WO2015019941A1 - Curable composition containing semiconductor nanoparticles, cured article, optical material, and electronic material - Google Patents

Curable composition containing semiconductor nanoparticles, cured article, optical material, and electronic material Download PDF

Info

Publication number
WO2015019941A1
WO2015019941A1 PCT/JP2014/070226 JP2014070226W WO2015019941A1 WO 2015019941 A1 WO2015019941 A1 WO 2015019941A1 JP 2014070226 W JP2014070226 W JP 2014070226W WO 2015019941 A1 WO2015019941 A1 WO 2015019941A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
acrylate
nanoparticle
silica fine
fine particles
Prior art date
Application number
PCT/JP2014/070226
Other languages
French (fr)
Japanese (ja)
Inventor
敬史 関根
英雄 宮田
山木 繁
Original Assignee
昭和電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工株式会社 filed Critical 昭和電工株式会社
Priority to JP2015530850A priority Critical patent/JPWO2015019941A1/en
Publication of WO2015019941A1 publication Critical patent/WO2015019941A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D143/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing boron, silicon, phosphorus, selenium, tellurium, or a metal; Coating compositions based on derivatives of such polymers
    • C09D143/04Homopolymers or copolymers of monomers containing silicon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • C09K11/025Use of particular materials as binders, particle coatings or suspension media therefor non-luminescent particle coatings or suspension media
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • C09K11/562Chalcogenides
    • C09K11/565Chalcogenides with zinc cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/70Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/115OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers comprising active inorganic nanostructures, e.g. luminescent quantum dots
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/34Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate
    • C08F220/343Esters containing nitrogen, e.g. N,N-dimethylaminoethyl (meth)acrylate in the form of urethane links
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/102Esters of polyhydric alcohols or polyhydric phenols of dialcohols, e.g. ethylene glycol di(meth)acrylate or 1,4-butanediol dimethacrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/103Esters of polyhydric alcohols or polyhydric phenols of trialcohols, e.g. trimethylolpropane tri(meth)acrylate

Definitions

  • resin materials as optical materials and electronic materials used for optical parts and electronic parts such as optical lenses, optical elements, optical waveguides, and LED (Light Emitting Diode) sealing materials.
  • resin materials used for an LED sealing material there is a phosphor-containing composition containing silica fine particles, a phosphor, and a liquid medium (see, for example, Patent Documents 1 to 4).
  • a curable composition which can be used for an LED encapsulant or the like it has silica fine particles, (meth) acrylate having two or more ethylenically unsaturated groups and no ring structure, and having ethylenically unsaturated groups.
  • silica fine particles there is one that includes (meth) acrylate having an alicyclic structure and a polymerization initiator, and silica fine particles are surface-treated with a silane compound (for example, see Patent Document 5).
  • Patent Document 6 describes a liquid curable resin composition containing an inorganic phosphor and a nanoparticle phosphor composed of a hydrocarbon group coordinated to the inorganic phosphor.
  • JP 2009-102514 A JP 2009-096947 A JP 2008-260930 A JP 2008-050593 A Republished WO2010 / 001875 JP 2010-126596 A
  • compositions containing nano-sized semiconductor particles have problems such as poor dispersibility of semiconductor nanoparticles, high viscosity, and insufficient moldability.
  • the present invention has been made in view of the above circumstances, includes semiconductor nanoparticles that are light emitters, has good dispersibility of semiconductor nanoparticles, has a low viscosity and excellent moldability, It is an object of the present invention to provide a cured product obtained by curing this, and an optical material / electronic material made of the cured product.
  • the silica fine particle surface-treated with a specific silane compound, a (meth) acrylate compound, a polymerization initiator, and semiconductor nanoparticles (e) that are light emitters the (meth) acrylate compound is A bifunctional (meth) acrylate compound (h) having two (meth) acryloyloxy groups, a polyfunctional (meth) acrylate compound (b) having three or more (meth) acryloyloxy groups, and one (meth) ) It has been found that by forming a curable composition containing two or more selected from a monofunctional (meth) acrylate compound (c) having an acryloyloxy group, excellent moldability and dispersibility can be obtained with low viscosity.
  • the present invention has been conceived.
  • the present invention employs the following configuration.
  • Silica fine particles (a), a (meth) acrylate compound (B), a polymerization initiator (d), and semiconductor nanoparticles (e) that are light emitters the (meth) acrylate compound (B ) Is a bifunctional (meth) acrylate compound (h) having two (meth) acryloyloxy groups, a polyfunctional (meth) acrylate compound (b) having three or more (meth) acryloyloxy groups, and 1
  • R 1 represents a hydrogen atom or a methyl group
  • R 2 represents an alkyl group having 1 to 3 carbon atoms or a phenyl group
  • R 3 represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms.
  • Q is an integer from 1 to 16, and r is an integer from 0 to 2.
  • R 4 represents an alkyl group having 1 to 3 carbon atoms or a phenyl group
  • R 5 represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms
  • s is an integer of 0 to 6
  • t is an integer from 0 to 2.
  • the amount of the silane compound (f) used for the surface treatment is 1 to 50 parts by mass with respect to 100 parts by mass of the silica fine particles before the surface treatment, and is used for the surface treatment.
  • the semiconductor nanoparticle-containing curing according to (1) or (2), wherein the amount of the silane compound (g) used is 1 to 50 parts by mass with respect to 100 parts by mass of the silica fine particles before the surface treatment.
  • the (meth) acrylate compound (b) is trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, cyclohexane trimethanol tri (meth) acrylate, adamantyl tri (meth) acrylate, adamantane trimethanol Tri (meth) acrylate, norbornanetrimethylol tri (meth) acrylate, tricyclodecane trimethanol tri (meth) acrylate, perhydro-1,4,5,8-dimethanonaphthalene-2,3,7- (oxymethyl) Tri (meth) acrylate, tris (acryloxyethyl) isocyanurate, caprolactone-modified tris (acryloxyethyl) isocyanurate, di- (2-acryloxyethyl) mono- (2-hydroxyethyl) iso
  • the total content of (meth) acrylate (b) and (meth) acrylate (h) in the mass of the (meth) acrylate compound (B) is 99% by mass or less (1)
  • the semiconductor nanoparticle (e) has a nanoparticle core containing ions of at least one element selected from the group consisting of Groups 3 to 16 of the periodic table (1)
  • the semiconductor nanoparticle-containing curable composition according to any one of to (7).
  • the nanoparticle core is made of the group consisting of ZnS, ZnSe, ZnTe, InP, InAs, InSb, AlS, AlAs, AlSb, GaN, GaP, GaAs, GaSb, PdS, PbSe, Si, Ge, MgSe, MgTe.
  • the semiconductor nanoparticle-containing curable composition according to (8) comprising at least one selected.
  • the semiconductor nanoparticle (e) includes a nanoparticle core and a capping layer having a protective group coordinated to the surface of the nanoparticle core, and the surface of the nanoparticle core is made of an inorganic material. 10.
  • the semiconductor nanoparticle-containing curable composition according to any one of (1) to (9), which is covered with a single shell.
  • the content of the semiconductor nanoparticles (e) in the semiconductor nanoparticle-containing curable composition is 0.1 to 20% by mass, any one of (1) to (10) The semiconductor nanoparticle containing curable composition of claim
  • the semiconductor nanoparticle-containing curable composition of the present invention includes silica fine particles that are surface-treated with a specific silane compound, a (meth) acrylate compound, a polymerization initiator, and semiconductor nanoparticles that are light emitters.
  • the (meth) acrylate compound is a bifunctional (meth) acrylate compound having two (meth) acryloyloxy groups, a polyfunctional (meth) acrylate compound having three or more (meth) acryloyloxy groups, and one ( 2 or more types chosen from the monofunctional (meth) acrylate compound which has a meth) acryloyloxy group are included.
  • the semiconductor nanoparticle-containing curable composition of the present invention can utilize the light wavelength conversion action by containing the semiconductor nanoparticles, has good dispersibility of the semiconductor nanoparticles, has low viscosity and excellent moldability. It will have. Moreover, the hardened
  • nanoparticle-containing composition the semiconductor nanoparticle-containing curable composition of the present invention
  • a cured product obtained by curing the nanoparticle-containing composition a cured product obtained by curing the nanoparticle-containing composition
  • the cured product thereof a cured product obtained by curing the nanoparticle-containing composition
  • the optical material / electronic material will be described in detail.
  • the material, dimension, etc. which are illustrated in the following description are examples, and this invention is not limited to them.
  • the present invention can be appropriately modified and implemented without changing the gist thereof.
  • the nanoparticle-containing composition of the present invention comprises silica fine particles (a), a (meth) acrylate compound (B), a polymerization initiator (d), and semiconductor nanoparticles (e) that are light emitters.
  • the (meth) acrylate compound (B) includes a bifunctional (meth) acrylate compound (h) having two (meth) acryloyloxy groups (hereinafter also referred to as “(meth) acrylate (h)”), and three or more Polyfunctional (meth) acrylate compound (b) having (meth) acryloyloxy group (hereinafter also referred to as “(meth) acrylate (b)”) and monofunctional (meth) acrylate having one (meth) acryloyloxy group It contains two or more selected from compound (c) (hereinafter also referred to as “(meth) acrylate (c)”).
  • the silica fine particles (a) are surface-treated with the silane compound (f) represented by the general formula (1) and the silane compound (g) represented by the general formula (2).
  • the silica fine particles (a) are surface-treated with the silane compound (f) and the silane compound (g), the viscosity is low and the moldability is excellent. Further, the silane compound (f) and the silane compound (g) (the chemical structure is changed by the surface treatment) are bonded to the silica fine particles (a) by the surface treatment. The silane compounds (f) and (g) (the chemical structure of which is changed by the surface treatment) bonded to the silica fine particles (a) are converted into (meth) acrylate (h) when the nanoparticle-containing composition is produced. It reacts with a (meth) acrylate compound (B) containing two or more selected from (b) and (c). As a result, the dispersion stability of the silica fine particles (a) in the nanoparticle-containing composition is improved.
  • the nanoparticle-containing composition of the present invention contains two or more kinds selected from silica fine particles (a) surface-treated with a specific silane compound and (meth) acrylates (h) (b) (c) (meta )
  • a cured product having a high rate is obtained.
  • curing shrinkage of the nanoparticle-containing composition is suppressed due to the presence of the silica fine particles (a).
  • the “(meth) acrylate compound” means an acrylate compound and / or a methacrylate compound.
  • three or more (meth) acryloyloxy groups means three or more acryloyloxy groups when the (meth) acryloyloxy group is only an acryloyloxy group, and the (meth) acryloyloxy group is When it is only a methacryloyloxy group, it means three or more methacryloyloxy groups.
  • the total of the acryloyloxy group and the methacryloyloxy group is 3 Means more than one.
  • “two (meth) acryloyloxy groups” means two acryloyloxy groups when the (meth) acryloyloxy group is only an acryloyloxy group, and the (meth) acryloyloxy group is only a methacryloyloxy group.
  • ⁇ Silica fine particles (a)> The silica fine particles (a) are surface-treated with the silane compound (f) represented by the general formula (1) and the silane compound (g) represented by the general formula (2).
  • the silica fine particles (a) are excellent in dispersion stability in the nanoparticle-containing composition by being surface-treated with the silane compound (f). Further, since the silica fine particles (a) are surface-treated with the silane compound (f), the shrinkage rate when the nanoparticle-containing composition containing the silica fine particles (a) is cured is small.
  • the silica fine particles are surface-treated with a silane compound (g) to impart hydrophobicity to the surface.
  • the silica fine particles (a) are excellent in dispersibility in the organic solvent used when producing the nanoparticle-containing composition.
  • the hydrophobicity is imparted to the surface of the silica fine particles (a)
  • the compatibility between the silica fine particles (a) and the (meth) acrylate (c) contained in the nanoparticle-containing composition is improved. For this reason, the viscosity of the nanoparticle-containing composition can be reduced, the storage stability of the nanoparticle-containing composition can be improved, and at the same time, the water absorption rate of the nanoparticle-containing composition can be lowered.
  • silica fine particles not surface-treated with the silane compound (f) are contained in the nanoparticle-containing composition, the viscosity of the nanoparticle-containing composition is remarkably increased and gelation is not preferable.
  • silica fine particles not surface-treated with the silane compounds (f) and (g) are contained in the nanoparticle-containing composition, the shrinkage rate when the nanoparticle-containing composition containing this is cured is high. It becomes. For this reason, it becomes easy to generate
  • silica fine particles surface-treated with silane compound Conventionally known silica fine particles can be used as the silica fine particles to be surface-treated with the silane compounds (f) and (g). Further, as the silica fine particles to be surface-treated, porous silica sol, or a composite metal oxide of aluminum, magnesium, zinc or the like and silicon may be used.
  • the silica fine particles to be surface-treated those having a number average particle diameter of 10 to 500 nm are preferably used.
  • the number average particle size is 10 nm or more, the silica fine particles (a) are easily dispersed in the nanoparticle-containing composition, and an increase in the viscosity of the nanoparticle-containing composition can be suppressed, and excellent moldability and storage stability. Sex is obtained.
  • the content of the silica fine particles (a) in the nanoparticle-containing composition can be sufficiently ensured, and the transparency or scattering property of a cured product obtained by curing this can be controlled, and the heat resistance is further improved. Can be made.
  • cured material by the average particle diameter of a silica fine particle (a) being too large can be prevented by making the number average particle diameter of the silica fine particle surface-treated to 500 nm or less.
  • the number average particle diameter of the silica fine particles to be surface-treated is more preferably 10 to 200 nm from the viewpoint of the optical balance between the viscosity of the nanoparticle-containing composition, the transparency of the cured product and the scattering property.
  • the suitable range of the number average particle diameter of the silica fine particles to be surface-treated (before the surface treatment) described above is usually the preferred range of the number average particle diameter of the silica fine particles (a) (after the surface treatment) subjected to the surface treatment But there is.
  • the number average particle diameter of the silica fine particles to be surface-treated can be measured by the following method. First, using a high-resolution transmission electron microscope (H-9000 type, manufactured by Hitachi, Ltd.), silica fine particles are observed to obtain a silica particle image. Subsequently, 100 silica particle images are arbitrarily selected, and the number average particle diameter is obtained by a known image data statistical processing method.
  • H-9000 type manufactured by Hitachi, Ltd.
  • silica fine particles a plurality of types of silica fine particles having different average particle diameters may be used.
  • the range in which the content of the silica fine particles (a) in the nanoparticle-containing composition can be contained can be adjusted.
  • the transparency and heat resistance of the cured product obtained by increasing the content of the silica fine particles (a) in the nanoparticle-containing composition and curing it can be further improved.
  • silica fine particles to be surface-treated it is preferable to use silica fine particles dispersed in an organic solvent from the viewpoint of dispersibility in the nanoparticle-containing composition.
  • organic solvent for dispersing the silica fine particles to be surface-treated it is preferable to use a solvent in which the (meth) acrylate compound (B) contained in the nanoparticle-containing composition is dissolved.
  • organic solvent include alcohols, ketones, esters, and glycol ethers.
  • the viscosity of the nanoparticle-containing composition after desolvation is lower than when other solvents are used, which stabilizes the low-viscosity nanoparticle-containing composition. Can be produced.
  • Silica fine particles dispersed in an organic solvent can be produced by a conventionally known method. Silica fine particles dispersed in an organic solvent are commercially available, for example, under the trade name Snowtex IPA-ST (manufactured by Nissan Chemical Co., Ltd.). When silica fine particles dispersed in an organic solvent are used as the silica fine particles to be surface-treated, “100 parts by mass of silica fine particles before surface treatment” to be described later means “dispersed in an organic solvent unless otherwise specified”. The mass of only silica fine particles ”(that is, the mass of the organic solvent is not included).
  • Silane compound (f) is represented by the following general formula (1).
  • R 1 is a hydrogen atom or a methyl group.
  • R 1 affects the curing reaction when the nanoparticle-containing composition is cured.
  • R 1 is determined according to the type of the (meth) acrylate compound (B) contained in the nanoparticle-containing composition as shown below. Is preferred.
  • R 1 is a hydrogen atom. It is preferable to use the compound (f).
  • R 1 is a methyl group. It is preferable to use the compound (f).
  • R 2 is an alkyl group having 1 to 3 carbon atoms or a phenyl group.
  • R 2 is preferably a methyl group or an ethyl group from the viewpoints of storage stability of the silane compound (f), reduction in viscosity of the nanoparticle-containing composition, and storage stability.
  • R 2 is particularly preferably a methyl group because of the ease of synthesis of the silane compound (f).
  • R 3 is a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms.
  • R 3 is preferably an alkyl group having 1 to 10 carbon atoms in view of storage stability of the silane compound (f), reduction in viscosity and storage stability of the nanoparticle-containing composition, and ease of synthesis of the silane compound (f). More preferably, it is a methyl group or an ethyl group.
  • q is an integer of 1 to 16.
  • q is preferably an integer of 3 to 16, and more preferably an integer of 5 to 10, in order to reduce the viscosity of the nanoparticle-containing composition.
  • r is an integer of 0 to 2, and is preferably 0 from the viewpoint of ease of synthesis of the silane compound (f). When r is 2, a plurality of R 2 may be the same or different.
  • silane compound (f) examples include 3-acryloxypropyldimethylmethoxysilane, 3-acryloxypropylmethyldimethoxysilane, 3-acryloxypropyldiethylmethoxysilane, 3-acryloxypropylethyldimethoxysilane, and 3-acryloxy.
  • silane compound (f) 3-acryloxypropyldimethylmethoxy is used as the silane compound (f).
  • Silane 3-acryloxypropylmethyldimethoxysilane, 3-acryloxypropyltrimethoxysilane (APS), 3-methacryloxypropyldimethylmethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyldimethylethoxysilane, It is preferable to use 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltrimethoxysilane (MPS), 8-methacrylooctyltrimethoxysilane (MOS), and 3-methacryloxypropyltrimeth Shishiran (MPS), it is more preferable to use 8-methacryloxy-octyl trimethoxy silane (MOS).
  • MPS 3-methacryloxypropyltrimethoxysilane
  • MOS 8-methacrylooctyl trimethoxy silane
  • silane compound (f) may be used alone or in combination of two or more. Moreover, said silane compound (f) can be manufactured by a well-known method, and is also marketed.
  • silane compound (g) The silane compound (g) is represented by the following general formula (2).
  • R 4 is an alkyl group having 1 to 3 carbon atoms or a phenyl group.
  • R 4 is preferably a methyl group from the viewpoints of viscosity reduction and storage stability of the nanoparticle-containing composition.
  • R 4 is a phenyl group, a substituent may be bonded to the phenyl group as long as the effects of the present invention are not impaired.
  • R 5 is a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms.
  • R 5 is preferably an alkyl group having 1 to 10 carbon atoms, more preferably a methyl group, from the viewpoint of reducing the viscosity of the nanoparticle-containing composition and storage stability.
  • s is an integer of 0 to 6, and s is preferably 0 or 1 from the viewpoint of reducing the viscosity of the nanoparticle-containing composition and storage stability.
  • t is an integer of 0 to 2, and t is preferably 0 from the viewpoint of reducing the viscosity and storage stability of the nanoparticle-containing composition.
  • a plurality of R 4 may be the same as or different from each other.
  • silane compound (g) examples include phenyldimethylmethoxysilane, phenylmethyldimethoxysilane, phenyldiethylmethoxysilane, phenylethyldimethoxysilane, phenyltrimethoxysilane (PHS), phenyldimethylethoxysilane, phenylmethyldiethoxysilane, phenyl Diethylethoxysilane, phenylethyldiethoxysilane, phenyltriethoxysilane, benzyldimethylmethoxysilane, benzylmethyldimethoxysilane, benzyldiethylmethoxysilane, benzylethyldimethoxysilane, benzyltrimethoxysilane, benzyldimethylethoxysilane, benzylmethyldiethoxysilane , Benzyldiethylethoxysi
  • the silane compound (g) phenyldimethylmethoxysilane, phenylmethyldimethoxysilane, phenyldiethyl Methoxysilane, phenylethyldimethoxysilane, and phenyltrimethoxysilane (PHS) are preferably used, and phenyltrimethoxysilane (PHS) is more preferably used.
  • silane compound (g) may be used alone or in combination of two or more. Moreover, said silane compound (g) can be manufactured by a well-known method, and is marketed.
  • the amount of the silane compound (f) used for the surface treatment is preferably 1 to 50 parts by mass with respect to 100 parts by mass of the silica fine particles before the surface treatment, and 3 to 20 parts by mass. More preferably.
  • the amount of the silane compound (g) used for the surface treatment is preferably 1 to 50 parts by mass, more preferably 3 to 20 parts by mass with respect to 100 parts by mass of the silica fine particles before the surface treatment. .
  • the total amount of the silane compound (f) and the silane compound (g) used for the surface treatment is preferably 5 to 80 parts by mass with respect to 100 parts by mass of the silica fine particles before the surface treatment. It is more preferable that When the total amount used is 5 parts by mass or more, the effect of improving the compatibility of the silica fine particles (a) to the (meth) acrylate compound (B) by surface treatment with the silane compounds (f) and (g) is high. Thus, a nanoparticle-containing composition having a lower viscosity is obtained. Moreover, when the said total usage-amount is 80 mass parts or less, aggregation of the silica fine particle (a) by the usage-amount of a silane compound (f) and (g) can be suppressed.
  • the mass ratio ((f) :( g)) between the silane compound (f) and the silane compound (g) used for the surface treatment is preferably 1: 2 to 2: 1, and is 2: 3 to 3: 2. More preferably.
  • the content of the silica fine particles (a) in the nanoparticle-containing composition can be defined by the mass of the silica fine particles before the surface treatment, and the silica fine particles before the surface treatment, (meth) acrylate (b), ( When the total of (meth) acrylate (c) and (meth) acrylate (h) is 100 parts by mass, it is preferably 1 to 80 parts by mass, and the heat resistance, transparency, environment resistance, and nanoparticles of the cured product From the viewpoint of balance with the viscosity of the contained composition, it is more preferably 20 to 50 parts by mass.
  • the content of the silica fine particles (a) is 10 parts by mass or more in terms of silica fine particles before the surface treatment. It is preferably 20 parts by mass or more.
  • the (meth) acrylate compound (B) is a bifunctional (meth) acrylate compound (h) having two (meth) acryloyloxy groups and a polyfunctional (meth) acrylate having three or more (meth) acryloyloxy groups. It contains two or more selected from the compound (b) and a monofunctional (meth) acrylate compound (c) having one (meth) acryloyloxy group. For this reason, the dispersibility of each component becomes favorable in the nanoparticle containing composition of this embodiment containing the silica fine particle (a) surface-treated with the silane compound (f) and the silane compound (g).
  • the nanoparticle-containing composition of the present embodiment contains the (meth) acrylate compound (B), the adjustment to the optimum viscosity is easy when applying the nanoparticle-containing composition.
  • curing is low is acquired.
  • (meth) acrylate compound (B) is an acrylate compound (b) and (meth) acrylate compound (c). A combination is preferred.
  • (Meth) acrylate (b) is a polyfunctional (meth) acrylate compound having three or more (meth) acryloyloxy groups.
  • (meth) acrylate (b) is contained in the nanoparticle-containing composition, a cured product having excellent heat resistance and strength can be obtained.
  • (Meth) acrylate (b) is preferably an ester of an aliphatic polyhydric alcohol and (meth) acrylic acid. Specific examples include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, cyclohexane trimethanol tri (meth) acrylate, adamantyltri (meth) acrylate, adamantanetrimethanol tri (meth) acrylate, norbornane trimethylol.
  • the (meth) acrylate (b) is preferably a
  • the above (meth) acrylate (b) may be used alone or in combination of two or more.
  • the content of (meth) acrylate (b) is preferably 10 to 1800 parts by mass, and more preferably 50 to 450 parts by mass with respect to 100 parts by mass of the silica fine particles before the surface treatment.
  • the content of (meth) acrylate (b) in the nanoparticle-containing composition is preferably 10 to 50% by mass, and more preferably 20 to 40% by mass.
  • (Meth) acrylate (h) is a bifunctional (meth) acrylate compound having two (meth) acryloyloxy groups.
  • (meth) acrylate (h) is contained in the nanoparticle-containing composition, it is easy to adjust the viscosity of the composition, and it is particularly easy to reduce the viscosity.
  • Examples of (meth) acrylate (h) include 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, and isononanediol.
  • the above (meth) acrylate (h) may be used alone or in combination of two or more.
  • the content of (meth) acrylate (h) is preferably 10 to 1800 parts by mass and more preferably 50 to 450 parts by mass with respect to 100 parts by mass of silica fine particles before the surface treatment.
  • the content of (meth) acrylate (h) in the nanoparticle-containing composition is preferably 5 to 55% by mass, and more preferably 10 to 45% by mass.
  • (Meth) acrylate (c) is a monofunctional (meth) acrylate compound having one (meth) acryloyloxy group.
  • (meth) acrylate (c) is contained in the nanoparticle-containing composition, a cured product having a low shrinkage at the time of curing and excellent flexibility is obtained.
  • Examples of (meth) acrylate (c) include cyclohexanedimethanol mono (meth) acrylate, 4-butylcyclohexyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, and dicyclopenta Dienyl (meth) acrylate, bornyl (meth) acrylate, isobornyl (meth) acrylate, tricyclodecanyl (meth) acrylate, tricyclodecane dimethanol mono (meth) acrylate, adamantyl (meth) acrylate, methoxypolyethylene glycol (meta ) Acrylate, 2- (meth) acryloyloxyethyl succinate, 2-hydroxy-3- (meth) acryloyloxypropyl methacrylate, isobornyl methacrylate, ⁇ -butyro Click ton methacrylate, lauryl acrylate
  • the above (meth) acrylate (c) may be used alone or in combination of two or more.
  • the content of (meth) acrylate (c) is preferably 10 to 1800 parts by mass, and more preferably 50 to 450 parts by mass with respect to 100 parts by mass of silica fine particles before the surface treatment.
  • the content of (meth) acrylate (c) in the nanoparticle-containing composition is preferably 10 to 50% by mass, and more preferably 20 to 40% by mass.
  • the content of (meth) acrylate (b) in the total mass of (meth) acrylate (c) and (meth) acrylate (b) is preferably 99% by mass or less, and preferably 80% by mass or less. More preferred. Further, the content of (meth) acrylate (b) in the total mass is more preferably 30% by mass or more, and more preferably 40% by mass or more.
  • the total content is preferably 99% by mass or less, and more preferably 80% by mass or less. Further, the total content of (meth) acrylate (b) and (meth) acrylate (h) in the total mass is preferably 30% by mass or more, and more preferably 40% by mass or more.
  • the polymerization initiator (d) contributes to the curing of the nanoparticle-containing composition.
  • the polymerization initiator (d) include a photopolymerization initiator that generates radicals and a thermal polymerization initiator.
  • the photopolymerization initiator include benzophenone, benzoin methyl ether, benzoin propyl ether, diethoxyacetophenone, 1-hydroxy-phenylphenyl ketone, 2,6-dimethylbenzoyldiphenylphosphine oxide, diphenyl- (2,4,6-trimethyl). Benzoyl) phosphine oxide and bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide. Two or more of these photopolymerization initiators may be used in combination.
  • thermal polymerization initiator examples include benzoyl peroxide, diisopropyl peroxycarbonate, t-butyl peroxy (2-ethylhexanoate), t-butyl peroxyneodecanoate, t-hexyl peroxypivalate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, t-butylperoxypivalate, t-butylperoxy-2-ethylhexanoate, t-hexylperoxyisopropylmonocarbo Nate, dilauroyl peroxide, diisopropyl peroxydicarbonate, di (4-t-butylcyclohexyl) peroxydicarbonate, 2,2-di (4,4-di- (t-butylperoxy) cyclohexyl) propane Can be mentioned. These thermal polymerization initiators may be used alone or in combination of two or more.
  • the content of the polymerization initiator (d) in the nanoparticle-containing composition may be an amount that can appropriately cure the nanoparticle-containing composition.
  • the content of the polymerization initiator in the nanoparticle-containing composition is preferably 0.01 to 10% by mass, more preferably 0.02 to 5% by mass, and still more preferably 0.1 to 2% by mass. %.
  • the storage stability of a nanoparticle containing composition may fall or it may color.
  • cured material will advance rapidly, and problems, such as a crack, may generate
  • when there are too few addition amounts of a polymerization initiator it will become difficult to harden a nanoparticle containing composition.
  • the semiconductor nanoparticle (e) is a light emitter.
  • the semiconductor nanoparticles (e) those having an average particle diameter of 1 nm to 1000 nm are preferably used.
  • the particle size of the semiconductor nanoparticles (e) is more preferably less than 20 nm, and further preferably less than 15 nm.
  • the particle size of the semiconductor nanoparticles (e) is most preferably 2 to 5 nm.
  • the semiconductor nanoparticle (e) becomes a phosphor having a quantum dot effect that quantum confines electrons of the semiconductor nanoparticle (e).
  • the semiconductor nanoparticles (e) preferably include a nanoparticle core and a capping layer having a protective group coordinated on the surface of the nanoparticle core.
  • the protecting group consists of a hydrocarbon group.
  • the nanoparticle core of the semiconductor nanoparticle (e) contains ions.
  • the ions contained in the nanoparticle core are not particularly limited, and examples include ions of at least one element selected from the group consisting of Groups 2 to 16 of the periodic table.
  • the nanoparticle core preferably contains ions of at least one element selected from the group consisting of Groups 3 to 16 of the periodic table.
  • the nanoparticle core contains ions of two or more kinds of elements
  • the first ion is an ion of at least one element selected from the group consisting of Groups 11 to 14 of the periodic table.
  • the second ion is an ion of at least one element selected from the group consisting of Groups 14 to 16 of the periodic table.
  • the nanoparticle core includes a semiconductor material.
  • Semiconductor materials used for the nanoparticle core include ZnS, ZnSe, ZnTe, InP, InAs, InSb, AlS, AlAs, AlSb, GaN, GaP, GaAs, GaSb, PbS, PbSe, Si, Ge, MgSe, MgTe, and CdS. , CdSe, CdTe, CdO, AlP, MgS, and ZnO.
  • semiconductor materials used for the nanoparticle core ZnS, ZnSe, ZnTe, InP, InAs, InSb, AlS, AlAs, AlSb, GaN, GaP, GaAs, GaSb, PdS, PbSe, Si, Ge, MgSe, It is preferable to include at least one selected from the group consisting of MgTe.
  • the semiconductor nanoparticle (e) is preferably a core-shell type in which the surface of the nanoparticle core is covered with a shell made of an inorganic material.
  • the shell may be composed of one layer, or may be composed of two or more layers (core-multishell type).
  • core-multishell type the binding between the nanoparticle core and the protective group is promoted by the shell, so that an excellent quantum dot effect can be obtained.
  • the semiconductor nanoparticles (e) may also be doped nanoparticles or tilted nanoparticles.
  • the content of the semiconductor nanoparticles (e) in the nanoparticle-containing composition is preferably 0.1 to 20% by mass.
  • the content of the semiconductor nanoparticles (e) in the nanoparticle-containing composition is 0.1% by mass or more, the light wavelength conversion action due to the inclusion of the semiconductor nanoparticles (e) is sufficiently obtained. Therefore, the hardened
  • cured material can fully be ensured that the compounding quantity of a semiconductor nanoparticle (e) is 20 mass% or less.
  • the semiconductor nanoparticles (e) can adjust the emission wavelength of the semiconductor nanoparticles (e) by changing the average particle size or the material of the nanoparticle core. Therefore, for example, by applying a nanoparticle-containing composition containing semiconductor nanoparticles (e) to the LED surface and curing the LED, white LEDs are produced by the action of light wavelength conversion of the semiconductor nanoparticles (e). it can.
  • the nanoparticle-containing composition of the present invention may contain a polymerization inhibitor and a leveling as long as the viscosity of the composition and the properties of the cured product, such as transparency and heat resistance, are not impaired.
  • Agents, antioxidants, ultraviolet absorbers, infrared absorbers, light stabilizers, pigments, fillers such as other inorganic fillers, reactive diluents, other modifiers, and the like may also be included.
  • the nanoparticle containing composition of this invention does not contain an organic solvent and water substantially.
  • substantially means that it is not necessary to go through the step of removing the solvent again when actually obtaining a cured product using the nanoparticle-containing composition of the present invention. It means that the respective residual amounts of the organic solvent and water in the containing composition are preferably 2% by mass or less, more preferably 1% by mass or less.
  • polymerization inhibitor examples include hydroquinone, hydroquinone monomethyl ether, benzoquinone, pt-butylcatechol, 2,6-di-t-butyl-4-methylphenol, and the like. These can be used alone or in combination of two or more.
  • leveling agents include polyether-modified dimethylpolysiloxane copolymer, polyester-modified dimethylpolysiloxane copolymer, polyether-modified methylalkylpolysiloxane copolymer, aralkyl-modified methylalkylpolysiloxane copolymer, and polyether-modified. Examples thereof include methylalkylpolysiloxane copolymer. These can be used alone or in combination of two or more.
  • filler or pigment examples include calcium carbonate, talc, mica, clay, Aerosil (registered trademark), barium sulfate, aluminum hydroxide, zinc stearate, zinc white, bengara, azo pigment, and the like. These can be used alone or in combination of two or more.
  • the nanoparticle-containing composition of the present invention can be produced, for example, by performing the following steps 1 to 5.
  • Step 1) The silica fine particles are surface-treated with the silane compounds (f) and (g) to obtain silica fine particles (a).
  • Step 2) The silica fine particles (a) obtained in Step 1 are mixed with a (meth) acrylate compound (B) containing two or more selected from (meth) acrylates (h), (b) and (c). To obtain a mixed solution.
  • Step 3 A volatile matter is distilled off from the mixed solution obtained in Step 2 (hereinafter also referred to as “desolvent”) to obtain a base composition.
  • Step 4 The semiconductor composition (e) is added to and mixed with the base composition obtained in Step 3, and the solvent is removed as necessary to obtain a base composition containing the semiconductor nanoparticles (e).
  • Step 5 A polymerization initiator (d) is added to and mixed with the base composition containing the semiconductor nanoparticles (e) obtained in Step 4 to obtain a nanoparticle-containing composition.
  • step 1 silica fine particles are surface treated with silane compounds (f) and (g).
  • the surface treatment is performed, for example, by the method shown below. First, silica fine particles dispersed in an organic solvent, the silane compound (f) and the silane compound (g) are put into a reactor and mixed and stirred to obtain a mixed solution. Thereafter, water and a catalyst (or an aqueous solution of the catalyst) are added to the mixed solution to hydrolyze the silane compound (f) and the silane compound (g). By performing these steps, a dispersion liquid in which silica fine particles (a) are dispersed is obtained.
  • silanol (Si—OH) is generated from the silane compound (f) and the silane compound (g) by hydrolysis.
  • Generated silanols silanols generated from silane compound (f) may be used, silanols generated from silane compound (g) may be used, or generated from silanol and silane compound (g) generated from silane compound (f) May be partially condensed to form a polymer having a siloxane bond (Si—O—Si).
  • This polymer forms hydrogen bonds with the hydroxyl groups of the silica fine particles in the mixed solution.
  • the silica fine particles become the surface-treated silica fine particles (a) coated with the polymer.
  • a part of the silane compound (f) and / or the silane compound (g) may not be hydrolyzed. Further, a part or all of the silane compound (f) and / or the silane compound (g) remaining without being hydrolyzed may be in a state of being attached to the silica fine particles. Moreover, the silanol produced
  • hydrolysis / condensation polymerization of the silane compounds (f) and (g) proceeds on the surface of the silica fine particles.
  • the disappearance of the silane compounds (f) and (g) during the hydrolysis process can be confirmed by gas chromatography.
  • the measurement conditions are as described in the examples.
  • silica fine particles from the viewpoint of dispersibility in the nanoparticle-containing composition, it is preferable to use a dispersion in which silica fine particles are dispersed in an organic solvent, and it is particularly preferable to use colloidal silica dispersed in an organic solvent.
  • organic solvent it is preferable to use a solvent in which the (meth) acrylate compound (B) contained in the nanoparticle-containing composition is dissolved.
  • the content of silica fine particles in the silica fine particle dispersion is preferably 1 to 50% by mass.
  • the content of the silica fine particles in the dispersion is more preferably 10 to 50% by mass, and still more preferably 20 to 40% by mass from the viewpoint of dispersibility in the nanoparticle-containing composition.
  • the amount of water required for the hydrolysis of the silane compounds (f) and (g) is preferably 1 to 100 parts by mass with respect to 100 parts by mass of the silica fine particles before the surface treatment, and 1 to 50 parts by mass. More preferably, it is 1 to 30 parts by mass. If the amount of water is too small, the hydrolysis rate may become extremely slow, resulting in lack of economic efficiency, and the surface treatment may not proceed sufficiently. If the amount of water is excessively large, the silica fine particles (a) may form a gel.
  • the catalyst for the hydrolysis reaction include inorganic acids such as hydrochloric acid (aqueous hydrogen chloride), acetic acid, sulfuric acid and phosphoric acid; formic acid, propionic acid, oxalic acid, paratoluenesulfonic acid, benzoic acid, phthalic acid and maleic acid
  • Organic acids such as potassium hydroxide, sodium hydroxide, calcium hydroxide and ammonia; organic metals; metal alkoxides; organotin compounds such as dibutyltin dilaurate, dibutyltin dioctylate and dibutyltin diacetate; aluminum tris (acetyl) Acetonate), titanium tetrakis (acetylacetonate), titanium bis (butoxy) bis (acetylacetonate), titanium bis (isopropoxy) bis (acetylacetonate), zirconium bis (butoxy) bis
  • hydrochloric acid acetic acid, maleic acid, and a boron compound
  • hydrochloric acid acetic acid, maleic acid, and a boron compound
  • the catalyst for the hydrolysis reaction may be used alone or in combination of two or more.
  • a water-insoluble catalyst or a water-soluble catalyst can be used, and a water-soluble catalyst is preferably used.
  • the catalyst can be dispersed uniformly by dissolving the water-soluble catalyst in an appropriate amount of water to form an aqueous solution and then adding it to the hydrolysis reaction system. Therefore, it is preferable.
  • the addition amount of the catalyst used for the hydrolysis is not particularly limited, but is preferably 0.01 to 1 part by mass, preferably 0.01 to 0.5 part with respect to 100 parts by mass of the silica fine particles before the surface treatment. More preferably, it is part by mass.
  • the addition amount of the said catalyst represents the quantity of only the catalyst (for example, acid and base) contained in aqueous solution.
  • the reaction temperature of the hydrolysis reaction is not particularly limited, but is preferably in the range of 10 to 80 ° C, more preferably in the range of 20 to 50 ° C. If the reaction temperature is excessively low, the hydrolysis rate may become extremely slow, resulting in lack of economic efficiency, and the surface treatment may not proceed sufficiently. When the reaction temperature is excessively high, the gelation reaction tends to occur.
  • the reaction time for performing the hydrolysis reaction is not particularly limited, but is preferably 10 minutes to 48 hours, and more preferably 30 minutes to 24 hours.
  • the surface treatment of the silica fine particles in Step 1 with the silane compound (f) and the silane compound (g) is preferably performed simultaneously in one step from the viewpoint of simplification and efficiency of the reaction process.
  • the silica fine particles may be surface treated with one of the silane compound (f) and the silane compound (g) and then the other silane compound.
  • step 2 the dispersion of silica fine particles (a) obtained in step 1 and a (meth) acrylate compound (B) containing two or more selected from (meth) acrylates (h), (b) and (c) ) And other ingredients as necessary.
  • the mixing method is not particularly limited, but for example, a method of mixing the above components with a mixer such as a mixer, a ball mill, or a three-roller at room temperature or under heating conditions, and continuously in the reactor in which Step 1 is performed.
  • step 3 from a mixed liquid containing silica fine particles (a) and a (meth) acrylate compound (B) containing two or more selected from (meth) acrylate (h) (b) (c), an organic solvent and Volatile components such as water are distilled off (desolvation) to obtain a base composition.
  • an organic solvent and Volatile components such as water are distilled off (desolvation) to obtain a base composition.
  • the temperature of the mixed solution at the time of solvent removal is preferably maintained at 20 to 100 ° C.
  • the temperature of the mixed solution is more preferably 30 to 70 ° C., and still more preferably 30 to 50 ° C., from the viewpoint of the balance between aggregation gelation prevention and desolvation speed. If the temperature of the mixed solution is raised too much, the fluidity of the nanoparticle-containing composition may be extremely lowered or become a gel.
  • the degree of vacuum at the time of depressurization in the solvent removal is usually 10 to 4,000 kPa.
  • the degree of vacuum is more preferably from 10 to 1,000 kPa, and most preferably from 10 to 500 kPa, in order to balance the solvent removal speed and prevention of aggregation and gelation. If the value of the degree of vacuum is too large, the solvent removal speed becomes extremely slow and the economy may be lacking.
  • the base composition obtained after desolvation contains substantially no organic solvent and water.
  • substantially means that when the cured product is actually obtained using the nanoparticle-containing composition of the present invention, it is not necessary to go through the step of removing the solvent again.
  • the base composition It means that the remaining amount of each of the organic solvent and water in the product is preferably 2% by mass or less, more preferably 1% by mass or less.
  • a polymerization inhibitor may be added so that the addition amount is 0.2% by mass or less with respect to 100% by mass of the nanoparticle-containing composition.
  • the polymerization inhibitor is used to prevent the contained component from undergoing a polymerization reaction during the solvent removal process or during storage of the base composition and the nanoparticle-containing composition after the solvent removal.
  • Step 3 is a mixture containing the silica fine particles (a) obtained in Step 2 and a (meth) acrylate compound (B) containing two or more selected from (meth) acrylates (h), (b) and (c).
  • the liquid may be transferred to a dedicated device.
  • Step 3 may be performed in the reactor subsequent to Step 2.
  • ⁇ Process 4 As the semiconductor nanoparticles (e) to be added to the base composition in Step 4, a dispersion obtained by dispersing the semiconductor nanoparticles (e) in an organic solvent is used from the viewpoint of dispersibility in the nanoparticle-containing composition. It is preferable.
  • the organic solvent in which the semiconductor nanoparticles (e) are dispersed include benzene, xylene, toluene and the like.
  • step 4 semiconductor nanoparticles (e) are added to and mixed with the base composition obtained in step 3, and the solvent is removed as necessary to obtain a base composition containing semiconductor nanoparticles (e). .
  • the mixing method of the base composition and the semiconductor nanoparticles (e) is not particularly limited.
  • the above-described components are mixed at room temperature using a mixer such as a mixer, a ball mill, or a three-roller. Examples of the method include adding and mixing the semiconductor nanoparticles (e) while continuously stirring in the reactor in which steps 3 to 3 were performed.
  • the temperature of the mixed solution of the base composition and the semiconductor nanoparticles (e) during the solvent removal is preferably maintained at 20 to 100 ° C. From the viewpoint of balance between prevention of aggregation and gelation of the nanoparticle-containing composition and desolvation speed, the temperature of the mixed solution of the base composition and the semiconductor nanoparticles (e) during desolvation is more preferably 30 to 70. ° C, more preferably 30 to 50 ° C. If the temperature of the mixed solution of the base composition and the semiconductor nanoparticles (e) is raised too much, the fluidity of the nanoparticle-containing composition may be extremely lowered or become a gel.
  • the pressure is preferably 10 to 4,000 kPa.
  • the pressure in the container at the time of solvent removal is more preferably 10 to 1,000 kPa, and most preferably 10 to 500 kPa.
  • the mixture of the base composition after removal of the solvent and the semiconductor nanoparticles (e) contains substantially no organic solvent and water.
  • substantially means that when the cured product is actually obtained using the nanoparticle-containing composition of the present invention, it is not necessary to go through the step of removing the solvent again. It means that the remaining amount of each of the organic solvent and water in the base composition containing the particles (e) is preferably 2% by mass or less, more preferably 1% by mass or less.
  • Step 5 a nanoparticle-containing composition obtained by adding and mixing a polymerization initiator (d) and other components as necessary to the base composition containing the semiconductor nanoparticles (e) obtained in Step 4
  • the mixing method is not particularly limited.
  • the above components are mixed at room temperature using a mixer such as a mixer, a ball mill, or a three-roller, or continuously in the reactor in which Steps 1 to 4 are performed.
  • a method of adding and mixing the polymerization initiator (d) and other components as necessary with stirring may be mentioned.
  • the nanoparticle-containing composition obtained in step 5 may be filtered as necessary. This filtration is performed in order to remove foreign substances such as dust in the nanoparticle-containing composition.
  • the filtration method is not particularly limited, but it is preferable to use a method of pressure filtration using a membrane type, cartridge type or the like filter having a pressure filtration pore diameter of 10 ⁇ m.
  • the nanoparticle-containing composition of the present invention can be produced.
  • the nanoparticle-containing composition of the present invention can utilize the light wavelength conversion action by containing the semiconductor nanoparticles (e), has a low viscosity even when it does not contain a solvent, and has good handling properties. This is because the nanoparticle-containing composition of the present invention contains semiconductor nanoparticles (e) that are light emitters, and silica fine particles (a) surface-treated with silane compounds (f) and (g) It originates in having high reactivity and compatibility with the (meth) acrylate compound (B) containing 2 or more types chosen from (meth) acrylate (h) (b) (c).
  • the cured product of the present invention can be obtained by curing the nanoparticle-containing composition of the present invention. Therefore, the cured product of the present invention can utilize the light wavelength conversion action by containing the semiconductor nanoparticles (e), and can be used for optical lenses, optical disk substrates, plastic substrates for liquid crystal display elements, color filter substrates, organic EL display elements. It can be suitably used as an optical material / electronic material such as a plastic substrate, a solar cell substrate, a touch panel, an optical element, an optical waveguide, and an LED sealing material.
  • cured material of this invention has the process of hardening the nanoparticle containing composition of this invention.
  • a curing method for example, there are a method of crosslinking a (meth) acryloyloxy group by irradiation of active energy rays, a method of thermally polymerizing a (meth) acryloyloxy group by performing a heat treatment, and these may be used in combination. it can.
  • the nanoparticle-containing composition is cured by irradiation with active energy rays such as ultraviolet rays
  • photopolymerization is started as a polymerization initiator (d) in the base composition containing the semiconductor nanoparticles (e).
  • An agent is included.
  • a thermal polymerization initiator is contained as a polymerization initiator (d) in the base composition containing the semiconductor nanoparticles (e) in the above step 5.
  • the nanoparticle-containing composition of the present invention is applied onto a substrate such as a glass plate, a plastic plate, a metal plate, or a silicon wafer to form a coating film. Thereafter, the coating film is obtained by irradiating the coating film with active energy rays and / or heating and curing the coating film.
  • Examples of the method for applying the nanoparticle-containing composition include application by a bar coater, applicator, die coater, spin coater, spray coater, curtain coater or roll coater, application by screen printing, and application by dipping. .
  • the coating amount of the nanoparticle-containing composition of the present invention on the substrate is not particularly limited and can be appropriately adjusted according to the purpose.
  • the coating film obtained after the curing treatment by active energy ray irradiation and / or heating is used.
  • the amount of the film thickness is preferably 1 ⁇ m to 10 mm, more preferably 10 to 1000 ⁇ m.
  • the active energy ray used for curing the nanoparticle-containing composition is preferably an electron beam or light in the ultraviolet to infrared wavelength range.
  • the light source for example, an ultra-high pressure mercury light source or a metal halide light source can be used for ultraviolet rays, a metal halide light source or a halogen light source can be used for visible rays, and a halogen light source can be used for infrared rays. Can be used.
  • the irradiation amount of the active energy ray is appropriately set according to the type of light source, the film thickness of the coating film, and the like.
  • the nanoparticle-containing composition may be further cured by heat treatment (annealing treatment).
  • the heating temperature is preferably in the range of 50 to 150 ° C.
  • the heating time is preferably in the range of 5 to 60 minutes.
  • the heating temperature is preferably in the range of 40 to 200 ° C., more preferably in the range of 50 to 150 ° C.
  • the heating temperature is lower than the above range, it is necessary to lengthen the heating time, and the economy tends to be lacking. If the heating temperature exceeds the above range, energy costs are required, and further, the heating temperature rise time and the temperature drop time are required.
  • the heating time is appropriately set according to the heating temperature, the film thickness of the coating film, and the like.
  • the nanoparticle-containing composition may be further cured by performing a heat treatment (annealing treatment).
  • the heating temperature at that time is preferably in the range of 50 to 150 ° C.
  • the heating time is preferably in the range of 5 minutes to 60 minutes.
  • silane fine particles before surface treatment Isopropyl alcohol-dispersed colloidal silica (silica fine particle content 30% by mass, average particle size 10 nm, trade name Snowtex IPA-ST; manufactured by Nissan Chemical Industries, Ltd.)
  • silane compound (f) MOS: 8-methacryloyloxyoctyltrimethoxysilane
  • MPS 3-methacryloyloxypropyltrimethoxysilane
  • silane compound (g) PhS: Phenyltrimethoxysilane
  • the content of silica fine particles before surface treatment (meth) acrylate (b), (meth) acrylate (c), (meth) acrylate (h) It is the content (parts by mass) when the total of (meth) acrylate (b), (meth) acrylate (c), and (meth) acrylate (h) is 100 parts by mass.
  • Content of a silane compound (f) and a silane compound (g) is content (mass part) when the silica fine particle before surface treatment is 100 mass parts.
  • Example 1 ⁇ Surface treatment of silica fine particles (a)>
  • 500 g of silica fine particles dispersed in an organic solvent (mass including solvent. Mass of silica fine particles is 150 g) was added.
  • 18 g of MOS as the silane compound (f) and 27 g of PhS as the silane compound (g) were added to the separable flask and mixed with stirring.
  • 13.9 g of hydrochloric acid having a concentration of 0.1825% by mass was further added to the separable flask, and the mixture was stirred at 25 ° C. for 24 hours.
  • a dispersion in which the surface-treated silica fine particles (a) were dispersed was obtained.
  • silane compound (f) and the silane compound (g) disappeared at a time point 6 hours after the addition of hydrochloric acid.
  • the disappearance of the silane compound (f) and the silane compound (g) was confirmed by gas chromatography (model 6850; manufactured by Agilent) under the following conditions. That is, nonpolar column DB-1 (manufactured by J & W) is used, temperature is 50 to 300 ° C., heating rate is 10 ° C./min, He is used as a carrier gas, flow rate is 1.2 cc / min, and flame ionization detection is performed. It was measured by an internal standard method using a vessel.
  • ⁇ Preparation of nanoparticle-containing composition> To 150 g of the base composition obtained above (silica content after surface treatment is 84.8 g), RED-CFQD-G2-604 (semiconductor nanoparticle content 10 mass%) as semiconductor nanoparticles (e) was added to 7 g. .9 g and 142.1 g of GREEN-CFQD-G3-525 (semiconductor nanoparticle content 10 mass%) were added and mixed to obtain a base composition containing semiconductor nanoparticles (e). Thereafter, the base composition containing the semiconductor nanoparticles (e) was heated under reduced pressure at 40 ° C. and 100 kPa with stirring to remove volatile components. 6 g of Esacure KTO-46 as a photopolymerization initiator was added to and mixed with the base composition containing the semiconductor nanoparticles (e) from which volatile components had been removed to obtain the nanoparticle-containing composition of Example 1.
  • Examples 2 to 21 and Comparative Examples 1 to 9 The base compositions and nanostructures of Examples 2 to 21 and Comparative Examples 1 to 9 were the same as Example 1 except that the materials shown in Tables 1 to 3 were changed to the contents shown in Tables 1 to 3. A particle-containing composition was obtained.
  • ⁇ Viscosity> The viscosity of the base resin was measured at 25 ° C. using a B-type viscometer DV-III ULTRA (manufactured by BROOKFIELD). When the viscosity is moderate, handling properties are good.
  • ⁇ Oxygen transmission coefficient> To 100 parts by mass of the base composition, 3.3 g (2 parts by mass) of Esacure KTO-46 as a photopolymerization initiator was added and mixed to obtain a curable composition. The obtained curable composition was applied onto a glass substrate so that the cured film had a size of 55 mm ⁇ and a thickness of 200 ⁇ m to form a coating film. Thereafter, the coating film was exposed and cured under the condition of 3 J / cm 2 with an exposure apparatus incorporating an ultrahigh pressure mercury lamp. The oxygen permeability coefficient [1 ⁇ 10 ⁇ 11 (cc * cm / cm 2 * sec * cmHg)] of the obtained cured film was determined using GTR-30XASD (manufactured by GTR Tech).
  • ⁇ Glass transition temperature (Tg)> A curable composition prepared in the same manner as when measuring the oxygen transmission coefficient was applied on a glass substrate (50 mm ⁇ 50 mm) so that the thickness of the cured film was 100 ⁇ m, thereby forming a coating film. Then, the coating film was exposed on the conditions of 3 J / cm ⁇ 2 > with the exposure apparatus incorporating the ultrahigh pressure mercury lamp, and the coating film was hardened. The obtained cured film was measured using a DMS6100 (manufactured by Seiko Denshi Kogyo Co., Ltd.) under the conditions of a tensile mode, a temperature range of 30 ° C. to 250 ° C., a temperature increase rate of 2 ° C./min, and a frequency of 1 Hz. The peak temperature of the value was evaluated and the glass transition temperature (Tg) was determined.
  • DMS6100 manufactured by Seiko Denshi Kogyo Co., Ltd.
  • the specific gravity of the curable composition prepared in the same manner as in the measurement of oxygen permeability was measured with a density specific gravity meter (DA-650; manufactured by Kyoto Electronics Industry Co., Ltd.). Moreover, the curable composition was apply
  • DMA-220H automatic hydrometer
  • Shrinkage (%) ⁇ (specific gravity of cured product ⁇ specific gravity of curable composition) / specific gravity of cured product ⁇ ⁇ 100
  • Nanoparticle-containing composition evaluation Viscosity and dispersibility of the nanoparticle-containing compositions of Examples 1 to 21 and Comparative Examples 1 to 9 were evaluated by the following methods. The results are shown in Tables 1 to 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Health & Medical Sciences (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Polymerisation Methods In General (AREA)
  • Optical Filters (AREA)
  • Luminescent Compositions (AREA)

Abstract

A curable composition containing semiconductor nanoparticles, which comprises silica microparticles (a), a (meth)acrylate compound (B), a polymerization initiator (d) and semiconductor nanoparticles (e) that serve as a light emitter, wherein the (meth)acrylate compound (B) comprises at least two compounds selected from the group consisting of a bifunctional (meth)acrylate compound (h) having two (meth)acryloyloxy groups, a polyfunctional (meth)acrylate compound (b) having at least three (meth)acryloyloxy groups and a monofunctional (meth)acrylate compound (c) having one (meth)acryloyloxy group, and the surface of each of the silica microparticles (a) is treated with a silane compound (f) represented by general formula (1) and a silane compound (g) represented by general formula (2). (In formula (1), R1 represents a hydrogen atom or a methyl group; R2 represents an alkyl group having 1 to 3 carbon atoms or a phenyl group; R3 represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms; q represents an integer of 1 to 16; and r represents an integer of 0 to 2. In formula (2), R4 represents an alkyl group having 1 to 3 carbon atoms or a phenyl group; R5 represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms; s represents an integer of 0 to 6; and t represents an integer of 0 to 2.)

Description

半導体ナノ粒子含有硬化性組成物、硬化物、光学材料および電子材料Semiconductor nanoparticle-containing curable composition, cured product, optical material and electronic material
 本発明は、半導体ナノ粒子含有硬化性組成物、硬化物、光学材料および電子材料に関する。さらに詳しくは、本発明は、半導体ナノ粒子含有硬化性組成物、この半導体ナノ粒子含有硬化性組成物を硬化させて得られる硬化物、およびその硬化物からなる光学材料・電子材料に関する。
 本出願は、2013年8月9日に日本に出願された特願2013-167068に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a semiconductor nanoparticle-containing curable composition, a cured product, an optical material, and an electronic material. More specifically, the present invention relates to a semiconductor nanoparticle-containing curable composition, a cured product obtained by curing the semiconductor nanoparticle-containing curable composition, and an optical material / electronic material comprising the cured product.
This application claims priority based on Japanese Patent Application No. 2013-167068 filed in Japan on August 9, 2013, the contents of which are incorporated herein by reference.
 光学レンズ、光学素子、光導波路およびLED(Light Emitting Diode)封止材などの光学部品・電子部品に用いられる光学材料・電子材料として、樹脂材料がある。
 従来、LED封止材に使用される樹脂材料として、シリカ微粒子と、蛍光体と、液状媒体とを含有する蛍光体含有組成物がある(例えば、特許文献1~特許文献4参照)。
There are resin materials as optical materials and electronic materials used for optical parts and electronic parts such as optical lenses, optical elements, optical waveguides, and LED (Light Emitting Diode) sealing materials.
Conventionally, as a resin material used for an LED sealing material, there is a phosphor-containing composition containing silica fine particles, a phosphor, and a liquid medium (see, for example, Patent Documents 1 to 4).
 また、LED封止材等に利用できる硬化性組成物として、シリカ微粒子と、2以上のエチレン性不飽和基を有し且つ環構造を有しない(メタ)アクリレートと、エチレン性不飽和基を有し且つ脂環式構造を有する(メタ)アクリレートと、重合開始剤とを含み、シリカ微粒子が、シラン化合物で表面処理されているものがある(例えば、特許文献5参照)。 Moreover, as a curable composition which can be used for an LED encapsulant or the like, it has silica fine particles, (meth) acrylate having two or more ethylenically unsaturated groups and no ring structure, and having ethylenically unsaturated groups. In addition, there is one that includes (meth) acrylate having an alicyclic structure and a polymerization initiator, and silica fine particles are surface-treated with a silane compound (for example, see Patent Document 5).
 近年、ナノサイズの半導体粒子として、量子閉じ込め(quantum confinement)効果を示す量子ドットが注目されている。また、このような量子ドットをLED封止材の蛍光体として利用することが検討されている。例えば、特許文献6には、無機蛍光体及び当該無機蛍光体に配位した炭化水素基から構成されるナノ粒子蛍光体を含む液状硬化性樹脂組成物が記載されている。 In recent years, quantum dots that exhibit a quantum confinement effect have attracted attention as nano-sized semiconductor particles. In addition, the use of such quantum dots as phosphors for LED sealing materials has been studied. For example, Patent Document 6 describes a liquid curable resin composition containing an inorganic phosphor and a nanoparticle phosphor composed of a hydrocarbon group coordinated to the inorganic phosphor.
特開2009-102514号公報JP 2009-102514 A 特開2009-096947号公報JP 2009-096947 A 特開2008-260930号公報JP 2008-260930 A 特開2008-050593号公報JP 2008-050593 A 再公表WO2010/001875号公報Republished WO2010 / 001875 特開2010-126596号公報JP 2010-126596 A
 しかしながら、従来のナノサイズの半導体粒子を含む組成物は、半導体ナノ粒子の分散性が悪い、粘度が高い、成形性が不十分などの問題点があった。
 本発明は、上記事情に鑑みてなされたものであり、発光体である半導体ナノ粒子を含み、半導体ナノ粒子の分散性が良好であり、低粘度で優れた成形性を有する硬化性組成物、これを硬化させて得られる硬化物、およびその硬化物からなる光学材料・電子材料を提供することを課題とする。
However, conventional compositions containing nano-sized semiconductor particles have problems such as poor dispersibility of semiconductor nanoparticles, high viscosity, and insufficient moldability.
The present invention has been made in view of the above circumstances, includes semiconductor nanoparticles that are light emitters, has good dispersibility of semiconductor nanoparticles, has a low viscosity and excellent moldability, It is an object of the present invention to provide a cured product obtained by curing this, and an optical material / electronic material made of the cured product.
 本発明者らは、上記課題を解決するべく、鋭意検討した。その結果、特定のシラン化合物で表面処理されているシリカ微粒子と、(メタ)アクリレート化合物と、重合開始剤と、発光体である半導体ナノ粒子(e)とを含み、(メタ)アクリレート化合物が、2つの(メタ)アクリロイルオキシ基を有する2官能(メタ)アクリレート化合物(h)と、3つ以上の(メタ)アクリロイルオキシ基を有する多官能(メタ)アクリレート化合物(b)と、1つの(メタ)アクリロイルオキシ基を有する単官能(メタ)アクリレート化合物(c)とから選ばれる2種以上を含む硬化性組成物とすることで、低粘度で優れた成形性と分散性が得られることを見出し、本発明を想到した。 The present inventors diligently studied to solve the above problems. As a result, the silica fine particle surface-treated with a specific silane compound, a (meth) acrylate compound, a polymerization initiator, and semiconductor nanoparticles (e) that are light emitters, the (meth) acrylate compound is A bifunctional (meth) acrylate compound (h) having two (meth) acryloyloxy groups, a polyfunctional (meth) acrylate compound (b) having three or more (meth) acryloyloxy groups, and one (meth) ) It has been found that by forming a curable composition containing two or more selected from a monofunctional (meth) acrylate compound (c) having an acryloyloxy group, excellent moldability and dispersibility can be obtained with low viscosity. The present invention has been conceived.
 本発明は以下の構成を採用する。
(1) シリカ微粒子(a)と、(メタ)アクリレート化合物(B)と、重合開始剤(d)と、発光体である半導体ナノ粒子(e)とを含み、前記(メタ)アクリレート化合物(B)が、2つの(メタ)アクリロイルオキシ基を有する2官能(メタ)アクリレート化合物(h)と、3つ以上の(メタ)アクリロイルオキシ基を有する多官能(メタ)アクリレート化合物(b)と、1つの(メタ)アクリロイルオキシ基を有する単官能(メタ)アクリレート化合物(c)とから選ばれる2種以上を含み、前記シリカ微粒子(a)が、下記一般式(1)で表されるシラン化合物(f)および下記一般式(2)で表されるシラン化合物(g)で表面処理されていることを特徴とする半導体ナノ粒子含有硬化性組成物。
The present invention employs the following configuration.
(1) Silica fine particles (a), a (meth) acrylate compound (B), a polymerization initiator (d), and semiconductor nanoparticles (e) that are light emitters, the (meth) acrylate compound (B ) Is a bifunctional (meth) acrylate compound (h) having two (meth) acryloyloxy groups, a polyfunctional (meth) acrylate compound (b) having three or more (meth) acryloyloxy groups, and 1 A silane compound (2) containing two or more selected from one (meth) acryloyloxy group-containing monofunctional (meth) acrylate compound (c), wherein the silica fine particles (a) are represented by the following general formula (1): A semiconductor nanoparticle-containing curable composition, which is surface-treated with a silane compound (g) represented by f) and the following general formula (2):
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式(1)中、Rは水素原子又はメチル基を表し、Rは炭素数1~3のアルキル基又はフェニル基を表し、Rは水素原子又は炭素数1~10の炭化水素基を表し、qは1~16の整数であり、rは0~2の整数である。) (In the formula (1), R 1 represents a hydrogen atom or a methyl group, R 2 represents an alkyl group having 1 to 3 carbon atoms or a phenyl group, and R 3 represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms. Q is an integer from 1 to 16, and r is an integer from 0 to 2.)
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式(2)中、Rは炭素数1~3のアルキル基又はフェニル基を表し、Rは水素原子又は炭素数1~10の炭化水素基を表し、sは0~6の整数であり、tは0~2の整数である。) (In the formula (2), R 4 represents an alkyl group having 1 to 3 carbon atoms or a phenyl group, R 5 represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, and s is an integer of 0 to 6) And t is an integer from 0 to 2.)
(2) 前記(メタ)アクリレート化合物(B)が、3つ以上の(メタ)アクリロイルオキシ基を有する多官能(メタ)アクリレート化合物(b)と、1つの(メタ)アクリロイルオキシ基を有する単官能(メタ)アクリレート化合物(c)とを含むことを特徴とする(1)に記載の半導体ナノ粒子含有硬化性組成物。 (2) The polyfunctional (meth) acrylate compound (b) in which the (meth) acrylate compound (B) has three or more (meth) acryloyloxy groups and a monofunctional having one (meth) acryloyloxy group The semiconductor nanoparticle-containing curable composition according to (1), comprising a (meth) acrylate compound (c).
(3) 前記シリカ微粒子(a)において、表面処理に用いる前記シラン化合物(f)の使用量が、表面処理前のシリカ微粒子100質量部に対して1~50質量部であり、表面処理に用いる前記シラン化合物(g)の使用量が、表面処理前のシリカ微粒子100質量部に対して1~50質量部であることを特徴とする(1)または(2)に記載の半導体ナノ粒子含有硬化性組成物。
(4) 表面処理前のシリカ微粒子の数平均粒子径が、10~500nmであることを特徴とする(1)~(3)のいずれか一項に記載の半導体ナノ粒子含有硬化性組成物。
(3) In the silica fine particles (a), the amount of the silane compound (f) used for the surface treatment is 1 to 50 parts by mass with respect to 100 parts by mass of the silica fine particles before the surface treatment, and is used for the surface treatment. The semiconductor nanoparticle-containing curing according to (1) or (2), wherein the amount of the silane compound (g) used is 1 to 50 parts by mass with respect to 100 parts by mass of the silica fine particles before the surface treatment. Sex composition.
(4) The semiconductor nanoparticle-containing curable composition according to any one of (1) to (3), wherein the number average particle diameter of the silica fine particles before the surface treatment is 10 to 500 nm.
(5) 前記(メタ)アクリレート化合物(b)が、3つの(メタ)アクリロイルオキシ基を有する3官能(メタ)アクリレート化合物であることを特徴とする(1)~(4)のいずれか一項に記載の半導体ナノ粒子含有硬化性組成物。
(6) 前記(メタ)アクリレート化合物(b)が、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、シクロヘキサントリメタノールトリ(メタ)アクリレート、アダマンチルトリ(メタ)アクリレート、アダマンタントリメタノールトリ(メタ)アクリレート、ノルボルナントリメチロールトリ(メタ)アクリレート、トリシクロデカントリメタノールトリ(メタ)アクリレート、パーヒドロ-1,4,5,8-ジメタノナフタレン-2,3,7-(オキシメチル)トリ(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレート、カプロラクトン変性トリス(アクリロキシエチル)イソシアヌレート、ジ-(2-アクリロキシエチル)モノ-(2-ヒドロキシエチル)イソシアヌレートから選ばれる1種または2種以上であることを特徴とする(5)に記載の半導体ナノ粒子含有硬化性組成物。
(7) 前記(メタ)アクリレート化合物(B)の質量中における(メタ)アクリレート(b)と(メタ)アクリレート(h)の合計含有量が99質量%以下であることを特徴とする(1)~(6)のいずれか一項に記載の半導体ナノ粒子含有硬化性組成物。
(5) Any one of (1) to (4), wherein the (meth) acrylate compound (b) is a trifunctional (meth) acrylate compound having three (meth) acryloyloxy groups. The semiconductor nanoparticle containing curable composition of description.
(6) The (meth) acrylate compound (b) is trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, cyclohexane trimethanol tri (meth) acrylate, adamantyl tri (meth) acrylate, adamantane trimethanol Tri (meth) acrylate, norbornanetrimethylol tri (meth) acrylate, tricyclodecane trimethanol tri (meth) acrylate, perhydro-1,4,5,8-dimethanonaphthalene-2,3,7- (oxymethyl) Tri (meth) acrylate, tris (acryloxyethyl) isocyanurate, caprolactone-modified tris (acryloxyethyl) isocyanurate, di- (2-acryloxyethyl) mono- (2-hydroxyethyl) iso One or semiconductor nanoparticle-containing curable composition according to, characterized in that two or more kinds (5) selected from cyanurate.
(7) The total content of (meth) acrylate (b) and (meth) acrylate (h) in the mass of the (meth) acrylate compound (B) is 99% by mass or less (1) The semiconductor nanoparticle-containing curable composition according to any one of to (6).
(8) 前記半導体ナノ粒子(e)が、周期表の第3族~第16族からなる群から選択される少なくとも一種の元素のイオンを含むナノ粒子コアを有することを特徴とする(1)~(7)のいずれか一項に記載の半導体ナノ粒子含有硬化性組成物。
(9) 前記ナノ粒子コアが、ZnS,ZnSe,ZnTe,InP,InAs,InSb,AlS,AlAs,AlSb,GaN,GaP,GaAs,GaSb,PdS,PbSe,Si,Ge,MgSe,MgTeからなる群から選択される少なくとも一種を含むことを特徴とする(8)に記載の半導体ナノ粒子含有硬化性組成物。
(10) 前記半導体ナノ粒子(e)が、ナノ粒子コアと、前記ナノ粒子コアの表面に配位した保護基を有するキャッピング層とを含み、前記ナノ粒子コアの表面が、無機材料からなる少なくとも一層のシェルにより被覆されていることを特徴とする(1)~(9)のいずれか一項に記載の半導体ナノ粒子含有硬化性組成物。
(11) 前記半導体ナノ粒子含有硬化性組成物中の前記半導体ナノ粒子(e)の含有量が0.1~20質量%であることを特徴とする(1)~(10)のいずれか一項に記載の半導体ナノ粒子含有硬化性組成物。
(8) The semiconductor nanoparticle (e) has a nanoparticle core containing ions of at least one element selected from the group consisting of Groups 3 to 16 of the periodic table (1) The semiconductor nanoparticle-containing curable composition according to any one of to (7).
(9) The nanoparticle core is made of the group consisting of ZnS, ZnSe, ZnTe, InP, InAs, InSb, AlS, AlAs, AlSb, GaN, GaP, GaAs, GaSb, PdS, PbSe, Si, Ge, MgSe, MgTe. The semiconductor nanoparticle-containing curable composition according to (8), comprising at least one selected.
(10) The semiconductor nanoparticle (e) includes a nanoparticle core and a capping layer having a protective group coordinated to the surface of the nanoparticle core, and the surface of the nanoparticle core is made of an inorganic material. 10. The semiconductor nanoparticle-containing curable composition according to any one of (1) to (9), which is covered with a single shell.
(11) The content of the semiconductor nanoparticles (e) in the semiconductor nanoparticle-containing curable composition is 0.1 to 20% by mass, any one of (1) to (10) The semiconductor nanoparticle containing curable composition of claim | item.
(12) 前記一般式(1)において、qが3~16の整数であることを特徴とする(1)~(11)のいずれか一項に記載の半導体ナノ粒子含有硬化性組成物。
(13) (1)~(12)のいずれか一項に記載の半導体ナノ粒子含有硬化性組成物を硬化させて得られることを特徴とする硬化物。
(12) The semiconductor nanoparticle-containing curable composition according to any one of (1) to (11), wherein in the general formula (1), q is an integer of 3 to 16.
(13) A cured product obtained by curing the semiconductor nanoparticle-containing curable composition according to any one of (1) to (12).
(14) (13)に記載の硬化物からなることを特徴とする光学材料。
(15) (13)に記載の硬化物からなることを特徴とする電子材料。
(14) An optical material comprising the cured product according to (13).
(15) An electronic material comprising the cured product according to (13).
 本発明の半導体ナノ粒子含有硬化性組成物は、特定のシラン化合物で表面処理されているシリカ微粒子と、(メタ)アクリレート化合物と、重合開始剤と、発光体である半導体ナノ粒子とを含み、(メタ)アクリレート化合物が、2つの(メタ)アクリロイルオキシ基を有する2官能(メタ)アクリレート化合物と、3つ以上の(メタ)アクリロイルオキシ基を有する多官能(メタ)アクリレート化合物と、1つの(メタ)アクリロイルオキシ基を有する単官能(メタ)アクリレート化合物とから選ばれる2種以上を含む。よって、本発明の半導体ナノ粒子含有硬化性組成物は、半導体ナノ粒子を含有することによる光波長変換作用を利用でき、かつ半導体ナノ粒子の分散性が良好であり、低粘度で優れた成形性を有するものとなる。
 また、本発明の半導体ナノ粒子含有硬化性組成物を硬化させることで、光学材料・電子材料に好適に使用できる硬化物が得られる。
The semiconductor nanoparticle-containing curable composition of the present invention includes silica fine particles that are surface-treated with a specific silane compound, a (meth) acrylate compound, a polymerization initiator, and semiconductor nanoparticles that are light emitters. The (meth) acrylate compound is a bifunctional (meth) acrylate compound having two (meth) acryloyloxy groups, a polyfunctional (meth) acrylate compound having three or more (meth) acryloyloxy groups, and one ( 2 or more types chosen from the monofunctional (meth) acrylate compound which has a meth) acryloyloxy group are included. Therefore, the semiconductor nanoparticle-containing curable composition of the present invention can utilize the light wavelength conversion action by containing the semiconductor nanoparticles, has good dispersibility of the semiconductor nanoparticles, has low viscosity and excellent moldability. It will have.
Moreover, the hardened | cured material which can be used conveniently for an optical material and an electronic material is obtained by hardening the semiconductor nanoparticle containing curable composition of this invention.
 以下、本発明の半導体ナノ粒子含有硬化性組成物(以下「ナノ粒子含有組成物」と略記する場合がある。)、ナノ粒子含有組成物を硬化させて得られる硬化物、およびその硬化物からなる光学材料・電子材料について詳細に説明する。なお、以下の説明において例示される材料、寸法等は一例であり、本発明はそれらに限定されるものではない。本発明は、その要旨を変更しない範囲で適宜変更して実施できる。 Hereinafter, the semiconductor nanoparticle-containing curable composition of the present invention (hereinafter sometimes abbreviated as “nanoparticle-containing composition”), a cured product obtained by curing the nanoparticle-containing composition, and the cured product thereof. The optical material / electronic material will be described in detail. In addition, the material, dimension, etc. which are illustrated in the following description are examples, and this invention is not limited to them. The present invention can be appropriately modified and implemented without changing the gist thereof.
 [半導体ナノ粒子含有硬化性組成物]
 本発明のナノ粒子含有組成物は、シリカ微粒子(a)と、(メタ)アクリレート化合物(B)と、重合開始剤(d)と、発光体である半導体ナノ粒子(e)とを含むものである。(メタ)アクリレート化合物(B)は、2つの(メタ)アクリロイルオキシ基を有する2官能(メタ)アクリレート化合物(h)(以下「(メタ)アクリレート(h)」ともいう)と、3つ以上の(メタ)アクリロイルオキシ基を有する多官能(メタ)アクリレート化合物(b)(以下「(メタ)アクリレート(b)」ともいう)と、1つの(メタ)アクリロイルオキシ基を有する単官能(メタ)アクリレート化合物(c)(以下「(メタ)アクリレート(c)」ともいう)とから選ばれる2種以上を含むものである。シリカ微粒子(a)は、上記一般式(1)で表されるシラン化合物(f)および上記一般式(2)で表されるシラン化合物(g)で表面処理されているものである。
[Curable composition containing semiconductor nanoparticles]
The nanoparticle-containing composition of the present invention comprises silica fine particles (a), a (meth) acrylate compound (B), a polymerization initiator (d), and semiconductor nanoparticles (e) that are light emitters. The (meth) acrylate compound (B) includes a bifunctional (meth) acrylate compound (h) having two (meth) acryloyloxy groups (hereinafter also referred to as “(meth) acrylate (h)”), and three or more Polyfunctional (meth) acrylate compound (b) having (meth) acryloyloxy group (hereinafter also referred to as “(meth) acrylate (b)”) and monofunctional (meth) acrylate having one (meth) acryloyloxy group It contains two or more selected from compound (c) (hereinafter also referred to as “(meth) acrylate (c)”). The silica fine particles (a) are surface-treated with the silane compound (f) represented by the general formula (1) and the silane compound (g) represented by the general formula (2).
 本発明のナノ粒子含有組成物は、シリカ微粒子(a)が、シラン化合物(f)およびシラン化合物(g)で表面処理されているので、粘度が低く、成形性に優れている。また、シリカ微粒子(a)には、表面処理によりシラン化合物(f)およびシラン化合物(g)(表面処理により化学構造は変化している)が結合している。シリカ微粒子(a)に結合しているシラン化合物(f)および(g)(表面処理により化学構造は変化している)は、ナノ粒子含有組成物を製造する際に、(メタ)アクリレート(h)(b)(c)から選ばれる2種以上を含む(メタ)アクリレート化合物(B)と反応する。その結果、ナノ粒子含有組成物中のシリカ微粒子(a)の分散安定性は良好となる。 In the nanoparticle-containing composition of the present invention, since the silica fine particles (a) are surface-treated with the silane compound (f) and the silane compound (g), the viscosity is low and the moldability is excellent. Further, the silane compound (f) and the silane compound (g) (the chemical structure is changed by the surface treatment) are bonded to the silica fine particles (a) by the surface treatment. The silane compounds (f) and (g) (the chemical structure of which is changed by the surface treatment) bonded to the silica fine particles (a) are converted into (meth) acrylate (h) when the nanoparticle-containing composition is produced. It reacts with a (meth) acrylate compound (B) containing two or more selected from (b) and (c). As a result, the dispersion stability of the silica fine particles (a) in the nanoparticle-containing composition is improved.
 本発明のナノ粒子含有組成物は、特定のシラン化合物で表面処理されているシリカ微粒子(a)と、(メタ)アクリレート(h)(b)(c)から選ばれる2種以上を含む(メタ)アクリレート化合物(B)と、重合開始剤(d)と、発光体である半導体ナノ粒子(e)とを含むものであり、重合反応により強固に硬化して、線膨張係数が小さく、光透過率の大きい硬化物が得られる。ナノ粒子含有組成物が硬化する際には、シリカ微粒子(a)の存在により、ナノ粒子含有組成物の硬化収縮が抑制される。その結果、例えば、硬化物が基板上に形成された硬化膜である場合における硬化物の反りを抑制できる。また、形成された硬化物が脆くなったり、硬化物にクラックが発生したりすることも防止できる。 The nanoparticle-containing composition of the present invention contains two or more kinds selected from silica fine particles (a) surface-treated with a specific silane compound and (meth) acrylates (h) (b) (c) (meta ) An acrylate compound (B), a polymerization initiator (d), and a semiconductor nanoparticle (e) as a light emitter, which are hardened by a polymerization reaction, have a small linear expansion coefficient, and transmit light. A cured product having a high rate is obtained. When the nanoparticle-containing composition is cured, curing shrinkage of the nanoparticle-containing composition is suppressed due to the presence of the silica fine particles (a). As a result, for example, it is possible to suppress warping of the cured product when the cured product is a cured film formed on the substrate. Moreover, it can prevent that the formed hardened | cured material becomes weak or a crack generate | occur | produces in hardened | cured material.
 本発明のナノ粒子含有組成物は、(e)発光体である半導体ナノ粒子を含むものであるので、半導体ナノ粒子による光波長変換作用の得られるものとなる。したがって、本発明のナノ粒子含有組成物は、光学レンズ、光学素子、光導波路およびLED封止材などの光学部品・電子部品に好ましく使用できる。 Since the nanoparticle-containing composition of the present invention contains (e) semiconductor nanoparticles that are light emitters, the light wavelength conversion action by the semiconductor nanoparticles can be obtained. Therefore, the nanoparticle-containing composition of the present invention can be preferably used for optical parts and electronic parts such as optical lenses, optical elements, optical waveguides, and LED sealing materials.
 本明細書において、「(メタ)アクリレート化合物」とは、アクリレート化合物および/またはメタクリレート化合物を意味する。また、「3つ以上の(メタ)アクリロイルオキシ基」とは、(メタ)アクリロイルオキシ基がアクリロイルオキシ基のみである場合、3つ以上のアクリロイルオキシ基を意味し、(メタ)アクリロイルオキシ基がメタクリロイルオキシ基のみである場合、3つ以上のメタクリロイルオキシ基を意味し、(メタ)アクリロイルオキシ基がアクリロイルオキシ基とメタクリロイルオキシ基の両方を含む場合、アクリロイルオキシ基とメタクリロイルオキシ基の合計が3つ以上であることを意味する。また、「2つの(メタ)アクリロイルオキシ基」とは、(メタ)アクリロイルオキシ基がアクリロイルオキシ基のみである場合、2つのアクリロイルオキシ基を意味し、(メタ)アクリロイルオキシ基がメタクリロイルオキシ基のみである場合、2つのメタクリロイルオキシ基を意味し、(メタ)アクリロイルオキシ基がアクリロイルオキシ基とメタクリロイルオキシ基の両方を含む場合、アクリロイルオキシ基とメタクリロイルオキシ基を1つずつ有することを意味する。
 以下、本発明のナノ粒子含有組成物の各含有成分について説明する。
In the present specification, the “(meth) acrylate compound” means an acrylate compound and / or a methacrylate compound. Further, “three or more (meth) acryloyloxy groups” means three or more acryloyloxy groups when the (meth) acryloyloxy group is only an acryloyloxy group, and the (meth) acryloyloxy group is When it is only a methacryloyloxy group, it means three or more methacryloyloxy groups. When the (meth) acryloyloxy group includes both an acryloyloxy group and a methacryloyloxy group, the total of the acryloyloxy group and the methacryloyloxy group is 3 Means more than one. In addition, “two (meth) acryloyloxy groups” means two acryloyloxy groups when the (meth) acryloyloxy group is only an acryloyloxy group, and the (meth) acryloyloxy group is only a methacryloyloxy group. In this case, it means two methacryloyloxy groups, and when the (meth) acryloyloxy group includes both an acryloyloxy group and a methacryloyloxy group, it means that it has one acryloyloxy group and one methacryloyloxy group.
Hereinafter, each component contained in the nanoparticle-containing composition of the present invention will be described.
<シリカ微粒子(a)>
 シリカ微粒子(a)は、上記一般式(1)で表されるシラン化合物(f)および上記一般式(2)で表されるシラン化合物(g)で表面処理されているものである。
 シリカ微粒子(a)は、シラン化合物(f)で表面処理されていることにより、ナノ粒子含有組成物中における分散安定性に優れたものとなっている。また、シリカ微粒子(a)がシラン化合物(f)で表面処理されているものであることにより、これを含むナノ粒子含有組成物を硬化させる際の収縮率が小さいものとなっている。
<Silica fine particles (a)>
The silica fine particles (a) are surface-treated with the silane compound (f) represented by the general formula (1) and the silane compound (g) represented by the general formula (2).
The silica fine particles (a) are excellent in dispersion stability in the nanoparticle-containing composition by being surface-treated with the silane compound (f). Further, since the silica fine particles (a) are surface-treated with the silane compound (f), the shrinkage rate when the nanoparticle-containing composition containing the silica fine particles (a) is cured is small.
 また、シリカ微粒子は、シラン化合物(g)で表面処理することにより、表面に疎水性が付与されている。その結果、シリカ微粒子(a)は、ナノ粒子含有組成物を製造する際に使用する有機溶媒中での分散性が優れている。また、シリカ微粒子(a)の表面に疎水性が付与されていることにより、シリカ微粒子(a)とナノ粒子含有組成物に含まれる(メタ)アクリレート(c)との相溶性が良好となる。このため、ナノ粒子含有組成物の粘度を低減させることができ、ナノ粒子含有組成物の保存安定性が向上すると同時に、ナノ粒子含有組成物の吸水率を低くすることができる。 In addition, the silica fine particles are surface-treated with a silane compound (g) to impart hydrophobicity to the surface. As a result, the silica fine particles (a) are excellent in dispersibility in the organic solvent used when producing the nanoparticle-containing composition. Moreover, since the hydrophobicity is imparted to the surface of the silica fine particles (a), the compatibility between the silica fine particles (a) and the (meth) acrylate (c) contained in the nanoparticle-containing composition is improved. For this reason, the viscosity of the nanoparticle-containing composition can be reduced, the storage stability of the nanoparticle-containing composition can be improved, and at the same time, the water absorption rate of the nanoparticle-containing composition can be lowered.
 なお、シラン化合物(f)で表面処理されていないシリカ微粒子を、ナノ粒子含有組成物中に含有させると、ナノ粒子含有組成物の粘度が著しく増加し、ゲル化するので好ましくない。
 また、シラン化合物(f)および(g)で表面処理されていないシリカ微粒子を、ナノ粒子含有組成物中に含有させると、これを含むナノ粒子含有組成物を硬化させる際の収縮率が高いものとなる。このため、硬化物にクラックが発生しやすくなる。
If silica fine particles not surface-treated with the silane compound (f) are contained in the nanoparticle-containing composition, the viscosity of the nanoparticle-containing composition is remarkably increased and gelation is not preferable.
In addition, when silica fine particles not surface-treated with the silane compounds (f) and (g) are contained in the nanoparticle-containing composition, the shrinkage rate when the nanoparticle-containing composition containing this is cured is high. It becomes. For this reason, it becomes easy to generate | occur | produce a crack in hardened | cured material.
《シラン化合物で表面処理されるシリカ微粒子》
 上記シラン化合物(f)及び(g)で表面処理されるシリカ微粒子としては、従来公知のシリカ微粒子を用いることができる。また、表面処理されるシリカ微粒子として、多孔質シリカゾルや、アルミニウム、マグネシウム、亜鉛等とケイ素との複合金属酸化物を用いてもよい。
<Silica fine particles surface-treated with silane compound>
Conventionally known silica fine particles can be used as the silica fine particles to be surface-treated with the silane compounds (f) and (g). Further, as the silica fine particles to be surface-treated, porous silica sol, or a composite metal oxide of aluminum, magnesium, zinc or the like and silicon may be used.
 表面処理されるシリカ微粒子としては、数平均粒子径が10~500nmのものを用いることが好ましい。数平均粒子径が10nm以上であると、ナノ粒子含有組成物中にシリカ微粒子(a)が分散しやすいものとなり、ナノ粒子含有組成物の粘度の増大を抑制でき、優れた成形性および保存安定性が得られる。このため、ナノ粒子含有組成物中のシリカ微粒子(a)の含有量を十分に確保でき、これを硬化させて得られる硬化物の透明性または散乱性を制御できるとともに、耐熱性をより一層向上させることができる。また、表面処理されるシリカ微粒子の数平均粒子径を500nm以下にすることで、シリカ微粒子(a)の平均粒子径が大きすぎることによる硬化物の光透過率制御効果の低下を防止できる。 As the silica fine particles to be surface-treated, those having a number average particle diameter of 10 to 500 nm are preferably used. When the number average particle size is 10 nm or more, the silica fine particles (a) are easily dispersed in the nanoparticle-containing composition, and an increase in the viscosity of the nanoparticle-containing composition can be suppressed, and excellent moldability and storage stability. Sex is obtained. For this reason, the content of the silica fine particles (a) in the nanoparticle-containing composition can be sufficiently ensured, and the transparency or scattering property of a cured product obtained by curing this can be controlled, and the heat resistance is further improved. Can be made. Moreover, the fall of the light transmittance control effect of hardened | cured material by the average particle diameter of a silica fine particle (a) being too large can be prevented by making the number average particle diameter of the silica fine particle surface-treated to 500 nm or less.
 表面処理されるシリカ微粒子の数平均粒子径は、ナノ粒子含有組成物の粘度と硬化物の透明性および散乱性の光学的なバランスの点から、より好ましくは10~200nmである。
 なお、上述した表面処理されるシリカ微粒子(表面処理前)の数平均粒子径の好適範囲は、通常、表面処理されているシリカ微粒子(a)(表面処理後)の数平均粒子径の好適範囲でもある。
The number average particle diameter of the silica fine particles to be surface-treated is more preferably 10 to 200 nm from the viewpoint of the optical balance between the viscosity of the nanoparticle-containing composition, the transparency of the cured product and the scattering property.
In addition, the suitable range of the number average particle diameter of the silica fine particles to be surface-treated (before the surface treatment) described above is usually the preferred range of the number average particle diameter of the silica fine particles (a) (after the surface treatment) subjected to the surface treatment But there is.
 表面処理されるシリカ微粒子の数平均粒子径は、以下に示す方法により測定できる。まず、高分解能透過型電子顕微鏡((株)日立製作所製H-9000型)を用いて、シリカ微粒子を観察し、シリカ粒子像を得る。次いで、任意に100個のシリカ粒子像を選び、公知の画像データ統計処理手法により、数平均粒子径を求める。 The number average particle diameter of the silica fine particles to be surface-treated can be measured by the following method. First, using a high-resolution transmission electron microscope (H-9000 type, manufactured by Hitachi, Ltd.), silica fine particles are observed to obtain a silica particle image. Subsequently, 100 silica particle images are arbitrarily selected, and the number average particle diameter is obtained by a known image data statistical processing method.
 シリカ微粒子としては、平均粒子径の異なる複数種類のシリカ微粒子を用いてもよい。このようなシリカ微粒子を用いることで、ナノ粒子含有組成物中のシリカ微粒子(a)の含有量の含有可能な範囲を調整できる。例えば、ナノ粒子含有組成物中のシリカ微粒子(a)の含有量を多くして、これを硬化させて得られる硬化物の透明性および耐熱性をより一層向上させることができる。 As the silica fine particles, a plurality of types of silica fine particles having different average particle diameters may be used. By using such silica fine particles, the range in which the content of the silica fine particles (a) in the nanoparticle-containing composition can be contained can be adjusted. For example, the transparency and heat resistance of the cured product obtained by increasing the content of the silica fine particles (a) in the nanoparticle-containing composition and curing it can be further improved.
 表面処理されるシリカ微粒子としては、ナノ粒子含有組成物中での分散性の点から、有機溶媒に分散したシリカ微粒子を用いることが好ましい。
 表面処理されるシリカ微粒子を分散させる有機溶媒としては、ナノ粒子含有組成物中に含有される(メタ)アクリレート化合物(B)が溶解するものを用いることが好ましい。このような有機溶媒としては、例えば、アルコール類、ケトン類、エステル類、グリコールエーテル類が挙げられる。
As the silica fine particles to be surface-treated, it is preferable to use silica fine particles dispersed in an organic solvent from the viewpoint of dispersibility in the nanoparticle-containing composition.
As the organic solvent for dispersing the silica fine particles to be surface-treated, it is preferable to use a solvent in which the (meth) acrylate compound (B) contained in the nanoparticle-containing composition is dissolved. Examples of such an organic solvent include alcohols, ketones, esters, and glycol ethers.
 これらの中でも後述するシリカ微粒子(a)と、(メタ)アクリレート(h)(b)(c)から選ばれる2種以上を含む(メタ)アクリレート化合物(B)との混合液から、有機溶媒を除去する脱溶媒工程における脱溶媒のしやすさから、有機溶媒として、メタノール、エタノール、イソプロピルアルコール、ブチルアルコール、n-プロピルアルコール、メチルエチルケトン、メチルイソブチルケトンを用いることが好ましく、特に、イソプロピルアルコールを用いることが好ましい。イソプロピルアルコールに分散したシリカ微粒子を用いた場合には、脱溶媒後のナノ粒子含有組成物の粘度が他の溶媒を使用した場合に比べて低くなり、低粘度のナノ粒子含有組成物を安定して作製できる。 Among these, an organic solvent is obtained from a mixed liquid of silica fine particles (a) described later and a (meth) acrylate compound (B) containing two or more selected from (meth) acrylate (h) (b) (c). It is preferable to use methanol, ethanol, isopropyl alcohol, butyl alcohol, n-propyl alcohol, methyl ethyl ketone, or methyl isobutyl ketone as the organic solvent, and in particular, isopropyl alcohol is used because of the ease of solvent removal in the removing solvent step. It is preferable. When silica fine particles dispersed in isopropyl alcohol are used, the viscosity of the nanoparticle-containing composition after desolvation is lower than when other solvents are used, which stabilizes the low-viscosity nanoparticle-containing composition. Can be produced.
 有機溶媒に分散したシリカ微粒子は、従来公知の方法で製造することができる。また、有機溶媒に分散したシリカ微粒子は、例えば商品名スノーテックスIPA-ST(日産化学(株)製)などとして市販されている。
 なお、表面処理されるシリカ微粒子として、有機溶媒に分散したシリカ微粒子を用いる場合、後述する「表面処理前のシリカ微粒子100質量部」とは、特に言及のない限り、「有機溶媒に分散しているシリカ微粒子のみの質量」(すなわち、有機溶媒の質量は含まない。)を指す。
Silica fine particles dispersed in an organic solvent can be produced by a conventionally known method. Silica fine particles dispersed in an organic solvent are commercially available, for example, under the trade name Snowtex IPA-ST (manufactured by Nissan Chemical Co., Ltd.).
When silica fine particles dispersed in an organic solvent are used as the silica fine particles to be surface-treated, “100 parts by mass of silica fine particles before surface treatment” to be described later means “dispersed in an organic solvent unless otherwise specified”. The mass of only silica fine particles ”(that is, the mass of the organic solvent is not included).
《表面処理に用いるシラン化合物》
(シラン化合物(f))
 シラン化合物(f)は、下記一般式(1)で表される。
<< Silane compound used for surface treatment >>
(Silane compound (f))
The silane compound (f) is represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 式(1)中、Rは水素原子又はメチル基である。
 Rは、ナノ粒子含有組成物を硬化させる際の硬化反応に影響を与えるものである。ナノ粒子含有組成物の硬化反応を促進するためには、以下に示すように、ナノ粒子含有組成物中に含まれる(メタ)アクリレート化合物(B)の種類に応じて、Rを決定することが好ましい。
In formula (1), R 1 is a hydrogen atom or a methyl group.
R 1 affects the curing reaction when the nanoparticle-containing composition is cured. In order to accelerate the curing reaction of the nanoparticle-containing composition, R 1 is determined according to the type of the (meth) acrylate compound (B) contained in the nanoparticle-containing composition as shown below. Is preferred.
 すなわち、(メタ)アクリレート(h)(b)(c)から選ばれる2種以上を含む(メタ)アクリレート化合物(B)中にアクリレートが多く含まれる場合には、Rが水素原子であるシラン化合物(f)を用いることが好ましい。また、(メタ)アクリレート(h)(b)(c)から選ばれる2種以上を含む(メタ)アクリレート化合物(B)中にメタクリレートが多く含まれる場合には、Rがメチル基であるシラン化合物(f)を用いることが好ましい。 That is, when a large amount of acrylate is contained in the (meth) acrylate compound (B) containing two or more selected from (meth) acrylate (h), (b) and (c), R 1 is a hydrogen atom. It is preferable to use the compound (f). In addition, when a large amount of methacrylate is contained in the (meth) acrylate compound (B) containing two or more selected from (meth) acrylate (h), (b) and (c), R 1 is a methyl group. It is preferable to use the compound (f).
 式(1)中、Rは炭素数1~3のアルキル基又はフェニル基である。Rは、シラン化合物(f)の保存安定性、ナノ粒子含有組成物の粘度の低減および保存安定性の点から、メチル基またはエチル基であることが好ましい。Rは、シラン化合物(f)の合成の容易さからメチル基であることが特に好ましい。 In the formula (1), R 2 is an alkyl group having 1 to 3 carbon atoms or a phenyl group. R 2 is preferably a methyl group or an ethyl group from the viewpoints of storage stability of the silane compound (f), reduction in viscosity of the nanoparticle-containing composition, and storage stability. R 2 is particularly preferably a methyl group because of the ease of synthesis of the silane compound (f).
 Rは、水素原子又は炭素数1~10の炭化水素基である。Rは、シラン化合物(f)の保存安定性、ナノ粒子含有組成物の粘度の低減および保存安定性、シラン化合物(f)の合成の容易さから、炭素数1~10のアルキル基が好ましく、メチル基またはエチル基であることがより好ましい。
 式(1)中、qは1~16の整数である。qはナノ粒子含有組成物の粘度を低減するために、3~16の整数であることが好ましく、5~10の整数であることがより好ましい。
 rは0~2の整数であり、シラン化合物(f)の合成の容易さから、0であることが好ましい。なお、rが2である場合に複数存在するRは互いに同一であっても異なっていてもよい。
R 3 is a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms. R 3 is preferably an alkyl group having 1 to 10 carbon atoms in view of storage stability of the silane compound (f), reduction in viscosity and storage stability of the nanoparticle-containing composition, and ease of synthesis of the silane compound (f). More preferably, it is a methyl group or an ethyl group.
In the formula (1), q is an integer of 1 to 16. q is preferably an integer of 3 to 16, and more preferably an integer of 5 to 10, in order to reduce the viscosity of the nanoparticle-containing composition.
r is an integer of 0 to 2, and is preferably 0 from the viewpoint of ease of synthesis of the silane compound (f). When r is 2, a plurality of R 2 may be the same or different.
 シラン化合物(f)としては、例えば、3-アクリロキシプロピルジメチルメトキシシラン、3-アクリロキシプロピルメチルジメトキシシラン、3-アクリロキシプロピルジエチルメトキシシラン、3-アクリロキシプロピルエチルジメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルジメチルエトキシシラン、3-アクリロキシプロピルメチルジエトキシシラン、3-アクリロキシプロピルジエチルエトキシシラン、3-アクリロキシプロピルエチルジエトキシシラン、3-アクリロキシプロピルトリエトキシシラン、3-メタクリロキシプロピルジメチルメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルジエチルメトキシシラン、3-メタクリロキシプロピルエチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン(MPS)、3-メタクリロキシプロピルジメチルエトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルジエチルエトキシシラン、3-メタクリロキシプロピルエチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、8-アクリロイルオキシオクチルジメチルメトキシシラン、8-アクリロイルオキシオクチルメチルジメトキシシラン、8-アクリロイルオキシオクチルジエチルメトキシシラン、8-アクリロイルオキシオクチルエチルジメトキシシラン、8-アクリロイルオキシオクチルトリメトキシシラン、8-アクリロイルオキシオクチルジメチルエトキシシラン、8-アクリロイルオキシオクチルメチルジエトキシシラン、8-アクリロイルオキシオクチルジエチルエトキシシラン、8-アクリロイルオキシオクチルエチルジエトキシシラン、8-アクリロイルオキシオクチルトリエトキシシラン、8-メタクリロイルオキシオクチルジメチルメトキシシラン、8-メタクリロイルオキシオクチルメチルジメトキシシラン、8-メタクリロイルオキシオクチルジエチルメトキシシラン、8-メタクリロイルオキシオクチルエチルジメトキシシラン、8-メタクリロイルオキシオクチルトリメトキシシラン、8-メタクリロイルオキシオクチルジメチルエトキシシラン、8-メタクリロイルオキシオクチルメチルジエトキシシラン、8-メタクリロイルオキシオクチルジエチルエトキシシラン、8-メタクリロイルオキシオクチルエチルジエトキシシラン、8-メタクリロイルオキシオクチルトリエトキシシラン、10-アクリロイルオキシデシルトリメトキシシラン、10-メタクリロイルオキシデシルトリメトキシシラン、10-アクリロイルオキシデシルトリエトキシシラン、10-メタクリロイルオキシデシルトリエトキシシラン、12-アクリロイルオキシドデシルトリメトキシシラン、12-メタクリロイルオキシドデシルトリメトキシシラン、12-アクリロイルオキシドデシルトリエトキシシラン、12-メタクリロイルオキシドデシルトリエトキシシランなどが挙げられる。 Examples of the silane compound (f) include 3-acryloxypropyldimethylmethoxysilane, 3-acryloxypropylmethyldimethoxysilane, 3-acryloxypropyldiethylmethoxysilane, 3-acryloxypropylethyldimethoxysilane, and 3-acryloxy. Propyltrimethoxysilane, 3-acryloxypropyldimethylethoxysilane, 3-acryloxypropylmethyldiethoxysilane, 3-acryloxypropyldiethylethoxysilane, 3-acryloxypropylethyldiethoxysilane, 3-acryloxypropyltriethoxy Silane, 3-methacryloxypropyldimethylmethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyldiethylmethoxysilane, 3-methyl Acryloxypropylethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane (MPS), 3-methacryloxypropyldimethylethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyldiethylethoxysilane, 3-methacrylic Roxypropylethyldiethoxysilane, 3-methacryloxypropyltriethoxysilane, 8-acryloyloxyoctyldimethylmethoxysilane, 8-acryloyloxyoctylmethyldimethoxysilane, 8-acryloyloxyoctyldiethylmethoxysilane, 8-acryloyloxyoctylethyldimethoxy Silane, 8-acryloyloxyoctyltrimethoxysilane, 8-acryloyloxyoctyldimethylethoxysilane, -Acryloyloxyoctylmethyldiethoxysilane, 8-acryloyloxyoctyldiethylethoxysilane, 8-acryloyloxyoctylethyldiethoxysilane, 8-acryloyloxyoctyltriethoxysilane, 8-methacryloyloxyoctyldimethylmethoxysilane, 8-methacryloyloxy Octylmethyldimethoxysilane, 8-methacryloyloxyoctyldiethylmethoxysilane, 8-methacryloyloxyoctylethyldimethoxysilane, 8-methacryloyloxyoctyltrimethoxysilane, 8-methacryloyloxyoctyldimethylethoxysilane, 8-methacryloyloxyoctylmethyldiethoxysilane 8-methacryloyloxyoctyldiethylethoxysilane, 8-methacrylic Royloxyoctylethyldiethoxysilane, 8-methacryloyloxyoctyltriethoxysilane, 10-acryloyloxydecyltrimethoxysilane, 10-methacryloyloxydecyltrimethoxysilane, 10-acryloyloxydecyltriethoxysilane, 10-methacryloyloxydecyltri Examples include ethoxysilane, 12-acryloyloxide decyltrimethoxysilane, 12-methacryloyloxidedecyltrimethoxysilane, 12-acryloyloxidedecyltriethoxysilane, 12-methacryloyloxidedecyltriethoxysilane, and the like.
 シリカ微粒子(a)のナノ粒子含有組成物中における分散安定性向上、ナノ粒子含有組成物の粘度の低減および保存安定性向上の点から、シラン化合物(f)として、3-アクリロキシプロピルジメチルメトキシシラン、3-アクリロキシプロピルメチルジメトキシシラン、3-アクリロキシプロピルトリメトキシシラン(APS)、3-メタクリロキシプロピルジメチルメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルジメチルエトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリメトキシシラン(MPS)、8-メタクリロオクチルトリメトキシシラン(MOS)を用いることが好ましく、3-メタクリロキシプロピルトリメトキシシラン(MPS)、8-メタクリロオクチルトリメトキシシラン(MOS)を用いることがさらに好ましい。 From the viewpoint of improving the dispersion stability of the silica fine particles (a) in the nanoparticle-containing composition, reducing the viscosity of the nanoparticle-containing composition, and improving the storage stability, 3-acryloxypropyldimethylmethoxy is used as the silane compound (f). Silane, 3-acryloxypropylmethyldimethoxysilane, 3-acryloxypropyltrimethoxysilane (APS), 3-methacryloxypropyldimethylmethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyldimethylethoxysilane, It is preferable to use 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltrimethoxysilane (MPS), 8-methacrylooctyltrimethoxysilane (MOS), and 3-methacryloxypropyltrimeth Shishiran (MPS), it is more preferable to use 8-methacryloxy-octyl trimethoxy silane (MOS).
 上記のシラン化合物(f)は、単独で用いてもよく、二種類以上を併用して用いてもよい。また、上記のシラン化合物(f)は、公知の方法で製造することができ、市販もされている。 The above silane compound (f) may be used alone or in combination of two or more. Moreover, said silane compound (f) can be manufactured by a well-known method, and is also marketed.
(シラン化合物(g))
 シラン化合物(g)は、下記一般式(2)で表される。
(Silane compound (g))
The silane compound (g) is represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(2)中、Rは炭素数1~3のアルキル基又はフェニル基である。Rは、ナノ粒子含有組成物の粘度の低減および保存安定性の点から、メチル基であることが好ましい。Rがフェニル基である場合、フェニル基には本発明の効果を損なわない範囲で置換基が結合していてもよい。 In the formula (2), R 4 is an alkyl group having 1 to 3 carbon atoms or a phenyl group. R 4 is preferably a methyl group from the viewpoints of viscosity reduction and storage stability of the nanoparticle-containing composition. When R 4 is a phenyl group, a substituent may be bonded to the phenyl group as long as the effects of the present invention are not impaired.
 式(2)中、Rは水素原子又は炭素数1~10の炭化水素基である。Rは、ナノ粒子含有組成物の粘度の低減および保存安定性の点から、炭素数1~10のアルキル基が好ましく、メチル基であることがより好ましい。
 式(2)中、sは0~6の整数であり、ナノ粒子含有組成物の粘度の低減および保存安定性の点から、sが0又は1であることが好ましい。
 式(2)中、tは0~2の整数であり、ナノ粒子含有組成物の粘度の低減および保存安定性の点から、tが0であることが好ましい。なお、tが2である場合に複数存在するRは互いに同一であっても異なっていてもよい。
In the formula (2), R 5 is a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms. R 5 is preferably an alkyl group having 1 to 10 carbon atoms, more preferably a methyl group, from the viewpoint of reducing the viscosity of the nanoparticle-containing composition and storage stability.
In the formula (2), s is an integer of 0 to 6, and s is preferably 0 or 1 from the viewpoint of reducing the viscosity of the nanoparticle-containing composition and storage stability.
In the formula (2), t is an integer of 0 to 2, and t is preferably 0 from the viewpoint of reducing the viscosity and storage stability of the nanoparticle-containing composition. When t is 2, a plurality of R 4 may be the same as or different from each other.
 シラン化合物(g)としては、例えば、フェニルジメチルメトキシシラン、フェニルメチルジメトキシシラン、フェニルジエチルメトキシシラン、フェニルエチルジメトキシシラン、フェニルトリメトキシシラン(PHS)、フェニルジメチルエトキシシラン、フェニルメチルジエトキシシラン、フェニルジエチルエトキシシラン、フェニルエチルジエトキシシラン、フェニルトリエトキシシラン、ベンジルジメチルメトキシシラン、ベンジルメチルジメトキシシラン、ベンジルジエチルメトキシシラン、ベンジルエチルジメトキシシラン、ベンジルトリメトキシシラン、ベンジルジメチルエトキシシラン、ベンジルメチルジエトキシシラン、ベンジルジエチルエトキシシラン、ベンジルエチルジエトキシシラン、およびベンジルトリエトキシシラン等が挙げられる。 Examples of the silane compound (g) include phenyldimethylmethoxysilane, phenylmethyldimethoxysilane, phenyldiethylmethoxysilane, phenylethyldimethoxysilane, phenyltrimethoxysilane (PHS), phenyldimethylethoxysilane, phenylmethyldiethoxysilane, phenyl Diethylethoxysilane, phenylethyldiethoxysilane, phenyltriethoxysilane, benzyldimethylmethoxysilane, benzylmethyldimethoxysilane, benzyldiethylmethoxysilane, benzylethyldimethoxysilane, benzyltrimethoxysilane, benzyldimethylethoxysilane, benzylmethyldiethoxysilane , Benzyldiethylethoxysilane, benzylethyldiethoxysilane, and benzyltriet Shishiran, and the like.
 ナノ粒子含有組成物の粘度の低減、保存安定性向上、吸水率の低下も含めた耐環境性の向上の観点から、シラン化合物(g)として、フェニルジメチルメトキシシラン、フェニルメチルジメトキシシラン、フェニルジエチルメトキシシラン、フェニルエチルジメトキシシラン、フェニルトリメトキシシラン(PHS)を用いることが好ましく、フェニルトリメトキシシラン(PHS)を用いることがより好ましい。 From the viewpoint of reducing the viscosity of the nanoparticle-containing composition, improving the storage stability, and improving the environmental resistance including the reduction in water absorption, as the silane compound (g), phenyldimethylmethoxysilane, phenylmethyldimethoxysilane, phenyldiethyl Methoxysilane, phenylethyldimethoxysilane, and phenyltrimethoxysilane (PHS) are preferably used, and phenyltrimethoxysilane (PHS) is more preferably used.
 上記のシラン化合物(g)は、単独で用いてもよく、二種類以上を併用して用いてもよい。また、上記のシラン化合物(g)は、公知の方法で製造することができ、市販もされている。 The above silane compound (g) may be used alone or in combination of two or more. Moreover, said silane compound (g) can be manufactured by a well-known method, and is marketed.
《シリカ微粒子の表面処理に用いるシラン化合物の使用量》
 シリカ微粒子(a)は、表面処理に用いるシラン化合物(f)の使用量が、表面処理前のシリカ微粒子100質量部に対して1~50質量部であることが好ましく、3~20質量部であることがより好ましい。
<< Amount of silane compound used for surface treatment of silica fine particles >>
In the silica fine particles (a), the amount of the silane compound (f) used for the surface treatment is preferably 1 to 50 parts by mass with respect to 100 parts by mass of the silica fine particles before the surface treatment, and 3 to 20 parts by mass. More preferably.
 また、表面処理に用いるシラン化合物(g)の使用量は、表面処理前のシリカ微粒子100質量部に対して1~50質量部であることが好ましく、3~20質量部であることがより好ましい。 Further, the amount of the silane compound (g) used for the surface treatment is preferably 1 to 50 parts by mass, more preferably 3 to 20 parts by mass with respect to 100 parts by mass of the silica fine particles before the surface treatment. .
 表面処理に用いるシラン化合物(f)とシラン化合物(g)の合計使用量は、表面処理前のシリカ微粒子100質量部に対して、5~80質量部であることが好ましく、10~40質量部であることがより好ましい。
 上記合計使用量が5質量部以上である場合、シラン化合物(f)および(g)で表面処理することによるシリカ微粒子(a)の(メタ)アクリレート化合物(B)への相溶性向上効果が高くなり、一層低粘度のナノ粒子含有組成物が得られる。また、上記合計使用量が80質量部以下である場合、シラン化合物(f)および(g)の使用量が多いことによるシリカ微粒子(a)の凝集を抑制できる。
The total amount of the silane compound (f) and the silane compound (g) used for the surface treatment is preferably 5 to 80 parts by mass with respect to 100 parts by mass of the silica fine particles before the surface treatment. It is more preferable that
When the total amount used is 5 parts by mass or more, the effect of improving the compatibility of the silica fine particles (a) to the (meth) acrylate compound (B) by surface treatment with the silane compounds (f) and (g) is high. Thus, a nanoparticle-containing composition having a lower viscosity is obtained. Moreover, when the said total usage-amount is 80 mass parts or less, aggregation of the silica fine particle (a) by the usage-amount of a silane compound (f) and (g) can be suppressed.
 表面処理に用いるシラン化合物(f)とシラン化合物(g)の質量比((f):(g))は、1:2~2:1であることが好ましく、2:3~3:2であることがより好ましい。 The mass ratio ((f) :( g)) between the silane compound (f) and the silane compound (g) used for the surface treatment is preferably 1: 2 to 2: 1, and is 2: 3 to 3: 2. More preferably.
《シリカ微粒子(a)の含有量》
 ナノ粒子含有組成物中のシリカ微粒子(a)の含有量は、表面処理前のシリカ微粒子の質量で規定することができ、表面処理前のシリカ微粒子と、(メタ)アクリレート(b)と、(メタ)アクリレート(c)と、(メタ)アクリレート(h)の合計を100質量部としたとき1~80質量部であることが好ましく、硬化物の耐熱性、透明性、耐環境性、ナノ粒子含有組成物の粘度とのバランスの点から、20~50質量部であることがより好ましい。さらに、ナノ粒子含有組成物に含まれる半導体ナノ粒子(e)の分散性を向上させるために、シリカ微粒子(a)の含有量は、表面処理前のシリカ微粒子換算で、10質量部以上であることが好ましく、20質量部以上であることがより好ましい。
<< Content of silica fine particles (a) >>
The content of the silica fine particles (a) in the nanoparticle-containing composition can be defined by the mass of the silica fine particles before the surface treatment, and the silica fine particles before the surface treatment, (meth) acrylate (b), ( When the total of (meth) acrylate (c) and (meth) acrylate (h) is 100 parts by mass, it is preferably 1 to 80 parts by mass, and the heat resistance, transparency, environment resistance, and nanoparticles of the cured product From the viewpoint of balance with the viscosity of the contained composition, it is more preferably 20 to 50 parts by mass. Furthermore, in order to improve the dispersibility of the semiconductor nanoparticles (e) contained in the nanoparticle-containing composition, the content of the silica fine particles (a) is 10 parts by mass or more in terms of silica fine particles before the surface treatment. It is preferably 20 parts by mass or more.
<(メタ)アクリレート化合物(B)>
(メタ)アクリレート化合物(B)は、2つの(メタ)アクリロイルオキシ基を有する2官能(メタ)アクリレート化合物(h)と、3つ以上の(メタ)アクリロイルオキシ基を有する多官能(メタ)アクリレート化合物(b)と、1つの(メタ)アクリロイルオキシ基を有する単官能(メタ)アクリレート化合物(c)とから選ばれる2種以上を含むものである。このため、シラン化合物(f)とシラン化合物(g)で表面処理されたシリカ微粒子(a)を含む本実施形態のナノ粒子含有組成物中において、各成分の分散性が良好となる。さらに、本実施形態のナノ粒子含有組成物は、上記を(メタ)アクリレート化合物(B)を含むため、ナノ粒子含有組成物を塗布する場合に、最適な粘度への調整が容易であり、これを硬化させて得られた硬化膜の収縮率が低いという効果が得られる。
また、ナノ粒子含有組成物を硬化させて得られた硬化膜に柔軟性を付与する場合、(メタ)アクリレート化合物(B)は、アクリレート化合物(b)と(メタ)アクリレート化合物(c)との組み合わせであることが好ましい。
<(メタ)アクリレート(b)>
 (メタ)アクリレート(b)は、3つ以上の(メタ)アクリロイルオキシ基を有する多官能(メタ)アクリレート化合物である。ナノ粒子含有組成物中に(メタ)アクリレート(b)が含まれていることにより、耐熱性および強度の優れた硬化物の得られるものとなる。
<(Meth) acrylate compound (B)>
The (meth) acrylate compound (B) is a bifunctional (meth) acrylate compound (h) having two (meth) acryloyloxy groups and a polyfunctional (meth) acrylate having three or more (meth) acryloyloxy groups. It contains two or more selected from the compound (b) and a monofunctional (meth) acrylate compound (c) having one (meth) acryloyloxy group. For this reason, the dispersibility of each component becomes favorable in the nanoparticle containing composition of this embodiment containing the silica fine particle (a) surface-treated with the silane compound (f) and the silane compound (g). Furthermore, since the nanoparticle-containing composition of the present embodiment contains the (meth) acrylate compound (B), the adjustment to the optimum viscosity is easy when applying the nanoparticle-containing composition. The effect that the shrinkage | contraction rate of the cured film obtained by hardening | curing is low is acquired.
Moreover, when providing a softness | flexibility to the cured film obtained by hardening a nanoparticle containing composition, (meth) acrylate compound (B) is an acrylate compound (b) and (meth) acrylate compound (c). A combination is preferred.
<(Meth) acrylate (b)>
(Meth) acrylate (b) is a polyfunctional (meth) acrylate compound having three or more (meth) acryloyloxy groups. When the (meth) acrylate (b) is contained in the nanoparticle-containing composition, a cured product having excellent heat resistance and strength can be obtained.
 (メタ)アクリレート(b)としては、脂肪族多価アルコールと(メタ)アクリル酸とのエステルが好ましい。具体例としては、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、シクロヘキサントリメタノールトリ(メタ)アクリレート、アダマンチルトリ(メタ)アクリレート、アダマンタントリメタノールトリ(メタ)アクリレート、ノルボルナントリメチロールトリ(メタ)アクリレート、トリシクロデカントリメタノールトリ(メタ)アクリレート、パーヒドロ-1,4,5,8-ジメタノナフタレン-2,3,7-(オキシメチル)トリ(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレート、カプロラクトン変性トリス(アクリロキシエチル)イソシアヌレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリメチロールプロパントリオキシエチル(メタ)アクリレート、ジ-(2-アクリロキシエチル)モノ-(2-ヒドロキシエチル)イソシアヌレート等が挙げられる。(メタ)アクリレート(b)は、上記の中でも特に、3つの(メタ)アクリロイルオキシ基を有する3官能(メタ)アクリレート化合物であることが好ましい。 (Meth) acrylate (b) is preferably an ester of an aliphatic polyhydric alcohol and (meth) acrylic acid. Specific examples include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, cyclohexane trimethanol tri (meth) acrylate, adamantyltri (meth) acrylate, adamantanetrimethanol tri (meth) acrylate, norbornane trimethylol. Tri (meth) acrylate, tricyclodecane trimethanol tri (meth) acrylate, perhydro-1,4,5,8-dimethanonaphthalene-2,3,7- (oxymethyl) tri (meth) acrylate, tris (acrylic) Roxyethyl) isocyanurate, caprolactone-modified tris (acryloxyethyl) isocyanurate, pentaerythritol tetra (meth) acrylate, dipentaerythritol tetra (meth) acrylate Dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, trimethylolpropane trioxyethyl (meth) acrylate, di- (2-acryloxyethyl) mono- (2-hydroxyethyl) isocyanurate Etc. Among these, the (meth) acrylate (b) is preferably a trifunctional (meth) acrylate compound having three (meth) acryloyloxy groups.
 上記の(メタ)アクリレート(b)は単独で用いてもよく、二種類以上を併用してもよい。 The above (meth) acrylate (b) may be used alone or in combination of two or more.
 (メタ)アクリレート(b)の含有量は、表面処理前のシリカ微粒子100質量部に対して、10~1800質量部であることが好ましく、50~450質量部であることがより好ましい。
 ナノ粒子含有組成物中の(メタ)アクリレート(b)の含有量は、10~50質量%であることが好ましく、20~40質量%であることがより好ましい。
The content of (meth) acrylate (b) is preferably 10 to 1800 parts by mass, and more preferably 50 to 450 parts by mass with respect to 100 parts by mass of the silica fine particles before the surface treatment.
The content of (meth) acrylate (b) in the nanoparticle-containing composition is preferably 10 to 50% by mass, and more preferably 20 to 40% by mass.
<(メタ)アクリレート(h)>
 (メタ)アクリレート(h)は、2つの(メタ)アクリロイルオキシ基を有する2官能(メタ)アクリレート化合物である。ナノ粒子含有組成物中に(メタ)アクリレート(h)が含まれていることにより、組成物の粘度調整が容易となり、特に低粘度化しやすい。
<(Meth) acrylate (h)>
(Meth) acrylate (h) is a bifunctional (meth) acrylate compound having two (meth) acryloyloxy groups. When the (meth) acrylate (h) is contained in the nanoparticle-containing composition, it is easy to adjust the viscosity of the composition, and it is particularly easy to reduce the viscosity.
 (メタ)アクリレート(h)としては、例えば、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、イソノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ビスフェノールAエチレンオキシド変性ジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート、ネオペンチルジ(メタ)アクリレート等が挙げられる。 Examples of (meth) acrylate (h) include 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, and isononanediol. Di (meth) acrylate, 1,10-decanediol di (meth) acrylate, polyethylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, bisphenol A ethylene oxide modified di (meth) ) Acrylate, tricyclodecane dimethanol di (meth) acrylate, neopentyl di (meth) acrylate and the like.
 上記の(メタ)アクリレート(h)は単独で用いてもよく、二種類以上を併用してもよい。 The above (meth) acrylate (h) may be used alone or in combination of two or more.
 (メタ)アクリレート(h)の含有量は、表面処理前のシリカ微粒子100質量部に対して、10~1800質量部であることが好ましく、50~450質量部であることがより好ましい。
 ナノ粒子含有組成物中の(メタ)アクリレート(h)の含有量は、5~55質量%であることが好ましく、10~45質量%であることがより好ましい。
The content of (meth) acrylate (h) is preferably 10 to 1800 parts by mass and more preferably 50 to 450 parts by mass with respect to 100 parts by mass of silica fine particles before the surface treatment.
The content of (meth) acrylate (h) in the nanoparticle-containing composition is preferably 5 to 55% by mass, and more preferably 10 to 45% by mass.
<(メタ)アクリレート(c)>
 (メタ)アクリレート(c)は、1つの(メタ)アクリロイルオキシ基を有する単官能(メタ)アクリレート化合物である。ナノ粒子含有組成物中に(メタ)アクリレート(c)が含まれていることにより、硬化時の収縮率が低く、柔軟性に優れた硬化物の得られるものとなる。
<(Meth) acrylate (c)>
(Meth) acrylate (c) is a monofunctional (meth) acrylate compound having one (meth) acryloyloxy group. When the (meth) acrylate (c) is contained in the nanoparticle-containing composition, a cured product having a low shrinkage at the time of curing and excellent flexibility is obtained.
 (メタ)アクリレート(c)としては、例えば、シクロヘキサンジメタノールモノ(メタ)アクリレート、4-ブチルシクロヘキシル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンタジエニル(メタ)アクリレート、ボルニル(メタ)アクリレート、イソボルニル(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート、トリシクロデカンジメタノールモノ(メタ)アクリレート、アダマンチル(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、2-(メタ)アクリロイルオキシエチルサクシネート、2-ヒドロキシ-3-(メタ)アクリロイロキシプロピルメタクリレート、イソボニルメタクリレート、γ-ブチロラクトンメタアクリレート、ラウリルアクリレート、アクリロイルモルホリン等が挙げられる。 Examples of (meth) acrylate (c) include cyclohexanedimethanol mono (meth) acrylate, 4-butylcyclohexyl (meth) acrylate, dicyclopentanyl (meth) acrylate, dicyclopentenyl (meth) acrylate, and dicyclopenta Dienyl (meth) acrylate, bornyl (meth) acrylate, isobornyl (meth) acrylate, tricyclodecanyl (meth) acrylate, tricyclodecane dimethanol mono (meth) acrylate, adamantyl (meth) acrylate, methoxypolyethylene glycol (meta ) Acrylate, 2- (meth) acryloyloxyethyl succinate, 2-hydroxy-3- (meth) acryloyloxypropyl methacrylate, isobornyl methacrylate, γ-butyro Click ton methacrylate, lauryl acrylate, acryloyl morpholine, and the like.
 上記の(メタ)アクリレート(c)は単独で用いてもよく、二種類以上を併用してもよい。 The above (meth) acrylate (c) may be used alone or in combination of two or more.
 (メタ)アクリレート(c)の含有量は、表面処理前のシリカ微粒子100質量部に対して、10~1800質量部であることが好ましく、50~450質量部であることがより好ましい。
 ナノ粒子含有組成物中の(メタ)アクリレート(c)の含有量は、10~50質量%であることが好ましく、20~40質量%であることがより好ましい。
The content of (meth) acrylate (c) is preferably 10 to 1800 parts by mass, and more preferably 50 to 450 parts by mass with respect to 100 parts by mass of silica fine particles before the surface treatment.
The content of (meth) acrylate (c) in the nanoparticle-containing composition is preferably 10 to 50% by mass, and more preferably 20 to 40% by mass.
 (メタ)アクリレート(c)と(メタ)アクリレート(b)の合計質量中における(メタ)アクリレート(b)の含有量は、99質量%以下であることが好ましく、80質量%以下であることがより好ましい。また、上記の合計質量中の(メタ)アクリレート(b)の含有量は、30質量%以上であることがより好ましく、40質量%以上であることがより好ましい。 The content of (meth) acrylate (b) in the total mass of (meth) acrylate (c) and (meth) acrylate (b) is preferably 99% by mass or less, and preferably 80% by mass or less. More preferred. Further, the content of (meth) acrylate (b) in the total mass is more preferably 30% by mass or more, and more preferably 40% by mass or more.
 また(メタ)アクリレート(h)(b)(c)から選ばれる2種以上を含む(メタ)アクリレート化合物(B)の質量中における(メタ)アクリレート(b)と(メタ)アクリレート(h)の合計含有量は、99質量%以下であることが好ましく、80質量%以下であることがより好ましい。また、上記の合計質量中の(メタ)アクリレート(b)と(メタ)アクリレート(h)の合計含有量は、30質量%以上であることが好ましく、40質量%以上であることがより好ましい。 The (meth) acrylate (b) and (meth) acrylate (h) in the mass of the (meth) acrylate compound (B) containing two or more selected from (meth) acrylate (h) (b) (c) The total content is preferably 99% by mass or less, and more preferably 80% by mass or less. Further, the total content of (meth) acrylate (b) and (meth) acrylate (h) in the total mass is preferably 30% by mass or more, and more preferably 40% by mass or more.
<重合開始剤(d)>
 重合開始剤(d)は、ナノ粒子含有組成物の硬化に寄与する。重合開始剤(d)としては、ラジカルを発生する光重合開始剤や、熱重合開始剤が挙げられる。
 光重合開始剤としては、例えばベンゾフェノン、ベンゾインメチルエーテル、ベンゾインプロピルエーテル、ジエトキシアセトフェノン、1-ヒドロキシ-フェニルフェニルケトン、2,6-ジメチルベンゾイルジフェニルホスフィンオキシド、ジフェニル-(2,4,6-トリメチルベンゾイル)フォスフィンオキシドおよびビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキシドが挙げられる。これらの光重合開始剤は2種以上を併用してもよい。
<Polymerization initiator (d)>
The polymerization initiator (d) contributes to the curing of the nanoparticle-containing composition. Examples of the polymerization initiator (d) include a photopolymerization initiator that generates radicals and a thermal polymerization initiator.
Examples of the photopolymerization initiator include benzophenone, benzoin methyl ether, benzoin propyl ether, diethoxyacetophenone, 1-hydroxy-phenylphenyl ketone, 2,6-dimethylbenzoyldiphenylphosphine oxide, diphenyl- (2,4,6-trimethyl). Benzoyl) phosphine oxide and bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide. Two or more of these photopolymerization initiators may be used in combination.
 熱重合開始剤としては、例えば、ベンゾイルパーオキシド、ジイソプロピルパーオキシカーボネート、t-ブチルパーオキシ(2-エチルヘキサノエート)、t-ブチルパーオキシネオデカノエート、t-ヘキシルパーオキシピバレート、1,1,3,3-テトラメチルブチルパーオキシ-2-エチルヘキサノエート、t-ブチルパーオキシピバレート、t-ブチルパーオキシ-2-エチルヘキサノエート、t-ヘキシルパーオキシイソプロピルモノカルボネート、ジラウロイルパーオキサイド、ジイソプロピルパーオキシジカルボネート、ジ(4-t-ブチルシクロヘキシル)パーオキシジカルボネート、2,2-ジ(4,4-ジ-(t-ブチルパーオキシ)シクロヘキシル)プロパンが挙げられる。これらの熱重合開始剤は単独で用いてもよく、二種類以上を併用してもよい。 Examples of the thermal polymerization initiator include benzoyl peroxide, diisopropyl peroxycarbonate, t-butyl peroxy (2-ethylhexanoate), t-butyl peroxyneodecanoate, t-hexyl peroxypivalate, 1,1,3,3-tetramethylbutylperoxy-2-ethylhexanoate, t-butylperoxypivalate, t-butylperoxy-2-ethylhexanoate, t-hexylperoxyisopropylmonocarbo Nate, dilauroyl peroxide, diisopropyl peroxydicarbonate, di (4-t-butylcyclohexyl) peroxydicarbonate, 2,2-di (4,4-di- (t-butylperoxy) cyclohexyl) propane Can be mentioned. These thermal polymerization initiators may be used alone or in combination of two or more.
 重合開始剤(d)のナノ粒子含有組成物中における含有量は、ナノ粒子含有組成物を適度に硬化させる量であればよい。ナノ粒子含有組成物中の重合開始剤の含有量は、0.01~10質量%であることが好ましく、より好ましくは0.02~5質量%であり、さらに好ましくは0.1~2質量%である。重合開始剤の含有量が多すぎると、ナノ粒子含有組成物の保存安定性が低下したり、着色したりする場合がある。また、重合開始剤の含有量が多すぎると、硬化物を得る際の架橋が急激に進行して、割れ等の問題が発生する場合がある。また、重合開始剤の添加量が少なすぎると、ナノ粒子含有組成物が硬化しにくくなる。 The content of the polymerization initiator (d) in the nanoparticle-containing composition may be an amount that can appropriately cure the nanoparticle-containing composition. The content of the polymerization initiator in the nanoparticle-containing composition is preferably 0.01 to 10% by mass, more preferably 0.02 to 5% by mass, and still more preferably 0.1 to 2% by mass. %. When there is too much content of a polymerization initiator, the storage stability of a nanoparticle containing composition may fall or it may color. Moreover, when there is too much content of a polymerization initiator, the bridge | crosslinking at the time of obtaining hardened | cured material will advance rapidly, and problems, such as a crack, may generate | occur | produce. Moreover, when there are too few addition amounts of a polymerization initiator, it will become difficult to harden a nanoparticle containing composition.
<半導体ナノ粒子(e)>
 半導体ナノ粒子(e)は、発光体である。半導体ナノ粒子(e)としては、平均粒径が1nm~1000nmであるものを用いることが好ましい。半導体ナノ粒子(e)の粒径は、20nm未満であることがより好ましく、15nm未満であることがさらに好ましい。半導体ナノ粒子(e)の粒径は、最も好ましくは2~5nmである。半導体ナノ粒子(e)は、粒径が2~20nm未満のものである場合、半導体ナノ粒子(e)の電子を量子的に閉じ込める量子ドット効果を有する蛍光体となる。
<Semiconductor nanoparticles (e)>
The semiconductor nanoparticle (e) is a light emitter. As the semiconductor nanoparticles (e), those having an average particle diameter of 1 nm to 1000 nm are preferably used. The particle size of the semiconductor nanoparticles (e) is more preferably less than 20 nm, and further preferably less than 15 nm. The particle size of the semiconductor nanoparticles (e) is most preferably 2 to 5 nm. When the semiconductor nanoparticle (e) has a particle size of less than 2 to 20 nm, the semiconductor nanoparticle (e) becomes a phosphor having a quantum dot effect that quantum confines electrons of the semiconductor nanoparticle (e).
 半導体ナノ粒子(e)は、ナノ粒子コアと、ナノ粒子コアの表面に配位した保護基を有するキャッピング層とを含むものであることが好ましい。
 保護基は、炭化水素基からなるものである。
The semiconductor nanoparticles (e) preferably include a nanoparticle core and a capping layer having a protective group coordinated on the surface of the nanoparticle core.
The protecting group consists of a hydrocarbon group.
 半導体ナノ粒子(e)のナノ粒子コアは、イオンを含むものである。ナノ粒子コアに含まれるイオンとしては、特に限定されるものではなく、例えば、周期表の第2族~第16族からなる群から選択される少なくとも一種の元素のイオンが挙げられる。ナノ粒子コアは、周期表の第3族~第16族からなる群から選択される少なくとも一種の元素のイオンを含むことが好ましい。 The nanoparticle core of the semiconductor nanoparticle (e) contains ions. The ions contained in the nanoparticle core are not particularly limited, and examples include ions of at least one element selected from the group consisting of Groups 2 to 16 of the periodic table. The nanoparticle core preferably contains ions of at least one element selected from the group consisting of Groups 3 to 16 of the periodic table.
 また、ナノ粒子コアが二種以上の元素のイオンを含むものである場合、以下に示す第1イオンおよび第2イオンを含むことが好ましい。第1イオンは、周期表の第11族~第14族からなる群から選択される少なくとも一種の元素のイオンである。また、第2イオンは、周期表の第14族~第16族からなる群から選択される少なくとも一種の元素のイオンである。 In addition, when the nanoparticle core contains ions of two or more kinds of elements, it is preferable to contain the following first ions and second ions. The first ion is an ion of at least one element selected from the group consisting of Groups 11 to 14 of the periodic table. The second ion is an ion of at least one element selected from the group consisting of Groups 14 to 16 of the periodic table.
 ナノ粒子コアは、半導体材料を含むものである。ナノ粒子コアに用いられる半導体材料としては、ZnS、ZnSe、ZnTe、InP、InAs、InSb、AlS、AlAs、AlSb、GaN、GaP、GaAs、GaSb、PbS、PbSe、Si、Ge、MgSe、MgTe、CdS、CdSe、CdTe、CdO、AlP、MgS、ZnOからなる群から選択される少なくとも一種が挙げられる。これらの中でも、ナノ粒子コアに用いられる半導体材料として、ZnS,ZnSe,ZnTe,InP,InAs,InSb,AlS,AlAs,AlSb,GaN,GaP,GaAs,GaSb,PdS,PbSe,Si,Ge,MgSe,MgTeからなる群から選択される少なくとも一種を含むことが好ましい。 The nanoparticle core includes a semiconductor material. Semiconductor materials used for the nanoparticle core include ZnS, ZnSe, ZnTe, InP, InAs, InSb, AlS, AlAs, AlSb, GaN, GaP, GaAs, GaSb, PbS, PbSe, Si, Ge, MgSe, MgTe, and CdS. , CdSe, CdTe, CdO, AlP, MgS, and ZnO. Among these, as semiconductor materials used for the nanoparticle core, ZnS, ZnSe, ZnTe, InP, InAs, InSb, AlS, AlAs, AlSb, GaN, GaP, GaAs, GaSb, PdS, PbSe, Si, Ge, MgSe, It is preferable to include at least one selected from the group consisting of MgTe.
 半導体ナノ粒子(e)は、ナノ粒子コアの表面が、無機材料からなるシェルにより被覆されているコア-シェル型であることが好ましい。シェルは、一層からなるものであってもよいし、二層以上からなる(コア-マルチシェル型)ものであってもよい。
 コア-シェル型の半導体ナノ粒子(e)では、シェルによりナノ粒子コアと保護基との結合が促進されるので、優れた量子ドット効果が得られる。
 また、半導体ナノ粒子(e)は、ドープされたナノ粒子または傾斜したナノ粒子であってもよい。
The semiconductor nanoparticle (e) is preferably a core-shell type in which the surface of the nanoparticle core is covered with a shell made of an inorganic material. The shell may be composed of one layer, or may be composed of two or more layers (core-multishell type).
In the core-shell type semiconductor nanoparticle (e), the binding between the nanoparticle core and the protective group is promoted by the shell, so that an excellent quantum dot effect can be obtained.
The semiconductor nanoparticles (e) may also be doped nanoparticles or tilted nanoparticles.
 ナノ粒子含有組成物中の半導体ナノ粒子(e)の含有量は、0.1~20質量%であることが好ましい。ナノ粒子含有組成物中の半導体ナノ粒子(e)の含有量が0.1質量%以上であると、半導体ナノ粒子(e)を含有することによる光波長変換作用が十分に得られる。よって、ナノ粒子含有組成物の硬化物を、光学レンズ、光学素子、光導波路およびLED封止材などの光学部品・電子部品に好適に使用できる。また、半導体ナノ粒子(e)の配合量が20質量%以下であると、硬化物の強度を十分に確保できる。 The content of the semiconductor nanoparticles (e) in the nanoparticle-containing composition is preferably 0.1 to 20% by mass. When the content of the semiconductor nanoparticles (e) in the nanoparticle-containing composition is 0.1% by mass or more, the light wavelength conversion action due to the inclusion of the semiconductor nanoparticles (e) is sufficiently obtained. Therefore, the hardened | cured material of a nanoparticle containing composition can be used conveniently for optical components / electronic components, such as an optical lens, an optical element, an optical waveguide, and LED sealing material. Moreover, the intensity | strength of hardened | cured material can fully be ensured that the compounding quantity of a semiconductor nanoparticle (e) is 20 mass% or less.
 また、半導体ナノ粒子(e)は、平均粒径やナノ粒子コアの材料を変更することにより、半導体ナノ粒子(e)の発光波長を調整できるものである。したがって、例えば、半導体ナノ粒子(e)を含むナノ粒子含有組成物をLED表面に塗布し、硬化させることで、半導体ナノ粒子(e)の光波長変換の作用によって、白色光を発するLEDを製造できる。 In addition, the semiconductor nanoparticles (e) can adjust the emission wavelength of the semiconductor nanoparticles (e) by changing the average particle size or the material of the nanoparticle core. Therefore, for example, by applying a nanoparticle-containing composition containing semiconductor nanoparticles (e) to the LED surface and curing the LED, white LEDs are produced by the action of light wavelength conversion of the semiconductor nanoparticles (e). it can.
 〈その他の成分〉
 本発明のナノ粒子含有組成物は、上記必須成分の他に、必要に応じて、組成物の粘度、ならびに硬化物の透明性および耐熱性等の特性を損なわない範囲で、重合禁止剤、レベリング剤、酸化防止剤、紫外線吸収剤、赤外線吸収剤、光安定剤、顔料、他の無機フィラー等の充填剤、反応性希釈剤、その他改質剤等を含有してもよい。
<Other ingredients>
In addition to the above essential components, the nanoparticle-containing composition of the present invention may contain a polymerization inhibitor and a leveling as long as the viscosity of the composition and the properties of the cured product, such as transparency and heat resistance, are not impaired. Agents, antioxidants, ultraviolet absorbers, infrared absorbers, light stabilizers, pigments, fillers such as other inorganic fillers, reactive diluents, other modifiers, and the like may also be included.
 なお、本発明のナノ粒子含有組成物は、実質的に有機溶媒および水を含有しないことが好ましい。ここでいう実質的とは、本発明のナノ粒子含有組成物を用いて実際に硬化物を得る際に、脱溶媒する工程を再度経る必要がないことを意味し、具体的には、ナノ粒子含有組成物中の有機溶媒および水のそれぞれの残存量が、好ましくは2質量%以下、より好ましくは1質量%以下であることを意味する。 In addition, it is preferable that the nanoparticle containing composition of this invention does not contain an organic solvent and water substantially. The term “substantially” as used herein means that it is not necessary to go through the step of removing the solvent again when actually obtaining a cured product using the nanoparticle-containing composition of the present invention. It means that the respective residual amounts of the organic solvent and water in the containing composition are preferably 2% by mass or less, more preferably 1% by mass or less.
 重合禁止剤としては、例えば、ハイドロキノン、ハイドロキノンモノメチルエーテル、ベンゾキノン、p-t-ブチルカテコール、2,6-ジ-t-ブチル-4-メチルフェノール等が挙げられる。これらは1種又は2種以上を組み合わせて用いることができる。 Examples of the polymerization inhibitor include hydroquinone, hydroquinone monomethyl ether, benzoquinone, pt-butylcatechol, 2,6-di-t-butyl-4-methylphenol, and the like. These can be used alone or in combination of two or more.
 レベリング剤としては、例えば、ポリエーテル変性ジメチルポリシロキサン共重合物、ポリエステル変性ジメチルポリシロキサン共重合物、ポリエーテル変性メチルアルキルポリシロキサン共重合物、アラルキル変性メチルアルキルポリシロキサン共重合物、ポリエーテル変性メチルアルキルポリシロキサン共重合物等が挙げられる。これらは1種又は2種以上を組み合わせて用いることができる。 Examples of leveling agents include polyether-modified dimethylpolysiloxane copolymer, polyester-modified dimethylpolysiloxane copolymer, polyether-modified methylalkylpolysiloxane copolymer, aralkyl-modified methylalkylpolysiloxane copolymer, and polyether-modified. Examples thereof include methylalkylpolysiloxane copolymer. These can be used alone or in combination of two or more.
 充填剤または顔料としては、炭酸カルシウム、タルク、マイカ、クレー、アエロジル(登録商標)等、硫酸バリウム、水酸化アルミニウム、ステアリン酸亜鉛、亜鉛華、ベンガラ、アゾ顔料等が挙げられる。これらは1種又は2種以上を組み合わせて用いることができる。 Examples of the filler or pigment include calcium carbonate, talc, mica, clay, Aerosil (registered trademark), barium sulfate, aluminum hydroxide, zinc stearate, zinc white, bengara, azo pigment, and the like. These can be used alone or in combination of two or more.
〈ナノ粒子含有組成物の製造方法〉
 本発明のナノ粒子含有組成物は、例えば、以下に示す工程1~工程5を行うことにより、製造できる。
(工程1)シリカ微粒子を、シラン化合物(f)及び(g)で表面処理して、シリカ微粒子(a)を得る。
(工程2)工程1で得られたシリカ微粒子(a)と、(メタ)アクリレート(h)(b)(c)から選ばれる2種以上を含む(メタ)アクリレート化合物(B)とを混合して、混合液を得る。
(工程3)工程2で得られた混合液から揮発分を留去(以下「脱溶媒」ともいう。)して、ベース組成物を得る。
(工程4)工程3で得られたベース組成物に、半導体ナノ粒子(e)を添加・混合し、必要に応じて脱溶媒して、半導体ナノ粒子(e)を含むベース組成物を得る。
(工程5)工程4で得られた半導体ナノ粒子(e)を含むベース組成物に重合開始剤(d)を添加・混合してナノ粒子含有組成物を得る。
 以下、各工程について説明する。
<Method for producing nanoparticle-containing composition>
The nanoparticle-containing composition of the present invention can be produced, for example, by performing the following steps 1 to 5.
(Step 1) The silica fine particles are surface-treated with the silane compounds (f) and (g) to obtain silica fine particles (a).
(Step 2) The silica fine particles (a) obtained in Step 1 are mixed with a (meth) acrylate compound (B) containing two or more selected from (meth) acrylates (h), (b) and (c). To obtain a mixed solution.
(Step 3) A volatile matter is distilled off from the mixed solution obtained in Step 2 (hereinafter also referred to as “desolvent”) to obtain a base composition.
(Step 4) The semiconductor composition (e) is added to and mixed with the base composition obtained in Step 3, and the solvent is removed as necessary to obtain a base composition containing the semiconductor nanoparticles (e).
(Step 5) A polymerization initiator (d) is added to and mixed with the base composition containing the semiconductor nanoparticles (e) obtained in Step 4 to obtain a nanoparticle-containing composition.
Hereinafter, each step will be described.
 《工程1》
 工程1では、シリカ微粒子を、シラン化合物(f)及び(g)で表面処理する。表面処理は、例えば、以下に示す方法で行う。まず、有機溶媒に分散したシリカ微粒子と、シラン化合物(f)とシラン化合物(g)とを、反応器に入れて混合・攪拌し、混合液とする。その後、混合液に水および触媒(または触媒の水溶液)を添加し、シラン化合物(f)およびシラン化合物(g)を加水分解する。これらの工程を行うことにより、シリカ微粒子(a)の分散した分散液が得られる。
<< Process 1 >>
In step 1, silica fine particles are surface treated with silane compounds (f) and (g). The surface treatment is performed, for example, by the method shown below. First, silica fine particles dispersed in an organic solvent, the silane compound (f) and the silane compound (g) are put into a reactor and mixed and stirred to obtain a mixed solution. Thereafter, water and a catalyst (or an aqueous solution of the catalyst) are added to the mixed solution to hydrolyze the silane compound (f) and the silane compound (g). By performing these steps, a dispersion liquid in which silica fine particles (a) are dispersed is obtained.
 上記の表面処理方法では、加水分解により、シラン化合物(f)およびシラン化合物(g)からシラノール(Si-OH)が生成する。生成したシラノール同士(シラン化合物(f)から生成したシラノール同士でもよいし、シラン化合物(g)から生成したシラノール同士でもよいし、シラン化合物(f)から生成したシラノールとシラン化合物(g)から生成したシラノールでもよい)は、部分的に縮合して、シロキサン結合(Si-O-Si)を有する重合体を形成する。この重合体は、混合液中のシリカ微粒子の水酸基と水素結合する。その結果、シリカ微粒子は、重合体に被覆されている表面処理されたシリカ微粒子(a)となる。 In the above surface treatment method, silanol (Si—OH) is generated from the silane compound (f) and the silane compound (g) by hydrolysis. Generated silanols (silanols generated from silane compound (f) may be used, silanols generated from silane compound (g) may be used, or generated from silanol and silane compound (g) generated from silane compound (f) May be partially condensed to form a polymer having a siloxane bond (Si—O—Si). This polymer forms hydrogen bonds with the hydroxyl groups of the silica fine particles in the mixed solution. As a result, the silica fine particles become the surface-treated silica fine particles (a) coated with the polymer.
 なお、上記の表面処理方法においては、シラン化合物(f)および/またはシラン化合物(g)のうちの一部が、加水分解されていなくてもよい。また、加水分解されずに残留するシラン化合物(f)および/またはシラン化合物(g)の一部または全部が、シリカ微粒子に付着している状態になっていてもよい。
 また、加水分解により、シラン化合物(f)およびシラン化合物(g)から生成したシラノールは、一部のみ重合していてもよいし、全てが重合してもよい。重合していないシラノールの一部または全部は、シリカ微粒子に付着していてもよい。また、シラノールが部分的に縮合してなる重合体のうち一部は、シリカ微粒子と水素結合していなくてもよい。
In the above surface treatment method, a part of the silane compound (f) and / or the silane compound (g) may not be hydrolyzed. Further, a part or all of the silane compound (f) and / or the silane compound (g) remaining without being hydrolyzed may be in a state of being attached to the silica fine particles.
Moreover, the silanol produced | generated from the silane compound (f) and the silane compound (g) by hydrolysis may be partially polymerized, or all may be polymerized. Part or all of the non-polymerized silanol may adhere to the silica fine particles. Further, a part of the polymer obtained by partially condensing silanol may not be hydrogen-bonded to the silica fine particles.
 このように表面処理では、シリカ微粒子の表面において、シラン化合物(f)及び(g)の加水分解・縮重合が進行する。
 加水分解の過程におけるシラン化合物(f)及び(g)の消失は、ガスクロマトグラフィーにより確認できる。その測定条件は、実施例に記載したとおりである。
Thus, in the surface treatment, hydrolysis / condensation polymerization of the silane compounds (f) and (g) proceeds on the surface of the silica fine particles.
The disappearance of the silane compounds (f) and (g) during the hydrolysis process can be confirmed by gas chromatography. The measurement conditions are as described in the examples.
 シリカ微粒子としては、ナノ粒子含有組成物におけるその分散性の点から、有機溶媒にシリカ微粒子が分散してなる分散体を用いることが好ましく、有機溶媒に分散したコロイダルシリカを用いることが特に好ましい。前記有機溶媒としては、ナノ粒子含有組成物中に含有される(メタ)アクリレート化合物(B)が溶解するものを用いることが好ましい。
 上記のシリカ微粒子の分散体中のシリカ微粒子の含有量は、1~50質量%であることが好ましい。分散体中のシリカ微粒子の含有量は、ナノ粒子含有組成物におけるその分散性の点から、10~50質量%であることがより好ましく、更に好ましくは20~40質量%である。
As the silica fine particles, from the viewpoint of dispersibility in the nanoparticle-containing composition, it is preferable to use a dispersion in which silica fine particles are dispersed in an organic solvent, and it is particularly preferable to use colloidal silica dispersed in an organic solvent. As the organic solvent, it is preferable to use a solvent in which the (meth) acrylate compound (B) contained in the nanoparticle-containing composition is dissolved.
The content of silica fine particles in the silica fine particle dispersion is preferably 1 to 50% by mass. The content of the silica fine particles in the dispersion is more preferably 10 to 50% by mass, and still more preferably 20 to 40% by mass from the viewpoint of dispersibility in the nanoparticle-containing composition.
 シラン化合物(f)および(g)の加水分解に必要な水の量は、表面処理前のシリカ微粒子100質量部に対して、1~100質量部であることが好ましく、1~50質量部であることがより好ましく、更に好ましくは1~30質量部である。水の量が過度に少ないと、加水分解速度が極端に遅くなり経済性に欠ける恐れや、表面処理が充分に進行しなくなる恐れがある。水の量が過度に多いと、シリカ微粒子(a)がゲルを形成する恐れがある。 The amount of water required for the hydrolysis of the silane compounds (f) and (g) is preferably 1 to 100 parts by mass with respect to 100 parts by mass of the silica fine particles before the surface treatment, and 1 to 50 parts by mass. More preferably, it is 1 to 30 parts by mass. If the amount of water is too small, the hydrolysis rate may become extremely slow, resulting in lack of economic efficiency, and the surface treatment may not proceed sufficiently. If the amount of water is excessively large, the silica fine particles (a) may form a gel.
 加水分解を行う際には、加水分解反応用の触媒を使用することが好ましい。
 加水分解反応用の触媒としては、例えば、塩酸(塩化水素水溶液)、酢酸、硫酸およびリン酸等の無機酸;蟻酸、プロピオン酸、シュウ酸、パラトルエンスルホン酸、安息香酸、フタル酸およびマレイン酸等の有機酸;水酸化カリウム、水酸化ナトリウム、水酸化カルシウムおよびアンモニア等のアルカリ触媒;有機金属;金属アルコキシド;ジブチルスズジラウレート、ジブチルスズジオクチレートおよびジブチルスズジアセテート等の有機スズ化合物;アルミニウムトリス(アセチルアセトネート)、チタニウムテトラキス(アセチルアセトネート)、チタニウムビス(ブトキシ)ビス(アセチルアセトネート)、チタニウムビス(イソプロポキシ)ビス(アセチルアセトネート)、ジルコニウムビス(ブトキシ)ビス(アセチルアセトネート)およびジルコニウムビス(イソプロポキシ)ビス(アセチルアセトネート)等の金属キレート化合物;ホウ素ブトキシドおよびホウ酸等のホウ素化合物が挙げられる。これらの中でも、水への溶解性や、充分な加水分解速度が得られることから、触媒として、塩酸、酢酸、マレイン酸およびホウ素化合物を用いることが好ましい。加水分解反応用の触媒は単独で用いてもよく、二種類以上を併用してもよい。
When performing the hydrolysis, it is preferable to use a catalyst for the hydrolysis reaction.
Examples of the catalyst for the hydrolysis reaction include inorganic acids such as hydrochloric acid (aqueous hydrogen chloride), acetic acid, sulfuric acid and phosphoric acid; formic acid, propionic acid, oxalic acid, paratoluenesulfonic acid, benzoic acid, phthalic acid and maleic acid Organic acids such as potassium hydroxide, sodium hydroxide, calcium hydroxide and ammonia; organic metals; metal alkoxides; organotin compounds such as dibutyltin dilaurate, dibutyltin dioctylate and dibutyltin diacetate; aluminum tris (acetyl) Acetonate), titanium tetrakis (acetylacetonate), titanium bis (butoxy) bis (acetylacetonate), titanium bis (isopropoxy) bis (acetylacetonate), zirconium bis (butoxy) bis (acetylacetonate) Over G) and metal chelate compounds such as zirconium bis (isopropoxy) bis (acetylacetonate); boron compounds such as boron butoxide and boric acid. Among these, it is preferable to use hydrochloric acid, acetic acid, maleic acid, and a boron compound as a catalyst because solubility in water and a sufficient hydrolysis rate can be obtained. The catalyst for the hydrolysis reaction may be used alone or in combination of two or more.
 加水分解反応用の触媒としては、非水溶性触媒や、水溶性触媒を使用でき、水溶性触媒を使用することが好ましい。加水分解反応用の触媒として水溶性触媒を使用する場合は、水溶性触媒を適当量の水に溶解して水溶液としてから、加水分解の反応系に添加すると、触媒を均一に分散させることができるので好ましい。 As the catalyst for the hydrolysis reaction, a water-insoluble catalyst or a water-soluble catalyst can be used, and a water-soluble catalyst is preferably used. When a water-soluble catalyst is used as a catalyst for the hydrolysis reaction, the catalyst can be dispersed uniformly by dissolving the water-soluble catalyst in an appropriate amount of water to form an aqueous solution and then adding it to the hydrolysis reaction system. Therefore, it is preferable.
 加水分解に使用される触媒の添加量は、特に限定されないが、表面処理前のシリカ微粒子100質量部に対して、0.01~1質量部であることが好ましく、0.01~0.5質量部であることがより好ましい。なお、上記触媒を水に溶解した水溶液として加水分解反応に使用する場合には、上記触媒の添加量は、水溶液中に含まれる触媒(例えば、酸や塩基)のみの量を表す。 The addition amount of the catalyst used for the hydrolysis is not particularly limited, but is preferably 0.01 to 1 part by mass, preferably 0.01 to 0.5 part with respect to 100 parts by mass of the silica fine particles before the surface treatment. More preferably, it is part by mass. In addition, when using the said catalyst for the hydrolysis reaction as the aqueous solution which melt | dissolved in water, the addition amount of the said catalyst represents the quantity of only the catalyst (for example, acid and base) contained in aqueous solution.
 加水分解反応の反応温度は特に限定されないが、10~80℃の範囲であることが好ましく、20~50℃の範囲であることがより好ましい。反応温度が過度に低いと、加水分解速度が極端に遅くなり経済性に欠ける恐れや、表面処理が充分に進行しなくなる恐れがある。反応温度が過度に高いと、ゲル化反応が起こりやすくなる傾向がある。
 加水分解反応を行うための反応時間は特に限定されないが、10分間~48時間であることが好ましく、30分間~24時間の範囲であることがより好ましい。
The reaction temperature of the hydrolysis reaction is not particularly limited, but is preferably in the range of 10 to 80 ° C, more preferably in the range of 20 to 50 ° C. If the reaction temperature is excessively low, the hydrolysis rate may become extremely slow, resulting in lack of economic efficiency, and the surface treatment may not proceed sufficiently. When the reaction temperature is excessively high, the gelation reaction tends to occur.
The reaction time for performing the hydrolysis reaction is not particularly limited, but is preferably 10 minutes to 48 hours, and more preferably 30 minutes to 24 hours.
 工程1におけるシリカ微粒子のシラン化合物(f)およびシラン化合物(g)による表面処理は、上述したように、同時に一段で行うことが、反応プロセスの単純化や効率化の点で好ましい。なお、シリカ微粒子をシラン化合物(f)とシラン化合物(g)のいずれか一方で表面処理してから、他方のシラン化合物で表面処理してもよい。 As described above, the surface treatment of the silica fine particles in Step 1 with the silane compound (f) and the silane compound (g) is preferably performed simultaneously in one step from the viewpoint of simplification and efficiency of the reaction process. The silica fine particles may be surface treated with one of the silane compound (f) and the silane compound (g) and then the other silane compound.
 《工程2》
 工程2では、工程1で得られたシリカ微粒子(a)の分散した分散液と、(メタ)アクリレート(h)(b)(c)から選ばれる2種以上を含む(メタ)アクリレート化合物(B)と、必要に応じてその他の成分とを混合する。混合方法としては、特に制限は無いが、例えば、室温または加熱条件下でミキサー、ボールミルまたは3本ロールなどの混合機により前記各成分を混合する方法、工程1を行った反応器中で連続的に攪拌しながら、(メタ)アクリレート(h)(b)(c)から選ばれる2種以上を含む(メタ)アクリレート化合物(B)と、必要に応じてその他の成分とを添加・混合する方法が挙げられる。
<< Process 2 >>
In step 2, the dispersion of silica fine particles (a) obtained in step 1 and a (meth) acrylate compound (B) containing two or more selected from (meth) acrylates (h), (b) and (c) ) And other ingredients as necessary. The mixing method is not particularly limited, but for example, a method of mixing the above components with a mixer such as a mixer, a ball mill, or a three-roller at room temperature or under heating conditions, and continuously in the reactor in which Step 1 is performed. (Meth) acrylate compound (B) containing 2 or more types selected from (meth) acrylates (h), (b), and (c), and other components, if necessary, with stirring Is mentioned.
 《工程3》
 工程3では、シリカ微粒子(a)と、(メタ)アクリレート(h)(b)(c)から選ばれる2種以上を含む(メタ)アクリレート化合物(B)とを含む混合液から、有機溶媒および水等の揮発分を留去(脱溶媒)して、ベース組成物を得る。脱溶媒を行うには、減圧状態で当該混合液を加熱することが好ましい。
 脱溶媒の際の混合液の温度は、20~100℃に保つことが好ましい。混合液の温度は、凝集ゲル化防止と脱溶媒スピードとのバランスの点から、30~70℃であることがより好ましく、更に好ましくは30~50℃である。混合液の温度を上げすぎると、ナノ粒子含有組成物の流動性が極端に低下したり、ゲル状になってしまったりすることがある。
<< Process 3 >>
In step 3, from a mixed liquid containing silica fine particles (a) and a (meth) acrylate compound (B) containing two or more selected from (meth) acrylate (h) (b) (c), an organic solvent and Volatile components such as water are distilled off (desolvation) to obtain a base composition. In order to remove the solvent, it is preferable to heat the mixture in a reduced pressure state.
The temperature of the mixed solution at the time of solvent removal is preferably maintained at 20 to 100 ° C. The temperature of the mixed solution is more preferably 30 to 70 ° C., and still more preferably 30 to 50 ° C., from the viewpoint of the balance between aggregation gelation prevention and desolvation speed. If the temperature of the mixed solution is raised too much, the fluidity of the nanoparticle-containing composition may be extremely lowered or become a gel.
 脱溶媒において減圧する際の真空度は、通常10~4,000kPaである。真空度は、脱溶媒スピードと凝集ゲル化防止とのバランスを図る上で、更に好ましくは10~1,000kPa、最も好ましくは10~500kPaである。真空度の値が大きすぎると、脱溶媒スピードが極端に遅くなり経済性に欠けることがある。 The degree of vacuum at the time of depressurization in the solvent removal is usually 10 to 4,000 kPa. The degree of vacuum is more preferably from 10 to 1,000 kPa, and most preferably from 10 to 500 kPa, in order to balance the solvent removal speed and prevention of aggregation and gelation. If the value of the degree of vacuum is too large, the solvent removal speed becomes extremely slow and the economy may be lacking.
 脱溶媒後に得られるベース組成物は、実質的に有機溶媒および水を含有しないことが好ましい。ここでいう実質的とは、本発明のナノ粒子含有組成物を用いて実際に硬化物を得る際に、脱溶媒する工程を再度経る必要がないことを意味し、具体的には、ベース組成物中の有機溶媒および水のそれぞれの残存量が、好ましくは2質量%以下、より好ましくは1質量%以下であることを意味する。 It is preferable that the base composition obtained after desolvation contains substantially no organic solvent and water. The term “substantially” as used herein means that when the cured product is actually obtained using the nanoparticle-containing composition of the present invention, it is not necessary to go through the step of removing the solvent again. Specifically, the base composition It means that the remaining amount of each of the organic solvent and water in the product is preferably 2% by mass or less, more preferably 1% by mass or less.
 工程3においては、脱溶媒する前に、ナノ粒子含有組成物100質量%に対して0.2質量%以下の添加量となるように、重合禁止剤を添加してもよい。重合禁止剤は、脱溶媒過程中や脱溶媒後のベース組成物およびナノ粒子含有組成物の保存中にその含有成分が重合反応を起こすことを防止するために用いる。 In step 3, before removing the solvent, a polymerization inhibitor may be added so that the addition amount is 0.2% by mass or less with respect to 100% by mass of the nanoparticle-containing composition. The polymerization inhibitor is used to prevent the contained component from undergoing a polymerization reaction during the solvent removal process or during storage of the base composition and the nanoparticle-containing composition after the solvent removal.
 工程3は、工程2で得られたシリカ微粒子(a)と、(メタ)アクリレート(h)(b)(c)から選ばれる2種以上を含む(メタ)アクリレート化合物(B)とを含む混合液を専用の装置に移して行ってもよい。また、工程2を工程1で実施した反応器を用いて行った場合には、工程2に引き続いて工程3を当該反応器中で行ってもよい。 Step 3 is a mixture containing the silica fine particles (a) obtained in Step 2 and a (meth) acrylate compound (B) containing two or more selected from (meth) acrylates (h), (b) and (c). The liquid may be transferred to a dedicated device. In addition, when Step 2 is performed using the reactor performed in Step 1, Step 3 may be performed in the reactor subsequent to Step 2.
 《工程4》
 工程4においてベース組成物に添加する半導体ナノ粒子(e)としては、ナノ粒子含有組成物中への分散性の点から、有機溶媒に半導体ナノ粒子(e)が分散してなる分散体を用いることが好ましい。半導体ナノ粒子(e)を分散させる有機溶媒としては、例えば、ベンゼン、キシレン、トルエンなどが挙げられる。
<< Process 4 >>
As the semiconductor nanoparticles (e) to be added to the base composition in Step 4, a dispersion obtained by dispersing the semiconductor nanoparticles (e) in an organic solvent is used from the viewpoint of dispersibility in the nanoparticle-containing composition. It is preferable. Examples of the organic solvent in which the semiconductor nanoparticles (e) are dispersed include benzene, xylene, toluene and the like.
 工程4においては、工程3で得られたベース組成物に、半導体ナノ粒子(e)を添加・混合し、必要に応じて脱溶媒して、半導体ナノ粒子(e)を含むベース組成物を得る。
 ベース組成物と半導体ナノ粒子(e)との混合方法としては、特に制限は無いが、例えば、室温でミキサー、ボールミルまたは3本ロールなどの混合機により前記各成分を混合する方法や、工程1~3を行った反応器中で連続的に攪拌しながら半導体ナノ粒子(e)を添加・混合する方法が挙げられる。
In step 4, semiconductor nanoparticles (e) are added to and mixed with the base composition obtained in step 3, and the solvent is removed as necessary to obtain a base composition containing semiconductor nanoparticles (e). .
The mixing method of the base composition and the semiconductor nanoparticles (e) is not particularly limited. For example, the above-described components are mixed at room temperature using a mixer such as a mixer, a ball mill, or a three-roller. Examples of the method include adding and mixing the semiconductor nanoparticles (e) while continuously stirring in the reactor in which steps 3 to 3 were performed.
 ベース組成物と半導体ナノ粒子(e)とを混合した後、半導体ナノ粒子(e)として、有機溶媒に半導体ナノ粒子(e)が分散してなる分散体を用いた場合には、脱溶媒を行う。
 脱溶媒の際のベース組成物と半導体ナノ粒子(e)との混合液の温度は、20~100℃に保つことが好ましい。ナノ粒子含有組成物の凝集ゲル化防止と脱溶媒スピードとのバランスの点から、脱溶媒の際のベース組成物と半導体ナノ粒子(e)との混合液の温度は、より好ましくは30~70℃、更に好ましくは30~50℃である。ベース組成物と半導体ナノ粒子(e)との混合液の温度を上げすぎると、ナノ粒子含有組成物の流動性が極端に低下したり、ゲル状になってしまったりすることがある。
After mixing the base composition and the semiconductor nanoparticles (e), when the dispersion formed by dispersing the semiconductor nanoparticles (e) in the organic solvent is used as the semiconductor nanoparticles (e), the solvent removal is performed. Do.
The temperature of the mixed solution of the base composition and the semiconductor nanoparticles (e) during the solvent removal is preferably maintained at 20 to 100 ° C. From the viewpoint of balance between prevention of aggregation and gelation of the nanoparticle-containing composition and desolvation speed, the temperature of the mixed solution of the base composition and the semiconductor nanoparticles (e) during desolvation is more preferably 30 to 70. ° C, more preferably 30 to 50 ° C. If the temperature of the mixed solution of the base composition and the semiconductor nanoparticles (e) is raised too much, the fluidity of the nanoparticle-containing composition may be extremely lowered or become a gel.
 脱溶媒のために容器内を減圧する場合には、10~4,000kPaの圧力とすることが好ましい。脱溶媒スピードと凝集ゲル化防止とのバランスを図る上で、脱溶媒の際の容器内の圧力は、更に好ましくは10~1,000kPa、最も好ましくは10~500kPaである。脱溶媒の際の容器内の真空度の値が高すぎると、脱溶媒スピードが極端に遅くなり経済性に欠けることがある。 When depressurizing the inside of the container for solvent removal, the pressure is preferably 10 to 4,000 kPa. In order to achieve a balance between the speed of solvent removal and prevention of aggregation and gelation, the pressure in the container at the time of solvent removal is more preferably 10 to 1,000 kPa, and most preferably 10 to 500 kPa. When the value of the degree of vacuum in the container at the time of desolvation is too high, the desolvation speed becomes extremely slow and the economy may be lacking.
 脱溶媒後のベース組成物と半導体ナノ粒子(e)との混合物は、実質的に有機溶媒および水を含有しないことが好ましい。ここでいう実質的とは、本発明のナノ粒子含有組成物を用いて実際に硬化物を得る際に、脱溶媒する工程を再度経る必要がないことを意味し、具体的には、半導体ナノ粒子(e)を含むベース組成物中の有機溶媒および水のそれぞれの残存量が、好ましくは2質量%以下、より好ましくは1質量%以下であることを意味する。 It is preferable that the mixture of the base composition after removal of the solvent and the semiconductor nanoparticles (e) contains substantially no organic solvent and water. The term “substantially” as used herein means that when the cured product is actually obtained using the nanoparticle-containing composition of the present invention, it is not necessary to go through the step of removing the solvent again. It means that the remaining amount of each of the organic solvent and water in the base composition containing the particles (e) is preferably 2% by mass or less, more preferably 1% by mass or less.
 《工程5》
 工程5では、工程4において得られた半導体ナノ粒子(e)を含むベース組成物に、重合開始剤(d)と、必要に応じてその他の成分とを添加・混合してナノ粒子含有組成物とする。混合方法としては、特に制限は無いが、例えば、室温でミキサー、ボールミルまたは3本ロールなどの混合機により前記各成分を混合する方法や、工程1~4を行った反応器中で連続的に攪拌しながら重合開始剤(d)と、必要に応じてその他の成分とを添加・混合する方法が挙げられる。
<< Process 5 >>
In Step 5, a nanoparticle-containing composition obtained by adding and mixing a polymerization initiator (d) and other components as necessary to the base composition containing the semiconductor nanoparticles (e) obtained in Step 4 And The mixing method is not particularly limited. For example, the above components are mixed at room temperature using a mixer such as a mixer, a ball mill, or a three-roller, or continuously in the reactor in which Steps 1 to 4 are performed. A method of adding and mixing the polymerization initiator (d) and other components as necessary with stirring may be mentioned.
 さらに、工程5で得られたナノ粒子含有組成物に対して、必要に応じて濾過を行ってもよい。この濾過は、ナノ粒子含有組成物中のゴミ等の外来の異物を除去するために行う。濾過方法には、特に制限は無いが、加圧濾過孔径10μmのメンブレンタイプ、カートリッジタイプ等のフィルターを使用し、加圧濾過する方法を用いることが好ましい。 Furthermore, the nanoparticle-containing composition obtained in step 5 may be filtered as necessary. This filtration is performed in order to remove foreign substances such as dust in the nanoparticle-containing composition. The filtration method is not particularly limited, but it is preferable to use a method of pressure filtration using a membrane type, cartridge type or the like filter having a pressure filtration pore diameter of 10 μm.
 以上の各工程を経ることにより、本発明のナノ粒子含有組成物を製造できる。
 本発明のナノ粒子含有組成物は、半導体ナノ粒子(e)を含有することによる光波長変換作用を利用でき、溶媒を含有していなくとも低粘度であり、良好なハンドリング性を有する。これは、本発明のナノ粒子含有組成物が、発光体である半導体ナノ粒子(e)を含むものであって、シラン化合物(f)および(g)で表面処理されたシリカ微粒子(a)が、(メタ)アクリレート(h)(b)(c)から選ばれる2種以上を含む(メタ)アクリレート化合物(B)との高い反応性および相溶性を有していることに起因する。
By passing through the above steps, the nanoparticle-containing composition of the present invention can be produced.
The nanoparticle-containing composition of the present invention can utilize the light wavelength conversion action by containing the semiconductor nanoparticles (e), has a low viscosity even when it does not contain a solvent, and has good handling properties. This is because the nanoparticle-containing composition of the present invention contains semiconductor nanoparticles (e) that are light emitters, and silica fine particles (a) surface-treated with silane compounds (f) and (g) It originates in having high reactivity and compatibility with the (meth) acrylate compound (B) containing 2 or more types chosen from (meth) acrylate (h) (b) (c).
 [硬化物]
 本発明の硬化物は、本発明のナノ粒子含有組成物を硬化させることにより得られる。
 したがって、本発明の硬化物は、半導体ナノ粒子(e)を含有することによる光波長変換作用を利用でき、光学レンズ、光ディスク基板、液晶表示素子用プラスチック基板、カラーフィルター用基板、有機EL表示素子用プラスチック基板、太陽電池基板、タッチパネル、光学素子、光導波路、LED封止材等の光学材料・電子材料として好適に用いることができる。
[Cured product]
The cured product of the present invention can be obtained by curing the nanoparticle-containing composition of the present invention.
Therefore, the cured product of the present invention can utilize the light wavelength conversion action by containing the semiconductor nanoparticles (e), and can be used for optical lenses, optical disk substrates, plastic substrates for liquid crystal display elements, color filter substrates, organic EL display elements. It can be suitably used as an optical material / electronic material such as a plastic substrate, a solar cell substrate, a touch panel, an optical element, an optical waveguide, and an LED sealing material.
〔硬化物の製造方法〕
 本発明の硬化物の製造方法は、本発明のナノ粒子含有組成物を硬化させる工程を有する。
 硬化の方法としては、例えば、活性エネルギー線の照射により(メタ)アクリロイルオキシ基を架橋させる方法、熱処理を行うことにより(メタ)アクリロイルオキシ基を熱重合させる方法があり、これらを併用することもできる。
[Method for producing cured product]
The manufacturing method of the hardened | cured material of this invention has the process of hardening the nanoparticle containing composition of this invention.
As a curing method, for example, there are a method of crosslinking a (meth) acryloyloxy group by irradiation of active energy rays, a method of thermally polymerizing a (meth) acryloyloxy group by performing a heat treatment, and these may be used in combination. it can.
 ナノ粒子含有組成物に紫外線等の活性エネルギー線を照射して硬化させる場合は、上記の工程5において、半導体ナノ粒子(e)を含むベース組成物中に重合開始剤(d)として光重合開始剤を含有させる。ナノ粒子含有組成物を熱処理により硬化させる場合は、上記の工程5において、半導体ナノ粒子(e)を含むベース組成物中に重合開始剤(d)として熱重合開始剤を含有させる。 In the case where the nanoparticle-containing composition is cured by irradiation with active energy rays such as ultraviolet rays, in the step 5, photopolymerization is started as a polymerization initiator (d) in the base composition containing the semiconductor nanoparticles (e). An agent is included. When the nanoparticle-containing composition is cured by heat treatment, a thermal polymerization initiator is contained as a polymerization initiator (d) in the base composition containing the semiconductor nanoparticles (e) in the above step 5.
 本発明の硬化物を形成するには、例えば、本発明のナノ粒子含有組成物をガラス板、プラスチック板、金属板またはシリコンウエハ等の基板上に塗布して塗膜を形成する。その後、当該塗膜に活性エネルギー線を照射する、および/または当該塗膜を加熱して硬化させることによって得られる。 In order to form the cured product of the present invention, for example, the nanoparticle-containing composition of the present invention is applied onto a substrate such as a glass plate, a plastic plate, a metal plate, or a silicon wafer to form a coating film. Thereafter, the coating film is obtained by irradiating the coating film with active energy rays and / or heating and curing the coating film.
 ナノ粒子含有組成物の塗布方法としては、例えば、バーコーター、アプリケーター、ダイコーター、スピンコーター、スプレーコーター、カーテンコーターまたはロールコーターなどによる塗布、スクリーン印刷などによる塗布、ならびにディッピングなどによる塗布が挙げられる。
 本発明のナノ粒子含有組成物の基板上への塗布量は特に限定されず、目的に応じて適宜調整することができ、活性エネルギー線照射および/または加熱での硬化処理後に得られる塗膜の膜厚が、1μm~10mmとなる量が好ましく、10~1000μmとなる量がより好ましい。
Examples of the method for applying the nanoparticle-containing composition include application by a bar coater, applicator, die coater, spin coater, spray coater, curtain coater or roll coater, application by screen printing, and application by dipping. .
The coating amount of the nanoparticle-containing composition of the present invention on the substrate is not particularly limited and can be appropriately adjusted according to the purpose. The coating film obtained after the curing treatment by active energy ray irradiation and / or heating is used. The amount of the film thickness is preferably 1 μm to 10 mm, more preferably 10 to 1000 μm.
 ナノ粒子含有組成物を硬化させるために使用される活性エネルギー線としては、電子線、または紫外から赤外の波長範囲の光が好ましい。光源としては、例えば、紫外線であれば超高圧水銀光源またはメタルハライド光源、可視光線であればメタルハライド光源またはハロゲン光源、赤外線であればハロゲン光源が使用できるが、この他にもレーザー、LEDなどの光源が使用できる。
 活性エネルギー線の照射量は、光源の種類、塗膜の膜厚などに応じて適宜設定される。
The active energy ray used for curing the nanoparticle-containing composition is preferably an electron beam or light in the ultraviolet to infrared wavelength range. As the light source, for example, an ultra-high pressure mercury light source or a metal halide light source can be used for ultraviolet rays, a metal halide light source or a halogen light source can be used for visible rays, and a halogen light source can be used for infrared rays. Can be used.
The irradiation amount of the active energy ray is appropriately set according to the type of light source, the film thickness of the coating film, and the like.
 また、活性エネルギー線を照射して硬化させた後、必要に応じて、加熱処理(アニール処理)をしてナノ粒子含有組成物の硬化を更に進行させてもよい。その際の加熱温度は50~150℃の範囲にあることが好ましく、加熱時間は、5分~60分の範囲にあることが好ましい。 Further, after curing by irradiating active energy rays, if necessary, the nanoparticle-containing composition may be further cured by heat treatment (annealing treatment). In this case, the heating temperature is preferably in the range of 50 to 150 ° C., and the heating time is preferably in the range of 5 to 60 minutes.
 ナノ粒子含有組成物を加熱して熱重合により硬化させる場合、加熱温度は、好ましくは40~200℃の範囲であり、より好ましくは50~150℃の範囲である。加熱温度が前記範囲を下回ると、加熱時間を長くする必要があり経済性に欠ける傾向にある。加熱温度が前記範囲を上回ると、エネルギーコストがかかるうえに、加熱昇温時間および降温時間がかかるため経済性に欠ける傾向にある。加熱時間は、加熱温度、塗膜の膜厚などに応じて適宜設定される。 When the nanoparticle-containing composition is heated and cured by thermal polymerization, the heating temperature is preferably in the range of 40 to 200 ° C., more preferably in the range of 50 to 150 ° C. When the heating temperature is lower than the above range, it is necessary to lengthen the heating time, and the economy tends to be lacking. If the heating temperature exceeds the above range, energy costs are required, and further, the heating temperature rise time and the temperature drop time are required. The heating time is appropriately set according to the heating temperature, the film thickness of the coating film, and the like.
 熱重合によりナノ粒子含有組成物を硬化させた後、必要に応じて、加熱処理(アニール処理)を行ってナノ粒子含有組成物の硬化をさらに進行させてもよい。その際の加熱温度は、50~150℃の範囲にあることが好ましい。加熱時間は、5分~60分の範囲にあることが好ましい。 After curing the nanoparticle-containing composition by thermal polymerization, if necessary, the nanoparticle-containing composition may be further cured by performing a heat treatment (annealing treatment). The heating temperature at that time is preferably in the range of 50 to 150 ° C. The heating time is preferably in the range of 5 minutes to 60 minutes.
 以下、本発明を実施例に基づいて更に具体的に説明するが、本発明はこれら実施例に限定されない。以下の実施例等の記載において、特に言及しない限り、「部」は「質量部」を示す。また、以下に示す実施例および比較例においては、表1~表3および以下に示す材料を用いた。 Hereinafter, the present invention will be described more specifically based on examples, but the present invention is not limited to these examples. In the following description of Examples and the like, “part” means “part by mass” unless otherwise specified. In Examples and Comparative Examples shown below, Tables 1 to 3 and materials shown below were used.
「表面処理前のシリカ微粒子」
 イソプロピルアルコール分散型コロイダルシリカ(シリカ微粒子含有量30質量%、平均粒子径10nm、商品名スノーテックスIPA-ST;日産化学工業(株)製)
「シラン化合物(f)」
MOS:8-メタクリロイルオキシオクチルトリメトキシシラン
MPS:3-メタクリロイルオキシプロピルトリメトキシシラン
「シラン化合物(g)」
PhS:フェニルトリメトキシシラン
"Silica fine particles before surface treatment"
Isopropyl alcohol-dispersed colloidal silica (silica fine particle content 30% by mass, average particle size 10 nm, trade name Snowtex IPA-ST; manufactured by Nissan Chemical Industries, Ltd.)
"Silane compound (f)"
MOS: 8-methacryloyloxyoctyltrimethoxysilane MPS: 3-methacryloyloxypropyltrimethoxysilane “silane compound (g)”
PhS: Phenyltrimethoxysilane
「(メタ)アクリレート(b)」
TMPTA:トリメチロールプロパントリアクリレート(日本化薬(株)製)
A9300-1CL:カプロラクタム変性トリス(アクリロキシエチル)イソシアヌレート(新中村化学工業(株)製)
M313:トリス-(2-アクリロキシエチル)イソシアヌレートとジ-(2-アクリロキシエチル)モノ-(2-ヒドロキシエチル)イソシアヌレートの混合物(東亜合成(株)製)
「(メタ)アクリレート(c)」
ADMA:アダマンチルメタクリレート(大阪有機化学工業(株)製)
IBXMA:イソボニルメタクリレート(和光純薬(株)製)
FA513M:ジシクロペンタニルメタクリレート(日立化成(株)製)
GBLMA:γ-ブチロラクトンメタアクリレート(大阪有機化学工業(株)製)
LA:ラウリルアクリレート(大阪有機化学工業(株)製)
ACMO:アクリロイルモルホリン(興人フィルム&ケミカルズ(株)製)
「(メタ)アクリレート(h)」
IRR214-K:トリシクロデカンジメタノールジアクリレート(ダイセル-オルネクス(株)製)
NPGDA:ネオペンチルジアクリレート(新中村化学工業(株)製)
"(Meth) acrylate (b)"
TMPTA: Trimethylolpropane triacrylate (manufactured by Nippon Kayaku Co., Ltd.)
A9300-1CL: Caprolactam-modified tris (acryloxyethyl) isocyanurate (manufactured by Shin-Nakamura Chemical Co., Ltd.)
M313: Mixture of tris- (2-acryloxyethyl) isocyanurate and di- (2-acryloxyethyl) mono- (2-hydroxyethyl) isocyanurate (manufactured by Toagosei Co., Ltd.)
"(Meth) acrylate (c)"
ADMA: adamantyl methacrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd.)
IBXMA: Isobonyl methacrylate (manufactured by Wako Pure Chemical Industries, Ltd.)
FA513M: Dicyclopentanyl methacrylate (manufactured by Hitachi Chemical Co., Ltd.)
GBLMA: γ-butyrolactone methacrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd.)
LA: Lauryl acrylate (manufactured by Osaka Organic Chemical Industry Co., Ltd.)
ACMO: Acryloyl morpholine (manufactured by Kojin Film & Chemicals Co., Ltd.)
"(Meth) acrylate (h)"
IRR214-K: Tricyclodecane dimethanol diacrylate (manufactured by Daicel-Ornex Co., Ltd.)
NPGDA: Neopentyl diacrylate (manufactured by Shin-Nakamura Chemical Co., Ltd.)
「重合開始剤(d)」
Esacure KTO-46(Lamberti製)
「半導体ナノ粒子(e)」
RED-CFQD-G2-604(NANOCO TECHNOLOGIES製、半導体ナノ粒子含有量10質量%のトルエン溶液、ナノ粒子コア(InP)シェル(ZnS)、平均粒径3~4nm)
GREEN-CFQD-G3-525(NANOCO TECHNOLOGIES製、半導体ナノ粒子含有量10質量%のトルエン溶液、ナノ粒子コア(InP)シェル(ZnS)、平均粒径2~3nm)
"Polymerization initiator (d)"
Esacure KTO-46 (manufactured by Lamberti)
"Semiconductor nanoparticles (e)"
RED-CFQD-G2-604 (manufactured by NANOCO TECHNOLOGIES, toluene solution containing 10% by mass of semiconductor nanoparticles, nanoparticle core (InP) shell (ZnS), average particle size of 3 to 4 nm)
GREEN-CFQD-G3-525 (manufactured by NANOCO TECHNOLOGIES, toluene solution containing 10% by mass of semiconductor nanoparticles, nanoparticle core (InP) shell (ZnS), average particle size of 2 to 3 nm)
 表1~表3において、表面処理前のシリカ微粒子、(メタ)アクリレート(b)、(メタ)アクリレート(c)、(メタ)アクリレート(h)の含有量は、表面処理前のシリカ微粒子と、(メタ)アクリレート(b)と、(メタ)アクリレート(c)と、(メタ)アクリレート(h)の合計を100質量部としたときの含有量(質量部)である。
 シラン化合物(f)およびシラン化合物(g)の含有量は、表面処理前のシリカ微粒子を100質量部としたときの含有量(質量部)である。
In Tables 1 to 3, the content of silica fine particles before surface treatment, (meth) acrylate (b), (meth) acrylate (c), (meth) acrylate (h) It is the content (parts by mass) when the total of (meth) acrylate (b), (meth) acrylate (c), and (meth) acrylate (h) is 100 parts by mass.
Content of a silane compound (f) and a silane compound (g) is content (mass part) when the silica fine particle before surface treatment is 100 mass parts.
[実施例1]
 <シリカ微粒子(a)の表面処理>
 セパラブルフラスコに、有機溶媒に分散したシリカ微粒子500g(溶媒を含む質量。シリカ微粒子の質量は150g)を入れた。次に、当該セパラブルフラスコに、シラン化合物(f)としてMOSを18gと、シラン化合物(g)としてPhSを27gとを添加して、攪拌混合した。その後、さらにセパラブルフラスコに、濃度0.1825質量%の塩酸13.9gを加え、25℃で24時間撹拌した。このことにより、表面処理されたシリカ微粒子(a)の分散した分散液を得た。
[Example 1]
<Surface treatment of silica fine particles (a)>
In a separable flask, 500 g of silica fine particles dispersed in an organic solvent (mass including solvent. Mass of silica fine particles is 150 g) was added. Next, 18 g of MOS as the silane compound (f) and 27 g of PhS as the silane compound (g) were added to the separable flask and mixed with stirring. Thereafter, 13.9 g of hydrochloric acid having a concentration of 0.1825% by mass was further added to the separable flask, and the mixture was stirred at 25 ° C. for 24 hours. As a result, a dispersion in which the surface-treated silica fine particles (a) were dispersed was obtained.
 なお、シラン化合物(f)およびシラン化合物(g)は、塩酸を添加した時点から6時間後の時点で消失していた。シラン化合物(f)およびシラン化合物(g)の消失は、ガスクロマトグラフィー(型式6850;アジレント(株)製)により、以下の条件で確認した。すなわち、無極性カラムDB-1(J&W社製)を使用し、温度50~300℃、昇温速度10℃/分、キャリアガスとしてHeを使用し、流量1.2cc/分、水素炎イオン化検出器にて内部標準法で測定した。 In addition, the silane compound (f) and the silane compound (g) disappeared at a time point 6 hours after the addition of hydrochloric acid. The disappearance of the silane compound (f) and the silane compound (g) was confirmed by gas chromatography (model 6850; manufactured by Agilent) under the following conditions. That is, nonpolar column DB-1 (manufactured by J & W) is used, temperature is 50 to 300 ° C., heating rate is 10 ° C./min, He is used as a carrier gas, flow rate is 1.2 cc / min, and flame ionization detection is performed. It was measured by an internal standard method using a vessel.
 <ベース組成物の調製>
 上記において得られたシリカ微粒子(a)の分散した分散液と、(メタ)アクリレート(b)としてトリメチロールプロパントリアクリレート(TMPTA)を75g(分散液中の表面処理前のシリカ微粒子50部に対して、25部となる量)と、(メタ)アクリレート(c)としてアダマンチルメタクリレート(ADMA)を75g(分散液中の表面処理前のシリカ微粒子量50部に対して、25部となる量)とを混合し、攪拌しながら40℃、100kPaにて減圧加熱して揮発分を除去し、実施例1のベース組成物を得た。
<Preparation of base composition>
The dispersion liquid of silica fine particles (a) obtained above and 75 g of trimethylolpropane triacrylate (TMPTA) as (meth) acrylate (b) (50 parts of silica fine particles before surface treatment in the dispersion liquid) 25 parts) and 75 g of adamantyl methacrylate (ADMA) as (meth) acrylate (c) (an amount of 25 parts with respect to 50 parts of silica fine particles before surface treatment in the dispersion). The mixture was stirred and heated under reduced pressure at 40 ° C. and 100 kPa with stirring to remove volatile components, whereby the base composition of Example 1 was obtained.
 <ナノ粒子含有組成物の調製>
 上記より得られたベース組成物150g(表面処理後シリカ分は、84.8g)に、半導体ナノ粒子(e)であるRED-CFQD-G2-604(半導体ナノ粒子含有量10質量%)を7.9gと、GREEN-CFQD-G3-525(半導体ナノ粒子含有量10質量%)を142.1g添加し、混合して半導体ナノ粒子(e)を含むベース組成物を得た。その後、半導体ナノ粒子(e)を含むベース組成物を攪拌しながら40℃、100kPaにて減圧加熱して、揮発分を除去した。
 揮発分を除去した半導体ナノ粒子(e)を含むベース組成物に、光重合開始剤としてEsacure KTO-46を6g添加・混合して、実施例1のナノ粒子含有組成物を得た。
<Preparation of nanoparticle-containing composition>
To 150 g of the base composition obtained above (silica content after surface treatment is 84.8 g), RED-CFQD-G2-604 (semiconductor nanoparticle content 10 mass%) as semiconductor nanoparticles (e) was added to 7 g. .9 g and 142.1 g of GREEN-CFQD-G3-525 (semiconductor nanoparticle content 10 mass%) were added and mixed to obtain a base composition containing semiconductor nanoparticles (e). Thereafter, the base composition containing the semiconductor nanoparticles (e) was heated under reduced pressure at 40 ° C. and 100 kPa with stirring to remove volatile components.
6 g of Esacure KTO-46 as a photopolymerization initiator was added to and mixed with the base composition containing the semiconductor nanoparticles (e) from which volatile components had been removed to obtain the nanoparticle-containing composition of Example 1.
 [実施例2~21、比較例1~9]
 表1~表3に示す材料を、表1~表3に示す含有量としたこと以外は、実施例1と同様にして、実施例2~21、比較例1~9のベース組成物およびナノ粒子含有組成物を得た。
[Examples 2 to 21, Comparative Examples 1 to 9]
The base compositions and nanostructures of Examples 2 to 21 and Comparative Examples 1 to 9 were the same as Example 1 except that the materials shown in Tables 1 to 3 were changed to the contents shown in Tables 1 to 3. A particle-containing composition was obtained.
 [ベース組成物評価]
 実施例1~21、比較例1~9のベース組成物のうち、ナノ粒子含有組成物の製造中にゲル化しなかったものを用いて、以下に示す方法により、粘度、酸素透過係数、ガラス転移温度(Tg)、吸水率、収縮率を測定し、評価した。その結果を表1~表3に示す。
[Base composition evaluation]
Using the base compositions of Examples 1 to 21 and Comparative Examples 1 to 9 that were not gelled during the production of the nanoparticle-containing composition, the viscosity, oxygen transmission coefficient, glass transition, and the like were determined by the following methods. Temperature (Tg), water absorption, and shrinkage were measured and evaluated. The results are shown in Tables 1 to 3.
 <粘度>
 B型粘度計DV-III ULTRA(BROOKFIELD社製)を用いて、ベース樹脂の粘度を25℃で測定した。粘度が適度である場合、ハンドリング性が良好となる。
<Viscosity>
The viscosity of the base resin was measured at 25 ° C. using a B-type viscometer DV-III ULTRA (manufactured by BROOKFIELD). When the viscosity is moderate, handling properties are good.
 <酸素透過係数>
 ベース組成物100質量部に、光重合開始剤としてEsacure KTO-46を3.3g(2質量部)添加・混合して、硬化性組成物とした。得られた硬化性組成物をガラス基板上に、硬化膜の大きさ55mmφ、厚みが200μmになるように塗布し、塗膜を形成した。その後、塗膜を、超高圧水銀ランプを組み込んだ露光装置で3J/cmの条件で露光して硬化させた。得られた硬化膜の酸素透過係数[1×10-11(cc*cm/cm*sec*cmHg)]を、GTR-30XASD(GTRテック社製)を用いて求めた。
<Oxygen transmission coefficient>
To 100 parts by mass of the base composition, 3.3 g (2 parts by mass) of Esacure KTO-46 as a photopolymerization initiator was added and mixed to obtain a curable composition. The obtained curable composition was applied onto a glass substrate so that the cured film had a size of 55 mmφ and a thickness of 200 μm to form a coating film. Thereafter, the coating film was exposed and cured under the condition of 3 J / cm 2 with an exposure apparatus incorporating an ultrahigh pressure mercury lamp. The oxygen permeability coefficient [1 × 10 −11 (cc * cm / cm 2 * sec * cmHg)] of the obtained cured film was determined using GTR-30XASD (manufactured by GTR Tech).
 <ガラス転移温度(Tg)>
 酸素透過係数の測定時と同様に調整した硬化性組成物を、ガラス基板(50mm×50mm)上に、硬化膜の厚みが100μmになるように塗布し、塗膜を形成した。その後、塗膜を、超高圧水銀ランプを組み込んだ露光装置で3J/cmの条件で露光して塗膜を硬化させた。得られた硬化膜について、DMS6100(セイコー電子工業社製)を用いて、引張モード、温度範囲30℃~250℃、昇温速度2℃/min、周波数1Hzの条件で測定した昇温時のtanδ値のピーク温度を評価し、ガラス転移温度(Tg)を求めた。
<Glass transition temperature (Tg)>
A curable composition prepared in the same manner as when measuring the oxygen transmission coefficient was applied on a glass substrate (50 mm × 50 mm) so that the thickness of the cured film was 100 μm, thereby forming a coating film. Then, the coating film was exposed on the conditions of 3 J / cm < 2 > with the exposure apparatus incorporating the ultrahigh pressure mercury lamp, and the coating film was hardened. The obtained cured film was measured using a DMS6100 (manufactured by Seiko Denshi Kogyo Co., Ltd.) under the conditions of a tensile mode, a temperature range of 30 ° C. to 250 ° C., a temperature increase rate of 2 ° C./min, and a frequency of 1 Hz. The peak temperature of the value was evaluated and the glass transition temperature (Tg) was determined.
<収縮率>
 酸素透過率の測定時と同様に調整した硬化性組成物の比重を密度比重計(DA-650;京都電子工業(株)製)で測定した。また、硬化性組成物をガラス基板(10mm×10mm)上に、硬化膜の厚みが100μmになるように塗布し、塗膜を形成した。その後、塗膜を、超高圧水銀ランプを組み込んだ露光装置で3J/cmの条件で露光して塗膜を硬化させた。得られた硬化膜の比重を自動比重計(DMA-220H;新光電子(株)製)により測定した。そして、硬化性組成物および硬化物の比重から下記式により、収縮率を算出した。
 収縮率(%)={(硬化物の比重-硬化性組成物の比重)/硬化物の比重}×100
<Shrinkage rate>
The specific gravity of the curable composition prepared in the same manner as in the measurement of oxygen permeability was measured with a density specific gravity meter (DA-650; manufactured by Kyoto Electronics Industry Co., Ltd.). Moreover, the curable composition was apply | coated on the glass substrate (10 mm x 10 mm) so that the thickness of a cured film might be set to 100 micrometers, and the coating film was formed. Then, the coating film was exposed on the conditions of 3 J / cm < 2 > with the exposure apparatus incorporating the ultrahigh pressure mercury lamp, and the coating film was hardened. The specific gravity of the obtained cured film was measured with an automatic hydrometer (DMA-220H; manufactured by Shinko Denshi Co., Ltd.). And shrinkage | contraction rate was computed by the following formula from specific gravity of the curable composition and hardened | cured material.
Shrinkage (%) = {(specific gravity of cured product−specific gravity of curable composition) / specific gravity of cured product} × 100
 <吸水率>
 収縮率の測定と同様にして得られた硬化膜を、純水に24時間浸漬させて、その浸漬の前後における重量変化より吸水率を測定した。吸水率が低い硬化膜ほど、耐環境性に優れている。
<Water absorption rate>
The cured film obtained in the same manner as the measurement of the shrinkage rate was immersed in pure water for 24 hours, and the water absorption was measured from the change in weight before and after the immersion. A cured film having a lower water absorption rate has better environmental resistance.
 [ナノ粒子含有組成物評価]
 実施例1~21、比較例1~9のナノ粒子含有組成物について、以下に示す方法により粘度および分散性を評価した。その結果を表1~表3に示す。
[Nanoparticle-containing composition evaluation]
Viscosity and dispersibility of the nanoparticle-containing compositions of Examples 1 to 21 and Comparative Examples 1 to 9 were evaluated by the following methods. The results are shown in Tables 1 to 3.
 <粘度>
 ベース組成物と同様にして、ナノ粒子含有組成物の粘度を測定した。
 <分散性>
 ナノ粒子含有組成物を24時間放置して、半導体ナノ粒子(e)の分離および沈降の有無を目視で確認した。
<Viscosity>
The viscosity of the nanoparticle-containing composition was measured in the same manner as the base composition.
<Dispersibility>
The nanoparticle-containing composition was allowed to stand for 24 hours, and the presence or absence of separation and sedimentation of the semiconductor nanoparticles (e) was visually confirmed.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
<表1~表3中の数値について>
 (メタ)アクリレート(h)(b)(c)から選ばれる2種以上を含む(メタ)アクリレート化合物(B)とシリカ微粒子量(未被覆のもの溶媒除く)の合計を100%とした上で、(メタ)アクリレートおよびシリカ微粒子量の割合を示している。
 シラン化合物(f)および(g)の値は、溶媒を除いた表面処理前のシリカ微粒子の使用量を100質量部としたときの、それに対する使用量(質量部)である。
 実施例2~21および比較例1~9においては、全て実施例1と同じ質量のコロイダルシリカ(未被覆シリカ微粒子)を用いた。その上で、表1~表3中に記載されている成分については、表1~表3中に記載の質量比となるように調整した。また、表1~表3に記載されていない成分については、すべて実施例1と同じ質量を用いた。
<Numerical values in Tables 1 to 3>
The total of (meth) acrylate compound (B) containing two or more selected from (meth) acrylate (h), (b) and (c) and the amount of silica fine particles (excluding uncoated solvent) is taken as 100%. , (Meth) acrylate and silica fine particle ratio.
The values of the silane compounds (f) and (g) are the used amount (parts by mass) when the used amount of the silica fine particles before the surface treatment excluding the solvent is 100 parts by mass.
In Examples 2 to 21 and Comparative Examples 1 to 9, colloidal silica (uncoated silica fine particles) having the same mass as that of Example 1 was used. In addition, the components described in Tables 1 to 3 were adjusted to have the mass ratios described in Tables 1 to 3. For the components not listed in Tables 1 to 3, the same mass as in Example 1 was used.
 表1および表2に示すように、実施例1~21のベース組成物およびナノ粒子含有組成物の評価結果は、良好であった。
 一方、シリカ微粒子を含まない比較例4~9では、半導体ナノ粒子(e)がナノ粒子含有組成物中で分離または沈降し、均一なナノ粒子含有組成物が得られなかった。
 また、表面処理されていないシリカ微粒子を用いた比較例1、(メタ)アクリレート化合物(B)が(メタ)アクリレート(c)のみである比較例2、(メタ)アクリレート化合物(B)が(メタ)アクリレート(b)のみである比較例3では、いずれもベース組成物を調整中にゲル化した。
As shown in Tables 1 and 2, the evaluation results of the base compositions and the nanoparticle-containing compositions of Examples 1 to 21 were good.
On the other hand, in Comparative Examples 4 to 9 containing no silica fine particles, the semiconductor nanoparticles (e) separated or settled in the nanoparticle-containing composition, and a uniform nanoparticle-containing composition was not obtained.
Moreover, the comparative example 1 using the silica fine particle which is not surface-treated, the comparative example 2 whose (meth) acrylate compound (B) is only (meth) acrylate (c), and the (meth) acrylate compound (B) are (meth) ) In Comparative Example 3 where only the acrylate (b) was used, the base composition was gelled during preparation.
 また、実施例2~4より、シランカップリング剤(f)としてMPSを用いた場合と比較して、MOSを用いた場合の方が、ベース組成物およびナノ粒子含有組成物の粘度や、収縮率の観点から好ましいことが分かる。 In addition, from Examples 2 to 4, the viscosity and shrinkage of the base composition and the nanoparticle-containing composition were higher when MOS was used than when MPS was used as the silane coupling agent (f). It turns out that it is preferable from a viewpoint of a rate.

Claims (15)

  1.  シリカ微粒子(a)と、
     (メタ)アクリレート化合物(B)と、
     重合開始剤(d)と、
     発光体である半導体ナノ粒子(e)と
    を含み、
     前記(メタ)アクリレート化合物(B)が、2つの(メタ)アクリロイルオキシ基を有する2官能(メタ)アクリレート化合物(h)と、3つ以上の(メタ)アクリロイルオキシ基を有する多官能(メタ)アクリレート化合物(b)と、1つの(メタ)アクリロイルオキシ基を有する単官能(メタ)アクリレート化合物(c)とから選ばれる2種以上を含み、
     前記シリカ微粒子(a)が、下記一般式(1)で表されるシラン化合物(f)および下記一般式(2)で表されるシラン化合物(g)で表面処理されていることを特徴とする半導体ナノ粒子含有硬化性組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、Rは水素原子又はメチル基を表し、Rは炭素数1~3のアルキル基又はフェニル基を表し、Rは水素原子又は炭素数1~10の炭化水素基を表し、qは1~16の整数であり、rは0~2の整数である。)
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、Rは炭素数1~3のアルキル基又はフェニル基を表し、Rは水素原子又は炭素数1~10の炭化水素基を表し、sは0~6の整数であり、tは0~2の整数である。)
    Silica fine particles (a);
    (Meth) acrylate compound (B);
    A polymerization initiator (d);
    Including semiconductor nanoparticles (e) that are light emitters,
    The (meth) acrylate compound (B) is a bifunctional (meth) acrylate compound (h) having two (meth) acryloyloxy groups and a polyfunctional (meth) having three or more (meth) acryloyloxy groups. Including two or more selected from an acrylate compound (b) and a monofunctional (meth) acrylate compound (c) having one (meth) acryloyloxy group,
    The silica fine particles (a) are surface-treated with a silane compound (f) represented by the following general formula (1) and a silane compound (g) represented by the following general formula (2). Semiconductor nanoparticle containing curable composition.
    Figure JPOXMLDOC01-appb-C000001
    (In the formula (1), R 1 represents a hydrogen atom or a methyl group, R 2 represents an alkyl group having 1 to 3 carbon atoms or a phenyl group, and R 3 represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms. Q is an integer from 1 to 16, and r is an integer from 0 to 2.)
    Figure JPOXMLDOC01-appb-C000002
    (In the formula (2), R 4 represents an alkyl group having 1 to 3 carbon atoms or a phenyl group, R 5 represents a hydrogen atom or a hydrocarbon group having 1 to 10 carbon atoms, and s is an integer of 0 to 6) And t is an integer from 0 to 2.)
  2.  前記(メタ)アクリレート化合物(B)が、3つ以上の(メタ)アクリロイルオキシ基を有する多官能(メタ)アクリレート化合物(b)と、1つの(メタ)アクリロイルオキシ基を有する単官能(メタ)アクリレート化合物(c)とを含むことを特徴とする請求項1に記載の半導体ナノ粒子含有硬化性組成物。 The (meth) acrylate compound (B) is a polyfunctional (meth) acrylate compound (b) having three or more (meth) acryloyloxy groups and a monofunctional (meth) having one (meth) acryloyloxy group. The curable composition containing semiconductor nanoparticles according to claim 1, comprising an acrylate compound (c).
  3.  前記シリカ微粒子(a)において、表面処理に用いる前記シラン化合物(f)の使用量が、表面処理前のシリカ微粒子100質量部に対して1~50質量部であり、表面処理に用いる前記シラン化合物(g)の使用量が、表面処理前のシリカ微粒子100質量部に対して1~50質量部であることを特徴とする請求項1または請求項2に記載の半導体ナノ粒子含有硬化性組成物。 In the silica fine particles (a), the amount of the silane compound (f) used for the surface treatment is 1 to 50 parts by mass with respect to 100 parts by mass of the silica fine particles before the surface treatment, and the silane compound used for the surface treatment 3. The semiconductor nanoparticle-containing curable composition according to claim 1, wherein the amount of (g) used is 1 to 50 parts by mass with respect to 100 parts by mass of the silica fine particles before the surface treatment. .
  4.  表面処理前のシリカ微粒子の数平均粒子径が、10~500nmであることを特徴とする請求項1~請求項3のいずれか一項に記載の半導体ナノ粒子含有硬化性組成物。 The semiconductor nanoparticle-containing curable composition according to any one of claims 1 to 3, wherein the number average particle diameter of the silica fine particles before the surface treatment is 10 to 500 nm.
  5.  前記(メタ)アクリレート化合物(b)が、3つの(メタ)アクリロイルオキシ基を有する3官能(メタ)アクリレート化合物であることを特徴とする請求項1~請求項4のいずれか一項に記載の半導体ナノ粒子含有硬化性組成物。 5. The (meth) acrylate compound (b) is a trifunctional (meth) acrylate compound having three (meth) acryloyloxy groups, according to any one of claims 1 to 4. Semiconductor nanoparticle containing curable composition.
  6.  前記(メタ)アクリレート化合物(b)が、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、シクロヘキサントリメタノールトリ(メタ)アクリレート、アダマンチルトリ(メタ)アクリレート、アダマンタントリメタノールトリ(メタ)アクリレート、ノルボルナントリメチロールトリ(メタ)アクリレート、トリシクロデカントリメタノールトリ(メタ)アクリレート、パーヒドロ-1,4,5,8-ジメタノナフタレン-2,3,7-(オキシメチル)トリ(メタ)アクリレート、トリス(アクリロキシエチル)イソシアヌレート、カプロラクトン変性トリス(アクリロキシエチル)イソシアヌレート、ジ-(2-アクリロキシエチル)モノ-(2-ヒドロキシエチル)イソシアヌレートから選ばれる1種または2種以上であることを特徴とする請求項5に記載の半導体ナノ粒子含有硬化性組成物。 The (meth) acrylate compound (b) is trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, cyclohexane trimethanol tri (meth) acrylate, adamantyl tri (meth) acrylate, adamantanetrimethanol tri (meth) ) Acrylate, norbornane trimethylol tri (meth) acrylate, tricyclodecane trimethanol tri (meth) acrylate, perhydro-1,4,5,8-dimethananaphthalene-2,3,7- (oxymethyl) tri (meth) ) Acrylate, tris (acryloxyethyl) isocyanurate, caprolactone modified tris (acryloxyethyl) isocyanurate, di- (2-acryloxyethyl) mono- (2-hydroxyethyl) isocyanate The semiconductor nanoparticle-containing curable composition according to claim 5, characterized in that one or more members selected from the rate.
  7.  前記(メタ)アクリレート化合物(B)の質量中における(メタ)アクリレート(b)と(メタ)アクリレート(h)の合計含有量が99質量%以下であることを特徴とする請求項1~請求項6のいずれか一項に記載の半導体ナノ粒子含有硬化性組成物。 The total content of (meth) acrylate (b) and (meth) acrylate (h) in the mass of the (meth) acrylate compound (B) is 99% by mass or less. The semiconductor nanoparticle containing curable composition as described in any one of Claims 6.
  8.  前記半導体ナノ粒子(e)が、周期表の第3族~第16族からなる群から選択される少なくとも一種の元素のイオンを含むナノ粒子コアを有することを特徴とする請求項1~請求項7のいずれか一項に記載の半導体ナノ粒子含有硬化性組成物。 The semiconductor nanoparticles (e) have a nanoparticle core containing ions of at least one element selected from the group consisting of Groups 3 to 16 of the periodic table. 8. The semiconductor nanoparticle-containing curable composition according to any one of 7 above.
  9.  前記ナノ粒子コアが、ZnS,ZnSe,ZnTe,InP,InAs,InSb,AlS,AlAs,AlSb,GaN,GaP,GaAs,GaSb,PdS,PbSe,Si,Ge,MgSe,MgTeからなる群から選択される少なくとも一種を含むことを特徴とする請求項8に記載の半導体ナノ粒子含有硬化性組成物。 The nanoparticle core is selected from the group consisting of ZnS, ZnSe, ZnTe, InP, InAs, InSb, AlS, AlAs, AlSb, GaN, GaP, GaAs, GaSb, PdS, PbSe, Si, Ge, MgSe, MgTe. The curable composition containing semiconductor nanoparticles according to claim 8, comprising at least one kind.
  10.  前記半導体ナノ粒子(e)が、ナノ粒子コアと、前記ナノ粒子コアの表面に配位した保護基を有するキャッピング層とを含み、前記ナノ粒子コアの表面が、無機材料からなる少なくとも一層のシェルにより被覆されていることを特徴とする請求項1~請求項9のいずれか一項に記載の半導体ナノ粒子含有硬化性組成物。 The semiconductor nanoparticle (e) includes a nanoparticle core and a capping layer having a protective group coordinated to the surface of the nanoparticle core, and the surface of the nanoparticle core is at least one shell made of an inorganic material. The semiconductor nanoparticle-containing curable composition according to any one of claims 1 to 9, wherein the curable composition contains semiconductor nanoparticles.
  11.  前記半導体ナノ粒子含有硬化性組成物中の前記半導体ナノ粒子(e)の含有量が0.1~20質量%であることを特徴とする請求項1~請求項10のいずれか一項に記載の半導体ナノ粒子含有硬化性組成物。 The content of the semiconductor nanoparticles (e) in the semiconductor nanoparticle-containing curable composition is 0.1 to 20% by mass, according to any one of claims 1 to 10. A semiconductor nanoparticle-containing curable composition.
  12.  前記一般式(1)において、qが3~16の整数であることを特徴とする請求項1~請求項11のいずれか一項に記載の半導体ナノ粒子含有硬化性組成物。 The semiconductor nanoparticle-containing curable composition according to any one of claims 1 to 11, wherein in the general formula (1), q is an integer of 3 to 16.
  13.  請求項1~請求項12のいずれか一項に記載の半導体ナノ粒子含有硬化性組成物を硬化させて得られることを特徴とする硬化物。 A cured product obtained by curing the semiconductor nanoparticle-containing curable composition according to any one of claims 1 to 12.
  14.  請求項13に記載の硬化物からなることを特徴とする光学材料。 An optical material comprising the cured product according to claim 13.
  15.  請求項13に記載の硬化物からなることを特徴とする電子材料。 An electronic material comprising the cured product according to claim 13.
PCT/JP2014/070226 2013-08-09 2014-07-31 Curable composition containing semiconductor nanoparticles, cured article, optical material, and electronic material WO2015019941A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015530850A JPWO2015019941A1 (en) 2013-08-09 2014-07-31 Semiconductor nanoparticle-containing curable composition, cured product, optical material and electronic material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-167068 2013-08-09
JP2013167068 2013-08-09

Publications (1)

Publication Number Publication Date
WO2015019941A1 true WO2015019941A1 (en) 2015-02-12

Family

ID=52461277

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070226 WO2015019941A1 (en) 2013-08-09 2014-07-31 Curable composition containing semiconductor nanoparticles, cured article, optical material, and electronic material

Country Status (3)

Country Link
JP (1) JPWO2015019941A1 (en)
TW (1) TW201518359A (en)
WO (1) WO2015019941A1 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015152140A1 (en) * 2014-03-31 2015-10-08 三菱レイヨン株式会社 Curable composition, laminate, and automobile headlamp lens
WO2015178330A1 (en) * 2014-05-19 2015-11-26 富士フイルム株式会社 Method for manufacturing quantum-dot-containing laminate, quantum-dot-containing laminate, backlight unit, liquid crystal display device, and quantum-dot-containing composition
WO2016088646A1 (en) * 2014-12-04 2016-06-09 昭和電工株式会社 Curable composition containing semiconductor nanoparticles, cured product, optical material and electronic material
EP3070756A1 (en) * 2015-03-18 2016-09-21 Merck Patent GmbH Semiconductor mixtures comprising nanoparticles
JP2016177220A (en) * 2015-03-23 2016-10-06 コニカミノルタ株式会社 Color gamut-enlarged film
JP2016194048A (en) * 2015-03-16 2016-11-17 ローム アンド ハース エレクトロニック マテリアルズ エルエルシーRohm and Haas Electronic Materials LLC Multilayer polymer composite for encapsulating quantum dots
WO2018092705A1 (en) * 2016-11-16 2018-05-24 Nsマテリアルズ株式会社 Quantum dot-containing member, sheet member, backlight device and display device
WO2018117095A1 (en) * 2016-12-19 2018-06-28 富士フイルム株式会社 Wavelength conversion film and backlight unit
WO2019093140A1 (en) * 2017-11-10 2019-05-16 Dic株式会社 Ink composition and production method therefor, photoconversion layer, and color filter
JP2019522090A (en) * 2016-07-08 2019-08-08 ローム アンド ハース エレクトロニック マテリアルズ エルエルシーRohm and Haas Electronic Materials LLC Multilayer polymer composites for encapsulating quantum dots
JP2020086104A (en) * 2018-11-22 2020-06-04 パナソニックIpマネジメント株式会社 Ultraviolet curable resin composition, color filter, light-emitting device, method for manufacturing color filter, and method for manufacturing light-emitting device
CN116544316A (en) * 2023-07-07 2023-08-04 四川大学 Deliquescence inhibition method for AlSb thin-film solar cell
WO2024024370A1 (en) * 2022-07-25 2024-02-01 信越化学工業株式会社 Photocurable composition, cured product of same, and coated article

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101811103B1 (en) * 2015-08-11 2018-01-25 동우 화인켐 주식회사 Self emission type photosensitive resin composition, color filter using thereof and image display device having the same
CN108603105A (en) 2016-02-12 2018-09-28 纳米技术有限公司 Highly stable polymer film containing quantum dot

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010001875A1 (en) * 2008-07-03 2010-01-07 昭和電工株式会社 Hardening composition and resultant hardened material
WO2010071073A1 (en) * 2008-12-16 2010-06-24 昭和電工株式会社 Hardening composition and hardened product of same
JP2011246548A (en) * 2010-05-25 2011-12-08 Showa Denko Kk Curable resin composition and transparent film
JP2013018827A (en) * 2011-07-08 2013-01-31 Showa Denko Kk Curable composition and cured product thereof
JP2013505346A (en) * 2009-09-23 2013-02-14 ナノコ テクノロジーズ リミテッド Semiconductor nanoparticle-based material encapsulated with additives
JP2013505347A (en) * 2009-09-23 2013-02-14 ナノコ テクノロジーズ リミテッド Encapsulated semiconductor nanoparticle-based material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010001875A1 (en) * 2008-07-03 2010-01-07 昭和電工株式会社 Hardening composition and resultant hardened material
WO2010071073A1 (en) * 2008-12-16 2010-06-24 昭和電工株式会社 Hardening composition and hardened product of same
JP2013505346A (en) * 2009-09-23 2013-02-14 ナノコ テクノロジーズ リミテッド Semiconductor nanoparticle-based material encapsulated with additives
JP2013505347A (en) * 2009-09-23 2013-02-14 ナノコ テクノロジーズ リミテッド Encapsulated semiconductor nanoparticle-based material
JP2011246548A (en) * 2010-05-25 2011-12-08 Showa Denko Kk Curable resin composition and transparent film
JP2013018827A (en) * 2011-07-08 2013-01-31 Showa Denko Kk Curable composition and cured product thereof

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015152140A1 (en) * 2014-03-31 2015-10-08 三菱レイヨン株式会社 Curable composition, laminate, and automobile headlamp lens
US11021618B2 (en) 2014-03-31 2021-06-01 Mitsubishi Chemical Corporation Curable composition, laminate, and automobile headlamp lens
WO2015178330A1 (en) * 2014-05-19 2015-11-26 富士フイルム株式会社 Method for manufacturing quantum-dot-containing laminate, quantum-dot-containing laminate, backlight unit, liquid crystal display device, and quantum-dot-containing composition
WO2016088646A1 (en) * 2014-12-04 2016-06-09 昭和電工株式会社 Curable composition containing semiconductor nanoparticles, cured product, optical material and electronic material
JP2016194048A (en) * 2015-03-16 2016-11-17 ローム アンド ハース エレクトロニック マテリアルズ エルエルシーRohm and Haas Electronic Materials LLC Multilayer polymer composite for encapsulating quantum dots
EP3070756A1 (en) * 2015-03-18 2016-09-21 Merck Patent GmbH Semiconductor mixtures comprising nanoparticles
JP2016177220A (en) * 2015-03-23 2016-10-06 コニカミノルタ株式会社 Color gamut-enlarged film
JP2019522090A (en) * 2016-07-08 2019-08-08 ローム アンド ハース エレクトロニック マテリアルズ エルエルシーRohm and Haas Electronic Materials LLC Multilayer polymer composites for encapsulating quantum dots
WO2018092705A1 (en) * 2016-11-16 2018-05-24 Nsマテリアルズ株式会社 Quantum dot-containing member, sheet member, backlight device and display device
CN110268287A (en) * 2016-11-16 2019-09-20 Ns材料株式会社 Component, sheet member, back lighting device and display device containing quantum dot
JPWO2018092705A1 (en) * 2016-11-16 2019-10-17 Nsマテリアルズ株式会社 Quantum dot-containing member, sheet member, backlight device, and display device
JPWO2018117095A1 (en) * 2016-12-19 2019-10-31 富士フイルム株式会社 Wavelength conversion film and backlight unit
WO2018117095A1 (en) * 2016-12-19 2018-06-28 富士フイルム株式会社 Wavelength conversion film and backlight unit
US11242481B2 (en) 2016-12-19 2022-02-08 Fujifilm Corporation Wavelength conversion film and backlight unit
US11926750B2 (en) 2017-11-10 2024-03-12 Dic Corporation Ink composition and method for producing the same, light conversion layer, and color filter
WO2019093140A1 (en) * 2017-11-10 2019-05-16 Dic株式会社 Ink composition and production method therefor, photoconversion layer, and color filter
CN111263794A (en) * 2017-11-10 2020-06-09 Dic株式会社 Ink composition, method for producing same, light conversion layer, and color filter
KR20200084328A (en) * 2017-11-10 2020-07-10 디아이씨 가부시끼가이샤 Ink composition and manufacturing method thereof, and light conversion layer and color filter
US20210009826A1 (en) * 2017-11-10 2021-01-14 Dic Corporation Ink composition and production method therefor, photoconversion layer, and color filter
JPWO2019093140A1 (en) * 2017-11-10 2021-01-21 Dic株式会社 Ink composition and its manufacturing method, as well as light conversion layer and color filter
KR102696767B1 (en) * 2017-11-10 2024-08-20 디아이씨 가부시끼가이샤 Ink composition and method for producing the same, and light conversion layer and color filter
JP2020086104A (en) * 2018-11-22 2020-06-04 パナソニックIpマネジメント株式会社 Ultraviolet curable resin composition, color filter, light-emitting device, method for manufacturing color filter, and method for manufacturing light-emitting device
JP7228804B2 (en) 2018-11-22 2023-02-27 パナソニックIpマネジメント株式会社 Ultraviolet curable resin composition, color filter, light emitting device, method for producing color filter, and method for producing light emitting device
WO2024024370A1 (en) * 2022-07-25 2024-02-01 信越化学工業株式会社 Photocurable composition, cured product of same, and coated article
CN116544316B (en) * 2023-07-07 2023-09-08 四川大学 Deliquescence inhibition method for AlSb thin-film solar cell
CN116544316A (en) * 2023-07-07 2023-08-04 四川大学 Deliquescence inhibition method for AlSb thin-film solar cell

Also Published As

Publication number Publication date
TW201518359A (en) 2015-05-16
JPWO2015019941A1 (en) 2017-03-02

Similar Documents

Publication Publication Date Title
WO2015019941A1 (en) Curable composition containing semiconductor nanoparticles, cured article, optical material, and electronic material
JP6245742B2 (en) Semiconductor nanoparticle-containing curable composition, cured product, optical material and electronic material
JP5466640B2 (en) Curable composition and cured product thereof
KR101905347B1 (en) Curable composition containing semiconductor nanoparticles, cured product, optical material and electronic material
KR101937665B1 (en) Composition for forming a quantum dot layer, Quantum dot film, Backlight unit, and Liquid crystal display
KR101203301B1 (en) Hardening composition and hardened product of same
JP5587869B2 (en) Curable composition and cured product thereof
JP6132776B2 (en) Curable composition and use thereof
KR101813432B1 (en) Curable composition, cured product, optical material and electronic material containing semiconductor nanoparticles
JP7197563B2 (en) Hollow particle dispersion
JP6072134B2 (en) Polymerizable composition containing zirconium oxide particles and (meth) acrylates and method for producing the same
CN111183164A (en) Curable composition and cured product
JP6589151B2 (en) Photocurable resin composition and high refractive resin cured body
JP2011074328A (en) Titanium oxide dispersion liquid
EP3467070A1 (en) Composition for bonding, optical adhesive, and adhesive for pressure sensor
TW202111010A (en) Resin composition for imprinting
JP2017222792A (en) Organic inorganic composite particles and latex thereof
JP2009040832A (en) Transparent resin composition and optical member using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14833781

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015530850

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14833781

Country of ref document: EP

Kind code of ref document: A1