WO2015019441A1 - Polyvinyl acetal and laminated glass interlayer comprising same - Google Patents

Polyvinyl acetal and laminated glass interlayer comprising same Download PDF

Info

Publication number
WO2015019441A1
WO2015019441A1 PCT/JP2013/071343 JP2013071343W WO2015019441A1 WO 2015019441 A1 WO2015019441 A1 WO 2015019441A1 JP 2013071343 W JP2013071343 W JP 2013071343W WO 2015019441 A1 WO2015019441 A1 WO 2015019441A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyvinyl acetal
molecular weight
pva
film
peak top
Prior art date
Application number
PCT/JP2013/071343
Other languages
French (fr)
Japanese (ja)
Inventor
楠藤 健
芳聡 浅沼
俊輔 藤岡
辻 嘉久
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to JP2013537715A priority Critical patent/JP5420805B1/en
Priority to PCT/JP2013/071343 priority patent/WO2015019441A1/en
Publication of WO2015019441A1 publication Critical patent/WO2015019441A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/28Condensation with aldehydes or ketones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F116/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical
    • C08F116/38Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal or ketal radical by a acetal or ketal radical
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F118/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid or of a haloformic acid
    • C08F118/02Esters of monocarboxylic acids
    • C08F118/04Vinyl esters
    • C08F118/08Vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/101Esters; Ether-esters of monocarboxylic acids
    • C08K5/103Esters; Ether-esters of monocarboxylic acids with polyalcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0016Plasticisers

Definitions

  • the present invention relates to polyvinyl acetal.
  • the present invention also relates to an interlayer film for laminated glass containing the polyvinyl acetal, and a laminated glass using the interlayer film.
  • Polyvinyl acetal is obtained by an acetalization reaction in water under acidic conditions using polyvinyl alcohol (hereinafter sometimes abbreviated as “PVA”) and an aldehyde compound.
  • PVA polyvinyl alcohol
  • Polyvinyl acetal films are used in various applications because they are tough and have a unique structure that has both hydrophilic hydroxy groups and hydrophobic acetal groups.
  • Various polyvinyl acetals have been proposed. Yes. Among them, polyvinyl formal produced from PVA and formaldehyde, polyvinyl acetal in a narrow sense produced from PVA and acetaldehyde, and polyvinyl butyral produced from PVA and butyraldehyde occupy commercially important positions.
  • polyvinyl butyral is widely used as an interlayer film for laminated glass of automobiles and buildings, and occupies a particularly important position commercially.
  • polyvinyl acetal has a problem that it is easily colored by heating; a foreign substance (undissolved part) is likely to be generated in the polyvinyl acetal film.
  • Various proposals have been made to solve these problems.
  • Patent Documents 1 and 2 describe a method for suppressing coloring of polyvinyl acetal by acetalization at a specific hydroxide ion concentration under high temperature and high pressure.
  • Patent Document 3 describes a method of suppressing coloring of the obtained polyvinyl acetal by adding a reducing agent after neutralization by acetalization reaction.
  • Patent Document 4 describes a method of suppressing the generation of coarse particles by adjusting the concentration of the obtained resin particle slurry in the neutralization reaction after the acetalization reaction.
  • Patent Document 5 describes a method for suppressing the generation of coarse particles by defining the relationship between an acid catalyst and a surfactant used in the acetalization reaction.
  • foreign matters were likely to be generated in the film produced using the polyvinyl acetal obtained by the methods described in Patent Documents 4 and 5.
  • the film was easily colored by heating. For these reasons, there is a strong demand for polyvinyl acetals in which all the above-mentioned problems are solved.
  • An object of the present invention is to provide a polyvinyl acetal capable of obtaining a film with little coloring due to heating and less foreign matter (undissolved content) and a method for producing the same. Moreover, it aims at providing the laminated glass using the polyvinyl acetal composition containing the said polyvinyl acetal, the intermediate film for laminated glasses which consists of the said composition, and the said intermediate film.
  • the above-mentioned problem is a polyvinyl acetal having an acetalization degree of 40 to 90 mol%, a vinyl ester monomer unit content of 0.1 to 20 mol%, and a viscosity average polymerization degree of 200 to 5000, which is 230 ° C.
  • the molecular weight of the polyvinyl acetal heated for 3 hours in gel permeation chromatography (hereinafter sometimes abbreviated as GPC) and the peak molecular weight (A) measured with a differential refractive index detector and the spectrophotometric detection
  • the peak molecular weight (B) measured with a vessel (measurement wavelength 280 nm) is the following formula (1) (AB) / A ⁇ 0.60 (1)
  • a polyvinyl acetal having an absorbance at a peak molecular weight (B) of 0.50 ⁇ 10 ⁇ 3 to 1.00 ⁇ 10 ⁇ 2 is solved.
  • hexafluoroisopropanol may be abbreviated as HFIP.
  • Sample concentration 1.00 mg / ml
  • Sample injection volume 100 ⁇ l
  • Absorbance detector cell length 10 mm It is.
  • the peak molecular weight (A) measured with a differential refractive index detector and the peak molecular weight (C) measured with an absorptiometric detector (measurement wavelength: 320 nm) are expressed by the following formula (2).
  • the absorbance at the peak molecular weight (C) is preferably 0.35 ⁇ 10 ⁇ 3 to 4.50 ⁇ 10 ⁇ 3 .
  • the ratio Mw / Mn of the weight average molecular weight Mw to the number average molecular weight Mn of the polyvinyl acetal obtained by a differential refractive index detector is preferably 2.8 to 12.0.
  • the polyvinyl acetal is polyvinyl butyral.
  • a polyvinyl acetal composition containing the polyvinyl acetal of the present invention and a plasticizer is a preferred embodiment of the present invention.
  • the plasticizer is preferably triethylene glycol-di-2-ethylhexanoate.
  • An interlayer film for laminated glass made of the polyvinyl acetal composition is also a preferred embodiment of the present invention.
  • a laminated glass formed by bonding a plurality of glass plates using the interlayer film for laminated glass is also a preferred embodiment of the present invention.
  • the above-mentioned problem is a method for producing the polyvinyl acetal for acetalizing polyvinyl alcohol, wherein the polyvinyl alcohol has a saponification degree of 50 to 99.99 mol%, a viscosity average polymerization degree of 200 to 5000, and an alkali metal of a carboxylic acid. Measured with a differential refractive index detector when the content of salt is 0.5% by mass or less in terms of the mass of alkali metal and the polyvinyl alcohol heated at 120 ° C. for 3 hours is measured by gel permeation chromatography.
  • the peak top molecular weight (D) and the peak top molecular weight (E) measured with an absorptiometric detector (measurement wavelength 280 nm) are the following formula (3) (DE) / D ⁇ 0.75 (3) And a manufacturing method characterized in that the absorbance at the peak top molecular weight (E) is 0.25 ⁇ 10 ⁇ 3 to 3.00 ⁇ 10 ⁇ 3 .
  • hexafluoroisopropanol may be abbreviated as HFIP.
  • Sample concentration 1.00 mg / ml
  • Sample injection volume 100 ⁇ l
  • Absorbance detector cell length 10 mm It is.
  • the polyvinyl acetal of the present invention can obtain a film with little coloring by heating and less foreign matter (undissolved content).
  • a film produced using such a polyvinyl acetal has less foreign matter (undissolved content) and is less colored by heating. Therefore, since the trim etc. which generate
  • the interlayer film for laminated glass obtained by using the polyvinyl acetal composition containing the polyvinyl acetal has little foreign matter (undissolved content) and is less colored by heating. Therefore, a laminated glass is manufactured with high productivity by using the interlayer film for laminated glass. According to the production method of the present invention, the polyvinyl acetal can be easily produced.
  • Example 1 In the polyvinyl acetal of Example 1, the relationship between the molecular weight and the value measured by the differential refractive index detector (RI), and the relationship between the molecular weight and the absorbance measured by the absorptiometric detector (UV) (measurement wavelength 280 nm). It is the graph which showed.
  • PVA-1 of Example 1 the relationship between the molecular weight and the value measured by the differential refractive index detector (RI), and the molecular weight and the absorbance measured by the absorptiometric detector (UV) (measurement wavelength 280 nm). It is the graph which showed the relationship.
  • the polyvinyl acetal of the present invention is a polyvinyl acetal having an acetalization degree of 50 to 85 mol%, a vinyl ester monomer unit content of 0.1 to 20 mol%, and a viscosity average polymerization degree of 200 to 5000.
  • acetalization degree 50 to 85 mol%
  • vinyl ester monomer unit content 0.1 to 20 mol%
  • a viscosity average polymerization degree 200 to 5000.
  • the peak molecular weight (A) measured with a differential refractive index detector and the peak molecular weight measured with an absorptiometric detector (measurement wavelength 280 nm) (B) is the following formula (1) (AB) / A ⁇ 0.60 (1)
  • the absorbance at the peak molecular weight (B) is 0.50 ⁇ 10 ⁇ 3 to 1.00 ⁇ 10 ⁇ 2 .
  • a GPC apparatus having a differential refractive index detector and an absorptiometric detector and capable of simultaneously performing measurement by these detectors.
  • the absorptiometric detector needs to be capable of measuring absorbance at a wavelength of 280 nm, and preferably is capable of simultaneously measuring absorbance at a wavelength of 280 nm and absorbance at a wavelength of 320 nm.
  • a cell having a cell length (optical path length) of 10 mm is used as the cell of the detection unit of the absorptiometer.
  • the absorptiometric detector may measure the absorption of ultraviolet light having a specific wavelength, or may measure the absorption of ultraviolet light having a specific range of wavelengths.
  • the polyvinyl acetal subjected to the measurement is separated into each molecular weight component by a GPC column.
  • the signal intensity by the differential refractive index detector is approximately proportional to the polyvinyl acetal concentration (mg / ml).
  • polyvinyl acetal detected by an absorptiometric detector is only one having absorption at a predetermined wavelength.
  • HFIP containing sodium trifluoroacetate at a concentration of 20 mmol / l is used as the solvent and mobile phase used for dissolving the polyvinyl acetal measured in the GPC measurement.
  • HFIP can dissolve polyvinyl acetal and polymethyl methacrylate (hereinafter abbreviated as PMMA). Further, by adding sodium trifluoroacetate, adsorption of polyvinyl acetal to the column filler is prevented.
  • the flow rate in the GPC measurement is 1 ml / min, and the column temperature is 40 ° C.
  • standard PMMA monodisperse PMMA
  • Several types of standard PMMA with different molecular weights are measured, and a calibration curve is created from the GPC elution volume and the molecular weight of the standard PMMA.
  • a calibration curve created using the detector is used for measurement by the differential refractive index detector, and a calibration curve created using the detector is used for measurement by the absorptiometric detector.
  • the GPC elution volume is converted into the molecular weight, and the peak top molecular weight (A) and the peak top molecular weight (B) are determined.
  • the polyvinyl acetal is heated at 230 ° C. for 3 hours.
  • polyvinyl acetal is heated by the following method.
  • the thickness of the film at this time is 600 to 800 ⁇ m, and is preferably about 760 ⁇ m, which is the thickness of a normal laminated glass interlayer film.
  • a heated polyvinyl acetal is dissolved in the above-mentioned solvent to obtain a measurement sample.
  • the concentration of polyvinyl acetal in the measurement sample is 1.00 mg / ml, and the injection volume is 100 ⁇ l.
  • the viscosity average polymerization degree of the polyvinyl acetal exceeds 2400, the excluded volume increases, and therefore the polyvinyl acetal concentration may not be measured with good reproducibility at a concentration of 1.00 mg / ml.
  • an appropriately diluted sample injection amount 100 ⁇ l
  • Absorbance is proportional to the concentration of polyvinyl acetal. Therefore, the absorbance when the polyvinyl acetal concentration is 1.00 mg / ml is determined using the concentration of the diluted sample and the actually measured absorbance.
  • FIG. 1 shows the relationship between the molecular weight obtained by GPC measurement of polyvinyl acetal and the value measured by the differential refractive index detector, and the molecular weight and the absorptiometric detector (measurement wavelength). It is the graph which showed the relationship with the light absorbency measured by 280 nm.
  • the chromatogram represented by “RI” is a plot of values measured by a differential refractive index detector against the molecular weight (horizontal axis) of polyvinyl acetal converted from the elution volume.
  • the molecular weight at the peak position in the chromatogram is defined as peak top molecular weight (A).
  • peak top molecular weight (A) the molecular weight at the peak position where the peak height is the highest is the peak top molecular weight (A).
  • the chromatogram indicated by “UV” is a plot of the absorbance measured with an absorptiometric detector (measurement wavelength 280 nm) against the molecular weight (horizontal axis) of polyvinyl acetal converted from the elution volume. is there.
  • the molecular weight at the peak position in the chromatogram is defined as peak top molecular weight (B).
  • peak top molecular weight (B) the molecular weight at the peak position where the peak height is the highest is the peak top molecular weight (B).
  • the polyvinyl acetal of the present invention has a peak top molecular weight (A) measured with a differential refractive index detector and a peak top measured with an absorptiometric detector (measurement wavelength 280 nm) when GPC measurement is performed by the above-described method.
  • the molecular weight (B) satisfies the following formula (1). (AB) / A ⁇ 0.60 (1)
  • the peak top molecular weight (A) is a value that serves as an index of the molecular weight of polyvinyl acetal.
  • the peak top molecular weight (B) is derived from a component present in polyvinyl acetal and having absorption at 280 nm.
  • (AB) / A becomes a positive value.
  • the low molecular weight component contains more components that absorb ultraviolet light having a wavelength of 280 nm. In this case, it is difficult to improve the coloring of the obtained polyvinyl acetal and the foreign matter (undissolved content) in the film produced using the polyvinyl acetal in a well-balanced manner. Therefore, the reuse of film (trim etc.) is hindered.
  • (AB) / A is preferably less than 0.55, more preferably less than 0.50.
  • the polyvinyl acetal of the present invention must have an absorbance (measurement wavelength of 280 nm) at a peak top molecular weight (B) of 0.50 ⁇ 10 ⁇ 3 to 1.00 ⁇ 10 ⁇ 2 when GPC measurement is performed by the above-described method. There is.
  • the absorbance is less than 0.50 ⁇ 10 ⁇ 3 , foreign matter (undissolved content) in the film produced using polyvinyl acetal increases.
  • the absorbance exceeds 1.00 ⁇ 10 ⁇ 2 , the resulting polyvinyl acetal and a film produced using the same are colored.
  • the absorbance is preferably 1.00 ⁇ 10 ⁇ 3 to 8.00 ⁇ 10 ⁇ 3, and more preferably 1.50 ⁇ 10 ⁇ 3 to 6.50 ⁇ 10 ⁇ 3 .
  • the peak top molecular weight (C) is measured in the same manner as the peak top molecular weight (B) except that the measurement wavelength in the absorptiometric detector is 320 nm.
  • a peak top molecular weight (C) originates in the component which has absorption in 320 nm which exists in polyvinyl acetal.
  • (AC) / A becomes a positive value.
  • the low molecular weight component contains more components that absorb ultraviolet light having a wavelength of 320 nm. In this case, there is a possibility that balance between suppression of coloring of the obtained polyvinyl acetal and reduction of foreign matters (undissolved content) in a film produced using the polyvinyl acetal cannot be achieved.
  • (AC) / A is more preferably less than 0.60, and still more preferably less than 0.55.
  • the polyvinyl acetal of the present invention has an absorbance (measurement wavelength of 320 nm) at a peak top molecular weight (C) of 0.35 ⁇ 10 ⁇ 3 to 4.50 ⁇ 10 ⁇ 3 when GPC measurement is performed by the method described above. Is preferred. When the absorbance is less than 0.35 ⁇ 10 ⁇ 3 , foreign matter (undissolved content) in the film produced using polyvinyl acetal may increase. On the other hand, when the absorbance exceeds 4.50 ⁇ 10 ⁇ 3 , the resulting polyvinyl acetal and a film produced using the same may be easily colored.
  • the absorbance is more preferably 0.50 ⁇ 10 ⁇ 3 to 3.50 ⁇ 10 ⁇ 3 , and further preferably 1.00 ⁇ 10 ⁇ 3 to 2.50 ⁇ 10 ⁇ 3 .
  • the ratio Mw / Mn of the weight average molecular weight Mw to the number average molecular weight Mn of the polyvinyl acetal obtained by a differential refractive index detector in the GPC measurement is 2.8 to 12.0.
  • Mw and Mn are determined from the chromatogram obtained by plotting the values measured by the differential refractive index detector with respect to the molecular weight of the polyvinyl acetal described above.
  • Mw and Mn in the present invention are values in terms of PMMA.
  • Mn is an average molecular weight that is strongly influenced by a low molecular weight component
  • Mw is an average molecular weight that is strongly influenced by a high molecular weight component.
  • Mw / Mn is generally used as an index of molecular weight distribution of a polymer. When Mw / Mn is small, it indicates that the polymer has a small proportion of low molecular weight component, and when Mw / Mn is large, it indicates that the polymer has a large proportion of low molecular weight component.
  • Mw / Mn when Mw / Mn is less than 2.8, it indicates that the proportion of the low molecular weight component is small in the polyvinyl acetal.
  • Mw / Mn is more preferably 2.9 or more, and further preferably 3.1 or more.
  • Mw / Mn exceeds 12.0, it shows that the ratio of a low molecular weight component is large in polyvinyl acetal.
  • Mw / Mn exceeds 12.0, the obtained polyvinyl acetal or a film produced using the same may be easily colored.
  • Mw / Mn is more preferably 11.0 or less, and even more preferably 8.0 or less.
  • the degree of acetalization of the polyvinyl acetal of the present invention is 40 to 90 mol%, preferably 50 to 85 mol%, more preferably 55 to 82 mol%, still more preferably 60 to 78 mol%, particularly preferably 65. ⁇ 75 mol%.
  • the degree of acetalization is less than 40 mol%, the compatibility with a plasticizer or the like decreases. Moreover, there exists a possibility that the foreign material (undissolved part) in the film manufactured using polyvinyl acetal may increase. On the other hand, when the degree of acetalization exceeds 90 mol%, the efficiency of the acetalization reaction is significantly reduced. Moreover, there exists a possibility that the polyvinyl acetal obtained and the film manufactured using it may become colored easily.
  • the degree of acetalization represents the ratio of the acetalized vinyl alcohol monomer unit to the total monomer units constituting the polyvinyl acetal.
  • the vinyl alcohol monomer units in the raw material PVA those that are not acetalized remain in the resulting polyvinyl acetal as vinyl alcohol monomer units.
  • the viscosity average polymerization degree of the polyvinyl acetal of the present invention is represented by the viscosity average polymerization degree of the raw material PVA measured according to JIS-K6726. That is, after re-saponifying and purifying PVA to a saponification degree of 99.5 mol% or more, it can be obtained from the intrinsic viscosity [ ⁇ ] measured in water at 30 ° C. by the following equation.
  • the viscosity average polymerization degree of PVA and the viscosity average polymerization degree of polyvinyl acetal obtained by acetalizing it are substantially the same.
  • P ([ ⁇ ] ⁇ 10000 / 8.29) (1 / 0.62)
  • the viscosity average polymerization degree of the polyvinyl acetal of the present invention is 200 to 5,000.
  • the viscosity average degree of polymerization is preferably 250 or more, more preferably 300 or more, and still more preferably 400 or more.
  • the viscosity average degree of polymerization is preferably 4500 or less, more preferably 4000 or less, and further preferably 3500 or less.
  • the viscosity average polymerization degree is preferably 500 to 5000, more preferably 800 to 3500, and further preferably 1000 to 2500.
  • the degree of polymerization is less than 500, there is a possibility that sufficient strength as an interlayer film for laminated glass cannot be obtained.
  • the viscosity average polymerization degree exceeds 5000, the melt viscosity becomes too high and film formation becomes difficult.
  • the content of the vinyl ester monomer unit of the polyvinyl acetal of the present invention is 0.1 to 20 mol%, preferably 0.3 to 18 mol%, more preferably 0.5 to 15 mol%. More preferably, it is 0.7 to 13 mol%.
  • the content of the vinyl ester monomer unit is less than 0.1 mol%, the polyvinyl acetal cannot be stably produced and the film cannot be formed.
  • the content of the vinyl ester monomer unit exceeds 20 mol%, the obtained polyvinyl acetal and a film produced using the polyvinyl acetal may be easily colored.
  • the content of monomer units other than acetalized monomer units, vinyl ester monomer units and vinyl alcohol monomer units in the polyvinyl acetal of the present invention is preferably 20 mol% or less, more preferably Is 10 mol% or less.
  • the polyvinyl acetal of the present invention is usually produced by acetalizing PVA.
  • the saponification degree of the raw material PVA is preferably 80 to 99.99 mol%, more preferably 82 to 99.7 mol%, still more preferably 85 to 99.5 mol%, and most preferably 87 to 99.3 mol%. Mol%. If the degree of saponification is less than 80 mol%, there is a risk that foreign matter (undissolved content) in the film produced using polyvinyl acetal will increase, and the resulting polyvinyl acetal and the film produced using it will be colored. May be easier. On the other hand, when the degree of saponification exceeds 99.9 mol%, PVA may not be produced stably.
  • the degree of saponification of PVA is measured according to JIS-K6726.
  • vinyl ester monomers used for the production of raw material PVA include vinyl formate, vinyl acetate, vinyl propionate, vinyl valelate, vinyl caprate, vinyl laurate, vinyl stearate, vinyl benzoate, vinyl pivalate, and versa.
  • vinyl tick acid examples include vinyl tick acid, and vinyl acetate is particularly preferable.
  • the raw material PVA can also be produced by polymerizing vinyl ester monomers in the presence of thiol compounds such as 2-mercaptoethanol, n-dodecyl mercaptan, mercaptoacetic acid, 3-mercaptopropionic acid, and saponifying the resulting polyvinyl ester. You can also By this method, PVA in which a functional group derived from a thiol compound is introduced at the terminal is obtained.
  • thiol compounds such as 2-mercaptoethanol, n-dodecyl mercaptan, mercaptoacetic acid, 3-mercaptopropionic acid
  • Examples of the method for polymerizing the vinyl ester monomer include known methods such as a bulk polymerization method, a solution polymerization method, a suspension polymerization method, and an emulsion polymerization method.
  • a bulk polymerization method performed without a solvent or a solution polymerization method performed using a solvent such as alcohol is usually employed.
  • a solution polymerization method in which polymerization is performed together with a lower alcohol is preferable.
  • the lower alcohol is not particularly limited, but an alcohol having 3 or less carbon atoms such as methanol, ethanol, propanol and isopropanol is preferable, and methanol is usually used.
  • the reaction can be carried out by either a batch method or a continuous method.
  • the initiator used in the polymerization reaction include 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethyl-valeronitrile), 2,2′-azobis (4-methoxy).
  • Azo initiators such as -2,4-dimethylvaleronitrile
  • organic peroxide initiators such as benzoyl peroxide, n-propyl peroxycarbonate, peroxydicarbonate, etc., within a range that does not impair the effects of the present invention.
  • organic oxide-based initiators having a half-life of 10 to 110 minutes at 60 ° C. are particularly preferable, and peroxydicarbonate is particularly preferable.
  • the polymerization temperature for carrying out the polymerization reaction but a range of 5 ° C to 200 ° C is suitable.
  • a copolymerizable monomer can be copolymerized as necessary as long as the effects of the present invention are not impaired.
  • a monomer include ⁇ -olefins such as ethylene, propylene, 1-butene, isobutene, and 1-hexene; carboxylic acids such as fumaric acid, maleic acid, itaconic acid, maleic anhydride, and itaconic anhydride; Derivatives thereof; acrylic acid or salts thereof; acrylic acid esters such as methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate; methacrylic acid or salts thereof; methyl methacrylate, ethyl methacrylate, n methacrylate Methacrylic acid esters such as propyl and isopropyl methacrylate; Acrylamide derivatives such as acrylamide, N-methylacrylamide and N-eth
  • the amount of monomers that can be copolymerized with these vinyl ester monomers varies depending on the purpose and application of use, but is usually based on all monomers used for copolymerization.
  • the ratio is 20 mol% or less, preferably 10 mol% or less.
  • PVA can be obtained by saponifying the polyvinyl ester obtained by the above method in an alcohol solvent.
  • an alkaline substance is usually used, and examples thereof include alkali metal hydroxides such as potassium hydroxide and sodium hydroxide, and alkali metal alkoxides such as sodium methoxide.
  • the amount of the alkaline substance used is preferably in the range of 0.002 to 0.2, in the range of 0.004 to 0.1, in terms of molar ratio based on the vinyl ester monomer unit of the polyvinyl ester. It is particularly preferred that The saponification catalyst may be added all at once in the early stage of the saponification reaction, or a part thereof may be added in the early stage of the saponification reaction, and the rest may be added and added during the saponification reaction.
  • Examples of the solvent that can be used for the saponification reaction include methanol, methyl acetate, dimethyl sulfoxide, diethyl sulfoxide, and dimethylformamide. Of these solvents, methanol is preferably used. At this time, the water content of methanol is preferably adjusted to 0.001 to 1% by mass, more preferably 0.003 to 0.9% by mass, and particularly preferably 0.005 to 0.8% by mass.
  • the saponification reaction is preferably performed at a temperature of 5 to 80 ° C., more preferably 20 to 70 ° C.
  • the saponification reaction is preferably performed for 5 minutes to 10 hours, more preferably for 10 minutes to 5 hours.
  • the saponification reaction can be performed by either a batch method or a continuous method.
  • the remaining catalyst may be neutralized as necessary.
  • Usable neutralizing agents include organic acids such as acetic acid and lactic acid, and ester compounds such as methyl acetate.
  • the alkaline substance containing an alkali metal added during the saponification reaction is usually neutralized by an ester such as methyl acetate generated by the progress of the saponification reaction, or neutralized by a carboxylic acid such as acetic acid added after the reaction. At this time, an alkali metal salt of a carboxylic acid such as sodium acetate is formed.
  • the raw material PVA preferably contains an alkali metal salt of carboxylic acid in an amount of 0.5% by mass or less in terms of the mass of the alkali metal. In order to obtain such PVA, the PVA may be washed after saponification.
  • Examples of the cleaning liquid used in this case include a lower alcohol such as methanol, a solution composed of 100 parts by weight of the lower alcohol and 20 parts by weight or less of water, and a solution composed of the lower alcohol and an ester such as methyl acetate produced in the saponification step. It is done.
  • the content of the ester in the solution composed of the lower alcohol and the ester is not particularly limited, but is preferably 1000 parts by mass or less with respect to 100 parts by mass of the lower alcohol.
  • the amount of the cleaning liquid added is preferably 100 parts by mass to 10000 parts by mass, more preferably 150 parts by mass to 5000 parts by mass with respect to 100 parts by mass of the gel obtained by saponification and swollen with PVA by alcohol.
  • Part by mass to 1000 parts by mass is more preferable.
  • the addition amount of the cleaning liquid is less than 100 parts by mass, the alkali metal salt amount of the carboxylic acid may exceed the above range.
  • the addition amount of the cleaning liquid exceeds 10,000 parts by mass, the improvement of the cleaning effect by increasing the addition amount cannot be expected.
  • the washing method for example, a step of adding a gel (PVA) and a washing solution into a tank and stirring or standing at 5 to 100 ° C. for about 5 to 180 minutes and then removing the liquid is performed.
  • a batch method that repeats until the content of the alkali metal salt is within a predetermined range may be mentioned.
  • there is a continuous method in which PVA is continuously added from the top of the column at the same temperature and for the same time as the batch method, and a lower alcohol is continuously added from the bottom of the column, and the two are brought into contact with each other.
  • the raw material PVA preferably contains an alkali metal salt of carboxylic acid.
  • the content is preferably 0.50% by mass or less, more preferably 0.37% by mass or less, still more preferably 0.28% by mass or less, and particularly preferably 0.23% by mass or less in terms of alkali metal mass. is there.
  • content of the alkali metal salt of carboxylic acid exceeds 0.5 mass%, the obtained polyvinyl acetal or a film produced using the same may be easily colored.
  • the content of alkali metal salt of carboxylic acid (calculated in terms of alkali metal mass) is obtained from the amount of alkali metal ions obtained by ashing PVA with a platinum crucible and then measuring the resulting ash content by ICP emission analysis. Can do.
  • alkali metal salt of carboxylic acid examples include those obtained by neutralizing an alkali catalyst used in the above-described saponification step, for example, sodium hydroxide, potassium hydroxide, sodium methylate with carboxylic acid, and a vinyl ester described later.
  • Carboxylic acid added for the purpose of suppressing alcoholysis of the vinyl ester monomer such as vinyl acetate used in the polymerization step is neutralized in the saponification step, added to stop radical polymerization
  • a carboxylic acid having a conjugated double bond is used as an inhibitor, those obtained by neutralizing the carboxylic acid in the saponification step or those intentionally added are included.
  • Specific examples include sodium acetate, potassium acetate, sodium propionate, potassium propionate, sodium glycerate, potassium glycerate, sodium malate, potassium malate, sodium citrate, potassium citrate, sodium lactate, potassium lactate, tartaric acid Sodium, potassium tartrate, sodium salicylate, potassium salicylate, sodium malonate, potassium malonate, sodium succinate, potassium succinate, sodium maleate, potassium maleate, sodium phthalate, potassium phthalate, sodium oxalate, potassium oxalate , Sodium glutarate, potassium glutarate, sodium abietic acid, potassium abietic acid, sodium sorbate, potassium sorbate, 2,4,6-octatri Sodium 1,1-carboxylate, potassium 2,4,6-octatriene-1-carboxylate, sodium eleostearate, potassium eleostearate, sodium 2,4,6,8-decatetraene-1-carboxylate 2,4,6,8-decatetraene-1-carboxylate, sodium reti
  • a method of adjusting each value obtained by GPC measurement so as to fall within the above-described range includes a method of using specific PVA as a raw material for polyvinyl acetal.
  • Such a raw material PVA has a saponification degree of 50 to 99.99 mol%, a viscosity average polymerization degree of 200 to 5000, and an alkali metal salt content of carboxylic acid of 0.5% by mass or less in terms of the mass of the alkali metal.
  • the absorbance at the peak top molecular weight (E) is preferably 0.25 ⁇ 10 ⁇ 3 to 3.00 ⁇ 10 ⁇ 3 .
  • GPC measurement at this time is performed in the same manner as the GPC measurement method for polyvinyl acetal described above, except that PVA heated under the following conditions is measured instead of polyvinyl acetal.
  • the PVA film After casting an aqueous solution in which PVA powder is dissolved, it is dried at 20 ° C. and 65% RH to obtain a PVA film.
  • the PVA film has a thickness of 30 to 75 ⁇ m, preferably 40 to 60 ⁇ m.
  • the film is heated at 120 ° C. for 3 hours using a hot air dryer. From the viewpoint of suppressing heat treatment errors between samples, a gear oven is preferable as the hot air dryer.
  • the PVA thus heated is subjected to GPC measurement.
  • the peak top molecular weight (D) of the PVA is determined in the same manner as the peak top molecular weight (A) of the polyvinyl acetal described above, and the peak top molecular weight (E) of the raw material PVA is the peak top molecular weight (B) of the polyvinyl acetal described above. Find in the same way as
  • the PVA has a peak top molecular weight (D) measured by a differential refractive index detector and a peak top molecular weight (E) measured by an absorptiometric detector (measurement wavelength 280 nm) when GPC measurement is performed by the above-described method. )
  • D peak top molecular weight
  • E peak top molecular weight
  • absorptiometric detector measurement wavelength 280 nm
  • the peak top molecular weight (D) is a value serving as an index of the molecular weight of PVA.
  • the peak top molecular weight (E) is derived from a component present in PVA and having absorption at 280 nm.
  • (DE) / D becomes a positive value.
  • the low molecular weight component contains more components that absorb ultraviolet light having a wavelength of 280 nm. In this case, there is a possibility that the foreign matter of the film manufactured using the obtained polyvinyl acetal or polyvinyl acetal increases.
  • (DE) / D is more preferably less than 0.70, and still more preferably less than 0.65.
  • the PVA preferably has an absorbance (measurement wavelength: 280 nm) at a peak top molecular weight (E) of 0.25 ⁇ 10 ⁇ 3 to 3.00 ⁇ 10 ⁇ 3 when GPC measurement is performed by the method described above.
  • E peak top molecular weight
  • the absorbance is less than 0.25 ⁇ 10 ⁇ 3 , foreign matter (undissolved content) in the film produced using polyvinyl acetal may increase.
  • the absorbance exceeds 3.00 ⁇ 10 ⁇ 3 , the obtained polyvinyl acetal and a film produced using the polyvinyl acetal may be easily colored.
  • the absorbance is preferably 0.50 ⁇ 10 ⁇ 3 to 2.80 ⁇ 10 ⁇ 3, and more preferably 0.75 ⁇ 10 ⁇ 3 to 2.50 ⁇ 10 ⁇ 3 .
  • the PVA has a peak top molecular weight (D) measured by a differential refractive index detector and a peak top molecular weight (F) measured by an absorptiometric detector (measurement wavelength: 320 nm) when GPC measurement is performed by the method described above. It is more preferable that the following formula (4) is satisfied. (DF) / D ⁇ 0.75 (4)
  • the peak top molecular weight (F) is measured in the same manner as the peak top molecular weight (E) except that the measurement wavelength in the absorptiometric detector is 320 nm.
  • the peak top molecular weight (F) is derived from a component having absorption at 320 nm, which is present in the raw material PVA.
  • (DF) / D becomes a positive value.
  • the low molecular weight component contains more components that absorb ultraviolet light having a wavelength of 320 nm. In this case, there is a possibility that the foreign matter of the film manufactured using the obtained polyvinyl acetal or polyvinyl acetal increases.
  • (D ⁇ F) / D is more preferably less than 0.70, and particularly preferably less than 0.65.
  • the PVA has an absorbance (measurement wavelength: 320 nm) at a peak top molecular weight (F) of 0.20 ⁇ 10 ⁇ 3 to 2.90 ⁇ 10 ⁇ 3 when GPC measurement is performed by the method described above. .
  • F peak top molecular weight
  • the absorbance is less than 0.20 ⁇ 10 ⁇ 3 , foreign matter (undissolved content) in a film produced using polyvinyl acetal may increase.
  • the absorbance exceeds 2.90 ⁇ 10 ⁇ 3 , the resulting polyvinyl acetal and a film produced using the same may be easily colored.
  • the absorbance is more preferably 0.40 ⁇ 10 ⁇ 3 to 2.70 ⁇ 10 ⁇ 3 , and particularly preferably 0.60 ⁇ 10 ⁇ 3 to 2.40 ⁇ 10 ⁇ 3 .
  • the ratio Mw / Mn of the weight average molecular weight Mw to the number average molecular weight Mn of the PVA, which is determined by a differential refractive index detector is preferably 2.2 to 6.0.
  • Mw and Mn are obtained from a chromatogram obtained by plotting the value measured by the differential refractive index detector with respect to the molecular weight of PVA used when obtaining the peak top molecular weight (D) described above. Therefore, Mw and Mn calculated
  • Mw / Mn When Mw / Mn is less than 2.2, it indicates that the proportion of low molecular weight components is small in PVA. When Mw / Mn is less than 2.2, there is a possibility that foreign matter (undissolved content) in the film produced using polyvinyl acetal increases. It is more preferable that Mw / Mn is 2.3 or more. On the other hand, when Mw / Mn exceeds 6.0, it shows that the ratio of a low molecular weight component is large in PVA. When Mw / Mn exceeds 6.0, the obtained polyvinyl acetal and a film produced using the same may be easily colored. Mw / Mn is more preferably 3.5 or less, and further preferably 3.0 or less.
  • Examples of the adjustment method include the following methods.
  • a vinyl ester monomer from which a radical polymerization inhibitor contained in the raw material vinyl ester monomer has been removed in advance is used for polymerization.
  • Impurities include aldehydes such as acetaldehyde, crotonaldehyde, and acrolein; acetals such as acetaldehyde dimethyl acetal, crotonaldehyde dimethyl acetal, and acrolein dimethyl acetal obtained by acetalizing the aldehyde with a solvent alcohol; ketones such as acetone; methyl acetate and ethyl acetate And esters.
  • Organic acids specifically hydroxycarboxylic acids such as glycolic acid, glyceric acid, malic acid, citric acid, lactic acid, tartaric acid, salicylic acid; malonic acid, succinic acid, maleic acid, phthalic acid, oxalic acid, glutaric acid, etc.
  • a carboxylic acid or the like is added to suppress the generation of aldehydes such as acetaldehyde generated by decomposition as much as possible.
  • the addition amount of the organic acid is preferably 1 to 500 ppm, more preferably 3 to 300 ppm, and still more preferably 5 to 100 ppm with respect to the raw material vinyl ester monomer.
  • the impurities contained in the solvent include those described above as the impurities contained in the raw material vinyl ester monomer.
  • Organic peroxide is used as a radical polymerization initiator used for radical polymerization of a vinyl ester monomer.
  • Organic peroxides include acetyl peroxide, isobutyl peroxide, diisopropyl peroxycarbonate, diallyl peroxydicarbonate, di-n-propyl peroxydicarbonate, dimyristyl peroxydicarbonate, di (2-ethoxyethyl) peroxide Examples include oxydicarbonate, di (2-ethylhexyl) peroxydicarbonate, di (methoxyisopropyl) peroxydicarbonate, and di (4-tert-butylcyclohexyl) peroxydicarbonate. It is preferable to use peroxydicarbonate with a period of 10 to 110 minutes.
  • an inhibitor When an inhibitor is added after radical polymerization of the vinyl ester monomer in order to suppress the polymerization, an inhibitor of 5 molar equivalents or less is added to the remaining undecomposed radical polymerization initiator.
  • the inhibitor include a compound having a conjugated double bond having a molecular weight of 1000 or less and a compound that stabilizes a radical and inhibits a polymerization reaction.
  • isoprene 2,3-dimethyl-1,3-butadiene, 2,3-diethyl-1,3-butadiene, 2-t-butyl-1,3-butadiene, 1,3-pentadiene, , 3-dimethyl-1,3-pentadiene, 2,4-dimethyl-1,3-pentadiene, 3,4-dimethyl-1,3-pentadiene, 3-ethyl-1,3-pentadiene, 2-methyl-1 , 3-pentadiene, 3-methyl-1,3-pentadiene, 4-methyl-1,3-pentadiene, 1,3-hexadiene, 2,4-hexadiene, 2,5-dimethyl-2,4-hexadiene, , 3-octadiene, 1,3-cyclopentadiene, 1,3-cyclohexadiene, 1-methoxy-1,3-butadiene, 2-methoxy-1,3-butadiene, 1-
  • Polyenes such as conjugated polyene consisting Motoni double bond of four or more conjugated structure. Any one having a plurality of stereoisomers such as 1,3-pentadiene, myrcene, and farnesene may be used.
  • a polyvinyl ester alcohol solution from which the remaining vinyl ester monomer is removed as much as possible is used for the saponification reaction.
  • the residual monomer removal rate is 99% or more, more preferably 99.5% or more, still more preferably 99.8% or more.
  • the desired PVA can be obtained by appropriately combining A) to H).
  • the PVA thus obtained is preferably acetalized to obtain the polyvinyl acetal of the present invention.
  • the acetalization of PVA can be performed, for example, under the following reaction conditions, but is not limited thereto.
  • PVA is dissolved in water by heating to 80 to 100 ° C., and then gradually cooled over 10 to 60 minutes to obtain a 3 to 40% by mass aqueous solution of PVA.
  • an aldehyde and an acid catalyst are added to the aqueous solution, and an acetalization reaction is performed for 30 to 300 minutes while keeping the temperature constant.
  • polyvinyl acetal having reached a certain degree of acetalization is precipitated.
  • the temperature of the reaction solution is raised to 25 to 80 ° C.
  • aggregated particles made of polyvinyl acetal are generated in such a reaction or processing step, and coarse particles are easily formed.
  • coarse particles are generated, there is a risk of causing variation between batches.
  • specific PVA is used as a raw material, the generation of coarse particles is suppressed as compared with the conventional product, and as a result, when the resulting polyvinyl acetal is melt-formed, foreign matter (undissolved content) is further reduced. Film can be obtained.
  • the acid catalyst used in the acetalization reaction is not particularly limited, and any of organic acids and inorganic acids can be used.
  • acetic acid, p-toluenesulfonic acid, nitric acid, sulfuric acid, hydrochloric acid and the like can be mentioned.
  • hydrochloric acid, sulfuric acid, and nitric acid are preferably used.
  • nitric acid when nitric acid is used, the reaction rate of the acetalization reaction is increased, and improvement in productivity can be expected.
  • the obtained polyvinyl acetal particles tend to be coarse and the variation between batches tends to increase. is there.
  • the aldehyde used for the acetalization reaction is not particularly limited, but a known aldehyde having 1 to 8 carbon atoms is preferable, an aldehyde having 4 to 6 carbon atoms is more preferable, and n-butyraldehyde is particularly preferably used.
  • polyvinyl acetal obtained by using two or more aldehydes in combination can also be used.
  • a polyvinyl acetal composition containing the polyvinyl acetal of the present invention and a plasticizer is a preferred embodiment of the present invention.
  • the plasticizer is not particularly limited as long as the effects of the present invention are not impaired and there is no problem in compatibility with polyvinyl acetal.
  • a mono- or diester of an oligoalkylene glycol having a hydroxyl group at both ends and a carboxylic acid, a diester of a dicarboxylic acid and a hydroxyl group-containing compound, or the like can be used. These can be used alone or in combination of two or more.
  • oligoalkylene glycols having hydroxyl groups at both ends include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, 1,2-propylene glycol, 1,2-propylene glycol dimer and trimer, 1,3 -Propylene glycol, 1,3-propylene glycol dimer and trimer, 1,2-butylene glycol, 1,2-butylene glycol dimer and trimer, 1,4-butylene glycol, 1, 4-butylene glycol dimer and trimer, 1,2-hexanediol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,2-octanediol, 1,8-octane Diol, 1,9-nonanediol, 2-methyl-1,8-octanediol, , 2-decanediol, 1,4-cyclohexane diol.
  • Examples of the carboxylic acid include acetic acid, propanoic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, 2-ethylhexanoic acid, nonanoic acid and decanoic acid.
  • the combination of oligoalkylene glycol and carboxylic acid is arbitrary, and may be a combination of a plurality of oligoalkylene glycols and a plurality of carboxylic acids. Of these, monoesters and diesters of triethylene glycol and 2-ethylhexanoic acid are preferable from the viewpoint of handleability (volatility during molding).
  • Dicarboxylic acids include alkylene dicarboxylic acids such as oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, and sebacic acid, and aromatic dicarboxylic acids such as phthalic acid, isophthalic acid, and terephthalic acid. An acid etc. are mentioned.
  • Examples of the hydroxyl group-containing compound include methanol, ethanol, propanol, butanol, pentanol, hexanol, cyclohexanol, heptanol, octanol, 2-ethylhexanol, nonaol, decanol, 2-methoxyethanol, 2-ethoxyethanol, 2-propoxyethanol, Examples include 2-butoxyethanol.
  • the combination of dicarboxylic acid and a hydroxyl-containing compound is arbitrary, and the combination of several dicarboxylic acid and several hydroxyl-containing compound may be sufficient.
  • the addition amount of the plasticizer in the composition is not particularly limited, but is preferably 0 to 200 parts by mass, more preferably 2 to 150 parts by mass, and further preferably 5 to 100 parts by mass with respect to 100 parts by mass of the polyvinyl acetal. Part. When the added amount of the plasticizer exceeds 200 parts by mass, the plasticizer may easily bleed out.
  • the amount of the plasticizer added is preferably 5 to 100 parts by weight, more preferably 10 to 90 parts by weight, more preferably 100 parts by weight of polyvinyl acetal. The amount is preferably 15 to 80 parts by mass.
  • the plasticizer addition amount is less than 5 parts by mass, desired flexibility as an interlayer film for laminated glass may not be obtained. If it exceeds 100 parts by mass, the desired mechanical properties, particularly the penetration resistance of the laminated glass, may decrease.
  • the polyvinyl acetal composition of the present invention may contain an antioxidant, an ultraviolet absorber, an adhesion improver, a pigment, a dye, and other conventionally known additives, as long as not departing from the gist of the present invention.
  • the type of the antioxidant is not particularly limited, and examples thereof include phenolic antioxidants, phosphorus antioxidants, sulfur antioxidants, etc. Among them, phenolic antioxidants are preferable, alkyl Substituted phenolic antioxidants are particularly preferred.
  • phenolic antioxidants include 2-t-butyl-6- (3-t-butyl-2-hydroxy-5-methylbenzyl) -4-methylphenyl acrylate, 2,4-di-t-amyl- Acrylate compounds such as 6- (1- (3,5-dit-amyl-2-hydroxyphenyl) ethyl) phenyl acrylate, 2,6-dit-butyl-4-methylphenol, 2,6-dit -Butyl-4-ethylphenol, octadecyl-3- (3,5-) di-t-butyl-4-hydroxyphenyl) propionate, 2,2'-methylene-bis (4-methyl-6-t-butylphenol), 4,4′-butylidene-bis (4-methyl-6-tert-butylphenol), 4,4′-butylidene-bis (6-tert-butyl-m-cresol), 4,4′-thiobi (3-methyl-6-tert-butylphenol), bis (3-cyclo
  • phosphorus antioxidants include triphenyl phosphite, diphenylisodecyl phosphite, phenyl diisodecyl phosphite, tris (nonylphenyl) phosphite, tris (dinonylphenyl) phosphite, tris (2-t-butyl).
  • sulfur-based antioxidant examples include dilauryl 3,3′-thiodipropionate, distearyl 3,3′-thiodipropionate, lauryl stearyl 3,3′-thiodipropionate, pentaerythritol-tetrakis- ( ⁇ -lauryl-thiopropionate), 3,9-bis (2-dodecylthioethyl) -2,4,8,10-tetraoxaspiro [5,5] undecane.
  • antioxidants can be used alone or in combination of two or more.
  • the blending amount of the antioxidant is not particularly limited, but is preferably 0.001 to 5 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the polyvinyl acetal.
  • the polyvinyl acetal composition of the present invention may contain an ultraviolet absorber.
  • the ultraviolet absorber used include 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2- (2-hydroxy-3,5-bis ( ⁇ , ⁇ 'dimethylbenzyl) phenyl) -2H-benzo Triazole, 2- (3,5-di-t-butyl-2-hydroxyphenyl) benzotriazole, 2- (3-t-butyl-5-methyl-2-hydroxyphenyl) -5-chlorobenzotriazole, 2- ( 3,5-di-t-butyl-5-methyl-2-hydroxyphenyl) -5-chlorobenzotriazole, 2- (3,5-di-t-amyl-2-hydroxyphenyl) benzotriazole, 2- (2 ′ -Hydroxy-5′-t-octylphenyl) benzotriazole UV absorbers such as benzotriazole; 2,2,6,6-tetramethyl-4-pi
  • the content of the ultraviolet absorber in the polyvinyl acetal composition is not particularly limited, but the total amount of the ultraviolet absorber is preferably 10 to 50,000 ppm on a mass basis, and is in the range of 100 to 10,000 ppm. Is more preferable. If the addition amount is less than 10 ppm, sufficient effects may not be exhibited, and even if the addition amount is more than 50,000 ppm, the improvement of the effect by increasing the content cannot be expected.
  • the glass transition temperature of the polyvinyl acetal composition of the present invention is not particularly limited and can be appropriately selected depending on the purpose, but is preferably in the range of 0 to 50 ° C, more preferably 0 to 45 ° C. The temperature is more preferably 0 to 40 ° C. In particular, when the polyvinyl acetal composition of the present invention is formed into a sheet and used as a laminated glass interlayer, the glass transition temperature is preferably within the above range.
  • an interlayer film for laminated glass made of the polyvinyl acetal composition is also a preferred embodiment of the present invention.
  • the polyvinyl acetal composition may contain an adhesiveness adjusting agent.
  • the adhesion adjusting agent conventionally known ones can be used. For example, acetic acid, propionic acid, butanoic acid, hexanoic acid, 2-ethylbutanoic acid, sodium salt of organic acid such as 2-ethylhexanoic acid, potassium salt, A magnesium salt or the like is used. These can be used alone or in combination of two or more.
  • the optimum content of the adhesion modifier varies depending on the adhesion modifier used, but the adhesion of the resulting film to glass is determined by the Pummel test (described in International Publication No. WO2003 / 033583). In general, it is preferable to adjust to 3 to 10. In particular, when high penetration resistance is required, the content is preferably adjusted to 3 to 6, and when high glass scattering prevention property is required, the content is adjusted to 7 to 10. It is preferable. When high glass scattering prevention property is required, it is also a useful method not to add an adhesion modifier.
  • the content of the adhesion adjusting agent in the polyvinyl acetal composition is preferably 0.0001 to 1% by mass, more preferably 0.0005 to 0.1% by mass, and 0.001 to 0.00%. 03 mass% is still more preferable.
  • a silane coupling agent can be mentioned.
  • the content of the silane coupling agent in the polyvinyl acetal composition is preferably 0.01 to 5% by mass.
  • the interlayer film for laminated glass of the present invention is excellent in transparency and flexibility.
  • the thickness of the interlayer film for laminated glass is not particularly limited, but is preferably 0.05 to 5.0 mm, more preferably 0.1 to 2.0 mm, and 0.1 to 1.2 mm. More preferably.
  • the interlayer film for laminated glass comprising the polyvinyl acetal composition is obtained by forming a polyvinyl acetal composition obtained by mixing the polyvinyl acetal, the plasticizer, and other components by a conventionally known method.
  • Examples include a method of melt-kneading a dissolved or dispersed material together with polyvinyl acetal to form a film.
  • a method of forming a film using an extruder is particularly preferably used.
  • the resin temperature at the time of extrusion is preferably 150 to 250 ° C, more preferably 170 to 230 ° C.
  • the resin temperature becomes too high, polyvinyl acetal is decomposed, and the content of volatile substances in the intermediate film after film formation increases.
  • the temperature is too low, the removal of volatile matter in the extruder becomes insufficient, and the content of volatile substances in the intermediate film after film formation increases.
  • the interlayer film for laminated glass of the present invention as a raw material polyvinyl acetal, only virgin resin (not containing recycled polyvinyl acetal) may be used. May be used.
  • film formation is carried out, for example, in a film forming apparatus in which an extruder is equipped with a measuring machine such as a gear pump and a die such as a T die.
  • a measuring machine such as a gear pump
  • a die such as a T die.
  • both ends (trims) of a film (used as an interlayer film for laminated glass) are cut off. It is very important to collect and reuse such trims from the viewpoints of energy saving, effective utilization of resources and improvement of yield.
  • an off-spec product produced during the production of a film having irregularities on the surface is useful because it can be reused in the same manner as the trim.
  • the formation of coarse particles is suppressed during the acetalization reaction, and as a result, when the obtained polyvinyl acetal is melt-formed, a film with reduced foreign matter (undissolved content) is obtained. Can do. Since the film obtained from the polyvinyl acetal of the present invention is less colored when heat-treated, the trim and off-spec products can be effectively reused.
  • Retrieving the trim or off-spec film that has been collected on the roll as a method of re-feeding the collected trim or off-spec film to the extruder examples include a method in which a spec product wound on a roll is cut into a certain size and then re-entered into an extruder.
  • the ratio of the virgin resin and the recovered film (virgin resin: recovered film) in the raw material can be arbitrarily changed between 0: 100 and 100: 0.
  • the shape of the surface of the interlayer film for laminated glass of the present invention is not particularly limited.
  • the surface in contact with the glass is conventionally known, such as melt fracture and embossing. It is preferable that the concavo-convex structure is formed by the method.
  • the emboss height is not particularly limited, but is preferably 5 ⁇ m to 500 ⁇ m, more preferably 7 ⁇ m to 300 ⁇ m, and still more preferably 10 ⁇ m to 200 ⁇ m.
  • embossing height is less than 5 ⁇ m, bubbles formed between the glass and the intermediate film may not be efficiently removed when laminating to glass, and when it exceeds 500 ⁇ m, it is difficult to form embossing.
  • embossing may be given to the single side
  • the embossed concavo-convex pattern is not particularly limited as long as it satisfies the specific conditions described above, and may be regularly distributed or randomly distributed.
  • the embossing roll method In order to form such embossing, the embossing roll method, the profile extrusion method, An extrusion lip embossing method using a melt fracture is employed.
  • the embossing roll method is suitable for stably obtaining an embossed film on which uniform and fine irregularities are formed.
  • the embossing roll used in the embossing roll method can be produced by, for example, using an engraving mill (mother mill) having a desired concavo-convex pattern and transferring the concavo-convex pattern onto the surface of the metal roll. It can also be produced using laser etching. Further, after forming a fine concavo-convex pattern on the roll surface as described above, blasting is performed on the surface using an abrasive such as aluminum oxide, silicon oxide, or glass beads to form a finer concavo-convex pattern. You can also.
  • the embossing roll used in the embossing roll method is preferably subjected to a release treatment.
  • a roll without mold release treatment When a roll without mold release treatment is used, troubles that cannot be peeled off from the roll easily occur depending on conditions.
  • known techniques such as silicone treatment, Teflon (registered trademark) treatment, plasma treatment and the like can be used.
  • a laminated glass obtained by bonding a plurality of glass plates using the interlayer film for laminated glass of the present invention is a preferred embodiment of the present invention.
  • the laminated glass of the present invention can be produced by sandwiching the interlayer film of the present invention between at least two glass plates and heating and bonding the interlayer film.
  • the glass used for the laminated glass of the present invention is not particularly limited.
  • inorganic glass such as float plate glass, tempered plate glass, polished plate glass, mold plate glass, netted plate glass, heat ray absorbing plate glass, and the like
  • a well-known organic glass etc. can be used. These may be colorless, colored, transparent or non-transparent. Moreover, these may be used independently and may use 2 or more types together.
  • the thickness of glass is not specifically limited, It is preferable that it is 100 mm or less.
  • the shape of the glass is not particularly limited, and may be a simple flat plate glass or a glass having a curvature such as an automobile windshield.
  • the laminated glass of the present invention can be produced by a conventionally known method, and examples thereof include a method using a vacuum laminator device, a method using a vacuum bag, a method using a vacuum ring, and a method using a nip roll. Further, there is a method in which the obtained laminate is put into an autoclave after being temporarily pressed using these methods.
  • an example of the production conditions is as follows.
  • the glass and the interlayer film are heated at a temperature of 100 to 200 ° C., particularly 130 to 160 ° C. under a reduced pressure of 1 ⁇ 10 ⁇ 6 to 3 ⁇ 10 ⁇ 2 MPa.
  • a method using a vacuum bag or a vacuum ring is described in, for example, European Patent No. 1235683, and is laminated at 130 to 145 ° C. under a pressure of about 2 ⁇ 10 ⁇ 2 MPa, for example.
  • a production method using a nip roll there is a method in which after degassing with a roll at a temperature not higher than the flow start temperature of the polyvinyl acetal composition, press bonding is performed at a temperature close to the flow start temperature. Specifically, for example, there is a method of heating to 30 to 70 ° C. with an infrared heater or the like, then degassing with a roll, further heating to 50 to 120 ° C., and then pressing with a roll.
  • the operating conditions of the autoclave process are appropriately selected depending on the thickness and configuration of the laminated glass. For example, 1.0 to 1.5 MPa The treatment is preferably carried out at a temperature of 130 to 145 ° C. for 0.5 to 3 hours under pressure.
  • GPC measurement was performed using “GPCmax” manufactured by VISCOTECH.
  • TDA305 manufactured by VISCOTECH was used.
  • UV Detector 2600 manufactured by VISCOTECH was used as an ultraviolet-visible absorption detector.
  • the optical path length of the detection cell of the absorptiometric detector is 10 mm.
  • GPC column “GPC HFIP-806M” manufactured by Showa Denko KK was used.
  • OmniSEC (Version 4.7.0.406) attached to the apparatus was used as analysis software.
  • the mobile phase 20 mmol / l sodium trifluoroacetate-containing HFIP was used.
  • the mobile phase flow rate was 1.0 ml / min.
  • the sample injection amount was 100 ⁇ l, and measurement was performed at a GPC column temperature of 40 ° C.
  • the sample in which the viscosity average polymerization degree of PVA exceeded 2400 performed GPC measurement using the sample (100 microliters) diluted suitably.
  • the absorbance at a sample concentration of 1.00 mg / ml was calculated from the measured value according to the following formula. ⁇ (mg / ml) is the concentration of the diluted sample.
  • Absorbance at a sample concentration of 1.00 mg / ml (1.00 / ⁇ ) ⁇ measured value of absorbance
  • PMMA polymethyl methacrylate
  • Agilent Technologies peak top molecular weight: 1944000, 790000, 467400, 271400, 144000, 79250, 35300, 13300, 7100, 1960, 1020, 690
  • a calibration curve for converting the elution volume into the PMMA molecular weight was prepared for each of the differential refractive index detector and the absorptiometric detector.
  • the analytical software was used to create each calibration curve. In this measurement, a column in a state where the peaks of the standard samples having both molecular weights of 1944000 and 271400 can be separated in the measurement of polymethyl methacrylate was used.
  • the peak intensity obtained from the differential refractive index detector is mV (millivolt), and the peak intensity obtained from the UV detector is represented by absorbance (abs unit: Absorbance unit).
  • the polymerization degree was measured using a part of the methanol solution of PVAc-1 obtained.
  • a 10% methanol solution of sodium hydroxide was added to the methanol solution of PVAc-1 so that the molar ratio of sodium hydroxide to vinyl acetate units in polyvinyl acetate was 0.1.
  • the gelled product was formed, the gel was pulverized and subjected to Soxhlet extraction with methanol for 3 days.
  • the obtained polyvinyl alcohol was dried and subjected to viscosity average polymerization degree measurement.
  • the degree of polymerization was 1700.
  • PVAc-2 to PVAc-20 Polyvinyl acetate (PVAc-2 to PVAc-20) was obtained in the same manner as PVAc-1, except that the conditions were changed to those described in Table 1.
  • “ND” means less than 1 ppm.
  • the degree of polymerization of each polyvinyl acetate obtained was determined in the same manner as PVAc-1. The results are shown in Table 1.
  • the polymerization degree and saponification degree of PVA-1 were determined by the method described in JIS-K6726.
  • the degree of polymerization was 1700, and the degree of saponification was 99.1 mol%.
  • These physical property data are also shown in Table 2.
  • the sodium acetate content of PVA-1 was determined by measuring the amount of sodium in the obtained ash using an ICP emission analyzer “IRIS AP” manufactured by Jarrel Ash. .
  • the sodium acetate content was 0.7% (0.20% in terms of sodium).
  • FIG. 2 is a graph showing the relationship between molecular weight and the value measured with a differential refractive index detector (RI), and the relationship between molecular weight and the absorbance measured with an absorptiometric detector (measurement wavelength 280 nm) (UV). It is.
  • the molecular weight at this time is one converted from the elution volume using a calibration curve (PMMA equivalent molecular weight).
  • the peak top molecular weight (D) measured by the differential refractive index detector obtained from FIG. 2 was 100,000, and the peak top molecular weight (E) measured by the absorptiometric detector (280 nm) was 53,000. It was.
  • the obtained value is expressed by the following formula (DE) / D
  • the value obtained by substituting for was 0.47.
  • the absorbance (280 nm) at the peak top molecular weight (E) was 1.30 ⁇ 10 ⁇ 3 .
  • the ratio Mw / Mn of the weight average molecular weight Mw to the number average molecular weight Mn obtained from the chromatogram (RI) in FIG. 2 was 2.6.
  • the peak top molecular weight (F) measured with an absorptiometric detector (320 nm) obtained in the same manner as the method for obtaining the peak top molecular weight (E) was 50,000.
  • the peak top molecular weight (D) and the peak top molecular weight (F) are expressed by the following formula (DF) / D The value obtained by substituting for was 0.50.
  • the absorbance (320 nm) at the peak top molecular weight (F) was 1.05 ⁇ 10 ⁇ 3 .
  • PVA-2-8, comparative PVA-1-5 Each PVA was synthesized in the same manner as PVA-1, except that the conditions shown in Table 2 were changed. The polymerization degree, saponification degree, and sodium acetate content (sodium mass conversion) of the obtained PVA were measured in the same manner as PVA-1. GPC measurement was performed in the same manner as PVA-1. The results are shown in Table 2.
  • PVA-9, comparative PVA-6-8 Each PVA was synthesized in the same manner as PVA-1, except that the conditions shown in Table 3 were changed. The polymerization degree, saponification degree, and sodium acetate content (sodium mass conversion) of the obtained PVA were measured in the same manner as PVA-1. GPC measurement was performed in the same manner as PVA-1. The results are shown in Table 3.
  • PVA-10, comparative PVA-9 and 10 Each PVA was synthesized in the same manner as PVA-1, except that the conditions shown in Table 4 were changed. The polymerization degree, saponification degree, and sodium acetate content (sodium mass conversion) of the obtained PVA were measured in the same manner as PVA-1. GPC measurement was performed in the same manner as PVA-1. The results are shown in Table 4.
  • PVA-11, comparative PVA-11 and 12 Each PVA was synthesized in the same manner as PVA-1, except that the conditions shown in Table 5 were changed. The polymerization degree, saponification degree, and sodium acetate content (sodium mass conversion) of the obtained PVA were measured in the same manner as PVA-1. GPC measurement was performed in the same manner as PVA-1. The results are shown in Table 5.
  • PVA-12, comparative PVA-13-15 Each PVA was synthesized in the same manner as in Example 1 except that the conditions were changed to those shown in Table 6.
  • the polymerization degree, saponification degree, and sodium acetate content (sodium mass conversion) of the obtained PVA were measured in the same manner as PVA-1.
  • GPC measurement was performed in the same manner as PVA-1. The results are shown in Table 6.
  • PVA-13-19, comparative PVA-16-19 Each PVA was synthesized in the same manner as PVA-1, except that the conditions shown in Table 7 were changed. The polymerization degree, saponification degree, and sodium acetate content (sodium mass conversion) of the obtained PVA were measured in the same manner as PVA-1. GPC measurement was performed in the same manner as PVA-1. The results are shown in Table 7.
  • PVA-20, comparative PVA-20 and 21 Each PVA was synthesized in the same manner as PVA-1, except that the conditions shown in Table 8 were changed. The polymerization degree, saponification degree, and sodium acetate content (sodium mass conversion) of the obtained PVA were measured in the same manner as PVA-1. GPC measurement was performed in the same manner as PVA-1. The results are shown in Table 8.
  • Comparative PVA-22 Water with respect to vinyl acetate monomer units in methanol and polyvinyl acetate so that the total solid concentration (saponification concentration) is 40% by mass with respect to a 55% by mass methanol solution of polyvinyl acetate in PVAc-3.
  • An 8% methanol solution of sodium hydroxide was added with stirring so that the molar ratio of sodium oxide was 0.005, and the saponification reaction was started at 40 ° C. Note that saponification reaction was performed by adding distilled water so that the water content in the system was 3.0%.
  • One hour after adding the methanol solution of sodium hydroxide, 0.8 mol equivalent of 1% aqueous acetic acid and a large amount of distilled water were added to stop the saponification reaction.
  • the resulting solution was transferred to a dryer, dried at 65 ° C. for 12 hours, and then dried at 100 ° C. for 2 hours to obtain Comparative PVA-22.
  • the polymerization degree, saponification degree, and sodium acetate content of comparative PVA-22 were measured in the same manner as PVA-1.
  • the degree of polymerization was 300, the degree of saponification was 45.3 mol%, and the sodium acetate content was 1.2% (0.34% in terms of sodium).
  • the results are shown in Table 8. Since Comparative PVA-22 was insoluble in water, film preparation for GPC measurement could not be performed, and GPC measurement could not be performed.
  • Comparative PVA-23 Water with respect to vinyl acetate monomer units in methanol and polyvinyl acetate so that the total solid concentration (saponification concentration) is 40% by mass with respect to a 55% by mass methanol solution of polyvinyl acetate in PVAc-3.
  • An 8% methanol solution of sodium hydroxide was added with stirring so that the molar ratio of sodium oxide was 0.005, and the saponification reaction was started at 40 ° C. Note that saponification reaction was performed by adding distilled water so that the water content in the system was 1.2%.
  • One hour after adding the methanol solution of sodium hydroxide, 0.8 mol equivalent of 1% aqueous acetic acid and a large amount of distilled water were added to stop the saponification reaction.
  • the resulting solution was transferred to a dryer, dried at 65 ° C. for 12 hours, and then dried at 100 ° C. for 2 hours to obtain Comparative PVA-23.
  • the polymerization degree, saponification degree, and sodium acetate content of comparative PVA-23 were measured in the same manner as PVA-1.
  • the degree of polymerization was 300, the degree of saponification was 60.2 mol%, and the sodium acetate content was 1.3% (0.36% in terms of sodium).
  • GPC measurement was performed in the same manner as PVA-1. The results are shown in Table 8.
  • PVA-21, comparative PVA-24 and 25 Each PVA was synthesized in the same manner as PVA-1, except that the conditions shown in Table 9 were changed. The polymerization degree, saponification degree, and sodium acetate content (sodium mass conversion) of the obtained PVA were measured in the same manner as PVA-1. GPC measurement was performed in the same manner as PVA-1. The results are shown in Table 9.
  • PVA-22, comparative PVA-26 and 27 Each PVA was synthesized in the same manner as PVA-1, except that the conditions shown in Table 10 were changed. The polymerization degree, saponification degree, and sodium acetate content (sodium mass conversion) of the obtained PVA were measured in the same manner as PVA-1. GPC measurement was performed in the same manner as PVA-1. The results are shown in Table 10.
  • PVA-23, comparative PVA-28 and 29 Each PVA was synthesized in the same manner as PVA-1, except that the conditions shown in Table 11 were changed. The polymerization degree, saponification degree, and sodium acetate content (sodium mass conversion) of the obtained PVA were measured in the same manner as PVA-1. GPC measurement was performed in the same manner as PVA-1. The results are shown in Table 11.
  • Example 1 A 10-liter glass container equipped with a reflux condenser, thermometer, and squid-type stirring blade was charged with 8100 g of ion-exchanged water and 660 g of PVA-1 (PVA concentration 7.5%), and the content was raised to 95 ° C. Warm to completely dissolve the PVA. Next, the contents were gradually cooled to 10 ° C. over about 30 minutes while stirring at 120 rpm, and then 384 g of n-butyraldehyde and 540 mL of 20% hydrochloric acid were added to the vessel, and a butyralization reaction was performed for 150 minutes. It was. Thereafter, the temperature was raised to 60 ° C. over 60 minutes, held at 60 ° C.
  • composition of polyvinyl butyral The degree of butyralization (degree of acetalization) of polyvinyl butyral, the content of vinyl acetate monomer units, and the content of vinyl alcohol monomer units were measured according to JIS K6728.
  • the resulting polyvinyl butyral has a butyralization degree (acetalization degree) of 68.2 mol%, a vinyl acetate monomer unit content of 0.9 mol%, and a vinyl alcohol monomer unit content of 30. It was 9 mol%.
  • Table 12 The results are also shown in Table 12.
  • FIG. 1 is a graph showing the relationship between molecular weight and the value measured with a differential refractive index detector (RI), and the relationship between molecular weight and the absorbance measured with an absorptiometric detector (measurement wavelength 280 nm) (UV). It is.
  • the molecular weight at this time is one converted from the elution volume using a calibration curve (PMMA equivalent molecular weight).
  • the peak top molecular weight (A) measured with the differential refractive index detector obtained from FIG. 1 was 90000, and the peak top molecular weight (B) measured with the absorptiometric detector (280 nm) was 68900.
  • the obtained value is expressed by the following formula (AB) / A
  • the value obtained by substituting for was 0.23.
  • the absorbance at the peak top molecular weight (B) was 2.21 ⁇ 10 ⁇ 3 .
  • the ratio Mw / Mn of the weight average molecular weight Mw to the number average molecular weight Mn obtained from the chromatogram (RI) in FIG. 1 was 3.4.
  • the peak top molecular weight (C) measured by an absorptiometric detector (320 nm) obtained in the same manner as the method for obtaining the peak top molecular weight (B) was 60000.
  • the peak top molecular weight (A) and the peak top molecular weight (C) are expressed by the following formula (AC) / A The value obtained by substituting for was 0.33.
  • the absorbance at the peak top molecular weight (C) was 1.26 ⁇ 10 ⁇ 3 .
  • a synthetic polyvinyl acetal powder of 50 parts by mass and a plasticizer of 19 parts by mass of triethylene glycol di-2-ethylhexanoate were used at 170 ° C. using a lab plast mill “C model” manufactured by Toyo Seiki Seisakusho Co., Ltd. For 5 minutes at 50 rpm. During melt kneading, nitrogen (100 mL / min) was continuously blown into the container. The obtained kneaded material was hot-pressed at 150 ° C. and 5 MPa for 30 minutes to prepare a sheet having a thickness of 800 ⁇ m.
  • the obtained sheet was sandwiched between two transparent glass plates (20 cm ⁇ 20 cm), and preliminary adhesion was performed by passing a press roll at 110 ° C. while extruding air between the glass plate and the sheet.
  • the laminated body after the preliminary adhesion was allowed to stand at 135 ° C. and 1.2 MPa for 30 minutes in an autoclave to produce a laminated glass (20 sheets in total).
  • the number of foreign matters in the laminated glass obtained using a magnifying glass was counted by visual observation.
  • the total number of foreign substances in 20 laminated glasses was determined and evaluated according to the following criteria. The results are shown in Table 12.
  • C 2-3 (pieces / 20 pieces)
  • E 9 or more (pieces / 20 sheets)
  • a kneaded product of polyvinyl acetal and triethylene glycol-di-2-ethylhexanoate was obtained in the same manner as in the above “undissolved part in the film”.
  • 25 parts by mass of a new polyvinyl acetal powder (the same as that used for the preparation of the kneaded product) and triethylene glycol di-2-ethylhexanoate as a plasticizer
  • the mixture was melt-kneaded again using a lab plast mill under the same conditions as the above “undissolved content in the film”.
  • the yellowness of the laminated glass obtained here (using repeatedly heated polyvinyl acetal) and the laminated glass obtained using the above “undissolved portion in film” (using virgin polyvinyl acetal) ( YI) was measured, and the colorability was evaluated according to the following criteria based on the difference in yellowness ( ⁇ YI) between the two.
  • the measurement was performed according to JIS K 7105 using an SM color computer “SM-TH” manufactured by Suga Test Instruments Co., Ltd. The results are shown in Table 12.
  • Examples 2-8 Polyvinyl butyral was synthesized and evaluated in the same manner as in Example 1 except that the raw material PVA was changed to that shown in Table 12. The results are shown in Table 12.
  • Example 9 Polyvinyl butyral was synthesized in the same manner as in Example 1 except that the amount of n-butyraldehyde added was changed to 271 g.
  • the polyvinyl butyral obtained in the same manner as in Example 1 was evaluated except that the plasticizer was changed to dibutoxyethyl adipate in the evaluation of the undissolved content in the film and the evaluation of the colorability of the film. The results are shown in Table 12.
  • Example 10 Polyvinyl butyral was synthesized in the same manner as in Example 1 except that the amount of n-butyraldehyde added was changed to 320 g.
  • the polyvinyl butyral obtained in the same manner as in Example 1 was evaluated except that the plasticizer was changed to dibutoxyethyl adipate in the evaluation of the undissolved content in the film and the evaluation of the colorability of the film. The results are shown in Table 12.
  • Example 11 Polyvinyl butyral was synthesized in the same manner as in Example 1 except that the amount of n-butyraldehyde added was changed to 362 g.
  • the polyvinyl butyral obtained in the same manner as in Example 1 was evaluated except that the plasticizer was changed to dibutoxyethyl adipate in the evaluation of the undissolved content in the film and the evaluation of the colorability of the film. The results are shown in Table 12.
  • Example 12 Polyvinyl butyral was synthesized and evaluated in the same manner as in Example 1 except that the amount of n-butyraldehyde added was changed to 449 g. The results are shown in Table 12.
  • Example 13 A 10-liter glass container equipped with a reflux condenser, thermometer, and squid-type stirring blade was charged with 8100 g of ion-exchanged water and 660 g of PVA-1 (PVA concentration 7.5%), and the content was raised to 95 ° C. Warm to completely dissolve the PVA. Next, the contents were gradually cooled to 10 ° C. over about 30 minutes while stirring at 120 rpm, and then 740 g of n-butyraldehyde and 810 mL of 20% hydrochloric acid were added to the vessel, and a butyralization reaction was performed for 150 minutes. It was. Thereafter, the temperature was raised to 80 ° C. over 90 minutes, kept at 80 ° C.
  • Comparative Examples 1-5 Polyvinyl butyral was synthesized and evaluated in the same manner as in Example 1 except that the raw material PVA was changed to that shown in Table 12. The results are shown in Table 12.
  • Comparative Example 7 Polyvinyl butyral was synthesized and evaluated in the same manner as in Example 10 except that the raw material PVA was changed to Comparative PVA-1. The results are shown in Table 12.
  • Comparative Example 8 Polyvinyl butyral was synthesized and evaluated in the same manner as in Example 12 except that the raw material PVA was changed to Comparative PVA-1. The results are shown in Table 12.
  • Comparative Example 9 Polyvinyl butyral was synthesized and evaluated in the same manner as in Comparative Example 6 except that the raw material PVA was changed to Comparative PVA-2. The results are shown in Table 12.
  • Comparative Example 10 Polyvinyl butyral was synthesized and evaluated in the same manner as in Example 10 except that the raw material PVA was changed to Comparative PVA-2. The results are shown in Table 12.
  • Comparative Example 11 Polyvinyl butyral was synthesized and evaluated in the same manner as in Example 12 except that the raw material PVA was changed to Comparative PVA-2. The results are shown in Table 12.
  • Table 12 shows the evaluation results of polyvinyl acetal using a completely saponified PVA having a polymerization degree of 1700 as a raw material.
  • production of the undissolved part in the film which consists of a composition containing the polyvinyl acetal (Examples 1-13) of this invention was suppressed. Further, even when the material obtained by repeatedly heating the polyvinyl acetal of the present invention was used as a raw material, the resulting film was less colored. On the other hand, any performance of polyvinyl acetal (Comparative Examples 1 to 11) that did not satisfy the conditions defined in the present invention decreased.
  • Example 14 A 10-liter glass container equipped with a reflux condenser, thermometer, and squid type stirring blade was charged with 8100 g of ion-exchanged water and 660 g of PVA-9 (PVA concentration 7.5%), and the contents were heated to 95 ° C. Thus, the PVA was completely dissolved. Next, the contents were gradually cooled to 1 ° C. over about 30 minutes while stirring at 120 rpm, and then 422 g of n-butyraldehyde and 540 mL of 20% hydrochloric acid were added to the vessel, and a butyralization reaction was performed for 120 minutes. It was. Thereafter, the temperature was raised to 45 ° C. over 60 minutes, held at 45 ° C.
  • the composition of the obtained polyvinyl butyral was measured in the same manner as in Example 1.
  • the degree of butyralization degree of acetalization
  • the content of vinyl acetate monomer units was 1.1 mol%
  • the content of vinyl alcohol monomer units was 30.8 mol%. It was.
  • the obtained polyvinyl acetal was evaluated in the same manner as in Example 1 (GPC measurement, undissolved content in the film, and colorability of the film).
  • the amount of polyvinyl butyral powder used for kneading in the evaluation of “undissolved content in the film” was changed to 61.4 parts by mass, and the amount of triethylene glycol di-2-ethylhexanoate was 7.6.
  • Comparative Examples 12-14 Polyvinyl butyral was synthesized and evaluated in the same manner as in Example 14 except that the raw material PVA was changed to that shown in Table 13. The results are shown in Table 13.
  • Table 13 shows the evaluation results of polyvinyl acetal using a fully saponified PVA having a polymerization degree of 300 or 150 as a raw material.
  • production of the undissolved part in the film which consists of a composition containing the polyvinyl acetal (Example 14) of this invention was suppressed. Further, even when the material obtained by repeatedly heating the polyvinyl acetal of the present invention was used as a raw material, the resulting film was less colored.
  • the polyvinyl acetal (Comparative Examples 12 and 13) that does not satisfy the conditions defined in the present invention, either performance deteriorated.
  • the polyvinyl acetal having a polymerization degree of 150 (Comparative Example 14) having a polymerization degree smaller than the lower limit defined in the present invention was insufficient in any performance.
  • Example 15 A 10-liter glass container equipped with a reflux condenser, thermometer, and squid type stirring blade was charged with 8100 g of ion-exchanged water and 660 g of PVA-10 (PVA concentration 7.5%), and the contents were raised to 95 ° C. Warm to completely dissolve the PVA. Next, the mixture was gradually cooled to 5 ° C. over about 30 minutes with stirring at 120 rpm, and 402 g of n-butyraldehyde and 540 mL of 20% hydrochloric acid were added to carry out a butyralization reaction for 120 minutes. Thereafter, the temperature was raised to 50 ° C. over 60 minutes, held at 50 ° C. for 120 minutes, and then cooled to room temperature.
  • the precipitated resin was washed with ion-exchanged water and then neutralized by adding an excessive amount of aqueous sodium hydroxide solution. Subsequently, it was rewashed with ion-exchanged water and dried to obtain polyvinyl butyral.
  • the composition of the obtained polyvinyl butyral was measured in the same manner as in Example 1.
  • the resulting polyvinyl butyral has a butyralization degree (acetalization degree) of 68.5 mol%, a vinyl acetate monomer unit content of 1.5 mol%, and a vinyl alcohol monomer unit content of 30. 0.0 mol%.
  • the obtained polyvinyl acetal was evaluated in the same manner as in Example 1 (GPC measurement, undissolved content in the film, and colorability of the film).
  • Comparative Examples 15 and 16 Polyvinyl butyral was synthesized and evaluated in the same manner as in Example 15 except that the raw material PVA was changed to that shown in Table 14. The results are shown in Table 14.
  • Table 14 shows the evaluation results of polyvinyl acetal using a completely saponified PVA having a polymerization degree of 500 as a raw material.
  • production of the undissolved part in the film which consists of a composition containing the polyvinyl acetal (Example 15) of this invention was suppressed. Further, even when the material obtained by repeatedly heating the polyvinyl acetal of the present invention was used as a raw material, the resulting film was less colored. On the other hand, any performance of the polyvinyl acetal (Comparative Examples 15 and 16) that did not satisfy the conditions defined in the present invention decreased.
  • Example 16 A 10-liter glass container equipped with a reflux condenser, thermometer, and squid-type stirring blade was charged with 8234 g of ion-exchanged water and 526 g of PVA-11 (PVA concentration 6.0%), and the contents were raised to 95 ° C. Warm to dissolve completely. Next, the contents were gradually cooled to 15 ° C. over about 30 minutes while stirring at 120 rpm, and then 307 g of n-butyraldehyde and 540 mL of 20% hydrochloric acid were added to the vessel, and a butyralization reaction was performed for 120 minutes. It was. Thereafter, the temperature was raised to 60 ° C. over 60 minutes, held at 60 ° C.
  • the resulting polyvinyl butyral has a butyralization degree (acetalization degree) of 68.2 mol%, a vinyl acetate monomer unit content of 1.3 mol%, and a vinyl alcohol monomer unit content of 30. It was 5 mol%.
  • the composition of the obtained polyvinyl butyral was measured in the same manner as in Example 1.
  • the degree of butyralization (degree of acetalization) was 68.2 mol%, the content of vinyl acetate monomer units was 1.3 mol%, and the content of vinyl alcohol monomer units was 30.5 mol%. It was.
  • the obtained polyvinyl acetal was evaluated in the same manner as in Example 1 (GPC measurement, undissolved content in the film, and colorability of the film).
  • Comparative Examples 17 and 18 Polyvinyl butyral was synthesized and evaluated in the same manner as in Example 16 except that the raw material PVA was changed to that shown in Table 15. The results are shown in Table 15.
  • Table 15 shows the evaluation results of polyvinyl acetal using a completely saponified PVA having a polymerization degree of 2400 as a raw material.
  • production of the undissolved part in the film which consists of a composition containing the polyvinyl acetal (Example 16) of this invention was suppressed. Further, even when the material obtained by repeatedly heating the polyvinyl acetal of the present invention was used as a raw material, the resulting film was less colored. On the other hand, any performance of polyvinyl acetal (Comparative Examples 17 and 18) that did not satisfy the conditions defined in the present invention decreased.
  • Example 17 A 10-liter glass container equipped with a reflux condenser, thermometer, and squid-type stirring blade was charged with 8322 g of ion-exchanged water and 438 g of PVA-12 (PVA concentration 5.0%), and the contents were raised to 95 ° C. Warm to completely dissolve the PVA. Next, the contents are gradually cooled to 20 ° C. over about 30 minutes while stirring at 120 rpm, and then 256 g of n-butyraldehyde and 540 mL of 20% hydrochloric acid are added to the vessel, and a butyralization reaction is performed for 120 minutes. It was. Thereafter, the temperature was raised to 60 ° C. over 60 minutes, held at 60 ° C.
  • the composition of the obtained polyvinyl butyral was measured in the same manner as in Example 1.
  • the degree of butyralization degree of acetalization
  • the content of vinyl acetate monomer units was 1.5 mol%
  • the content of vinyl alcohol monomer units was 30.4 mol%. It was.
  • the obtained polyvinyl acetal was evaluated in the same manner as in Example 1 (GPC measurement, undissolved content in the film, and colorability of the film).
  • the amount of polyvinyl butyral powder used for kneading was changed to 40.6 parts by mass, and the amount of triethylene glycol-di-2-ethylhexanoate was changed to 28.
  • Comparative Examples 19-21 Polyvinyl butyral was synthesized and evaluated in the same manner as in Example 17 except that the raw material PVA was changed to that shown in Table 16. The results are shown in Table 16. However, in Comparative Example 21, in the evaluation of the undissolved content in the film and the colorability of the film, the torque was too high during the kneading in the lab plast mill, and the melt kneading could not be performed.
  • Table 16 shows the evaluation of polyvinyl acetal using a completely saponified PVA having a polymerization degree of 3600 or a polymerization degree of 5500 as a raw material.
  • production of the undissolved part in the film which consists of a composition containing the polyvinyl acetal (Example 17) of this invention was suppressed. Further, even when the material obtained by repeatedly heating the polyvinyl acetal of the present invention was used as a raw material, the resulting film was less colored.
  • any performance of the polyvinyl acetal (Comparative Examples 19 and 20) not satisfying the conditions defined in the present invention was lowered. Moreover, the polyvinyl acetal (comparative example 21) having a degree of polymerization exceeding 5000 could not be evaluated because the melt viscosity became too high to be melt kneaded by a lab plast mill.
  • Example 18 A 10 liter glass container equipped with a reflux condenser, thermometer and squid type stirring blade was charged with 8100 g of ion-exchanged water and 660 g of PVA-13 (PVA concentration 7.5%), and the contents were raised to 95 ° C. Warm to dissolve completely. Next, the contents are gradually cooled to 15 ° C. over about 30 minutes while stirring at 120 rpm, and then 432 g of n-butyraldehyde and 540 mL of 20% hydrochloric acid are added to the vessel, and a butyralization reaction is performed for 90 minutes. It was. Thereafter, the temperature was raised to 45 ° C. over 30 minutes, held at 45 ° C. for 180 minutes, and then cooled to room temperature.
  • the precipitated resin was washed with ion-exchanged water and then neutralized by adding an excessive amount of aqueous sodium hydroxide solution. Subsequently, it was rewashed with ion-exchanged water and dried to obtain polyvinyl butyral.
  • the composition of the obtained polyvinyl butyral was measured in the same manner as in Example 1.
  • the degree of butyralization (degree of acetalization) was 74.1 mol%, the content of vinyl acetate monomer units was 8.1 mol%, and the content of vinyl alcohol monomer units was 17.8 mol%. It was.
  • the obtained polyvinyl acetal was evaluated in the same manner as in Example 1 (GPC measurement, undissolved content in the film).
  • the amount of polyvinyl butyral powder used for kneading is 40 parts by mass
  • the amount of triethylene glycol-di-2-ethylhexanoate is 24 parts by mass
  • the melt kneading temperature is 160 ° C.
  • the hot press temperature is 140 parts. Changed to ° C respectively.
  • Table 17 The results are shown in Table 17.
  • a synthetic polyvinyl acetal powder of 40 parts by mass and a plasticizer of 24 parts by mass of triethylene glycol di-2-ethylhexanoate were used at 160 ° C. using a lab plast mill “C model” manufactured by Toyo Seiki Seisakusho Co., Ltd. For 5 minutes at 50 rpm. During melt kneading, nitrogen (100 mL / min) was continuously blown into the container. The obtained kneaded material was hot-pressed at 140 ° C. and 5 MPa for 30 minutes to prepare a sheet having a thickness of 800 ⁇ m (using only virgin polyvinyl acetal as a raw material resin).
  • the yellowness (YI) of each laminated glass was measured, and the colorability was evaluated according to the following criteria based on the difference in yellowness ( ⁇ YI) between the two.
  • the measurement was performed according to JIS K 7105 using an SM color computer “SM-TH” manufactured by Suga Test Instruments Co., Ltd.
  • SM-TH SM color computer “SM-TH” manufactured by Suga Test Instruments Co., Ltd.
  • the evaluation results are shown in Table 17.
  • Examples 19-24 Polyvinyl butyral was synthesized and evaluated in the same manner as in Example 18 except that the raw material PVA was changed to that shown in Table 17. The results are shown in Table 17.
  • Example 25 Polyvinyl butyral was synthesized in the same manner as in Example 18 except that the amount of n-butyraldehyde added was changed to 225 g. Polyvinyl butyral obtained in the same manner as in Example 18 was evaluated except that the plasticizer was changed to dibutoxyethyl adipate in the evaluation of “undissolved content in the film” and the evaluation of “film colorability”. The results are shown in Table 17.
  • Example 26 Polyvinyl butyral was synthesized in the same manner as in Example 18 except that the amount of n-butyraldehyde added was changed to 269 g. Polyvinyl butyral obtained in the same manner as in Example 18 was evaluated except that the plasticizer was changed to dibutoxyethyl adipate in the evaluation of “undissolved content in the film” and the evaluation of “film colorability”. The results are shown in Table 17.
  • Example 27 Polyvinyl butyral was synthesized and evaluated in the same manner as in Example 18 except that the amount of n-butyraldehyde added was changed to 307 g. The results are shown in Table 17.
  • Example 28 Polyvinyl butyral was synthesized and evaluated in the same manner as in Example 18 except that the amount of n-butyraldehyde added was changed to 458 g. The results are shown in Table 17.
  • Example 29 A 10 liter glass container equipped with a reflux condenser, thermometer and squid type stirring blade was charged with 8100 g of ion-exchanged water and 660 g of PVA-13 (PVA concentration 7.5%), and the contents were raised to 95 ° C. Warm to dissolve completely. Next, the content is gradually cooled to 15 ° C. over about 30 minutes while stirring at 120 rpm, 837 g of n-butyraldehyde and 810 mL of 20% hydrochloric acid are added to the vessel, and a butyralization reaction is performed for 90 minutes. It was. Thereafter, the temperature was raised to 60 ° C. over 60 minutes, kept at 60 ° C. for 24 hours, and then cooled to room temperature.
  • the precipitated resin was washed with ion-exchanged water and then neutralized by adding an excessive amount of aqueous sodium hydroxide solution. Subsequently, it was rewashed with ion-exchanged water and dried to obtain polyvinyl butyral.
  • the polyvinyl butyral obtained in the same manner as in Example 18 was evaluated. The results are shown in Table 17.
  • Comparative Example 26 Polyvinyl butyral was synthesized in the same manner as in Example 18 except that the raw material PVA was changed to comparative PVA-16 and the amount of n-butyraldehyde added was changed to 225 g. Polyvinyl butyral obtained in the same manner as in Example 18 was evaluated except that the plasticizer was changed to dibutoxyethyl adipate in the evaluation of “undissolved content in the film” and the evaluation of “film colorability”. The results are shown in Table 17.
  • Comparative Example 27 Polyvinyl butyral was synthesized and evaluated in the same manner as in Example 26 except that the raw material PVA was changed to Comparative PVA-16. The results are shown in Table 17.
  • Comparative Example 28 Polyvinyl butyral was synthesized and evaluated in the same manner as in Example 28 except that the raw material PVA was changed to Comparative PVA-16. The results are shown in Table 17.
  • Comparative Example 29 Polyvinyl butyral was synthesized in the same manner as in Example 18 except that the raw material PVA was changed to comparative PVA-17 and the addition amount of n-butyraldehyde was changed to 225 g. Polyvinyl butyral obtained in the same manner as in Example 18 was evaluated except that the plasticizer was changed to dibutoxyethyl adipate in the evaluation of “undissolved content in the film” and the evaluation of “film colorability”. The results are shown in Table 17.
  • Comparative Example 30 Polyvinyl butyral was synthesized and evaluated in the same manner as in Example 26 except that the raw material PVA was changed to Comparative PVA-17. The results are shown in Table 17.
  • Comparative Example 31 Polyvinyl butyral was synthesized and evaluated in the same manner as in Example 28 except that the raw material PVA was changed to Comparative PVA-17. The results are shown in Table 17.
  • Table 17 shows the evaluation of polyvinyl acetal using a partially saponified PVA having a polymerization degree of 1700 (saponification degree: about 88 mol%) as a raw material.
  • the generation of undissolved content in the film comprising the composition containing the polyvinyl acetal of the present invention (Examples 18 to 29) was suppressed in the same manner as the polyvinyl acetal made from fully saponified PVA having a polymerization degree of 1700. Further, even when the material obtained by repeatedly heating the polyvinyl acetal of the present invention was used as a raw material, the resulting film was less colored.
  • polyvinyl acetal Comparative Examples 22 to 31
  • that did not satisfy the conditions defined in the present invention had any performance deterioration.
  • Example 30 A 10-liter glass container equipped with a reflux condenser, thermometer and squid type stirring blade was charged with 8100 g of ion-exchanged water and 660 g of PVA-20 (PVA concentration 7.5%), and the contents were raised to 95 ° C. Warm to completely dissolve the PVA. Next, the contents are gradually cooled to 1 ° C. over about 60 minutes while stirring at 120 rpm, and then 468 g of n-butyraldehyde and 540 mL of 20% hydrochloric acid are added to the vessel, and a butyralization reaction is performed for 90 minutes. It was. Thereafter, the temperature was raised to 25 ° C. over 30 minutes, held at 25 ° C.
  • the composition of the obtained polyvinyl butyral was measured in the same manner as in Example 1.
  • the degree of butyralization degree of acetalization
  • the content of vinyl acetate monomer units was 8.0 mol%
  • the content of vinyl alcohol monomer units was 18.8 mol%. It was.
  • the obtained polyvinyl acetal was evaluated in the same manner as in Example 18 (GPC measurement, undissolved content in the film, and colorability of the film).
  • the amount of polyvinyl butyral powder used for kneading was changed to 55.7 parts by mass, and the amount of triethylene glycol-di-2-ethylhexanoate was changed to 8.
  • Comparative Examples 32 and 33 Polyvinyl butyral was synthesized and evaluated in the same manner as in Example 30 except that the raw material PVA was changed to that shown in Table 18. The results are shown in Table 18.
  • Reference example 1 Synthesis of polyvinyl butyral was attempted in the same manner as in Example 30 except that the raw material PVA was changed to Comparative PVA-22. However, the synthesis was stopped because the aqueous solution of comparative PVA-22 was insufficient and an aqueous solution could not be obtained.
  • Comparative Example 34 Polyvinyl butyral was synthesized and evaluated in the same manner as in Example 30 except that the raw material PVA was changed to Comparative PVA-23. The results are shown in Table 18.
  • Table 18 shows the evaluation of polyvinyl acetal using partially saponified PVA having a polymerization degree of 300 as a raw material.
  • production of the undissolved part in the film which consists of a composition containing the polyvinyl acetal (Example 30) of this invention was suppressed. Further, even when the material obtained by repeatedly heating the polyvinyl acetal of the present invention was used as a raw material, the resulting film was less colored.
  • polyvinyl acetal (Comparative Examples 32 to 34) that does not satisfy the conditions defined in the present invention deteriorated in any performance.
  • Example 31 A 10 L liter glass container equipped with a reflux condenser, thermometer, and squid type stirring blade was charged with 8100 g of ion-exchanged water and 660 g of PVA-21 (PVA concentration 7.5%), and the contents were raised to 95 ° C. Warm to completely dissolve the PVA. Next, the contents were gradually cooled to 5 ° C. over about 60 minutes while stirring at 120 rpm, and then 450 g of n-butyraldehyde and 540 mL of 20% hydrochloric acid were added to the vessel, and a butyralization reaction was performed for 90 minutes. It was. Thereafter, the temperature was raised to 30 ° C. over 30 minutes, held at 30 ° C.
  • the composition of the obtained polyvinyl butyral was measured in the same manner as in Example 1.
  • the degree of butyralization degree of acetalization
  • the content of vinyl acetate monomer units was 7.9 mol%
  • the content of vinyl alcohol monomer units was 17.8 mol%. It was.
  • the obtained polyvinyl acetal was evaluated in the same manner as in Example 18 (GPC measurement, undissolved content in the film, and colorability of the film).
  • the amount of polyvinyl butyral powder used for kneading was changed to 49.2 parts by mass, and the amount of triethylene glycol-di-2-ethylhexanoate was changed to 14.
  • the amount was changed to 8 parts by mass.
  • the amount of the polyvinyl butyral powder as the raw material of the sheet to be prepared first was 49.2 parts by mass, and triethylene glycol-
  • the amount of di2-ethylhexanoate was changed to 14.8 parts by mass, and the amount of polyvinyl butyral powder mixed with the obtained sheet was changed to 24.6 parts by mass.
  • the amount of di-2-ethylhexanoate was changed to 7.4 parts by mass, respectively.
  • Table 19 The results are shown in Table 19.
  • Comparative Examples 35 and 36 Polyvinyl butyral was synthesized and evaluated in the same manner as in Example 31 except that the raw material PVA was changed to that shown in Table 19. The results are shown in Table 19.
  • Table 19 shows the evaluation of polyvinyl acetal using a partially saponified PVA having a polymerization degree of 500 (saponification degree of about 88 mol%) as a raw material.
  • production of the undissolved part in the film which consists of a composition containing the polyvinyl acetal (Example 31) of this invention was suppressed. Further, even when the material obtained by repeatedly heating the polyvinyl acetal of the present invention was used as a raw material, the resulting film was less colored. On the other hand, the performance of either polyvinyl acetal (Comparative Examples 35 and 36) that did not satisfy the conditions defined in the present invention decreased.
  • Example 32 A 10 L liter glass container equipped with a reflux condenser, thermometer, and Ikari-type stirring blade was charged with 8234 g of ion-exchanged water and 526 g of PVA-22 (PVA concentration 6.0%), and the contents were raised to 95 ° C. Warm to completely dissolve the PVA. Next, the contents are gradually cooled to 15 ° C. over about 60 minutes while stirring at 120 rpm, and then 344 g of n-butyraldehyde and 540 mL of 20% hydrochloric acid are added to the vessel, and a butyralization reaction is performed for 90 minutes. It was. Thereafter, the temperature was raised to 45 ° C. over 30 minutes, held at 45 ° C.
  • the composition of the obtained polyvinyl butyral was measured in the same manner as in Example 1.
  • the degree of butyralization degree of acetalization
  • the content of vinyl acetate monomer units was 8.3 mol%
  • the content of vinyl alcohol monomer units was 17.1 mol%. It was.
  • the obtained polyvinyl acetal was evaluated in the same manner as in Example 18 (GPC measurement, undissolved content in the film, and colorability of the film).
  • the amount of polyvinyl butyral powder used for kneading was changed to 36.6 parts by mass, and the amount of triethylene glycol-di-2-ethylhexanoate was changed to 27.
  • the amount was changed to 4 parts by mass.
  • the amount of polyvinyl butyral powder as the raw material of the sheet to be prepared first (using only virgin polyvinyl acetal as the raw material resin) was 36.6 parts by mass, and triethylene glycol-
  • the amount of di-2-ethylhexanoate was changed to 27.4 parts by mass, and the amount of polyvinyl butyral powder mixed with the obtained sheet was changed to 18.3 parts by mass.
  • the amount of di-2-ethylhexanoate was changed to 13.7 parts by mass, respectively.
  • Table 20 The results are shown in Table 20.
  • Comparative Examples 37 and 38 Polyvinyl butyral was synthesized and evaluated in the same manner as in Example 32 except that the raw material PVA was changed to that shown in Table 20. The results are shown in Table 20.
  • Table 20 shows the evaluation of polyvinyl acetal using partially saponified PVA having a polymerization degree of 2400 (saponification degree of about 88 mol%) as a raw material.
  • production of the undissolved part in the film which consists of a composition containing the polyvinyl acetal (Example 32) of this invention was suppressed. Further, even when the material obtained by repeatedly heating the polyvinyl acetal of the present invention was used as a raw material, the resulting film was less colored.
  • the polyvinyl acetal (Comparative Examples 37 and 38) that does not satisfy the conditions defined in the present invention has a reduced performance.
  • Example 33 A 10-liter glass container equipped with a reflux condenser, thermometer, and squid type stirring blade was charged with 8234 g of ion-exchanged water and 438 g of PVA-23 (PVA concentration 5.0%), and the contents were raised to 95 ° C. Warm to completely dissolve the PVA. Next, the contents are gradually cooled to 15 ° C. over about 60 minutes while stirring at 120 rpm, and then 265 g of n-butyraldehyde and 540 mL of 20% hydrochloric acid are added to the vessel, and a butyralization reaction is performed for 90 minutes. It was. Thereafter, the temperature was raised to 45 ° C. over 30 minutes, held at 45 ° C.
  • the composition of the obtained polyvinyl butyral was measured in the same manner as in Example 1.
  • the degree of butyralization (average degree of acetalization) of polyvinyl butyral is 73.2 mol%
  • the content of vinyl acetate monomer units is 8.1 mol%
  • the content of vinyl alcohol monomer units is 18.7. Mol%.
  • the obtained polyvinyl acetal was evaluated in the same manner as in Example 18 (GPC measurement, undissolved content in the film, and colorability of the film).
  • the amount of the polyvinyl butyral powder as the raw material of the sheet to be prepared first was 32 parts by mass, and triethylene glycol di-2 -The amount of ethyl hexanoate was changed to 32 parts by mass, and the amount of polyvinyl butyral powder mixed with the obtained sheet was changed to 16 parts by mass to triethylene glycol di-2-ethylhexanoate. The amount of ate was changed to 16 parts by mass. The results are shown in Table 21.
  • Comparative Examples 39 and 40 Polyvinyl butyral was synthesized and evaluated in the same manner as in Example 33 except that the raw material PVA was changed to that shown in Table 21. The results are shown in Table 21.
  • Table 21 shows the evaluation of polyvinyl acetal using a partially saponified PVA having a polymerization degree of 3600 (saponification degree of about 88 mol%) as a raw material.
  • production of the undissolved part in the film which consists of a composition containing the polyvinyl acetal (Example 33) of this invention was suppressed. Further, even when the material obtained by repeatedly heating the polyvinyl acetal of the present invention was used as a raw material, the resulting film was less colored. On the other hand, any performance of polyvinyl acetal (Comparative Examples 39 and 40) that did not satisfy the conditions defined in the present invention decreased.
  • the film made of the composition containing the polyvinyl acetal of the present invention has a small amount of undissolved components contained therein. Furthermore, even when polyvinyl acetal that has been repeatedly heated is used as a raw material, the resulting film is less colored. On the other hand, any performance of polyvinyl acetal that does not satisfy the conditions specified in the present invention is clearly deteriorated.

Abstract

A polyvinyl acetal which has a degree of acetalization of 40 to 90 mol%, a content of a vinyl ester monomer unit of 0.1 to 20 mol%, and a viscosity-average polymerization degree of 200 to 5000, wherein when the polyvinyl acetal is heated for three hours at 230°C and subjected to gel permeation chromatography, a peak top molecular weight (A) measured by a differential refractive index detector and a peak top molecular weight (B) measured by an absorbance detector (measurement wavelength 280 nm) satisfy formula (1), (A-B)/A<0.60 (1), and absorbance at the peak top molecular weight (B) is 0.50×10-3 to 1.00×10-2. Accordingly, a polyvinyl acetal can be provided from which a film that has lower coloring due to heat and less foreign matters (undissolved fractions) can be obtained.

Description

ポリビニルアセタールおよびそれを含有する合わせガラス用中間膜Polyvinyl acetal and interlayer film for laminated glass containing the same
 本発明はポリビニルアセタールに関する。また、本発明は当該ポリビニルアセタールを含有する合わせガラス用中間膜、及び当該中間膜を用いた合わせガラスに関する。 The present invention relates to polyvinyl acetal. The present invention also relates to an interlayer film for laminated glass containing the polyvinyl acetal, and a laminated glass using the interlayer film.
 ポリビニルアセタールは、ポリビニルアルコール(以下「PVA」と略記する場合がある)とアルデヒド化合物を用いて、酸性条件下、水中にて、アセタール化反応することにより得られる。ポリビニルアセタールからなるフィルムは強靭であること、親水性のヒドロキシ基と疎水性のアセタール基を併せ持つユニークな構造であることなどから、様々な用途に用いられており、種々のポリビニルアセタールが提案されている。その中でも、PVAとホルムアルデヒドから製造されるポリビニルホルマール、PVAとアセトアルデヒドから製造される狭義のポリビニルアセタール、およびPVAとブチルアルデヒドから製造されるポリビニルブチラールは、商業的に重要な位置を占めている。 Polyvinyl acetal is obtained by an acetalization reaction in water under acidic conditions using polyvinyl alcohol (hereinafter sometimes abbreviated as “PVA”) and an aldehyde compound. Polyvinyl acetal films are used in various applications because they are tough and have a unique structure that has both hydrophilic hydroxy groups and hydrophobic acetal groups. Various polyvinyl acetals have been proposed. Yes. Among them, polyvinyl formal produced from PVA and formaldehyde, polyvinyl acetal in a narrow sense produced from PVA and acetaldehyde, and polyvinyl butyral produced from PVA and butyraldehyde occupy commercially important positions.
 特に、ポリビニルブチラールは、自動車や建築物の合わせガラス用の中間膜等として広く用いられており、商業的に特に重要な位置を占めている。 In particular, polyvinyl butyral is widely used as an interlayer film for laminated glass of automobiles and buildings, and occupies a particularly important position commercially.
 一方で、ポリビニルアセタールは、加熱により着色しやすい;ポリビニルアセタールのフィルム中に異物(未溶解分)が生じやすいなどの問題を有していた。これらの問題を解決するために、種々の提案がなされている。 On the other hand, polyvinyl acetal has a problem that it is easily colored by heating; a foreign substance (undissolved part) is likely to be generated in the polyvinyl acetal film. Various proposals have been made to solve these problems.
 特許文献1及び2には、高温高圧下にて特定の水酸化物イオン濃度でアセタール化することにより、ポリビニルアセタールの着色を抑制する方法が記載されている。また、特許文献3には、アセタール化反応して中和した後に還元剤を添加することにより、得られるポリビニルアセタールの着色を抑制する方法が記載されている。しかしながら、特許文献1~3に記載された方法により得られたポリビニルアセタールを用いて作製されたフィルム中に異物が生じやすかった。特許文献4には、アセタール化反応後の中和反応において、得られた樹脂粒子のスラリーの濃度を調整することにより、粗粒子の発生を抑制する方法が記載されている。また、特許文献5には、アセタール化反応に用いる、酸触媒と界面活性剤との関係を規定することにより粗粒子の発生を抑制する方法が記載されている。しかしながら、特許文献4及び5に記載された方法により得たポリビニルアセタールを用いて作製されたフィルム中には異物が生じやすかった。また、当該フィルムは加熱により着色し易かった。このようなことから、上述した問題が全て解決されたポリビニルアセタールが強く求められている。 Patent Documents 1 and 2 describe a method for suppressing coloring of polyvinyl acetal by acetalization at a specific hydroxide ion concentration under high temperature and high pressure. Patent Document 3 describes a method of suppressing coloring of the obtained polyvinyl acetal by adding a reducing agent after neutralization by acetalization reaction. However, foreign matters were liable to occur in the film produced using the polyvinyl acetal obtained by the methods described in Patent Documents 1 to 3. Patent Document 4 describes a method of suppressing the generation of coarse particles by adjusting the concentration of the obtained resin particle slurry in the neutralization reaction after the acetalization reaction. Patent Document 5 describes a method for suppressing the generation of coarse particles by defining the relationship between an acid catalyst and a surfactant used in the acetalization reaction. However, foreign matters were likely to be generated in the film produced using the polyvinyl acetal obtained by the methods described in Patent Documents 4 and 5. Moreover, the film was easily colored by heating. For these reasons, there is a strong demand for polyvinyl acetals in which all the above-mentioned problems are solved.
 特に、昨今の省エネルギー化、資源の有効活用などの観点から、フィルム製造工程全体の収率向上が非常に重要な課題となっている。収率を向上させる観点から、フィルム製造時に発生するフィルム端部の端材(トリム)を再利用することが重要である。しかしながら、異物(未溶解分)などが混入したトリムは、不良の原因になるため、事実上再利用できない。また、トリムを再利用した場合、得られるフィルムは溶融押出成形による熱履歴を複数回受けるため着色しやすい。このような点からも上述した問題の解決が求められている。 In particular, from the standpoint of recent energy saving and effective use of resources, improving the yield of the entire film manufacturing process is a very important issue. From the viewpoint of improving the yield, it is important to reuse the end material (trim) at the end of the film that is generated during film production. However, a trim in which foreign matter (undissolved part) or the like is mixed causes a defect and cannot be reused in practice. Further, when the trim is reused, the obtained film is easily colored because it receives heat history by melt extrusion molding a plurality of times. From such a point, the solution of the above-described problem is also demanded.
特開2011-219670号公報JP 2011-219670 A 特開2011-219671号公報JP 2011-219671 A 特開平05-140211号公報Japanese Patent Laid-Open No. 05-140211 特開平5-155915号公報JP-A-5-155915 特開2002-069126号公報JP 2002-069126 A
 本発明は、加熱による着色が少ないうえに、異物(未溶解分)が少ないフィルムを得ることができるポリビニルアセタール及びその製造方法を提供することを目的とする。また、当該ポリビニルアセタールを含有するポリビニルアセタール組成物、当該組成物からなる合わせガラス用中間膜、及び当該中間膜を用いた合わせガラスを提供することを目的とする。 An object of the present invention is to provide a polyvinyl acetal capable of obtaining a film with little coloring due to heating and less foreign matter (undissolved content) and a method for producing the same. Moreover, it aims at providing the laminated glass using the polyvinyl acetal composition containing the said polyvinyl acetal, the intermediate film for laminated glasses which consists of the said composition, and the said intermediate film.
 上記課題は、アセタール化度が40~90モル%、ビニルエステル単量体単位の含有量が0.1~20モル%、粘度平均重合度が200~5000であるポリビニルアセタールであって、230℃において3時間加熱された前記ポリビニルアセタールをゲルパーミエーションクロマトグラフィー(以下、GPCと略記することがある)測定したときの、示差屈折率検出器で測定されるピーク分子量(A)と、吸光光度検出器(測定波長280nm)で測定されるピーク分子量(B)が下記式(1)
(A-B)/A<0.60   (1)
を満たし、かつピーク分子量(B)における吸光度が0.50×10-3~1.00×10-2となるポリビニルアセタールを提供することにより解決される。
The above-mentioned problem is a polyvinyl acetal having an acetalization degree of 40 to 90 mol%, a vinyl ester monomer unit content of 0.1 to 20 mol%, and a viscosity average polymerization degree of 200 to 5000, which is 230 ° C. The molecular weight of the polyvinyl acetal heated for 3 hours in gel permeation chromatography (hereinafter sometimes abbreviated as GPC) and the peak molecular weight (A) measured with a differential refractive index detector and the spectrophotometric detection The peak molecular weight (B) measured with a vessel (measurement wavelength 280 nm) is the following formula (1)
(AB) / A <0.60 (1)
And a polyvinyl acetal having an absorbance at a peak molecular weight (B) of 0.50 × 10 −3 to 1.00 × 10 −2 is solved.
 ただし、前記GPC測定において、
移動相:20mmol/lトリフルオロ酢酸ナトリウム含有ヘキサフルオロイソプロパノール(以下、ヘキサフルオロイソプロパノールをHFIPと略記することがある。)
試料濃度:1.00mg/ml
試料注入量:100μl
カラム:昭和電工株式会社製「GPC HFIP-806M」
カラム温度:40℃
流速:1ml/分
吸光光度検出器のセル長:10mm
である。
However, in the GPC measurement,
Mobile phase: 20 mmol / l sodium trifluoroacetate-containing hexafluoroisopropanol (hereinafter, hexafluoroisopropanol may be abbreviated as HFIP.)
Sample concentration: 1.00 mg / ml
Sample injection volume: 100 μl
Column: Showa Denko "GPC HFIP-806M"
Column temperature: 40 ° C
Flow rate: 1 ml / min Absorbance detector cell length: 10 mm
It is.
 前記GPC測定における、示差屈折率検出器で測定されるピーク分子量(A)と、吸光光度検出器(測定波長320nm)で測定されるピーク分子量(C)が下記式(2)
(A-C)/A<0.65   (2)
を満たし、かつピーク分子量(C)における吸光度が0.35×10-3~4.50×10-3となることが好適である。前記GPC測定における、示差屈折率検出器によって求められる、前記ポリビニルアセタールの数平均分子量Mnに対する重量平均分子量Mwの比Mw/Mnが2.8~12.0となることも好適である。
In the GPC measurement, the peak molecular weight (A) measured with a differential refractive index detector and the peak molecular weight (C) measured with an absorptiometric detector (measurement wavelength: 320 nm) are expressed by the following formula (2).
(AC) / A <0.65 (2)
And the absorbance at the peak molecular weight (C) is preferably 0.35 × 10 −3 to 4.50 × 10 −3 . In the GPC measurement, the ratio Mw / Mn of the weight average molecular weight Mw to the number average molecular weight Mn of the polyvinyl acetal obtained by a differential refractive index detector is preferably 2.8 to 12.0.
 前記ポリビニルアセタールがポリビニルブチラールであることが好適である。 It is preferable that the polyvinyl acetal is polyvinyl butyral.
 本発明のポリビニルアセタール及び可塑剤を含有するポリビニルアセタール組成物が本発明の好適な実施態様である。ここで、前記可塑剤がトリエチレングリコール-ジ2-エチルヘキサノエートであることが好適である。 A polyvinyl acetal composition containing the polyvinyl acetal of the present invention and a plasticizer is a preferred embodiment of the present invention. Here, the plasticizer is preferably triethylene glycol-di-2-ethylhexanoate.
 前記ポリビニルアセタール組成物からなる合わせガラス用中間膜も本発明の好適な実施態様である。前記合わせガラス用中間膜を用いて複数のガラス板を接着してなる合わせガラスも本発明の好適な実施態様である。 An interlayer film for laminated glass made of the polyvinyl acetal composition is also a preferred embodiment of the present invention. A laminated glass formed by bonding a plurality of glass plates using the interlayer film for laminated glass is also a preferred embodiment of the present invention.
 上記課題は、ポリビニルアルコールをアセタール化する前記ポリビニルアセタールの製造方法であって、前記ポリビニルアルコールの、けん化度が50~99.99モル%、粘度平均重合度が200~5000、カルボン酸のアルカリ金属塩の含有量がアルカリ金属の質量換算で0.5質量%以下であって、120℃において3時間加熱された前記ポリビニルアルコールをゲルパーミエーションクロマトグラフィー測定したときの、示差屈折率検出器で測定されるピークトップ分子量(D)と、吸光光度検出器(測定波長280nm)で測定されるピークトップ分子量(E)が下記式(3)
(D-E)/D<0.75   (3)
を満たし、かつピークトップ分子量(E)における吸光度が0.25×10-3~3.00×10-3となることを特徴とする製造方法を提供することによっても解決される。
The above-mentioned problem is a method for producing the polyvinyl acetal for acetalizing polyvinyl alcohol, wherein the polyvinyl alcohol has a saponification degree of 50 to 99.99 mol%, a viscosity average polymerization degree of 200 to 5000, and an alkali metal of a carboxylic acid. Measured with a differential refractive index detector when the content of salt is 0.5% by mass or less in terms of the mass of alkali metal and the polyvinyl alcohol heated at 120 ° C. for 3 hours is measured by gel permeation chromatography. The peak top molecular weight (D) and the peak top molecular weight (E) measured with an absorptiometric detector (measurement wavelength 280 nm) are the following formula (3)
(DE) / D <0.75 (3)
And a manufacturing method characterized in that the absorbance at the peak top molecular weight (E) is 0.25 × 10 −3 to 3.00 × 10 −3 .
 ただし、前記GPC測定において、
移動相:20mmol/lトリフルオロ酢酸ナトリウム含有ヘキサフルオロイソプロパノール(以下、ヘキサフルオロイソプロパノールをHFIPと略記することがある。)
試料濃度:1.00mg/ml
試料注入量:100μl
カラム:昭和電工株式会社製「GPC HFIP-806M」
カラム温度:40℃
流速:1ml/分
吸光光度検出器のセル長:10mm
である。
However, in the GPC measurement,
Mobile phase: 20 mmol / l sodium trifluoroacetate-containing hexafluoroisopropanol (hereinafter, hexafluoroisopropanol may be abbreviated as HFIP.)
Sample concentration: 1.00 mg / ml
Sample injection volume: 100 μl
Column: Showa Denko "GPC HFIP-806M"
Column temperature: 40 ° C
Flow rate: 1 ml / min Absorbance detector cell length: 10 mm
It is.
 本発明のポリビニルアセタールは、加熱による着色が少なく、異物(未溶解分)が少ないフィルムを得ることができる。このようなポリビニルアセタールを用いて製造されるフィルムは、異物(未溶解分)が少ないうえに、加熱による着色も少ない。したがって、当該ポリビニルアセタールを用いてフィルムを製造する際などに発生するトリム等を再利用できるため収率が向上する。また、前記ポリビニルアセタールを含有するポリビニルアセタール組成物を用いて得られる合わせガラス用中間膜は、異物(未溶解分)が少ないうえに、加熱による着色が少ない。したがって、当該合わせガラス用中間膜を用いることにより生産性よく合わせガラスが製造される。本発明の製造方法によれば、前記ポリビニルアセタールを簡便に製造できる。 The polyvinyl acetal of the present invention can obtain a film with little coloring by heating and less foreign matter (undissolved content). A film produced using such a polyvinyl acetal has less foreign matter (undissolved content) and is less colored by heating. Therefore, since the trim etc. which generate | occur | produce when manufacturing a film using the said polyvinyl acetal etc. can be reused, a yield improves. Moreover, the interlayer film for laminated glass obtained by using the polyvinyl acetal composition containing the polyvinyl acetal has little foreign matter (undissolved content) and is less colored by heating. Therefore, a laminated glass is manufactured with high productivity by using the interlayer film for laminated glass. According to the production method of the present invention, the polyvinyl acetal can be easily produced.
実施例1のポリビニルアセタールにおいて、分子量と示差屈折率検出器(RI)で測定された値との関係、及び分子量と吸光光度検出器(UV)(測定波長280nm)で測定された吸光度との関係を示したグラフである。In the polyvinyl acetal of Example 1, the relationship between the molecular weight and the value measured by the differential refractive index detector (RI), and the relationship between the molecular weight and the absorbance measured by the absorptiometric detector (UV) (measurement wavelength 280 nm). It is the graph which showed. 実施例1のPVA-1において、分子量と示差屈折率検出器(RI)で測定された値との関係、及び分子量と吸光光度検出器(UV)(測定波長280nm)で測定された吸光度との関係を示したグラフである。In PVA-1 of Example 1, the relationship between the molecular weight and the value measured by the differential refractive index detector (RI), and the molecular weight and the absorbance measured by the absorptiometric detector (UV) (measurement wavelength 280 nm). It is the graph which showed the relationship.
 本発明のポリビニルアセタールは、アセタール化度が50~85モル%、ビニルエステル単量体単位の含有量が0.1~20モル%、粘度平均重合度が200~5000であるポリビニルアセタールであって、230℃において3時間加熱された前記ポリビニルアセタールをGPC測定したときの、示差屈折率検出器で測定されるピーク分子量(A)と、吸光光度検出器(測定波長280nm)で測定されるピーク分子量(B)が下記式(1)
(A-B)/A<0.60   (1)
を満たし、かつピーク分子量(B)における吸光度が0.50×10-3~1.00×10-2となるものである。
The polyvinyl acetal of the present invention is a polyvinyl acetal having an acetalization degree of 50 to 85 mol%, a vinyl ester monomer unit content of 0.1 to 20 mol%, and a viscosity average polymerization degree of 200 to 5000. When the polyvinyl acetal heated at 230 ° C. for 3 hours is measured by GPC, the peak molecular weight (A) measured with a differential refractive index detector and the peak molecular weight measured with an absorptiometric detector (measurement wavelength 280 nm) (B) is the following formula (1)
(AB) / A <0.60 (1)
And the absorbance at the peak molecular weight (B) is 0.50 × 10 −3 to 1.00 × 10 −2 .
 ただし、前記GPC測定において、
移動相:20mmol/lトリフルオロ酢酸ナトリウム含有HFIP
試料濃度:1.00mg/ml
試料注入量:100μl
カラム:昭和電工株式会社製「GPC HFIP-806M」
カラム温度:40℃
流速:1ml/分
吸光光度検出器のセル長:10mm
である。
However, in the GPC measurement,
Mobile phase: HFIP containing 20 mmol / l sodium trifluoroacetate
Sample concentration: 1.00 mg / ml
Sample injection volume: 100 μl
Column: Showa Denko "GPC HFIP-806M"
Column temperature: 40 ° C
Flow rate: 1 ml / min Absorbance detector cell length: 10 mm
It is.
 本発明におけるGPC測定では、示差屈折率検出器及び吸光光度検出器を有し、これらの検出器による測定を同時に行うことができるGPC装置を使用する。吸光光度検出器としては、波長280nmにおける吸光度を測定できるものである必要があり、波長280nmにおける吸光度と波長320nmにおける吸光度とを同時に測定できるものが好ましい。吸光光度検出器の検出部のセルには、セル長(光路長)が10mmのものを使用する。吸光光度検出器は、特定波長の紫外光の吸収を測定するものでもよいし、特定範囲の波長の紫外光の吸収を分光測定するものでもよい。測定に供されたポリビニルアセタールは、GPCカラムによって各分子量成分に分離される。示差屈折率検出器によるシグナル強度は、概ねポリビニルアセタールの濃度(mg/ml)に比例する。一方、吸光光度検出器により検出されるポリビニルアセタールは、所定の波長に吸収を有するもののみである。前記GPC測定により、ポリビニルアセタールの各分子量成分ごとの、濃度および所定の波長における吸光度を測定することができる。 In the GPC measurement in the present invention, a GPC apparatus having a differential refractive index detector and an absorptiometric detector and capable of simultaneously performing measurement by these detectors is used. The absorptiometric detector needs to be capable of measuring absorbance at a wavelength of 280 nm, and preferably is capable of simultaneously measuring absorbance at a wavelength of 280 nm and absorbance at a wavelength of 320 nm. A cell having a cell length (optical path length) of 10 mm is used as the cell of the detection unit of the absorptiometer. The absorptiometric detector may measure the absorption of ultraviolet light having a specific wavelength, or may measure the absorption of ultraviolet light having a specific range of wavelengths. The polyvinyl acetal subjected to the measurement is separated into each molecular weight component by a GPC column. The signal intensity by the differential refractive index detector is approximately proportional to the polyvinyl acetal concentration (mg / ml). On the other hand, polyvinyl acetal detected by an absorptiometric detector is only one having absorption at a predetermined wavelength. By the GPC measurement, it is possible to measure the concentration and absorbance at a predetermined wavelength for each molecular weight component of polyvinyl acetal.
 前記GPC測定において測定されるポリビニルアセタールの溶解に用いる溶媒及び移動相として、20mmol/lの濃度でトリフルオロ酢酸ナトリウムを含有するHFIPを用いる。HFIPは、ポリビニルアセタール及びポリメタクリル酸メチル(以下、PMMAと略記する)を溶解させることができる。また、トリフルオロ酢酸ナトリウムを添加することにより、カラム充填剤へのポリビニルアセタールの吸着が防止される。前記GPC測定における流速は1ml/分、カラム温度は40℃とする。 HFIP containing sodium trifluoroacetate at a concentration of 20 mmol / l is used as the solvent and mobile phase used for dissolving the polyvinyl acetal measured in the GPC measurement. HFIP can dissolve polyvinyl acetal and polymethyl methacrylate (hereinafter abbreviated as PMMA). Further, by adding sodium trifluoroacetate, adsorption of polyvinyl acetal to the column filler is prevented. The flow rate in the GPC measurement is 1 ml / min, and the column temperature is 40 ° C.
 前記GPC測定において、標品として単分散のPMMA(以下、標準PMMAと称する)を用いる。分子量の異なる数種類の標準PMMAを測定し、GPC溶出容量と標準PMMAの分子量から検量線を作成する。本発明においては、示差屈折率検出器による測定には当該検出器を用いて作成した検量線を使用し、吸光光度検出器による測定には当該検出器を用いて作成した検量線を使用する。これらの検量線を用いてGPC溶出容量から分子量に換算し、ピークトップ分子量(A)及びピークトップ分子量(B)を求める。 In the GPC measurement, monodisperse PMMA (hereinafter referred to as standard PMMA) is used as a standard. Several types of standard PMMA with different molecular weights are measured, and a calibration curve is created from the GPC elution volume and the molecular weight of the standard PMMA. In the present invention, a calibration curve created using the detector is used for measurement by the differential refractive index detector, and a calibration curve created using the detector is used for measurement by the absorptiometric detector. Using these calibration curves, the GPC elution volume is converted into the molecular weight, and the peak top molecular weight (A) and the peak top molecular weight (B) are determined.
 前記GPC測定の前に、ポリビニルアセタールを230℃において3時間加熱する。本発明においては、以下の方法でポリビニルアセタールを加熱する。加熱処理後の試料の色相の差異を吸光度の差異に明確に反映させるために、ポリビニルアセタールの粉末を圧力2MPa、230℃にて、3時間熱プレスすることにより、加熱されたポリビニルアセタール(フィルム)を得る。このときのフィルムの厚みは、600~800μmであり、通常の合わせガラス中間膜の厚みである概ね760μmであることが好ましい。 Before the GPC measurement, the polyvinyl acetal is heated at 230 ° C. for 3 hours. In the present invention, polyvinyl acetal is heated by the following method. In order to clearly reflect the difference in hue of the sample after the heat treatment in the difference in absorbance, the polyvinyl acetal (film) heated by pressing the polyvinyl acetal powder at 2 MPa and 230 ° C. for 3 hours. Get. The thickness of the film at this time is 600 to 800 μm, and is preferably about 760 μm, which is the thickness of a normal laminated glass interlayer film.
 加熱されたポリビニルアセタールを前述した溶媒に溶解させて測定試料を得る。測定試料のポリビニルアセタールの濃度は1.00mg/mlとし、注入量は100μlとする。但し、ポリビニルアセタールの粘度平均重合度が2400を超える場合、排除体積が増大するため、ポリビニルアセタールの濃度が1.00mg/mlでは再現性良く測定できない場合がある。その場合には、適宜希釈した試料(注入量100μl)を用いる。吸光度はポリビニルアセタールの濃度に比例する。したがって、希釈した試料の濃度と実測された吸光度を用いて、ポリビニルアセタール濃度が1.00mg/mlの場合の吸光度を求める。 * A heated polyvinyl acetal is dissolved in the above-mentioned solvent to obtain a measurement sample. The concentration of polyvinyl acetal in the measurement sample is 1.00 mg / ml, and the injection volume is 100 μl. However, when the viscosity average polymerization degree of the polyvinyl acetal exceeds 2400, the excluded volume increases, and therefore the polyvinyl acetal concentration may not be measured with good reproducibility at a concentration of 1.00 mg / ml. In that case, an appropriately diluted sample (injection amount 100 μl) is used. Absorbance is proportional to the concentration of polyvinyl acetal. Therefore, the absorbance when the polyvinyl acetal concentration is 1.00 mg / ml is determined using the concentration of the diluted sample and the actually measured absorbance.
 図1は、後述する本発明の実施例において、ポリビニルアセタールをGPC測定して得られた、分子量と示差屈折率検出器で測定された値との関係、及び分子量と吸光光度検出器(測定波長280nm)で測定された吸光度との関係を示したグラフである。図1を用いて本発明におけるGPC測定についてさらに説明する。図1において、「RI」で示されるクロマトグラムは、溶出容量から換算したポリビニルアセタールの分子量(横軸)に対して、示差屈折率検出器で測定された値をプロットしたものである。本発明において当該クロマトグラム中のピークの位置における分子量をピークトップ分子量(A)とする。なお、クロマトグラム中に複数のピークが存在する場合には、ピーク高さが最も高いピークの位置における分子量をピークトップ分子量(A)とする。 FIG. 1 shows the relationship between the molecular weight obtained by GPC measurement of polyvinyl acetal and the value measured by the differential refractive index detector, and the molecular weight and the absorptiometric detector (measurement wavelength). It is the graph which showed the relationship with the light absorbency measured by 280 nm. The GPC measurement in the present invention will be further described with reference to FIG. In FIG. 1, the chromatogram represented by “RI” is a plot of values measured by a differential refractive index detector against the molecular weight (horizontal axis) of polyvinyl acetal converted from the elution volume. In the present invention, the molecular weight at the peak position in the chromatogram is defined as peak top molecular weight (A). When there are a plurality of peaks in the chromatogram, the molecular weight at the peak position where the peak height is the highest is the peak top molecular weight (A).
 図1において、「UV」で示されるクロマトグラムは、溶出容量から換算したポリビニルアセタールの分子量(横軸)に対して、吸光光度検出器(測定波長280nm)で測定された吸光度をプロットしたものである。本発明において当該クロマトグラム中のピークの位置における分子量をピークトップ分子量(B)とする。なお、クロマトグラム中に複数のピークが存在する場合には、ピーク高さが最も高いピークの位置における分子量をピークトップ分子量(B)とする。 In FIG. 1, the chromatogram indicated by “UV” is a plot of the absorbance measured with an absorptiometric detector (measurement wavelength 280 nm) against the molecular weight (horizontal axis) of polyvinyl acetal converted from the elution volume. is there. In the present invention, the molecular weight at the peak position in the chromatogram is defined as peak top molecular weight (B). When there are a plurality of peaks in the chromatogram, the molecular weight at the peak position where the peak height is the highest is the peak top molecular weight (B).
 本発明のポリビニルアセタールは、上述した方法によりGPC測定されたときの、示差屈折率検出器で測定されるピークトップ分子量(A)と、吸光光度検出器(測定波長280nm)で測定されるピークトップ分子量(B)が下記式(1)を満たす。
(A-B)/A<0.60   (1)
The polyvinyl acetal of the present invention has a peak top molecular weight (A) measured with a differential refractive index detector and a peak top measured with an absorptiometric detector (measurement wavelength 280 nm) when GPC measurement is performed by the above-described method. The molecular weight (B) satisfies the following formula (1).
(AB) / A <0.60 (1)
 ピークトップ分子量(A)は、ポリビニルアセタールの分子量の指標となる値である。一方、ピークトップ分子量(B)は、ポリビニルアセタール中に存在する、280nmに吸収を有する成分に由来する。通常、ピークトップ分子量(B)よりもピークトップ分子量(A)のほうが大きいため、(A-B)/Aは正の値になる。ピークトップ分子量(B)が大きくなれば、(A-B)/Aは小さくなり、ピークトップ分子量(B)が小さくなれば、(A-B)/Aは大きくなる。すなわち、(A-B)/Aが大きい場合には、ポリビニルアセタール中の低分子量成分に波長280nmの紫外線を吸収する成分が多いことを意味する。 The peak top molecular weight (A) is a value that serves as an index of the molecular weight of polyvinyl acetal. On the other hand, the peak top molecular weight (B) is derived from a component present in polyvinyl acetal and having absorption at 280 nm. Usually, since the peak top molecular weight (A) is larger than the peak top molecular weight (B), (AB) / A becomes a positive value. As the peak top molecular weight (B) increases, (AB) / A decreases, and as the peak top molecular weight (B) decreases, (AB) / A increases. That is, when (AB) / A is large, it means that there are many components that absorb ultraviolet rays having a wavelength of 280 nm in the low molecular weight components in the polyvinyl acetal.
 (A-B)/Aが0.60以上の場合、上述の通り、低分子量成分に波長280nmの紫外線を吸収する成分が多くなる。この場合には、得られるポリビニルアセタールの着色及びポリビニルアセタールを用いて製造されるフィルム中の異物(未溶解分)について、バランスよく改善させることが難しい。そのため、フィルム(トリム等)の再利用に支障をきたす。(A-B)/Aは、好ましくは0.55未満であり、より好ましくは0.50未満である。 When (A−B) / A is 0.60 or more, as described above, the low molecular weight component contains more components that absorb ultraviolet light having a wavelength of 280 nm. In this case, it is difficult to improve the coloring of the obtained polyvinyl acetal and the foreign matter (undissolved content) in the film produced using the polyvinyl acetal in a well-balanced manner. Therefore, the reuse of film (trim etc.) is hindered. (AB) / A is preferably less than 0.55, more preferably less than 0.50.
 本発明のポリビニルアセタールは、上述した方法によりGPC測定されたときの、ピークトップ分子量(B)における吸光度(測定波長280nm)が0.50×10-3~1.00×10-2となる必要がある。前記吸光度が0.50×10-3未満の場合には、ポリビニルアセタールを用いて製造されるフィルム中の異物(未溶解分)が増加する。一方、前記吸光度が1.00×10-2を超える場合には、得られるポリビニルアセタールやそれを用いて製造されるフィルムが着色する。前記吸光度は1.00×10-3~8.00×10-3が好ましく、1.50×10-3~6.50×10-3がより好ましい。 The polyvinyl acetal of the present invention must have an absorbance (measurement wavelength of 280 nm) at a peak top molecular weight (B) of 0.50 × 10 −3 to 1.00 × 10 −2 when GPC measurement is performed by the above-described method. There is. When the absorbance is less than 0.50 × 10 −3 , foreign matter (undissolved content) in the film produced using polyvinyl acetal increases. On the other hand, when the absorbance exceeds 1.00 × 10 −2 , the resulting polyvinyl acetal and a film produced using the same are colored. The absorbance is preferably 1.00 × 10 −3 to 8.00 × 10 −3, and more preferably 1.50 × 10 −3 to 6.50 × 10 −3 .
 得られるポリビニルアセタールの着色の抑制およびポリビニルアセタールを用いて製造されるフィルム中の異物(未溶解分)の低減のバランスに優れる観点からは、前記GPC測定における、示差屈折率検出器で測定されるピークトップ分子量(A)と、吸光光度検出器(測定波長320nm)で測定されるピークトップ分子量(C)が下記式(2)
(A-C)/A<0.65   (2)
を満たすことが好ましい。
From the viewpoint of excellent balance of suppression of coloring of the obtained polyvinyl acetal and reduction of foreign matter (undissolved content) in the film produced using the polyvinyl acetal, it is measured by a differential refractive index detector in the GPC measurement. The peak top molecular weight (A) and the peak top molecular weight (C) measured by an absorptiometric detector (measurement wavelength: 320 nm) are expressed by the following formula (2).
(AC) / A <0.65 (2)
It is preferable to satisfy.
 ピークトップ分子量(C)は、吸光光度検出器における測定波長が320nmであること以外はピークトップ分子量(B)と同様にして測定される。ピークトップ分子量(C)は、ポリビニルアセタール中に存在する、320nmに吸収を有する成分に由来する。通常、ピークトップ分子量(C)よりもピークトップ分子量(A)のほうが大きいため、(A-C)/Aは正の値になる。ピークトップ分子量(C)が大きくなれば、(A-C)/Aは小さくなり、ピークトップ分子量(C)が小さくなれば、(A-C)/Aは大きくなる。すなわち、(A-C)/Aが大きい場合には、ポリビニルアセタール中の低分子量成分に320nm波長の紫外線を吸収する成分が多いことを意味する。 The peak top molecular weight (C) is measured in the same manner as the peak top molecular weight (B) except that the measurement wavelength in the absorptiometric detector is 320 nm. A peak top molecular weight (C) originates in the component which has absorption in 320 nm which exists in polyvinyl acetal. Usually, since the peak top molecular weight (A) is larger than the peak top molecular weight (C), (AC) / A becomes a positive value. As the peak top molecular weight (C) increases, (AC) / A decreases, and as the peak top molecular weight (C) decreases, (AC) / A increases. That is, when (AC) / A is large, it means that the low molecular weight component in the polyvinyl acetal contains many components that absorb ultraviolet light having a wavelength of 320 nm.
 (A-C)/Aが0.65以上の場合、上述の通り、低分子量成分に波長320nmの紫外線を吸収する成分が多くなる。この場合、得られるポリビニルアセタールの着色の抑制およびポリビニルアセタールを用いて製造されるフィルム中の異物(未溶解分)の低減のバランスが取れないおそれがある。(A-C)/Aは、より好ましくは0.60未満であり、さらに好ましくは0.55未満である。 When (AC) / A is 0.65 or more, as described above, the low molecular weight component contains more components that absorb ultraviolet light having a wavelength of 320 nm. In this case, there is a possibility that balance between suppression of coloring of the obtained polyvinyl acetal and reduction of foreign matters (undissolved content) in a film produced using the polyvinyl acetal cannot be achieved. (AC) / A is more preferably less than 0.60, and still more preferably less than 0.55.
 本発明のポリビニルアセタールは、上述した方法によりGPC測定されたときの、ピークトップ分子量(C)における吸光度(測定波長320nm)が0.35×10-3~4.50×10-3であることが好ましい。前記吸光度が0.35×10-3未満の場合には、ポリビニルアセタールを用いて製造されるフィルム中の異物(未溶解分)が増加するおそれがある。一方、前記吸光度が4.50×10-3を超える場合には得られるポリビニルアセタールやそれを用いて製造されるフィルムが着色し易くなるおそれがある。前記吸光度は0.50×10-3~3.50×10-3がより好ましく、1.00×10-3~2.50×10-3がさらに好ましい。 The polyvinyl acetal of the present invention has an absorbance (measurement wavelength of 320 nm) at a peak top molecular weight (C) of 0.35 × 10 −3 to 4.50 × 10 −3 when GPC measurement is performed by the method described above. Is preferred. When the absorbance is less than 0.35 × 10 −3 , foreign matter (undissolved content) in the film produced using polyvinyl acetal may increase. On the other hand, when the absorbance exceeds 4.50 × 10 −3 , the resulting polyvinyl acetal and a film produced using the same may be easily colored. The absorbance is more preferably 0.50 × 10 −3 to 3.50 × 10 −3 , and further preferably 1.00 × 10 −3 to 2.50 × 10 −3 .
 また、本発明のポリビニルアセタールは、前記GPC測定における、示差屈折率検出器によって求められる、前記ポリビニルアセタールの数平均分子量Mnに対する重量平均分子量Mwの比Mw/Mnが2.8~12.0であることが好ましい。Mw及びMnは、前述したポリビニルアセタールの分子量に対して、示差屈折率検出器で測定された値をプロットして得たクロマトグラムから求められる。本発明におけるMw及びMnは、PMMA換算の値である。 In the polyvinyl acetal of the present invention, the ratio Mw / Mn of the weight average molecular weight Mw to the number average molecular weight Mn of the polyvinyl acetal obtained by a differential refractive index detector in the GPC measurement is 2.8 to 12.0. Preferably there is. Mw and Mn are determined from the chromatogram obtained by plotting the values measured by the differential refractive index detector with respect to the molecular weight of the polyvinyl acetal described above. Mw and Mn in the present invention are values in terms of PMMA.
 一般にMnは低分子量成分の影響を強く受ける平均分子量であり、Mwは高分子量成分の影響を強く受ける平均分子量である。Mw/Mnは高分子の分子量分布の指標として一般的に用いられている。Mw/Mnが小さい場合は、低分子量成分の割合が小さい高分子であることを示し、Mw/Mnが大きい場合には、低分子量成分の割合が大きい高分子であることを示す。 Generally, Mn is an average molecular weight that is strongly influenced by a low molecular weight component, and Mw is an average molecular weight that is strongly influenced by a high molecular weight component. Mw / Mn is generally used as an index of molecular weight distribution of a polymer. When Mw / Mn is small, it indicates that the polymer has a small proportion of low molecular weight component, and when Mw / Mn is large, it indicates that the polymer has a large proportion of low molecular weight component.
 したがって、本発明において、Mw/Mnが2.8未満の場合、ポリビニルアセタールにおいて、低分子量成分の割合が小さいことを示す。Mw/Mnが2.8未満の場合、ポリビニルアセタールを用いて製造されるフィルム中の異物(未溶解分)が増加するおそれがある。Mw/Mnが2.9以上であることがより好ましく、3.1以上であることがさらに好ましい。一方、Mw/Mnが12.0を超える場合、ポリビニルアセタールにおいて、低分子量成分の割合が大きいことを示す。Mw/Mnが12.0を超える場合、得られるポリビニルアセタールやそれを用いて製造されるフィルムが着色し易くなるおそれがある。Mw/Mnが11.0以下であることがより好ましく、8.0以下であることがさらに好ましい。 Therefore, in the present invention, when Mw / Mn is less than 2.8, it indicates that the proportion of the low molecular weight component is small in the polyvinyl acetal. When Mw / Mn is less than 2.8, foreign matter (undissolved content) in the film produced using polyvinyl acetal may increase. Mw / Mn is more preferably 2.9 or more, and further preferably 3.1 or more. On the other hand, when Mw / Mn exceeds 12.0, it shows that the ratio of a low molecular weight component is large in polyvinyl acetal. When Mw / Mn exceeds 12.0, the obtained polyvinyl acetal or a film produced using the same may be easily colored. Mw / Mn is more preferably 11.0 or less, and even more preferably 8.0 or less.
 本発明のポリビニルアセタールのアセタール化度は40~90モル%であり、好ましくは50~85モル%であり、より好ましくは55~82モル%、さらに好ましくは60~78モル%、特に好ましくは65~75モル%である。アセタール化度が40モル%未満である場合、可塑剤などとの相溶性が低下する。また、ポリビニルアセタールを用いて製造されるフィルム中の異物(未溶解分)が増加するおそれがある。一方、アセタール化度が90モル%を超える場合には、アセタール化反応の効率が著しく低下する。また、得られるポリビニルアセタールやそれを用いて製造されるフィルムが着色しやすくなるおそれがある。 The degree of acetalization of the polyvinyl acetal of the present invention is 40 to 90 mol%, preferably 50 to 85 mol%, more preferably 55 to 82 mol%, still more preferably 60 to 78 mol%, particularly preferably 65. ~ 75 mol%. When the degree of acetalization is less than 40 mol%, the compatibility with a plasticizer or the like decreases. Moreover, there exists a possibility that the foreign material (undissolved part) in the film manufactured using polyvinyl acetal may increase. On the other hand, when the degree of acetalization exceeds 90 mol%, the efficiency of the acetalization reaction is significantly reduced. Moreover, there exists a possibility that the polyvinyl acetal obtained and the film manufactured using it may become colored easily.
 なお、アセタール化度はポリビニルアセタールを構成する全単量体単位に対する、アセタール化されたビニルアルコール単量体単位の割合を表す。原料のPVA中のビニルアルコール単量体単位のうち、アセタール化されなかったものは、得られるポリビニルアセタール中において、ビニルアルコール単量体単位として残存する。 The degree of acetalization represents the ratio of the acetalized vinyl alcohol monomer unit to the total monomer units constituting the polyvinyl acetal. Among the vinyl alcohol monomer units in the raw material PVA, those that are not acetalized remain in the resulting polyvinyl acetal as vinyl alcohol monomer units.
 本発明のポリビニルアセタールの粘度平均重合度は、JIS-K6726に準じて測定される原料のPVAの粘度平均重合度で表される。すなわち、PVAをけん化度99.5モル%以上に再けん化し、精製した後、30℃の水中で測定した極限粘度[η]から次式により求めることができる。PVAの粘度平均重合度と、それをアセタール化して得られるポリビニルアセタールの粘度平均重合度とは、実質的に同じである。
  P=([η]×10000/8.29)(1/0.62)
The viscosity average polymerization degree of the polyvinyl acetal of the present invention is represented by the viscosity average polymerization degree of the raw material PVA measured according to JIS-K6726. That is, after re-saponifying and purifying PVA to a saponification degree of 99.5 mol% or more, it can be obtained from the intrinsic viscosity [η] measured in water at 30 ° C. by the following equation. The viscosity average polymerization degree of PVA and the viscosity average polymerization degree of polyvinyl acetal obtained by acetalizing it are substantially the same.
P = ([η] × 10000 / 8.29) (1 / 0.62)
 本発明のポリビニルアセタールの粘度平均重合度は200~5000である。粘度平均重合度が200に満たない場合には、ポリビニルアセタールの実用的な強度が得られない。したがって、ポリビニルアセタールを用いて製造されるフィルムの強度が不足する。また、そのようなポリビニルアセタールの製造に使用されるPVAを工業的に製造するのが困難になる。粘度平均重合度は、250以上が好ましく、300以上がより好ましく、400以上がさらに好ましい。一方、粘度平均重合度が5000を超える場合、溶融粘度が高くなりすぎて成形が困難になる。粘度平均重合度は、4500以下が好ましく、4000以下がより好ましく、3500以下がさらに好ましい。 The viscosity average polymerization degree of the polyvinyl acetal of the present invention is 200 to 5,000. When the viscosity average degree of polymerization is less than 200, practical strength of polyvinyl acetal cannot be obtained. Therefore, the strength of the film produced using polyvinyl acetal is insufficient. Moreover, it becomes difficult to industrially manufacture PVA used for manufacture of such a polyvinyl acetal. The viscosity average degree of polymerization is preferably 250 or more, more preferably 300 or more, and still more preferably 400 or more. On the other hand, when the viscosity average degree of polymerization exceeds 5000, the melt viscosity becomes too high and molding becomes difficult. The viscosity average degree of polymerization is preferably 4500 or less, more preferably 4000 or less, and further preferably 3500 or less.
 本発明のポリビニルアセタールを合わせガラス中間膜に用いる場合には、その粘度平均重合度は500~5000が好ましく、800~3500がより好ましく、1000~2500が更に好ましい。重合度が500に満たない場合には合わせガラス用中間膜として十分な強度が得られないおそれがある。一方、粘度平均重合度が5000を超える場合には溶融粘度が高くなりすぎて製膜が困難になる。 When the polyvinyl acetal of the present invention is used for a laminated glass interlayer film, the viscosity average polymerization degree is preferably 500 to 5000, more preferably 800 to 3500, and further preferably 1000 to 2500. When the degree of polymerization is less than 500, there is a possibility that sufficient strength as an interlayer film for laminated glass cannot be obtained. On the other hand, when the viscosity average polymerization degree exceeds 5000, the melt viscosity becomes too high and film formation becomes difficult.
 本発明のポリビニルアセタールのビニルエステル単量体単位の含有量は0.1~20モル%であり、好ましくは0.3~18モル%であり、より好ましくは0.5~15モル%であり、更に好ましくは0.7~13モル%である。ビニルエステル単量体単位の含有量が0.1モル%に満たない場合、ポリビニルアセタールを安定に製造することができず、製膜できない。一方、ビニルエステル単量体単位の含有量が20モル%を超える場合には、得られるポリビニルアセタールやそれを用いて製造されるフィルムが着色しやすくなるおそれがある。 The content of the vinyl ester monomer unit of the polyvinyl acetal of the present invention is 0.1 to 20 mol%, preferably 0.3 to 18 mol%, more preferably 0.5 to 15 mol%. More preferably, it is 0.7 to 13 mol%. When the content of the vinyl ester monomer unit is less than 0.1 mol%, the polyvinyl acetal cannot be stably produced and the film cannot be formed. On the other hand, when the content of the vinyl ester monomer unit exceeds 20 mol%, the obtained polyvinyl acetal and a film produced using the polyvinyl acetal may be easily colored.
 本発明のポリビニルアセタール中の、アセタール化された単量体単位、ビニルエステル単量体単位及びビニルアルコール単量体単位以外の単量体単位の含有量は、好ましくは20モル%以下、より好ましくは10モル%以下である。 The content of monomer units other than acetalized monomer units, vinyl ester monomer units and vinyl alcohol monomer units in the polyvinyl acetal of the present invention is preferably 20 mol% or less, more preferably Is 10 mol% or less.
 本発明のポリビニルアセタールは、通常、PVAをアセタール化することにより製造する。 The polyvinyl acetal of the present invention is usually produced by acetalizing PVA.
 原料PVAのけん化度は80~99.99モル%が好ましく、より好ましくは82~99.7モル%であり、さらに好ましくは85~99.5モル%であり、最も好ましくは87~99.3モル%である。けん化度が80モル%に満たない場合、ポリビニルアセタールを用いて製造されるフィルム中の異物(未溶解分)が増加するおそれや、得られるポリビニルアセタールやそれを用いて製造されるフィルムが着色し易くなるおそれがある。一方、けん化度が99.9モル%を超える場合、PVAを安定に製造することができない場合がある。PVAのけん化度はJIS-K6726に準じて測定される。 The saponification degree of the raw material PVA is preferably 80 to 99.99 mol%, more preferably 82 to 99.7 mol%, still more preferably 85 to 99.5 mol%, and most preferably 87 to 99.3 mol%. Mol%. If the degree of saponification is less than 80 mol%, there is a risk that foreign matter (undissolved content) in the film produced using polyvinyl acetal will increase, and the resulting polyvinyl acetal and the film produced using it will be colored. May be easier. On the other hand, when the degree of saponification exceeds 99.9 mol%, PVA may not be produced stably. The degree of saponification of PVA is measured according to JIS-K6726.
 原料PVAの製造に用いられるビニルエステルモノマーとしては、例えば、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、ピバリン酸ビニルおよびバーサティック酸ビニル等が挙げられ、とりわけ酢酸ビニルが好ましい。 Examples of vinyl ester monomers used for the production of raw material PVA include vinyl formate, vinyl acetate, vinyl propionate, vinyl valelate, vinyl caprate, vinyl laurate, vinyl stearate, vinyl benzoate, vinyl pivalate, and versa. Examples thereof include vinyl tick acid, and vinyl acetate is particularly preferable.
 また、原料PVAは、ビニルエステルモノマーを2-メルカプトエタノール、n-ドデシルメルカプタン、メルカプト酢酸、3-メルカプトプロピオン酸などのチオール化合物の存在下で重合させ、得られるポリビニルエステルをけん化することによっても製造することもできる。この方法により、チオール化合物に由来する官能基が末端に導入されたPVAが得られる。 The raw material PVA can also be produced by polymerizing vinyl ester monomers in the presence of thiol compounds such as 2-mercaptoethanol, n-dodecyl mercaptan, mercaptoacetic acid, 3-mercaptopropionic acid, and saponifying the resulting polyvinyl ester. You can also By this method, PVA in which a functional group derived from a thiol compound is introduced at the terminal is obtained.
 ビニルエステルモノマーを重合する方法としては、塊状重合法、溶液重合法、懸濁重合法、乳化重合法などの公知の方法が挙げられる。その方法の中でも、無溶媒で行う塊状重合法またはアルコールなどの溶媒を用いて行う溶液重合法が通常採用される。本発明の効果を高める点では、低級アルコールと共に重合する溶液重合法が好ましい。低級アルコールとしては、特に限定はされないが、メタノール、エタノール、プロパノール、イソプロパノールなど炭素数3以下のアルコールが好ましく、通常、メタノールが用いられる。塊状重合法や溶液重合法で重合反応を行うにあたって、反応の方式は回分式および連続式のいずれの方式にても実施可能である。重合反応に使用される開始剤としては、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチル-バレロニトリル)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)などのアゾ系開始剤;過酸化ベンゾイル、n-プロピルパーオキシカーボネート、パーオキシジカーボネートなどの有機過酸化物系開始剤など本発明の効果を損なわない範囲で公知の開始剤が挙げられるが、特に、60℃での半減期が10~110分の有機化酸化物系開始剤が好ましく、中でもパーオキシジカーボネートを用いることが好ましい。重合反応を行う際の重合温度については特に制限はないが、5℃~200℃の範囲が適当である。 Examples of the method for polymerizing the vinyl ester monomer include known methods such as a bulk polymerization method, a solution polymerization method, a suspension polymerization method, and an emulsion polymerization method. Among the methods, a bulk polymerization method performed without a solvent or a solution polymerization method performed using a solvent such as alcohol is usually employed. In terms of enhancing the effect of the present invention, a solution polymerization method in which polymerization is performed together with a lower alcohol is preferable. The lower alcohol is not particularly limited, but an alcohol having 3 or less carbon atoms such as methanol, ethanol, propanol and isopropanol is preferable, and methanol is usually used. When performing the polymerization reaction by the bulk polymerization method or the solution polymerization method, the reaction can be carried out by either a batch method or a continuous method. Examples of the initiator used in the polymerization reaction include 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethyl-valeronitrile), 2,2′-azobis (4-methoxy). Azo initiators such as -2,4-dimethylvaleronitrile); organic peroxide initiators such as benzoyl peroxide, n-propyl peroxycarbonate, peroxydicarbonate, etc., within a range that does not impair the effects of the present invention. Known initiators may be mentioned, and organic oxide-based initiators having a half-life of 10 to 110 minutes at 60 ° C. are particularly preferable, and peroxydicarbonate is particularly preferable. There is no particular limitation on the polymerization temperature for carrying out the polymerization reaction, but a range of 5 ° C to 200 ° C is suitable.
 ビニルエステル系単量体をラジカル重合させる際には、本発明の効果が損なわれない範囲であれば、必要に応じて、共重合可能な単量体を共重合させることができる。このような単量体としては、エチレン、プロピレン、1-ブテン、イソブテン、1-ヘキセン等のα-オレフィン類;フマール酸、マレイン酸、イタコン酸、無水マレイン酸、無水イタコン酸等のカルボン酸またはその誘導体;アクリル酸またはその塩;アクリル酸メチル、アクリル酸エチル、アクリル酸n-プロピル、アクリル酸イソプロピル等のアクリル酸エステル類;メタクリル酸またはその塩;メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-プロピル、メタクリル酸イソプロピル等のメタクリル酸エステル類;アクリルアミド、N-メチルアクリルアミド、N-エチルアクリルアミド等のアクリルアミド誘導体;メタクリルアミド、N-メチルメタクリルアミド、N-エチルメタクリルアミド等のメタクリルアミド誘導体;メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、イソプロピルビニルエーテル、n-ブチルビニルエーテル等のビニルエーテル類;エチレングリコールビニルエーテル、1,3-プロパンジオールビニルエーテル、1,4-ブタンジオールビニルエーテル等のヒドロキシ基含有ビニルエーテル類;アリルアセテート、プロピルアリルエーテル、ブチルアリルエーテル、ヘキシルアリルエーテル等のアリルエーテル類;オキシアルキレン基を有する単量体;酢酸イソプロペニル、3-ブテン-1-オール、4-ペンテン-1-オール、5-ヘキセン-1-オール、7-オクテン-1-オール、9-デセン-1-オール、3-メチル-3-ブテン-1-オール等のヒドロキシ基含有α-オレフィン類;エチレンスルホン酸、アリルスルホン酸、メタリルスルホン酸、2-アクリルアミド-2-メチルプロパンスルホン酸等のスルホン酸基を有する単量体;ビニロキシエチルトリメチルアンモニウムクロライド、ビニロキシブチルトリメチルアンモニウムクロライド、ビニロキシエチルジメチルアミン、ビニロキシメチルジエチルアミン、N-アクリルアミドメチルトリメチルアンモニウムクロライド、N-アクリルアミドエチルトリメチルアンモニウムクロライド、N-アクリルアミドジメチルアミン、アリルトリメチルアンモニウムクロライド、メタリルトリメチルアンモニウムクロライド、ジメチルアリルアミン、アリルエチルアミン等のカチオン基を有する単量体;ビニルトリメトキシシラン、ビニルメチルジメトキシシラン、ビニルジメチルメトキシシラン、ビニルトリエトキシシラン、ビニルメチルジエトキシシラン、ビニルジメチルエトキシシラン、3-(メタ)アクリルアミド-プロピルトリメトキシシラン、3-(メタ)アクリルアミド-プロピルトリエトキシシラン等のシリル基を有する単量体などが挙げられる。これらのビニルエステル系単量体と共重合可能な単量体の使用量は、その使用される目的および用途等によっても異なるが、通常、共重合に用いられる全ての単量体を基準にした割合で20モル%以下、好ましくは10モル%以下である。 When the vinyl ester monomer is radically polymerized, a copolymerizable monomer can be copolymerized as necessary as long as the effects of the present invention are not impaired. Examples of such a monomer include α-olefins such as ethylene, propylene, 1-butene, isobutene, and 1-hexene; carboxylic acids such as fumaric acid, maleic acid, itaconic acid, maleic anhydride, and itaconic anhydride; Derivatives thereof; acrylic acid or salts thereof; acrylic acid esters such as methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate; methacrylic acid or salts thereof; methyl methacrylate, ethyl methacrylate, n methacrylate Methacrylic acid esters such as propyl and isopropyl methacrylate; Acrylamide derivatives such as acrylamide, N-methylacrylamide and N-ethylacrylamide; and methacrylamide derivatives such as methacrylamide, N-methylmethacrylamide and N-ethylmethacrylamide Body; vinyl ethers such as methyl vinyl ether, ethyl vinyl ether, n-propyl vinyl ether, isopropyl vinyl ether, n-butyl vinyl ether; hydroxy group-containing vinyl ethers such as ethylene glycol vinyl ether, 1,3-propanediol vinyl ether, 1,4-butanediol vinyl ether Allyl ethers such as allyl acetate, propyl allyl ether, butyl allyl ether, hexyl allyl ether; monomers having an oxyalkylene group; isopropenyl acetate, 3-buten-1-ol, 4-penten-1-ol Hydroxy-containing α-olefins such as 5-hexen-1-ol, 7-octen-1-ol, 9-decen-1-ol, 3-methyl-3-buten-1-ol; Monomers having a sulfonic acid group such as sulfonic acid, allylsulfonic acid, methallylsulfonic acid, 2-acrylamido-2-methylpropanesulfonic acid; vinyloxyethyltrimethylammonium chloride, vinyloxybutyltrimethylammonium chloride, vinyloxyethyl Cationic groups such as dimethylamine, vinyloxymethyldiethylamine, N-acrylamidomethyltrimethylammonium chloride, N-acrylamidoethyltrimethylammonium chloride, N-acrylamidodimethylamine, allyltrimethylammonium chloride, methallyltrimethylammonium chloride, dimethylallylamine, allylethylamine Monomers having vinyl; vinyltrimethoxysilane, vinylmethyldimethoxysilane, vinyldimethyl Monomers having a silyl group such as toxisilane, vinyltriethoxysilane, vinylmethyldiethoxysilane, vinyldimethylethoxysilane, 3- (meth) acrylamide-propyltrimethoxysilane, 3- (meth) acrylamide-propyltriethoxysilane Etc. The amount of monomers that can be copolymerized with these vinyl ester monomers varies depending on the purpose and application of use, but is usually based on all monomers used for copolymerization. The ratio is 20 mol% or less, preferably 10 mol% or less.
 上述の方法により得られたポリビニルエステルをアルコール溶媒中でけん化することによりPVAを得ることができる。 PVA can be obtained by saponifying the polyvinyl ester obtained by the above method in an alcohol solvent.
 ポリビニルエステルのけん化反応の触媒としては通常アルカリ性物質が用いられ、その例として、水酸化カリウム、水酸化ナトリウムなどのアルカリ金属の水酸化物、およびナトリウムメトキシドなどのアルカリ金属アルコキシドが挙げられる。アルカリ性物質の使用量は、ポリビニルエステルのビニルエステル系単量体単位を基準にしたモル比で0.002~0.2の範囲内であることが好ましく、0.004~0.1の範囲内であることが特に好ましい。けん化触媒は、けん化反応の初期に一括して添加しても良いし、あるいはけん化反応の初期に一部を添加し、残りをけん化反応の途中で追加して添加しても良い。 As the catalyst for the saponification reaction of polyvinyl ester, an alkaline substance is usually used, and examples thereof include alkali metal hydroxides such as potassium hydroxide and sodium hydroxide, and alkali metal alkoxides such as sodium methoxide. The amount of the alkaline substance used is preferably in the range of 0.002 to 0.2, in the range of 0.004 to 0.1, in terms of molar ratio based on the vinyl ester monomer unit of the polyvinyl ester. It is particularly preferred that The saponification catalyst may be added all at once in the early stage of the saponification reaction, or a part thereof may be added in the early stage of the saponification reaction, and the rest may be added and added during the saponification reaction.
 けん化反応に用いることができる溶媒としては、メタノール、酢酸メチル、ジメチルスルホキシド、ジエチルスルホキシド、ジメチルホルムアミドなどが挙げられる。これらの溶媒の中でもメタノールが好ましく用いられる。このとき、メタノールの含水率を好ましくは0.001~1質量%、より好ましくは0.003~0.9質量%、特に好ましくは0.005~0.8質量%に調整する。 Examples of the solvent that can be used for the saponification reaction include methanol, methyl acetate, dimethyl sulfoxide, diethyl sulfoxide, and dimethylformamide. Of these solvents, methanol is preferably used. At this time, the water content of methanol is preferably adjusted to 0.001 to 1% by mass, more preferably 0.003 to 0.9% by mass, and particularly preferably 0.005 to 0.8% by mass.
 けん化反応は、好ましくは5~80℃、より好ましくは20~70℃の温度で行われる。けん化反応は、好ましくは5分間~10時間、より好ましくは10分間~5時間行う。けん化反応は、バッチ法および連続法のいずれの方式によっても行うことができる。けん化反応の終了後に、必要に応じて、残存する触媒を中和しても良い。使用可能な中和剤として、酢酸、乳酸などの有機酸、および酢酸メチルなどのエステル化合物などを挙げることができる。 The saponification reaction is preferably performed at a temperature of 5 to 80 ° C., more preferably 20 to 70 ° C. The saponification reaction is preferably performed for 5 minutes to 10 hours, more preferably for 10 minutes to 5 hours. The saponification reaction can be performed by either a batch method or a continuous method. After completion of the saponification reaction, the remaining catalyst may be neutralized as necessary. Usable neutralizing agents include organic acids such as acetic acid and lactic acid, and ester compounds such as methyl acetate.
けん化反応時に添加したアルカリ金属を含有するアルカリ性物質は、通常、けん化反応の進行により生じる酢酸メチルなどのエステルにより中和されるか、反応後添加された酢酸などのカルボン酸により中和される。このとき、酢酸ナトリウムなどのカルボン酸のアルカリ金属塩が生じる。後述するように、本発明において、原料PVAがカルボン酸のアルカリ金属塩を、アルカリ金属の質量換算で0.5質量%以下含有することが好ましい。このようなPVAを得るために、けん化後、PVAを洗浄しても良い。 The alkaline substance containing an alkali metal added during the saponification reaction is usually neutralized by an ester such as methyl acetate generated by the progress of the saponification reaction, or neutralized by a carboxylic acid such as acetic acid added after the reaction. At this time, an alkali metal salt of a carboxylic acid such as sodium acetate is formed. As will be described later, in the present invention, the raw material PVA preferably contains an alkali metal salt of carboxylic acid in an amount of 0.5% by mass or less in terms of the mass of the alkali metal. In order to obtain such PVA, the PVA may be washed after saponification.
 この場合に用いる洗浄液として、メタノールなどの低級アルコール、当該低級アルコール100質量部と20質量部以下の水からなる溶液、当該低級アルコールとけん化工程において生成する酢酸メチルなどのエステルからなる溶液などが挙げられる。低級アルコールとエステルからなる溶液中のエステルの含有量は、特に制限はないが、低級アルコール100質量部に対して、1000質量部以下が好ましい。洗浄液の添加量としては、通常、けん化により得られる、アルコールによってPVAが膨潤したゲル100質量部に対して、100質量部~10000質量部が好ましく、150質量部~5000質量部がより好ましく、200質量部~1000質量部が更に好ましい。洗浄液の添加量が100質量部に満たない場合には、カルボン酸のアルカリ金属塩量が上記範囲を超えるおそれがある。一方、洗浄液の添加量が10000質量部を超える場合には、添加量を増やすことによる洗浄効果の改善が見込めない。洗浄の方法に特に限定はないが、例えば槽内にゲル(PVA)と洗浄液を加え、5~100℃で、5分~180分程度、攪拌あるいは静置した後に脱液する工程を、カルボン酸のアルカリ金属塩の含有量が所定の範囲になるまで繰り返すバッチ方式が挙げられる。また、おおよそバッチ方式と同温度、同時間で、塔頂からPVAを連続的に添加するとともに、塔底より低級アルコールを連続的に添加し、両者を接触交流させる連続方式などが挙げられる。 Examples of the cleaning liquid used in this case include a lower alcohol such as methanol, a solution composed of 100 parts by weight of the lower alcohol and 20 parts by weight or less of water, and a solution composed of the lower alcohol and an ester such as methyl acetate produced in the saponification step. It is done. The content of the ester in the solution composed of the lower alcohol and the ester is not particularly limited, but is preferably 1000 parts by mass or less with respect to 100 parts by mass of the lower alcohol. The amount of the cleaning liquid added is preferably 100 parts by mass to 10000 parts by mass, more preferably 150 parts by mass to 5000 parts by mass with respect to 100 parts by mass of the gel obtained by saponification and swollen with PVA by alcohol. Part by mass to 1000 parts by mass is more preferable. When the addition amount of the cleaning liquid is less than 100 parts by mass, the alkali metal salt amount of the carboxylic acid may exceed the above range. On the other hand, when the addition amount of the cleaning liquid exceeds 10,000 parts by mass, the improvement of the cleaning effect by increasing the addition amount cannot be expected. Although there is no particular limitation on the washing method, for example, a step of adding a gel (PVA) and a washing solution into a tank and stirring or standing at 5 to 100 ° C. for about 5 to 180 minutes and then removing the liquid is performed. A batch method that repeats until the content of the alkali metal salt is within a predetermined range may be mentioned. Further, there is a continuous method in which PVA is continuously added from the top of the column at the same temperature and for the same time as the batch method, and a lower alcohol is continuously added from the bottom of the column, and the two are brought into contact with each other.
 原料PVAはカルボン酸のアルカリ金属塩を含有することが好ましい。その含有量は、アルカリ金属の質量換算で好ましくは0.50質量%以下、より好ましくは0.37質量%以下、さらに好ましくは0.28質量%以下、特に好ましくは0.23質量%以下である。カルボン酸のアルカリ金属塩の含有量が0.5質量%を超える場合、得られるポリビニルアセタールやそれを用いて製造されるフィルムが着色し易くなるおそれがある。カルボン酸のアルカリ金属塩の含有量(アルカリ金属の質量換算)は、PVAを白金ルツボにて灰化したのち、得られた灰分をICP発光分析により測定して得たアルカリ金属イオン量から求めることができる。 The raw material PVA preferably contains an alkali metal salt of carboxylic acid. The content is preferably 0.50% by mass or less, more preferably 0.37% by mass or less, still more preferably 0.28% by mass or less, and particularly preferably 0.23% by mass or less in terms of alkali metal mass. is there. When content of the alkali metal salt of carboxylic acid exceeds 0.5 mass%, the obtained polyvinyl acetal or a film produced using the same may be easily colored. The content of alkali metal salt of carboxylic acid (calculated in terms of alkali metal mass) is obtained from the amount of alkali metal ions obtained by ashing PVA with a platinum crucible and then measuring the resulting ash content by ICP emission analysis. Can do.
 カルボン酸のアルカリ金属塩としては、上述したけん化工程で使用するアルカリ触媒、例えば水酸化ナトリウム、水酸化カリウム、ナトリウムメチラートなどをカルボン酸で中和して得られるもの、また、後述するビニルエステルの重合工程で使用する酢酸ビニルなどの原料ビニルエステルモノマーの加アルコール分解を抑制する目的で添加されるカルボン酸が、けん化工程で中和されて得られるもの、ラジカル重合を停止させるために添加する禁止剤として共役二重結合を有するカルボン酸を用いた場合に、当該カルボン酸がけん化工程で中和されて得られるもの、あるいは意図的に添加されたものもなどが含まれる。具体例としては、酢酸ナトリウム、酢酸カリウム、プロピオン酸ナトリウム、プロピオン酸カリウム、グリセリン酸ナトリウム、グリセリン酸カリウム、リンゴ酸ナトリウム、リンゴ酸カリウム、クエン酸ナトリウム、クエン酸カリウム、乳酸ナトリウム、乳酸カリウム、酒石酸ナトリウム、酒石酸カリウム、サリチル酸ナトリウム、サリチル酸カリウム、マロン酸ナトリウム、マロン酸カリウム、コハク酸ナトリウム、コハク酸カリウム、マレイン酸ナトリウム、マレイン酸カリウム、フタル酸ナトリウム、フタル酸カリウム、シュウ酸ナトリウム、シュウ酸カリウム、グルタル酸ナトリウム、グルタル酸カリウム、アビエチン酸ナトリウム、アビエチン酸カリウム、ソルビン酸ナトリウム、ソルビン酸カリウム、2,4,6-オクタトリエン-1-カルボン酸ナトリウム、2,4,6-オクタトリエン-1-カルボン酸カリウム、エレオステアリン酸ナトリウム、エレオステアリン酸カリウム、2,4,6,8-デカテトラエン-1-カルボン酸ナトリウム、2,4,6,8-デカテトラエン-1-カルボン酸カリウム、レチノイン酸ナトリウム、レチノイン酸カリウムなどが挙げられるが、これらに限定されるものではない。 Examples of the alkali metal salt of carboxylic acid include those obtained by neutralizing an alkali catalyst used in the above-described saponification step, for example, sodium hydroxide, potassium hydroxide, sodium methylate with carboxylic acid, and a vinyl ester described later. Carboxylic acid added for the purpose of suppressing alcoholysis of the vinyl ester monomer such as vinyl acetate used in the polymerization step is neutralized in the saponification step, added to stop radical polymerization When a carboxylic acid having a conjugated double bond is used as an inhibitor, those obtained by neutralizing the carboxylic acid in the saponification step or those intentionally added are included. Specific examples include sodium acetate, potassium acetate, sodium propionate, potassium propionate, sodium glycerate, potassium glycerate, sodium malate, potassium malate, sodium citrate, potassium citrate, sodium lactate, potassium lactate, tartaric acid Sodium, potassium tartrate, sodium salicylate, potassium salicylate, sodium malonate, potassium malonate, sodium succinate, potassium succinate, sodium maleate, potassium maleate, sodium phthalate, potassium phthalate, sodium oxalate, potassium oxalate , Sodium glutarate, potassium glutarate, sodium abietic acid, potassium abietic acid, sodium sorbate, potassium sorbate, 2,4,6-octatri Sodium 1,1-carboxylate, potassium 2,4,6-octatriene-1-carboxylate, sodium eleostearate, potassium eleostearate, sodium 2,4,6,8-decatetraene-1- carboxylate 2,4,6,8-decatetraene-1-carboxylate, sodium retinoate, potassium retinoate and the like, but are not limited thereto.
 本発明において、GPC測定により求められる各値がそれぞれ上述した範囲に入るように調整する方法としては、特定のPVAをポリビニルアセタールの原料に用いる方法が挙げられる。 In the present invention, a method of adjusting each value obtained by GPC measurement so as to fall within the above-described range includes a method of using specific PVA as a raw material for polyvinyl acetal.
 このような原料PVAとしては、けん化度が50~99.99モル%、粘度平均重合度が200~5000、カルボン酸のアルカリ金属塩の含有量がアルカリ金属の質量換算で0.5質量%以下であるPVAであって、120℃において3時間加熱された前記PVAをGPC測定したときの、示差屈折率検出器で測定されるピークトップ分子量(D)と、吸光光度検出器(測定波長280nm)で測定されるピークトップ分子量(E)が下記式(3)
(D-E)/D<0.75   (3)
を満たし、かつピークトップ分子量(E)における吸光度が0.25×10-3~3.00×10-3となるものが好ましい。このときのGPC測定は、ポリビニルアセタールの代わりに、以下に示す条件で加熱したPVAを測定すること以外は、上述した、ポリビニルアセタールのGPC測定方法と同様にして行う。
Such a raw material PVA has a saponification degree of 50 to 99.99 mol%, a viscosity average polymerization degree of 200 to 5000, and an alkali metal salt content of carboxylic acid of 0.5% by mass or less in terms of the mass of the alkali metal. When the PVA heated at 120 ° C. for 3 hours is subjected to GPC measurement, the peak top molecular weight (D) measured by a differential refractive index detector and an absorptiometric detector (measurement wavelength 280 nm) The peak top molecular weight (E) measured by the following formula (3)
(DE) / D <0.75 (3)
And the absorbance at the peak top molecular weight (E) is preferably 0.25 × 10 −3 to 3.00 × 10 −3 . GPC measurement at this time is performed in the same manner as the GPC measurement method for polyvinyl acetal described above, except that PVA heated under the following conditions is measured instead of polyvinyl acetal.
 PVA粉体を溶解させた水溶液を流延した後、20℃、65%RHにて乾燥させてPVAフィルムを得る。当該PVAフィルムの厚みは30~75μmであり、40~60μmが好ましい。加熱乾燥後の試料の色相の差異を紫外吸収の差異に明確に反映させるために、熱風乾燥機を用いて当該フィルムを120℃において3時間加熱する。試料間の熱処理誤差を抑制する観点から、熱風乾燥機としてギアオーブンが好ましい。こうして加熱されたPVAをGPC測定に供する。 After casting an aqueous solution in which PVA powder is dissolved, it is dried at 20 ° C. and 65% RH to obtain a PVA film. The PVA film has a thickness of 30 to 75 μm, preferably 40 to 60 μm. In order to clearly reflect the difference in hue of the sample after heat drying in the difference in ultraviolet absorption, the film is heated at 120 ° C. for 3 hours using a hot air dryer. From the viewpoint of suppressing heat treatment errors between samples, a gear oven is preferable as the hot air dryer. The PVA thus heated is subjected to GPC measurement.
 前記PVAのピークトップ分子量(D)は、上述したポリビニルアセタールのピークトップ分子量(A)と同様にして求め、原料PVAのピークトップ分子量(E)は、上述したポリビニルアセタールのピークトップ分子量(B)と同様にして求める。 The peak top molecular weight (D) of the PVA is determined in the same manner as the peak top molecular weight (A) of the polyvinyl acetal described above, and the peak top molecular weight (E) of the raw material PVA is the peak top molecular weight (B) of the polyvinyl acetal described above. Find in the same way as
 前記PVAは、上述した方法によりGPC測定されたときの、示差屈折率検出器で測定されるピークトップ分子量(D)と、吸光光度検出器(測定波長280nm)で測定されるピークトップ分子量(E)が下記式(3)を満たすことが好ましい。
(D-E)/D<0.75   (3)
The PVA has a peak top molecular weight (D) measured by a differential refractive index detector and a peak top molecular weight (E) measured by an absorptiometric detector (measurement wavelength 280 nm) when GPC measurement is performed by the above-described method. ) Preferably satisfies the following formula (3).
(DE) / D <0.75 (3)
 ピークトップ分子量(D)は、PVAの分子量の指標となる値である。一方、ピークトップ分子量(E)は、PVA中に存在する、280nmに吸収を有する成分に由来する。通常、ピークトップ分子量(E)よりもピークトップ分子量(D)のほうが大きいため、(D-E)/Dは正の値になる。ピークトップ分子量(E)が大きくなれば、(D-E)/Dは小さくなり、ピークトップ分子量(E)が小さくなれば、(D-E)/Dは大きくなる。すなわち、(D-E)/Dが大きい場合には、PVA中の低分子量成分に280nm波長の紫外線を吸収する成分が多いことを意味する。 The peak top molecular weight (D) is a value serving as an index of the molecular weight of PVA. On the other hand, the peak top molecular weight (E) is derived from a component present in PVA and having absorption at 280 nm. Usually, since the peak top molecular weight (D) is larger than the peak top molecular weight (E), (DE) / D becomes a positive value. As the peak top molecular weight (E) increases, (DE) / D decreases, and as the peak top molecular weight (E) decreases, (DE) / D increases. That is, when (DE) / D is large, it means that there are many components that absorb UV light having a wavelength of 280 nm among low molecular weight components in PVA.
 (D-E)/Dが0.75以上の場合、上述の通り、低分子量成分に波長280nmの紫外線を吸収する成分が多くなる。この場合には、得られるポリビニルアセタールやポリビニルアセタールを用いて製造されるフィルムの異物が増加するおそれがある。(D-E)/Dは、より好ましくは0.70未満であり、さらに好ましくは0.65未満である。 When (DE) / D is 0.75 or more, as described above, the low molecular weight component contains more components that absorb ultraviolet light having a wavelength of 280 nm. In this case, there is a possibility that the foreign matter of the film manufactured using the obtained polyvinyl acetal or polyvinyl acetal increases. (DE) / D is more preferably less than 0.70, and still more preferably less than 0.65.
 前記PVAは、上述した方法によりGPC測定されたときの、ピークトップ分子量(E)における吸光度(測定波長280nm)が0.25×10-3~3.00×10-3となることが好ましい。前記吸光度が0.25×10-3未満の場合には、ポリビニルアセタールを用いて製造されるフィルム中の異物(未溶解分)が増加するおそれがある。一方、前記吸光度が3.00×10-3を超える場合には、得られるポリビニルアセタールやそれを用いて製造されるフィルムが着色し易くなるおそれがある。前記吸光度は0.50×10-3~2.80×10-3が好ましく、0.75×10-3~2.50×10-3がより好ましい。 The PVA preferably has an absorbance (measurement wavelength: 280 nm) at a peak top molecular weight (E) of 0.25 × 10 −3 to 3.00 × 10 −3 when GPC measurement is performed by the method described above. When the absorbance is less than 0.25 × 10 −3 , foreign matter (undissolved content) in the film produced using polyvinyl acetal may increase. On the other hand, when the absorbance exceeds 3.00 × 10 −3 , the obtained polyvinyl acetal and a film produced using the polyvinyl acetal may be easily colored. The absorbance is preferably 0.50 × 10 −3 to 2.80 × 10 −3, and more preferably 0.75 × 10 −3 to 2.50 × 10 −3 .
 前記PVAは、上述した方法によりGPC測定されたときの、示差屈折率検出器で測定されるピークトップ分子量(D)と、吸光光度検出器(測定波長320nm)で測定されるピークトップ分子量(F)が下記式(4)を満たすことがより好ましい。
(D-F)/D<0.75   (4)
The PVA has a peak top molecular weight (D) measured by a differential refractive index detector and a peak top molecular weight (F) measured by an absorptiometric detector (measurement wavelength: 320 nm) when GPC measurement is performed by the method described above. It is more preferable that the following formula (4) is satisfied.
(DF) / D <0.75 (4)
 ピークトップ分子量(F)は、吸光光度検出器における測定波長が320nmであること以外はピークトップ分子量(E)と同様にして測定される。ピークトップ分子量(F)は、原料のPVA中に存在する、320nmに吸収を有する成分に由来する。通常、ピークトップ分子量(F)よりもピークトップ分子量(D)のほうが大きいため、(D-F)/Dは正の値になる。ピークトップ分子量(F)が大きくなれば、(D-F)/Dは小さくなり、ピークトップ分子量(F)が小さくなれば、(D-F)/Dは大きくなる。すなわち、(D-F)/Dが大きい場合には、PVA中の低分子量成分に320nm波長の紫外線を吸収する成分が多いことを意味する。 The peak top molecular weight (F) is measured in the same manner as the peak top molecular weight (E) except that the measurement wavelength in the absorptiometric detector is 320 nm. The peak top molecular weight (F) is derived from a component having absorption at 320 nm, which is present in the raw material PVA. Usually, since the peak top molecular weight (D) is larger than the peak top molecular weight (F), (DF) / D becomes a positive value. As the peak top molecular weight (F) increases, (DF) / D decreases, and as the peak top molecular weight (F) decreases, (DF) / D increases. That is, when (D−F) / D is large, it means that the low molecular weight component in PVA contains many components that absorb ultraviolet rays having a wavelength of 320 nm.
(D-F)/Dが0.75以上の場合、上述の通り、低分子量成分に波長320nmの紫外線を吸収する成分が多くなる。この場合には、得られるポリビニルアセタールやポリビニルアセタールを用いて製造されるフィルムの異物が増加するおそれがある。(D-F)/Dは、さらに好ましくは0.70未満であり、特に好ましくは0.65未満である。 When (D−F) / D is 0.75 or more, as described above, the low molecular weight component contains more components that absorb ultraviolet light having a wavelength of 320 nm. In this case, there is a possibility that the foreign matter of the film manufactured using the obtained polyvinyl acetal or polyvinyl acetal increases. (D−F) / D is more preferably less than 0.70, and particularly preferably less than 0.65.
 前記PVAは、上述した方法によりGPC測定されたときの、ピークトップ分子量(F)における吸光度(測定波長320nm)が0.20×10-3~2.90×10-3であることがより好ましい。前記吸光度が0.20×10-3未満の場合には、ポリビニルアセタールを用いて製造されるフィルム中の異物(未溶解分)が増加するおそれがある。一方、前記吸光度が2.90×10-3を超える場合には得られるポリビニルアセタールやそれを用いて製造されるフィルムが着色し易くなるおそれがある。前記吸光度は0.40×10-3~2.70×10-3がさらに好ましく、0.60×10-3~2.40×10-3が特に好ましい。 More preferably, the PVA has an absorbance (measurement wavelength: 320 nm) at a peak top molecular weight (F) of 0.20 × 10 −3 to 2.90 × 10 −3 when GPC measurement is performed by the method described above. . When the absorbance is less than 0.20 × 10 −3 , foreign matter (undissolved content) in a film produced using polyvinyl acetal may increase. On the other hand, when the absorbance exceeds 2.90 × 10 −3 , the resulting polyvinyl acetal and a film produced using the same may be easily colored. The absorbance is more preferably 0.40 × 10 −3 to 2.70 × 10 −3 , and particularly preferably 0.60 × 10 −3 to 2.40 × 10 −3 .
 前記GPC測定における、示差屈折率検出器によって求められる、前記PVAの数平均分子量Mnに対する重量平均分子量Mwの比Mw/Mnが2.2~6.0であることが好ましい。Mw及びMnは、前述したピークトップ分子量(D)を求める際に使用するPVAの分子量に対して、示差屈折率検出器で測定された値をプロットして得たクロマトグラムから求められる。したがって、ここで求められるMw及びMnは標準PMMA換算の値である。 In the GPC measurement, the ratio Mw / Mn of the weight average molecular weight Mw to the number average molecular weight Mn of the PVA, which is determined by a differential refractive index detector, is preferably 2.2 to 6.0. Mw and Mn are obtained from a chromatogram obtained by plotting the value measured by the differential refractive index detector with respect to the molecular weight of PVA used when obtaining the peak top molecular weight (D) described above. Therefore, Mw and Mn calculated | required here are the values of standard PMMA conversion.
 Mw/Mnが2.2未満の場合、PVAにおいて、低分子量成分の割合が小さいことを示す。Mw/Mnが2.2未満の場合、ポリビニルアセタールを用いて製造されるフィルム中の異物(未溶解分)が増加するおそれがある。Mw/Mnが2.3以上であることがより好ましい。一方、Mw/Mnが6.0を超える場合、PVAにおいて、低分子量成分の割合が大きいことを示す。Mw/Mnが6.0を超える場合、得られるポリビニルアセタールやそれを用いて製造されるフィルムが着色し易くなるおそれがある。Mw/Mnが3.5以下であることがより好ましく、3.0以下であることがさらに好ましい。 When Mw / Mn is less than 2.2, it indicates that the proportion of low molecular weight components is small in PVA. When Mw / Mn is less than 2.2, there is a possibility that foreign matter (undissolved content) in the film produced using polyvinyl acetal increases. It is more preferable that Mw / Mn is 2.3 or more. On the other hand, when Mw / Mn exceeds 6.0, it shows that the ratio of a low molecular weight component is large in PVA. When Mw / Mn exceeds 6.0, the obtained polyvinyl acetal and a film produced using the same may be easily colored. Mw / Mn is more preferably 3.5 or less, and further preferably 3.0 or less.
 前記PVAの、ピークトップ分子量(D)、ピークトップ分子量(E)、ピークトップ分子量(E)における吸光度、ピークトップ分子量(F)及びピークトップ分子量(F)における吸光度が上述した条件を満たすように調整する方法としては、例えば、以下の方法が挙げられる。 The absorbance at the peak top molecular weight (D), the peak top molecular weight (E), the peak top molecular weight (E), the peak top molecular weight (F), and the absorbance at the peak top molecular weight (F) of the PVA so that the above-mentioned conditions are satisfied. Examples of the adjustment method include the following methods.
 A)原料ビニルエステルモノマーに含まれるラジカル重合禁止剤を予め取り除いたビニルエステルモノマーを重合に用いる。 A) A vinyl ester monomer from which a radical polymerization inhibitor contained in the raw material vinyl ester monomer has been removed in advance is used for polymerization.
 B)原料ビニルエステルモノマー中に含まれる不純物の合計含有量が、好ましくは1~1200ppm、より好ましくは3~1100ppm、さらに好ましくは5~1000ppmであるビニルエステルモノマーをラジカル重合に用いる。不純物としては、アセトアルデヒド、クロトンアルデヒド、アクロレインなどのアルデヒド;同アルデヒドが溶媒のアルコールによりアセタール化したアセトアルデヒドジメチルアセタール、クロトンアルデヒドジメチルアセタール、アクロレインジメチルアセタールなどのアセタール;アセトンなどのケトン;酢酸メチル、酢酸エチルなどのエステルなどが挙げられる。 B) A vinyl ester monomer having a total content of impurities contained in the raw material vinyl ester monomer of preferably 1 to 1200 ppm, more preferably 3 to 1100 ppm, and even more preferably 5 to 1000 ppm is used for radical polymerization. Impurities include aldehydes such as acetaldehyde, crotonaldehyde, and acrolein; acetals such as acetaldehyde dimethyl acetal, crotonaldehyde dimethyl acetal, and acrolein dimethyl acetal obtained by acetalizing the aldehyde with a solvent alcohol; ketones such as acetone; methyl acetate and ethyl acetate And esters.
 C)アルコール溶媒中にて原料ビニルエステルモノマーをラジカル重合し、未反応モノマーを回収再利用する一連の工程にて、アルコールや微量の水分によるモノマーの加アルコール分解や加水分解を抑制するために、有機酸、具体的にはグリコール酸、グリセリン酸、リンゴ酸、クエン酸、乳酸、酒石酸、サリチル酸などのヒドロキシカルボン酸;マロン酸、コハク酸、マレイン酸、フタル酸、シュウ酸、グルタル酸などの多価カルボン酸などを添加し、分解により生じるアセトアルデヒドなどのアルデヒドの生成を極力抑制する。有機酸の添加量としては、原料ビニルエステルモノマーに対して、好ましくは1~500ppm、より好ましくは3~300ppm、さらに好ましくは5~100ppmである。 C) In order to suppress the alcoholysis and hydrolysis of the monomer by alcohol and a small amount of water in a series of steps of radical polymerization of the raw material vinyl ester monomer in an alcohol solvent and collecting and reusing unreacted monomer, Organic acids, specifically hydroxycarboxylic acids such as glycolic acid, glyceric acid, malic acid, citric acid, lactic acid, tartaric acid, salicylic acid; malonic acid, succinic acid, maleic acid, phthalic acid, oxalic acid, glutaric acid, etc. A carboxylic acid or the like is added to suppress the generation of aldehydes such as acetaldehyde generated by decomposition as much as possible. The addition amount of the organic acid is preferably 1 to 500 ppm, more preferably 3 to 300 ppm, and still more preferably 5 to 100 ppm with respect to the raw material vinyl ester monomer.
 D)重合に用いる溶媒として、不純物の合計含有量が、好ましくは1~1200ppm、より好ましくは3~1100ppm、さらに好ましくは5~1000ppmであるものを用いる。溶媒中に含まれる不純物としては、原料ビニルエステルモノマー中に含まれる不純物として上述したものが挙げられる。 D) As the solvent used for the polymerization, a solvent having a total impurity content of preferably 1 to 1200 ppm, more preferably 3 to 1100 ppm, and still more preferably 5 to 1000 ppm. Examples of the impurities contained in the solvent include those described above as the impurities contained in the raw material vinyl ester monomer.
 E)ビニルエステルモノマーをラジカル重合する際に、ビニルエステルモノマーに対する溶媒の比を高める。 E) When the radical polymerization of the vinyl ester monomer, the ratio of the solvent to the vinyl ester monomer is increased.
 F)ビニルエステルモノマーをラジカル重合する際に使用するラジカル重合開始剤として、有機過酸化物を用いる。有機過酸化物としては、アセチルパーオキシド、イソブチルパーオキシド、ジイソプロピルパーオキシカーボネート、ジアリルパーオキシジカーボネート、ジn-プロピルパーオキシジカーボネート、ジミリスチルパーオキシジカーボネート、ジ(2-エトキシエチル)パーオキシジカーボネート、ジ(2-エチルヘキシル)パーオキシジカーボネート、ジ(メトキシイソプロピル)パーオキシジカーボネート、ジ(4-tert-ブチルシクロヘキシル)パーオキシジカーボネートなどが挙げられ、特に、60℃での半減期が10~110分のパーオキシジカーボネートを用いることが好ましい。 F) An organic peroxide is used as a radical polymerization initiator used for radical polymerization of a vinyl ester monomer. Organic peroxides include acetyl peroxide, isobutyl peroxide, diisopropyl peroxycarbonate, diallyl peroxydicarbonate, di-n-propyl peroxydicarbonate, dimyristyl peroxydicarbonate, di (2-ethoxyethyl) peroxide Examples include oxydicarbonate, di (2-ethylhexyl) peroxydicarbonate, di (methoxyisopropyl) peroxydicarbonate, and di (4-tert-butylcyclohexyl) peroxydicarbonate. It is preferable to use peroxydicarbonate with a period of 10 to 110 minutes.
 G)ビニルエステルモノマーのラジカル重合後に、重合を抑制するために禁止剤を添加する場合、残存する未分解のラジカル重合開始剤に対して5モル当量以下の禁止剤を添加する。禁止剤の種類としては、分子量が1000以下の共役二重結合を有する化合物であって、ラジカルを安定化させて重合反応を阻害する化合物が挙げられる。具体的には、イソプレン、2,3-ジメチル-1,3-ブタジエン、2,3-ジエチル-1,3-ブタジエン、2-t-ブチル-1,3-ブタジエン、1,3-ペンタジエン、2,3-ジメチル-1,3-ペンタジエン、2,4-ジメチル-1,3-ペンタジエン、3,4-ジメチル-1,3-ペンタジエン、3-エチル-1,3-ペンタジエン、2-メチル-1,3-ペンタジエン、3-メチル-1,3-ペンタジエン、4-メチル-1,3-ペンタジエン、1,3-ヘキサジエン、2,4-ヘキサジエン、2,5-ジメチル-2,4-ヘキサジエン、1,3-オクタジエン、1,3-シクロペンタジエン、1,3-シクロヘキサジエン、1-メトキシ-1,3-ブタジエン、2-メトキシ-1,3-ブタジエン、1-エトキシ-1,3-ブタジエン、2-エトキシ-1,3-ブタジエン、2-ニトロ-1,3-ブタジエン、クロロプレン、1-クロロ-1,3-ブタジエン、1-ブロモ-1,3-ブタジエン、2-ブロモ-1,3-ブタジエン、フルベン、トロポン、オシメン、フェランドレン、ミルセン、ファルネセン、センブレン、ソルビン酸、ソルビン酸エステル、ソルビン酸塩、アビエチン酸等の炭素-炭素二重結合2個の共役構造よりなる共役ジエン;1,3,5-ヘキサトリエン、2,4,6-オクタトリエン-1-カルボン酸、エレオステアリン酸、桐油、コレカルシフェロール等の炭素-炭素二重結合3個の共役構造よりなる共役トリエン;シクロオクタテトラエン、2,4,6,8-デカテトラエン-1-カルボン酸、レチノール、レチノイン酸等の炭素-炭素二重結合4個以上の共役構造よりなる共役ポリエンなどのポリエンが挙げられる。なお、1,3-ペンタジエン、ミルセン、ファルネセンのように、複数の立体異性体を有するものについては、そのいずれを用いても良い。さらに、p-ベンゾキノン、ヒドロキノン、ヒドロキノンモノメチルエーテル、2-フェニル-1-プロペン、2-フェニル-1-ブテン、2,4-ジフェニル-4-メチル-1-ペンテン、3,5-ジフェニル-5-メチル-2-ヘプテン、2,4,6-トリフェニル-4,6-ジメチル-1-ヘプテン、3,5,7-トリフェニル-5-エチル-7-メチル-2-ノネン、1,3-ジフェニル-1-ブテン、2,4-ジフェニル-4-メチル-2-ペンテン、3,5-ジフェニル-5-メチル-3-ヘプテン、1,3,5-トリフェニル-1-ヘキセン、2,4,6-トリフェニル-4,6-ジメチル-2-ヘプテン、3,5,7-トリフェニル-5-エチル-7-メチル-3-ノネン、1-フェニル-1,3-ブタジエン、1,4-ジフェニル-1,3-ブタジエン等の芳香族系化合物が挙げられる。 G) When an inhibitor is added after radical polymerization of the vinyl ester monomer in order to suppress the polymerization, an inhibitor of 5 molar equivalents or less is added to the remaining undecomposed radical polymerization initiator. Examples of the inhibitor include a compound having a conjugated double bond having a molecular weight of 1000 or less and a compound that stabilizes a radical and inhibits a polymerization reaction. Specifically, isoprene, 2,3-dimethyl-1,3-butadiene, 2,3-diethyl-1,3-butadiene, 2-t-butyl-1,3-butadiene, 1,3-pentadiene, , 3-dimethyl-1,3-pentadiene, 2,4-dimethyl-1,3-pentadiene, 3,4-dimethyl-1,3-pentadiene, 3-ethyl-1,3-pentadiene, 2-methyl-1 , 3-pentadiene, 3-methyl-1,3-pentadiene, 4-methyl-1,3-pentadiene, 1,3-hexadiene, 2,4-hexadiene, 2,5-dimethyl-2,4-hexadiene, , 3-octadiene, 1,3-cyclopentadiene, 1,3-cyclohexadiene, 1-methoxy-1,3-butadiene, 2-methoxy-1,3-butadiene, 1-ethoxy-1,3- Tadiene, 2-ethoxy-1,3-butadiene, 2-nitro-1,3-butadiene, chloroprene, 1-chloro-1,3-butadiene, 1-bromo-1,3-butadiene, 2-bromo-1, Conjugated dienes comprising a conjugated structure of two carbon-carbon double bonds such as 3-butadiene, fulvene, tropone, osymene, ferrandrene, myrcene, farnesene, semblene, sorbic acid, sorbic acid ester, sorbic acid salt, abietic acid; Conjugated triene having a conjugated structure of three carbon-carbon double bonds such as 1,3,5-hexatriene, 2,4,6-octatriene-1-carboxylic acid, eleostearic acid, tung oil, cholecalciferol Carbons such as cyclooctatetraene, 2,4,6,8-decatetraene-1-carboxylic acid, retinol, retinoic acid, etc. Polyenes such as conjugated polyene consisting Motoni double bond of four or more conjugated structure. Any one having a plurality of stereoisomers such as 1,3-pentadiene, myrcene, and farnesene may be used. Further, p-benzoquinone, hydroquinone, hydroquinone monomethyl ether, 2-phenyl-1-propene, 2-phenyl-1-butene, 2,4-diphenyl-4-methyl-1-pentene, 3,5-diphenyl-5 Methyl-2-heptene, 2,4,6-triphenyl-4,6-dimethyl-1-heptene, 3,5,7-triphenyl-5-ethyl-7-methyl-2-nonene, 1,3- Diphenyl-1-butene, 2,4-diphenyl-4-methyl-2-pentene, 3,5-diphenyl-5-methyl-3-heptene, 1,3,5-triphenyl-1-hexene, 2,4 , 6-triphenyl-4,6-dimethyl-2-heptene, 3,5,7-triphenyl-5-ethyl-7-methyl-3-nonene, 1-phenyl-1,3-butadiene, 1,4 -The Aromatic compounds such as Eniru 1,3-butadiene.
 H)残存するビニルエステルモノマーが極力除去されたポリビニルエステルのアルコール溶液をけん化反応に用いる。好ましくは残存モノマーの除去率99%以上、より好ましくは99.5%以上、更に好ましくは99.8%以上のものを用いる。 H) A polyvinyl ester alcohol solution from which the remaining vinyl ester monomer is removed as much as possible is used for the saponification reaction. Preferably, the residual monomer removal rate is 99% or more, more preferably 99.5% or more, still more preferably 99.8% or more.
 A)~H)を適宜組み合わせることで所望のPVAが得られる。こうして得られるPVAをアセタール化して本発明のポリビニルアセタールを得ることが好ましい。 The desired PVA can be obtained by appropriately combining A) to H). The PVA thus obtained is preferably acetalized to obtain the polyvinyl acetal of the present invention.
 PVAのアセタール化は、例えば次のような反応条件で行うことができるが、これに限定されない。80~100℃に加熱してPVAを水に溶解させた後、10~60分かけて徐々に冷却することにより、PVAの3~40質量%水溶液を得る。温度が-10~30℃まで低下したところで、前記水溶液にアルデヒドおよび酸触媒を添加し、温度を一定に保ちながら、30~300分間アセタール化反応を行う。その際、一定のアセタール化度に達したポリビニルアセタールが析出する。その後反応液を30~300分かけて25~80℃まで昇温し、その温度を10分~24時間保持する(この温度を追い込み時反応温度とする)。次に反応溶液に、必要に応じてアルカリなどの中和剤を添加して酸触媒を中和し、水洗、乾燥することにより、ポリビニルアセタールが得られる。 The acetalization of PVA can be performed, for example, under the following reaction conditions, but is not limited thereto. PVA is dissolved in water by heating to 80 to 100 ° C., and then gradually cooled over 10 to 60 minutes to obtain a 3 to 40% by mass aqueous solution of PVA. When the temperature falls to −10 to 30 ° C., an aldehyde and an acid catalyst are added to the aqueous solution, and an acetalization reaction is performed for 30 to 300 minutes while keeping the temperature constant. At that time, polyvinyl acetal having reached a certain degree of acetalization is precipitated. Thereafter, the temperature of the reaction solution is raised to 25 to 80 ° C. over 30 to 300 minutes, and the temperature is maintained for 10 minutes to 24 hours (this temperature is set as the reaction temperature at the time of driving). Next, a neutralizing agent such as an alkali is added to the reaction solution as necessary to neutralize the acid catalyst, and the resultant is washed with water and dried to obtain polyvinyl acetal.
 一般的に、このような反応や処理の工程においてポリビニルアセタールからなる凝集粒子が生じ、粗粒子を形成しやすい。このような粗粒子が生じた場合には、バッチ間のばらつきの原因になるおそれがある。それに対して、上述した特定のPVAを原料とした場合、従来品より粗粒子の生成が抑制され、その結果、得られるポリビニルアセタールを溶融製膜した際に、異物(未溶解分)がより低減されたフィルムを得ることができる。 Generally, aggregated particles made of polyvinyl acetal are generated in such a reaction or processing step, and coarse particles are easily formed. When such coarse particles are generated, there is a risk of causing variation between batches. On the other hand, when the above-mentioned specific PVA is used as a raw material, the generation of coarse particles is suppressed as compared with the conventional product, and as a result, when the resulting polyvinyl acetal is melt-formed, foreign matter (undissolved content) is further reduced. Film can be obtained.
 アセタール化反応に用いる酸触媒としては特に限定されず、有機酸および無機酸のいずれでも使用可能である。例えば、酢酸、パラトルエンスルホン酸、硝酸、硫酸、塩酸等が挙げられる。これらの中でも塩酸、硫酸、硝酸が好ましく用いられる。また一般には、硝酸を用いた場合は、アセタール化反応の反応速度が速くなり、生産性の向上が望める一方、得られるポリビニルアセタールの粒子が粗大になりやすく、バッチ間のばらつきが大きくなる傾向がある。それに対して、上述した特定のPVAを原料とした場合、粗粒子の生成が抑制され、その結果、得られるポリビニルアセタールを溶融製膜した際に、異物(未溶解分)が低減されたフィルムを得ることができる。 The acid catalyst used in the acetalization reaction is not particularly limited, and any of organic acids and inorganic acids can be used. For example, acetic acid, p-toluenesulfonic acid, nitric acid, sulfuric acid, hydrochloric acid and the like can be mentioned. Of these, hydrochloric acid, sulfuric acid, and nitric acid are preferably used. In general, when nitric acid is used, the reaction rate of the acetalization reaction is increased, and improvement in productivity can be expected. On the other hand, the obtained polyvinyl acetal particles tend to be coarse and the variation between batches tends to increase. is there. On the other hand, when the above-mentioned specific PVA is used as a raw material, the formation of coarse particles is suppressed, and as a result, when the resulting polyvinyl acetal is melt-formed, a film with reduced foreign matter (undissolved content) is obtained. Obtainable.
 本発明において、アセタール化反応に用いるアルデヒドは特に限定されないが、公知の炭素数1~8のアルデヒドが好ましく、炭素数4~6のアルデヒドがより好ましく、n-ブチルアルデヒドが特に好ましく用いられる。本発明においては、アルデヒドを2種類以上併用して得られるポリビニルアセタールを使用することもできる。 In the present invention, the aldehyde used for the acetalization reaction is not particularly limited, but a known aldehyde having 1 to 8 carbon atoms is preferable, an aldehyde having 4 to 6 carbon atoms is more preferable, and n-butyraldehyde is particularly preferably used. In the present invention, polyvinyl acetal obtained by using two or more aldehydes in combination can also be used.
 本発明のポリビニルアセタール及び可塑剤を含有するポリビニルアセタール組成物が本発明の好適な実施態様である。前記可塑剤としては、本発明の効果を損なわず、ポリビニルアセタールとの相溶性に問題がなければ特に制限はない。可塑剤として、両末端に水酸基を有するオリゴアルキレングリコールとカルボン酸とのモノまたはジエステル、ジカルボン酸と水酸基含有化合物とのジエステルなどを用いることができる。これらは単独で、あるいは2種以上を組み合わせて用いることができる。両末端に水酸基を有するオリゴアルキレングリコールとしては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、1,2-プロピレングリコール、1,2-プロピレングリコールの二量体および三量体、1,3-プロピレングリコール、1,3-プロピレングリコールの二量体および三量体、1,2-ブチレングリコール、1,2-ブチレングリコールの二量体および三量体、1,4-ブチレングリコール、1,4-ブチレングリコールの二量体および三量体、1,2-ヘキサンジオール、1,6-ヘキサンジオール、3-メチル-1,5-ペンタンジオール、1,2-オクタンジオール、1,8-オクタンジオール、1,9-ノナンジオール、2-メチル-1,8-オクタンジオール、1,2-デカンジオール、1,4-シクロヘキサンジオールなどが挙げられる。カルボン酸としては、酢酸、プロパン酸、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、2-エチルヘキサン酸、ノナン酸、デカン酸などが挙げられる。ここで、オリゴアルキレングリコールとカルボン酸との組み合わせは任意であり、複数のオリゴアルキレングリコールと複数のカルボン酸との組み合わせでも良い。これらの中でも、トリエチレングリコールと2-エチルヘキサン酸のモノエステルおよびジエステルが取り扱い性(成形時の揮発性)などの観点で好ましい。特にトリエチレングリコール-ジ2-エチルヘキサノエートが好ましい。また、ジカルボン酸としては、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、セバシン酸などのアルキレンジカルボン酸や、フタル酸、イソフタル酸、テレフタル酸などの芳香族ジカルボン酸などが挙げられる。水酸基含有化合物としては、メタノール、エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、シクロヘキサノール、ヘプタノール、オクタノール、2-エチルヘキサノール、ノナオール、デカノール、2-メトキシエタノール、2-エトキシエタノール、2-プロポキシエタノール、2-ブトキシエタノールなどが挙げられる。ここで、ジカルボン酸と水酸基含有化合物の組み合わせは任意であり、複数のジカルボン酸と複数の水酸基含有化合物との組み合わせでも良い。 A polyvinyl acetal composition containing the polyvinyl acetal of the present invention and a plasticizer is a preferred embodiment of the present invention. The plasticizer is not particularly limited as long as the effects of the present invention are not impaired and there is no problem in compatibility with polyvinyl acetal. As the plasticizer, a mono- or diester of an oligoalkylene glycol having a hydroxyl group at both ends and a carboxylic acid, a diester of a dicarboxylic acid and a hydroxyl group-containing compound, or the like can be used. These can be used alone or in combination of two or more. Examples of oligoalkylene glycols having hydroxyl groups at both ends include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, 1,2-propylene glycol, 1,2-propylene glycol dimer and trimer, 1,3 -Propylene glycol, 1,3-propylene glycol dimer and trimer, 1,2-butylene glycol, 1,2-butylene glycol dimer and trimer, 1,4-butylene glycol, 1, 4-butylene glycol dimer and trimer, 1,2-hexanediol, 1,6-hexanediol, 3-methyl-1,5-pentanediol, 1,2-octanediol, 1,8-octane Diol, 1,9-nonanediol, 2-methyl-1,8-octanediol, , 2-decanediol, 1,4-cyclohexane diol. Examples of the carboxylic acid include acetic acid, propanoic acid, butanoic acid, pentanoic acid, hexanoic acid, heptanoic acid, octanoic acid, 2-ethylhexanoic acid, nonanoic acid and decanoic acid. Here, the combination of oligoalkylene glycol and carboxylic acid is arbitrary, and may be a combination of a plurality of oligoalkylene glycols and a plurality of carboxylic acids. Of these, monoesters and diesters of triethylene glycol and 2-ethylhexanoic acid are preferable from the viewpoint of handleability (volatility during molding). Triethylene glycol-di-2-ethylhexanoate is particularly preferable. Dicarboxylic acids include alkylene dicarboxylic acids such as oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, and sebacic acid, and aromatic dicarboxylic acids such as phthalic acid, isophthalic acid, and terephthalic acid. An acid etc. are mentioned. Examples of the hydroxyl group-containing compound include methanol, ethanol, propanol, butanol, pentanol, hexanol, cyclohexanol, heptanol, octanol, 2-ethylhexanol, nonaol, decanol, 2-methoxyethanol, 2-ethoxyethanol, 2-propoxyethanol, Examples include 2-butoxyethanol. Here, the combination of dicarboxylic acid and a hydroxyl-containing compound is arbitrary, and the combination of several dicarboxylic acid and several hydroxyl-containing compound may be sufficient.
 前記組成物中の可塑剤の添加量は、特に制限はないが、ポリビニルアセタール100質量部に対して好ましくは0~200質量部、より好ましくは2~150質量部、更に好ましくは5~100質量部である。可塑剤の添加量が200質量部を超える場合には、可塑剤がブリードアウトしやすくなることがある。特に前記組成物を合わせガラス用中間膜の原料として用いる場合の上記可塑剤の添加量は、ポリビニルアセタール100質量部に対して好ましくは5~100質量部、より好ましくは10~90質量部、更に好ましくは15~80質量部である。可塑剤添加量が5質量部未満である場合には、合わせガラス用中間膜として所望の柔軟性が得られない場合がある。100質量部を超える場合には、所望する力学物性、特に合わせガラスの耐貫通性などが低下する場合がある。 The addition amount of the plasticizer in the composition is not particularly limited, but is preferably 0 to 200 parts by mass, more preferably 2 to 150 parts by mass, and further preferably 5 to 100 parts by mass with respect to 100 parts by mass of the polyvinyl acetal. Part. When the added amount of the plasticizer exceeds 200 parts by mass, the plasticizer may easily bleed out. In particular, when the composition is used as a raw material for an interlayer film for laminated glass, the amount of the plasticizer added is preferably 5 to 100 parts by weight, more preferably 10 to 90 parts by weight, more preferably 100 parts by weight of polyvinyl acetal. The amount is preferably 15 to 80 parts by mass. When the plasticizer addition amount is less than 5 parts by mass, desired flexibility as an interlayer film for laminated glass may not be obtained. If it exceeds 100 parts by mass, the desired mechanical properties, particularly the penetration resistance of the laminated glass, may decrease.
 本発明のポリビニルアセタール組成物は、本発明の主旨に反しない限り、酸化防止剤、紫外線吸収剤、接着性改良剤、顔料、染料、その他従来公知の添加剤を含んでいても良い。 The polyvinyl acetal composition of the present invention may contain an antioxidant, an ultraviolet absorber, an adhesion improver, a pigment, a dye, and other conventionally known additives, as long as not departing from the gist of the present invention.
 上記酸化防止剤としては、その種類は特に限定されないが、例えばフェノール系酸化防止剤、リン系酸化防止剤、硫黄系酸化防止剤などが挙げられ、これらの中でもフェノール系酸化防止剤が好ましく、アルキル置換フェノール系酸化防止剤が特に好ましい。 The type of the antioxidant is not particularly limited, and examples thereof include phenolic antioxidants, phosphorus antioxidants, sulfur antioxidants, etc. Among them, phenolic antioxidants are preferable, alkyl Substituted phenolic antioxidants are particularly preferred.
 フェノール系酸化防止剤の例としては、2-t-ブチル-6-(3-t-ブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニルアクリレート、2,4-ジt-アミル-6-(1-(3,5-ジt-アミル-2-ヒドロキシフェニル)エチル)フェニルアクリレートなどのアクリレート系化合物、2,6-ジt-ブチル-4-メチルフェノール、2,6-ジt-ブチル-4-エチルフェノール、オクタデシル-3-(3,5-)ジt-ブチル-4-ヒドロキシフェニル)プロピオネート、2,2’-メチレン-ビス(4-メチル-6-t-ブチルフェノール)、4,4’-ブチリデン-ビス(4-メチル-6-t-ブチルフェノール)、4,4’-ブチリデン-ビス(6-t-ブチル-m-クレゾール)、4,4’-チオビス(3-メチル-6-t-ブチルフェノール)、ビス(3-シクロヘキシル-2-ヒドロキシ-5-メチルフェニル)メタン、3,9-ビス(2-(3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオニルオキシ)-1,1-ジメチルエチル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-t-ブチルフェニル)ブタン、1,3,5-トリメチル-2,4,6-トリス(3,5-ジt-ブチル-4-ヒドロキシベンジル)ベンゼン、テトラキス(メチレン-3-(3’,5’-ジt-ブチル-4’-ヒドロキシフェニル)プロピオネート)メタン、トリエチレングリコールビス(3-(3-t-ブチル-4-ヒドロキシ-5-メチルフェニル)プロピオネート)などのアルキル置換フェノール系化合物、6-(4-ヒドロキシ-3,5-ジt-ブチルアニリノ)-2,4-ビス-オクチルチオ-1,3,5-トリアジン、6-(4-ヒドロキシ-3,5-ジメチルアニリノ)-2,4-ビス-オクチルチオ-1,3,5-トリアジン、6-(4-ヒドロキシ-3-メチル-5-t-ブチルアニリノ)-2,4-ビス-オクチルチオ-1,3,5-トリアジン、2-オクチルチオ-4,6-ビス-(3,5-ジt-ブチル-4-オキシアニリノ)-1,3,5-トリアジンなどのトリアジン基含有フェノール系化合物などが挙げられる。 Examples of phenolic antioxidants include 2-t-butyl-6- (3-t-butyl-2-hydroxy-5-methylbenzyl) -4-methylphenyl acrylate, 2,4-di-t-amyl- Acrylate compounds such as 6- (1- (3,5-dit-amyl-2-hydroxyphenyl) ethyl) phenyl acrylate, 2,6-dit-butyl-4-methylphenol, 2,6-dit -Butyl-4-ethylphenol, octadecyl-3- (3,5-) di-t-butyl-4-hydroxyphenyl) propionate, 2,2'-methylene-bis (4-methyl-6-t-butylphenol), 4,4′-butylidene-bis (4-methyl-6-tert-butylphenol), 4,4′-butylidene-bis (6-tert-butyl-m-cresol), 4,4′-thiobi (3-methyl-6-tert-butylphenol), bis (3-cyclohexyl-2-hydroxy-5-methylphenyl) methane, 3,9-bis (2- (3- (3-tert-butyl-4-hydroxy) -5-methylphenyl) propionyloxy) -1,1-dimethylethyl) -2,4,8,10-tetraoxaspiro [5.5] undecane, 1,1,3-tris (2-methyl-4- Hydroxy-5-t-butylphenyl) butane, 1,3,5-trimethyl-2,4,6-tris (3,5-di-t-butyl-4-hydroxybenzyl) benzene, tetrakis (methylene-3- ( 3 ′, 5′-di-t-butyl-4′-hydroxyphenyl) propionate) methane, triethylene glycol bis (3- (3-t-butyl-4-hydroxy-5-methylphenyl) Alkyl-substituted phenolic compounds such as propionate), 6- (4-hydroxy-3,5-di-t-butylanilino) -2,4-bis-octylthio-1,3,5-triazine, 6- (4-hydroxy- 3,5-dimethylanilino) -2,4-bis-octylthio-1,3,5-triazine, 6- (4-hydroxy-3-methyl-5-t-butylanilino) -2,4-bis-octylthio Triazine group-containing phenolic compounds such as 1,3,5-triazine, 2-octylthio-4,6-bis- (3,5-di-t-butyl-4-oxyanilino) -1,3,5-triazine Is mentioned.
 リン系酸化防止剤としては、例えば、トリフェニルホスファイト、ジフェニルイソデシルホスファイト、フェニルジイソデシルホスファイト、トリス(ノニルフェニル)ホスファイト、トリス(ジノニルフェニル)ホスファイト、トリス(2-t-ブチル-4-メチルフェニル)ホスファイト、トリス(シクロヘキシルフェニル)ホスファイト、2,2-メチレンビス(4,6-ジt-ブチルフェニル)オクチルホスファイト、9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド、10-(3,5-ジt-ブチル-4-ヒドロキシベンジル)-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレン-10-オキサイド、10-デシロキシ-9,10-ジヒドロ-9-オキサ-10-ホスファフェナントレンなどのモノホスファイト系化合物、4,4’-ブチリデン-ビス(3-メチル-6-t-ブチルフェニル-ジトリデシルホスファイト)、4,4’-イソプロピリデン-ビス(フェニル-ジアルキル(C12~C15)ホスファイト)、4,4’-イソプロピリデン-ビス(ジフェニルモノアルキル(C12~C15)ホスファイト)、1,1,3-トリス(2-メチル-4-ジトリデシルホスファイト-5-t-ブチルフェニル)ブタン、テトラキス(2,4-ジt-ブチルフェニル)-4,4’-ビフェニレンホスファイトなどのジホスファイト系化合物が挙げられる。中でもモノホスファイト系化合物が好ましい。 Examples of phosphorus antioxidants include triphenyl phosphite, diphenylisodecyl phosphite, phenyl diisodecyl phosphite, tris (nonylphenyl) phosphite, tris (dinonylphenyl) phosphite, tris (2-t-butyl). -4-methylphenyl) phosphite, tris (cyclohexylphenyl) phosphite, 2,2-methylenebis (4,6-dit-butylphenyl) octyl phosphite, 9,10-dihydro-9-oxa-10-phos Phaphenanthrene-10-oxide, 10- (3,5-di-t-butyl-4-hydroxybenzyl) -9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide, 10-decyloxy-9 , 10-Dihydro-9-oxa-10-phospha Monophosphite compounds such as enanthrene, 4,4′-butylidene-bis (3-methyl-6-tert-butylphenyl-ditridecyl phosphite), 4,4′-isopropylidene-bis (phenyl-dialkyl (C12 To C15) phosphite), 4,4′-isopropylidene-bis (diphenylmonoalkyl (C12 to C15) phosphite), 1,1,3-tris (2-methyl-4-ditridecyl phosphite-5- and diphosphite compounds such as t-butylphenyl) butane and tetrakis (2,4-di-t-butylphenyl) -4,4′-biphenylene phosphite. Of these, monophosphite compounds are preferred.
 硫黄系酸化防止剤としては、例えば、ジラウリル3,3’-チオジプロピオネート、ジステアリル3,3’-チオジプロピオネート、ラウリルステアリル3,3’-チオジプロピオネート、ペンタエリスリトール-テトラキス-(β-ラウリル-チオプロピオネート)、3,9-ビス(2-ドデシルチオエチル)-2,4,8,10-テトラオキサスピロ[5,5]ウンデカンが挙げられる。 Examples of the sulfur-based antioxidant include dilauryl 3,3′-thiodipropionate, distearyl 3,3′-thiodipropionate, lauryl stearyl 3,3′-thiodipropionate, pentaerythritol-tetrakis- (Β-lauryl-thiopropionate), 3,9-bis (2-dodecylthioethyl) -2,4,8,10-tetraoxaspiro [5,5] undecane.
 これらの酸化防止剤は単独で、あるいは2種以上を組み合わせて用いることができる。酸化防止剤の配合量は、特に制限はないが、ポリビニルアセタール100質量部に対して好ましくは0.001~5質量部、より好ましくは0.01~1質量部である。 These antioxidants can be used alone or in combination of two or more. The blending amount of the antioxidant is not particularly limited, but is preferably 0.001 to 5 parts by mass, more preferably 0.01 to 1 part by mass with respect to 100 parts by mass of the polyvinyl acetal.
 また、本発明のポリビニルアセタール組成物は、紫外線吸収剤を含んでいても良い。使用される紫外線吸収剤としては、2-(5-メチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-(2-ヒドロキシ-3,5-ビス(α,α’ジメチルベンジル)フェニル)-2H-ベンゾトリアゾール、2-(3,5-ジt-ブチル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-(3-t-ブチル-5-メチル-2-ヒドロキシフェニル)-5-クロロベンゾトリアゾール、2-(3,5-ジt-ブチル-5-メチル-2-ヒドロキシフェニル)-5-クロロベンゾトリアゾール、2-(3,5-ジt-アミル-2-ヒドロキシフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-t-オクチルフェニル)ベンゾトリアゾール等のベンゾトリアゾール系紫外線吸収剤;2,2,6,6-テトラメチル-4-ピペリジルベンゾエート、ビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-2-(3,5-ジt-ブチル-4-ヒドロキシベンジル)-2-n-ブチルマロネート、4-(3-(3,5-ジt-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ)-1-(2-(3-(3,5-ジt-ブチル-4-ヒドロキシフェニル)プロピオニルオキシ)エチル)-2,2,6,6-テトラメチルピペリジンなどのヒンダードアミン系紫外線吸収剤;2,4-ジt-ブチルフェニル-3,5ジt-ブチル-4-ヒドロキシベンゾエート、ヘキサデシル-3,5-ジt-ブチル-4-ヒドロキシベンゾエートなどのベンゾエート系紫外線吸収剤;マロン酸[(4-メトキシフェニル)-メチレン]-ジメチルエステル等のマロン酸エステル系紫外線吸収剤、2-エチル-2’-エトキシ-オキサルアニリド等のシュウ酸アニリド系紫外線吸収剤などが挙げられる。これらの紫外線吸収剤は単独で、あるいは2種以上を組み合わせて用いることができる。ポリビニルアセタール組成物中の紫外線吸収剤の含有量は、特に制限はないが、紫外線吸収剤の合計が質量基準で10~50,000ppmであることが好ましく、100~10,000ppmの範囲であることがより好ましい。添加量が10ppmより少ないと十分な効果が発現しないことがあり、また50,000ppmより多くしても含有量を増やすことによる効果の向上が望めない。 Moreover, the polyvinyl acetal composition of the present invention may contain an ultraviolet absorber. Examples of the ultraviolet absorber used include 2- (5-methyl-2-hydroxyphenyl) benzotriazole, 2- (2-hydroxy-3,5-bis (α, α'dimethylbenzyl) phenyl) -2H-benzo Triazole, 2- (3,5-di-t-butyl-2-hydroxyphenyl) benzotriazole, 2- (3-t-butyl-5-methyl-2-hydroxyphenyl) -5-chlorobenzotriazole, 2- ( 3,5-di-t-butyl-5-methyl-2-hydroxyphenyl) -5-chlorobenzotriazole, 2- (3,5-di-t-amyl-2-hydroxyphenyl) benzotriazole, 2- (2 ′ -Hydroxy-5′-t-octylphenyl) benzotriazole UV absorbers such as benzotriazole; 2,2,6,6-tetramethyl-4-pi Peridylbenzoate, bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, bis (1,2,2,6,6-pentamethyl-4-piperidyl) -2- (3,5-di t-butyl-4-hydroxybenzyl) -2-n-butylmalonate, 4- (3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyloxy) -1- (2- (3- (3,5-di-t-butyl-4-hydroxyphenyl) propionyloxy) ethyl) hindered amine UV absorbers such as 2,2,6,6-tetramethylpiperidine; 2,4-di-t-butylphenyl- Benzoate UV absorbers such as 3,5 di-t-butyl-4-hydroxybenzoate and hexadecyl-3,5-di-t-butyl-4-hydroxybenzoate; malonic acid [(4-me Kishifeniru) - methylene] - malonic acid ester ultraviolet absorbers such as dimethyl ester, 2-ethyl-2'-ethoxy - such as oxalic acid anilide-based ultraviolet absorbers such oxalanilide like. These ultraviolet absorbers can be used alone or in combination of two or more. The content of the ultraviolet absorber in the polyvinyl acetal composition is not particularly limited, but the total amount of the ultraviolet absorber is preferably 10 to 50,000 ppm on a mass basis, and is in the range of 100 to 10,000 ppm. Is more preferable. If the addition amount is less than 10 ppm, sufficient effects may not be exhibited, and even if the addition amount is more than 50,000 ppm, the improvement of the effect by increasing the content cannot be expected.
 本発明のポリビニルアセタール組成物のガラス転移温度は特に限定されず、目的に応じて適宜選択可能であるが、0~50℃の範囲であることが好ましく、0~45℃であることがより好ましく、0~40℃であることがさらに好ましい。特に本発明のポリビニルアセタール組成物をシート状に成形して合わせガラス中間膜として使用する場合にガラス転移温度が上記範囲であることが好ましい。 The glass transition temperature of the polyvinyl acetal composition of the present invention is not particularly limited and can be appropriately selected depending on the purpose, but is preferably in the range of 0 to 50 ° C, more preferably 0 to 45 ° C. The temperature is more preferably 0 to 40 ° C. In particular, when the polyvinyl acetal composition of the present invention is formed into a sheet and used as a laminated glass interlayer, the glass transition temperature is preferably within the above range.
 前記ポリビニルアセタール組成物からなる合わせガラス用中間膜も本発明の好適な実施態様である。本発明の合わせガラス用中間膜を、ガラスとの接着性を適切に調節する必要がある用途に使用する場合、ポリビニルアセタール組成物には接着性調整剤が含有されていてもよい。接着性調整剤としては従来公知のものが使用可能であるが、例えば酢酸、プロピオン酸、ブタン酸、ヘキサン酸、2-エチルブタン酸、2-エチルヘキサン酸などの有機酸のナトリウム塩、カリウム塩、マグネシウム塩などが用いられる。これらは単独で、あるいは2種類以上を組み合わせて使用できる。接着性調整剤の最適な含有量は、使用する接着性調整剤により異なるが、得られるフィルムのガラスへの接着力が、パンメル試験(Pummel test;国際公開公報第WO2003/033583号等に記載)において一般には3~10になるように調整することが好ましい。特に高い耐貫通性を必要とする場合は3~6になるように含有量を調整することが好ましく、高いガラス飛散防止性を必要とする場合は7~10になるように含有量を調整することが好ましい。高いガラス飛散防止性が求められる場合は、接着性調整剤を添加しないことも有用な方法である。通常、ポリビニルアセタール組成物中の接着性調整剤の含有量としては、0.0001~1質量%であることが好ましく、0.0005~0.1質量%がより好ましく、0.001~0.03質量%が更に好ましい。 An interlayer film for laminated glass made of the polyvinyl acetal composition is also a preferred embodiment of the present invention. When the interlayer film for laminated glass of the present invention is used for an application where it is necessary to appropriately adjust the adhesiveness with glass, the polyvinyl acetal composition may contain an adhesiveness adjusting agent. As the adhesion adjusting agent, conventionally known ones can be used. For example, acetic acid, propionic acid, butanoic acid, hexanoic acid, 2-ethylbutanoic acid, sodium salt of organic acid such as 2-ethylhexanoic acid, potassium salt, A magnesium salt or the like is used. These can be used alone or in combination of two or more. The optimum content of the adhesion modifier varies depending on the adhesion modifier used, but the adhesion of the resulting film to glass is determined by the Pummel test (described in International Publication No. WO2003 / 033583). In general, it is preferable to adjust to 3 to 10. In particular, when high penetration resistance is required, the content is preferably adjusted to 3 to 6, and when high glass scattering prevention property is required, the content is adjusted to 7 to 10. It is preferable. When high glass scattering prevention property is required, it is also a useful method not to add an adhesion modifier. Usually, the content of the adhesion adjusting agent in the polyvinyl acetal composition is preferably 0.0001 to 1% by mass, more preferably 0.0005 to 0.1% by mass, and 0.001 to 0.00%. 03 mass% is still more preferable.
 また、上記接着性を調整するための他の調整剤としてはシランカップリング剤が挙げられる。ポリビニルアセタール組成物中のシランカップリング剤の含有量は、0.01~5質量%が好ましい。 Further, as another adjusting agent for adjusting the adhesiveness, a silane coupling agent can be mentioned. The content of the silane coupling agent in the polyvinyl acetal composition is preferably 0.01 to 5% by mass.
 本発明の合わせガラス用中間膜は透明性および柔軟性に優れる。合わせガラス用中間膜の厚さは特に限定されないが、0.05~5.0mmであることが好ましく、0.1~2.0mmであることがより好ましく、0.1~1.2mmであることがさらに好ましい。 The interlayer film for laminated glass of the present invention is excellent in transparency and flexibility. The thickness of the interlayer film for laminated glass is not particularly limited, but is preferably 0.05 to 5.0 mm, more preferably 0.1 to 2.0 mm, and 0.1 to 1.2 mm. More preferably.
 前記ポリビニルアセタール組成物からなる合わせガラス用中間膜は、前記ポリビニルアセタール、前記可塑剤、及びその他の成分を従来公知の方法で混合して得られたポリビニルアセタール組成物を製膜することで得ることができる。例えば、前記ポリビニルアセタール、可塑剤及びその他の成分を有機溶剤に溶解又は分散させたものを製膜した後、前記有機溶剤を留去する方法;押出機等を用いてその他の成分を可塑剤に溶解あるいは分散させたものをポリビニルアセタールと共に溶融混練し、製膜する方法などが挙げられる。公知の製膜方法の中でも特に押出機を用いて製膜する方法が好適に用いられる。押出し時の樹脂温度は150~250℃が好ましく、170~230℃がより好ましい。樹脂温度が高くなりすぎるとポリビニルアセタールが分解を起こし、製膜後の中間膜中の揮発性物質の含有量が多くなる。逆に温度が低すぎると、押出機での揮発分除去が不十分となり、製膜後の中間膜中の揮発性物質の含有量は多くなる。揮発性物質を効率的に除去するためには、押出機内を減圧することによりベント口から揮発性物質を除去することが好ましい。 The interlayer film for laminated glass comprising the polyvinyl acetal composition is obtained by forming a polyvinyl acetal composition obtained by mixing the polyvinyl acetal, the plasticizer, and other components by a conventionally known method. Can do. For example, a method in which the polyvinyl acetal, a plasticizer and other components dissolved or dispersed in an organic solvent are formed into a film, and then the organic solvent is distilled off; the other components are converted into a plasticizer using an extruder or the like. Examples include a method of melt-kneading a dissolved or dispersed material together with polyvinyl acetal to form a film. Among known film forming methods, a method of forming a film using an extruder is particularly preferably used. The resin temperature at the time of extrusion is preferably 150 to 250 ° C, more preferably 170 to 230 ° C. When the resin temperature becomes too high, polyvinyl acetal is decomposed, and the content of volatile substances in the intermediate film after film formation increases. On the other hand, if the temperature is too low, the removal of volatile matter in the extruder becomes insufficient, and the content of volatile substances in the intermediate film after film formation increases. In order to efficiently remove the volatile substance, it is preferable to remove the volatile substance from the vent port by reducing the pressure in the extruder.
 本発明の合わせガラス用中間膜の製膜において、原料のポリビニルアセタールとして、バージン樹脂(再利用されたポリビニルアセタールを含まないもの)のみを用いてもよいが、後述するトリムやオフスペック品を再利用してもよい。通常、製膜は、例えば押出機にギアポンプなどの計量機およびTダイなどのダイを備え付けた製膜装置にて実施される。一般的に、製膜の際には、フィルム(合わせガラス用中間膜として用いる)の両端部(トリム)は切り取られる。このようなトリムを回収し、再利用することは省エネルギー化、資源の有効活用や収率向上の観点から非常に重要である。また、表面に凹凸を有するフィルムの製造の際に生じたオフスペック品も、トリム同様に再利用できるため有用である。本発明のポリビニルアセタールは、アセタール化反応の際に粗粒子の生成が抑制され、その結果、得られるポリビニルアセタールを溶融製膜した際に、異物(未溶解分)が低減されたフィルムを得ることができる。本発明のポリビニルアセタールから得られたフィルムは熱処理した際の着色が少ないことから、上記トリムやオフスペック品を有効に再利用できる。回収したトリムやオフスペック品のフィルムを再び押出機に投入する方法として、トリムやオフスペック品のフィルムをロールに巻き取ったものを、そのまま巻き出して押出機に再投入する方法;トリムやオフスペック品をロールに巻き取ったものを一定の大きさにカットした後、押出機に再投入する方法などが挙げられる。また、本発明の合わせガラス用中間膜を製膜する際は、原料中のバージン樹脂と回収フィルムの比率(バージン樹脂:回収フィルム)は0:100~100:0の間で任意に変更できる。 In the production of the interlayer film for laminated glass of the present invention, as a raw material polyvinyl acetal, only virgin resin (not containing recycled polyvinyl acetal) may be used. May be used. Usually, film formation is carried out, for example, in a film forming apparatus in which an extruder is equipped with a measuring machine such as a gear pump and a die such as a T die. Generally, in film formation, both ends (trims) of a film (used as an interlayer film for laminated glass) are cut off. It is very important to collect and reuse such trims from the viewpoints of energy saving, effective utilization of resources and improvement of yield. In addition, an off-spec product produced during the production of a film having irregularities on the surface is useful because it can be reused in the same manner as the trim. In the polyvinyl acetal of the present invention, the formation of coarse particles is suppressed during the acetalization reaction, and as a result, when the obtained polyvinyl acetal is melt-formed, a film with reduced foreign matter (undissolved content) is obtained. Can do. Since the film obtained from the polyvinyl acetal of the present invention is less colored when heat-treated, the trim and off-spec products can be effectively reused. Retrieving the trim or off-spec film that has been collected on the roll as a method of re-feeding the collected trim or off-spec film to the extruder; Examples include a method in which a spec product wound on a roll is cut into a certain size and then re-entered into an extruder. Further, when the interlayer film for laminated glass of the present invention is formed, the ratio of the virgin resin and the recovered film (virgin resin: recovered film) in the raw material can be arbitrarily changed between 0: 100 and 100: 0.
 上記トリムあるいはオフスペック品のフィルムを再利用するにあたって、可塑剤、その他の成分の量の調整については、新たに得られるフィルムの成分を分析しつつ、押出機へのそれぞれの添加量を調整しながら、所望のフィルムを得ることができる。 When reusing the trim or off-spec film, adjust the amount of plasticizer and other components by analyzing the newly obtained film components and adjusting the amount added to the extruder. However, a desired film can be obtained.
 本発明の合わせガラス用中間膜の表面の形状は特に限定されないが、ガラスとラミネートする際の取り扱い性(泡抜け性)を考慮すると、ガラスと接触する面にメルトフラクチャー、エンボスなど、従来公知の方法で凹凸構造が形成されていることが好ましい。エンボス高さについては特に制限はないが、5μm~500μmであることが好ましく、7μm~300μmであることがより好ましく、10μm~200μmであることが更に好ましい。エンボス高さが5μmに満たない場合には、ガラスへのラミネートの際にガラスと中間膜との間にできる気泡を効率よく除去できない場合があり、500μmを超える場合にはエンボスの形成が難しい。またエンボスを中間膜の片面に施してもよいし、両面でもよいが、通常、両面に施すのが好ましい。 The shape of the surface of the interlayer film for laminated glass of the present invention is not particularly limited. However, in consideration of the handling property (foaming property) when laminating with glass, the surface in contact with the glass is conventionally known, such as melt fracture and embossing. It is preferable that the concavo-convex structure is formed by the method. The emboss height is not particularly limited, but is preferably 5 μm to 500 μm, more preferably 7 μm to 300 μm, and still more preferably 10 μm to 200 μm. When the embossing height is less than 5 μm, bubbles formed between the glass and the intermediate film may not be efficiently removed when laminating to glass, and when it exceeds 500 μm, it is difficult to form embossing. Moreover, although embossing may be given to the single side | surface of an intermediate film, and both sides may be sufficient, it is preferable to give normally to both surfaces.
 エンボスの凹凸模様は、上述した特定の条件を満たすものであれば特に限定されず、規則的に分布していてもよく、ランダムに分布していてもよい。 The embossed concavo-convex pattern is not particularly limited as long as it satisfies the specific conditions described above, and may be regularly distributed or randomly distributed.
 このようなエンボスを形成するには、従来と同様に、エンボスロ-ル法、異形押出法、
メルトフラクチャーを利用した押出リップエンボス法等が採用される。特に均一で微細な凹凸が形成されたエンボスフィルムを安定的に得るにはエンボスロ-ル法が好適である。
In order to form such embossing, the embossing roll method, the profile extrusion method,
An extrusion lip embossing method using a melt fracture is employed. In particular, the embossing roll method is suitable for stably obtaining an embossed film on which uniform and fine irregularities are formed.
 エンボスロール法で用いられるエンボスロールは例えば、所望の凹凸模様を有する彫刻ミル(マザーミル)を用い、この凹凸模様を金属ロール表面に転写することにより作製できる。また、レーザーエッチングを用いても作製できる。さらに上記のようにしてロール表面に微細な凹凸模様を形成した後、その表面に酸化アルミニウムや酸化珪素やガラスビ-ズなどの研削材を用いてブラスト処理を行ってさらに微細な凹凸模様を形成することもできる。 The embossing roll used in the embossing roll method can be produced by, for example, using an engraving mill (mother mill) having a desired concavo-convex pattern and transferring the concavo-convex pattern onto the surface of the metal roll. It can also be produced using laser etching. Further, after forming a fine concavo-convex pattern on the roll surface as described above, blasting is performed on the surface using an abrasive such as aluminum oxide, silicon oxide, or glass beads to form a finer concavo-convex pattern. You can also.
 またエンボスロ-ル法で用いられるエンボスロールは離形処理を施すことが好ましい。離形処理がないロ-ルを用いた場合、条件によってはロールから剥離できないトラブルが発生しやすい。離形処理はシリコーン処理、テフロン(登録商標)処理、プラズマ処理、等の公知の技術が利用できる。 Also, the embossing roll used in the embossing roll method is preferably subjected to a release treatment. When a roll without mold release treatment is used, troubles that cannot be peeled off from the roll easily occur depending on conditions. For the release treatment, known techniques such as silicone treatment, Teflon (registered trademark) treatment, plasma treatment and the like can be used.
 本発明の合わせガラス用中間膜を用いて複数のガラス板を接着してなる合わせガラスが本発明の好適な実施態様である。本発明の合わせガラスは、本発明の中間膜を少なくとも2枚のガラス板で挟み、中間膜を加熱し接着させることによって製造することができる。本発明の合わせガラスに使用するガラスは特に限定されず、フロート板ガラス、強化板ガラス、磨き板ガラス、型板ガラス、網入り板ガラス、熱線吸収板ガラスなどの無機ガラスのほか、ポリメタクリル酸メチル、ポリカーボネートなどの従来公知の有機ガラス等が使用できる。これらは無色、有色、あるいは透明、非透明のいずれであってもよい。また、これらは単独で使用してもよく、2種以上を併用してもよい。ガラスの厚みは特に限定されないが、100mm以下であることが好ましい。上記ガラスの形状については特に制限はなく、単純な平面状の板ガラスであっても、自動車フロントガラスなどの曲率を有するガラスであっても良い。 A laminated glass obtained by bonding a plurality of glass plates using the interlayer film for laminated glass of the present invention is a preferred embodiment of the present invention. The laminated glass of the present invention can be produced by sandwiching the interlayer film of the present invention between at least two glass plates and heating and bonding the interlayer film. The glass used for the laminated glass of the present invention is not particularly limited. In addition to inorganic glass such as float plate glass, tempered plate glass, polished plate glass, mold plate glass, netted plate glass, heat ray absorbing plate glass, and the like such as polymethyl methacrylate and polycarbonate A well-known organic glass etc. can be used. These may be colorless, colored, transparent or non-transparent. Moreover, these may be used independently and may use 2 or more types together. Although the thickness of glass is not specifically limited, It is preferable that it is 100 mm or less. The shape of the glass is not particularly limited, and may be a simple flat plate glass or a glass having a curvature such as an automobile windshield.
 本発明の合わせガラスは従来公知の方法で製造が可能であり、例えば真空ラミネーター装置を用いる方法、真空バッグを用いる方法、真空リングを用いる方法、ニップロールを用いる方法等が挙げられる。またこれらの方法を用いて仮圧着させた後に、得られた積層体をオートクレーブに投入する方法も挙げられる。 The laminated glass of the present invention can be produced by a conventionally known method, and examples thereof include a method using a vacuum laminator device, a method using a vacuum bag, a method using a vacuum ring, and a method using a nip roll. Further, there is a method in which the obtained laminate is put into an autoclave after being temporarily pressed using these methods.
真空ラミネーター装置を用いる場合、その作製条件の一例を示すと、1×10-6~3×10-2MPaの減圧下、100~200℃、特に130~160℃の温度でガラスと中間膜がラミネートされる。真空バッグまたは真空リングを用いる方法は、例えば、欧州特許第1235683号明細書に記載されており、例えば約2×10-2MPaの圧力下、130~145℃でラミネートされる。 In the case of using a vacuum laminator, an example of the production conditions is as follows. The glass and the interlayer film are heated at a temperature of 100 to 200 ° C., particularly 130 to 160 ° C. under a reduced pressure of 1 × 10 −6 to 3 × 10 −2 MPa. Laminated. A method using a vacuum bag or a vacuum ring is described in, for example, European Patent No. 1235683, and is laminated at 130 to 145 ° C. under a pressure of about 2 × 10 −2 MPa, for example.
 ニップロールを用いた製造方法としては、ポリビニルアセタール組成物の流動開始温度以下の温度でロールにより脱気した後、さらに流動開始温度に近い温度で圧着を行う方法が挙げられる。具体的には、例えば、赤外線ヒーターなどで30~70℃に加熱した後、ロールで脱気し、さらに50~120℃に加熱した後ロールで圧着させる方法が挙げられる。 As a production method using a nip roll, there is a method in which after degassing with a roll at a temperature not higher than the flow start temperature of the polyvinyl acetal composition, press bonding is performed at a temperature close to the flow start temperature. Specifically, for example, there is a method of heating to 30 to 70 ° C. with an infrared heater or the like, then degassing with a roll, further heating to 50 to 120 ° C., and then pressing with a roll.
 上述の方法を用いて圧着させた後にオートクレーブに投入してさらに圧着を行う場合、オートクレーブ工程の運転条件は、合わせガラスの厚さや構成により適宜選択されるが、例えば1.0~1.5MPaの圧力下、130~145℃の温度で0.5~3時間処理することが好ましい。 When pressure bonding is performed using the above-described method, and then further pressure bonding is performed, the operating conditions of the autoclave process are appropriately selected depending on the thickness and configuration of the laminated glass. For example, 1.0 to 1.5 MPa The treatment is preferably carried out at a temperature of 130 to 145 ° C. for 0.5 to 3 hours under pressure.
 以下、実施例および比較例により本発明をさらに詳細に説明する。なお、以下の実施例および比較例において「部」および「%」は、特に断らない限り質量基準である。「重合度」は「粘度平均重合度」を意味する。 Hereinafter, the present invention will be described in more detail with reference to examples and comparative examples. In the following examples and comparative examples, “parts” and “%” are based on mass unless otherwise specified. “Polymerization degree” means “viscosity average polymerization degree”.
[GPC測定]
(PVAの準備)
 95℃にて1時間加熱してPVAを水に溶解させた後、室温に冷却して、PVAの2%水溶液を得た。ポリエチレンテレフタレートフィルム上(20cm×20cm)に得られた水溶液を流延し、20℃、65%RHの条件下で1週間乾燥させて、厚さ50μmのPVAフィルムを得た。得られたフィルムをステンレス製の金属型枠(20cm×20cmで幅1cmの金属枠)にクリップで固定し、ギアオーブンにて120℃、3時間熱処理した。熱処理後のPVAフィルムの中央付近から試料を採取し、GPC測定に供した。
[GPC measurement]
(Preparation of PVA)
After heating at 95 ° C. for 1 hour to dissolve PVA in water, it was cooled to room temperature to obtain a 2% aqueous solution of PVA. The obtained aqueous solution was cast on a polyethylene terephthalate film (20 cm × 20 cm) and dried for 1 week under the conditions of 20 ° C. and 65% RH to obtain a PVA film having a thickness of 50 μm. The obtained film was fixed to a stainless steel metal frame (20 cm × 20 cm and 1 cm wide metal frame) with a clip, and heat-treated in a gear oven at 120 ° C. for 3 hours. A sample was collected from the vicinity of the center of the PVA film after heat treatment and subjected to GPC measurement.
(ポリビニルアセタールの準備)
 ポリビニルアセタールの粉末を圧力2MPa、230℃にて、3時間熱プレスした後、冷却することにより、厚み760μmのポリビニルアセタールフィルムを得た。こうして加熱処理されたフィルムの中央付近から試料を採取し、GPC測定に供した。
(Preparation of polyvinyl acetal)
A polyvinyl acetal film having a thickness of 760 μm was obtained by hot pressing the polyvinyl acetal powder at a pressure of 2 MPa at 230 ° C. for 3 hours and then cooling. A sample was collected from near the center of the heat-treated film and subjected to GPC measurement.
(測定装置)
 VISCOTECH製「GPCmax」を用いてGPC測定を行った。示差屈折率検出器としてVISCOTECH製「TDA305」を用いた。紫外可視吸光光度検出器としてVISCOTECH製「UV Detector2600」を用いた。当該吸光光度検出器の検出用セルの光路長は10mmである。GPCカラムには昭和電工株式会社製「GPC HFIP-806M」を用いた。また、解析ソフトには、装置付属のOmniSEC(Version 4.7.0.406)を用いた。
(measuring device)
GPC measurement was performed using “GPCmax” manufactured by VISCOTECH. As a differential refractive index detector, “TDA305” manufactured by VISCOTECH was used. “UV Detector 2600” manufactured by VISCOTECH was used as an ultraviolet-visible absorption detector. The optical path length of the detection cell of the absorptiometric detector is 10 mm. As the GPC column, “GPC HFIP-806M” manufactured by Showa Denko KK was used. Moreover, OmniSEC (Version 4.7.0.406) attached to the apparatus was used as analysis software.
(測定条件)
 上述の方法により準備された試料を20mmol/lトリフルオロ酢酸ナトリウム含有ヘキサフルオロイソプロパノール(以後「HFIP」と略記する)に溶解し、PVAの1.00mg/ml溶液を調製した。当該溶液を0.45μmのポリテトラフルオロエチレン製フィルターでろ過した後、測定に用いた。
(Measurement condition)
A sample prepared by the above-described method was dissolved in 20 mmol / l sodium trifluoroacetate-containing hexafluoroisopropanol (hereinafter abbreviated as “HFIP”) to prepare a 1.00 mg / ml solution of PVA. The solution was filtered through a 0.45 μm polytetrafluoroethylene filter and used for measurement.
 移動相には、20mmol/lトリフルオロ酢酸ナトリウム含有HFIPを用いた。移動相の流速は1.0ml/分とした。試料注入量は100μlとし、GPCカラム温度40℃にて測定した。 As the mobile phase, 20 mmol / l sodium trifluoroacetate-containing HFIP was used. The mobile phase flow rate was 1.0 ml / min. The sample injection amount was 100 μl, and measurement was performed at a GPC column temperature of 40 ° C.
 なお、PVAの粘度平均重合度が2400を超える試料は、適宜希釈した試料(100μl)を用いてGPC測定を行った。実測値から下記式により、試料濃度が1.00mg/mlの場合における吸光度を算出した。α(mg/ml)は希釈された試料の濃度である。
 
試料濃度1.00mg/mlにおける吸光度=(1.00/α)×吸光度の測定値
 
In addition, the sample in which the viscosity average polymerization degree of PVA exceeded 2400 performed GPC measurement using the sample (100 microliters) diluted suitably. The absorbance at a sample concentration of 1.00 mg / ml was calculated from the measured value according to the following formula. α (mg / ml) is the concentration of the diluted sample.

Absorbance at a sample concentration of 1.00 mg / ml = (1.00 / α) × measured value of absorbance
(検量線の作成)
 標品として、Agilent Technologies製のポリメタクリル酸メチル(以下「PMMA」と略記する)(ピークトップ分子量:1944000、790000、467400、271400、144000、79250、35300、13300、7100、1960、1020、690)を測定し、示差屈折率検出器および吸光光度検出器のそれぞれについて、溶出容量をPMMA分子量に換算するための検量線を作成した。各検量線の作成には、前記解析ソフトを用いた。なお、本測定においてはポリメタクリル酸メチルの測定において、1944000と271400の両分子量の標準試料同士のピークが分離できる状態のカラムを用いた。
(Create a calibration curve)
As a standard, polymethyl methacrylate (hereinafter abbreviated as “PMMA”) manufactured by Agilent Technologies (peak top molecular weight: 1944000, 790000, 467400, 271400, 144000, 79250, 35300, 13300, 7100, 1960, 1020, 690) And a calibration curve for converting the elution volume into the PMMA molecular weight was prepared for each of the differential refractive index detector and the absorptiometric detector. The analytical software was used to create each calibration curve. In this measurement, a column in a state where the peaks of the standard samples having both molecular weights of 1944000 and 271400 can be separated in the measurement of polymethyl methacrylate was used.
 なお、本装置においては、示差屈折率検出器から得られるピーク強度はmV(ミリボルト)で、UV Detectorから得られるピーク強度は吸光度(abs unit:アブソーバンスユニット)で表される。 In this apparatus, the peak intensity obtained from the differential refractive index detector is mV (millivolt), and the peak intensity obtained from the UV detector is represented by absorbance (abs unit: Absorbance unit).
[ポリ酢酸ビニルの合成]
PVAc-1
 撹拌機、温度計、窒素導入チューブ、還流管を備え付けた6Lセパラブルフラスコに、あらかじめ脱酸素し、アセトアルデヒド(AA)を500ppm、アセトアルデヒドジメチルアセタール(DMA)を50ppm含有する酢酸ビニルモノマー(VAM)2555g;アセトアルデヒドジメチルアセタールを50ppm含有し、アセトアルデヒドの含有量が1ppm未満であるメタノール(MeOH)945g;酢酸ビニルモノマー中の酒石酸の含有量が20ppmとなる量の酒石酸1%メタノール溶液を仕込んだ。前記フラスコ内に窒素を吹き込みながら、フラスコ内の温度を60℃に調整した。なお、還流管には-10℃のエチレングリコール/水溶液を循環させた。ジn-プロピルパーオキシジカーボネートの0.55質量%メタノール溶液を調製し、18.6mLを前記フラスコ内に添加し重合を開始した。このときのジn-プロピルパーオキシジカーボネートの添加量は0.081gであった。ジn-プロピルパーオキシジカーボネートのメタノール溶液を20.9mL/時間の速度で重合終了まで逐次添加した。重合中、フラスコ内の温度を60℃に保った。重合開始から4時間後、重合液の固形分濃度が25.1%となった時点で、ソルビン酸を0.0141g(重合液中に未分解で残存するジn-プロピルパーオキシジカーボネートの3モル等量に相当する)含有するメタノールを1200g添加した後、重合液を冷却し重合を停止した。重合停止時の酢酸ビニルモノマーの重合率は35.0%であった。重合液を室温まで冷却した後、水流アスピレータを用いてフラスコ内を減圧することにより、酢酸ビニルモノマーおよびメタノールを留去し、ポリ酢酸ビニルを析出させた。析出したポリ酢酸ビニルにメタノールを3000g添加し、30℃で加温しつつポリ酢酸ビニルを溶解させた後、再び水流アスピレータを用いてフラスコ内を減圧することにより、酢酸ビニルモノマーおよびメタノールを留去してポリ酢酸ビニルを析出させた。ポリ酢酸ビニルをメタノールに溶解させた後、析出させる操作をさらに2回繰り返した。析出したポリ酢酸ビニルにメタノールを添加し、酢酸ビニルモノマーの除去率99.8%のポリ酢酸ビニル(PVAc-1)の40質量%のメタノール溶液を得た。
[Synthesis of polyvinyl acetate]
PVAc-1
A 6 L separable flask equipped with a stirrer, thermometer, nitrogen introduction tube, and reflux tube was deoxygenated in advance, and vinyl acetate monomer (VAM) 2555 g containing 500 ppm acetaldehyde (AA) and 50 ppm acetaldehyde dimethyl acetal (DMA). 945 g of methanol (MeOH) containing 50 ppm of acetaldehyde dimethyl acetal and an acetaldehyde content of less than 1 ppm; 1% methanol solution of tartaric acid in an amount of 20 ppm of tartaric acid in the vinyl acetate monomer was charged. While blowing nitrogen into the flask, the temperature inside the flask was adjusted to 60 ° C. Note that an ethylene glycol / water solution at −10 ° C. was circulated in the reflux tube. A 0.55% by mass methanol solution of di-n-propyl peroxydicarbonate was prepared, and 18.6 mL was added to the flask to initiate polymerization. At this time, the amount of di-n-propyl peroxydicarbonate added was 0.081 g. A methanol solution of di-n-propyl peroxydicarbonate was sequentially added at a rate of 20.9 mL / hour until the completion of polymerization. During the polymerization, the temperature in the flask was kept at 60 ° C. Four hours after the start of the polymerization, when the solid content concentration of the polymerization solution reached 25.1%, 0.0141 g of sorbic acid (3% of di-n-propyl peroxydicarbonate remaining undecomposed in the polymerization solution) was obtained. After adding 1200 g of contained methanol (corresponding to a molar equivalent), the polymerization solution was cooled to stop the polymerization. When the polymerization was stopped, the polymerization rate of the vinyl acetate monomer was 35.0%. After the polymerization solution was cooled to room temperature, the inside of the flask was depressurized using a water aspirator to distill off the vinyl acetate monomer and methanol, thereby precipitating polyvinyl acetate. 3000 g of methanol was added to the precipitated polyvinyl acetate, and the polyvinyl acetate was dissolved while heating at 30 ° C., and then the inside of the flask was decompressed again using a water aspirator to distill off the vinyl acetate monomer and methanol. Thus, polyvinyl acetate was precipitated. The operation of dissolving polyvinyl acetate in methanol and then precipitating it was further repeated twice. Methanol was added to the precipitated polyvinyl acetate to obtain a 40% by mass methanol solution of polyvinyl acetate (PVAc-1) with a vinyl acetate monomer removal rate of 99.8%.
 得られたPVAc-1のメタノール溶液の一部を用いて重合度を測定した。PVAc-1のメタノール溶液に、ポリ酢酸ビニル中の酢酸ビニル単位に対する水酸化ナトリウムのモル比が、0.1となるように水酸化ナトリウムの10%メタノール溶液を添加した。ゲル化物が生成した時点でゲルを粉砕し、メタノールでソックスレー抽出を3日間行った。得られたポリビニルアルコールを乾燥し、粘度平均重合度測定に供した。重合度は1700であった。 The polymerization degree was measured using a part of the methanol solution of PVAc-1 obtained. A 10% methanol solution of sodium hydroxide was added to the methanol solution of PVAc-1 so that the molar ratio of sodium hydroxide to vinyl acetate units in polyvinyl acetate was 0.1. When the gelled product was formed, the gel was pulverized and subjected to Soxhlet extraction with methanol for 3 days. The obtained polyvinyl alcohol was dried and subjected to viscosity average polymerization degree measurement. The degree of polymerization was 1700.
PVAc-2~PVAc-20
 表1に記載した条件に変更したこと以外は、PVAc-1と同様の方法により、ポリ酢酸ビニル(PVAc-2~PVAc-20)を得た。なお、表1中の「ND」は1ppm未満を意味する。得られた各ポリ酢酸ビニルの重合度をPVAc-1と同様にして求めた。その結果を表1に示す。
PVAc-2 to PVAc-20
Polyvinyl acetate (PVAc-2 to PVAc-20) was obtained in the same manner as PVAc-1, except that the conditions were changed to those described in Table 1. In Table 1, “ND” means less than 1 ppm. The degree of polymerization of each polyvinyl acetate obtained was determined in the same manner as PVAc-1. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[ポリビニルアルコールの合成]
PVA-1
PVAc-1のポリ酢酸ビニルの40質量%のメタノール溶液に対して、総固形分濃度(けん化濃度)が30質量%となるように、メタノールおよびポリ酢酸ビニル中の酢酸ビニル単量体単位に対する水酸化ナトリウムのモル比が0.020となるように水酸化ナトリウムの8%メタノール溶液を撹拌下に加え、40℃でけん化反応を開始した。けん化反応の進行に伴ってゲル化物が生成した時点でゲルを粉砕し、粉砕後のゲルを40℃の容器に移し、けん化反応の開始から60分経過した時点で、メタノール/酢酸メチル/水(25/70/5質量比)の溶液に浸漬し、中和処理した。得られた膨潤ゲルを遠心分離し、膨潤ゲルの質量に対して、2倍の質量のメタノールを添加、浸漬し30分間放置した後、遠心分離する操作を4回繰り返し、60℃1時間、100℃で2時間乾燥してPVA-1を得た。
[Synthesis of polyvinyl alcohol]
PVA-1
Water with respect to vinyl acetate monomer units in methanol and polyvinyl acetate so that the total solid concentration (saponification concentration) is 30% by mass with respect to a 40% by mass methanol solution of polyvinyl acetate in PVAc-1. An 8% methanol solution of sodium hydroxide was added with stirring so that the molar ratio of sodium oxide was 0.020, and the saponification reaction was started at 40 ° C. The gel is pulverized when the gelated product is generated as the saponification reaction proceeds, and the crushed gel is transferred to a container at 40 ° C. When 60 minutes have elapsed from the start of the saponification reaction, methanol / methyl acetate / water ( 25/70/5 mass ratio) solution and neutralized. The obtained swollen gel was centrifuged, and methanol twice as much as the swollen gel was added, immersed, left for 30 minutes, and then centrifuged four times, 60 ° C. for 1 hour, 100 PVA-1 was obtained by drying at 2 ° C. for 2 hours.
 PVA-1の重合度およびけん化度を、JIS-K6726に記載の方法により求めた。重合度は1700、けん化度は99.1モル%であった。これらの物性データを表2にも示す。 The polymerization degree and saponification degree of PVA-1 were determined by the method described in JIS-K6726. The degree of polymerization was 1700, and the degree of saponification was 99.1 mol%. These physical property data are also shown in Table 2.
 PVA-1を灰化した後に、ジャーレルアッシュ社製ICP発光分析装置「IRIS AP」を用いて、得られた灰分中のナトリウム量を測定することによりPVA-1の酢酸ナトリウム含有量を求めた。酢酸ナトリウム含有量0.7%(ナトリウム換算で0.20%)であった。これらの物性データを表2にも示す。 After ashing PVA-1, the sodium acetate content of PVA-1 was determined by measuring the amount of sodium in the obtained ash using an ICP emission analyzer “IRIS AP” manufactured by Jarrel Ash. . The sodium acetate content was 0.7% (0.20% in terms of sodium). These physical property data are also shown in Table 2.
 PVA-1のGPC測定を行った。図2は、分子量と示差屈折率検出器で測定された値との関係(RI)、及び分子量と吸光光度検出器(測定波長280nm)で測定された吸光度との関係(UV)を示したグラフである。このときの分子量は、溶出容量から検量線を用いて換算されたもの(PMMA換算分子量)である。図2から求めた示差屈折率検出器で測定されたピークトップ分子量(D)は100,000であり、吸光光度検出器(280nm)で測定されたピークトップ分子量(E)は53,000であった。得られた値を下記式
(D-E)/D
に代入して得られた値は0.47であった。ピークトップ分子量(E)における吸光度(280nm)は1.30×10-3であった。図2中の、クロマトグラム(RI)から求めた数平均分子量Mnに対する重量平均分子量Mwの比Mw/Mnは2.6であった。これらの結果を表2にも示す。
GPC measurement of PVA-1 was performed. FIG. 2 is a graph showing the relationship between molecular weight and the value measured with a differential refractive index detector (RI), and the relationship between molecular weight and the absorbance measured with an absorptiometric detector (measurement wavelength 280 nm) (UV). It is. The molecular weight at this time is one converted from the elution volume using a calibration curve (PMMA equivalent molecular weight). The peak top molecular weight (D) measured by the differential refractive index detector obtained from FIG. 2 was 100,000, and the peak top molecular weight (E) measured by the absorptiometric detector (280 nm) was 53,000. It was. The obtained value is expressed by the following formula (DE) / D
The value obtained by substituting for was 0.47. The absorbance (280 nm) at the peak top molecular weight (E) was 1.30 × 10 −3 . The ratio Mw / Mn of the weight average molecular weight Mw to the number average molecular weight Mn obtained from the chromatogram (RI) in FIG. 2 was 2.6. These results are also shown in Table 2.
 ピークトップ分子量(E)を求めた方法と同様にして求めた吸光光度検出器(320nm)で測定されたピークトップ分子量(F)は50,000であった。ピークトップ分子量(D)とピークトップ分子量(F)とを下記式
(D-F)/D
に代入して得られた値は0.50であった。ピークトップ分子量(F)における吸光度(320nm)は1.05×10-3であった。これらの結果を表2にも示す。
The peak top molecular weight (F) measured with an absorptiometric detector (320 nm) obtained in the same manner as the method for obtaining the peak top molecular weight (E) was 50,000. The peak top molecular weight (D) and the peak top molecular weight (F) are expressed by the following formula (DF) / D
The value obtained by substituting for was 0.50. The absorbance (320 nm) at the peak top molecular weight (F) was 1.05 × 10 −3 . These results are also shown in Table 2.
PVA-2~8、比較PVA-1~5
 表2に示す条件に変更したこと以外はPVA-1と同様にして各PVAを合成した。得られたPVAの重合度、けん化度及び酢酸ナトリウムの含有量(ナトリウムの質量換算)をPVA-1と同様にして測定した。PVA-1と同様にしてGPC測定を行った。それらの結果を表2に示す。
PVA-2-8, comparative PVA-1-5
Each PVA was synthesized in the same manner as PVA-1, except that the conditions shown in Table 2 were changed. The polymerization degree, saponification degree, and sodium acetate content (sodium mass conversion) of the obtained PVA were measured in the same manner as PVA-1. GPC measurement was performed in the same manner as PVA-1. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
PVA-9、比較PVA-6~8
 表3に示す条件に変更したこと以外はPVA-1と同様にして各PVAを合成した。得られたPVAの重合度、けん化度及び酢酸ナトリウムの含有量(ナトリウムの質量換算)をPVA-1と同様にして測定した。PVA-1と同様にしてGPC測定を行った。それらの結果を表3に示す。
PVA-9, comparative PVA-6-8
Each PVA was synthesized in the same manner as PVA-1, except that the conditions shown in Table 3 were changed. The polymerization degree, saponification degree, and sodium acetate content (sodium mass conversion) of the obtained PVA were measured in the same manner as PVA-1. GPC measurement was performed in the same manner as PVA-1. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
PVA-10、比較PVA-9及び10
 表4に示す条件に変更したこと以外はPVA-1と同様にして各PVAを合成した。得られたPVAの重合度、けん化度及び酢酸ナトリウムの含有量(ナトリウムの質量換算)をPVA-1と同様にして測定した。PVA-1と同様にしてGPC測定を行った。それらの結果を表4に示す。
PVA-10, comparative PVA-9 and 10
Each PVA was synthesized in the same manner as PVA-1, except that the conditions shown in Table 4 were changed. The polymerization degree, saponification degree, and sodium acetate content (sodium mass conversion) of the obtained PVA were measured in the same manner as PVA-1. GPC measurement was performed in the same manner as PVA-1. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
PVA-11、比較PVA-11及び12
 表5に示す条件に変更したこと以外はPVA-1と同様にして各PVAを合成した。得られたPVAの重合度、けん化度及び酢酸ナトリウムの含有量(ナトリウムの質量換算)をPVA-1と同様にして測定した。PVA-1と同様にしてGPC測定を行った。それらの結果を表5に示す。
PVA-11, comparative PVA-11 and 12
Each PVA was synthesized in the same manner as PVA-1, except that the conditions shown in Table 5 were changed. The polymerization degree, saponification degree, and sodium acetate content (sodium mass conversion) of the obtained PVA were measured in the same manner as PVA-1. GPC measurement was performed in the same manner as PVA-1. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
PVA-12、比較PVA-13~15
 表6に示す条件に変更したこと以外は実施例1と同様にして各PVAを合成した。得られたPVAの重合度、けん化度及び酢酸ナトリウムの含有量(ナトリウムの質量換算)をPVA-1と同様にして測定した。PVA-1と同様にしてGPC測定を行った。それらの結果を表6に示す。
PVA-12, comparative PVA-13-15
Each PVA was synthesized in the same manner as in Example 1 except that the conditions were changed to those shown in Table 6. The polymerization degree, saponification degree, and sodium acetate content (sodium mass conversion) of the obtained PVA were measured in the same manner as PVA-1. GPC measurement was performed in the same manner as PVA-1. The results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
PVA-13~19、比較PVA-16~19
 表7に示す条件に変更したこと以外はPVA-1と同様にして各PVAを合成した。得られたPVAの重合度、けん化度及び酢酸ナトリウムの含有量(ナトリウムの質量換算)をPVA-1と同様にして測定した。PVA-1と同様にしてGPC測定を行った。それらの結果を表7に示す。
PVA-13-19, comparative PVA-16-19
Each PVA was synthesized in the same manner as PVA-1, except that the conditions shown in Table 7 were changed. The polymerization degree, saponification degree, and sodium acetate content (sodium mass conversion) of the obtained PVA were measured in the same manner as PVA-1. GPC measurement was performed in the same manner as PVA-1. The results are shown in Table 7.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
PVA-20、比較PVA-20及び21
 表8に示す条件に変更したこと以外はPVA-1と同様にして各PVAを合成した。得られたPVAの重合度、けん化度及び酢酸ナトリウムの含有量(ナトリウムの質量換算)をPVA-1と同様にして測定した。PVA-1と同様にしてGPC測定を行った。それらの結果を表8に示す。
PVA-20, comparative PVA-20 and 21
Each PVA was synthesized in the same manner as PVA-1, except that the conditions shown in Table 8 were changed. The polymerization degree, saponification degree, and sodium acetate content (sodium mass conversion) of the obtained PVA were measured in the same manner as PVA-1. GPC measurement was performed in the same manner as PVA-1. The results are shown in Table 8.
比較PVA-22
 PVAc-3のポリ酢酸ビニルの55質量%のメタノール溶液に対して、総固形分濃度(けん化濃度)が40質量%となるように、メタノールおよびポリ酢酸ビニル中の酢酸ビニル単量体単位に対する水酸化ナトリウムのモル比が0.005となるように水酸化ナトリウムの8%メタノール溶液を撹拌下に加え、40℃でけん化反応を開始した。なお、この際の系内の水分率を3.0%となるよう蒸留水を添加してけん化反応を行った。水酸化ナトリウムのメタノール溶液を添加してから1時間後、1%酢酸水を水酸化ナトリウムの0.8モル等量および多量の蒸留水を添加し、けん化反応を停止した。得られた溶液を乾燥機に移し、65℃で12時間乾燥した後、100℃で2時間乾燥して比較PVA-22を得た。
Comparative PVA-22
Water with respect to vinyl acetate monomer units in methanol and polyvinyl acetate so that the total solid concentration (saponification concentration) is 40% by mass with respect to a 55% by mass methanol solution of polyvinyl acetate in PVAc-3. An 8% methanol solution of sodium hydroxide was added with stirring so that the molar ratio of sodium oxide was 0.005, and the saponification reaction was started at 40 ° C. Note that saponification reaction was performed by adding distilled water so that the water content in the system was 3.0%. One hour after adding the methanol solution of sodium hydroxide, 0.8 mol equivalent of 1% aqueous acetic acid and a large amount of distilled water were added to stop the saponification reaction. The resulting solution was transferred to a dryer, dried at 65 ° C. for 12 hours, and then dried at 100 ° C. for 2 hours to obtain Comparative PVA-22.
 比較PVA-22の重合度、けん化度及び酢酸ナトリウムの含有量をPVA-1と同様にして測定した。重合度は300、けん化度は45.3モル%、酢酸ナトリウム含有量1.2%(ナトリウム換算で0.34%)であった。それらの結果を表8に示す。なお、比較PVA-22は水に対して不溶であったことから、GPC測定のためのフィルム準備ができず、GPC測定ができなかった。 The polymerization degree, saponification degree, and sodium acetate content of comparative PVA-22 were measured in the same manner as PVA-1. The degree of polymerization was 300, the degree of saponification was 45.3 mol%, and the sodium acetate content was 1.2% (0.34% in terms of sodium). The results are shown in Table 8. Since Comparative PVA-22 was insoluble in water, film preparation for GPC measurement could not be performed, and GPC measurement could not be performed.
比較PVA-23
 PVAc-3のポリ酢酸ビニルの55質量%のメタノール溶液に対して、総固形分濃度(けん化濃度)が40質量%となるように、メタノールおよびポリ酢酸ビニル中の酢酸ビニル単量体単位に対する水酸化ナトリウムのモル比が0.005となるように水酸化ナトリウムの8%メタノール溶液を撹拌下に加え、40℃でけん化反応を開始した。なお、この際の系内の水分率を1.2%となるよう蒸留水を添加してけん化反応を行った。水酸化ナトリウムのメタノール溶液を添加してから1時間後、1%酢酸水を水酸化ナトリウムの0.8モル等量および多量の蒸留水を添加し、けん化反応を停止した。得られた溶液を乾燥機に移し、65℃で12時間乾燥した後、100℃で2時間乾燥して比較PVA-23を得た。
Comparative PVA-23
Water with respect to vinyl acetate monomer units in methanol and polyvinyl acetate so that the total solid concentration (saponification concentration) is 40% by mass with respect to a 55% by mass methanol solution of polyvinyl acetate in PVAc-3. An 8% methanol solution of sodium hydroxide was added with stirring so that the molar ratio of sodium oxide was 0.005, and the saponification reaction was started at 40 ° C. Note that saponification reaction was performed by adding distilled water so that the water content in the system was 1.2%. One hour after adding the methanol solution of sodium hydroxide, 0.8 mol equivalent of 1% aqueous acetic acid and a large amount of distilled water were added to stop the saponification reaction. The resulting solution was transferred to a dryer, dried at 65 ° C. for 12 hours, and then dried at 100 ° C. for 2 hours to obtain Comparative PVA-23.
 比較PVA-23の重合度、けん化度及び酢酸ナトリウムの含有量をPVA-1と同様にして測定した。重合度は300、けん化度は60.2モル%、酢酸ナトリウム含有量1.3%(ナトリウム換算で0.36%)であった。PVA-1と同様にしてGPC測定を行った。それらの結果を表8に示す。 The polymerization degree, saponification degree, and sodium acetate content of comparative PVA-23 were measured in the same manner as PVA-1. The degree of polymerization was 300, the degree of saponification was 60.2 mol%, and the sodium acetate content was 1.3% (0.36% in terms of sodium). GPC measurement was performed in the same manner as PVA-1. The results are shown in Table 8.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
PVA-21、比較PVA-24及び25
 表9に示す条件に変更したこと以外はPVA-1と同様にして各PVAを合成した。得られたPVAの重合度、けん化度及び酢酸ナトリウムの含有量(ナトリウムの質量換算)をPVA-1と同様にして測定した。PVA-1と同様にしてGPC測定を行った。それらの結果を表9に示す。
PVA-21, comparative PVA-24 and 25
Each PVA was synthesized in the same manner as PVA-1, except that the conditions shown in Table 9 were changed. The polymerization degree, saponification degree, and sodium acetate content (sodium mass conversion) of the obtained PVA were measured in the same manner as PVA-1. GPC measurement was performed in the same manner as PVA-1. The results are shown in Table 9.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
PVA-22、比較PVA-26及び27
 表10に示す条件に変更したこと以外はPVA-1と同様にして各PVAを合成した。得られたPVAの重合度、けん化度及び酢酸ナトリウムの含有量(ナトリウムの質量換算)をPVA-1と同様にして測定した。PVA-1と同様にしてGPC測定を行った。それらの結果を表10に示す。
PVA-22, comparative PVA-26 and 27
Each PVA was synthesized in the same manner as PVA-1, except that the conditions shown in Table 10 were changed. The polymerization degree, saponification degree, and sodium acetate content (sodium mass conversion) of the obtained PVA were measured in the same manner as PVA-1. GPC measurement was performed in the same manner as PVA-1. The results are shown in Table 10.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
PVA-23、比較PVA-28及び29
 表11に示す条件に変更したこと以外はPVA-1と同様にして各PVAを合成した。得られたPVAの重合度、けん化度及び酢酸ナトリウムの含有量(ナトリウムの質量換算)をPVA-1と同様にして測定した。PVA-1と同様にしてGPC測定を行った。それらの結果を表11に示す。
PVA-23, comparative PVA-28 and 29
Each PVA was synthesized in the same manner as PVA-1, except that the conditions shown in Table 11 were changed. The polymerization degree, saponification degree, and sodium acetate content (sodium mass conversion) of the obtained PVA were measured in the same manner as PVA-1. GPC measurement was performed in the same manner as PVA-1. The results are shown in Table 11.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
実施例1
 還流冷却器、温度計、イカリ型攪拌翼を備えた10リットルのガラス製容器に、イオン交換水を8100gとPVA-1を660g仕込み(PVA濃度7.5%)、内容物を95℃に昇温してPVAを完全に溶解させた。次に内容物を120rpmで攪拌しながら、10℃まで約30分かけて徐々に冷却した後、前記容器にn-ブチルアルデヒド384gと20%の塩酸540mLを添加し、ブチラール化反応を150分間行った。その後60分かけて60℃まで昇温し、60℃にて120分間保持した後、室温まで冷却した。析出した樹脂をイオン交換水で洗浄後、過剰量の水酸化ナトリウム水溶液を添加して中和した。引き続き、イオン交換水で樹脂を再洗浄した後、乾燥してポリビニルブチラールを得た。
Example 1
A 10-liter glass container equipped with a reflux condenser, thermometer, and squid-type stirring blade was charged with 8100 g of ion-exchanged water and 660 g of PVA-1 (PVA concentration 7.5%), and the content was raised to 95 ° C. Warm to completely dissolve the PVA. Next, the contents were gradually cooled to 10 ° C. over about 30 minutes while stirring at 120 rpm, and then 384 g of n-butyraldehyde and 540 mL of 20% hydrochloric acid were added to the vessel, and a butyralization reaction was performed for 150 minutes. It was. Thereafter, the temperature was raised to 60 ° C. over 60 minutes, held at 60 ° C. for 120 minutes, and then cooled to room temperature. The precipitated resin was washed with ion-exchanged water and then neutralized by adding an excessive amount of aqueous sodium hydroxide solution. Subsequently, the resin was washed again with ion-exchanged water and then dried to obtain polyvinyl butyral.
(ポリビニルブチラールの組成)
 ポリビニルブチラールのブチラール化度(アセタール化度)、酢酸ビニル単量体単位の含有量、及びビニルアルコール単量体単位の含有量はJIS K6728に従って測定した。得られたポリビニルブチラールのブチラール化度(アセタール化度)は68.2モル%、酢酸ビニル単量体単位の含有量は0.9モル%であり、ビニルアルコール単量体単位の含有量は30.9モル%であった。結果を表12にも示す。
(Composition of polyvinyl butyral)
The degree of butyralization (degree of acetalization) of polyvinyl butyral, the content of vinyl acetate monomer units, and the content of vinyl alcohol monomer units were measured according to JIS K6728. The resulting polyvinyl butyral has a butyralization degree (acetalization degree) of 68.2 mol%, a vinyl acetate monomer unit content of 0.9 mol%, and a vinyl alcohol monomer unit content of 30. It was 9 mol%. The results are also shown in Table 12.
(GPC測定)
 ポリビニルブチラールのGPC測定を行った。測定したポリビニルブチラールとしては、ポリビニルアセタールの粉末を圧力2MPa、230℃にて、3時間熱プレスした後、冷却することにより、加熱されたポリビニルアセタール(フィルム)を用いた。図1は、分子量と示差屈折率検出器で測定された値との関係(RI)、及び分子量と吸光光度検出器(測定波長280nm)で測定された吸光度との関係(UV)を示したグラフである。このときの分子量は、溶出容量から検量線を用いて換算されたもの(PMMA換算分子量)である。図1から求めた示差屈折率検出器で測定されたピークトップ分子量(A)は90000であり、吸光光度検出器(280nm)で測定されたピークトップ分子量(B)は68900であった。得られた値を下記式
(A-B)/A
に代入して得られた値は0.23であった。ピークトップ分子量(B)における吸光度は2.21×10-3であった。図1中の、クロマトグラム(RI)から求めた数平均分子量Mnに対する重量平均分子量Mwの比Mw/Mnは3.4であった。これらの結果を表2にも示す。
(GPC measurement)
GPC measurement of polyvinyl butyral was performed. As the measured polyvinyl butyral, polyvinyl acetal (film) heated by cooling the polyvinyl acetal powder at a pressure of 2 MPa at 230 ° C. for 3 hours and then cooling was used. FIG. 1 is a graph showing the relationship between molecular weight and the value measured with a differential refractive index detector (RI), and the relationship between molecular weight and the absorbance measured with an absorptiometric detector (measurement wavelength 280 nm) (UV). It is. The molecular weight at this time is one converted from the elution volume using a calibration curve (PMMA equivalent molecular weight). The peak top molecular weight (A) measured with the differential refractive index detector obtained from FIG. 1 was 90000, and the peak top molecular weight (B) measured with the absorptiometric detector (280 nm) was 68900. The obtained value is expressed by the following formula (AB) / A
The value obtained by substituting for was 0.23. The absorbance at the peak top molecular weight (B) was 2.21 × 10 −3 . The ratio Mw / Mn of the weight average molecular weight Mw to the number average molecular weight Mn obtained from the chromatogram (RI) in FIG. 1 was 3.4. These results are also shown in Table 2.
 ピークトップ分子量(B)を求めた方法と同様にして求めた吸光光度検出器(320nm)で測定されたピークトップ分子量(C)は60000であった。ピークトップ分子量(A)とピークトップ分子量(C)とを下記式
(A-C)/A
に代入して得られた値は0.33であった。ピークトップ分子量(C)における吸光度は1.26×10-3であった。これらの結果を表12にも示す。
The peak top molecular weight (C) measured by an absorptiometric detector (320 nm) obtained in the same manner as the method for obtaining the peak top molecular weight (B) was 60000. The peak top molecular weight (A) and the peak top molecular weight (C) are expressed by the following formula (AC) / A
The value obtained by substituting for was 0.33. The absorbance at the peak top molecular weight (C) was 1.26 × 10 −3 . These results are also shown in Table 12.
(フィルム中の未溶解分)
 合成したポリビニルアセタールの粉体50質量部と、可塑剤としてトリエチレングリコール-ジ2-エチルヘキサノエート19質量部とを、株式会社東洋精機製作所製ラボプラストミル「Cモデル」を用い、170℃、50rpmにて5分間溶融混練した。溶融混練中、容器内に窒素(100mL/分)を吹き込み続けた。得られた混練物を150℃、5MPa、30分間熱プレスして、厚み800μmのシートを作製した。得られたシートを2枚の透明なガラス板(20cm×20cm)の間に挟み、ガラス板とシートの間の空気を押出しながら110℃にてプレスロールを通すことにより予備接着を行った。予備接着後の積層体をオートクレーブにて135℃、1.2MPaで30分間静置することにより合わせガラスを作製(合計20枚)した。拡大鏡を用いて得られた合わせガラス中の異物の数を目視観察によりカウントした。合わせガラス20枚中の合計異物数を求め、以下の判定基準で評価した。結果を表12に示す。
 A:0(個/20枚)
 B:1(個/20枚)
 C:2~3(個/20枚)
 D:4~8(個/20枚)
 E:9以上(個/20枚)
(Undissolved content in the film)
A synthetic polyvinyl acetal powder of 50 parts by mass and a plasticizer of 19 parts by mass of triethylene glycol di-2-ethylhexanoate were used at 170 ° C. using a lab plast mill “C model” manufactured by Toyo Seiki Seisakusho Co., Ltd. For 5 minutes at 50 rpm. During melt kneading, nitrogen (100 mL / min) was continuously blown into the container. The obtained kneaded material was hot-pressed at 150 ° C. and 5 MPa for 30 minutes to prepare a sheet having a thickness of 800 μm. The obtained sheet was sandwiched between two transparent glass plates (20 cm × 20 cm), and preliminary adhesion was performed by passing a press roll at 110 ° C. while extruding air between the glass plate and the sheet. The laminated body after the preliminary adhesion was allowed to stand at 135 ° C. and 1.2 MPa for 30 minutes in an autoclave to produce a laminated glass (20 sheets in total). The number of foreign matters in the laminated glass obtained using a magnifying glass was counted by visual observation. The total number of foreign substances in 20 laminated glasses was determined and evaluated according to the following criteria. The results are shown in Table 12.
A: 0 (pieces / 20 sheets)
B: 1 (20 pieces)
C: 2-3 (pieces / 20 pieces)
D: 4-8 (pieces / 20 pieces)
E: 9 or more (pieces / 20 sheets)
(フィルムの着色性)
 上記「フィルム中の未溶解分」と同様にして、ポリビニルアセタールとトリエチレングリコール-ジ2-エチルヘキサノエートとの混練物を得た。得られた混練物34.5質量部に、新たにポリビニルアセタールの粉体(混練物の作製に使用したものと同じもの)25質量部および可塑剤としてトリエチレングリコール-ジ2-エチルヘキサノエート9.5質量部とを加えた後、再びラボプラストミルを用いて、上記「フィルム中の未溶解分」と同様の条件にて溶融混練した。得られた混練物にポリビニルアセタールとトリエチレングリコール-ジ2-エチルヘキサノエートとを加えた後混練する操作を、さらに3回繰り返した。こうして得られた混練物を用いてシートを作製した後、当該シートを用いた合わせガラスを作製した。混練物を変更したこと以外は、上記「フィルム中の未溶解分)」と同様にしてシート及び合わせガラスを作製した。ここで得られた合わせガラス(繰り返し加熱されたポリビニルアセタールを用いたもの)と、上記「フィルム中の未溶解分」で得られた合わせガラス(バージンのポリビニルアセタールを用いたもの)の黄色度(YI)をそれぞれ測定し、両者の黄色度の差(ΔYI)から以下の判定基準で着色性を評価した。測定は、スガ試験機株式会社製SMカラーコンピュータ「SM-T-H」を用い、JIS K 7105に従って行った。結果を表12に示す。
 A:0.3未満
 B:0.3以上0.5未満
 C:0.5以上1.0未満
 D:1.0以上2.0未満
 E:2.0以上
(Colorability of film)
A kneaded product of polyvinyl acetal and triethylene glycol-di-2-ethylhexanoate was obtained in the same manner as in the above “undissolved part in the film”. To 34.5 parts by mass of the obtained kneaded product, 25 parts by mass of a new polyvinyl acetal powder (the same as that used for the preparation of the kneaded product) and triethylene glycol di-2-ethylhexanoate as a plasticizer After adding 9.5 parts by mass, the mixture was melt-kneaded again using a lab plast mill under the same conditions as the above “undissolved content in the film”. The operation of adding polyvinyl acetal and triethylene glycol-di-2-ethylhexanoate to the kneaded product and then kneading was repeated three more times. After producing a sheet using the kneaded material thus obtained, a laminated glass using the sheet was produced. A sheet and a laminated glass were produced in the same manner as in the above “undissolved portion in the film” except that the kneaded product was changed. The yellowness of the laminated glass obtained here (using repeatedly heated polyvinyl acetal) and the laminated glass obtained using the above “undissolved portion in film” (using virgin polyvinyl acetal) ( YI) was measured, and the colorability was evaluated according to the following criteria based on the difference in yellowness (ΔYI) between the two. The measurement was performed according to JIS K 7105 using an SM color computer “SM-TH” manufactured by Suga Test Instruments Co., Ltd. The results are shown in Table 12.
A: Less than 0.3 B: 0.3 or more and less than 0.5 C: 0.5 or more and less than 1.0 D: 1.0 or more and less than 2.0 E: 2.0 or more
実施例2~8
 原料PVAを表12に示すものに変更したこと以外は実施例1と同様にしてポリビニルブチラールの合成及び評価を実施した。その結果を表12に示す。
Examples 2-8
Polyvinyl butyral was synthesized and evaluated in the same manner as in Example 1 except that the raw material PVA was changed to that shown in Table 12. The results are shown in Table 12.
実施例9
 n-ブチルアルデヒドの添加量を271gに変更したこと以外は実施例1と同様にしてポリビニルブチラールを合成した。フィルム中の未溶解分の評価およびフィルムの着色性の評価において、可塑剤をジブトキシエチルアジペートに変更したこと以外は、実施例1と同様にして得られたポリビニルブチラールを評価した。結果を表12に示す。
Example 9
Polyvinyl butyral was synthesized in the same manner as in Example 1 except that the amount of n-butyraldehyde added was changed to 271 g. The polyvinyl butyral obtained in the same manner as in Example 1 was evaluated except that the plasticizer was changed to dibutoxyethyl adipate in the evaluation of the undissolved content in the film and the evaluation of the colorability of the film. The results are shown in Table 12.
実施例10
 n-ブチルアルデヒドの添加量を320gに変更したこと以外は実施例1と同様にしてポリビニルブチラールを合成した。フィルム中の未溶解分の評価およびフィルムの着色性の評価において、可塑剤をジブトキシエチルアジペートに変更したこと以外は、実施例1と同様にして得られたポリビニルブチラールを評価した。結果を表12に示す。
Example 10
Polyvinyl butyral was synthesized in the same manner as in Example 1 except that the amount of n-butyraldehyde added was changed to 320 g. The polyvinyl butyral obtained in the same manner as in Example 1 was evaluated except that the plasticizer was changed to dibutoxyethyl adipate in the evaluation of the undissolved content in the film and the evaluation of the colorability of the film. The results are shown in Table 12.
実施例11
 n-ブチルアルデヒドの添加量を362gに変更したこと以外は実施例1と同様にしてポリビニルブチラールを合成した。フィルム中の未溶解分の評価およびフィルムの着色性の評価において、可塑剤をジブトキシエチルアジペートに変更したこと以外は、実施例1と同様にして得られたポリビニルブチラールを評価した。結果を表12に示す。
Example 11
Polyvinyl butyral was synthesized in the same manner as in Example 1 except that the amount of n-butyraldehyde added was changed to 362 g. The polyvinyl butyral obtained in the same manner as in Example 1 was evaluated except that the plasticizer was changed to dibutoxyethyl adipate in the evaluation of the undissolved content in the film and the evaluation of the colorability of the film. The results are shown in Table 12.
実施例12
 n-ブチルアルデヒドの添加量を449gに変更したこと以外は実施例1と同様にしてポリビニルブチラールの合成及び評価を実施した。その結果を表12に示す。
Example 12
Polyvinyl butyral was synthesized and evaluated in the same manner as in Example 1 except that the amount of n-butyraldehyde added was changed to 449 g. The results are shown in Table 12.
実施例13
 還流冷却器、温度計、イカリ型攪拌翼を備えた10リットルのガラス製容器に、イオン交換水を8100gとPVA-1を660g仕込み(PVA濃度7.5%)、内容物を95℃に昇温してPVAを完全に溶解させた。次に内容物を120rpmで攪拌しながら、10℃まで約30分かけて徐々に冷却した後、前記容器にn-ブチルアルデヒド740gと20%の塩酸810mLを添加し、ブチラール化反応を150分間行った。その後90分かけて80℃まで昇温し、80℃にて16時間保持した後、室温まで冷却した。析出した樹脂をイオン交換水で洗浄後、過剰量の水酸化ナトリウム水溶液を添加して中和した。引き続き、イオン交換水で樹脂を再洗浄した後、乾燥してポリビニルブチラールを得た。実施例1と同様にして得られたポリビニルブチラールを評価した。その結果を表12に示す。
Example 13
A 10-liter glass container equipped with a reflux condenser, thermometer, and squid-type stirring blade was charged with 8100 g of ion-exchanged water and 660 g of PVA-1 (PVA concentration 7.5%), and the content was raised to 95 ° C. Warm to completely dissolve the PVA. Next, the contents were gradually cooled to 10 ° C. over about 30 minutes while stirring at 120 rpm, and then 740 g of n-butyraldehyde and 810 mL of 20% hydrochloric acid were added to the vessel, and a butyralization reaction was performed for 150 minutes. It was. Thereafter, the temperature was raised to 80 ° C. over 90 minutes, kept at 80 ° C. for 16 hours, and then cooled to room temperature. The precipitated resin was washed with ion-exchanged water and then neutralized by adding an excessive amount of aqueous sodium hydroxide solution. Subsequently, the resin was washed again with ion-exchanged water and then dried to obtain polyvinyl butyral. Polyvinyl butyral obtained in the same manner as in Example 1 was evaluated. The results are shown in Table 12.
比較例1~5
 原料PVAを表12に示すものに変更したこと以外は実施例1と同様にしてポリビニルブチラールの合成及び評価を実施した。その結果を表12に示す。
Comparative Examples 1-5
Polyvinyl butyral was synthesized and evaluated in the same manner as in Example 1 except that the raw material PVA was changed to that shown in Table 12. The results are shown in Table 12.
比較例6
 原料PVAを比較PVA-1に変更し、n-ブチルアルデヒドの添加量を271gに変更したこと以外は、実施例10と同様にしてポリビニルブチラールの合成及び評価を実施した。その結果を表12に示す。
Comparative Example 6
Polyvinyl butyral was synthesized and evaluated in the same manner as in Example 10 except that the raw material PVA was changed to Comparative PVA-1 and the addition amount of n-butyraldehyde was changed to 271 g. The results are shown in Table 12.
比較例7
 原料PVAを比較PVA-1に変更したこと以外は、実施例10と同様にしてポリビニルブチラールの合成及び評価を実施した。その結果を表12に示す。
Comparative Example 7
Polyvinyl butyral was synthesized and evaluated in the same manner as in Example 10 except that the raw material PVA was changed to Comparative PVA-1. The results are shown in Table 12.
比較例8
 原料PVAを比較PVA-1に変更したこと以外は、実施例12と同様にしてポリビニルブチラールの合成及び評価を実施した。その結果を表12に示す。
Comparative Example 8
Polyvinyl butyral was synthesized and evaluated in the same manner as in Example 12 except that the raw material PVA was changed to Comparative PVA-1. The results are shown in Table 12.
比較例9
 原料PVAを比較PVA-2に変更したこと以外は比較例6と同様にしてポリビニルブチラールを合成及び評価を実施した。結果を表12に示す。
Comparative Example 9
Polyvinyl butyral was synthesized and evaluated in the same manner as in Comparative Example 6 except that the raw material PVA was changed to Comparative PVA-2. The results are shown in Table 12.
比較例10
 原料PVAを比較PVA-2に変更したこと以外は、実施例10と同様にしてポリビニルブチラールの合成及び評価を実施した。その結果を表12に示す。
Comparative Example 10
Polyvinyl butyral was synthesized and evaluated in the same manner as in Example 10 except that the raw material PVA was changed to Comparative PVA-2. The results are shown in Table 12.
比較例11
 原料PVAを比較PVA-2に変更したこと以外は、実施例12と同様にしてポリビニルブチラールの合成及び評価を実施した。その結果を表12に示す。
Comparative Example 11
Polyvinyl butyral was synthesized and evaluated in the same manner as in Example 12 except that the raw material PVA was changed to Comparative PVA-2. The results are shown in Table 12.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表12に重合度1700の完全けん化PVAを原料としたポリビニルアセタールの評価結果を示した。本発明のポリビニルアセタール(実施例1~13)を含有する組成物からなるフィルム中の未溶解分の発生が抑制された。また、本発明のポリビニルアセタールを繰り返し加熱したものを原料に用いた場合でも、得られるフィルムの着色が少なかった。一方、本発明で規定した条件を満たさないポリビニルアセタール(比較例1~11)は、いずれかの性能が低下した。 Table 12 shows the evaluation results of polyvinyl acetal using a completely saponified PVA having a polymerization degree of 1700 as a raw material. Generation | occurrence | production of the undissolved part in the film which consists of a composition containing the polyvinyl acetal (Examples 1-13) of this invention was suppressed. Further, even when the material obtained by repeatedly heating the polyvinyl acetal of the present invention was used as a raw material, the resulting film was less colored. On the other hand, any performance of polyvinyl acetal (Comparative Examples 1 to 11) that did not satisfy the conditions defined in the present invention decreased.
実施例14
 還流冷却器、温度計、イカリ型攪拌翼を備えた10リットルのガラス製容器に、イオン交換水8100g、PVA-9を660g仕込み(PVA濃度7.5%)、内容物を95℃に昇温してPVAを完全に溶解させた。次に内容物を120rpmで攪拌しながら、1℃まで約30分かけて徐々に冷却した後、前記容器にn-ブチルアルデヒド422gと20%の塩酸540mLを添加し、ブチラール化反応を120分間行った。その後60分かけて45℃まで昇温し、45℃にて120分間保持した後、室温まで冷却した。析出した樹脂をイオン交換水で洗浄後、過剰量の水酸化ナトリウム水溶液を添加して中和した。引き続き、イオン交換水で再洗浄、乾燥してポリビニルブチラールを得た。
Example 14
A 10-liter glass container equipped with a reflux condenser, thermometer, and squid type stirring blade was charged with 8100 g of ion-exchanged water and 660 g of PVA-9 (PVA concentration 7.5%), and the contents were heated to 95 ° C. Thus, the PVA was completely dissolved. Next, the contents were gradually cooled to 1 ° C. over about 30 minutes while stirring at 120 rpm, and then 422 g of n-butyraldehyde and 540 mL of 20% hydrochloric acid were added to the vessel, and a butyralization reaction was performed for 120 minutes. It was. Thereafter, the temperature was raised to 45 ° C. over 60 minutes, held at 45 ° C. for 120 minutes, and then cooled to room temperature. The precipitated resin was washed with ion-exchanged water and then neutralized by adding an excessive amount of aqueous sodium hydroxide solution. Subsequently, it was rewashed with ion-exchanged water and dried to obtain polyvinyl butyral.
 得られたポリビニルブチラールの組成を実施例1と同様にして測定した。ブチラール化度(アセタール化度)は68.1モル%、酢酸ビニル単量体単位の含有量は1.1モル%であり、ビニルアルコール単量体単位の含有量は30.8モル%であった。次に、得られたポリビニルアセタールの評価(GPC測定、フィルム中の未溶解分およびフィルムの着色性)を実施例1と同様にして行った。このとき、「フィルム中の未溶解分」の評価において混練に用いるポリビニルブチラール粉体の量を61.4質量部に変更し、トリエチレングリコール-ジ2-エチルヘキサノエートの量を7.6質量部に変更した。また、「フィルムの着色性」の評価において、混練物に追加で添加するポリビニルブチラール粉体の量を30.7質量部に変更し、トリエチレングリコール-ジ2-エチルヘキサノエートの量を3.8質量部に変更した。結果を表13に示す。 The composition of the obtained polyvinyl butyral was measured in the same manner as in Example 1. The degree of butyralization (degree of acetalization) was 68.1 mol%, the content of vinyl acetate monomer units was 1.1 mol%, and the content of vinyl alcohol monomer units was 30.8 mol%. It was. Next, the obtained polyvinyl acetal was evaluated in the same manner as in Example 1 (GPC measurement, undissolved content in the film, and colorability of the film). At this time, the amount of polyvinyl butyral powder used for kneading in the evaluation of “undissolved content in the film” was changed to 61.4 parts by mass, and the amount of triethylene glycol di-2-ethylhexanoate was 7.6. Changed to parts by mass. In the evaluation of “colorability of the film”, the amount of polyvinyl butyral powder added to the kneaded material was changed to 30.7 parts by mass, and the amount of triethylene glycol-di-2-ethylhexanoate was changed to 3 Changed to 8 parts by mass. The results are shown in Table 13.
比較例12~14
 原料PVAを表13に示すものに変更したこと以外は、実施例14と同様にしてポリビニルブチラールの合成及び評価を実施した。結果を表13に示す。
Comparative Examples 12-14
Polyvinyl butyral was synthesized and evaluated in the same manner as in Example 14 except that the raw material PVA was changed to that shown in Table 13. The results are shown in Table 13.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 表13には重合度300又は重合度150の完全けん化PVAを原料としたポリビニルアセタールの評価結果を示した。本発明のポリビニルアセタール(実施例14)を含有する組成物からなるフィルム中の未溶解分の発生が抑制された。また、本発明のポリビニルアセタールを繰り返し加熱したものを原料に用いた場合でも、得られるフィルムの着色が少なかった。一方、本発明で規定した条件を満たさないポリビニルアセタール(比較例12及び13)は、いずれかの性能が低下した。また、重合度が本発明で規定した下限より小さい重合度150のポリビニルアセタール(比較例14)は、いずれの性能も不十分であった。 Table 13 shows the evaluation results of polyvinyl acetal using a fully saponified PVA having a polymerization degree of 300 or 150 as a raw material. Generation | occurrence | production of the undissolved part in the film which consists of a composition containing the polyvinyl acetal (Example 14) of this invention was suppressed. Further, even when the material obtained by repeatedly heating the polyvinyl acetal of the present invention was used as a raw material, the resulting film was less colored. On the other hand, in the polyvinyl acetal (Comparative Examples 12 and 13) that does not satisfy the conditions defined in the present invention, either performance deteriorated. In addition, the polyvinyl acetal having a polymerization degree of 150 (Comparative Example 14) having a polymerization degree smaller than the lower limit defined in the present invention was insufficient in any performance.
実施例15
 還流冷却器、温度計、イカリ型攪拌翼を備えた10リットルのガラス製容器に、イオン交換水を8100g、PVA-10を660g仕込み(PVA濃度7.5%)、内容物を95℃に昇温してPVAを完全に溶解させた。次に120rpmで攪拌下、5℃まで約30分かけて徐々に冷却後、n-ブチルアルデヒド402gと20%の塩酸540mLを添加し、ブチラール化反応を120分間行った。その後60分かけて50℃まで昇温し、50℃にて120分間保持した後、室温まで冷却した。析出した樹脂をイオン交換水で洗浄後、過剰量の水酸化ナトリウム水溶液を添加して中和した。引き続き、イオン交換水で再洗浄、乾燥してポリビニルブチラールを得た。
Example 15
A 10-liter glass container equipped with a reflux condenser, thermometer, and squid type stirring blade was charged with 8100 g of ion-exchanged water and 660 g of PVA-10 (PVA concentration 7.5%), and the contents were raised to 95 ° C. Warm to completely dissolve the PVA. Next, the mixture was gradually cooled to 5 ° C. over about 30 minutes with stirring at 120 rpm, and 402 g of n-butyraldehyde and 540 mL of 20% hydrochloric acid were added to carry out a butyralization reaction for 120 minutes. Thereafter, the temperature was raised to 50 ° C. over 60 minutes, held at 50 ° C. for 120 minutes, and then cooled to room temperature. The precipitated resin was washed with ion-exchanged water and then neutralized by adding an excessive amount of aqueous sodium hydroxide solution. Subsequently, it was rewashed with ion-exchanged water and dried to obtain polyvinyl butyral.
 得られたポリビニルブチラールの組成を実施例1と同様にして測定した。得られたポリビニルブチラールのブチラール化度(アセタール化度)は68.5モル%、酢酸ビニル単量体単位の含有量は1.5モル%であり、ビニルアルコール単量体単位の含有量は30.0モル%であった。次に、得られたポリビニルアセタールの評価(GPC測定、フィルム中の未溶解分およびフィルムの着色性)を実施例1と同様にして行った。このとき、「フィルム中の未溶解分」の評価において、混練に用いるポリビニルブチラール粉体の量を57.5質量部に変更し、トリエチレングリコール-ジ2-エチルヘキサノエートの量を11.5質量部に変更した。また、「フィルムの着色性」の評価において、混練物に対して添加するポリビニルブチラール粉体の量を28.8質量部に変更し、トリエチレングリコール-ジ2-エチルヘキサノエートの量を5.8質量部に変更した。結果を表14に示す。 The composition of the obtained polyvinyl butyral was measured in the same manner as in Example 1. The resulting polyvinyl butyral has a butyralization degree (acetalization degree) of 68.5 mol%, a vinyl acetate monomer unit content of 1.5 mol%, and a vinyl alcohol monomer unit content of 30. 0.0 mol%. Next, the obtained polyvinyl acetal was evaluated in the same manner as in Example 1 (GPC measurement, undissolved content in the film, and colorability of the film). At this time, in the evaluation of “undissolved content in the film”, the amount of polyvinyl butyral powder used for kneading was changed to 57.5 parts by mass, and the amount of triethylene glycol-di-2-ethylhexanoate was changed to 11. The amount was changed to 5 parts by mass. In the evaluation of “colorability of the film”, the amount of polyvinyl butyral powder added to the kneaded product was changed to 28.8 parts by mass, and the amount of triethylene glycol-di-2-ethylhexanoate was changed to 5 Changed to 8 parts by mass. The results are shown in Table 14.
比較例15および16
 原料PVAを表14に示すものに変更したこと以外は、実施例15と同様にしてポリビニルブチラールの合成及び評価を実施した。結果を表14に示す。
Comparative Examples 15 and 16
Polyvinyl butyral was synthesized and evaluated in the same manner as in Example 15 except that the raw material PVA was changed to that shown in Table 14. The results are shown in Table 14.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 表14には重合度500の完全けん化PVAを原料としたポリビニルアセタールの評価結果を示した。本発明のポリビニルアセタール(実施例15)を含有する組成物からなるフィルム中の未溶解分の発生が抑制された。また、本発明のポリビニルアセタールを繰り返し加熱したものを原料に用いた場合でも、得られるフィルムの着色が少なかった。一方、本発明で規定した条件を満たさないポリビニルアセタール(比較例15及び16)は、いずれかの性能が低下した。 Table 14 shows the evaluation results of polyvinyl acetal using a completely saponified PVA having a polymerization degree of 500 as a raw material. Generation | occurrence | production of the undissolved part in the film which consists of a composition containing the polyvinyl acetal (Example 15) of this invention was suppressed. Further, even when the material obtained by repeatedly heating the polyvinyl acetal of the present invention was used as a raw material, the resulting film was less colored. On the other hand, any performance of the polyvinyl acetal (Comparative Examples 15 and 16) that did not satisfy the conditions defined in the present invention decreased.
実施例16
 還流冷却器、温度計、イカリ型攪拌翼を備えた10リットルのガラス製容器に、イオン交換水を8234g、PVA-11を526g仕込み(PVA濃度6.0%)、内容物を95℃に昇温して完全に溶解させた。次に内容物を120rpmで攪拌しながら、15℃まで約30分かけて徐々に冷却した後、前記容器にn-ブチルアルデヒド307gと20%の塩酸540mLを添加し、ブチラール化反応を120分間行った。その後60分かけて60℃まで昇温し、60℃にて120分間保持した後、室温まで冷却した。析出した樹脂をイオン交換水で洗浄後、過剰量の水酸化ナトリウム水溶液を添加して中和した。引き続き、イオン交換水で再洗浄、乾燥してポリビニルブチラールを得た。得られたポリビニルブチラールのブチラール化度(アセタール化度)は68.2モル%、酢酸ビニル単量体単位の含有量は1.3モル%であり、ビニルアルコール単量体単位の含有量は30.5モル%であった。
Example 16
A 10-liter glass container equipped with a reflux condenser, thermometer, and squid-type stirring blade was charged with 8234 g of ion-exchanged water and 526 g of PVA-11 (PVA concentration 6.0%), and the contents were raised to 95 ° C. Warm to dissolve completely. Next, the contents were gradually cooled to 15 ° C. over about 30 minutes while stirring at 120 rpm, and then 307 g of n-butyraldehyde and 540 mL of 20% hydrochloric acid were added to the vessel, and a butyralization reaction was performed for 120 minutes. It was. Thereafter, the temperature was raised to 60 ° C. over 60 minutes, held at 60 ° C. for 120 minutes, and then cooled to room temperature. The precipitated resin was washed with ion-exchanged water and then neutralized by adding an excessive amount of aqueous sodium hydroxide solution. Subsequently, it was rewashed with ion-exchanged water and dried to obtain polyvinyl butyral. The resulting polyvinyl butyral has a butyralization degree (acetalization degree) of 68.2 mol%, a vinyl acetate monomer unit content of 1.3 mol%, and a vinyl alcohol monomer unit content of 30. It was 5 mol%.
 得られたポリビニルブチラールの組成を実施例1と同様にして測定した。ブチラール化度(アセタール化度)は68.2モル%、酢酸ビニル単量体単位の含有量は1.3モル%であり、ビニルアルコール単量体単位の含有量は30.5モル%であった。次に、得られたポリビニルアセタールの評価(GPC測定、フィルム中の未溶解分およびフィルムの着色性)を実施例1と同様にして行った。このとき、「フィルム中の未溶解分」の評価において、混練に用いるポリビニルブチラール粉体の量を46質量部に変更し、トリエチレングリコール-ジ2-エチルヘキサノエートの量を23質量部に変更した。また、「フィルムの着色性」の評価において、混練物に対して添加するポリビニルブチラール粉体の量を23質量部に変更し、トリエチレングリコール-ジ2-エチルヘキサノエートの量を11.5質量部に変更した。評価結果を表15に示す。 The composition of the obtained polyvinyl butyral was measured in the same manner as in Example 1. The degree of butyralization (degree of acetalization) was 68.2 mol%, the content of vinyl acetate monomer units was 1.3 mol%, and the content of vinyl alcohol monomer units was 30.5 mol%. It was. Next, the obtained polyvinyl acetal was evaluated in the same manner as in Example 1 (GPC measurement, undissolved content in the film, and colorability of the film). At this time, in the evaluation of “undissolved content in the film”, the amount of polyvinyl butyral powder used for kneading was changed to 46 parts by mass, and the amount of triethylene glycol-di-2-ethylhexanoate was changed to 23 parts by mass. changed. In the evaluation of “film colorability”, the amount of polyvinyl butyral powder added to the kneaded product was changed to 23 parts by mass, and the amount of triethylene glycol-di-2-ethylhexanoate was changed to 11.5. Changed to parts by mass. The evaluation results are shown in Table 15.
比較例17および18
 原料PVAを表15に示すものに変更したこと以外は、実施例16と同様にしてポリビニルブチラールの合成及び評価を実施した。結果を表15に示す。
Comparative Examples 17 and 18
Polyvinyl butyral was synthesized and evaluated in the same manner as in Example 16 except that the raw material PVA was changed to that shown in Table 15. The results are shown in Table 15.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
 表15には重合度2400の完全けん化PVAを原料としたポリビニルアセタールの評価結果を示した。本発明のポリビニルアセタール(実施例16)を含有する組成物からなるフィルム中の未溶解分の発生が抑制された。また、本発明のポリビニルアセタールを繰り返し加熱したものを原料に用いた場合でも、得られるフィルムの着色が少なかった。一方、本発明で規定した条件を満たさないポリビニルアセタール(比較例17及び18)は、いずれかの性能が低下した。 Table 15 shows the evaluation results of polyvinyl acetal using a completely saponified PVA having a polymerization degree of 2400 as a raw material. Generation | occurrence | production of the undissolved part in the film which consists of a composition containing the polyvinyl acetal (Example 16) of this invention was suppressed. Further, even when the material obtained by repeatedly heating the polyvinyl acetal of the present invention was used as a raw material, the resulting film was less colored. On the other hand, any performance of polyvinyl acetal (Comparative Examples 17 and 18) that did not satisfy the conditions defined in the present invention decreased.
実施例17
 還流冷却器、温度計、イカリ型攪拌翼を備えた10リットルのガラス製容器に、イオン交換水を8322g、PVA-12を438g仕込み(PVA濃度5.0%)、内容物を95℃に昇温してPVAを完全に溶解させた。次に内容物を120rpmで攪拌しながら、20℃まで約30分かけて徐々に冷却した後、前記容器にn-ブチルアルデヒド256gと20%の塩酸540mLを添加し、ブチラール化反応を120分間行った。その後60分かけて60℃まで昇温し、60℃にて120分間保持した後、室温まで冷却した。析出した樹脂をイオン交換水で洗浄後、過剰量の水酸化ナトリウム水溶液を添加して中和した。引き続き、イオン交換水で再洗浄、乾燥してポリビニルブチラールを得た。
Example 17
A 10-liter glass container equipped with a reflux condenser, thermometer, and squid-type stirring blade was charged with 8322 g of ion-exchanged water and 438 g of PVA-12 (PVA concentration 5.0%), and the contents were raised to 95 ° C. Warm to completely dissolve the PVA. Next, the contents are gradually cooled to 20 ° C. over about 30 minutes while stirring at 120 rpm, and then 256 g of n-butyraldehyde and 540 mL of 20% hydrochloric acid are added to the vessel, and a butyralization reaction is performed for 120 minutes. It was. Thereafter, the temperature was raised to 60 ° C. over 60 minutes, held at 60 ° C. for 120 minutes, and then cooled to room temperature. The precipitated resin was washed with ion-exchanged water and then neutralized by adding an excessive amount of aqueous sodium hydroxide solution. Subsequently, it was rewashed with ion-exchanged water and dried to obtain polyvinyl butyral.
 得られたポリビニルブチラールの組成を実施例1と同様にして測定した。ブチラール化度(アセタール化度)は68.1モル%、酢酸ビニル単量体単位の含有量は1.5モル%であり、ビニルアルコール単量体単位の含有量は30.4モル%であった。次に、得られたポリビニルアセタールの評価(GPC測定、フィルム中の未溶解分およびフィルムの着色性)を実施例1と同様にして行った。このとき、「フィルム中の未溶解分」の評価において、混練に用いるポリビニルブチラール粉体の量を40.6質量部に変更し、トリエチレングリコール-ジ2-エチルヘキサノエートの量を28.4質量部に変更した。また、「フィルムの着色性」の評価において、混練物に対して添加するポリビニルブチラール粉体の量を20.3質量部に変更し、トリエチレングリコール-ジ2-エチルヘキサノエートの量を14.2質量部に変更した。評価結果を表16に示す。 The composition of the obtained polyvinyl butyral was measured in the same manner as in Example 1. The degree of butyralization (degree of acetalization) was 68.1 mol%, the content of vinyl acetate monomer units was 1.5 mol%, and the content of vinyl alcohol monomer units was 30.4 mol%. It was. Next, the obtained polyvinyl acetal was evaluated in the same manner as in Example 1 (GPC measurement, undissolved content in the film, and colorability of the film). At this time, in the evaluation of “undissolved content in the film”, the amount of polyvinyl butyral powder used for kneading was changed to 40.6 parts by mass, and the amount of triethylene glycol-di-2-ethylhexanoate was changed to 28. The amount was changed to 4 parts by mass. In the evaluation of “film colorability”, the amount of polyvinyl butyral powder added to the kneaded product was changed to 20.3 parts by mass, and the amount of triethylene glycol di-2-ethylhexanoate was changed to 14 parts. Changed to 2 parts by mass. The evaluation results are shown in Table 16.
比較例19~21
 原料PVAを表16に示すものに変更したこと以外は、実施例17と同様にしてポリビニルブチラールの合成及び評価を実施した。結果を表16に示す。但し、比較例21については、フィルム中の未溶解分およびフィルムの着色性の評価において、ラボプラストミルでの混練の際にトルクが高すぎて溶融混練できず、評価できなかった。
Comparative Examples 19-21
Polyvinyl butyral was synthesized and evaluated in the same manner as in Example 17 except that the raw material PVA was changed to that shown in Table 16. The results are shown in Table 16. However, in Comparative Example 21, in the evaluation of the undissolved content in the film and the colorability of the film, the torque was too high during the kneading in the lab plast mill, and the melt kneading could not be performed.
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 表16には重合度3600又は重合度5500の完全けん化PVAを原料としたポリビニルアセタールの評価を示した。本発明のポリビニルアセタール(実施例17)を含有する組成物からなるフィルム中の未溶解分の発生が抑制された。また、本発明のポリビニルアセタールを繰り返し加熱したものを原料に用いた場合でも、得られるフィルムの着色が少なかった。一方、本発明で規定した条件を満たさないポリビニルアセタール(比較例19及び20)は、いずれかの性能が低下した。また、重合度が5000を超えるポリビニルアセタール(比較例21)は、溶融粘度が高くなりすぎラボプラストミルにて溶融混練できず評価できなかった。 Table 16 shows the evaluation of polyvinyl acetal using a completely saponified PVA having a polymerization degree of 3600 or a polymerization degree of 5500 as a raw material. Generation | occurrence | production of the undissolved part in the film which consists of a composition containing the polyvinyl acetal (Example 17) of this invention was suppressed. Further, even when the material obtained by repeatedly heating the polyvinyl acetal of the present invention was used as a raw material, the resulting film was less colored. On the other hand, any performance of the polyvinyl acetal (Comparative Examples 19 and 20) not satisfying the conditions defined in the present invention was lowered. Moreover, the polyvinyl acetal (comparative example 21) having a degree of polymerization exceeding 5000 could not be evaluated because the melt viscosity became too high to be melt kneaded by a lab plast mill.
実施例18
 還流冷却器、温度計、イカリ型攪拌翼を備えた10リットルのガラス製容器に、イオン交換水を8100g、PVA-13を660g仕込み(PVA濃度7.5%)、内容物を95℃に昇温して完全に溶解させた。次に内容物を120rpmで攪拌しながら、15℃まで約30分かけて徐々に冷却した後、前記容器にn-ブチルアルデヒド432gと20%の塩酸540mLを添加し、ブチラール化反応を90分間行った。その後30分かけて45℃まで昇温し、45℃にて180分間保持した後、室温まで冷却した。析出した樹脂をイオン交換水で洗浄後、過剰量の水酸化ナトリウム水溶液を添加して中和した。引き続き、イオン交換水で再洗浄、乾燥してポリビニルブチラールを得た。
Example 18
A 10 liter glass container equipped with a reflux condenser, thermometer and squid type stirring blade was charged with 8100 g of ion-exchanged water and 660 g of PVA-13 (PVA concentration 7.5%), and the contents were raised to 95 ° C. Warm to dissolve completely. Next, the contents are gradually cooled to 15 ° C. over about 30 minutes while stirring at 120 rpm, and then 432 g of n-butyraldehyde and 540 mL of 20% hydrochloric acid are added to the vessel, and a butyralization reaction is performed for 90 minutes. It was. Thereafter, the temperature was raised to 45 ° C. over 30 minutes, held at 45 ° C. for 180 minutes, and then cooled to room temperature. The precipitated resin was washed with ion-exchanged water and then neutralized by adding an excessive amount of aqueous sodium hydroxide solution. Subsequently, it was rewashed with ion-exchanged water and dried to obtain polyvinyl butyral.
 得られたポリビニルブチラールの組成を実施例1と同様にして測定した。ブチラール化度(アセタール化度)は74.1モル%、酢酸ビニル単量体単位の含有量は8.1モル%であり、ビニルアルコール単量体単位の含有量は17.8モル%であった。次に、得られたポリビニルアセタールの評価(GPC測定、フィルム中の未溶解分)を実施例1と同様にして行った。このとき、混練に用いるポリビニルブチラール粉体の量を40質量部に、トリエチレングリコール-ジ2-エチルヘキサノエートの量を24質量部に、溶融混練温度を160℃に、熱プレス温度を140℃にそれぞれ変更した。結果を表17に示す。 The composition of the obtained polyvinyl butyral was measured in the same manner as in Example 1. The degree of butyralization (degree of acetalization) was 74.1 mol%, the content of vinyl acetate monomer units was 8.1 mol%, and the content of vinyl alcohol monomer units was 17.8 mol%. It was. Next, the obtained polyvinyl acetal was evaluated in the same manner as in Example 1 (GPC measurement, undissolved content in the film). At this time, the amount of polyvinyl butyral powder used for kneading is 40 parts by mass, the amount of triethylene glycol-di-2-ethylhexanoate is 24 parts by mass, the melt kneading temperature is 160 ° C., and the hot press temperature is 140 parts. Changed to ° C respectively. The results are shown in Table 17.
 さらに、以下の方法により得られたポリビニルアセタールを評価した。 Furthermore, the polyvinyl acetal obtained by the following method was evaluated.
(フィルムの着色性)
 合成したポリビニルアセタールの粉体40質量部と、可塑剤としてトリエチレングリコール-ジ2-エチルヘキサノエート24質量部とを、株式会社東洋精機製作所製ラボプラストミル「Cモデル」を用い、160℃、50rpmにて5分間溶融混練した。溶融混練中、容器内に窒素(100mL/分)を吹き込み続けた。得られた混練物を140℃、5MPa、30分間熱プレスして、厚み800μmのシート(原料の樹脂としてバージンのポリビニルアセタールのみ使用)を作製した。当該シート32質量部、ポリビニルブチラールの粉体(バージン樹脂)20質量部およびトリエチレングリコール-ジ2-エチルヘキサノエート12質量部を混合した。得られた混合物を、再度溶融混練した後、混練物をシートに成形した。得られたシートを原料の一部として用いて再度シートを作製する操作をさらに1回繰り返した。こうして得られたシートを用いて合わせガラスを作製した。比較のため、上述した、原料の樹脂としてバージンのポリビニルアセタールのみを使用したシートを用いた合わせガラスも作製した。これらの合わせガラスは、シートが異なること以外は、実施例1と同様にして作製した。各合わせガラスの黄色度(YI)を測定し、両者の黄色度の差(ΔYI)から以下の判定基準で着色性を評価した。測定は、スガ試験機株式会社製SMカラーコンピュータ「SM-T-H」を用い、JIS K 7105に従って行った。評価結果を表17に示す。
 A:0.5未満
 B:0.5以上1.0未満
 C:1.0以上2.0未満
 D:2.0以上3.0未満
 E:3.0以上
(Colorability of film)
A synthetic polyvinyl acetal powder of 40 parts by mass and a plasticizer of 24 parts by mass of triethylene glycol di-2-ethylhexanoate were used at 160 ° C. using a lab plast mill “C model” manufactured by Toyo Seiki Seisakusho Co., Ltd. For 5 minutes at 50 rpm. During melt kneading, nitrogen (100 mL / min) was continuously blown into the container. The obtained kneaded material was hot-pressed at 140 ° C. and 5 MPa for 30 minutes to prepare a sheet having a thickness of 800 μm (using only virgin polyvinyl acetal as a raw material resin). 32 parts by mass of the sheet, 20 parts by mass of polyvinyl butyral powder (virgin resin), and 12 parts by mass of triethylene glycol-di-2-ethylhexanoate were mixed. The obtained mixture was melt-kneaded again, and then the kneaded product was formed into a sheet. The operation of producing the sheet again using the obtained sheet as a part of the raw material was further repeated once. A laminated glass was produced using the sheet thus obtained. For comparison, a laminated glass using the above-described sheet using only virgin polyvinyl acetal as a raw material resin was also produced. These laminated glasses were produced in the same manner as in Example 1 except that the sheets were different. The yellowness (YI) of each laminated glass was measured, and the colorability was evaluated according to the following criteria based on the difference in yellowness (ΔYI) between the two. The measurement was performed according to JIS K 7105 using an SM color computer “SM-TH” manufactured by Suga Test Instruments Co., Ltd. The evaluation results are shown in Table 17.
A: Less than 0.5 B: 0.5 or more and less than 1.0 C: 1.0 or more and less than 2.0 D: 2.0 or more and less than 3.0 E: 3.0 or more
実施例19~24
 原料PVAを表17に示すものに変更したこと以外は、実施例18と同様にしてポリビニルブチラールの合成及び評価を実施した。結果を表17に示す。
Examples 19-24
Polyvinyl butyral was synthesized and evaluated in the same manner as in Example 18 except that the raw material PVA was changed to that shown in Table 17. The results are shown in Table 17.
実施例25
 n-ブチルアルデヒドの添加量を225gに変更したこと以外は実施例18と同様にしてポリビニルブチラールの合成を行った。「フィルム中の未溶解分」の評価および「フィルムの着色性」の評価において、可塑剤をジブトキシエチルアジペートに変更したこと以外は実施例18と同様にして得られたポリビニルブチラールを評価した。結果を表17に示す。
Example 25
Polyvinyl butyral was synthesized in the same manner as in Example 18 except that the amount of n-butyraldehyde added was changed to 225 g. Polyvinyl butyral obtained in the same manner as in Example 18 was evaluated except that the plasticizer was changed to dibutoxyethyl adipate in the evaluation of “undissolved content in the film” and the evaluation of “film colorability”. The results are shown in Table 17.
実施例26
 n-ブチルアルデヒドの添加量を269gに変更したこと以外は実施例18と同様にしてポリビニルブチラールの合成を行った。「フィルム中の未溶解分」の評価および「フィルムの着色性」の評価において、可塑剤をジブトキシエチルアジペートに変更したこと以外は実施例18と同様にして得られたポリビニルブチラールを評価した。結果を表17に示す。
Example 26
Polyvinyl butyral was synthesized in the same manner as in Example 18 except that the amount of n-butyraldehyde added was changed to 269 g. Polyvinyl butyral obtained in the same manner as in Example 18 was evaluated except that the plasticizer was changed to dibutoxyethyl adipate in the evaluation of “undissolved content in the film” and the evaluation of “film colorability”. The results are shown in Table 17.
実施例27
 n-ブチルアルデヒドの添加量を307gに変更したこと以外は実施例18と同様にしてポリビニルブチラールの合成及び評価を実施した。結果を表17に示す。
Example 27
Polyvinyl butyral was synthesized and evaluated in the same manner as in Example 18 except that the amount of n-butyraldehyde added was changed to 307 g. The results are shown in Table 17.
実施例28
 n-ブチルアルデヒドの添加量を458gに変更したこと以外は実施例18と同様にしてポリビニルブチラールの合成及び評価を実施した。結果を表17に示す。
Example 28
Polyvinyl butyral was synthesized and evaluated in the same manner as in Example 18 except that the amount of n-butyraldehyde added was changed to 458 g. The results are shown in Table 17.
実施例29
 還流冷却器、温度計、イカリ型攪拌翼を備えた10リットルのガラス製容器に、イオン交換水を8100g、PVA-13を660g仕込み(PVA濃度7.5%)、内容物を95℃に昇温して完全に溶解させた。次に内容物を120rpmで攪拌しながら、15℃まで約30分かけて徐々に冷却した後、前記容器にn-ブチルアルデヒド837gと20%の塩酸810mLを添加し、ブチラール化反応を90分間行った。その後60分かけて60℃まで昇温し、60℃にて24時間保持した後、室温まで冷却した。析出した樹脂をイオン交換水で洗浄後、過剰量の水酸化ナトリウム水溶液を添加して中和した。引き続き、イオン交換水で再洗浄、乾燥してポリビニルブチラールを得た。実施例18と同様にして得られたポリビニルブチラールの評価を実施した。結果を表17に示す。
Example 29
A 10 liter glass container equipped with a reflux condenser, thermometer and squid type stirring blade was charged with 8100 g of ion-exchanged water and 660 g of PVA-13 (PVA concentration 7.5%), and the contents were raised to 95 ° C. Warm to dissolve completely. Next, the content is gradually cooled to 15 ° C. over about 30 minutes while stirring at 120 rpm, 837 g of n-butyraldehyde and 810 mL of 20% hydrochloric acid are added to the vessel, and a butyralization reaction is performed for 90 minutes. It was. Thereafter, the temperature was raised to 60 ° C. over 60 minutes, kept at 60 ° C. for 24 hours, and then cooled to room temperature. The precipitated resin was washed with ion-exchanged water and then neutralized by adding an excessive amount of aqueous sodium hydroxide solution. Subsequently, it was rewashed with ion-exchanged water and dried to obtain polyvinyl butyral. The polyvinyl butyral obtained in the same manner as in Example 18 was evaluated. The results are shown in Table 17.
比較例22~25
 原料PVAを表17に示すものに変更したこと以外は、実施例18と同様にしてポリビニルブチラールの合成及び評価を実施した。結果を表17に示す。
Comparative Examples 22-25
Polyvinyl butyral was synthesized and evaluated in the same manner as in Example 18 except that the raw material PVA was changed to that shown in Table 17. The results are shown in Table 17.
比較例26
 原料PVAを比較PVA-16に変更したことと、n-ブチルアルデヒドの添加量を225gに変更したこと以外は実施例18と同様にしてポリビニルブチラールの合成を行った。「フィルム中の未溶解分」の評価および「フィルムの着色性」の評価において、可塑剤をジブトキシエチルアジペートに変更したこと以外は実施例18と同様にして得られたポリビニルブチラールを評価した。結果を表17に示す。
Comparative Example 26
Polyvinyl butyral was synthesized in the same manner as in Example 18 except that the raw material PVA was changed to comparative PVA-16 and the amount of n-butyraldehyde added was changed to 225 g. Polyvinyl butyral obtained in the same manner as in Example 18 was evaluated except that the plasticizer was changed to dibutoxyethyl adipate in the evaluation of “undissolved content in the film” and the evaluation of “film colorability”. The results are shown in Table 17.
比較例27
 原料PVAを比較PVA-16に変更したこと以外は、実施例26と同様にしてポリビニルブチラールの合成及び評価を実施した。結果を表17に示す。
Comparative Example 27
Polyvinyl butyral was synthesized and evaluated in the same manner as in Example 26 except that the raw material PVA was changed to Comparative PVA-16. The results are shown in Table 17.
比較例28
 原料PVAを比較PVA-16に変更したこと以外は、実施例28と同様にしてポリビニルブチラールの合成及び評価を実施した。結果を表17に示す。
Comparative Example 28
Polyvinyl butyral was synthesized and evaluated in the same manner as in Example 28 except that the raw material PVA was changed to Comparative PVA-16. The results are shown in Table 17.
比較例29
 原料PVAを比較PVA-17に変更したことと、n-ブチルアルデヒドの添加量を225gに変更したこと以外は実施例18と同様にしてポリビニルブチラールの合成を行った。「フィルム中の未溶解分」の評価および「フィルムの着色性」の評価において、可塑剤をジブトキシエチルアジペートに変更したこと以外は実施例18と同様にして得られたポリビニルブチラールを評価した。結果を表17に示す。
Comparative Example 29
Polyvinyl butyral was synthesized in the same manner as in Example 18 except that the raw material PVA was changed to comparative PVA-17 and the addition amount of n-butyraldehyde was changed to 225 g. Polyvinyl butyral obtained in the same manner as in Example 18 was evaluated except that the plasticizer was changed to dibutoxyethyl adipate in the evaluation of “undissolved content in the film” and the evaluation of “film colorability”. The results are shown in Table 17.
比較例30
 原料PVAを比較PVA-17に変更したこと以外は、実施例26と同様にしてポリビニルブチラールの合成及び評価を実施した。結果を表17に示す。
Comparative Example 30
Polyvinyl butyral was synthesized and evaluated in the same manner as in Example 26 except that the raw material PVA was changed to Comparative PVA-17. The results are shown in Table 17.
比較例31
 原料PVAを比較PVA-17に変更したこと以外は、実施例28と同様にしてポリビニルブチラールの合成及び評価を実施した。結果を表17に示す。
Comparative Example 31
Polyvinyl butyral was synthesized and evaluated in the same manner as in Example 28 except that the raw material PVA was changed to Comparative PVA-17. The results are shown in Table 17.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 表17には重合度1700の部分けん化PVA(けん化度約88モル%)を原料にしたポリビニルアセタールの評価を示した。重合度1700の完全けん化PVAを原料としたポリビニルアセタールと同様に本発明のポリビニルアセタール(実施例18~29)を含有する組成物からなるフィルム中の未溶解分の発生が抑制された。また、本発明のポリビニルアセタールを繰り返し加熱したものを原料に用いた場合でも、得られるフィルムの着色が少なかった。一方、本発明で規定した条件を満たさないポリビニルアセタール(比較例22~31)は、いずれかの性能が低下した。 Table 17 shows the evaluation of polyvinyl acetal using a partially saponified PVA having a polymerization degree of 1700 (saponification degree: about 88 mol%) as a raw material. The generation of undissolved content in the film comprising the composition containing the polyvinyl acetal of the present invention (Examples 18 to 29) was suppressed in the same manner as the polyvinyl acetal made from fully saponified PVA having a polymerization degree of 1700. Further, even when the material obtained by repeatedly heating the polyvinyl acetal of the present invention was used as a raw material, the resulting film was less colored. On the other hand, polyvinyl acetal (Comparative Examples 22 to 31) that did not satisfy the conditions defined in the present invention had any performance deterioration.
実施例30
 還流冷却器、温度計、イカリ型攪拌翼を備えた10リットルのガラス製容器に、イオン交換水を8100g、PVA-20を660g仕込み(PVA濃度7.5%)、内容物を95℃に昇温して完全にPVAを溶解させた。次に内容物を120rpmで攪拌しながら、1℃まで約60分かけて徐々に冷却した後、前記容器にn-ブチルアルデヒド468gと20%の塩酸540mLを添加し、ブチラール化反応を90分間行った。その後30分かけて25℃まで昇温し、25℃にて180分間保持した後、室温まで冷却した。析出した樹脂をイオン交換水で洗浄後、過剰量の水酸化ナトリウム水溶液を添加して中和した。引き続き、イオン交換水で再洗浄、乾燥してポリビニルブチラールを得た。
Example 30
A 10-liter glass container equipped with a reflux condenser, thermometer and squid type stirring blade was charged with 8100 g of ion-exchanged water and 660 g of PVA-20 (PVA concentration 7.5%), and the contents were raised to 95 ° C. Warm to completely dissolve the PVA. Next, the contents are gradually cooled to 1 ° C. over about 60 minutes while stirring at 120 rpm, and then 468 g of n-butyraldehyde and 540 mL of 20% hydrochloric acid are added to the vessel, and a butyralization reaction is performed for 90 minutes. It was. Thereafter, the temperature was raised to 25 ° C. over 30 minutes, held at 25 ° C. for 180 minutes, and then cooled to room temperature. The precipitated resin was washed with ion-exchanged water and then neutralized by adding an excessive amount of aqueous sodium hydroxide solution. Subsequently, it was rewashed with ion-exchanged water and dried to obtain polyvinyl butyral.
 得られたポリビニルブチラールの組成を実施例1と同様にして測定した。ブチラール化度(アセタール化度)は73.2モル%、酢酸ビニル単量体単位の含有量は8.0モル%であり、ビニルアルコール単量体単位の含有量は18.8モル%であった。次に、得られたポリビニルアセタールの評価(GPC測定、フィルム中の未溶解分およびフィルムの着色性)を実施例18と同様にして行った。このとき、「フィルム中の未溶解分」の評価において、混練に用いるポリビニルブチラール粉体の量を55.7質量部に変更し、トリエチレングリコール-ジ2-エチルヘキサノエートの量を8.3質量部に変更した。また、「フィルムの着色性」の評価において、最初に作製するシート(原料の樹脂としてバージンのポリビニルアセタールのみ使用)の原料のポリビニルブチラール粉体の量を55.7質量部に、トリエチレングリコール-ジ2-エチルヘキサノエートの量を8.3質量部にそれぞれ変更するとともに、得られたシートに対して混合する、ポリビニルブチラールの粉体の量を27.9質量部に、トリエチレングリコール-ジ2-エチルヘキサノエートの量を4.2質量部にそれぞれ変更した。評価結果を表18に示す。 The composition of the obtained polyvinyl butyral was measured in the same manner as in Example 1. The degree of butyralization (degree of acetalization) was 73.2 mol%, the content of vinyl acetate monomer units was 8.0 mol%, and the content of vinyl alcohol monomer units was 18.8 mol%. It was. Next, the obtained polyvinyl acetal was evaluated in the same manner as in Example 18 (GPC measurement, undissolved content in the film, and colorability of the film). At this time, in the evaluation of “undissolved content in the film”, the amount of polyvinyl butyral powder used for kneading was changed to 55.7 parts by mass, and the amount of triethylene glycol-di-2-ethylhexanoate was changed to 8. Changed to 3 parts by weight. In the evaluation of “colorability of the film”, the amount of polyvinyl butyral powder as the raw material of the sheet to be prepared first (using only virgin polyvinyl acetal as the raw material resin) was changed to 55.7 parts by mass, and triethylene glycol- The amount of di-2-ethylhexanoate was changed to 8.3 parts by mass, and the amount of polyvinyl butyral powder mixed with the obtained sheet was changed to 27.9 parts by mass. The amount of di-2-ethylhexanoate was changed to 4.2 parts by mass, respectively. The evaluation results are shown in Table 18.
比較例32および33
 原料PVAを表18に示すものに変更したこと以外は、実施例30と同様にしてポリビニルブチラールの合成及び評価を実施した。結果を表18に示す。
Comparative Examples 32 and 33
Polyvinyl butyral was synthesized and evaluated in the same manner as in Example 30 except that the raw material PVA was changed to that shown in Table 18. The results are shown in Table 18.
参考例1
 原料PVAを比較PVA-22に変更したこと以外は、実施例30と同様にしてポリビニルブチラールの合成を試みた。しかしながら、比較PVA-22の水溶性が不足し、水溶液が得られなかったため、合成を中止した。
Reference example 1
Synthesis of polyvinyl butyral was attempted in the same manner as in Example 30 except that the raw material PVA was changed to Comparative PVA-22. However, the synthesis was stopped because the aqueous solution of comparative PVA-22 was insufficient and an aqueous solution could not be obtained.
比較例34
 原料PVAを比較PVA-23に変更したこと以外は、実施例30と同様にしてポリビニルブチラールの合成及び評価を実施した。結果を表18に示す。
Comparative Example 34
Polyvinyl butyral was synthesized and evaluated in the same manner as in Example 30 except that the raw material PVA was changed to Comparative PVA-23. The results are shown in Table 18.
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 表18には重合度300の部分けん化PVAを原料にしたポリビニルアセタールの評価を示した。本発明のポリビニルアセタール(実施例30)を含有する組成物からなるフィルム中の未溶解分の発生が抑制された。また、本発明のポリビニルアセタールを繰り返し加熱したものを原料に用いた場合でも、得られるフィルムの着色が少なかった。一方、本発明で規定した条件を満たさないポリビニルアセタール(比較例32~34)は、いずれかの性能が低下した。 Table 18 shows the evaluation of polyvinyl acetal using partially saponified PVA having a polymerization degree of 300 as a raw material. Generation | occurrence | production of the undissolved part in the film which consists of a composition containing the polyvinyl acetal (Example 30) of this invention was suppressed. Further, even when the material obtained by repeatedly heating the polyvinyl acetal of the present invention was used as a raw material, the resulting film was less colored. On the other hand, polyvinyl acetal (Comparative Examples 32 to 34) that does not satisfy the conditions defined in the present invention deteriorated in any performance.
実施例31
 還流冷却器、温度計、イカリ型攪拌翼を備えた10Lリットルのガラス製容器に、イオン交換水を8100g、PVA-21を660g仕込み(PVA濃度7.5%)、内容物を95℃に昇温してPVAを完全に溶解させた。次に内容物を120rpmで攪拌しながら、5℃まで約60分かけて徐々に冷却した後、前記容器にn-ブチルアルデヒド450gと20%の塩酸540mLを添加し、ブチラール化反応を90分間行った。その後30分かけて30℃まで昇温し、30℃にて180分間保持した後、室温まで冷却した。析出した樹脂をイオン交換水で洗浄後、過剰量の水酸化ナトリウム水溶液を添加して中和した。引き続き、イオン交換水で再洗浄、乾燥してポリビニルブチラールを得た。
Example 31
A 10 L liter glass container equipped with a reflux condenser, thermometer, and squid type stirring blade was charged with 8100 g of ion-exchanged water and 660 g of PVA-21 (PVA concentration 7.5%), and the contents were raised to 95 ° C. Warm to completely dissolve the PVA. Next, the contents were gradually cooled to 5 ° C. over about 60 minutes while stirring at 120 rpm, and then 450 g of n-butyraldehyde and 540 mL of 20% hydrochloric acid were added to the vessel, and a butyralization reaction was performed for 90 minutes. It was. Thereafter, the temperature was raised to 30 ° C. over 30 minutes, held at 30 ° C. for 180 minutes, and then cooled to room temperature. The precipitated resin was washed with ion-exchanged water and then neutralized by adding an excessive amount of aqueous sodium hydroxide solution. Subsequently, it was rewashed with ion-exchanged water and dried to obtain polyvinyl butyral.
 得られたポリビニルブチラールの組成を実施例1と同様にして測定した。ブチラール化度(アセタール化度)は74.3モル%、酢酸ビニル単量体単位の含有量は7.9モル%であり、ビニルアルコール単量体単位の含有量は17.8モル%であった。次に、得られたポリビニルアセタールの評価(GPC測定、フィルム中の未溶解分およびフィルムの着色性)を実施例18と同様にして行った。このとき、「フィルム中の未溶解分」の評価において、混練に用いるポリビニルブチラール粉体の量を49.2質量部に変更し、トリエチレングリコール-ジ2-エチルヘキサノエートの量を14.8質量部に変更した。また、「フィルムの着色性」の評価において、最初に作製するシート(原料の樹脂としてバージンのポリビニルアセタールのみ使用)の原料のポリビニルブチラール粉体の量を49.2質量部に、トリエチレングリコール-ジ2-エチルヘキサノエートの量を14.8質量部にそれぞれ変更するとともに、得られたシートに対して混合する、ポリビニルブチラールの粉体の量を24.6質量部に、トリエチレングリコール-ジ2-エチルヘキサノエートの量を7.4質量部にそれぞれ変更した。結果を表19に示す。 The composition of the obtained polyvinyl butyral was measured in the same manner as in Example 1. The degree of butyralization (degree of acetalization) was 74.3 mol%, the content of vinyl acetate monomer units was 7.9 mol%, and the content of vinyl alcohol monomer units was 17.8 mol%. It was. Next, the obtained polyvinyl acetal was evaluated in the same manner as in Example 18 (GPC measurement, undissolved content in the film, and colorability of the film). At this time, in the evaluation of “undissolved content in the film”, the amount of polyvinyl butyral powder used for kneading was changed to 49.2 parts by mass, and the amount of triethylene glycol-di-2-ethylhexanoate was changed to 14. The amount was changed to 8 parts by mass. In the evaluation of “colorability of the film”, the amount of the polyvinyl butyral powder as the raw material of the sheet to be prepared first (using only virgin polyvinyl acetal as the raw material resin) was 49.2 parts by mass, and triethylene glycol- The amount of di2-ethylhexanoate was changed to 14.8 parts by mass, and the amount of polyvinyl butyral powder mixed with the obtained sheet was changed to 24.6 parts by mass. The amount of di-2-ethylhexanoate was changed to 7.4 parts by mass, respectively. The results are shown in Table 19.
比較例35および36
 原料PVAを表19に示すものに変更したこと以外は、実施例31と同様にしてポリビニルブチラールの合成及び評価を実施した。結果を表19に示す。
Comparative Examples 35 and 36
Polyvinyl butyral was synthesized and evaluated in the same manner as in Example 31 except that the raw material PVA was changed to that shown in Table 19. The results are shown in Table 19.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 表19には重合度500の部分けん化PVA(けん化度約88モル%)を原料にしたポリビニルアセタールの評価を示した。本発明のポリビニルアセタール(実施例31)を含有する組成物からなるフィルム中の未溶解分の発生が抑制された。また、本発明のポリビニルアセタールを繰り返し加熱したものを原料に用いた場合でも、得られるフィルムの着色が少なかった。一方、本発明で規定した条件を満たさないポリビニルアセタール(比較例35及び36)は、いずれかの性能が低下した。 Table 19 shows the evaluation of polyvinyl acetal using a partially saponified PVA having a polymerization degree of 500 (saponification degree of about 88 mol%) as a raw material. Generation | occurrence | production of the undissolved part in the film which consists of a composition containing the polyvinyl acetal (Example 31) of this invention was suppressed. Further, even when the material obtained by repeatedly heating the polyvinyl acetal of the present invention was used as a raw material, the resulting film was less colored. On the other hand, the performance of either polyvinyl acetal (Comparative Examples 35 and 36) that did not satisfy the conditions defined in the present invention decreased.
実施例32
 還流冷却器、温度計、イカリ型攪拌翼を備えた10Lリットルのガラス製容器に、イオン交換水を8234g、PVA-22を526g仕込み(PVA濃度6.0%)、内容物を95℃に昇温してPVAを完全に溶解させた。次に内容物を120rpmで攪拌しながら、15℃まで約60分かけて徐々に冷却した後、前記容器にn-ブチルアルデヒド344gと20%の塩酸540mLを添加し、ブチラール化反応を90分間行った。その後30分かけて45℃まで昇温し、45℃にて180分間保持した後、室温まで冷却した。析出した樹脂をイオン交換水で洗浄後、過剰量の水酸化ナトリウム水溶液を添加して中和した。引き続き、イオン交換水で再洗浄、乾燥してポリビニルブチラールを得た。
Example 32
A 10 L liter glass container equipped with a reflux condenser, thermometer, and Ikari-type stirring blade was charged with 8234 g of ion-exchanged water and 526 g of PVA-22 (PVA concentration 6.0%), and the contents were raised to 95 ° C. Warm to completely dissolve the PVA. Next, the contents are gradually cooled to 15 ° C. over about 60 minutes while stirring at 120 rpm, and then 344 g of n-butyraldehyde and 540 mL of 20% hydrochloric acid are added to the vessel, and a butyralization reaction is performed for 90 minutes. It was. Thereafter, the temperature was raised to 45 ° C. over 30 minutes, held at 45 ° C. for 180 minutes, and then cooled to room temperature. The precipitated resin was washed with ion-exchanged water and then neutralized by adding an excessive amount of aqueous sodium hydroxide solution. Subsequently, it was rewashed with ion-exchanged water and dried to obtain polyvinyl butyral.
 得られたポリビニルブチラールの組成を実施例1と同様にして測定した。ブチラール化度(アセタール化度)は74.6モル%、酢酸ビニル単量体単位の含有量は8.3モル%であり、ビニルアルコール単量体単位の含有量は17.1モル%であった。次に、得られたポリビニルアセタールの評価(GPC測定、フィルム中の未溶解分およびフィルムの着色性)を実施例18と同様にして行った。このとき、「フィルム中の未溶解分」の評価において、混練に用いるポリビニルブチラール粉体の量を36.6質量部に変更し、トリエチレングリコール-ジ2-エチルヘキサノエートの量を27.4質量部に変更した。また、「フィルムの着色性」の評価において、最初に作製するシート(原料の樹脂としてバージンのポリビニルアセタールのみ使用)の原料のポリビニルブチラール粉体の量を36.6質量部に、トリエチレングリコール-ジ2-エチルヘキサノエートの量を27.4質量部にそれぞれ変更するとともに、得られたシートに対して混合する、ポリビニルブチラールの粉体の量を18.3質量部に、トリエチレングリコール-ジ2-エチルヘキサノエートの量を13.7質量部にそれぞれ変更した。結果を表20に示す。 The composition of the obtained polyvinyl butyral was measured in the same manner as in Example 1. The degree of butyralization (degree of acetalization) was 74.6 mol%, the content of vinyl acetate monomer units was 8.3 mol%, and the content of vinyl alcohol monomer units was 17.1 mol%. It was. Next, the obtained polyvinyl acetal was evaluated in the same manner as in Example 18 (GPC measurement, undissolved content in the film, and colorability of the film). At this time, in the evaluation of “undissolved content in the film”, the amount of polyvinyl butyral powder used for kneading was changed to 36.6 parts by mass, and the amount of triethylene glycol-di-2-ethylhexanoate was changed to 27. The amount was changed to 4 parts by mass. In the evaluation of “colorability of the film”, the amount of polyvinyl butyral powder as the raw material of the sheet to be prepared first (using only virgin polyvinyl acetal as the raw material resin) was 36.6 parts by mass, and triethylene glycol- The amount of di-2-ethylhexanoate was changed to 27.4 parts by mass, and the amount of polyvinyl butyral powder mixed with the obtained sheet was changed to 18.3 parts by mass. The amount of di-2-ethylhexanoate was changed to 13.7 parts by mass, respectively. The results are shown in Table 20.
比較例37および38
 原料PVAを表20に示すものに変更したこと以外は、実施例32と同様にしてポリビニルブチラールの合成及び評価を実施した。結果を表20に示す。
Comparative Examples 37 and 38
Polyvinyl butyral was synthesized and evaluated in the same manner as in Example 32 except that the raw material PVA was changed to that shown in Table 20. The results are shown in Table 20.
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
 表20には重合度2400の部分けん化PVA(けん化度約88モル%)を原料にしたポリビニルアセタールの評価を示した。本発明のポリビニルアセタール(実施例32)を含有する組成物からなるフィルム中の未溶解分の発生が抑制された。また、本発明のポリビニルアセタールを繰り返し加熱したものを原料に用いた場合でも、得られるフィルムの着色が少なかった。一方、本発明で規定した条件を満たさないポリビニルアセタール(比較例37及び38)は、いずれかの性能が低下した。 Table 20 shows the evaluation of polyvinyl acetal using partially saponified PVA having a polymerization degree of 2400 (saponification degree of about 88 mol%) as a raw material. Generation | occurrence | production of the undissolved part in the film which consists of a composition containing the polyvinyl acetal (Example 32) of this invention was suppressed. Further, even when the material obtained by repeatedly heating the polyvinyl acetal of the present invention was used as a raw material, the resulting film was less colored. On the other hand, the polyvinyl acetal (Comparative Examples 37 and 38) that does not satisfy the conditions defined in the present invention has a reduced performance.
実施例33
 還流冷却器、温度計、イカリ型攪拌翼を備えた10リットルのガラス製容器に、イオン交換水を8234g、PVA-23を438g仕込み(PVA濃度5.0%)、内容物を95℃に昇温してPVAを完全に溶解させた。次に内容物を120rpmで攪拌しながら、15℃まで約60分かけて徐々に冷却した後、前記容器にn-ブチルアルデヒド265gと20%の塩酸540mLを添加し、ブチラール化反応を90分間行った。その後30分かけて45℃まで昇温し、45℃にて180分間保持した後、室温まで冷却した。析出した樹脂をイオン交換水で洗浄後、過剰量の水酸化ナトリウム水溶液を添加して中和した。引き続き、イオン交換水で再洗浄、乾燥してポリビニルブチラールを得た。
Example 33
A 10-liter glass container equipped with a reflux condenser, thermometer, and squid type stirring blade was charged with 8234 g of ion-exchanged water and 438 g of PVA-23 (PVA concentration 5.0%), and the contents were raised to 95 ° C. Warm to completely dissolve the PVA. Next, the contents are gradually cooled to 15 ° C. over about 60 minutes while stirring at 120 rpm, and then 265 g of n-butyraldehyde and 540 mL of 20% hydrochloric acid are added to the vessel, and a butyralization reaction is performed for 90 minutes. It was. Thereafter, the temperature was raised to 45 ° C. over 30 minutes, held at 45 ° C. for 180 minutes, and then cooled to room temperature. The precipitated resin was washed with ion-exchanged water and then neutralized by adding an excessive amount of aqueous sodium hydroxide solution. Subsequently, it was rewashed with ion-exchanged water and dried to obtain polyvinyl butyral.
 得られたポリビニルブチラールの組成を実施例1と同様にして測定した。ポリビニルブチラールのブチラール化度(平均アセタール化度)は73.2モル%、酢酸ビニル単量体単位の含有量は8.1モル%であり、ビニルアルコール単量体単位の含有量は18.7モル%であった。次に、得られたポリビニルアセタールの評価(GPC測定、フィルム中の未溶解分およびフィルムの着色性)を実施例18と同様にして行った。このとき、「フィルム中の未溶解分」の評価において、混練に用いるポリビニルブチラール粉体の量を32質量部に変更し、トリエチレングリコール-ジ2-エチルヘキサノエートの量を32質量部に変更した。また、「フィルムの着色性」の評価において、最初に作製するシート(原料の樹脂としてバージンのポリビニルアセタールのみ使用)の原料のポリビニルブチラール粉体の量を32質量部に、トリエチレングリコール-ジ2-エチルヘキサノエートの量を32質量部にそれぞれ変更するとともに、得られたシートに対して混合する、ポリビニルブチラールの粉体の量を16質量部に、トリエチレングリコール-ジ2-エチルヘキサノエートの量を16質量部にそれぞれ変更した。結果を表21に示す。 The composition of the obtained polyvinyl butyral was measured in the same manner as in Example 1. The degree of butyralization (average degree of acetalization) of polyvinyl butyral is 73.2 mol%, the content of vinyl acetate monomer units is 8.1 mol%, and the content of vinyl alcohol monomer units is 18.7. Mol%. Next, the obtained polyvinyl acetal was evaluated in the same manner as in Example 18 (GPC measurement, undissolved content in the film, and colorability of the film). At this time, in the evaluation of “undissolved content in the film”, the amount of polyvinyl butyral powder used for kneading was changed to 32 parts by mass, and the amount of triethylene glycol-di-2-ethylhexanoate was changed to 32 parts by mass. changed. Further, in the evaluation of “colorability of the film”, the amount of the polyvinyl butyral powder as the raw material of the sheet to be prepared first (using only virgin polyvinyl acetal as the raw material resin) was 32 parts by mass, and triethylene glycol di-2 -The amount of ethyl hexanoate was changed to 32 parts by mass, and the amount of polyvinyl butyral powder mixed with the obtained sheet was changed to 16 parts by mass to triethylene glycol di-2-ethylhexanoate. The amount of ate was changed to 16 parts by mass. The results are shown in Table 21.
比較例39および40
 原料PVAを表21に示すものに変更したこと以外は、実施例33と同様にしてポリビニルブチラールの合成及び評価を実施した。結果を表21に示す。
Comparative Examples 39 and 40
Polyvinyl butyral was synthesized and evaluated in the same manner as in Example 33 except that the raw material PVA was changed to that shown in Table 21. The results are shown in Table 21.
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
 表21には重合度3600の部分けん化PVA(けん化度約88モル%)を原料にしたポリビニルアセタールの評価を示した。本発明のポリビニルアセタール(実施例33)を含有する組成物からなるフィルム中の未溶解分の発生が抑制された。また、本発明のポリビニルアセタールを繰り返し加熱したものを原料に用いた場合でも、得られるフィルムの着色が少なかった。一方、本発明で規定した条件を満たさないポリビニルアセタール(比較例39及び40)は、いずれかの性能が低下した。 Table 21 shows the evaluation of polyvinyl acetal using a partially saponified PVA having a polymerization degree of 3600 (saponification degree of about 88 mol%) as a raw material. Generation | occurrence | production of the undissolved part in the film which consists of a composition containing the polyvinyl acetal (Example 33) of this invention was suppressed. Further, even when the material obtained by repeatedly heating the polyvinyl acetal of the present invention was used as a raw material, the resulting film was less colored. On the other hand, any performance of polyvinyl acetal (Comparative Examples 39 and 40) that did not satisfy the conditions defined in the present invention decreased.
以上の結果から示されるとおり、本発明のポリビニルアセタールを含有する組成物からなるフィルムは、その中に含まれる未溶解分が少ない。さらに、繰り返し加熱されたポリビニルアセタールを原料に用いた場合でも、得られるフィルムの着色が少ない。一方、本発明で規定した条件を満たさないポリビニルアセタールは、いずれかの性能が明らかに低下する。 As shown from the above results, the film made of the composition containing the polyvinyl acetal of the present invention has a small amount of undissolved components contained therein. Furthermore, even when polyvinyl acetal that has been repeatedly heated is used as a raw material, the resulting film is less colored. On the other hand, any performance of polyvinyl acetal that does not satisfy the conditions specified in the present invention is clearly deteriorated.

Claims (9)

  1.  アセタール化度が40~90モル%、ビニルエステル単量体単位の含有量が0.1~20モル%、粘度平均重合度が200~5000であるポリビニルアセタールであって、
     230℃において3時間加熱された前記ポリビニルアセタールをゲルパーミエーションクロマトグラフィー測定したときの、示差屈折率検出器で測定されるピークトップ分子量(A)と、吸光光度検出器(測定波長280nm)で測定されるピークトップ分子量(B)が下記式(1)
    (A-B)/A<0.60   (1)
    を満たし、かつピークトップ分子量(B)における吸光度が0.50×10-3~1.00×10-2となるポリビニルアセタール。
    A polyvinyl acetal having an acetalization degree of 40 to 90 mol%, a vinyl ester monomer unit content of 0.1 to 20 mol%, and a viscosity average polymerization degree of 200 to 5000,
    When the polyvinyl acetal heated at 230 ° C. for 3 hours was measured by gel permeation chromatography, the peak top molecular weight (A) measured by a differential refractive index detector and an absorptiometric detector (measurement wavelength 280 nm) were measured. The peak top molecular weight (B) is expressed by the following formula (1)
    (AB) / A <0.60 (1)
    And a polyvinyl acetal having an absorbance at peak top molecular weight (B) of 0.50 × 10 −3 to 1.00 × 10 −2 .
  2.  前記ゲルパーミエーションクロマトグラフィー測定における、示差屈折率検出器で測定されるピークトップ分子量(A)と、吸光光度検出器(測定波長320nm)で測定されるピークトップ分子量(C)が下記式(2)
    (A-C)/A<0.65   (2)
    を満たし、かつピークトップ分子量(C)における吸光度が0.35×10-3~4.50×10-3となる請求項1に記載のポリビニルアセタール。
    In the gel permeation chromatography measurement, the peak top molecular weight (A) measured with a differential refractive index detector and the peak top molecular weight (C) measured with an absorptiometric detector (measurement wavelength 320 nm) are expressed by the following formula (2). )
    (AC) / A <0.65 (2)
    The polyvinyl acetal according to claim 1, wherein the absorbance at the peak top molecular weight (C) is 0.35 × 10 −3 to 4.50 × 10 −3 .
  3.  前記ゲルパーミエーションクロマトグラフィー測定における、示差屈折率検出器によって求められる、前記ポリビニルアセタールの数平均分子量Mnに対する重量平均分子量Mwの比Mw/Mnが2.8~12.0となる請求項1又は2に記載のポリビニルアセタール。 The ratio Mw / Mn of the weight average molecular weight Mw to the number average molecular weight Mn of the polyvinyl acetal obtained by a differential refractive index detector in the gel permeation chromatography measurement is 2.8 to 12.0. 2. Polyvinyl acetal according to 2.
  4.  前記ポリビニルアセタールがポリビニルブチラールである請求項1~3のいずれかに記載のポリビニルアセタール。 The polyvinyl acetal according to any one of claims 1 to 3, wherein the polyvinyl acetal is polyvinyl butyral.
  5.  請求項1~4のいずれかに記載のポリビニルアセタール及び可塑剤を含有するポリビニルアセタール組成物。 A polyvinyl acetal composition comprising the polyvinyl acetal according to any one of claims 1 to 4 and a plasticizer.
  6.  前記可塑剤としてトリエチレングリコール-ジ2-エチルヘキサノエートを含有する請求項5に記載のポリビニルアセタール組成物。 The polyvinyl acetal composition according to claim 5, comprising triethylene glycol-di-2-ethylhexanoate as the plasticizer.
  7.  請求項5又は6に記載のポリビニルアセタール組成物からなる合わせガラス用中間膜。 An interlayer film for laminated glass comprising the polyvinyl acetal composition according to claim 5 or 6.
  8.  請求項7に記載の合わせガラス用中間膜を用いて複数のガラス板を接着してなる合わせガラス。 A laminated glass obtained by bonding a plurality of glass plates using the interlayer film for laminated glass according to claim 7.
  9.  ポリビニルアルコールをアセタール化する請求項1~4のいずれかに記載のポリビニルアセタールの製造方法であって、
     前記ポリビニルアルコールの、けん化度が50~99.99モル%、粘度平均重合度が200~5000、カルボン酸のアルカリ金属塩の含有量がアルカリ金属の質量換算で0.5質量%以下であって、
     120℃において3時間加熱された前記ポリビニルアルコールをゲルパーミエーションクロマトグラフィー測定したときの、示差屈折率検出器で測定されるピークトップ分子量(D)と、吸光光度検出器(測定波長280nm)で測定されるピークトップ分子量(E)が下記式(3)
    (D-E)/D<0.75   (3)
    を満たし、かつピークトップ分子量(E)における吸光度が0.25×10-3~3.00×10-3となることを特徴とする製造方法。
    The method for producing a polyvinyl acetal according to any one of claims 1 to 4, wherein the polyvinyl alcohol is acetalized,
    The polyvinyl alcohol has a saponification degree of 50 to 99.99 mol%, a viscosity average polymerization degree of 200 to 5000, and the content of alkali metal salt of carboxylic acid is 0.5% by mass or less in terms of the mass of alkali metal. ,
    When the polyvinyl alcohol heated at 120 ° C. for 3 hours is measured by gel permeation chromatography, the peak top molecular weight (D) measured by a differential refractive index detector and measured by an absorptiometric detector (measurement wavelength 280 nm) The peak top molecular weight (E) is expressed by the following formula (3)
    (DE) / D <0.75 (3)
    And the absorbance at the peak top molecular weight (E) is 0.25 × 10 −3 to 3.00 × 10 −3 .
PCT/JP2013/071343 2013-08-07 2013-08-07 Polyvinyl acetal and laminated glass interlayer comprising same WO2015019441A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013537715A JP5420805B1 (en) 2013-08-07 2013-08-07 Polyvinyl acetal and interlayer film for laminated glass containing the same
PCT/JP2013/071343 WO2015019441A1 (en) 2013-08-07 2013-08-07 Polyvinyl acetal and laminated glass interlayer comprising same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/071343 WO2015019441A1 (en) 2013-08-07 2013-08-07 Polyvinyl acetal and laminated glass interlayer comprising same

Publications (1)

Publication Number Publication Date
WO2015019441A1 true WO2015019441A1 (en) 2015-02-12

Family

ID=50287231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071343 WO2015019441A1 (en) 2013-08-07 2013-08-07 Polyvinyl acetal and laminated glass interlayer comprising same

Country Status (2)

Country Link
JP (1) JP5420805B1 (en)
WO (1) WO2015019441A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015122514A1 (en) * 2014-02-17 2015-08-20 株式会社クラレ Binder for formation of ceramic or for use in conductive paste, and use of same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015125688A1 (en) * 2014-02-18 2015-08-27 株式会社クラレ Highly adhesive resin composition and molded article produced from same, and laminate

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0931124A (en) * 1994-11-24 1997-02-04 Sekisui Chem Co Ltd Production of polyvinyl acetal, polyvinyl acetal, interlayer for laminated glass and laminated glass
JPH09316110A (en) * 1996-03-29 1997-12-09 Kuraray Co Ltd Manufacture of vinyl acetate polymer
JPH1180272A (en) * 1997-09-10 1999-03-26 Nof Corp Production of saponified material of ethylene-vinyl acetate copolymer
JP2005029764A (en) * 2003-07-11 2005-02-03 Kuraray Co Ltd Vinyl acetal-based polymer and method for producing the same
JP2008214435A (en) * 2007-03-01 2008-09-18 Denki Kagaku Kogyo Kk Polyvinyl acetal resin and its manufacturing method
JP2011508802A (en) * 2007-12-21 2011-03-17 セキスイ・スペシャルティ・ケミカルズ・アメリカ・エルエルシー How to make low color polyvinyl alcohol
WO2011108152A1 (en) * 2010-03-03 2011-09-09 電気化学工業株式会社 Method for producing polyvinyl alcohol resin
JP2011241234A (en) * 2009-04-28 2011-12-01 Nippon Synthetic Chem Ind Co Ltd:The Polyvinyl alcohol-based resin composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0931124A (en) * 1994-11-24 1997-02-04 Sekisui Chem Co Ltd Production of polyvinyl acetal, polyvinyl acetal, interlayer for laminated glass and laminated glass
JPH09316110A (en) * 1996-03-29 1997-12-09 Kuraray Co Ltd Manufacture of vinyl acetate polymer
JPH1180272A (en) * 1997-09-10 1999-03-26 Nof Corp Production of saponified material of ethylene-vinyl acetate copolymer
JP2005029764A (en) * 2003-07-11 2005-02-03 Kuraray Co Ltd Vinyl acetal-based polymer and method for producing the same
JP2008214435A (en) * 2007-03-01 2008-09-18 Denki Kagaku Kogyo Kk Polyvinyl acetal resin and its manufacturing method
JP2011508802A (en) * 2007-12-21 2011-03-17 セキスイ・スペシャルティ・ケミカルズ・アメリカ・エルエルシー How to make low color polyvinyl alcohol
JP2011241234A (en) * 2009-04-28 2011-12-01 Nippon Synthetic Chem Ind Co Ltd:The Polyvinyl alcohol-based resin composition
WO2011108152A1 (en) * 2010-03-03 2011-09-09 電気化学工業株式会社 Method for producing polyvinyl alcohol resin

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015122514A1 (en) * 2014-02-17 2015-08-20 株式会社クラレ Binder for formation of ceramic or for use in conductive paste, and use of same
JP5900706B2 (en) * 2014-02-17 2016-04-06 株式会社クラレ Binder for ceramic molding or conductive paste, and their use
JPWO2015122514A1 (en) * 2014-02-17 2017-03-30 株式会社クラレ Binder for ceramic molding or conductive paste, and their use

Also Published As

Publication number Publication date
JPWO2015019441A1 (en) 2017-03-02
JP5420805B1 (en) 2014-02-19

Similar Documents

Publication Publication Date Title
JP5469286B1 (en) Multilayer film and interlayer film for laminated glass comprising the same
JP5420804B1 (en) Film containing polyvinyl acetal
JP6441307B2 (en) Interlayer film for laminated glass
JP6259307B2 (en) Intermediate film for laminated glass and laminated glass using the same
JP5420808B1 (en) Film containing polyvinyl acetal
JP6541758B2 (en) Sheet
JP5632077B1 (en) Composition with excellent transparency
JP5469288B1 (en) Multilayer film and interlayer film for laminated glass comprising the same
JP5469287B1 (en) Multilayer film and interlayer film for laminated glass comprising the same
JP5420806B1 (en) Polyvinyl acetal and interlayer film for laminated glass containing the same
JP5469289B1 (en) Multilayer film and interlayer film for laminated glass comprising the same
JP5420805B1 (en) Polyvinyl acetal and interlayer film for laminated glass containing the same
JP6300150B2 (en) Radical polymerizable resin composition
JP6221147B2 (en) Binder for ink or paint and its use
JP6254381B2 (en) Film containing vinyl acetal polymer

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013537715

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13891256

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13891256

Country of ref document: EP

Kind code of ref document: A1