WO2015019748A1 - Friction brake device - Google Patents

Friction brake device Download PDF

Info

Publication number
WO2015019748A1
WO2015019748A1 PCT/JP2014/067393 JP2014067393W WO2015019748A1 WO 2015019748 A1 WO2015019748 A1 WO 2015019748A1 JP 2014067393 W JP2014067393 W JP 2014067393W WO 2015019748 A1 WO2015019748 A1 WO 2015019748A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotation axis
pressing
friction
rotational torque
rotational
Prior art date
Application number
PCT/JP2014/067393
Other languages
French (fr)
Japanese (ja)
Inventor
磯野 宏
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Publication of WO2015019748A1 publication Critical patent/WO2015019748A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D55/00Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes
    • F16D55/02Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members
    • F16D55/04Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by moving discs or pads away from one another against radial walls of drums or cylinders
    • F16D55/14Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by moving discs or pads away from one another against radial walls of drums or cylinders with self-tightening action, e.g. by means of coacting helical surfaces or balls and inclined surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D55/00Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes
    • F16D55/02Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members
    • F16D55/04Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by moving discs or pads away from one another against radial walls of drums or cylinders
    • F16D55/14Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with axially-movable discs or pads pressed against axially-located rotating members by moving discs or pads away from one another against radial walls of drums or cylinders with self-tightening action, e.g. by means of coacting helical surfaces or balls and inclined surfaces
    • F16D55/18Brakes actuated by a fluid-pressure device arranged in or on the brake
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/14Actuating mechanisms for brakes; Means for initiating operation at a predetermined position
    • F16D65/16Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake
    • F16D65/22Actuating mechanisms for brakes; Means for initiating operation at a predetermined position arranged in or on the brake adapted for pressing members apart, e.g. for drum brakes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2121/00Type of actuator operation force
    • F16D2121/02Fluid pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2125/00Components of actuators
    • F16D2125/02Fluid-pressure mechanisms
    • F16D2125/04Cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2125/00Components of actuators
    • F16D2125/02Fluid-pressure mechanisms
    • F16D2125/06Pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2125/00Components of actuators
    • F16D2125/18Mechanical mechanisms
    • F16D2125/20Mechanical mechanisms converting rotation to linear movement or vice versa
    • F16D2125/34Mechanical mechanisms converting rotation to linear movement or vice versa acting in the direction of the axis of rotation
    • F16D2125/36Helical cams, Ball-rotating ramps

Definitions

  • the present invention relates to a friction brake device, and more particularly to a friction brake device that generates a frictional force by pressing a friction member against a brake rotor.
  • the friction brake device has a friction member that is pressed against the rotor disk via the pressing member, and the friction member is the rotor disk.
  • a brake device that can rotate around a rotation axis parallel to the rotation axis.
  • the friction member revolves around the rotation axis relative to the rotor disc, so that a braking torque is generated, and the rotation around the rotation axis relative to the rotor disc occurs.
  • drag torque is generated.
  • the braking torque is also generated when the drag torque is transmitted to the rotor disk by the gear device.
  • the braking force is increased as compared with a general brake device in which braking torque is generated only when the friction member revolves relative to the rotor disk. be able to.
  • the braking force can be increased without increasing the pressing force with which the pressing device presses the friction member against the rotor disk via the pressing member.
  • the present invention has been made in view of the above-described limitations in a friction brake device having a friction member capable of rotating and a transmission device for transmitting rotational torque between the brake rotor and the friction member.
  • the main object of the present invention is to increase the pressing force by which the pressing member presses the friction member against the rotor disk without effectively increasing the pressing force of the pressing device by effectively using the rotational torque of the friction member. It is.
  • the rotational torque is mutually exchanged between the brake rotor rotating around the rotation axis, the rotary friction member rotatable around the rotation axis parallel to the rotation axis, and the brake rotor and the rotation friction member.
  • the rotational torque of the rotational friction member Is provided to the pressing member, and there is provided a friction brake device having a rotational torque-pressing force conversion mechanism for converting the rotational torque of the pressing member into a pressing force by which the pressing member presses the rotating friction member.
  • the rotational torque of the brake rotor is transmitted to the rotational friction member by the rotational torque transmission device.
  • the rotational torque-pressing force conversion mechanism transmits the rotational torque of the rotational friction member to the pressing member, and the rotational torque of the pressing member is converted into a pressing force that presses the rotational friction member by the pressing member. Therefore, the pressing force by which the pressing member presses the rotating friction member against the rotor disk can be increased by effectively using the rotational torque transmitted from the brake rotor to the friction member.
  • the rotating friction member is revolved and rotated as compared with the friction brake device described in the above publication.
  • the braking force generated by the rotation can be further increased.
  • the pressing member supports the rotating friction member rotatably around the rotation axis, and is supported rotatably around the rotation axis by the stationary support member.
  • the torque-pressing force conversion mechanism is disposed between the rotational friction member and the stationary support member, and transmits the rotational torque from the rotational friction member to the pressing member, and the pressure against the stationary support member around the rotation axis.
  • a rotation-linear displacement conversion mechanism that converts the relative rotation of the member into a linear displacement of the pressing member toward the brake rotor along the rotation axis.
  • the rotational torque is transmitted from the rotational friction member to the pressing member by the rotational torque transmission member.
  • the rotation-linear displacement converting mechanism converts the relative rotation of the pressing member with respect to the stationary support member around the rotation axis into linear displacement of the pressing member toward the brake rotor along the rotation axis. Therefore, since the rotating friction member can be moved in the direction toward the brake rotor along the rotation axis by the pressing member, the pressing force with which the rotating friction member presses the rotor disk can be increased.
  • the rotation-linear displacement conversion mechanism may be a screw-type rotation-linear displacement conversion mechanism provided with a guide groove extending spirally around the rotation axis.
  • the rotation-linear displacement conversion mechanism is a screw-type rotation-linear displacement conversion mechanism provided with a guide groove extending spirally around the rotation axis. Therefore, the rotational movement of the pressing member can be converted into a linear movement of the pressing member toward the brake rotor along the rotation axis by the screw action by the guide groove.
  • the rotation-linear displacement conversion mechanism is an inclined surface of the pressing member and the stationary support member facing each other along the rotation axis, and is relative to a virtual plane perpendicular to the rotation axis. It may be a wedge type rotation-linear displacement conversion mechanism having an inclined surface inclined in the same direction and extending in an arc shape around the rotation axis.
  • the rotation-linear displacement conversion mechanism is an inclined surface of the pressing member and the stationary support member, and is inclined in the same direction with respect to a virtual plane perpendicular to the rotation axis, and is arcuate around the rotation axis.
  • This is a wedge-type rotation-linear displacement conversion mechanism having an inclined surface extending in the direction. Therefore, by the wedge action by the inclined surfaces of the pressing member and the stationary support member, the rotational movement of the pressing member can be converted into a linear movement of the pressing member toward the brake rotor along the rotation axis.
  • each inclined surface may have a region inclined in the opposite direction to the virtual plane.
  • each inclined surface has regions inclined in opposite directions with respect to the virtual plane, the rotating friction member is braked along the rotation axis by the pressing member regardless of the rotation direction of the pressing member. It can be moved in the direction toward the rotor. Therefore, regardless of the rotation direction of the rotor disk, it is possible to increase the pressing force with which the rotating friction member presses the rotor disk. Therefore, when the brake device of the present invention is applied to a vehicle brake device, a high braking force can be generated with high responsiveness regardless of whether the vehicle is moving forward or backward.
  • the rotational friction member has a shaft portion extending coaxially with the rotation axis, and the rotational torque transmission member is an elastically deformable region along the rotation axis.
  • the rotational torque transmitted by the rotational torque transmitting member is engaged with the pressing member on the rotation axis.
  • a rotational torque transmission limiting mechanism that prevents the torque from increasing may be formed.
  • the shaft portion of the rotating friction member engages with the pressing member on the rotation axis, so that the rotational torque transmitting member The rotational torque transmitted by is prevented from increasing. Further, when the rotational torque of the rotational friction member is the same, the rotational torque transmitted to the pressing member by the rotational torque transmitting member changes according to the pressing force of the pressing device that presses the pressing member against the rotational friction member. To do.
  • the rotational torque transmission limiting mechanism can reliably prevent the rotational torque of the pressing member from being converted into a pressing force that presses the rotational friction member without limit.
  • the rotational torque transmitting member extends along the rotation axis while being fitted to the shaft portion, and is supported at one end by one of the rotational friction member and the stationary support member.
  • the other end of the rotary friction member and the stationary support member may be frictionally engageable over the entire circumference.
  • the rotational torque is more favorably transmitted from the rotational friction member to the pressing member than when the rotational torque transmission member is provided only in a partial region around the rotation axis. be able to.
  • the rotational friction member is applied to the pressing member. Rotational torque can be transmitted satisfactorily. Further, it is possible to reduce the possibility of abnormal wear such as uneven wear occurring on the other of the rotary friction member and the stationary support member that frictionally engage with the other end of the rotational torque transmission member, and improve the durability of the brake device. .
  • the rotational torque transmission device may include a gear provided on the brake rotor and the rotational friction member and meshing with each other.
  • the rotational torque is transmitted between the brake rotor and the rotational friction member by the rotational torque transmission device including the gears meshing with each other. Therefore, the rotational friction member can be reliably rotated around the rotation axis by the rotation torque of the brake rotor, and the drag torque generated by the rotation of the rotation friction member can be reliably converted into the braking torque and transmitted to the brake rotor.
  • FIG. 1 is a cross-sectional view showing a first embodiment of a friction brake device according to the present invention configured as a vehicle brake device, cut along a cut surface passing through a rotation axis. It is sectional drawing which cuts and shows 2nd embodiment of the friction brake device by this invention comprised as a brake device for vehicles by the cut surface which passes along a rotating shaft line. It is sectional drawing which cut
  • FIG. 4 is a partial cross-sectional view showing the wedge-type rotational torque-pressing force conversion mechanism shown in FIG.
  • FIG. 6 is a partial cross-sectional view showing a wedge-type rotational torque-pressing force conversion mechanism when a pressing member and a supporting member are relatively displaced.
  • FIG. 5 is a partial cross-sectional view showing one modified example of a cam surface of a wedge-type rotational torque-pressing force conversion mechanism.
  • FIG. 6 is a partial cross-sectional view showing another modification of the cam surface of the wedge-type rotational torque-pressing force conversion mechanism.
  • FIG. 1 is a cross-sectional view showing a first embodiment of a friction brake device according to the present invention configured as a vehicle brake device, cut along a cut surface passing through a rotation axis.
  • reference numeral 10 denotes an overall brake device, and the brake device 10 includes a brake rotor 12 and brake pads 14A and 14B as first and second rotating friction members.
  • the brake rotor 12 rotates about a rotation axis 18 together with a rotation axis 16 of a wheel (not shown).
  • the brake rotor 12 includes a main rotor 20 that is integral with the rotary shaft 16 and a sub-rotor 22 that rotates integrally with the main rotor.
  • the main rotor 20 and the sub rotor 22 are formed of the same metal material.
  • the main rotor 20 has a disk portion 20A and a cylindrical portion 20B that are spaced apart from each other along the rotation axis 18.
  • the disk portion 20 ⁇ / b> A is integrally connected to the rotation shaft 16 at the inner peripheral portion, and extends substantially in a disk shape around the rotation axis 18 perpendicular to the rotation axis 18.
  • the cylindrical portion 20B is integrally connected to the outer peripheral portion of the disk portion 20A and extends in a cylindrical shape around the rotation axis 18.
  • the sub-rotor 22 extends in the shape of an annular plate around the rotation axis 18 perpendicular to the rotation axis 18, and is connected to the end of the cylindrical portion 20B opposite to the disk portion 20A by a plurality of bolts 24 at the outer periphery. Has been.
  • the disk portion 20A and the sub-rotor 22 have the same thickness, and the thickness of the cylindrical portion 20B is smaller than the thickness of the disk portion 20A and the sub-rotor 22.
  • the cylindrical portion 20 ⁇ / b> B extends in a cylindrical shape around the rotation axis 18, it has higher rigidity than the disk portion 20 ⁇ / b> A and the sub-rotor 22.
  • the disk portion 20 ⁇ / b> A and the sub-rotor 22 function as first and second disk portions extending around the rotation axis 18 perpendicular to the rotation axis 18 and spaced apart from each other along the rotation axis 18.
  • the cylindrical portion 20 ⁇ / b> B functions as a connecting portion that cooperates with the bolt 24 to integrally connect the outer peripheral portion of the disk portion 20 ⁇ / b> A and the sub-rotor 22.
  • the disk portion 20A, the cylindrical portion 20B, and the sub-rotor 22 have a U-shaped cross-sectional shape opened inward in the radial direction when viewed from a radial cut surface passing through the rotation axis 18.
  • the mutually opposed surfaces of the disk portion 20A and the sub-rotor 22 define first and second friction surfaces extending around the rotation axis 18 in parallel to each other perpendicular to the rotation axis 18 respectively. .
  • the rotary shaft 16 is rotatably supported around the rotary axis 18 by a sleeve portion 28A of a wheel support member 28 via a pair of ball bearings 26.
  • a space between the pair of ball bearings 26, the rotating shaft 16, and the sleeve portion 28A is filled with a lubricant such as grease.
  • a pair of seal members 30 are arranged on both sides in the axial direction with respect to the pair of ball bearings 26. The seal member 30 is disposed between the rotary shaft 16 and the sleeve portion 28A so that dust and muddy water do not enter the ball bearing 26. It is sealed.
  • the disk portion 20A of the main rotor 20 is a wheel rim formed by four bolts 32 and nuts screwed to the four bolts 32 while being spaced apart from each other by 90 ° around the rotation axis 18. It is designed to be integrally connected to the part. Therefore, the rotating shaft 16 and the brake rotor 12 (the main rotor 20 and the sub-rotor 22) rotate around the rotating axis 18 together with the wheels.
  • the brake pads 14A and 14B are disposed between the disc portion 20A and the sub-rotor 22, and have the same shape and size.
  • Each of the brake pads 14A and 14B has a disc portion and a shaft portion that are coaxial with each other, and the disc portion is located on the side of the disc portion 20A and the sub-rotor 22.
  • the disc portion of the brake pad 14A has a friction portion 14AA on the outer peripheral portion of the outer surface
  • the disc portion of the brake pad 14B has a friction portion 14BA on the outer peripheral portion of the outer surface.
  • Each friction part extends in the form of a ring around the axis of the brake pad in a state of protruding from the side surface of the disk part.
  • the brake pads 14A and 14B may be formed integrally with the disc portion by being manufactured by, for example, a powder sintering method. Further, the friction part may be formed by attaching an annular belt-like friction material to the side surface of the disk part by bonding or other means. Furthermore, although the friction portions 14AA and 14BA are made of the same friction material, they may be made of different friction materials.
  • the brake pads 14A and 14B can be rotated around a rotation axis 36 parallel to the rotation axis 18 by pressing members 34A and 34B, respectively, and can be relatively displaced along the rotation axis 36 with respect to the pressing members 34A and 34B. Is supported.
  • the pressing members 34A and 34B each have a cylindrical portion surrounding the shaft portions of the brake pads 14A and 14B, a shaft portion formed integrally with the cylindrical portion, and a disk portion connecting them integrally. Yes.
  • the tip ends of the shaft portions of the brake pads 14A and 14B have a spherical shape, and are slightly spaced apart from the pressing members 34A and 34B, respectively.
  • a plurality of balls 38A and 38B are interposed between the shaft portions of the brake pads 14A and 14B and the cylindrical portions of the pressing members 34A and 34B, respectively.
  • the pressing members 34A and 34B are supported by the support members 40A and 40B, respectively, so that they can rotate around the rotation axis 36 and can be displaced relative to the support members 40A and 40B along the rotation axis 36.
  • the support members 40 ⁇ / b> A and 40 ⁇ / b> B each have an outer cylindrical portion and an inner cylindrical portion that are integral with each other, and these cylindrical portions are aligned with the rotation axis 18.
  • the outer cylindrical portions of the support members 40A and 40B support the cylindrical portions of the pressing members 34A and 34B via the ball screw mechanisms 42A and 42B, respectively, and the inner cylindrical portions of the support members 40A and 40B are respectively pressed members 34A and 34B.
  • the shaft part is directly supported.
  • the ball screw mechanism 42A includes screw grooves provided on the outer surface of the cylindrical portion of the pressing member 34A and the inner surface of the outer cylindrical portion of the support member 40A, and a plurality of balls 48A that are partially engaged in these screw grooves. Is included.
  • the ball screw mechanism 42B includes a plurality of screw grooves provided on the outer surface of the cylindrical portion of the pressing member 34B and the inner surface of the outer cylindrical portion of the support member 40B, and a plurality of portions that are partially engaged with these screw grooves.
  • Ball 48B Each thread groove extends spirally around the rotation axis 36.
  • Support members 40A and 40B are supported by stationary member 50 in a state where their inner ends are in contact with each other.
  • the stationary member 50 has a cylindrical portion 50X extending along the rotation axis 36, and the support members 40A and 40B are fixed to the cylindrical portion 50X by press-fitting. Therefore, the support members 40 ⁇ / b> A and 40 ⁇ / b> B do not rotate around the rotation axis 36 relative to the stationary member 50, and are not displaced along the rotation axis 36 relative to the stationary member 50. Accordingly, the support members 40A and 40B and the stationary member 50 work together to function as a stationary support member.
  • the stationary member 50 has a cylindrical inner peripheral portion 50Y, and the cylindrical portion 50X is integrally connected to the inner peripheral portion 50Y by an annular plate-like portion 50Z extending around the rotational axis 18 perpendicular to the rotational axis 18. Has been.
  • the shaft portions of the brake pads 14A and 14B and the inner cylindrical portions of the support members 40A and 40B cooperate with each other to form a piston-cylinder device 54 having a cylinder chamber 52.
  • a plurality of radial passages 56 are formed by a plurality of radial grooves provided at the inner ends.
  • annular passage 58 extending around the rotation axis 36 in cooperation with the cylindrical portion 50X of the stationary member 50 is formed.
  • FIG. 1 only one each of the brake pads 14A and 14B, the pressing members 34A and 34B, the support members 40A and 40B, the cylindrical portion 50X, the piston-cylinder device 54, etc. is shown. However, a plurality of these may be provided in a state of being evenly spaced around the rotation axis 18.
  • a radial passage 60 communicating with the annular passage 58 at the radially outer end is formed inside the cylindrical portion 50X and the annular plate-like portion 50Z of the stationary member 50.
  • An annular groove 62 extending around the rotation axis 18 is formed on the inner surface of the inner peripheral portion 50 ⁇ / b> Y of the stationary member 50, and the annular groove 62 communicates with the radially inner end of the radial passage 60. ing.
  • the annular groove 62 is connected to a hydraulic brake actuator by a communication hole 64 provided in the inner peripheral portion 50Y of the stationary member 50 and a conduit (not shown).
  • the regions between the shaft portions of the pressing members 34A and 34B and the inner cylindrical portions of the support members 40A and 40B are sealed by O-ring seals 66A and 66B on both sides of the cylinder chamber 52.
  • the regions between the outer cylindrical portions of the support members 40A and 40B and the cylindrical portion 50X of the stationary member 50 are sealed by O-ring seals 68A and 68B on both sides of the annular passage 58.
  • regions between the sleeve portion 28A of the wheel support member 28 and the inner peripheral portion 50Y of the stationary member 50 on both sides of the annular groove 62 are sealed by O-ring seals 70A and 70B.
  • a cover member 72 is fixed to the side surface of the annular plate-like portion 50Z of the stationary member 50 by screwing.
  • the cover member 72 covers the sub-rotor in a state of being separated from the sub-rotor 22, and prevents dust and muddy water from entering the brake device 10 between the brake rotor 12 and the stationary member 50.
  • External gears 76A and 76B are provided on the outer peripheries of the disc parts of the brake pads 14A and 14B, respectively, and the external gears 76A and 76B mesh with internal gears 78A and 78B provided on the cylindrical part 20B of the main rotor 20, respectively. is doing.
  • the external gears 76A and 76B and the internal gears 78A and 78B are not dependent on the frictional force between the brake rotor 12 and the brake pads 14A and 14B, and the rotational torque transmission device 80A and It functions as 80B.
  • the shaft portions of the brake pads 14A and 14B have a large-diameter portion on the base side and a small-diameter portion on the tip side, and rotational torque transmitting members 82A and 82B are fitted in the small-diameter portions, respectively.
  • the rotational torque transmitting members 82A and 82B fulfill the function of transmitting rotational torque around the rotation axis 36 between the brake pads 14A and 14B and the pressing members 34A and 34B, respectively, as necessary.
  • the rotational torque transmitting members 82A and 82B are made of an elastic cylinder made of an elastic material such as hard rubber having a high elastic modulus, and are disposed closer to the cylinder chamber 52 than the elastic cylinder and are substantially rigid bodies such as metal. And a hard cylindrical body formed by The elastic cylinder and the hard cylinder are integrally connected by means such as adhesion at the inner end and the outer end, respectively.
  • the outer end of the elastic cylinder is fixed to the shoulder between the large-diameter portion and the small-diameter portion by means such as adhesion, and the inner end of the hard cylinder can be frictionally engaged with the pressing members 34A and 34B. It has become.
  • the pressing members 34A and 34B are displaced in a direction approaching the brake pads 14A and 14B, and the pressing members press the brake pads via the rotational torque transmission members 82A and 82B. Therefore, the ball screw mechanisms 42A and 42B and the rotational torque transmission members 82A and 82B cooperate with the pressing members 34A and 34B and the support members 40A and 40B, and use the rotational torque of the brake pads 14A and 14B as the pressing force of the pressing members. Functions as a conversion mechanism for conversion.
  • the length of the rotational torque transmitting members 82A and 82B in the free state is the length of the small diameter portion of the shaft portion of the brake pads 14A and 14B, that is, the length from the shoulder portion to the tip end between the large diameter portion and the small diameter portion. Too long. However, when the rotational torque transmitting member receives a compressive stress in the longitudinal direction, the intermediate cylindrical body is compressed and deformed, so that the length of the rotating torque transmitting member can be reduced to the length of the small diameter portion of the shaft portion.
  • the rotational torque transmitting members 82A and 82B are subjected to compressive stress in the longitudinal direction, and in a situation where their length is greater than the length of the small diameter portion of the shaft portion, Rotational torque is transmitted to The rotational torque transmitted is proportional to the frictional force between the inner end of the hard cylindrical body and the pressing members 34A and 34B, and is therefore proportional to the compressive stress received by the rotational torque transmitting member.
  • the piston-cylinder device 54 is supported by the stationary member 50, and serves as first and second pressing devices that press the brake pads 14A and 14B against the disk portion 20A and the sub-rotor 22 via the pressing members 34A and 34B, respectively. Function.
  • the brake rotor 12 and the rotating shaft 16 rotate around the rotating axis 18 together with the wheel.
  • the brake pads 14A and 14B, the sleeve portion 28, the support members 40A and 40B, the stationary member 50, and the cover member 72 do not rotate around the rotation axis 18. Therefore, the disk portion 20A and the sub-rotor 22 rotate around the rotation axis 18 relative to the brake pads 14A and 14B. Further, the rotational torques of the disk portion 20A and the sub-rotor 22 are converted into rotational torque around the rotation axis 36 by the rotational torque transmission devices 80A and 80B, respectively, and transmitted to the brake pads 14A and 14B.
  • the brake pads 14A and 14B revolve around the rotation axis 18 relative to the disk portion 20A and the sub-rotor 22 while rotating around the rotation axis 36, and rotate relatively to the pressing members 34A and 34B. Rotates about axis 36.
  • the braking torques Trv and Trt are proportional to the pressing force of the brake pads 14A and 14B against the disc portion 20A and the sub-rotor 22. These pressing forces are increased by a rotational torque-pressing force conversion mechanism using ball screw mechanisms 42A, 42B, etc., and these pressing forces are proportional to the hydraulic pressure in the cylinder chamber 52 of the piston-cylinder device 54. Therefore, by controlling the pressing force by controlling the hydraulic pressure in the cylinder chamber 52, the braking torque Tb, that is, the braking force generated by the brake device 10 can be controlled.
  • the braking torque Tb is the sum of the braking torque Trv due to revolution and the braking torque Trt due to rotation. Further, the pressing force of the brake pads 14A and 14B against the disc portion 20A and the sub-rotor 22 is increased by a rotational torque-pressing force conversion mechanism such as a ball screw mechanism 42A or 42B.
  • the rotational torque is derived from the rotational torque transmitted from the disk portion 20A and the sub-rotor 22 to the brake pads 14A and 14B via the rotational torque transmission devices 80A and 80B, that is, the rotational torque of the wheels.
  • the first embodiment it is possible to generate a braking torque far higher than that of a conventional brake device having a general structure that generates only the braking torque Trv, and the rotational torque is converted into a pressing force. Therefore, it is possible to generate a higher braking torque than that of the brake device described in the above-mentioned publication in which the pressing force is not increased.
  • the distance between the rotation axis 18 and the rotation torque transmission devices 80A and 80B is 152.5 mm
  • the distance between the rotation axis 18 and the rotation axis 36 is 120 mm
  • the rotation axis 36 The distance from the center of the friction portions 14AA and 14BA is 25 mm.
  • the friction coefficient of each friction contact portion is ⁇
  • the pressing force by the piston-cylinder device 54 as the pressing device is F1 kgf
  • the pressing force after the increase due to the rotation torque being converted into the pressing force is F2 kgf.
  • the drag torque Tst around the rotation axis 36 generated by the rotation of the brake pads 14A and 14B is the sum of the drag torque generated by the rotation of the two brake pads, and is expressed by the following formula 1.
  • the braking torque Tb which is the sum of the braking torque Trv and the braking torque Trt due to rotation, is expressed by the following Equation 4, and is compared with a brake device having a conventional general structure that generates only the braking torque Trv.
  • the servo ratio Rbt1 of the braking torque is expressed by the following formula 5.
  • the lead angle of the thread groove of the ball screw mechanisms 42A and 42B is set to 14 degrees, the efficiency for converting the rotational torque into the pressing force is set to 100%, and the distance between the rotation axis 36 and the centers of the balls 48A and 48B is set to 18 mm.
  • the friction coefficient ⁇ 2 between the rotational torque transmission members 82A and 82B and the pressing members 34A and 34B is set to 0.6, and the distance from the rotation axis 36 to the thickness center of the rotational torque transmission members 82A and 82B is 6 mm.
  • the servo force F3 generated by converting the rotational torque into the pressing force is expressed by the following equation (6). Further, since the pressing force F1 is F2-F3, the servo ratio Rbt2 of the increase due to the rotation torque being converted into the pressing force is expressed by the following equation (7).
  • the servo ratio of the braking torque in comparison with the brake device described in the above-mentioned publication in which the brake pad rotates is Rbt2, that is, 5.05. Therefore, according to the first embodiment, in the case of the above specifications, it is possible to generate a braking torque about 10 times that of a brake device having a conventional general structure, and is described in the above-mentioned publication. A braking torque about 5 times that of the braking device can be generated.
  • the braking torque Tb is N times the value expressed by Equation 5. Therefore, a higher braking torque can be generated, and both of the servo ratios Rbt1 and Rbt2 can be further increased.
  • the amount of compressive deformation of the rotational torque transmitting members 82A and 82B increases. Therefore, when the pressing force by the piston-cylinder device 54 exceeds a certain value, the tip ends of the shaft portions of the brake pads 14A and 14B come into contact with the pressing members 34A and 34B at the position of the rotation axis 36. Therefore, since the rotational torque transmitted from the brake pad to the pressing member does not increase any more, the servo ratio of the braking torque in that situation is Rbt1.
  • the pressing members 34A and 34B have a function of converting the rotational torque into the pressing force by the ball screw mechanisms 42A and 42B so as to reduce the pressing force of the brake pads 14A and 14B on the disc portion 20A and the sub-rotor 22.
  • the pressing force by the piston-cylinder device 54 exceeds a certain value, the tip ends of the shaft portions of the brake pads 14A and 14B abut against the pressing members 34A and 34B, and are transmitted from the brake pad to the pressing member.
  • the rotational torque does not increase any further.
  • the braking force can be generated according to the braking operation even when the vehicle moves backward. Also in this case, the servo effect by the rotation of the brake pads 14A and 14B can be obtained.
  • FIG. 2 is a cross-sectional view showing a second embodiment of the friction brake device according to the present invention configured as a vehicle brake device, cut along a cut surface passing through the rotation axis.
  • the same members as those shown in FIG. 1 are denoted by the same reference numerals as those in FIG. The same applies to FIG. 3 described later.
  • the main rotor 20 does not have the cylindrical portion 20B and is a member different from the rotating shaft 16.
  • the annular plate-like disk portion 20A of the main rotor 20 is integrally connected to the sub-rotor 22 by a connection portion 64 made of fins for heat dissipation.
  • the rotary shaft 16 has a flange portion 16A at an outer end portion, and the inner peripheral portion of a rim portion 20C integrated with the disc portion 20A is connected to the flange portion 16A by four bolts 32. Accordingly, although not shown in the drawing, the bolt 32 and the nut screwed to the bolt 32 integrally connect the rim portion 20C to the disc portion of the wheel together with the flange portion 16A.
  • the brake pads 14A and 14B, the pressing members 34A and 34B, and the support members 40A and 40B are disposed on both sides of the brake rotor 12 in the opposite direction to the case of the first embodiment. Therefore, the disc portions of the brake pads 14A and 14B are located on the disk portion 20A and the sub-rotor 22 side, and the shaft portions extend away from the disc portion. Further, the support members 40A and 40B are displaced relative to the caliper along the rotation axis 36 by the caliper 88 extending substantially in a U-shaped cross section across the outer periphery of the brake rotor 12 and around the rotation axis 36. It is supported so as not to rotate.
  • the caliper 88 is composed of half bodies 88A and 88B integrally connected by connecting means such as bolts or welding, and the half body 88B is integrally fixed to the stationary member 50 by connecting means such as bolts.
  • Half bodies 88A and 88B cooperate with pressing members 34A and 34B and support members 40A and 40B, respectively, to form piston-cylinder devices 54A and 54B having cylinder chambers 52A and 52B.
  • the piston-cylinder devices 54A and 54B form a pressing device that presses the brake pads 14A and 14B against the disk portion 20A and the sub-rotor 22 via the pressing members 34A and 34B, respectively.
  • the cylinder chambers 52A and 52B are connected to a hydraulic brake actuator by internal passages provided in the half bodies 88A and 88B and conduits communicating therewith, respectively. Accordingly, the hydraulic pressure in the cylinder chambers 52A and 52B is simultaneously controlled to the same pressure by the brake actuator.
  • a ring gear member 90 having a substantially cylindrical shape is fixed to the outer periphery of the main rotor 20 by means such as welding, and the ring gear member 90 extends around the rotation axis 18.
  • Internal gears 78A and 78B are provided on the inner surfaces of both ends of the ring gear member 90, and these internal gears mesh with external gears 76A and 76B provided on the outer circumferences of the disc portions of the brake pads 14A and 14B, respectively. is doing.
  • the external gears 76A and 76B and the internal gears 78A and 78B transmit the rotational torque between the brake rotor 12 and the brake pads 14A and 14B. And 80B.
  • the other points of the second embodiment are configured in the same manner as the first embodiment described above. Accordingly, the second embodiment operates in the same manner as the first embodiment, except that the brake pads 14A and 14B are pressed in the directions approaching each other by the pressing force by the piston-cylinder devices 54A and 54B, respectively.
  • the servo ratios Rbt1 and Rbt2 of the braking torque are also the same as in the first embodiment. Therefore, according to the second embodiment, in the case of the above specifications, it is possible to generate a braking torque about 10 times that of a brake device having a conventional general structure, and is described in the above-mentioned publication. A braking torque about 5 times that of the braking device can be generated.
  • FIG. 3 is a cross-sectional view showing a third embodiment of the friction brake device according to the present invention configured as a vehicle brake device, cut along a cut surface passing through the rotation axis, and FIG. 4 is shown in FIG.
  • FIG. 3 is a partial cross-sectional view showing a wedge-type rotational torque-pressing force conversion mechanism cut along a cylindrical cut surface extending around a rotation axis.
  • a wedge-type rotational torque-pressing force conversion mechanism. 90A and 90B are provided instead of the ball screw mechanisms 42A and 42B in the first and second embodiments.
  • FIG. 3 two rotational torque-pressing force conversion mechanisms 90A and 90B are shown. However, there may be only one rotational torque-pressing force conversion mechanism, and the rotation torque-pressing force conversion mechanism is uniform around the rotation axis 36.
  • a plurality of rotational torque-pressing force conversion mechanisms may be provided in a state of being spaced apart from each other.
  • Each of the rotational torque-pressing force conversion mechanisms 90A and 90B is provided on the outer surface of the inner end of the cylindrical portion of the pressing members 34A and 34B, and has a cylindrical shoulder facing radially outward and the cylinders of the support members 40A and 40B.
  • Balls 92A and 92B interposed between the two parts are included.
  • Balls 92A and 92B are made of a material such as a substantially rigid metal.
  • the surfaces of the pressing member 34A and the support member 40A facing each other along the rotation axis 36 in the radial region where the ball 92A is disposed have cam surfaces 34AZ and 40AZ that can engage with the ball 92A, respectively. .
  • the surfaces of the pressing member 34B and the support member 40B facing each other along the rotation axis 36 in the radial region where the ball 92B is disposed have cam surfaces 34BZ and 40BZ that can be engaged with the ball 92B, respectively. is doing.
  • Each cam surface extends in an arc shape centering on the rotation axis 36.
  • the cam surface 34AZ includes a curved portion 34AZA that opens toward the support member 40A, and planar inclined portions 34AZB and 34AZC that extend from the curved portion to both sides of the curved portion. And have.
  • the inclined portions 34AZB and 34AZC are inclined with respect to a virtual plane 94 perpendicular to the rotation axis 36 so as to approach the support member 40A as the distance from the curved portion 34AZA increases.
  • the cam surface 40AZ has a curved portion 40AZA that opens toward the pressing member 34A, and planar inclined portions 40AZB and 40AZC that extend continuously from the curved portion to both sides of the curved portion.
  • the inclined portions 40AZB and 40AZC are inclined with respect to the virtual plane 94 so as to approach the pressing member 34A as the distance from the curved portion 40AZA increases.
  • the inclination angles of the inclined portion 34AZB and the like with respect to the virtual plane 94 are the same. Therefore, the inclined portions 34AZB and 40AZC and 34AZC and 40AZB facing each other in the radial direction of each ball 92A are inclined in the same direction with respect to the virtual plane 94 and extend in parallel to each other.
  • the rotational torque-pressing force conversion mechanism 90B has the same structure as the rotational torque-pressing force conversion mechanism 90A. That is, the cam surfaces 34BZ and 40BZ are formed in the same manner as the cam surfaces 34AZ and 40AZ, respectively, except that the direction along the rotation axis 36 is opposite.
  • the rotational torque transmitting members 82A and 82B are fixed to the pressing members 34A and 34B.
  • the pressing members 34 ⁇ / b> A and 34 ⁇ / b> B extend over the entire circumference around the rotation axis 36 in a region radially opposed to the small diameter portion of the shaft portion of the brake pads 14 ⁇ / b> A and 14 ⁇ / b> B.
  • Notches are provided.
  • the rotational torque transmission members 82A and 82B are arranged in a state in which these notches are accommodated.
  • the elastic cylinders of the rotational torque transmitting members 82A and 82B are fixed to the side surfaces of the pressing members 34A and 34B by means such as adhesion, and the end surfaces of the hard cylinders are the large and small diameter portions of the shaft portions of the brake pads 14A and 14B. Opposite the shoulder between. Therefore, also in the third embodiment, the shaft portions of the brake pads 14A and 14B and the rotational torque transmission members 82A and 82B cooperate with each other to limit the transmission of rotational torque between the brake pad and the pressing member. It functions as rotational torque transmission limiting mechanisms 84A and 84B.
  • the third embodiment is the first embodiment except that the rotational torque of the brake rotor 12 is converted into the pressing force for the brake pads 14A and 14B by the wedge-type rotational torque-pressing force conversion mechanisms 90A and 90B. Operates in the same way.
  • the braking torque Trv due to the revolution of the brake pads 14A and 14B in addition to the braking torque Trv due to the revolution of the brake pads 14A and 14B, the braking torque Trt due to the rotation is generated, and the sum of these becomes the braking torque Tb.
  • the components of the rotational torque-pressing force converting mechanism are the pressing member 34A and the supporting member 40A. Positioned in the standard position shown in FIG. When the pressing members 34A and 34B and the supporting members 40A and 40B are in the standard positions, the distance between the pressing members 34A and 34B and the supporting members 40A and 40B in the direction along the rotation axis 36 is minimized, and the two No force for separating the pressing members is generated. Therefore, the brake pads 14A and 14B are not substantially frictionally engaged with the disc portion 20A and the sub-rotor 22, respectively, and no braking force is generated.
  • the pressing members 34A and 34B are pressed against the brake pads 14A and 14B via the rotational torque transmitting members 82A and 82B by the pressing force of the piston-cylinder device 54. The Therefore, the brake pads 14A and 14B are frictionally engaged with the disk portion 20A and the sub-rotor 22, respectively.
  • the rotational torques of the disk portion 20A and the sub-rotor 22 are converted into rotational torque around the rotation axis 36 by the rotational torque transmission devices 80A and 80B, respectively, and transmitted to the brake pads 14A and 14B.
  • the rotational torque of the brake pads 14A and 14B is transmitted to the pressing members 34A and 34B via the rotational torque transmission members 82A and 82B. Therefore, the pressing members 34A and 34B rotate relative to the supporting members 40A and 40B around the rotation axis 36, respectively.
  • the pressing member 34A and the support member 40A are relatively rotated and displaced in opposite directions, so that the cam surfaces 34ZA and 40ZA at the position of the ball 38A tend to approach each other.
  • the ball 38A is not compressed and deformed, a so-called wedge effect is generated, and the pressing member and the support member 16 are relatively displaced along the rotation axis 36 in a direction away from each other. Accordingly, the pressing force of the brake pads 14A and 14B against the disc portion 20A and the sub-rotor 22 is increased.
  • the braking torques Trv and Trt are proportional to the pressing force of the brake pads 14A and 14B against the disc portion 20A and the sub-rotor 22. These pressing forces are increased by the wedge-type rotational torque-pressing force conversion mechanisms 90A and 90B, and these pressing forces are proportional to the hydraulic pressure in the cylinder chamber 52 of the piston-cylinder device 54. Therefore, by controlling the pressing force by controlling the hydraulic pressure in the cylinder chamber 52, the braking torque Tb, that is, the braking force generated by the brake device 10 can be controlled.
  • the distances of the brake device 10 are the same as those in the first embodiment, the inclination angle of the cam surface 34ZA and the like is 14 deg, and the conversion efficiency from the rotational torque to the pressing force is 100%.
  • the servo ratios Rbt1 and Rbt2 of the braking torque are also the same as in the first embodiment. Therefore, according to the third embodiment, in the case of the above specifications, it is possible to generate a braking torque about 10 times that of a brake device having a conventional general structure, and is described in the above-mentioned publication. A braking torque about 5 times that of the braking device can be generated.
  • the inclined portions 40AZB and 40AZC of the cam surface 40AZ are inclined in directions opposite to each other with respect to the virtual plane 94, and the inclined portions 40AZB and 40AZC are also opposite to each other in relation to the virtual plane 94.
  • the wedge-type rotational torque-pressing force conversion mechanisms 90A and 90B use the rotational torque as the pressing force when the pressing members 34A and 34B are rotationally displaced relative to the support members 40A and 40B in any direction. Can be converted. Therefore, a high braking force can be generated with high responsiveness regardless of whether the vehicle is moving forward or backward.
  • the amount of compressive deformation of the rotational torque transmitting members 82A and 82B increases.
  • the tip ends of the shaft portions of the brake pads 14A and 14B come into contact with the pressing members 34A and 34B at the position of the rotation axis 36, and from the brake pad to the pressing member.
  • the transmitted rotational torque no longer increases.
  • the pressing force can be increased according to the pressing force by the piston-cylinder device 54 by converting the rotational torque of the pressing member into the pressing force, and the pressing force can be increased without limit. Can be reliably prevented.
  • the rotational torque transmitting members 82A and 82B are made of an elastic cylinder and a hard cylinder, and are fitted to the shaft portions of the brake pads 14A and 14B, respectively. Yes.
  • the rigid cylindrical body can be frictionally engaged with the pressing member or the brake pad over the entire circumference around the rotation axis 36.
  • the rotational torque can be more favorably transmitted from the brake pad to the pressing member than when the rotational torque transmitting member is provided only in a partial region around the rotation axis.
  • the rotational torque is transmitted from the rotational friction member to the pressing member as compared with the case where the other end of the rotational torque transmitting member can be frictionally engaged with the brake pad or the pressing portion only in a partial region around the rotation axis. Can be performed satisfactorily. Furthermore, it is possible to reduce the possibility that abnormal wear such as uneven wear occurs on the brake pad or the pressing member frictionally engaged with the other end of the rotational torque transmitting member, and to improve the durability of the brake device.
  • the rotational torque transmission member is formed only of an elastic material such as hard rubber, and the wear of the rotational torque transmission member is suppressed as compared with the case where the elastic material directly frictionally engages the brake pad or the pressing portion.
  • this also improves the durability of the brake device.
  • the disk portion 20A, the cylindrical portion 20B, and the sub-rotor 22 are opened inward in the radial direction when viewed from a radial cut surface passing through the rotation axis 18. It has a letter-shaped cross-sectional shape.
  • the pressing members 34A and 34B and the like are disposed between the disk portion 20A and the sub-rotor 22, and press the brake pads 14A and 14B and the like in a direction away from each other.
  • a caliper that extends across both sides of the brake rotor and supports the friction member and the pressing device and supports the reaction force of the pressing force of the pressing device as in the conventional disc brake device is unnecessary, and the rigidity of the caliper is reduced. It is not necessary to make it higher. Further, since the disk portion 20A and the sub-rotor 22 extend around the rotation axis 18 over the entire circumference, the rigidity of the brake rotor 12 is improved as compared with a caliper that extends only in an arc around the rotation axis. Can be high.
  • the rotational torque transmission members 82A and 82B are fitted to the shaft portions of the brake pads 14A and 14B, respectively.
  • the rotational torque transmission member may be provided only in a partial region around the rotation axis 36 as long as the rotation torque can be transmitted at a position spaced radially from the rotation axis 36.
  • the rotational torque transmission members 82A and 82B are made of an elastic cylinder and a hard cylinder, and are fixed to the brake pads 14A and 14B or the pressing members 34A and 34B by the elastic cylinder. However, the rotational torque transmitting members 82A and 82B are supported at one end, for example, by contacting one of the brake pad and the pressing member, and are not fixed as long as they can be frictionally engaged with the other of the brake pad and the pressing member. May be. Further, if the elastic material is also excellent in wear resistance, the hard portion may be omitted.
  • the friction engagement members 14A and 14B have the same size, and their rotation axes 36 are aligned with each other.
  • the friction engagement members 14A and 14B may have different sizes and diameters, and their rotation axes may not be aligned with each other.
  • the friction portions 14AA and 14BA of the friction engagement members 14A and 14B are provided at positions having the same radius around the rotation axis 36.
  • the friction portions 14AA and 14BA may be provided at positions having different radii.
  • the pressing device that presses the pressing members 34A and 34B against the brake pads 14A and 14B is a piston-cylinder device, but the pressing device may be an electromagnetic pressing device.
  • the rotational torque-pressing force conversion mechanism is the ball screw mechanisms 40A and 42B, but as long as it has a guide groove extending spirally around the rotation axis 36.
  • the screw mechanism may not include a rolling element such as a ball.
  • the shape of the screw groove and the tooth engaged therewith may be any shape such as an involute tooth shape or a rectangular shape.
  • the cam surfaces 34AZ and 40AZ of the wedge-type rotational torque-pressing force conversion mechanisms 90A and 90B are respectively curved portions 34AZA and 40AZA and planes extending on both sides of the curved portion. Inclined portions 34AZB, 40AZB and 34ZC, 40AZC.
  • the cam surface of the rotational torque-pressing force conversion mechanism may have another shape as long as it has an inclined surface inclined in the same direction with respect to a virtual plane 94 perpendicular to the rotation axis 36.
  • the cam surface 34AZ may have a mountain shape, and the cam surface 40AZ may have a valley shape that receives the cam surface 34AZ.
  • a rolling element such as a ball may be interposed between the cam surfaces of the pressing member 34A and the support member 40A.
  • the inclined portions 34AZB, 40AZB and 34AZC, 40AZC extending on both sides of the curved portion are inclined so that the inclination angle with respect to the virtual plane 94 gradually decreases as the distance from the curved portion increases. May be curved.
  • the rolling element when a rolling element such as a ball is interposed between the cam surfaces of the pressing member and the support member, only the inclination angle of one cam surface is greater than that of the curved portion. You may curve so that it may become small gradually as it leaves
  • the rolling element may be a cylindrical roller or a tapered roller.
  • the brake characteristic of the brake device can be changed to a progressive brake characteristic.
  • cam surfaces 34AZ and 40AZ have the curved portions 34AZA and 40AZA, respectively. May be.
  • the cylindrical portion 20B is formed integrally with the disc portion 20A to form the main rotor 20.
  • the cylindrical portion 20B may be formed integrally with the sub-rotor 22, and the disc portion 20A, the cylindrical portion 20B, and the sub-rotor 22 may be formed separately.
  • the brake device of each embodiment is a brake device for vehicles
  • the brake device of the present invention may be applied to uses other than vehicles.

Abstract

A friction brake device (10) comprises: a brake rotor (12); brake pads (14A, 14B) that rotate around an axis of rotation (36) that is parallel to the axis of rotation (18) of the friction brake device; rotating torque transmission devices (80A, 80B) that transmit rotating torque between the brake rotor and the brake pads; and a pressing device (54) that presses pressing members (34A, 34B) against the brake pads, and presses the brake pads against the brake rotor. Furthermore, the friction brake device has rotating torque-pressing force conversion mechanisms (42A, 42B, 82A, 82B) that transmit the rotating torque of the brake pads to the pressing members, and convert the rotating torque of the pressing members to a pressing force with which the pressing members press the brake pads.

Description

摩擦ブレーキ装置Friction brake device
 本発明は、摩擦ブレーキ装置に係り、更に詳細にはブレーキロータに摩擦部材を押圧することにより摩擦力を発生させる摩擦ブレーキ装置に係る。 The present invention relates to a friction brake device, and more particularly to a friction brake device that generates a frictional force by pressing a friction member against a brake rotor.
 摩擦ブレーキ装置の一つとして、例えば本願出願人の出願にかかる下記の特許文献1に記載されている如く、押圧部材を介してロータディスクに押圧される摩擦部材を有し、摩擦部材がロータディスクの回転軸線に平行な自転軸線の周りに回転可能なブレーキ装置が既に知られている。この種のディスク型のブレーキ装置においては、摩擦部材がロータディスクに対し相対的に回転軸線の周りに公転することにより制動トルクが発生され、またロータディスクに対し相対的に自転軸線の周りに自転することにより抗力トルクが発生される。そして抗力トルクが歯車装置によってロータディスクへ伝達されることによっても制動トルクが発生される。 As one of the friction brake devices, for example, as described in the following Patent Document 1 applied to the applicant of the present application, the friction brake device has a friction member that is pressed against the rotor disk via the pressing member, and the friction member is the rotor disk. There is already known a brake device that can rotate around a rotation axis parallel to the rotation axis. In this type of disc type brake device, the friction member revolves around the rotation axis relative to the rotor disc, so that a braking torque is generated, and the rotation around the rotation axis relative to the rotor disc occurs. As a result, drag torque is generated. The braking torque is also generated when the drag torque is transmitted to the rotor disk by the gear device.
 上記特許文献1に記載されたブレーキ装置によれば、摩擦部材がロータディスクに対し相対的に公転することによってのみ制動トルクが発生される一般的なブレーキ装置に比して、制動力を高くすることができる。この場合、押圧装置が押圧部材を介して摩擦部材をロータディスクに対し押圧する押圧力を高くすることなく制動力を高くすることができる。 According to the brake device described in Patent Document 1, the braking force is increased as compared with a general brake device in which braking torque is generated only when the friction member revolves relative to the rotor disk. be able to. In this case, the braking force can be increased without increasing the pressing force with which the pressing device presses the friction member against the rotor disk via the pressing member.
特開2008-151199号公報JP 2008-151199 A
〔発明が解決しようとする課題〕
 しかし、上記公開公報に記載された摩擦ブレーキ装置においては、押圧部材が摩擦部材をロータディスクに対し押圧する押圧力は増力されないので、押圧装置が摩擦部材に対し押圧部材を押圧する押圧力と同一である。そのため、押圧装置の押圧力を高くすることなく制動力を高くすることに限界があり、制動力をさらに一層高くする上で改善の余地がある。
[Problems to be Solved by the Invention]
However, in the friction brake device described in the above publication, since the pressing force by which the pressing member presses the friction member against the rotor disk is not increased, it is the same as the pressing force by which the pressing device presses the pressing member against the friction member. It is. For this reason, there is a limit to increasing the braking force without increasing the pressing force of the pressing device, and there is room for improvement in further increasing the braking force.
 本発明は、自転可能な摩擦部材及びブレーキロータと摩擦部材との間にて回転トルクを伝達する伝達装置を有する摩擦ブレーキ装置に於ける上述の如き限界に鑑みてなされたものである。そして本発明の主要な課題は、押圧装置の押圧力を高くすることなく、押圧部材が摩擦部材をロータディスクに対し押圧する押圧力を、摩擦部材の回転トルクを有効に利用して増力することである。 The present invention has been made in view of the above-described limitations in a friction brake device having a friction member capable of rotating and a transmission device for transmitting rotational torque between the brake rotor and the friction member. The main object of the present invention is to increase the pressing force by which the pressing member presses the friction member against the rotor disk without effectively increasing the pressing force of the pressing device by effectively using the rotational torque of the friction member. It is.
〔課題を解決するための手段及び発明の効果〕
 本発明によれば、回転軸線の周りに回転するブレーキロータと、回転軸線に平行な自転軸線の周りに回転可能な回転摩擦部材と、ブレーキロータと回転摩擦部材との間にて回転トルクを相互に伝達する回転トルク伝達装置と、押圧部材を回転摩擦部材に対し押圧することにより回転摩擦部材をブレーキロータに対し押圧する押圧装置と、を有する摩擦ブレーキ装置に於いて、回転摩擦部材の回転トルクを押圧部材に伝達すると共に、押圧部材の回転トルクを、押圧部材が回転摩擦部材を押圧する押圧力に変換する回転トルク-押圧力変換機構を有する、ことを特徴とする摩擦ブレーキ装置が提供される。
[Means for Solving the Problems and Effects of the Invention]
According to the present invention, the rotational torque is mutually exchanged between the brake rotor rotating around the rotation axis, the rotary friction member rotatable around the rotation axis parallel to the rotation axis, and the brake rotor and the rotation friction member. In the friction brake device having a rotational torque transmission device that transmits to the brake friction member and a pressing device that presses the rotational friction member against the brake rotor by pressing the pressing member against the rotational friction member, the rotational torque of the rotational friction member Is provided to the pressing member, and there is provided a friction brake device having a rotational torque-pressing force conversion mechanism for converting the rotational torque of the pressing member into a pressing force by which the pressing member presses the rotating friction member. The
 この構成によれば、回転トルク伝達装置により、ブレーキロータの回転トルクが回転摩擦部材へ伝達される。そして、回転トルク-押圧力変換機構により、回転摩擦部材の回転トルクが押圧部材へ伝達されると共に、押圧部材の回転トルクが押圧部材により回転摩擦部材を押圧する押圧力に変換される。よって、押圧部材が回転摩擦部材をロータディスクに対し押圧する押圧力を、ブレーキロータより摩擦部材へ伝達される回転トルクを有効に利用して増力することができる。 According to this configuration, the rotational torque of the brake rotor is transmitted to the rotational friction member by the rotational torque transmission device. The rotational torque-pressing force conversion mechanism transmits the rotational torque of the rotational friction member to the pressing member, and the rotational torque of the pressing member is converted into a pressing force that presses the rotational friction member by the pressing member. Therefore, the pressing force by which the pressing member presses the rotating friction member against the rotor disk can be increased by effectively using the rotational torque transmitted from the brake rotor to the friction member.
 従って、押圧装置が押圧部材を介して回転摩擦部材をブレーキロータに対し押圧する押圧力を増大させなくても、上記公開公報に記載された摩擦ブレーキ装置に比して、回転摩擦部材の公転及び自転により発生される制動力を一層高くすることができる。 Therefore, even if the pressing device does not increase the pressing force that presses the rotating friction member against the brake rotor via the pressing member, the rotating friction member is revolved and rotated as compared with the friction brake device described in the above publication. The braking force generated by the rotation can be further increased.
 また、本発明によれば、上記構成において、押圧部材は、回転摩擦部材を自転軸線の周りに回転可能に支持すると共に、静止支持部材により自転軸線の周りに回転可能に支持されており、回転トルク-押圧力変換機構は、回転摩擦部材と静止支持部材との間に配置され、回転摩擦部材より押圧部材へ回転トルクを伝達する回転トルク伝達部材と、自転軸線の周りの静止支持部材に対する押圧部材の相対回転を、押圧部材が自転軸線に沿ってブレーキロータへ向かう直線変位に変換する回転-直線変位変換機構と、を有していてよい。 According to the invention, in the above configuration, the pressing member supports the rotating friction member rotatably around the rotation axis, and is supported rotatably around the rotation axis by the stationary support member. The torque-pressing force conversion mechanism is disposed between the rotational friction member and the stationary support member, and transmits the rotational torque from the rotational friction member to the pressing member, and the pressure against the stationary support member around the rotation axis. A rotation-linear displacement conversion mechanism that converts the relative rotation of the member into a linear displacement of the pressing member toward the brake rotor along the rotation axis.
 この構成によれば、回転トルク伝達部材により、回転摩擦部材より押圧部材へ回転トルクが伝達される。また、回転-直線変位変換機構により、自転軸線の周りの静止支持部材に対する押圧部材の相対回転が、押圧部材が自転軸線に沿ってブレーキロータへ向かう直線変位に変換される。よって、押圧部材により回転摩擦部材を自転軸線に沿ってブレーキロータへ向かう方向へ移動させることができるので、回転摩擦部材がロータディスクを押圧する押圧力を増力することができる。 According to this configuration, the rotational torque is transmitted from the rotational friction member to the pressing member by the rotational torque transmission member. Further, the rotation-linear displacement converting mechanism converts the relative rotation of the pressing member with respect to the stationary support member around the rotation axis into linear displacement of the pressing member toward the brake rotor along the rotation axis. Therefore, since the rotating friction member can be moved in the direction toward the brake rotor along the rotation axis by the pressing member, the pressing force with which the rotating friction member presses the rotor disk can be increased.
 また、本発明によれば、回転-直線変位変換機構は、自転軸線の周りに螺旋状に延在する案内溝を備えたねじ式の回転-直線変位変換機構であってよい。 Further, according to the present invention, the rotation-linear displacement conversion mechanism may be a screw-type rotation-linear displacement conversion mechanism provided with a guide groove extending spirally around the rotation axis.
 この構成によれば、回転-直線変位変換機構は、自転軸線の周りに螺旋状に延在する案内溝を備えたねじ式の回転-直線変位変換機構である。よって、案内溝によるねじ作用により、押圧部材の回転運動を、押圧部材が自転軸線に沿ってブレーキロータへ向かう直線運動に変換することができる。 According to this configuration, the rotation-linear displacement conversion mechanism is a screw-type rotation-linear displacement conversion mechanism provided with a guide groove extending spirally around the rotation axis. Therefore, the rotational movement of the pressing member can be converted into a linear movement of the pressing member toward the brake rotor along the rotation axis by the screw action by the guide groove.
 また、本発明によれば、上記構成において、回転-直線変位変換機構は、自転軸線に沿って互いに対向する押圧部材及び静止支持部材の傾斜面であって、自転軸線に垂直な仮想平面に対し同一の方向へ傾斜して自転軸線の周りに円弧状に延在する傾斜面を有するくさび式の回転-直線変位変換機構であってよい。 According to the present invention, in the configuration described above, the rotation-linear displacement conversion mechanism is an inclined surface of the pressing member and the stationary support member facing each other along the rotation axis, and is relative to a virtual plane perpendicular to the rotation axis. It may be a wedge type rotation-linear displacement conversion mechanism having an inclined surface inclined in the same direction and extending in an arc shape around the rotation axis.
 この構成によれば、回転-直線変位変換機構は、押圧部材及び静止支持部材の傾斜面であって、自転軸線に垂直な仮想平面に対し同一の方向へ傾斜して自転軸線の周りに円弧状に延在する傾斜面を有するくさび式の回転-直線変位変換機構である。よって、押圧部材及び静止支持部材の傾斜面によるくさび作用により、押圧部材の回転運動を、押圧部材が自転軸線に沿ってブレーキロータへ向かう直線運動に変換することができる。 According to this configuration, the rotation-linear displacement conversion mechanism is an inclined surface of the pressing member and the stationary support member, and is inclined in the same direction with respect to a virtual plane perpendicular to the rotation axis, and is arcuate around the rotation axis. This is a wedge-type rotation-linear displacement conversion mechanism having an inclined surface extending in the direction. Therefore, by the wedge action by the inclined surfaces of the pressing member and the stationary support member, the rotational movement of the pressing member can be converted into a linear movement of the pressing member toward the brake rotor along the rotation axis.
 また、本発明によれば、上記構成において、各傾斜面は仮想平面に対し互いに逆方向へ傾斜する領域を有していてよい。 Further, according to the present invention, in the above configuration, each inclined surface may have a region inclined in the opposite direction to the virtual plane.
 この構成によれば、各傾斜面は仮想平面に対し互いに逆方向へ傾斜する領域を有しているので、押圧部材の回転方向に関係なく、押圧部材により回転摩擦部材を自転軸線に沿ってブレーキロータへ向かう方向へ移動させることができる。よって、ロータディスクの回転方向に関係なく、回転摩擦部材がロータディスクを押圧する押圧力を増力することができる。従って、本発明のブレーキ装置が車両のブレーキ装置に適用される場合に、車両が前進しているか後進しているかに関係なく、高い制動力を応答性よく発生させることができる。 According to this configuration, since each inclined surface has regions inclined in opposite directions with respect to the virtual plane, the rotating friction member is braked along the rotation axis by the pressing member regardless of the rotation direction of the pressing member. It can be moved in the direction toward the rotor. Therefore, regardless of the rotation direction of the rotor disk, it is possible to increase the pressing force with which the rotating friction member presses the rotor disk. Therefore, when the brake device of the present invention is applied to a vehicle brake device, a high braking force can be generated with high responsiveness regardless of whether the vehicle is moving forward or backward.
 また、本発明によれば、上記構成において、回転摩擦部材は、自転軸線と同軸に延在する軸部を有し、回転トルク伝達部材は、自転軸線に沿って弾性的に圧縮変形可能な領域を含み、回転トルク伝達部材及び軸部は、領域の圧縮変形量が基準値以上になると、軸部が自転軸線上にて押圧部材に係合することにより、回転トルク伝達部材により伝達される回転トルクが増大することを阻止する回転トルク伝達制限機構を形成していてよい。 According to the present invention, in the above configuration, the rotational friction member has a shaft portion extending coaxially with the rotation axis, and the rotational torque transmission member is an elastically deformable region along the rotation axis. When the amount of compressive deformation in the region exceeds the reference value, the rotational torque transmitted by the rotational torque transmitting member is engaged with the pressing member on the rotation axis. A rotational torque transmission limiting mechanism that prevents the torque from increasing may be formed.
 この構成によれば、弾性的に圧縮変形可能な領域の圧縮変形量が基準値以上になると、回転摩擦部材の軸部が自転軸線上にて押圧部材に係合することにより、回転トルク伝達部材により伝達される回転トルクが増大することが阻止される。また、回転摩擦部材の回転トルクが同一の場合について見ると、回転トルク伝達部材により押圧部材へ伝達される回転トルクは、回転摩擦部材に対し押圧部材を押圧する押圧装置の押圧力に応じて変化する。 According to this configuration, when the amount of compressive deformation in the elastically deformable region exceeds the reference value, the shaft portion of the rotating friction member engages with the pressing member on the rotation axis, so that the rotational torque transmitting member The rotational torque transmitted by is prevented from increasing. Further, when the rotational torque of the rotational friction member is the same, the rotational torque transmitted to the pressing member by the rotational torque transmitting member changes according to the pressing force of the pressing device that presses the pressing member against the rotational friction member. To do.
 従って、押圧部材の回転トルクが際限なく回転摩擦部材を押圧する押圧力に変換されることを、回転トルク伝達制限機構により確実に防止することができる。また、押圧装置の押圧力に応じて押圧力の増力を行わせることができると共に、押圧力の増力が際限なく行われることを確実に防止することができる。 Therefore, the rotational torque transmission limiting mechanism can reliably prevent the rotational torque of the pressing member from being converted into a pressing force that presses the rotational friction member without limit. In addition, it is possible to increase the pressing force according to the pressing force of the pressing device, and it is possible to reliably prevent the pressing force from increasing without limit.
 また、本発明によれば、上記構成において、回転トルク伝達部材は、軸部に嵌合した状態にて自転軸線に沿って延在し、一端にて回転摩擦部材及び静止支持部材の一方により支持され、他端にて回転摩擦部材及び静止支持部材の他方に全周にわたり摩擦係合可能であってよい。 According to the invention, in the above configuration, the rotational torque transmitting member extends along the rotation axis while being fitted to the shaft portion, and is supported at one end by one of the rotational friction member and the stationary support member. The other end of the rotary friction member and the stationary support member may be frictionally engageable over the entire circumference.
 この構成によれば、例えば回転トルク伝達部材が自転軸線の周りの一部の領域においてしか設けられていない場合に比して、回転摩擦部材より押圧部材への回転トルクの伝達を良好に行わせることができる。また、例えば回転トルク伝達部材の他端が自転軸線の周りの一部の領域においてしか回転摩擦部材及び静止支持部材の他方に摩擦係合できない場合に比して、回転摩擦部材より押圧部材への回転トルクの伝達を良好に行わせることができる。また、回転トルク伝達部材の他端と摩擦係合する回転摩擦部材及び静止支持部材の他方に偏摩耗の如き異常摩耗が発生する虞れを低減し、ブレーキ装置の耐久性を向上させることができる。 According to this configuration, for example, the rotational torque is more favorably transmitted from the rotational friction member to the pressing member than when the rotational torque transmission member is provided only in a partial region around the rotation axis. be able to. Further, for example, compared with the case where the other end of the rotational torque transmitting member can be frictionally engaged with the other of the rotational friction member and the stationary support member only in a partial region around the rotation axis, the rotational friction member is applied to the pressing member. Rotational torque can be transmitted satisfactorily. Further, it is possible to reduce the possibility of abnormal wear such as uneven wear occurring on the other of the rotary friction member and the stationary support member that frictionally engage with the other end of the rotational torque transmission member, and improve the durability of the brake device. .
 また、本発明によれば、上記構成において、回転トルク伝達装置は、ブレーキロータ及び回転摩擦部材に設けられ互いに噛合する歯車を含んでいてよい。 Further, according to the present invention, in the above configuration, the rotational torque transmission device may include a gear provided on the brake rotor and the rotational friction member and meshing with each other.
 この構成によれば、互いに噛合する歯車を含む回転トルク伝達装置によってブレーキロータ及び回転摩擦部材の間に回転トルクが伝達される。よって、ブレーキロータの回転トルクによって回転摩擦部材を自転軸線の周りに確実に自転させると共に、回転摩擦部材の自転による抗力トルクを確実に制動トルクに変換してブレーキロータに伝達させることができる。 According to this configuration, the rotational torque is transmitted between the brake rotor and the rotational friction member by the rotational torque transmission device including the gears meshing with each other. Therefore, the rotational friction member can be reliably rotated around the rotation axis by the rotation torque of the brake rotor, and the drag torque generated by the rotation of the rotation friction member can be reliably converted into the braking torque and transmitted to the brake rotor.
車両用ブレーキ装置として構成された本発明による摩擦ブレーキ装置の第一の実施形態を、回転軸線を通る切断面にて切断して示す断面図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a cross-sectional view showing a first embodiment of a friction brake device according to the present invention configured as a vehicle brake device, cut along a cut surface passing through a rotation axis. 車両用ブレーキ装置として構成された本発明による摩擦ブレーキ装置の第二の実施形態を、回転軸線を通る切断面にて切断して示す断面図である。It is sectional drawing which cuts and shows 2nd embodiment of the friction brake device by this invention comprised as a brake device for vehicles by the cut surface which passes along a rotating shaft line. 車両用ブレーキ装置として構成された本発明による摩擦ブレーキ装置の第三の実施形態を、回転軸線を通る切断面にて切断して示す断面図である。It is sectional drawing which cut | disconnects and shows 3rd embodiment of the friction brake device by this invention comprised as a brake device for vehicles by the cut surface which passes along a rotating shaft line. 図3に示されたくさび式の回転トルク-押圧力変換機構を、自転軸線の周りに延在する円筒状の切断面に沿って切断して示す部分断面図である。FIG. 4 is a partial cross-sectional view showing the wedge-type rotational torque-pressing force conversion mechanism shown in FIG. 3 cut along a cylindrical cut surface extending around a rotation axis. 押圧部材及び支持部材が相対変位した場合についてくさび式の回転トルク-押圧力変換機構を示す部分断面図である。FIG. 6 is a partial cross-sectional view showing a wedge-type rotational torque-pressing force conversion mechanism when a pressing member and a supporting member are relatively displaced. くさび式の回転トルク-押圧力変換機構のカム面の一つの修正例を示す部分断面図である。FIG. 5 is a partial cross-sectional view showing one modified example of a cam surface of a wedge-type rotational torque-pressing force conversion mechanism. くさび式の回転トルク-押圧力変換機構のカム面の他の一つの修正例を示す部分断面図である。FIG. 6 is a partial cross-sectional view showing another modification of the cam surface of the wedge-type rotational torque-pressing force conversion mechanism.
 以下に添付の図を参照しつつ、本発明を幾つかの好ましい実施形態について詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.
[第一の実施形態]
 図1は、車両用ブレーキ装置として構成された本発明による摩擦ブレーキ装置の第一の実施形態を、回転軸線を通る切断面にて切断して示す断面図である。
[First embodiment]
FIG. 1 is a cross-sectional view showing a first embodiment of a friction brake device according to the present invention configured as a vehicle brake device, cut along a cut surface passing through a rotation axis.
 図1において、10はブレーキ装置を全体的に示しており、ブレーキ装置10は、ブレーキロータ12と、第一及び第二の回転摩擦部材としてのブレーキパッド14A及び14Bとを有している。ブレーキロータ12は、図には示されていない車輪の回転軸16と共に一体的に回転軸線18の周りに回転する。特に図示の実施形態においては、ブレーキロータ12は、回転軸16と一体をなすメインロータ20と、該メインロータと共に一体的に回転するサブロータ22とを有している。メインロータ20及びサブロータ22は同一の金属材料にて形成されている。 In FIG. 1, reference numeral 10 denotes an overall brake device, and the brake device 10 includes a brake rotor 12 and brake pads 14A and 14B as first and second rotating friction members. The brake rotor 12 rotates about a rotation axis 18 together with a rotation axis 16 of a wheel (not shown). In particular, in the illustrated embodiment, the brake rotor 12 includes a main rotor 20 that is integral with the rotary shaft 16 and a sub-rotor 22 that rotates integrally with the main rotor. The main rotor 20 and the sub rotor 22 are formed of the same metal material.
 メインロータ20は、回転軸線18に沿って互いに隔置されたディスク部20Aと円筒部20Bとを有している。ディスク部20Aは、内周部にて回転軸16と一体に連結され、回転軸線18に垂直に回転軸線18の周りに実質的に円板状に延在している。円筒部20Bは、ディスク部20Aの外周部と一体に接続され、回転軸線18の周りに円筒状に延在している。サブロータ22は、回転軸線18に垂直に回転軸線18の周りに円環板状に延在し、外周部にて円筒部20Bのディスク部20Aとは反対側の端部に複数のボルト24によって連結されている。 The main rotor 20 has a disk portion 20A and a cylindrical portion 20B that are spaced apart from each other along the rotation axis 18. The disk portion 20 </ b> A is integrally connected to the rotation shaft 16 at the inner peripheral portion, and extends substantially in a disk shape around the rotation axis 18 perpendicular to the rotation axis 18. The cylindrical portion 20B is integrally connected to the outer peripheral portion of the disk portion 20A and extends in a cylindrical shape around the rotation axis 18. The sub-rotor 22 extends in the shape of an annular plate around the rotation axis 18 perpendicular to the rotation axis 18, and is connected to the end of the cylindrical portion 20B opposite to the disk portion 20A by a plurality of bolts 24 at the outer periphery. Has been.
 なお、ディスク部20A及びサブロータ22は、互いに同一の厚さを有し、円筒部20Bの厚さはディスク部20A及びサブロータ22の厚さよりも小さい。しかし円筒部20Bは、回転軸線18の周りに円筒状に延在しているので、ディスク部20A及びサブロータ22よりも高い剛性を有している。 The disk portion 20A and the sub-rotor 22 have the same thickness, and the thickness of the cylindrical portion 20B is smaller than the thickness of the disk portion 20A and the sub-rotor 22. However, since the cylindrical portion 20 </ b> B extends in a cylindrical shape around the rotation axis 18, it has higher rigidity than the disk portion 20 </ b> A and the sub-rotor 22.
 かくして、ディスク部20A及びサブロータ22は、それぞれ回転軸線18に垂直に回転軸線18の周りに延在し回転軸線18に沿って互いに隔置された第一及び第二のディスク部として機能する。円筒部20Bは、ボルト24と共働してディスク部20A及びサブロータ22の外周部を一体的に接続する接続部として機能する。ディスク部20A、円筒部20B及びサブロータ22は、回転軸線18を通る径方向の切断面で見て径方向内方へ開いたコの字形の断面形状をなしている。ディスク部20A及びサブロータ22の互いに対向する面は、回転軸線18に垂直に互いに平行に回転軸線18の周りに全周に亘り延在する第一及び第二の摩擦面をそれぞれ郭定している。 Thus, the disk portion 20 </ b> A and the sub-rotor 22 function as first and second disk portions extending around the rotation axis 18 perpendicular to the rotation axis 18 and spaced apart from each other along the rotation axis 18. The cylindrical portion 20 </ b> B functions as a connecting portion that cooperates with the bolt 24 to integrally connect the outer peripheral portion of the disk portion 20 </ b> A and the sub-rotor 22. The disk portion 20A, the cylindrical portion 20B, and the sub-rotor 22 have a U-shaped cross-sectional shape opened inward in the radial direction when viewed from a radial cut surface passing through the rotation axis 18. The mutually opposed surfaces of the disk portion 20A and the sub-rotor 22 define first and second friction surfaces extending around the rotation axis 18 in parallel to each other perpendicular to the rotation axis 18 respectively. .
 回転軸16は、一対のボールベアリング26を介して車輪支持部材28のスリーブ部28Aにより回転軸線18の周りに回転可能に支持されている。一対のボールベアリング26と回転軸16とスリーブ部28Aとの間の空間は、グリースの如き潤滑剤にて充填されている。一対のボールベアリング26に対し軸線方向両側には一対のシール部材30が配置されており、シール部材30は、ボールベアリング26に粉塵や泥水が侵入しないよう回転軸16とスリーブ部28Aとの間をシールしている。 The rotary shaft 16 is rotatably supported around the rotary axis 18 by a sleeve portion 28A of a wheel support member 28 via a pair of ball bearings 26. A space between the pair of ball bearings 26, the rotating shaft 16, and the sleeve portion 28A is filled with a lubricant such as grease. A pair of seal members 30 are arranged on both sides in the axial direction with respect to the pair of ball bearings 26. The seal member 30 is disposed between the rotary shaft 16 and the sleeve portion 28A so that dust and muddy water do not enter the ball bearing 26. It is sealed.
 図には示されていないが、メインロータ20のディスク部20Aは、回転軸線18の周りに互いに90°隔置された状態にて4本のボルト32及びこれに螺合するナットにより車輪のリム部に一体的に連結されるようになっている。従って、回転軸16及びブレーキロータ12(メインロータ20及びサブロータ22)は、車輪と共に回転軸線18の周りに回転する。 Although not shown in the drawing, the disk portion 20A of the main rotor 20 is a wheel rim formed by four bolts 32 and nuts screwed to the four bolts 32 while being spaced apart from each other by 90 ° around the rotation axis 18. It is designed to be integrally connected to the part. Therefore, the rotating shaft 16 and the brake rotor 12 (the main rotor 20 and the sub-rotor 22) rotate around the rotating axis 18 together with the wheels.
 ブレーキパッド14A及び14Bは、ディスク部20Aとサブロータ22との間に配置され、互いに同一の形状及び大きさを有している。ブレーキパッド14A及び14Bは、それぞれ互いに同軸をなす円板部と軸部とを有し、円板部がディスク部20Aとサブロータ22の側に位置している。ブレーキパッド14Aの円板部は外面の外周部に摩擦部14AAを有し、ブレーキパッド14Bの円板部は外面の外周部に摩擦部14BAを有している。各摩擦部は円板部の側面より隆起した状態でブレーキパッドの軸線の周りに環帯状に延在している。 The brake pads 14A and 14B are disposed between the disc portion 20A and the sub-rotor 22, and have the same shape and size. Each of the brake pads 14A and 14B has a disc portion and a shaft portion that are coaxial with each other, and the disc portion is located on the side of the disc portion 20A and the sub-rotor 22. The disc portion of the brake pad 14A has a friction portion 14AA on the outer peripheral portion of the outer surface, and the disc portion of the brake pad 14B has a friction portion 14BA on the outer peripheral portion of the outer surface. Each friction part extends in the form of a ring around the axis of the brake pad in a state of protruding from the side surface of the disk part.
 なお、ブレーキパッド14A及び14Bは、例えば粉末焼結法によって製造されることにより、摩擦部は円板部と一体に形成されてよい。また、摩擦部は、環帯状の摩擦材が円板部の側面に接着又は他の手段により固定されることにより形成されてもよい。更に、摩擦部14AA及び14BAは互いに同一の摩擦材料にて構成されているが、互いに異なる摩擦材料にて構成されていてもよい。 The brake pads 14A and 14B may be formed integrally with the disc portion by being manufactured by, for example, a powder sintering method. Further, the friction part may be formed by attaching an annular belt-like friction material to the side surface of the disk part by bonding or other means. Furthermore, although the friction portions 14AA and 14BA are made of the same friction material, they may be made of different friction materials.
 ブレーキパッド14A及び14B、それぞれ押圧部材34A及び34Bにより回転軸線18に平行な自転軸線36の周りに回転可能であると共に、自転軸線36に沿って押圧部材34A及び34Bに対し相対変位可能であるよう、支持されている。押圧部材34A及び34Bは、それぞれブレーキパッド14A及び14Bの軸部を囲繞する円筒部と、該円筒部と一体に形成された軸部と、それらを一体に接続する円板部とを有している。ブレーキパッド14A及び14Bの軸部の先端は球面状をなし、それぞれ押圧部材34A及び34Bより僅かに隔置されている。ブレーキパッド14A及び14Bの軸部と押圧部材34A及び34Bの円筒部との間には、それぞれ複数のボール38A及び38Bが介装されている。 The brake pads 14A and 14B can be rotated around a rotation axis 36 parallel to the rotation axis 18 by pressing members 34A and 34B, respectively, and can be relatively displaced along the rotation axis 36 with respect to the pressing members 34A and 34B. Is supported. The pressing members 34A and 34B each have a cylindrical portion surrounding the shaft portions of the brake pads 14A and 14B, a shaft portion formed integrally with the cylindrical portion, and a disk portion connecting them integrally. Yes. The tip ends of the shaft portions of the brake pads 14A and 14B have a spherical shape, and are slightly spaced apart from the pressing members 34A and 34B, respectively. A plurality of balls 38A and 38B are interposed between the shaft portions of the brake pads 14A and 14B and the cylindrical portions of the pressing members 34A and 34B, respectively.
 押圧部材34A及び34Bは、それぞれ支持部材40A及び40Bにより、自転軸線36の周りに回転可能であると共に、自転軸線36に沿って支持部材40A及び40Bに対し相対変位可能であるよう、支持されている。支持部材40A及び40Bは、それぞれ互いに一体をなす外側円筒部と内側円筒部とを有し、これらの円筒部は回転軸線18に整合している。支持部材40A及び40Bの外側円筒部は、それぞれボールねじ機構42A及び42Bを介して押圧部材34A及び34Bの円筒部を支持し、支持部材40A及び40Bの内側円筒部は、それぞれ押圧部材34A及び34Bの軸部を直接支持している。 The pressing members 34A and 34B are supported by the support members 40A and 40B, respectively, so that they can rotate around the rotation axis 36 and can be displaced relative to the support members 40A and 40B along the rotation axis 36. Yes. The support members 40 </ b> A and 40 </ b> B each have an outer cylindrical portion and an inner cylindrical portion that are integral with each other, and these cylindrical portions are aligned with the rotation axis 18. The outer cylindrical portions of the support members 40A and 40B support the cylindrical portions of the pressing members 34A and 34B via the ball screw mechanisms 42A and 42B, respectively, and the inner cylindrical portions of the support members 40A and 40B are respectively pressed members 34A and 34B. The shaft part is directly supported.
 ボールねじ機構42Aは、それぞれ押圧部材34Aの円筒部の外面及び支持部材40Aの外側円筒部の内面に設けられたねじ溝と、これらのねじ溝内に部分的に係合する複数のボール48Aとを含んでいる。同様に、ボールねじ機構42Bは、それぞれ押圧部材34Bの円筒部の外面及び支持部材40Bの外側円筒部の内面に設けられたねじ溝と、これらのねじ溝内に部分的に係合する複数のボール48Bとを含んでいる。各ねじ溝は自転軸線36の周りに螺旋状に延在している。 The ball screw mechanism 42A includes screw grooves provided on the outer surface of the cylindrical portion of the pressing member 34A and the inner surface of the outer cylindrical portion of the support member 40A, and a plurality of balls 48A that are partially engaged in these screw grooves. Is included. Similarly, the ball screw mechanism 42B includes a plurality of screw grooves provided on the outer surface of the cylindrical portion of the pressing member 34B and the inner surface of the outer cylindrical portion of the support member 40B, and a plurality of portions that are partially engaged with these screw grooves. Ball 48B. Each thread groove extends spirally around the rotation axis 36.
 支持部材40A及び40Bは、それらの内端が互いに当接する状態にて静止部材50により支持されている。特に、図示の実施形態においては、静止部材50は自転軸線36に沿って延在する円筒部50Xを有し、支持部材40A及び40Bは円筒部50Xに圧入により固定されている。よって、支持部材40A及び40Bは、静止部材50に対し相対的に自転軸線36の周りに回転せず、また静止部材50に対し相対的に自転軸線36に沿って変位もしない。従って、支持部材40A、40B及び静止部材50は互いに共働して静止支持部材として機能する。静止部材50は、円筒状の内周部50Yを有し、円筒部50Xは回転軸線18に垂直に回転軸線18の周りに延在する円環板状部50Zにより内周部50Yと一体に接続されている。 Support members 40A and 40B are supported by stationary member 50 in a state where their inner ends are in contact with each other. In particular, in the illustrated embodiment, the stationary member 50 has a cylindrical portion 50X extending along the rotation axis 36, and the support members 40A and 40B are fixed to the cylindrical portion 50X by press-fitting. Therefore, the support members 40 </ b> A and 40 </ b> B do not rotate around the rotation axis 36 relative to the stationary member 50, and are not displaced along the rotation axis 36 relative to the stationary member 50. Accordingly, the support members 40A and 40B and the stationary member 50 work together to function as a stationary support member. The stationary member 50 has a cylindrical inner peripheral portion 50Y, and the cylindrical portion 50X is integrally connected to the inner peripheral portion 50Y by an annular plate-like portion 50Z extending around the rotational axis 18 perpendicular to the rotational axis 18. Has been.
 ブレーキパッド14A及び14Bの軸部及び支持部材40A及び40Bの内側円筒部は、互いに共働してシリンダ室52を有するピストン-シリンダ装置54を形成している。支持部材40A及び40Bの内端の間には、それらの内端に設けられた複数の径方向の溝により複数の径方向通路56が形成されている。支持部材40A及び40Bの内端部の周りには、静止部材50の円筒部50Xと共働して自転軸線36の周りに延在する環状通路58が形成されている。 The shaft portions of the brake pads 14A and 14B and the inner cylindrical portions of the support members 40A and 40B cooperate with each other to form a piston-cylinder device 54 having a cylinder chamber 52. Between the inner ends of the support members 40A and 40B, a plurality of radial passages 56 are formed by a plurality of radial grooves provided at the inner ends. Around the inner ends of the support members 40A and 40B, an annular passage 58 extending around the rotation axis 36 in cooperation with the cylindrical portion 50X of the stationary member 50 is formed.
 なお、図1においては、ブレーキパッド14A及び14B、押圧部材34A及び34B、支持部材40A及び40B、円筒部50X、ピストン-シリンダ装置54等は、それぞれ一つしか図示されていない。しかし、これらは回転軸線18の周りに均等に隔置された状態にて複数設けられていてもよい。 In FIG. 1, only one each of the brake pads 14A and 14B, the pressing members 34A and 34B, the support members 40A and 40B, the cylindrical portion 50X, the piston-cylinder device 54, etc. is shown. However, a plurality of these may be provided in a state of being evenly spaced around the rotation axis 18.
 静止部材50の円筒部50X及び円環板状部50Zの内部には、径方向の外端にて環状通路58と連通する径方向通路60が形成されている。また、静止部材50の内周部50Yの内面には、回転軸線18の周りに延在する環状溝62が形成されており、環状溝62は径方向通路60の径方向の内端と連通している。環状溝62は、静止部材50の内周部50Yに設けられた連通孔64及び図には示されていない導管により油圧式のブレーキアクチュエータに接続されている。 A radial passage 60 communicating with the annular passage 58 at the radially outer end is formed inside the cylindrical portion 50X and the annular plate-like portion 50Z of the stationary member 50. An annular groove 62 extending around the rotation axis 18 is formed on the inner surface of the inner peripheral portion 50 </ b> Y of the stationary member 50, and the annular groove 62 communicates with the radially inner end of the radial passage 60. ing. The annular groove 62 is connected to a hydraulic brake actuator by a communication hole 64 provided in the inner peripheral portion 50Y of the stationary member 50 and a conduit (not shown).
 シリンダ室52の両側にて押圧部材34A及び34Bの軸部と支持部材40A及び40Bの内側円筒部との間の領域は、Oリングシール66A及び66Bによりシールされている。また、環状通路58の両側にて支持部材40A及び40Bの外側円筒部と静止部材50の円筒部50Xとの間の領域は、Oリングシール68A及び68Bによりシールされている。さらに、環状溝62の両側にて車輪支持部材28のスリーブ部28Aと静止部材50の内周部50Yとの間の領域は、Oリングシール70A及び70Bによりシールされている。 The regions between the shaft portions of the pressing members 34A and 34B and the inner cylindrical portions of the support members 40A and 40B are sealed by O- ring seals 66A and 66B on both sides of the cylinder chamber 52. The regions between the outer cylindrical portions of the support members 40A and 40B and the cylindrical portion 50X of the stationary member 50 are sealed by O- ring seals 68A and 68B on both sides of the annular passage 58. Further, regions between the sleeve portion 28A of the wheel support member 28 and the inner peripheral portion 50Y of the stationary member 50 on both sides of the annular groove 62 are sealed by O- ring seals 70A and 70B.
 また、静止部材50の円環板状部50Zの側面には、カバー部材72がねじ止めにより固定されている。カバー部材72は、サブロータ22より隔置された状態にてサブロータを覆っており、ブレーキロータ12と静止部材50との間を経てブレーキ装置10の内部へ粉塵や泥水が侵入することを防止する。 Further, a cover member 72 is fixed to the side surface of the annular plate-like portion 50Z of the stationary member 50 by screwing. The cover member 72 covers the sub-rotor in a state of being separated from the sub-rotor 22, and prevents dust and muddy water from entering the brake device 10 between the brake rotor 12 and the stationary member 50.
 ブレーキパッド14A及び14Bの円板部の外周にはそれぞれ外歯車76A及び76Bが設けられており、外歯車76A及び76Bはそれぞれメインロータ20の円筒部20Bに設けられた内歯車78A及び78Bと噛合している。外歯車76A、76B及び内歯車78A、78Bは、ブレーキロータ12とブレーキパッド14A及び14Bとの間の摩擦力に依存せずにそれらの間に回転トルクを相互に伝達する回転トルク伝達装置80A及び80Bとして機能する。 External gears 76A and 76B are provided on the outer peripheries of the disc parts of the brake pads 14A and 14B, respectively, and the external gears 76A and 76B mesh with internal gears 78A and 78B provided on the cylindrical part 20B of the main rotor 20, respectively. is doing. The external gears 76A and 76B and the internal gears 78A and 78B are not dependent on the frictional force between the brake rotor 12 and the brake pads 14A and 14B, and the rotational torque transmission device 80A and It functions as 80B.
 ブレーキパッド14A及び14Bの軸部は、根本側の大径部と先端側の小径部とを有し、小径部にはそれぞれ回転トルク伝達部材82A及び82Bが嵌合している。回転トルク伝達部材82A及び82Bは、必要に応じてそれぞれブレーキパッド14A及び14Bと押圧部材34A及び34Bとの間に自転軸線36の周りの回転トルクを伝達する機能を果たす。 The shaft portions of the brake pads 14A and 14B have a large-diameter portion on the base side and a small-diameter portion on the tip side, and rotational torque transmitting members 82A and 82B are fitted in the small-diameter portions, respectively. The rotational torque transmitting members 82A and 82B fulfill the function of transmitting rotational torque around the rotation axis 36 between the brake pads 14A and 14B and the pressing members 34A and 34B, respectively, as necessary.
 回転トルク伝達部材82A及び82Bは、高い弾性率を有する硬質ゴムの如き弾性材にて形成された弾性円筒体と、弾性円筒体よりもシリンダ室52の側に配置され金属の如き実質的に剛体にて形成された硬質円筒体とよりなっている。弾性円筒体及び硬質円筒体は、それぞれ内端及び外端にて接着等の手段により一体的に連結されている。弾性円筒体の外端は大径部と小径部との間の肩部に接着等の手段により固定されており、硬質円筒体の内端は押圧部材34A及び34Bと摩擦係合し得るようになっている。 The rotational torque transmitting members 82A and 82B are made of an elastic cylinder made of an elastic material such as hard rubber having a high elastic modulus, and are disposed closer to the cylinder chamber 52 than the elastic cylinder and are substantially rigid bodies such as metal. And a hard cylindrical body formed by The elastic cylinder and the hard cylinder are integrally connected by means such as adhesion at the inner end and the outer end, respectively. The outer end of the elastic cylinder is fixed to the shoulder between the large-diameter portion and the small-diameter portion by means such as adhesion, and the inner end of the hard cylinder can be frictionally engaged with the pressing members 34A and 34B. It has become.
 なお、ブレーキパッド14A及び14Bの回転トルクが回転トルク伝達部材82A及び82Bによって押圧部材34A及び34Bへ伝達されると、これらの押圧部材は支持部材40A及び40Bに対し相対的に自転軸線36の周りに回転する。ボールねじ機構42A及び42Bの各ねじ溝のねじれ方向は、車両の前進時において、押圧部材34A及び34Bが自転軸線36の周りに回転しつつ、ブレーキパッド14A及び14Bに近づく方向へ変位する方向に設定されている。 When the rotational torque of the brake pads 14A and 14B is transmitted to the pressing members 34A and 34B by the rotational torque transmitting members 82A and 82B, these pressing members are rotated around the rotation axis 36 relative to the support members 40A and 40B. Rotate to. The twist direction of each screw groove of the ball screw mechanisms 42A and 42B is such that the pressing members 34A and 34B are rotated around the rotation axis 36 and displaced toward the brake pads 14A and 14B when the vehicle moves forward. Is set.
 よって、ブレーキパッド14A及び14Bが回転すると、押圧部材34A及び34Bがブレーキパッド14A及び14Bに近づく方向へ変位し、押圧部材は回転トルク伝達部材82A及び82Bを介してブレーキパッドを押圧する。従って、ボールねじ機構42A、42B及び回転トルク伝達部材82A、82Bは、押圧部材34A、34B及び支持部材40A、40Bと共働して、ブレーキパッド14A及び14Bの回転トルクを押圧部材の押圧力に変換する変換機構として機能する。 Therefore, when the brake pads 14A and 14B rotate, the pressing members 34A and 34B are displaced in a direction approaching the brake pads 14A and 14B, and the pressing members press the brake pads via the rotational torque transmission members 82A and 82B. Therefore, the ball screw mechanisms 42A and 42B and the rotational torque transmission members 82A and 82B cooperate with the pressing members 34A and 34B and the support members 40A and 40B, and use the rotational torque of the brake pads 14A and 14B as the pressing force of the pressing members. Functions as a conversion mechanism for conversion.
 自由状態における回転トルク伝達部材82A及び82Bの長さは、ブレーキパッド14A及び14Bの軸部の小径部の長さ、すなわち、大径部と小径部との間の肩部から先端までの長さよりも長い。しかし、回転トルク伝達部材が長手方向に圧縮応力を受けると、中間円筒体が圧縮変形することにより、回転トルク伝達部材の長さは軸部の小径部の長さに減少することができる。従って、回転トルク伝達部材82A及び82Bは、それらが長手方向に圧縮応力を受けており、それらの長さが軸部の小径部の長さよりも大きい状況においては、ブレーキパッドと押圧部材との間に回転トルクを伝達する。そして、伝達される回転トルクは、硬質円筒体の内端と押圧部材34A及び34Bとの間の摩擦力に比例し、よって回転トルク伝達部材が受ける圧縮応力に比例する。 The length of the rotational torque transmitting members 82A and 82B in the free state is the length of the small diameter portion of the shaft portion of the brake pads 14A and 14B, that is, the length from the shoulder portion to the tip end between the large diameter portion and the small diameter portion. Too long. However, when the rotational torque transmitting member receives a compressive stress in the longitudinal direction, the intermediate cylindrical body is compressed and deformed, so that the length of the rotating torque transmitting member can be reduced to the length of the small diameter portion of the shaft portion. Accordingly, the rotational torque transmitting members 82A and 82B are subjected to compressive stress in the longitudinal direction, and in a situation where their length is greater than the length of the small diameter portion of the shaft portion, Rotational torque is transmitted to The rotational torque transmitted is proportional to the frictional force between the inner end of the hard cylindrical body and the pressing members 34A and 34B, and is therefore proportional to the compressive stress received by the rotational torque transmitting member.
 しかし、回転トルク伝達部材が受ける圧縮応力がさらに増大し、ブレーキパッド14A及び14Bの軸部の先端がそれぞれ押圧部材34A及び34Bに当接すると、回転トルク伝達部材が受ける圧縮応力はそれ以上増大しなくなる。よって、この状況においては、押圧部材34A及び34Bがブレーキパッド14A及び14Bの軸部を押圧する押圧力が増大されても、ブレーキパッドと押圧部材との間に伝達される回転トルクは増大しない。従って、ブレーキパッド14A、14Bの軸部及び回転トルク伝達部材82A、82Bは、互いに共働してブレーキパッド14A、14Bと押圧部材34A、34Bとの間における回転トルクの伝達を制限する回転トルク伝達制限機構84A及び84Bとして機能する。 However, when the compressive stress received by the rotational torque transmitting member further increases and the tips of the shaft portions of the brake pads 14A and 14B abut against the pressing members 34A and 34B, respectively, the compressive stress received by the rotational torque transmitting member further increases. Disappear. Therefore, in this situation, even if the pressing force by which the pressing members 34A and 34B press the shaft portions of the brake pads 14A and 14B is increased, the rotational torque transmitted between the brake pad and the pressing member does not increase. Accordingly, the shaft portions of the brake pads 14A and 14B and the rotational torque transmission members 82A and 82B cooperate with each other to limit the rotational torque transmission between the brake pads 14A and 14B and the pressing members 34A and 34B. Functions as limiting mechanisms 84A and 84B.
 以上の説明より解る如く、ピストン-シリンダ装置54のシリンダ室52内の油圧が増大されると、ブレーキパッド14A、14B及び押圧部材34A、34Bが互いに離れる方向へ駆動される。これにより、ブレーキパッド14A及び14Bは、それぞれディスク部20A及びサブロータ22の摩擦面に対し押圧される。よって、ピストン-シリンダ装置54は、静止部材50により支持され、それぞれ押圧部材34A及び34Bを介してディスク部20Aとサブロータ22に対しブレーキパッド14A及び14Bを押圧する第一及び第二の押圧装置として機能する。 As understood from the above description, when the hydraulic pressure in the cylinder chamber 52 of the piston-cylinder device 54 is increased, the brake pads 14A and 14B and the pressing members 34A and 34B are driven in directions away from each other. As a result, the brake pads 14A and 14B are pressed against the friction surfaces of the disk portion 20A and the sub-rotor 22, respectively. Therefore, the piston-cylinder device 54 is supported by the stationary member 50, and serves as first and second pressing devices that press the brake pads 14A and 14B against the disk portion 20A and the sub-rotor 22 via the pressing members 34A and 34B, respectively. Function.
 図には示されていない車輪が回転すると、ブレーキロータ12及び回転軸16は車輪と共に回転軸線18の周りに回転する。しかし、ブレーキパッド14A及び14B、スリーブ部28、支持部材40A及び40B、静止部材50及びカバー部材72は回転軸線18の周りに回転しない。よって、ディスク部20A及びサブロータ22は、ブレーキパッド14A及び14Bに対し相対的に回転軸線18の周りに回転する。また、ディスク部20A及びサブロータ22の回転トルクがそれぞれ回転トルク伝達装置80A及び80Bによって自転軸線36の周りの回転トルクに変換されてブレーキパッド14A及び14Bへ伝達される。従って、ブレーキパッド14A及び14Bは、自転軸線36の周りに自転しつつディスク部20A及びサブロータ22に対し相対的に回転軸線18の周りに公転すると共に、押圧部材34A及び34Bに対し相対的に自転軸線36の周りに回転する。 When a wheel (not shown) rotates, the brake rotor 12 and the rotating shaft 16 rotate around the rotating axis 18 together with the wheel. However, the brake pads 14A and 14B, the sleeve portion 28, the support members 40A and 40B, the stationary member 50, and the cover member 72 do not rotate around the rotation axis 18. Therefore, the disk portion 20A and the sub-rotor 22 rotate around the rotation axis 18 relative to the brake pads 14A and 14B. Further, the rotational torques of the disk portion 20A and the sub-rotor 22 are converted into rotational torque around the rotation axis 36 by the rotational torque transmission devices 80A and 80B, respectively, and transmitted to the brake pads 14A and 14B. Accordingly, the brake pads 14A and 14B revolve around the rotation axis 18 relative to the disk portion 20A and the sub-rotor 22 while rotating around the rotation axis 36, and rotate relatively to the pressing members 34A and 34B. Rotates about axis 36.
 また、ブレーキパッド14A及び14Bが押圧部材34A及び34Bによって押圧されると、ブレーキパッド14A及び14Bの摩擦部は、それぞれディスク部20A及びサブロータ22と摩擦係合し、摩擦力が発生する。従って、ブレーキパッド14A及び14Bの公転による制動トルクTrvに加えて、自転による制動トルクTrtが発生し、それらの総和が制動トルクTbとなる。 When the brake pads 14A and 14B are pressed by the pressing members 34A and 34B, the friction portions of the brake pads 14A and 14B are frictionally engaged with the disc portion 20A and the sub-rotor 22, respectively, and a friction force is generated. Therefore, in addition to the braking torque Trv due to the revolution of the brake pads 14A and 14B, the braking torque Trt due to the rotation is generated, and the sum of these becomes the braking torque Tb.
 制動トルクTrv及びTrtは、ディスク部20A及びサブロータ22に対するブレーキパッド14A及び14Bの押圧力に比例する。また、それらの押圧力は、ボールねじ機構42A、42B等による回転トルク-押圧力変換機構により増力されるが、それらの押圧力はピストン-シリンダ装置54のシリンダ室52内の油圧に比例する。従って、シリンダ室52内の油圧の制御によって押圧力を制御することにより、制動トルクTb、即ちブレーキ装置10が発生する制動力を制御することができる。 The braking torques Trv and Trt are proportional to the pressing force of the brake pads 14A and 14B against the disc portion 20A and the sub-rotor 22. These pressing forces are increased by a rotational torque-pressing force conversion mechanism using ball screw mechanisms 42A, 42B, etc., and these pressing forces are proportional to the hydraulic pressure in the cylinder chamber 52 of the piston-cylinder device 54. Therefore, by controlling the pressing force by controlling the hydraulic pressure in the cylinder chamber 52, the braking torque Tb, that is, the braking force generated by the brake device 10 can be controlled.
 上述の如く、制動トルクTbは公転による制動トルクTrvと自転による制動トルクTrtとの和である。また、ディスク部20A及びサブロータ22に対するブレーキパッド14A及び14Bの押圧力は、ボールねじ機構42A、42B等による回転トルク-押圧力変換機構により増力される。そして、回転トルクは、ディスク部20A及びサブロータ22より回転トルク伝達装置80A及び80Bを経てブレーキパッド14A及び14Bへ伝達される回転トルク、すなわち、車輪の回転トルクに由来するものである。 As described above, the braking torque Tb is the sum of the braking torque Trv due to revolution and the braking torque Trt due to rotation. Further, the pressing force of the brake pads 14A and 14B against the disc portion 20A and the sub-rotor 22 is increased by a rotational torque-pressing force conversion mechanism such as a ball screw mechanism 42A or 42B. The rotational torque is derived from the rotational torque transmitted from the disk portion 20A and the sub-rotor 22 to the brake pads 14A and 14B via the rotational torque transmission devices 80A and 80B, that is, the rotational torque of the wheels.
 従って、第一の実施形態によれば、制動トルクTrvのみしか発生しない従来の一般的な構造のブレーキ装置よりも遥かに高い制動トルクを発生させることができ、また、回転トルクが押圧力に変換されることによる押圧力の増力が行われない上記公開公報に記載されたブレーキ装置よりも高い制動トルクを発生させることができる。 Therefore, according to the first embodiment, it is possible to generate a braking torque far higher than that of a conventional brake device having a general structure that generates only the braking torque Trv, and the rotational torque is converted into a pressing force. Therefore, it is possible to generate a higher braking torque than that of the brake device described in the above-mentioned publication in which the pressing force is not increased.
 例えば、図1には示されていないが、回転軸線18と回転トルク伝達装置80A及び80Bとの距離を152.5mmとし、回転軸線18と自転軸線36との距離を120mmとし、自転軸線36と摩擦部14AA及び14BAの中央との距離を25mmとする。また、各摩擦接触部の摩擦係数をμとし、押圧装置としてのピストン-シリンダ装置54による押圧力をF1kgfとし、回転トルクが押圧力に変換されることによる増力後の押圧力をF2kgfとする。 For example, although not shown in FIG. 1, the distance between the rotation axis 18 and the rotation torque transmission devices 80A and 80B is 152.5 mm, the distance between the rotation axis 18 and the rotation axis 36 is 120 mm, and the rotation axis 36 The distance from the center of the friction portions 14AA and 14BA is 25 mm. Further, the friction coefficient of each friction contact portion is μ, the pressing force by the piston-cylinder device 54 as the pressing device is F1 kgf, and the pressing force after the increase due to the rotation torque being converted into the pressing force is F2 kgf.
 ブレーキパッド14A及び14Bが自転することにより発生する自転軸線36の周りの抗力トルクTstは、二つのブレーキパッドの自転により発生する抗力トルクの和であるので、下記の式1により表される。
 Tst=2×25×μ×F2
   =50μF2 ……(1)
The drag torque Tst around the rotation axis 36 generated by the rotation of the brake pads 14A and 14B is the sum of the drag torque generated by the rotation of the two brake pads, and is expressed by the following formula 1.
Tst = 2 × 25 × μ × F2
= 50μF2 (1)
 この抗力トルクTstは、回転トルク伝達装置80A及び80Bにより回転軸線18の周りの制動方向の回転トルクに変換され、自転による制動トルクTrtとしてブレーキロータ12へ伝達される。自転軸線36と回転トルク伝達装置80A及び80Bとの距離は32.5mmであるので、自転による制動トルクTrtは下記の式2により表される。
 Trt=50μF2/32.5×152.5
   =234μF2 ……(2)
The drag torque Tst is converted into a rotational torque in the braking direction around the rotational axis 18 by the rotational torque transmission devices 80A and 80B, and transmitted to the brake rotor 12 as a braking torque Trt by rotation. Since the distance between the rotation axis 36 and the rotational torque transmission devices 80A and 80B is 32.5 mm, the braking torque Trt due to the rotation is expressed by the following equation (2).
Trt = 50 μF2 / 32.5 × 152.5
= 234μF2 (2)
 また、公転による制動トルクTrvは、ブレーキパッド14A及び14Bが自転軸線36に沿って作用する押圧力F2によってディスク部20A及びサブロータ22に対し押圧されることによる摩擦力により発生されると考えられてよい。よって、制動トルクTrvは下記の式3により表される。
 Trv=2×120μF2
   =240μF2 ……(3)
Further, it is considered that the braking torque Trv due to revolution is generated by the frictional force generated when the brake pads 14A and 14B are pressed against the disk portion 20A and the sub-rotor 22 by the pressing force F2 acting along the rotation axis 36. Good. Therefore, the braking torque Trv is expressed by the following formula 3.
Trv = 2 × 120μF2
= 240μF2 (3)
 よって、制動トルクTrvと自転による制動トルクTrtと和である制動トルクTbは、下記の式4により表され、制動トルクTrvのみしか発生しない従来の一般的な構造のブレーキ装置との対比に於ける制動トルクのサーボ比Rbt1は、下記の式5により表される。
 Tb=234μF2+240μF2
   =474μF2 ……(4)
 Rbt1=474μF2/240μF2
    =1.975 ……(5)
Therefore, the braking torque Tb, which is the sum of the braking torque Trv and the braking torque Trt due to rotation, is expressed by the following Equation 4, and is compared with a brake device having a conventional general structure that generates only the braking torque Trv. The servo ratio Rbt1 of the braking torque is expressed by the following formula 5.
Tb = 234μF2 + 240μF2
= 474μF2 (4)
Rbt1 = 474μF2 / 240μF2
= 1.975 (5)
 また、ボールねじ機構42A及び42Bのねじ溝のリード角を14degとし、回転トルクを押圧力に変換する効率を100%とし、自転軸線36とボール48A及び48Bの中心までの距離を18mmとする。回転トルク伝達部材82A、82Bと押圧部材34A、34Bとの間の摩擦係数μ2を0.6とし、自転軸線36と回転トルク伝達部材82A、82Bの肉厚中心までの距離を6mmとする。 Further, the lead angle of the thread groove of the ball screw mechanisms 42A and 42B is set to 14 degrees, the efficiency for converting the rotational torque into the pressing force is set to 100%, and the distance between the rotation axis 36 and the centers of the balls 48A and 48B is set to 18 mm. The friction coefficient μ2 between the rotational torque transmission members 82A and 82B and the pressing members 34A and 34B is set to 0.6, and the distance from the rotation axis 36 to the thickness center of the rotational torque transmission members 82A and 82B is 6 mm.
 回転トルクが押圧力に変換されることによるサーボ力F3は下記の式6により表される。また、押圧力F1はF2-F3であるので、回転トルクが押圧力に変換されることによる増力のサーボ比Rbt2は、下記の式7により表される。
 F3=F2×0.6×6/18/tan14
   =F2×0.802 ……(6)
 Rbt2=F2/F1
    ={1/(1-0.802)}
    =5.05 ……(7)
The servo force F3 generated by converting the rotational torque into the pressing force is expressed by the following equation (6). Further, since the pressing force F1 is F2-F3, the servo ratio Rbt2 of the increase due to the rotation torque being converted into the pressing force is expressed by the following equation (7).
F3 = F2 × 0.6 × 6/18 / tan14
= F2 x 0.802 (6)
Rbt2 = F2 / F1
= {1 / (1-0.802)}
= 5.05 (7)
 よって、ブレーキパッドが自転しない従来の一般的なブレーキ装置との対比に於ける制動トルクのサーボ比は、Rbt1×Rbt2=9.98である。また、ブレーキパッドが自転する上記公開公報に記載されたブレーキ装置との対比に於ける制動トルクのサーボ比は、Rbt2、すなわち、5.05である。従って、第一の実施形態によれば、上記仕様の場合には、従来の一般的な構造のブレーキ装置の約10倍の制動トルクを発生させることができ、また、上記公開公報に記載されたブレーキ装置の約5倍の制動トルクを発生させることができる。 Therefore, the servo ratio of the braking torque in comparison with a conventional general brake device in which the brake pad does not rotate is Rbt1 × Rbt2 = 9.98. Further, the servo ratio of the braking torque in comparison with the brake device described in the above-mentioned publication in which the brake pad rotates is Rbt2, that is, 5.05. Therefore, according to the first embodiment, in the case of the above specifications, it is possible to generate a braking torque about 10 times that of a brake device having a conventional general structure, and is described in the above-mentioned publication. A braking torque about 5 times that of the braking device can be generated.
 なお、この実施形態において、ブレーキパッド等が回転軸線18の周りにそれぞれN(正の整数)個設けられる場合には、制動トルクTbは式5により表される値のN倍になる。よって、更に高い制動トルクを発生させることができ、サーボ比Rbt1及びRbt2の何れをも一層高くすることができる。 In this embodiment, when N (positive integer) brake pads are provided around the rotation axis 18, the braking torque Tb is N times the value expressed by Equation 5. Therefore, a higher braking torque can be generated, and both of the servo ratios Rbt1 and Rbt2 can be further increased.
 また、ピストン-シリンダ装置54による押圧力が増大するにつれて、回転トルク伝達部材82A、82Bの圧縮変形量が増大する。よって、ピストン-シリンダ装置54による押圧力がある値以上になると、ブレーキパッド14A及び14Bの軸部の先端が自転軸線36の位置に於いて押圧部材34A及び34Bに当接する。従って、ブレーキパッドから押圧部材へ伝達される回転トルクはそれ以上増大しないので、その状況における制動トルクのサーボ比はRbt1になる。 Further, as the pressing force by the piston-cylinder device 54 increases, the amount of compressive deformation of the rotational torque transmitting members 82A and 82B increases. Therefore, when the pressing force by the piston-cylinder device 54 exceeds a certain value, the tip ends of the shaft portions of the brake pads 14A and 14B come into contact with the pressing members 34A and 34B at the position of the rotation axis 36. Therefore, since the rotational torque transmitted from the brake pad to the pressing member does not increase any more, the servo ratio of the braking torque in that situation is Rbt1.
 また、車両の後進時には、押圧部材34A及び34Bはボールねじ機構42A及び42Bによる回転トルクから押圧力への変換機能は、ディスク部20A及びサブロータ22に対するブレーキパッド14A及び14Bの押圧力を低減するよう作用する。しかし、上述の如く、ピストン-シリンダ装置54による押圧力がある値以上になると、ブレーキパッド14A及び14Bの軸部の先端が押圧部材34A及び34Bに当接し、ブレーキパッドから押圧部材へ伝達される回転トルクはそれ以上増大しない。よって、制動力の発生の応答性は、車両の前進時に比して多少低下するが、車両の後進時にも制動操作に応じて制動力を発生させることができる。また、その場合にも、ブレーキパッド14A及び14Bの自転によるサーボ効果が得られる。 Further, when the vehicle is moving backward, the pressing members 34A and 34B have a function of converting the rotational torque into the pressing force by the ball screw mechanisms 42A and 42B so as to reduce the pressing force of the brake pads 14A and 14B on the disc portion 20A and the sub-rotor 22. Works. However, as described above, when the pressing force by the piston-cylinder device 54 exceeds a certain value, the tip ends of the shaft portions of the brake pads 14A and 14B abut against the pressing members 34A and 34B, and are transmitted from the brake pad to the pressing member. The rotational torque does not increase any further. Therefore, although the responsiveness of the generation of the braking force is somewhat lower than when the vehicle moves forward, the braking force can be generated according to the braking operation even when the vehicle moves backward. Also in this case, the servo effect by the rotation of the brake pads 14A and 14B can be obtained.
[第二の実施形態]
 図2は、車両用ブレーキ装置として構成された本発明による摩擦ブレーキ装置の第二の実施形態を、回転軸線を通る切断面にて切断して示す断面図である。なお、図2において、図1に示された部材と同一の部材には図1において付された符号と同一の符号が付されている。このことは、後述の図3についても同様である。
[Second Embodiment]
FIG. 2 is a cross-sectional view showing a second embodiment of the friction brake device according to the present invention configured as a vehicle brake device, cut along a cut surface passing through the rotation axis. In FIG. 2, the same members as those shown in FIG. 1 are denoted by the same reference numerals as those in FIG. The same applies to FIG. 3 described later.
 この第二の実施形態においては、メインロータ20は、円筒部20Bを有しておらず、回転軸16とは別の部材である。また、メインロータ20の円環板状のディスク部20Aは、放熱のためのフィンよりなる接続部64によりサブロータ22と一体に接続されている。回転軸16は外端部にフランジ部16Aを有し、フランジ部16Aにはディスク部20Aと一体をなすリム部20Cの内周部が4本のボルト32により連結されている。従って、図には示されていないが、ボルト32及びこれに螺合するナットは、共締めによりリム部20Cをフランジ部16Aと共に車輪のディスク部に一体的に連結する。 In the second embodiment, the main rotor 20 does not have the cylindrical portion 20B and is a member different from the rotating shaft 16. Further, the annular plate-like disk portion 20A of the main rotor 20 is integrally connected to the sub-rotor 22 by a connection portion 64 made of fins for heat dissipation. The rotary shaft 16 has a flange portion 16A at an outer end portion, and the inner peripheral portion of a rim portion 20C integrated with the disc portion 20A is connected to the flange portion 16A by four bolts 32. Accordingly, although not shown in the drawing, the bolt 32 and the nut screwed to the bolt 32 integrally connect the rim portion 20C to the disc portion of the wheel together with the flange portion 16A.
 ブレーキパッド14A及び14B、押圧部材34A及び34B、支持部材40A及び40Bは、第一の実施形態の場合とは逆の向きにてブレーキロータ12の両側に配置されている。よって、ブレーキパッド14A及び14Bの円板部はディスク部20A及びサブロータ22の側に位置し、軸部は円板部より互いに離れる方向へ延在している。また、支持部材40A及び40Bは、ブレーキロータ12の外周部を跨いで実質的に断面U形に延在するキャリパ88により、自転軸線36に沿ってキャリパに対し相対変位も自転軸線36の周りに回転もしないよう、支持されている。 The brake pads 14A and 14B, the pressing members 34A and 34B, and the support members 40A and 40B are disposed on both sides of the brake rotor 12 in the opposite direction to the case of the first embodiment. Therefore, the disc portions of the brake pads 14A and 14B are located on the disk portion 20A and the sub-rotor 22 side, and the shaft portions extend away from the disc portion. Further, the support members 40A and 40B are displaced relative to the caliper along the rotation axis 36 by the caliper 88 extending substantially in a U-shaped cross section across the outer periphery of the brake rotor 12 and around the rotation axis 36. It is supported so as not to rotate.
 キャリパ88は、ボルトや溶接の如き連結手段により一体的に連結された半体88A及び88Bよりなり、半体88Bはボルトの如き連結手段により静止部材50に一体的に固定されている。半体88A及び88Bは、それぞれ押圧部材34A、34B及び支持部材40A、40Bと共働して、シリンダ室52A及び52Bを有するピストン-シリンダ装置54A及び54Bを形成している。ピストン-シリンダ装置54A及び54Bは、それぞれ押圧部材34A及び34Bを介してブレーキパッド14A及び14Bをディスク部20A及びサブロータ22に対し押圧する押圧装置を形成している。 The caliper 88 is composed of half bodies 88A and 88B integrally connected by connecting means such as bolts or welding, and the half body 88B is integrally fixed to the stationary member 50 by connecting means such as bolts. Half bodies 88A and 88B cooperate with pressing members 34A and 34B and support members 40A and 40B, respectively, to form piston- cylinder devices 54A and 54B having cylinder chambers 52A and 52B. The piston- cylinder devices 54A and 54B form a pressing device that presses the brake pads 14A and 14B against the disk portion 20A and the sub-rotor 22 via the pressing members 34A and 34B, respectively.
 図2には示されていないが、シリンダ室52A及び52Bは、それぞれ半体88A及び88Bに設けられた内部通路及びこれらに連通する導管により油圧式のブレーキアクチュエータに接続されている。従って、シリンダ室52A及び52B内の油圧は、ブレーキアクチュエータによって同時に同一の圧力に制御される。 Although not shown in FIG. 2, the cylinder chambers 52A and 52B are connected to a hydraulic brake actuator by internal passages provided in the half bodies 88A and 88B and conduits communicating therewith, respectively. Accordingly, the hydraulic pressure in the cylinder chambers 52A and 52B is simultaneously controlled to the same pressure by the brake actuator.
 メインロータ20の外周には、実質的に円筒状をなすリング歯車部材90が溶接等の手段により固定されており、リング歯車部材90は回転軸線18に沿ってその周りに延在している。リング歯車部材90の両端部の内面には内歯車78A、78Bが設けられており、これらの内歯車はそれぞれブレーキパッド14A及び14Bの円板部の外周に設けられた外歯車76A及び76Bと噛合している。第一の実施形態の場合と同様に、外歯車76A、76B及び内歯車78A、78Bは、ブレーキロータ12とブレーキパッド14A及び14Bとの間にて回転トルクを相互に伝達する回転トルク伝達装置80A及び80Bとして機能する。 A ring gear member 90 having a substantially cylindrical shape is fixed to the outer periphery of the main rotor 20 by means such as welding, and the ring gear member 90 extends around the rotation axis 18. Internal gears 78A and 78B are provided on the inner surfaces of both ends of the ring gear member 90, and these internal gears mesh with external gears 76A and 76B provided on the outer circumferences of the disc portions of the brake pads 14A and 14B, respectively. is doing. As in the case of the first embodiment, the external gears 76A and 76B and the internal gears 78A and 78B transmit the rotational torque between the brake rotor 12 and the brake pads 14A and 14B. And 80B.
 図2と図1との比較より解る如く、この第二の実施形態の他の点は上述の第一の実施形態と同様に構成されている。従って、ブレーキパッド14A及び14Bがそれぞれピストン-シリンダ装置54A及び54Bによる押圧力によって互いに近づく方向へ押圧される点を除き、第二の実施形態は第一の実施形態と同様に作動する。 As understood from the comparison between FIG. 2 and FIG. 1, the other points of the second embodiment are configured in the same manner as the first embodiment described above. Accordingly, the second embodiment operates in the same manner as the first embodiment, except that the brake pads 14A and 14B are pressed in the directions approaching each other by the pressing force by the piston- cylinder devices 54A and 54B, respectively.
 よって、第二の実施形態によれば、第一の実施形態の場合と同様に、従来の一般的な構造のブレーキ装置よりも遥かに高い制動トルクを発生させることができ、また、上記公開公報に記載されたブレーキ装置よりも高い制動トルクを発生させることができる。 Therefore, according to the second embodiment, as in the case of the first embodiment, it is possible to generate a braking torque far higher than that of a conventional brake device having a general structure. It is possible to generate a higher braking torque than the brake device described in 1).
 なお、ブレーキ装置10の各距離が第一の実施形態の場合と同一であるとすると、制動トルクのサーボ比Rbt1及びRbt2も第一の実施形態の場合と同一である。従って、第二の実施形態によれば、上記仕様の場合には、従来の一般的な構造のブレーキ装置の約10倍の制動トルクを発生させることができ、また、上記公開公報に記載されたブレーキ装置の約5倍の制動トルクを発生させることができる。 If the distances of the brake device 10 are the same as in the first embodiment, the servo ratios Rbt1 and Rbt2 of the braking torque are also the same as in the first embodiment. Therefore, according to the second embodiment, in the case of the above specifications, it is possible to generate a braking torque about 10 times that of a brake device having a conventional general structure, and is described in the above-mentioned publication. A braking torque about 5 times that of the braking device can be generated.
[第三の実施形態]
 図3は、車両用ブレーキ装置として構成された本発明による摩擦ブレーキ装置の第三の実施形態を、回転軸線を通る切断面にて切断して示す断面図、図4は図3に示されたくさび式の回転トルク-押圧力変換機構を、自転軸線の周りに延在する円筒状の切断面に沿って切断して示す部分断面図である。
[Third embodiment]
FIG. 3 is a cross-sectional view showing a third embodiment of the friction brake device according to the present invention configured as a vehicle brake device, cut along a cut surface passing through the rotation axis, and FIG. 4 is shown in FIG. FIG. 3 is a partial cross-sectional view showing a wedge-type rotational torque-pressing force conversion mechanism cut along a cylindrical cut surface extending around a rotation axis.
 図3と図1との比較より解る如く、この第三の実施形態においては、第一及び第二の実施形態におけるボールねじ機構42A及び42Bに代えて、くさび式の回転トルク-押圧力変換機構90A及び90Bが設けられている。なお、図3においては、二つの回転トルク-押圧力変換機構90A及び90Bが図示されているが、回転トルク-押圧力変換機構は一つであってもよく、また自転軸線36の周りに均等に隔置された状態にて複数の回転トルク-押圧力変換機構が設けられてもよい。 As can be seen from a comparison between FIG. 3 and FIG. 1, in this third embodiment, instead of the ball screw mechanisms 42A and 42B in the first and second embodiments, a wedge-type rotational torque-pressing force conversion mechanism. 90A and 90B are provided. In FIG. 3, two rotational torque-pressing force conversion mechanisms 90A and 90B are shown. However, there may be only one rotational torque-pressing force conversion mechanism, and the rotation torque-pressing force conversion mechanism is uniform around the rotation axis 36. A plurality of rotational torque-pressing force conversion mechanisms may be provided in a state of being spaced apart from each other.
 各回転トルク-押圧力変換機構90A及び90Bは、押圧部材34A及び34Bの円筒部の内端部の外面に設けられ径方向外方へ面する円柱状の肩部と支持部材40A及び40Bの円筒部との間に介装されたボール92A及び92Bを含んでいる。ボール92A及び92Bは実質的に剛固な金属の如き材料にて形成されている。 Each of the rotational torque-pressing force conversion mechanisms 90A and 90B is provided on the outer surface of the inner end of the cylindrical portion of the pressing members 34A and 34B, and has a cylindrical shoulder facing radially outward and the cylinders of the support members 40A and 40B. Balls 92A and 92B interposed between the two parts are included. Balls 92A and 92B are made of a material such as a substantially rigid metal.
 ボール92Aが配置された径方向の領域にて自転軸線36に沿って互いに対向する押圧部材34A及び支持部材40Aの表面は、それぞれボール92Aに係合可能なカム面34AZ及び40AZを有している。同様に、ボール92Bが配置された径方向の領域にて自転軸線36に沿って互いに対向する押圧部材34B及び支持部材40Bの表面は、それぞれボール92Bに係合可能なカム面34BZ及び40BZを有している。各カム面は、自転軸線36を中心とする円弧状に延在している。 The surfaces of the pressing member 34A and the support member 40A facing each other along the rotation axis 36 in the radial region where the ball 92A is disposed have cam surfaces 34AZ and 40AZ that can engage with the ball 92A, respectively. . Similarly, the surfaces of the pressing member 34B and the support member 40B facing each other along the rotation axis 36 in the radial region where the ball 92B is disposed have cam surfaces 34BZ and 40BZ that can be engaged with the ball 92B, respectively. is doing. Each cam surface extends in an arc shape centering on the rotation axis 36.
 図4に示されている如く、カム面34AZは、支持部材40Aへ向けて開いた湾曲部34AZAと、該湾曲部に連続して湾曲部の両側に延在する平面状の傾斜部34AZB及び34AZCとを有している。傾斜部34AZB及び34AZCは、湾曲部34AZAより離れるにつれて支持部材40Aに近づくよう、自転軸線36に垂直な仮想平面94に対し傾斜している。同様に、カム面40AZは押圧部材34Aへ向けて開いた湾曲部40AZAと、該湾曲部に連続して湾曲部の両側に延在する平面状の傾斜部40AZB及び40AZCとを有している。傾斜部40AZB及び40AZCは、湾曲部40AZAより離れるにつれて押圧部材34Aに近づくよう、仮想平面94に対し傾斜している。 As shown in FIG. 4, the cam surface 34AZ includes a curved portion 34AZA that opens toward the support member 40A, and planar inclined portions 34AZB and 34AZC that extend from the curved portion to both sides of the curved portion. And have. The inclined portions 34AZB and 34AZC are inclined with respect to a virtual plane 94 perpendicular to the rotation axis 36 so as to approach the support member 40A as the distance from the curved portion 34AZA increases. Similarly, the cam surface 40AZ has a curved portion 40AZA that opens toward the pressing member 34A, and planar inclined portions 40AZB and 40AZC that extend continuously from the curved portion to both sides of the curved portion. The inclined portions 40AZB and 40AZC are inclined with respect to the virtual plane 94 so as to approach the pressing member 34A as the distance from the curved portion 40AZA increases.
 図示の実施形態においては、図4に示されている如く、仮想平面94に対する傾斜部34AZB等の傾斜角の大きさは同一である。よって、各ボール92Aの径方向に互いに対向する傾斜部34AZBと40AZC及び34AZCと40AZBは、仮想平面94に対し互いに同一の方向へ傾斜し、互いに平行に延在している。 In the illustrated embodiment, as shown in FIG. 4, the inclination angles of the inclined portion 34AZB and the like with respect to the virtual plane 94 are the same. Therefore, the inclined portions 34AZB and 40AZC and 34AZC and 40AZB facing each other in the radial direction of each ball 92A are inclined in the same direction with respect to the virtual plane 94 and extend in parallel to each other.
 なお、図には示されていないが、回転トルク-押圧力変換機構90Bは回転トルク-押圧力変換機構90Aと同様の構造を有している。すなわち、カム面34BZ及び40BZは、自転軸線36に沿う方向の向きが逆である点を除き、それぞれカム面34AZ及び40AZと同様に形成されている。 Although not shown in the figure, the rotational torque-pressing force conversion mechanism 90B has the same structure as the rotational torque-pressing force conversion mechanism 90A. That is, the cam surfaces 34BZ and 40BZ are formed in the same manner as the cam surfaces 34AZ and 40AZ, respectively, except that the direction along the rotation axis 36 is opposite.
 また、図3と図1との比較より解る如く、この第三の実施形態においては、回転トルク伝達部材82A及び82Bは押圧部材34A及び34Bに固定されている。図3に示されている如く、押圧部材34A及び34Bには、ブレーキパッド14A及び14Bの軸部の小径部と径方向に対向する領域に、自転軸線36の周りに全周に亘り延在する切欠きが設けられている。回転トルク伝達部材82A及び82Bは、これらの切欠き収容された状態にて配置されている。 In addition, as understood from the comparison between FIG. 3 and FIG. 1, in the third embodiment, the rotational torque transmitting members 82A and 82B are fixed to the pressing members 34A and 34B. As shown in FIG. 3, the pressing members 34 </ b> A and 34 </ b> B extend over the entire circumference around the rotation axis 36 in a region radially opposed to the small diameter portion of the shaft portion of the brake pads 14 </ b> A and 14 </ b> B. Notches are provided. The rotational torque transmission members 82A and 82B are arranged in a state in which these notches are accommodated.
 回転トルク伝達部材82A及び82Bの弾性円筒体は、押圧部材34A及び34Bの側面に接着等の手段により固定され、硬質円筒体の端面はブレーキパッド14A及び14Bの軸部の大径部と小径部との間の肩部に対向している。従って、この第三の実施形態においても、ブレーキパッド14A、14Bの軸部及び回転トルク伝達部材82A、82Bは、互いに共働してブレーキパッドと押圧部材との間における回転トルクの伝達を制限する回転トルク伝達制限機構84A及び84Bとして機能する。 The elastic cylinders of the rotational torque transmitting members 82A and 82B are fixed to the side surfaces of the pressing members 34A and 34B by means such as adhesion, and the end surfaces of the hard cylinders are the large and small diameter portions of the shaft portions of the brake pads 14A and 14B. Opposite the shoulder between. Therefore, also in the third embodiment, the shaft portions of the brake pads 14A and 14B and the rotational torque transmission members 82A and 82B cooperate with each other to limit the transmission of rotational torque between the brake pad and the pressing member. It functions as rotational torque transmission limiting mechanisms 84A and 84B.
 図3と図1との比較より解る如く、この第三の実施形態の他の点は上述の第一の実施形態と同様に構成されている。従って、ブレーキロータ12の回転トルクがくさび式の回転トルク-押圧力変換機構90A及び90Bによってブレーキパッド14A及び14Bに対する押圧力に変換される点を除き、第三の実施形態は第一の実施形態と同様に作動する。そして、第一及び第二の実施形態の場合と同様に、ブレーキパッド14A及び14Bの公転による制動トルクTrvに加えて、自転による制動トルクTrtが発生し、それらの総和が制動トルクTbとなる。 As understood from the comparison between FIG. 3 and FIG. 1, the other points of the third embodiment are configured in the same manner as the first embodiment described above. Accordingly, the third embodiment is the first embodiment except that the rotational torque of the brake rotor 12 is converted into the pressing force for the brake pads 14A and 14B by the wedge-type rotational torque-pressing force conversion mechanisms 90A and 90B. Operates in the same way. As in the first and second embodiments, in addition to the braking torque Trv due to the revolution of the brake pads 14A and 14B, the braking torque Trt due to the rotation is generated, and the sum of these becomes the braking torque Tb.
 例えば、図3に示されている如く、ピストン-シリンダ装置54のシリンダ室52の圧力が増大されていない非制動時には、回転トルク-押圧力変換機構の構成部材は押圧部材34A及び支持部材40Aについて図4に示された標準位置に位置決めされる。そして、押圧部材34A、34B及び支持部材40A、40Bが標準位置にあるときには、自転軸線36に沿う方向の押圧部材34A、34Bと支持部材40A、40Bとの間の間隔が最小になり、二つの押圧部材を離間させる力は発生しない。よって、ブレーキパッド14A及び14Bは、それぞれディスク部20A及びサブロータ22と実質的に摩擦係合せず、制動力は発生しない。 For example, as shown in FIG. 3, during non-braking when the pressure in the cylinder chamber 52 of the piston-cylinder device 54 is not increased, the components of the rotational torque-pressing force converting mechanism are the pressing member 34A and the supporting member 40A. Positioned in the standard position shown in FIG. When the pressing members 34A and 34B and the supporting members 40A and 40B are in the standard positions, the distance between the pressing members 34A and 34B and the supporting members 40A and 40B in the direction along the rotation axis 36 is minimized, and the two No force for separating the pressing members is generated. Therefore, the brake pads 14A and 14B are not substantially frictionally engaged with the disc portion 20A and the sub-rotor 22, respectively, and no braking force is generated.
 これに対し、シリンダ室52の圧力が増大される制動時には、ピストン-シリンダ装置54の押圧力によって押圧部材34A及び34Bが回転トルク伝達部材82A及び82Bを介してブレーキパッド14A及び14Bに対し押圧される。よって、ブレーキパッド14A及び14Bは、それぞれディスク部20A及びサブロータ22と摩擦係合する。 On the other hand, during braking in which the pressure in the cylinder chamber 52 is increased, the pressing members 34A and 34B are pressed against the brake pads 14A and 14B via the rotational torque transmitting members 82A and 82B by the pressing force of the piston-cylinder device 54. The Therefore, the brake pads 14A and 14B are frictionally engaged with the disk portion 20A and the sub-rotor 22, respectively.
 また、ディスク部20A及びサブロータ22の回転トルクがそれぞれ回転トルク伝達装置80A及び80Bによって自転軸線36の周りの回転トルクに変換されてブレーキパッド14A及び14Bへ伝達される。そして、ブレーキパッド14A及び14Bの回転トルクが回転トルク伝達部材82A及び82Bを介して押圧部材34A及び34Bへ伝達される。よって、押圧部材34A及び34Bは自転軸線36の周りにそれぞれ支持部材40A及び40Bに対し相対的に回転する。 Further, the rotational torques of the disk portion 20A and the sub-rotor 22 are converted into rotational torque around the rotation axis 36 by the rotational torque transmission devices 80A and 80B, respectively, and transmitted to the brake pads 14A and 14B. The rotational torque of the brake pads 14A and 14B is transmitted to the pressing members 34A and 34B via the rotational torque transmission members 82A and 82B. Therefore, the pressing members 34A and 34B rotate relative to the supporting members 40A and 40B around the rotation axis 36, respectively.
 その結果、図5に示されている如く、押圧部材34A及び支持部材40Aは互いに逆方向へ相対回転変位するので、ボール38Aの位置におけるカム面34ZA及び40ZAは互いに接近しようとする。しかし、ボール38Aは圧縮変形しないので、所謂くさび効果が発生し、押圧部材及び支持部材16は自転軸線36に沿って互いに離れる方向へ相対変位する。よって、ディスク部20A及びサブロータ22に対するブレーキパッド14A及び14Bの押圧力が増力される。 As a result, as shown in FIG. 5, the pressing member 34A and the support member 40A are relatively rotated and displaced in opposite directions, so that the cam surfaces 34ZA and 40ZA at the position of the ball 38A tend to approach each other. However, since the ball 38A is not compressed and deformed, a so-called wedge effect is generated, and the pressing member and the support member 16 are relatively displaced along the rotation axis 36 in a direction away from each other. Accordingly, the pressing force of the brake pads 14A and 14B against the disc portion 20A and the sub-rotor 22 is increased.
 制動トルクTrv及びTrtは、ディスク部20A及びサブロータ22に対するブレーキパッド14A及び14Bの押圧力に比例する。また、それらの押圧力は、くさび式の回転トルク-押圧力変換機構90A及び90Bにより増力されるが、それらの押圧力はピストン-シリンダ装置54のシリンダ室52内の油圧に比例する。従って、シリンダ室52内の油圧の制御によって押圧力を制御することにより、制動トルクTb、即ちブレーキ装置10が発生する制動力を制御することができる。 The braking torques Trv and Trt are proportional to the pressing force of the brake pads 14A and 14B against the disc portion 20A and the sub-rotor 22. These pressing forces are increased by the wedge-type rotational torque-pressing force conversion mechanisms 90A and 90B, and these pressing forces are proportional to the hydraulic pressure in the cylinder chamber 52 of the piston-cylinder device 54. Therefore, by controlling the pressing force by controlling the hydraulic pressure in the cylinder chamber 52, the braking torque Tb, that is, the braking force generated by the brake device 10 can be controlled.
 よって、第三の実施形態によれば、第一及び第二の実施形態の場合と同様に、従来の一般的な構造のブレーキ装置よりも遥かに高い制動トルクを発生させることができ、また、上記公開公報に記載されたブレーキ装置よりも高い制動トルクを発生させることができる。 Therefore, according to the third embodiment, as in the case of the first and second embodiments, it is possible to generate a braking torque far higher than that of a brake device having a conventional general structure, A braking torque higher than that of the brake device described in the above publication can be generated.
 また、ブレーキ装置10の各距離が第一の実施形態の場合と同一であり、カム面34ZA等の傾斜角が14degであり、回転トルクから押圧力への変換効率が100%であるとすると、制動トルクのサーボ比Rbt1及びRbt2も第一の実施形態の場合と同一である。従って、第三の実施形態によれば、上記仕様の場合には、従来の一般的な構造のブレーキ装置の約10倍の制動トルクを発生させることができ、また、上記公開公報に記載されたブレーキ装置の約5倍の制動トルクを発生させることができる。 Further, assuming that the distances of the brake device 10 are the same as those in the first embodiment, the inclination angle of the cam surface 34ZA and the like is 14 deg, and the conversion efficiency from the rotational torque to the pressing force is 100%. The servo ratios Rbt1 and Rbt2 of the braking torque are also the same as in the first embodiment. Therefore, according to the third embodiment, in the case of the above specifications, it is possible to generate a braking torque about 10 times that of a brake device having a conventional general structure, and is described in the above-mentioned publication. A braking torque about 5 times that of the braking device can be generated.
 特に、第三の実施形態によれば、カム面40AZの傾斜部40AZB及び40AZCは、仮想平面94に対し互いに逆方向へ傾斜し、傾斜部40AZB及び40AZCも、仮想平面94に対し互いに逆方向へ傾斜している。よって、くさび式の回転トルク-押圧力変換機構90A及び90Bは、押圧部材34A及び34Bが支持部材40A及び40Bに対し何れの方向へ相対的に回転変位する場合にも、回転トルクを押圧力に変換することができる。従って、車両が前進しているか後進しているかに関係なく、高い制動力を応答性よく発生させることができる。 In particular, according to the third embodiment, the inclined portions 40AZB and 40AZC of the cam surface 40AZ are inclined in directions opposite to each other with respect to the virtual plane 94, and the inclined portions 40AZB and 40AZC are also opposite to each other in relation to the virtual plane 94. Inclined. Therefore, the wedge-type rotational torque-pressing force conversion mechanisms 90A and 90B use the rotational torque as the pressing force when the pressing members 34A and 34B are rotationally displaced relative to the support members 40A and 40B in any direction. Can be converted. Therefore, a high braking force can be generated with high responsiveness regardless of whether the vehicle is moving forward or backward.
 なお、上述の第一ないし第三の実施形態によれば、ピストン-シリンダ装置54による押圧力が増大すると、回転トルク伝達部材82A及び82Bの圧縮変形量が増大する。そして、その圧縮変形量が予め設定された値以上になると、ブレーキパッド14A及び14Bの軸部の先端が自転軸線36の位置に於いて押圧部材34A及び34Bに当接し、ブレーキパッドから押圧部材へ伝達される回転トルクはそれ以上増大しなくなる。 According to the first to third embodiments described above, when the pressing force by the piston-cylinder device 54 increases, the amount of compressive deformation of the rotational torque transmitting members 82A and 82B increases. When the amount of compressive deformation exceeds a preset value, the tip ends of the shaft portions of the brake pads 14A and 14B come into contact with the pressing members 34A and 34B at the position of the rotation axis 36, and from the brake pad to the pressing member. The transmitted rotational torque no longer increases.
 よって、押圧部材の回転トルクが際限なくブレーキパッドを押圧する押圧力に変換されることを確実に防止することができる。また、押圧部材の回転トルクが押圧力に変換されることによる押圧力の増力を、ピストン-シリンダ装置54による押圧力に応じて行わせることができると共に、押圧力の増力が際限なく行われることを確実に防止することができる。 Therefore, it is possible to reliably prevent the rotational torque of the pressing member from being converted into a pressing force that presses the brake pad without limit. Further, the pressing force can be increased according to the pressing force by the piston-cylinder device 54 by converting the rotational torque of the pressing member into the pressing force, and the pressing force can be increased without limit. Can be reliably prevented.
 また、上述の第一ないし第三の実施形態によれば、回転トルク伝達部材82A及び82Bは、弾性円筒体と硬質円筒体とよりなり、それぞれブレーキパッド14A及び14Bの軸部に嵌合している。そして、硬質円筒体は自転軸線36の周りの全周にわたり押圧部材又はブレーキパッドと摩擦係合し得るようになっている。 Further, according to the first to third embodiments described above, the rotational torque transmitting members 82A and 82B are made of an elastic cylinder and a hard cylinder, and are fitted to the shaft portions of the brake pads 14A and 14B, respectively. Yes. The rigid cylindrical body can be frictionally engaged with the pressing member or the brake pad over the entire circumference around the rotation axis 36.
 よって、例えば回転トルク伝達部材が自転軸線の周りの一部の領域においてしか設けられていない場合に比して、ブレーキパッドより押圧部材への回転トルクの伝達を良好に行わせることができる。また、例えば回転トルク伝達部材の他端が自転軸線の周りの一部の領域においてしかブレーキパッド又は押圧部に摩擦係合できない場合に比して、回転摩擦部材より押圧部材への回転トルクの伝達を良好に行わせることができる。さらに、回転トルク伝達部材の他端と摩擦係合するブレーキパッド又は押圧部材に偏摩耗の如き異常摩耗が発生する虞れを低減し、ブレーキ装置の耐久性を向上させることができる。 Therefore, for example, the rotational torque can be more favorably transmitted from the brake pad to the pressing member than when the rotational torque transmitting member is provided only in a partial region around the rotation axis. Further, for example, the rotational torque is transmitted from the rotational friction member to the pressing member as compared with the case where the other end of the rotational torque transmitting member can be frictionally engaged with the brake pad or the pressing portion only in a partial region around the rotation axis. Can be performed satisfactorily. Furthermore, it is possible to reduce the possibility that abnormal wear such as uneven wear occurs on the brake pad or the pressing member frictionally engaged with the other end of the rotational torque transmitting member, and to improve the durability of the brake device.
 また、例えば回転トルク伝達部材が硬質ゴムの如き弾性材のみにて形成されており、弾性材が直接ブレーキパッド又は押圧部に摩擦係合する場合に比して、回転トルク伝達部材の摩耗を抑制し、このことによってもブレーキ装置の耐久性を向上させることができる。 Further, for example, the rotational torque transmission member is formed only of an elastic material such as hard rubber, and the wear of the rotational torque transmission member is suppressed as compared with the case where the elastic material directly frictionally engages the brake pad or the pressing portion. However, this also improves the durability of the brake device.
 また、上述の第一及び第三の実施形態によれば、ディスク部20A、円筒部20B及びサブロータ22は、回転軸線18を通る径方向の切断面で見て径方向内方へ開いたコの字形の断面形状をなしている。そして、押圧部材34A及び34B等は、ディスク部20Aとサブロータ22との間に配設され、それらに対しブレーキパッド14A及び14B等を互いに離れる方向へ押圧するようになっている。 In addition, according to the first and third embodiments described above, the disk portion 20A, the cylindrical portion 20B, and the sub-rotor 22 are opened inward in the radial direction when viewed from a radial cut surface passing through the rotation axis 18. It has a letter-shaped cross-sectional shape. The pressing members 34A and 34B and the like are disposed between the disk portion 20A and the sub-rotor 22, and press the brake pads 14A and 14B and the like in a direction away from each other.
 よって、従来のディスクブレーキ装置の如くブレーキロータの両側に跨るよう延在し摩擦部材や押圧装置を支持すると共に押圧装置の押圧力の反力を担持するキャリパは不要であり、またキャリパの剛性を高くすることも不要である。また、ディスク部20A及びサブロータ22は、回転軸線18の周りに全周に亘り延在しているので、回転軸線の周りに円弧状にしか延在しないキャリパに比してブレーキロータ12の剛性を高くすることができる。 Therefore, a caliper that extends across both sides of the brake rotor and supports the friction member and the pressing device and supports the reaction force of the pressing force of the pressing device as in the conventional disc brake device is unnecessary, and the rigidity of the caliper is reduced. It is not necessary to make it higher. Further, since the disk portion 20A and the sub-rotor 22 extend around the rotation axis 18 over the entire circumference, the rigidity of the brake rotor 12 is improved as compared with a caliper that extends only in an arc around the rotation axis. Can be high.
 以上においては、本発明を特定の実施形態について詳細に説明したが、本発明は上述の実施形態に限定されるものではなく、本発明の範囲内にて他の種々の実施形態が可能であることは当業者にとって明らかであろう。 Although the present invention has been described in detail with respect to specific embodiments, the present invention is not limited to the above-described embodiments, and various other embodiments are possible within the scope of the present invention. This will be apparent to those skilled in the art.
 例えば、上述の各実施形態においては、回転トルク伝達部材82A及び82Bはそれぞれブレーキパッド14A及び14Bの軸部に嵌合している。しかし、回転トルク伝達部材は自転軸線36より径方向に隔置された位置にて回転トルクを伝達し得る限り、自転軸線36の周りの一部の領域にのみ設けられていてもよい。 For example, in each of the above-described embodiments, the rotational torque transmission members 82A and 82B are fitted to the shaft portions of the brake pads 14A and 14B, respectively. However, the rotational torque transmission member may be provided only in a partial region around the rotation axis 36 as long as the rotation torque can be transmitted at a position spaced radially from the rotation axis 36.
 また、回転トルク伝達部材82A及び82Bは、弾性円筒体と硬質円筒体とよりなり、弾性円筒体にてブレーキパッド14A及び14B又は押圧部材34A及び34Bに固定されている。しかし、回転トルク伝達部材82A及び82Bは一端にて例えばブレーキパッド及び押圧部材の一方に例えば当接することにより支持され、ブレーキパッド及び押圧部材の他方に摩擦係合可能である限り、固定されていなくてもよい。また、弾性材が耐摩耗性にも優れていれば、硬質の部分が省略されてもよい。 The rotational torque transmission members 82A and 82B are made of an elastic cylinder and a hard cylinder, and are fixed to the brake pads 14A and 14B or the pressing members 34A and 34B by the elastic cylinder. However, the rotational torque transmitting members 82A and 82B are supported at one end, for example, by contacting one of the brake pad and the pressing member, and are not fixed as long as they can be frictionally engaged with the other of the brake pad and the pressing member. May be. Further, if the elastic material is also excellent in wear resistance, the hard portion may be omitted.
 また、上述の各実施形態においては、摩擦係合部材14A及び14Bは互いに同一の大きさを有し、それらの自転軸線36は互いに整合している。しかし、摩擦係合部材14A及び14Bは互いに異なる大きさや直径を有していてもよく、それらの自転軸線は互いに整合していなくてもよい。 In the above-described embodiments, the friction engagement members 14A and 14B have the same size, and their rotation axes 36 are aligned with each other. However, the friction engagement members 14A and 14B may have different sizes and diameters, and their rotation axes may not be aligned with each other.
 また、上述の各実施形態においては、摩擦係合部材14A及び14Bの摩擦部14AA及び14BAは、自転軸線36を中心として互いに同一の半径の位置に設けられている。しかし、摩擦部14AA及び14BAは互いに異なる半径の位置に設けられていてもよい。 Further, in each of the above-described embodiments, the friction portions 14AA and 14BA of the friction engagement members 14A and 14B are provided at positions having the same radius around the rotation axis 36. However, the friction portions 14AA and 14BA may be provided at positions having different radii.
 また、上述の各実施形態においては、ブレーキパッド14A及び14Bに対し押圧部材34A及び34Bを押圧する押圧装置はピストン-シリンダ装置であるが、押圧装置は電磁式の押圧装置であってもよい。 In each of the above embodiments, the pressing device that presses the pressing members 34A and 34B against the brake pads 14A and 14B is a piston-cylinder device, but the pressing device may be an electromagnetic pressing device.
 また、上述の第一及び第二の実施形態においては、回転トルク-押圧力変換機構はボールねじ機構40A及び42Bであるが、自転軸線36の周りにらせん状に延在する案内溝を有する限り、ボールの如き転動要素を含まないねじ機構であってもよい。その場合のねじの溝及びそれに係合する歯の形状は、インボリュート歯形、矩形の如き任意の形状であってよい。 In the first and second embodiments described above, the rotational torque-pressing force conversion mechanism is the ball screw mechanisms 40A and 42B, but as long as it has a guide groove extending spirally around the rotation axis 36. The screw mechanism may not include a rolling element such as a ball. In this case, the shape of the screw groove and the tooth engaged therewith may be any shape such as an involute tooth shape or a rectangular shape.
 また、上述の第三の実施形態においては、くさび式の回転トルク-押圧力変換機構90A及び90Bのカム面34AZ及び40AZは、それぞれ湾曲部34AZA及び40AZAと、湾曲部の両側に延在する平面状の傾斜部34AZB、40AZB及び34ZC、40AZCとを有している。しかし、回転トルク-押圧力変換機構のカム面は自転軸線36に垂直な仮想平面94に対し同一の方向へ傾斜した傾斜面を有する限り、他の形状を有していてもよい。 In the third embodiment described above, the cam surfaces 34AZ and 40AZ of the wedge-type rotational torque-pressing force conversion mechanisms 90A and 90B are respectively curved portions 34AZA and 40AZA and planes extending on both sides of the curved portion. Inclined portions 34AZB, 40AZB and 34ZC, 40AZC. However, the cam surface of the rotational torque-pressing force conversion mechanism may have another shape as long as it has an inclined surface inclined in the same direction with respect to a virtual plane 94 perpendicular to the rotation axis 36.
 例えば、図6に示されている如く、またカム面34AZが山形をなし、カム面40AZがカム面34AZを受ける谷形をなしていてもよい。なお、この修正例においても、押圧部材34A及び支持部材40Aのカム面の間にボールの如き転動要素が介装されてもよい。また、図7に示されている如く、湾曲部の両側に延在する傾斜部34AZB、40AZB及び34AZC、40AZCの仮想平面94に対する傾斜角が湾曲部より離れるにつれて漸次小さくなるよう、これらの傾斜部は湾曲していてもよい。 For example, as shown in FIG. 6, the cam surface 34AZ may have a mountain shape, and the cam surface 40AZ may have a valley shape that receives the cam surface 34AZ. In this modified example, a rolling element such as a ball may be interposed between the cam surfaces of the pressing member 34A and the support member 40A. Further, as shown in FIG. 7, the inclined portions 34AZB, 40AZB and 34AZC, 40AZC extending on both sides of the curved portion are inclined so that the inclination angle with respect to the virtual plane 94 gradually decreases as the distance from the curved portion increases. May be curved.
 また、上述の第三の実施形態の如く、押圧部材及び支持部材のカム面の間にボールの如き転動体が介装されている場合には、一方のカム面の傾斜角のみが湾曲部より離れるにつれて漸次小さくなるよう湾曲していてもよい。なお、転動体は円柱状のローラやテーパを有するローラであってもよい。 Further, as in the third embodiment described above, when a rolling element such as a ball is interposed between the cam surfaces of the pressing member and the support member, only the inclination angle of one cam surface is greater than that of the curved portion. You may curve so that it may become small gradually as it leaves | separates. The rolling element may be a cylindrical roller or a tapered roller.
 これらの修正例によれば、自転軸線36の周りの押圧部材及び支持部材16の相対変位量が増大するにつれて、回転トルクが自転軸線36に沿う方向に分解される力の成分を漸次大きくすることができる。よって、ブレーキ装置のブレーキ特性をプログレッシブなブレーキ特性にすることができる。 According to these modified examples, as the relative displacement of the pressing member around the rotation axis 36 and the support member 16 increases, the component of the force that causes the rotational torque to be decomposed in the direction along the rotation axis 36 is gradually increased. Can do. Therefore, the brake characteristic of the brake device can be changed to a progressive brake characteristic.
 また、上述の第三の実施形態においては、カム面34AZ及び40AZは、それぞれ湾曲部34AZA及び40AZAを有しているが、湾曲部が設けられることなく傾斜部34AZBの如き傾斜部のみよりなっていてもよい。 In the third embodiment described above, the cam surfaces 34AZ and 40AZ have the curved portions 34AZA and 40AZA, respectively. May be.
 また、上述の第一及び第三の実施形態においては、円筒部20Bはディスク部20Aと一体に形成されてメインロータ20を形成している。しかし、円筒部20Bはサブロータ22と一体に形成されてもよく、またディスク部20A、円筒部20B、サブロータ22が別体に形成されてもよい。 In the first and third embodiments described above, the cylindrical portion 20B is formed integrally with the disc portion 20A to form the main rotor 20. However, the cylindrical portion 20B may be formed integrally with the sub-rotor 22, and the disc portion 20A, the cylindrical portion 20B, and the sub-rotor 22 may be formed separately.
 また、各実施形態のブレーキ装置は車両用のブレーキ装置であるが、本発明のブレーキ装置は車両以外の用途に適用されてもよい。 Moreover, although the brake device of each embodiment is a brake device for vehicles, the brake device of the present invention may be applied to uses other than vehicles.
 10…ブレーキ装置、12…ブレーキロータ、14A,14B…ブレーキパッド、18…回転軸線、20…メインロータ、22…サブロータ、34A,34B…押圧部材、36…自転軸線、40A,40B…支持部材、42A,42B…ボールねじ機構、50…静止部材、54…ピストン-シリンダ装置、80A,80B…回転トルク伝達装置、82A,82B…回転トルク伝達部材、84A,84B…回転トルク伝達制限機構、88…キャリパ、90A,90B…くさび式の回転トルク-押圧力変換機構 DESCRIPTION OF SYMBOLS 10 ... Brake device, 12 ... Brake rotor, 14A, 14B ... Brake pad, 18 ... Rotation axis, 20 ... Main rotor, 22 ... Subrotor, 34A, 34B ... Pressing member, 36 ... Spinning axis, 40A, 40B ... Support member, 42A, 42B ... ball screw mechanism, 50 ... stationary member, 54 ... piston-cylinder device, 80A, 80B ... rotational torque transmission device, 82A, 82B ... rotational torque transmission member, 84A, 84B ... rotational torque transmission limiting mechanism, 88 ... Caliper, 90A, 90B ... Wedge-type rotational torque-pressing force conversion mechanism

Claims (8)

  1.  回転軸線の周りに回転するブレーキロータと、前記回転軸線に平行な自転軸線の周りに回転可能な回転摩擦部材と、前記ブレーキロータと前記回転摩擦部材との間にて回転トルクを相互に伝達する回転トルク伝達装置と、押圧部材を前記回転摩擦部材に対し押圧することにより前記回転摩擦部材を前記ブレーキロータに対し押圧する押圧装置と、を有する摩擦ブレーキ装置に於いて、
     前記回転摩擦部材の回転トルクを前記押圧部材に伝達すると共に、前記押圧部材の回転トルクを、前記押圧部材が前記回転摩擦部材を押圧する押圧力に変換する回転トルク-押圧力変換機構を有する、
    ことを特徴とする摩擦ブレーキ装置。
    Rotational torque is mutually transmitted between the brake rotor rotating around the rotation axis, the rotary friction member rotatable around the rotation axis parallel to the rotation axis, and the brake rotor and the rotation friction member. In a friction brake device comprising: a rotational torque transmission device; and a pressing device that presses the rotating friction member against the brake rotor by pressing the pressing member against the rotating friction member.
    A rotational torque-pressing force conversion mechanism for transmitting the rotational torque of the rotational friction member to the pressing member and converting the rotational torque of the pressing member into a pressing force by which the pressing member presses the rotational friction member;
    A friction brake device characterized by that.
  2.  前記押圧部材は、前記回転摩擦部材を前記自転軸線の周りに回転可能に支持すると共に、静止支持部材により前記自転軸線の周りに回転可能に支持されており、
     前記回転トルク-押圧力変換機構は、前記回転摩擦部材と前記静止支持部材との間に配置され、前記回転摩擦部材より前記押圧部材へ回転トルクを伝達する回転トルク伝達部材と、前記自転軸線の周りの前記静止支持部材に対する前記押圧部材の相対回転を、前記押圧部材が前記自転軸線に沿って前記ブレーキロータへ向かう直線変位に変換する回転-直線変位変換機構と、を有することを特徴とする請求項1に記載の摩擦ブレーキ装置。
    The pressing member supports the rotational friction member rotatably around the rotation axis, and is supported rotatably around the rotation axis by a stationary support member.
    The rotational torque-pressing force conversion mechanism is disposed between the rotational friction member and the stationary support member, and transmits a rotational torque from the rotational friction member to the pressing member. A rotation-linear displacement conversion mechanism that converts relative rotation of the pressing member with respect to the surrounding stationary support member into linear displacement of the pressing member toward the brake rotor along the rotation axis. The friction brake device according to claim 1.
  3.  前記回転-直線変位変換機構は、前記自転軸線の周りに螺旋状に延在する案内溝を備えたねじ式の回転-直線変位変換機構であることを特徴とする請求項2に記載の摩擦ブレーキ装置。 3. The friction brake according to claim 2, wherein the rotation-linear displacement conversion mechanism is a screw-type rotation-linear displacement conversion mechanism having a guide groove extending spirally around the rotation axis. apparatus.
  4.  前記回転-直線変位変換機構は、前記自転軸線に沿って互いに対向する前記押圧部材及び前記静止支持部材の傾斜面であって、前記自転軸線に垂直な仮想平面に対し同一の方向へ傾斜して前記自転軸線の周りに円弧状に延在する傾斜面を有するくさび式の回転-直線変位変換機構であることを特徴とする請求項2に記載の摩擦ブレーキ装置。 The rotation-linear displacement conversion mechanism is an inclined surface of the pressing member and the stationary support member facing each other along the rotation axis, and is inclined in the same direction with respect to a virtual plane perpendicular to the rotation axis. 3. The friction brake device according to claim 2, wherein the friction brake device is a wedge-type rotation-linear displacement conversion mechanism having an inclined surface extending in an arc shape around the rotation axis.
  5.  各傾斜面は前記仮想平面に対し互いに逆方向へ傾斜する領域を有していることを特徴とする請求項4に記載の摩擦ブレーキ装置。 5. The friction brake device according to claim 4, wherein each inclined surface has regions inclined in opposite directions with respect to the virtual plane.
  6.  前記回転摩擦部材は、前記自転軸線と同軸に延在する軸部を有し、前記回転トルク伝達部材は、前記自転軸線に沿って弾性的に圧縮変形可能な領域を含み、前記回転トルク伝達部材及び前記軸部は、前記領域の圧縮変形量が基準値以上になると、前記軸部が前記自転軸線上にて前記押圧部材に係合することにより、前記回転トルク伝達部材により伝達される回転トルクが増大することを阻止する回転トルク伝達制限機構を形成していることを特徴とする請求項2ないし5の何れかに記載の摩擦ブレーキ装置。 The rotational friction member has a shaft portion extending coaxially with the rotation axis, and the rotational torque transmission member includes a region that is elastically compressible and deformable along the rotation axis, and the rotation torque transmission member And when the amount of compressive deformation in the region becomes equal to or greater than a reference value, the shaft portion engages with the pressing member on the rotation axis, thereby rotating torque transmitted by the rotation torque transmitting member. The friction brake device according to any one of claims 2 to 5, further comprising a rotational torque transmission limiting mechanism for preventing the torque from increasing.
  7.  前記回転トルク伝達部材は、前記軸部に嵌合した状態にて前記自転軸線に沿って延在し、一端にて前記回転摩擦部材及び前記静止支持部材の一方により支持され、他端にて前記回転摩擦部材及び前記静止支持部材の他方に全周にわたり摩擦係合可能であることを特徴とする請求項6に記載の摩擦ブレーキ装置。 The rotational torque transmission member extends along the rotation axis while being fitted to the shaft portion, and is supported at one end by one of the rotational friction member and the stationary support member, and at the other end The friction brake device according to claim 6, wherein the friction brake device can be frictionally engaged with the other of the rotating friction member and the stationary support member over the entire circumference.
  8.  前記回転トルク伝達装置は、前記ブレーキロータ及び前記回転摩擦部材に設けられ互いに噛合する歯車を含んでいることを特徴とする請求項1ないし7の何れか一つに記載の摩擦ブレーキ装置。 The friction brake device according to any one of claims 1 to 7, wherein the rotational torque transmission device includes gears provided on the brake rotor and the rotational friction member and meshing with each other.
PCT/JP2014/067393 2013-08-07 2014-06-30 Friction brake device WO2015019748A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-163821 2013-08-07
JP2013163821A JP5780276B2 (en) 2013-08-07 2013-08-07 Friction brake device

Publications (1)

Publication Number Publication Date
WO2015019748A1 true WO2015019748A1 (en) 2015-02-12

Family

ID=52461087

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067393 WO2015019748A1 (en) 2013-08-07 2014-06-30 Friction brake device

Country Status (2)

Country Link
JP (1) JP5780276B2 (en)
WO (1) WO2015019748A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2835556A4 (en) * 2012-04-07 2016-01-13 Toyota Motor Co Ltd Friction brake device
EP2835555A4 (en) * 2012-04-07 2016-01-20 Toyota Motor Co Ltd Friction brake device
EP2835554A4 (en) * 2012-04-07 2016-01-20 Toyota Motor Co Ltd Friction brake device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6834924B2 (en) 2017-12-04 2021-02-24 トヨタ自動車株式会社 Brake device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62126630U (en) * 1986-01-31 1987-08-11
JP2006177532A (en) * 2004-12-24 2006-07-06 Hitachi Ltd Disc brake
JP2008151199A (en) * 2006-12-15 2008-07-03 Toyota Motor Corp Friction-type transmissibility variable type power transmitting apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62126630U (en) * 1986-01-31 1987-08-11
JP2006177532A (en) * 2004-12-24 2006-07-06 Hitachi Ltd Disc brake
JP2008151199A (en) * 2006-12-15 2008-07-03 Toyota Motor Corp Friction-type transmissibility variable type power transmitting apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2835556A4 (en) * 2012-04-07 2016-01-13 Toyota Motor Co Ltd Friction brake device
EP2835555A4 (en) * 2012-04-07 2016-01-20 Toyota Motor Co Ltd Friction brake device
EP2835554A4 (en) * 2012-04-07 2016-01-20 Toyota Motor Co Ltd Friction brake device

Also Published As

Publication number Publication date
JP5780276B2 (en) 2015-09-16
JP2015031387A (en) 2015-02-16

Similar Documents

Publication Publication Date Title
WO2015152074A1 (en) Opposed piston-type disc brake device
US8827052B2 (en) Decelerator and motor brake with the same
JP5846299B2 (en) Friction brake device
EP2891823B1 (en) Electric linear motion actuator and electric disk brake system
JP5780276B2 (en) Friction brake device
JP5754547B2 (en) Friction brake device
CN111133217A (en) Electric disk brake
JP6160696B2 (en) Friction brake device
JP5252156B2 (en) Disc brake
JP5754548B2 (en) Friction brake device
JP5754549B2 (en) Friction brake device
JP2014122648A (en) Ball ramp mechanism, linear motion actuator and electrically-driven disc brake device
JP2014214752A (en) Electric disc brake device
KR20140104518A (en) Decelerator and motor brake with the same
JP2007205400A (en) Disc brake
CN216642887U (en) Brake device for vehicle
KR20100004151A (en) Disc brake of a car

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14834668

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14834668

Country of ref document: EP

Kind code of ref document: A1