in the left viewing zone passes through the end or center of the third lens 119 and passes through the opened liquid crystal shutter S3. Thereafter, the reproduction light in the left viewing zone passes through the fourth lens 122 and is then reduced and integrated into one image group 96. Similarly, light emitted from other parts of the display unit 16A also becomes light from the reproduced image group 96. On the other hand, higher-order diffracted light is shielded by the closed liquid crystal shutters S1 and S2. In this way, the electronic holography reproducing apparatus 1 can shield the higher-order diffracted light other than the reproduced light in the left viewing area and reproduce the reproduced image of the electronic hologram in the left viewing area.
  • FIG. 8 illustrates the pulses of the timing signals S1 to S3 and the hologram data to be displayed.
  • HR, HC, and HL of the hologram data indicate divided electronic holograms in the right viewing area, the middle viewing area, and the left viewing area, respectively.
  • H and L of the timing signals S1 to S3 indicate the level of the level.
  • the horizontal axis indicates the time axis.
  • the control unit 140 outputs the high-level timing signal S1 and the low-level timing signals S2 and S3 during the time T1, in synchronization with the synchronization signal of the hologram storage unit 130.
  • 14 light emitting elements, the spatial filter 120, and the hologram reading means 150.
  • the hologram reading means 150 reads out the divided electronic holograms in the right viewing area from the hologram storage means 130 for each of the magnifying optical systems 10 and outputs them to the spatial light modulator 16.
  • the light emitting element of the light emitting means 14 emits light to the fiber F1 for a period of time T1.
  • the fiber F1 emits light
  • the liquid crystal shutter S1 is opened
  • the spatial light modulator 16 displays the divided electronic hologram in the right viewing area.
  • the fibers F2 and F3 do not emit light, and the liquid crystal shutters S2 and S3 are closed.
  • the control means 140 outputs the high level timing signal S2 and the low level timing signals S1 and S3 during the time T2, the light emitting element of the light emitting means 14, the spatial filter 120, and the hologram reading means 150. Output to.
  • the hologram reading unit 150 reads out the divided electronic holograms in the middle viewing area from the hologram storage unit 130 for each of the magnifying optical systems 10, and outputs them to the spatial light modulator 16.
  • the light emitting element of the light emitting means 14 emits light to the fiber F2 for a period of time T2.
  • the fiber F2 emits light
  • the liquid crystal shutter S2 is opened
  • the spatial light modulator 16 displays the divided electronic hologram in the middle viewing area.
  • the fibers F1 and F3 do not emit light, and the liquid crystal shutters S1 and S3 are closed.
  • the control means 140 outputs the high level timing signal S3 and the low level timing signals S1, S2 during the time T3, the light emitting element of the light emitting means 14, the spatial filter 120, and the hologram reading means 150. Output to.
  • the hologram reading unit 150 reads out the divided electronic holograms in the left viewing area from the hologram storage unit 130 for each of the magnifying optical systems 10 and outputs them to the spatial light modulator 16.
  • the light emitting element of the light emitting means 14 emits light to the fiber F3 for a period of time T3. Thereby, the fiber F3 emits light, the liquid crystal shutter S3 is opened, and the spatial light modulator 16 displays the divided electronic hologram in the left viewing area. Naturally, the fibers F1 and F2 do not emit light, and the liquid crystal shutters S1 and S2 are closed.
  • the electronic holography reproducing device 1 exhibits its effect most when applied to a stereoscopic display using electronic holography, which is an ideal stereoscopic video system.
  • the electronic holography reproducing device 1 can arrange a plurality of spatial light modulators 16 having a small number of pixels adjacent to each other so as to combine the reproduced images of the electronic hologram without any gap, and can reproduce a large-screen holographic image.
  • the electronic holography reproducing device 1 expands the viewing zone at a magnification equal to the number of the optical fibers F1 to F3 by irradiating the spatial light modulators 16 in time division with the optical fibers F1 to F3 having different positions and angles. be able to.
  • the electronic holography reproducing device 1 since the electronic holography reproducing device 1 has the optical fibers F1 and F3 directed outward with respect to the central axis of the spatial light modulator 16, the center of the emitted light from the optical fibers F1 to F3 is set to the center of the spatial light modulator 16. And uneven brightness in each viewing zone can be eliminated. Furthermore, since the electronic holography reproducing apparatus 1 can shield high-order diffracted light generated in each spatial light modulator 16 by the single spatial filter 120, it can reproduce a high-quality electronic holographic image without ghosting. .
  • the electronic holography reproducing device 1 is not limited to the above-described embodiment, and can be modified without departing from the spirit thereof. As shown in FIG. 9, the electronic holography reproducing device 1 can be made full color by switching the emission wavelengths (R, G, B) of the light emitting elements of the light emitting means 14 in a time division manner. As shown in FIG. 9, the control unit 140 extracts a synchronization signal (V-sync) from the HD-SDI signal of the hologram data stored in the hologram storage unit 140. Then, the control unit 140 performs synchronization control using timing signals S1 to S3 corresponding to three rounds of the extracted synchronization signal. For example, in FIG. 9, t1 is about 1/60 (sec) and t2 is 150 ( ⁇ sec).
  • two magnifying optical systems 10 are provided vertically and horizontally, but the number is not limited.
  • three or four magnifying optical systems 10 may be provided vertically and horizontally.
  • the magnifying optical system 10 may have different numbers in the vertical and horizontal directions.
  • the electronic holography reproducing device 1 may perform time division in five viewing zones such as a deep right viewing zone, a shallow right viewing zone, a middle viewing zone, a shallow left viewing zone, and a deep left viewing zone.
  • the electronic holography reproducing device 1 arranges one optical fiber on the central axis of the spatial light modulator 16 and symmetrically separates the two optical fibers from the central axis of the spatial light modulator 16 at equal intervals. Deploy.
  • Each spatial light modulator 16 displays a divided electronic hologram of a deep right viewing area, a shallow right viewing area, a middle viewing area, a shallow left viewing area, and a deep left viewing area.
  • the spatial filter 120 includes five liquid crystal shutters corresponding to the five optical fibers.
  • the control unit 140 synchronously controls the light emission of the five optical fibers, the display of the spatial light modulator 16, and the opening and closing of the five liquid crystal shutters. In this way, the electronic holography reproduction device 1 can further enlarge the viewing zone.

Abstract

An electron holography reproduction device (1) is provided with: an enlargement optical system group (1A) for generating enlarged images of an electron hologram; a reduction optical system (1B) that reduces the enlarged images and integrates the reduced images into one electron hologram reproduction image; a spatial filter (120) which is provided with liquid crystal shutters (S1-S3) for masking high-order diffraction light; and a control means (140) for synchronously controlling the emission of light from optical fibers (F1-F3), the display of a spatial light modulator (16), and the opening and closing of the liquid crystal shutters (S1-S3). The optical axes of the optical fibers (F1-F3) are disposed at angles that are coincident with the center of the spatial light modulator (16).

Description

電子ホログラフィ再生装置Electronic holography playback device
 本願発明は、電子ホログラムを再生する電子ホログラフィ再生装置に関する。 The present invention relates to an electronic holography reproducing apparatus for reproducing an electronic hologram.
 近年、電子ホログラフィによる立体視が可能なディスプレイ技術が提案されている。この電子ホログラフィは、位相の揃った参照光と、同じ光が物体で散乱された物体光とが互いに干渉して作られた干渉縞を、液晶ディスプレイ等のホログラム表示装置に表示する。そして、電子ホログラフィは、このホログラム表示装置に参照光と同じ波長の照明光を照射することで生じる回折効果を利用して、元の物体光を再生光として再生するものである。 Recently, display technologies capable of stereoscopic viewing using electronic holography have been proposed. This electronic holography displays interference fringes formed by interference between phase-matched reference light and object light in which the same light is scattered by an object on a hologram display device such as a liquid crystal display. In the electronic holography, the original object light is reproduced as reproduction light by using a diffraction effect generated by irradiating the hologram display device with illumination light having the same wavelength as the reference light.
 この電子ホログラフィは、立体視要因を全て満たす理想的な立体映像方式であるが、ホログラム表示装置に光の波長程度の画素サイズが要求されるため、現状では、画面が小さく、視域が狭いという問題がある。 This electronic holography is an ideal stereoscopic video system that satisfies all the stereoscopic factors. However, since the hologram display device requires a pixel size of about the wavelength of light, the screen is small and the viewing area is narrow at present. There's a problem.
 そこで、従来から、大画面、かつ、広い視域の電子ホログラフィ再生装置が提案されている(例えば、特許文献1)。特許文献1に記載の発明は、図10のホログラム表示モジュール2を複数個並べたものである。このホログラム表示モジュール2は、点光源アレイ21を用いて、電子ホログラフィ像のサイズ及び視域を拡大するものである。つまり、ホログラム表示モジュール2は、光ファイバLS1~LS3からなる点光源アレイ21からの光を、ビームスプリッタ22で反射させ、レンズ23を介して、液晶ディスプレイ等の空間光変調器24に照射する。そして、ホログラム表示モジュール2は、表示されたホログラムの再生光を、レンズ23及びビームスプリッタ22を通して、スリットマトリクス25の窓で、照明光及び共役光を遮蔽して、スクリーンレンズ26上に拡大された電子ホログラフィ像を結像させている。特許文献1に記載の発明は、このホログラム表示モジュール2を複数個並べることで、隙間のない大画面の電子ホログラフィ像を再生することができる。 Therefore, conventionally, an electronic holography reproducing device having a large screen and a wide viewing zone has been proposed (for example, Patent Document 1). The invention described in Patent Document 1 is obtained by arranging a plurality of hologram display modules 2 of FIG. The hologram display module 2 uses the point light source array 21 to enlarge the size and viewing area of an electronic holographic image. That is, the hologram display module 2 reflects the light from the point light source array 21 composed of the optical fibers LS1 to LS3 by the beam splitter 22 and irradiates the spatial light modulator 24 such as a liquid crystal display through the lens 23. Then, the hologram display module 2 expanded the reproduced light of the displayed hologram on the screen lens 26 through the lens 23 and the beam splitter 22, shielding the illumination light and the conjugate light at the window of the slit matrix 25. An electronic holographic image is formed. The invention described in Patent Document 1 can reproduce a large-screen electronic holographic image without gaps by arranging a plurality of hologram display modules 2.
 また、特許文献1に記載の発明は、水平方向の視域を拡大するために、空間光変調器24のホログラム表示面を垂直方向に光ファイバLS1~LS3の数だけ分割し、それぞれに異なる視域のホログラムを再生する。さらに、特許文献1に記載の発明は、各ホログラムの表示高さに合わせて、光ファイバLS1~LS3の位置を垂直方向にずらす事により、スリットマトリクス25の窓位置で、全ての視域のホログラム再生光を同じ高さで取り出すことができる。その結果、特許文献1に記載の発明は、水平方向の視域を拡大することができる。 Further, the invention described in Patent Document 1 divides the hologram display surface of the spatial light modulator 24 by the number of optical fibers LS1 to LS3 in the vertical direction in order to enlarge the horizontal viewing zone, and each has a different view. Play the hologram of the area. Furthermore, the invention described in Patent Document 1 is based on the fact that holograms in all viewing zones are formed at the window positions of the slit matrix 25 by shifting the positions of the optical fibers LS1 to LS3 in the vertical direction according to the display height of each hologram. The reproduction light can be taken out at the same height. As a result, the invention described in Patent Document 1 can expand the horizontal viewing zone.
特開2011-17945号公報JP 2011-17945 A
 しかし、特許文献1に記載の発明は、個々の視域におけるホログラムの高さが、空間光変調器24の高さを光ファイバの数で割った値になるため、垂直視域も光ファイバの数で割った値まで減少し、垂直視差が殆どなくなるという問題がある。 However, in the invention described in Patent Document 1, the height of the hologram in each viewing zone is a value obtained by dividing the height of the spatial light modulator 24 by the number of optical fibers. There is a problem that the vertical parallax is almost eliminated by decreasing to a value divided by the number.
 さらに、特許文献1に記載の発明は、図11に示すように、光ファイバLS1~LS3からの拡散光を平行光にするレンズ23と、空間光変調器24の拡大像をレンズ26に結像させるレンズ23とを共用するため、レンズ23と空間光変調器24との距離dをレンズ23の焦点距離f1より大きくする必要がある。その結果、特許文献1に記載の発明は、光ファイバLS1,LS3からの照明光の中心が空間光変調器24の中心からずれてしまい、均一な明るさの電子ホログラフィ像を再生できないという問題もある。 Furthermore, in the invention described in Patent Document 1, as shown in FIG. 11, a magnified image of the lens 23 that converts the diffused light from the optical fibers LS1 to LS3 into parallel light and the spatial light modulator 24 is formed on the lens 26. In order to share the lens 23 to be used, it is necessary to make the distance d between the lens 23 and the spatial light modulator 24 larger than the focal length f1 of the lens 23. As a result, the invention described in Patent Document 1 has a problem that the center of illumination light from the optical fibers LS1 and LS3 is deviated from the center of the spatial light modulator 24, and an electronic holographic image with uniform brightness cannot be reproduced. is there.
 さらに、特許文献1に記載の発明は、図12に示すように、空間フィルタ25が、全ての視域のホログラム再生光を通過させる大きさであるため、個々の視域の高次回折光が遮蔽されずにゴーストが発生し、画質が低いという問題もある。 Furthermore, in the invention described in Patent Document 1, as shown in FIG. 12, since the spatial filter 25 is sized to pass the hologram reproduction light in all viewing zones, high-order diffracted light in each viewing zone is shielded. There is also a problem that a ghost is generated instead and the image quality is low.
 なお、図11は、図10のホログラム表示モジュール2と光学的に等価である(図12も同様)。また、図11のf2は、レンズ26の焦点距離を示している。
 また、図12では、再生光(ホログラム光)の領域90をハッチングで図示し、再生光以外の不要光である高次回折光の領域91を破線で図示した。
11 is optically equivalent to the hologram display module 2 of FIG. 10 (the same applies to FIG. 12). Further, f2 in FIG. 11 indicates the focal length of the lens 26.
In FIG. 12, a region 90 of reproduction light (hologram light) is indicated by hatching, and a region 91 of high-order diffracted light that is unnecessary light other than reproduction light is indicated by a broken line.
 そこで、本願発明は、前記した問題を解決し、視域が広く、明るさが均一で、高画質な電子ホログラフィ再生装置を提供することを課題とする。 Therefore, an object of the present invention is to solve the above-described problems and provide an electronic holography reproducing device having a wide viewing zone, uniform brightness, and high image quality.
 前記した課題を解決するため、本願発明に係る電子ホログラフィ再生装置は、1枚の電子ホログラムが分割された分割電子ホログラムの拡大像を生成する複数の拡大光学系と、それぞれの前記拡大光学系が生成した拡大像を縮小して1枚の前記電子ホログラムの再生像に統合する縮小光学系とを備える電子ホログラフィ再生装置であって、前記拡大光学系のそれぞれは、一方向に等間隔で配置された複数の点光源を有する発光手段と、前記点光源からの出射光を平行光に変換する第1レンズと、前記平行光の照射元となる点光源の位置に応じた視域の分割電子ホログラムを表示し、表示した当該分割電子ホログラムに前記第1レンズからの平行光が照射されることで、当該分割電子ホログラムの再生光を発生させる空間光変調器と、前記空間光変調器が発生させた再生光が前記第1レンズを通過することにより生じる結像面に配置され、前記結像面に結像した再生光により生成される拡大像と同じ大きさの第2レンズと、を備え、前記縮小光学系は、全ての前記第2レンズから再生光が入射する第3レンズと、前記第3レンズが出射した再生光を通過又は遮蔽する窓が前記点光源毎に設けられた空間フィルタと、前記空間フィルタの窓を通過した光の再生像を生成する第4レンズと、を備え、前記点光源の発光と、前記空間光変調器における各視域の分割電子ホログラムの表示と、前記空間フィルタの窓の開閉とを同期制御する制御手段と、を備え、前記空間フィルタは、前記第3レンズ及び前記第4レンズの共通焦点面に配置され、前記各点光源は、光出射側端面から前記第1レンズの光学主点までの距離が前記第1レンズの焦点距離と等しく、光軸が前記空間光変調器の中心に一致する角度で配置されたことを特徴とする。 In order to solve the above-described problem, an electronic holography reproducing apparatus according to the present invention includes a plurality of magnifying optical systems that generate magnified images of divided electronic holograms obtained by dividing one electronic hologram, and each of the magnifying optical systems includes: And a reduction optical system that reduces the generated magnified image and integrates it into a single reproduced image of the electronic hologram, wherein each of the magnified optical systems is arranged at equal intervals in one direction. A light emitting means having a plurality of point light sources, a first lens for converting light emitted from the point light sources into parallel light, and a divided electronic hologram having a viewing zone corresponding to the position of the point light source as the irradiation source of the parallel light And a spatial light modulator that generates reproduction light of the divided electronic hologram by irradiating the displayed divided electronic hologram with parallel light from the first lens, and the empty electronic hologram. A reproduction light generated by the optical modulator is disposed on the imaging surface generated by passing through the first lens, and a second image having the same size as the enlarged image generated by the reproduction light imaged on the imaging surface. The reduction optical system includes a third lens that receives reproduction light from all the second lenses, and a window that passes or blocks the reproduction light emitted from the third lens for each point light source. A spatial filter provided; and a fourth lens that generates a reconstructed image of the light that has passed through the window of the spatial filter, and emits light from the point light source, and a divided electronic hologram for each viewing zone in the spatial light modulator. And control means for synchronously controlling the opening and closing of the window of the spatial filter, the spatial filter is disposed on a common focal plane of the third lens and the fourth lens, and each point light source is From the light emission side end face, the first Equal distance to the optical principal point of the lens is the focal length of the first lens, wherein the optical axis is disposed at an angle that coincides with the center of the spatial light modulator.
 かかる構成によれば、電子ホログラフィ再生装置は、一方向に配置された複数の点光源で、異なる視域の分割電子ホログラムが表示される空間光変調器を時分割で照射することで、従来技術のように空間光変調器の表示面を分割する必要がない。そして、電子ホログラフィ再生装置は、各点光源からの出射光の中心と、空間光変調器の中心とを一致させるので、明るさのムラを無くすことができる。さらに、電子ホログラフィ再生装置は、各点光源の発光に同期して、ホログラムの再生光のみを通過させる空間フィルタにより、高次回折光も遮蔽することができる。 According to such a configuration, the electronic holography reproducing device irradiates the spatial light modulator displaying the divided electronic holograms of different viewing zones in a time division manner with a plurality of point light sources arranged in one direction. Thus, there is no need to divide the display surface of the spatial light modulator. Since the electronic holography reproducing device matches the center of the emitted light from each point light source with the center of the spatial light modulator, unevenness in brightness can be eliminated. Furthermore, the electronic holography reproducing device can also block higher-order diffracted light by a spatial filter that allows only hologram reproduction light to pass in synchronization with light emission of each point light source.
 本願発明に係る電子ホログラフィ再生装置は、従来技術のように空間光変調器の表示面を分割する必要がないので、表示面を分割した方向の視域を犠牲にすることがなく、視域を広くすることができる。さらに、電子ホログラフィ再生装置は、明るさのムラがなく、電子ホログラムの再生像を均一な明るさに保つことができる。さらに、電子ホログラフィ再生装置は、高次回折光を遮蔽できるため、高画質な電子ホログラムを再生することができる。 Since the electronic holography reproducing device according to the present invention does not need to divide the display surface of the spatial light modulator as in the prior art, the viewing area in the direction in which the display surface is divided is not sacrificed. Can be wide. Furthermore, the electronic holography reproducing device has no unevenness in brightness, and can maintain a reproduced image of the electronic hologram with uniform brightness. Furthermore, since the electronic holography reproducing apparatus can shield high-order diffracted light, it can reproduce high-quality electronic holograms.
本願発明の実施形態において、(a)は電子ホログラフィ再生装置の概略構成図であり、(b)は拡大光学系の概略構成図である。In the embodiment of the present invention, (a) is a schematic configuration diagram of an electronic holography reproducing device, and (b) is a schematic configuration diagram of an enlarged optical system. 本願発明の実施形態において、電子ホログラムの分割を説明するための説明図である。In embodiment of this invention, it is explanatory drawing for demonstrating the division | segmentation of an electronic hologram. 本願発明の実施形態において、光ファイバの角度を説明するための説明図である。In embodiment of this invention, it is explanatory drawing for demonstrating the angle of an optical fiber. 本願発明の実施形態において、拡大像の視域角を説明するための説明図である。In embodiment of this invention, it is explanatory drawing for demonstrating the viewing zone angle of an enlarged image. 本願発明の実施形態において、右視域の電子ホログラムの再生を説明するための説明図である。In embodiment of this invention, it is explanatory drawing for demonstrating reproduction | regeneration of the electronic hologram of a right visual field. 本願発明の実施形態において、中視域の電子ホログラムの再生を説明するための説明図である。In embodiment of this invention, it is explanatory drawing for demonstrating reproduction | regeneration of the electronic hologram of a middle visual field. 本願発明の実施形態において、左視域の電子ホログラムの再生を説明するための説明図である。In embodiment of this invention, it is explanatory drawing for demonstrating reproduction | regeneration of the electronic hologram of a left visual field. 本願発明の実施形態において、制御手段による同期制御を説明するための説明図である。In embodiment of this invention, it is explanatory drawing for demonstrating the synchronous control by a control means. 本願発明の変形例において、制御手段による同期制御を説明するための説明図である。In the modification of this invention, it is explanatory drawing for demonstrating the synchronous control by a control means. 従来の電子ホログラフィ再生装置の構成を示す概略構成図である。It is a schematic block diagram which shows the structure of the conventional electronic holography reproducing | regenerating apparatus. 従来の電子ホログラフィ再生装置の問題点を説明するための説明図である。It is explanatory drawing for demonstrating the problem of the conventional electronic holography reproducing | regenerating apparatus. 従来の電子ホログラフィ再生装置の問題点を説明するための説明図である。It is explanatory drawing for demonstrating the problem of the conventional electronic holography reproducing | regenerating apparatus.
(実施形態)
[電子ホログラフィ再生装置の構成]
 以下、本願発明の実施形態について、適宜図面を参照しながら詳細に説明する。
 図1を参照し、本願発明の実施形態に係る電子ホログラフィ再生装置1の構成について、説明する。
(Embodiment)
[Configuration of electronic holography playback device]
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate.
With reference to FIG. 1, the structure of the electronic holography reproducing | regenerating apparatus 1 which concerns on embodiment of this invention is demonstrated.
 図1(a)に示すように、電子ホログラフィ再生装置1は、電子ホログラムを再生するものであり、拡大光学系群1Aと、縮小光学系1Bと、空間フィルタ120と、ホログラム記憶手段130と、制御手段140と、ホログラム読出手段150とを備える。 As shown in FIG. 1A, the electronic holography reproducing device 1 reproduces an electronic hologram, and includes an enlarging optical system group 1A, a reducing optical system 1B, a spatial filter 120, a hologram storage unit 130, Control means 140 and hologram reading means 150 are provided.
 拡大光学系群1Aは、1枚の電子ホログラムが分割された分割電子ホログラムの拡大像を生成するものであり、複数の拡大光学系10で構成される。本実施形態では、拡大光学系群1Aは、縦横に2個ずつ、計4個の拡大光学系10で構成される。
 図1(b)に示すように、拡大光学系10は、それぞれ、発光手段14と、第1レンズ15と、空間光変調器16と、第2レンズ17とを備える。
The magnifying optical system group 1 </ b> A generates a magnified image of a divided electronic hologram obtained by dividing one electronic hologram, and includes a plurality of magnifying optical systems 10. In the present embodiment, the magnifying optical system group 1A is composed of four magnifying optical systems 10 in total, two in the vertical and horizontal directions.
As shown in FIG. 1B, the magnifying optical system 10 includes a light emitting means 14, a first lens 15, a spatial light modulator 16, and a second lens 17, respectively.
<電子ホログラムの分割>
 図2を参照し、電子ホログラムの分割について、説明する(適宜図1参照)。
 図2では、説明を分かり易くするために、電子ホログラフィ再生装置1が最終的に表示する被写体の像94を図示した。
<Division of electronic hologram>
The division of the electronic hologram will be described with reference to FIG. 2 (see FIG. 1 as appropriate).
In FIG. 2, in order to make the explanation easy to understand, an image 94 of the subject that is finally displayed by the electronic holography reproducing apparatus 1 is illustrated.
 電子ホログラム92は、拡大光学系10と同数(例えば、4個)の分割ホログラム93~93が生成されるように、縦横に等分される。また、各拡大光学系10には、その配置位置に応じた分割電子ホログラム93~93が入力されることになる。 Electronic hologram 92 is equal to the magnifying optical system 10 (e.g., four) as divided hologram 93 1-93 4 is produced, is equally divided vertically and horizontally. Further, the divided optical holograms 93 1 to 93 4 corresponding to the arrangement positions are input to each magnifying optical system 10.
 ここで、後記する縮小光学系1Bにおいて、各分割電子ホログラム93~93の位置関係が上下左右で反転するので、この位置関係の反転を考慮して、各拡大光学系10に分割電子ホログラム93~93を入力することが好ましい。例えば、左上の拡大光学系10は、右下の分割電子ホログラム93が入力され、この分割電子ホログラム93に含まれる領域の被写体の像94を拡大する。また、例えば、右下の拡大光学系10は、左上の分割電子ホログラム93が入力され、この分割電子ホログラム93に含まれる領域の被写体の像94を拡大する。 Here, in the reduction optical system 1B to be described later, the positional relationship between the divided electronic holograms 93 1 to 93 4 is reversed vertically and horizontally. it is preferable to enter the 93 1-93 4. For example, the upper left enlarging optical system 10 is divided electron hologram 93 4 lower right is input, to expand the image 94 of the subject areas included in the divided electronic hologram 93 4. Further, for example, the lower right magnifying optical system 10 receives the upper left divided electronic hologram 93 1 and enlarges the subject image 94 in the region included in the divided electronic hologram 93 1 .
 図1に戻り、電子ホログラフィ再生装置1の構成について、説明を続ける。
 発光手段14は、第1レンズ15に拡散光(出射光)を出射するものであり、光ファイバ群11と、ミラー(反射鏡)12と、ビームスプリッタ13とを備える。また、発光手段14は、所望の波長の光を発光する共通の発光素子を外部に備え(不図示)、後記するタイミング信号に基づいて、発光素子を発光させて、その光を光ファイバF1~F3に入射させる。
Returning to FIG. 1, the description of the configuration of the electronic holography reproducing device 1 will be continued.
The light emitting means 14 emits diffused light (emitted light) to the first lens 15, and includes an optical fiber group 11, a mirror (reflecting mirror) 12, and a beam splitter 13. The light-emitting means 14 includes a common light-emitting element that emits light of a desired wavelength (not shown) outside, causes the light-emitting element to emit light based on a timing signal described later, and transmits the light to the optical fibers F1 to F1. The light is incident on F3.
 光ファイバ群11は、光ファイバ(点光源)F1~F3の光軸が空間光変調器16の中心に一致する角度で、光ファイバF1~F3が水平方向で等間隔に配置されたものである。本実施形態では、光ファイバ群11は、光ファイバF1~F3の出射口が第2レンズ17の側を向くように、3本の光ファイバF1~F3が配置されたこととする。
 なお、光ファイバF1~F3の角度は、詳細を後記する。
In the optical fiber group 11, the optical fibers F1 to F3 are arranged at equal intervals in the horizontal direction at an angle at which the optical axes of the optical fibers (point light sources) F1 to F3 coincide with the center of the spatial light modulator 16. . In the present embodiment, it is assumed that the optical fiber group 11 includes three optical fibers F1 to F3 so that the exit ports of the optical fibers F1 to F3 face the second lens 17 side.
Details of the angles of the optical fibers F1 to F3 will be described later.
 ミラー12は、直角二等辺三角柱状に形成された反射鏡である。具体的には、ミラー12は、光ファイバF1~F3の出射口に対向する傾斜面が反射面になっている。そして、ミラー12は、光ファイバF1~F3から水平方向で入射する拡散光を、垂直方向に反射する。 The mirror 12 is a reflecting mirror formed in a right isosceles triangular prism shape. Specifically, the mirror 12 has a reflecting surface as an inclined surface facing the emission ports of the optical fibers F1 to F3. The mirror 12 reflects the diffused light incident in the horizontal direction from the optical fibers F1 to F3 in the vertical direction.
 ビームスプリッタ13は、ミラー12で反射された拡散光を第1レンズ15に向けて反射すると共に、空間光変調器16で発生した再生光を第2レンズ17に透過させるものである。具体的には、ビームスプリッタ13は、一方の直角プリズムの傾斜面に光学薄膜を形成した後、2個の直角プリズムの傾斜面同士が接合されている。このように発光手段14が構成されるので、電子ホログラフィ再生装置1は、省スペース化を図ることができる。 The beam splitter 13 reflects the diffused light reflected by the mirror 12 toward the first lens 15 and transmits the reproduction light generated by the spatial light modulator 16 to the second lens 17. Specifically, in the beam splitter 13, after forming an optical thin film on the inclined surface of one right-angle prism, the inclined surfaces of the two right-angle prisms are joined to each other. Thus, since the light emission means 14 is comprised, the electronic holography reproducing | regenerating apparatus 1 can achieve space saving.
<光ファイバの角度>
 図3を参照し、光ファイバF1~F3の角度について、詳細に説明する(適宜図1参照)。
 図3は、図1の発光手段14、第1レンズ15及び空間光変調器16の部分と光学的に等価な構成を示している。
 図3では、空間光変調器16の中心軸を長破線で図示し、光ファイバF3の出射光を短破線で図示し、光ファイバF3の光軸を実線で図示した。また、図3では、図面を見易くするため、ミラー12及びビームスプリッタ13を省略すると共に、光ファイバF1~F3の出射口を第1レンズ15の側に向けて図示した。
<Angle of optical fiber>
With reference to FIG. 3, the angles of the optical fibers F1 to F3 will be described in detail (see FIG. 1 as appropriate).
FIG. 3 shows a configuration optically equivalent to the light emitting means 14, the first lens 15, and the spatial light modulator 16 of FIG.
In FIG. 3, the central axis of the spatial light modulator 16 is indicated by a long broken line, the emitted light from the optical fiber F3 is indicated by a short broken line, and the optical axis of the optical fiber F3 is indicated by a solid line. Further, in FIG. 3, the mirror 12 and the beam splitter 13 are omitted for easy understanding of the drawing, and the emission ports of the optical fibers F1 to F3 are illustrated facing the first lens 15 side.
 図3に示すように、光ファイバF1~F3は、光出射側端面から、ミラー12及びビームスプリッタ13を介し、第1レンズ15の光学主点までの距離が第1レンズ15の焦点距離fと等しくなる。その結果、光ファイバF1~F3からの拡散光は、第1レンズ15を通過すると、平行光になる。 As shown in FIG. 3, in the optical fibers F1 to F3, the distance from the light exit side end surface to the optical principal point of the first lens 15 via the mirror 12 and the beam splitter 13 is the focal length f 1 of the first lens 15. Is equal to As a result, when the diffused light from the optical fibers F1 to F3 passes through the first lens 15, it becomes parallel light.
 光ファイバF3の光出射側端面が、第1レンズ15の光軸から距離pだけ離れていて、第1レンズ15の光軸(空間光変調器16の中心軸と同じ位置)に対し、外側に角度θだけ傾いているとする。この場合、光ファイバF3からの拡散光の中心は、下記の式(1)に示すように、第1レンズ15の中心から距離lだけずれる。 The light emitting side end face of the optical fiber F3 is separated from the optical axis of the first lens 15 by a distance p, and is outside the optical axis of the first lens 15 (the same position as the central axis of the spatial light modulator 16). Suppose that it is inclined by an angle θ. In this case, the center of the diffused light from the optical fiber F3 is shifted from the center of the first lens 15 by a distance l as shown in the following formula (1).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 光ファイバF3の光出射側端面から出た、第1レンズ15の光軸に平行な光は、第1レンズ15を通過後、レンズ15の左側焦点位置で空間光変調器16の中心軸と交わる。従って、その光の傾きは、下記の式(2)で表され、全ての拡散光が第1レンズ15を通過後、この光に平行になるので、傾きp/fを持つことになる。 Light emitted from the light emission side end face of the optical fiber F3 and parallel to the optical axis of the first lens 15 crosses the central axis of the spatial light modulator 16 at the left focal position of the lens 15 after passing through the first lens 15. . Accordingly, the inclination of the light is expressed by the following formula (2), and all diffused light passes through the first lens 15 and becomes parallel to this light, and therefore has an inclination p / f 1 .
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 第1レンズ15から空間光変調器16までの距離をd(但し、距離d>焦点距離f)とする。この場合、空間光変調器16の中心軸を通る光は、式(3)に示すように、第1レンズ15の光軸からずれている。 The distance from the first lens 15 to the spatial light modulator 16 is d (where distance d> focal length f 1 ). In this case, the light passing through the central axis of the spatial light modulator 16 is deviated from the optical axis of the first lens 15 as shown in Expression (3).
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 従って、式(1)と式(3)を等しくすることで、平行光の中心を空間光変調器16の中心に照射することができる。この条件から、光ファイバF3の角度θは、式(4)で表すことができる。 Therefore, the center of the parallel light can be irradiated to the center of the spatial light modulator 16 by making the expressions (1) and (3) equal. From this condition, the angle θ of the optical fiber F3 can be expressed by Expression (4).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 光ファイバF1は、空間光変調器16の中心軸に対して、光ファイバF3と対称位置にある。そこで、光ファイバF3と同様、光ファイバF1は、空間光変調器16の中心軸の外側に式(4)の角度θだけ傾ける。従って、光ファイバF1からの平行光の中心は、光ファイバF3と同様に空間光変調器16の中心に一致する。当然、光ファイバF2は、空間光変調器16の中心軸上に位置するため、傾ける必要がない。このようにして、電子ホログラフィ再生装置1は、光ファイバF1~F3からの拡散光を空間光変調器16に均一に照射することができる。 The optical fiber F1 is symmetrical to the optical fiber F3 with respect to the central axis of the spatial light modulator 16. Therefore, like the optical fiber F3, the optical fiber F1 is tilted by the angle θ in Expression (4) outside the central axis of the spatial light modulator 16. Therefore, the center of the parallel light from the optical fiber F1 coincides with the center of the spatial light modulator 16 like the optical fiber F3. Of course, since the optical fiber F2 is located on the central axis of the spatial light modulator 16, it is not necessary to incline it. In this way, the electronic holography reproducing device 1 can uniformly irradiate the spatial light modulator 16 with the diffused light from the optical fibers F1 to F3.
 図1に戻り、電子ホログラフィ再生装置1の構成について、説明を続ける。
 第1レンズ15は、光ファイバF1から拡散光を平行光に変換するものである。また、第1レンズ15は、後記する空間光変調器16からの再生光を第2レンズ17に出射する。
Returning to FIG. 1, the description of the configuration of the electronic holography reproducing device 1 will be continued.
The first lens 15 converts diffused light from the optical fiber F1 into parallel light. The first lens 15 emits reproduction light from a spatial light modulator 16 to be described later to the second lens 17.
 前記したように、第1レンズ15は、この第1レンズ15から光ファイバF1~F3の光出射側端面までの距離が、焦点距離fと等しくなる。また、第1レンズ15は、距離dが焦点距離fよりも長くなる。本実施形態では、第1レンズ15は、長方形状の凸レンズである。 As described above, the first lens 15, the distance from the first lens 15 to the light emitting side end face of the optical fiber F1 ~ F3 is equal to the focal length f 1. The first lens 15, the distance d is longer than the focal length f 1. In the present embodiment, the first lens 15 is a rectangular convex lens.
 空間光変調器16は、後記するホログラム読出手段150からホログラムデータが入力され、このホログラムデータが示す分割電子ホログラムを表示するものである。また、空間光変調器16は、表示した分割電子ホログラムに第1レンズ15からの平行光が照射されることで、分割電子ホログラムの再生光を発生させる。 The spatial light modulator 16 receives hologram data from a hologram reading means 150, which will be described later, and displays a divided electronic hologram indicated by the hologram data. The spatial light modulator 16 generates reproduction light of the divided electronic hologram by irradiating the displayed divided electronic hologram with the parallel light from the first lens 15.
 空間光変調器16は、表示部16Aと、駆動回路16Bとを備える。例えば、表示部16Aは、分割電子ホログラムを表示する反射型の液晶ディスプレイである。また、駆動回路16Bは、表示部16Aの駆動回路及び放熱器であり、表示部16Aの周囲に配置されている。 The spatial light modulator 16 includes a display unit 16A and a drive circuit 16B. For example, the display unit 16A is a reflective liquid crystal display that displays a divided electronic hologram. The drive circuit 16B is a drive circuit and a heat radiator for the display unit 16A, and is disposed around the display unit 16A.
 第2レンズ17は、空間光変調器16が発生させた再生光が第1レンズ15を通過することにより生じる結像面に配置され、結像面に結像した再生光により生成される拡大像と同じ大きさのレンズである。ここで、第2レンズ17は、電子ホログラムの再生像を隙間なく結合するため、拡大像と同じ大きさにする。本実施形態では、第2レンズ17は、長方形状の凸レンズである。 The second lens 17 is disposed on the imaging surface generated by the reproduction light generated by the spatial light modulator 16 passing through the first lens 15 and is an enlarged image generated by the reproduction light imaged on the imaging surface. Is the same size lens. Here, the second lens 17 has the same size as the enlarged image in order to combine the reproduced images of the electronic hologram without any gap. In the present embodiment, the second lens 17 is a rectangular convex lens.
 縮小光学系1Bは、それぞれの拡大光学系10が生成した拡大像を縮小して1枚の電子ホログラムの再生像に統合するものであり、第3レンズ119と、空間フィルタ120と、第4レンズ122とを備える。 The reduction optical system 1B reduces the enlargement image generated by each enlargement optical system 10 and integrates it into a reproduction image of one electronic hologram, and includes a third lens 119, a spatial filter 120, and a fourth lens. 122.
<縮小光学系の役割>
 図4を参照し、縮小光学系1Bの役割について、詳細に説明する(適宜図1参照)。
 図4は、図1の第1レンズ15、空間光変調器16及び第2レンズ17の部分と光学的に等価な構成を示している。
<Role of reduction optical system>
The role of the reduction optical system 1B will be described in detail with reference to FIG. 4 (see FIG. 1 as appropriate).
FIG. 4 shows a configuration optically equivalent to the first lens 15, the spatial light modulator 16, and the second lens 17 in FIG.
 前記したように、空間光変調器16は、駆動回路16Bが表示部16Aの周囲に配置されているので、この駆動回路16Bが隙間となり、空間光変調器16の全面に分割電子ホログラムを表示することができない。そこで、電子ホログラフィ再生装置1は、拡大光学系10を隣接配置したときの隙間を埋めるように、空間光変調器16からの再生光により生成される像を拡大して、拡大像95を生成する。 As described above, in the spatial light modulator 16, since the drive circuit 16B is arranged around the display unit 16A, the drive circuit 16B becomes a gap and displays the divided electronic hologram on the entire surface of the spatial light modulator 16. I can't. Therefore, the electronic holography reproducing device 1 generates an enlarged image 95 by enlarging an image generated by the reproduction light from the spatial light modulator 16 so as to fill a gap when the magnifying optical system 10 is adjacently disposed. .
 仮に、第1レンズ15で拡大像95を生成すると、図4に示すように、拡大像95の視域角αは、空間光変調器16の視域角(元の視域角)βよりも小さくなる。そこで、縮小光学系1Bは、結合された拡大像95を元のサイズまで縮小することで、元の視域に戻す。その結果、電子ホログラフィ再生装置1は、4個の拡大光学系10を隣接配置しても、4枚の分割電子ホログラムの再生像を隙間なく結合でき、1つの大画面ホログラフィ像を広い視域で再生することができる。 If the magnified image 95 is generated by the first lens 15, the viewing zone angle α of the magnified image 95 is larger than the viewing zone angle (original viewing zone angle) β of the spatial light modulator 16 as shown in FIG. Get smaller. Therefore, the reduction optical system 1B restores the combined enlarged image 95 to the original viewing zone by reducing it to the original size. As a result, the electronic holography reproducing device 1 can combine the reproduced images of the four divided electronic holograms without gaps even if the four magnifying optical systems 10 are arranged adjacent to each other, and can display one large-screen holographic image in a wide viewing area. Can be played.
 図1に戻り、電子ホログラフィ再生装置1の構成について、説明を続ける。
 第3レンズ119は、各拡大光学系10からの拡大像を縮小して、1枚の電子ホログラムの再生像に結合するためのレンズである。この第3レンズ119は、全ての第2レンズ17から再生光が入射する必要がある。このため、第3レンズ119は、各第2レンズ17と隣接配置することが好ましく、各第2レンズ17との光学主点間の距離をゼロにすることがより好ましい。また、第3レンズ119は、各第2レンズ17から離した場合、各拡大光学系10からの光が全て入射するサイズ(直径)であればよい。本実施形態では、第3レンズ119は、円形状の凸レンズである。
Returning to FIG. 1, the description of the configuration of the electronic holography reproducing device 1 will be continued.
The third lens 119 is a lens for reducing an enlarged image from each of the magnifying optical systems 10 and combining it with a reproduced image of one electronic hologram. The third lens 119 needs to receive the reproduction light from all the second lenses 17. For this reason, the third lens 119 is preferably disposed adjacent to each second lens 17, and more preferably the distance between the optical principal points of each second lens 17 is zero. Further, the third lens 119 may have a size (diameter) that allows all the light from each of the magnifying optical systems 10 to enter when separated from each second lens 17. In the present embodiment, the third lens 119 is a circular convex lens.
 空間フィルタ120は、第3レンズ119及び第4レンズ122の共通焦点面に配置され、中央に窓部121を備えるものである。この窓部121は、第3レンズ119が出射した再生光を通過又は遮蔽する液晶シャッタ(窓)S1~S3が、光ファイバF1~F3毎に設けられたものである。また、窓部121は、タイミング信号に基づいて、液晶シャッタS1~S3を開閉させる。 The spatial filter 120 is disposed on the common focal plane of the third lens 119 and the fourth lens 122, and includes a window 121 at the center. In the window 121, liquid crystal shutters (windows) S1 to S3 that pass or shield the reproduction light emitted from the third lens 119 are provided for the respective optical fibers F1 to F3. The window 121 opens and closes the liquid crystal shutters S1 to S3 based on the timing signal.
 液晶シャッタS1~S3は、第3レンズ119の焦点距離fだけ第3レンズ119から離し、かつ、焦点距離fだけ第4レンズ122から離して配置される。液晶シャッタS1~S3の下端位置は、第3レンズ119及び第4レンズ122の光軸に合わせる。液晶シャッタS1~S3の幅w及び高さhは、下記の式(5)に示すように、第3レンズ119の主点に像が形成され、この主点から角度φ/Nで拡散する光が焦点距離fだけ進んだときの広がりに等しくなる。なお、液晶シャッタS1~S3の高さhは、透過光、共役光等の不要光を遮蔽するため、幅wの約半分になっている。 Liquid crystal shutter S1 ~ S3 is, by the focal length f 3 of the third lens 119 away from the third lens 119, and are spaced apart from the fourth lens 122 by the focal length f 4. The lower end positions of the liquid crystal shutters S1 to S3 are aligned with the optical axes of the third lens 119 and the fourth lens 122. The width w and the height h of the liquid crystal shutters S1 to S3 are such that an image is formed at the principal point of the third lens 119 and diffused at an angle φ / N from the principal point as shown in the following equation (5). There is equal spread of time advanced by a focal length f 3. The height h of the liquid crystal shutters S1 to S3 is about half of the width w in order to shield unnecessary light such as transmitted light and conjugate light.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 第4レンズ122は、第3レンズ119と同様、各拡大光学系10からの拡大像を縮小して、1枚の電子ホログラムの再生像に結合するためのレンズである。つまり、第4レンズ122は、空間フィルタ120の窓S1~S3を通過した光の再生像を生成する。ここで、第4レンズ122の直径Rは、表示部16Aの幅W及び高さHと、縦横に空間光変調器16を配置した個数Kと、表示部16Aの画素サイズqと、発光手段14の発光素子の発光波長λによって定まる。 As with the third lens 119, the fourth lens 122 is a lens for reducing the magnified image from each magnifying optical system 10 and combining it with a reproduced image of one electronic hologram. That is, the fourth lens 122 generates a reproduced image of the light that has passed through the windows S1 to S3 of the spatial filter 120. Here, the diameter R of the fourth lens 122 is such that the width W and height H of the display unit 16A, the number K of spatial light modulators 16 arranged vertically and horizontally, the pixel size q of the display unit 16A, and the light emitting means 14 It is determined by the emission wavelength λ of the light emitting element.
 例えば、空間光変調器16を縦横にK個ずつ配置した場合、K個分の表示部16Aは、幅KW及び高さKHとなる。そして、第4レンズ122の直径Rは、下記の式(6)に示すように、この幅KW及び高さKHに、それぞれ横への光の広がり2L×tan(2φ)と、縦への光の広がりL×tanφを加えた幅と高さとをカバーできる値となる。 For example, when K spatial light modulators 16 are arranged vertically and horizontally, the K display portions 16A have a width KW and a height KH. The diameter R of the fourth lens 122 is, as shown in the following formula (6), the width KW and the height KH, respectively, the lateral light spread 2L × tan (2φ) and the longitudinal light. This is a value that can cover the width and height plus the spread of L × tanφ.
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 なお、f、f2、はそれぞれ第1レンズ15、第2レンズ17、第4レンズ122の焦点距離を表す。つまり、Nは、第1レンズ15及び第2レンズ17による拡大倍率を表す。ここでは、Nは、第1レンズ15と第2レンズ17との倍率比f2/f1であるが、表示部16Aの幅W及び高さHと、この表示部16Aをアレイ状に配置したときの幅W’及び高さH’との比に等しくする。 Note that f 1 , f 2, and f 4 represent the focal lengths of the first lens 15, the second lens 17, and the fourth lens 122, respectively. That is, N represents the magnification by the first lens 15 and the second lens 17. Here, N is the magnification ratio f2 / f1 between the first lens 15 and the second lens 17, but the width W and height H of the display unit 16A and the display unit 16A when arranged in an array. Equal to the ratio of width W ′ and height H ′.
 ホログラム記憶手段130は、拡大光学系10及び視域毎にホログラムデータを予め記憶するメモリ、ハードディスク等の記憶装置である。本実施形態では、ホログラム記憶手段130は、拡大光学系10が4個であり、視域が3個のため、1枚の電子ホログラムの再生像を再生するために、12枚の分割電子ホログラムに対応したホログラムデータを記憶することになる。 The hologram storage means 130 is a storage device such as a memory or a hard disk that stores hologram data in advance for each of the magnifying optical system 10 and the viewing zone. In the present embodiment, the hologram storage means 130 has four magnifying optical systems 10 and three viewing zones. Therefore, in order to reproduce a reproduction image of one electronic hologram, the hologram storage means 130 includes 12 divided electronic holograms. Corresponding hologram data is stored.
 図1(a)に示すように、制御手段140は、光ファイバF1~F3の発光と、空間光変調器16の表示と、液晶シャッタS1~S3の開閉とを同期制御するものである。本実施形態では、制御手段140は、全ての発光手段14と、空間フィルタ120と、ホログラム読出手段150とに、同期制御のタイミングを示すタイミング信号を出力する。
 なお、制御手段140による同期制御は、詳細を後記する。また、図1(a)では、図面を見易くするため、発光手段14に入力されるタイミング信号を一本のみ図示した(空間光変調器16も同様)。
As shown in FIG. 1 (a), the control unit 140 controls the emission of the optical fibers F1 to F3, the display of the spatial light modulator 16, and the opening and closing of the liquid crystal shutters S1 to S3 in synchronization. In the present embodiment, the control unit 140 outputs a timing signal indicating the timing of synchronization control to all the light emitting units 14, the spatial filter 120, and the hologram reading unit 150.
Details of the synchronization control by the control unit 140 will be described later. Further, in FIG. 1A, only one timing signal input to the light emitting means 14 is shown for easy understanding of the drawing (the same applies to the spatial light modulator 16).
 ホログラム読出手段150は、制御手段140からのタイミング信号に基づいて、ホログラム記憶手段130に記憶されたホログラムデータを読み出して、全ての空間光変調器16に出力するものである。 The hologram reading means 150 reads out the hologram data stored in the hologram storage means 130 based on the timing signal from the control means 140 and outputs it to all the spatial light modulators 16.
<右視域の電子ホログラムの再生>
 電子ホログラフィ再生装置1は、右視域、中視域及び左視域の電子ホログラムを時分割で再生する。図5を参照し、右視域の電子ホログラムの再生について、詳細に説明する(適宜図1参照)。
<Reproduction of electronic hologram in the right viewing area>
The electronic holography reproducing device 1 reproduces electronic holograms in the right viewing area, the middle viewing area, and the left viewing area in a time division manner. With reference to FIG. 5, the reproduction of the electronic hologram in the right viewing area will be described in detail (see FIG. 1 as appropriate).
 図5では、光ファイバF1が空間光変調器16を向かって左から照射したときに発生する再生光が占める視域90をハッチングで図示し、高次回折光が占める領域91を破線で図示した(図6,図7も同様)。また、図5では、液晶シャッタS1が開いていることを示すため、黒塗りで図示した。 In FIG. 5, the viewing zone 90 occupied by the reproduction light generated when the optical fiber F1 irradiates the spatial light modulator 16 from the left is shown by hatching, and the region 91 occupied by the higher-order diffracted light is shown by a broken line ( The same applies to FIGS. 6 and 7. In FIG. 5, the liquid crystal shutter S1 is shown in black to indicate that it is open.
 空間光変調器16は、画素が繰り返し並んだ周期構造を有するため、平行光が照射されると、分割電子ホログラムの再生光の他に、周期構造に起因する高次回折光も発生する。これら高次回折光は、拡大光学系10の第1レンズ15と第2レンズ17との間に空間フィルタを配置しても遮蔽できる。しかし、この配置の場合、拡大光学系10の個数だけ空間フィルタが必要になり、電子ホログラフィ再生装置1の構成が複雑になる。 Since the spatial light modulator 16 has a periodic structure in which pixels are repeatedly arranged, when irradiated with parallel light, high-order diffracted light due to the periodic structure is generated in addition to the reproduction light of the divided electron hologram. These higher-order diffracted lights can be blocked even if a spatial filter is disposed between the first lens 15 and the second lens 17 of the magnifying optical system 10. However, this arrangement requires as many spatial filters as the number of magnifying optical systems 10, which complicates the configuration of the electronic holography reproducing device 1.
 ここで、縮小光学系1Bは、第3レンズ119と第4レンズ122との共通焦点面において、拡大光学系10から出射された同一視域の再生光が、全て同じ場所を通過する。従って、電子ホログラフィ再生装置1は、この場所に空間フィルタ120を配置すると、単一の空間フィルタ120で各拡大光学系10から出射された高次回折光を遮蔽可能である。 Here, in the reduction optical system 1B, all the reproduction light in the same viewing area emitted from the magnification optical system 10 passes through the same place on the common focal plane of the third lens 119 and the fourth lens 122. Therefore, the electronic holography reproducing device 1 can shield high-order diffracted light emitted from each magnification optical system 10 with a single spatial filter 120 when the spatial filter 120 is disposed at this location.
 さらに、制御手段140は、右視域の分割電子ホログラムを空間光変調器16が表示し、右視域に対応する光ファイバF1が発光し、右視域の再生光が通過する位置の液晶シャッタS1が開き、高次回折光が通過する位置の液晶シャッタS2,S3が閉じるように、同期制御を行う。 Further, the control means 140 displays the divided electronic hologram in the right viewing area on the spatial light modulator 16, the optical fiber F1 corresponding to the right viewing area emits light, and the liquid crystal shutter at the position where the reproduction light in the right viewing area passes. Synchronous control is performed so that S1 is opened and the liquid crystal shutters S2 and S3 at positions where higher-order diffracted light passes are closed.
 すると、右視域の再生光の内、右側の表示部16Aの右端から発した光は、第1レンズ15を通過して、第2レンズ17の左端に入射する。そして、この右視域の再生光は、第3レンズ119の中心を通過し、開いた液晶シャッタS1を通過する。その後、この右視域の再生光は、第4レンズ122を通過した後、縮小されて1つの再生像に統合された像群96の中心部からの光となる。
 前記と同様、右側の表示部16Aの左端から発した光は、第1レンズ15を通過して、第2レンズ17と第3レンズ119の右端に到達し、開いた液晶シャッタS1を通過する。そして、この右視域の再生光は、第4レンズ122の左端に到達し、再生された像群96の左端からの光となる。さらに、表示部16Aの他の部分から発した光や、左側の表示部16Aから発した光も、同様に再生された像群96からの光となる。
 一方、高次回折光は、閉じた液晶シャッタS2,S3で遮蔽される。このようにして、電子ホログラフィ再生装置1は、右視域の再生光以外の高次回折光を遮蔽して、右視域の電子ホログラムの再生像を再生することができる。
Then, the light emitted from the right end of the right display unit 16 </ b> A out of the reproduction light in the right viewing area passes through the first lens 15 and enters the left end of the second lens 17. Then, the reproduction light in the right viewing area passes through the center of the third lens 119 and passes through the opened liquid crystal shutter S1. Thereafter, the reproduction light in the right viewing area passes through the fourth lens 122 and is reduced and becomes light from the center of the image group 96 integrated into one reproduction image.
Similarly to the above, the light emitted from the left end of the right display portion 16A passes through the first lens 15, reaches the right ends of the second lens 17 and the third lens 119, and passes through the opened liquid crystal shutter S1. Then, the reproduced light in the right viewing area reaches the left end of the fourth lens 122 and becomes light from the left end of the reproduced image group 96. Furthermore, the light emitted from the other part of the display unit 16A and the light emitted from the left display unit 16A also become the light from the reproduced image group 96.
On the other hand, high-order diffracted light is shielded by the closed liquid crystal shutters S2 and S3. In this way, the electronic holography reproducing device 1 can shield the higher-order diffracted light other than the reproduction light in the right viewing area and reproduce the reproduced image of the electronic hologram in the right viewing area.
<中視域の電子ホログラムの再生>
 図6を参照し、中視域の電子ホログラムの再生について、詳細に説明する(適宜図1参照)。
<Reproduction of electronic hologram in the middle viewing area>
With reference to FIG. 6, the reproduction of the electronic hologram in the middle viewing area will be described in detail (see FIG. 1 as appropriate).
 制御手段140は、中視域の分割電子ホログラムを空間光変調器16が表示し、中視域に対応する光ファイバF2が発光し、中視域の再生光が通過する位置の液晶シャッタS2が開き、高次回折光が通過する位置の液晶シャッタS1,S3が閉じるように、同期制御を行う。 The control means 140 displays the divided electronic hologram of the middle viewing area on the spatial light modulator 16, the optical fiber F2 corresponding to the middle viewing area emits light, and the liquid crystal shutter S2 at the position where the reproduction light of the middle viewing area passes is opened. Synchronous control is performed so that the liquid crystal shutters S1 and S3 at positions where the next diffracted light passes are closed.
 図6に示すように、中視域の再生光の内、表示部16Aの両端からの光は、第1レンズ15を通過して、第2レンズ17の両端に入射する。そして、中視域の再生光は、第3レンズ119の端又は中心を通過し、開いた液晶シャッタS2を通過する。その後、中視域の再生光は、第4レンズ122を通過した後、縮小されて1つの像群96に統合される。これと同様、表示部16Aの他の部分から発した光も、再生された像群96からの光となる。一方、高次回折光は、閉じた液晶シャッタS1,S3で遮蔽される。このようにして、電子ホログラフィ再生装置1は、中視域の再生光以外の高次回折光を遮蔽して、中視域の電子ホログラムの再生像を再生することができる。 As shown in FIG. 6, the light from both ends of the display unit 16 </ b> A out of the reproduction light in the middle viewing area passes through the first lens 15 and enters both ends of the second lens 17. The reproduction light in the middle viewing area passes through the end or center of the third lens 119 and passes through the opened liquid crystal shutter S2. Thereafter, the reproduction light in the middle viewing area passes through the fourth lens 122 and is then reduced and integrated into one image group 96. Similarly, light emitted from other parts of the display unit 16A also becomes light from the reproduced image group 96. On the other hand, higher-order diffracted light is shielded by the closed liquid crystal shutters S1 and S3. In this way, the electronic holography reproducing apparatus 1 can reproduce a reproduced image of the electronic hologram in the middle viewing area by shielding higher-order diffracted light other than the reproduced light in the middle viewing area.
<左視域の電子ホログラムの再生>
 図7を参照し、左視域の電子ホログラムの再生について、詳細に説明する(適宜図1参照)。
<Reproduction of left-side electronic hologram>
With reference to FIG. 7, the reproduction of the electronic hologram in the left viewing area will be described in detail (see FIG. 1 as appropriate).
 制御手段140は、左視域の分割電子ホログラムを空間光変調器16が表示し、左視域に対応する光ファイバF3が発光し、左視域の再生光が通過する位置の液晶シャッタS3が開き、高次回折光が通過する位置の液晶シャッタS1,S2が閉じるように、同期制御を行う。 The control unit 140 displays the divided electronic hologram of the left viewing area on the spatial light modulator 16, the optical fiber F3 corresponding to the left viewing area emits light, and the liquid crystal shutter S3 at the position where the reproduction light of the left viewing area passes. Synchronous control is performed so that the liquid crystal shutters S1 and S2 at the positions where the high-order diffracted light is opened and closed are closed.
 図7に示すように、左視域の再生光の内、表示部16Aの両端からの光は、第1レンズ15を通過して、第2レンズ17の両端に入射する。そして、この左視域の再生光は、第3レンズ119の端又は中心を通過し、開いた液晶シャッタS3を通過する。その後、この左視域の再生光は、第4レンズ122を通過した後、縮小されて1つの像群96に統合される。これと同様、表示部16Aの他の部分から発した光も、再生された像群96からの光となる。一方、高次回折光は、閉じた液晶シャッタS1,S2で遮蔽される。このようにして、電子ホログラフィ再生装置1は、左視域の再生光以外の高次回折光を遮蔽して、左視域の電子ホログラムの再生像を再生することができる。 As shown in FIG. 7, among the reproduction light in the left viewing area, light from both ends of the display unit 16 </ b> A passes through the first lens 15 and enters both ends of the second lens 17. Then, the reproduction light in the left viewing zone passes through the end or center of the third lens 119 and passes through the opened liquid crystal shutter S3. Thereafter, the reproduction light in the left viewing zone passes through the fourth lens 122 and is then reduced and integrated into one image group 96. Similarly, light emitted from other parts of the display unit 16A also becomes light from the reproduced image group 96. On the other hand, higher-order diffracted light is shielded by the closed liquid crystal shutters S1 and S2. In this way, the electronic holography reproducing apparatus 1 can shield the higher-order diffracted light other than the reproduced light in the left viewing area and reproduce the reproduced image of the electronic hologram in the left viewing area.
<制御手段による同期制御>
 図8を参照し、制御手段140による同期制御について、詳細に説明する(適宜図1参照)。
 図8には、タイミング信号S1~S3のパルスと、表示するホログラムデータとを図示した。ホログラムデータのHR,HC,HLは、それぞれ右視域、中視域及び左視域の分割電子ホログラムを示す。また、図8では、タイミング信号S1~S3のH,Lは、それぞれレベルの高低を示す。また、図8では、横軸が時間軸を示す。
<Synchronous control by control means>
With reference to FIG. 8, the synchronous control by the control means 140 is demonstrated in detail (refer FIG. 1 suitably).
FIG. 8 illustrates the pulses of the timing signals S1 to S3 and the hologram data to be displayed. HR, HC, and HL of the hologram data indicate divided electronic holograms in the right viewing area, the middle viewing area, and the left viewing area, respectively. In FIG. 8, H and L of the timing signals S1 to S3 indicate the level of the level. In FIG. 8, the horizontal axis indicates the time axis.
 図8に示すように、制御手段140は、ホログラム記憶手段130の同期信号に同期して、時間T1の間、高レベルのタイミング信号S1と、低レベルのタイミング信号S2,S3とを、発光手段14の発光素子と、空間フィルタ120と、ホログラム読出手段150とに出力する。すると、ホログラム読出手段150は、拡大光学系10毎に、右視域の分割電子ホログラムをホログラム記憶手段130からそれぞれ読み出して、空間光変調器16に出力する。発光手段14の発光素子は、時間T1の期間、ファイバF1に光を出射する。これにより、ファイバF1が発光し、液晶シャッタS1が開き、空間光変調器16が右視域の分割電子ホログラムを表示する。当然、ファイバF2,F3が発光せず、液晶シャッタS2,S3が閉じている。 As shown in FIG. 8, the control unit 140 outputs the high-level timing signal S1 and the low-level timing signals S2 and S3 during the time T1, in synchronization with the synchronization signal of the hologram storage unit 130. 14 light emitting elements, the spatial filter 120, and the hologram reading means 150. Then, the hologram reading means 150 reads out the divided electronic holograms in the right viewing area from the hologram storage means 130 for each of the magnifying optical systems 10 and outputs them to the spatial light modulator 16. The light emitting element of the light emitting means 14 emits light to the fiber F1 for a period of time T1. Thereby, the fiber F1 emits light, the liquid crystal shutter S1 is opened, and the spatial light modulator 16 displays the divided electronic hologram in the right viewing area. Naturally, the fibers F2 and F3 do not emit light, and the liquid crystal shutters S2 and S3 are closed.
 次に、制御手段140は、時間T2の間、高レベルのタイミング信号S2と、低レベルのタイミング信号S1,S3とを、発光手段14の発光素子と、空間フィルタ120と、ホログラム読出手段150とに出力する。すると、ホログラム読出手段150は、拡大光学系10毎に、中視域の分割電子ホログラムをホログラム記憶手段130からそれぞれ読み出して、空間光変調器16に出力する。発光手段14の発光素子は、時間T2の期間、ファイバF2に光を出射する。これにより、ファイバF2が発光し、液晶シャッタS2が開き、空間光変調器16が中視域の分割電子ホログラムを表示する。当然、ファイバF1,F3が発光せず、液晶シャッタS1,S3が閉じている。 Next, the control means 140 outputs the high level timing signal S2 and the low level timing signals S1 and S3 during the time T2, the light emitting element of the light emitting means 14, the spatial filter 120, and the hologram reading means 150. Output to. Then, the hologram reading unit 150 reads out the divided electronic holograms in the middle viewing area from the hologram storage unit 130 for each of the magnifying optical systems 10, and outputs them to the spatial light modulator 16. The light emitting element of the light emitting means 14 emits light to the fiber F2 for a period of time T2. As a result, the fiber F2 emits light, the liquid crystal shutter S2 is opened, and the spatial light modulator 16 displays the divided electronic hologram in the middle viewing area. Naturally, the fibers F1 and F3 do not emit light, and the liquid crystal shutters S1 and S3 are closed.
 次に、制御手段140は、時間T3の間、高レベルのタイミング信号S3と、低レベルのタイミング信号S1,S2とを、発光手段14の発光素子と、空間フィルタ120と、ホログラム読出手段150とに出力する。すると、ホログラム読出手段150は、拡大光学系10毎に、左視域の分割電子ホログラムをホログラム記憶手段130からそれぞれ読み出して、空間光変調器16に出力する。発光手段14の発光素子は、時間T3の期間、ファイバF3に光を出射する。これにより、ファイバF3が発光し、液晶シャッタS3が開き、空間光変調器16が左視域の分割電子ホログラムを表示する。当然、ファイバF1,F2が発光せず、液晶シャッタS1,S2が閉じている。 Next, the control means 140 outputs the high level timing signal S3 and the low level timing signals S1, S2 during the time T3, the light emitting element of the light emitting means 14, the spatial filter 120, and the hologram reading means 150. Output to. Then, the hologram reading unit 150 reads out the divided electronic holograms in the left viewing area from the hologram storage unit 130 for each of the magnifying optical systems 10 and outputs them to the spatial light modulator 16. The light emitting element of the light emitting means 14 emits light to the fiber F3 for a period of time T3. Thereby, the fiber F3 emits light, the liquid crystal shutter S3 is opened, and the spatial light modulator 16 displays the divided electronic hologram in the left viewing area. Naturally, the fibers F1 and F2 do not emit light, and the liquid crystal shutters S1 and S2 are closed.
[作用・効果]
 従来の立体ディスプレイは、電子ホログラフィが光の干渉を利用するため、画素サイズが光の波長程度でなければならず、大画面のディスプレイを作ることが困難であった。さらに、従来の立体ディスプレイは、利用できる画素サイズが、光の波長より大きいと光を回折する力が弱くなり、広い視域を確保することが困難であった。
[Action / Effect]
Since conventional holographic displays use light interference in electronic holography, the pixel size must be about the wavelength of light, making it difficult to produce a large-screen display. Furthermore, in the conventional stereoscopic display, when the usable pixel size is larger than the wavelength of light, the power to diffract light becomes weak, and it is difficult to ensure a wide viewing area.
 電子ホログラフィ再生装置1は、理想的な立体映像方式である電子ホログラフィを用いた立体ディスプレイに適用した場合、その効果を最も発揮する。具体的には、電子ホログラフィ再生装置1は、画素数の少ない複数の空間光変調器16を隣接配置して、電子ホログラムの再生像を隙間なく結合でき、大画面ホログラフィ像を再生することができる。さらに、電子ホログラフィ再生装置1は、位置及び角度が異なる光ファイバF1~F3が時分割で空間光変調器16を照射することで、光ファイバF1~F3の数に等しい倍率で視域を拡大することができる。 The electronic holography reproducing device 1 exhibits its effect most when applied to a stereoscopic display using electronic holography, which is an ideal stereoscopic video system. Specifically, the electronic holography reproducing device 1 can arrange a plurality of spatial light modulators 16 having a small number of pixels adjacent to each other so as to combine the reproduced images of the electronic hologram without any gap, and can reproduce a large-screen holographic image. . Furthermore, the electronic holography reproducing device 1 expands the viewing zone at a magnification equal to the number of the optical fibers F1 to F3 by irradiating the spatial light modulators 16 in time division with the optical fibers F1 to F3 having different positions and angles. be able to.
 さらに、電子ホログラフィ再生装置1は、光ファイバF1,F3を空間光変調器16の中心軸に対して外側に向けたので、光ファイバF1~F3の出射光の中心を空間光変調器16の中心に一致させることができ、視域毎の明るさのムラを無くすことができる。さらに、電子ホログラフィ再生装置1は、単一の空間フィルタ120によって、各空間光変調器16で発生する高次回折光を遮蔽できるので、ゴーストが無く、高画質な電子ホログラフィ像を再生することができる。 Furthermore, since the electronic holography reproducing device 1 has the optical fibers F1 and F3 directed outward with respect to the central axis of the spatial light modulator 16, the center of the emitted light from the optical fibers F1 to F3 is set to the center of the spatial light modulator 16. And uneven brightness in each viewing zone can be eliminated. Furthermore, since the electronic holography reproducing apparatus 1 can shield high-order diffracted light generated in each spatial light modulator 16 by the single spatial filter 120, it can reproduce a high-quality electronic holographic image without ghosting. .
(変形例)
 電子ホログラフィ再生装置1は、前記した実施形態に限定されず、その趣旨を逸脱しない範囲で変形を加えることができる。
 図9に示すように、電子ホログラフィ再生装置1は、発光手段14の発光素子の発光波長(R,G,B)を時分割で切り替えることで、フルカラー化することができる。図9に示すように、制御手段140は、ホログラム記憶手段140に記憶されたホログラムデータのHD-SDI信号から同期信号(V-sync)を取り出す。そして、制御手段140は、取り出した同期信号の3周分に相当するタイミング信号S1~S3を用いて、同期制御を行う。例えば、図9では、t1が約1/60(sec)であり、t2が150(μsec)である。
(Modification)
The electronic holography reproducing device 1 is not limited to the above-described embodiment, and can be modified without departing from the spirit thereof.
As shown in FIG. 9, the electronic holography reproducing device 1 can be made full color by switching the emission wavelengths (R, G, B) of the light emitting elements of the light emitting means 14 in a time division manner. As shown in FIG. 9, the control unit 140 extracts a synchronization signal (V-sync) from the HD-SDI signal of the hologram data stored in the hologram storage unit 140. Then, the control unit 140 performs synchronization control using timing signals S1 to S3 corresponding to three rounds of the extracted synchronization signal. For example, in FIG. 9, t1 is about 1/60 (sec) and t2 is 150 (μsec).
 前記した実施形態では、拡大光学系10が縦横に2個ずつ備えられることとして説明したが、個数に制限がない。例えば、拡大光学系10は、縦横に3個ずつ又は4個ずつ備えられてもよい。さらに、拡大光学系10は、縦横の個数が異なってもよい。 In the above-described embodiment, it has been described that two magnifying optical systems 10 are provided vertically and horizontally, but the number is not limited. For example, three or four magnifying optical systems 10 may be provided vertically and horizontally. Further, the magnifying optical system 10 may have different numbers in the vertical and horizontal directions.
 前記した実施形態では、右視域、中視域及び左視域で時分割することとして説明したが、これに制限されない。
 例えば、電子ホログラフィ再生装置1は、深右視域、浅右視域、中視域、浅左視域及び深左視域というように5個の視域で時分割してもよい。この場合、電子ホログラフィ再生装置1は、1本の光ファイバを空間光変調器16の中心軸上に配置し、空間光変調器16の中心軸から左右対称に光ファイバを2本ずつ等間隔で配置する。また、各空間光変調器16は、深右視域、浅右視域、中視域、浅左視域及び深左視域の分割電子ホログラムを表示する。そして、空間フィルタ120は、5本の光ファイバに対応させて5個の液晶シャッタを備える。さらに、制御手段140は、5本の光ファイバの発光と、空間光変調器16の表示と、5個の液晶シャッタの開閉とを同期制御する。このようにして、電子ホログラフィ再生装置1は、視域をさらに拡大することができる。
In the above-described embodiment, it has been described that time division is performed in the right viewing area, the middle viewing area, and the left viewing area, but the present invention is not limited thereto.
For example, the electronic holography reproducing device 1 may perform time division in five viewing zones such as a deep right viewing zone, a shallow right viewing zone, a middle viewing zone, a shallow left viewing zone, and a deep left viewing zone. In this case, the electronic holography reproducing device 1 arranges one optical fiber on the central axis of the spatial light modulator 16 and symmetrically separates the two optical fibers from the central axis of the spatial light modulator 16 at equal intervals. Deploy. Each spatial light modulator 16 displays a divided electronic hologram of a deep right viewing area, a shallow right viewing area, a middle viewing area, a shallow left viewing area, and a deep left viewing area. The spatial filter 120 includes five liquid crystal shutters corresponding to the five optical fibers. Further, the control unit 140 synchronously controls the light emission of the five optical fibers, the display of the spatial light modulator 16, and the opening and closing of the five liquid crystal shutters. In this way, the electronic holography reproduction device 1 can further enlarge the viewing zone.
1 電子ホログラフィ再生装置
1A 拡大光学系群
1B 縮小光学系
10 拡大光学系
11 光ファイバ群
12 ミラー(反射鏡)
13 ビームスプリッタ
14 発光手段
15 第1レンズ
16 空間光変調器
17 第2レンズ
119 第3レンズ
120 空間フィルタ
121 窓部
122 第4レンズ
130 ホログラム記憶手段
140 制御手段
150 ホログラム読出手段
F1~F3 光ファイバ(点光源)
S1~S3 液晶シャッタ(窓)
DESCRIPTION OF SYMBOLS 1 Electronic holography reproducing | regenerating apparatus 1A Magnification optical system group 1B Reduction optical system 10 Magnification optical system 11 Optical fiber group 12 Mirror (reflection mirror)
13 beam splitter 14 light emitting means 15 first lens 16 spatial light modulator 17 second lens 119 third lens 120 spatial filter 121 window 122 fourth lens 130 hologram storage means 140 control means 150 hologram reading means F1 to F3 optical fiber ( Point light source)
S1 to S3 Liquid crystal shutter (window)

Claims (5)

  1.  1枚の電子ホログラムが分割された分割電子ホログラムの拡大像を生成する複数の拡大光学系と、それぞれの前記拡大光学系が生成した拡大像を縮小して1枚の前記電子ホログラムの再生像に統合する縮小光学系とを備える電子ホログラフィ再生装置であって、
     前記拡大光学系のそれぞれは、
     一方向に等間隔で配置された複数の点光源を有する発光手段と、
     前記点光源からの出射光を平行光に変換する第1レンズと、
     前記平行光の照射元となる点光源の位置に応じた視域の分割電子ホログラムを表示し、表示した当該分割電子ホログラムに前記第1レンズからの平行光が照射されることで、当該分割電子ホログラムの再生光を発生させる空間光変調器と、
     前記空間光変調器が発生させた再生光が前記第1レンズを通過することにより生じる結像面に配置され、前記結像面に結像した再生光により生成される拡大像と同じ大きさの第2レンズと、を備え、
     前記縮小光学系は、
     全ての前記第2レンズから再生光が入射する第3レンズと、
     前記第3レンズが出射した再生光を通過又は遮蔽する窓が前記点光源毎に設けられた空間フィルタと、
     前記空間フィルタの窓を通過した光の再生像を生成する第4レンズと、を備え、
     前記点光源の発光と、前記空間光変調器における各視域の分割電子ホログラムの表示と、前記空間フィルタの窓の開閉とを同期制御する制御手段と、を備え、
     前記空間フィルタは、前記第3レンズ及び前記第4レンズの共通焦点面に配置され、
     前記各点光源は、光出射側端面から前記第1レンズの光学主点までの距離が前記第1レンズの焦点距離と等しく、光軸が前記空間光変調器の中心に一致する角度で配置されたことを特徴とする電子ホログラフィ再生装置。
    A plurality of magnifying optical systems that generate magnified images of divided electronic holograms obtained by dividing one electronic hologram, and a magnified image generated by each of the magnifying optical systems is reduced to a reproduced image of one electronic hologram. An electronic holography reproducing device comprising a reduction optical system to be integrated,
    Each of the magnifying optical systems
    A light emitting means having a plurality of point light sources arranged at equal intervals in one direction;
    A first lens for converting light emitted from the point light source into parallel light;
    A divided electron hologram in a viewing zone corresponding to the position of the point light source that is the irradiation source of the parallel light is displayed, and the divided electron hologram is irradiated with parallel light from the first lens, whereby the divided electron is irradiated. A spatial light modulator for generating hologram reproduction light;
    The reproduction light generated by the spatial light modulator is disposed on the imaging surface generated by passing through the first lens, and has the same size as the enlarged image generated by the reproduction light imaged on the imaging surface. A second lens,
    The reduction optical system includes:
    A third lens from which reproduction light is incident from all the second lenses;
    A spatial filter provided with a window for passing or blocking the reproduction light emitted from the third lens for each point light source;
    A fourth lens that generates a reconstructed image of the light that has passed through the window of the spatial filter,
    Control means for synchronously controlling light emission of the point light source, display of a divided electronic hologram in each viewing zone in the spatial light modulator, and opening and closing of the window of the spatial filter,
    The spatial filter is disposed on a common focal plane of the third lens and the fourth lens;
    Each of the point light sources is disposed at an angle such that the distance from the light emitting side end surface to the optical principal point of the first lens is equal to the focal length of the first lens, and the optical axis coincides with the center of the spatial light modulator. An electronic holography reproducing device characterized by that.
  2.  前記発光手段は、前記点光源の光軸と前記空間光変調器の中心軸との角度θが、前記第1レンズから前記空間光変調器までの距離dと、前記第1レンズの焦点距離fと、前記点光源の配置間隔pとが含まれる式(4)で表されることを特徴とする請求項1に記載の電子ホログラフィ再生装置。
    Figure JPOXMLDOC01-appb-M000001
    The light emitting means includes an angle θ between the optical axis of the point light source and the central axis of the spatial light modulator, a distance d from the first lens to the spatial light modulator, and a focal length f of the first lens. The electronic holography reproducing device according to claim 1, wherein the electronic holographic reproducing device is represented by an equation (4) including 1 and an arrangement interval p of the point light sources.
    Figure JPOXMLDOC01-appb-M000001
  3.  前記制御手段は、前記拡大光学系毎に1個の点光源を順次発光させ、発光させた当該点光源の位置に応じた視域の分割電子ホログラムを前記空間光変調器に表示させ、当該空間光変調器が発生させた再生光のみを通過させるように前記空間フィルタに窓を開閉させることを特徴とする請求項1又は請求項2に記載の電子ホログラフィ再生装置。 The control means sequentially emits one point light source for each of the magnifying optical systems, causes the spatial light modulator to display a divided electronic hologram of a viewing zone corresponding to the position of the emitted point light source, and 3. The electronic holography reproducing apparatus according to claim 1, wherein a window is opened / closed in the spatial filter so as to allow only the reproducing light generated by the optical modulator to pass.
  4.  前記発光手段は、
     前記点光源が水平方向に配置され、
     前記点光源からの出射光を垂直方向に反射する反射鏡と、
     前記反射鏡で反射された出射光を前記第1レンズに向けて反射し、前記空間光変調器で発生した再生光を前記第2レンズに透過させるビームスプリッタとを、さらに備えることを特徴とする請求項1又は請求項2に記載の電子ホログラフィ再生装置。
    The light emitting means includes
    The point light sources are arranged in a horizontal direction;
    A reflecting mirror that reflects light emitted from the point light source in a vertical direction;
    A beam splitter that reflects the outgoing light reflected by the reflecting mirror toward the first lens and transmits the reproduction light generated by the spatial light modulator to the second lens; The electronic holography reproducing device according to claim 1.
  5.  前記発光手段は、
     前記点光源が水平方向に配置され、
     前記点光源からの出射光を垂直方向に反射する反射鏡と、
     前記反射鏡で反射された出射光を前記第1レンズに向けて反射し、前記空間光変調器で発生した再生光を前記第2レンズに透過させるビームスプリッタとを、さらに備えることを特徴とする請求項3に記載の電子ホログラフィ再生装置。
    The light emitting means includes
    The point light sources are arranged in a horizontal direction;
    A reflecting mirror that reflects light emitted from the point light source in a vertical direction;
    A beam splitter that reflects the outgoing light reflected by the reflecting mirror toward the first lens and transmits the reproduction light generated by the spatial light modulator to the second lens; The electronic holography reproducing device according to claim 3.
PCT/JP2014/070594 2013-08-07 2014-08-05 Electron holography reproduction device WO2015020037A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013163906A JP2015031939A (en) 2013-08-07 2013-08-07 Electronic holography reproduction apparatus
JP2013-163906 2013-08-07

Publications (1)

Publication Number Publication Date
WO2015020037A1 true WO2015020037A1 (en) 2015-02-12

Family

ID=52461368

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070594 WO2015020037A1 (en) 2013-08-07 2014-08-05 Electron holography reproduction device

Country Status (2)

Country Link
JP (1) JP2015031939A (en)
WO (1) WO2015020037A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6478899B2 (en) * 2015-11-05 2019-03-06 シチズン時計株式会社 Optical device
JP6831987B2 (en) * 2016-06-20 2021-02-24 学校法人 関西大学 Holography display device
KR102372089B1 (en) 2017-03-30 2022-03-08 삼성전자주식회사 Holographic display apparatus having steerable viewing window
JP6960143B2 (en) * 2017-04-11 2021-11-05 国立研究開発法人情報通信研究機構 Hologram recording equipment and hologram manufacturing equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010513964A (en) * 2006-12-21 2010-04-30 シーリアル テクノロジーズ ソシエテ アノニム Holographic projection device for enlarging the visible range
JP2010237691A (en) * 2010-05-27 2010-10-21 Sony Corp Three-dimensional image display

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010513964A (en) * 2006-12-21 2010-04-30 シーリアル テクノロジーズ ソシエテ アノニム Holographic projection device for enlarging the visible range
JP2010237691A (en) * 2010-05-27 2010-10-21 Sony Corp Three-dimensional image display

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
KENJI YAMAMOTO ET AL.: "3D objects enlargement technique using an optical system and multiple SLMs for electronic holography", OPTICS EXPRESS, vol. 20, no. 19, 10 September 2012 (2012-09-10), pages 21137 - 21144 *
TAKANORI SENOO ET AL.: "Study on Viewing-Zone Enlargement for Tiled Electronic Holography System : For Large-Size and Wide-Viewing-Zone Electronic Holography System", ITE TECHNICAL REPORT, vol. 37, no. 37, 30 August 2013 (2013-08-30), pages 17 - 20 *

Also Published As

Publication number Publication date
JP2015031939A (en) 2015-02-16

Similar Documents

Publication Publication Date Title
US11953683B2 (en) Display device, in particular a head-mounted display, based on temporal and spatial multiplexing of hologram tiles
US8334889B2 (en) Auto stereoscopic 3D telepresence using integral holography
JP5059783B2 (en) Projector for holographic reconstruction of scenes
US7513623B2 (en) System and methods for angular slice true 3-D display
US8593710B2 (en) Holographic projection device for the reconstruction of scenes
JP2009294509A (en) Three-dimensional image display apparatus
JP2008216575A (en) Image display method
JP2009288759A (en) Three-dimensional image display apparatus and image display method
KR20150072151A (en) Hologram printing apparatus and method for recording of holographic elements images using spatial light modulator
JP2008191472A (en) Three-dimensional image display system
KR20150037823A (en) Electronic holographic display device
WO2015020037A1 (en) Electron holography reproduction device
KR20190125460A (en) Spotless Laser Lighting System
JP2007041504A (en) Three-dimensional image display apparatus
WO2010016422A1 (en) Image display device
JP5104063B2 (en) 3D image display device
KR20130099622A (en) Holographic display device by multiplexing viewing field
JP2012242513A (en) Electronic holography display device
JPH09138631A (en) Moving image holography reproducing device
JP2010237691A (en) Three-dimensional image display
JP2007199587A (en) Three-dimensional image display apparatus
JP5540353B2 (en) Electronic holography reproduction apparatus and electronic holography reproduction method
JP4997634B2 (en) Color holographic display device
JP6213911B2 (en) Video reading apparatus and video reading method
JP2009038183A (en) Driving method of light emitting diode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14833866

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14833866

Country of ref document: EP

Kind code of ref document: A1