WO2015019491A1 - Charged particle beam generating device, charged particle beam device, sample processing method, and sample observation method - Google Patents

Charged particle beam generating device, charged particle beam device, sample processing method, and sample observation method Download PDF

Info

Publication number
WO2015019491A1
WO2015019491A1 PCT/JP2013/071663 JP2013071663W WO2015019491A1 WO 2015019491 A1 WO2015019491 A1 WO 2015019491A1 JP 2013071663 W JP2013071663 W JP 2013071663W WO 2015019491 A1 WO2015019491 A1 WO 2015019491A1
Authority
WO
WIPO (PCT)
Prior art keywords
charged particle
magnetic field
particle beam
magnetic flux
axis
Prior art date
Application number
PCT/JP2013/071663
Other languages
French (fr)
Japanese (ja)
Inventor
研 原田
照生 孝橋
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2013/071663 priority Critical patent/WO2015019491A1/en
Priority to JP2015530643A priority patent/JP6067857B2/en
Publication of WO2015019491A1 publication Critical patent/WO2015019491A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/06Electron sources; Electron guns
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/063Electron sources
    • H01J2237/06325Cold-cathode sources
    • H01J2237/06341Field emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/063Electron sources
    • H01J2237/06383Spin polarised electron sources
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/065Source emittance characteristics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/06Sources
    • H01J2237/083Beam forming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/26Electron or ion microscopes
    • H01J2237/2614Holography or phase contrast, phase related imaging in general, e.g. phase plates

Definitions

  • the present invention relates to a charged particle beam generator, a charged particle beam device, a sample processing method, and a sample observation method.
  • Patent Document 1 discloses a charged particle beam generator in which the tip of an emitter that emits a charged particle beam is disposed below the peak of the magnetic flux density distribution.
  • the present inventor is engaged in the research and development of charged particle beam apparatus and is examining the improvement of its performance. In the process, it has been found useful to use a spiral wave as the charged particle beam to be irradiated.
  • the magnetic field axis of the dipole and the optical axis of the charged particle beam device are parallel to each other, and the magnetic flux line and the charged particle beam emitted from one end of the dipole
  • the charged particle source is placed on the axis of the dipole or an extension of the axis (for example, at a predetermined position between the two poles) so that they interact with each other.
  • the amount of magnetic flux emitted from one end of the dipole and its polarity are controlled so that each trajectory of the charged particle beam emitted from the charged particle source and the magnetic flux emitted from one end of the dipole satisfy the appropriate conditions for generating a spiral wave. To do.
  • the charged particle beam apparatus shown in the following representative embodiment disclosed in the present application it is possible to generate a charged particle helical wave while maintaining the intensity of the charged particle beam generated from the charged particle source. it can.
  • the helical degree and positive / negative (direction of spiral winding) of the charged particle helical wave can be easily controlled.
  • FIG. 1 It is a schematic diagram of a spiral wave. It is a schematic diagram which shows a mode that a spiral wave is produced
  • 4A, 4B, and 4C are diagrams showing a diffraction grating including a third-order edge dislocation and a small-angle electron diffraction image. It is a schematic diagram explaining the track
  • FIGS. 6A and 6B are schematic diagrams showing electron beam paths (orbits) and phases (wavefronts) for explaining the Aharanov-Bohm effect.
  • FIG. 6A shows a single electron source.
  • FIG. 6B is a schematic diagram of two electron beam paths to one observation point, and FIG. 6B is a schematic diagram of two electron beam paths from two electron sources to two observation points.
  • FIG. 7A is a schematic diagram showing a state in which a dotted magnetic flux generator generates an electron spiral wave
  • FIG. 7B shows a magnetic flux line and an electron beam from the dotted magnetic flux generator.
  • FIG. FIG. 8A is a schematic diagram showing a relationship between a monopole and an electron spiral wave
  • FIG. 8B shows a relationship between a dipole and a stepped electron wave (a pair of electron spiral waves). It is a schematic diagram.
  • FIG. 8A is a schematic diagram showing a relationship between a monopole and an electron spiral wave
  • FIG. 8B shows a relationship between a dipole and a stepped electron wave (a pair of electron spiral waves). It is a schematic diagram.
  • FIG. 8A is a schematic diagram showing a relationship between
  • FIG. 9A is a schematic diagram showing how an electron spiral wave is generated using one end of a rod-shaped magnetic body
  • FIG. 9B is a schematic diagram of an electron spiral wave with distortion
  • FIG. 10A is a schematic diagram showing the distribution of magnetic flux lines from one end of the solenoid
  • FIG. 10B is a schematic diagram showing the distribution of magnetic flux lines from one end of the rod-shaped magnetic body
  • 10 (C) is a schematic diagram showing the distribution of magnetic flux lines from one end of the superconducting cylinder.
  • FIG. 11A is a schematic diagram showing a relationship between an electron beam emitted from an electron emitting portion of the electron gun Tip and a magnetic flux line
  • FIG. 11B shows a magnetic flux line from a dotted magnetic flux generator.
  • FIG. 12A is a schematic diagram showing the relationship between two electron trajectories emitted from the electron gun Tip and magnetic flux lines
  • FIG. 12B is a projection of the electron beam emission region and magnetic flux lines onto the plane Q.
  • FIG. It is a schematic diagram which shows the relationship between two electron orbits emitted from the electron gun Tip and magnetic flux lines.
  • 14A and 14B are projection views showing the deviation between the optical axis and the magnetic field application axis
  • FIG. 14A shows the case where the magnetic field application axis is parallel to the optical axis and the position is displaced.
  • FIG 14B is a diagram illustrating a case where the angle between the magnetic field application axis and the optical axis is deviated.
  • FIGS. 15A and 15B are projection views showing the deviation between the optical axis and the magnetic field application axis
  • FIG. 15A is a view showing the case where the magnetic field application axis is in the electron beam emission region.
  • FIG. 15B is a diagram showing a case where the magnetic field application axis is outside the electron beam emission region.
  • It is a schematic diagram which shows an example of the structure which installed the correction coil in the magnetic field application coil.
  • It is a schematic diagram which shows an example of the structure which installed the electron beam deflector in the lower part of the electron gun Tip.
  • This spiral wave is called a Laguerre Gaussian beam or optical vortex (Hikari Uzu) in optics, and is a light wave that propagates while maintaining its orbital angular momentum, and can apply a force to the isophase plane (wavefront) in the vertical direction. it can. Therefore, it is possible to give momentum to the irradiation target, and it can be used as a manipulation technique such as optical tweezers for manipulating particles that are about the size of a cell, or as laser processing or super-resolution microspectroscopy. it can.
  • An electron beam spiral wave (also called an electron spiral wave) propagates while maintaining its orbital angular momentum, so it is expected to create an unprecedented field of application as an electron beam probe (incident beam).
  • an electron beam probe incident beam.
  • the electron beam has the fundamental drawback that it is not sensitive to the magnetization parallel to the propagation direction, but the possibility of observing the magnetization in the electron beam propagation direction is possible with the electron spiral wave.
  • the electron spiral wave There is.
  • FIG. 2 is a schematic diagram showing how a spiral wave is generated from a spiral-shaped thin film.
  • a thin film (helical phase plate 33) having a spiral thickness distribution is irradiated with a plane wave 23, and the phase distribution of the transmitted wave reflects the thickness of the film. It is a method that utilizes the fact that it becomes a spiral shape.
  • FIG. 3 is a schematic diagram showing a state in which a helical wave is generated from an edge dislocation diffraction grating.
  • a second method (related technique 2) for generating a helical wave is a method using a diffracted wave by a grating including edge dislocations called a fork-type grating.
  • the second method (related technique 2) using a diffraction grating including edge dislocations is more realistic.
  • a spiral wave 21 (a wave having an equal phase plane in a spiral shape) generated as a diffracted wave from a diffraction grating 91 including edge dislocations is a normal point-like diffraction in the diffraction image 9.
  • a ring-shaped diffraction spot 97 is formed. If one of the ring-shaped diffraction spots can be spatially separated on the diffraction surface, the desired spiral wave 21 can be extracted.
  • FIG. 4A is an electron microscope image of the third-order edge dislocation lattice 91 actually created. Using a focused ion beam apparatus, a silicon nitride membrane having a thickness of about 200 nm was processed. Three grids are inserted above the central portion in FIG. 4A, and the grids are concentrated on this part. That is, this concentrated portion is the position of the core of edge dislocation, and the order is third order.
  • FIG. 4B is a small angle electron diffraction image 9 obtained when the diffraction grating of FIG. 4A is irradiated with an electron beam with an acceleration voltage of 300 kV.
  • FIG. 4C is a copy of the image of FIG.
  • This small-angle electron diffraction image 9 is recorded with a camera length of 150 m.
  • ⁇ 1st order, ⁇ 2nd order, ⁇ 3rd order ring-shaped diffraction spots 97 are observed on the left and right of the 0th order spot (dotted diffraction spot 99) in the center, and the ring diameter increases as the diffraction order increases.
  • spiral waves having a spiral degree of ⁇ 3rd order, ⁇ 6th order, and ⁇ 9th order are generated. That is, the ring diameter of the diffraction spot directly represents the helical degree of the helical wave.
  • the currently used grating is an amplitude grating (a grating that completely shields part of the wave (amplitude)), and the intensity of the diffracted wave is halved when it passes through the grating. is doing. Furthermore, the majority of the intensity of the diffracted wave concentrates on the 0th-order diffracted wave (transmitted wave) that is outside the purpose of use in the present embodiment, and the intensity of the diffracted wave of ⁇ 1st order or higher is further dispersed. The digits are lost.
  • the intensity of the diffracted wave of ⁇ 1st order or higher is reduced to a few tenths or less as compared with the incident intensity to the grating (see FIG. 4B). Even if the edge dislocation grating is a phase grating, it is inevitable that the intensity of the diffracted wave of ⁇ 1st order or higher is reduced to a fraction or less as compared with the incident intensity to the grating.
  • the phase grating is a type of grating that changes the phase of a part of the wave, and is a grating that does not change the amplitude, that is, a transparent grating. In observation of a sample using an electron beam with insufficient intensity, a sufficient signal-to-noise ratio cannot be obtained, which hinders resolution and the like. That is, it is important to secure the intensity of the beam for practical use of the electron spiral wave.
  • FIG. 5 is a schematic diagram illustrating the relationship between the electron trajectory 27 and the wavefront 26 (equal phase plane). The trajectory when the electron beam emitted from the electron source 1 reaches the observation point 10 via each trajectory 27 and the state of the wavefront 26 at that time are depicted.
  • the wavefront S 0 (s) of the electron beam is expressed by the equation (1) from the wave equation that does not depend on time.
  • m is the electron mass
  • E is the electric field corresponding to the acceleration voltage
  • e is the electron charge
  • V is the potential (scalar potential)
  • AS is the vector potential.
  • Equation (2) The phase ⁇ (s) is expressed as shown in Equation (2).
  • h is a Planck's constant.
  • phase ⁇ (s) is relative and is not uniquely determined. However, it always makes sense in comparison with other phases, and the phase difference ⁇ (s) with other wavefronts is uniquely determined. Therefore, it is possible to propagate the electron beam emitted from one point through the path I and the path II and overlap them to obtain the phase difference ⁇ (s) as interference.
  • the phase difference ⁇ (s) in this case is shown in Equation (3).
  • the first term ⁇ 1 on the right side of the equation (4) is a geometric optical path difference (path integral of wave number), and the second term ⁇ 2 is a contribution from the electric field and corresponds to the refractive index in the case of light rays.
  • the third term ⁇ 3 is a magnetic field contribution and does not depend on the acceleration voltage (electron beam wavelength).
  • the geometrical optical phase difference of the first term ⁇ 1 and the second term ⁇ 2 are assumed to have no electric field on the orbit. ignore. Therefore, only the contribution from the magnetic field on the orbit of the third term ⁇ 3 is considered. ⁇ 4.
  • the third term of the equation (4) is a phase difference ⁇ 3 depending on the magnetic flux density B existing between the two orbits and the area S of the closed surface surrounded by the two orbits (equation ( 5)).
  • This is the Aharanov-Bohm effect (AB effect).
  • S is an area surrounded by the trajectory I and the trajectory II.
  • FIG. 6 (A) when the two orbits 27 (paths I and II) of the electron beam are closed, if the magnetic flux passes through a plane (curved surface) defined by the closed path, it is accompanied accordingly. Thus, a phase difference occurs between the two electron beams.
  • FIG. 6A an electron beam 27 depicting two orbits emitted from the electron source is drawn so as to return to the observation point 10. This is because the electron beam has a coherent distance limit, so the size of the light source is negligibly small compared to the length of the orbit, and two electron beams are superimposed to observe the phase difference and interfere with each other. Because we must observe, we draw like this. However, as shown in FIG.
  • FIG. 7 (A) consider a case where there is a point-like electron source 1 and a magnetic flux generation point B is located downstream thereof.
  • FIG. 7B is a projection view in the direction of the optical axis 2, in which the electron beam 27 is uniformly emitted in the direction of all azimuth angles around the optical axis 2, and at the same time, the generation point of the magnetic flux is the optical axis 2. It is shown that the magnetic flux lines 81 are uniformly flowing (radiating) in the direction of all azimuth angles with the optical axis 2 as the center. At this time, the magnetic flux of the same polarity and the magnetic flux amount B passes through the curved surface of the same area S surrounded by each of the two adjacent electron orbits.
  • each electron orbit obtains the same phase difference (formula (6)). Then, if the sum of the entire phase differences is 2 ⁇ when it goes around once in the clockwise direction along the moving radius, this electron beam becomes a spiral wave.
  • This embodiment is based on this idea.
  • FIG. 8B shows an example of a dipole in which two monopoles (83, 84) having opposite polarities are paired.
  • the phase distribution of a spiral shape with a reverse polarity is obtained with the projection position of each pole as a core, and the phase distribution eventually returns to a plane wave at a position away from each core.
  • the phase distribution of the spiral wave 21 remains helical even at a position away from the core.
  • the degree of change decreases as the distance from the core increases.
  • the amount of phase change of the electron wave when it circulates around the core must be exactly 2 ⁇ or an integer multiple of 2 ⁇ .
  • the condition is derived from equation (6). That is, when the area of the curved surface defined by the two electron beam paths is S, the magnetic flux B ⁇ S that passes through S may be an integral multiple (n times) of h / e. When this is expressed again as a mathematical expression, it becomes Expression (7).
  • FIG. 7A there is a point-like electron source 1, and a rod-like magnetic body 88 is positioned as one end of a dipole on the optical axis on the downstream side in the propagation direction of the electron beam 27. If the amount of magnetic flux emitted from one end of the rod-shaped magnetic body 88 is twice the amount of the magnetic flux quantum (h / (2e)), the spiral around the optical axis 2 is sufficiently downstream from the rod-shaped magnetic body. A spiral wave of degree 1 is generated.
  • the rod-shaped magnetic body has the influence of the other pole, so the distribution of the magnetic flux lines 81 is not uniform in all directions. For this reason, even if the helical winding of the helical wave circulates quantitatively, even if a phase difference of 2 ⁇ is maintained, the phase change for each unit azimuth is not uniform. Furthermore, in the rod-shaped magnetic body 88, return magnetic flux lines are generated not only from one end of the pole but also from the middle of the rod-shaped magnetic body. Such phase changes and return magnetic flux lines for each unit azimuth cause distortion in the spiral phase distribution.
  • An example of a helical wave including distortion is shown in FIG.
  • the spiral wave 21 in FIG. 9B has a distorted phase plane as compared with FIG.
  • a rod-shaped magnetic body 88 is assumed as an example of a dipole.
  • the wavefront of the spiral wave is broken (shadowed). ) 24 occurs (lower part of FIG. 9A).
  • a magnetic body 88 is necessary.
  • the electron beam is shielded, creating a tear (shade) 24 in the wavefront of the spiral wave, or unnecessary scattering. generate.
  • an artifact is generated in the observation image.
  • Such a drawback is a fundamental problem common to the related technique 1 using the helical phase plate.
  • a method of substituting one end of a magnetic field generated in a one-dimensional form as a monopole uses a solenoid 89 (FIG. 10A), a rod-shaped magnetic body 88 (FIG. 10B), and superconductivity.
  • the case where the cylinder 87 is used (FIG. 10C) can be considered.
  • the effects and problems of the solenoid 89 and the rod-shaped magnetic body 88 are almost the same as those shown in FIG. 9 and are as described above. However, in the control of the amount of magnetic flux, the solenoid 89 is considered easier to handle. .
  • the superconducting cylinder 87 FIG. 10A
  • a spiral wave can be generated by using one end of a dipole element as a phase plate, as in the related technique 1 (helical phase plate) in (1) above.
  • the pole at the other end that is not used has an effect, it is difficult to generate a spiral wave having a spiral phase distribution isotropic with respect to the spiral core.
  • FIG. 11 shows a configuration of a tip portion (electron gun Tip11) of an electron gun that is an electron source. Specifically, an electron gun Tip11, an electron beam 27 emitted from the tip of the electron gun Tip11, and a magnetic flux line 81 of a magnetic field applied in a direction parallel to the axis of the electron gun (electron gun Tip11) are shown.
  • the optical axis 2 of the electron beam apparatus coincides with the axis of the electron gun (electron gun Tip11).
  • the optical axis 2 and the axis in the direction of application of the magnetic field (hereinafter referred to as the magnetic field application axis: a one-dimensional solenoid corresponds to the central axis of the solenoid) coincide with each other.
  • the magnetic field application axis a one-dimensional solenoid corresponds to the central axis of the solenoid
  • the plane Q is a plane where the electron source exists.
  • FIG. 11B is a cross-sectional view of the electron gun Tip11 around the black circle at the center (the plane where the electron source exists, and the hatched portion), and is a projection view, so that the magnetic flux lines 81 spread in all directions from the magnetic field application axis.
  • the electron beam 27 is also a beam that spreads from the optical axis 2 in all directions.
  • the electron beam 27 is drawn so as to be emitted only from the peripheral portion of the electron gun Tip11 (hatched portion).
  • the optical axis 2 is drawn at one point, and the magnetic flux lines 81 are also compressed in the optical axis direction. Assuming that the distribution of the magnetic flux lines 81 is axially symmetric about an axis parallel to the optical axis 2, radial magnetic flux lines 81 are drawn with the axis as the center point.
  • FIG. 11B shows only the propagation portion of the electron beam 27 in the optical axis direction. Therefore, as is clear from FIG. 11A, the magnetic flux lines 81 above the electron gun Tip11 are not reflected in the projection view, and the magnetic flux lines 81 and the electron beams 27 below the plane Q are mainly projected. Has been drawn. For this reason, in FIG. 11B, the magnetic flux lines 81 are drawn but the return magnetic flux is not affected. This is because, in this projection view, the magnetic flux lines above the electron beam 27 do not pass through the plane (curved surface) defined by the electron beam path and do not contribute to the phase modulation of the electron wave due to the Aharanov-Bohm effect. This is because it is considered to be excluded. As will be described below, this concept is valid, and by creating a relationship between magnetic flux lines and electron beams that can be drawn, it is possible to effectively make the magnetic field monopole.
  • FIG. 12 shows the process until the electron beam 27 emitted from the electron gun Tip 11 is detected on the detection recording surface 8 via an electron optical system (not shown).
  • electrons are emitted from two different points on the electron gun Tip11 (points A and C: points separated from the optical axis 2 by a distance r, respectively), and route I (AB) and route II (CD), respectively. Pass through.
  • One magnetic flux line 81 passes through the curved surface ABCD defined by the two electron beam paths (I, II).
  • the magnetic flux lines 81 are applied so as to be perpendicular to the plane Q including the electron beam emission region (cross section of the electron beam emission part 12) and so that the magnetic field application axis coincides with the optical axis 2.
  • the magnetic field is applied only in the vicinity of the electron gun having the electron gun Tip11, it can be considered that the orbital length is sufficiently longer between the magnetic field application part and the orbital length of the electron beam 27. Then, it passes through the intersection (Os) of the optical axis 2 and the plane Q including the electron beam emission region, and a sector (Striangular) region (Ss) defined by the arc (one side) defined by the concentric points A and C.
  • All the magnetic flux lines 81 pass through the curved surface ABCD defined by the two electron beam paths I and II only once. There is no return. This relationship is the same regardless of which two electron beam paths having different azimuth angles are selected. Therefore, the magnetic flux line 81 gives the same effect as the monopole for the electron beam 27 emitted from the plane Q including the electron beam emission region. Further, since this effect depends on the Aharanov-Bohm effect (formula (5)), it does not matter which part of the curved surface ABCD defined by the two electron beam paths I and II is transmitted. The magnetic flux lines 81 need only pass through the curved surface ABCD.
  • the electron beam 27 emitted from the electron gun Tip11 passes through the magnetic field application region of the electron gun (electron gun Tip11), and the electrons propagate on the optical axis 2 as they are. It becomes a spiral wave.
  • the electron beam emission area has a finite size and one end of the dipole magnetic flux distribution can be transmitted only once through the electron beam emission area, as described above, the electron source acts on the electron beam after emission.
  • the effective magnetic flux becomes a monopole, and as a result, the electron beam can be turned into an electron spiral wave.
  • FIG. 12A is a schematic diagram showing the relationship between two electron trajectories emitted from the electron gun Tip and magnetic flux lines.
  • FIG. 12B is a projection view onto the plane Q of the electron beam emission region and the magnetic flux lines.
  • FIG. 13 is a schematic diagram showing the relationship between two electron trajectories emitted from the electron gun Tip and magnetic flux lines.
  • ⁇ So ⁇ l is established in a general electron beam apparatus such as an electron microscope.
  • the electron source image is not distorted, and two distances r from the optical axis and two azimuth angles ⁇ are separated.
  • the electron beams 27 emitted from the point A and the point C, which are elementary electron sources, are propagated to the detection recording surface 8 through the electron beam paths I and II while maintaining the azimuth angle ⁇ , and are detected at the points B and D.
  • phase difference is determined based on the equation (8) by the magnetic flux passing through the curved surface (area S 12 ) surrounded by the two trajectories AB and CD. This is the same as equation (7).
  • the emission region of the electron beam projected on the plane Q has a disk shape, and the optical axis and the magnetic field application axis pass through the center of the emission region of the electron beam.
  • the magnetic flux line 81 passes through the electron beam emission region in parallel with the optical axis 2, but since it is a dipole, it always returns within a finite distance after passing through the electron beam emission region (upward in FIG. 13). ). Therefore, it has an intersection with the orbit of the electron beam. That is, the magnetic flux lines that pass through the electron beam emission region in the optical axis direction eventually become magnetic flux lines that cross the curved surface defined by the irradiation electron trajectory only once.
  • the phase difference between the electron orbits is determined not depending on the crossing position but depending only on the crossing magnetic flux amount. This is the Aharanov-Bohm effect, which is specifically shown in equations (6) to (8). From the above, the phase difference between the electron beam paths I and II is the area Ss on the electron beam emission region defined by the elementary electron sources A and C and the optical axis 2 (hatched portion in FIG. 11B). It is sufficient to consider the amount of magnetic flux that passes through. When the uniform magnetic flux density that passes through the electron beam emission region is set to B 0 , Equation (8) is rewritten as shown in Equation (9).
  • the trajectory of the electron beam 27 is considered separately for each distance r from the optical axis 2, and the angle at which the line segment connecting the elementary electron sources A and C looks at the optical axis 2 is expressed as ⁇ . Then, the phase difference ⁇ is expressed by Equation (10).
  • Equation (10) means that as r increases, more magnetic flux lines are transmitted, so that even if they have the same azimuth angle, the phase difference increases as r increases.
  • the phase difference ⁇ becomes an integral multiple of 2 ⁇ when ⁇ becomes 2 ⁇ . This condition is shown in equation (11).
  • the sign of this integer means the direction of the magnetic flux lines, that is, the direction of winding of the spiral of the electron spiral wave. When this integer is a negative value, it means that the direction of the magnetic flux line is opposite to that of a positive value, that is, the winding direction of the spiral of the electron helical wave is reversed from that of a positive value.
  • the optical axis 2 of the electron beam apparatus or the axis of the electron gun (electron gun Tip 11) coincide with the magnetic field application axis.
  • the magnetic field application axis 29 may be misaligned with the optical axis 2 (FIG. 14A), or the magnetic field application axis 29 and the optical axis 2 may not be parallel (FIG. 14B).
  • FIG. 14A a projection view of the electron beam 27 and the magnetic flux line 81 onto the plane Q including the electron beam emission region (cross section of the electron beam emission part 12) is considered, it is as shown in FIG.
  • a deviation between the optical axis 2 and the magnetic field application axis 29 can be regarded as a deflection in the deviation direction. Accordingly, it is possible to match the optical axis 2 and the magnetic field application axis 29 by applying a correction magnetic field in the horizontal direction. If not corrected, the amount of phase change per unit azimuth angle when the optical axis is the center is not uniform, and as shown in FIG. 9B, distortion occurs in the phase distribution of the spiral wave. .
  • the amount of deviation between the optical axis 2 and the magnetic field application axis 29 is large, and the magnetic field application axis 29 goes out of the electron beam emission region (cross section of the electron beam emission part 12, hatching part) in the projection image.
  • the radial magnetic flux lines 81 cannot be drawn around the optical axis 2 and a spiral wave can no longer be obtained. This is because, in the case of FIG. 15B, although the magnetic field is distributed, the overall magnetic field distribution is similar to the situation in which the deflection magnetic field B is applied from the upper right to the lower right in the figure. It is.
  • the magnetic field application axis 29 must be present inside the electron beam emission region (cross section of the electron beam emission part 12).
  • an axis adjustment method using an electromagnetic field is required.
  • the axis adjustment method is not limited, but the following two methods can be exemplified.
  • a first method there is a method in which a correction magnetic field is applied in the horizontal direction to align the optical axis and the magnetic field application axis (FIG. 16).
  • a second method there is a method of aligning the electron beam emission direction and emission site with the magnetic field application axis (FIG. 17).
  • two upper and lower mini-coils (magnetic field correction coils) 14 arranged across the optical axis 2 are arranged in the horizontal direction along the outer circumference of the coil 13, respectively. It can be used as a correction unit. By arranging the upper and lower two stages, it is possible to correct both the angle and the position of the magnetic field.
  • an electric field is used to adjust the electron beam emitting part.
  • FIG. 17 it can be used as a correction unit in which parallel plate electrodes (correction electrodes) 15 are arranged so as to face each other with the optical axis 2 sandwiched between two upper and lower stages.
  • parallel plate electrodes (correction electrodes) 15 are arranged so as to face each other with the optical axis 2 sandwiched between two upper and lower stages.
  • FIG. 17 a plurality of pairs of parallel plate electrodes 15 are arranged along the outer periphery of the optical axis 2 even in the electric field type.
  • the correction unit As the correction unit according to the above method, a technique used in an apparatus using an electron beam can be appropriately employed.
  • the correction unit is disposed in the vicinity of the electron source and is affected by the acceleration voltage of electrons, and thus needs to be configured to withstand a high voltage.
  • the electron beam emitted from the electron gun Tip11 becomes an electron spiral wave after passing through the magnetic field application region. Since this is realized in a very narrow range in terms of space, when viewed from the electron optical system on the downstream side of the electron beam flow, the situation is equivalent to the case where the electron spiral wave is directly emitted. Therefore, the same handling as that of an electron beam apparatus such as a conventional electron microscope is sufficient for irradiating the sample with an electron beam and observing a sample image and a diffraction image of the sample. This is also one of the great advantages of this embodiment.
  • observation of the image since it is an electron beam conserving the orbital angular momentum, observation of the magnetization distribution in the optical axis direction, which has not been obtained conventionally, or a right-handed spiral structure such as protein or sugar chain, or It is expected to obtain contrast corresponding to left-handed.
  • the following method can be considered as a method of adjusting the spiral degree.
  • the ring-shaped spot (RSP1) returns to a spot-like spot.
  • the diameter of the ring-shaped spot (RSP2) is larger than that of the immediately preceding ring-shaped spot (RSP1). This is because the number of magnetic flux lines passing through the curved surface defined by each electron beam path has doubled, and the helical degree has also doubled.
  • the diameter of the ring increases while periodically repeating a spot-like spot and a ring-like spot.
  • the frequency of the spiral wave is known, but the positive / negative cannot be determined.
  • the direction (polarity) of the applied magnetic field must be defined in advance.
  • FIG. 18 shows a configuration example of the small angle electron diffraction optical system.
  • the optical system shown in FIG. 18 has a configuration in which an image (crossover) of a light source is connected to an object surface of a first intermediate lens by a second condenser lens.
  • Such an optical system is an optical system having a relatively large camera length (for example, 1000 m or more).
  • the camera length is a parameter corresponding to the magnification in the diffraction image, and the smaller the camera length, the smaller the deflection angle can be observed.
  • a camera length of 80 m or more is desirable (for example, in FIG. 4B, the camera length was 150 m).
  • the opening angle of the irradiated electron beam is small.
  • the opening angle is an angle at which the image (crossover) of the light source directly above the sample position is viewed.
  • the smaller the opening angle the higher the parallelism. This is because the spread of the beam of the irradiation electron beam is reflected as the spread of the diffraction spot in the diffraction image, and there is a possibility that the ring-shaped spot of the spiral wave may be erased by overlapping the spread.
  • an opening angle of 1 ⁇ 10 ⁇ 6 rad or less is desirable because a diffraction image with a spiral degree of 1 must be observable.
  • the configuration of the small-angle electron diffraction optical system is not limited to that shown in FIG. 18, and other configurations may be used. Whichever optical system is used, it is only necessary to have a camera length capable of resolving the ring-shaped spot shape.
  • FIG. 19 is a diagram showing a configuration example of the entire system of an electron beam apparatus including an electron source device that generates an electron spiral wave. Although it is drawn with a lens configuration assuming a general-purpose electron microscope having an acceleration voltage of about 300 kV, it is not limited to an electron microscope having this configuration.
  • the electron gun Tip11 is disposed in the vicinity of the coil 13 capable of applying a magnetic field in the direction of the optical axis 2.
  • the electron source 1 (electron gun Tip11) is connected to and controlled by the control system 19 of the electron source.
  • the coil 13 is connected to a control system (a control system of a coil for generating a helical wave) 17, and the amount of magnetic flux generated for generating a helical wave is controlled by the control system 17.
  • FIG. 19 the sample to be observed and the sample 3 to be processed are shown, but the sample 3 is not necessary when confirming that the electron beam is an electron spiral wave by a small-angle diffraction image.
  • the electron orbit 27 shown in FIG. 19 is the one at the time of small angle diffraction. That is, with the objective lens 5 turned off, an electron beam crossover is formed on the object surface of the first intermediate lens 61, and the lower imaging lens system (62, 63, 64) detects the crossover. An enlarged projection is made on the recording surface 8.
  • the diffraction image 35 formed on the detection recording surface 8 is observed on the screen of the image data monitor 76 via the detector 79 and the controller 78 and stored as image data in the recording device 77.
  • an image of a ring-shaped diffraction spot (diffraction image 35) is displayed on the screen of the image data monitor 76 as an example of a spiral wave.
  • various lens configurations and observation conditions shown in the system of FIG. 19 are merely examples.
  • each component of the small-angle electron diffraction optical system can be controlled.
  • Each component includes, for example, the electron source 1, a coil 13 for generating a spiral wave, an acceleration tube 40, each lens (41, 42, 5, 61, 62, 63, 64), a sample 3 (sample holding device), Detector 79 or the like.
  • Reference numeral 39 denotes a control system for the sample holding device, and 49 denotes a control system for the acceleration tube.
  • 41 is a first condenser lens
  • 42 is a second condenser lens. It is controlled by a control system 47 of a two condenser lens.
  • Reference numeral 5 denotes an objective lens, which is controlled by the objective lens control system 59.
  • Reference numeral 61 denotes a first intermediate lens
  • 62 denotes a second intermediate lens
  • 63 denotes a first projection lens
  • 64 denotes a second projection lens.
  • the electron beam apparatus has other components such as a beam deflection system and a vacuum exhaust system, illustration and description of the components not directly related to the present embodiment are omitted.
  • the electron source section refers to an electron source and a magnetic field generator, which may be the same device as in Configuration Example 1, or may be separate devices as in Configuration Examples 2-5. .
  • the electron source part illustrated below is used as an electron source part of the electron beam apparatus mentioned above, for example.
  • FIG. 20 is a cross-sectional view showing Configuration Example 1 of the electron source section of the present embodiment.
  • a magnetic material is used for the electron gun Tip11, and the electron gun Tip11 itself constitutes a part of a dipole. Since the tip of the electron gun Tip11 is one end of the dipole, the magnetic flux line 81 emitted from the tip into the space and the electron beam 27 emitted from the tip of the electron gun Tip11 are the magnetic flux lines 81 described with reference to FIG. The relationship with the electron beam 27 is configured. In other words, a magnetic field (magnetic flux line 81) that immerses the electron beam 27 is generated. Therefore, when the magnetic flux line 81 emitted from the electron gun Tip11 has the above-described appropriate magnetic flux amount, the electron beam 27 becomes the spiral wave 21 as described in the lower part of FIG.
  • the amount of magnetic flux flowing through the electron gun Tip11 can be controlled by the following method.
  • a magnetic material used for the electron gun Tip11 a magnetic material whose amount of magnetic flux changes with temperature is used, and a heating unit such as a heater is provided around the electron gun Tip11.
  • the amount of magnetic flux can be controlled by changing the temperature of the electron gun Tip11 with a heater.
  • a magnetic field generator such as a coil connected to the electron gun Tip11 may be provided. In this case, the amount of magnetic flux flowing through the electron gun Tip11 can be controlled by the magnetic field generator.
  • the polarity of magnetic flux lines can be reversed by the following method.
  • a strong magnetic field higher than the reversal magnetization of the magnetic material is applied from the outside to the magnetic material constituting the electron gun Tip11.
  • a magnetic field having a reverse polarity is applied in a state where the magnetic body constituting the electron gun Tip11 is heated to a temperature equal to or higher than the Curie temperature of the magnetic body.
  • the magnetic field may be weak.
  • This configuration example 1 has the advantage that the generation source of the magnetic flux line and the electron beam are the same, and there is little deviation between the optical axis (the axis of the electron gun Tip 11) and the magnetic field application axis.
  • FIG. 21 is a cross-sectional view showing a configuration example 2 of the electron source section of the present embodiment.
  • an electron gun Tip 11 is arranged inside a hollow coil (cylindrical coil) 13.
  • the electron source has an electron gun including an electron gun Tip 11
  • the magnetic field generator has a hollow coil 13.
  • a central axis of the cylindrical hollow coil 13 is a magnetic field application axis 29.
  • This magnetic field application axis 29 and the axis of the electron gun Tip11 that is, the optical axis 2 of the electron source device (the axis of the electron gun (electron gun Tip11)), or the electron beam device on which the electron source device is mounted (FIGS. 18 and 19) And the optical axis 2 of reference) are adjusted so as to coincide with each other.
  • This adjustment method is as described above.
  • the spirality of the electron spiral wave 21 generated at the lower part of the electron gun Tip11 and the sign of the spiral degree can be controlled.
  • the electron gun Tip11 and the hollow coil 13 are respectively arranged at positions where the distribution of magnetic flux lines is asymmetrical with respect to the plane Q (see FIG. 11 or FIG. 13) including the electron emission region. If it is in such an arrangement relationship, the electron gun Tip11 and the hollow coil 13 may be arranged in any way, but as shown in FIG. 21, the tip of the electron gun Tip11, that is, the (electron emitting part region) is a coil. It is preferable to dispose the electron gun Tip 11 in the hollow coil 13 so as to be positioned below the central portion of the hollow coil 13. In the central part of the hollow coil 13, magnetic flux lines 81 parallel to the axis 2 of the electron gun Tip 11 are easily generated.
  • the magnetic flux line 81 spreads as the electron beam 27 emitted from the tip of the electron gun Tip 11 spreads, and further spreads upward in the figure beyond the bottom surface of the hollow coil 13. Thus, if it is in the said positional relationship, it is thought that the magnetic flux line 81 crosses easily the curved surface which the track
  • FIG. 22 is a cross-sectional view showing another configuration of the electron source section of Configuration Example 2.
  • an electron beam extraction electrode 30 is further provided in the configuration of the electron source section shown in FIG.
  • This electron gun is a field emission electron gun.
  • the configuration shown in FIG. 22 is an example.
  • the shape of the extraction electrode 30 may be a Butler type. In this case, the brightness of the electron beam can be improved.
  • the characteristics of the electron beam can be improved by devising the shape of the extraction electrode 30.
  • addition of a configuration part implemented by a normal field emission electron gun such as further addition of a configuration part such as another electrode (not shown) or a device for an electrode shape, or a change in the shape thereof may be appropriately performed.
  • the extraction electrode 30 is made of a magnetically transparent (low magnetic permeability) metal material so that the presence of the extraction electrode 30 does not affect the density and distribution of the magnetic flux in the space in which the electron beam 27 propagates. It is preferable. For example, it can be easily handled by adopting copper or the like as the material of the extraction electrode 30.
  • FIG. 23 is a cross-sectional view showing Configuration Example 3 of the electron source section of the present embodiment.
  • FIG. 23 is an example in which the hollow coil 13 of the electron source section described with reference to FIG. 21 in the column of the configuration example 2 is formed as a hollow coil 13 divided into two upper and lower stages.
  • the two hollow coils 13 are arranged as a set.
  • a Helmholtz type coil pair is used.
  • a hollow portion is provided in the middle portion between the two hollow coils 13 where the tip of the electron gun Tip 11 is located.
  • Magnetic flux lines 81 that are substantially parallel to the central axis of the coil 13 are generated. Therefore, similarly to the case of the configuration example 2, the magnetic flux lines 81 cross the curved surface defined by the trajectory of the electron beam 27 in the space range of the electron gun portion, and a spiral wave can be generated.
  • the magnetic flux generated is smaller than in the case of the configuration example 2 (FIG. 21), but in order to generate a spiral wave with a spiral degree of 1, the magnetic flux is Since two flux quanta are sufficient, there is no problem in generating a spiral wave. In this way, an electron beam having a sufficient degree of spiraling can be generated.
  • the upper and lower hollow coils 13 can be individually controlled. For example, it is possible to control the overall magnetic flux line distribution by making a difference in the density of the magnetic flux lines generated in the upper and lower hollow coils 13.
  • the hollow coil 13 is arranged in two upper and lower stages, a space is generated between the hollow coils 13. For this reason, compared with the case of the structural example 2 (FIG. 21), the Joule heat which generate
  • a correction unit for correcting the magnetic field application axis, an adjustment unit for adjusting the electron beam emission site, and the like can be disposed between the hollow coils 13.
  • an electrode or a minicoil can be arranged in the space as the correction unit (see FIGS. 16 and 17).
  • the correction method of the magnetic field application axis and the adjustment method of the electron beam emission site and the like are as described above.
  • FIG. 24 is a cross-sectional view showing another configuration of the electron source section of Configuration Example 3. 24, in addition to the configuration of the electron source section shown in FIG. 23, an electron beam extraction electrode 30 is further provided.
  • This electron gun is a field emission electron gun.
  • the configuration shown in FIG. 24 is an example.
  • the shape of the extraction electrode 30 may be a Butler type. In this case, the brightness of the electron beam can be improved. Thus, the characteristics of the electron beam can be improved by devising the shape of the extraction electrode 30.
  • addition of a configuration part implemented by a normal field emission electron gun such as further addition of a configuration part such as another electrode (not shown) or a device for an electrode shape, or a change in the shape thereof may be appropriately performed.
  • the extraction electrode 30 is made of a magnetically transparent (low magnetic permeability) metal material so that the presence of the extraction electrode 30 does not affect the density and distribution of the magnetic flux in the space in which the electron beam 27 propagates. It is preferable. For example, it can be easily handled by adopting copper or the like as the material of the extraction electrode 30.
  • FIG. 25 is a cross-sectional view showing another configuration of the electron source section of Configuration Example 3.
  • FIG. 25 shows an example in which the electron beam extraction electrode 30 shown in FIG. 24 is extended between the hollow coils 13.
  • the extraction electrode 30 for the electron beam can be provided by utilizing the space between the hollow coils 13.
  • the presence of the extraction electrode 30 is magnetically transparent (permeability) so as not to affect the density and distribution of the magnetic flux in the space in which the electron beam 27 propagates.
  • the lead electrode 30 is preferably made of a metal material having a low
  • FIG. 26 is a cross-sectional view showing a configuration example 4 of the electron source section of the present embodiment.
  • a magnetic path (spiral wave generating magnetic path) 37 is provided outside the hollow coil 13.
  • the hollow coil 13 is arranged so that a magnetic field can be applied in the optical axis direction, and the magnetic path 37 is configured using a material having high magnetic permeability such as permalloy and is provided outside the hollow coil 13.
  • the hollow coil 13 and the outer magnetic path 37 have the same configuration as the electromagnetic lens. Therefore, higher density magnetic flux lines 81 can be generated at the position of the electron gun Electron Tip 11 inside the hollow coil 13 as compared with the case of the configuration examples 2 and 3. This configuration is particularly suitable for generating a spiral wave having a high degree of spiral.
  • the positional relationship between the magnetic path 37 and the electron gun Tip 11 can be mechanically aligned with high accuracy. Therefore, a spiral wave can be generated by improving the accuracy of the phase distribution of the spiral shape together with the spiral degree. Furthermore, since the magnetic path 37 is used, it is difficult to be affected by fluctuations in the distribution of magnetic flux lines due to electromagnetic induction from the outside. For this reason, it is expected to realize an electron source section that generates a spiral wave with stable characteristics.
  • FIG. 27 is a cross-sectional view showing a configuration example 5 of the electron source section of the present embodiment.
  • a magnet 38 is provided instead of the hollow coil 13 and the magnetic path 37 in the configuration example 2 (FIG. 21).
  • the magnet 38 is arrange
  • a magnetic flux distribution can be created at the tip of the electron gun Tip11 without using a coil.
  • the magnet material an SmCo magnet or an NdFeB magnet that can generate a strong magnetic field can be used. By using such a magnet material, it is possible to create a strong magnetic flux distribution at the tip of the electron gun Tip11 even in a configuration without using a coil.
  • a correction unit for correcting the magnetic field application axis, an adjustment unit for adjusting the electron beam emission site, and the like can be disposed between the hollow coils 13.
  • an electrode or a minicoil can be arranged in the space as the correction unit (see FIGS. 16 and 17). The correction method of the magnetic field application axis and the adjustment method of the electron beam emission site and the like are as described above.
  • the amount of magnetic flux can be controlled by the method described in the configuration example 1.
  • a magnetic material used for the magnet 38 a magnetic material whose amount of magnetic flux changes with temperature is used, and a heating unit such as a heater is provided around the magnet 38.
  • the amount of magnetic flux can be controlled by changing the temperature of the magnet 38 with a heater.
  • a magnetic field generator such as a coil connected to the magnet 38 may be provided. In this case, the amount of magnetic flux flowing between the magnets 38 can be controlled by the magnetic field generator.
  • the polarity of magnetic flux lines can be reversed by the following method.
  • a strong magnetic field greater than the reversal magnetization of the magnetic body is applied from the outside to the magnetic body constituting the magnet 38.
  • a magnetic field having a reverse polarity is applied in a state where the magnetic body constituting the magnet 38 is heated to a temperature equal to or higher than the Curie temperature of the magnetic body.
  • the magnetic field may be weak.
  • the electron beam is a spiral wave and has been described as an example applied to an electron beam apparatus such as an electron microscope.
  • the present invention is applied to charged particles such as ions in addition to electrons. Is possible.
  • the charged particle beam can be used as a helical wave and applied to a charged particle beam generator or a charged particle beam device.
  • Electron source 2 ... Optical axis, 3 ... Sample, 5 ... Objective lens, 8 ... Detection recording surface, 9 ... Diffraction image (small angle electron diffraction image), 10 ... Observation point, 11 ... Electron gun Tip, 12 ... Electron Wire injection part, 13 ... Coil (hollow coil), 14 ... Mini coil, 15 ... Parallel plate electrode, 17 ... Control system, 19 ... Control system, 21 ... Spiral wave, 22 ... Spiral axis, 23 ... Plane wave, 24 ... Rupture ( Yin), 26 ... Wavefront, 27 ... Electron beam (electron orbit), 29 ...

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

The purpose of the present invention is to generate a charged particle helix wave while maintaining intensity of a charged particle beam generated by a charged particle source, and easily control the helicity as well as the positivity and negativity (orientation of the winding of the helix) of the charged particle helix wave. The axis of a dipole magnetic field and the optical axis (2) of the charged particle beam device are made parallel, and a charged particle beam source (11) is disposed on the axis of the dipole or on a line extending from the axis such that the magnetic flux lines (81) emanating from one end of the dipole and a charged particle beam (27) interact. Furthermore, the amount of magnetic flux generated by the one end of the dipole and the polarity thereof are controlled such that the trajectories of the charged particle beam (27) discharged by the charged particle beam source (11) and the magnetic flux generated by the one end of the dipole satisfy a condition suitable for generating a helix wave (21).

Description

荷電粒子線発生装置、荷電粒子線装置、試料加工方法および試料観察方法Charged particle beam generator, charged particle beam device, sample processing method and sample observation method
 本発明は、荷電粒子線発生装置、荷電粒子線装置、試料加工方法および試料観察方法に関する。 The present invention relates to a charged particle beam generator, a charged particle beam device, a sample processing method, and a sample observation method.
 試料に荷電粒子線を照射して試料を透過した荷電粒子線の強度分布、位相分布を用いて試料の物性情報を得る研究が進められている。特に、電子線においては、電子線の強度だけでなく電子波としての位相分布から電磁場など物理情報を取得する電子線ホログラフィーなどが実用化され、応用研究も進められている。 Research is being conducted to obtain physical property information of a sample using the intensity distribution and phase distribution of the charged particle beam that has passed through the sample after being irradiated with the charged particle beam. In particular, for electron beams, electron beam holography for acquiring physical information such as an electromagnetic field from the phase distribution as an electron wave as well as the intensity of the electron beam has been put into practical use, and applied research is being promoted.
 例えば、特許文献1には、荷電粒子ビームを放出するエミッタの先端が、磁束密度分布のピークの下方に配置された荷電粒子ビーム発生装置が開示されている。 For example, Patent Document 1 discloses a charged particle beam generator in which the tip of an emitter that emits a charged particle beam is disposed below the peak of the magnetic flux density distribution.
特開平2-297852号公報JP-A-2-297852
 本発明者は、荷電粒子線装置の研究開発に従事しており、その性能の向上について、検討している。その過程において、照射する荷電粒子線としてらせん波を用いることが、有用であることが判明した。 The present inventor is engaged in the research and development of charged particle beam apparatus and is examining the improvement of its performance. In the process, it has been found useful to use a spiral wave as the charged particle beam to be irradiated.
 その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。 Other issues and novel features will become clear from the description of the present specification and the accompanying drawings.
 本願において開示される実施の形態のうち、代表的なものの概要を簡単に説明すれば、次のとおりである。 Of the embodiments disclosed in the present application, the outline of typical ones will be briefly described as follows.
 本願において開示される一実施の形態に示される荷電粒子線装置においては、ダイポールの磁場の軸と荷電粒子線装置の光軸とを平行とし、ダイポールの片端から発した磁束線と荷電粒子線とが相互作用するように、ダイポールの軸または軸の延長線上(例えば、両極の間の所定の位置)に荷電粒子源を配置する。 In the charged particle beam device shown in one embodiment disclosed in the present application, the magnetic field axis of the dipole and the optical axis of the charged particle beam device are parallel to each other, and the magnetic flux line and the charged particle beam emitted from one end of the dipole The charged particle source is placed on the axis of the dipole or an extension of the axis (for example, at a predetermined position between the two poles) so that they interact with each other.
 そして、荷電粒子源から放出される荷電粒子線の各軌道とダイポールの片端から発する磁束とがらせん波を生成するのに適正な条件を満たすようにダイポールの片端から発する磁束量とその極性を制御する。 Then, the amount of magnetic flux emitted from one end of the dipole and its polarity are controlled so that each trajectory of the charged particle beam emitted from the charged particle source and the magnetic flux emitted from one end of the dipole satisfy the appropriate conditions for generating a spiral wave. To do.
 本願において開示される以下に示す代表的な実施の形態に示される荷電粒子線装置によれば、荷電粒子源から発生する荷電粒子線の強度を維持しつつ、荷電粒子らせん波を生成することができる。また、荷電粒子らせん波のらせん度や正負(らせんの巻きの向き)などを容易に制御することができる。 According to the charged particle beam apparatus shown in the following representative embodiment disclosed in the present application, it is possible to generate a charged particle helical wave while maintaining the intensity of the charged particle beam generated from the charged particle source. it can. In addition, the helical degree and positive / negative (direction of spiral winding) of the charged particle helical wave can be easily controlled.
らせん波の模式図である。It is a schematic diagram of a spiral wave. らせん形状の薄膜かららせん波が生成される様子を示す模式図である。It is a schematic diagram which shows a mode that a spiral wave is produced | generated from a helical thin film. 刃状転位回折格子かららせん波が生成される様子を示す模式図である。It is a schematic diagram which shows a mode that a helical wave is produced | generated from an edge dislocation diffraction grating. 図4(A),(B)および(C)は、3次の刃状転位を含む回折格子と小角電子回折像を示す図である。4A, 4B, and 4C are diagrams showing a diffraction grating including a third-order edge dislocation and a small-angle electron diffraction image. 電子線の軌道と位相(波面)を説明する模式図である。It is a schematic diagram explaining the track | orbit and phase (wavefront) of an electron beam. 図6(A)および(B)は、アハラノフ・ボーム効果を説明する電子線の経路(軌道)と位相(波面)を示す模式図であり、図6(A)は、1点の電子源から1点の観察点に至る2本の電子線の経路の模式図であり、図6(B)は、2点の電子源から2点の観察点に至る2本の電子線の経路の模式図である。FIGS. 6A and 6B are schematic diagrams showing electron beam paths (orbits) and phases (wavefronts) for explaining the Aharanov-Bohm effect. FIG. 6A shows a single electron source. FIG. 6B is a schematic diagram of two electron beam paths to one observation point, and FIG. 6B is a schematic diagram of two electron beam paths from two electron sources to two observation points. It is. 図7(A)は、点状の磁束発生体が電子らせん波を生成する様子を示した模式図であり、図7(B)は、点状の磁束発生体からの磁束線と電子線の投影図である。FIG. 7A is a schematic diagram showing a state in which a dotted magnetic flux generator generates an electron spiral wave, and FIG. 7B shows a magnetic flux line and an electron beam from the dotted magnetic flux generator. FIG. 図8(A)は、モノポールと電子らせん波との関係を示す模式図であり、図8(B)は、ダイポールとステップ状の電子波(対を成す電子らせん波)との関係を示す模式図である。FIG. 8A is a schematic diagram showing a relationship between a monopole and an electron spiral wave, and FIG. 8B shows a relationship between a dipole and a stepped electron wave (a pair of electron spiral waves). It is a schematic diagram. 図9(A)は、棒状の磁性体の片端を利用した電子らせん波の生成の様子を示す模式図であり、図9(B)は、歪みを伴った電子らせん波の模式図である。FIG. 9A is a schematic diagram showing how an electron spiral wave is generated using one end of a rod-shaped magnetic body, and FIG. 9B is a schematic diagram of an electron spiral wave with distortion. 図10(A)は、ソレノイドの片端からの磁束線の分布を示す模式図であり、図10(B)は、棒状の磁性体の片端からの磁束線の分布を示す模式図であり、図10(C)は、超伝導筒の片端からの磁束線の分布を示す模式図である。FIG. 10A is a schematic diagram showing the distribution of magnetic flux lines from one end of the solenoid, and FIG. 10B is a schematic diagram showing the distribution of magnetic flux lines from one end of the rod-shaped magnetic body. 10 (C) is a schematic diagram showing the distribution of magnetic flux lines from one end of the superconducting cylinder. 図11(A)は、電子銃Tipの電子射出部から発した電子線と磁束線との関係を示す模式図であり、図11(B)は、点状の磁束発生体からの磁束線と電子線の電子射出部を含む光軸に垂直な平面Qに対する投影図である。FIG. 11A is a schematic diagram showing a relationship between an electron beam emitted from an electron emitting portion of the electron gun Tip and a magnetic flux line, and FIG. 11B shows a magnetic flux line from a dotted magnetic flux generator. It is a projection figure with respect to the plane Q perpendicular | vertical to the optical axis containing the electron emission part of an electron beam. 図12(A)は、電子銃Tipから発した2本の電子軌道と磁束線との関係を示す模式図であり、図12(B)は、電子線射出領域と磁束線の平面Qに対する投影図である。FIG. 12A is a schematic diagram showing the relationship between two electron trajectories emitted from the electron gun Tip and magnetic flux lines, and FIG. 12B is a projection of the electron beam emission region and magnetic flux lines onto the plane Q. FIG. 電子銃Tipから発した2本の電子軌道と磁束線との関係を示す模式図である。It is a schematic diagram which shows the relationship between two electron orbits emitted from the electron gun Tip and magnetic flux lines. 図14(A)および(B)は、光軸と磁場印加軸とのずれを示す投影図であり、図14(A)は、磁場印加軸が光軸と平行で位置がずれた場合を示す図であり、図14(B)は、磁場印加軸と光軸との角度がずれた場合を示す図である。14A and 14B are projection views showing the deviation between the optical axis and the magnetic field application axis, and FIG. 14A shows the case where the magnetic field application axis is parallel to the optical axis and the position is displaced. FIG. 14B is a diagram illustrating a case where the angle between the magnetic field application axis and the optical axis is deviated. 図15(A)および(B)は、光軸と磁場印加軸とのずれを示す投影図であり、図15(A)は、磁場印加軸が電子線射出領域内にある場合を示す図であり、図15(B)は、磁場印加軸が電子線射出領域の外にある場合を示す図である。FIGS. 15A and 15B are projection views showing the deviation between the optical axis and the magnetic field application axis, and FIG. 15A is a view showing the case where the magnetic field application axis is in the electron beam emission region. FIG. 15B is a diagram showing a case where the magnetic field application axis is outside the electron beam emission region. 磁場印加コイルに補正コイルを設置した構成の一例を示す模式図である。It is a schematic diagram which shows an example of the structure which installed the correction coil in the magnetic field application coil. 電子銃Tipの下部に電子線偏向器を設置した構成の一例を示す模式図である。It is a schematic diagram which shows an example of the structure which installed the electron beam deflector in the lower part of the electron gun Tip. 電子らせん波の小角回折像を観察する光学系の一例を示す模式図である。It is a schematic diagram which shows an example of the optical system which observes the small angle diffraction image of an electron spiral wave. 電子線装置のシステム構成例を示す図である。It is a figure which shows the system structural example of an electron beam apparatus. 電子銃Tipが磁性体からなる電子源部の一例を示す模式図である。It is a schematic diagram which shows an example of the electron source part which the electron gun Tip consists of a magnetic body. 電子銃Tipと磁場印加コイルから成る電子源部の一例を示す模式図である。It is a schematic diagram which shows an example of the electron source part which consists of an electron gun Tip and a magnetic field application coil. 電子銃Tipと磁場印加コイルから成る電子源部に引き出し電極を適用した構成の一例を示す模式図である。It is a schematic diagram which shows an example of the structure which applied the extraction electrode to the electron source part which consists of an electron gun Tip and a magnetic field application coil. 電子銃Tipと2段の磁場印加コイルから成る電子源部の一例を示す模式図である。It is a schematic diagram which shows an example of the electron source part which consists of an electron gun Tip and a two-stage magnetic field application coil. 電子銃Tipと2段の磁場印加コイルから成る電子源部に引き出し電極を適用した構成例を示す模式図である。It is a schematic diagram showing a configuration example in which an extraction electrode is applied to an electron source part composed of an electron gun Tip and a two-stage magnetic field application coil. 電子銃Tipと2段の磁場印加コイルから成る電子源部に引き出し電極を適用した他の構成例を示す模式図である。It is a schematic diagram which shows the other structural example which applied the extraction electrode to the electron source part which consists of an electron gun Tip and a two-stage magnetic field application coil. 電子銃Tipと磁路で囲まれた磁場印加コイルから成る電子源部の一例を示す模式図である。It is a schematic diagram which shows an example of the electron source part which consists of an electron gun Tip and the magnetic field application coil enclosed by the magnetic path. 電子銃Tipと磁性体から成る電子源部の一例を示す模式図である。It is a schematic diagram which shows an example of the electron source part which consists of an electron gun Tip and a magnetic body.
(実施の形態)
 以下、実施の形態を図面に基づいて詳細に説明するが、その前に、らせん波およびらせん波の生成方法について説明する。なお、以下の本発明の説明では主に電子線について説明を行うが、これは電子線が電子波としての研究が最も進展しているためで、本発明を電子線に限定するものではないことを明記しておく。
(Embodiment)
Hereinafter, embodiments will be described in detail with reference to the drawings. Before that, a spiral wave and a method of generating a spiral wave will be described. In the following description of the present invention, an electron beam will be mainly described. However, this is because electron beam is the most advanced research, and the present invention is not limited to an electron beam. Is clearly stated.
 <1.らせん波>
 コヒーレントな光学系においては、伝播する光波の位相は一意に定まる。その位相が等しい面を波面と呼び、その波面の形状から平面波、球面波など波動の分類が成されている。一方、位相が一意に定まらない特異点を持つ場合も存在する。例えば、等位相面がある軸(一般に光軸に平行)を中心にらせん形状をしたらせん波である。これは波の伝播方向に垂直な平面で切って見た場合に、特異点を中心(らせんの軸)として、方位角を1回転周回させたときに位相が2πの整数倍だけ変化する位相状態を持つ波のことである。図1に平面波に分類されるらせん波21を示す。図1から明らかなように、らせん軸22上は位相の特異点となっており位相を定めることができない。
<1. Spiral wave>
In a coherent optical system, the phase of a propagating light wave is uniquely determined. Surfaces with the same phase are called wavefronts, and wave types such as plane waves and spherical waves are classified based on the shape of the wavefront. On the other hand, there is a case where there is a singular point whose phase is not uniquely determined. For example, a spiral wave having a helical shape centered on an axis having an equiphase surface (generally parallel to the optical axis). This is a phase state in which the phase changes by an integral multiple of 2π when the azimuth is rotated one revolution around the singular point (helical axis) when viewed along a plane perpendicular to the wave propagation direction. It is a wave with FIG. 1 shows a spiral wave 21 classified as a plane wave. As is clear from FIG. 1, the phase on the helical axis 22 is a singular point of the phase, and the phase cannot be determined.
 このらせん波は、光学ではラゲールガウシアンビームや光渦(ひかりうず)と呼ばれ、軌道角運動量を保持したまま伝播する光波であり、等位相面(波面)に垂直方向に力を作用させることができる。そのため、照射対象に対して運動量を与えることが可能となり、例えば細胞程度の大きさの粒子を操作する光ピンセットなどのマニピュレーション技術として、また、レーザー加工や超解像顕微分光法として利用することができる。 This spiral wave is called a Laguerre Gaussian beam or optical vortex (Hikari Uzu) in optics, and is a light wave that propagates while maintaining its orbital angular momentum, and can apply a force to the isophase plane (wavefront) in the vertical direction. it can. Therefore, it is possible to give momentum to the irradiation target, and it can be used as a manipulation technique such as optical tweezers for manipulating particles that are about the size of a cell, or as laser processing or super-resolution microspectroscopy. it can.
 さらには、位相特異点であるらせん軸の部分に複数の軌道角運動量を内在できる(トポロジカルチャージ(本実施の形態では単に「らせん度」と呼ぶ)としてらせんの巻きの強さを選べる)ことから量子情報通信の分野での利用が可能である。また、X線を用いた場合には、磁化状態や原子配列の立体像の解析など、物性解析、構造解析などへの適用が可能である。 Furthermore, from the fact that multiple orbital angular momentums can be inherent in the portion of the helical axis that is the phase singularity (the strength of the helical winding can be selected as a topological charge (in this embodiment, simply called “helicality”)) It can be used in the field of quantum information communication. In addition, when X-rays are used, it can be applied to physical property analysis, structural analysis, etc., such as analysis of a magnetization state and a three-dimensional image of atomic arrangement.
 電子線におけるらせん波(電子らせん波ともいう)は、軌道角運動量を保持したまま電子線が伝播するので、今までにない電子線のプローブ(入射ビーム)としての応用分野を生み出すことが期待される。例えば、磁化測定における高感度化や3次元状態の計測、たんぱく質分子や糖鎖の高コントラスト・高分解能観察などである。とりわけ、磁化観察においては、電子線は伝播方向と平行な磁化に対しては感度を持たない原理的な欠点を持っているが、電子らせん波では電子線の伝播方向の磁化を観察できる可能性がある。また、観測だけでなく、軌道角運動量を利用した加工や磁化制御などにも適用の可能性がある。そのため、スピン偏極電子線と並んで、次世代の電子線装置のプローブとして、その研究開発の重要性が高まっている。 An electron beam spiral wave (also called an electron spiral wave) propagates while maintaining its orbital angular momentum, so it is expected to create an unprecedented field of application as an electron beam probe (incident beam). The For example, high sensitivity in magnetization measurement, measurement of a three-dimensional state, high-contrast / high-resolution observation of protein molecules and sugar chains, and the like. In particular, in the magnetization observation, the electron beam has the fundamental drawback that it is not sensitive to the magnetization parallel to the propagation direction, but the possibility of observing the magnetization in the electron beam propagation direction is possible with the electron spiral wave. There is. In addition to observation, there is a possibility of application to machining and magnetization control using orbital angular momentum. Therefore, along with the spin-polarized electron beam, the importance of research and development is increasing as a probe for the next-generation electron beam apparatus.
 <2.関連技術としてのらせん波の生成方法>
 電子線においてらせん波を作り出すには、次の2通りの方法(関連技術1、2)がある。
<2. Spiral Wave Generation Method as Related Technology>
There are the following two methods (related techniques 1 and 2) for generating a spiral wave in an electron beam.
 図2は、らせん形状の薄膜かららせん波が生成される様子を示す模式図である。らせん波を作り出す第1の方法(関連技術1)は、らせん形状の厚さ分布を有する薄膜(らせん位相板33)に平面波23を照射し透過した波の位相分布が膜の厚さを反映してらせん形状となることを利用する方法である。 FIG. 2 is a schematic diagram showing how a spiral wave is generated from a spiral-shaped thin film. In the first method (related technique 1) for generating a spiral wave, a thin film (helical phase plate 33) having a spiral thickness distribution is irradiated with a plane wave 23, and the phase distribution of the transmitted wave reflects the thickness of the film. It is a method that utilizes the fact that it becomes a spiral shape.
 図3は、刃状転位回折格子かららせん波が生成される様子を示す模式図である。らせん波を作り出す第2の方法(関連技術2)は、フォーク型格子と呼ばれる刃状転位を含む格子による回折波を利用する方法である。 FIG. 3 is a schematic diagram showing a state in which a helical wave is generated from an edge dislocation diffraction grating. A second method (related technique 2) for generating a helical wave is a method using a diffracted wave by a grating including edge dislocations called a fork-type grating.
 第1の方法(関連技術1)では、電子波のごとく波長が極端に短い場合には、らせん形状をした薄膜の作製が難しい。よって、刃状転位を含む回折格子を用いる第2の方法(関連技術2)がより現実的である。 In the first method (related technique 1), when the wavelength is extremely short like an electron wave, it is difficult to produce a spiral thin film. Therefore, the second method (related technique 2) using a diffraction grating including edge dislocations is more realistic.
 図3に示すとおり、刃状転位を含む回折格子91から回折波として生成されたらせん波21(等しい位相面がらせん形状を成している波)は、回折像9では通常の点状の回折スポット99に代わり、リング状の回折スポット97を成す。このリング状の回折スポットの1つを回折面で空間的に分離できれば、所望のらせん波21を取り出すことができる。 As shown in FIG. 3, a spiral wave 21 (a wave having an equal phase plane in a spiral shape) generated as a diffracted wave from a diffraction grating 91 including edge dislocations is a normal point-like diffraction in the diffraction image 9. Instead of the spot 99, a ring-shaped diffraction spot 97 is formed. If one of the ring-shaped diffraction spots can be spatially separated on the diffraction surface, the desired spiral wave 21 can be extracted.
 刃状転位を含む回折格子を用いてらせん波を生成する第2の方法は、刃状転位の次数、および刃状転位のバーガースベクトルの正負によってらせん度の度数とらせん度の正負(らせんの右巻き、左巻き)を制御することができる。図4(A)は、実際に作成した3次の刃状転位格子91の電子顕微鏡像である。収束イオンビーム装置により、厚さ200nm程度の窒化シリコンメンブレンに加工を行なった。図4(A)の図中中央部の上側に格子が3本挿入され、この部分に格子が集中して配置されている。すなわち、この集中部が刃状転位のコアの位置であり、次数は3次である。刃状転位の次数と生成されるらせん度の次数は、基本的に一致する。しかし、回折格子のコントラストが高く、高次の回折スポットが得られる場合には、刃状転位の次数と回折スポットの次数を乗算した値のらせん度を持つらせん波も生成される。図4(B)は、図4(A)の回折格子を加速電圧300kVの電子線で照射した際に得られた小角電子回折像9である。図4(C)は、図4(B)の像を模写したものである。 The second method of generating a spiral wave using a diffraction grating including edge dislocations is that the degree of spirality and the sign of the spiral degree are determined by the order of the edge dislocation and the sign of the Burgers vector of the edge dislocation (right and left of the spiral). Winding and left-handing) can be controlled. FIG. 4A is an electron microscope image of the third-order edge dislocation lattice 91 actually created. Using a focused ion beam apparatus, a silicon nitride membrane having a thickness of about 200 nm was processed. Three grids are inserted above the central portion in FIG. 4A, and the grids are concentrated on this part. That is, this concentrated portion is the position of the core of edge dislocation, and the order is third order. The order of the edge dislocations and the order of the generated spirality are basically the same. However, when the diffraction grating has a high contrast and a high-order diffraction spot can be obtained, a spiral wave having a degree of spiral obtained by multiplying the order of the edge dislocation and the order of the diffraction spot is also generated. FIG. 4B is a small angle electron diffraction image 9 obtained when the diffraction grating of FIG. 4A is irradiated with an electron beam with an acceleration voltage of 300 kV. FIG. 4C is a copy of the image of FIG.
 この小角電子回折像9は、カメラ長150mでの記録である。中央部の0次スポット(点状の回折スポット99)の左右に±1次、±2次、±3次のリング状の回折スポット97が観察されており、回折次数が高くなるほどリング径が大きくなることから、らせん度が±3次、±6次、±9次のらせん波が生成されていることがわかる。すなわち、回折スポットのリング径は、らせん波のらせん度を直接表している。このように、1枚の刃状転位を含む回折格子91から複数の種類のらせん波21を生成させることが可能である。 This small-angle electron diffraction image 9 is recorded with a camera length of 150 m. ± 1st order, ± 2nd order, ± 3rd order ring-shaped diffraction spots 97 are observed on the left and right of the 0th order spot (dotted diffraction spot 99) in the center, and the ring diameter increases as the diffraction order increases. Thus, it can be seen that spiral waves having a spiral degree of ± 3rd order, ± 6th order, and ± 9th order are generated. That is, the ring diameter of the diffraction spot directly represents the helical degree of the helical wave. As described above, it is possible to generate a plurality of types of helical waves 21 from the diffraction grating 91 including one edge dislocation.
 しかし、回折格子の場合、現状で用いられている格子は振幅格子(波動(振幅)の一部を完全に遮蔽する型の格子)であり、格子を透過した時点で、回折波の強度は半減している。さらに、本実施の形態での利用目的外である0次の回折波(透過波)に回折波の強度の過半が集中し、±1次以上の回折波の強度はそれぞれに分散することによってさらに桁落ちする。よって、±1次以上の回折波の強度は、格子への入射強度と比較すると数十分の1以下に低下する(図4(B)参照)。仮に刃状転位格子が位相格子であっても、格子への入射強度と比較すると、±1次以上の回折波の強度が数分の1以下に低下することは免れ得ない。位相格子とは、波動の一部の位相を変化させる型の格子で、振幅は変化させない格子、つまり透明な格子である。強度が不足した電子線を用いた試料の観察では、十分なSN比が得られず、分解能などに支障が出る。すなわち、電子らせん波の実用には、ビームの強度の確保が重要となる。 However, in the case of a diffraction grating, the currently used grating is an amplitude grating (a grating that completely shields part of the wave (amplitude)), and the intensity of the diffracted wave is halved when it passes through the grating. is doing. Furthermore, the majority of the intensity of the diffracted wave concentrates on the 0th-order diffracted wave (transmitted wave) that is outside the purpose of use in the present embodiment, and the intensity of the diffracted wave of ± 1st order or higher is further dispersed. The digits are lost. Therefore, the intensity of the diffracted wave of ± 1st order or higher is reduced to a few tenths or less as compared with the incident intensity to the grating (see FIG. 4B). Even if the edge dislocation grating is a phase grating, it is inevitable that the intensity of the diffracted wave of ± 1st order or higher is reduced to a fraction or less as compared with the incident intensity to the grating. The phase grating is a type of grating that changes the phase of a part of the wave, and is a grating that does not change the amplitude, that is, a transparent grating. In observation of a sample using an electron beam with insufficient intensity, a sufficient signal-to-noise ratio cannot be obtained, which hinders resolution and the like. That is, it is important to secure the intensity of the beam for practical use of the electron spiral wave.
 <3.電子軌道と位相差>
 電子線が伝播する空間中のある点での、電子線の波面(位相)を定めるには、電子波の波動関数の位相部について1つの軌道に沿って経路積分(線積分)し、同じ値をとる軌道上の点を結ぶ。この点を結んだ面が波面となる。図5は、電子軌道27と波面26(等位相面)の関係を描いた模式図である。電子源1から射出した電子線が各々の軌道27を経て観察点10に達するときの軌道とそのときの波面26の様子を描いている。
<3. Electron orbit and phase difference>
In order to determine the wavefront (phase) of an electron beam at a certain point in the space where the electron beam propagates, path integration (line integration) is performed along one orbit for the phase part of the wave function of the electron wave, and the same value. Connect the points on the trajectory. The surface connecting these points is the wavefront. FIG. 5 is a schematic diagram illustrating the relationship between the electron trajectory 27 and the wavefront 26 (equal phase plane). The trajectory when the electron beam emitted from the electron source 1 reaches the observation point 10 via each trajectory 27 and the state of the wavefront 26 at that time are depicted.
 図5の関係を数式を用いて説明する。軌道上に座標sをとると、時間に依存しない波動方程式より電子線の波面S(s)は式(1)のように表される。ここで、mは電子の質量、Eは加速電圧に相当する電界、eは電子の電荷、Vは電位(スカラーポテンシャル)、Aはベクトルポテンシャルである。

 
The relationship of FIG. 5 will be described using mathematical expressions. When the coordinate s is taken on the trajectory, the wavefront S 0 (s) of the electron beam is expressed by the equation (1) from the wave equation that does not depend on time. Here, m is the electron mass, E is the electric field corresponding to the acceleration voltage, e is the electron charge, V is the potential (scalar potential), and AS is the vector potential.

Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 位相φ(s)は式(2)のように表される。ここで、hは、プランク定数である。 The phase φ (s) is expressed as shown in Equation (2). Here, h is a Planck's constant.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 位相φ(s)は相対的なものであり、一意には定まらない。しかし、常に他の位相との比較において意味を成すものであり、他の波面との位相差Δφ(s)は、一意に定まるものである。そのため、1点から出た電子線を、経路Iと経路IIを経て伝播させ、重なり合わせて、干渉として位相差Δφ(s)を求めることが可能である。この場合の位相差Δφ(s)を式(3)に示す。 The phase φ (s) is relative and is not uniquely determined. However, it always makes sense in comparison with other phases, and the phase difference Δφ (s) with other wavefronts is uniquely determined. Therefore, it is possible to propagate the electron beam emitted from one point through the path I and the path II and overlap them to obtain the phase difference Δφ (s) as interference. The phase difference Δφ (s) in this case is shown in Equation (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 式(3)の位相差Δφ(s)は、軌道上の波数に比べて軌道の変化が小さいとき、すなわち電子線の波長に比べて軌道の曲率が十分に小さい場合には、幾何光学的光路差の寄与、軌道上の電場の寄与、軌道上の磁場の寄与の3つの項に分けて記述できる。この近似はWKB近似と呼ばれ、加速電圧が100kV以上の電子線では十分な精度で成立する。式(4)に、位相差Δφ(s)を上記3つの項に分離して示す。但し、波数ベクトル:k=1/λである。 The phase difference Δφ (s) in the equation (3) is the geometric optical path when the change of the orbit is small compared to the wave number on the orbit, that is, when the curvature of the orbit is sufficiently small compared to the wavelength of the electron beam. It can be described in three terms: the contribution of the difference, the contribution of the electric field on the orbit, and the contribution of the magnetic field on the orbit. This approximation is called WKB approximation, and is established with sufficient accuracy for an electron beam with an acceleration voltage of 100 kV or higher. Equation (4) shows the phase difference Δφ (s) separated into the above three terms. However, the wave vector: k = 1 / λ.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 式(4)右辺の第1項Δφは幾何光学的光路差(波数の経路積分)、第2項Δφは電場からの寄与であり光線の場合の屈折率に相当する。第3項Δφは磁場の寄与で、加速電圧(電子線の波長)に依存しないことを特徴とする。本実施の形態においては、電子源として光軸近傍を伝播する電子線に関して検討するため第1項Δφの幾何光学的位相差、および軌道上に電場は存在しないものとして第2項Δφは無視する。したがって、第3項Δφの軌道上の磁場からの寄与についてのみ検討する。
<4.アハラノフ・ボーム効果>
 ストークスの定理により、式(4)の第3項は、2つの軌道の間に存在する磁束密度Bと、2つの軌道が囲む閉曲面の面積Sに依存した位相差Δφである(式(5))。これがアハラノフ・ボーム効果(AB効果)である。ここでSは、軌道Iと軌道IIが囲む面積である。
The first term Δφ 1 on the right side of the equation (4) is a geometric optical path difference (path integral of wave number), and the second term Δφ 2 is a contribution from the electric field and corresponds to the refractive index in the case of light rays. The third term Δφ 3 is a magnetic field contribution and does not depend on the acceleration voltage (electron beam wavelength). In the present embodiment, since the electron beam propagating in the vicinity of the optical axis as an electron source is examined, the geometrical optical phase difference of the first term Δφ 1 and the second term Δφ 2 are assumed to have no electric field on the orbit. ignore. Therefore, only the contribution from the magnetic field on the orbit of the third term Δφ 3 is considered.
<4. Aharanov Baume Effect>
According to Stokes' theorem, the third term of the equation (4) is a phase difference Δφ 3 depending on the magnetic flux density B existing between the two orbits and the area S of the closed surface surrounded by the two orbits (equation ( 5)). This is the Aharanov-Bohm effect (AB effect). Here, S is an area surrounded by the trajectory I and the trajectory II.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 すなわち、図6(A)に示すように、電子線の2つの軌道27(経路I、II)が閉じているとき、その閉じた経路で定まる平面(曲面)を磁束が透過すれば、それに伴って2つの電子線には位相差が発生するのである。図6(A)では電子源から発した2つの軌道を描く電子線27が観察点10に戻るように描かれている。これは、電子線では可干渉距離の制限があるため、光源のサイズが軌道の長さに比べて無視できるほどに小さく、また、位相差を観測するために2つの電子線を重畳させて干渉を観察しなければならないため、このように描いている。しかし、図6(B)に示すように、2つの電子線の始点と終点が離れていても(但し軌道長に比べて十分に小さい)、2つの電子線の経路が定める曲面を磁束が透過すればその2つの電子線の間に位相差は発生する(図6(B))。 That is, as shown in FIG. 6 (A), when the two orbits 27 (paths I and II) of the electron beam are closed, if the magnetic flux passes through a plane (curved surface) defined by the closed path, it is accompanied accordingly. Thus, a phase difference occurs between the two electron beams. In FIG. 6A, an electron beam 27 depicting two orbits emitted from the electron source is drawn so as to return to the observation point 10. This is because the electron beam has a coherent distance limit, so the size of the light source is negligibly small compared to the length of the orbit, and two electron beams are superimposed to observe the phase difference and interfere with each other. Because we must observe, we draw like this. However, as shown in FIG. 6B, even if the start point and the end point of the two electron beams are separated (but sufficiently smaller than the orbital length), the magnetic flux passes through the curved surface defined by the paths of the two electron beams. Then, a phase difference is generated between the two electron beams (FIG. 6B).
 図7(A)に示すように、点状の電子源1があり、その下流側に磁束の発生点Bがある場合を考える。図7(B)は光軸2の方向への投影図で、光軸2を中心として全方位角の方向に均一に電子線27が射出していること、同時に磁束の発生点が光軸2上に存在し、磁束線81も光軸2を中心として全方位角の方向に均一に流れている(放射している)ことを示している。このとき、隣り合った2つの電子軌道ごとに、それぞれの軌道が囲む等しい面積Sの曲面を同じ極性、磁束量Bの磁束が透過する。すなわち、それぞれの電子軌道は同じ位相差を得る(式(6))。そして、動径に沿って時計方向にちょうど一周回ったときに全体の位相差の和が2πとなっていれば、この電子線はらせん波となる。本実施の形態はこのアイデアに基づくものである。 As shown in FIG. 7 (A), consider a case where there is a point-like electron source 1 and a magnetic flux generation point B is located downstream thereof. FIG. 7B is a projection view in the direction of the optical axis 2, in which the electron beam 27 is uniformly emitted in the direction of all azimuth angles around the optical axis 2, and at the same time, the generation point of the magnetic flux is the optical axis 2. It is shown that the magnetic flux lines 81 are uniformly flowing (radiating) in the direction of all azimuth angles with the optical axis 2 as the center. At this time, the magnetic flux of the same polarity and the magnetic flux amount B passes through the curved surface of the same area S surrounded by each of the two adjacent electron orbits. That is, each electron orbit obtains the same phase difference (formula (6)). Then, if the sum of the entire phase differences is 2π when it goes around once in the clockwise direction along the moving radius, this electron beam becomes a spiral wave. This embodiment is based on this idea.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 <5.モノポールと位相差>
 図7(A)および(B)には、1つの極性(N極あるいはS極だけ)からなる点磁荷から、空間に磁束線が放射状に射出されている、あるいは、点磁荷に放射状の磁束が吸い込まれている様子が描かれている。このような磁束の分布を描くものとしてモノポールがある。モノポールは、理論的にその存在が予言されているもので、磁気単極子のことである。つまり電荷のごとく、1つの極性(N極あるいはS極だけ)からなる点磁荷で、空間に磁束線が放射状に射出される、あるいは、磁束が吸い込まれる点である。しかし、理論的には在ってもいいものとされているが、現在までのところ見つかっていない。実在している全ての磁性はN極とS極のポールが対を成したダイポールである。
<5. Monopole and phase difference>
In FIGS. 7A and 7B, magnetic flux lines are emitted radially from a point magnetic charge having one polarity (N pole or S pole only) or radial to the point magnetic charge. It shows how the magnetic flux is sucked. There is a monopole that draws such a distribution of magnetic flux. Monopole is theoretically predicted to exist and is a magnetic monopole. That is, like a charge, a point magnetic charge having one polarity (only N or S poles) is a point at which magnetic flux lines are emitted radially into a space or magnetic flux is sucked. However, although it is theoretically possible, it has not been found so far. All existing magnetism is a dipole with a pair of poles of N and S poles.
 もしモノポールが存在し、これを平面波の電子線で照射したら、図8(A)に示すように、モノポール83を透過した後の電子線は、モノポール83の投影位置をコアとするらせん形状の位相分布21を持つ。図8(B)は2つの互いに逆極性のモノポール(83、84)が対となったダイポールの場合の例である。ダイポールではそれぞれのポールの投影位置をコアとして逆極性のらせん形状の位相分布となり、それぞれのコアから離れた位置では、位相分布が結果的に平面波に戻ってしまう。しかし、図8(A)に示すモノポールの場合では、らせん波21の位相分布は、コアから離れた位置でもらせん形状のままである。もちろん、コアから離れるほど変化の度合いは小さくなる。 If a monopole exists and is irradiated with a plane wave electron beam, the electron beam after passing through the monopole 83 is spiraled with the projection position of the monopole 83 as the core, as shown in FIG. It has a shape phase distribution 21. FIG. 8B shows an example of a dipole in which two monopoles (83, 84) having opposite polarities are paired. In a dipole, the phase distribution of a spiral shape with a reverse polarity is obtained with the projection position of each pole as a core, and the phase distribution eventually returns to a plane wave at a position away from each core. However, in the case of the monopole shown in FIG. 8A, the phase distribution of the spiral wave 21 remains helical even at a position away from the core. Of course, the degree of change decreases as the distance from the core increases.
 らせん波が安定に存在するには、コアを中心に周回した時に電子波の位相変化量がちょうど2π、もしくは2πの整数倍でなければならない。その条件は式(6)より導かれる。すなわち、2つの電子線経路が定める曲面の面積をSとしたときに、Sを透過する磁束B×Sがh/eの整数倍(n倍)であれば良い。これを改めて数式で表すと式(7)となる。 In order for a spiral wave to exist stably, the amount of phase change of the electron wave when it circulates around the core must be exactly 2π or an integer multiple of 2π. The condition is derived from equation (6). That is, when the area of the curved surface defined by the two electron beam paths is S, the magnetic flux B × S that passes through S may be an integral multiple (n times) of h / e. When this is expressed again as a mathematical expression, it becomes Expression (7).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 このときの磁束量は、超伝導状態で発生する量子化磁束(磁束量子:フラクソン)のちょうど2倍の磁束量(2×h/(2e)=4.14×10-15(Wb))である。この磁束量を持つモノポールが存在すれば、平面波の電子線はモノポールを透過後、らせん度1のらせん波となる。 The amount of magnetic flux at this time is a magnetic flux amount (2 × h / (2e) = 4.14 × 10 −15 (Wb)) that is exactly twice the quantized magnetic flux (flux quantum: fluxon) generated in the superconducting state. is there. If there is a monopole with this amount of magnetic flux, the plane wave electron beam passes through the monopole and becomes a spiral wave with a spiral degree of 1.
 <6.らせん波生成用位相板として磁場の利用>
 モノポールはまだ発見されず利用できないが、ダイポールを延長し片端のみを利用してモノポールに代用することが考えられる。図9(A)にこれを例示する。図7(A)と同様に、点状の電子源1があり、その電子線27の伝搬方向の下流側の光軸上にダイポールの片端として棒状の磁性体88が位置している。棒状の磁性体88の片端から発する磁束量が、先述の磁束量子(h/(2e))の2倍の量であれば、棒状の磁性体から十分下流側では、光軸2の周りのらせん度1のらせん波が生成する。
<6. Use of magnetic field as phase plate for generating spiral wave>
The monopole has not yet been discovered and cannot be used, but it is possible to extend the dipole and use only one end to substitute for the monopole. This is illustrated in FIG. Similar to FIG. 7A, there is a point-like electron source 1, and a rod-like magnetic body 88 is positioned as one end of a dipole on the optical axis on the downstream side in the propagation direction of the electron beam 27. If the amount of magnetic flux emitted from one end of the rod-shaped magnetic body 88 is twice the amount of the magnetic flux quantum (h / (2e)), the spiral around the optical axis 2 is sufficiently downstream from the rod-shaped magnetic body. A spiral wave of degree 1 is generated.
 しかし、図9(A)に示したように、棒状の磁性体では他方のポールの影響があるため、全方位に均一な磁束線81の分布とはならない。そのため、らせん波のらせんの巻き具合が量的には周回したときに2πの位相差を保っていても、単位方位角ごとの位相変化は均一ではない。さらに、棒状の磁性体88においては、ポールの片端だけでなく、棒状の磁性体の途中から戻り磁束線の発生がある。このような単位方位角ごとの位相変化や戻り磁束線は、らせん形状の位相分布に歪みを生じさせる原因となる。歪みを含むらせん波の一例を図9(B)に示す。図9(B)のらせん波21は、図1と比較して位相面が歪んでいる。 However, as shown in FIG. 9A, the rod-shaped magnetic body has the influence of the other pole, so the distribution of the magnetic flux lines 81 is not uniform in all directions. For this reason, even if the helical winding of the helical wave circulates quantitatively, even if a phase difference of 2π is maintained, the phase change for each unit azimuth is not uniform. Furthermore, in the rod-shaped magnetic body 88, return magnetic flux lines are generated not only from one end of the pole but also from the middle of the rod-shaped magnetic body. Such phase changes and return magnetic flux lines for each unit azimuth cause distortion in the spiral phase distribution. An example of a helical wave including distortion is shown in FIG. The spiral wave 21 in FIG. 9B has a distorted phase plane as compared with FIG.
 また、図9(A)では、ダイポールの例として棒状の磁性体88を想定しているが、この磁性体88は電子線27に対して陰を作るため、らせん波の波面には断裂(陰)24が発生する(図9(A)下部)。光軸2上に磁場を発生させるために磁性体88が必要で、磁性体88を配置した結果として、電子線が遮蔽されらせん波の波面に断裂(陰)24を作り出し、あるいは不要な散乱を発生させる。このため、らせん波21を用いる試料観察に際して、観察像にアーティファクトを生み出してしまう。このような欠点は、らせん位相板を用いる関連技術1と共通の原理的な問題点である。 In FIG. 9A, a rod-shaped magnetic body 88 is assumed as an example of a dipole. However, since the magnetic body 88 creates a shadow with respect to the electron beam 27, the wavefront of the spiral wave is broken (shadowed). ) 24 occurs (lower part of FIG. 9A). In order to generate a magnetic field on the optical axis 2, a magnetic body 88 is necessary. As a result of arranging the magnetic body 88, the electron beam is shielded, creating a tear (shade) 24 in the wavefront of the spiral wave, or unnecessary scattering. generate. For this reason, when the sample is observed using the spiral wave 21, an artifact is generated in the observation image. Such a drawback is a fundamental problem common to the related technique 1 using the helical phase plate.
 1次元状に発生させた磁場の片端をモノポールとして代用する方法は、ソレノイド89を用いる場合(図10(A))、棒状の磁性体88を用いる場合(図10(B))、超伝導筒87を用いる場合(図10(C))などが考えられる。ソレノイド89と棒状の磁性体88での効果、問題点は、図9に示す場合とほぼ同様で上述のとおりであるが、磁束量の制御においては、ソレノイド89の方が取り扱いが容易と考えられる。超伝導筒87を用いる場合(図10(C))は、超伝導体が十分に冷却され、十分な厚さを持っている場合には、磁束の量子化効果が得られるので、高精度に所定の磁束量に制御可能である。さらに、磁場の遮蔽効果により、磁束の発生点が超伝導筒の端点に限定されるので、他の場合よりもモノポールに近い位相分布が得られると期待される。それでも、基本的にダイポールであるため、電子波の位相分布の歪みは残存してしまう。 A method of substituting one end of a magnetic field generated in a one-dimensional form as a monopole uses a solenoid 89 (FIG. 10A), a rod-shaped magnetic body 88 (FIG. 10B), and superconductivity. The case where the cylinder 87 is used (FIG. 10C) can be considered. The effects and problems of the solenoid 89 and the rod-shaped magnetic body 88 are almost the same as those shown in FIG. 9 and are as described above. However, in the control of the amount of magnetic flux, the solenoid 89 is considered easier to handle. . In the case of using the superconducting cylinder 87 (FIG. 10C), when the superconductor is sufficiently cooled and has a sufficient thickness, a magnetic flux quantization effect can be obtained. It can be controlled to a predetermined amount of magnetic flux. Furthermore, since the magnetic flux generation point is limited to the end point of the superconducting cylinder due to the shielding effect of the magnetic field, it is expected that a phase distribution closer to the monopole than in other cases can be obtained. Nevertheless, since it is basically a dipole, the distortion of the phase distribution of the electron wave remains.
 以上詳細に説明したとおり、関連技術1、2に示す方法および上記ダイポール素子の片端を利用する方法で電子らせん波を生成し得るものの、以下にまとめるように、各種の問題点を有する。 As described in detail above, although an electron spiral wave can be generated by the methods shown in Related Technologies 1 and 2 and the method using one end of the dipole element, it has various problems as summarized below.
 (1)関連技術1:らせん状の厚みを持つ位相板の利用(図2参照)
 この方法では、発生させた電子線全体をらせん波とできるが、原子サイズよりも小さな波長を持つ電子線に対して、十分な精度を持つらせん位相板の製造が困難である。加えて製造後の調整はほぼ不可能のため、らせんのコア周回につき位相差を2πの整数倍に調整することは極めて困難である。
(1) Related technology 1: Use of a phase plate having a spiral thickness (see FIG. 2)
In this method, the entire generated electron beam can be formed into a spiral wave, but it is difficult to manufacture a spiral phase plate having sufficient accuracy for an electron beam having a wavelength smaller than the atomic size. In addition, since adjustment after manufacture is almost impossible, it is extremely difficult to adjust the phase difference to an integral multiple of 2π for the spiral core.
 (2)関連技術2:刃状転位を持つ回折格子の利用(図3参照)
 この方法は先述のとおり、1枚の刃状転位格子から、らせん度数、らせん度の正負の異なる複数種類のらせん波を発生させることが可能であるという利点を持つ。しかし、この利点は同時に欠点でもある。生成した複数のらせん波に強度が分散されるため、大きな強度のらせん波ビームを得ることが困難である。したがって、試料観察に用いた場合には、像のSN比が劣化し、また、試料(材料)の加工に用いた場合には、加工効率の劣化を招く。いずれも対応策として、長時間露光が考えられるが、露光時間中に試料のドリフトなどが生じると加工や観察の精度が劣化する。長時間露光を前提とした場合には、装置全体に十分な安定性が備わっていなければ、実用化は困難である。
(2) Related technology 2: Use of diffraction grating with edge dislocation (see Fig. 3)
As described above, this method has an advantage that it is possible to generate a plurality of types of spiral waves having different degrees of spiral and positive and negative spirals from one edge dislocation lattice. However, this advantage is at the same time a drawback. Since the intensity is dispersed in the generated plurality of spiral waves, it is difficult to obtain a spiral beam having a large intensity. Therefore, when used for sample observation, the S / N ratio of the image deteriorates, and when used for sample (material) processing, the processing efficiency deteriorates. In either case, long exposure is conceivable as a countermeasure, but if the sample drifts during the exposure time, the accuracy of processing and observation deteriorates. If long exposure is assumed, practical use is difficult unless the entire apparatus has sufficient stability.
 さらに、この方法を用いる場合には、電子光学系として、小散乱角対応の回折光学系(長カメラ長の光学系)を用い、その回折面においてらせん波を取捨選択しなければならない。このため、電子顕微鏡などに適用した場合、通常用いられる光学系に加え、新たな光学系および絞り機構などの光学素子の追加設置が必要となる。 Furthermore, when this method is used, a diffractive optical system corresponding to a small scattering angle (an optical system with a long camera length) must be used as the electron optical system, and a spiral wave must be selected on the diffraction plane. For this reason, when applied to an electron microscope or the like, it is necessary to additionally install an optical element such as a new optical system and a diaphragm mechanism in addition to a normally used optical system.
 (3)ダイポール素子の片端の利用(図9参照)
 この方法では、上記(1)の関連技術1(らせん位相板)と同様に、ダイポール素子の片端を位相板として使用してらせん波を生成させることが可能である。しかし、先述のとおり、使用しない他端の極が影響を与えるため、らせんのコアの周回に対して等方的ならせん形状の位相分布を持つらせん波の生成は困難である。
(3) Use of one end of dipole element (see Fig. 9)
In this method, a spiral wave can be generated by using one end of a dipole element as a phase plate, as in the related technique 1 (helical phase plate) in (1) above. However, as described above, since the pole at the other end that is not used has an effect, it is difficult to generate a spiral wave having a spiral phase distribution isotropic with respect to the spiral core.
 このように、上記(1)~(3)のいずれの方法を用いても、電子らせん波の生成は現段階ではかなりの困難を伴うこととなる。 As described above, even if any of the above methods (1) to (3) is used, the generation of the electron spiral wave is considerably difficult at this stage.
 以上の考察の元、本発明者は、上記(1)~(3)の方法の問題点を解消すべく、検討の結果、新しいらせん波の生成方法を見出すことに至ったものである。以下に、詳細に説明する。 Based on the above considerations, the present inventor has come up with a new spiral wave generation method as a result of studies to solve the problems of the above methods (1) to (3). This will be described in detail below.
 <らせん波生成の原理>
 まず、らせん波生成の原理を説明する。図11に、電子源である電子銃の先端部分(電子銃Tip11)の構成を示す。具体的には、電子銃Tip11と電子銃Tip11の先端部分から発した電子線27、および電子銃(電子銃Tip11)の軸と平行方向に印加された磁場の磁束線81を示す。ここでは、電子光学素子としては、電子銃Tip11のみに注目しているので、電子線装置の光軸2と電子銃(電子銃Tip11)の軸とは一致していると考えてよい。さらに、簡単化のため光軸2と磁場の印加方向の軸(以下、磁場印加軸と呼ぶ:1次元形状のソレノイドで言えばソレノイドの中心軸に相当する軸のことである)が一致しているとする。電子銃Tip11の先端の主に電子を発する部分(電子射出部12)を含む光軸2に垂直な平面Qを想定し(図11(A)参照)、その平面Q上への電子線27と磁束線81の投影を考える(図11(B)参照)。すなわち、平面Qが電子源の存する平面となる。
<Principle of spiral wave generation>
First, the principle of spiral wave generation will be described. FIG. 11 shows a configuration of a tip portion (electron gun Tip11) of an electron gun that is an electron source. Specifically, an electron gun Tip11, an electron beam 27 emitted from the tip of the electron gun Tip11, and a magnetic flux line 81 of a magnetic field applied in a direction parallel to the axis of the electron gun (electron gun Tip11) are shown. Here, since only the electron gun Tip11 is focused on as the electron optical element, it may be considered that the optical axis 2 of the electron beam apparatus coincides with the axis of the electron gun (electron gun Tip11). Furthermore, for the sake of simplicity, the optical axis 2 and the axis in the direction of application of the magnetic field (hereinafter referred to as the magnetic field application axis: a one-dimensional solenoid corresponds to the central axis of the solenoid) coincide with each other. Suppose that Assuming a plane Q perpendicular to the optical axis 2 including a portion (electron emitting portion 12) that mainly emits electrons at the tip of the electron gun Tip11 (see FIG. 11A), an electron beam 27 on the plane Q and Consider the projection of magnetic flux lines 81 (see FIG. 11B). That is, the plane Q is a plane where the electron source exists.
 図11(B)の中央部の黒丸の周囲(電子源の存する平面、ハッチング部)が電子銃Tip11の断面であり、投影図であるため、磁束線81は磁場印加軸から全方位へ広がる。また、電子線27も光軸2から全方位へ広がるビームとなる。但し、図11(B)においては、磁束線81との混同を避けるため、電子線27は、電子銃Tip11(ハッチング部)の周辺部からのみ放出されているように描いている。図11(B)の投影図では、光軸2が1点に描かれるとともに、磁束線81も光軸方向は圧縮される。磁束線81の分布に光軸2と平行な軸を中心とした軸対称性を仮定すると、その軸を中心点として、放射状の磁束線81が描かれる。 11B is a cross-sectional view of the electron gun Tip11 around the black circle at the center (the plane where the electron source exists, and the hatched portion), and is a projection view, so that the magnetic flux lines 81 spread in all directions from the magnetic field application axis. The electron beam 27 is also a beam that spreads from the optical axis 2 in all directions. However, in FIG. 11B, in order to avoid confusion with the magnetic flux lines 81, the electron beam 27 is drawn so as to be emitted only from the peripheral portion of the electron gun Tip11 (hatched portion). In the projection view of FIG. 11B, the optical axis 2 is drawn at one point, and the magnetic flux lines 81 are also compressed in the optical axis direction. Assuming that the distribution of the magnetic flux lines 81 is axially symmetric about an axis parallel to the optical axis 2, radial magnetic flux lines 81 are drawn with the axis as the center point.
 図11(B)の投影図は、光軸方向の電子線27の伝播部分のみを記載している。そのため、図11(A)から明らかなように、電子銃Tip11より上部の磁束線81については投影図には反映されず、主に平面Qよりも下側の磁束線81と電子線27が投影描画されている。そのため、図11(B)では磁束線81の描画であるにもかかわらず、戻り磁束の影響がないように描かれている。これは、この投影図においては、電子線27よりも上部の磁束線は、電子線経路が定める平面(曲面)を透過せず、アハラノフ・ボーム効果による電子波の位相変調に寄与しないため、初めから除外して考えているためである。以下に説明するが、この考え方は妥当なものであり、この描画が可能な磁束線と電子線の関係を作り出すことによって、事実上、磁場のモノポール化が可能になるのである。 11B shows only the propagation portion of the electron beam 27 in the optical axis direction. Therefore, as is clear from FIG. 11A, the magnetic flux lines 81 above the electron gun Tip11 are not reflected in the projection view, and the magnetic flux lines 81 and the electron beams 27 below the plane Q are mainly projected. Has been drawn. For this reason, in FIG. 11B, the magnetic flux lines 81 are drawn but the return magnetic flux is not affected. This is because, in this projection view, the magnetic flux lines above the electron beam 27 do not pass through the plane (curved surface) defined by the electron beam path and do not contribute to the phase modulation of the electron wave due to the Aharanov-Bohm effect. This is because it is considered to be excluded. As will be described below, this concept is valid, and by creating a relationship between magnetic flux lines and electron beams that can be drawn, it is possible to effectively make the magnetic field monopole.
 図12を用いてさらに詳細に説明する。図12は、電子銃Tip11から射出した電子線27が電子光学系(図示を省略)を経由して、検出記録面8で検出されるまでを描いている。簡単化のため、電子は電子銃Tip11上の異なる2点(A点とC点:それぞれ光軸2から距離rだけ離れた点)から発し、それぞれ経路I(AB)と経路II(CD)を通る。この2本の電子線経路(I、II)が定める曲面ABCDを1本の磁束線81が透過している。また、簡単化のため、磁束線81としては、電子線射出領域(電子線射出部12の断面)を含む平面Qに垂直に、かつ磁場印加軸が光軸2と一致するように印加されている場合を考える。磁場は、電子銃Tip11を有する電子銃の近傍にのみ印加されるので、磁場の印加部分と電子線27の軌道長とでは、軌道長の方が十分に長いと考えてよい。すると、光軸2と電子線射出領域を含む平面Qとの交点Oと、同心円上の点Aと点Cが定める円弧(一辺)により規定される扇形(三角形状)の領域(Ss)を透過した磁束線81は、全て2本の電子線経路I、IIが定める曲面ABCDを1回だけ透過する。戻りはない。この関係は、方位角が異なるどの2つの電子線経路を選んでも同じである。したがって、電子線射出領域を含む平面Qから発した電子線27にとって、磁束線81はモノポールと同じ効果を与える。また、この効果はアハラノフ・ボーム効果(式(5))に依存しているので、2本の電子線経路I、IIが定める曲面ABCDのどの部分を透過したかを問わない。磁束線81は曲面ABCDを透過しさえすればよい。そして、その透過磁束量が、適切であれば、電子銃Tip11から発した電子線27は、電子銃(電子銃Tip11)の磁場印加領域を透過後は、そのまま、光軸2上を伝播する電子らせん波となる。 This will be described in more detail with reference to FIG. FIG. 12 shows the process until the electron beam 27 emitted from the electron gun Tip 11 is detected on the detection recording surface 8 via an electron optical system (not shown). For simplification, electrons are emitted from two different points on the electron gun Tip11 (points A and C: points separated from the optical axis 2 by a distance r, respectively), and route I (AB) and route II (CD), respectively. Pass through. One magnetic flux line 81 passes through the curved surface ABCD defined by the two electron beam paths (I, II). Further, for the sake of simplicity, the magnetic flux lines 81 are applied so as to be perpendicular to the plane Q including the electron beam emission region (cross section of the electron beam emission part 12) and so that the magnetic field application axis coincides with the optical axis 2. Think if you are. Since the magnetic field is applied only in the vicinity of the electron gun having the electron gun Tip11, it can be considered that the orbital length is sufficiently longer between the magnetic field application part and the orbital length of the electron beam 27. Then, it passes through the intersection (Os) of the optical axis 2 and the plane Q including the electron beam emission region, and a sector (Striangular) region (Ss) defined by the arc (one side) defined by the concentric points A and C. All the magnetic flux lines 81 pass through the curved surface ABCD defined by the two electron beam paths I and II only once. There is no return. This relationship is the same regardless of which two electron beam paths having different azimuth angles are selected. Therefore, the magnetic flux line 81 gives the same effect as the monopole for the electron beam 27 emitted from the plane Q including the electron beam emission region. Further, since this effect depends on the Aharanov-Bohm effect (formula (5)), it does not matter which part of the curved surface ABCD defined by the two electron beam paths I and II is transmitted. The magnetic flux lines 81 need only pass through the curved surface ABCD. If the amount of transmitted magnetic flux is appropriate, the electron beam 27 emitted from the electron gun Tip11 passes through the magnetic field application region of the electron gun (electron gun Tip11), and the electrons propagate on the optical axis 2 as they are. It becomes a spiral wave.
 <磁場分布>
 電子線の射出領域が有限な大きさを持ち、ダイポール磁束分布の一端が電子線の射出領域を一回だけ透過する状況が作り出せれば、上記のとおり、電子源を射出後の電子線に作用する磁束は実効的にモノポールとなり、結果として電子線を電子らせん波とすることができる。
<Magnetic field distribution>
If the electron beam emission area has a finite size and one end of the dipole magnetic flux distribution can be transmitted only once through the electron beam emission area, as described above, the electron source acts on the electron beam after emission. The effective magnetic flux becomes a monopole, and as a result, the electron beam can be turned into an electron spiral wave.
 図12および図13を参照しながら数式を用いてさらに検討を進める。図12(A)は、電子銃Tipから発した2本の電子軌道と磁束線との関係を示す模式図である。図12(B)は、電子線射出領域と磁束線の平面Qへの投影図である。図13は、電子銃Tipから発した2本の電子軌道と磁束線との関係を示す模式図である。 Further study will be made using mathematical expressions while referring to FIG. 12 and FIG. FIG. 12A is a schematic diagram showing the relationship between two electron trajectories emitted from the electron gun Tip and magnetic flux lines. FIG. 12B is a projection view onto the plane Q of the electron beam emission region and the magnetic flux lines. FIG. 13 is a schematic diagram showing the relationship between two electron trajectories emitted from the electron gun Tip and magnetic flux lines.
 電子源の面積をSoとし、電子源から検出面までの距離をlとすると、電子顕微鏡などの一般の電子線装置では√So<<lが成立する。電子源から検出面までの間に通常の電子光学系のみが存在する場合には、電子源像に歪みが加えられることはなく、光軸からの距離rで、方位角Δθだけ離れた2つの素電子源である点Aと点Cから射出した電子線27は、その方位角Δθを保ったまま電子線経路I、IIを経て検出記録面8まで伝播され、点B、点Dで検出される。点B、点Dでの位相差をψとすると、AB、CDの2つの軌道で囲まれた曲面(面積S12)を透過する磁束によって位相差は式(8)に基づき決定される。これは式(7)と同様である。 Assuming that the area of the electron source is So and the distance from the electron source to the detection surface is l, √So << l is established in a general electron beam apparatus such as an electron microscope. When only a normal electron optical system exists between the electron source and the detection surface, the electron source image is not distorted, and two distances r from the optical axis and two azimuth angles Δθ are separated. The electron beams 27 emitted from the point A and the point C, which are elementary electron sources, are propagated to the detection recording surface 8 through the electron beam paths I and II while maintaining the azimuth angle Δθ, and are detected at the points B and D. The When the phase difference between the points B and D is ψ, the phase difference is determined based on the equation (8) by the magnetic flux passing through the curved surface (area S 12 ) surrounded by the two trajectories AB and CD. This is the same as equation (7).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 簡単化のため、平面Q上に投影された電子線の射出領域は円盤状の形状を成し、光軸と磁場印加軸が電子線の射出領域の中心を通ると仮定する。また、磁束線81は光軸2と平行に電子線の射出領域を透過するが、ダイポールであるために電子線の射出領域を透過後、有限距離の範囲内で必ず戻る方向(図13では上方)に転ずる。そのため、電子線の軌道と交わりを持つ。すなわち、電子線の射出領域を光軸方向に透過する磁束線が、いずれは照射電子軌道が定める曲面を1回だけよぎる磁束線となる。そのよぎる位置に依存せず、よぎる磁束量のみに依存して電子軌道間の位相差が定まる。これが、アハラノフ・ボーム効果であり、数式(6)~(8)に具体的に示されている。以上のことから、電子線経路I、IIの間の位相差は、素電子源AとCと光軸2とが定める電子線の射出領域上の面積Ss(図11(B)のハッチング部)を透過する磁束量を検討すればよいことになる。電子線の射出領域上を透過する均一な磁束密度をBとして改めて数式(8)を書き直すと、式(9)のようになる。 For simplification, it is assumed that the emission region of the electron beam projected on the plane Q has a disk shape, and the optical axis and the magnetic field application axis pass through the center of the emission region of the electron beam. In addition, the magnetic flux line 81 passes through the electron beam emission region in parallel with the optical axis 2, but since it is a dipole, it always returns within a finite distance after passing through the electron beam emission region (upward in FIG. 13). ). Therefore, it has an intersection with the orbit of the electron beam. That is, the magnetic flux lines that pass through the electron beam emission region in the optical axis direction eventually become magnetic flux lines that cross the curved surface defined by the irradiation electron trajectory only once. The phase difference between the electron orbits is determined not depending on the crossing position but depending only on the crossing magnetic flux amount. This is the Aharanov-Bohm effect, which is specifically shown in equations (6) to (8). From the above, the phase difference between the electron beam paths I and II is the area Ss on the electron beam emission region defined by the elementary electron sources A and C and the optical axis 2 (hatched portion in FIG. 11B). It is sufficient to consider the amount of magnetic flux that passes through. When the uniform magnetic flux density that passes through the electron beam emission region is set to B 0 , Equation (8) is rewritten as shown in Equation (9).
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 図13もしくは図12(B)に示すように電子線27の軌道を光軸2からの距離rごとに分けて考え、素電子源AとCを結ぶ線分が光軸2を見込む角度をΔθとすると、位相差ψは式(10)となる。 As shown in FIG. 13 or FIG. 12B, the trajectory of the electron beam 27 is considered separately for each distance r from the optical axis 2, and the angle at which the line segment connecting the elementary electron sources A and C looks at the optical axis 2 is expressed as Δθ. Then, the phase difference ψ is expressed by Equation (10).
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000010
 式(10)は、rが大きくなるほど、多くの磁束線が透過するため、同じ方位角を持っていてもrが大きくなるほど位相差が大きくなることを意味している。らせん波を、らせん度nの光軸2からの位置に依存しないらせん波とするには、周回してΔθが2πとなる時に、位相差ψが2πの整数倍となることが必要である。この条件を式(11)に示す。 Equation (10) means that as r increases, more magnetic flux lines are transmitted, so that even if they have the same azimuth angle, the phase difference increases as r increases. In order to make the spiral wave a spiral wave that does not depend on the position from the optical axis 2 with the spiral degree n, it is necessary that the phase difference ψ becomes an integral multiple of 2π when Δθ becomes 2π. This condition is shown in equation (11).
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
 これより、磁束密度B(厳密には光軸方向の成分Bz)と光軸2からの距離rとの間に、数式(12)が成立することが条件となる。 From this, it is a condition that Expression (12) is established between the magnetic flux density B (strictly, the component Bz in the optical axis direction) and the distance r from the optical axis 2.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 すなわち、光軸からの距離(離軸距離とも言う)rの2乗に反比例して磁束密度が低下する磁束分布を形成し、電子線と相互作用する領域内の磁束量の大きさが量子化磁束(h/e=4.14×10-15(Wb))の整数倍であればよい。この整数の正負は磁束線の向き、すなわち、電子らせん波のらせんの巻き方向を意味する。この整数が負値の場合には、正値の場合の磁束線の向きと逆、すなわち、電子らせん波のらせんの巻き方向が正値の場合と逆転していることを意味する。 That is, a magnetic flux distribution is formed in which the magnetic flux density decreases in inverse proportion to the square of the distance from the optical axis (also called the off-axis distance) r, and the magnitude of the magnetic flux in the region interacting with the electron beam is quantized. It may be an integral multiple of the magnetic flux (h / e = 4.14 × 10 −15 (Wb)). The sign of this integer means the direction of the magnetic flux lines, that is, the direction of winding of the spiral of the electron spiral wave. When this integer is a negative value, it means that the direction of the magnetic flux line is opposite to that of a positive value, that is, the winding direction of the spiral of the electron helical wave is reversed from that of a positive value.
 <光軸と磁場印加軸との不整合に関して>
 先述の簡単化を可能とするためには、電子線装置の光軸2あるいは電子銃(電子銃Tip11)の軸と、磁場印加軸とが一致している必要がある。例えば、磁場印加軸29が光軸2と位置ずれしている場合(図14(A))、あるいは、磁場印加軸29と光軸2とが平行でない場合(図14(B))が考えられる。いずれの場合も、電子線27と磁束線81の電子線射出領域(電子線射出部12の断面)を含む平面Qへの投影図を考えると、図15(A)のようになる。光軸2と磁場印加軸29とのずれは、そのずれ方向への偏向と見なすことができる。したがって、水平方向に補正磁場を印加して光軸2と磁場印加軸29を合わせることが可能である。もし、補正しない場合には、光軸を中心としたときの単位方位角あたりの位相変化量が均一でなくなり、図9(B)で示したように、らせん波の位相分布に歪みが発生する。
<Regarding misalignment between optical axis and magnetic field application axis>
In order to enable the above-described simplification, it is necessary that the optical axis 2 of the electron beam apparatus or the axis of the electron gun (electron gun Tip 11) coincide with the magnetic field application axis. For example, the magnetic field application axis 29 may be misaligned with the optical axis 2 (FIG. 14A), or the magnetic field application axis 29 and the optical axis 2 may not be parallel (FIG. 14B). . In any case, when a projection view of the electron beam 27 and the magnetic flux line 81 onto the plane Q including the electron beam emission region (cross section of the electron beam emission part 12) is considered, it is as shown in FIG. A deviation between the optical axis 2 and the magnetic field application axis 29 can be regarded as a deflection in the deviation direction. Accordingly, it is possible to match the optical axis 2 and the magnetic field application axis 29 by applying a correction magnetic field in the horizontal direction. If not corrected, the amount of phase change per unit azimuth angle when the optical axis is the center is not uniform, and as shown in FIG. 9B, distortion occurs in the phase distribution of the spiral wave. .
 また、光軸2と磁場印加軸29とのずれ量が大きく、投影像中で磁場印加軸29が、電子線射出領域(電子線射出部12の断面、ハッチング部)の外へ出てしまう場合(図15(B))には、光軸2を中心として放射状の磁束線81を描くことはできず、もはやらせん波を得ることはできない。これは、図15(B)の場合には、磁場に分布はあるものの、全体としては図中右上から右下への偏向磁場Bが印加されている状況と類似の磁場分布となっているからである。このように、本実施の形態においては、電子線射出領域(電子線射出部12の断面)の内側に磁場印加軸29は存在しなければならない。すなわち、光軸2と磁場印加軸29との間にずれが生じる場合、特に、磁場印加軸29が電子線射出領域(電子線射出部12の断面)の内側に位置しない場合には、そのずれを補正する必要がある。機械加工において精度の向上を図り、光軸2と磁場印加軸29とを合わせることは当然として、機械加工精度以上の精度を必要とする場合には、電磁場を用いた軸調整を行えばよい。 In addition, the amount of deviation between the optical axis 2 and the magnetic field application axis 29 is large, and the magnetic field application axis 29 goes out of the electron beam emission region (cross section of the electron beam emission part 12, hatching part) in the projection image. In FIG. 15B, the radial magnetic flux lines 81 cannot be drawn around the optical axis 2 and a spiral wave can no longer be obtained. This is because, in the case of FIG. 15B, although the magnetic field is distributed, the overall magnetic field distribution is similar to the situation in which the deflection magnetic field B is applied from the upper right to the lower right in the figure. It is. Thus, in the present embodiment, the magnetic field application axis 29 must be present inside the electron beam emission region (cross section of the electron beam emission part 12). That is, when a deviation occurs between the optical axis 2 and the magnetic field application axis 29, particularly when the magnetic field application axis 29 is not located inside the electron beam emission region (cross section of the electron beam emission part 12). Need to be corrected. In order to improve the accuracy in machining and match the optical axis 2 and the magnetic field application axis 29, when an accuracy higher than the machining accuracy is required, an axis adjustment using an electromagnetic field may be performed.
 磁束線分布の方向、強度を補正する場合、あるいは、電子線の射出方向、射出部位を磁場印加軸に合わせる調整を行う場合には、電磁場を用いた軸調整方法が必要となる。軸調整方法に制限はないが、以下の2つの方法を例示することができる。第1の方法として、水平方向に補正磁場を印加して光軸と磁場印加軸を合わせる方法がある(図16)。また、第2の方法として、電子線の射出方向、射出部位を磁場印加軸に合わせる方法がある(図17)。 When correcting the direction and intensity of the magnetic flux line distribution, or when adjusting the electron beam emission direction and emission site to the magnetic field application axis, an axis adjustment method using an electromagnetic field is required. The axis adjustment method is not limited, but the following two methods can be exemplified. As a first method, there is a method in which a correction magnetic field is applied in the horizontal direction to align the optical axis and the magnetic field application axis (FIG. 16). As a second method, there is a method of aligning the electron beam emission direction and emission site with the magnetic field application axis (FIG. 17).
 磁場印加軸の補正には、図16に示すように、光軸2を挟んで配置された上下2段のミニコイル(磁場補正用コイル)14を、それぞれコイル13の外周に沿って水平方向に配置した補正部として利用することができる。上下2段に配置することにより、磁場の角度と位置の両方を補正することが可能となる。 For correction of the magnetic field application axis, as shown in FIG. 16, two upper and lower mini-coils (magnetic field correction coils) 14 arranged across the optical axis 2 are arranged in the horizontal direction along the outer circumference of the coil 13, respectively. It can be used as a correction unit. By arranging the upper and lower two stages, it is possible to correct both the angle and the position of the magnetic field.
 また、電子線射出部を調整するには、電界を用いる。例えば、図17に示すように、上下2段に光軸2を挟んで対抗するように平行平板電極(補正用電極)15を配置した補正部として利用することができる。図17では簡略化して記載しているが、電界型においても、光軸2の外周に沿って平行平板電極15の対を複数配置する。 Also, an electric field is used to adjust the electron beam emitting part. For example, as shown in FIG. 17, it can be used as a correction unit in which parallel plate electrodes (correction electrodes) 15 are arranged so as to face each other with the optical axis 2 sandwiched between two upper and lower stages. Although simplified in FIG. 17, a plurality of pairs of parallel plate electrodes 15 are arranged along the outer periphery of the optical axis 2 even in the electric field type.
 上記方法に係る補正部としては、電子線を用いる装置で使用されている手法を適宜採用することができる。ただし、本実施の形態においては、補正部が、電子源近傍に配置され、電子の加速電圧の影響を受けるため、高電圧に耐え得る構成とする必要がある。 As the correction unit according to the above method, a technique used in an apparatus using an electron beam can be appropriately employed. However, in the present embodiment, the correction unit is disposed in the vicinity of the electron source and is affected by the acceleration voltage of electrons, and thus needs to be configured to withstand a high voltage.
 <電子らせん波の試料への照射および試料の透過観察>
 本実施の形態においては、電子銃Tip11を発した電子線は、磁場印加領域の透過後には電子らせん波となっている。これは空間的にはごく狭い範囲で実現されるため、電子線の流れの下流側にある電子光学系から見れば、電子らせん波が直接放出されたに等しい状況となる。そのため、試料への電子線の照射や、試料の像、試料の回折像の観察などは従来の電子顕微鏡などの電子線装置と同様の取り扱いで十分である。これも、本実施の形態の大きな利点のひとつである。
<Irradiation of electron spiral wave to sample and observation of sample transmission>
In the present embodiment, the electron beam emitted from the electron gun Tip11 becomes an electron spiral wave after passing through the magnetic field application region. Since this is realized in a very narrow range in terms of space, when viewed from the electron optical system on the downstream side of the electron beam flow, the situation is equivalent to the case where the electron spiral wave is directly emitted. Therefore, the same handling as that of an electron beam apparatus such as a conventional electron microscope is sufficient for irradiating the sample with an electron beam and observing a sample image and a diffraction image of the sample. This is also one of the great advantages of this embodiment.
 試料に、例えばレジストなどが塗布されている場合、軌道角運動量を保存した電子線であることから、従来とは異なる精度、コントラストでの露光、描画が可能となる。また、運動量を伝えることが可能であることから、電子線照射により、マイクロ部品類やナノ部品類へ駆動力を伝達し、これらの動力源とすることも可能である。 When a sample is coated with a resist or the like, for example, since it is an electron beam storing the orbital angular momentum, it is possible to perform exposure and drawing with different accuracy and contrast from the conventional one. Further, since it is possible to transmit the momentum, it is also possible to transmit a driving force to microcomponents and nanocomponents by irradiating with an electron beam and use them as a power source.
 また、像の観察においても、軌道角運動量を保存した電子線であることから、従来は得られなかった光軸方向の磁化分布の観察や、たんぱく質や糖鎖などのらせん構造の右巻き、あるいは左巻きに対応したコントラストを得ることが期待される。 Also, in the observation of the image, since it is an electron beam conserving the orbital angular momentum, observation of the magnetization distribution in the optical axis direction, which has not been obtained conventionally, or a right-handed spiral structure such as protein or sugar chain, or It is expected to obtain contrast corresponding to left-handed.
 このように、従来と同様の光学系の部品を採用することが可能であるが、発生している電子線がらせん波か否かを確認するには、小角回折光学系が必要である。これに関しては、次に述べる。 As described above, it is possible to adopt the same optical system parts as in the past, but a small-angle diffractive optical system is required to confirm whether the generated electron beam is a spiral wave or not. This will be described next.
 <小角電子回折光学系によるらせん度の調整>
 磁場を印加して得られた電子線が電子らせん波になっていることは、小角電子回折によって、電子源の像(従来はスポット状になっている)がリング状になっていることから知ることができる。また、らせん度の次数はリングの大きさから知ることができる。これは、例えば図3に示した回折像観察光学系を組むことを意味している。ただし、回折格子は用いていないので、中央部(図4(B)では、ゼロ次スポットの部分)のみが観察対象となる。
<Adjustment of spirality by small angle electron diffraction optical system>
The fact that the electron beam obtained by applying a magnetic field is an electron spiral wave is known from the fact that the image of the electron source (formally a spot shape) is ring-shaped by small-angle electron diffraction. be able to. In addition, the degree of spirality can be known from the size of the ring. This means that, for example, the diffraction image observation optical system shown in FIG. 3 is assembled. However, since no diffraction grating is used, only the central portion (the zero-order spot portion in FIG. 4B) is the observation target.
 らせん度の調整方法は、例えば、以下のような方法が考えられる。 For example, the following method can be considered as a method of adjusting the spiral degree.
 <1>電子銃部に光軸と同方向に磁場を印加し、磁場強度を変化させると、所定の磁束となったときに、点状のスポットがリング状のスポット(RSP1)に変化する。 <1> When a magnetic field is applied to the electron gun portion in the same direction as the optical axis and the magnetic field intensity is changed, the spot-like spot changes to a ring-shaped spot (RSP1) when a predetermined magnetic flux is obtained.
 <2>そのまま、磁場強度を増加していくとリング状のスポット(RSP1)は点状のスポットにもどる。 <2> If the magnetic field intensity is increased as it is, the ring-shaped spot (RSP1) returns to a spot-like spot.
 <3>さらに、磁場強度を増加していくと点状のスポットは再びリング状のスポット(RSP2)となる。 <3> Further, as the magnetic field strength is increased, the spot-like spot becomes a ring-like spot (RSP2) again.
 <4>このとき、リング状のスポット(RSP2)の直径は、直前のリング状のスポット(RSP1)よりも大きくなっている。各々の電子線経路が定める曲面を透過する磁束線が2倍となったために、らせん度も2倍になったためである。 <4> At this time, the diameter of the ring-shaped spot (RSP2) is larger than that of the immediately preceding ring-shaped spot (RSP1). This is because the number of magnetic flux lines passing through the curved surface defined by each electron beam path has doubled, and the helical degree has also doubled.
 このように磁場を印加しながら観察を継続すると、周期的に点状のスポットとリング状のスポットを繰り返しながらリングの直径が拡大していく。この電子らせん波の確認方法では、らせん波の度数はわかるが、正負は判定できない。印加磁場の方向(極性)は、あらかじめ定義しておかねばならない。 When observation is continued while applying a magnetic field in this way, the diameter of the ring increases while periodically repeating a spot-like spot and a ring-like spot. In this method of checking the electron spiral wave, the frequency of the spiral wave is known, but the positive / negative cannot be determined. The direction (polarity) of the applied magnetic field must be defined in advance.
 小角電子回折光学系の構成例を図18に示す。図18に示す光学系は、第1中間レンズの物面に、第2コンデンサレンズにより光源の像(クロスオーバー)を結ぶ構成である。このような光学系は、比較的大きなカメラ長(例えば、1000m以上)を有する光学系である。カメラ長とは、回折像における倍率に相当するパラメータで、カメラ長が大きいほど小さな偏向角度を観察可能である。電子らせん波を確認するためには、1次回折スポットに対応するリング状のスポットの強度分布を観察する必要がある。そのため、実績のある値として、80m以上のカメラ長が望ましい(例えば、図4(B)では、カメラ長は150mであった)。 FIG. 18 shows a configuration example of the small angle electron diffraction optical system. The optical system shown in FIG. 18 has a configuration in which an image (crossover) of a light source is connected to an object surface of a first intermediate lens by a second condenser lens. Such an optical system is an optical system having a relatively large camera length (for example, 1000 m or more). The camera length is a parameter corresponding to the magnification in the diffraction image, and the smaller the camera length, the smaller the deflection angle can be observed. In order to confirm the electron spiral wave, it is necessary to observe the intensity distribution of the ring-shaped spot corresponding to the first-order diffraction spot. Therefore, as a proven value, a camera length of 80 m or more is desirable (for example, in FIG. 4B, the camera length was 150 m).
 また、照射電子線の開き角は小さい方がのぞましい。開き角とは、試料位置から直上の光源の像(クロスオーバー)を見込む角度のことで、開き角が小さいほど平行度の高い電子線である。これは、照射電子線のもつビームの広がりが回折像では回折スポットの広がりとして反映され、この広がりが重なり合うことでらせん波のリング状のスポットを消してしまう恐れがあるからである。らせん度1の回折像を観察できなければならないことから、実用性を考えると1×10-6rad以下の開き角が望ましい。 Further, it is preferable that the opening angle of the irradiated electron beam is small. The opening angle is an angle at which the image (crossover) of the light source directly above the sample position is viewed. The smaller the opening angle, the higher the parallelism. This is because the spread of the beam of the irradiation electron beam is reflected as the spread of the diffraction spot in the diffraction image, and there is a possibility that the ring-shaped spot of the spiral wave may be erased by overlapping the spread. In view of practicality, an opening angle of 1 × 10 −6 rad or less is desirable because a diffraction image with a spiral degree of 1 must be observable.
 なお、小角電子回折光学系の構成は、図18に示すものに限らず、他の構成のものを用いてもよい。いずれの光学系を用いる場合であっても、リング状のスポット形状が分解可能なカメラ長を備えていればよい。 Note that the configuration of the small-angle electron diffraction optical system is not limited to that shown in FIG. 18, and other configurations may be used. Whichever optical system is used, it is only necessary to have a camera length capable of resolving the ring-shaped spot shape.
 図19は、電子らせん波を発生させる電子源装置を備えた電子線装置のシステム全体の構成例を示す図である。300kV程度の加速電圧を持つ汎用型の電子顕微鏡を想定したレンズ構成で描いているが、この構成を持つ電子顕微鏡に限定するものではない。 FIG. 19 is a diagram showing a configuration example of the entire system of an electron beam apparatus including an electron source device that generates an electron spiral wave. Although it is drawn with a lens configuration assuming a general-purpose electron microscope having an acceleration voltage of about 300 kV, it is not limited to an electron microscope having this configuration.
 図19(図18も参照)に示すように、電子銃Tip11は、光軸2方向に磁場印加が可能なコイル13の近傍に配置されている。電子源1(電子銃Tip11)は、電子源の制御系19に接続され、制御系19によりコントロールされる。コイル13は、制御系(らせん波生成用コイルの制御系)17と接続され、らせん波を生成するための発生磁束量が、制御系17によりコントロールされる。図19においては、観察対象の試料や加工対象の試料3を記載しているが、電子線が電子らせん波となっていることを小角回折像で確認する際には試料3は必要ない。 As shown in FIG. 19 (see also FIG. 18), the electron gun Tip11 is disposed in the vicinity of the coil 13 capable of applying a magnetic field in the direction of the optical axis 2. The electron source 1 (electron gun Tip11) is connected to and controlled by the control system 19 of the electron source. The coil 13 is connected to a control system (a control system of a coil for generating a helical wave) 17, and the amount of magnetic flux generated for generating a helical wave is controlled by the control system 17. In FIG. 19, the sample to be observed and the sample 3 to be processed are shown, but the sample 3 is not necessary when confirming that the electron beam is an electron spiral wave by a small-angle diffraction image.
 図19に示す電子軌道27は、小角回折時のものである。すなわち、対物レンズ5がオフの状態で、電子線のクロスオーバーを、第一中間レンズ61の物面に構成し、さらに下段の結像レンズ系(62、63、64)で、クロスオーバーを検出記録面8に拡大投影している。検出記録面8に構成された、例えば回折像35は、検出器79とコントローラ78を経て、例えば画像データモニタ76の画面上で観察され、また、記録装置77に画像データとして格納される。図19では、画像データモニタ76の画面には、らせん波の例としてリング状の回折スポット(回折像35)の画像が表示されている。図19のシステムに示す各種レンズ構成や、観察条件が一例に過ぎないことは言うまでもない。 The electron orbit 27 shown in FIG. 19 is the one at the time of small angle diffraction. That is, with the objective lens 5 turned off, an electron beam crossover is formed on the object surface of the first intermediate lens 61, and the lower imaging lens system (62, 63, 64) detects the crossover. An enlarged projection is made on the recording surface 8. For example, the diffraction image 35 formed on the detection recording surface 8 is observed on the screen of the image data monitor 76 via the detector 79 and the controller 78 and stored as image data in the recording device 77. In FIG. 19, an image of a ring-shaped diffraction spot (diffraction image 35) is displayed on the screen of the image data monitor 76 as an example of a spiral wave. Needless to say, various lens configurations and observation conditions shown in the system of FIG. 19 are merely examples.
 図19に示すように、電子線装置は、全体としてシステム化されており、オペレータは、モニタ52の画面上で装置の制御状態を確認でき、インターフェース53を用いた入力により、システム制御コンピュータ51を介して、小角電子回折光学系の各構成部を制御することができる。各構成部とは、例えば、電子源1、らせん波生成用のコイル13、加速管40、各レンズ(41、42、5、61、62、63、64)、試料3(試料保持装置)、検出器79などである。39は、試料保持装置の制御系であり、49は、加速管の制御系である。各レンズ(41、42、5、61、62、63、64)のうち、41は、第1コンデンサレンズ、42は、第2コンデンサレンズであり、それぞれ、第1コンデンサレンズの制御系48、第2コンデンサレンズの制御系47により制御される。また、5は、対物レンズであり、対物レンズの制御系59により制御される。また、61は、第1中間レンズ、62は、第2中間レンズ、63は、第1投射レンズ、64は、第2投射レンズであり、それぞれ、第1中間レンズの制御系69、第2中間レンズの制御系68、第1投射レンズの制御系67、第2投射レンズの制御系66により制御される。 As shown in FIG. 19, the electron beam apparatus is systematized as a whole, and the operator can check the control state of the apparatus on the screen of the monitor 52, and the system control computer 51 is set by input using the interface 53. Thus, each component of the small-angle electron diffraction optical system can be controlled. Each component includes, for example, the electron source 1, a coil 13 for generating a spiral wave, an acceleration tube 40, each lens (41, 42, 5, 61, 62, 63, 64), a sample 3 (sample holding device), Detector 79 or the like. Reference numeral 39 denotes a control system for the sample holding device, and 49 denotes a control system for the acceleration tube. Of the lenses (41, 42, 5, 61, 62, 63, 64), 41 is a first condenser lens, and 42 is a second condenser lens. It is controlled by a control system 47 of a two condenser lens. Reference numeral 5 denotes an objective lens, which is controlled by the objective lens control system 59. Reference numeral 61 denotes a first intermediate lens, 62 denotes a second intermediate lens, 63 denotes a first projection lens, and 64 denotes a second projection lens. The first intermediate lens control system 69 and the second intermediate lens, respectively. Control is performed by a lens control system 68, a first projection lens control system 67, and a second projection lens control system 66.
 なお、電子線装置としては、ビームの偏向系や真空排気系などの他の構成部を有するが、本実施の形態と直接の関係が無い構成部については、図示およびその説明を省略する。 Although the electron beam apparatus has other components such as a beam deflection system and a vacuum exhaust system, illustration and description of the components not directly related to the present embodiment are omitted.
 以下、図面を参照しながら、本実施の形態の電子源部(電子線発生装置)の構成例1~5を説明する。ここでいう電子源部とは、電子源および磁場発生装置を示し、構成例1のように、これらが同じ装置でもよいし、また、構成例2~5のように、これらが別装置でもよい。また、以下に例示する電子源部は、例えば、先述した電子線装置の電子源部として用いられる。 Hereinafter, configuration examples 1 to 5 of the electron source section (electron beam generator) of the present embodiment will be described with reference to the drawings. As used herein, the electron source section refers to an electron source and a magnetic field generator, which may be the same device as in Configuration Example 1, or may be separate devices as in Configuration Examples 2-5. . Moreover, the electron source part illustrated below is used as an electron source part of the electron beam apparatus mentioned above, for example.
 <構成例1>
 図20は、本実施の形態の電子源部の構成例1を示す断面図である。図20においては、電子銃Tip11に磁性体を用い、電子銃Tip11自体がダイポールの一部を構成している。電子銃Tip11の先端がダイポールの片端となるので、この先端から空間に発する磁束線81と電子銃Tip11の先端から射出される電子線27とが、図13を参照しながら説明した磁束線81と電子線27との関係を構成する。言い換えれば、電子線27を浸漬する磁場(磁束線81)が生成する。よって、電子銃Tip11から発する磁束線81が、先述した適正な磁束量となった時に、電子線27は、図20下部に記載のように、らせん波21となる。
<Configuration example 1>
FIG. 20 is a cross-sectional view showing Configuration Example 1 of the electron source section of the present embodiment. In FIG. 20, a magnetic material is used for the electron gun Tip11, and the electron gun Tip11 itself constitutes a part of a dipole. Since the tip of the electron gun Tip11 is one end of the dipole, the magnetic flux line 81 emitted from the tip into the space and the electron beam 27 emitted from the tip of the electron gun Tip11 are the magnetic flux lines 81 described with reference to FIG. The relationship with the electron beam 27 is configured. In other words, a magnetic field (magnetic flux line 81) that immerses the electron beam 27 is generated. Therefore, when the magnetic flux line 81 emitted from the electron gun Tip11 has the above-described appropriate magnetic flux amount, the electron beam 27 becomes the spiral wave 21 as described in the lower part of FIG.
 電子銃Tip11を流れる磁束量は、以下の方法で制御することができる。例えば、電子銃Tip11に用いられる磁性体として、磁束量が温度に伴って変化する磁性材料を用い、電子銃Tip11の周辺にヒーターなどの加熱部を設ける。この場合、ヒーターにより、電子銃Tip11の温度を変化させることにより、磁束量(磁束分布)を制御することができる。また、電子銃Tip11と接続されるコイルなどの磁場発生装置を設けてもよい。この場合、磁場発生装置により電子銃Tip11を流れる磁束量を制御することができる。 The amount of magnetic flux flowing through the electron gun Tip11 can be controlled by the following method. For example, as a magnetic material used for the electron gun Tip11, a magnetic material whose amount of magnetic flux changes with temperature is used, and a heating unit such as a heater is provided around the electron gun Tip11. In this case, the amount of magnetic flux (magnetic flux distribution) can be controlled by changing the temperature of the electron gun Tip11 with a heater. Further, a magnetic field generator such as a coil connected to the electron gun Tip11 may be provided. In this case, the amount of magnetic flux flowing through the electron gun Tip11 can be controlled by the magnetic field generator.
 また、次の方法により、磁束線の極性を反転することができる。例えば、電子銃Tip11を構成する磁性体に、当該磁性体の反転磁化以上の強磁場を外部より印加する。また、電子銃Tip11を構成する磁性体を、当該磁性体のキュリー温度以上に加熱した状態で、逆極性の磁場を印加する。この場合、磁場は弱くてもよい。 Also, the polarity of magnetic flux lines can be reversed by the following method. For example, a strong magnetic field higher than the reversal magnetization of the magnetic material is applied from the outside to the magnetic material constituting the electron gun Tip11. In addition, a magnetic field having a reverse polarity is applied in a state where the magnetic body constituting the electron gun Tip11 is heated to a temperature equal to or higher than the Curie temperature of the magnetic body. In this case, the magnetic field may be weak.
 この構成例1においては、磁束線と電子線の発生源が同じであり、光軸(電子銃Tip11の軸)と磁場印加軸とのずれが少ないという利点がある。 This configuration example 1 has the advantage that the generation source of the magnetic flux line and the electron beam are the same, and there is little deviation between the optical axis (the axis of the electron gun Tip 11) and the magnetic field application axis.
 <構成例2>
 図21は、本実施の形態の電子源部の構成例2を示す断面図である。図21においては、中空コイル(円筒状のコイル)13の内部に電子銃Tip11が配置されている。この場合、電子源は、電子銃Tip11を含む電子銃を有し、磁場発生装置は、中空コイル13を有する。円筒状の中空コイル13の中心軸を磁場印加軸29とする。この磁場印加軸29と電子銃Tip11の軸、すなわち、電子源装置の光軸2(電子銃(電子銃Tip11)の軸)、あるいは電子源装置が搭載される電子線装置(図18、図19参照)の光軸2とが、一致するように調整される。この調整方法は先述したとおりである。
<Configuration example 2>
FIG. 21 is a cross-sectional view showing a configuration example 2 of the electron source section of the present embodiment. In FIG. 21, an electron gun Tip 11 is arranged inside a hollow coil (cylindrical coil) 13. In this case, the electron source has an electron gun including an electron gun Tip 11, and the magnetic field generator has a hollow coil 13. A central axis of the cylindrical hollow coil 13 is a magnetic field application axis 29. This magnetic field application axis 29 and the axis of the electron gun Tip11, that is, the optical axis 2 of the electron source device (the axis of the electron gun (electron gun Tip11)), or the electron beam device on which the electron source device is mounted (FIGS. 18 and 19) And the optical axis 2 of reference) are adjusted so as to coincide with each other. This adjustment method is as described above.
 中空コイル13への通電量、電流の方向を制御することによって、電子銃Tip11の下部に生成される電子らせん波21のらせん度、らせん度の正負を制御可能である。 By controlling the amount of current supplied to the hollow coil 13 and the direction of the current, the spirality of the electron spiral wave 21 generated at the lower part of the electron gun Tip11 and the sign of the spiral degree can be controlled.
 電子銃Tip11と中空コイル13は、電子射出部領域を含む平面Q(図11または図13参照)を挟んで磁束線の分布が上下非対称となるような位置にそれぞれ配置される。このような配置関係にあれば、電子銃Tip11と中空コイル13とをどのように配置してもよいが、図21に示すように、電子銃Tip11の先端部すなわち(電子射出部領域)がコイルの中央部より下方に位置するように、中空コイル13内に電子銃Tip11を配置することが好ましい。中空コイル13の中央部においては、電子銃Tip11の軸2に平行な磁束線81が生成しやすい。この磁束線81は、電子銃Tip11の先端部から発した電子線27が広がるのに合わせて、広がり、さらに、中空コイル13の底面を越えて図中の上方に広がる。このように、上記位置関係にあれば、電子銃部の狭い空間範囲において、電子線27の軌道が定める曲面を、磁束線81がよぎりやすいと考えられる(図12、図13参照)。言い換えると、上記位置関係にあれば、電子銃Tip11の先端から発した電子線27を、下方に長い距離に渡って伝搬させることなく、らせん波を生成することができる。 The electron gun Tip11 and the hollow coil 13 are respectively arranged at positions where the distribution of magnetic flux lines is asymmetrical with respect to the plane Q (see FIG. 11 or FIG. 13) including the electron emission region. If it is in such an arrangement relationship, the electron gun Tip11 and the hollow coil 13 may be arranged in any way, but as shown in FIG. 21, the tip of the electron gun Tip11, that is, the (electron emitting part region) is a coil. It is preferable to dispose the electron gun Tip 11 in the hollow coil 13 so as to be positioned below the central portion of the hollow coil 13. In the central part of the hollow coil 13, magnetic flux lines 81 parallel to the axis 2 of the electron gun Tip 11 are easily generated. The magnetic flux line 81 spreads as the electron beam 27 emitted from the tip of the electron gun Tip 11 spreads, and further spreads upward in the figure beyond the bottom surface of the hollow coil 13. Thus, if it is in the said positional relationship, it is thought that the magnetic flux line 81 crosses easily the curved surface which the track | orbit of the electron beam 27 defines in the narrow space range of an electron gun part (refer FIG. 12, FIG. 13). In other words, a spiral wave can be generated without propagating the electron beam 27 emitted from the tip of the electron gun Tip11 for a long distance downward as long as it is in the above positional relationship.
 図22は、構成例2の電子源部の他の構成を示す断面図である。図22においては、図21に示す電子源部の構成に、さらに、電子線の引き出し電極30が設けられている。この電子銃は、電界放出形電子銃である。図22に示す構成は、一例であり、例えば、引き出し電極30の形状をバトラー型としてもよい。この場合、電子線の輝度を向上させることができる。このように、引き出し電極30の形状を工夫することにより、電子線の特性を向上させることができる。また、他の電極(図示せず)などの構成部のさらなる追加や電極形状に対する工夫など、通常の電界放出形電子銃で実施される構成部の追加やその形状変更を適宜行ってもよい。 FIG. 22 is a cross-sectional view showing another configuration of the electron source section of Configuration Example 2. In FIG. 22, an electron beam extraction electrode 30 is further provided in the configuration of the electron source section shown in FIG. This electron gun is a field emission electron gun. The configuration shown in FIG. 22 is an example. For example, the shape of the extraction electrode 30 may be a Butler type. In this case, the brightness of the electron beam can be improved. Thus, the characteristics of the electron beam can be improved by devising the shape of the extraction electrode 30. Moreover, addition of a configuration part implemented by a normal field emission electron gun, such as further addition of a configuration part such as another electrode (not shown) or a device for an electrode shape, or a change in the shape thereof may be appropriately performed.
 また、引き出し電極30の存在が、電子線27の伝搬する空間の磁束の密度、分布へ影響を与えぬよう、磁気的に透明な(透磁率の低い)金属材料で、引き出し電極30を制作することが好ましい。例えば、引き出し電極30の材料として、銅などを採用することで簡単に対応することができる。 Further, the extraction electrode 30 is made of a magnetically transparent (low magnetic permeability) metal material so that the presence of the extraction electrode 30 does not affect the density and distribution of the magnetic flux in the space in which the electron beam 27 propagates. It is preferable. For example, it can be easily handled by adopting copper or the like as the material of the extraction electrode 30.
 <構成例3>
 図23は、本実施の形態の電子源部の構成例3を示す断面図である。図23においては、構成例2の欄において、図21を参照しながら説明した電子源部の中空コイル13を、上下2段に分割して配置された中空コイル13とした例である。
<Configuration example 3>
FIG. 23 is a cross-sectional view showing Configuration Example 3 of the electron source section of the present embodiment. FIG. 23 is an example in which the hollow coil 13 of the electron source section described with reference to FIG. 21 in the column of the configuration example 2 is formed as a hollow coil 13 divided into two upper and lower stages.
 このように、2つの中空コイル13をセットとして配置する。例えば、ヘルムホルツ型コイルペアを用いる。このように、上下2段に分割して配置された中空コイル13(コイルペア)を用いた場合であっても、電子銃Tip11の先端部が位置する2つの中空コイル13の中間部分には、中空コイル13の中心軸とほぼ平行な磁束線81が生成する。よって、構成例2の場合と同様に、電子銃部の空間範囲において、電子線27の軌道が定める曲面を、磁束線81がよぎり、らせん波を生成することができる。 Thus, the two hollow coils 13 are arranged as a set. For example, a Helmholtz type coil pair is used. Thus, even when the hollow coils 13 (coil pairs) arranged in two upper and lower stages are used, a hollow portion is provided in the middle portion between the two hollow coils 13 where the tip of the electron gun Tip 11 is located. Magnetic flux lines 81 that are substantially parallel to the central axis of the coil 13 are generated. Therefore, similarly to the case of the configuration example 2, the magnetic flux lines 81 cross the curved surface defined by the trajectory of the electron beam 27 in the space range of the electron gun portion, and a spiral wave can be generated.
 このように、中空コイル13を分割して配置した場合には、構成例2(図21)の場合よりも発生する磁束は小さくなるが、らせん度1のらせん波を生成させるには、磁束は磁束量子2個分で足りるため、らせん波の生成に問題はない。このように、十分ならせん度を持つ電子線を生成することができる。 Thus, when the hollow coil 13 is divided and arranged, the magnetic flux generated is smaller than in the case of the configuration example 2 (FIG. 21), but in order to generate a spiral wave with a spiral degree of 1, the magnetic flux is Since two flux quanta are sufficient, there is no problem in generating a spiral wave. In this way, an electron beam having a sufficient degree of spiraling can be generated.
 また、本構成例においては、上下2段に分割して中空コイル13を配置しているため、上下の中空コイル13を個別に制御することが可能である。例えば、上下の中空コイル13で発生する磁束線の密度に差をつけて、全体の磁束線分布をコントロールすることが可能となる。また、本構成例においては、上下2段に分割して中空コイル13を配置しているため、中空コイル13間に空間が生じる。このため、構成例2(図21)の場合と比較して、各中空コイル13で発生するジュール熱を外部へ逃がし、電子銃部の昇温を抑制することができる。また、中空コイル13間の空間を利用して、他の構成部材を配置することができる。例えば、磁場印加軸を補正するための補正部や電子線の射出部位等を調整するための調整部などを中空コイル13間に配置することができる。具体的には、上記補正部として、電極、あるいはミニコイルなどを上記空間に配置することができる(図16、17参照)。この磁場印加軸の補正方法や電子線の射出部位等の調整方法は先述したとおりである。 In this configuration example, since the hollow coils 13 are arranged in two upper and lower stages, the upper and lower hollow coils 13 can be individually controlled. For example, it is possible to control the overall magnetic flux line distribution by making a difference in the density of the magnetic flux lines generated in the upper and lower hollow coils 13. In this configuration example, since the hollow coil 13 is arranged in two upper and lower stages, a space is generated between the hollow coils 13. For this reason, compared with the case of the structural example 2 (FIG. 21), the Joule heat which generate | occur | produces in each hollow coil 13 can be released outside, and the temperature rise of an electron gun part can be suppressed. Further, other constituent members can be arranged using the space between the hollow coils 13. For example, a correction unit for correcting the magnetic field application axis, an adjustment unit for adjusting the electron beam emission site, and the like can be disposed between the hollow coils 13. Specifically, an electrode or a minicoil can be arranged in the space as the correction unit (see FIGS. 16 and 17). The correction method of the magnetic field application axis and the adjustment method of the electron beam emission site and the like are as described above.
 図24は、構成例3の電子源部の他の構成を示す断面図である。図24においては、図23に示す電子源部の構成に、さらに、電子線の引き出し電極30が設けられている。この電子銃は、電界放出形電子銃である。図24に示す構成は、一例であり、例えば、引き出し電極30の形状をバトラー型としてもよい。この場合、電子線の輝度を向上させることができる。このように、引き出し電極30の形状を工夫することにより、電子線の特性を向上させることができる。また、他の電極(図示せず)などの構成部のさらなる追加や電極形状に対する工夫など、通常の電界放出形電子銃で実施される構成部の追加やその形状変更を適宜行ってもよい。 FIG. 24 is a cross-sectional view showing another configuration of the electron source section of Configuration Example 3. 24, in addition to the configuration of the electron source section shown in FIG. 23, an electron beam extraction electrode 30 is further provided. This electron gun is a field emission electron gun. The configuration shown in FIG. 24 is an example. For example, the shape of the extraction electrode 30 may be a Butler type. In this case, the brightness of the electron beam can be improved. Thus, the characteristics of the electron beam can be improved by devising the shape of the extraction electrode 30. Moreover, addition of a configuration part implemented by a normal field emission electron gun, such as further addition of a configuration part such as another electrode (not shown) or a device for an electrode shape, or a change in the shape thereof may be appropriately performed.
 また、引き出し電極30の存在が、電子線27の伝搬する空間の磁束の密度、分布へ影響を与えぬよう、磁気的に透明な(透磁率の低い)金属材料で、引き出し電極30を制作することが好ましい。例えば、引き出し電極30の材料として、銅などを採用することで簡単に対応することができる。 Further, the extraction electrode 30 is made of a magnetically transparent (low magnetic permeability) metal material so that the presence of the extraction electrode 30 does not affect the density and distribution of the magnetic flux in the space in which the electron beam 27 propagates. It is preferable. For example, it can be easily handled by adopting copper or the like as the material of the extraction electrode 30.
 図25は、構成例3の電子源部の他の構成を示す断面図である。図25においては、図24に示す電子線の引き出し電極30を、中空コイル13間に延在させた例である。このように、中空コイル13間の空間を利用して、電子線の引き出し電極30を設けることができる。 FIG. 25 is a cross-sectional view showing another configuration of the electron source section of Configuration Example 3. FIG. 25 shows an example in which the electron beam extraction electrode 30 shown in FIG. 24 is extended between the hollow coils 13. As described above, the extraction electrode 30 for the electron beam can be provided by utilizing the space between the hollow coils 13.
 また、図25に示す構成においても、先述したように、引き出し電極30の存在が、電子線27の伝搬する空間の磁束の密度、分布へ影響を与えぬよう、磁気的に透明な(透磁率の低い)金属材料で、引き出し電極30を制作することが好ましい。 Also in the configuration shown in FIG. 25, as described above, the presence of the extraction electrode 30 is magnetically transparent (permeability) so as not to affect the density and distribution of the magnetic flux in the space in which the electron beam 27 propagates. The lead electrode 30 is preferably made of a metal material having a low
 <構成例4>
 図26は、本実施の形態の電子源部の構成例4を示す断面図である。図26においては、中空コイル13の外側に磁路(らせん波生成用磁路)37が設けられている。この中空コイル13は、光軸方向に磁場印加可能に配置され、磁路37は、パーマロイなどの透磁率の高い材料を用いて構成され、中空コイル13の外側に設けられている。
<Configuration example 4>
FIG. 26 is a cross-sectional view showing a configuration example 4 of the electron source section of the present embodiment. In FIG. 26, a magnetic path (spiral wave generating magnetic path) 37 is provided outside the hollow coil 13. The hollow coil 13 is arranged so that a magnetic field can be applied in the optical axis direction, and the magnetic path 37 is configured using a material having high magnetic permeability such as permalloy and is provided outside the hollow coil 13.
 この中空コイル13とその外側の磁路37は、電磁レンズと同様の構成を成している。このため、中空コイル13の内部にある電子銃電子銃Tip11の位置には、構成例2や3の場合と比較して、より高い密度の磁束線81を生成することができる。この構成は、特に、高いらせん度のらせん波を生成させる場合に適した構成である。 The hollow coil 13 and the outer magnetic path 37 have the same configuration as the electromagnetic lens. Therefore, higher density magnetic flux lines 81 can be generated at the position of the electron gun Electron Tip 11 inside the hollow coil 13 as compared with the case of the configuration examples 2 and 3. This configuration is particularly suitable for generating a spiral wave having a high degree of spiral.
 また、本構成例によれば、磁路37と電子銃Tip11との位置関係を、機械的に高い精度で位置あわせすることが可能である。このため、らせん度とともに、らせん形状の位相分布の精度を向上させたらせん波を生成することができる。さらに、磁路37を用いているため、外部からの電磁誘導などによる磁束線の分布の揺らぎの影響を受け難い。このため、特性の安定したらせん波を生成する電子源部を実現することが期待される。 Further, according to this configuration example, the positional relationship between the magnetic path 37 and the electron gun Tip 11 can be mechanically aligned with high accuracy. Therefore, a spiral wave can be generated by improving the accuracy of the phase distribution of the spiral shape together with the spiral degree. Furthermore, since the magnetic path 37 is used, it is difficult to be affected by fluctuations in the distribution of magnetic flux lines due to electromagnetic induction from the outside. For this reason, it is expected to realize an electron source section that generates a spiral wave with stable characteristics.
 <構成例5>
 図27は、本実施の形態の電子源部の構成例5を示す断面図である。図27においては、構成例2(図21)の中空コイル13および磁路37の換わりに磁石38が設けられている。例えば、構成例2(図21)の磁路37の上下部分(磁極部)に、磁石38が配置されている。本構成例においては、コイルを用いずに、磁束分布を電子銃Tip11の先端部に作り出すことができる。磁石材としては、強磁場を生成可能な、SmCo磁石やNdFeB磁石などを用いることができる。このような磁石材を用いることにより、コイルを用いない構成でも、強い磁束分布を電子銃Tip11の先端部に作り出すことができる。
<Configuration example 5>
FIG. 27 is a cross-sectional view showing a configuration example 5 of the electron source section of the present embodiment. In FIG. 27, a magnet 38 is provided instead of the hollow coil 13 and the magnetic path 37 in the configuration example 2 (FIG. 21). For example, the magnet 38 is arrange | positioned in the up-and-down part (magnetic pole part) of the magnetic path 37 of the structural example 2 (FIG. 21). In this configuration example, a magnetic flux distribution can be created at the tip of the electron gun Tip11 without using a coil. As the magnet material, an SmCo magnet or an NdFeB magnet that can generate a strong magnetic field can be used. By using such a magnet material, it is possible to create a strong magnetic flux distribution at the tip of the electron gun Tip11 even in a configuration without using a coil.
 また、本構成例によれば、磁石38間の空間を利用して、他の構成部材を配置することができる。例えば、磁場印加軸を補正するための補正部や電子線の射出部位等を調整するための調整部などを中空コイル13間に配置することができる。具体的には、上記補正部として、電極、あるいはミニコイルなどを上記空間に配置することができる(図16、17参照)。この磁場印加軸の補正方法や電子線の射出部位等の調整方法は先述したとおりである。 Further, according to this configuration example, other components can be arranged using the space between the magnets 38. For example, a correction unit for correcting the magnetic field application axis, an adjustment unit for adjusting the electron beam emission site, and the like can be disposed between the hollow coils 13. Specifically, an electrode or a minicoil can be arranged in the space as the correction unit (see FIGS. 16 and 17). The correction method of the magnetic field application axis and the adjustment method of the electron beam emission site and the like are as described above.
 また、磁束量は、構成例1で説明した方法で制御することができる。例えば、磁石38に用いられる磁性体として、磁束量が温度に伴って変化する磁性材料を用い、磁石38の周辺にヒーターなどの加熱部を設ける。この場合、ヒーターにより、磁石38の温度を変化させることにより、磁束量(磁束分布)を制御することができる。また、磁石38と接続されるコイルなどの磁場発生装置を設けてもよい。この場合、磁場発生装置により磁石38間に流れる磁束量を制御することができる。 Further, the amount of magnetic flux can be controlled by the method described in the configuration example 1. For example, as a magnetic material used for the magnet 38, a magnetic material whose amount of magnetic flux changes with temperature is used, and a heating unit such as a heater is provided around the magnet 38. In this case, the amount of magnetic flux (magnetic flux distribution) can be controlled by changing the temperature of the magnet 38 with a heater. A magnetic field generator such as a coil connected to the magnet 38 may be provided. In this case, the amount of magnetic flux flowing between the magnets 38 can be controlled by the magnetic field generator.
 また、次の方法により、磁束線の極性を反転することができる。例えば、磁石38を構成する磁性体に、当該磁性体の反転磁化以上の強磁場を外部より印加する。また、磁石38を構成する磁性体を、当該磁性体のキュリー温度以上に加熱した状態で、逆極性の磁場を印加する。この場合、磁場は弱くてもよい。 Also, the polarity of magnetic flux lines can be reversed by the following method. For example, a strong magnetic field greater than the reversal magnetization of the magnetic body is applied from the outside to the magnetic body constituting the magnet 38. In addition, a magnetic field having a reverse polarity is applied in a state where the magnetic body constituting the magnet 38 is heated to a temperature equal to or higher than the Curie temperature of the magnetic body. In this case, the magnetic field may be weak.
 この構成例5においては、決まったらせん度のらせん波を安定的に生成することが可能となる。よって、決まったらせん度のらせん波を利用する電子線装置用の電子源部(電子線発生装置)として用いて好適である。また、磁束線81の生成に、電力を必要としないため装置の省電力化を図ることができる。 In the configuration example 5, it is possible to stably generate a spiral wave having a predetermined spiral degree. Therefore, it is suitable for use as an electron source section (electron beam generator) for an electron beam apparatus that uses a helical wave having a predetermined degree of spiral. Further, since no electric power is required to generate the magnetic flux lines 81, power saving of the apparatus can be achieved.
 以上、本発明者によってなされた発明を実施の形態に基づき具体的に説明したが、本発明は上記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能であることはいうまでもない。 As mentioned above, the invention made by the present inventor has been specifically described based on the embodiment. However, the present invention is not limited to the above embodiment, and various modifications can be made without departing from the scope of the invention. Needless to say.
 例えば、上記実施の形態においては、電子線をらせん波とし、電子顕微鏡などの電子線装置に適用した例を挙げて説明したが、電子の他、イオンなどの荷電粒子などにも本願発明を適用可能である。即ち、荷電粒子線をらせん波とし、荷電粒子線発生装置や荷電粒子線装置に適用することができる。 For example, in the above-described embodiment, the electron beam is a spiral wave and has been described as an example applied to an electron beam apparatus such as an electron microscope. However, the present invention is applied to charged particles such as ions in addition to electrons. Is possible. In other words, the charged particle beam can be used as a helical wave and applied to a charged particle beam generator or a charged particle beam device.
1…電子源、2…光軸、3…試料、5…対物レンズ、8…検出記録面、9…回折像(小角電子回折像)、10…観察点、11…電子銃Tip、12…電子線射出部、13…コイル(中空コイル)、14…ミニコイル、15…平行平板電極、17…制御系、19…制御系、21…らせん波、22…らせん軸、23…平面波、24…断裂(陰)、26…波面、27…電子線(電子軌道)、29…磁場印加軸、30…引き出し電極、33…らせん位相板、35…回折像、37…磁路、38…磁石、39…制御系、40…加速管、41、42…レンズ(コンデンサレンズ)、47、48…制御系、49…制御系、51…システム制御コンピュータ、52…モニタ、53…インターフェース、59…制御系、61、62…レンズ(中間レンズ)、63、64…レンズ(投射レンズ)、66、67、68、69…制御系、76…画像データモニタ、77…記録装置、78…コントローラ、79…検出器、81…磁束線、83…モノポール、84…逆極性のモノポール、87…超伝導筒、88…磁性体、89…ソレノイド、91…回折格子(刃状転位格子)、97…リング状の回折スポット、99…点状の回折スポット、ABCD…曲面、I…経路(軌道)、II…経路(軌道)、l…電子源から検出面までの距離、Q…平面、r…光軸からの距離、RSP1…リング状のスポット、RSP2…リング状のスポット、Ss…領域(面積) DESCRIPTION OF SYMBOLS 1 ... Electron source, 2 ... Optical axis, 3 ... Sample, 5 ... Objective lens, 8 ... Detection recording surface, 9 ... Diffraction image (small angle electron diffraction image), 10 ... Observation point, 11 ... Electron gun Tip, 12 ... Electron Wire injection part, 13 ... Coil (hollow coil), 14 ... Mini coil, 15 ... Parallel plate electrode, 17 ... Control system, 19 ... Control system, 21 ... Spiral wave, 22 ... Spiral axis, 23 ... Plane wave, 24 ... Rupture ( Yin), 26 ... Wavefront, 27 ... Electron beam (electron orbit), 29 ... Magnetic field application axis, 30 ... Extraction electrode, 33 ... Spiral phase plate, 35 ... Diffraction image, 37 ... Magnetic path, 38 ... Magnet, 39 ... Control System, 40 ... Acceleration tube, 41, 42 ... Lens (condenser lens), 47, 48 ... Control system, 49 ... Control system, 51 ... System control computer, 52 ... Monitor, 53 ... Interface, 59 ... Control system, 61, 62 ... Lens (intermediate lens), 63, 4 ... Lens (projection lens), 66, 67, 68, 69 ... Control system, 76 ... Image data monitor, 77 ... Recording device, 78 ... Controller, 79 ... Detector, 81 ... Magnetic flux line, 83 ... Monopole, 84 ... Reverse polarity monopole, 87 ... Superconducting cylinder, 88 ... Magnetic body, 89 ... Solenoid, 91 ... Diffraction grating (edge dislocation grating), 97 ... Ring diffraction spot, 99 ... Dot diffraction spot, ABCD ... curved surface, I ... path (orbit), II ... path (orbit), l ... distance from electron source to detection surface, Q ... plane, r ... distance from optical axis, RSP1 ... ring-shaped spot, RSP2 ... ring Spot, Ss ... region (area)

Claims (20)

  1.  磁場中に設置された荷電粒子源を有する荷電粒子線発生装置であって、
     前記磁場の印加方向が前記荷電粒子源の軸と平行で、
     前記磁場の強度を調整することにより前記荷電粒子源から発した荷電粒子線がらせん形状の位相分布を持つように構成されることを特徴とする荷電粒子線発生装置。
    A charged particle beam generator having a charged particle source installed in a magnetic field,
    The application direction of the magnetic field is parallel to the axis of the charged particle source,
    A charged particle beam generator configured to adjust a strength of the magnetic field so that a charged particle beam emitted from the charged particle source has a helical phase distribution.
  2.  前記磁場の前記荷電粒子線が透過する領域の磁束量が、量子化磁束の整数倍であることを特徴とする請求項1に記載の荷電粒子線発生装置。 The charged particle beam generator according to claim 1, wherein a magnetic flux amount in a region of the magnetic field through which the charged particle beam is transmitted is an integral multiple of a quantized magnetic flux.
  3.  前記磁場の前記荷電粒子線が透過する領域の磁束量が、4.14×10-15Wbの整数倍であることを特徴とする請求項1に記載の荷電粒子線発生装置。 2. The charged particle beam generator according to claim 1, wherein an amount of magnetic flux in a region of the magnetic field through which the charged particle beam passes is an integral multiple of 4.14 × 10 −15 Wb.
  4.  前記磁場は、軸対称な磁束分布を有する磁場であって、
     前記磁場の軸は、前記荷電粒子源の軸と一致するように調整されることを特徴とする請求項1に記載の荷電粒子線発生装置。
    The magnetic field is a magnetic field having an axisymmetric magnetic flux distribution,
    The charged particle beam generator according to claim 1, wherein an axis of the magnetic field is adjusted to coincide with an axis of the charged particle source.
  5.  前記磁場は、軸対称な磁束分布を有する磁場であって、
     前記荷電粒子源の一部を含み、前記荷電粒子源の軸と垂直な平面上において、前記荷電粒子源の軸からの距離をrとするとき、
     前記磁場の磁束分布が、前記距離rの2乗に反比例することを特徴とする請求項1に記載の荷電粒子線発生装置。
    The magnetic field is a magnetic field having an axisymmetric magnetic flux distribution,
    When a distance from the axis of the charged particle source is r on a plane that includes a part of the charged particle source and is perpendicular to the axis of the charged particle source,
    The charged particle beam generator according to claim 1, wherein the magnetic flux distribution of the magnetic field is inversely proportional to the square of the distance r.
  6.  荷電粒子源を有する荷電粒子線装置であって、
     前記荷電粒子源が磁場中に設置され、
     前記磁場の印加方向が前記荷電粒子線装置の軸と平行で、
     前記磁場の強度を調整することにより前記荷電粒子源から発した荷電粒子線がらせん形状の位相分布を持つように構成されることを特徴とする荷電粒子線装置。
    A charged particle beam apparatus having a charged particle source,
    The charged particle source is installed in a magnetic field;
    The application direction of the magnetic field is parallel to the axis of the charged particle beam device,
    A charged particle beam apparatus, wherein the charged particle beam emitted from the charged particle source has a helical phase distribution by adjusting the intensity of the magnetic field.
  7.  前記磁場の前記荷電粒子線が透過する領域の磁束量が、量子化磁束の整数倍であることを特徴とする請求項6に記載の荷電粒子線装置。 The charged particle beam apparatus according to claim 6, wherein a magnetic flux amount in a region of the magnetic field through which the charged particle beam is transmitted is an integral multiple of a quantized magnetic flux.
  8.  前記磁場の前記荷電粒子線が透過する領域の磁束量が、4.14×10-15Wbの整数倍であることを特徴とする請求項6に記載の荷電粒子線装置。 The charged particle beam apparatus according to claim 6, wherein an amount of magnetic flux in a region of the magnetic field through which the charged particle beam passes is an integral multiple of 4.14 × 10 −15 Wb.
  9.  前記磁場は、軸対称な磁束分布を有する磁場であって、
     前記磁場の軸は、前記荷電粒子線装置の軸と一致するように調整されることを特徴とする請求項6に記載の荷電粒子線装置。
    The magnetic field is a magnetic field having an axisymmetric magnetic flux distribution,
    The charged particle beam apparatus according to claim 6, wherein an axis of the magnetic field is adjusted to coincide with an axis of the charged particle beam apparatus.
  10.  前記磁場は、軸対称な磁束分布を有する磁場であって、
     前記荷電粒子源の一部を含み、前記荷電粒子源の軸と垂直な平面上において、前記荷電粒子源の軸からの距離をrとするとき、
     前記磁場の磁束分布が、前記距離rの2乗に反比例することを特徴とする請求項6に記載の荷電粒子線装置。
    The magnetic field is a magnetic field having an axisymmetric magnetic flux distribution,
    When a distance from the axis of the charged particle source is r on a plane that includes a part of the charged particle source and is perpendicular to the axis of the charged particle source,
    The charged particle beam device according to claim 6, wherein the magnetic flux distribution of the magnetic field is inversely proportional to the square of the distance r.
  11.  前記らせん形状の位相分布を持つ荷電粒子線が、開き角1×10-6rad以下で試料を照射することを特徴とする請求項6に記載の荷電粒子線装置。 7. The charged particle beam apparatus according to claim 6, wherein the charged particle beam having the helical phase distribution irradiates the sample with an opening angle of 1 × 10 −6 rad or less.
  12.  前記らせん形状の位相分布を持つ荷電粒子線が試料を照射し、カメラ長80m以上で、前記試料の荷電粒子回折像を得ることを特徴とする請求項6に記載の荷電粒子線装置。 The charged particle beam apparatus according to claim 6, wherein the charged particle beam having the helical phase distribution irradiates the sample, and a charged particle diffraction image of the sample is obtained with a camera length of 80 m or more.
  13.  荷電粒子源と、
     前記荷電粒子源から発する荷電粒子線の射出方向と平行な方向に磁場を生成し、かつ、前記荷電粒子源を浸漬する磁場を生成する磁場発生装置と、
     試料保持装置と、
     前記試料保持装置に装着された試料に前記荷電粒子線を照射する照射光学系と、
    を備える荷電粒子装置を用いた試料加工方法であって、
     前記磁場発生装置により発生する磁場の強度を調整することにより前記荷電粒子線がらせん形状の位相分布を持つ荷電粒子線へ変調され、
     前記らせん形状の位相分布を持つ荷電粒子線が前記照射光学系により前記試料へ照射されることによって、前記試料を加工することを特徴とする試料加工方法。
    A charged particle source;
    A magnetic field generator for generating a magnetic field in a direction parallel to an emission direction of a charged particle beam emitted from the charged particle source, and generating a magnetic field for immersing the charged particle source;
    A sample holder,
    An irradiation optical system for irradiating the charged particle beam to a sample mounted on the sample holding device;
    A sample processing method using a charged particle device comprising:
    By adjusting the intensity of the magnetic field generated by the magnetic field generator, the charged particle beam is modulated into a charged particle beam having a helical phase distribution,
    A sample processing method, wherein the sample is processed by irradiating the sample with a charged particle beam having a helical phase distribution by the irradiation optical system.
  14.  前記磁場の前記荷電粒子線が透過する領域の磁束量が、量子化磁束の整数倍であることを特徴とする請求項13に記載の試料加工方法。 14. The sample processing method according to claim 13, wherein the amount of magnetic flux in a region of the magnetic field through which the charged particle beam is transmitted is an integral multiple of the quantized magnetic flux.
  15.  前記磁場は、軸対称な磁束分布を有する磁場であって、
     前記磁場の軸は、前記荷電粒子源の軸と一致するように調整されることを特徴とする請求項13に記載の試料加工方法。
    The magnetic field is a magnetic field having an axisymmetric magnetic flux distribution,
    The sample processing method according to claim 13, wherein an axis of the magnetic field is adjusted to coincide with an axis of the charged particle source.
  16.  前記磁場は、軸対称な磁束分布を有する磁場であって、
     前記荷電粒子源の一部を含み、前記荷電粒子源の軸と垂直な平面上において、前記荷電粒子源の軸からの距離をrとするとき、
     前記磁場の磁束分布が、前記距離rの2乗に反比例することを特徴とする請求項13に記載の試料加工方法。
    The magnetic field is a magnetic field having an axisymmetric magnetic flux distribution,
    When a distance from the axis of the charged particle source is r on a plane that includes a part of the charged particle source and is perpendicular to the axis of the charged particle source,
    The sample processing method according to claim 13, wherein the magnetic flux distribution of the magnetic field is inversely proportional to the square of the distance r.
  17.  荷電粒子源と、
     前記荷電粒子源から発する荷電粒子線の射出方向と平行な方向に磁場を生成し、かつ、前記荷電粒子源を浸漬する磁場を生成する磁場発生装置と、
     試料保持装置と、
     前記試料保持装置に装着された試料に前記荷電粒子線を照射する照射光学系と、
    を備える荷電粒子装置を用いた試料観察方法であって、
     前記磁場発生装置により発生する磁場の強度を調整することにより前記荷電粒子線がらせん形状の位相分布を持つ荷電粒子線へ変調され、
     前記らせん形状の位相分布を持つ荷電粒子線が前記照射光学系により前記試料へ照射されることによって、前記試料の像もしくは回折像を観察することを特徴とする試料観察方法。
    A charged particle source;
    A magnetic field generator for generating a magnetic field in a direction parallel to an emission direction of a charged particle beam emitted from the charged particle source, and generating a magnetic field for immersing the charged particle source;
    A sample holder,
    An irradiation optical system for irradiating the charged particle beam to a sample mounted on the sample holding device;
    A sample observation method using a charged particle device comprising:
    By adjusting the intensity of the magnetic field generated by the magnetic field generator, the charged particle beam is modulated into a charged particle beam having a helical phase distribution,
    A sample observation method for observing an image or diffraction image of the sample by irradiating the sample with the charged particle beam having a helical phase distribution by the irradiation optical system.
  18.  前記磁場の前記荷電粒子線が透過する領域の磁束量が、量子化磁束の整数倍であることを特徴とする請求項17に記載の試料観察方法。 The sample observation method according to claim 17, wherein the amount of magnetic flux in a region of the magnetic field through which the charged particle beam is transmitted is an integral multiple of the quantized magnetic flux.
  19.  前記磁場は、軸対称な磁束分布を有する磁場であって、
     前記磁場の軸は、前記荷電粒子源の軸と一致するように調整されることを特徴とする請求項17に記載の試料観察方法。
    The magnetic field is a magnetic field having an axisymmetric magnetic flux distribution,
    The sample observation method according to claim 17, wherein an axis of the magnetic field is adjusted to coincide with an axis of the charged particle source.
  20.  前記磁場は、軸対称な磁束分布を有する磁場であって、
     前記荷電粒子源の一部を含み、前記荷電粒子源の軸と垂直な平面上において、前記荷電粒子源の軸からの距離をrとするとき、
     前記磁場の磁束分布が、前記距離rの2乗に反比例することを特徴とする請求項17に記載の試料観察方法。
    The magnetic field is a magnetic field having an axisymmetric magnetic flux distribution,
    When a distance from the axis of the charged particle source is r on a plane that includes a part of the charged particle source and is perpendicular to the axis of the charged particle source,
    The sample observation method according to claim 17, wherein the magnetic flux distribution of the magnetic field is inversely proportional to the square of the distance r.
PCT/JP2013/071663 2013-08-09 2013-08-09 Charged particle beam generating device, charged particle beam device, sample processing method, and sample observation method WO2015019491A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2013/071663 WO2015019491A1 (en) 2013-08-09 2013-08-09 Charged particle beam generating device, charged particle beam device, sample processing method, and sample observation method
JP2015530643A JP6067857B2 (en) 2013-08-09 2013-08-09 Charged particle beam generator, charged particle beam device, sample processing method and sample observation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/071663 WO2015019491A1 (en) 2013-08-09 2013-08-09 Charged particle beam generating device, charged particle beam device, sample processing method, and sample observation method

Publications (1)

Publication Number Publication Date
WO2015019491A1 true WO2015019491A1 (en) 2015-02-12

Family

ID=52460857

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071663 WO2015019491A1 (en) 2013-08-09 2013-08-09 Charged particle beam generating device, charged particle beam device, sample processing method, and sample observation method

Country Status (2)

Country Link
JP (1) JP6067857B2 (en)
WO (1) WO2015019491A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015118624A1 (en) * 2014-02-05 2017-03-23 株式会社日立製作所 Charged particle beam apparatus, optical apparatus, irradiation method, diffraction grating system, and diffraction grating

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013046257A1 (en) * 2011-09-28 2013-04-04 株式会社日立製作所 Zone plate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2497758A (en) * 2011-12-20 2013-06-26 Univ Antwerpen Generation of charged particle vortex waves

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013046257A1 (en) * 2011-09-28 2013-04-04 株式会社日立製作所 Zone plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015118624A1 (en) * 2014-02-05 2017-03-23 株式会社日立製作所 Charged particle beam apparatus, optical apparatus, irradiation method, diffraction grating system, and diffraction grating

Also Published As

Publication number Publication date
JPWO2015019491A1 (en) 2017-03-02
JP6067857B2 (en) 2017-01-25

Similar Documents

Publication Publication Date Title
US9018596B2 (en) Charged particle vortex wave generation
EP2795655B1 (en) Generation of charged particle vortex waves
Balerna et al. Introduction to synchrotron radiation
JP5437449B2 (en) Orbit corrector for charged particle beam and charged particle beam apparatus
US10332718B1 (en) Compact deflecting magnet
JP5826529B2 (en) Spin rotation device
US9741533B2 (en) Image type electron spin polarimeter
KR101591154B1 (en) Charged particle beam microscope with diffraction aberration corrector applied thereto
Roitman et al. Shaping of electron beams using sculpted thin films
Ryu et al. magnetoARPES: Angle Resolved Photoemission Spectroscopy with magnetic field control
JP6067857B2 (en) Charged particle beam generator, charged particle beam device, sample processing method and sample observation method
Schattschneider et al. Spin polarisation with electron Bessel beams
WO2015037145A1 (en) Image detection device, charged particle beam device, and sample observation method
WO2014167699A1 (en) Diffraction grating, diffraction grating element, and charged particle beam device equipped with same
JP2012199022A (en) Electron microscope, and diffraction image observation method
CN108461370B (en) Multi-focus double-contrast bulb tube and control method thereof
WO2016207961A1 (en) Charged particle device, charged particle irradiation device, and analysis device
JP2011181223A (en) Electron-optical equipment
WO2017109948A1 (en) Charged particle beam apparatus and phase plate
Pierce et al. Non-radiating angularly accelerating electron waves
Xin et al. Intricate Physics of Coherent Electron Beam/Oxide Materials Interaction Revealed by 4D Inline Holography—Electron Ptychography
Füzi Magnetic lenses for neutron beams
Getzlaff et al. Experimental aspects

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13890926

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015530643

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13890926

Country of ref document: EP

Kind code of ref document: A1