WO2015019445A1 - Film comprising polyvinyl acetal - Google Patents

Film comprising polyvinyl acetal Download PDF

Info

Publication number
WO2015019445A1
WO2015019445A1 PCT/JP2013/071363 JP2013071363W WO2015019445A1 WO 2015019445 A1 WO2015019445 A1 WO 2015019445A1 JP 2013071363 W JP2013071363 W JP 2013071363W WO 2015019445 A1 WO2015019445 A1 WO 2015019445A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
pvb
molecular weight
pva
peak top
Prior art date
Application number
PCT/JP2013/071363
Other languages
French (fr)
Japanese (ja)
Inventor
楠藤 健
芳聡 浅沼
俊輔 藤岡
辻 嘉久
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to PCT/JP2013/071363 priority Critical patent/WO2015019445A1/en
Priority to JP2013535980A priority patent/JP5420804B1/en
Publication of WO2015019445A1 publication Critical patent/WO2015019445A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10807Making laminated safety glass or glazing; Apparatus therefor
    • B32B17/10816Making laminated safety glass or glazing; Apparatus therefor by pressing
    • B32B17/10825Isostatic pressing, i.e. using non rigid pressure-exerting members against rigid parts
    • B32B17/10862Isostatic pressing, i.e. using non rigid pressure-exerting members against rigid parts using pressing-rolls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10807Making laminated safety glass or glazing; Apparatus therefor
    • B32B17/10816Making laminated safety glass or glazing; Apparatus therefor by pressing
    • B32B17/10871Making laminated safety glass or glazing; Apparatus therefor by pressing in combination with particular heat treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F216/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F216/38Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by an acetal or ketal radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/28Condensation with aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • C08K5/103Esters; Ether-esters of monocarboxylic acids with polyalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/14Homopolymers or copolymers of acetals or ketals obtained by polymerisation of unsaturated acetals or ketals or by after-treatment of polymers of unsaturated alcohols

Definitions

  • the present invention relates to a film containing polyvinyl acetal.
  • the present invention also relates to an interlayer film for laminated glass comprising the film, and a laminated glass using the interlayer film.
  • Polyvinyl acetal is obtained by an acetalization reaction in water under acidic conditions using polyvinyl alcohol (hereinafter sometimes abbreviated as “PVA”) and an aldehyde compound.
  • PVA polyvinyl alcohol
  • Polyvinyl acetal films are used in various applications because they are tough and have a unique structure that has both hydrophilic hydroxy groups and hydrophobic acetal groups.
  • Various polyvinyl acetals have been proposed. Yes. Among them, polyvinyl formal produced from PVA and formaldehyde, polyvinyl acetal in a narrow sense produced from PVA and acetaldehyde, and polyvinyl butyral produced from PVA and butyraldehyde occupy commercially important positions.
  • polyvinyl butyral is widely used as an interlayer film for laminated glass of automobiles and buildings, and occupies a particularly important position commercially.
  • Patent Documents 1 and 2 describe a method for suppressing coloring of polyvinyl acetal by acetalization at a specific hydroxide ion concentration under high temperature and high pressure.
  • Patent Document 3 describes a method of suppressing coloring of the obtained polyvinyl acetal by adding a reducing agent after neutralization by acetalization reaction.
  • JP 2011-219670 A JP 2011-219671 A Japanese Patent Laid-Open No. 05-140211
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to provide a film containing polyvinyl acetal that is less colored by heating and less foreign matter (undissolved content). Furthermore, when a film obtained by repeatedly heating a film containing polyvinyl acetal is used as an interlayer film for laminated glass, the laminated glass has excellent penetration resistance of laminated glass, and is particularly suitable for use in safety laminated glass for automobiles. It is an object to provide an intermediate film for use.
  • the above problem is a film containing polyvinyl acetal having an acetalization degree of 50 to 85 mol%, a vinyl ester monomer unit content of 0.1 to 20 mol%, and a viscosity average polymerization degree of 1400 to 5000.
  • This is solved by providing a film satisfying the following formulas (1) and (2).
  • A Peak top molecular weight a of a polymer component measured by a differential refractive index detector when the film heated at 230 ° C. for 3 hours was measured by gel permeation chromatography (hereinafter sometimes abbreviated as GPC) : Signal intensity B at peak top molecular weight (A): Peak top molecular weight b of polymer component measured by an absorptiometric detector (measurement wavelength 280 nm) when GPC measurement is performed on the film heated at 230 ° C.
  • GPC gel permeation chromatography
  • hexafluoroisopropanol may be abbreviated as HFIP.
  • Sample concentration 1.00 mg / ml
  • Sample injection volume 100 ⁇ l
  • Column temperature 40 ° C
  • Flow rate 1.0 ml / min.
  • the film satisfies the following formulas (3) and (4).
  • A a, x, y the same as the above formula (1)
  • C the same as the above formula (2)
  • C absorptiometric detector (measurement wavelength: 320 nm) when the film heated at 230 ° C. for 3 hours is measured by GPC
  • the peak top molecular weight c of the polymer component measured in (1) is the signal intensity at the peak top molecular weight (C).
  • the polyvinyl acetal is preferably polyvinyl butyral (hereinafter sometimes abbreviated as PVB).
  • the film further contains a plasticizer. At this time, it is more preferable that the film contains triethylene glycol-di-2-ethylhexanoate as a plasticizer.
  • the above-described problems are obtained by acetalizing polyvinyl alcohol so that the degree of acetalization is 50 to 85 mol%, the content of vinyl ester monomer units is 0.1 to 20 mol%, and the viscosity average degree of polymerization is 1400 to 5000.
  • the problem can also be solved by providing a method for producing the film by melt-molding the polyvinyl acetal after obtaining the acetal.
  • An interlayer film for laminated glass made of the film is a preferred embodiment of the present invention.
  • a laminated glass formed by bonding a plurality of glass plates using the interlayer film for laminated glass is also a preferred embodiment of the present invention.
  • the film of the present invention is less colored by heating and has less foreign matter (undissolved content). Moreover, the laminated glass using the film obtained by repeatedly heating the film as an intermediate film has excellent penetration resistance. Therefore, the film is useful as an interlayer film for laminated glass, in particular, a safety laminated glass interlayer film for automobiles.
  • the film of the present invention is a film containing polyvinyl acetal having an acetalization degree of 50 to 85 mol%, a vinyl ester monomer unit content of 0.1 to 20 mol%, and a viscosity average polymerization degree of 1400 to 5000. Therefore, the following expressions (1) and (2) are satisfied.
  • the peak intensity of the polymer component measured by an absorptiometer (measurement wavelength: 280 nm)
  • b signal intensity at peak top molecular weight
  • x monodisperse poly Signal intensity at peak top molecular weight measured with a differential refractive index detector when GPC measurement is performed on methyl methacrylate
  • y Absorbance detector (measurement wavelength 220 nm when GPC measurement is performed on the monodispersed polymethyl methacrylate) ) Is the signal intensity at the peak top molecular weight measured in (1).
  • a GPC apparatus having a differential refractive index detector and an absorptiometric detector and capable of simultaneously performing measurement by these detectors.
  • the cell of the detection part of the absorptiometric detector preferably has a cell length (optical path length) of 10 mm.
  • the absorptiometric detector may measure the absorption of ultraviolet light having a specific wavelength, or may measure the absorption of ultraviolet light having a specific range of wavelengths.
  • the film subjected to the measurement is separated into each molecular weight component by a GPC column.
  • the signal intensity by the differential refractive index detector is approximately proportional to the concentration (g / l) of the film component.
  • the components detected by the absorptiometric detector are only those having a structure that absorbs a predetermined wavelength.
  • the concentration and absorbance at a predetermined wavelength can be measured for each molecular weight component of the film.
  • HFIP containing sodium trifluoroacetate having a concentration of 20 mmol / l is used as the solvent and mobile phase used for dissolving the film and PMMA measured in the GPC measurement.
  • HFIP can dissolve the film and PMMA of the present invention. Further, by adding sodium trifluoroacetate, adsorption of film components and PMMA to the column filler is prevented.
  • the flow rate and column temperature in the GPC measurement are appropriately adjusted according to the type of column used. The flow rate in the GPC measurement is usually 1.0 ml / min, and the column temperature is usually 40 ° C.
  • the GPC column used in the GPC measurement is not particularly limited as long as the components in the film of the present invention can be separated for each molecular weight.
  • “GPC HFIP-806M” manufactured by Showa Denko KK is preferably used.
  • standard PMMA is monodispersed PMMA.
  • monodispersed PMMA which is usually used as a standard for preparing a calibration curve for molecular weight measurement by GPC measurement, can be used.
  • Several types of standard PMMA with different molecular weights are measured, and a calibration curve is created from the GPC elution volume and the molecular weight of the standard PMMA.
  • a calibration curve prepared using the detector is used for the measurement with the differential refractive index detector, and a calibration prepared using the detector (measurement wavelength: 220 nm) for the measurement with the absorptiometric detector. Use lines. Using these calibration curves, the GPC elution volume is converted into the molecular weight, and the peak top molecular weight (A) and the peak top molecular weight (B) are determined.
  • the film is heated at 230 ° C. for 3 hours before the GPC measurement.
  • the film is heated by the following method.
  • the film is heated by hot pressing for 3 hours at a pressure of 2 MPa and 230 ° C.
  • the thickness of the film to be heated is 600 to 800 ⁇ m, preferably about 760 ⁇ m, which is the thickness of a normal laminated glass interlayer.
  • a measurement sample is obtained by dissolving the heated film in the above-described solvent (HFIP containing sodium trifluoroacetate).
  • the concentration of the measurement sample is 1.00 mg / ml, and the injection volume is 100 ⁇ l.
  • an appropriately diluted sample injection amount 100 ⁇ l is used.
  • the signal intensity detected by the absorptiometric detector and the differential refractive index detector is proportional to the concentration of the sample. Therefore, the concentration of the diluted sample and the actually measured signal intensity are used to convert each signal intensity when the concentration of the measurement sample is 1.00 mg / ml.
  • FIG. 1 shows the relationship between the molecular weight and the signal intensity measured by the differential refractive index detector, and the molecular weight and the absorptiometric detector (measurement wavelength) obtained by GPC measurement of the film of the present invention. It is the graph which showed the relationship with the signal intensity
  • the GPC measurement in the present invention will be further described with reference to FIG.
  • the chromatogram indicated by “RI” is a plot of the signal intensity measured by the differential refractive index detector against the molecular weight (horizontal axis) of the film component converted from the elution volume. The peak seen in the chromatogram near the molecular weight of 100,000 is the peak of the polymer component.
  • the molecular weight at the peak position of such a polymer component is defined as the peak top molecular weight (A) of the polymer component
  • the signal intensity at the peak top molecular weight (A) is defined as the signal intensity (a). Since the film of the present invention contains polyvinyl acetal having a viscosity average degree of polymerization of 1400 to 5000, the peak top molecular weight (A) of the polymer component usually exceeds 3500.
  • the peak seen in the molecular weight 1500 vicinity is a peak of the plasticizer contained in a film.
  • the molecular weight at the peak position having the highest peak height is defined as the peak top molecular weight (A).
  • the chromatogram indicated by “UV” shows the signal intensity (absorbance) measured with an absorptiometric detector (measurement wavelength 280 nm) with respect to the molecular weight (horizontal axis) of the film component converted from the elution volume. It is a plot.
  • the peak seen in the chromatogram near the molecular weight of 50,000 is the peak of the polymer component.
  • the molecular weight at the peak position of such a polymer component is defined as the peak top molecular weight (B) of the polymer component
  • the signal intensity (absorbance) at the peak top molecular weight (B) is defined as the signal intensity (b).
  • the peak top molecular weight (B) of the polymer component usually exceeds 3500.
  • the molecular weight at the peak position having the highest peak height is defined as the peak top molecular weight (B).
  • the film of the present invention is measured by a peak top molecular weight (A) of a polymer component measured by a differential refractive index detector and a spectrophotometric detector (measurement wavelength: 280 nm) when GPC is measured by the above-described method.
  • the peak top molecular weight (B) of the polymer component satisfies the following formula (1). (AB) / A ⁇ 0.80 (1)
  • the peak top molecular weight (A) is a value that serves as an index of the molecular weight of the polymer component in the film.
  • the peak top molecular weight (B) is derived from a component having absorption at 280 nm, which is present in the polymer component.
  • (AB) / A becomes a positive value.
  • the low molecular weight component contains more components that absorb ultraviolet light having a wavelength of 280 nm. In this case, foreign matter in the film increases. Moreover, the performance regarding the coloring resistance of a film, the foreign material (undissolved part) in a film, and the penetration resistance of the laminated glass obtained using a film cannot be taken.
  • (AB) / A is preferably less than 0.75, more preferably less than 0.70.
  • the film of the present invention satisfies the following formula (2). 1.00 ⁇ 10 ⁇ 2 ⁇ (b / y) / (a / x) ⁇ 2.00 ⁇ 10 ⁇ 1 (2)
  • a is the signal intensity measured by the differential refractive index detector at the peak top molecular weight (A) in the GPC measurement.
  • b is the signal intensity (absorbance) measured with an absorptiometric detector (measurement wavelength 280 nm) at the peak top molecular weight (B).
  • x is the signal intensity at the peak top molecular weight measured by the differential refractive index detector when monodispersed PMMA is measured by GPC.
  • y is the signal intensity (absorbance) at the peak top molecular weight measured with an absorptiometer (measurement wavelength 220 nm) when the monodispersed PMMA is measured by GPC.
  • the GPC measurement of monodisperse PMMA is the same as the GPC measurement of the film described above except that monodisperse PMMA is used instead of the heated film and the measurement wavelength of the absorptiometer is changed to 220 nm. Do.
  • the signal intensity (x) is obtained in the same manner as the signal intensity (a).
  • the signal intensity (y) is obtained in the same manner as the signal intensity (b).
  • PMMA having a weight average molecular weight of about 85,000 is preferable.
  • (B / y) / (a / x) is an index of the content of a component having a structure that absorbs ultraviolet light having a wavelength of 280 nm in the polymer component of the film. When this value is large, it means that the content is large.
  • the signal intensity by the differential refractive index detector is approximately proportional to the concentration (g / l) of the film component.
  • what is detected by the absorptiometric detector is only the component having absorption at 280 nm which is the measurement wavelength, and the signal intensity (absorbance) by the absorptiometric detector is proportional to the concentration of the component having absorption at 280 nm. .
  • the signal intensity of the differential refractive index detector is indicated by “millivolt”
  • the signal intensity (absorbance) of the absorptiometric detector is indicated by “absorbance unit (AU)”.
  • the ratio of both is simply compared. It ’s difficult.
  • the ratio of the signal intensity obtained by the differential refractive index detector and the signal intensity obtained by the absorptiometric detector is not different depending on the model of the GPC apparatus and the measurement conditions. Desired.
  • ratio (b / y) / (a / x) of both is calculated
  • the film of the present invention preferably satisfies the following formula (2 ′), and more preferably satisfies the following formula (2 ′′). 1.50 ⁇ 10 ⁇ 2 ⁇ (b / y) / (a / x) ⁇ 1.50 ⁇ 10 ⁇ 1 (2 ′) 2.00 ⁇ 10 ⁇ 2 ⁇ (b / y) / (a / x) ⁇ 1.00 ⁇ 10 ⁇ 1 (2 ′′)
  • the peak top molecular weight (A) and the peak top molecular weight (C) measured with an absorptiometric detector (measurement wavelength 320 nm) are expressed by the following formula (3). (AC) / A ⁇ 0.80 (3) It is preferable to satisfy.
  • the peak top molecular weight (C) is measured in the same manner as the peak top molecular weight (B) except that the measurement wavelength in the absorptiometric detector is 320 nm.
  • the peak top molecular weight (C) is derived from the component having an absorption at 320 nm, which is present in the polymer component in the film.
  • (AC) / A becomes a positive value.
  • the low molecular weight component contains more components that absorb ultraviolet rays having a wavelength of 320 nm. In this case, foreign matter in the film may increase. Moreover, there exists a possibility that the performance regarding the coloring resistance of a film, the foreign material (undissolved part) in a film, and the penetration resistance of the laminated glass obtained using a film cannot be taken.
  • (AC) / A is more preferably less than 0.75, and even more preferably less than 0.70.
  • the film of the present invention preferably satisfies the following formula (4). 5.00 ⁇ 10 ⁇ 3 ⁇ (c / y) / (a / x) ⁇ 7.00 ⁇ 10 ⁇ 2 (4)
  • a, x and y are the same as the above formula (2).
  • c is the signal intensity (absorbance) measured with an absorptiometric detector (measurement wavelength: 320 nm) at the peak top molecular weight (C).
  • (c / y) / (a / x) is an index of the content of a component having a structure that absorbs ultraviolet light having a wavelength of 320 nm in the polymer component of the film. When this value is large, it means that the content is large. And it calculates
  • the film of the present invention preferably satisfies the following formula (4 ′), and more preferably satisfies the following formula (4 ′′). 7.00 ⁇ 10 ⁇ 3 ⁇ (c / y) / (a / x) ⁇ 6.00 ⁇ 10 ⁇ 2 (4 ′) 1.00 ⁇ 10 -2 ⁇ (c / y) / (a / x) ⁇ 5.00 ⁇ 10 -2 (4 ")
  • the degree of acetalization of the polyvinyl acetal in the film of the present invention is 50 to 85 mol%.
  • the degree of acetalization is preferably 55 to 82 mol%, more preferably 60 to 78 mol%, still more preferably 65 to 75 mol%.
  • the degree of acetalization is less than 50 mol%, the compatibility with a plasticizer or the like decreases. Moreover, the penetration resistance of the obtained laminated glass falls.
  • the degree of acetalization exceeds 85 mol%, the efficiency of the acetalization reaction is remarkably reduced, and therefore it is necessary to carry out the reaction at a high temperature for a long time. As a result, the penetration resistance of the obtained laminated glass is lowered, and the coloring resistance of the obtained film is lowered.
  • the degree of acetalization represents the ratio of the acetalized vinyl alcohol monomer unit to the total monomer units constituting the polyvinyl acetal.
  • the vinyl alcohol monomer units in the raw material polyvinyl alcohol those not acetalized remain as vinyl alcohol monomer units in the obtained polyvinyl acetal.
  • the viscosity average polymerization degree of the polyvinyl acetal is represented by the viscosity average polymerization degree of the starting polyvinyl alcohol measured according to JIS-K6726. That is, after re-saponifying polyvinyl alcohol to a saponification degree of 99.5 mol% or more and purifying it, it can be obtained from the intrinsic viscosity [ ⁇ ] measured in water at 30 ° C. by the following equation.
  • the viscosity average polymerization degree of polyvinyl alcohol and the viscosity average polymerization degree of polyvinyl acetal obtained by acetalizing it are substantially the same.
  • P ([ ⁇ ] ⁇ 10000 / 8.29) (1 / 0.62)
  • the viscosity average polymerization degree of the polyvinyl acetal is 1400 to 5000, and preferably 1500 to 3500.
  • the viscosity average degree of polymerization is less than 1400, the film strength is low, and the resulting laminated glass has insufficient penetration resistance.
  • the polymerization degree exceeds 5000, the melt viscosity becomes too high and film formation becomes difficult.
  • the content of the vinyl ester monomer unit in the polyvinyl acetal is 0.1 to 20 mol%, preferably 0.3 to 18 mol%, more preferably 0.5 to 15 mol%, Preferably, it is 0.7 to 13 mol%.
  • the content of the vinyl ester monomer unit is less than 0.1 mol%, the polyvinyl acetal cannot be stably produced and the film cannot be formed.
  • the content of the vinyl ester monomer unit exceeds 20 mol%, the film becomes intensely colored.
  • the content of monomer units other than acetalized monomer units, vinyl ester monomer units and vinyl alcohol monomer units in the polyvinyl acetal is preferably 20 mol% or less, more preferably 10%. It is less than mol%.
  • the polyvinyl acetal is usually produced by acetalizing polyvinyl alcohol.
  • the saponification degree of the raw material PVA used for the production of polyvinyl acetal is preferably 80 to 99.9 mol%, more preferably 82 to 99.7 mol%, still more preferably 85 to 99.5 mol%, Preferably, it is 87 to 99.3 mol%.
  • the saponification degree of raw material PVA is less than 80 mol%, there is a possibility that the number of foreign matters (undissolved part) in the film may increase or the coloring resistance of the film may be lowered.
  • the saponification degree exceeds 99.9 mol%, there is a possibility that PVA cannot be stably produced.
  • the raw material PVA may contain an alkali metal salt of carboxylic acid, and its content is preferably 0.50% by mass or less, more preferably 0.37% by mass or less, and 0.28% by mass in terms of the mass of the alkali metal. % Or less is more preferable, and 0.23 mass or less is particularly preferable.
  • the content of the alkali metal salt of the carboxylic acid in the raw material PVA exceeds 0.50% by mass, the film may be easily colored.
  • the content of alkali metal salt of carboxylic acid (calculated in terms of alkali metal mass) is obtained from the amount of alkali metal ions obtained by ashing PVA with a platinum crucible and then measuring the resulting ash content by ICP emission analysis. Can do.
  • vinyl ester monomers used in the production of raw material PVA include vinyl formate, vinyl acetate, vinyl propionate, vinyl valelate, vinyl caprate, vinyl laurate, vinyl stearate, vinyl benzoate, vinyl pivalate and versatic.
  • vinyl acid examples include vinyl acid, and vinyl acetate is particularly preferable.
  • the raw material PVA can also be produced by polymerizing vinyl ester monomers in the presence of thiol compounds such as 2-mercaptoethanol, n-dodecyl mercaptan, mercaptoacetic acid, 3-mercaptopropionic acid, and saponifying the resulting polyvinyl ester. You can also By this method, PVA in which a functional group derived from a thiol compound is introduced at the terminal is obtained.
  • thiol compounds such as 2-mercaptoethanol, n-dodecyl mercaptan, mercaptoacetic acid, 3-mercaptopropionic acid
  • Examples of the method for polymerizing the vinyl ester monomer include known methods such as bulk polymerization, solution polymerization, suspension polymerization, and emulsion polymerization.
  • a bulk polymerization method performed without a solvent or a solution polymerization method performed using a solvent such as alcohol is usually employed.
  • a solution polymerization method in which polymerization is performed together with a lower alcohol is preferable.
  • the lower alcohol is not particularly limited, but an alcohol having 3 or less carbon atoms such as methanol, ethanol, propanol and isopropanol is preferable, and methanol is usually used.
  • the reaction can be carried out by either a batch method or a continuous method.
  • the initiator used in the polymerization reaction include 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethyl-valeronitrile), 2,2′-azobis (4-methoxy).
  • Azo initiators such as -2,4-dimethylvaleronitrile
  • organic peroxide initiators such as benzoyl peroxide, n-propyl peroxycarbonate, peroxydicarbonate, etc., within a range that does not impair the effects of the present invention.
  • a well-known initiator is mentioned.
  • an organic oxide initiator having a half-life of 10 to 110 minutes at 60 ° C. is preferable, and peroxydicarbonate is particularly preferable.
  • the polymerization temperature for carrying out the polymerization reaction but a range of 5 ° C to 200 ° C is suitable.
  • a copolymerizable monomer can be copolymerized as necessary as long as the effects of the present invention are not impaired.
  • monomers include ⁇ -olefins such as ethylene, propylene, 1-butene, isobutene, 1-hexene; carboxylic acids such as fumaric acid, maleic acid, itaconic acid, maleic anhydride, itaconic anhydride, or the like Derivatives; acrylic acid or salts thereof; acrylic acid esters such as methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate; methacrylic acid or salts thereof; methyl methacrylate, ethyl methacrylate, n-methacrylate Methacrylic acid esters such as propyl and isopropyl methacrylate; Acrylamide derivatives such as acrylamide, N-methylacrylamide and N-ethy
  • the amount of the monomer that can be copolymerized with these vinyl ester monomers varies depending on the purpose and use of the monomer, but is usually based on all monomers used for copolymerization. Is 20 mol% or less, preferably 10 mol% or less.
  • PVA is obtained by saponifying the polyvinyl ester obtained by the above method in an alcohol solvent.
  • an alkaline substance is usually used, and examples thereof include alkali metal hydroxides such as potassium hydroxide and sodium hydroxide, and alkali metal alkoxides such as sodium methoxide.
  • the amount of the alkaline substance used is preferably in the range of 0.002 to 0.2 in the molar ratio based on the vinyl ester monomer unit of the polyvinyl ester, and in the range of 0.004 to 0.1. It is particularly preferred.
  • the saponification catalyst may be added all at once in the early stage of the saponification reaction, or a part thereof may be added in the early stage of the saponification reaction, and the rest may be added during the saponification reaction.
  • Examples of the solvent that can be used for the saponification reaction include methanol, methyl acetate, dimethyl sulfoxide, diethyl sulfoxide, and dimethylformamide. Of these solvents, methanol is preferably used. In its use, the water content of methanol is preferably adjusted to 0.001 to 1% by weight, more preferably 0.003 to 0.9% by weight, and particularly preferably 0.005 to 0.8% by weight.
  • the saponification reaction is preferably performed at a temperature of 5 to 80 ° C., more preferably 20 to 70 ° C.
  • the time required for the saponification reaction is preferably 5 minutes to 10 hours, more preferably 10 minutes to 5 hours.
  • the saponification reaction can be carried out by either a batch method or a continuous method.
  • the remaining saponification catalyst may be neutralized as necessary.
  • Usable neutralizing agents include organic acids such as acetic acid and lactic acid, and ester compounds such as methyl acetate.
  • the alkaline substance containing an alkali metal added during the saponification reaction is usually neutralized by an ester such as methyl acetate produced by the progress of the saponification reaction, or neutralized by adding a carboxylic acid such as acetic acid. At this time, an alkali metal salt of a carboxylic acid such as sodium acetate is formed.
  • the raw material PVA preferably contains a predetermined amount of an alkali metal salt of carboxylic acid.
  • the PVA may be washed with a washing solution containing a lower alcohol such as methanol after saponification.
  • the cleaning liquid may contain 20 parts by mass or less of water with respect to 100 parts by mass of the lower alcohol.
  • cleaning liquid may contain ester, such as methyl acetate produced
  • the content of the ester at this time is not particularly limited, but is preferably 1000 parts by mass or less with respect to 100 parts by mass of the lower alcohol.
  • the amount of the cleaning solution used for cleaning is preferably 100 parts by weight to 10000 parts by weight, more preferably 150 parts by weight to 5000 parts by weight, with respect to 100 parts by weight of the gel obtained by saponification and PVA swollen with alcohol. More preferably, it is 200 to 1000 parts by mass.
  • the addition amount of the cleaning liquid is less than 100 parts by mass, the alkali metal salt amount of the carboxylic acid may exceed the above range.
  • the addition amount of the cleaning liquid exceeds 10,000 parts by mass, the improvement of the cleaning effect by increasing the addition amount cannot be expected.
  • the washing method is not particularly limited.
  • PVA welled gel
  • a washing solution For example, PVA (swelled gel) and a washing solution are added to a tank, and the solution is stirred or allowed to stand for 5 to 180 minutes at 5 to 100 ° C. to remove the liquid.
  • a batch method in which the process is repeated until the content of the alkali metal salt of the carboxylic acid is within the above range can be mentioned.
  • the alkali metal salt of the carboxylic acid contained in the raw material PVA is obtained by neutralizing the alkali catalyst used in the saponification step, for example, sodium hydroxide, potassium hydroxide, sodium methylate, etc. with carboxylic acid,
  • the carboxylic acid added for the purpose of suppressing alcoholysis of the vinyl ester monomer such as vinyl acetate used in the polymerization process is neutralized in the saponification process, to stop radical polymerization
  • a carboxylic acid having a conjugated double bond is used as an inhibitor to be added to the carboxylic acid, those obtained by neutralizing the carboxylic acid in the saponification step or those intentionally added are included.
  • Specific examples include sodium acetate, potassium acetate, sodium propionate, potassium propionate, sodium glycerate, potassium glycerate, sodium malate, potassium malate, sodium citrate, potassium citrate, sodium lactate, potassium lactate, tartaric acid Sodium, potassium tartrate, sodium salicylate, potassium salicylate, sodium malonate, potassium malonate, sodium succinate, potassium succinate, sodium maleate, potassium maleate, sodium phthalate, potassium phthalate, sodium oxalate, potassium oxalate , Sodium glutarate, potassium glutarate, sodium abietic acid, potassium abietic acid, sodium sorbate, potassium sorbate, 2,4,6-octatri Sodium 1,1-carboxylate, potassium 2,4,6-octatriene-1-carboxylate, sodium eleostearate, potassium eleostearate, sodium 2,4,6,8-decatetraene-1-carboxylate 2,4,6,8-decatetraene-1-carboxylate, sodium reti
  • the PVA thus obtained is acetalized to produce polyvinyl acetal used for film production.
  • the method of acetalization is not specifically limited, For example, the following method is mentioned.
  • PVA is dissolved in water by heating to 80 to 100 ° C., and then gradually cooled over 10 to 60 minutes to obtain a 3 to 40% by mass aqueous solution of PVA.
  • an aldehyde and an acid catalyst are added to the aqueous solution, and an acetalization reaction is performed for 30 to 300 minutes while keeping the temperature constant.
  • polyvinyl acetal having reached a certain degree of acetalization is precipitated.
  • the temperature of the reaction solution is raised to 25 to 80 ° C.
  • aggregated particles made of polyvinyl acetal are generated in such a reaction or processing step, and coarse particles are easily formed.
  • coarse particles are generated, there is a risk of causing variation between batches.
  • a specific PVA described later is used as a raw material, the generation of coarse particles is suppressed from the conventional product, and as a result, foreign matter (undissolved content) is reduced when the resulting polyvinyl acetal is melt-formed. Film can be obtained.
  • the acid catalyst used in the acetalization reaction is not particularly limited, and any of organic acids and inorganic acids can be used. Examples thereof include acetic acid, paratoluenesulfonic acid, nitric acid, sulfuric acid, and hydrochloric acid. Of these, hydrochloric acid, sulfuric acid, and nitric acid are preferably used. In general, when nitric acid is used, the reaction rate of the acetalization reaction is increased, and improvement in productivity can be expected. On the other hand, the obtained polyvinyl acetal particles tend to be coarse and the variation between batches tends to increase.
  • the polyvinyl alcohol of the present invention when used as a raw material, the formation of coarse particles is suppressed, and as a result, when the obtained polyvinyl acetal is melt-formed, a film with reduced foreign matter (undissolved content) is obtained. Obtainable.
  • the aldehyde used for the acetalization reaction of polyvinyl acetal is not particularly limited, but a conventionally known aldehyde having 1 to 8 carbon atoms is preferable, an aldehyde having 4 to 6 carbon atoms is more preferable, and n-butyraldehyde is particularly preferable.
  • polyvinyl acetal obtained by using two or more aldehydes in combination can also be used.
  • the antioxidant used in the method 1) is not particularly limited, and examples thereof include phenolic antioxidants, phosphorus antioxidants, sulfur antioxidants, and the like. Among these, phenolic antioxidants are used. Preferably, alkyl-substituted phenolic antioxidants are particularly preferred.
  • phenolic antioxidants examples include 2-t-butyl-6- (3-t-butyl-2-hydroxy-5-methylbenzyl) -4-methylphenyl acrylate, 2,4-di-t-amyl- Acrylate compounds such as 6- (1- (3,5-di-t-amyl-2-hydroxyphenyl) ethyl) phenyl acrylate; 2,6-di-t-butyl-4-methylphenol, 2,6-di-t -Butyl-4-ethylphenol, octadecyl-3- (3,5-) di-t-butyl-4-hydroxyphenyl) propionate, 2,2'-methylene-bis (4-methyl-6-t-butylphenol), 4,4′-butylidene-bis (4-methyl-6-tert-butylphenol), 4,4′-butylidene-bis (6-tert-butyl-m-cresol), 4,4′-thiobi (3-methyl-6-tert-butylphenol
  • phosphorus antioxidants include triphenyl phosphite, diphenylisodecyl phosphite, phenyl diisodecyl phosphite, tris (nonylphenyl) phosphite, tris (dinonylphenyl) phosphite, tris (2-t-butyl).
  • sulfur-based antioxidant examples include dilauryl 3,3′-thiodipropionate, distearyl 3,3′-thiodipropionate, lauryl stearyl 3,3′-thiodipropionate, pentaerythritol-tetrakis- ( ⁇ -lauryl-thiopropionate), 3,9-bis (2-dodecylthioethyl) -2,4,8,10-tetraoxaspiro [5.5] undecane.
  • the blending amount of the antioxidant is not particularly limited, but is 0.001 to 5 parts by mass, preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the polyvinyl acetal. When the amount of the antioxidant is less than 0.001 part by mass, a sufficient effect may not be exhibited, and when it exceeds 5 parts by mass, the effect cannot be improved by increasing the blending amount.
  • the PVA used in the above method 2) includes a peak top molecular weight (D) measured by a differential refractive index detector when the PVA heated at 120 ° C. for 3 hours is measured by GPC, and an absorptiometric detector
  • the peak top molecular weight (E) measured at (measurement wavelength 280 nm) is the following formula (5) (DE) / D ⁇ 0.75 (5)
  • the absorbance at the peak top molecular weight (E) is preferably 0.25 ⁇ 10 ⁇ 3 to 3.00 ⁇ 10 ⁇ 3 .
  • the GPC measurement at this time is performed in the same manner as the GPC measurement method for a film described above except for the following points.
  • GPC HFIP-806M manufactured by Showa Denko KK is used as the GPC column.
  • the cell length of the absorptiometric detector is 10 mm.
  • the column temperature during measurement is 40 ° C., and the flow rate is 1.0 ml / min.
  • the PVA heated under the following conditions is measured. After casting an aqueous solution in which the PVA powder is dissolved, the PVA film is obtained by drying at 20 ° C. and 65% RH.
  • the PVA film has a thickness of 30 to 75 ⁇ m, preferably 40 to 60 ⁇ m.
  • the film is heated at 120 ° C. for 3 hours using a hot air dryer. From the viewpoint of suppressing heat treatment errors between samples, a gear oven is preferable as the hot air dryer.
  • the PVA thus heated is subjected to GPC measurement.
  • the peak top molecular weight (D) of the PVA is determined in the same manner as the peak top molecular weight (A) of the film described above, and the peak top molecular weight (E) of the raw material PVA is the same as the peak top molecular weight (B) of the film described above. Ask for it.
  • the PVA has a peak top molecular weight (D) measured by a differential refractive index detector and a peak top molecular weight (E) measured by an absorptiometric detector (measurement wavelength 280 nm) when GPC measurement is performed by the above-described method. ) Preferably satisfies the following formula (5). (DE) / D ⁇ 0.75 (5)
  • the peak top molecular weight (D) is a value serving as an index of the molecular weight of PVA.
  • the peak top molecular weight (E) is derived from a component present in PVA and having absorption at 280 nm.
  • (DE) / D becomes a positive value.
  • the low molecular weight component contains more components that absorb ultraviolet light having a wavelength of 280 nm.
  • foreign matter (undissolved part) in the film may increase.
  • the performance regarding the coloring resistance of a film, the foreign material (undissolved part) in a film, and the penetration resistance of the laminated glass obtained using a film cannot be taken.
  • (DE) / D is more preferably less than 0.70, and still more preferably less than 0.65.
  • the PVA preferably has an absorbance (measurement wavelength: 280 nm) at a peak top molecular weight (E) of 0.25 ⁇ 10 ⁇ 3 to 3.00 ⁇ 10 ⁇ 3 when GPC measurement is performed by the method described above. If the absorbance is less than 0.25 ⁇ 10 ⁇ 3 , foreign matter (undissolved content) in the film may increase. Moreover, there exists a possibility that the performance regarding the coloring resistance of a film, the foreign material (undissolved part) in a film, and the penetration resistance of the laminated glass obtained using a film cannot be taken.
  • the absorbance exceeds 3.00 ⁇ 10 ⁇ 3 , there may be an increase in the absorption component of 280 nm ultraviolet-visible light in the film, and the coloration resistance of the film and the penetration resistance of the laminated glass are reduced. There is a fear.
  • the absorbance is more preferably 0.50 ⁇ 10 ⁇ 3 to 2.80 ⁇ 10 ⁇ 3 , and further preferably 0.75 ⁇ 10 ⁇ 3 to 2.50 ⁇ 10 ⁇ 3 .
  • the PVA has a peak top molecular weight (D) measured by a differential refractive index detector and a peak top molecular weight (F) measured by an absorptiometric detector (measurement wavelength: 320 nm) when GPC measurement is performed by the method described above. ) More preferably satisfies the following formula (6). (DF) / D ⁇ 0.75 (6)
  • the peak top molecular weight (F) is measured in the same manner as the peak top molecular weight (E) except that the measurement wavelength in the absorptiometric detector is 320 nm.
  • the peak top molecular weight (F) is derived from a component having absorption at 320 nm, which is present in the raw material PVA.
  • (DF) / D becomes a positive value.
  • the low molecular weight component contains more components that absorb ultraviolet light having a wavelength of 320 nm.
  • foreign matter (undissolved part) in the film may increase.
  • the performance regarding the coloring resistance of a film, the foreign material (undissolved part) in a film, and the penetration resistance of the laminated glass obtained using a film cannot be taken.
  • (D ⁇ F) / D is more preferably less than 0.70, and particularly preferably less than 0.65.
  • the PVA has an absorbance (measurement wavelength: 320 nm) at a peak top molecular weight (F) of 0.20 ⁇ 10 ⁇ 3 to 2.90 ⁇ 10 ⁇ 3 when GPC measurement is performed by the method described above.
  • F peak top molecular weight
  • the absorbance is less than 0.20 ⁇ 10 ⁇ 3 , foreign matter (undissolved content) in the film may increase.
  • the performance regarding the coloring resistance of a film, the foreign material (undissolved part) in a film, and the penetration resistance of the laminated glass obtained using a film cannot be taken.
  • the absorbance is more preferably 0.40 ⁇ 10 ⁇ 3 to 2.70 ⁇ 10 ⁇ 3 , and particularly preferably 0.60 ⁇ 10 ⁇ 3 to 2.40 ⁇ 10 ⁇ 3 .
  • the ratio Mw / Mn of the weight average molecular weight Mw to the number average molecular weight Mn of the PVA, which is obtained by the differential refractive index detector in the GPC measurement of PVA described above, is preferably 2.2 to 6.0.
  • Mw and Mn are obtained from a chromatogram obtained by plotting the value measured by the differential refractive index detector with respect to the molecular weight of PVA used when obtaining the above-described peak top molecular weight (D). Therefore, Mw and Mn calculated
  • Mw / Mn When Mw / Mn is less than 2.2, it indicates that the proportion of low molecular weight components is small in PVA. When Mw / Mn is less than 2.2, the number of foreign matters (undissolved parts) in the film may increase. It is more preferable that Mw / Mn is 2.3 or more. On the other hand, when Mw / Mn exceeds 6.0, it shows that the ratio of a low molecular weight component is large in PVA. When Mw / Mn exceeds 6.0, the coloring resistance of the film may be reduced, and the penetration resistance of the obtained laminated glass may be reduced. Mw / Mn is more preferably 4.5 or less, and further preferably 3.0 or less.
  • Examples of the adjustment method include the following methods.
  • a vinyl ester monomer from which a radical polymerization inhibitor contained in the raw material vinyl ester monomer has been removed in advance is used for polymerization.
  • Impurities include aldehydes such as acetaldehyde, crotonaldehyde, and acrolein; acetals such as acetaldehyde dimethyl acetal, crotonaldehyde dimethyl acetal, and acrolein dimethyl acetal obtained by acetalizing the aldehyde with a solvent alcohol; ketones such as acetone; methyl acetate and ethyl acetate And esters.
  • Organic acids specifically hydroxycarboxylic acids such as glycolic acid, glyceric acid, malic acid, citric acid, lactic acid, tartaric acid, salicylic acid; malonic acid, succinic acid, maleic acid, phthalic acid, oxalic acid, glutaric acid, etc.
  • a carboxylic acid or the like is added to suppress the generation of aldehydes such as acetaldehyde generated by decomposition as much as possible.
  • the addition amount of the organic acid is preferably 1 to 500 ppm, more preferably 3 to 300 ppm, and still more preferably 5 to 100 ppm with respect to the raw material vinyl ester monomer.
  • the impurities contained in the solvent include those described above as the impurities contained in the raw material vinyl ester monomer.
  • Organic peroxide is used as a radical polymerization initiator used for radical polymerization of a vinyl ester monomer.
  • Organic peroxides include acetyl peroxide, isobutyl peroxide, diisopropyl peroxycarbonate, diallyl peroxydicarbonate, di-n-propyl peroxydicarbonate, dimyristyl peroxydicarbonate, di (2-ethoxyethyl) peroxide Examples include oxydicarbonate, di (2-ethylhexyl) peroxydicarbonate, di (methoxyisopropyl) peroxydicarbonate, and di (4-tert-butylcyclohexyl) peroxydicarbonate. It is preferable to use peroxydicarbonate with a period of 10 to 110 minutes.
  • an inhibitor When an inhibitor is added after radical polymerization of the vinyl ester monomer in order to suppress the polymerization, an inhibitor of 5 molar equivalents or less is added to the remaining undecomposed radical polymerization initiator.
  • the inhibitor include a compound having a conjugated double bond having a molecular weight of 1000 or less and a compound that stabilizes a radical and inhibits a polymerization reaction.
  • isoprene 2,3-dimethyl-1,3-butadiene, 2,3-diethyl-1,3-butadiene, 2-t-butyl-1,3-butadiene, 1,3-pentadiene, , 3-dimethyl-1,3-pentadiene, 2,4-dimethyl-1,3-pentadiene, 3,4-dimethyl-1,3-pentadiene, 3-ethyl-1,3-pentadiene, 2-methyl-1 , 3-pentadiene, 3-methyl-1,3-pentadiene, 4-methyl-1,3-pentadiene, 1,3-hexadiene, 2,4-hexadiene, 2,5-dimethyl-2,4-hexadiene, , 3-octadiene, 1,3-cyclopentadiene, 1,3-cyclohexadiene, 1-methoxy-1,3-butadiene, 2-methoxy-1,3-butadiene, 1-
  • Polyenes such as conjugated polyene consisting Motoni double bond of four or more conjugated structure. Any one having a plurality of stereoisomers such as 1,3-pentadiene, myrcene, and farnesene may be used.
  • a polyvinyl ester alcohol solution from which the remaining vinyl ester monomer is removed as much as possible is used for the saponification reaction.
  • the residual monomer removal rate is 99% or more, more preferably 99.5% or more, still more preferably 99.8% or more.
  • the desired PVA can be obtained by appropriately combining A) to H).
  • the polyvinyl acetal obtained by acetalizing the PVA thus obtained is preferably used as a raw material for the film.
  • the peak top molecular weight (G) measured by a differential refractive index detector and the light absorption is the following formula (7) (GH) / G ⁇ 0.60 (7)
  • the absorbance at the peak top molecular weight (B) is 0.50 ⁇ 10 ⁇ 3 to 1.00 ⁇ 10 ⁇ 2 .
  • the GPC measurement at this time is performed in the same manner as the GPC measurement method for a film described above except for the following points.
  • GPC HFIP-806M manufactured by Showa Denko KK is used as the GPC column.
  • the cell length of the absorptiometric detector is 10 mm.
  • the column temperature during measurement is 40 ° C., and the flow rate is 1.0 ml / min.
  • polyvinyl acetal heated under the following conditions is measured.
  • the thickness of the film at this time is 600 to 800 ⁇ m, and is preferably about 760 ⁇ m, which is the thickness of a normal laminated glass interlayer film.
  • the polyvinyl acetal thus heated is subjected to GPC measurement.
  • the peak top molecular weight (G) of the polyvinyl acetal is determined in the same manner as the peak top molecular weight (A) of the film described above, and the peak top molecular weight (H) of the polyvinyl acetal is determined as the peak top molecular weight (B) of the film described above. Find in the same way as
  • the polyvinyl acetal has a peak top molecular weight (G) measured by a differential refractive index detector and a peak top molecular weight measured by an absorptiometric detector (measurement wavelength 280 nm) when GPC measurement is performed by the method described above. It is preferable that H) satisfy
  • the peak top molecular weight (G) is a value serving as an index of the molecular weight of polyvinyl acetal.
  • the peak top molecular weight (H) is derived from a component present in polyvinyl acetal and having absorption at 280 nm.
  • (GH) / G becomes a positive value.
  • the low molecular weight component contains more components that absorb ultraviolet light having a wavelength of 280 nm.
  • foreign matter (undissolved part) in the film may increase.
  • the performance regarding the coloring resistance of a film, the foreign material (undissolved part) in a film, and the penetration resistance of the laminated glass obtained using a film cannot be taken.
  • (GH) / G is more preferably less than 0.55, and still more preferably less than 0.50.
  • the polyvinyl acetal preferably has an absorbance (measurement wavelength: 280 nm) at a peak top molecular weight (H) of 0.50 ⁇ 10 ⁇ 3 to 1.00 ⁇ 10 ⁇ 2 when GPC measurement is performed by the method described above. . If the absorbance is less than 0.50 ⁇ 10 -3, there is a possibility that foreign matter in the film (undissolved) increases. Moreover, there exists a possibility that the performance regarding the coloring resistance of a film, the foreign material (undissolved part) in a film, and the penetration resistance of the laminated glass obtained using a film cannot be taken.
  • the absorbance exceeds 1.00 ⁇ 10 ⁇ 2 , there may be an increase in the component that absorbs ultraviolet light having a wavelength of 280 nm in the film, and the coloration resistance of the film and the penetration resistance of the laminated glass are reduced. There is a risk.
  • the absorbance is more preferably 1.50 ⁇ 10 ⁇ 3 to 1.00 ⁇ 10 ⁇ 2 , further preferably 1.55 ⁇ 10 ⁇ 3 to 8.50 ⁇ 10 ⁇ 3 , and 1.60 ⁇ 10 ⁇ 3 to 7. Particularly preferred is 0.000 ⁇ 10 ⁇ 3 .
  • the polyvinyl acetal has a peak top molecular weight (G) measured by a differential refractive index detector and a peak top molecular weight measured by an absorptiometric detector (measurement wavelength: 320 nm) when GPC measurement is performed by the method described above ( More preferably, I) satisfies the following formula (8). (GI) / G ⁇ 0.65 (8)
  • the peak top molecular weight (I) is measured in the same manner as the peak top molecular weight (H) except that the measurement wavelength in the absorptiometric detector is 320 nm.
  • the peak top molecular weight (I) is derived from a component having absorption at 320 nm, which is present in the raw material PVA.
  • (GI) / G becomes a positive value.
  • the low molecular weight component contains more components that absorb ultraviolet light having a wavelength of 320 nm. In this case, foreign matter (undissolved part) in the film may increase. Moreover, there exists a possibility that the performance regarding the coloring resistance of a film, the foreign material (undissolved part) in a film, and the penetration resistance of the laminated glass obtained using a film cannot be taken.
  • (GI) / G is more preferably less than 0.60, and particularly preferably less than 0.55.
  • the polyvinyl acetal has an absorbance (measurement wavelength of 320 nm) at a peak top molecular weight (I) of 0.35 ⁇ 10 ⁇ 3 to 4.50 ⁇ 10 ⁇ 3 when GPC measurement is performed by the above-described method. preferable.
  • the absorbance is less than 0.35 ⁇ 10 ⁇ 3 , foreign matter (undissolved part) in the film may increase.
  • the performance regarding the coloring resistance of a film, the foreign material (undissolved part) in a film, and the penetration resistance of a film cannot be balanced.
  • the absorbance is more preferably 0.75 ⁇ 10 ⁇ 3 to 4.50 ⁇ 10 ⁇ 3 , particularly preferably 0.80 ⁇ 10 ⁇ 3 to 3.50 ⁇ 10 ⁇ 3 , and 0.85 ⁇ 10 ⁇ 3 to 2. .50 ⁇ 10 ⁇ 3 is most preferred.
  • the ratio Mw / Mn of the weight average molecular weight Mw to the number average molecular weight Mn of the polyvinyl acetal measured with a differential refractive index detector is preferably 2.8 to 8.8. .
  • Mw and Mn are obtained from the chromatogram obtained by plotting the values measured by the differential refractive index detector with respect to the molecular weight of polyvinyl acetal used when obtaining the peak top molecular weight (G) described above. Therefore, Mw and Mn calculated
  • the ratio Mw / Mn (molecular weight distribution) derived from the number average molecular weight (Mn) and the weight average molecular weight (Mw) in terms of PMMA equivalent molecular weight is preferably 2.8 to 8.8. 7 is more preferable, and 3.0 to 8.6 is still more preferable.
  • Mw / Mn is less than 2.8, the number of foreign matters (undissolved parts) in the film may increase.
  • Mw / Mn exceeds 8.8, there is a possibility that the coloring resistance of the film is lowered or the penetration resistance of the laminated glass is lowered.
  • the film of the present invention preferably contains a plasticizer.
  • the plasticizer is not particularly limited as long as the effect of the present invention is not impaired and there is no problem in compatibility with polyvinyl acetal.
  • a mono- or diester of an oligoalkylene glycol having a hydroxyl group at both ends and a carboxylic acid, a diester of a dicarboxylic acid and a hydroxyl group-containing compound, or the like can be used. These can be used alone or in combination of two or more.
  • oligoalkylene glycols having hydroxyl groups at both ends include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, 1,2-propylene glycol, 1,2-propylene glycol dimer and trimer, 1,3 -Propylene glycol, 1,3-propylene glycol dimer and trimer, 1,2-butylene glycol, 1,2-butylene glycol dimer and trimer, 1,4-butylene glycol, 1, 4-butylene glycol dimer and trimer, 1,2-hexanediol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,2-octanediol, 1,8-octane Diol, 1,9-nonanediol, 2-methyl-1,8-octanediol, , 2-decanediol, 1,4-cyclohexane diol.
  • carboxylic acid examples include acetic acid, propanoic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, 2-ethylhexanoic acid, nonanoic acid and decanoic acid.
  • the combination of oligoalkylene glycol and carboxylic acid is arbitrary. Of these, monoesters and diesters of triethylene glycol and 2-ethylhexanoic acid are preferable from the viewpoint of handleability (volatility during molding).
  • Dicarboxylic acids include alkylene dicarboxylic acids such as oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, and sebacic acid, and aromatic dicarboxylic acids such as phthalic acid, isophthalic acid, and terephthalic acid. An acid etc. are mentioned.
  • hydroxyl group-containing compound examples include methanol, ethanol, propanol, butanol, pentanol, hexanol, cyclohexanol, heptanol, octanol, 2-ethylhexanol, nonaol, decanol, 2-methoxyethanol, 2-ethoxyethanol, 2-propoxyethanol, Examples thereof include 2-butoxyethanol and the like, and diesters with the aforementioned dicarboxylic acid compounds.
  • the combination of dicarboxylic acid and a hydroxyl-containing compound is arbitrary.
  • the content of the plasticizer is not particularly limited as long as the effect of the present invention is not impaired, but is preferably 12 to 200 parts by weight, more preferably 15 to 150 parts by weight with respect to 100 parts by weight of polyvinyl acetal. More preferably, it is 20 to 100 parts by mass.
  • content of a plasticizer is less than 10 mass parts, there exists a possibility that the softness
  • the content of the plasticizer is preferably 10 to 100 parts by mass, more preferably 15 to 90 parts by mass, and still more preferably 100 parts by mass of polyvinyl acetal. Is 20 to 80 parts by mass.
  • content of a plasticizer is less than 10 mass parts, there exists a possibility that desired softness
  • the film of the present invention may contain an ultraviolet absorber, an adhesion adjusting agent, a pigment, a dye, and other conventionally known additives, as long as it is not contrary to the gist of the present invention. Such additives will be described below.
  • Examples of the ultraviolet absorber include 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2- (2-hydroxy-3,5-bis ( ⁇ , ⁇ '-dimethylbenzyl) phenyl) -2H-benzotriazole. 2- (3,5-di-t-butyl-2-hydroxyphenyl) benzotriazole, 2- (3-t-butyl-5-methyl-2-hydroxyphenyl) -5-chlorobenzotriazole, 2- (3 , 5-di-t-butyl-5-methyl-2-hydroxyphenyl) -5-chlorobenzotriazole, 2- (3,5-di-t-amyl-2-hydroxyphenyl) benzotriazole, 2- (2′- Benzotriazole ultraviolet absorbers such as hydroxy-5′-t-octylphenyl) benzotriazole; 2,2,6,6-tetramethyl-4-pipe Lysylbenzoate, bis (2,2,6,6-tetramethyl-4-piperidyl)
  • the content of the ultraviolet absorber in the film is not particularly limited, but is preferably 10 to 50,000 ppm, and more preferably 100 to 10,000 ppm. If the content is less than 10 ppm, a sufficient effect may not be exhibited, and even if the content is more than 50,000 ppm, the effect cannot be improved by increasing the content.
  • the film of the present invention may contain an adhesion adjusting agent in order to appropriately adjust the adhesion with glass.
  • an adhesive control agent for example, sodium salts, potassium salts, magnesium salts of organic acids such as acetic acid, propionic acid, butanoic acid, hexanoic acid, 2-ethylbutanoic acid and 2-ethylhexanoic acid are used. These can be used alone or in combination of two or more.
  • the preferred content of the adhesion modifier varies depending on the type, but the adhesive strength of the resulting film to glass is generally 3 in the Pummel test (Pummel test; described in International Publication No. 03/033583 etc.).
  • the content is preferably adjusted to 3 to 6, and when high glass scattering prevention property is required, the content is adjusted to 7 to 10. It is preferable.
  • high glass scattering prevention property it is also a useful method not to add an adhesion modifier.
  • the content of the adhesion adjusting agent in the film is preferably 0.0001 to 1% by mass, more preferably 0.0005 to 0.1% by mass, and 0.001 to 0.03% by mass. Is more preferable.
  • silane coupling agent is mentioned as another additive for adjusting the said adhesiveness.
  • the content of the silane coupling agent in the film is preferably 0.01 to 5% by mass.
  • the glass transition temperature of the film of the present invention is not particularly limited and can be appropriately selected depending on the purpose, but is preferably in the range of 0 to 50 ° C., more preferably 0 to 45 ° C., and more preferably 0 to More preferably, it is 40 degreeC.
  • the glass transition temperature is preferably in the above range.
  • the method for producing the film of the present invention is not particularly limited, but a method in which PVA is acetalized to obtain polyvinyl acetal and then the polyvinyl acetal is melt-molded is preferable.
  • a method of melt-kneading the obtained polyvinyl acetal, plasticizer and other components using an extruder to form a film is preferable.
  • the resin temperature at the time of extrusion is preferably 150 to 250 ° C, more preferably 170 to 230 ° C. When the resin temperature becomes too high, polyvinyl acetal is decomposed, and the content of volatile substances in the intermediate film after film formation increases.
  • the film of the present invention can also be produced by a method in which a film obtained by dissolving or dispersing polyvinyl acetal, a plasticizer and other components in an organic solvent is formed, and then the organic solvent is distilled off.
  • the film may be formed using only a virgin resin (not containing recycled polyvinyl acetal), but the trim and off-spec products described later are reused.
  • a film may be formed.
  • a film forming apparatus provided with a weighing machine such as a gear pump and a die such as a T die in an extruder is used.
  • a weighing machine such as a gear pump
  • a die such as a T die in an extruder
  • both ends (trims) of the film are cut off. It is very important to collect and reuse such trims from the viewpoints of energy saving, effective utilization of resources and improvement of yield.
  • an off-spec product produced during the production of a film having irregularities on the surface is useful because it can be reused in the same manner as the trim.
  • the film of the present invention has few foreign matters (undissolved content) generated when it is melt-formed.
  • the recovered film can be effectively reused.
  • a method of feeding the recovered film into the extruder again a method in which a trim or off-spec film is wound on a roll is unwound and then fed back into the extruder; the trim or off-spec film is put on a roll Examples include a method of cutting a wound product into a certain size and then re-feeding it into an extruder.
  • the ratio of the virgin resin to the recovered film (virgin resin: recovered film) in the raw material can be arbitrarily changed between 0: 100 and 100: 0.
  • the contents of the plasticizer and other components can be adjusted by the following method.
  • a desired film is obtained by adjusting the addition amount of each component to an extruder, analyzing the component of the obtained film.
  • An interlayer film for laminated glass comprising the film of the present invention is a preferred embodiment of the present invention. Since the film of the present invention is excellent in transparency and flexibility, it can be suitably used as an interlayer film for glass.
  • the thickness of the interlayer film for laminated glass is not particularly limited, but is preferably 0.05 to 5.0 mm, more preferably 0.1 to 2.0 mm, and 0.1 to 1.2 mm. More preferably it is.
  • the interlayer film for laminated glass may contain a pigment, a dye or the like as necessary.
  • the shape of the surface of the interlayer film for laminated glass is not particularly limited. However, in consideration of the handleability (foaming property) when laminating with glass, the melt fracture and embossing are performed on the surface in contact with the glass by a conventionally known method. It is preferable that a concavo-convex structure such as is formed.
  • the emboss height is not particularly limited, but is preferably 5 ⁇ m to 500 ⁇ m, more preferably 7 ⁇ m to 300 ⁇ m, and still more preferably 10 ⁇ m to 200 ⁇ m.
  • emboss height is less than 5 ⁇ m
  • bubbles formed between the glass and the intermediate film may not be efficiently removed during lamination, and when it exceeds 500 ⁇ m, it is difficult to form the emboss.
  • Embossing may be performed on one side of the intermediate film or on both sides, but it is usually preferable to apply it on both sides.
  • the emboss pattern may be regular or irregular.
  • embossing roll method In order to form such embossing, a conventionally known embossing roll method, profile extrusion method, extrusion lip embossing method using melt fracture, or the like is employed.
  • the embossing roll method is suitable for stably obtaining an embossed film on which uniform and fine irregularities are formed.
  • the embossing roll used in the embossing roll method can be produced by, for example, using an engraving mill (mother mill) having a desired concavo-convex pattern and transferring the concavo-convex pattern onto the surface of the metal roll.
  • an embossing roll can also be produced using laser etching.
  • blasting is performed on the surface using an abrasive such as aluminum oxide, silicon oxide, or glass beads to form a finer concavo-convex pattern. You can also.
  • a release treatment on the embossing roll used in the embossing roll method.
  • a release treatment a known method such as silicone treatment, Teflon (registered trademark) treatment, plasma treatment or the like can be used.
  • a laminated glass obtained by bonding a plurality of glass plates using the interlayer film for laminated glass is a preferred embodiment of the present invention.
  • the laminated glass can be produced by sandwiching the intermediate film between at least two glass plates and heating and bonding the intermediate film.
  • the glass used for the laminated glass is not particularly limited.
  • inorganic glass such as float plate glass, tempered plate glass, polished plate glass, mold plate glass, netted plate glass, heat ray absorbing plate glass, conventionally known polymethyl methacrylate, polycarbonate and the like.
  • Organic glass or the like can be used. These may be either colorless or colored. These may be either transparent or non-transparent.
  • the same type of glass may be laminated, or different types of glass may be laminated.
  • the thickness of glass is not specifically limited, It is preferable that it is 100 mm or less. Moreover, there is no restriction
  • the laminated glass can be produced by a conventionally known method, and examples thereof include a method using a vacuum laminator device, a method using a vacuum bag, a method using a vacuum ring, and a method using a nip roll. Further, there is a method in which the obtained laminate is put into an autoclave after being temporarily pressed using these methods.
  • the glass and the interlayer film are laminated at 100 to 200 ° C., particularly 130 to 160 ° C. under a reduced pressure of 1 ⁇ 10 ⁇ 6 to 3 ⁇ 10 ⁇ 2 MPa.
  • a method using a vacuum bag or a vacuum ring is described in, for example, European Patent No. 1235683, and is laminated at 130 to 145 ° C. under a pressure of about 2 ⁇ 10 ⁇ 2 MPa.
  • a production method using a nip roll there is a method in which after degassing with a roll at a temperature equal to or lower than the flow start temperature of the film, pressure bonding is performed at a temperature close to the flow start temperature. Specifically, for example, there is a method of heating to 30 to 70 ° C. with an infrared heater or the like, then degassing with a roll, further heating to 50 to 120 ° C., and then pressing with a roll.
  • the operating conditions of the autoclave process are appropriately selected depending on the thickness and configuration of the laminated glass. For example, 1.0 to 1.5 MPa The treatment is preferably carried out at 130 to 145 ° C. for 0.5 to 3 hours under pressure.
  • GPC measurement (measuring device) GPC measurement was performed using “GPCmax” manufactured by VISCOTECH. As a differential refractive index detector, “TDA305” manufactured by VISCOTECH was used. “UV Detector 2600” manufactured by VISCOTECH was used as an ultraviolet-visible absorption detector. The optical path length of the detection cell of the absorptiometric detector is 10 mm. As the GPC column, “GPC HFIP-806M” manufactured by Showa Denko KK was used. Moreover, OmniSEC (Version 4.7.0.406) attached to the apparatus was used as analysis software.
  • the mobile phase 20 mmol / l sodium trifluoroacetate-containing HFIP was used.
  • the mobile phase flow rate was 1.0 ml / min.
  • the sample injection amount was 100 ⁇ l, and measurement was performed at a GPC column temperature of 40 ° C.
  • the sample in which the PVA viscosity average polymerization degree in a sample exceeded 2400 performed GPC measurement using the sample (100 microliters) diluted suitably.
  • the absorbance at a sample concentration of 1.00 mg / ml was calculated from the measured value according to the following formula. ⁇ (mg / ml) is the concentration of the diluted sample.
  • Absorbance at a sample concentration of 1.00 mg / ml (1.00 / ⁇ ) ⁇ measured value of absorbance
  • the signal intensity obtained from the differential refractive index detector is expressed in millivolts
  • the signal intensity obtained from the absorptiometric detector is expressed in absorbance (abs unit: Absorbance unit).
  • the polymerization degree was measured using a part of the methanol solution of PVAc-1 obtained.
  • a 10% methanol solution of sodium hydroxide was added to the methanol solution of PVAc-1 so that the molar ratio of sodium hydroxide to vinyl acetate units in polyvinyl acetate was 0.1.
  • the gelled product was formed, the gel was pulverized and subjected to Soxhlet extraction with methanol for 3 days.
  • the obtained polyvinyl alcohol was dried and the viscosity average polymerization degree was measured.
  • the degree of polymerization was 1700.
  • PVAc-2 ⁇ 22 Polyvinyl acetate (PVAc-2 to 22) was obtained by the same method as PVAc-1 except that the conditions were changed to those described in Table 1.
  • “ND” means less than 1 ppm.
  • the degree of polymerization of each polyvinyl acetate obtained was determined in the same manner as PVAc-1. The results are shown in Table 1.
  • the polymerization degree and saponification degree of PVA-1 were determined by the method described in JIS-K6726.
  • the degree of polymerization was 1700, and the degree of saponification was 99.1 mol%.
  • These physical property data are also shown in Table 2.
  • the sodium acetate content of PVA-1 was determined by measuring the amount of sodium in the obtained ash using an ICP emission analyzer “IRIS AP” manufactured by Jarrel Ash. .
  • the sodium acetate content was 0.7% (0.20% in terms of sodium).
  • a sample for GPC measurement of PVA-1 was prepared by the following method. After heating at 95 ° C. for 1 hour to dissolve PVA-1 in water, it was cooled to room temperature to obtain a 2% aqueous solution of PVA-1. The obtained aqueous solution was cast on a polyethylene terephthalate film (20 cm ⁇ 20 cm) and dried for 1 week under the conditions of 20 ° C. and 65% RH to obtain a PVA film having a thickness of 50 ⁇ m. The obtained film was fixed with a clip to a stainless steel metal frame (20 cm ⁇ 20 cm, 1 cm wide metal frame) and heat-treated at 120 ° C. for 3 hours in a gear oven. A sample was collected from around the center of the PVA film after the heat treatment.
  • FIG. 2 shows the relationship between the molecular weight and the signal intensity measured by the differential refractive index detector obtained by the measurement, and the signal intensity (absorbance) measured by the molecular weight and the absorbance detector (measurement wavelength 280 nm). It is the graph which showed this relationship.
  • the molecular weight at this time is one converted from the elution volume using a calibration curve (PMMA equivalent molecular weight).
  • the peak top molecular weight (D) measured by the differential refractive index detector obtained from FIG. 2 was 100,000, and the peak top molecular weight (E) measured by the absorptiometric detector (280 nm) was 53,000. It was.
  • the obtained value is expressed by the following formula (DE) / D
  • the value obtained by substituting for was 0.47.
  • the absorbance (280 nm) at the peak top molecular weight (E) was 1.30 ⁇ 10 ⁇ 3 .
  • the peak top molecular weight (F) measured with an absorptiometric detector (320 nm) obtained in the same manner as the method for obtaining the peak top molecular weight (E) was 50,000.
  • the peak top molecular weight (D) and the peak top molecular weight (F) are expressed by the following formula (DF) / D The value obtained by substituting for was 0.50.
  • the absorbance (320 nm) at the peak top molecular weight (F) was 1.05 ⁇ 10 ⁇ 3 .
  • PVA-2-8, comparative PVA-1-5 Each PVA was synthesized in the same manner as PVA-1, except that the conditions shown in Table 2 were changed. The polymerization degree, saponification degree, and sodium acetate content (sodium mass conversion) of the obtained PVA were measured in the same manner as PVA-1. GPC measurement was performed in the same manner as PVA-1. The results are shown in Table 2.
  • PVA-9, comparative PVA-6, 7 Each PVA was synthesized in the same manner as PVA-1, except that the conditions shown in Table 3 were changed. The polymerization degree, saponification degree, and sodium acetate content (sodium mass conversion) of the obtained PVA were measured in the same manner as PVA-1. GPC measurement was performed in the same manner as PVA-1. The results are shown in Table 3.
  • PVA-10, comparative PVA-8-10 Each PVA was synthesized in the same manner as PVA-1, except that the conditions shown in Table 4 were changed. The polymerization degree, saponification degree, and sodium acetate content (sodium mass conversion) of the obtained PVA were measured in the same manner as PVA-1. GPC measurement was performed in the same manner as PVA-1. The results are shown in Table 4.
  • PVA-11-17, comparative PVA-18-21 Each PVA was synthesized in the same manner as PVA-1, except that the conditions shown in Table 7 were changed. The polymerization degree, saponification degree, and sodium acetate content (sodium mass conversion) of the obtained PVA were measured in the same manner as PVA-1. GPC measurement was performed in the same manner as PVA-1. The results are shown in Table 7.
  • PVA-18, comparative PVA-22, 23 Each PVA was synthesized in the same manner as PVA-1, except that the conditions shown in Table 8 were changed. The polymerization degree, saponification degree, and sodium acetate content (sodium mass conversion) of the obtained PVA were measured in the same manner as PVA-1. GPC measurement was performed in the same manner as PVA-1. The results are shown in Table 8.
  • PVA-19, comparative PVA-24, 25 Each PVA was synthesized in the same manner as PVA-1, except that the conditions shown in Table 9 were changed. The polymerization degree, saponification degree, and sodium acetate content (sodium mass conversion) of the obtained PVA were measured in the same manner as PVA-1. GPC measurement was performed in the same manner as PVA-1. The results are shown in Table 9.
  • Comparative PVA-32 Water with respect to vinyl acetate monomer units in methanol and polyvinyl acetate so that the total solid concentration (saponification concentration) is 40% by mass with respect to a 55% by mass methanol solution of polyvinyl acetate in PVAc-3.
  • An 8% methanol solution of sodium hydroxide was added with stirring so that the molar ratio of sodium oxide was 0.005, and the saponification reaction was started at 40 ° C. Note that saponification reaction was performed by adding distilled water so that the water content in the system was 3.0%.
  • One hour after adding the methanol solution of sodium hydroxide, 0.8 mol equivalent of 1% aqueous acetic acid and a large amount of distilled water were added to stop the saponification reaction.
  • the resulting solution was transferred to a dryer, dried at 65 ° C. for 12 hours, and then dried at 100 ° C. for 2 hours to obtain Comparative PVA-32.
  • the polymerization degree, saponification degree, and sodium acetate content of comparative PVA-32 were measured in the same manner as PVA-1.
  • the degree of polymerization was 300, the degree of saponification was 45.3 mol%, and the sodium acetate content was 1.2% (0.34% in terms of sodium). These results are shown in Table 11. Since Comparative PVA-32 was insoluble in water, film preparation for GPC measurement could not be performed, and GPC measurement could not be performed.
  • Comparative PVA-33 Water with respect to vinyl acetate monomer units in methanol and polyvinyl acetate so that the total solid concentration (saponification concentration) is 40% by mass with respect to a 55% by mass methanol solution of polyvinyl acetate in PVAc-3. An 8% methanol solution of sodium hydroxide was added with stirring so that the molar ratio of sodium oxide was 0.005, and the saponification reaction was started at 40 ° C. Note that saponification reaction was performed by adding distilled water so that the water content in the system was 1.2%. One hour after adding the methanol solution of sodium hydroxide, 0.8 mol equivalent of 1% aqueous acetic acid and a large amount of distilled water were added to stop the saponification reaction. The resulting solution was transferred to a dryer, dried at 65 ° C. for 12 hours, and then dried at 100 ° C. for 2 hours to obtain Comparative PVA-33.
  • the polymerization degree, saponification degree, and sodium acetate content of comparative PVA-33 were measured in the same manner as PVA-1.
  • the degree of polymerization was 300, the degree of saponification was 60.2 mol%, and the sodium acetate content was 1.3% (0.36% in terms of sodium).
  • GPC measurement was performed in the same manner as PVA-1.
  • PVB-1 A 10-liter glass container equipped with a reflux condenser, thermometer and squid type stirring blade is charged with 8100 g of ion-exchanged water and 660 g of PVA-1 (PVA concentration 7.5%), and the contents are heated to 95 ° C. Thus, the PVA was completely dissolved. Next, the contents were gradually cooled to 10 ° C. over about 30 minutes while stirring at 120 rpm, and then 384 g of n-butyraldehyde and 540 mL of 20% hydrochloric acid were added to the vessel, and a butyralization reaction was performed for 150 minutes. It was. Thereafter, the temperature was raised to 60 ° C.
  • composition of PVB The degree of butyralization (degree of acetalization) of PVB-1, the content of vinyl acetate monomer units, and the content of vinyl alcohol monomer units were measured according to JIS K6728. The degree of butyralization (degree of acetalization) was 68.2 mol%, the content of vinyl acetate monomer units was 0.9 mol%, and the content of vinyl alcohol monomer units was 30.9 mol%. It was. The results are also shown in Table 12.
  • PVB-1 GPC measurement sample was prepared by the following method. PVB-1 powder was hot-pressed at a pressure of 2 MPa at 230 ° C. for 3 hours and cooled to obtain a polyvinyl acetal film having a size of 30 cm ⁇ 30 cm and a thickness of 760 ⁇ m. A sample was taken from near the center of the heat-treated film.
  • FIG. 3 is a graph showing the relationship between the molecular weight and the value measured by the differential refractive index detector, and the relationship between the molecular weight and the absorbance measured by the absorptiometric detector (measurement wavelength 280 nm).
  • the molecular weight at this time is one converted from the elution volume using a calibration curve (PMMA equivalent molecular weight).
  • the peak top molecular weight (G) measured with the differential refractive index detector obtained from FIG. 3 was 90000, and the peak top molecular weight (H) measured with the absorptiometric detector (280 nm) was 68900.
  • the obtained value is expressed by the following formula (GH) / G
  • the value obtained by substituting for was 0.23.
  • the absorbance at the peak top molecular weight (H) was 2.21 ⁇ 10 ⁇ 3 .
  • the peak top molecular weight (I) measured by an absorptiometric detector (320 nm) obtained in the same manner as the method for obtaining the peak top molecular weight (H) was 60000 except that the measurement wavelengths were different.
  • the peak top molecular weight (G) and the peak top molecular weight (I) are expressed by the following formula (GI) / G The value obtained by substituting for was 0.33.
  • Absorbance at a peak top molecular weight (I) was 1.26 ⁇ 10 -3.
  • PVB-2-8 comparative PVB-1-5 PVB was synthesized and evaluated in the same manner as PVB-1, except that the raw material PVA was changed to that shown in Table 12. The results are shown in Table 12.
  • PVB-9 PVB was synthesized and evaluated in the same manner as PVB-1, except that the amount of n-butyraldehyde added was changed to 320 g. The results are shown in Table 12.
  • the degree of butyralization (degree of acetalization) of PVB is 56.8 mol%, the content of vinyl acetate monomer units is 0.9 mol%, and the content of vinyl alcohol monomer units is 42.3. Mol%.
  • PVB-10 PVB was synthesized and evaluated in the same manner as PVB-1, except that the amount of n-butyraldehyde added was changed to 365 g. The results are shown in Table 12.
  • the degree of butyralization (degree of acetalization) of PVB is 64.3 mol%, the content of vinyl acetate monomer units is 0.9 mol%, and the content of vinyl alcohol monomer units is 34.8. Mol%.
  • PVB-11 PVB was synthesized and evaluated in the same manner as PVB-1, except that the amount of n-butyraldehyde added was changed to 449 g. The results are shown in Table 12.
  • the degree of butyralization (degree of acetalization) of PVB is 79.8 mol%, the content of vinyl acetate monomer units is 0.9 mol%, and the content of vinyl alcohol monomer units is 19.3. Mol%.
  • Comparative PVB-6 PVB was synthesized and evaluated in the same manner as PVB-1, except that the raw material PVA was changed to comparative PVA-1 and the addition amount of n-butyraldehyde was changed to 271 g.
  • the results are shown in Table 12.
  • the degree of butyralization (degree of acetalization) of PVB was 48.5 mol%, the content of vinyl acetate monomer units was 0.8 mol%, and the content of vinyl alcohol monomer units was 50.7%. Mol%.
  • Comparative PVB-7 PVB was synthesized and evaluated in the same manner as PVB-9, except that the raw material PVA was changed to comparative PVA-1. The results are shown in Table 12.
  • the degree of butyralization (degree of acetalization) of PVB is 56.8 mol%, the content of vinyl acetate monomer units is 0.8 mol%, and the content of vinyl alcohol monomer units is 42.4. Mol%.
  • Comparative PVB-8 PVB was synthesized and evaluated in the same manner as PVB-11 except that the raw material PVA was changed to comparative PVA-1. The results are shown in Table 12.
  • the degree of butyralization (degree of acetalization) of PVB is 79.8 mol%, the content of vinyl acetate monomer units is 0.8 mol%, and the content of vinyl alcohol monomer units is 19.4. Mol%.
  • Comparative PVB-9 PVB was synthesized and evaluated in the same manner as Comparative PVB-6, except that the raw material PVA was changed to Comparative PVA-2. The results are shown in Table 12.
  • the degree of butyralization (degree of acetalization) of PVB was 48.3 mol%, the content of vinyl acetate monomer units was 0.8 mol%, and the content of vinyl alcohol monomer units was 50.9. Mol%.
  • Comparative PVB-10 PVB was synthesized and evaluated in the same manner as Comparative PVB-7, except that the raw material PVA was changed to Comparative PVA-2. The results are shown in Table 12.
  • the degree of butyralization (degree of acetalization) of PVB is 56.6 mol%, the content of vinyl acetate monomer units is 0.8 mol%, and the content of vinyl alcohol monomer units is 42.6. Mol%.
  • Comparison PVB-11 PVB was synthesized and evaluated in the same manner as Comparative PVB-8 except that the raw material PVA was changed to Comparative PVA-2. The results are shown in Table 12.
  • the degree of butyralization (degree of acetalization) of PVB is 79.6 mol%, the content of vinyl acetate monomer units is 0.8 mol%, and the content of vinyl alcohol monomer units is 19.6. Mol%.
  • Comparative PVB-12 PVB was synthesized and evaluated in the same manner as Comparative PVB-6 except that the raw material PVA was changed to PVA-1. The results are shown in Table 12.
  • the degree of butyralization (degree of acetalization) of PVB was 48.2 mol%, the content of vinyl acetate monomer units was 0.9 mol%, and the content of vinyl alcohol monomer units was 50.9. Mol%.
  • Comparative PVB-13 A 10-liter glass container equipped with a reflux condenser, thermometer and squid type stirring blade is charged with 8100 g of ion-exchanged water and 660 g of PVA-1 (PVA concentration 7.5%), and the contents are heated to 95 ° C. Thus, the PVA was completely dissolved. Next, the contents were gradually cooled to 10 ° C. over about 30 minutes while stirring at 120 rpm, and then 740 g of n-butyraldehyde and 810 mL of 20% hydrochloric acid were added to the vessel, and a butyralization reaction was performed for 150 minutes. It was. Thereafter, the temperature was raised to 80 ° C. over 90 minutes, kept at 80 ° C.
  • Comparative PVB-13 was evaluated in the same manner as PVB-1. The results are shown in Table 12.
  • the degree of butyralization (degree of acetalization) of PVB is 87.4 mol%, the content of vinyl acetate monomer units is 0.9 mol%, and the content of vinyl alcohol monomer units is 11.7. Mol%.
  • PVB-12 A 10-liter glass container equipped with a reflux condenser, thermometer and squid type stirring blade is charged with 8234 g of ion-exchanged water and 526 g of PVA-9 (PVA concentration 6.0%), and the contents are heated to 95 ° C. And completely dissolved. Next, the contents were gradually cooled to 15 ° C. over about 30 minutes while stirring at 120 rpm, and then 307 g of n-butyraldehyde and 540 mL of 20% hydrochloric acid were added to the vessel, and a butyralization reaction was performed for 120 minutes. It was. Thereafter, the temperature was raised to 60 ° C. over 60 minutes, held at 60 ° C.
  • PVB was obtained by re-washing with ion-exchanged water and drying. PVB obtained in the same manner as PVB-1 was evaluated. The results are shown in Table 13.
  • the PVB obtained had a butyralization degree (acetalization degree) of 68.2 mol%, a vinyl acetate monomer unit content of 1.3 mol%, and a vinyl alcohol monomer unit content of It was 30.5 mol%.
  • Comparative PVB-14, 15 PVB was synthesized and evaluated in the same manner as PVB-12, except that the raw material PVA was changed to that shown in Table 13. The results are shown in Table 13.
  • PVB-13 A 10-liter glass container equipped with a reflux condenser, thermometer, and squid type stirring blade was charged with 8322 g of ion-exchanged water and 438 g of PVA-10 (PVA concentration 5.0%), and the contents were raised to 95 ° C. Warm to completely dissolve the PVA. Next, the contents are gradually cooled to 20 ° C. over about 30 minutes while stirring at 120 rpm, and then 256 g of n-butyraldehyde and 540 mL of 20% hydrochloric acid are added to the vessel, and a butyralization reaction is performed for 120 minutes. It was. Thereafter, the temperature was raised to 60 ° C. over 60 minutes, held at 60 ° C.
  • PVB was obtained by re-washing with ion-exchanged water and drying. PVB obtained in the same manner as PVB-1 was evaluated. The results are shown in Table 14.
  • the obtained PVB had a butyralization degree (acetalization degree) of 68.1 mol%, a vinyl acetate monomer unit content of 1.5 mol%, and a vinyl alcohol monomer unit content of It was 30.4 mol%.
  • Comparative PVB-16-18 PVB was synthesized and evaluated in the same manner as PVB-13, except that the raw material PVA was changed to that shown in Table 14. The results are shown in Table 13.
  • Comparative PVB-19 A 10-liter glass container equipped with a reflux condenser, thermometer, and squid-type stirring blade was charged with 8100 g of ion-exchanged water and 660 g of comparative PVA-11 (PVA concentration 5.0%), and the content was adjusted to 95 ° C. The PVA was completely dissolved by raising the temperature. Next, the contents are gradually cooled to 8 ° C. over about 30 minutes while stirring at 120 rpm, and 384 g of n-butyraldehyde and 540 mL of 20% hydrochloric acid are added to the vessel, and a butyralization reaction is performed for 150 minutes. It was. Thereafter, the temperature was raised to 60 ° C. over 60 minutes, held at 60 ° C.
  • Comparative PVB-20 21 PVB was synthesized and evaluated in the same manner as Comparative PVB-19 except that the raw material PVA was changed to that shown in Table 15. The results are shown in Table 15.
  • Comparative PVB-22 PVB was synthesized and evaluated in the same manner as Comparative PVB-19 except that the raw material PVA was changed to that shown in Table 16. The results are shown in Table 16.
  • Comparative PVB-23 A 10-liter glass container equipped with a reflux condenser, thermometer, and squid type stirring blade was charged with 8100 g of ion-exchanged water and 660 g of comparative PVA-15 (PVA concentration 7.5%), and the content was adjusted to 95 ° C. The PVA was completely dissolved by raising the temperature. Next, the contents were gradually cooled to 5 ° C. over about 30 minutes while stirring at 120 rpm, and then 402 g of n-butyraldehyde and 540 mL of 20% hydrochloric acid were added to the vessel, and a butyralization reaction was performed for 120 minutes. It was. Thereafter, the temperature was raised to 50 ° C.
  • PVB was obtained by re-washing with ion-exchanged water and drying. PVB obtained in the same manner as PVB-1 was evaluated. The results are shown in Table 16.
  • the obtained PVB had a butyralization degree (acetalization degree) of 68.5 mol%, a vinyl acetate monomer unit content of 1.5 mol%, and a vinyl alcohol monomer unit content of It was 30.0 mol%.
  • Comparative PVB-24 A 10-liter glass container equipped with a reflux condenser, thermometer, and squid type stirring blade was charged with 8100 g of ion-exchanged water and 660 g of comparative PVA-16 (PVA concentration 7.5%), and the contents were adjusted to 95 ° C. The PVA was completely dissolved by raising the temperature. Next, the contents were gradually cooled to 1 ° C. over about 30 minutes while stirring at 120 rpm, and then 422 g of n-butyraldehyde and 540 mL of 20% hydrochloric acid were added to the vessel, and a butyralization reaction was performed for 120 minutes. It was. Thereafter, the temperature was raised to 45 ° C. over 60 minutes, held at 45 ° C.
  • PVB was obtained by re-washing with ion-exchanged water and drying. PVB obtained in the same manner as PVB-1 was evaluated. The results are shown in Table 16.
  • the obtained PVB had a butyralization degree (acetalization degree) of 68.1 mol%, a vinyl acetate monomer unit content of 1.1 mol%, and a vinyl alcohol monomer unit content of It was 30.8 mol%.
  • Comparative PVB-25 PVB was synthesized and evaluated in the same manner as Comparative PVB-24 except that the raw material PVA was changed to that shown in Table 16. The results are shown in Table 16.
  • PVB-14 A 10-liter glass container equipped with a reflux condenser, thermometer and squid type stirring blade was charged with 8100 g of ion-exchanged water and 660 g of PVA-11 (PVA concentration 7.5%), and the contents were raised to 95 ° C. Warm to dissolve completely. Next, the contents are gradually cooled to 15 ° C. over about 30 minutes while stirring at 120 rpm, and then 432 g of n-butyraldehyde and 540 mL of 20% hydrochloric acid are added to the vessel, and a butyralization reaction is performed for 90 minutes. It was. Thereafter, the temperature was raised to 45 ° C. over 30 minutes, held at 45 ° C. for 180 minutes, and then cooled to room temperature.
  • PVB obtained in the same manner as PVB-1 was evaluated. The results are shown in Table 17.
  • the obtained PVB had a butyralization degree (acetalization degree) of 74.1 mol%, a vinyl acetate monomer unit content of 8.1 mol%, and a vinyl alcohol monomer unit content of It was 17.8 mol%.
  • PVB-15 ⁇ 20 PVB was synthesized and evaluated in the same manner as PVB-14 except that the raw material PVA was changed to that shown in Table 17. The results are shown in Table 17.
  • PVB-21 PVB was synthesized and evaluated in the same manner as PVB-14 except that the amount of n-butyraldehyde added was changed to 269 g. The results are shown in Table 17.
  • the obtained PVB had a butyralization degree (acetalization degree) of 55.3 mol%, a vinyl acetate monomer unit content of 8.8 mol%, and a vinyl alcohol monomer unit content of It was 35.9 mol%.
  • PVB-22 PVB was synthesized and evaluated in the same manner as PVB-14 except that the amount of n-butyraldehyde added was changed to 307 g. The results are shown in Table 17.
  • the PVB obtained had a butyralization degree (acetalization degree) of 63.2 mol%, a vinyl acetate monomer unit content of 8.5 mol%, and a vinyl alcohol monomer unit content of It was 28.3 mol%.
  • PVB-23 PVB was synthesized and evaluated in the same manner as PVB-14 except that the amount of n-butyraldehyde added was changed to 458 g. The results are shown in Table 17.
  • the obtained PVB had a butyralization degree (acetalization degree) of 78.5 mol%, a vinyl acetate monomer unit content of 7.5 mol%, and a vinyl alcohol monomer unit content of It was 14.0 mol%.
  • Comparative PVB-26-29 PVB was synthesized and evaluated in the same manner as PVB-14 except that the raw material PVA was changed to that shown in Table 17. The results are shown in Table 17.
  • Comparative PVB-30 PVB was synthesized and evaluated in the same manner as PVB-14 except that the raw material PVA was changed to comparative PVA-18 and the addition amount of n-butyraldehyde was changed to 225 g.
  • the results are shown in Table 17.
  • the obtained PVB had a butyralization degree (acetalization degree) of 46.2 mol%, a vinyl acetate monomer unit content of 9.2 mol%, and a vinyl alcohol monomer unit content of It was 44.6 mol%.
  • Comparative PVB-31 PVB was synthesized and evaluated in the same manner as PVB-21 except that the raw material PVA was changed to comparative PVA-18. The results are shown in Table 17.
  • the obtained PVB had a butyralization degree (acetalization degree) of 55.5 mol%, a vinyl acetate monomer unit content of 8.9 mol%, and a vinyl alcohol monomer unit content of It was 35.6 mol%.
  • Comparative PVB-32 PVB was synthesized and evaluated in the same manner as PVB-23 except that the raw material PVA was changed to Comparative PVA-18. The results are shown in Table 17.
  • the obtained PVB had a butyralization degree (acetalization degree) of 78.6 mol%, a vinyl acetate monomer unit content of 7.4 mol%, and a vinyl alcohol monomer unit content of It was 14.0 mol%.
  • Comparative PVB-33 PVB was synthesized and evaluated in the same manner as Comparative PVB-30 except that the raw material PVA was changed to Comparative PVA-19. The results are shown in Table 17.
  • the obtained PVB had a butyralization degree (acetalization degree) of 46.3 mol%, a vinyl acetate monomer unit content of 9.1 mol%, and a vinyl alcohol monomer unit content of It was 44.6 mol%.
  • Comparative PVB-34 PVB was synthesized and evaluated in the same manner as Comparative PVB-31 except that the raw material PVA was changed to Comparative PVA-19. The results are shown in Table 17.
  • the obtained PVB had a butyralization degree (acetalization degree) of 55.2 mol%, a vinyl acetate monomer unit content of 9.0 mol%, and a vinyl alcohol monomer unit content of It was 35.8 mol%.
  • Comparative PVB-35 PVB was synthesized and evaluated in the same manner as Comparative PVB-32 except that the raw material PVA was changed to Comparative PVA-19. The results are shown in Table 17.
  • the obtained PVB had a butyralization degree (acetalization degree) of 78.6 mol%, a vinyl acetate monomer unit content of 7.4 mol%, and a vinyl alcohol monomer unit content of It was 14.0 mol%.
  • Comparative PVB-36 PVB was synthesized and evaluated in the same manner as Comparative PVB-30 except that the raw material PVA was changed to PVA-11. The results are shown in Table 17.
  • the obtained PVB had a butyralization degree (acetalization degree) of 46.3 mol%, a vinyl acetate monomer unit content of 9.1 mol%, and a vinyl alcohol monomer unit content of It was 44.6 mol%.
  • Comparative PVB-37 A 10-liter glass container equipped with a reflux condenser, thermometer and squid type stirring blade was charged with 8100 g of ion-exchanged water and 660 g of PVA-11 (PVA concentration 7.5%), and the contents were raised to 95 ° C. Warm to dissolve completely. Next, the content is gradually cooled to 15 ° C. over about 30 minutes while stirring at 120 rpm, 837 g of n-butyraldehyde and 810 mL of 20% hydrochloric acid are added to the vessel, and a butyralization reaction is performed for 90 minutes. It was. Thereafter, the temperature was raised to 60 ° C. over 60 minutes, kept at 60 ° C.
  • PVB was obtained by re-washing with ion-exchanged water and drying. PVB obtained in the same manner as PVB-1 was evaluated. The results are shown in Table 17.
  • the PVB obtained had a butyralization degree (acetalization degree) of 86.1 mol%, a vinyl acetate monomer unit content of 5.8 mol%, and a vinyl alcohol monomer unit content of It was 8.1 mol%.
  • PVB-24 A 10-liter glass container equipped with a reflux condenser, thermometer, and squid type stirring blade was charged with 8234 g of ion-exchanged water and 526 g of PVA-18 (PVA concentration 6.0%), and the contents were raised to 95 ° C. Warm to completely dissolve the PVA. Next, the contents are gradually cooled to 15 ° C. over about 60 minutes while stirring at 120 rpm, and then 344 g of n-butyraldehyde and 540 mL of 20% hydrochloric acid are added to the vessel, and a butyralization reaction is performed for 90 minutes. It was. Thereafter, the temperature was raised to 45 ° C. over 30 minutes, held at 45 ° C.
  • PVB was obtained by re-washing with ion-exchanged water and drying. PVB obtained in the same manner as PVB-1 was evaluated. The results are shown in Table 18.
  • the obtained PVB had a butyralization degree (acetalization degree) of 74.6 mol%, a vinyl acetate monomer unit content of 8.3 mol%, and a vinyl alcohol monomer unit content of It was 17.1 mol%.
  • Comparative PVB-38, 39 PVB was synthesized and evaluated in the same manner as PVB-24 except that the raw material PVA was changed to that shown in Table 18. The results are shown in Table 18.
  • PVB-25 A 10-liter glass container equipped with a reflux condenser, thermometer, and squid type stirring blade was charged with 8234 g of ion-exchanged water and 438 g of PVA-19 (PVA concentration 5.0%), and the contents were raised to 95 ° C. Warm to completely dissolve the PVA. Next, the contents are gradually cooled to 15 ° C. over about 60 minutes while stirring at 120 rpm, and then 265 g of n-butyraldehyde and 540 mL of 20% hydrochloric acid are added to the vessel, and a butyralization reaction is performed for 90 minutes. It was. Thereafter, the temperature was raised to 45 ° C. over 30 minutes, held at 45 ° C.
  • PVB was obtained by re-washing with ion-exchanged water and drying. PVB obtained in the same manner as PVB-1 was evaluated. The results are shown in Table 19.
  • the PVB obtained had a butyralization degree (acetalization degree) of 73.2 mol%, a vinyl acetate monomer unit content of 8.1 mol%, and a vinyl alcohol monomer unit content of It was 18.7 mol%.
  • Comparative PVB-40, 41 PVB was synthesized and evaluated in the same manner as PVB-25 except that the raw material PVA was changed to that shown in Table 19. The results are shown in Table 19.
  • Comparative PVB-42 A 10-liter glass container equipped with a reflux condenser, thermometer, and squid type stirring blade was charged with 8100 g of ion-exchanged water and 660 g of comparative PVA-29 (PVA concentration 7.5%), and the content was adjusted to 95 ° C. The PVA was completely dissolved by raising the temperature. Next, the contents were gradually cooled to 10 ° C. over about 60 minutes while stirring at 120 rpm, and then 450 g of n-butyraldehyde and 540 mL of 20% hydrochloric acid were added to the vessel, and a butyralization reaction was performed for 90 minutes. It was. Thereafter, the temperature was raised to 30 ° C.
  • PVB was obtained by re-washing with ion-exchanged water and drying. PVB obtained in the same manner as PVB-1 was evaluated. The results are shown in Table 20.
  • the PVB obtained had a butyralization degree (acetalization degree) of 74.3 mol%, a vinyl acetate monomer unit content of 8.0 mol%, and a vinyl alcohol monomer unit content of It was 17.7 mol%.
  • Comparative PVB-43-44 PVB was synthesized and evaluated in the same manner as Comparative PVB-42 except that the raw material PVA was changed to that shown in Table 20. The results are shown in Table 20.
  • Comparative PVB-45 PVB was synthesized and evaluated in the same manner as Comparative PVB-42 except that the raw material PVA was changed to that shown in Table 21. The results are shown in Table 21.
  • Comparative PVB-46 A 10-liter glass container equipped with a reflux condenser, thermometer, and squid type stirring blade was charged with 8100 g of ion-exchanged water and 660 g of comparative PVA-30 (PVA concentration 7.5%), and the content was adjusted to 95 ° C. The PVA was completely dissolved by raising the temperature. Next, the contents were gradually cooled to 5 ° C. over about 60 minutes while stirring at 120 rpm, and then 450 g of n-butyraldehyde and 540 mL of 20% hydrochloric acid were added to the vessel, and a butyralization reaction was performed for 90 minutes. It was. Thereafter, the temperature was raised to 30 ° C.
  • PVB was obtained by re-washing with ion-exchanged water and drying. PVB obtained in the same manner as PVB-1 was evaluated. The results are shown in Table 21.
  • the obtained PVB had a butyralization degree (acetalization degree) of 74.3 mol%, a vinyl acetate monomer unit content of 7.9 mol%, and a vinyl alcohol monomer unit content of It was 17.8 mol%.
  • Comparative PVB-47 A 10-liter glass container equipped with a reflux condenser, thermometer, and squid type stirring blade was charged with 8100 g of ion-exchanged water and 660 g of comparative PVA-31 (PVA concentration 7.5%), and the content was adjusted to 95 ° C. The PVA was completely dissolved by raising the temperature. Next, the contents are gradually cooled to 1 ° C. over about 60 minutes while stirring at 120 rpm, and then 468 g of n-butyraldehyde and 540 mL of 20% hydrochloric acid are added to the vessel, and a butyralization reaction is performed for 90 minutes. It was. Thereafter, the temperature was raised to 25 ° C.
  • PVB was obtained by re-washing with ion-exchanged water and drying. PVB obtained in the same manner as PVB-1 was evaluated. The results are shown in Table 21.
  • the obtained PVB had a butyralization degree (acetalization degree) of 73.2 mol%, a vinyl acetate monomer unit content of 8.0 mol%, and a vinyl alcohol monomer unit content of It was 18.8 mol%.
  • Comparative PVB-48 Except that the raw material PVA was changed to comparative PVA-32, synthesis of PVB was attempted in the same manner as comparative PVB-47, but the aqueous solubility of comparative PVA-32 was insufficient and an aqueous solution was not obtained. The synthesis was stopped.
  • Comparative PVB-49 PVB was synthesized and evaluated in the same manner as Comparative PVB-47 except that the raw material PVA was changed to that shown in Table 21. The results are shown in Table 21.
  • Example 1 50 parts by mass of PVB-1 powder, 19 parts by mass of triethylene glycol-di-2-ethylhexanoate and 0.014 parts by mass of magnesium acetate as plasticizers were manufactured by Toyo Seiki Seisakusho Co., Ltd. Was melt kneaded at 170 ° C. and 50 rpm for 5 minutes. During melt kneading, nitrogen (100 mL / min) was continuously blown into the container. The obtained kneaded product was hot-pressed at 150 ° C. and 5 MPa for 30 minutes to produce a film of 30 cm ⁇ 30 cm and a thickness of 760 ⁇ m. The obtained film was subjected to GPC measurement and evaluation of foreign matter (undissolved content) as follows.
  • FIG. 1 is a graph showing the relationship between the molecular weight and the signal intensity measured with a differential refractive index detector, and the relationship between the molecular weight and the signal intensity (absorbance) measured with an absorptiometric detector (measurement wavelength 280 nm). is there.
  • the molecular weight at this time is one converted from the elution volume using a calibration curve (PMMA equivalent molecular weight).
  • the peak top molecular weight (A) measured by the differential refractive index detector obtained from FIG. 1 was 94000, and the signal intensity (a) at the peak top molecular weight (A) was 108.6 mV.
  • the peak top molecular weight (B) measured with an absorptiometric detector (280 nm) was 45000, and the signal intensity (absorbance, b) at the peak top molecular weight (B) was 1.62 mV (1.62 ⁇ 10 ⁇ 3). Absorbance unit).
  • the obtained peak top molecular weight (A) and peak top molecular weight (B) are expressed by the following formula (AB) / A The value obtained by substituting for was 0.52.
  • the results are also shown in Table 22.
  • the peak top molecular weight (C) measured with an absorptiometric detector (320 nm) obtained in the same manner as the method for obtaining the peak top molecular weight (B) is 47000, and the peak top molecular weight
  • the signal intensity (absorbance, c) in (C) was 1.01 mV (1.01 ⁇ 10 ⁇ 3 absorption unit).
  • the peak top molecular weight (A) and the peak top molecular weight (C) are expressed by the following formula (AC) / A The value obtained by substituting for was 0.50.
  • the results are also shown in Table 22.
  • the signal intensity (absorbance, y) at the peak top molecular weight measured with an absorptiometric detector (220 nm) obtained in the same manner as the method for determining the peak top molecular weight (B) was 269.28 mV (0.26928 absorber). Unit).
  • Signal intensity (a), peak top molecular weight (b), signal intensity (x) and signal intensity (y) are expressed by the following formula (b / y) / (a / x) The value obtained by substituting for was 2.16 ⁇ 10 ⁇ 2 .
  • the results are also shown in Table 22.
  • Signal intensity (a), peak top molecular weight (c), signal intensity (x), and signal intensity (y) are represented by the following formula (c / y) / (a / x) The value obtained by substituting for was 1.34 ⁇ 10 ⁇ 2 . The results are also shown in Table 22.
  • the laminated glass was temperature-controlled at 23 ° C. for 4 hours, it was placed horizontally on a dedicated support frame, and a steel ball having a mass of 2260 g and a diameter of 82 mm was freely dropped from a height of 4 m onto the central portion of the laminated glass.
  • penetration When the steel ball penetrated within 5 seconds after the collision, it was determined as “penetration”.
  • Six laminated glasses were tested, and if all did not penetrate, it was determined to be acceptable. In the case where there were 5 pieces that did not penetrate, a retest was conducted. If all 6 pieces did not penetrate, the test was accepted. The results are shown in Table 22.
  • Example 9 and 10 Comparative Examples 6, 7, 9, 10 and 12
  • the film was prepared in the same manner as in Example 1 except that PVB shown in Table 22 was used instead of PVB-1, and dibutoxyethyl adipate was used instead of triethylene glycol-di2-ethylhexanoate. Fabrication and evaluation were performed. The results are shown in Table 22.
  • Table 22 shows the evaluation results of films made from polyvinyl acetal having a polymerization degree of 1700 as a raw material.
  • the films of the present invention (Examples 1 to 11) have little undissolved content in the film and are excellent in coloration resistance of the film, and also have excellent penetration resistance of the laminated glass produced using the film of the present invention. It was. On the other hand, the film (Comparative Example 1 to Comparative Example 13) that did not satisfy the conditions defined in the present invention had any performance deteriorated.
  • Example 12 PVB-12 was used as the PVB (powder) used in the preparation of the kneaded product, the amount thereof was changed to 46 parts by mass, and the amount of triethylene glycol di-2-ethylhexanoate was changed to 23 parts by mass. Except for the above, production of a film (using virgin PVB), GPC measurement, and measurement of undissolved content in the film were performed in the same manner as in Example 1. The results are shown in Table 23. A part of the kneaded material produced at this time was subjected to production of a film (using PVB heated repeatedly) shown below.
  • the amount of PVB (PVB-12) powder added to the kneaded material was 23 parts by mass, and the amount of triethylene glycol di-2-ethylhexanoate was added to the kneaded material. Except for changing to 11.5 parts by mass, the production of a film (using PVB repeatedly heated), the coloration resistance test of the film, and the penetration resistance test of laminated glass were performed in the same manner as in Example 1. . The results are shown in Table 23.
  • Comparative Examples 14 and 15 A film was prepared and evaluated in the same manner as in Example 12 except that PVB shown in Table 23 was used instead of PVB-12. The results are shown in Table 23.
  • Example 13 The use of PVB-13 as PVB (powder) used for the preparation of the kneaded product, the amount thereof was changed to 40.6 parts by mass, and the amount of triethylene glycol di-2-ethylhexanoate was 28.4. Except having changed into the mass part, it carried out similarly to Example 1, and produced the film (thing using PVB of virgin), GPC measurement, and the undissolved part measurement in a film. The results are shown in Table 24. A part of the kneaded material produced at this time was subjected to production of a film (using PVB heated repeatedly) shown below.
  • the amount of PVB (PVB-13) powder newly added to the kneaded product was 20.3 parts by mass, and triethylene glycol di-2-ethylhexanoate was used.
  • Comparative Examples 16-18 A film was prepared and evaluated in the same manner as in Example 13 except that PVB shown in Table 24 was used instead of PVB-13. The results are shown in Table 24.
  • Table 24 shows the evaluation results of films made from polyvinyl acetal having a polymerization degree of 3600 and 5500 as a raw material.
  • the film of the present invention (Example 13) had little undissolved content in the film, was excellent in the color resistance of the film, and was also excellent in the penetration resistance of the laminated glass produced using the film.
  • any of the films (Comparative Examples 16 to 17) that did not satisfy the conditions defined in the present invention deteriorated.
  • polyvinyl acetal having a polymerization degree of 5500 was used as a raw material (Comparative Example 18)
  • the melt viscosity was too high, and a film could not be produced.
  • Comparative Examples 19-21 The PVB (powder) used in the preparation of the kneaded product was the one shown in Table 25, the amount was changed to 50.4 parts by mass, and the amount of triethylene glycol di-2-ethylhexanoate was 18 Except for changing to 0.6 parts by mass, the production of a film (using virgin PVB), GPC measurement, and measurement of undissolved content in the film were carried out in the same manner as in Example 1. The results are shown in Table 25. A part of the kneaded material produced at this time was subjected to production of a film (using PVB heated repeatedly) shown below.
  • Table 25 shows the evaluation results of films made from polyvinyl acetal having a polymerization degree of 1200 as a raw material. In all cases, the penetration resistance of the laminated glass was insufficient.
  • Comparative Example 23 The PVB (powder) used in the preparation of the kneaded product was the one shown in Table 26, the amount was changed to 57.5 parts by mass, and the amount of triethylene glycol di-2-ethylhexanoate was 11 Except that it was changed to 0.5 parts by mass, production of a film (using virgin PVB), GPC measurement, and measurement of undissolved content in the film were performed in the same manner as in Example 1. The results are shown in Table 26. A part of the kneaded material produced at this time was subjected to production of a film (using PVB heated repeatedly) shown below.
  • Comparative Examples 24 and 25 The PVB (powder) used in the preparation of the kneaded product was the one shown in Table 26, the amount was changed to 61.4 parts by mass, and the amount of triethylene glycol di-2-ethylhexanoate was 7 Except for changing to 0.6 parts by mass, the production of a film (using virgin PVB), GPC measurement, and measurement of undissolved content in the film were carried out in the same manner as in Example 1. The results are shown in Table 26. A part of the kneaded material produced at this time was subjected to production of a film (using PVB heated repeatedly) shown below.
  • Table 26 shows the evaluation results of films made of polyvinyl acetal having a polymerization degree of 150 to 1000 as a raw material. In all cases, the penetration resistance of the laminated glass was insufficient.
  • Table 27 shows the evaluation results of films made from polyvinyl acetal having a polymerization degree of 1700 as a raw material.
  • the films of the present invention (Examples 14 to 23) have little undissolved content in the film and are excellent in coloration resistance of the film, and also have excellent penetration resistance of the laminated glass produced using the film of the present invention. It was. On the other hand, any of the films (Comparative Example 26 to Comparative Example 37) that did not satisfy the conditions defined in the present invention deteriorated.
  • Table 28 shows the evaluation results of films made from polyvinyl acetal having a polymerization degree of 2400 as a raw material.
  • the film of the present invention (Example 24) had little undissolved content in the film, was excellent in coloration resistance of the film, and was also excellent in penetration resistance of the laminated glass produced using the film of the present invention.
  • any of the films (Comparative Examples 38 and 39) that did not satisfy the conditions defined in the present invention deteriorated.
  • Example 25 PVB-25 was used as the PVB (powder) used in the preparation of the kneaded product, the amount thereof was changed to 32 parts by mass, and the amount of triethylene glycol di-2-ethylhexanoate was changed to 32 parts by mass. Except that, the production of a film (using virgin PVB), GPC measurement, and measurement of undissolved content in the film were performed in the same manner as in Example 14. The results are shown in Table 29. A part of the kneaded material produced at this time was subjected to production of a film (using PVB heated repeatedly) shown below.
  • Comparative Examples 40 and 41 A film was prepared and evaluated in the same manner as in Example 25 except that PVB shown in Table 28 was used instead of PVB-25. The results are shown in Table 29.
  • Table 29 shows the evaluation results of films made from polyvinyl acetal having a polymerization degree of 3600 as a raw material.
  • the film of the present invention (Example 25) had little undissolved content in the film, was excellent in coloration resistance of the film, and was also excellent in penetration resistance of the laminated glass produced using the film of the present invention.
  • any of the films (Comparative Examples 40 and 41) that did not satisfy the conditions defined in the present invention deteriorated.
  • the amount of powder of PVB (shown in Table 30) to be newly added to the kneaded product was 20.8 parts by mass, of triethylene glycol di-2-ethylhexanoate.
  • Comparative Example 45 The PVB (powder) used in the preparation of the kneaded product was the one shown in Table 31, the amount was changed to 42.9 parts by mass, and the amount of triethylene glycol di-2-ethylhexanoate was 21 Except that the content was changed to 1 part by mass, production of a film (using virgin PVB), GPC measurement, and measurement of undissolved content in the film were performed in the same manner as in Example 14. The results are shown in Table 31. A part of the kneaded material produced at this time was subjected to production of a film (using PVB heated repeatedly) shown below.
  • the amount of PVB powder (shown in Table 31) to be newly added to the kneaded material was 21.5 parts by mass, of triethylene glycol di-2-ethylhexanoate.
  • Comparative Example 46 The PVB (powder) used in the preparation of the kneaded product was the one shown in Table 31, the amount was changed to 49.2 parts by mass, and the amount of triethylene glycol di-2-ethylhexanoate was 14 Except for the change to 8 parts by mass, production of a film (using virgin PVB), GPC measurement, and measurement of undissolved content in the film were carried out in the same manner as in Example 14. The results are shown in Table 31. A part of the kneaded material produced at this time was subjected to production of a film (using PVB heated repeatedly) shown below.
  • the amount of PVB powder (added in Table 31) to be newly added to the kneaded material was 27.9 parts by mass, triethylene glycol-di-2-ethylhexanoate Production of a film (using repeatedly heated PVB), film coloring resistance test, and laminated glass penetration resistance test, except that the amount was changed to 4.1 parts by mass, respectively. Went. The results are shown in Table 31.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

A film comprising polyvinyl acetal which has a degree of acetalization of 50 to 85 mol%, a vinyl ester monomer unit of 0.1 to 20 mol%, and a viscosity-average polymerization degree of 1400 to 5000, wherein the film satisfies formulae (1) and (2). (A-B)/A<0.80 (1) 1.00×10-2<(b/y)/(a/x)<2.00×10-1 (2) Accordingly, a film which has lower coloring due to heat and less foreign matters (undissolved fractions) is provided. Also provided is a laminated glass in which the film is used as an interlayer and which has excellent penetration resistance.

Description

ポリビニルアセタールを含有するフィルムFilm containing polyvinyl acetal
 本発明はポリビニルアセタールを含有するフィルムに関する。また、本発明は当該フィルムからなる合わせガラス用中間膜、及び当該中間膜を用いた合わせガラスに関する。 The present invention relates to a film containing polyvinyl acetal. The present invention also relates to an interlayer film for laminated glass comprising the film, and a laminated glass using the interlayer film.
 ポリビニルアセタールは、ポリビニルアルコール(以下「PVA」と略記する場合がある)とアルデヒド化合物を用いて、酸性条件下、水中にて、アセタール化反応することにより得られる。ポリビニルアセタールからなるフィルムは強靭であること、親水性のヒドロキシ基と疎水性のアセタール基を併せ持つユニークな構造であることなどから、様々な用途に用いられており、種々のポリビニルアセタールが提案されている。その中でも、PVAとホルムアルデヒドから製造されるポリビニルホルマール、PVAとアセトアルデヒドから製造される狭義のポリビニルアセタール、およびPVAとブチルアルデヒドから製造されるポリビニルブチラールは、商業的に重要な位置を占めている。 Polyvinyl acetal is obtained by an acetalization reaction in water under acidic conditions using polyvinyl alcohol (hereinafter sometimes abbreviated as “PVA”) and an aldehyde compound. Polyvinyl acetal films are used in various applications because they are tough and have a unique structure that has both hydrophilic hydroxy groups and hydrophobic acetal groups. Various polyvinyl acetals have been proposed. Yes. Among them, polyvinyl formal produced from PVA and formaldehyde, polyvinyl acetal in a narrow sense produced from PVA and acetaldehyde, and polyvinyl butyral produced from PVA and butyraldehyde occupy commercially important positions.
 特に、ポリビニルブチラールは、自動車や建築物の合わせガラス用の中間膜等として広く用いられており、商業的に特に重要な位置を占めている。 In particular, polyvinyl butyral is widely used as an interlayer film for laminated glass of automobiles and buildings, and occupies a particularly important position commercially.
 一方で、従来からの課題として、1)ポリビニルアセタールフィルムは、加熱により着色しやすい、2)ポリビニルアセタールフィルム中に、異物(未溶解分)を生じやすい、3)ポリビニルアセタールフィルムを安全合わせガラスに用いた際に耐貫通性が低下しやすいなどの問題点があった。これらの問題を解決するために種々の提案がなされている。例えば、特許文献1および2には、高温高圧下にて特定の水酸化物イオン濃度でアセタール化することにより、ポリビニルアセタールの着色を抑制する方法が記載されている。特許文献3には、アセタール化反応して中和した後に還元剤を添加することにより、得られるポリビニルアセタールの着色を抑制する方法が記載されている。しかしながら、特許文献1~3に記載された方法の場合、得られたポリビニルアセタールを用いて作製されたフィルム中に異物が生じやすかった。さらに当該フィルムを安全合わせガラスに用いた際に耐貫通性が低下しやすかった。このようなことから、上述した問題が全て解決されたポリビニルアセタールからなるフィルムが強く求められている。 On the other hand, as conventional problems, 1) polyvinyl acetal film is easily colored by heating, 2) foreign matter (undissolved part) is likely to be generated in polyvinyl acetal film, and 3) polyvinyl acetal film is a safety laminated glass. When used, there was a problem that penetration resistance was liable to decrease. Various proposals have been made to solve these problems. For example, Patent Documents 1 and 2 describe a method for suppressing coloring of polyvinyl acetal by acetalization at a specific hydroxide ion concentration under high temperature and high pressure. Patent Document 3 describes a method of suppressing coloring of the obtained polyvinyl acetal by adding a reducing agent after neutralization by acetalization reaction. However, in the case of the methods described in Patent Documents 1 to 3, foreign matter was likely to be generated in the film produced using the obtained polyvinyl acetal. Furthermore, when the film was used for safety laminated glass, the penetration resistance was liable to decrease. For these reasons, there is a strong demand for films made of polyvinyl acetal in which all the above-mentioned problems are solved.
特開2011-219670号公報JP 2011-219670 A 特開2011-219671号公報JP 2011-219671 A 特開平05-140211号公報Japanese Patent Laid-Open No. 05-140211
 本発明は、上記課題を解決するためになされたものであり、加熱による着色が少なく、異物(未溶解分)が少ないポリビニルアセタールを含有するフィルムを提供することを目的とする。さらに、ポリビニルアセタールを含有するフィルムを繰り返し加熱して得たフィルムを合わせガラス用中間膜として用いた場合、合わせガラスの耐貫通性に優れ、とりわけ自動車用安全合わせガラスに好適に使用される合わせガラス用中間膜を提供することを目的とする。 The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a film containing polyvinyl acetal that is less colored by heating and less foreign matter (undissolved content). Furthermore, when a film obtained by repeatedly heating a film containing polyvinyl acetal is used as an interlayer film for laminated glass, the laminated glass has excellent penetration resistance of laminated glass, and is particularly suitable for use in safety laminated glass for automobiles. It is an object to provide an intermediate film for use.
 上記課題は、アセタール化度が50~85モル%、ビニルエステル単量体単位の含有量が0.1~20モル%、粘度平均重合度が1400~5000であるポリビニルアセタールを含有するフィルムであって、下記式(1)及び(2)を満たすフィルムを提供することによって解決される。
(A-B)/A<0.80  (1)
1.00×10-2<(b/y)/(a/x)<2.00×10-1  (2)
The above problem is a film containing polyvinyl acetal having an acetalization degree of 50 to 85 mol%, a vinyl ester monomer unit content of 0.1 to 20 mol%, and a viscosity average polymerization degree of 1400 to 5000. This is solved by providing a film satisfying the following formulas (1) and (2).
(AB) / A <0.80 (1)
1.00 × 10 −2 <(b / y) / (a / x) <2.00 × 10 −1 (2)
 式中、
A:230℃において3時間加熱された前記フィルムをゲルパーミエーションクロマトグラフィー(以下、GPCと略記することがある)測定したときの、示差屈折率検出器で測定されるポリマー成分のピークトップ分子量
a:ピークトップ分子量(A)におけるシグナル強度
B:230℃において3時間加熱された前記フィルムをGPC測定したときの、吸光光度検出器(測定波長280nm)で測定されるポリマー成分のピークトップ分子量
b:ピークトップ分子量(B)におけるシグナル強度
x:単分散のポリメタクリル酸メチル(以下、ポリメタクリル酸メチルをPMMAと略記することがある)をGPC測定したときの、示差屈折率検出器で測定されるピークトップ分子量におけるシグナル強度
y:前記単分散のPMMAをGPC測定したときの、吸光光度検出器(測定波長220nm)で測定されるピークトップ分子量におけるシグナル強度
である。
Where
A: Peak top molecular weight a of a polymer component measured by a differential refractive index detector when the film heated at 230 ° C. for 3 hours was measured by gel permeation chromatography (hereinafter sometimes abbreviated as GPC) : Signal intensity B at peak top molecular weight (A): Peak top molecular weight b of polymer component measured by an absorptiometric detector (measurement wavelength 280 nm) when GPC measurement is performed on the film heated at 230 ° C. for 3 hours: Signal intensity x at peak top molecular weight (B): Measured with a differential refractive index detector when GPC measurement is performed on monodisperse polymethyl methacrylate (hereinafter, polymethyl methacrylate may be abbreviated as PMMA). Signal intensity at peak top molecular weight y: GPC is the monodispersed PMMA When I was boss, a signal intensity at the peak top molecular weight measured by spectrophotometric detector (measuring wavelength 220 nm).
 ただし、フィルム及びPMMAのGPC測定において、
移動相:20mmol/lトリフルオロ酢酸ナトリウム含有ヘキサフルオロイソプロパノール(以下、ヘキサフルオロイソプロパノールをHFIPと略記することがある。)
試料濃度:1.00mg/ml
試料注入量:100μl
カラム温度:40℃
流速:1.0ml/分
である。
However, in GPC measurement of film and PMMA,
Mobile phase: 20 mmol / l sodium trifluoroacetate-containing hexafluoroisopropanol (hereinafter, hexafluoroisopropanol may be abbreviated as HFIP.)
Sample concentration: 1.00 mg / ml
Sample injection volume: 100 μl
Column temperature: 40 ° C
Flow rate: 1.0 ml / min.
 前記フィルムが、下記式(3)及び(4)を満たすことが好適である。
(A-C)/A<0.80  (3)
5.00×10-3<(c/y)/(a/x)<7.00×10-2  (4)
It is preferable that the film satisfies the following formulas (3) and (4).
(AC) / A <0.80 (3)
5.00 × 10 −3 <(c / y) / (a / x) <7.00 × 10 −2 (4)
 式中、
A:前記式(1)と同じ
a、x、y:前記式(2)と同じ
C:230℃において3時間加熱された前記フィルムをGPC測定したときの、吸光光度検出器(測定波長320nm)で測定されるポリマー成分のピークトップ分子量
c:ピークトップ分子量(C)におけるシグナル強度
である。
Where
A: a, x, y the same as the above formula (1) C: the same as the above formula (2) C: absorptiometric detector (measurement wavelength: 320 nm) when the film heated at 230 ° C. for 3 hours is measured by GPC The peak top molecular weight c of the polymer component measured in (1) is the signal intensity at the peak top molecular weight (C).
 前記ポリビニルアセタールがポリビニルブチラール(以下、PVBと略記することがある)であることが好適である。 The polyvinyl acetal is preferably polyvinyl butyral (hereinafter sometimes abbreviated as PVB).
 前記フィルムが、さらに、可塑剤を含有することが好適である。このとき、前記フィルムが、可塑剤としてトリエチレングリコール-ジ2-エチルヘキサノエートを含有することがより好適である。 It is preferable that the film further contains a plasticizer. At this time, it is more preferable that the film contains triethylene glycol-di-2-ethylhexanoate as a plasticizer.
 上記課題は、ポリビニルアルコールをアセタール化して、アセタール化度が50~85モル%、ビニルエステル単量体単位の含有量が0.1~20モル%、粘度平均重合度が1400~5000であるポリビニルアセタールを得た後、該ポリビニルアセタールを溶融成形する前記フィルムの製造方法を提供することによっても解決される。 The above-described problems are obtained by acetalizing polyvinyl alcohol so that the degree of acetalization is 50 to 85 mol%, the content of vinyl ester monomer units is 0.1 to 20 mol%, and the viscosity average degree of polymerization is 1400 to 5000. The problem can also be solved by providing a method for producing the film by melt-molding the polyvinyl acetal after obtaining the acetal.
 前記フィルムからなる合わせガラス用中間膜が本発明の好適な実施態様である。当該合わせガラス用中間膜を用いて複数のガラス板を接着してなる合わせガラスも本発明の好適な実施態様である。 An interlayer film for laminated glass made of the film is a preferred embodiment of the present invention. A laminated glass formed by bonding a plurality of glass plates using the interlayer film for laminated glass is also a preferred embodiment of the present invention.
 本発明のフィルムは、加熱による着色が少ないうえに、異物(未溶解分)が少ない。また、当該フィルムを繰り返し加熱して得たフィルムを中間膜として用いた合わせガラスは優れた耐貫通性を有する。したがって、当該フィルムは、合わせガラス用中間膜、とりわけ自動車用安全合わせガラス中間膜として有用である。 The film of the present invention is less colored by heating and has less foreign matter (undissolved content). Moreover, the laminated glass using the film obtained by repeatedly heating the film as an intermediate film has excellent penetration resistance. Therefore, the film is useful as an interlayer film for laminated glass, in particular, a safety laminated glass interlayer film for automobiles.
実施例1のフィルムにおいて、分子量と示差屈折率検出器(RI)で測定された値との関係、及び分子量と吸光光度検出器(UV)(測定波長280nm)で測定された吸光度との関係を示したグラフである。In the film of Example 1, the relationship between the molecular weight and the value measured by the differential refractive index detector (RI), and the relationship between the molecular weight and the absorbance measured by the absorbance detector (UV) (measurement wavelength 280 nm). It is the shown graph. PVA-1において、分子量と示差屈折率検出器(RI)で測定された値との関係、及び分子量と吸光光度検出器(UV)(測定波長280nm)で測定された吸光度との関係を示したグラフである。In PVA-1, the relationship between the molecular weight and the value measured by the differential refractive index detector (RI), and the relationship between the molecular weight and the absorbance measured by the absorbance detector (UV) (measurement wavelength 280 nm) were shown. It is a graph. PVB-1において、分子量と示差屈折率検出器(RI)で測定された値との関係、及び分子量と吸光光度検出器(UV)(測定波長280nm)で測定された吸光度との関係を示したグラフである。In PVB-1, the relationship between the molecular weight and the value measured by the differential refractive index detector (RI), and the relationship between the molecular weight and the absorbance measured by the absorptiometric detector (UV) (measurement wavelength 280 nm) were shown. It is a graph.
 本発明のフィルムは、アセタール化度が50~85モル%、ビニルエステル単量体単位含有量が0.1~20モル%、粘度平均重合度が1400~5000であるポリビニルアセタールを含有するフィルムであって、下記式(1)及び(2)を満たすものである。
(A-B)/A<0.80  (1)
1.00×10-2<(b/y)/(a/x)<2.00×10-1  (2)
The film of the present invention is a film containing polyvinyl acetal having an acetalization degree of 50 to 85 mol%, a vinyl ester monomer unit content of 0.1 to 20 mol%, and a viscosity average polymerization degree of 1400 to 5000. Therefore, the following expressions (1) and (2) are satisfied.
(AB) / A <0.80 (1)
1.00 × 10 −2 <(b / y) / (a / x) <2.00 × 10 −1 (2)
 式中、
A:230℃において3時間加熱された前記フィルムをGPC測定したときの、示差屈折率検出器で測定されるポリマー成分のピークトップ分子量
a:ピークトップ分子量(A)におけるシグナル強度
B:230℃において3時間加熱された前記フィルムをGPC測定したときの、吸光光度検出器(測定波長280nm)で測定されるポリマー成分のピークトップ分子量
b:ピークトップ分子量(B)におけるシグナル強度
x:単分散のポリメタクリル酸メチルをGPC測定したときの、示差屈折率検出器で測定されるピークトップ分子量におけるシグナル強度
y:前記単分散のポリメタクリル酸メチルをGPC測定したときの、吸光光度検出器(測定波長220nm)で測定されるピークトップ分子量におけるシグナル強度
である。
Where
A: When the film heated at 230 ° C. for 3 hours is subjected to GPC measurement, the peak top molecular weight of the polymer component measured by the differential refractive index detector a: the signal intensity at the peak top molecular weight (A) B: at 230 ° C. When the film heated for 3 hours is measured by GPC, the peak intensity of the polymer component measured by an absorptiometer (measurement wavelength: 280 nm) b: signal intensity at peak top molecular weight (B) x: monodisperse poly Signal intensity at peak top molecular weight measured with a differential refractive index detector when GPC measurement is performed on methyl methacrylate y: Absorbance detector (measurement wavelength 220 nm when GPC measurement is performed on the monodispersed polymethyl methacrylate) ) Is the signal intensity at the peak top molecular weight measured in (1).
 ただし、フィルム及びPMMAのGPC測定において、
移動相:20mmol/lトリフルオロ酢酸ナトリウム含有HFIP
試料濃度:1.00mg/ml(溶媒:20mmol/lトリフルオロ酢酸ナトリウム含有HFIP)
試料注入量:100μl
カラム温度:40℃
流速:1.0ml/分
である。
However, in GPC measurement of film and PMMA,
Mobile phase: HFIP containing 20 mmol / l sodium trifluoroacetate
Sample concentration: 1.00 mg / ml (solvent: 20 mmol / l HFIP containing sodium trifluoroacetate)
Sample injection volume: 100 μl
Column temperature: 40 ° C
Flow rate: 1.0 ml / min.
 本発明におけるGPC測定では、示差屈折率検出器及び吸光光度検出器を有し、これらの検出器による測定を同時に行うことができるGPC装置を使用する。吸光光度検出器の検出部のセルは、セル長(光路長)が10mmのものが好ましい。吸光光度検出器は、特定波長の紫外光の吸収を測定するものでもよいし、特定範囲の波長の紫外光の吸収を分光測定するものでもよい。測定に供されたフィルムは、GPCカラムによって各分子量成分に分離される。示差屈折率検出器によるシグナル強度は、概ねフィルム成分の濃度(g/l)に比例する。一方、吸光光度検出器により検出される成分は、所定の波長を吸収する構造を有するもののみである。前記GPC測定により、フィルムの各分子量成分ごとの、濃度および所定の波長における吸光度を測定することができる。 In the GPC measurement in the present invention, a GPC apparatus having a differential refractive index detector and an absorptiometric detector and capable of simultaneously performing measurement by these detectors is used. The cell of the detection part of the absorptiometric detector preferably has a cell length (optical path length) of 10 mm. The absorptiometric detector may measure the absorption of ultraviolet light having a specific wavelength, or may measure the absorption of ultraviolet light having a specific range of wavelengths. The film subjected to the measurement is separated into each molecular weight component by a GPC column. The signal intensity by the differential refractive index detector is approximately proportional to the concentration (g / l) of the film component. On the other hand, the components detected by the absorptiometric detector are only those having a structure that absorbs a predetermined wavelength. By the GPC measurement, the concentration and absorbance at a predetermined wavelength can be measured for each molecular weight component of the film.
 前記GPC測定において測定されるフィルム及びPMMAの溶解に用いる溶媒及び移動相として、20mmol/lの濃度のトリフルオロ酢酸ナトリウム含有HFIPを用いる。HFIPは、本発明のフィルム及びPMMAを溶解させることができる。また、トリフルオロ酢酸ナトリウムを添加することにより、カラム充填剤へのフィルム成分やPMMAの吸着が防止される。前記GPC測定における流速やカラム温度は使用するカラムの種類等によって適宜調整する。前記GPC測定における流速は通常1.0ml/分であり、カラム温度は通常40℃である。 HFIP containing sodium trifluoroacetate having a concentration of 20 mmol / l is used as the solvent and mobile phase used for dissolving the film and PMMA measured in the GPC measurement. HFIP can dissolve the film and PMMA of the present invention. Further, by adding sodium trifluoroacetate, adsorption of film components and PMMA to the column filler is prevented. The flow rate and column temperature in the GPC measurement are appropriately adjusted according to the type of column used. The flow rate in the GPC measurement is usually 1.0 ml / min, and the column temperature is usually 40 ° C.
 前記GPC測定において使用されるGPCカラムは、本発明のフィルム中の成分を分子量ごとに分離できるものであれば特に限定されない。具体的には、昭和電工株式会社製「GPC HFIP-806M」等が好適に用いられる。 The GPC column used in the GPC measurement is not particularly limited as long as the components in the film of the present invention can be separated for each molecular weight. Specifically, “GPC HFIP-806M” manufactured by Showa Denko KK is preferably used.
 本発明において、標準PMMAとは、単分散のPMMAである。標準PMMAとして、通常、GPC測定による分子量測定の検量線作成用の標品として使用される単分散のPMMAを使用できる。分子量の異なる数種類の標準PMMAを測定し、GPC溶出容量と標準PMMAの分子量から検量線を作成する。本発明においては、示差屈折率検出器による測定には当該検出器を用いて作成した検量線を使用し、吸光光度検出器による測定には当該検出器(測定波長220nm)を用いて作成した検量線を使用する。これらの検量線を用いてGPC溶出容量から分子量に換算し、ピークトップ分子量(A)及びピークトップ分子量(B)を求める。 In the present invention, standard PMMA is monodispersed PMMA. As the standard PMMA, monodispersed PMMA, which is usually used as a standard for preparing a calibration curve for molecular weight measurement by GPC measurement, can be used. Several types of standard PMMA with different molecular weights are measured, and a calibration curve is created from the GPC elution volume and the molecular weight of the standard PMMA. In the present invention, a calibration curve prepared using the detector is used for the measurement with the differential refractive index detector, and a calibration prepared using the detector (measurement wavelength: 220 nm) for the measurement with the absorptiometric detector. Use lines. Using these calibration curves, the GPC elution volume is converted into the molecular weight, and the peak top molecular weight (A) and the peak top molecular weight (B) are determined.
 前記GPC測定の前に、フィルムを230℃において3時間加熱する。本発明においては、以下の方法でフィルムを加熱する。フィルムを圧力2MPa、230℃にて、3時間熱プレスすることにより加熱を行う。これにより、加熱処理後の試料の色相の差異を吸光度(すなわち、吸光光度検出器で検出されるシグナル強度)の差異に明確に反映させる。加熱に供するフィルムの厚みは、600~800μmであり、通常の合わせガラス中間膜の厚みである概ね760μmであることが好ましい。 The film is heated at 230 ° C. for 3 hours before the GPC measurement. In the present invention, the film is heated by the following method. The film is heated by hot pressing for 3 hours at a pressure of 2 MPa and 230 ° C. Thereby, the difference in the hue of the sample after the heat treatment is clearly reflected in the difference in the absorbance (that is, the signal intensity detected by the absorptiometric detector). The thickness of the film to be heated is 600 to 800 μm, preferably about 760 μm, which is the thickness of a normal laminated glass interlayer.
 加熱されたフィルムを前述した溶媒(トリフルオロ酢酸ナトリウム含有HFIP)に溶解させて測定試料を得る。測定試料の濃度は1.00mg/mlとし、注入量は100μlとする。但し、フィルム中のポリビニルアセタールの粘度平均重合度が2400を超える場合、排除体積が増大するため、測定試料の濃度が1.00mg/mlでは再現性良く測定できない場合がある。その場合には、適宜希釈した試料(注入量100μl)を用いる。吸光光度検出器及び示差屈折率検出器で検出されるシグナル強度は試料の濃度に比例する。したがって、希釈した試料の濃度と実測された各シグナル強度を用いて、測定試料の濃度が1.00mg/mlの場合の各シグナル強度に換算する。 A measurement sample is obtained by dissolving the heated film in the above-described solvent (HFIP containing sodium trifluoroacetate). The concentration of the measurement sample is 1.00 mg / ml, and the injection volume is 100 μl. However, when the viscosity average polymerization degree of the polyvinyl acetal in the film exceeds 2400, the excluded volume increases, and therefore the measurement sample concentration may not be measured with good reproducibility at 1.00 mg / ml. In that case, an appropriately diluted sample (injection amount 100 μl) is used. The signal intensity detected by the absorptiometric detector and the differential refractive index detector is proportional to the concentration of the sample. Therefore, the concentration of the diluted sample and the actually measured signal intensity are used to convert each signal intensity when the concentration of the measurement sample is 1.00 mg / ml.
 図1は、後述する実施例において、本発明のフィルムをGPC測定して得られた、分子量と示差屈折率検出器で測定されたシグナル強度との関係、及び分子量と吸光光度検出器(測定波長280nm)で測定されたシグナル強度(吸光度)との関係を示したグラフである。図1を用いて本発明におけるGPC測定についてさらに説明する。図1において、「RI」で示されるクロマトグラムは、溶出容量から換算したフィルム成分の分子量(横軸)に対して、示差屈折率検出器で測定されたシグナル強度をプロットしたものである。当該クロマトグラム中の分子量10万付近に見られるピークがポリマー成分のピークである。本発明において、このようなポリマー成分のピークの位置における分子量をポリマー成分のピークトップ分子量(A)とし、ピークトップ分子量(A)におけるシグナル強度をシグナル強度(a)とする。本発明のフィルムは、粘度平均重合度が1400~5000であるポリビニルアセタールを含有するため、通常、ポリマー成分のピークトップ分子量(A)は3500を超える。なお、図1において、分子量1500付近に見られるピークはフィルムに含有される可塑剤のピークである。クロマトグラム中にピークトップ分子量が3500を超えるピークが複数存在する場合には、ピーク高さが最も高いピークの位置における分子量をピークトップ分子量(A)とする。 FIG. 1 shows the relationship between the molecular weight and the signal intensity measured by the differential refractive index detector, and the molecular weight and the absorptiometric detector (measurement wavelength) obtained by GPC measurement of the film of the present invention. It is the graph which showed the relationship with the signal intensity | strength (absorbance) measured by 280 nm. The GPC measurement in the present invention will be further described with reference to FIG. In FIG. 1, the chromatogram indicated by “RI” is a plot of the signal intensity measured by the differential refractive index detector against the molecular weight (horizontal axis) of the film component converted from the elution volume. The peak seen in the chromatogram near the molecular weight of 100,000 is the peak of the polymer component. In the present invention, the molecular weight at the peak position of such a polymer component is defined as the peak top molecular weight (A) of the polymer component, and the signal intensity at the peak top molecular weight (A) is defined as the signal intensity (a). Since the film of the present invention contains polyvinyl acetal having a viscosity average degree of polymerization of 1400 to 5000, the peak top molecular weight (A) of the polymer component usually exceeds 3500. In addition, in FIG. 1, the peak seen in the molecular weight 1500 vicinity is a peak of the plasticizer contained in a film. When there are a plurality of peaks having a peak top molecular weight exceeding 3500 in the chromatogram, the molecular weight at the peak position having the highest peak height is defined as the peak top molecular weight (A).
 図1において、「UV」で示されるクロマトグラムは、溶出容量から換算したフィルム成分の分子量(横軸)に対して、吸光光度検出器(測定波長280nm)で測定されたシグナル強度(吸光度)をプロットしたものである。当該クロマトグラム中の分子量5万付近に見られるピークがポリマー成分のピークである。本発明において、このようなポリマー成分のピークの位置における分子量をポリマー成分のピークトップ分子量(B)とし、ピークトップ分子量(B)におけるシグナル強度(吸光度)をシグナル強度(b)とする。本発明のフィルムは、粘度平均重合度が1400~5000であるポリビニルアセタールを含有するため、通常、ポリマー成分のピークトップ分子量(B)は3500を超える。クロマトグラム中にピークトップ分子量が3500を超えるピークが複数存在する場合には、ピーク高さが最も高いピークの位置における分子量をピークトップ分子量(B)とする。 In FIG. 1, the chromatogram indicated by “UV” shows the signal intensity (absorbance) measured with an absorptiometric detector (measurement wavelength 280 nm) with respect to the molecular weight (horizontal axis) of the film component converted from the elution volume. It is a plot. The peak seen in the chromatogram near the molecular weight of 50,000 is the peak of the polymer component. In the present invention, the molecular weight at the peak position of such a polymer component is defined as the peak top molecular weight (B) of the polymer component, and the signal intensity (absorbance) at the peak top molecular weight (B) is defined as the signal intensity (b). Since the film of the present invention contains polyvinyl acetal having a viscosity average polymerization degree of 1400 to 5000, the peak top molecular weight (B) of the polymer component usually exceeds 3500. When there are a plurality of peaks having a peak top molecular weight exceeding 3500 in the chromatogram, the molecular weight at the peak position having the highest peak height is defined as the peak top molecular weight (B).
 本発明のフィルムは、上述した方法によりGPC測定されたときの、示差屈折率検出器で測定されるポリマー成分のピークトップ分子量(A)と、吸光光度検出器(測定波長280nm)で測定されるポリマー成分のピークトップ分子量(B)が下記式(1)を満たす。
(A-B)/A<0.80   (1)
The film of the present invention is measured by a peak top molecular weight (A) of a polymer component measured by a differential refractive index detector and a spectrophotometric detector (measurement wavelength: 280 nm) when GPC is measured by the above-described method. The peak top molecular weight (B) of the polymer component satisfies the following formula (1).
(AB) / A <0.80 (1)
 ピークトップ分子量(A)は、フィルム中のポリマー成分の分子量の指標となる値である。一方、ピークトップ分子量(B)は、ポリマー成分中に存在する、280nmに吸収を有する成分に由来する。通常、ピークトップ分子量(B)よりもピークトップ分子量(A)のほうが大きいため、(A-B)/Aは正の値になる。ピークトップ分子量(B)が大きくなれば、(A-B)/Aは小さくなり、ピークトップ分子量(B)が小さくなれば、(A-B)/Aは大きくなる。すなわち、(A-B)/Aが大きい場合には、ポリマー成分中の低分子量成分に波長280nmの紫外線を吸収する成分が多いことを意味する。 The peak top molecular weight (A) is a value that serves as an index of the molecular weight of the polymer component in the film. On the other hand, the peak top molecular weight (B) is derived from a component having absorption at 280 nm, which is present in the polymer component. Usually, since the peak top molecular weight (A) is larger than the peak top molecular weight (B), (AB) / A becomes a positive value. As the peak top molecular weight (B) increases, (AB) / A decreases, and as the peak top molecular weight (B) decreases, (AB) / A increases. That is, when (AB) / A is large, it means that the low molecular weight component in the polymer component contains many components that absorb ultraviolet light having a wavelength of 280 nm.
 (A-B)/Aが0.80以上の場合、上述の通り、低分子量成分に波長280nmの紫外線を吸収する成分が多くなる。この場合には、フィルム中の異物が増える。また、フィルムの耐着色性、フィルム中の異物(未溶解分)及びフィルムを用いて得られる合わせガラスの耐貫通性に関する性能のバランスが取れない。(A-B)/Aは、好ましくは0.75未満であり、より好ましくは0.70未満である。 When (AB) / A is 0.80 or more, as described above, the low molecular weight component contains more components that absorb ultraviolet light having a wavelength of 280 nm. In this case, foreign matter in the film increases. Moreover, the performance regarding the coloring resistance of a film, the foreign material (undissolved part) in a film, and the penetration resistance of the laminated glass obtained using a film cannot be taken. (AB) / A is preferably less than 0.75, more preferably less than 0.70.
 本発明のフィルムは下記式(2)を満たす。
1.00×10-2<(b/y)/(a/x)<2.00×10-1  (2)
The film of the present invention satisfies the following formula (2).
1.00 × 10 −2 <(b / y) / (a / x) <2.00 × 10 −1 (2)
 式(2)中、aは、前記GPC測定における、ピークトップ分子量(A)における示差屈折率検出器で測定されるシグナル強度である。bは、ピークトップ分子量(B)における吸光光度検出器(測定波長280nm)で測定されるシグナル強度(吸光度)である。 In the formula (2), a is the signal intensity measured by the differential refractive index detector at the peak top molecular weight (A) in the GPC measurement. b is the signal intensity (absorbance) measured with an absorptiometric detector (measurement wavelength 280 nm) at the peak top molecular weight (B).
 式(2)中、xは、単分散のPMMAをGPC測定したときの、示差屈折率検出器で測定されるピークトップ分子量におけるシグナル強度である。yは、前記単分散のPMMAをGPC測定したときの、吸光光度検出器で(測定波長220nm)で測定されるピークトップ分子量におけるシグナル強度(吸光度)である。単分散のPMMAのGPC測定は、加熱されたフィルムの代わりに単分散のPMMAを用いること及び吸光光度検出器の測定波長を220nmに変更すること以外は、前述したフィルムのGPC測定と同様にして行う。シグナル強度(x)は、シグナル強度(a)と同様にして求められる。シグナル強度(y)は、シグナル強度(b)と同様にして求められる。x及びyを求める際に使用する単分散のPMMAとして、重量平均分子量約85000であるPMMAが好ましい。 In the formula (2), x is the signal intensity at the peak top molecular weight measured by the differential refractive index detector when monodispersed PMMA is measured by GPC. y is the signal intensity (absorbance) at the peak top molecular weight measured with an absorptiometer (measurement wavelength 220 nm) when the monodispersed PMMA is measured by GPC. The GPC measurement of monodisperse PMMA is the same as the GPC measurement of the film described above except that monodisperse PMMA is used instead of the heated film and the measurement wavelength of the absorptiometer is changed to 220 nm. Do. The signal intensity (x) is obtained in the same manner as the signal intensity (a). The signal intensity (y) is obtained in the same manner as the signal intensity (b). As the monodispersed PMMA used for obtaining x and y, PMMA having a weight average molecular weight of about 85,000 is preferable.
 (b/y)/(a/x)は、フィルムのポリマー成分中の、波長280nmの紫外光を吸収する構造を有する成分の含有量の指標となる。この値が大きい場合は、当該含有量が多いことを意味する。上述したとおり、示差屈折率検出器によるシグナル強度は概ねフィルム成分の濃度(g/l)に比例する。一方、吸光光度検出器により検出されるものは、測定波長である280nmに吸収を有する成分のみであり、吸光光度検出器によるシグナル強度(吸光度)は、280nmに吸収を有する成分の濃度に比例する。通常、示差屈折率検出器のシグナル強度は「ミリボルト」、吸光光度検出器のシグナル強度(吸光度)は「アブソーバンスユニット(A.U.)」で表示される。 (B / y) / (a / x) is an index of the content of a component having a structure that absorbs ultraviolet light having a wavelength of 280 nm in the polymer component of the film. When this value is large, it means that the content is large. As described above, the signal intensity by the differential refractive index detector is approximately proportional to the concentration (g / l) of the film component. On the other hand, what is detected by the absorptiometric detector is only the component having absorption at 280 nm which is the measurement wavelength, and the signal intensity (absorbance) by the absorptiometric detector is proportional to the concentration of the component having absorption at 280 nm. . Usually, the signal intensity of the differential refractive index detector is indicated by “millivolt”, and the signal intensity (absorbance) of the absorptiometric detector is indicated by “absorbance unit (AU)”.
 但し、示差屈折率検出器により測定されるシグナル強度(a)及び吸光光度検出器により得られるシグナル強度(b)は、GPC装置の機種や測定条件によって異なるため、両者の比を単純に比較することは難しい。それに対して、本発明では、以下に説明するとおり、示差屈折率検出器により得られるシグナル強度と、吸光光度検出器により得られるシグナル強度の比を、GPC装置の機種や測定条件による差がなく求められる。 However, since the signal intensity (a) measured by the differential refractive index detector and the signal intensity (b) obtained by the absorptiometric detector differ depending on the model of the GPC apparatus and the measurement conditions, the ratio of both is simply compared. It ’s difficult. On the other hand, in the present invention, as described below, the ratio of the signal intensity obtained by the differential refractive index detector and the signal intensity obtained by the absorptiometric detector is not different depending on the model of the GPC apparatus and the measurement conditions. Desired.
 本発明では、示差屈折率検出器による単分散のPMMAのシグナル強度(x)に対する示差屈折率検出器によるフィルムのシグナル強度(a)の比(a/x)と、吸光光度検出器による単分散のPMMAのシグナル強度(y)に対する吸光光度検出器によるフィルムのシグナル強度(b)の比(b/y)とをそれぞれ求める。そして、両者の比(b/y)/(a/x)を求め、これを波長280nmの紫外光を吸収する構造を有する成分の含有量の指標とする。このように、単分散のPMMAのシグナル強度を基準に用いることで、装置の機種や測定条件に関わらず、同じ指標により評価できる。 In the present invention, the ratio (a / x) of the film signal intensity (a) by the differential refractive index detector to the signal intensity (x) of monodisperse PMMA by the differential refractive index detector, and the monodispersion by the absorptiometric detector And the ratio (b / y) of the signal intensity (b) of the film by the absorptiometric detector to the signal intensity (y) of PMMA. And ratio (b / y) / (a / x) of both is calculated | required and this is made into the parameter | index of content of the component which has a structure which absorbs ultraviolet light with a wavelength of 280 nm. Thus, by using the signal intensity of monodispersed PMMA as a reference, the same index can be used for evaluation regardless of the device model and measurement conditions.
 本発明のフィルムは、下記式(2’)を満たすことが好ましく、下記式(2”)を満たすことがより好ましい。
1.50×10-2<(b/y)/(a/x)<1.50×10-1 (2’)
2.00×10-2<(b/y)/(a/x)<1.00×10-1 (2”)
The film of the present invention preferably satisfies the following formula (2 ′), and more preferably satisfies the following formula (2 ″).
1.50 × 10 −2 <(b / y) / (a / x) <1.50 × 10 −1 (2 ′)
2.00 × 10 −2 <(b / y) / (a / x) <1.00 × 10 −1 (2 ″)
 (b/y)/(a/x)が1.00×10-2以下である場合、上述の通り、フィルムのポリマー成分中に波長280nmの紫外光を吸収する成分が少ない。そのため、フィルム中の異物(未溶解分)が増える。また、フィルムの耐着色性、フィルム中の異物(未溶解分)及びフィルムを用いて得られる合わせガラスの耐貫通性に関する性能のバランスが取れない。逆に、(b/y)/(a/x)が2.00×10-1以上である場合、フィルムのポリマー成分中に波長280nmの紫外光を吸収する成分が多い。そのため、フィルムの耐着色性や得られる合わせガラスの耐貫通性が悪化する。 When (b / y) / (a / x) is 1.00 × 10 −2 or less, as described above, there are few components that absorb ultraviolet light having a wavelength of 280 nm in the polymer component of the film. Therefore, foreign matter (undissolved part) in the film increases. Moreover, the performance regarding the coloring resistance of a film, the foreign material (undissolved part) in a film, and the penetration resistance of the laminated glass obtained using a film cannot be taken. Conversely, when (b / y) / (a / x) is 2.00 × 10 −1 or more, the polymer component of the film has many components that absorb ultraviolet light having a wavelength of 280 nm. Therefore, the coloring resistance of a film and the penetration resistance of the obtained laminated glass deteriorate.
 フィルムの耐着色性、フィルム中の異物(未溶解分)及びフィルムを用いて得られる合わせガラスの耐貫通性に関する性能のバランスに優れる観点からは、前記GPC測定における、示差屈折率検出器で測定されるピークトップ分子量(A)と、吸光光度検出器(測定波長320nm)で測定されるピークトップ分子量(C)が下記式(3)
(A-C)/A<0.80   (3)
を満たすことが好ましい。
Measured with a differential refractive index detector in the GPC measurement from the viewpoint of excellent balance of performance regarding color resistance of the film, foreign matter in the film (undissolved content) and penetration resistance of the laminated glass obtained using the film. The peak top molecular weight (A) and the peak top molecular weight (C) measured with an absorptiometric detector (measurement wavelength 320 nm) are expressed by the following formula (3).
(AC) / A <0.80 (3)
It is preferable to satisfy.
 ピークトップ分子量(C)は、吸光光度検出器における測定波長が320nmであること以外はピークトップ分子量(B)と同様にして測定される。ピークトップ分子量(C)は、フィルム中のポリマー成分中に存在する、320nmに吸収を有する成分に由来する。通常、ピークトップ分子量(C)よりもピークトップ分子量(A)のほうが大きいため、(A-C)/Aは正の値になる。ピークトップ分子量(C)が大きくなれば、(A-C)/Aは小さくなり、ピークトップ分子量(C)が小さくなれば、(A-C)/Aは大きくなる。すなわち、(A-C)/Aが大きい場合には、ポリマー成分中の低分子量成分に320nm波長の紫外線を吸収する成分が多いことを意味する。 The peak top molecular weight (C) is measured in the same manner as the peak top molecular weight (B) except that the measurement wavelength in the absorptiometric detector is 320 nm. The peak top molecular weight (C) is derived from the component having an absorption at 320 nm, which is present in the polymer component in the film. Usually, since the peak top molecular weight (A) is larger than the peak top molecular weight (C), (AC) / A becomes a positive value. As the peak top molecular weight (C) increases, (AC) / A decreases, and as the peak top molecular weight (C) decreases, (AC) / A increases. That is, when (AC) / A is large, it means that the low molecular weight component in the polymer component contains many components that absorb ultraviolet light having a wavelength of 320 nm.
 (A-C)/Aが0.80以上の場合、上述の通り、低分子量成分に波長320nmの紫外線を吸収する成分が多くなる。この場合には、フィルム中の異物が増えるおそれがある。また、フィルムの耐着色性、フィルム中の異物(未溶解分)及びフィルムを用いて得られる合わせガラスの耐貫通性に関する性能のバランスが取れないおそれがある。(A-C)/Aは、より好ましくは0.75未満であり、さらに好ましくは0.70未満である。 When (AC) / A is 0.80 or more, as described above, the low molecular weight component contains more components that absorb ultraviolet rays having a wavelength of 320 nm. In this case, foreign matter in the film may increase. Moreover, there exists a possibility that the performance regarding the coloring resistance of a film, the foreign material (undissolved part) in a film, and the penetration resistance of the laminated glass obtained using a film cannot be taken. (AC) / A is more preferably less than 0.75, and even more preferably less than 0.70.
 本発明のフィルムは、下記式(4)を満たすことが好ましい。
5.00×10-3<(c/y)/(a/x)<7.00×10-2  (4)
The film of the present invention preferably satisfies the following formula (4).
5.00 × 10 −3 <(c / y) / (a / x) <7.00 × 10 −2 (4)
 式(4)中、a、x及びyは、上記式(2)と同じである。cは、ピークトップ分子量(C)における吸光光度検出器(測定波長320nm)で測定されるシグナル強度(吸光度)である。 In the formula (4), a, x and y are the same as the above formula (2). c is the signal intensity (absorbance) measured with an absorptiometric detector (measurement wavelength: 320 nm) at the peak top molecular weight (C).
ここで、(c/y)/(a/x)は、フィルムのポリマー成分中の、波長320nmの紫外光を吸収する構造を有する成分の含有量の指標となる。この値が大きい場合は、当該含有量が多いことを意味する。そして、吸光光度検出器における測定波長が320nmであること以外は、上述の(b/y)/(a/x)と同様にして求められる。 Here, (c / y) / (a / x) is an index of the content of a component having a structure that absorbs ultraviolet light having a wavelength of 320 nm in the polymer component of the film. When this value is large, it means that the content is large. And it calculates | requires similarly to the above-mentioned (b / y) / (a / x) except the measurement wavelength in an absorptiometric detector being 320 nm.
 本発明フィルムは、下記式(4’)を満たすことが好ましく、下記式(4”)を満たすことがより好ましい。
7.00×10-3<(c/y)/(a/x)<6.00×10-2 (4’)
1.00×10-2<(c/y)/(a/x)<5.00×10-2 (4”)
The film of the present invention preferably satisfies the following formula (4 ′), and more preferably satisfies the following formula (4 ″).
7.00 × 10 −3 <(c / y) / (a / x) <6.00 × 10 −2 (4 ′)
1.00 × 10 -2 <(c / y) / (a / x) <5.00 × 10 -2 (4 ")
 (c/y)/(a/x)が5.00×10-3以下である場合、上述の通り、フィルムのポリマー成分中に波長320nmの紫外光を吸収する成分が少ない。そのため、フィルム中の異物が増えるおそれがある。また、フィルムの耐着色性、フィルム中の異物(未溶解分)及びフィルムを用いて得られる合わせガラスの耐貫通性に関する性能のバランスが取れないおそれがある。逆に、(c/y)/(a/x)が7.00×10-2以上である場合、フィルムのポリマー成分中に波長320nmの紫外光を吸収する成分が多い。そのため、フィルムの耐着色性や得られる合わせガラスの耐貫通性が悪化するおそれがある。 When (c / y) / (a / x) is 5.00 × 10 −3 or less, as described above, the polymer component of the film has few components that absorb ultraviolet light having a wavelength of 320 nm. Therefore, there is a possibility that foreign matter in the film increases. Moreover, there exists a possibility that the performance regarding the coloring resistance of a film, the foreign material (undissolved part) in a film, and the penetration resistance of the laminated glass obtained using a film cannot be taken. Conversely, when (c / y) / (a / x) is 7.00 × 10 −2 or more, the polymer component of the film has many components that absorb ultraviolet light having a wavelength of 320 nm. Therefore, there exists a possibility that the coloring resistance of a film and the penetration resistance of the laminated glass obtained may deteriorate.
 本発明のフィルム中のポリビニルアセタールのアセタール化度は、50~85モル%である。アセタール化度は、好ましくは55~82モル%、より好ましくは60~78モル%、更に好ましくは65~75モル%である。アセタール化度が50モル%に満たない場合には、可塑剤などとの相溶性が低下する。また、得られる合わせガラスの耐貫通性が低下する。一方、アセタール化度が85モル%を超える場合には、アセタール化反応の効率が著しく低下するため、高温で長時間反応を行う必要がある。その結果、得られる合わせガラスの耐貫通性が低下するとともに、得られるフィルムの耐着色性が低下する。 The degree of acetalization of the polyvinyl acetal in the film of the present invention is 50 to 85 mol%. The degree of acetalization is preferably 55 to 82 mol%, more preferably 60 to 78 mol%, still more preferably 65 to 75 mol%. When the degree of acetalization is less than 50 mol%, the compatibility with a plasticizer or the like decreases. Moreover, the penetration resistance of the obtained laminated glass falls. On the other hand, when the degree of acetalization exceeds 85 mol%, the efficiency of the acetalization reaction is remarkably reduced, and therefore it is necessary to carry out the reaction at a high temperature for a long time. As a result, the penetration resistance of the obtained laminated glass is lowered, and the coloring resistance of the obtained film is lowered.
 なお、アセタール化度はポリビニルアセタールを構成する全単量体単位に対する、アセタール化されたビニルアルコール単量体単位の割合を表す。原料のポリビニルアルコール中のビニルアルコール単量体単位のうち、アセタール化されなかったものは、得られるポリビニルアセタール中において、ビニルアルコール単量体単位として残存する。 The degree of acetalization represents the ratio of the acetalized vinyl alcohol monomer unit to the total monomer units constituting the polyvinyl acetal. Among the vinyl alcohol monomer units in the raw material polyvinyl alcohol, those not acetalized remain as vinyl alcohol monomer units in the obtained polyvinyl acetal.
 前記ポリビニルアセタールの粘度平均重合度は、JIS-K6726に準じて測定される原料のポリビニルアルコールの粘度平均重合度で表される。すなわち、ポリビニルアルコールをけん化度99.5モル%以上に再けん化し、精製した後、30℃の水中で測定した極限粘度[η]から次式により求めることができる。ポリビニルアルコールの粘度平均重合度と、それをアセタール化して得られるポリビニルアセタールの粘度平均重合度とは、実質的に同じである。
  P=([η]×10000/8.29)(1/0.62)
The viscosity average polymerization degree of the polyvinyl acetal is represented by the viscosity average polymerization degree of the starting polyvinyl alcohol measured according to JIS-K6726. That is, after re-saponifying polyvinyl alcohol to a saponification degree of 99.5 mol% or more and purifying it, it can be obtained from the intrinsic viscosity [η] measured in water at 30 ° C. by the following equation. The viscosity average polymerization degree of polyvinyl alcohol and the viscosity average polymerization degree of polyvinyl acetal obtained by acetalizing it are substantially the same.
P = ([η] × 10000 / 8.29) (1 / 0.62)
 前記ポリビニルアセタールの粘度平均重合度は1400~5000であり、1500~3500が好ましい。粘度平均重合度が1400に満たない場合には、フィルム強度が低く、得られる合わせガラスの耐貫通性が不十分になる。逆に、重合度が5000を超える場合には溶融粘度が高くなりすぎて製膜が困難になる。 The viscosity average polymerization degree of the polyvinyl acetal is 1400 to 5000, and preferably 1500 to 3500. When the viscosity average degree of polymerization is less than 1400, the film strength is low, and the resulting laminated glass has insufficient penetration resistance. On the other hand, when the polymerization degree exceeds 5000, the melt viscosity becomes too high and film formation becomes difficult.
 前記ポリビニルアセタールにおけるビニルエステル単量体単位の含有量は0.1~20モル%であり、好ましくは0.3~18モル%であり、より好ましくは0.5~15モル%であり、更に好ましくは0.7~13モル%である。ビニルエステル単量体単位の含有量が0.1モル%に満たない場合、ポリビニルアセタールを安定に製造することができず、製膜できない。また、ビニルエステル単量体単位の含有量が20モル%を超える場合には、フィルムの着色が激しくなる。 The content of the vinyl ester monomer unit in the polyvinyl acetal is 0.1 to 20 mol%, preferably 0.3 to 18 mol%, more preferably 0.5 to 15 mol%, Preferably, it is 0.7 to 13 mol%. When the content of the vinyl ester monomer unit is less than 0.1 mol%, the polyvinyl acetal cannot be stably produced and the film cannot be formed. On the other hand, when the content of the vinyl ester monomer unit exceeds 20 mol%, the film becomes intensely colored.
 前記ポリビニルアセタール中の、アセタール化された単量体単位、ビニルエステル単量体単位及びビニルアルコール単量体単位以外の単量体単位の含有量は、好ましくは20モル%以下、より好ましくは10モル%以下である。 The content of monomer units other than acetalized monomer units, vinyl ester monomer units and vinyl alcohol monomer units in the polyvinyl acetal is preferably 20 mol% or less, more preferably 10%. It is less than mol%.
 前記ポリビニルアセタールは、通常、ポリビニルアルコールをアセタール化することにより製造する。 The polyvinyl acetal is usually produced by acetalizing polyvinyl alcohol.
 ポリビニルアセタールの製造に用いられる原料PVAのけん化度は80~99.9モル%が好ましく、より好ましくは82~99.7モル%であり、更に好ましくは85~99.5モル%であり、特に好ましくは87~99.3モル%である。原料PVAのけん化度が80モル%に満たない場合、フィルム中の異物(未溶解分)の数が増加するおそれや、フィルムの耐着色性が低下するおそれがある。けん化度が99.9モル%を超える場合、PVAを安定に製造することができないおそれがある。 The saponification degree of the raw material PVA used for the production of polyvinyl acetal is preferably 80 to 99.9 mol%, more preferably 82 to 99.7 mol%, still more preferably 85 to 99.5 mol%, Preferably, it is 87 to 99.3 mol%. When the saponification degree of raw material PVA is less than 80 mol%, there is a possibility that the number of foreign matters (undissolved part) in the film may increase or the coloring resistance of the film may be lowered. When the saponification degree exceeds 99.9 mol%, there is a possibility that PVA cannot be stably produced.
 原料PVAは、カルボン酸のアルカリ金属塩を含有しても良く、その含有量はアルカリ金属の質量換算で0.50質量%以下が好ましく、0.37質量%以下がより好ましく、0.28質量%以下が更に好ましく、0.23質量以下が特に好ましい。原料PVA中のカルボン酸のアルカリ金属塩の含有量が0.50質量%を超える場合、フィルムが着色しやすくなるおそれがある。カルボン酸のアルカリ金属塩の含有量(アルカリ金属の質量換算)は、PVAを白金ルツボにて灰化したのち、得られた灰分をICP発光分析により測定して得たアルカリ金属イオン量から求めることができる。 The raw material PVA may contain an alkali metal salt of carboxylic acid, and its content is preferably 0.50% by mass or less, more preferably 0.37% by mass or less, and 0.28% by mass in terms of the mass of the alkali metal. % Or less is more preferable, and 0.23 mass or less is particularly preferable. When the content of the alkali metal salt of the carboxylic acid in the raw material PVA exceeds 0.50% by mass, the film may be easily colored. The content of alkali metal salt of carboxylic acid (calculated in terms of alkali metal mass) is obtained from the amount of alkali metal ions obtained by ashing PVA with a platinum crucible and then measuring the resulting ash content by ICP emission analysis. Can do.
 原料PVAの製造に用いられるビニルエステルモノマーとしては、例えばギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、ピバリン酸ビニルおよびバーサティック酸ビニル等が挙げられ、とりわけ酢酸ビニルが好ましい。 Examples of vinyl ester monomers used in the production of raw material PVA include vinyl formate, vinyl acetate, vinyl propionate, vinyl valelate, vinyl caprate, vinyl laurate, vinyl stearate, vinyl benzoate, vinyl pivalate and versatic. Examples thereof include vinyl acid, and vinyl acetate is particularly preferable.
 また、原料PVAは、ビニルエステルモノマーを2-メルカプトエタノール、n-ドデシルメルカプタン、メルカプト酢酸、3-メルカプトプロピオン酸などのチオール化合物の存在下で重合させ、得られるポリビニルエステルをけん化することによっても製造することもできる。この方法により、チオール化合物に由来する官能基が末端に導入されたPVAが得られる。 The raw material PVA can also be produced by polymerizing vinyl ester monomers in the presence of thiol compounds such as 2-mercaptoethanol, n-dodecyl mercaptan, mercaptoacetic acid, 3-mercaptopropionic acid, and saponifying the resulting polyvinyl ester. You can also By this method, PVA in which a functional group derived from a thiol compound is introduced at the terminal is obtained.
 ビニルエステル単量体を重合する方法としては、塊状重合法、溶液重合法、懸濁重合法、乳化重合法などの公知の方法が挙げられる。その方法の中でも、無溶媒で行う塊状重合法またはアルコールなどの溶媒を用いて行う溶液重合法が通常採用される。本発明の効果を高める点では、低級アルコールと共に重合する溶液重合法が好ましい。低級アルコールとしては、特に限定はされないが、メタノール、エタノール、プロパノール、イソプロパノールなど炭素数3以下のアルコールが好ましく、通常、メタノールが用いられる。塊状重合法や溶液重合法で重合反応を行うにあたって、反応の方式は回分式および連続式のいずれの方式にても実施可能である。重合反応に使用される開始剤としては、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチル-バレロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)などのアゾ系開始剤;過酸化ベンゾイル、n-プロピルパーオキシカーボネート、パーオキシジカーボネートなどの有機過酸化物系開始剤など本発明の効果を損なわない範囲で公知の開始剤が挙げられる。中でも、60℃での半減期が10~110分の有機化酸化物系開始剤が好ましく、特にパーオキシジカーボネートを用いることが好ましい。重合反応を行う際の重合温度については特に制限はないが、5℃~200℃の範囲が適当である。 Examples of the method for polymerizing the vinyl ester monomer include known methods such as bulk polymerization, solution polymerization, suspension polymerization, and emulsion polymerization. Among the methods, a bulk polymerization method performed without a solvent or a solution polymerization method performed using a solvent such as alcohol is usually employed. In terms of enhancing the effect of the present invention, a solution polymerization method in which polymerization is performed together with a lower alcohol is preferable. The lower alcohol is not particularly limited, but an alcohol having 3 or less carbon atoms such as methanol, ethanol, propanol and isopropanol is preferable, and methanol is usually used. When performing the polymerization reaction by the bulk polymerization method or the solution polymerization method, the reaction can be carried out by either a batch method or a continuous method. Examples of the initiator used in the polymerization reaction include 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethyl-valeronitrile), 2,2′-azobis (4-methoxy). Azo initiators such as -2,4-dimethylvaleronitrile); organic peroxide initiators such as benzoyl peroxide, n-propyl peroxycarbonate, peroxydicarbonate, etc., within a range that does not impair the effects of the present invention. A well-known initiator is mentioned. Among them, an organic oxide initiator having a half-life of 10 to 110 minutes at 60 ° C. is preferable, and peroxydicarbonate is particularly preferable. There is no particular limitation on the polymerization temperature for carrying out the polymerization reaction, but a range of 5 ° C to 200 ° C is suitable.
 ビニルエステル単量体をラジカル重合させる際には、本発明の効果が損なわれない範囲であれば、必要に応じて、共重合可能な単量体を共重合させることができる。このような単量体としては、エチレン、プロピレン、1-ブテン、イソブテン、1-ヘキセン等のα-オレフィン;フマール酸、マレイン酸、イタコン酸、無水マレイン酸、無水イタコン酸等のカルボン酸またはその誘導体;アクリル酸またはその塩;アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル等のアクリル酸エステル類;メタクリル酸またはその塩;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸イソプロピル等のメタクリル酸エステル類;アクリルアミド、N-メチルアクリルアミド、N-エチルアクリルアミド等のアクリルアミド誘導体;メタクリルアミド、N-メチルメタクリルアミド、N-エチルメタクリルアミド等のメタクリルアミド誘導体;メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、イソプロピルビニルエーテル、n-ブチルビニルエーテル等のビニルエーテル類;エチレングリコールビニルエーテル、1,3-プロパンジオールビニルエーテル、1,4-ブタンジオールビニルエーテル等のヒドロキシ基含有ビニルエーテル類;アリルアセテート、プロピルアリルエーテル、ブチルアリルエーテル、ヘキシルアリルエーテル等のアリルエーテル類;オキシアルキレン基を有する単量体;酢酸イソプロペニル、3-ブテン-1-オール、4-ペンテン-1-オール、5-ヘキセン-1-オール、7-オクテン-1-オール、9-デセン-1-オール、3-メチル-3-ブテン-1-オール等のヒドロキシ基含有α-オレフィン類;エチレンスルホン酸、アリルスルホン酸、メタリルスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸等のスルホン酸基を有する単量体;ビニロキシエチルトリメチルアンモニウムクロライド、ビニロキシブチルトリメチルアンモニウムクロライド、ビニロキシエチルジメチルアミン、ビニロキシメチルジエチルアミン、N-アクリルアミドメチルトリメチルアンモニウムクロライド、N-アクリルアミドエチルトリメチルアンモニウムクロライド、N-アクリルアミドジメチルアミン、アリルトリメチルアンモニウムクロライド、メタリルトリメチルアンモニウムクロライド、ジメチルアリルアミン、アリルエチルアミン等のカチオン基を有する単量体;ビニルトリメトキシシラン、ビニルメチルジメトキシシラン、ビニルジメチルメトキシシラン、ビニルトリエトキシシラン、ビニルメチルジエトキシシラン、ビニルジメチルエトキシシラン、3-(メタ)アクリルアミド-プロピルトリメトキシシラン、3-(メタ)アクリルアミド-プロピルトリエトキシシラン等のシリル基を有する単量体などが挙げられる。これらのビニルエステル単量体と共重合可能な単量体の使用量は、その使用される目的および用途等によっても異なるが、通常、共重合に用いられる全ての単量体を基準にした割合で20モル%以下、好ましくは10モル%以下である。 When the vinyl ester monomer is radically polymerized, a copolymerizable monomer can be copolymerized as necessary as long as the effects of the present invention are not impaired. Examples of such monomers include α-olefins such as ethylene, propylene, 1-butene, isobutene, 1-hexene; carboxylic acids such as fumaric acid, maleic acid, itaconic acid, maleic anhydride, itaconic anhydride, or the like Derivatives; acrylic acid or salts thereof; acrylic acid esters such as methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate; methacrylic acid or salts thereof; methyl methacrylate, ethyl methacrylate, n-methacrylate Methacrylic acid esters such as propyl and isopropyl methacrylate; Acrylamide derivatives such as acrylamide, N-methylacrylamide and N-ethylacrylamide; Derivatives of methacrylamide such as methacrylamide, N-methylmethacrylamide and N-ethylmethacrylamide Vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, n-propyl vinyl ether, isopropyl vinyl ether, and n-butyl vinyl ether; vinyl group-containing vinyl ethers such as ethylene glycol vinyl ether, 1,3-propanediol vinyl ether, and 1,4-butanediol vinyl ether Allyl ethers such as allyl acetate, propyl allyl ether, butyl allyl ether, hexyl allyl ether; monomers having an oxyalkylene group; isopropenyl acetate, 3-buten-1-ol, 4-penten-1-ol, Hydroxy group-containing α-olefins such as 5-hexen-1-ol, 7-octen-1-ol, 9-decen-1-ol, 3-methyl-3-buten-1-ol; Monomers having a sulfonic acid group such as phonic acid, allylsulfonic acid, methallylsulfonic acid, 2-acrylamido-2-methylpropanesulfonic acid; vinyloxyethyltrimethylammonium chloride, vinyloxybutyltrimethylammonium chloride, vinyloxyethyl Cationic groups such as dimethylamine, vinyloxymethyldiethylamine, N-acrylamidomethyltrimethylammonium chloride, N-acrylamidoethyltrimethylammonium chloride, N-acrylamidodimethylamine, allyltrimethylammonium chloride, methallyltrimethylammonium chloride, dimethylallylamine, allylethylamine Monomers having a vinyl trimethoxysilane, vinylmethyldimethoxysilane, Monomers having a silyl group such as xylsilane, vinyltriethoxysilane, vinylmethyldiethoxysilane, vinyldimethylethoxysilane, 3- (meth) acrylamide-propyltrimethoxysilane, 3- (meth) acrylamide-propyltriethoxysilane Etc. The amount of the monomer that can be copolymerized with these vinyl ester monomers varies depending on the purpose and use of the monomer, but is usually based on all monomers used for copolymerization. Is 20 mol% or less, preferably 10 mol% or less.
 上述の方法により得られたポリビニルエステルをアルコール溶媒中でけん化することによりPVAが得られる。 PVA is obtained by saponifying the polyvinyl ester obtained by the above method in an alcohol solvent.
 ポリビニルエステルのけん化反応の触媒としては通常アルカリ性物質が用いられ、その例として、水酸化カリウム、水酸化ナトリウムなどのアルカリ金属の水酸化物、およびナトリウムメトキシドなどのアルカリ金属アルコキシドが挙げられる。アルカリ性物質の使用量は、ポリビニルエステルのビニルエステル単量体単位を基準にしたモル比で0.002~0.2の範囲内であることが好ましく、0.004~0.1の範囲内であることが特に好ましい。けん化触媒は、けん化反応の初期に一括して添加しても良いし、けん化反応の初期に一部を添加し、残りをけん化反応の途中で添加しても良い。 As the catalyst for the saponification reaction of polyvinyl ester, an alkaline substance is usually used, and examples thereof include alkali metal hydroxides such as potassium hydroxide and sodium hydroxide, and alkali metal alkoxides such as sodium methoxide. The amount of the alkaline substance used is preferably in the range of 0.002 to 0.2 in the molar ratio based on the vinyl ester monomer unit of the polyvinyl ester, and in the range of 0.004 to 0.1. It is particularly preferred. The saponification catalyst may be added all at once in the early stage of the saponification reaction, or a part thereof may be added in the early stage of the saponification reaction, and the rest may be added during the saponification reaction.
 けん化反応に用いることができる溶媒としては、メタノール、酢酸メチル、ジメチルスルホキシド、ジエチルスルホキシド、ジメチルホルムアミドなどが挙げられる。これらの溶媒の中でもメタノールが好ましく用いられる。その使用にあたり、メタノールの含水率が好ましくは0.001~1重量%、より好ましくは0.003~0.9重量%、特に好ましくは0.005~0.8重量%に調整される。 Examples of the solvent that can be used for the saponification reaction include methanol, methyl acetate, dimethyl sulfoxide, diethyl sulfoxide, and dimethylformamide. Of these solvents, methanol is preferably used. In its use, the water content of methanol is preferably adjusted to 0.001 to 1% by weight, more preferably 0.003 to 0.9% by weight, and particularly preferably 0.005 to 0.8% by weight.
 けん化反応は、好ましくは5~80℃、より好ましくは20~70℃の温度で行われる。けん化反応に必要とされる時間は、好ましくは5分間~10時間、より好ましくは10分間~5時間である。けん化反応は、バッチ法および連続法のいずれの方式によっても実施可能である。けん化反応の終了後に、必要に応じて、残存するけん化触媒を中和しても良い。使用可能な中和剤として、酢酸、乳酸などの有機酸、および酢酸メチルなどのエステル化合物などが挙げられる。 The saponification reaction is preferably performed at a temperature of 5 to 80 ° C., more preferably 20 to 70 ° C. The time required for the saponification reaction is preferably 5 minutes to 10 hours, more preferably 10 minutes to 5 hours. The saponification reaction can be carried out by either a batch method or a continuous method. After completion of the saponification reaction, the remaining saponification catalyst may be neutralized as necessary. Usable neutralizing agents include organic acids such as acetic acid and lactic acid, and ester compounds such as methyl acetate.
 けん化反応時に添加したアルカリ金属を含有するアルカリ性物質は、通常、けん化反応の進行により生じる酢酸メチルなどのエステルにより中和されるか、酢酸などのカルボン酸添加などにより中和される。このとき、酢酸ナトリウムなどのカルボン酸のアルカリ金属塩が生じる。上述したとおり、原料のPVAはカルボン酸のアルカリ金属塩を所定量含有することが好ましい。 The alkaline substance containing an alkali metal added during the saponification reaction is usually neutralized by an ester such as methyl acetate produced by the progress of the saponification reaction, or neutralized by adding a carboxylic acid such as acetic acid. At this time, an alkali metal salt of a carboxylic acid such as sodium acetate is formed. As described above, the raw material PVA preferably contains a predetermined amount of an alkali metal salt of carboxylic acid.
 このようなPVAを得るために、けん化後にPVAをメタノールなどの低級アルコールを含む洗浄液で洗浄しても良い。前記洗浄液は、低級アルコール100質量部に対して20質量部以下の水を含んでいてもよい。また、前記洗浄液は、けん化工程において生成する酢酸メチルなどのエステルを含んでいてもよい。このときの、エステルの含有量としては、特に制限はないが、低級アルコール100質量部に対して、1000質量部以下が好ましい。洗浄に用いる洗浄液の添加量としては、けん化により得られる、アルコールによってPVAが膨潤したゲル100質量部に対して、100質量部~10000質量部が好ましく、150質量部~5000質量部がより好ましく、200質量部~1000質量部が更に好ましい。洗浄液の添加量が100質量部に満たない場合には、カルボン酸のアルカリ金属塩量が上記範囲を超えるおそれがある。一方、洗浄液の添加量が10000質量部を超える場合には、添加量を増やすことによる洗浄効果の改善が見込めない。洗浄の方法としては、特に限定はないが、例えば、槽内にPVA(膨潤したゲル)と洗浄液とを加え、5~100℃で、5分~180分程度、攪拌あるいは静置し脱液する工程を、カルボン酸のアルカリ金属塩の含有量が上記範囲になるまで繰り返すバッチ方式が挙げられる。また、おおよそバッチ方式と同温度、同時間で、塔頂からPVAを連続的に添加するとともに、塔底より洗浄液を連続的に添加し、両者を接触交流させる連続方式も挙げられる。 In order to obtain such a PVA, the PVA may be washed with a washing solution containing a lower alcohol such as methanol after saponification. The cleaning liquid may contain 20 parts by mass or less of water with respect to 100 parts by mass of the lower alcohol. Moreover, the said washing | cleaning liquid may contain ester, such as methyl acetate produced | generated in a saponification process. The content of the ester at this time is not particularly limited, but is preferably 1000 parts by mass or less with respect to 100 parts by mass of the lower alcohol. The amount of the cleaning solution used for cleaning is preferably 100 parts by weight to 10000 parts by weight, more preferably 150 parts by weight to 5000 parts by weight, with respect to 100 parts by weight of the gel obtained by saponification and PVA swollen with alcohol. More preferably, it is 200 to 1000 parts by mass. When the addition amount of the cleaning liquid is less than 100 parts by mass, the alkali metal salt amount of the carboxylic acid may exceed the above range. On the other hand, when the addition amount of the cleaning liquid exceeds 10,000 parts by mass, the improvement of the cleaning effect by increasing the addition amount cannot be expected. The washing method is not particularly limited. For example, PVA (swelled gel) and a washing solution are added to a tank, and the solution is stirred or allowed to stand for 5 to 180 minutes at 5 to 100 ° C. to remove the liquid. A batch method in which the process is repeated until the content of the alkali metal salt of the carboxylic acid is within the above range can be mentioned. Further, there is also a continuous method in which PVA is continuously added from the top of the tower at approximately the same temperature and for the same time as the batch method, and a cleaning liquid is continuously added from the bottom of the tower, and the two are brought into contact with each other.
 原料PVAに含有されるカルボン酸のアルカリ金属塩としては、上述したけん化工程で使用するアルカリ触媒、例えば水酸化ナトリウム、水酸化カリウム、ナトリウムメチラートなどをカルボン酸で中和して得られるもの、また、重合工程で使用する酢酸ビニルなどの原料ビニルエステル単量体の加アルコール分解を抑制する目的で添加されるカルボン酸が、けん化工程で中和されて得られるもの、ラジカル重合を停止させるために添加する禁止剤として共役二重結合を有するカルボン酸を用いた場合に、当該カルボン酸がけん化工程で中和されて得られるもの、あるいは意図的に添加されたものもなどが含まれる。具体例としては、酢酸ナトリウム、酢酸カリウム、プロピオン酸ナトリウム、プロピオン酸カリウム、グリセリン酸ナトリウム、グリセリン酸カリウム、リンゴ酸ナトリウム、リンゴ酸カリウム、クエン酸ナトリウム、クエン酸カリウム、乳酸ナトリウム、乳酸カリウム、酒石酸ナトリウム、酒石酸カリウム、サリチル酸ナトリウム、サリチル酸カリウム、マロン酸ナトリウム、マロン酸カリウム、コハク酸ナトリウム、コハク酸カリウム、マレイン酸ナトリウム、マレイン酸カリウム、フタル酸ナトリウム、フタル酸カリウム、シュウ酸ナトリウム、シュウ酸カリウム、グルタル酸ナトリウム、グルタル酸カリウム、アビエチン酸ナトリウム、アビエチン酸カリウム、ソルビン酸ナトリウム、ソルビン酸カリウム、2,4,6-オクタトリエン-1-カルボン酸ナトリウム、2,4,6-オクタトリエン-1-カルボン酸カリウム、エレオステアリン酸ナトリウム、エレオステアリン酸カリウム、2,4,6,8-デカテトラエン-1-カルボン酸ナトリウム、2,4,6,8-デカテトラエン-1-カルボン酸カリウム、レチノイン酸ナトリウム、レチノイン酸カリウムなどが挙げられるが、これらに限定されるものではない。 The alkali metal salt of the carboxylic acid contained in the raw material PVA is obtained by neutralizing the alkali catalyst used in the saponification step, for example, sodium hydroxide, potassium hydroxide, sodium methylate, etc. with carboxylic acid, In addition, the carboxylic acid added for the purpose of suppressing alcoholysis of the vinyl ester monomer such as vinyl acetate used in the polymerization process is neutralized in the saponification process, to stop radical polymerization When a carboxylic acid having a conjugated double bond is used as an inhibitor to be added to the carboxylic acid, those obtained by neutralizing the carboxylic acid in the saponification step or those intentionally added are included. Specific examples include sodium acetate, potassium acetate, sodium propionate, potassium propionate, sodium glycerate, potassium glycerate, sodium malate, potassium malate, sodium citrate, potassium citrate, sodium lactate, potassium lactate, tartaric acid Sodium, potassium tartrate, sodium salicylate, potassium salicylate, sodium malonate, potassium malonate, sodium succinate, potassium succinate, sodium maleate, potassium maleate, sodium phthalate, potassium phthalate, sodium oxalate, potassium oxalate , Sodium glutarate, potassium glutarate, sodium abietic acid, potassium abietic acid, sodium sorbate, potassium sorbate, 2,4,6-octatri Sodium 1,1-carboxylate, potassium 2,4,6-octatriene-1-carboxylate, sodium eleostearate, potassium eleostearate, sodium 2,4,6,8-decatetraene-1- carboxylate 2,4,6,8-decatetraene-1-carboxylate, sodium retinoate, potassium retinoate and the like, but are not limited thereto.
 こうして得られたPVAをアセタール化してフィルムの製造に用いられるポリビニルアセタールを製造する。アセタール化の方法は特に限定されないが、例えば以下の方法が挙げられる。80~100℃に加熱してPVAを水に溶解させた後、10~60分かけて徐々に冷却することにより、PVAの3~40質量%水溶液を得る。温度が-10~30℃まで低下したところで、前記水溶液にアルデヒドおよび酸触媒を添加し、温度を一定に保ちながら、30~300分間アセタール化反応を行う。その際、一定のアセタール化度に達したポリビニルアセタールが析出する。その後反応液を30~300分かけて25~80℃まで昇温し、その温度を10分~25時間保持する(この温度を追い込み時反応温度とする)。次に反応溶液に、必要に応じてアルカリなどの中和剤を添加して酸触媒を中和し、水洗、乾燥することにより、ポリビニルアセタールが得られる。 The PVA thus obtained is acetalized to produce polyvinyl acetal used for film production. Although the method of acetalization is not specifically limited, For example, the following method is mentioned. PVA is dissolved in water by heating to 80 to 100 ° C., and then gradually cooled over 10 to 60 minutes to obtain a 3 to 40% by mass aqueous solution of PVA. When the temperature falls to −10 to 30 ° C., an aldehyde and an acid catalyst are added to the aqueous solution, and an acetalization reaction is performed for 30 to 300 minutes while keeping the temperature constant. At that time, polyvinyl acetal having reached a certain degree of acetalization is precipitated. Thereafter, the temperature of the reaction solution is raised to 25 to 80 ° C. over 30 to 300 minutes, and the temperature is maintained for 10 minutes to 25 hours (this temperature is set as the reaction temperature for driving in). Next, a neutralizing agent such as an alkali is added to the reaction solution as necessary to neutralize the acid catalyst, and the resultant is washed with water and dried to obtain polyvinyl acetal.
一般的に、このような反応や処理の工程においてポリビニルアセタールからなる凝集粒子が生じ、粗粒子を形成しやすい。このような粗粒子が生じた場合には、バッチ間のばらつきの原因になるおそれがある。それに対して、後述する特定のPVAを原料とした場合、従来品より粗粒子の生成が抑制され、その結果、得られるポリビニルアセタールを溶融製膜した際に、異物(未溶解分)が低減されたフィルムを得ることができる。 In general, aggregated particles made of polyvinyl acetal are generated in such a reaction or processing step, and coarse particles are easily formed. When such coarse particles are generated, there is a risk of causing variation between batches. On the other hand, when a specific PVA described later is used as a raw material, the generation of coarse particles is suppressed from the conventional product, and as a result, foreign matter (undissolved content) is reduced when the resulting polyvinyl acetal is melt-formed. Film can be obtained.
 アセタール化反応に用いる酸触媒としては特に限定されず、有機酸および無機酸のいずれでも使用可能であり、例えば、酢酸、パラトルエンスルホン酸、硝酸、硫酸、塩酸等が挙げられる。これらの中でも塩酸、硫酸、硝酸が好ましく用いられる。また一般には、硝酸を用いた場合は、アセタール化反応の反応速度が速くなり、生産性の向上が望める一方、得られるポリビニルアセタールの粒子が粗大になりやすく、バッチ間のばらつきが大きくなる傾向があるが、本発明のポリビニルアルコールを原料とした場合、粗粒子の生成が抑制され、結果として、得られたポリビニルアセタールを溶融製膜した際に、異物(未溶解分)が低減されたフィルムを得ることができる。 The acid catalyst used in the acetalization reaction is not particularly limited, and any of organic acids and inorganic acids can be used. Examples thereof include acetic acid, paratoluenesulfonic acid, nitric acid, sulfuric acid, and hydrochloric acid. Of these, hydrochloric acid, sulfuric acid, and nitric acid are preferably used. In general, when nitric acid is used, the reaction rate of the acetalization reaction is increased, and improvement in productivity can be expected. On the other hand, the obtained polyvinyl acetal particles tend to be coarse and the variation between batches tends to increase. However, when the polyvinyl alcohol of the present invention is used as a raw material, the formation of coarse particles is suppressed, and as a result, when the obtained polyvinyl acetal is melt-formed, a film with reduced foreign matter (undissolved content) is obtained. Obtainable.
 ポリビニルアセタールのアセタール化反応に用いられるアルデヒドは特に限定されないが、従来公知の炭素数1~8のアルデヒドが好ましく、炭素数4~6のアルデヒドがより好ましく、n-ブチルアルデヒドが特に好ましい。本発明においては、アルデヒドを2種類以上併用して得られるポリビニルアセタールを使用することもできる。 The aldehyde used for the acetalization reaction of polyvinyl acetal is not particularly limited, but a conventionally known aldehyde having 1 to 8 carbon atoms is preferable, an aldehyde having 4 to 6 carbon atoms is more preferable, and n-butyraldehyde is particularly preferable. In the present invention, polyvinyl acetal obtained by using two or more aldehydes in combination can also be used.
 本発明において、フィルムのGPC測定により求められる各値がそれぞれ上述した範囲に入るように調整する方法としては、1)ポリビニルアセタールに酸化防止剤を添加して製膜する方法、2)フィルムの製造に用いるポリビニルアセタールの原料に特定のPVAを用いる方法、3)特定のポリビニルアセタールを用いて製膜する方法が挙げられる。これらの方法を適宜組み合わせてもよい。 In the present invention, as a method for adjusting each value obtained by GPC measurement of a film to fall within the above-mentioned range, 1) a method for forming a film by adding an antioxidant to polyvinyl acetal, and 2) production of a film The method of using specific PVA for the raw material of the polyvinyl acetal used for 3) and the method of forming into a film using the specific polyvinyl acetal are mentioned. You may combine these methods suitably.
 上記1)の方法で用いられる酸化防止剤は、特に限定されないが、例えばフェノール系酸化防止剤、リン系酸化防止剤、硫黄系酸化防止剤などが挙げられ、これらの中でもフェノール系酸化防止剤が好ましく、アルキル置換フェノール系酸化防止剤が特に好ましい。 The antioxidant used in the method 1) is not particularly limited, and examples thereof include phenolic antioxidants, phosphorus antioxidants, sulfur antioxidants, and the like. Among these, phenolic antioxidants are used. Preferably, alkyl-substituted phenolic antioxidants are particularly preferred.
 フェノール系酸化防止剤の例としては、2-t-ブチル-6-(3-t-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート、2,4-ジt-アミル-6-(1-(3,5-ジt-アミル-2-ヒドロキシフェニル)エチル)フェニルアクリレートなどのアクリレート系化合物;2,6-ジt-ブチル-4-メチルフェノール、2,6-ジt-ブチル-4-エチルフェノール、オクタデシル-3-(3,5-)ジt-ブチル-4-ヒドロキシフェニル)プロピオネート、2,2’-メチレン-ビス(4-メチル-6-t-ブチルフェノール)、4,4’-ブチリデン-ビス(4-メチル-6-t-ブチルフェノール)、4,4’-ブチリデン-ビス(6-t-ブチル-m-クレゾール)、4,4’-チオビス(3-メチル-6-t-ブチルフェノール)、ビス(3-シクロヘキシル-2-ヒドロキシ-5-メチルフェニル)メタン、3,9-ビス(2-(3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ)-1,1-ジメチルエチル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジt-ブチル-4-ヒドロキシベンジル)ベンゼン、テトラキス(メチレン-3-(3’,5’-ジt-ブチル-4’-ヒドロキシフェニル)プロピオネート)メタン、トリエチレングリコールビス(3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート)などのアルキル置換フェノール系化合物;6-(4-ヒドロキシ-3,5-ジt-ブチルアニリノ)-2,4-ビス-オクチルチオ-1,3,5-トリアジン、6-(4-ヒドロキシ-3,5-ジメチルアニリノ)-2,4-ビス-オクチルチオ-1,3,5-トリアジン、6-(4-ヒドロキシ-3-メチル-5-t-ブチルアニリノ)-2,4-ビス-オクチルチオ-1,3,5-トリアジン、2-オクチルチオ-4,6-ビス-(3,5-ジt-ブチル-4-オキシアニリノ)-1,3,5-トリアジンなどのトリアジン基含有フェノール系化合物などがある。 Examples of phenolic antioxidants include 2-t-butyl-6- (3-t-butyl-2-hydroxy-5-methylbenzyl) -4-methylphenyl acrylate, 2,4-di-t-amyl- Acrylate compounds such as 6- (1- (3,5-di-t-amyl-2-hydroxyphenyl) ethyl) phenyl acrylate; 2,6-di-t-butyl-4-methylphenol, 2,6-di-t -Butyl-4-ethylphenol, octadecyl-3- (3,5-) di-t-butyl-4-hydroxyphenyl) propionate, 2,2'-methylene-bis (4-methyl-6-t-butylphenol), 4,4′-butylidene-bis (4-methyl-6-tert-butylphenol), 4,4′-butylidene-bis (6-tert-butyl-m-cresol), 4,4′-thiobi (3-methyl-6-tert-butylphenol), bis (3-cyclohexyl-2-hydroxy-5-methylphenyl) methane, 3,9-bis (2- (3- (3-tert-butyl-4-hydroxy) -5-methylphenyl) propionyloxy) -1,1-dimethylethyl) -2,4,8,10-tetraoxaspiro [5.5] undecane, 1,1,3-tris (2-methyl-4- Hydroxy-5-t-butylphenyl) butane, 1,3,5-trimethyl-2,4,6-tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene, tetrakis (methylene-3- ( 3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate) methane, triethylene glycol bis (3- (3-t-butyl-4-hydroxy-5-methylphenyl) Alkyl-substituted phenolic compounds such as propionate); 6- (4-hydroxy-3,5-di-t-butylanilino) -2,4-bis-octylthio-1,3,5-triazine, 6- (4-hydroxy-) 3,5-dimethylanilino) -2,4-bis-octylthio-1,3,5-triazine, 6- (4-hydroxy-3-methyl-5-t-butylanilino) -2,4-bis-octylthio Triazine group-containing phenolic compounds such as 1,3,5-triazine, 2-octylthio-4,6-bis- (3,5-di-t-butyl-4-oxyanilino) -1,3,5-triazine There is.
 リン系酸化防止剤としては、例えば、トリフェニルホスファイト、ジフェニルイソデシルホスファイト、フェニルジイソデシルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(ジノニルフェニル)ホスファイト、トリス(2-t-ブチル-4-メチルフェニル)ホスファイト、トリス(シクロヘキシルフェニル)ホスファイト、2,2-メチレンビス(4,6-ジt-ブチルフェニル)オクチルホスファイト、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド、10-(3,5-ジt-ブチル-4-ヒドロキシベンジル)-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド、10-デシロキシ-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレンなどのモノホスファイト系化合物;4,4’-ブチリデン-ビス(3-メチル-6-t-ブチルフェニル-ジトリデシルホスファイト)、4,4’-イソプロピリデン-ビス(フェニル-ジアルキル(C12~C15)ホスファイト)、4,4’-イソプロピリデン-ビス(ジフェニルモノアルキル(C12~C15)ホスファイト)、1,1,3-トリス(2-メチル-4-ジトリデシルホスファイト-5-t-ブチルフェニル)ブタン、テトラキス(2,4-ジt-ブチルフェニル)-4,4’-ビフェニレンホスファイトなどのジホスファイト系化合物などがある。中でもモノホスファイト系化合物が好ましい。 Examples of phosphorus antioxidants include triphenyl phosphite, diphenylisodecyl phosphite, phenyl diisodecyl phosphite, tris (nonylphenyl) phosphite, tris (dinonylphenyl) phosphite, tris (2-t-butyl). -4-methylphenyl) phosphite, tris (cyclohexylphenyl) phosphite, 2,2-methylenebis (4,6-dit-butylphenyl) octyl phosphite, 9,10-dihydro-9-oxa-10-phos Phaphenanthrene-10-oxide, 10- (3,5-di-t-butyl-4-hydroxybenzyl) -9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, 10-decyloxy-9 , 10-Dihydro-9-oxa-10-phospha Monophosphite compounds such as enanthrene; 4,4′-butylidene-bis (3-methyl-6-tert-butylphenyl-ditridecyl phosphite), 4,4′-isopropylidene-bis (phenyl-dialkyl (C12 To C15) phosphite), 4,4′-isopropylidene-bis (diphenylmonoalkyl (C12 to C15) phosphite), 1,1,3-tris (2-methyl-4-ditridecyl phosphite-5- and diphosphite compounds such as t-butylphenyl) butane and tetrakis (2,4-di-t-butylphenyl) -4,4′-biphenylene phosphite. Of these, monophosphite compounds are preferred.
 硫黄系酸化防止剤としては、例えば、ジラウリル3,3’-チオジプロピオネート、ジステアリル3,3’-チオジプロピオネート、ラウリルステアリル3,3’-チオジプロピオネート、ペンタエリスリトール-テトラキス-(β-ラウリル-チオプロピオネート)、3,9-ビス(2-ドデシルチオエチル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカンなどがある。 Examples of the sulfur-based antioxidant include dilauryl 3,3′-thiodipropionate, distearyl 3,3′-thiodipropionate, lauryl stearyl 3,3′-thiodipropionate, pentaerythritol-tetrakis- (Β-lauryl-thiopropionate), 3,9-bis (2-dodecylthioethyl) -2,4,8,10-tetraoxaspiro [5.5] undecane.
 これらの酸化防止剤は単独で、あるいは2種以上を組み合わせて用いることができる。酸化防止剤の配合量は、特に制限はないが、ポリビニルアセタール100質量部に対して0.001~5質量部、好ましくは0.01~1質量部の範囲である。酸化防止剤の量が0.001質量部未満である場合には十分な効果が発現しないことがあり、また5質量部を超える場合、配合量を増やすことによる効果の向上が望めない。 These antioxidants can be used alone or in combination of two or more. The blending amount of the antioxidant is not particularly limited, but is 0.001 to 5 parts by mass, preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the polyvinyl acetal. When the amount of the antioxidant is less than 0.001 part by mass, a sufficient effect may not be exhibited, and when it exceeds 5 parts by mass, the effect cannot be improved by increasing the blending amount.
 上記2)の方法で用いられるPVAとしては、120℃において3時間加熱された前記PVAをGPC測定したときの、示差屈折率検出器で測定されるピークトップ分子量(D)と、吸光光度検出器(測定波長280nm)で測定されるピークトップ分子量(E)が下記式(5)
(D-E)/D<0.75   (5)
を満たし、かつピークトップ分子量(E)における吸光度が0.25×10-3~3.00×10-3となるものが好ましい。このときのGPC測定は、以下の点以外は、上述した、フィルムのGPC測定方法と同様にして行う。
The PVA used in the above method 2) includes a peak top molecular weight (D) measured by a differential refractive index detector when the PVA heated at 120 ° C. for 3 hours is measured by GPC, and an absorptiometric detector The peak top molecular weight (E) measured at (measurement wavelength 280 nm) is the following formula (5)
(DE) / D <0.75 (5)
And the absorbance at the peak top molecular weight (E) is preferably 0.25 × 10 −3 to 3.00 × 10 −3 . The GPC measurement at this time is performed in the same manner as the GPC measurement method for a film described above except for the following points.
 前記GPC測定において、GPCカラムとして、昭和電工株式会社製「GPC HFIP-806M」を用いる。吸光光度検出器のセル長は10mmとする。測定時のカラム温度は40℃とし、流速は1.0ml/分とする。 In the GPC measurement, “GPC HFIP-806M” manufactured by Showa Denko KK is used as the GPC column. The cell length of the absorptiometric detector is 10 mm. The column temperature during measurement is 40 ° C., and the flow rate is 1.0 ml / min.
 前記GPC測定において、以下に示す条件で加熱したPVAを測定する。PVA粉体を溶解させた水溶液を流延した後、20℃、65%RHにて乾燥させてPVAフィルムを得る。当該PVAフィルムの厚みは、30~75μmであり、40~60μmが好ましい。加熱乾燥後の試料の色相の差異を吸光度の差異に明確に反映させるために、熱風乾燥機を用いて当該フィルムを120℃において3時間加熱する。試料間の熱処理誤差を抑制する観点から、熱風乾燥機としてギアオーブンが好ましい。こうして加熱されたPVAをGPC測定に供する。 In the GPC measurement, PVA heated under the following conditions is measured. After casting an aqueous solution in which the PVA powder is dissolved, the PVA film is obtained by drying at 20 ° C. and 65% RH. The PVA film has a thickness of 30 to 75 μm, preferably 40 to 60 μm. In order to clearly reflect the difference in hue of the sample after heat drying on the difference in absorbance, the film is heated at 120 ° C. for 3 hours using a hot air dryer. From the viewpoint of suppressing heat treatment errors between samples, a gear oven is preferable as the hot air dryer. The PVA thus heated is subjected to GPC measurement.
 前記PVAのピークトップ分子量(D)は、上述したフィルムのピークトップ分子量(A)と同様にして求め、原料PVAのピークトップ分子量(E)は、上述したフィルムのピークトップ分子量(B)と同様にして求める。 The peak top molecular weight (D) of the PVA is determined in the same manner as the peak top molecular weight (A) of the film described above, and the peak top molecular weight (E) of the raw material PVA is the same as the peak top molecular weight (B) of the film described above. Ask for it.
 前記PVAは、上述した方法によりGPC測定されたときの、示差屈折率検出器で測定されるピークトップ分子量(D)と、吸光光度検出器(測定波長280nm)で測定されるピークトップ分子量(E)が下記式(5)を満たすことが好ましい。
(D-E)/D<0.75   (5)
The PVA has a peak top molecular weight (D) measured by a differential refractive index detector and a peak top molecular weight (E) measured by an absorptiometric detector (measurement wavelength 280 nm) when GPC measurement is performed by the above-described method. ) Preferably satisfies the following formula (5).
(DE) / D <0.75 (5)
 ピークトップ分子量(D)は、PVAの分子量の指標となる値である。一方、ピークトップ分子量(E)は、PVA中に存在する、280nmに吸収を有する成分に由来する。通常、ピークトップ分子量(E)よりもピークトップ分子量(D)のほうが大きいため、(D-E)/Dは正の値になる。ピークトップ分子量(E)が大きくなれば、(D-E)/Dは小さくなり、ピークトップ分子量(E)が小さくなれば、(D-E)/Dは大きくなる。すなわち、(D-E)/Dが大きい場合には、PVA中の低分子量成分に波長280nmの紫外線を吸収する成分が多いことを意味する。 The peak top molecular weight (D) is a value serving as an index of the molecular weight of PVA. On the other hand, the peak top molecular weight (E) is derived from a component present in PVA and having absorption at 280 nm. Usually, since the peak top molecular weight (D) is larger than the peak top molecular weight (E), (DE) / D becomes a positive value. As the peak top molecular weight (E) increases, (DE) / D decreases, and as the peak top molecular weight (E) decreases, (DE) / D increases. That is, when (DE) / D is large, it means that there are many components that absorb ultraviolet light having a wavelength of 280 nm among low molecular weight components in PVA.
 (D-E)/Dが0.75以上の場合、上述の通り、低分子量成分に波長280nmの紫外線を吸収する成分が多くなる。この場合には、フィルム中の異物(未溶解分)が増えるおそれがある。また、フィルムの耐着色性、フィルム中の異物(未溶解分)及びフィルムを用いて得られる合わせガラスの耐貫通性に関する性能のバランスが取れないおそれがある。(D-E)/Dは、より好ましくは0.70未満であり、さらに好ましくは0.65未満である。 When (DE) / D is 0.75 or more, as described above, the low molecular weight component contains more components that absorb ultraviolet light having a wavelength of 280 nm. In this case, foreign matter (undissolved part) in the film may increase. Moreover, there exists a possibility that the performance regarding the coloring resistance of a film, the foreign material (undissolved part) in a film, and the penetration resistance of the laminated glass obtained using a film cannot be taken. (DE) / D is more preferably less than 0.70, and still more preferably less than 0.65.
 前記PVAは、上述した方法によりGPC測定されたときの、ピークトップ分子量(E)における吸光度(測定波長280nm)が0.25×10-3~3.00×10-3となることが好ましい。前記吸光度が0.25×10-3未満の場合には、フィルム中の異物(未溶解分)が増えるおそれがある。また、フィルムの耐着色性、フィルム中の異物(未溶解分)及びフィルムを用いて得られる合わせガラスの耐貫通性に関する性能のバランスが取れないおそれがある。一方、前記吸光度が3.00×10-3を超える場合には、フィルム中に280nm紫外可視光の吸収成分が多くなるおそれがあり、フィルムの耐着色性や合わせガラスの耐貫通性が低下するおそれがある。前記吸光度は0.50×10-3~2.80×10-3がより好ましく、0.75×10-3~2.50×10-3がさらに好ましい。 The PVA preferably has an absorbance (measurement wavelength: 280 nm) at a peak top molecular weight (E) of 0.25 × 10 −3 to 3.00 × 10 −3 when GPC measurement is performed by the method described above. If the absorbance is less than 0.25 × 10 −3 , foreign matter (undissolved content) in the film may increase. Moreover, there exists a possibility that the performance regarding the coloring resistance of a film, the foreign material (undissolved part) in a film, and the penetration resistance of the laminated glass obtained using a film cannot be taken. On the other hand, if the absorbance exceeds 3.00 × 10 −3 , there may be an increase in the absorption component of 280 nm ultraviolet-visible light in the film, and the coloration resistance of the film and the penetration resistance of the laminated glass are reduced. There is a fear. The absorbance is more preferably 0.50 × 10 −3 to 2.80 × 10 −3 , and further preferably 0.75 × 10 −3 to 2.50 × 10 −3 .
 前記PVAは、上述した方法によりGPC測定されたときの、示差屈折率検出器で測定されるピークトップ分子量(D)と、吸光光度検出器(測定波長320nm)で測定されるピークトップ分子量(F)が下記式(6)を満たすことがより好ましい。
(D-F)/D<0.75   (6)
The PVA has a peak top molecular weight (D) measured by a differential refractive index detector and a peak top molecular weight (F) measured by an absorptiometric detector (measurement wavelength: 320 nm) when GPC measurement is performed by the method described above. ) More preferably satisfies the following formula (6).
(DF) / D <0.75 (6)
 ピークトップ分子量(F)は、吸光光度検出器における測定波長が320nmであること以外はピークトップ分子量(E)と同様にして測定される。ピークトップ分子量(F)は、原料のPVA中に存在する、320nmに吸収を有する成分に由来する。通常、ピークトップ分子量(F)よりもピークトップ分子量(D)のほうが大きいため、(D-F)/Dは正の値になる。ピークトップ分子量(F)が大きくなれば、(D-F)/Dは小さくなり、ピークトップ分子量(F)が小さくなれば、(D-F)/Dは大きくなる。すなわち、(D-F)/Dが大きい場合には、PVA中の低分子量成分に波長320nmの紫外線を吸収する成分が多いことを意味する。 The peak top molecular weight (F) is measured in the same manner as the peak top molecular weight (E) except that the measurement wavelength in the absorptiometric detector is 320 nm. The peak top molecular weight (F) is derived from a component having absorption at 320 nm, which is present in the raw material PVA. Usually, since the peak top molecular weight (D) is larger than the peak top molecular weight (F), (DF) / D becomes a positive value. As the peak top molecular weight (F) increases, (DF) / D decreases, and as the peak top molecular weight (F) decreases, (DF) / D increases. That is, when (D−F) / D is large, it means that the low molecular weight component in PVA contains many components that absorb ultraviolet rays having a wavelength of 320 nm.
(D-F)/Dが0.75以上の場合、上述の通り、低分子量成分に波長320nmの紫外線を吸収する成分が多くなる。この場合には、フィルム中の異物(未溶解分)が増えるおそれがある。また、フィルムの耐着色性、フィルム中の異物(未溶解分)及びフィルムを用いて得られる合わせガラスの耐貫通性に関する性能のバランスが取れないおそれがある。(D-F)/Dは、さらに好ましくは0.70未満であり、特に好ましくは0.65未満である。 When (D−F) / D is 0.75 or more, as described above, the low molecular weight component contains more components that absorb ultraviolet light having a wavelength of 320 nm. In this case, foreign matter (undissolved part) in the film may increase. Moreover, there exists a possibility that the performance regarding the coloring resistance of a film, the foreign material (undissolved part) in a film, and the penetration resistance of the laminated glass obtained using a film cannot be taken. (D−F) / D is more preferably less than 0.70, and particularly preferably less than 0.65.
 前記PVAは、上述した方法によりGPC測定されたときの、ピークトップ分子量(F)における吸光度(測定波長320nm)が0.20×10-3~2.90×10-3であることがより好ましい。前記吸光度が0.20×10-3未満の場合には、フィルム中の異物(未溶解分)が増えるおそれがある。また、フィルムの耐着色性、フィルム中の異物(未溶解分)及びフィルムを用いて得られる合わせガラスの耐貫通性に関する性能のバランスが取れないおそれがある。一方、前記吸光度が2.90×10-3を超える場合にはフィルム中に320nm紫外可視光の吸収成分が多くなるおそれがあり、フィルムの耐着色性や合わせガラスの耐貫通性が低下するおそれがある。前記吸光度は0.40×10-3~2.70×10-3がさらに好ましく、0.60×10-3~2.40×10-3が特に好ましい。 More preferably, the PVA has an absorbance (measurement wavelength: 320 nm) at a peak top molecular weight (F) of 0.20 × 10 −3 to 2.90 × 10 −3 when GPC measurement is performed by the method described above. . When the absorbance is less than 0.20 × 10 −3 , foreign matter (undissolved content) in the film may increase. Moreover, there exists a possibility that the performance regarding the coloring resistance of a film, the foreign material (undissolved part) in a film, and the penetration resistance of the laminated glass obtained using a film cannot be taken. On the other hand, when the absorbance exceeds 2.90 × 10 −3 , there is a possibility that the absorption component of 320 nm ultraviolet-visible light increases in the film, and the coloring resistance of the film and the penetration resistance of the laminated glass may be reduced. There is. The absorbance is more preferably 0.40 × 10 −3 to 2.70 × 10 −3 , and particularly preferably 0.60 × 10 −3 to 2.40 × 10 −3 .
 上述した、PVAのGPC測定における、示差屈折率検出器によって求められる、前記PVAの数平均分子量Mnに対する重量平均分子量Mwの比Mw/Mnが2.2~6.0であることが好ましい。Mw及びMnは、前述したピークトップ分子量(D)を求める際に使用する、PVAの分子量に対して、示差屈折率検出器で測定された値をプロットして得たクロマトグラムから求められる。したがって、ここで求められるMw及びMnは、PMMA換算の値である。 The ratio Mw / Mn of the weight average molecular weight Mw to the number average molecular weight Mn of the PVA, which is obtained by the differential refractive index detector in the GPC measurement of PVA described above, is preferably 2.2 to 6.0. Mw and Mn are obtained from a chromatogram obtained by plotting the value measured by the differential refractive index detector with respect to the molecular weight of PVA used when obtaining the above-described peak top molecular weight (D). Therefore, Mw and Mn calculated | required here are the values of PMMA conversion.
 Mw/Mnが2.2未満の場合、PVAにおいて、低分子量成分の割合が小さいことを示す。Mw/Mnが2.2未満の場合、フィルム中の異物(未溶解分)の数が増えるおそれがある。Mw/Mnが2.3以上であることがより好ましい。一方、Mw/Mnが6.0を超える場合、PVAにおいて、低分子量成分の割合が大きいことを示す。Mw/Mnが6.0を超える場合、フィルムの耐着色性が低下するおそれや、得られる合わせガラスの耐貫通性が低下するおそれがある。Mw/Mnが4.5以下であることがより好ましく、3.0以下であることがさらに好ましい。 When Mw / Mn is less than 2.2, it indicates that the proportion of low molecular weight components is small in PVA. When Mw / Mn is less than 2.2, the number of foreign matters (undissolved parts) in the film may increase. It is more preferable that Mw / Mn is 2.3 or more. On the other hand, when Mw / Mn exceeds 6.0, it shows that the ratio of a low molecular weight component is large in PVA. When Mw / Mn exceeds 6.0, the coloring resistance of the film may be reduced, and the penetration resistance of the obtained laminated glass may be reduced. Mw / Mn is more preferably 4.5 or less, and further preferably 3.0 or less.
 前記PVAの、ピークトップ分子量(D)、ピークトップ分子量(E)、ピークトップ分子量(E)における吸光度、ピークトップ分子量(F)及びピークトップ分子量(F)における吸光度が上述した条件を満たすように調整する方法としては、例えば、以下の方法が挙げられる。 The absorbance at the peak top molecular weight (D), the peak top molecular weight (E), the peak top molecular weight (E), the peak top molecular weight (F), and the absorbance at the peak top molecular weight (F) of the PVA so that the above-mentioned conditions are satisfied. Examples of the adjustment method include the following methods.
 A)原料ビニルエステルモノマーに含まれるラジカル重合禁止剤を予め取り除いたビニルエステルモノマーを重合に用いる。 A) A vinyl ester monomer from which a radical polymerization inhibitor contained in the raw material vinyl ester monomer has been removed in advance is used for polymerization.
 B)原料ビニルエステルモノマー中に含まれる不純物の合計含有量が、好ましくは1~1200ppm、より好ましくは3~1100ppm、さらに好ましくは5~1000ppmであるビニルエステルモノマーをラジカル重合に用いる。不純物としては、アセトアルデヒド、クロトンアルデヒド、アクロレインなどのアルデヒド;同アルデヒドが溶媒のアルコールによりアセタール化したアセトアルデヒドジメチルアセタール、クロトンアルデヒドジメチルアセタール、アクロレインジメチルアセタールなどのアセタール;アセトンなどのケトン;酢酸メチル、酢酸エチルなどのエステルなどが挙げられる。 B) A vinyl ester monomer having a total content of impurities contained in the raw material vinyl ester monomer of preferably 1 to 1200 ppm, more preferably 3 to 1100 ppm, and even more preferably 5 to 1000 ppm is used for radical polymerization. Impurities include aldehydes such as acetaldehyde, crotonaldehyde, and acrolein; acetals such as acetaldehyde dimethyl acetal, crotonaldehyde dimethyl acetal, and acrolein dimethyl acetal obtained by acetalizing the aldehyde with a solvent alcohol; ketones such as acetone; methyl acetate and ethyl acetate And esters.
 C)アルコール溶媒中にて原料ビニルエステルモノマーをラジカル重合し、未反応モノマーを回収再利用する一連の工程にて、アルコールや微量の水分によるモノマーの加アルコール分解や加水分解を抑制するために、有機酸、具体的にはグリコール酸、グリセリン酸、リンゴ酸、クエン酸、乳酸、酒石酸、サリチル酸などのヒドロキシカルボン酸;マロン酸、コハク酸、マレイン酸、フタル酸、シュウ酸、グルタル酸などの多価カルボン酸などを添加し、分解により生じるアセトアルデヒドなどのアルデヒドの生成を極力抑制する。有機酸の添加量としては、原料ビニルエステルモノマーに対して、好ましくは1~500ppm、より好ましくは3~300ppm、さらに好ましくは5~100ppmである。 C) In order to suppress the alcoholysis and hydrolysis of the monomer by alcohol and a small amount of water in a series of steps of radical polymerization of the raw material vinyl ester monomer in an alcohol solvent and collecting and reusing unreacted monomer, Organic acids, specifically hydroxycarboxylic acids such as glycolic acid, glyceric acid, malic acid, citric acid, lactic acid, tartaric acid, salicylic acid; malonic acid, succinic acid, maleic acid, phthalic acid, oxalic acid, glutaric acid, etc. A carboxylic acid or the like is added to suppress the generation of aldehydes such as acetaldehyde generated by decomposition as much as possible. The addition amount of the organic acid is preferably 1 to 500 ppm, more preferably 3 to 300 ppm, and still more preferably 5 to 100 ppm with respect to the raw material vinyl ester monomer.
 D)重合に用いる溶媒として、不純物の合計含有量が、好ましくは1~1200ppm、より好ましくは3~1100ppm、さらに好ましくは5~1000ppmであるものを用いる。溶媒中に含まれる不純物としては、原料ビニルエステルモノマー中に含まれる不純物として上述したものが挙げられる。 D) As the solvent used for the polymerization, a solvent having a total impurity content of preferably 1 to 1200 ppm, more preferably 3 to 1100 ppm, and still more preferably 5 to 1000 ppm. Examples of the impurities contained in the solvent include those described above as the impurities contained in the raw material vinyl ester monomer.
 E)ビニルエステルモノマーをラジカル重合する際に、ビニルエステルモノマーに対する溶媒の比を高める。 E) When the radical polymerization of the vinyl ester monomer, the ratio of the solvent to the vinyl ester monomer is increased.
 F)ビニルエステルモノマーをラジカル重合する際に使用するラジカル重合開始剤として、有機過酸化物を用いる。有機過酸化物としては、アセチルパーオキシド、イソブチルパーオキシド、ジイソプロピルパーオキシカーボネート、ジアリルパーオキシジカーボネート、ジn-プロピルパーオキシジカーボネート、ジミリスチルパーオキシジカーボネート、ジ(2-エトキシエチル)パーオキシジカーボネート、ジ(2-エチルヘキシル)パーオキシジカーボネート、ジ(メトキシイソプロピル)パーオキシジカーボネート、ジ(4-tert-ブチルシクロヘキシル)パーオキシジカーボネートなどが挙げられ、特に、60℃での半減期が10~110分のパーオキシジカーボネートを用いることが好ましい。 F) An organic peroxide is used as a radical polymerization initiator used for radical polymerization of a vinyl ester monomer. Organic peroxides include acetyl peroxide, isobutyl peroxide, diisopropyl peroxycarbonate, diallyl peroxydicarbonate, di-n-propyl peroxydicarbonate, dimyristyl peroxydicarbonate, di (2-ethoxyethyl) peroxide Examples include oxydicarbonate, di (2-ethylhexyl) peroxydicarbonate, di (methoxyisopropyl) peroxydicarbonate, and di (4-tert-butylcyclohexyl) peroxydicarbonate. It is preferable to use peroxydicarbonate with a period of 10 to 110 minutes.
 G)ビニルエステルモノマーのラジカル重合後に、重合を抑制するために禁止剤を添加する場合、残存する未分解のラジカル重合開始剤に対して5モル当量以下の禁止剤を添加する。禁止剤の種類としては、分子量が1000以下の共役二重結合を有する化合物であって、ラジカルを安定化させて重合反応を阻害する化合物が挙げられる。具体的には、イソプレン、2,3-ジメチル-1,3-ブタジエン、2,3-ジエチル-1,3-ブタジエン、2-t-ブチル-1,3-ブタジエン、1,3-ペンタジエン、2,3-ジメチル-1,3-ペンタジエン、2,4-ジメチル-1,3-ペンタジエン、3,4-ジメチル-1,3-ペンタジエン、3-エチル-1,3-ペンタジエン、2-メチル-1,3-ペンタジエン、3-メチル-1,3-ペンタジエン、4-メチル-1,3-ペンタジエン、1,3-ヘキサジエン、2,4-ヘキサジエン、2,5-ジメチル-2,4-ヘキサジエン、1,3-オクタジエン、1,3-シクロペンタジエン、1,3-シクロヘキサジエン、1-メトキシ-1,3-ブタジエン、2-メトキシ-1,3-ブタジエン、1-エトキシ-1,3-ブタジエン、2-エトキシ-1,3-ブタジエン、2-ニトロ-1,3-ブタジエン、クロロプレン、1-クロロ-1,3-ブタジエン、1-ブロモ-1,3-ブタジエン、2-ブロモ-1,3-ブタジエン、フルベン、トロポン、オシメン、フェランドレン、ミルセン、ファルネセン、センブレン、ソルビン酸、ソルビン酸エステル、ソルビン酸塩、アビエチン酸等の炭素-炭素二重結合2個の共役構造よりなる共役ジエン;1,3,5-ヘキサトリエン、2,4,6-オクタトリエン-1-カルボン酸、エレオステアリン酸、桐油、コレカルシフェロール等の炭素-炭素二重結合3個の共役構造よりなる共役トリエン;シクロオクタテトラエン、2,4,6,8-デカテトラエン-1-カルボン酸、レチノール、レチノイン酸等の炭素-炭素二重結合4個以上の共役構造よりなる共役ポリエンなどのポリエンが挙げられる。なお、1,3-ペンタジエン、ミルセン、ファルネセンのように、複数の立体異性体を有するものについては、そのいずれを用いても良い。さらに、p-ベンゾキノン、ヒドロキノン、ヒドロキノンモノメチルエーテル、2-フェニル-1-プロペン、2-フェニル-1-ブテン、2,4-ジフェニル-4-メチル-1-ペンテン、3,5-ジフェニル-5-メチル-2-ヘプテン、2,4,6-トリフェニル-4,6-ジメチル-1-ヘプテン、3,5,7-トリフェニル-5-エチル-7-メチル-2-ノネン、1,3-ジフェニル-1-ブテン、2,4-ジフェニル-4-メチル-2-ペンテン、3,5-ジフェニル-5-メチル-3-ヘプテン、1,3,5-トリフェニル-1-ヘキセン、2,4,6-トリフェニル-4,6-ジメチル-2-ヘプテン、3,5,7-トリフェニル-5-エチル-7-メチル-3-ノネン、1-フェニル-1,3-ブタジエン、1,4-ジフェニル-1,3-ブタジエン等の芳香族系化合物が挙げられる。 G) When an inhibitor is added after radical polymerization of the vinyl ester monomer in order to suppress the polymerization, an inhibitor of 5 molar equivalents or less is added to the remaining undecomposed radical polymerization initiator. Examples of the inhibitor include a compound having a conjugated double bond having a molecular weight of 1000 or less and a compound that stabilizes a radical and inhibits a polymerization reaction. Specifically, isoprene, 2,3-dimethyl-1,3-butadiene, 2,3-diethyl-1,3-butadiene, 2-t-butyl-1,3-butadiene, 1,3-pentadiene, , 3-dimethyl-1,3-pentadiene, 2,4-dimethyl-1,3-pentadiene, 3,4-dimethyl-1,3-pentadiene, 3-ethyl-1,3-pentadiene, 2-methyl-1 , 3-pentadiene, 3-methyl-1,3-pentadiene, 4-methyl-1,3-pentadiene, 1,3-hexadiene, 2,4-hexadiene, 2,5-dimethyl-2,4-hexadiene, , 3-octadiene, 1,3-cyclopentadiene, 1,3-cyclohexadiene, 1-methoxy-1,3-butadiene, 2-methoxy-1,3-butadiene, 1-ethoxy-1,3- Tadiene, 2-ethoxy-1,3-butadiene, 2-nitro-1,3-butadiene, chloroprene, 1-chloro-1,3-butadiene, 1-bromo-1,3-butadiene, 2-bromo-1, Conjugated dienes comprising a conjugated structure of two carbon-carbon double bonds such as 3-butadiene, fulvene, tropone, osymene, ferrandrene, myrcene, farnesene, semblene, sorbic acid, sorbic acid ester, sorbic acid salt, abietic acid; Conjugated triene having a conjugated structure of three carbon-carbon double bonds such as 1,3,5-hexatriene, 2,4,6-octatriene-1-carboxylic acid, eleostearic acid, tung oil, cholecalciferol Carbons such as cyclooctatetraene, 2,4,6,8-decatetraene-1-carboxylic acid, retinol, retinoic acid, etc. Polyenes such as conjugated polyene consisting Motoni double bond of four or more conjugated structure. Any one having a plurality of stereoisomers such as 1,3-pentadiene, myrcene, and farnesene may be used. Further, p-benzoquinone, hydroquinone, hydroquinone monomethyl ether, 2-phenyl-1-propene, 2-phenyl-1-butene, 2,4-diphenyl-4-methyl-1-pentene, 3,5-diphenyl-5 Methyl-2-heptene, 2,4,6-triphenyl-4,6-dimethyl-1-heptene, 3,5,7-triphenyl-5-ethyl-7-methyl-2-nonene, 1,3- Diphenyl-1-butene, 2,4-diphenyl-4-methyl-2-pentene, 3,5-diphenyl-5-methyl-3-heptene, 1,3,5-triphenyl-1-hexene, 2,4 , 6-triphenyl-4,6-dimethyl-2-heptene, 3,5,7-triphenyl-5-ethyl-7-methyl-3-nonene, 1-phenyl-1,3-butadiene, 1,4 -The Aromatic compounds such as Eniru 1,3-butadiene.
 H)残存するビニルエステルモノマーが極力除去されたポリビニルエステルのアルコール溶液をけん化反応に用いる。好ましくは残存モノマーの除去率99%以上、より好ましくは99.5%以上、更に好ましくは99.8%以上のものを用いる。 H) A polyvinyl ester alcohol solution from which the remaining vinyl ester monomer is removed as much as possible is used for the saponification reaction. Preferably, the residual monomer removal rate is 99% or more, more preferably 99.5% or more, still more preferably 99.8% or more.
 A)~H)を適宜組み合わせることで所望のPVAが得られる。こうして得られるPVAをアセタール化して得られるポリビニルアセタールをフィルムの原料とすることが好ましい。 The desired PVA can be obtained by appropriately combining A) to H). The polyvinyl acetal obtained by acetalizing the PVA thus obtained is preferably used as a raw material for the film.
 また、上記3)の方法に用いられるポリビニルアセタールとして、230℃において3時間加熱された前記ポリビニルアセタールをGPC測定したときの、示差屈折率検出器で測定されるピークトップ分子量(G)と、吸光光度検出器(測定波長280nm)で測定されるピークトップ分子量(H)が下記式(7)
(G-H)/G<0.60   (7)
を満たし、かつピークトップ分子量(B)における吸光度が0.50×10-3~1.00×10-2となるものが挙げられる。このときのGPC測定は、以下の点以外は、上述した、フィルムのGPC測定方法と同様にして行う。
Further, as the polyvinyl acetal used in the method 3), when the polyvinyl acetal heated at 230 ° C. for 3 hours is measured by GPC, the peak top molecular weight (G) measured by a differential refractive index detector and the light absorption The peak top molecular weight (H) measured by a photometric detector (measurement wavelength: 280 nm) is the following formula (7)
(GH) / G <0.60 (7)
And the absorbance at the peak top molecular weight (B) is 0.50 × 10 −3 to 1.00 × 10 −2 . The GPC measurement at this time is performed in the same manner as the GPC measurement method for a film described above except for the following points.
 前記GPC測定において、GPCカラムとして、昭和電工株式会社製「GPC HFIP-806M」を用いる。吸光光度検出器のセル長は10mmとする。測定時のカラム温度は40℃とし、流速は1.0ml/分とする。 In the GPC measurement, “GPC HFIP-806M” manufactured by Showa Denko KK is used as the GPC column. The cell length of the absorptiometric detector is 10 mm. The column temperature during measurement is 40 ° C., and the flow rate is 1.0 ml / min.
 前記GPC測定において、以下に示す条件で加熱したポリビニルアセタールを測定する。加熱処理後の試料の色相の差異を吸光度の差異に明確に反映させるために、ポリビニルアセタールの粉末を圧力2MPa、230℃にて、3時間熱プレスすることにより、加熱されたポリビニルアセタール(フィルム)を得る。このときのフィルムの厚みは、600~800μmであり、通常の合わせガラス中間膜の厚みである概ね760μmであることが好ましい。こうして加熱されたポリビニルアセタールをGPC測定に供する。 In the GPC measurement, polyvinyl acetal heated under the following conditions is measured. In order to clearly reflect the difference in hue of the sample after the heat treatment in the difference in absorbance, the polyvinyl acetal (film) heated by pressing the polyvinyl acetal powder at 2 MPa and 230 ° C. for 3 hours. Get. The thickness of the film at this time is 600 to 800 μm, and is preferably about 760 μm, which is the thickness of a normal laminated glass interlayer film. The polyvinyl acetal thus heated is subjected to GPC measurement.
 前記ポリビニルアセタールのピークトップ分子量(G)は、上述したフィルムのピークトップ分子量(A)と同様にして求め、前記ポリビニルアセタールのピークトップ分子量(H)は、上述したフィルムのピークトップ分子量(B)と同様にして求める。 The peak top molecular weight (G) of the polyvinyl acetal is determined in the same manner as the peak top molecular weight (A) of the film described above, and the peak top molecular weight (H) of the polyvinyl acetal is determined as the peak top molecular weight (B) of the film described above. Find in the same way as
 前記ポリビニルアセタールは、上述した方法によりGPC測定されたときの、示差屈折率検出器で測定されるピークトップ分子量(G)と、吸光光度検出器(測定波長280nm)で測定されるピークトップ分子量(H)が下記式(7)を満たすことが好ましい。
(G-H)/G<0.60   (7)
The polyvinyl acetal has a peak top molecular weight (G) measured by a differential refractive index detector and a peak top molecular weight measured by an absorptiometric detector (measurement wavelength 280 nm) when GPC measurement is performed by the method described above. It is preferable that H) satisfy | fills following formula (7).
(GH) / G <0.60 (7)
 ピークトップ分子量(G)は、ポリビニルアセタールの分子量の指標となる値である。一方、ピークトップ分子量(H)は、ポリビニルアセタール中に存在する、280nmに吸収を有する成分に由来する。通常、ピークトップ分子量(H)よりもピークトップ分子量(G)のほうが大きいため、(G-H)/Gは正の値になる。ピークトップ分子量(H)が大きくなれば、(G-H)/Gは小さくなり、ピークトップ分子量(H)が小さくなれば、(G-H)/Gは大きくなる。すなわち、(G-H)/Gが大きい場合には、ポリビニルアセタール中の低分子量成分に280nm波長の紫外線を吸収する成分が多いことを意味する。 The peak top molecular weight (G) is a value serving as an index of the molecular weight of polyvinyl acetal. On the other hand, the peak top molecular weight (H) is derived from a component present in polyvinyl acetal and having absorption at 280 nm. Usually, since the peak top molecular weight (G) is larger than the peak top molecular weight (H), (GH) / G becomes a positive value. As the peak top molecular weight (H) increases, (GH) / G decreases, and as the peak top molecular weight (H) decreases, (GH) / G increases. That is, when (GH) / G is large, it means that the low molecular weight component in the polyvinyl acetal contains many components that absorb ultraviolet rays having a wavelength of 280 nm.
 (G-H)/Gが0.60以上の場合、上述の通り、低分子量成分に波長280nmの紫外線を吸収する成分が多くなる。この場合には、フィルム中の異物(未溶解分)が増えるおそれがある。また、フィルムの耐着色性、フィルム中の異物(未溶解分)及びフィルムを用いて得られる合わせガラスの耐貫通性に関する性能のバランスが取れないおそれがある。(G-H)/Gは、より好ましくは0.55未満であり、さらに好ましくは0.50未満である。 When (GH) / G is 0.60 or more, as described above, the low molecular weight component contains more components that absorb ultraviolet light having a wavelength of 280 nm. In this case, foreign matter (undissolved part) in the film may increase. Moreover, there exists a possibility that the performance regarding the coloring resistance of a film, the foreign material (undissolved part) in a film, and the penetration resistance of the laminated glass obtained using a film cannot be taken. (GH) / G is more preferably less than 0.55, and still more preferably less than 0.50.
 前記ポリビニルアセタールは、上述した方法によりGPC測定されたときの、ピークトップ分子量(H)における吸光度(測定波長280nm)が0.50×10-3~1.00×10-2となることが好ましい。前記吸光度が0.50×10-3未満の場合には、フィルム中の異物(未溶解分)が増えるおそれがある。また、フィルムの耐着色性、フィルム中の異物(未溶解分)及びフィルムを用いて得られる合わせガラスの耐貫通性に関する性能のバランスが取れないおそれがある。一方、前記吸光度が1.00×10-2を超える場合には、フィルム中に波長280nmの紫外線を吸収する成分が多くなるおそれがあり、フィルムの耐着色性や合わせガラスの耐貫通性が低下するおそれがある。前記吸光度は1.50×10-3~1.00×10-2がより好ましく、1.55×10-3~8.50×10-3が更に好ましく、1.60×10-3~7.00×10-3が特に好ましい。 The polyvinyl acetal preferably has an absorbance (measurement wavelength: 280 nm) at a peak top molecular weight (H) of 0.50 × 10 −3 to 1.00 × 10 −2 when GPC measurement is performed by the method described above. . If the absorbance is less than 0.50 × 10 -3, there is a possibility that foreign matter in the film (undissolved) increases. Moreover, there exists a possibility that the performance regarding the coloring resistance of a film, the foreign material (undissolved part) in a film, and the penetration resistance of the laminated glass obtained using a film cannot be taken. On the other hand, when the absorbance exceeds 1.00 × 10 −2 , there may be an increase in the component that absorbs ultraviolet light having a wavelength of 280 nm in the film, and the coloration resistance of the film and the penetration resistance of the laminated glass are reduced. There is a risk. The absorbance is more preferably 1.50 × 10 −3 to 1.00 × 10 −2 , further preferably 1.55 × 10 −3 to 8.50 × 10 −3 , and 1.60 × 10 −3 to 7. Particularly preferred is 0.000 × 10 −3 .
 前記ポリビニルアセタールは、上述した方法によりGPC測定されたときの、示差屈折率検出器で測定されるピークトップ分子量(G)と、吸光光度検出器(測定波長320nm)で測定されるピークトップ分子量(I)が下記式(8)を満たすことがより好ましい。
(G-I)/G<0.65   (8)
The polyvinyl acetal has a peak top molecular weight (G) measured by a differential refractive index detector and a peak top molecular weight measured by an absorptiometric detector (measurement wavelength: 320 nm) when GPC measurement is performed by the method described above ( More preferably, I) satisfies the following formula (8).
(GI) / G <0.65 (8)
 ピークトップ分子量(I)は、吸光光度検出器における測定波長が320nmであること以外はピークトップ分子量(H)と同様にして測定される。ピークトップ分子量(I)は、原料のPVA中に存在する、320nmに吸収を有する成分に由来する。通常、ピークトップ分子量(I)よりもピークトップ分子量(G)のほうが大きいため、(G-I)/Gは正の値になる。ピークトップ分子量(I)が大きくなれば、(G-I)/Gは小さくなり、ピークトップ分子量(I)が小さくなれば、(G-I)/Gは大きくなる。すなわち、(G-I)/Gが大きい場合には、ポリビニルアセタール中の低分子量成分に波長320nmの紫外線を吸収する成分が多いことを意味する。 The peak top molecular weight (I) is measured in the same manner as the peak top molecular weight (H) except that the measurement wavelength in the absorptiometric detector is 320 nm. The peak top molecular weight (I) is derived from a component having absorption at 320 nm, which is present in the raw material PVA. Usually, since the peak top molecular weight (G) is larger than the peak top molecular weight (I), (GI) / G becomes a positive value. As the peak top molecular weight (I) increases, (GI) / G decreases, and as the peak top molecular weight (I) decreases, (GI) / G increases. That is, when (GI) / G is large, it means that the low molecular weight component in the polyvinyl acetal contains many components that absorb ultraviolet rays having a wavelength of 320 nm.
 (G-I)/Gが0.65以上の場合、上述の通り、低分子量成分に波長320nmの紫外線を吸収する成分が多くなる。この場合には、フィルム中の異物(未溶解分)が増えるおそれがある。また、フィルムの耐着色性、フィルム中の異物(未溶解分)及びフィルムを用いて得られる合わせガラスの耐貫通性に関する性能のバランスが取れないおそれがある。(G-I)/Gは、さらに好ましくは0.60未満であり、特に好ましくは、0.55未満である。 When (GI) / G is 0.65 or more, as described above, the low molecular weight component contains more components that absorb ultraviolet light having a wavelength of 320 nm. In this case, foreign matter (undissolved part) in the film may increase. Moreover, there exists a possibility that the performance regarding the coloring resistance of a film, the foreign material (undissolved part) in a film, and the penetration resistance of the laminated glass obtained using a film cannot be taken. (GI) / G is more preferably less than 0.60, and particularly preferably less than 0.55.
 前記ポリビニルアセタールは、上述した方法によりGPC測定されたときの、ピークトップ分子量(I)における吸光度(測定波長320nm)が0.35×10-3~4.50×10-3であることがより好ましい。前記吸光度が0.35×10-3未満の場合には、フィルム中の異物(未溶解分)が増えるおそれがある。また、フィルムの耐着色性、フィルム中の異物(未溶解分)及びフィルムの耐貫通性に関する性能のバランスが取れないおそれがある。一方、前記吸光度が4.50×10-3を超える場合にはフィルム中に320nm紫外可視光の吸収成分が多くなるおそれがあり、フィルムの耐着色性や合わせガラスの耐貫通性が低下するおそれがある。前記吸光度は0.75×10-3~4.50×10-3が更に好ましく、0.80×10-3~3.50×10-3が特に好ましく、0.85×10-3~2.50×10-3が最も好ましい。 The polyvinyl acetal has an absorbance (measurement wavelength of 320 nm) at a peak top molecular weight (I) of 0.35 × 10 −3 to 4.50 × 10 −3 when GPC measurement is performed by the above-described method. preferable. When the absorbance is less than 0.35 × 10 −3 , foreign matter (undissolved part) in the film may increase. Moreover, there exists a possibility that the performance regarding the coloring resistance of a film, the foreign material (undissolved part) in a film, and the penetration resistance of a film cannot be balanced. On the other hand, when it said absorbance is more than 4.50 × 10 -3 is may become more absorption components of 320nm ultraviolet-visible light in the film, a possibility that penetration of the coloring resistance and laminated glass of the film is decreased There is. The absorbance is more preferably 0.75 × 10 −3 to 4.50 × 10 −3 , particularly preferably 0.80 × 10 −3 to 3.50 × 10 −3 , and 0.85 × 10 −3 to 2. .50 × 10 −3 is most preferred.
 上述した、ポリビニルアセタールのGPC測定における、示差屈折率検出器で測定される前記ポリビニルアセタールの数平均分子量Mnに対する重量平均分子量Mwの比Mw/Mnが2.8~8.8であることが好ましい。Mw及びMnは、前述したピークトップ分子量(G)を求める際に使用する、ポリビニルアセタールの分子量に対して、示差屈折率検出器で測定された値をプロットして得たクロマトグラムから求められる。したがって、ここで求められるMw及びMnは、PMMA換算の値である。 In the above-mentioned GPC measurement of polyvinyl acetal, the ratio Mw / Mn of the weight average molecular weight Mw to the number average molecular weight Mn of the polyvinyl acetal measured with a differential refractive index detector is preferably 2.8 to 8.8. . Mw and Mn are obtained from the chromatogram obtained by plotting the values measured by the differential refractive index detector with respect to the molecular weight of polyvinyl acetal used when obtaining the peak top molecular weight (G) described above. Therefore, Mw and Mn calculated | required here are the values of PMMA conversion.
 PMMA換算分子量で、数平均分子量(Mn)および重量平均分子量(Mw)から導かれる比率 Mw/Mn(分子量分布)が、2.8~8.8であることが好ましく、2.9~8.7がより好ましく、3.0~8.6が更に好ましい。Mw/Mnが2.8未満の場合には、フィルムの異物(未溶解分)の数が増えるおそれがある。逆に、Mw/Mnが8.8を超える場合には、フィルムの耐着色性が低下するおそれや合わせガラスの耐貫通性が低下するおそれがある。 The ratio Mw / Mn (molecular weight distribution) derived from the number average molecular weight (Mn) and the weight average molecular weight (Mw) in terms of PMMA equivalent molecular weight is preferably 2.8 to 8.8. 7 is more preferable, and 3.0 to 8.6 is still more preferable. When Mw / Mn is less than 2.8, the number of foreign matters (undissolved parts) in the film may increase. On the contrary, when Mw / Mn exceeds 8.8, there is a possibility that the coloring resistance of the film is lowered or the penetration resistance of the laminated glass is lowered.
 このような特定のポリビニルアセタールを得る手段としては、上記2)に示した特定のPVAを原料にして、アセタール化する方法が挙げられる。 As a means for obtaining such a specific polyvinyl acetal, a method of acetalizing using the specific PVA shown in the above 2) as a raw material can be mentioned.
 本発明のフィルムは可塑剤を含有することが好ましい。前記可塑剤は、本発明の効果を損なわず、ポリビニルアセタールとの相溶性に問題がなければ特に制限されない。前記可塑剤として、両末端に水酸基を有するオリゴアルキレングルコールとカルボン酸とのモノまたはジエステル、ジカルボン酸と水酸基含有化合物とのジエステルなどを用いることができる。これらは単独で、あるいは2種以上を組み合わせて用いることができる。両末端に水酸基を有するオリゴアルキレングリコールとしては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、1,2-プロピレングリコール、1,2-プロピレングリコールの二量体および三量体、1,3-プロピレングリコール、1,3-プロピレングリコールの二量体および三量体、1,2-ブチレングリコール、1,2-ブチレングリコールの二量体および三量体、1,4-ブチレングリコール、1,4-ブチレングリコールの二量体および三量体、1,2-ヘキサンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、1,2-オクタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、2-メチル-1,8-オクタンジオール、1,2-デカンジオール、1,4-シクロヘキサンジオールなどが挙げられる。カルボン酸としては、酢酸、プロパン酸、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、2-エチルヘキサン酸、ノナン酸、デカン酸などが挙げられる。ここで、オリゴアルキレングリコールとカルボン酸との組み合わせは任意である。これらの中でも、トリエチレングリコールと2-エチルヘキサン酸のモノエステルおよびジエステルが取り扱い性(成形時の揮発性)などの観点で好ましい。また、ジカルボン酸としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、セバシン酸などのアルキレンジカルボン酸や、フタル酸、イソフタル酸、テレフタル酸などの芳香族ジカルボン酸などが挙げられる。水酸基含有化合物としては、メタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、シクロヘキサノール、ヘプタノール、オクタノール、2-エチルヘキサノール、ノナオール、デカノール、2-メトキシエタノール、2-エトキシエタノール、2-プロポキシエタノール、2-ブトキシエタノールなどが挙げられ、先のジカルボン酸化合物とのジエステルが挙げられる。ここで、ジカルボン酸と水酸基含有化合物の組み合わせは任意である。 The film of the present invention preferably contains a plasticizer. The plasticizer is not particularly limited as long as the effect of the present invention is not impaired and there is no problem in compatibility with polyvinyl acetal. As the plasticizer, a mono- or diester of an oligoalkylene glycol having a hydroxyl group at both ends and a carboxylic acid, a diester of a dicarboxylic acid and a hydroxyl group-containing compound, or the like can be used. These can be used alone or in combination of two or more. Examples of oligoalkylene glycols having hydroxyl groups at both ends include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, 1,2-propylene glycol, 1,2-propylene glycol dimer and trimer, 1,3 -Propylene glycol, 1,3-propylene glycol dimer and trimer, 1,2-butylene glycol, 1,2-butylene glycol dimer and trimer, 1,4-butylene glycol, 1, 4-butylene glycol dimer and trimer, 1,2-hexanediol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,2-octanediol, 1,8-octane Diol, 1,9-nonanediol, 2-methyl-1,8-octanediol, , 2-decanediol, 1,4-cyclohexane diol. Examples of the carboxylic acid include acetic acid, propanoic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, 2-ethylhexanoic acid, nonanoic acid and decanoic acid. Here, the combination of oligoalkylene glycol and carboxylic acid is arbitrary. Of these, monoesters and diesters of triethylene glycol and 2-ethylhexanoic acid are preferable from the viewpoint of handleability (volatility during molding). Dicarboxylic acids include alkylene dicarboxylic acids such as oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, and sebacic acid, and aromatic dicarboxylic acids such as phthalic acid, isophthalic acid, and terephthalic acid. An acid etc. are mentioned. Examples of the hydroxyl group-containing compound include methanol, ethanol, propanol, butanol, pentanol, hexanol, cyclohexanol, heptanol, octanol, 2-ethylhexanol, nonaol, decanol, 2-methoxyethanol, 2-ethoxyethanol, 2-propoxyethanol, Examples thereof include 2-butoxyethanol and the like, and diesters with the aforementioned dicarboxylic acid compounds. Here, the combination of dicarboxylic acid and a hydroxyl-containing compound is arbitrary.
 前記可塑剤の含有量は、本発明の効果を損なわない範囲であれば特に制限はないが、ポリビニルアセタール100質量部に対して、好ましくは12~200質量部、より好ましくは15~150質量部、更に好ましくは20~100質量部である。可塑剤の含有量が10質量部に満たない場合、フィルムの柔軟性が低下するおそれがある。逆に、可塑剤の含有量が200質量部を超える場合には、可塑剤がブリードアウトしやすくなるおそれがある。特に本発明のフィルムを合わせガラス用中間膜として用いる場合の可塑剤の含有量は、ポリビニルアセタール100質量部に対して、好ましくは10~100質量部、より好ましくは15~90質量部、更に好ましくは20~80質量部である。可塑剤の含有量が10質量部に満たない場合には、合わせガラス用中間膜として所望の柔軟性が得られないおそれがある。含有量が100質量部を超える場合には、所望する力学物性、特に合わせガラスの耐貫通性などが低下するおそれがある。 The content of the plasticizer is not particularly limited as long as the effect of the present invention is not impaired, but is preferably 12 to 200 parts by weight, more preferably 15 to 150 parts by weight with respect to 100 parts by weight of polyvinyl acetal. More preferably, it is 20 to 100 parts by mass. When content of a plasticizer is less than 10 mass parts, there exists a possibility that the softness | flexibility of a film may fall. On the contrary, when the content of the plasticizer exceeds 200 parts by mass, the plasticizer may easily bleed out. In particular, when the film of the present invention is used as an interlayer film for laminated glass, the content of the plasticizer is preferably 10 to 100 parts by mass, more preferably 15 to 90 parts by mass, and still more preferably 100 parts by mass of polyvinyl acetal. Is 20 to 80 parts by mass. When content of a plasticizer is less than 10 mass parts, there exists a possibility that desired softness | flexibility may not be obtained as an intermediate film for laminated glasses. If the content exceeds 100 parts by mass, the desired mechanical properties, in particular the penetration resistance of the laminated glass, may be reduced.
 本発明のフィルムは、本発明の主旨に反しない限り、紫外線吸収剤、接着性調整剤、顔料、染料、その他従来公知の添加剤を含んでいても良い。このような添加剤について以下に説明する。 The film of the present invention may contain an ultraviolet absorber, an adhesion adjusting agent, a pigment, a dye, and other conventionally known additives, as long as it is not contrary to the gist of the present invention. Such additives will be described below.
 前記紫外線吸収剤としては、2-(5-メチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ビス(α,α’-ジメチルベンジル)フェニル)-2H-ベンゾトリアゾール、2-(3,5-ジt-ブチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-(3-t-ブチル-5-メチル-2-ヒドロキシフェニル)-5-クロロベンゾトリアゾール、2-(3,5-ジt-ブチル-5-メチル-2-ヒドロキシフェニル)-5-クロロベンゾトリアゾール、2-(3,5-ジt-アミル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-t-オクチルフェニル)ベンゾトリアゾール等のベンゾトリアゾール系紫外線吸収剤;2,2,6,6-テトラメチル-4-ピペリジルベンゾエート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-2-(3,5-ジt-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロネート、4-(3-(3,5-ジt-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ)-1-(2-(3-(3,5-ジt-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ)エチル)-2,2,6,6-テトラメチルピペリジンなどのヒンダードアミン系紫外線吸収剤;2,4-ジt-ブチルフェニル-3,5-ジt-ブチル-4-ヒドロキシベンゾエート、ヘキサデシル-3,5-ジt-ブチル-4-ヒドロキシベンゾエートなどのベンゾエート系紫外線吸収剤;マロン酸[(4-メトキシフェニル)-メチレン]-ジメチルエステル等のマロン酸エステル系紫外線吸収剤;2-エチル-2’-エトキシ-オキサルアニリド等のシュウ酸アニリド系紫外線吸収剤などが挙げられる。これらの紫外線吸収剤は単独で、あるいは2種以上を組み合わせて用いることができる。フィルム中の紫外線吸収剤の含有量は特に制限はないが、10~50,000ppmであることが好ましく、100~10,000ppmの範囲であることがより好ましい。含有量が10ppmより少ないと十分な効果が発現しないことがあり、また50,000ppmより多くしても含有量を増やすことによる効果の向上が望めない。 Examples of the ultraviolet absorber include 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2- (2-hydroxy-3,5-bis (α, α'-dimethylbenzyl) phenyl) -2H-benzotriazole. 2- (3,5-di-t-butyl-2-hydroxyphenyl) benzotriazole, 2- (3-t-butyl-5-methyl-2-hydroxyphenyl) -5-chlorobenzotriazole, 2- (3 , 5-di-t-butyl-5-methyl-2-hydroxyphenyl) -5-chlorobenzotriazole, 2- (3,5-di-t-amyl-2-hydroxyphenyl) benzotriazole, 2- (2′- Benzotriazole ultraviolet absorbers such as hydroxy-5′-t-octylphenyl) benzotriazole; 2,2,6,6-tetramethyl-4-pipe Lysylbenzoate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) -2- (3,5-dit -Butyl-4-hydroxybenzyl) -2-n-butyl malonate, 4- (3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyloxy) -1- (2- (3- ( Hindered amine ultraviolet absorbers such as 3,5-di-t-butyl-4-hydroxyphenyl) propionyloxy) ethyl) -2,2,6,6-tetramethylpiperidine; 2,4-di-t-butylphenyl-3 Benzoate UV absorbers such as, 5-di-t-butyl-4-hydroxybenzoate and hexadecyl-3,5-di-t-butyl-4-hydroxybenzoate; malonic acid [(4-me Kishifeniru) - methylene] - malonic acid ester ultraviolet absorbers such as dimethyl ester; 2-ethyl-2'-ethoxy - such as oxalic acid anilide-based ultraviolet absorbers such oxalanilide like. These ultraviolet absorbers can be used alone or in combination of two or more. The content of the ultraviolet absorber in the film is not particularly limited, but is preferably 10 to 50,000 ppm, and more preferably 100 to 10,000 ppm. If the content is less than 10 ppm, a sufficient effect may not be exhibited, and even if the content is more than 50,000 ppm, the effect cannot be improved by increasing the content.
 本発明のフィルムは、ガラスとの接着性を適切に調節するために、接着性調整剤を含有しても構わない。接着性調整剤としては、従来公知のものが使用可能である。例えば酢酸、プロピオン酸、ブタン酸、ヘキサン酸、2-エチルブタン酸、2-エチルヘキサン酸などの有機酸のナトリウム塩、カリウム塩、マグネシウム塩などが用いられる。これらは単独で、あるいは2種類以上を組み合わせて使用できる。接着性調整剤の好適な含有量は、その種類により異なるが、得られるフィルムのガラスへの接着力が、パンメル試験(Pummel test;国際公開第03/033583号等に記載)において、一般には3~10になるように調整することが好ましい。特に高い耐貫通性を必要とする場合は3~6になるように含有量を調整することが好ましく、高いガラス飛散防止性を必要とする場合は7~10になるように含有量を調整することが好ましい。高いガラス飛散防止性が求められる場合は、接着性調整剤を添加しないことも有用な方法である。通常、フィルム中の接着性調整剤の含有量としては、0.0001~1質量%であることが好ましく、0.0005~0.1質量%がより好ましく、0.001~0.03質量%が更に好ましい。 The film of the present invention may contain an adhesion adjusting agent in order to appropriately adjust the adhesion with glass. A conventionally well-known thing can be used as an adhesive control agent. For example, sodium salts, potassium salts, magnesium salts of organic acids such as acetic acid, propionic acid, butanoic acid, hexanoic acid, 2-ethylbutanoic acid and 2-ethylhexanoic acid are used. These can be used alone or in combination of two or more. The preferred content of the adhesion modifier varies depending on the type, but the adhesive strength of the resulting film to glass is generally 3 in the Pummel test (Pummel test; described in International Publication No. 03/033583 etc.). It is preferable to adjust so as to be ˜10. In particular, when high penetration resistance is required, the content is preferably adjusted to 3 to 6, and when high glass scattering prevention property is required, the content is adjusted to 7 to 10. It is preferable. When high glass scattering prevention property is required, it is also a useful method not to add an adhesion modifier. Usually, the content of the adhesion adjusting agent in the film is preferably 0.0001 to 1% by mass, more preferably 0.0005 to 0.1% by mass, and 0.001 to 0.03% by mass. Is more preferable.
 また、上記接着性を調整するための他の添加剤としてはシランカップリング剤が挙げられる。フィルム中のシランカップリング剤の含有量は、0.01~5質量%が好ましい。 Moreover, a silane coupling agent is mentioned as another additive for adjusting the said adhesiveness. The content of the silane coupling agent in the film is preferably 0.01 to 5% by mass.
 本発明のフィルムのガラス転移温度は特に限定されず、目的に応じて適宜選択可能であるが、0~50℃の範囲であることが好ましく、0~45℃であることがより好ましく、0~40℃であることがさらに好ましい。特に本発明のフィルムを合わせガラス中間膜として使用する場合にガラス転移温度が上記範囲であることが好ましい。 The glass transition temperature of the film of the present invention is not particularly limited and can be appropriately selected depending on the purpose, but is preferably in the range of 0 to 50 ° C., more preferably 0 to 45 ° C., and more preferably 0 to More preferably, it is 40 degreeC. In particular, when the film of the present invention is used as a laminated glass interlayer, the glass transition temperature is preferably in the above range.
 本発明のフィルムの製造方法は特に限定されないが、PVAをアセタール化してポリビニルアセタールを得た後、該ポリビニルアセタールを溶融成形する方法が好ましい。前記溶融成形方法としては、押出機を用いて、得られたポリビニルアセタール、可塑剤、その他の成分を溶融混練し、製膜する方法が好ましい。押出し時の樹脂温度は150~250℃が好ましく、170~230℃がより好ましい。樹脂温度が高くなりすぎるとポリビニルアセタールが分解を起こし、製膜後の中間膜中の揮発性物質の含有量が多くなる。逆に温度が低すぎると、押出機での揮発分除去が不十分となり、製膜後の中間膜中の揮発性物質の含有量は多くなる。揮発性物質を効率的に除去するためには、押出機内を減圧することによりベント口から揮発性物質を除去することが好ましい。本発明のフィルムは、ポリビニルアセタール、可塑剤及びその他の成分を有機溶剤に溶解又は分散させたものを製膜した後、前記有機溶剤を留去する方法によっても製造できる。 The method for producing the film of the present invention is not particularly limited, but a method in which PVA is acetalized to obtain polyvinyl acetal and then the polyvinyl acetal is melt-molded is preferable. As the melt molding method, a method of melt-kneading the obtained polyvinyl acetal, plasticizer and other components using an extruder to form a film is preferable. The resin temperature at the time of extrusion is preferably 150 to 250 ° C, more preferably 170 to 230 ° C. When the resin temperature becomes too high, polyvinyl acetal is decomposed, and the content of volatile substances in the intermediate film after film formation increases. On the other hand, if the temperature is too low, the removal of volatile matter in the extruder becomes insufficient, and the content of volatile substances in the intermediate film after film formation increases. In order to efficiently remove the volatile substance, it is preferable to remove the volatile substance from the vent port by reducing the pressure in the extruder. The film of the present invention can also be produced by a method in which a film obtained by dissolving or dispersing polyvinyl acetal, a plasticizer and other components in an organic solvent is formed, and then the organic solvent is distilled off.
 本発明において、フィルムの原料のポリビニルアセタールとして、バージン樹脂(再利用されたポリビニルアセタールを含まないもの)のみを用いて製膜してもよいが、後述するトリムやオフスペック品を再利用して製膜してもよい。通常、製膜には、押出機にギアポンプなどの計量機およびTダイなどのダイを備え付けた製膜装置等が用いられる。一般的に、合わせガラス用中間膜等を製膜する際には、フィルムの両端部(トリム)は切り取られる。このようなトリムを回収し、再利用することは省エネルギー化、資源の有効活用や収率向上の観点から非常に重要である。また、表面に凹凸を有するフィルムの製造の際に生じたオフスペック品も、トリム同様に再利用できるため有用である。本発明のフィルムは、溶融製膜した際に生じる異物(未溶解分)が少ない。また、本発明のフィルムは熱処理した際の着色が少ないことから、上記回収フィルム(トリム、オフスペック品のフィルム)を有効に再利用できる。回収フィルムを再び押出機に投入する方法として、トリムやオフスペック品のフィルムをロールに巻き取ったものを、そのまま巻き出して押出機に再投入する方法;トリムやオフスペック品のフィルムをロールに巻き取ったものを一定の大きさにカットした後、押出機に再投入する方法などが挙げられる。本発明のフィルムを製膜する際は、原料中のバージン樹脂と回収フィルムの比率(バージン樹脂:回収フィルム)は0:100~100:0の間で任意に変更できる。 In the present invention, as the raw material polyvinyl acetal of the film, the film may be formed using only a virgin resin (not containing recycled polyvinyl acetal), but the trim and off-spec products described later are reused. A film may be formed. Usually, for film formation, a film forming apparatus provided with a weighing machine such as a gear pump and a die such as a T die in an extruder is used. Generally, when forming an intermediate film for laminated glass or the like, both ends (trims) of the film are cut off. It is very important to collect and reuse such trims from the viewpoints of energy saving, effective utilization of resources and improvement of yield. In addition, an off-spec product produced during the production of a film having irregularities on the surface is useful because it can be reused in the same manner as the trim. The film of the present invention has few foreign matters (undissolved content) generated when it is melt-formed. In addition, since the film of the present invention is less colored when heat-treated, the recovered film (trim, off-spec film) can be effectively reused. As a method of feeding the recovered film into the extruder again, a method in which a trim or off-spec film is wound on a roll is unwound and then fed back into the extruder; the trim or off-spec film is put on a roll Examples include a method of cutting a wound product into a certain size and then re-feeding it into an extruder. When the film of the present invention is formed, the ratio of the virgin resin to the recovered film (virgin resin: recovered film) in the raw material can be arbitrarily changed between 0: 100 and 100: 0.
 上記トリムやオフスペック品のフィルムを再利用してフィルムを製造する場合、可塑剤、その他成分の含有量は以下の方法により調整できる。得られるフィルムの成分を分析しつつ、押出機への各成分の添加量を調整することにより、所望のフィルムが得られる。 When manufacturing a film by reusing the above trim or off-spec film, the contents of the plasticizer and other components can be adjusted by the following method. A desired film is obtained by adjusting the addition amount of each component to an extruder, analyzing the component of the obtained film.
 本発明のフィルムからなる合わせガラス用中間膜が本発明の好適な実施態様である。本発明のフィルムは、透明性および柔軟性に優れるので、ガラス用中間膜として好適に使用できる。前記合わせガラス用中間膜の厚さは特に限定されないが、0.05~5.0mmであることが好ましく、0.1~2.0mmであることがより好ましく、0.1~1.2mmであることがさらに好ましい。 An interlayer film for laminated glass comprising the film of the present invention is a preferred embodiment of the present invention. Since the film of the present invention is excellent in transparency and flexibility, it can be suitably used as an interlayer film for glass. The thickness of the interlayer film for laminated glass is not particularly limited, but is preferably 0.05 to 5.0 mm, more preferably 0.1 to 2.0 mm, and 0.1 to 1.2 mm. More preferably it is.
 前記合わせガラス用中間膜は、必要に応じて、顔料、染料などを含有していても良い。 The interlayer film for laminated glass may contain a pigment, a dye or the like as necessary.
 前記合わせガラス用中間膜の表面の形状は特に限定されないが、ガラスとラミネートする際の取り扱い性(泡抜け性)を考慮すると、ガラスと接触する面に、従来公知の方法により、メルトフラクチャー、エンボスなどの凹凸構造が形成されていることが好ましい。エンボス高さについては特に制限はないが、5μm~500μmであることが好ましく、7μm~300μmであることがより好ましく、10μm~200μmであることが更に好ましい。エンボス高さが5μmに満たない場合には、ラミネートの際に、ガラスと中間膜との間にできる気泡を効率よく除去できない場合があり、500μmを超える場合には、エンボスの形成が難しい。エンボスを中間膜の片面に施してもよいし、両面でもよいが、通常、両面に施すのが好ましい。エンボスパターンは、規則的でもよいし、不規則的でもよい。 The shape of the surface of the interlayer film for laminated glass is not particularly limited. However, in consideration of the handleability (foaming property) when laminating with glass, the melt fracture and embossing are performed on the surface in contact with the glass by a conventionally known method. It is preferable that a concavo-convex structure such as is formed. The emboss height is not particularly limited, but is preferably 5 μm to 500 μm, more preferably 7 μm to 300 μm, and still more preferably 10 μm to 200 μm. When the emboss height is less than 5 μm, bubbles formed between the glass and the intermediate film may not be efficiently removed during lamination, and when it exceeds 500 μm, it is difficult to form the emboss. Embossing may be performed on one side of the intermediate film or on both sides, but it is usually preferable to apply it on both sides. The emboss pattern may be regular or irregular.
 このようなエンボスを形成するには、従来公知の、エンボスロール法、異形押出法、メルトフラクチャーを利用した押出リップエンボス法、等が採用される。特に均一で微細な凹凸が形成されたエンボスフィルムを安定的に得るにはエンボスロール法が好適である。 In order to form such embossing, a conventionally known embossing roll method, profile extrusion method, extrusion lip embossing method using melt fracture, or the like is employed. In particular, the embossing roll method is suitable for stably obtaining an embossed film on which uniform and fine irregularities are formed.
 エンボスロール法で用いられるエンボスロールは、例えば、所望の凹凸模様を有する彫刻ミル(マザーミル)を用い、この凹凸模様を金属ロール表面に転写することにより作製できる。また、レーザーエッチングを用いてもエンボスロールを作製できる。さらに上記のようにしてロール表面に微細な凹凸模様を形成した後、その表面に酸化アルミニウムや酸化珪素やガラスビ-ズなどの研削材を用いてブラスト処理を行ってさらに微細な凹凸模様を形成することもできる。 The embossing roll used in the embossing roll method can be produced by, for example, using an engraving mill (mother mill) having a desired concavo-convex pattern and transferring the concavo-convex pattern onto the surface of the metal roll. Moreover, an embossing roll can also be produced using laser etching. Further, after forming a fine concavo-convex pattern on the roll surface as described above, blasting is performed on the surface using an abrasive such as aluminum oxide, silicon oxide, or glass beads to form a finer concavo-convex pattern. You can also.
 またエンボスロール法で用いられるエンボスロ-ルに離形処理を施すことが好ましい。離形処理されていないロールを用いた場合、フィルムがロールから剥離できないトラブルが発生しやすい。離形処理はシリコーン処理、テフロン(登録商標)処理、プラズマ処理、等の公知の方法が利用できる。 In addition, it is preferable to perform a release treatment on the embossing roll used in the embossing roll method. When a roll that has not been subjected to release treatment is used, a trouble that the film cannot be peeled off from the roll tends to occur. For the release treatment, a known method such as silicone treatment, Teflon (registered trademark) treatment, plasma treatment or the like can be used.
 前記合わせガラス用中間膜を用いて複数のガラス板を接着してなる合わせガラスが本発明の好適な実施態様である。当該合わせガラスは、前記中間膜を少なくとも2枚のガラス板で挟み、中間膜を加熱し接着することによって製造することができる。前記合わせガラスに使用するガラスは特に限定されず、フロート板ガラス、強化板ガラス、磨き板ガラス、型板ガラス、網入り板ガラス、熱線吸収板ガラスなどの無機ガラスのほか、ポリメタクリル酸メチル、ポリカーボネートなどの従来公知の有機ガラス等が使用できる。これらは無色、有色のいずれであってもよい。また、これらは透明、非透明のいずれであってもよい。同じ種類のガラスをラミネートしてもよいし、異なる種類のガラスをラミネートしてもよい。ガラスの厚みは特に限定されないが、100mm以下であることが好ましい。また、上記ガラスの形状については特に制限はなく、単純な平面状の板ガラスであっても、自動車フロントガラスなどの曲率を有するガラスであっても良い。 A laminated glass obtained by bonding a plurality of glass plates using the interlayer film for laminated glass is a preferred embodiment of the present invention. The laminated glass can be produced by sandwiching the intermediate film between at least two glass plates and heating and bonding the intermediate film. The glass used for the laminated glass is not particularly limited. In addition to inorganic glass such as float plate glass, tempered plate glass, polished plate glass, mold plate glass, netted plate glass, heat ray absorbing plate glass, conventionally known polymethyl methacrylate, polycarbonate and the like. Organic glass or the like can be used. These may be either colorless or colored. These may be either transparent or non-transparent. The same type of glass may be laminated, or different types of glass may be laminated. Although the thickness of glass is not specifically limited, It is preferable that it is 100 mm or less. Moreover, there is no restriction | limiting in particular about the shape of the said glass, Even if it is glass which has curvature, such as a simple planar plate glass, a motor vehicle windshield.
 前記合わせガラスは従来公知の方法で製造が可能であり、例えば、真空ラミネーター装置を用いる方法、真空バッグを用いる方法、真空リングを用いる方法、ニップロールを用いる方法等が挙げられる。またこれらの方法を用いて仮圧着させた後に、得られた積層体をオートクレーブに投入する方法も挙げられる。 The laminated glass can be produced by a conventionally known method, and examples thereof include a method using a vacuum laminator device, a method using a vacuum bag, a method using a vacuum ring, and a method using a nip roll. Further, there is a method in which the obtained laminate is put into an autoclave after being temporarily pressed using these methods.
 真空ラミネーター装置を用いる場合、例えば、1×10-6~3×10-2MPaの減圧下、100~200℃、特に130~160℃でガラスと中間膜がラミネートされる。真空バッグまたは真空リングを用いる方法は、例えば、欧州特許第1235683号明細書に記載されており、約2×10-2MPaの圧力下、130~145℃でラミネートされる。 When a vacuum laminator is used, for example, the glass and the interlayer film are laminated at 100 to 200 ° C., particularly 130 to 160 ° C. under a reduced pressure of 1 × 10 −6 to 3 × 10 −2 MPa. A method using a vacuum bag or a vacuum ring is described in, for example, European Patent No. 1235683, and is laminated at 130 to 145 ° C. under a pressure of about 2 × 10 −2 MPa.
 ニップロールを用いる製造方法としては、フィルムの流動開始温度以下の温度でロールにより脱気した後、さらに流動開始温度に近い温度で圧着を行う方法が挙げられる。具体的には、例えば、赤外線ヒーターなどで30~70℃に加熱した後、ロールで脱気し、さらに50~120℃に加熱した後ロールで圧着させる方法が挙げられる。 As a production method using a nip roll, there is a method in which after degassing with a roll at a temperature equal to or lower than the flow start temperature of the film, pressure bonding is performed at a temperature close to the flow start temperature. Specifically, for example, there is a method of heating to 30 to 70 ° C. with an infrared heater or the like, then degassing with a roll, further heating to 50 to 120 ° C., and then pressing with a roll.
 上述の方法を用いて圧着させた後にオートクレーブに投入してさらに圧着を行う場合、オートクレーブ工程の運転条件は、合わせガラスの厚さや構成により適宜選択されるが、例えば1.0~1.5MPaの圧力下、130~145℃にて0.5~3時間処理することが好ましい。 When pressure bonding is performed using the above-described method, and then further pressure bonding is performed, the operating conditions of the autoclave process are appropriately selected depending on the thickness and configuration of the laminated glass. For example, 1.0 to 1.5 MPa The treatment is preferably carried out at 130 to 145 ° C. for 0.5 to 3 hours under pressure.
 以下、実施例および比較例により本発明をさらに詳細に説明する。なお、以下の実施例および比較例において「部」および「%」は、特に断らない限り質量基準を意味する。 Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples. In the following Examples and Comparative Examples, “part” and “%” mean mass basis unless otherwise specified.
[GPC測定]
(測定装置)
 VISCOTECH製「GPCmax」を用いてGPC測定を行った。示差屈折率検出器としてVISCOTECH製「TDA305」を用いた。紫外可視吸光光度検出器としてVISCOTECH製「UV Detector2600」を用いた。当該吸光光度検出器の検出用セルの光路長は10mmである。GPCカラムには昭和電工株式会社製「GPC HFIP-806M」を用いた。また、解析ソフトには、装置付属のOmniSEC(Version 4.7.0.406)を用いた。
[GPC measurement]
(measuring device)
GPC measurement was performed using “GPCmax” manufactured by VISCOTECH. As a differential refractive index detector, “TDA305” manufactured by VISCOTECH was used. “UV Detector 2600” manufactured by VISCOTECH was used as an ultraviolet-visible absorption detector. The optical path length of the detection cell of the absorptiometric detector is 10 mm. As the GPC column, “GPC HFIP-806M” manufactured by Showa Denko KK was used. Moreover, OmniSEC (Version 4.7.0.406) attached to the apparatus was used as analysis software.
(測定条件)
 試料を20mmol/lトリフルオロ酢酸ナトリウム含有HFIPに溶解し、試料が溶解した溶液(濃度1.00mg/ml)を調製した。当該溶液を0.45μmのポリテトラフルオロエチレン製フィルターでろ過した後、測定に用いた。
(Measurement condition)
The sample was dissolved in HFIP containing 20 mmol / l sodium trifluoroacetate to prepare a solution (concentration 1.00 mg / ml) in which the sample was dissolved. The solution was filtered through a 0.45 μm polytetrafluoroethylene filter and used for measurement.
 移動相には、20mmol/lトリフルオロ酢酸ナトリウム含有HFIPを用いた。移動相の流速は1.0ml/分とした。試料注入量は100μlとし、GPCカラム温度40℃にて測定した。 As the mobile phase, 20 mmol / l sodium trifluoroacetate-containing HFIP was used. The mobile phase flow rate was 1.0 ml / min. The sample injection amount was 100 μl, and measurement was performed at a GPC column temperature of 40 ° C.
 なお、試料中のPVA粘度平均重合度が2400を超える試料は、適宜希釈した試料(100μl)を用いてGPC測定を行った。実測値から下記式により、試料濃度が1.00mg/mlの場合における吸光度を算出した。α(mg/ml)は希釈された試料の濃度である。
 
試料濃度1.00mg/mlにおける吸光度=(1.00/α)×吸光度の測定値
 
In addition, the sample in which the PVA viscosity average polymerization degree in a sample exceeded 2400 performed GPC measurement using the sample (100 microliters) diluted suitably. The absorbance at a sample concentration of 1.00 mg / ml was calculated from the measured value according to the following formula. α (mg / ml) is the concentration of the diluted sample.

Absorbance at a sample concentration of 1.00 mg / ml = (1.00 / α) × measured value of absorbance
(検量線の作成)
 標品として、Agilent Technologies製の単分散のPMMA(ピークトップ分子量:1944000、790000、467400、271400、144000、79250、35300、13300、7100、1960、1020、690)を測定し、示差屈折率検出器および吸光光度検出器のそれぞれについて、溶出容量をPMMA分子量に換算するための検量線を作成した。各検量線の作成には、前記解析ソフトを用いた。なお、本測定においてはPMMAの測定において、1944000と271400の両分子量の標準試料同士のピークが分離できる状態のカラムを用いた。
(Create a calibration curve)
As a standard, monodispersed PMMA (peak top molecular weight: 1944000, 790000, 467400, 271400, 144000, 79250, 35300, 13300, 7100, 1960, 1020, 690) manufactured by Agilent Technologies was measured, and a differential refractive index detector. A calibration curve for converting the elution volume into the PMMA molecular weight was prepared for each of the absorptiometric detectors. The analytical software was used to create each calibration curve. In this measurement, a column in a state where the peaks of standard samples having both molecular weights of 1944000 and 271400 can be separated in the PMMA measurement is used.
 なお、本装置においては、示差屈折率検出器から得られるシグナル強度はミリボルトで、吸光光度検出器から得られるシグナル強度は吸光度(abs unit:アブソーバンスユニット)で表される。 In this apparatus, the signal intensity obtained from the differential refractive index detector is expressed in millivolts, and the signal intensity obtained from the absorptiometric detector is expressed in absorbance (abs unit: Absorbance unit).
[ポリ酢酸ビニルの合成]
PVAc-1
 撹拌機、温度計、窒素導入チューブ、還流管を備え付けた6Lセパラブルフラスコに、あらかじめ脱酸素した、アセトアルデヒド(AA)を500ppm、アセトアルデヒドジメチルアセタール(DMA)を50ppm含有する酢酸ビニルモノマー(VAM)2555g;アセトアルデヒドジメチルアセタールを50ppm含有し、アセトアルデヒドの含有量が1ppm未満であるメタノール(MeOH)945g;VAM中の酒石酸の含有量が20ppmとなる量の酒石酸1%メタノール溶液を仕込んだ。前記フラスコ内に窒素を吹き込みながら、フラスコ内の温度を60℃に調整した。なお、還流管には-10℃のエチレングリコール/水溶液を循環させた。ジn-プロピルパーオキシジカーボネートの0.55質量%メタノール溶液を調製し、18.6mLを前記フラスコ内に添加し重合を開始した。このときのジn-プロピルパーオキシジカーボネートの添加量は0.081gであった。ジn-プロピルパーオキシジカーボネートのメタノール溶液を20.9mL/時間の速度で重合終了まで逐次添加した。重合中、フラスコ内の温度を60℃に保った。重合開始から4時間後、重合液の固形分濃度が25.1%となった時点で、ソルビン酸を0.0141g(重合液中に未分解で残存するジn-プロピルパーオキシジカーボネートの3モル等量に相当する)含有するメタノールを1200g添加した後、重合液を冷却し重合を停止した。重合停止時のVAMの重合率は35.0%であった。重合液を室温まで冷却した後、水流アスピレータを用いてフラスコ内を減圧することにより、VAMおよびメタノールを留去し、ポリ酢酸ビニルを析出させた。析出したポリ酢酸ビニルにメタノールを3000g添加し、30℃で加温しつつポリ酢酸ビニルを溶解させた後、再び水流アスピレータを用いてフラスコ内を減圧することにより、VAMおよびメタノールを留去してポリ酢酸ビニルを析出させた。ポリ酢酸ビニルをメタノールに溶解させた後、析出させる操作をさらに2回繰り返した。析出したポリ酢酸ビニルにメタノールを添加し、VAMの除去率99.8%のポリ酢酸ビニル(PVAc-1)の40質量%のメタノール溶液を得た。
[Synthesis of polyvinyl acetate]
PVAc-1
A 6L separable flask equipped with a stirrer, thermometer, nitrogen introduction tube and reflux tube was deoxygenated in advance, and vinyl acetate monomer (VAM) 2555 g containing 500 ppm of acetaldehyde (AA) and 50 ppm of acetaldehyde dimethyl acetal (DMA). 945 g of methanol (MeOH) containing 50 ppm of acetaldehyde dimethyl acetal and acetaldehyde content of less than 1 ppm; 1% methanol solution of tartaric acid in an amount of 20 ppm of tartaric acid in VAM was charged. While blowing nitrogen into the flask, the temperature inside the flask was adjusted to 60 ° C. Note that an ethylene glycol / water solution at −10 ° C. was circulated in the reflux tube. A 0.55% by mass methanol solution of di-n-propyl peroxydicarbonate was prepared, and 18.6 mL was added to the flask to initiate polymerization. At this time, the amount of di-n-propyl peroxydicarbonate added was 0.081 g. A methanol solution of di-n-propyl peroxydicarbonate was sequentially added at a rate of 20.9 mL / hour until the completion of polymerization. During the polymerization, the temperature in the flask was kept at 60 ° C. Four hours after the start of the polymerization, when the solid content concentration of the polymerization solution reached 25.1%, 0.0141 g of sorbic acid (3% of di-n-propyl peroxydicarbonate remaining undecomposed in the polymerization solution) was obtained. After adding 1200 g of contained methanol (corresponding to a molar equivalent), the polymerization solution was cooled to stop the polymerization. When the polymerization was stopped, the polymerization rate of VAM was 35.0%. After the polymerization solution was cooled to room temperature, the inside of the flask was decompressed using a water aspirator to distill off VAM and methanol, thereby precipitating polyvinyl acetate. After 3000 g of methanol was added to the precipitated polyvinyl acetate and the polyvinyl acetate was dissolved while heating at 30 ° C., the pressure in the flask was reduced again using a water aspirator to distill off VAM and methanol. Polyvinyl acetate was precipitated. The operation of dissolving polyvinyl acetate in methanol and then precipitating it was further repeated twice. Methanol was added to the precipitated polyvinyl acetate to obtain a 40% by mass methanol solution of polyvinyl acetate (PVAc-1) with a VAM removal rate of 99.8%.
 得られたPVAc-1のメタノール溶液の一部を用いて重合度を測定した。PVAc-1のメタノール溶液に、ポリ酢酸ビニル中の酢酸ビニル単位に対する水酸化ナトリウムのモル比が、0.1となるように水酸化ナトリウムの10%メタノール溶液を添加した。ゲル化物が生成した時点でゲルを粉砕し、メタノールでソックスレー抽出を3日間行った。得られたポリビニルアルコールを乾燥し、粘度平均重合度を測定した。重合度は1700であった。 The polymerization degree was measured using a part of the methanol solution of PVAc-1 obtained. A 10% methanol solution of sodium hydroxide was added to the methanol solution of PVAc-1 so that the molar ratio of sodium hydroxide to vinyl acetate units in polyvinyl acetate was 0.1. When the gelled product was formed, the gel was pulverized and subjected to Soxhlet extraction with methanol for 3 days. The obtained polyvinyl alcohol was dried and the viscosity average polymerization degree was measured. The degree of polymerization was 1700.
PVAc-2~22
 表1に記載した条件に変更したこと以外は、PVAc-1と同様の方法により、ポリ酢酸ビニル(PVAc-2~22)を得た。なお、表1中の「ND」は1ppm未満を意味する。得られた各ポリ酢酸ビニルの重合度をPVAc-1と同様にして求めた。その結果を表1に示す。
PVAc-2 ~ 22
Polyvinyl acetate (PVAc-2 to 22) was obtained by the same method as PVAc-1 except that the conditions were changed to those described in Table 1. In Table 1, “ND” means less than 1 ppm. The degree of polymerization of each polyvinyl acetate obtained was determined in the same manner as PVAc-1. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[PVAの合成及び評価]
PVA-1
 PVAc-1のポリ酢酸ビニルの40質量%のメタノール溶液に対して、総固形分濃度(けん化濃度)が30質量%となるように、メタノールおよびポリ酢酸ビニル中の酢酸ビニル単量体単位に対する水酸化ナトリウムのモル比が0.020となるように水酸化ナトリウムの8%メタノール溶液を撹拌下に加え、40℃でけん化反応を開始した。けん化反応の進行に伴ってゲル化物が生成した時点でゲルを粉砕し、粉砕後のゲルを40℃の容器に移し、けん化反応の開始から60分経過した時点で、メタノール/酢酸メチル/水(25/70/5質量比)の溶液に浸漬し、中和処理した。得られた膨潤ゲルを遠心分離し、膨潤ゲルの質量に対して、2倍の質量のメタノールを添加、浸漬し30分間放置した後、遠心分離する操作を4回繰り返し、60℃1時間、100℃で2時間乾燥してPVA-1を得た。
[Synthesis and Evaluation of PVA]
PVA-1
Water with respect to vinyl acetate monomer units in methanol and polyvinyl acetate so that the total solid concentration (saponification concentration) is 30% by mass with respect to a 40% by mass methanol solution of polyvinyl acetate in PVAc-1. An 8% methanol solution of sodium hydroxide was added with stirring so that the molar ratio of sodium oxide was 0.020, and the saponification reaction was started at 40 ° C. The gel is pulverized when the gelated product is generated as the saponification reaction proceeds, and the crushed gel is transferred to a container at 40 ° C. When 60 minutes have elapsed from the start of the saponification reaction, methanol / methyl acetate / water ( 25/70/5 mass ratio) solution and neutralized. The obtained swollen gel was centrifuged, and methanol twice as much as the swollen gel was added, immersed, left for 30 minutes, and then centrifuged four times, 60 ° C. for 1 hour, 100 PVA-1 was obtained by drying at 2 ° C. for 2 hours.
 PVA-1の重合度およびけん化度を、JIS-K6726に記載の方法により求めた。重合度は1700、けん化度は99.1モル%であった。これらの物性データを表2にも示す。 The polymerization degree and saponification degree of PVA-1 were determined by the method described in JIS-K6726. The degree of polymerization was 1700, and the degree of saponification was 99.1 mol%. These physical property data are also shown in Table 2.
 PVA-1を灰化した後に、ジャーレルアッシュ社製ICP発光分析装置「IRIS AP」を用いて、得られた灰分中のナトリウム量を測定することによりPVA-1の酢酸ナトリウム含有量を求めた。酢酸ナトリウム含有量0.7%(ナトリウム換算で0.20%)であった。これらの物性データを表2にも示す。 After ashing PVA-1, the sodium acetate content of PVA-1 was determined by measuring the amount of sodium in the obtained ash using an ICP emission analyzer “IRIS AP” manufactured by Jarrel Ash. . The sodium acetate content was 0.7% (0.20% in terms of sodium). These physical property data are also shown in Table 2.
 以下の方法により、PVA-1のGPC測定用試料を準備した。95℃にて1時間加熱してPVA-1を水に溶解させた後、室温に冷却して、PVA-1の2%水溶液を得た。ポリエチレンテレフタレートフィルム上(20cm×20cm)に得られた水溶液を流延し、20℃、65%RHの条件下で1週間乾燥させて、厚さ50μmのPVAフィルムを得た。得られたフィルムをステンレス製の金属型枠(20cm×20cmで幅1cmの金属枠)にクリップで固定し、ギアオーブンにて120℃で3時間熱処理した。熱処理後のPVAフィルムの中央付近から試料を採取した。 A sample for GPC measurement of PVA-1 was prepared by the following method. After heating at 95 ° C. for 1 hour to dissolve PVA-1 in water, it was cooled to room temperature to obtain a 2% aqueous solution of PVA-1. The obtained aqueous solution was cast on a polyethylene terephthalate film (20 cm × 20 cm) and dried for 1 week under the conditions of 20 ° C. and 65% RH to obtain a PVA film having a thickness of 50 μm. The obtained film was fixed with a clip to a stainless steel metal frame (20 cm × 20 cm, 1 cm wide metal frame) and heat-treated at 120 ° C. for 3 hours in a gear oven. A sample was collected from around the center of the PVA film after the heat treatment.
 得られた試料を上記方法によりGPC測定した。図2は、当該測定により得られた、分子量と示差屈折率検出器で測定されたシグナル強度との関係、及び分子量と吸光光度検出器(測定波長280nm)で測定されたシグナル強度(吸光度)との関係を示したグラフである。このときの分子量は、溶出容量から検量線を用いて換算されたもの(PMMA換算分子量)である。図2から求めた示差屈折率検出器で測定されたピークトップ分子量(D)は100,000であり、吸光光度検出器(280nm)で測定されたピークトップ分子量(E)は53,000であった。得られた値を下記式
(D-E)/D
に代入して得られた値は0.47であった。ピークトップ分子量(E)における吸光度(280nm)は1.30×10-3であった。これらの結果を表2にも示す。
The obtained sample was subjected to GPC measurement by the above method. FIG. 2 shows the relationship between the molecular weight and the signal intensity measured by the differential refractive index detector obtained by the measurement, and the signal intensity (absorbance) measured by the molecular weight and the absorbance detector (measurement wavelength 280 nm). It is the graph which showed this relationship. The molecular weight at this time is one converted from the elution volume using a calibration curve (PMMA equivalent molecular weight). The peak top molecular weight (D) measured by the differential refractive index detector obtained from FIG. 2 was 100,000, and the peak top molecular weight (E) measured by the absorptiometric detector (280 nm) was 53,000. It was. The obtained value is expressed by the following formula (DE) / D
The value obtained by substituting for was 0.47. The absorbance (280 nm) at the peak top molecular weight (E) was 1.30 × 10 −3 . These results are also shown in Table 2.
 ピークトップ分子量(E)を求めた方法と同様にして求めた吸光光度検出器(320nm)で測定されたピークトップ分子量(F)は50,000であった。ピークトップ分子量(D)とピークトップ分子量(F)とを下記式
(D-F)/D
に代入して得られた値は0.50であった。ピークトップ分子量(F)における吸光度(320nm)は1.05×10-3であった。これらの結果を表2にも示す。
The peak top molecular weight (F) measured with an absorptiometric detector (320 nm) obtained in the same manner as the method for obtaining the peak top molecular weight (E) was 50,000. The peak top molecular weight (D) and the peak top molecular weight (F) are expressed by the following formula (DF) / D
The value obtained by substituting for was 0.50. The absorbance (320 nm) at the peak top molecular weight (F) was 1.05 × 10 −3 . These results are also shown in Table 2.
PVA-2~8、比較PVA-1~5
 表2に示す条件に変更したこと以外はPVA-1と同様にして各PVAを合成した。得られたPVAの重合度、けん化度及び酢酸ナトリウムの含有量(ナトリウムの質量換算)をPVA-1と同様にして測定した。PVA-1と同様にしてGPC測定を行った。それらの結果を表2に示す。
PVA-2-8, comparative PVA-1-5
Each PVA was synthesized in the same manner as PVA-1, except that the conditions shown in Table 2 were changed. The polymerization degree, saponification degree, and sodium acetate content (sodium mass conversion) of the obtained PVA were measured in the same manner as PVA-1. GPC measurement was performed in the same manner as PVA-1. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
PVA-9、比較PVA-6、7
 表3に示す条件に変更したこと以外はPVA-1と同様にして各PVAを合成した。得られたPVAの重合度、けん化度及び酢酸ナトリウムの含有量(ナトリウムの質量換算)をPVA-1と同様にして測定した。PVA-1と同様にしてGPC測定を行った。それらの結果を表3に示す。
PVA-9, comparative PVA-6, 7
Each PVA was synthesized in the same manner as PVA-1, except that the conditions shown in Table 3 were changed. The polymerization degree, saponification degree, and sodium acetate content (sodium mass conversion) of the obtained PVA were measured in the same manner as PVA-1. GPC measurement was performed in the same manner as PVA-1. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
PVA-10、比較PVA-8~10
 表4に示す条件に変更したこと以外はPVA-1と同様にして各PVAを合成した。得られたPVAの重合度、けん化度及び酢酸ナトリウムの含有量(ナトリウムの質量換算)をPVA-1と同様にして測定した。PVA-1と同様にしてGPC測定を行った。それらの結果を表4に示す。
PVA-10, comparative PVA-8-10
Each PVA was synthesized in the same manner as PVA-1, except that the conditions shown in Table 4 were changed. The polymerization degree, saponification degree, and sodium acetate content (sodium mass conversion) of the obtained PVA were measured in the same manner as PVA-1. GPC measurement was performed in the same manner as PVA-1. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
比較PVA-11~13
 表5に示す条件に変更したこと以外はPVA-1と同様にして各PVAを合成した。得られたPVAの重合度、けん化度及び酢酸ナトリウムの含有量(ナトリウムの質量換算)をPVA-1と同様にして測定した。PVA-1と同様にしてGPC測定を行った。それらの結果を表5に示す。
Comparative PVA-11-13
Each PVA was synthesized in the same manner as PVA-1, except that the conditions shown in Table 5 were changed. The polymerization degree, saponification degree, and sodium acetate content (sodium mass conversion) of the obtained PVA were measured in the same manner as PVA-1. GPC measurement was performed in the same manner as PVA-1. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
比較PVA-14~17
 表6に示す条件に変更したこと以外はPVA-1と同様にして各PVAを合成した。得られたPVAの重合度、けん化度及び酢酸ナトリウムの含有量(ナトリウムの質量換算)をPVA-1と同様にして測定した。PVA-1と同様にしてGPC測定を行った。それらの結果を表6に示す。
Comparative PVA-14-17
Each PVA was synthesized in the same manner as PVA-1 except that the conditions were changed to those shown in Table 6. The polymerization degree, saponification degree, and sodium acetate content (sodium mass conversion) of the obtained PVA were measured in the same manner as PVA-1. GPC measurement was performed in the same manner as PVA-1. The results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
PVA-11~17、比較PVA-18~21
 表7に示す条件に変更したこと以外はPVA-1と同様にして各PVAを合成した。得られたPVAの重合度、けん化度及び酢酸ナトリウムの含有量(ナトリウムの質量換算)をPVA-1と同様にして測定した。PVA-1と同様にしてGPC測定を行った。それらの結果を表7に示す。
PVA-11-17, comparative PVA-18-21
Each PVA was synthesized in the same manner as PVA-1, except that the conditions shown in Table 7 were changed. The polymerization degree, saponification degree, and sodium acetate content (sodium mass conversion) of the obtained PVA were measured in the same manner as PVA-1. GPC measurement was performed in the same manner as PVA-1. The results are shown in Table 7.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
PVA-18、比較PVA-22、23
 表8に示す条件に変更したこと以外はPVA-1と同様にして各PVAを合成した。得られたPVAの重合度、けん化度及び酢酸ナトリウムの含有量(ナトリウムの質量換算)をPVA-1と同様にして測定した。PVA-1と同様にしてGPC測定を行った。それらの結果を表8に示す。
PVA-18, comparative PVA-22, 23
Each PVA was synthesized in the same manner as PVA-1, except that the conditions shown in Table 8 were changed. The polymerization degree, saponification degree, and sodium acetate content (sodium mass conversion) of the obtained PVA were measured in the same manner as PVA-1. GPC measurement was performed in the same manner as PVA-1. The results are shown in Table 8.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
PVA-19、比較PVA-24、25
 表9に示す条件に変更したこと以外はPVA-1と同様にして各PVAを合成した。得られたPVAの重合度、けん化度及び酢酸ナトリウムの含有量(ナトリウムの質量換算)をPVA-1と同様にして測定した。PVA-1と同様にしてGPC測定を行った。それらの結果を表9に示す。
PVA-19, comparative PVA-24, 25
Each PVA was synthesized in the same manner as PVA-1, except that the conditions shown in Table 9 were changed. The polymerization degree, saponification degree, and sodium acetate content (sodium mass conversion) of the obtained PVA were measured in the same manner as PVA-1. GPC measurement was performed in the same manner as PVA-1. The results are shown in Table 9.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
比較PVA-26~28
 表10に示す条件に変更したこと以外はPVA-1と同様にして各PVAを合成した。得られたPVAの重合度、けん化度及び酢酸ナトリウムの含有量(ナトリウムの質量換算)をPVA-1と同様にして測定した。PVA-1と同様にしてGPC測定を行った。それらの結果を表10に示す。
Comparative PVA-26-28
Each PVA was synthesized in the same manner as PVA-1, except that the conditions shown in Table 10 were changed. The polymerization degree, saponification degree, and sodium acetate content (sodium mass conversion) of the obtained PVA were measured in the same manner as PVA-1. GPC measurement was performed in the same manner as PVA-1. The results are shown in Table 10.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
比較PVA-29~31
 表11に示す条件に変更したこと以外はPVA-1と同様にして各PVAを合成した。得られたPVAの重合度、けん化度及び酢酸ナトリウムの含有量(ナトリウムの質量換算)をPVA-1と同様にして測定した。PVA-1と同様にしてGPC測定を行った。それらの結果を表11に示す。
Comparative PVA-29-31
Each PVA was synthesized in the same manner as PVA-1, except that the conditions shown in Table 11 were changed. The polymerization degree, saponification degree, and sodium acetate content (sodium mass conversion) of the obtained PVA were measured in the same manner as PVA-1. GPC measurement was performed in the same manner as PVA-1. The results are shown in Table 11.
比較PVA-32
 PVAc-3のポリ酢酸ビニルの55質量%のメタノール溶液に対して、総固形分濃度(けん化濃度)が40質量%となるように、メタノールおよびポリ酢酸ビニル中の酢酸ビニル単量体単位に対する水酸化ナトリウムのモル比が0.005となるように水酸化ナトリウムの8%メタノール溶液を撹拌下に加え、40℃でけん化反応を開始した。なお、この際の系内の水分率を3.0%となるよう蒸留水を添加してけん化反応を行った。水酸化ナトリウムのメタノール溶液を添加してから1時間後、1%酢酸水を水酸化ナトリウムの0.8モル等量および多量の蒸留水を添加し、けん化反応を停止した。得られた溶液を乾燥機に移し、65℃で12時間乾燥した後、100℃で2時間乾燥して比較PVA-32を得た。
Comparative PVA-32
Water with respect to vinyl acetate monomer units in methanol and polyvinyl acetate so that the total solid concentration (saponification concentration) is 40% by mass with respect to a 55% by mass methanol solution of polyvinyl acetate in PVAc-3. An 8% methanol solution of sodium hydroxide was added with stirring so that the molar ratio of sodium oxide was 0.005, and the saponification reaction was started at 40 ° C. Note that saponification reaction was performed by adding distilled water so that the water content in the system was 3.0%. One hour after adding the methanol solution of sodium hydroxide, 0.8 mol equivalent of 1% aqueous acetic acid and a large amount of distilled water were added to stop the saponification reaction. The resulting solution was transferred to a dryer, dried at 65 ° C. for 12 hours, and then dried at 100 ° C. for 2 hours to obtain Comparative PVA-32.
 比較PVA-32の重合度、けん化度及び酢酸ナトリウムの含有量をPVA-1と同様にして測定した。重合度は300、けん化度は45.3モル%、酢酸ナトリウム含有量1.2%(ナトリウム換算で0.34%)であった。これらの結果を表11に示す。なお、比較PVA-32は水に対して不溶であったことから、GPC測定のためのフィルム準備ができず、GPC測定ができなかった。 The polymerization degree, saponification degree, and sodium acetate content of comparative PVA-32 were measured in the same manner as PVA-1. The degree of polymerization was 300, the degree of saponification was 45.3 mol%, and the sodium acetate content was 1.2% (0.34% in terms of sodium). These results are shown in Table 11. Since Comparative PVA-32 was insoluble in water, film preparation for GPC measurement could not be performed, and GPC measurement could not be performed.
比較PVA-33
 PVAc-3のポリ酢酸ビニルの55質量%のメタノール溶液に対して、総固形分濃度(けん化濃度)が40質量%となるように、メタノールおよびポリ酢酸ビニル中の酢酸ビニル単量体単位に対する水酸化ナトリウムのモル比が0.005となるように水酸化ナトリウムの8%メタノール溶液を撹拌下に加え、40℃でけん化反応を開始した。なお、この際の系内の水分率を1.2%となるよう蒸留水を添加してけん化反応を行った。水酸化ナトリウムのメタノール溶液を添加してから1時間後、1%酢酸水を水酸化ナトリウムの0.8モル等量および多量の蒸留水を添加し、けん化反応を停止した。得られた溶液を乾燥機に移し、65℃で12時間乾燥した後、100℃で2時間乾燥して比較PVA-33を得た。
Comparative PVA-33
Water with respect to vinyl acetate monomer units in methanol and polyvinyl acetate so that the total solid concentration (saponification concentration) is 40% by mass with respect to a 55% by mass methanol solution of polyvinyl acetate in PVAc-3. An 8% methanol solution of sodium hydroxide was added with stirring so that the molar ratio of sodium oxide was 0.005, and the saponification reaction was started at 40 ° C. Note that saponification reaction was performed by adding distilled water so that the water content in the system was 1.2%. One hour after adding the methanol solution of sodium hydroxide, 0.8 mol equivalent of 1% aqueous acetic acid and a large amount of distilled water were added to stop the saponification reaction. The resulting solution was transferred to a dryer, dried at 65 ° C. for 12 hours, and then dried at 100 ° C. for 2 hours to obtain Comparative PVA-33.
 比較PVA-33の重合度、けん化度及び酢酸ナトリウムの含有量をPVA-1と同様にして測定した。重合度は300、けん化度は60.2モル%、酢酸ナトリウム含有量1.3%(ナトリウム換算で0.36%)であった。PVA-1と同様にしてGPC測定を行った。これらの結果を表11に示す。 The polymerization degree, saponification degree, and sodium acetate content of comparative PVA-33 were measured in the same manner as PVA-1. The degree of polymerization was 300, the degree of saponification was 60.2 mol%, and the sodium acetate content was 1.3% (0.36% in terms of sodium). GPC measurement was performed in the same manner as PVA-1. These results are shown in Table 11.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
[PVBの合成及び評価]
PVB-1
 還流冷却器、温度計、イカリ型攪拌翼を備えた10リットルのガラス製容器に、イオン交換水8100gとPVA-1を660g仕込み(PVA濃度7.5%)、内容物を95℃に昇温してPVAを完全に溶解させた。次に内容物を120rpmで攪拌しながら、10℃まで約30分かけて徐々に冷却した後、前記容器にn-ブチルアルデヒド384gと20%の塩酸540mLを添加し、ブチラール化反応を150分間行った。その後60分かけて60℃まで昇温し、60℃にて120分間保持した後、室温まで冷却した。析出した樹脂をイオン交換水で洗浄後、過剰量の水酸化ナトリウム水溶液を添加して中和した。引き続き、イオン交換水で樹脂を再洗浄した後、乾燥してPVB-1を得た。
[Synthesis and Evaluation of PVB]
PVB-1
A 10-liter glass container equipped with a reflux condenser, thermometer and squid type stirring blade is charged with 8100 g of ion-exchanged water and 660 g of PVA-1 (PVA concentration 7.5%), and the contents are heated to 95 ° C. Thus, the PVA was completely dissolved. Next, the contents were gradually cooled to 10 ° C. over about 30 minutes while stirring at 120 rpm, and then 384 g of n-butyraldehyde and 540 mL of 20% hydrochloric acid were added to the vessel, and a butyralization reaction was performed for 150 minutes. It was. Thereafter, the temperature was raised to 60 ° C. over 60 minutes, held at 60 ° C. for 120 minutes, and then cooled to room temperature. The precipitated resin was washed with ion-exchanged water and then neutralized by adding an excessive amount of aqueous sodium hydroxide solution. Subsequently, the resin was washed again with ion-exchanged water and dried to obtain PVB-1.
(PVBの組成)
 PVB-1のブチラール化度(アセタール化度)、酢酸ビニル単量体単位の含有量、及びビニルアルコール単量体単位の含有量はJIS K6728に従って測定した。ブチラール化度(アセタール化度)は68.2モル%、酢酸ビニル単量体単位の含有量は0.9モル%であり、ビニルアルコール単量体単位の含有量は30.9モル%であった。結果を表12にも示す。
(Composition of PVB)
The degree of butyralization (degree of acetalization) of PVB-1, the content of vinyl acetate monomer units, and the content of vinyl alcohol monomer units were measured according to JIS K6728. The degree of butyralization (degree of acetalization) was 68.2 mol%, the content of vinyl acetate monomer units was 0.9 mol%, and the content of vinyl alcohol monomer units was 30.9 mol%. It was. The results are also shown in Table 12.
(PVBのGPC測定)
 以下の方法により、PVB-1のGPC測定用試料を準備した。PVB-1の粉末を圧力2MPa、230℃にて、3時間熱プレスし、冷却して、30cm×30cm、厚み760μmのポリビニルアセタールフィルムを得た。こうして加熱処理されたフィルムの中央付近から試料を採取した。
(GPC measurement of PVB)
A PVB-1 GPC measurement sample was prepared by the following method. PVB-1 powder was hot-pressed at a pressure of 2 MPa at 230 ° C. for 3 hours and cooled to obtain a polyvinyl acetal film having a size of 30 cm × 30 cm and a thickness of 760 μm. A sample was taken from near the center of the heat-treated film.
 得られた試料を上記方法によりGPC測定した。図3は、分子量と示差屈折率検出器で測定された値との関係、及び分子量と吸光光度検出器(測定波長280nm)で測定された吸光度との関係を示したグラフである。このときの分子量は、溶出容量から検量線を用いて換算されたもの(PMMA換算分子量)である。図3から求めた示差屈折率検出器で測定されたピークトップ分子量(G)は90000であり、吸光光度検出器(280nm)で測定されたピークトップ分子量(H)は68900であった。得られた値を下記式
(G-H)/G
に代入して得られた値は0.23であった。ピークトップ分子量(H)における吸光度は2.21×10-3であった。これらの結果を表12にも示す。
The obtained sample was subjected to GPC measurement by the above method. FIG. 3 is a graph showing the relationship between the molecular weight and the value measured by the differential refractive index detector, and the relationship between the molecular weight and the absorbance measured by the absorptiometric detector (measurement wavelength 280 nm). The molecular weight at this time is one converted from the elution volume using a calibration curve (PMMA equivalent molecular weight). The peak top molecular weight (G) measured with the differential refractive index detector obtained from FIG. 3 was 90000, and the peak top molecular weight (H) measured with the absorptiometric detector (280 nm) was 68900. The obtained value is expressed by the following formula (GH) / G
The value obtained by substituting for was 0.23. The absorbance at the peak top molecular weight (H) was 2.21 × 10 −3 . These results are also shown in Table 12.
 測定波長が異なること以外は、ピークトップ分子量(H)を求めた方法と同様にして求めた吸光光度検出器(320nm)で測定されたピークトップ分子量(I)は60000であった。ピークトップ分子量(G)とピークトップ分子量(I)とを下記式
(G-I)/G
に代入して得られた値は0.33であった。ピークトップ分子量(I)における吸光度は1.26×10-3であった。これらの結果を表12にも示す。
The peak top molecular weight (I) measured by an absorptiometric detector (320 nm) obtained in the same manner as the method for obtaining the peak top molecular weight (H) was 60000 except that the measurement wavelengths were different. The peak top molecular weight (G) and the peak top molecular weight (I) are expressed by the following formula (GI) / G
The value obtained by substituting for was 0.33. Absorbance at a peak top molecular weight (I) was 1.26 × 10 -3. These results are also shown in Table 12.
PVB-2~8、比較PVB-1~5
 原料PVAを表12に示すものに変更したこと以外はPVB-1と同様にしてPVBの合成及び評価を実施した。その結果を表12に示す。
PVB-2-8, comparative PVB-1-5
PVB was synthesized and evaluated in the same manner as PVB-1, except that the raw material PVA was changed to that shown in Table 12. The results are shown in Table 12.
PVB-9
 n-ブチルアルデヒドの添加量を320gに変更したこと以外はPVB-1と同様にしてPVBの合成及び評価を実施した。その結果を表12に示す。なお、PVBのブチラール化度(アセタール化度)は56.8モル%、酢酸ビニル単量体単位の含有量は0.9モル%であり、ビニルアルコール単量体単位の含有量は42.3モル%であった。
PVB-9
PVB was synthesized and evaluated in the same manner as PVB-1, except that the amount of n-butyraldehyde added was changed to 320 g. The results are shown in Table 12. The degree of butyralization (degree of acetalization) of PVB is 56.8 mol%, the content of vinyl acetate monomer units is 0.9 mol%, and the content of vinyl alcohol monomer units is 42.3. Mol%.
PVB-10
 n-ブチルアルデヒドの添加量を365gに変更したこと以外はPVB-1と同様にしてPVBの合成及び評価を実施した。その結果を表12に示す。なお、PVBのブチラール化度(アセタール化度)は64.3モル%、酢酸ビニル単量体単位の含有量は0.9モル%であり、ビニルアルコール単量体単位の含有量は34.8モル%であった。
PVB-10
PVB was synthesized and evaluated in the same manner as PVB-1, except that the amount of n-butyraldehyde added was changed to 365 g. The results are shown in Table 12. The degree of butyralization (degree of acetalization) of PVB is 64.3 mol%, the content of vinyl acetate monomer units is 0.9 mol%, and the content of vinyl alcohol monomer units is 34.8. Mol%.
PVB-11
 n-ブチルアルデヒドの添加量を449gに変更したこと以外はPVB-1と同様にしてPVBの合成及び評価を実施した。その結果を表12に示す。なお、PVBのブチラール化度(アセタール化度)は79.8モル%、酢酸ビニル単量体単位の含有量は0.9モル%であり、ビニルアルコール単量体単位の含有量は19.3モル%であった。
PVB-11
PVB was synthesized and evaluated in the same manner as PVB-1, except that the amount of n-butyraldehyde added was changed to 449 g. The results are shown in Table 12. The degree of butyralization (degree of acetalization) of PVB is 79.8 mol%, the content of vinyl acetate monomer units is 0.9 mol%, and the content of vinyl alcohol monomer units is 19.3. Mol%.
比較PVB-6
 原料PVAを比較PVA-1に変更したこと及びn-ブチルアルデヒドの添加量を271gに変更したこと以外はPVB-1と同様にしてPVBの合成及び評価を実施した。その結果を表12に示す。なお、PVBのブチラール化度(アセタール化度)は48.5モル%、酢酸ビニル単量体単位の含有量は0.8モル%であり、ビニルアルコール単量体単位の含有量は50.7モル%であった。
Comparative PVB-6
PVB was synthesized and evaluated in the same manner as PVB-1, except that the raw material PVA was changed to comparative PVA-1 and the addition amount of n-butyraldehyde was changed to 271 g. The results are shown in Table 12. The degree of butyralization (degree of acetalization) of PVB was 48.5 mol%, the content of vinyl acetate monomer units was 0.8 mol%, and the content of vinyl alcohol monomer units was 50.7%. Mol%.
比較PVB-7
 原料PVAを比較PVA-1に変更したこと以外は、PVB-9と同様にしてPVBの合成及び評価を実施した。その結果を表12に示す。なお、PVBのブチラール化度(アセタール化度)は56.8モル%、酢酸ビニル単量体単位の含有量は0.8モル%であり、ビニルアルコール単量体単位の含有量は42.4モル%であった。
Comparative PVB-7
PVB was synthesized and evaluated in the same manner as PVB-9, except that the raw material PVA was changed to comparative PVA-1. The results are shown in Table 12. The degree of butyralization (degree of acetalization) of PVB is 56.8 mol%, the content of vinyl acetate monomer units is 0.8 mol%, and the content of vinyl alcohol monomer units is 42.4. Mol%.
比較PVB-8
原料PVAを比較PVA-1に変更したこと以外は、PVB-11と同様にしてPVBの合成及び評価を実施した。その結果を表12に示す。なお、PVBのブチラール化度(アセタール化度)は79.8モル%、酢酸ビニル単量体単位の含有量は0.8モル%であり、ビニルアルコール単量体単位の含有量は19.4モル%であった。
Comparative PVB-8
PVB was synthesized and evaluated in the same manner as PVB-11 except that the raw material PVA was changed to comparative PVA-1. The results are shown in Table 12. The degree of butyralization (degree of acetalization) of PVB is 79.8 mol%, the content of vinyl acetate monomer units is 0.8 mol%, and the content of vinyl alcohol monomer units is 19.4. Mol%.
比較PVB-9
 原料PVAを比較PVA-2に変更したこと以外は、比較PVB-6と同様にしてPVBの合成及び評価を実施した。その結果を表12に示す。なお、PVBのブチラール化度(アセタール化度)は48.3モル%、酢酸ビニル単量体単位の含有量は0.8モル%であり、ビニルアルコール単量体単位の含有量は50.9モル%であった。
Comparative PVB-9
PVB was synthesized and evaluated in the same manner as Comparative PVB-6, except that the raw material PVA was changed to Comparative PVA-2. The results are shown in Table 12. The degree of butyralization (degree of acetalization) of PVB was 48.3 mol%, the content of vinyl acetate monomer units was 0.8 mol%, and the content of vinyl alcohol monomer units was 50.9. Mol%.
比較PVB-10
 原料PVAを比較PVA-2に変更したこと以外は、比較PVB-7と同様にしてPVBの合成及び評価を実施した。その結果を表12に示す。なお、PVBのブチラール化度(アセタール化度)は56.6モル%、酢酸ビニル単量体単位の含有量は0.8モル%であり、ビニルアルコール単量体単位の含有量は42.6モル%であった。
Comparative PVB-10
PVB was synthesized and evaluated in the same manner as Comparative PVB-7, except that the raw material PVA was changed to Comparative PVA-2. The results are shown in Table 12. The degree of butyralization (degree of acetalization) of PVB is 56.6 mol%, the content of vinyl acetate monomer units is 0.8 mol%, and the content of vinyl alcohol monomer units is 42.6. Mol%.
比較PVB-11
 原料PVAを比較PVA-2に変更したこと以外は、比較PVB-8と同様にしてPVBの合成及び評価を実施した。その結果を表12に示す。なお、PVBのブチラール化度(アセタール化度)は79.6モル%、酢酸ビニル単量体単位の含有量は0.8モル%であり、ビニルアルコール単量体単位の含有量は19.6モル%であった。
Comparison PVB-11
PVB was synthesized and evaluated in the same manner as Comparative PVB-8 except that the raw material PVA was changed to Comparative PVA-2. The results are shown in Table 12. The degree of butyralization (degree of acetalization) of PVB is 79.6 mol%, the content of vinyl acetate monomer units is 0.8 mol%, and the content of vinyl alcohol monomer units is 19.6. Mol%.
比較PVB-12
 原料PVAをPVA-1に変更したこと以外は、比較PVB-6と同様にしてPVBの合成及び評価を実施した。その結果を表12に示す。なお、PVBのブチラール化度(アセタール化度)は48.2モル%、酢酸ビニル単量体単位の含有量は0.9モル%であり、ビニルアルコール単量体単位の含有量は50.9モル%であった。
Comparative PVB-12
PVB was synthesized and evaluated in the same manner as Comparative PVB-6 except that the raw material PVA was changed to PVA-1. The results are shown in Table 12. The degree of butyralization (degree of acetalization) of PVB was 48.2 mol%, the content of vinyl acetate monomer units was 0.9 mol%, and the content of vinyl alcohol monomer units was 50.9. Mol%.
比較PVB-13
 還流冷却器、温度計、イカリ型攪拌翼を備えた10リットルのガラス製容器に、イオン交換水8100gとPVA-1を660g仕込み(PVA濃度7.5%)、内容物を95℃に昇温してPVAを完全に溶解させた。次に内容物を120rpmで攪拌しながら、10℃まで約30分かけて徐々に冷却した後、前記容器にn-ブチルアルデヒド740gと20%の塩酸810mLを添加し、ブチラール化反応を150分間行った。その後90分かけて80℃まで昇温し、80℃にて16時間保持した後、室温まで冷却した。析出した樹脂をイオン交換水で洗浄後、過剰量の水酸化ナトリウム水溶液を添加して中和した。引き続き、イオン交換水で樹脂を再洗浄した後、乾燥してPVBを得た。PVB-1と同様にして比較PVB-13を評価した。その結果を表12に示す。なお、PVBのブチラール化度(アセタール化度)は87.4モル%、酢酸ビニル単量体単位の含有量は0.9モル%であり、ビニルアルコール単量体単位の含有量は11.7モル%であった。
Comparative PVB-13
A 10-liter glass container equipped with a reflux condenser, thermometer and squid type stirring blade is charged with 8100 g of ion-exchanged water and 660 g of PVA-1 (PVA concentration 7.5%), and the contents are heated to 95 ° C. Thus, the PVA was completely dissolved. Next, the contents were gradually cooled to 10 ° C. over about 30 minutes while stirring at 120 rpm, and then 740 g of n-butyraldehyde and 810 mL of 20% hydrochloric acid were added to the vessel, and a butyralization reaction was performed for 150 minutes. It was. Thereafter, the temperature was raised to 80 ° C. over 90 minutes, kept at 80 ° C. for 16 hours, and then cooled to room temperature. The precipitated resin was washed with ion-exchanged water and then neutralized by adding an excessive amount of aqueous sodium hydroxide solution. Subsequently, the resin was rewashed with ion-exchanged water and dried to obtain PVB. Comparative PVB-13 was evaluated in the same manner as PVB-1. The results are shown in Table 12. The degree of butyralization (degree of acetalization) of PVB is 87.4 mol%, the content of vinyl acetate monomer units is 0.9 mol%, and the content of vinyl alcohol monomer units is 11.7. Mol%.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
PVB-12
 還流冷却器、温度計、イカリ型攪拌翼を備えた10リットルのガラス製容器に、イオン交換水8234g、PVA-9を526g仕込み(PVA濃度6.0%)、内容物を95℃に昇温して完全に溶解させた。次に内容物を120rpmで攪拌しながら、15℃まで約30分かけて徐々に冷却した後、前記容器にn-ブチルアルデヒド307gと20%の塩酸540mLを添加し、ブチラール化反応を120分間行った。その後60分かけて60℃まで昇温し、60℃にて120分間保持した後、室温まで冷却した。析出した樹脂をイオン交換水で洗浄後、過剰量の水酸化ナトリウム水溶液を添加して中和した。引き続き、イオン交換水で再洗浄、乾燥してPVBを得た。PVB-1と同様にして得られたPVBを評価した。その結果を表13に示す。なお、得られたPVBのブチラール化度(アセタール化度)は68.2モル%、酢酸ビニル単量体単位の含有量は1.3モル%であり、ビニルアルコール単量体単位の含有量は30.5モル%であった。
PVB-12
A 10-liter glass container equipped with a reflux condenser, thermometer and squid type stirring blade is charged with 8234 g of ion-exchanged water and 526 g of PVA-9 (PVA concentration 6.0%), and the contents are heated to 95 ° C. And completely dissolved. Next, the contents were gradually cooled to 15 ° C. over about 30 minutes while stirring at 120 rpm, and then 307 g of n-butyraldehyde and 540 mL of 20% hydrochloric acid were added to the vessel, and a butyralization reaction was performed for 120 minutes. It was. Thereafter, the temperature was raised to 60 ° C. over 60 minutes, held at 60 ° C. for 120 minutes, and then cooled to room temperature. The precipitated resin was washed with ion-exchanged water and then neutralized by adding an excessive amount of aqueous sodium hydroxide solution. Subsequently, PVB was obtained by re-washing with ion-exchanged water and drying. PVB obtained in the same manner as PVB-1 was evaluated. The results are shown in Table 13. The PVB obtained had a butyralization degree (acetalization degree) of 68.2 mol%, a vinyl acetate monomer unit content of 1.3 mol%, and a vinyl alcohol monomer unit content of It was 30.5 mol%.
比較PVB-14、15
 原料PVAを表13に示すものに変更したこと以外は、PVB-12と同様にしてPVBの合成及び評価を実施した。結果を表13に示す。
Comparative PVB-14, 15
PVB was synthesized and evaluated in the same manner as PVB-12, except that the raw material PVA was changed to that shown in Table 13. The results are shown in Table 13.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
PVB-13
 還流冷却器、温度計、イカリ型攪拌翼を備えた10リットルのガラス製容器に、イオン交換水を8322g、PVA-10を438g仕込み(PVA濃度5.0%)、内容物を95℃に昇温してPVAを完全に溶解させた。次に内容物を120rpmで攪拌しながら、20℃まで約30分かけて徐々に冷却した後、前記容器にn-ブチルアルデヒド256gと20%の塩酸540mLを添加し、ブチラール化反応を120分間行った。その後60分かけて60℃まで昇温し、60℃にて120分間保持した後、室温まで冷却した。析出した樹脂をイオン交換水で洗浄後、過剰量の水酸化ナトリウム水溶液を添加して中和した。引き続き、イオン交換水で再洗浄、乾燥してPVBを得た。PVB-1と同様にして得られたPVBを評価した。その結果を表14に示す。なお、得られたPVBのブチラール化度(アセタール化度)は68.1モル%、酢酸ビニル単量体単位の含有量は1.5モル%であり、ビニルアルコール単量体単位の含有量は30.4モル%であった。
PVB-13
A 10-liter glass container equipped with a reflux condenser, thermometer, and squid type stirring blade was charged with 8322 g of ion-exchanged water and 438 g of PVA-10 (PVA concentration 5.0%), and the contents were raised to 95 ° C. Warm to completely dissolve the PVA. Next, the contents are gradually cooled to 20 ° C. over about 30 minutes while stirring at 120 rpm, and then 256 g of n-butyraldehyde and 540 mL of 20% hydrochloric acid are added to the vessel, and a butyralization reaction is performed for 120 minutes. It was. Thereafter, the temperature was raised to 60 ° C. over 60 minutes, held at 60 ° C. for 120 minutes, and then cooled to room temperature. The precipitated resin was washed with ion-exchanged water and then neutralized by adding an excessive amount of aqueous sodium hydroxide solution. Subsequently, PVB was obtained by re-washing with ion-exchanged water and drying. PVB obtained in the same manner as PVB-1 was evaluated. The results are shown in Table 14. The obtained PVB had a butyralization degree (acetalization degree) of 68.1 mol%, a vinyl acetate monomer unit content of 1.5 mol%, and a vinyl alcohol monomer unit content of It was 30.4 mol%.
比較PVB-16~18
 原料PVAを表14に示すものに変更したこと以外は、PVB-13と同様にしてPVBの合成及び評価を実施した。結果を表13に示す。
Comparative PVB-16-18
PVB was synthesized and evaluated in the same manner as PVB-13, except that the raw material PVA was changed to that shown in Table 14. The results are shown in Table 13.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
比較PVB-19
 還流冷却器、温度計、イカリ型攪拌翼を備えた10リットルのガラス製容器に、イオン交換水を8100g、比較PVA-11を660g仕込み(PVA濃度5.0%)、内容物を95℃に昇温してPVAを完全に溶解させた。次に内容物を120rpmで攪拌しながら、8℃まで約30分かけて徐々に冷却した後、前記容器にn-ブチルアルデヒド384gと20%の塩酸540mLを添加し、ブチラール化反応を150分間行った。その後60分かけて60℃まで昇温し、60℃にて120分間保持した後、室温まで冷却した。析出した樹脂をイオン交換水で洗浄後、過剰量の水酸化ナトリウム水溶液を添加して中和した。引き続き、イオン交換水で再洗浄、乾燥してPVBを得た。PVB-1と同様にして得られたPVBを評価した。その結果を表15に示す。
Comparative PVB-19
A 10-liter glass container equipped with a reflux condenser, thermometer, and squid-type stirring blade was charged with 8100 g of ion-exchanged water and 660 g of comparative PVA-11 (PVA concentration 5.0%), and the content was adjusted to 95 ° C. The PVA was completely dissolved by raising the temperature. Next, the contents are gradually cooled to 8 ° C. over about 30 minutes while stirring at 120 rpm, and 384 g of n-butyraldehyde and 540 mL of 20% hydrochloric acid are added to the vessel, and a butyralization reaction is performed for 150 minutes. It was. Thereafter, the temperature was raised to 60 ° C. over 60 minutes, held at 60 ° C. for 120 minutes, and then cooled to room temperature. The precipitated resin was washed with ion-exchanged water and then neutralized by adding an excessive amount of aqueous sodium hydroxide solution. Subsequently, PVB was obtained by re-washing with ion-exchanged water and drying. PVB obtained in the same manner as PVB-1 was evaluated. The results are shown in Table 15.
比較PVB-20、21
 原料PVAを表15に示すものに変更したこと以外は、比較PVB-19と同様にしてPVBの合成及び評価を実施した。結果を表15に示す。
Comparative PVB-20, 21
PVB was synthesized and evaluated in the same manner as Comparative PVB-19 except that the raw material PVA was changed to that shown in Table 15. The results are shown in Table 15.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
比較PVB-22
 原料PVAを表16に示すものに変更したこと以外は、比較PVB-19と同様にしてPVBの合成及び評価を実施した。結果を表16に示す。
Comparative PVB-22
PVB was synthesized and evaluated in the same manner as Comparative PVB-19 except that the raw material PVA was changed to that shown in Table 16. The results are shown in Table 16.
比較PVB-23
 還流冷却器、温度計、イカリ型攪拌翼を備えた10リットルのガラス製容器に、イオン交換水を8100g、比較PVA-15を660g仕込み(PVA濃度7.5%)、内容物を95℃に昇温してPVAを完全に溶解させた。次に内容物を120rpmで攪拌しながら、5℃まで約30分かけて徐々に冷却した後、前記容器にn-ブチルアルデヒド402gと20%の塩酸540mLを添加し、ブチラール化反応を120分間行った。その後60分かけて50℃まで昇温し、50℃にて120分間保持した後、室温まで冷却した。析出した樹脂をイオン交換水で洗浄後、過剰量の水酸化ナトリウム水溶液を添加して中和した。引き続き、イオン交換水で再洗浄、乾燥してPVBを得た。PVB-1と同様にして得られたPVBを評価した。その結果を表16に示す。なお、得られたPVBのブチラール化度(アセタール化度)は68.5モル%、酢酸ビニル単量体単位の含有量は1.5モル%であり、ビニルアルコール単量体単位の含有量は30.0モル%であった。
Comparative PVB-23
A 10-liter glass container equipped with a reflux condenser, thermometer, and squid type stirring blade was charged with 8100 g of ion-exchanged water and 660 g of comparative PVA-15 (PVA concentration 7.5%), and the content was adjusted to 95 ° C. The PVA was completely dissolved by raising the temperature. Next, the contents were gradually cooled to 5 ° C. over about 30 minutes while stirring at 120 rpm, and then 402 g of n-butyraldehyde and 540 mL of 20% hydrochloric acid were added to the vessel, and a butyralization reaction was performed for 120 minutes. It was. Thereafter, the temperature was raised to 50 ° C. over 60 minutes, held at 50 ° C. for 120 minutes, and then cooled to room temperature. The precipitated resin was washed with ion-exchanged water and then neutralized by adding an excessive amount of aqueous sodium hydroxide solution. Subsequently, PVB was obtained by re-washing with ion-exchanged water and drying. PVB obtained in the same manner as PVB-1 was evaluated. The results are shown in Table 16. The obtained PVB had a butyralization degree (acetalization degree) of 68.5 mol%, a vinyl acetate monomer unit content of 1.5 mol%, and a vinyl alcohol monomer unit content of It was 30.0 mol%.
比較PVB-24
 還流冷却器、温度計、イカリ型攪拌翼を備えた10リットルのガラス製容器に、イオン交換水を8100g、比較PVA-16を660g仕込み(PVA濃度7.5%)、内容物を95℃に昇温してPVAを完全に溶解させた。次に内容物を120rpmで攪拌しながら、1℃まで約30分かけて徐々に冷却した後、前記容器にn-ブチルアルデヒド422gと20%の塩酸540mLを添加し、ブチラール化反応を120分間行った。その後60分かけて45℃まで昇温し、45℃にて120分間保持した後、室温まで冷却した。析出した樹脂をイオン交換水で洗浄後、過剰量の水酸化ナトリウム水溶液を添加して中和した。引き続き、イオン交換水で再洗浄、乾燥してPVBを得た。PVB-1と同様にして得られたPVBを評価した。その結果を表16に示す。なお、得られたPVBのブチラール化度(アセタール化度)は68.1モル%、酢酸ビニル単量体単位の含有量は1.1モル%であり、ビニルアルコール単量体単位の含有量は30.8モル%であった。
Comparative PVB-24
A 10-liter glass container equipped with a reflux condenser, thermometer, and squid type stirring blade was charged with 8100 g of ion-exchanged water and 660 g of comparative PVA-16 (PVA concentration 7.5%), and the contents were adjusted to 95 ° C. The PVA was completely dissolved by raising the temperature. Next, the contents were gradually cooled to 1 ° C. over about 30 minutes while stirring at 120 rpm, and then 422 g of n-butyraldehyde and 540 mL of 20% hydrochloric acid were added to the vessel, and a butyralization reaction was performed for 120 minutes. It was. Thereafter, the temperature was raised to 45 ° C. over 60 minutes, held at 45 ° C. for 120 minutes, and then cooled to room temperature. The precipitated resin was washed with ion-exchanged water and then neutralized by adding an excessive amount of aqueous sodium hydroxide solution. Subsequently, PVB was obtained by re-washing with ion-exchanged water and drying. PVB obtained in the same manner as PVB-1 was evaluated. The results are shown in Table 16. The obtained PVB had a butyralization degree (acetalization degree) of 68.1 mol%, a vinyl acetate monomer unit content of 1.1 mol%, and a vinyl alcohol monomer unit content of It was 30.8 mol%.
比較PVB-25
 原料PVAを表16に示すものに変更したこと以外は、比較PVB-24と同様にしてPVBの合成及び評価を実施した。結果を表16に示す。
Comparative PVB-25
PVB was synthesized and evaluated in the same manner as Comparative PVB-24 except that the raw material PVA was changed to that shown in Table 16. The results are shown in Table 16.
PVB-14
 還流冷却器、温度計、イカリ型攪拌翼を備えた10リットルのガラス製容器に、イオン交換水を8100g、PVA-11を660g仕込み(PVA濃度7.5%)、内容物を95℃に昇温して完全に溶解させた。次に内容物を120rpmで攪拌しながら、15℃まで約30分かけて徐々に冷却した後、前記容器にn-ブチルアルデヒド432gと20%の塩酸540mLを添加し、ブチラール化反応を90分間行った。その後30分かけて45℃まで昇温し、45℃にて180分間保持した後、室温まで冷却した。析出した樹脂をイオン交換水で洗浄後、過剰量の水酸化ナトリウム水溶液を添加して中和した。引き続き、イオン交換水で再洗浄、乾燥してポリビニルブチラールを得た。PVB-1と同様にして得られたPVBを評価した。その結果を表17に示す。なお、得られたPVBのブチラール化度(アセタール化度)は74.1モル%、酢酸ビニル単量体単位の含有量は8.1モル%であり、ビニルアルコール単量体単位の含有量は17.8モル%であった。
PVB-14
A 10-liter glass container equipped with a reflux condenser, thermometer and squid type stirring blade was charged with 8100 g of ion-exchanged water and 660 g of PVA-11 (PVA concentration 7.5%), and the contents were raised to 95 ° C. Warm to dissolve completely. Next, the contents are gradually cooled to 15 ° C. over about 30 minutes while stirring at 120 rpm, and then 432 g of n-butyraldehyde and 540 mL of 20% hydrochloric acid are added to the vessel, and a butyralization reaction is performed for 90 minutes. It was. Thereafter, the temperature was raised to 45 ° C. over 30 minutes, held at 45 ° C. for 180 minutes, and then cooled to room temperature. The precipitated resin was washed with ion-exchanged water and then neutralized by adding an excessive amount of aqueous sodium hydroxide solution. Subsequently, it was rewashed with ion-exchanged water and dried to obtain polyvinyl butyral. PVB obtained in the same manner as PVB-1 was evaluated. The results are shown in Table 17. The obtained PVB had a butyralization degree (acetalization degree) of 74.1 mol%, a vinyl acetate monomer unit content of 8.1 mol%, and a vinyl alcohol monomer unit content of It was 17.8 mol%.
PVB-15~20
 原料PVAを表17に示すものに変更したこと以外は、PVB-14と同様にしてPVBの合成及び評価を実施した。結果を表17に示す。
PVB-15 ~ 20
PVB was synthesized and evaluated in the same manner as PVB-14 except that the raw material PVA was changed to that shown in Table 17. The results are shown in Table 17.
PVB-21
 n-ブチルアルデヒドの添加量を269gに変更したこと以外はPVB-14と同様にしてPVBの合成及び評価を実施した。結果を表17に示す。なお、得られたPVBのブチラール化度(アセタール化度)は55.3モル%、酢酸ビニル単量体単位の含有量は8.8モル%であり、ビニルアルコール単量体単位の含有量は35.9モル%であった。
PVB-21
PVB was synthesized and evaluated in the same manner as PVB-14 except that the amount of n-butyraldehyde added was changed to 269 g. The results are shown in Table 17. The obtained PVB had a butyralization degree (acetalization degree) of 55.3 mol%, a vinyl acetate monomer unit content of 8.8 mol%, and a vinyl alcohol monomer unit content of It was 35.9 mol%.
PVB-22
 n-ブチルアルデヒドの添加量を307gに変更したこと以外はPVB-14と同様にしてPVBの合成及び評価を実施した。結果を表17に示す。なお、得られたPVBのブチラール化度(アセタール化度)は63.2モル%、酢酸ビニル単量体単位の含有量は8.5モル%であり、ビニルアルコール単量体単位の含有量は28.3モル%であった。
PVB-22
PVB was synthesized and evaluated in the same manner as PVB-14 except that the amount of n-butyraldehyde added was changed to 307 g. The results are shown in Table 17. The PVB obtained had a butyralization degree (acetalization degree) of 63.2 mol%, a vinyl acetate monomer unit content of 8.5 mol%, and a vinyl alcohol monomer unit content of It was 28.3 mol%.
PVB-23
 n-ブチルアルデヒドの添加量を458gに変更したこと以外はPVB-14と同様にしてPVBの合成及び評価を実施した。結果を表17に示す。なお、得られたPVBのブチラール化度(アセタール化度)は78.5モル%、酢酸ビニル単量体単位の含有量は7.5モル%であり、ビニルアルコール単量体単位の含有量は14.0モル%であった。
PVB-23
PVB was synthesized and evaluated in the same manner as PVB-14 except that the amount of n-butyraldehyde added was changed to 458 g. The results are shown in Table 17. The obtained PVB had a butyralization degree (acetalization degree) of 78.5 mol%, a vinyl acetate monomer unit content of 7.5 mol%, and a vinyl alcohol monomer unit content of It was 14.0 mol%.
比較PVB-26~29
 原料PVAを表17に示すものに変更したこと以外は、PVB-14と同様にしてPVBの合成及び評価を実施した。結果を表17に示す。
Comparative PVB-26-29
PVB was synthesized and evaluated in the same manner as PVB-14 except that the raw material PVA was changed to that shown in Table 17. The results are shown in Table 17.
比較PVB-30
 原料PVAを比較PVA-18に変更したこと及びn-ブチルアルデヒドの添加量を225gに変更したこと以外はPVB-14と同様にしてPVBの合成及び評価を実施した。結果を表17に示す。なお、得られたPVBのブチラール化度(アセタール化度)は46.2モル%、酢酸ビニル単量体単位の含有量は9.2モル%であり、ビニルアルコール単量体単位の含有量は44.6モル%であった。
Comparative PVB-30
PVB was synthesized and evaluated in the same manner as PVB-14 except that the raw material PVA was changed to comparative PVA-18 and the addition amount of n-butyraldehyde was changed to 225 g. The results are shown in Table 17. The obtained PVB had a butyralization degree (acetalization degree) of 46.2 mol%, a vinyl acetate monomer unit content of 9.2 mol%, and a vinyl alcohol monomer unit content of It was 44.6 mol%.
比較PVB-31
 原料PVAを比較PVA-18に変更したこと以外はPVB-21と同様にしてPVBの合成及び評価を実施した。結果を表17に示す。なお、得られたPVBのブチラール化度(アセタール化度)は55.5モル%、酢酸ビニル単量体単位の含有量は8.9モル%であり、ビニルアルコール単量体単位の含有量は35.6モル%であった。
Comparative PVB-31
PVB was synthesized and evaluated in the same manner as PVB-21 except that the raw material PVA was changed to comparative PVA-18. The results are shown in Table 17. The obtained PVB had a butyralization degree (acetalization degree) of 55.5 mol%, a vinyl acetate monomer unit content of 8.9 mol%, and a vinyl alcohol monomer unit content of It was 35.6 mol%.
比較PVB-32
原料PVAを比較PVA-18に変更したこと以外はPVB-23と同様にしてPVBの合成及び評価を実施した。結果を表17に示す。なお、得られたPVBのブチラール化度(アセタール化度)は78.6モル%、酢酸ビニル単量体単位の含有量は7.4モル%であり、ビニルアルコール単量体単位の含有量は14.0モル%であった。
Comparative PVB-32
PVB was synthesized and evaluated in the same manner as PVB-23 except that the raw material PVA was changed to Comparative PVA-18. The results are shown in Table 17. The obtained PVB had a butyralization degree (acetalization degree) of 78.6 mol%, a vinyl acetate monomer unit content of 7.4 mol%, and a vinyl alcohol monomer unit content of It was 14.0 mol%.
比較PVB-33
原料PVAを比較PVA-19に変更したこと以外は比較PVB-30と同様にしてPVBの合成及び評価を実施した。結果を表17に示す。なお、得られたPVBのブチラール化度(アセタール化度)は46.3モル%、酢酸ビニル単量体単位の含有量は9.1モル%であり、ビニルアルコール単量体単位の含有量は44.6モル%であった。
Comparative PVB-33
PVB was synthesized and evaluated in the same manner as Comparative PVB-30 except that the raw material PVA was changed to Comparative PVA-19. The results are shown in Table 17. The obtained PVB had a butyralization degree (acetalization degree) of 46.3 mol%, a vinyl acetate monomer unit content of 9.1 mol%, and a vinyl alcohol monomer unit content of It was 44.6 mol%.
比較PVB-34
原料PVAを比較PVA-19に変更したこと以外は比較PVB-31と同様にしてPVBの合成及び評価を実施した。結果を表17に示す。なお、得られたPVBのブチラール化度(アセタール化度)は55.2モル%、酢酸ビニル単量体単位の含有量は9.0モル%であり、ビニルアルコール単量体単位の含有量は35.8モル%であった。
Comparative PVB-34
PVB was synthesized and evaluated in the same manner as Comparative PVB-31 except that the raw material PVA was changed to Comparative PVA-19. The results are shown in Table 17. The obtained PVB had a butyralization degree (acetalization degree) of 55.2 mol%, a vinyl acetate monomer unit content of 9.0 mol%, and a vinyl alcohol monomer unit content of It was 35.8 mol%.
比較PVB-35
原料PVAを比較PVA-19に変更したこと以外は比較PVB-32と同様にしてPVBの合成及び評価を実施した。結果を表17に示す。なお、得られたPVBのブチラール化度(アセタール化度)は78.6モル%、酢酸ビニル単量体単位の含有量は7.4モル%であり、ビニルアルコール単量体単位の含有量は14.0モル%であった。
Comparative PVB-35
PVB was synthesized and evaluated in the same manner as Comparative PVB-32 except that the raw material PVA was changed to Comparative PVA-19. The results are shown in Table 17. The obtained PVB had a butyralization degree (acetalization degree) of 78.6 mol%, a vinyl acetate monomer unit content of 7.4 mol%, and a vinyl alcohol monomer unit content of It was 14.0 mol%.
比較PVB-36
原料PVAをPVA-11に変更したこと以外は比較PVB-30と同様にしてPVBの合成及び評価を実施した。結果を表17に示す。なお、得られたPVBのブチラール化度(アセタール化度)は46.3モル%、酢酸ビニル単量体単位の含有量は9.1モル%であり、ビニルアルコール単量体単位の含有量は44.6モル%であった。
Comparative PVB-36
PVB was synthesized and evaluated in the same manner as Comparative PVB-30 except that the raw material PVA was changed to PVA-11. The results are shown in Table 17. The obtained PVB had a butyralization degree (acetalization degree) of 46.3 mol%, a vinyl acetate monomer unit content of 9.1 mol%, and a vinyl alcohol monomer unit content of It was 44.6 mol%.
比較PVB-37
 還流冷却器、温度計、イカリ型攪拌翼を備えた10リットルのガラス製容器に、イオン交換水を8100g、PVA-11を660g仕込み(PVA濃度7.5%)、内容物を95℃に昇温して完全に溶解させた。次に内容物を120rpmで攪拌しながら、15℃まで約30分かけて徐々に冷却した後、前記容器にn-ブチルアルデヒド837gと20%の塩酸810mLを添加し、ブチラール化反応を90分間行った。その後60分かけて60℃まで昇温し、60℃にて24時間保持した後、室温まで冷却した。析出した樹脂をイオン交換水で洗浄後、過剰量の水酸化ナトリウム水溶液を添加して中和した。引き続き、イオン交換水で再洗浄、乾燥してPVBを得た。PVB-1と同様にして得られたPVBを評価した。その結果を表17に示す。なお、得られたPVBのブチラール化度(アセタール化度)は86.1モル%、酢酸ビニル単量体単位の含有量は5.8モル%であり、ビニルアルコール単量体単位の含有量は8.1モル%であった。
Comparative PVB-37
A 10-liter glass container equipped with a reflux condenser, thermometer and squid type stirring blade was charged with 8100 g of ion-exchanged water and 660 g of PVA-11 (PVA concentration 7.5%), and the contents were raised to 95 ° C. Warm to dissolve completely. Next, the content is gradually cooled to 15 ° C. over about 30 minutes while stirring at 120 rpm, 837 g of n-butyraldehyde and 810 mL of 20% hydrochloric acid are added to the vessel, and a butyralization reaction is performed for 90 minutes. It was. Thereafter, the temperature was raised to 60 ° C. over 60 minutes, kept at 60 ° C. for 24 hours, and then cooled to room temperature. The precipitated resin was washed with ion-exchanged water and then neutralized by adding an excessive amount of aqueous sodium hydroxide solution. Subsequently, PVB was obtained by re-washing with ion-exchanged water and drying. PVB obtained in the same manner as PVB-1 was evaluated. The results are shown in Table 17. The PVB obtained had a butyralization degree (acetalization degree) of 86.1 mol%, a vinyl acetate monomer unit content of 5.8 mol%, and a vinyl alcohol monomer unit content of It was 8.1 mol%.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
PVB-24
 還流冷却器、温度計、イカリ型攪拌翼を備えた10リットルのガラス製容器に、イオン交換水を8234g、PVA-18を526g仕込み(PVA濃度6.0%)、内容物を95℃に昇温してPVAを完全に溶解させた。次に内容物を120rpmで攪拌しながら、15℃まで約60分かけて徐々に冷却した後、前記容器にn-ブチルアルデヒド344gと20%の塩酸540mLを添加し、ブチラール化反応を90分間行った。その後30分かけて45℃まで昇温し、45℃にて180分間保持した後、室温まで冷却した。析出した樹脂をイオン交換水で洗浄後、過剰量の水酸化ナトリウム水溶液を添加して中和した。引き続き、イオン交換水で再洗浄、乾燥してPVBを得た。PVB-1と同様にして得られたPVBを評価した。その結果を表18に示す。なお、得られたPVBのブチラール化度(アセタール化度)は74.6モル%、酢酸ビニル単量体単位の含有量は8.3モル%であり、ビニルアルコール単量体単位の含有量は17.1モル%であった。
PVB-24
A 10-liter glass container equipped with a reflux condenser, thermometer, and squid type stirring blade was charged with 8234 g of ion-exchanged water and 526 g of PVA-18 (PVA concentration 6.0%), and the contents were raised to 95 ° C. Warm to completely dissolve the PVA. Next, the contents are gradually cooled to 15 ° C. over about 60 minutes while stirring at 120 rpm, and then 344 g of n-butyraldehyde and 540 mL of 20% hydrochloric acid are added to the vessel, and a butyralization reaction is performed for 90 minutes. It was. Thereafter, the temperature was raised to 45 ° C. over 30 minutes, held at 45 ° C. for 180 minutes, and then cooled to room temperature. The precipitated resin was washed with ion-exchanged water and then neutralized by adding an excessive amount of aqueous sodium hydroxide solution. Subsequently, PVB was obtained by re-washing with ion-exchanged water and drying. PVB obtained in the same manner as PVB-1 was evaluated. The results are shown in Table 18. The obtained PVB had a butyralization degree (acetalization degree) of 74.6 mol%, a vinyl acetate monomer unit content of 8.3 mol%, and a vinyl alcohol monomer unit content of It was 17.1 mol%.
比較PVB-38、39
 原料PVAを表18に示すものに変更したこと以外は、PVB-24と同様にしてPVBの合成及び評価を実施した。結果を表18に示す。
Comparative PVB-38, 39
PVB was synthesized and evaluated in the same manner as PVB-24 except that the raw material PVA was changed to that shown in Table 18. The results are shown in Table 18.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
PVB-25
 還流冷却器、温度計、イカリ型攪拌翼を備えた10リットルのガラス製容器に、イオン交換水を8234g、PVA-19を438g仕込み(PVA濃度5.0%)、内容物を95℃に昇温してPVAを完全に溶解させた。次に内容物を120rpmで攪拌しながら、15℃まで約60分かけて徐々に冷却した後、前記容器にn-ブチルアルデヒド265gと20%の塩酸540mLを添加し、ブチラール化反応を90分間行った。その後30分かけて45℃まで昇温し、45℃にて180分間保持した後、室温まで冷却した。析出した樹脂をイオン交換水で洗浄後、過剰量の水酸化ナトリウム水溶液を添加して中和した。引き続き、イオン交換水で再洗浄、乾燥してPVBを得た。PVB-1と同様にして得られたPVBを評価した。その結果を表19に示す。なお、得られたPVBのブチラール化度(アセタール化度)は73.2モル%、酢酸ビニル単量体単位の含有量は8.1モル%であり、ビニルアルコール単量体単位の含有量は18.7モル%であった。
PVB-25
A 10-liter glass container equipped with a reflux condenser, thermometer, and squid type stirring blade was charged with 8234 g of ion-exchanged water and 438 g of PVA-19 (PVA concentration 5.0%), and the contents were raised to 95 ° C. Warm to completely dissolve the PVA. Next, the contents are gradually cooled to 15 ° C. over about 60 minutes while stirring at 120 rpm, and then 265 g of n-butyraldehyde and 540 mL of 20% hydrochloric acid are added to the vessel, and a butyralization reaction is performed for 90 minutes. It was. Thereafter, the temperature was raised to 45 ° C. over 30 minutes, held at 45 ° C. for 180 minutes, and then cooled to room temperature. The precipitated resin was washed with ion-exchanged water and then neutralized by adding an excessive amount of aqueous sodium hydroxide solution. Subsequently, PVB was obtained by re-washing with ion-exchanged water and drying. PVB obtained in the same manner as PVB-1 was evaluated. The results are shown in Table 19. The PVB obtained had a butyralization degree (acetalization degree) of 73.2 mol%, a vinyl acetate monomer unit content of 8.1 mol%, and a vinyl alcohol monomer unit content of It was 18.7 mol%.
比較PVB-40、41
 原料PVAを表19に示すものに変更したこと以外は、PVB-25と同様にしてPVBの合成及び評価を実施した。結果を表19に示す。
Comparative PVB-40, 41
PVB was synthesized and evaluated in the same manner as PVB-25 except that the raw material PVA was changed to that shown in Table 19. The results are shown in Table 19.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
比較PVB-42
 還流冷却器、温度計、イカリ型攪拌翼を備えた10リットルのガラス製容器に、イオン交換水を8100g、比較PVA-29を660g仕込み(PVA濃度7.5%)、内容物を95℃に昇温してPVAを完全に溶解させた。次に内容物を120rpmで攪拌しながら、10℃まで約60分かけて徐々に冷却した後、前記容器にn-ブチルアルデヒド450gと20%の塩酸540mLを添加し、ブチラール化反応を90分間行った。その後30分かけて30℃まで昇温し、30℃にて180分間保持した後、室温まで冷却した。析出した樹脂をイオン交換水で洗浄後、過剰量の水酸化ナトリウム水溶液を添加して中和した。引き続き、イオン交換水で再洗浄、乾燥してPVBを得た。PVB-1と同様にして得られたPVBを評価した。その結果を表20に示す。なお、得られたPVBのブチラール化度(アセタール化度)は74.3モル%、酢酸ビニル単量体単位の含有量は8.0モル%であり、ビニルアルコール単量体単位の含有量は17.7モル%であった。
Comparative PVB-42
A 10-liter glass container equipped with a reflux condenser, thermometer, and squid type stirring blade was charged with 8100 g of ion-exchanged water and 660 g of comparative PVA-29 (PVA concentration 7.5%), and the content was adjusted to 95 ° C. The PVA was completely dissolved by raising the temperature. Next, the contents were gradually cooled to 10 ° C. over about 60 minutes while stirring at 120 rpm, and then 450 g of n-butyraldehyde and 540 mL of 20% hydrochloric acid were added to the vessel, and a butyralization reaction was performed for 90 minutes. It was. Thereafter, the temperature was raised to 30 ° C. over 30 minutes, held at 30 ° C. for 180 minutes, and then cooled to room temperature. The precipitated resin was washed with ion-exchanged water and then neutralized by adding an excessive amount of aqueous sodium hydroxide solution. Subsequently, PVB was obtained by re-washing with ion-exchanged water and drying. PVB obtained in the same manner as PVB-1 was evaluated. The results are shown in Table 20. The PVB obtained had a butyralization degree (acetalization degree) of 74.3 mol%, a vinyl acetate monomer unit content of 8.0 mol%, and a vinyl alcohol monomer unit content of It was 17.7 mol%.
比較PVB-43~44
 原料PVAを表20に示すものに変更したこと以外は、比較PVB-42と同様にしてPVBの合成及び評価を実施した。結果を表20に示す。
Comparative PVB-43-44
PVB was synthesized and evaluated in the same manner as Comparative PVB-42 except that the raw material PVA was changed to that shown in Table 20. The results are shown in Table 20.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
比較PVB-45
 原料PVAを表21に示すものに変更したこと以外は、比較PVB-42と同様にしてPVBの合成及び評価を実施した。結果を表21に示す。
Comparative PVB-45
PVB was synthesized and evaluated in the same manner as Comparative PVB-42 except that the raw material PVA was changed to that shown in Table 21. The results are shown in Table 21.
比較PVB-46
 還流冷却器、温度計、イカリ型攪拌翼を備えた10リットルのガラス製容器に、イオン交換水を8100g、比較PVA-30を660g仕込み(PVA濃度7.5%)、内容物を95℃に昇温してPVAを完全に溶解させた。次に内容物を120rpmで攪拌しながら、5℃まで約60分かけて徐々に冷却した後、前記容器にn-ブチルアルデヒド450gと20%の塩酸540mLを添加し、ブチラール化反応を90分間行った。その後30分かけて30℃まで昇温し、30℃にて180分間保持した後、室温まで冷却した。析出した樹脂をイオン交換水で洗浄後、過剰量の水酸化ナトリウム水溶液を添加して中和した。引き続き、イオン交換水で再洗浄、乾燥してPVBを得た。PVB-1と同様にして得られたPVBを評価した。その結果を表21に示す。なお、得られたPVBのブチラール化度(アセタール化度)は74.3モル%、酢酸ビニル単量体単位の含有量は7.9モル%であり、ビニルアルコール単量体単位の含有量は17.8モル%であった。
Comparative PVB-46
A 10-liter glass container equipped with a reflux condenser, thermometer, and squid type stirring blade was charged with 8100 g of ion-exchanged water and 660 g of comparative PVA-30 (PVA concentration 7.5%), and the content was adjusted to 95 ° C. The PVA was completely dissolved by raising the temperature. Next, the contents were gradually cooled to 5 ° C. over about 60 minutes while stirring at 120 rpm, and then 450 g of n-butyraldehyde and 540 mL of 20% hydrochloric acid were added to the vessel, and a butyralization reaction was performed for 90 minutes. It was. Thereafter, the temperature was raised to 30 ° C. over 30 minutes, held at 30 ° C. for 180 minutes, and then cooled to room temperature. The precipitated resin was washed with ion-exchanged water and then neutralized by adding an excessive amount of aqueous sodium hydroxide solution. Subsequently, PVB was obtained by re-washing with ion-exchanged water and drying. PVB obtained in the same manner as PVB-1 was evaluated. The results are shown in Table 21. The obtained PVB had a butyralization degree (acetalization degree) of 74.3 mol%, a vinyl acetate monomer unit content of 7.9 mol%, and a vinyl alcohol monomer unit content of It was 17.8 mol%.
比較PVB-47
 還流冷却器、温度計、イカリ型攪拌翼を備えた10リットルのガラス製容器に、イオン交換水を8100g、比較PVA-31を660g仕込み(PVA濃度7.5%)、内容物を95℃に昇温してPVAを完全に溶解させた。次に内容物を120rpmで攪拌しながら、1℃まで約60分かけて徐々に冷却した後、前記容器にn-ブチルアルデヒド468gと20%の塩酸540mLを添加し、ブチラール化反応を90分間行った。その後30分かけて25℃まで昇温し、25℃にて180分間保持した後、室温まで冷却した。析出した樹脂をイオン交換水で洗浄後、過剰量の水酸化ナトリウム水溶液を添加して中和した。引き続き、イオン交換水で再洗浄、乾燥してPVBを得た。PVB-1と同様にして得られたPVBを評価した。その結果を表21に示す。なお、得られたPVBのブチラール化度(アセタール化度)は73.2モル%、酢酸ビニル単量体単位の含有量は8.0モル%であり、ビニルアルコール単量体単位の含有量は18.8モル%であった。
Comparative PVB-47
A 10-liter glass container equipped with a reflux condenser, thermometer, and squid type stirring blade was charged with 8100 g of ion-exchanged water and 660 g of comparative PVA-31 (PVA concentration 7.5%), and the content was adjusted to 95 ° C. The PVA was completely dissolved by raising the temperature. Next, the contents are gradually cooled to 1 ° C. over about 60 minutes while stirring at 120 rpm, and then 468 g of n-butyraldehyde and 540 mL of 20% hydrochloric acid are added to the vessel, and a butyralization reaction is performed for 90 minutes. It was. Thereafter, the temperature was raised to 25 ° C. over 30 minutes, held at 25 ° C. for 180 minutes, and then cooled to room temperature. The precipitated resin was washed with ion-exchanged water and then neutralized by adding an excessive amount of aqueous sodium hydroxide solution. Subsequently, PVB was obtained by re-washing with ion-exchanged water and drying. PVB obtained in the same manner as PVB-1 was evaluated. The results are shown in Table 21. The obtained PVB had a butyralization degree (acetalization degree) of 73.2 mol%, a vinyl acetate monomer unit content of 8.0 mol%, and a vinyl alcohol monomer unit content of It was 18.8 mol%.
比較PVB-48
 原料PVAを比較PVA-32に変更したこと以外は、比較PVB-47と同様にしてPVBの合成を試みたが、比較PVA-32の水溶性が不足し、水溶液が得られなかったことから、合成を中止した。
Comparative PVB-48
Except that the raw material PVA was changed to comparative PVA-32, synthesis of PVB was attempted in the same manner as comparative PVB-47, but the aqueous solubility of comparative PVA-32 was insufficient and an aqueous solution was not obtained. The synthesis was stopped.
比較PVB-49
 原料PVAを表21に示すものに変更したこと以外は、比較PVB-47と同様にしてPVBの合成及び評価を実施した。結果を表21に示す。
Comparative PVB-49
PVB was synthesized and evaluated in the same manner as Comparative PVB-47 except that the raw material PVA was changed to that shown in Table 21. The results are shown in Table 21.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
実施例1
 PVB-1の粉体50質量部、可塑剤としてトリエチレングリコール-ジ2-エチルヘキサノエート19質量部および酢酸マグネシウム0.014質量部とを、株式会社東洋精機製作所製ラボプラストミル「Cモデル」を用い、170℃、50rpmにて5分間溶融混練した。溶融混練中、容器内に窒素(100mL/分)を吹き込み続けた。得られた混練物を150℃、5MPa、30分間熱プレスして、30cm×30cm、厚み760μmのフィルムを作製した。得られたフィルムのGPC測定及び異物(未溶解分)の評価を以下のとおり行った。
Example 1
50 parts by mass of PVB-1 powder, 19 parts by mass of triethylene glycol-di-2-ethylhexanoate and 0.014 parts by mass of magnesium acetate as plasticizers were manufactured by Toyo Seiki Seisakusho Co., Ltd. Was melt kneaded at 170 ° C. and 50 rpm for 5 minutes. During melt kneading, nitrogen (100 mL / min) was continuously blown into the container. The obtained kneaded product was hot-pressed at 150 ° C. and 5 MPa for 30 minutes to produce a film of 30 cm × 30 cm and a thickness of 760 μm. The obtained film was subjected to GPC measurement and evaluation of foreign matter (undissolved content) as follows.
(GPC測定)
 得られたフィルムを圧力2MPa、230℃にて、3時間熱プレスすることにより加熱後、冷却して加熱処理されたフィルムを得た。その中央付近から試料を採取し、得られた試料を上記方法によりGPC測定した。
(GPC measurement)
The obtained film was hot-pressed at 2 MPa and 230 ° C. for 3 hours to heat and then cooled to obtain a heat-treated film. A sample was collected from the vicinity of the center, and the obtained sample was subjected to GPC measurement by the above method.
 図1は、分子量と示差屈折率検出器で測定されたシグナル強度との関係、及び分子量と吸光光度検出器(測定波長280nm)で測定されたシグナル強度(吸光度)との関係を示したグラフである。このときの分子量は、溶出容量から検量線を用いて換算されたもの(PMMA換算分子量)である。図1から求めた示差屈折率検出器で測定されたピークトップ分子量(A)は94000であり、ピークトップ分子量(A)におけるシグナル強度(a)は108.6mVであった。また、吸光光度検出器(280nm)で測定されたピークトップ分子量(B)は45000であり、ピークトップ分子量(B)におけるシグナル強度(吸光度、b)は1.62mV(1.62×10-3アブソーバンスユニット)であった。得られたピークトップ分子量(A)及びピークトップ分子量(B)を下記式
(A-B)/A
に代入して得られた値は0.52であった。結果を表22にも示す。
FIG. 1 is a graph showing the relationship between the molecular weight and the signal intensity measured with a differential refractive index detector, and the relationship between the molecular weight and the signal intensity (absorbance) measured with an absorptiometric detector (measurement wavelength 280 nm). is there. The molecular weight at this time is one converted from the elution volume using a calibration curve (PMMA equivalent molecular weight). The peak top molecular weight (A) measured by the differential refractive index detector obtained from FIG. 1 was 94000, and the signal intensity (a) at the peak top molecular weight (A) was 108.6 mV. The peak top molecular weight (B) measured with an absorptiometric detector (280 nm) was 45000, and the signal intensity (absorbance, b) at the peak top molecular weight (B) was 1.62 mV (1.62 × 10 −3). Absorbance unit). The obtained peak top molecular weight (A) and peak top molecular weight (B) are expressed by the following formula (AB) / A
The value obtained by substituting for was 0.52. The results are also shown in Table 22.
 測定波長が異なること以外は、ピークトップ分子量(B)を求めた方法と同様にして求めた、吸光光度検出器(320nm)で測定されたピークトップ分子量(C)は47000であり、ピークトップ分子量(C)におけるシグナル強度(吸光度、c)は1.01mV(1.01×10-3アブソーバンスユニット)であった。ピークトップ分子量(A)とピークトップ分子量(C)とを下記式
(A-C)/A
に代入して得られた値は0.50であった。結果を表22にも示す。
Except that the measurement wavelength is different, the peak top molecular weight (C) measured with an absorptiometric detector (320 nm) obtained in the same manner as the method for obtaining the peak top molecular weight (B) is 47000, and the peak top molecular weight The signal intensity (absorbance, c) in (C) was 1.01 mV (1.01 × 10 −3 absorption unit). The peak top molecular weight (A) and the peak top molecular weight (C) are expressed by the following formula (AC) / A
The value obtained by substituting for was 0.50. The results are also shown in Table 22.
 単分散のPMMAとして、American Polymer Standard Corp.社製「PMMA85K」(重量平均分子量85450、数平均分子量74300、固有粘度0.309)を使用した。当該単分散のPMMAを上記方法によりGPC測定した。ピークトップ分子量(A)を求めた方法と同様にして求めた、示差屈折率検出器で測定されたピークトップ分子量におけるシグナル強度(x)は390.82mVであった。また、ピークトップ分子量(B)を求めた方法と同様にして求めた、吸光光度検出器(220nm)で測定されたピークトップ分子量におけるシグナル強度(吸光度、y)は269.28mV(0.26928アブソーバンスユニット)であった。 As a monodispersed PMMA, American Polymer Standard Corp. “PMMA85K” (weight average molecular weight 85450, number average molecular weight 74300, intrinsic viscosity 0.309) manufactured by the company was used. The monodispersed PMMA was measured by GPC by the above method. The signal intensity (x) at the peak top molecular weight measured with a differential refractive index detector, which was determined in the same manner as the method for determining the peak top molecular weight (A), was 390.82 mV. In addition, the signal intensity (absorbance, y) at the peak top molecular weight measured with an absorptiometric detector (220 nm) obtained in the same manner as the method for determining the peak top molecular weight (B) was 269.28 mV (0.26928 absorber). Unit).
 シグナル強度(a)、ピークトップ分子量(b)、シグナル強度(x)及びシグナル強度(y)を下記式
(b/y)/(a/x)
に代入して得られた値は2.16×10-2であった。結果を表22にも示す。
Signal intensity (a), peak top molecular weight (b), signal intensity (x) and signal intensity (y) are expressed by the following formula (b / y) / (a / x)
The value obtained by substituting for was 2.16 × 10 −2 . The results are also shown in Table 22.
 シグナル強度(a)、ピークトップ分子量(c)、シグナル強度(x)及びシグナル強度(y)を下記式
(c/y)/(a/x)
に代入して得られた値は1.34×10-2であった。結果を表22にも示す。
Signal intensity (a), peak top molecular weight (c), signal intensity (x), and signal intensity (y) are represented by the following formula (c / y) / (a / x)
The value obtained by substituting for was 1.34 × 10 −2 . The results are also shown in Table 22.
(フィルム中の未溶解分)
 得られたフィルムを2枚の透明なガラス板(20cm×20cm)の間に挟み、ガラス板とフィルムの間の空気を押出しながら110℃にてプレスロールを通すことにより予備接着を行った。予備接着後の積層体をオートクレーブにて135℃、1.2MPaで30分間静置することにより合わせガラスを作製(合計20枚)した。拡大鏡を用いて得られた合わせガラス中の異物の数をカウントした。合わせガラス20枚中の合計異物数を求め、以下の判定基準で評価した。
 A:0(個/20枚)
 B:1(個/20枚)
 C:2~3(個/20枚)
 D:4~8(個/20枚)
 E:9以上(個/20枚)
(Undissolved content in the film)
The obtained film was sandwiched between two transparent glass plates (20 cm × 20 cm), and preliminary adhesion was performed by passing a press roll at 110 ° C. while extruding air between the glass plate and the film. The laminated body after the preliminary adhesion was allowed to stand at 135 ° C. and 1.2 MPa for 30 minutes in an autoclave to produce a laminated glass (20 sheets in total). The number of foreign matters in the laminated glass obtained using a magnifying glass was counted. The total number of foreign substances in 20 laminated glasses was determined and evaluated according to the following criteria.
A: 0 (pieces / 20 sheets)
B: 1 (20 pieces)
C: 2-3 (pieces / 20 pieces)
D: 4-8 (pieces / 20 pieces)
E: 9 or more (pieces / 20 sheets)
(フィルムの耐着色性)
 上述したPVB-1を含むフィルムの作製に使用した混練物と同じものを作製した。当該混練物34.5質量部に、新たにPVB-1の粉体25質量部、トリエチレングリコール-ジ2-エチルヘキサノエート9.5質量部および酢酸マグネシウム0.007質量部を加え、再び前記混練物を作製した際と同じ条件にて溶融混練した。得られた混練物にPVB-1の粉体、トリエチレングリコール-ジ2-エチルヘキサノエートおよび酢酸マグネシウムを加え混練する操作をさらに3回繰り返した。得られた混練物を用いて、上述したPVB-1を含むフィルムの作製方法と同様にしてフィルムを作製した。そして、当該フィルムを用いて、「フィルム中の未溶解分」の項に記載した合わせガラスの作製方法と同様にして合わせガラスを作製した。ここで得られた合わせガラス(繰り返し加熱されたPVBを用いたもの)と、上記「フィルム中の未溶解分」で得られた合わせガラス(バージンのPVBを用いたもの)の黄色度(YI)をそれぞれ測定し、両者の黄色度の差(ΔYI)から以下の判定基準で耐着色性を評価した。測定は、スガ試験機株式会社製SMカラーコンピュータ「SM-T-H」を用い、JIS K 7105に従って行った。結果を表22に示す。
 A:0.3未満
 B:0.3以上0.5未満
 C:0.5以上1.0未満
 D:1.0以上2.0未満
 E:2.0以上
(Coloring resistance of film)
The same kneaded material used for the production of the above-described film containing PVB-1 was produced. To 34.5 parts by mass of the kneaded product, 25 parts by mass of PVB-1 powder, 9.5 parts by mass of triethylene glycol-di-2-ethylhexanoate and 0.007 parts by mass of magnesium acetate were added, and again It was melt-kneaded under the same conditions as when the kneaded product was produced. The operation of adding PVB-1 powder, triethylene glycol-di-2-ethylhexanoate and magnesium acetate to the kneaded material obtained and kneading was repeated three more times. Using the obtained kneaded material, a film was produced in the same manner as the above-described method for producing a film containing PVB-1. And the laminated glass was produced using the said film similarly to the preparation method of the laminated glass described in the term of "the undissolved part in a film." Yellowness (YI) of the laminated glass obtained here (using PVB heated repeatedly) and the laminated glass obtained using the above “undissolved content in film” (using virgin PVB) The color resistance was evaluated according to the following criteria based on the difference in yellowness (ΔYI) between the two. The measurement was performed according to JIS K 7105 using an SM color computer “SM-TH” manufactured by Suga Test Instruments Co., Ltd. The results are shown in Table 22.
A: Less than 0.3 B: 0.3 or more and less than 0.5 C: 0.5 or more and less than 1.0 D: 1.0 or more and less than 2.0 E: 2.0 or more
(合わせガラスの耐貫通性)
 「フィルムの耐着色性」の項に記載した、繰り返し溶融混練したPVBを用いて作製したフィルムと同じものを作製した。当該フィルムを23℃、28%RHの条件下で24時間調湿した後、2枚の透明なガラス(30cm×30cm)の間に挟み込み、ガラス板とフィルムの間の空気を押出しながら110℃にてプレスロールを通すことにより予備接着を行った。予備接着後の積層体をオートクレーブにて135℃、1.2MPaで30分間静置することにより合わせガラスを作製(合計6枚)した。得られた合わせガラスは、JIS R 3212(自動車用安全ガラス試験方法)およびJIS R 3211(自動車用安全ガラス)の耐貫通性試験に示された方法に従って評価を行った。すなわち、合わせガラスを23℃にて4時間調温したのち、専用の支持枠上に水平に置き、質量2260g、直径82mmの鋼球を高さ4mから合わせガラスの中心部分に自由落下させた。衝突後5秒以内に鋼球が貫通した場合、「貫通」と判定した。6枚の合わせガラスを試験して、すべて貫通しなければ合格とし、貫通しないものが4枚以下の場合は不合格とした。貫通しないものが5枚の場合は、再試験を行い、6枚全て貫通しなければ合格とし、それ以外は不合格とした。結果を表22に示す。
(Penetration resistance of laminated glass)
The same film as that prepared using PVB repeatedly melt-kneaded PVB described in the section "Film resistance" was prepared. The film was conditioned at 23 ° C. and 28% RH for 24 hours, and then sandwiched between two transparent glasses (30 cm × 30 cm). Pre-adhesion was performed by passing a press roll. The laminated body after the preliminary adhesion was allowed to stand at 135 ° C. and 1.2 MPa for 30 minutes in an autoclave to produce laminated glass (6 sheets in total). The obtained laminated glass was evaluated according to the method shown in the penetration resistance test of JIS R 3212 (automotive safety glass test method) and JIS R 3211 (automotive safety glass). That is, after the laminated glass was temperature-controlled at 23 ° C. for 4 hours, it was placed horizontally on a dedicated support frame, and a steel ball having a mass of 2260 g and a diameter of 82 mm was freely dropped from a height of 4 m onto the central portion of the laminated glass. When the steel ball penetrated within 5 seconds after the collision, it was determined as “penetration”. Six laminated glasses were tested, and if all did not penetrate, it was determined to be acceptable. In the case where there were 5 pieces that did not penetrate, a retest was conducted. If all 6 pieces did not penetrate, the test was accepted. The results are shown in Table 22.
実施例2~8および実施例11、比較例1~5、8、11および13
 PVB-1の代わりに表22に示すPVBを用いたこと以外は、実施例1と同様にしてフィルムの作製及び評価を実施した。結果を表22に示す。
Examples 2 to 8 and Example 11, Comparative Examples 1 to 5, 8, 11 and 13
A film was prepared and evaluated in the same manner as in Example 1 except that PVB shown in Table 22 was used instead of PVB-1. The results are shown in Table 22.
実施例9および10、比較例6、7、9、10および12
 PVB-1の代わりに表22に示すPVBを用いたこと及びトリエチレングリコール-ジ2-エチルヘキサノエートの代わりにジブトキシエチルアジペートを用いたこと以外は、実施例1と同様にしてフィルムの作製及び評価を実施した。結果を表22に示す。
Examples 9 and 10, Comparative Examples 6, 7, 9, 10 and 12
The film was prepared in the same manner as in Example 1 except that PVB shown in Table 22 was used instead of PVB-1, and dibutoxyethyl adipate was used instead of triethylene glycol-di2-ethylhexanoate. Fabrication and evaluation were performed. The results are shown in Table 22.
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
 表22に重合度1700のポリビニルアセタールを原料としたフィルムの評価結果を示した。本発明のフィルム(実施例1~11)は、フィルム中の未溶解分が少なく、フィルムの耐着色性に優れる上、本発明のフィルムを用いて製造された合わせガラスの耐貫通性も優れていた。一方、本発明で規定した条件を満たさないフィルム(比較例1~比較例13)は、いずれかの性能が低下した。 Table 22 shows the evaluation results of films made from polyvinyl acetal having a polymerization degree of 1700 as a raw material. The films of the present invention (Examples 1 to 11) have little undissolved content in the film and are excellent in coloration resistance of the film, and also have excellent penetration resistance of the laminated glass produced using the film of the present invention. It was. On the other hand, the film (Comparative Example 1 to Comparative Example 13) that did not satisfy the conditions defined in the present invention had any performance deteriorated.
実施例12
 混練物の作製に用いるPVB(粉体)としてPVB-12を用いたこと、その量を46質量部に変更したことおよびトリエチレングリコール-ジ2-エチルヘキサノエートの量を23質量部に変更したこと以外は実施例1と同様にして、フィルム(バージンのPVBを用いたもの)の作製、GPC測定およびフィルム中の未溶解分測定を行った。結果を表23に示す。このとき作製した混練物の一部を以下に示すフィルム(繰り返し加熱されたPVBを用いたもの)の作製に供した。
Example 12
PVB-12 was used as the PVB (powder) used in the preparation of the kneaded product, the amount thereof was changed to 46 parts by mass, and the amount of triethylene glycol di-2-ethylhexanoate was changed to 23 parts by mass. Except for the above, production of a film (using virgin PVB), GPC measurement, and measurement of undissolved content in the film were performed in the same manner as in Example 1. The results are shown in Table 23. A part of the kneaded material produced at this time was subjected to production of a film (using PVB heated repeatedly) shown below.
 上記混練物を用いたこと、及び混練物に対して、新たに添加するPVB(PVB-12)の粉体の量を23質量部に、トリエチレングリコール-ジ2-エチルヘキサノエートの量を11.5質量部に変更したこと以外は実施例1と同様にしてフィルム(繰り返し加熱されたPVBを用いたもの)の作製、フィルムの耐着色性試験及び合わせガラスの耐貫通性試験を行った。結果を表23に示す。 The amount of PVB (PVB-12) powder added to the kneaded material was 23 parts by mass, and the amount of triethylene glycol di-2-ethylhexanoate was added to the kneaded material. Except for changing to 11.5 parts by mass, the production of a film (using PVB repeatedly heated), the coloration resistance test of the film, and the penetration resistance test of laminated glass were performed in the same manner as in Example 1. . The results are shown in Table 23.
比較例14および15
 PVB-12の代わりに表23に示すPVBを用いたこと以外は、実施例12と同様にしてフィルムの作製及び評価を実施した。結果を表23に示す。
Comparative Examples 14 and 15
A film was prepared and evaluated in the same manner as in Example 12 except that PVB shown in Table 23 was used instead of PVB-12. The results are shown in Table 23.
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
 表23には重合度2400のポリビニルアセタールを原料としたフィルムの評価結果を示した。本発明のフィルム(実施例12)は、フィルム中の未溶解分が少なく、フィルムの耐着色性に優れる上、当該フィルムを用いて製造された合わせガラスの耐貫通性も優れていた。一方、本発明で規定した条件を満たさないフィルム(比較例14および15)は、いずれかの性能が低下した。 Table 23 shows the evaluation results of films made from polyvinyl acetal having a polymerization degree of 2400 as a raw material. The film of the present invention (Example 12) had little undissolved content in the film, was excellent in the color resistance of the film, and was also excellent in the penetration resistance of the laminated glass produced using the film. On the other hand, any of the films (Comparative Examples 14 and 15) that did not satisfy the conditions defined in the present invention deteriorated.
実施例13
 混練物の作製に用いるPVB(粉体)としてPVB-13を用いたこと、その量を40.6質量部に変更したこと及びトリエチレングリコール-ジ2-エチルヘキサノエートの量を28.4質量部に変更したこと以外は実施例1と同様にして、フィルム(バージンのPVBを用いたもの)の作製、GPC測定およびフィルム中の未溶解分測定を行った。結果を表24に示す。このとき作製した混練物の一部を以下に示すフィルム(繰り返し加熱されたPVBを用いたもの)の作製に供した。
Example 13
The use of PVB-13 as PVB (powder) used for the preparation of the kneaded product, the amount thereof was changed to 40.6 parts by mass, and the amount of triethylene glycol di-2-ethylhexanoate was 28.4. Except having changed into the mass part, it carried out similarly to Example 1, and produced the film (thing using PVB of virgin), GPC measurement, and the undissolved part measurement in a film. The results are shown in Table 24. A part of the kneaded material produced at this time was subjected to production of a film (using PVB heated repeatedly) shown below.
 上記混練物を用いたこと、及び混練物に対して、新たに添加するPVB(PVB-13)の粉体の量を20.3質量部に、トリエチレングリコール-ジ2-エチルヘキサノエートの量を14.2質量部にそれぞれ変更したこと以外は実施例1と同様にしてフィルム(繰り返し加熱されたPVBを用いたもの)の作製、フィルムの耐着色性試験及び合わせガラスの耐貫通性試験を行った。結果を表24に示す。 The amount of PVB (PVB-13) powder newly added to the kneaded product was 20.3 parts by mass, and triethylene glycol di-2-ethylhexanoate was used. Production of a film (using PVB repeatedly heated), color resistance test of film and penetration resistance test of laminated glass, except that the amount was changed to 14.2 parts by mass, respectively. Went. The results are shown in Table 24.
比較例16~18
 PVB-13の代わりに表24に示すPVBを用いたこと以外は、実施例13と同様にしてフィルムの作製及び評価を実施した。結果を表24に示す。
Comparative Examples 16-18
A film was prepared and evaluated in the same manner as in Example 13 except that PVB shown in Table 24 was used instead of PVB-13. The results are shown in Table 24.
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
 表24には重合度3600および5500のポリビニルアセタールを原料としたフィルムの評価結果を示した。本発明のフィルム(実施例13)は、フィルム中の未溶解分が少なく、フィルムの耐着色性に優れる上、当該フィルムを用いて製造された合わせガラスの耐貫通性も優れていた。一方、本発明で規定した条件を満たさないフィルム(比較例16~17)は、いずれかの性能が低下した。重合度5500のポリビニルアセタールを原料に用いた場合(比較例18)、溶融粘度が高くなりすぎ、フィルムが作製できなかった。 Table 24 shows the evaluation results of films made from polyvinyl acetal having a polymerization degree of 3600 and 5500 as a raw material. The film of the present invention (Example 13) had little undissolved content in the film, was excellent in the color resistance of the film, and was also excellent in the penetration resistance of the laminated glass produced using the film. On the other hand, any of the films (Comparative Examples 16 to 17) that did not satisfy the conditions defined in the present invention deteriorated. When polyvinyl acetal having a polymerization degree of 5500 was used as a raw material (Comparative Example 18), the melt viscosity was too high, and a film could not be produced.
比較例19~21
 混練物の作製に用いるPVB(粉体)として表25に示すものを用いたこと、その量を50.4質量部に変更したこと及びトリエチレングリコール-ジ2-エチルヘキサノエートの量を18.6質量部に変更したこと以外は実施例1と同様にして、フィルム(バージンのPVBを用いたもの)の作製、GPC測定およびフィルム中の未溶解分測定を行った。結果を表25に示す。このとき作製した混練物の一部を以下に示すフィルム(繰り返し加熱されたPVBを用いたもの)の作製に供した。
Comparative Examples 19-21
The PVB (powder) used in the preparation of the kneaded product was the one shown in Table 25, the amount was changed to 50.4 parts by mass, and the amount of triethylene glycol di-2-ethylhexanoate was 18 Except for changing to 0.6 parts by mass, the production of a film (using virgin PVB), GPC measurement, and measurement of undissolved content in the film were carried out in the same manner as in Example 1. The results are shown in Table 25. A part of the kneaded material produced at this time was subjected to production of a film (using PVB heated repeatedly) shown below.
 上記混練物を用いたこと、及び混練物に対して、新たに添加するPVB(表25に示すもの)の粉体の量を25.2質量部に、トリエチレングリコール-ジ2-エチルヘキサノエートの量を9.3質量部にそれぞれ変更したこと以外は実施例1と同様にしてフィルム(繰り返し加熱されたPVBを用いたもの)の作製、フィルムの耐着色性試験及び合わせガラスの耐貫通性試験を行った。結果を表25に示す。 The amount of PVB powder (shown in Table 25) to be newly added to the kneaded product was 25.2 parts by mass, and triethylene glycol-di-2-ethylhexano was used. Except that the amount of ate was changed to 9.3 parts by mass, production of a film (using repeatedly heated PVB), film coloring resistance test, and penetration resistance of laminated glass, except that the amount of ate was changed to 9.3 parts by mass, respectively A sex test was performed. The results are shown in Table 25.
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
 表25には重合度1200のポリビニルアセタールを原料としたフィルムの評価結果を示した。いずれも、合わせガラスの耐貫通性が不十分であった。 Table 25 shows the evaluation results of films made from polyvinyl acetal having a polymerization degree of 1200 as a raw material. In all cases, the penetration resistance of the laminated glass was insufficient.
比較例22
 混練物の作製に用いるPVB(粉体)を表26に示すものに変更し、その量を51.8質量部としたこと及びトリエチレングリコール-ジ2-エチルヘキサノエートの量を17.2質量部としたこと以外は実施例1と同様にして、フィルム(バージンのPVBを用いたもの)の作製、GPC測定およびフィルム中の未溶解分測定を行った。結果を表26に示す。このとき作製した混練物の一部を以下に示すフィルム(繰り返し加熱されたPVBを用いたもの)の作製に供した。
Comparative Example 22
The PVB (powder) used for the preparation of the kneaded product was changed to that shown in Table 26, the amount was 51.8 parts by mass, and the amount of triethylene glycol-di-2-ethylhexanoate was 17.2. Except having been set as the mass part, it carried out similarly to Example 1, and produced the film (thing using PVB of virgin), GPC measurement, and the undissolved part measurement in a film. The results are shown in Table 26. A part of the kneaded material produced at this time was subjected to production of a film (using PVB heated repeatedly) shown below.
 上記混練物を用いたこと、及び混練物に対して、新たに添加するPVB(表26に示すもの)の粉体の量を25.9質量部、トリエチレングリコール-ジ2-エチルヘキサノエートの量を8.6質量部としたこと以外は実施例1と同様にしてフィルム(繰り返し加熱されたPVBを用いたもの)の作製、フィルムの耐着色性試験及び合わせガラスの耐貫通性試験を行った。結果を表26に示す。 25.9 parts by mass of powder of PVB (shown in Table 26) to be newly added to the kneaded product, triethylene glycol di-2-ethylhexanoate was used. The production of a film (using PVB repeatedly heated), the color resistance test of the film, and the penetration resistance test of the laminated glass were carried out in the same manner as in Example 1 except that the amount of 8.6 parts by mass was changed. went. The results are shown in Table 26.
比較例23
 混練物の作製に用いるPVB(粉体)として表26に示すものを用いたこと、その量を57.5質量部に変更したこと及びトリエチレングリコール-ジ2-エチルヘキサノエートの量を11.5質量部に変更したこと以外は実施例1と同様にして、フィルム(バージンのPVBを用いたもの)の作製、GPC測定およびフィルム中の未溶解分測定を行った。結果を表26に示す。このとき作製した混練物の一部を以下に示すフィルム(繰り返し加熱されたPVBを用いたもの)の作製に供した。
Comparative Example 23
The PVB (powder) used in the preparation of the kneaded product was the one shown in Table 26, the amount was changed to 57.5 parts by mass, and the amount of triethylene glycol di-2-ethylhexanoate was 11 Except that it was changed to 0.5 parts by mass, production of a film (using virgin PVB), GPC measurement, and measurement of undissolved content in the film were performed in the same manner as in Example 1. The results are shown in Table 26. A part of the kneaded material produced at this time was subjected to production of a film (using PVB heated repeatedly) shown below.
 上記混練物を用いたこと、及び混練物に対して、新たに添加するPVB(表26に示すもの)の粉体の量を28.8質量部、トリエチレングリコール-ジ2-エチルヘキサノエートの量を5.7質量部にそれぞれ変更したこと以外は実施例1と同様にしてフィルム(繰り返し加熱されたPVBを用いたもの)の作製、フィルムの耐着色性試験及び合わせガラスの耐貫通性試験を行った。結果を表26に示す。 The amount of PVB powder (shown in Table 26) to be newly added to the kneaded material was 28.8 parts by mass, and triethylene glycol-di-2-ethylhexanoate. The production of the film (using PVB repeatedly heated), the coloration resistance test of the film, and the penetration resistance of the laminated glass, except that the amount of each was changed to 5.7 parts by mass, respectively. A test was conducted. The results are shown in Table 26.
比較例24及び25
 混練物の作製に用いるPVB(粉体)として表26に示すものを用いたこと、その量を61.4質量部に変更したこと及びトリエチレングリコール-ジ2-エチルヘキサノエートの量を7.6質量部に変更したこと以外は実施例1と同様にして、フィルム(バージンのPVBを用いたもの)の作製、GPC測定およびフィルム中の未溶解分測定を行った。結果を表26に示す。このとき作製した混練物の一部を以下に示すフィルム(繰り返し加熱されたPVBを用いたもの)の作製に供した。
Comparative Examples 24 and 25
The PVB (powder) used in the preparation of the kneaded product was the one shown in Table 26, the amount was changed to 61.4 parts by mass, and the amount of triethylene glycol di-2-ethylhexanoate was 7 Except for changing to 0.6 parts by mass, the production of a film (using virgin PVB), GPC measurement, and measurement of undissolved content in the film were carried out in the same manner as in Example 1. The results are shown in Table 26. A part of the kneaded material produced at this time was subjected to production of a film (using PVB heated repeatedly) shown below.
 上記混練物を用いたこと、及び混練物に対して、新たに添加するPVB(表26に示すもの)の粉体の量を30.7質量部、トリエチレングリコール-ジ2-エチルヘキサノエートの量を3.8質量部にそれぞれ変更したこと以外は実施例1と同様にしてフィルム(繰り返し加熱されたPVBを用いたもの)の作製、フィルムの耐着色性試験及び合わせガラスの耐貫通性試験を行った。結果を表26に示す。 30.7 parts by mass of powder of PVB (shown in Table 26) to be newly added to the kneaded product, triethylene glycol-di-2-ethylhexanoate was used. Production of a film (using repeatedly heated PVB), film coloring resistance test and penetration resistance of laminated glass, except that the amount of each was changed to 3.8 parts by mass A test was conducted. The results are shown in Table 26.
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
 表26には重合度150~1000のポリビニルアセタールを原料としたフィルムの評価結果を示した。いずれも、合わせガラスの耐貫通性が不十分であった。 Table 26 shows the evaluation results of films made of polyvinyl acetal having a polymerization degree of 150 to 1000 as a raw material. In all cases, the penetration resistance of the laminated glass was insufficient.
実施例14~20、23、比較例26~29、32、35、37
 混練物の作製に用いるPVB(粉体)として表27に示すものを用いたこと、その量を40質量部に変更したこと及びトリエチレングリコール-ジ2-エチルヘキサノエートの量を24質量部に変更したこと以外は実施例1と同様にして、フィルム(バージンのPVBを用いたもの)の作製、GPC測定およびフィルム中の未溶解分測定を行った。結果を表27に示す。このとき作製した混練物の一部を以下に示すフィルム(繰り返し加熱されたPVBを用いたもの)の作製に供した。
Examples 14 to 20, 23, Comparative Examples 26 to 29, 32, 35, 37
The PVB (powder) used in the preparation of the kneaded product was the one shown in Table 27, the amount was changed to 40 parts by mass, and the amount of triethylene glycol di-2-ethylhexanoate was 24 parts by mass. Except that it was changed to, production of a film (one using virgin PVB), GPC measurement, and measurement of undissolved content in the film were performed in the same manner as in Example 1. The results are shown in Table 27. A part of the kneaded material produced at this time was subjected to production of a film (using PVB heated repeatedly) shown below.
 上記混練物を用いたこと、その量を32質量部に変更したこと、混練物に対して、新たに添加するPVB(表27に示すもの)の粉体の量を20質量部、トリエチレングリコール-ジ2-エチルヘキサノエートの量を12質量部にそれぞれ変更したこと及び混練物にPVB等を加え混練する操作(実施例1では4回)を2回に変更したこと以外は実施例1と同様にしてフィルム(繰り返し加熱されたPVBを用いたもの)の作製、フィルムの耐着色性試験及び合わせガラスの耐貫通性試験を行った。なお、耐着色性試験については、両者の黄色度の差(ΔYI)から以下の判定基準で耐着色性を評価した。結果を表27に示す。
 A:0.5未満
 B:0.5以上1.0未満
 C:1.0以上2.0未満
 D:2.0以上3.0未満
 E:3.0以上
Use of the above kneaded product, change of the amount thereof to 32 parts by mass, and addition of 20 parts by mass of powder of PVB (shown in Table 27) newly added to the kneaded product, triethylene glycol Example 1 except that the amount of di-2-ethylhexanoate was changed to 12 parts by mass and the operation of adding PVB or the like to the kneaded product and kneading (4 times in Example 1) was changed to 2 times. In the same manner as described above, production of a film (using PVB heated repeatedly), a coloration resistance test of the film, and a penetration resistance test of the laminated glass were performed. In addition, about the coloring resistance test, the coloring resistance was evaluated according to the following criteria from the difference in yellowness (ΔYI) between the two. The results are shown in Table 27.
A: Less than 0.5 B: 0.5 or more and less than 1.0 C: 1.0 or more and less than 2.0 D: 2.0 or more and less than 3.0 E: 3.0 or more
実施例21および22、比較例30、31、33、34および36
 PVB-14の代わりに表27に示すものを用いたこと及びトリエチレングリコール-ジ2-エチルヘキサノエートの代わりにジブトキシエチルアジペートを用いたこと以外は、実施例14と同様にしてフィルムの作製及び評価を実施した。結果を表27に示す。
Examples 21 and 22, Comparative Examples 30, 31, 33, 34 and 36
The film was prepared in the same manner as in Example 14 except that the one shown in Table 27 was used instead of PVB-14 and dibutoxyethyl adipate was used instead of triethylene glycol-di2-ethylhexanoate. Fabrication and evaluation were performed. The results are shown in Table 27.
Figure JPOXMLDOC01-appb-T000027
Figure JPOXMLDOC01-appb-T000027
 表27には重合度1700のポリビニルアセタールを原料としたフィルムの評価結果を示した。本発明のフィルム(実施例14~23)は、フィルム中の未溶解分が少なく、フィルムの耐着色性に優れる上、本発明のフィルムを用いて製造された合わせガラスの耐貫通性も優れていた。一方、本発明で規定した条件を満たさないフィルム(比較例26~比較例37)は、いずれかの性能が低下した。 Table 27 shows the evaluation results of films made from polyvinyl acetal having a polymerization degree of 1700 as a raw material. The films of the present invention (Examples 14 to 23) have little undissolved content in the film and are excellent in coloration resistance of the film, and also have excellent penetration resistance of the laminated glass produced using the film of the present invention. It was. On the other hand, any of the films (Comparative Example 26 to Comparative Example 37) that did not satisfy the conditions defined in the present invention deteriorated.
実施例24
 混練物の作製に用いるPVB(粉体)としてPVB-24を用いたこと、その量を36.6質量部に変更したこと及びトリエチレングリコール-ジ2-エチルヘキサノエートの量を27.4質量部に変更したこと以外は実施例14と同様にして、フィルム(バージンのPVBを用いたもの)の作製、GPC測定およびフィルム中の未溶解分測定を行った。結果を表28に示す。このとき作製した混練物の一部を以下に示すフィルム(繰り返し加熱されたPVBを用いたもの)の作製に供した。
Example 24
PVB-24 was used as the PVB (powder) used for the preparation of the kneaded product, the amount thereof was changed to 36.6 parts by mass, and the amount of triethylene glycol di-2-ethylhexanoate was 27.4. Except having changed into the mass part, it carried out similarly to Example 14, and produced the film (thing using PVB of virgin), GPC measurement, and the undissolved part measurement in a film. The results are shown in Table 28. A part of the kneaded material produced at this time was subjected to production of a film (using PVB heated repeatedly) shown below.
 上記混練物を用いたこと、混練物に対して、新たに添加するPVB(表28に示すもの)の粉体の量を18.3質量部、トリエチレングリコール-ジ2-エチルヘキサノエートの量を13.7質量部にそれぞれ変更したこと以外は実施例14と同様にしてフィルム(繰り返し加熱されたPVBを用いたもの)の作製、フィルムの耐着色性試験及び合わせガラスの耐貫通性試験を行った。結果を表28に示す。 The use of the above kneaded material, the amount of powder of PVB (shown in Table 28) to be newly added to the kneaded material was 18.3 parts by mass, triethylene glycol di-2-ethylhexanoate Production of a film (using repeatedly heated PVB), film coloration resistance test, and laminated glass penetration resistance test, except that the amount was changed to 13.7 parts by mass, respectively. Went. The results are shown in Table 28.
比較例38および39
 PVB-24の代わりに表28に示すPVBを用いたこと以外は、実施例24と同様にしてフィルムの作製及び評価を実施した。結果を表28に示す。
Comparative Examples 38 and 39
A film was prepared and evaluated in the same manner as in Example 24 except that PVB shown in Table 28 was used instead of PVB-24. The results are shown in Table 28.
Figure JPOXMLDOC01-appb-T000028
Figure JPOXMLDOC01-appb-T000028
 表28には重合度2400のポリビニルアセタールを原料としたフィルムの評価結果を示した。本発明のフィルム(実施例24)は、フィルム中の未溶解分が少なく、フィルムの耐着色性に優れる上、本発明のフィルムを用いて製造された合わせガラスの耐貫通性も優れていた。一方、本発明で規定した条件を満たさないフィルム(比較例38および39)は、いずれかの性能が低下した。 Table 28 shows the evaluation results of films made from polyvinyl acetal having a polymerization degree of 2400 as a raw material. The film of the present invention (Example 24) had little undissolved content in the film, was excellent in coloration resistance of the film, and was also excellent in penetration resistance of the laminated glass produced using the film of the present invention. On the other hand, any of the films (Comparative Examples 38 and 39) that did not satisfy the conditions defined in the present invention deteriorated.
実施例25
 混練物の作製に用いるPVB(粉体)としてPVB-25を用いたこと、その量を32質量部に変更したこと及びトリエチレングリコール-ジ2-エチルヘキサノエートの量を32質量部に変更したこと以外は実施例14と同様にして、フィルム(バージンのPVBを用いたもの)の作製、GPC測定およびフィルム中の未溶解分測定を行った。結果を表29に示す。このとき作製した混練物の一部を以下に示すフィルム(繰り返し加熱されたPVBを用いたもの)の作製に供した。
Example 25
PVB-25 was used as the PVB (powder) used in the preparation of the kneaded product, the amount thereof was changed to 32 parts by mass, and the amount of triethylene glycol di-2-ethylhexanoate was changed to 32 parts by mass. Except that, the production of a film (using virgin PVB), GPC measurement, and measurement of undissolved content in the film were performed in the same manner as in Example 14. The results are shown in Table 29. A part of the kneaded material produced at this time was subjected to production of a film (using PVB heated repeatedly) shown below.
 上記混練物を用いたこと、混練物に対して、新たに添加するPVB(表29に示すもの)の粉体の量を16質量部、トリエチレングリコール-ジ2-エチルヘキサノエートの量を16質量部にそれぞれ変更したこと以外は実施例14と同様にしてフィルム(繰り返し加熱されたPVBを用いたもの)の作製、フィルムの耐着色性試験及び合わせガラスの耐貫通性試験を行った。結果を表29に示す。 The use of the above kneaded product, the amount of PVB powder (shown in Table 29) to be newly added to the kneaded product was 16 parts by mass, and the amount of triethylene glycol di-2-ethylhexanoate was Except having changed to 16 parts by mass, respectively, production of a film (using PVB repeatedly heated), coloration resistance test of the film, and penetration resistance test of the laminated glass were performed in the same manner as in Example 14. The results are shown in Table 29.
比較例40および41
 PVB-25の代わりに表28に示すPVBを用いたこと以外は、実施例25と同様にしてフィルムの作製及び評価を実施した。結果を表29に示す。
Comparative Examples 40 and 41
A film was prepared and evaluated in the same manner as in Example 25 except that PVB shown in Table 28 was used instead of PVB-25. The results are shown in Table 29.
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
 表29には重合度3600のポリビニルアセタールを原料としたフィルムの評価結果を示した。本発明のフィルム(実施例25)は、フィルム中の未溶解分が少なく、フィルムの耐着色性に優れる上、本発明のフィルムを用いて製造された合わせガラスの耐貫通性も優れていた。一方、本発明で規定した条件を満たさないフィルム(比較例40および41)は、いずれかの性能が低下した。 Table 29 shows the evaluation results of films made from polyvinyl acetal having a polymerization degree of 3600 as a raw material. The film of the present invention (Example 25) had little undissolved content in the film, was excellent in coloration resistance of the film, and was also excellent in penetration resistance of the laminated glass produced using the film of the present invention. On the other hand, any of the films (Comparative Examples 40 and 41) that did not satisfy the conditions defined in the present invention deteriorated.
比較例42~44
 混練物の作製に用いるPVB(粉体)として表30に示すものを用いたこと、その量を41.6質量部に変更したこと及びトリエチレングリコール-ジ2-エチルヘキサノエートの量を22.4質量部に変更したこと以外は実施例14と同様にして、フィルム(バージンのPVBを用いたもの)の作製、GPC測定およびフィルム中の未溶解分測定を行った。結果を表30に示す。このとき作製した混練物の一部を以下に示すフィルム(繰り返し加熱されたPVBを用いたもの)の作製に供した。
Comparative Examples 42 to 44
The PVB (powder) used in the preparation of the kneaded product was the one shown in Table 30, the amount was changed to 41.6 parts by mass, and the amount of triethylene glycol di-2-ethylhexanoate was 22 Except for the change to 4 parts by mass, production of a film (using virgin PVB), GPC measurement, and measurement of undissolved content in the film were performed in the same manner as in Example 14. The results are shown in Table 30. A part of the kneaded material produced at this time was subjected to production of a film (using PVB heated repeatedly) shown below.
 上記混練物を用いたこと、混練物に対して、新たに添加するPVB(表30に示すもの)の粉体の量を20.8質量部、トリエチレングリコール-ジ2-エチルヘキサノエートの量を11.2質量部にそれぞれ変更したこと以外は実施例14と同様にしてフィルム(繰り返し加熱されたPVBを用いたもの)の作製、フィルムの耐着色性試験及び合わせガラスの耐貫通性試験を行った。結果を表30に示す。 Using the above kneaded product, the amount of powder of PVB (shown in Table 30) to be newly added to the kneaded product was 20.8 parts by mass, of triethylene glycol di-2-ethylhexanoate. Production of a film (using repeatedly heated PVB), coloration resistance test of film and penetration resistance test of laminated glass except that the amount was changed to 11.2 parts by mass, respectively. Went. The results are shown in Table 30.
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
 表30には重合度1200のポリビニルアセタールを原料としたフィルムの評価結果を示した。いずれも、合わせガラスの耐貫通性が不十分であった。 Table 30 shows the evaluation results of films made from polyvinyl acetal having a polymerization degree of 1200 as a raw material. In all cases, the penetration resistance of the laminated glass was insufficient.
比較例45
 混練物の作製に用いるPVB(粉体)として表31に示すものを用いたこと、その量を42.9質量部に変更したこと及びトリエチレングリコール-ジ2-エチルヘキサノエートの量を21.1質量部に変更したこと以外は実施例14と同様にして、フィルム(バージンのPVBを用いたもの)の作製、GPC測定およびフィルム中の未溶解分測定を行った。結果を表31に示す。このとき作製した混練物の一部を以下に示すフィルム(繰り返し加熱されたPVBを用いたもの)の作製に供した。
Comparative Example 45
The PVB (powder) used in the preparation of the kneaded product was the one shown in Table 31, the amount was changed to 42.9 parts by mass, and the amount of triethylene glycol di-2-ethylhexanoate was 21 Except that the content was changed to 1 part by mass, production of a film (using virgin PVB), GPC measurement, and measurement of undissolved content in the film were performed in the same manner as in Example 14. The results are shown in Table 31. A part of the kneaded material produced at this time was subjected to production of a film (using PVB heated repeatedly) shown below.
 上記混練物を用いたこと、混練物に対して、新たに添加するPVB(表31に示すもの)の粉体の量を21.5質量部、トリエチレングリコール-ジ2-エチルヘキサノエートの量を10.5質量部にそれぞれ変更したこと以外は実施例14と同様にしてフィルム(繰り返し加熱されたPVBを用いたもの)の作製、フィルムの耐着色性試験及び合わせガラスの耐貫通性試験を行った。結果を表31に示す。 Using the above kneaded material, the amount of PVB powder (shown in Table 31) to be newly added to the kneaded material was 21.5 parts by mass, of triethylene glycol di-2-ethylhexanoate. Production of a film (using repeatedly heated PVB), film coloration resistance test, and laminated glass penetration resistance test, except that the amount was changed to 10.5 parts by mass, respectively. Went. The results are shown in Table 31.
比較例46
 混練物の作製に用いるPVB(粉体)として表31に示すものを用いたこと、その量を49.2質量部に変更したこと及びトリエチレングリコール-ジ2-エチルヘキサノエートの量を14.8質量部に変更したこと以外は実施例14と同様にして、フィルム(バージンのPVBを用いたもの)の作製、GPC測定およびフィルム中の未溶解分測定を行った。結果を表31に示す。このとき作製した混練物の一部を以下に示すフィルム(繰り返し加熱されたPVBを用いたもの)の作製に供した。
Comparative Example 46
The PVB (powder) used in the preparation of the kneaded product was the one shown in Table 31, the amount was changed to 49.2 parts by mass, and the amount of triethylene glycol di-2-ethylhexanoate was 14 Except for the change to 8 parts by mass, production of a film (using virgin PVB), GPC measurement, and measurement of undissolved content in the film were carried out in the same manner as in Example 14. The results are shown in Table 31. A part of the kneaded material produced at this time was subjected to production of a film (using PVB heated repeatedly) shown below.
 上記混練物を用いたこと、混練物に対して、新たに添加するPVB(表31に示すもの)の粉体の量を24.6質量部、トリエチレングリコール-ジ2-エチルヘキサノエートの量を7.4質量部にそれぞれ変更したこと以外は実施例14と同様にしてフィルム(繰り返し加熱されたPVBを用いたもの)の作製、フィルムの耐着色性試験及び合わせガラスの耐貫通性試験を行った。結果を表31に示す。 Using the above kneaded product, the amount of PVB powder (shown in Table 31) to be newly added to the kneaded product was 24.6 parts by mass, triethylene glycol-di-2-ethylhexanoate Production of a film (using repeatedly heated PVB), film coloration resistance test, and laminated glass penetration resistance test, except that the amount was changed to 7.4 parts by mass, respectively. Went. The results are shown in Table 31.
比較例47~49
 混練物の作製に用いるPVB(粉体)として表31に示すものを用いたこと、その量を55.7質量部に変更したこと及びトリエチレングリコール-ジ2-エチルヘキサノエートの量を8.3質量部に変更したこと以外は実施例14と同様にして、フィルム(バージンのPVBを用いたもの)の作製、GPC測定およびフィルム中の未溶解分測定を行った。結果を表31に示す。このとき作製した混練物の一部を以下に示すフィルム(繰り返し加熱されたPVBを用いたもの)の作製に供した。
Comparative Examples 47-49
The PVB (powder) used in the preparation of the kneaded product was the one shown in Table 31, the amount was changed to 55.7 parts by mass, and the amount of triethylene glycol di-2-ethylhexanoate was 8 Except that the content was changed to 3 parts by mass, production of a film (using virgin PVB), GPC measurement, and measurement of undissolved content in the film were performed in the same manner as in Example 14. The results are shown in Table 31. A part of the kneaded material produced at this time was subjected to production of a film (using PVB heated repeatedly) shown below.
 上記混練物を用いたこと、混練物に対して、新たに添加するPVB(表31に示すもの)の粉体の量を27.9質量部、トリエチレングリコール-ジ2-エチルヘキサノエートの量を4.1質量部にそれぞれ変更したこと以外は実施例14と同様にしてフィルム(繰り返し加熱されたPVBを用いたもの)の作製、フィルムの耐着色性試験及び合わせガラスの耐貫通性試験を行った。結果を表31に示す。 Using the above kneaded product, the amount of PVB powder (added in Table 31) to be newly added to the kneaded material was 27.9 parts by mass, triethylene glycol-di-2-ethylhexanoate Production of a film (using repeatedly heated PVB), film coloring resistance test, and laminated glass penetration resistance test, except that the amount was changed to 4.1 parts by mass, respectively. Went. The results are shown in Table 31.
Figure JPOXMLDOC01-appb-T000031
Figure JPOXMLDOC01-appb-T000031
 表31には重合度300~1000のポリビニルアセタールを原料としたフィルムの評価結果を示した。いずれも、合わせガラスの耐貫通性が不十分であった。 Table 31 shows the evaluation results of films made from polyvinyl acetal having a polymerization degree of 300 to 1000 as a raw material. In all cases, the penetration resistance of the laminated glass was insufficient.

Claims (8)

  1.  アセタール化度が50~85モル%、ビニルエステル単量体単位の含有量が0.1~20モル%、粘度平均重合度が1400~5000であるポリビニルアセタールを含有するフィルムであって、下記式(1)及び(2)を満たすフィルム。
    (A-B)/A<0.80  (1)
    1.00×10-2<(b/y)/(a/x)<2.00×10-1  (2)
     式中、
    A:230℃において3時間加熱された前記フィルムをゲルパーミエーションクロマトグラフィー測定したときの、示差屈折率検出器で測定されるポリマー成分のピークトップ分子量
    a:ピークトップ分子量(A)におけるシグナル強度
    B:230℃において3時間加熱された前記フィルムをゲルパーミエーションクロマトグラフィー測定したときの、吸光光度検出器(測定波長280nm)で測定されるポリマー成分のピークトップ分子量
    b:ピークトップ分子量(B)におけるシグナル強度
    x:単分散のポリメタクリル酸メチルをゲルパーミエーションクロマトグラフィー測定したときの、示差屈折率検出器で測定されるピークトップ分子量におけるシグナル強度
    y:前記単分散のポリメタクリル酸メチルをゲルパーミエーションクロマトグラフィー測定したときの、吸光光度検出器(測定波長220nm)で測定されるピークトップ分子量におけるシグナル強度
    である。
    A film containing polyvinyl acetal having a degree of acetalization of 50 to 85 mol%, a content of vinyl ester monomer units of 0.1 to 20 mol%, and a viscosity average polymerization degree of 1400 to 5000, A film satisfying (1) and (2).
    (AB) / A <0.80 (1)
    1.00 × 10 −2 <(b / y) / (a / x) <2.00 × 10 −1 (2)
    Where
    A: When the film heated at 230 ° C. for 3 hours was measured by gel permeation chromatography, the peak top molecular weight of the polymer component measured by the differential refractive index detector a: the signal intensity B at the peak top molecular weight (A) : When the film heated at 230 ° C. for 3 hours was measured by gel permeation chromatography, the peak top molecular weight b of the polymer component measured by an absorptiometric detector (measurement wavelength 280 nm): in peak top molecular weight (B) Signal intensity x: Signal intensity at peak top molecular weight measured by differential refractive index detector when monodispersed polymethyl methacrylate is measured by gel permeation chromatography y: The monodispersed polymethyl methacrylate is gel permeated Eation chroma When the chromatography measurement, a signal intensity at the peak top molecular weight measured by spectrophotometric detector (measuring wavelength 220 nm).
  2.  下記式(3)及び(4)を満たす請求項1に記載のフィルム。
    (A-C)/A<0.80  (3)
    5.00×10-3<(c/y)/(a/x)<7.00×10-2  (4)
     式中、
    A:前記式(1)と同じ
    a、x、y:前記式(2)と同じ
    C:230℃において3時間加熱された前記フィルムをゲルパーミエーションクロマトグラフィー測定したときの、吸光光度検出器(測定波長320nm)で測定されるポリマー成分のピークトップ分子量
    c:ピークトップ分子量(C)におけるシグナル強度
    である。
    The film of Claim 1 which satisfy | fills following formula (3) and (4).
    (AC) / A <0.80 (3)
    5.00 × 10 −3 <(c / y) / (a / x) <7.00 × 10 −2 (4)
    Where
    A: a, x, y same as the above formula (1) C: same as the above formula (2) C: Absorbance detector when the film heated at 230 ° C. for 3 hours is measured by gel permeation chromatography ( The peak top molecular weight c of the polymer component measured at a measurement wavelength of 320 nm) is the signal intensity at the peak top molecular weight (C).
  3.  前記ポリビニルアセタールがポリビニルブチラールである請求項1又は2に記載のフィルム。 The film according to claim 1 or 2, wherein the polyvinyl acetal is polyvinyl butyral.
  4.  さらに、可塑剤を含有する請求項1~3のいずれかに記載のフィルム。 The film according to any one of claims 1 to 3, further comprising a plasticizer.
  5.  可塑剤としてトリエチレングリコール-ジ2-エチルヘキサノエートを含有する請求項1~4のいずれかに記載のフィルム。 The film according to any one of claims 1 to 4, which contains triethylene glycol di-2-ethylhexanoate as a plasticizer.
  6.  ポリビニルアルコールをアセタール化して、アセタール化度が50~85モル%、ビニルエステル単量体単位の含有量が0.1~20モル%、粘度平均重合度が1400~5000であるポリビニルアセタールを得た後、該ポリビニルアセタールを溶融成形する請求項1~5のいずれかに記載のフィルムの製造方法。 Polyvinyl alcohol was acetalized to obtain a polyvinyl acetal having an acetalization degree of 50 to 85 mol%, a vinyl ester monomer unit content of 0.1 to 20 mol%, and a viscosity average polymerization degree of 1400 to 5000. 6. The method for producing a film according to claim 1, wherein the polyvinyl acetal is melt-molded.
  7.  請求項1~5のいずれかに記載のフィルムからなる合わせガラス用中間膜。 An interlayer film for laminated glass comprising the film according to any one of claims 1 to 5.
  8.  請求項7に記載の合わせガラス用中間膜を用いて複数のガラス板を接着してなる合わせガラス。 A laminated glass obtained by bonding a plurality of glass plates using the interlayer film for laminated glass according to claim 7.
PCT/JP2013/071363 2013-08-07 2013-08-07 Film comprising polyvinyl acetal WO2015019445A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2013/071363 WO2015019445A1 (en) 2013-08-07 2013-08-07 Film comprising polyvinyl acetal
JP2013535980A JP5420804B1 (en) 2013-08-07 2013-08-07 Film containing polyvinyl acetal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/071363 WO2015019445A1 (en) 2013-08-07 2013-08-07 Film comprising polyvinyl acetal

Publications (1)

Publication Number Publication Date
WO2015019445A1 true WO2015019445A1 (en) 2015-02-12

Family

ID=50287230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071363 WO2015019445A1 (en) 2013-08-07 2013-08-07 Film comprising polyvinyl acetal

Country Status (2)

Country Link
JP (1) JP5420804B1 (en)
WO (1) WO2015019445A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015125689A1 (en) * 2014-02-18 2015-08-27 株式会社クラレ Adhesiveness-improving agent obtained from polyvinyl acetal solution
CN110494404A (en) * 2017-03-27 2019-11-22 株式会社可乐丽 The polyvinyl acetal resin film of laminated glass-use
WO2020067176A1 (en) * 2018-09-26 2020-04-02 株式会社クラレ Polyvinyl acetal resin film and multilayer body containing same
WO2020067162A1 (en) * 2018-09-26 2020-04-02 株式会社クラレ Polyvinyl acetal resin film, and laminate including same
WO2020067184A1 (en) * 2018-09-26 2020-04-02 株式会社クラレ Polyvinyl acetal resin film and film roll thereof, and layered product
EP3616905A4 (en) * 2017-03-27 2021-04-28 Kuraray Co., Ltd. Polyvinyl acetal resin film for laminated glass

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5799192B1 (en) * 2014-02-18 2015-10-21 株式会社クラレ High adhesive resin composition, molded article and laminate comprising the same
EP3109213B1 (en) * 2014-02-18 2022-12-21 Kuraray Europe GmbH Interlayer film for laminated glass

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0931124A (en) * 1994-11-24 1997-02-04 Sekisui Chem Co Ltd Production of polyvinyl acetal, polyvinyl acetal, interlayer for laminated glass and laminated glass
JPH09316110A (en) * 1996-03-29 1997-12-09 Kuraray Co Ltd Manufacture of vinyl acetate polymer
JPH1180272A (en) * 1997-09-10 1999-03-26 Nof Corp Production of saponified material of ethylene-vinyl acetate copolymer
JP2005029764A (en) * 2003-07-11 2005-02-03 Kuraray Co Ltd Vinyl acetal-based polymer and method for producing the same
JP2008214435A (en) * 2007-03-01 2008-09-18 Denki Kagaku Kogyo Kk Polyvinyl acetal resin and its manufacturing method
JP2011508802A (en) * 2007-12-21 2011-03-17 セキスイ・スペシャルティ・ケミカルズ・アメリカ・エルエルシー How to make low color polyvinyl alcohol
WO2011108152A1 (en) * 2010-03-03 2011-09-09 電気化学工業株式会社 Method for producing polyvinyl alcohol resin
JP2011241234A (en) * 2009-04-28 2011-12-01 Nippon Synthetic Chem Ind Co Ltd:The Polyvinyl alcohol-based resin composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0931124A (en) * 1994-11-24 1997-02-04 Sekisui Chem Co Ltd Production of polyvinyl acetal, polyvinyl acetal, interlayer for laminated glass and laminated glass
JPH09316110A (en) * 1996-03-29 1997-12-09 Kuraray Co Ltd Manufacture of vinyl acetate polymer
JPH1180272A (en) * 1997-09-10 1999-03-26 Nof Corp Production of saponified material of ethylene-vinyl acetate copolymer
JP2005029764A (en) * 2003-07-11 2005-02-03 Kuraray Co Ltd Vinyl acetal-based polymer and method for producing the same
JP2008214435A (en) * 2007-03-01 2008-09-18 Denki Kagaku Kogyo Kk Polyvinyl acetal resin and its manufacturing method
JP2011508802A (en) * 2007-12-21 2011-03-17 セキスイ・スペシャルティ・ケミカルズ・アメリカ・エルエルシー How to make low color polyvinyl alcohol
JP2011241234A (en) * 2009-04-28 2011-12-01 Nippon Synthetic Chem Ind Co Ltd:The Polyvinyl alcohol-based resin composition
WO2011108152A1 (en) * 2010-03-03 2011-09-09 電気化学工業株式会社 Method for producing polyvinyl alcohol resin

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015125689A1 (en) * 2014-02-18 2015-08-27 株式会社クラレ Adhesiveness-improving agent obtained from polyvinyl acetal solution
JPWO2015125689A1 (en) * 2014-02-18 2017-03-30 株式会社クラレ Adhesion improver comprising polyvinyl acetal solution
CN110494404B (en) * 2017-03-27 2022-05-31 可乐丽欧洲有限责任公司 Polyvinyl acetal resin film for laminated glass
EP3604254A4 (en) * 2017-03-27 2020-12-23 Kuraray Co., Ltd. Polyvinyl acetal resin film for laminated glass
EP3616905A4 (en) * 2017-03-27 2021-04-28 Kuraray Co., Ltd. Polyvinyl acetal resin film for laminated glass
CN110494404A (en) * 2017-03-27 2019-11-22 株式会社可乐丽 The polyvinyl acetal resin film of laminated glass-use
US11504951B2 (en) 2017-03-27 2022-11-22 Kuraray Europe Gmbh Polyvinyl acetal resin film for laminated glass
WO2020067176A1 (en) * 2018-09-26 2020-04-02 株式会社クラレ Polyvinyl acetal resin film and multilayer body containing same
WO2020067162A1 (en) * 2018-09-26 2020-04-02 株式会社クラレ Polyvinyl acetal resin film, and laminate including same
WO2020067184A1 (en) * 2018-09-26 2020-04-02 株式会社クラレ Polyvinyl acetal resin film and film roll thereof, and layered product
CN112771100A (en) * 2018-09-26 2021-05-07 株式会社可乐丽 Polyvinyl acetal resin film and laminate comprising same
US11623985B2 (en) 2018-09-26 2023-04-11 Kuraray Europe Gmbh Polyvinyl acetal resin film and film roll thereof, and laminate comprising same
JP7466454B2 (en) 2018-09-26 2024-04-12 クラレイ ユーロップ ゲゼルシャフト ミット ベシュレンクテル ハフツング Polyvinyl acetal resin film and laminate containing same
JP7466453B2 (en) 2018-09-26 2024-04-12 クラレイ ユーロップ ゲゼルシャフト ミット ベシュレンクテル ハフツング Polyvinyl acetal resin film and laminate containing same

Also Published As

Publication number Publication date
JP5420804B1 (en) 2014-02-19
JPWO2015019445A1 (en) 2017-03-02

Similar Documents

Publication Publication Date Title
JP5420804B1 (en) Film containing polyvinyl acetal
JP5469286B1 (en) Multilayer film and interlayer film for laminated glass comprising the same
JP6441307B2 (en) Interlayer film for laminated glass
JP6259307B2 (en) Intermediate film for laminated glass and laminated glass using the same
JP5420808B1 (en) Film containing polyvinyl acetal
JP5632077B1 (en) Composition with excellent transparency
JP5469287B1 (en) Multilayer film and interlayer film for laminated glass comprising the same
JP5469288B1 (en) Multilayer film and interlayer film for laminated glass comprising the same
JP2018066015A (en) Sheet
JP5420806B1 (en) Polyvinyl acetal and interlayer film for laminated glass containing the same
WO2014192773A1 (en) Polyvinyl alcohol and paper coating agent containing same
JP5469289B1 (en) Multilayer film and interlayer film for laminated glass comprising the same
TWI650364B (en) Film and method of manufacturing same
JP5420805B1 (en) Polyvinyl acetal and interlayer film for laminated glass containing the same
JP6221147B2 (en) Binder for ink or paint and its use
JP2015151500A (en) radical polymerizable resin composition
JP6254381B2 (en) Film containing vinyl acetal polymer

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013535980

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13890938

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13890938

Country of ref document: EP

Kind code of ref document: A1