WO2015019392A1 - Information detector and information measurement device, and information detection method - Google Patents

Information detector and information measurement device, and information detection method Download PDF

Info

Publication number
WO2015019392A1
WO2015019392A1 PCT/JP2013/071111 JP2013071111W WO2015019392A1 WO 2015019392 A1 WO2015019392 A1 WO 2015019392A1 JP 2013071111 W JP2013071111 W JP 2013071111W WO 2015019392 A1 WO2015019392 A1 WO 2015019392A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
unit
information
measurement target
measurement
Prior art date
Application number
PCT/JP2013/071111
Other languages
French (fr)
Japanese (ja)
Inventor
晋弥 橋本
敦也 伊藤
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2013/071111 priority Critical patent/WO2015019392A1/en
Priority to JP2015530560A priority patent/JP6085030B2/en
Publication of WO2015019392A1 publication Critical patent/WO2015019392A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02416Detecting, measuring or recording pulse rate or heart rate using photoplethysmograph signals, e.g. generated by infrared radiation
    • A61B5/02427Details of sensor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • A61B5/14552Details of sensors specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6813Specially adapted to be attached to a specific body part
    • A61B5/6825Hand
    • A61B5/6826Finger
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/683Means for maintaining contact with the body
    • A61B5/6838Clamps or clips
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0266Operational features for monitoring or limiting apparatus function
    • A61B2560/0276Determining malfunction

Definitions

  • the present invention relates to a technical field of an information detector, an information measuring device, and an information detecting method for detecting various kinds of information related to the measuring object by irradiating the measuring object with light, for example.
  • Patent Document 1 proposes an apparatus that uses a touch sensor to determine whether or not a living body is touching a measurement unit.
  • Patent Document 2 proposes an apparatus having means for examining the deterioration of a light emitting element based on the amount of received light.
  • An object of the present invention is to provide an information detector, an information measuring device, and an information detection method capable of determining whether or not a device is normally attached to a measurement target with a relatively simple configuration. .
  • An information detector for solving the above problems includes an irradiating means for irradiating light, a reflecting means having a reflectance different from that of a measurement object, and a light receiving means for receiving a return light of the light emitted from the light emitting unit. And determining means for determining whether the return light is the return light from the measurement object or the return light from the reflection means based on the amount of light received by the light receiving means.
  • An information measuring instrument for solving the above-mentioned problems is an abnormality detector that detects an abnormality of the information detector based on the above-described information detector (including various aspects thereof) and the discrimination result in the discrimination means. And a warning stop means for executing at least one of a warning notifying that the abnormality has been detected and a stop of measurement by the information detector when the abnormality is detected.
  • An information detection method for solving the above-described problems includes an irradiating unit that irradiates light, a reflecting unit that has a reflectance different from that of the measurement target, and a light receiving unit that receives return light of the light emitted from the light emitting unit.
  • An information detection method in an information detector comprising: whether the return light is return light from the measurement object or return light from the reflection means based on the amount of light received by the light receiving means.
  • a determination step for determining is provided.
  • the information detector includes an irradiating unit that irradiates light, a reflecting unit that has a reflectance different from that of the measurement target, a light receiving unit that receives return light of the light emitted from the light emitting unit, and And a discriminating unit that discriminates whether the return light is the return light from the measurement object or the return light from the reflection unit based on the amount of light received by the light receiving unit.
  • the measurement target is irradiated with light from the light emitting means configured as, for example, a light emitting diode, and is measured by the light receiving means configured as, for example, a photodiode. Return light from is received.
  • the return light received by the light receiving means is processed as a signal indicating information relating to the measurement target, and for example, the blood flow velocity or pulse wave of the living body that is the measurement target is detected.
  • the measurement operation described above is executed in a state where the positions of the light receiving means and the light emitting means are set to appropriate positions with respect to the measurement target.
  • the information detector is used in a state where it is attached to a part of a living body to be measured. More specifically, for example, the information detector includes a clip member, and performs measurement in a state where a part of the living body is sandwiched between the clip members.
  • the information detector may be removed from the measurement target during measurement depending on the mounting mode.
  • the information detector since the light from the light emitting unit is not irradiated to the measurement target, or the light receiving unit cannot receive the return light from the measurement target, accurate measurement cannot be performed.
  • the information detector according to the present embodiment can execute a measurement determination operation for determining whether or not the apparatus can normally perform measurement of the measurement target in parallel or independently of the measurement operation described above. Has been.
  • the information detector includes a reflection unit having a reflectance different from that of the measurement target.
  • “reflection” in the present embodiment is not only a reflection of light in one direction but also a broad concept including “scattering” in which the light travels in various directions. Therefore, the “reflecting means” in the present embodiment can be rephrased as “scattering means”.
  • the “return light” in the present embodiment may include not only “reflected light” but also “scattered light”.
  • the reflection means may be configured with a member having a smaller reflectance than the measurement target, or may be configured with a member having a higher reflectance than the measurement target.
  • the reflecting means is disposed at a position where the light emitting means can irradiate light and a position where the light receiving means can receive the return light.
  • the reflecting means is arranged at a position that is isolated from the light emitting means and the light receiving means by a measurement object arranged at a normal position.
  • the reflectance of the reflecting unit is different from the measurement target. Therefore, a measurement result different from the case where the measurement object is measured is obtained. That is, when the reflectance of the reflecting means is larger than the measurement target, the received light amount is measured as a relatively large value, and when the reflectance of the reflecting means is smaller than the measurement target, the received light amount is measured as a relatively small value. Is done. Using this, the determination means determines whether the received return light is the return light from the measurement object or the return light from the reflection means based on the amount of light received by the light reception means.
  • the amount of received light is a value within the range corresponding to the reflectance of the measurement target, it is determined that the return light from the measurement target is received, and the amount of received light is the reflectance of the reflecting means.
  • the value is within the corresponding range, it is determined that the return light from the measurement target is not received.
  • the information detector according to the present embodiment it can be suitably determined whether or not the apparatus is measuring the measurement target normally. Therefore, for example, it is possible to avoid that inappropriate measurement is continuously performed in a state where the apparatus is removed from the measurement target, and it is possible to more appropriately measure information related to the measurement target.
  • the reflection means is not irradiated with light from the light emitting unit when the measurement target is located at a position where the measurement target is to be arranged, and the measurement target is the arrangement. When it does not exist at the position where it should be, it is arranged at a position where the light from the light emitting unit is irradiated.
  • the reflecting means is provided from the light emitting unit. Is not irradiated. Therefore, in this case, the return light received by the light receiving means does not include the return light from the reflecting means.
  • the measurement target does not exist at the position where the measurement target should be placed (that is, when the measurement target is not placed at an appropriate position for measuring the information about the measurement target)
  • the light from the light emitting unit is irradiated on the reflecting means. Is done. Therefore, in this case, the return light received by the light receiving means becomes the return light from the reflecting means.
  • the reflecting means is arranged as described above, the return light from the reflecting means is received only when the measurement target cannot be measured normally. Therefore, it can be more suitably determined whether or not the apparatus is measuring the measurement target normally.
  • the determination unit further determines at least one of an irradiation state of the irradiation unit and a light reception state of the light reception unit based on the amount of light received by the light reception unit.
  • the information detector can execute an abnormality detection operation for detecting an abnormality of the apparatus.
  • the irradiation state abnormality of the irradiation means for example, there is a case where the amount of light irradiated due to a failure is extremely reduced.
  • the light receiving state abnormality of the light receiving means for example, a case where the light receiving sensitivity is extremely lowered due to a failure.
  • the determination unit is configured such that the amount of light received by the light receiving unit is not a value within the range corresponding to the return light from the measurement target and is not a value within the range corresponding to the return light from the reflection unit. It is determined that an abnormality has occurred in the device. Therefore, it is possible to detect that an abnormality has occurred in the apparatus.
  • the abnormality detection operation according to this aspect is realized by irradiating the reflection means with light and receiving the reflected light, and thus can be performed in parallel with the above-described measurement determination operation.
  • a part of the light irradiated from the light emitting unit is transmitted to the measurement target and the reflection unit side, and the other one is transmitted.
  • a transmissive reflecting means for reflecting the part to the light receiving means may be further provided.
  • a transmission / reflection unit that transmits part of the irradiated light and reflects the other part is disposed between the irradiation unit, the light receiving unit, and the reflection unit. For this reason, all the light irradiated from the irradiation means does not go to the reflection means side, but only a part of the light transmitted through the transmission reflection means goes to the reflection means side. On the other hand, the other part reflected by the transmissive reflecting means goes directly to the light receiving means without going to the reflecting means side.
  • the reflecting means when performing the abnormality detection operation, it is possible to suitably detect an abnormality even when the reflecting means is configured with a relatively low reflectance. Specifically, assuming that the reflectance of the reflecting means is lower than that of the object to be measured, if the amount of light received by the light receiving means is small, it is reduced due to reflection by the reflecting means or abnormally small. It is difficult to determine whether it is.
  • the light receiving means can expect a certain amount of received light. Therefore, even when the return light from the reflecting means is weak, it is possible to detect an abnormality of the apparatus suitably.
  • the light emitting unit is a laser light source.
  • the measurement determination operation and the abnormality detection operation can be more suitably executed by using the laser light source excellent in directivity, convergence, and controllability.
  • the information measuring instrument includes the above-described information detector (including various aspects thereof), an abnormality detection unit that detects an abnormality of the information detector based on a determination result in the determination unit, And a warning stop means for executing at least one of a warning notifying that the abnormality is detected and a stop of measurement by the information detector when the abnormality is detected.
  • the apparatus when the apparatus does not normally measure the measurement target by the above-described measurement determination unit, or when an abnormality has occurred in the irradiation unit and the light receiving unit, a warning or measurement is performed. A stop is made. Therefore, it is possible to suitably avoid that measurement continues to be performed while an abnormality has occurred.
  • the information measuring method includes an irradiating unit that irradiates light, a reflecting unit that has a reflectance different from that of the measurement target, and a light receiving unit that receives return light of the light emitted from the light emitting unit.
  • An information detection method in an information detector wherein whether the return light is return light from the measurement object or return light from the reflection means is determined based on the amount of light received by the light receiving means. A discrimination step is provided.
  • the information detection method of the present embodiment it is possible to suitably determine whether or not the apparatus is measuring a measurement target normally, similarly to the information detector according to the present embodiment described above. Therefore, for example, it is possible to avoid that inappropriate measurement is continuously performed in a state where the apparatus is removed from the measurement target, and it is possible to more appropriately measure information related to the measurement target.
  • FIG. 1 is a block diagram showing the overall configuration of the information measuring instrument according to the first embodiment.
  • the information measuring instrument 100 includes a light emitting unit 110, a light receiving unit 120, an amplifier 130, an A / D converter 140, a biological information calculation unit 150, and a biological detection determination unit 160. Yes.
  • the light emitting unit 110 is a specific example of “irradiation means” and includes, for example, a laser light source.
  • the light emitting unit 110 can irradiate light toward the living body 500 that is a measurement target.
  • the light receiving unit 120 is a specific example of “light receiving means” and includes, for example, a photodiode.
  • the light receiving unit 120 can receive the return light from the living body 500 to be measured (that is, the light scattered from the living body 500 out of the light emitted from the light emitting unit 110) and output a signal corresponding to the amount of received light. It is said that.
  • the amplifier 130 is configured to include an amplification circuit, and can amplify the signal input from the light receiving unit 120 and output it to the A / D converter 140.
  • the A / D converter 140 converts the signal input as an analog signal from the amplifier 130 into a digital signal and outputs it.
  • the A / D converter 140 can output the digitally converted signal to the biological information calculation unit 150 and the biological detection determination unit 160, respectively.
  • the biological information calculation unit 150 calculates and outputs information related to the biological object 500 to be measured based on the signal input from the A / D converter 140.
  • the biological information calculation unit 150 calculates and outputs a blood flow velocity, a pulse wave, and the like of the living body 500, for example.
  • the living body detection determination unit 160 is a specific example of the “determination unit”, and based on the signal input from the A / D converter 140, the light received by the light receiving unit 120 from the living body 500 that is the measurement target. It is determined whether or not the light is returning light. When the received light is a return light from the living body 500, the living body detection determining unit 160 instructs the living body information calculating unit 150 to perform the calculation of the living body information. On the other hand, when the received light is not the return light from the living body 500, the living body detection determining unit 160 outputs measurement error alarm information.
  • the information measuring instrument includes a reflecting portion which is a specific example of “reflecting means” in addition to the above-described members, but the illustration thereof is omitted here.
  • the configuration of the reflector and the determination operation using the reflector will be described in detail later.
  • FIG. 2 is a perspective view illustrating the configuration of the probe unit 200 according to the embodiment.
  • the probe unit 200 is formed as a member including a detection element 250 including a light emitting unit 110 and a light receiving unit 120 (see FIG. 1) exposed on the surface, and a connection cable 300 is provided at an end thereof. Is connected.
  • a connection terminal 310 is provided at the end of the connection cable 300 opposite to the probe unit 100.
  • the connection terminal 310 can be connected to a main body (not shown) including the biological information calculation unit 150, the biological detection determination unit 160, and the like.
  • FIGS. 3 and 4 are perspective views showing the configuration of the probe unit 200 with the clip unit 400 attached thereto.
  • the clip portion 400 is configured by connecting a first clip member 410 and a second clip member 420 at a clip connecting portion 430.
  • the first clip member 410 and the second clip member 420 can be opened and closed with the clip connecting portion 430 as a fulcrum, and a living body or the like to be measured can be held between them.
  • the probe unit 200 is inserted into the first clip member 410 in the clip unit 400 described above. Specifically, the detection element 250 in the probe unit 200 is disposed so as to be exposed to the second clip member 420 side from the opening of the first clip member 410 (see FIG. 4).
  • the connection cable 300 connected to the probe unit 200 can be held by the cable clamp 440 in the second clip member 420.
  • FIG. 5 is a side view showing the information measuring instrument at the time of biological measurement.
  • the information measuring instrument 100 is used by being worn on a fingertip 510 of a living body, for example.
  • the fingertip 510 of the living body is sandwiched between the first clip member 410 and the second clip member 420.
  • the detection element 250 of the probe unit 200 inserted in the first clip member 410 is arranged so as to face the fingertip 510 of the living body. Therefore, the light emitting unit 110 can irradiate the measurement target with light, and the light receiving unit 120 can detect return light from the measurement target. Therefore, according to the information measuring instrument 100 according to the present embodiment, it is possible to suitably detect information related to the living body 500 that is a measurement target.
  • the information measuring instrument 100 may be mounted so as to sandwich a part other than the fingertip 510 (for example, an earlobe) as long as the biological information can be detected.
  • FIG. 6 is a side view showing the information measuring instrument when the living body is not measured.
  • the reflecting portion 425 is disposed on the surface of the second clip member 430 that faces the first clip member 410.
  • the reflecting portion 425 is a specific example of “reflecting means”, and is configured by a member having a relatively high reflectance such as metal or resin.
  • the reflection unit 425 according to the present embodiment is set so that the reflectance is larger than the reflectance of the living body 500 that is the measurement target.
  • the reflectance when light is applied to human skin differs depending on the wavelength of light. For example, when light having a wavelength of 650 nm to 900 nm is used, the reflectance is about 50% to 70%. Therefore, a mirror having a reflectance exceeding 90%, white plastic, or the like may be used for the reflecting portion 425 here. As will be described in detail later, the reflectance of the reflecting portion 425 may be set to a value lower than the reflectance of the measurement target.
  • the biological fingertip 510 to be measured when the biological fingertip 510 to be measured is sandwiched between the clip unit 400, the light from the light emitting unit 110 included in the detection element 250 is transmitted to the reflection unit 425. Not irradiated. That is, light emitted from the light emitting unit 110 is shielded by the fingertip 510 of the living body and is not irradiated to the reflecting unit 425.
  • the detection element 250 and the reflection portion 425 are opposed to each other with nothing interposed therebetween. Therefore, the light emitted from the light emitting unit 110 is emitted to the reflecting unit 425, and the light reflected by the reflecting unit 425 is received by the light receiving unit 120.
  • the measurement determination operation described later is executed by determining whether the light received by the light receiving unit 120 is the return light from the measurement target or the return light from the reflection unit 425 as described above.
  • FIG. 7 is a flowchart showing a series of processes of the information measuring instrument according to the first embodiment.
  • step S101 laser light is emitted from the light emitting unit 110 (step S101).
  • the light emitted from the light emitting unit 110 is reflected by the measurement target when the measurement target exists, and as shown in FIG. 6, the reflection unit 425 when the measurement target does not exist. Is reflected by.
  • the return light is received by the light receiving unit 120, and a light reception signal based on the amount of received light is generated (step S102).
  • the light reception signal generated by the light receiving unit 120 is amplified by the amplifier 130 and digitally converted by the A / D converter 140 (step S103).
  • the light reception signal is a signal indicating the magnitude of the amount of light received by the light receiving unit 120 as a digital value.
  • the living body detection determination unit 160 determines whether the signal intensity of the light reception signal is smaller than a predetermined threshold A (step S104).
  • the “threshold A” is set based on the reflectance of the living body 500 that is the measurement target and the reflectance of the reflection unit 425, and the return light from the living body 500 that is the measurement target is determined from the signal intensity. It is used to determine whether the object is from the reflection unit 425 or not.
  • step S104 when the signal intensity is smaller than the threshold value A (step S104: YES), it is determined that the received return light is from the living body 500, and the living body information calculation unit 150 calculates the living body information from the received light signal. (Step S105).
  • the calculated biological information is output to the outside of the apparatus (step S106) and displayed on, for example, a display.
  • step S104 NO
  • the received return light is from the reflection unit 425 (that is, the return light from the living body 500 is not received).
  • the measurement error alarm information is output from the living body detection determination unit 160 (step S107). That is, since the light stronger than the return light from the living body 500 is received, the return light from the living body 500 to be measured is not obtained, and the return light from the reflecting portion 425 is obtained. It is determined.
  • the measurement error alarm information When the measurement error alarm information is output, a warning indicating the measurement error is executed. Therefore, when the apparatus is removed from the measurement target for some reason, it is possible to notify the user to that effect. In addition, when it determines with it being a measurement error, biometric information is not calculated from a received light signal.
  • step S108 YES
  • step S108: NO the processes after step S102 are repeatedly executed.
  • the second embodiment differs from the first embodiment described above only in part of the configuration and operation, and is substantially the same in many other parts. For this reason, below, a different part from the already described 1st Example is demonstrated in detail, and description is abbreviate
  • FIG. 8 is a block diagram showing the overall configuration of the information measuring instrument according to the second embodiment.
  • the information measuring device 100b according to the second embodiment is configured to include an apparatus failure determination unit 170 in addition to the members included in the information measuring device 100 according to the first embodiment.
  • the device failure determination unit 170 is a specific example of the “determination unit”, and determines whether or not a failure has occurred in the light emitting unit 110 and the light receiving unit 120 based on a signal input from the A / D converter 140. To do. When the device failure determination unit 170 determines that no failure has occurred in the light emitting unit 110 and the light receiving unit 120, the device failure determination unit 170 instructs the biological information calculation unit 150 to perform calculation of biological information. On the other hand, if the device failure determination unit 170 determines that a failure has occurred in the light emitting unit 110 and the light receiving unit 120, the device failure determination unit 170 outputs measuring instrument failure information.
  • the configuration of the probe unit 200 in the information measuring instrument 100b according to the second embodiment is the same as that of the first embodiment shown in FIGS.
  • FIG. 9 is a flowchart showing a series of processes of the information measuring instrument according to the second embodiment.
  • step S201 when the information measuring device 100b according to the second embodiment is in operation, first, laser light is emitted from the light emitting unit 110 (step S201). As shown in FIG. 5, the light emitted from the light emitting unit 110 is reflected by the measurement target when the measurement target exists, and as shown in FIG. 6, the reflection unit 425 when the measurement target does not exist. Is reflected by. Then, the return light is received by the light receiving unit 120, and a light reception signal based on the amount of received light is generated (step S202).
  • the light reception signal generated by the light receiving unit 120 is amplified by the amplifier 130 and digitally converted by the A / D converter 140 (step S203).
  • the light reception signal is a signal indicating the magnitude of the amount of light received by the light receiving unit 120 as a digital value.
  • the living body detection determination unit 160 determines whether or not the signal intensity of the light reception signal is smaller than the predetermined threshold A and larger than the predetermined threshold B (step S204).
  • the “threshold A” here is set based on the reflectance of the living body 500 to be measured and the reflectance of the reflecting portion 425 as in the first embodiment, and the return light is determined from the signal intensity. It is used to determine whether the measurement object is from the living body 500 or the reflection unit 425.
  • the “threshold value B” is set based on the reflectance of the living body 500 to be measured and the amount of light received that is estimated to be received when the device fails, and determines the failure of the device from the signal intensity. Used for.
  • step S204 when the signal intensity is smaller than the threshold value A and larger than the threshold value B (step S204: YES), it is determined that the received return light is from the living body 500, and the living body information calculation unit 150 determines the living body from the received light signal. Information is calculated (step S205). The calculated biological information is output to the outside of the apparatus (step S206) and displayed on, for example, a display.
  • step S204 determines whether or not the signal strength is greater than or equal to the threshold value A (step S207). That is, it is determined whether the signal intensity is greater than or equal to threshold A or less than or equal to threshold B.
  • step S207 YES
  • the received return light is from the reflection unit 425 (that is, the return light from the living body 500 cannot be received).
  • the measurement error alarm information is output from the living body detection determination unit 160 (step S208). That is, since the light stronger than the return light from the living body 500 is received, the return light from the living body 500 to be measured is not obtained, and the return light from the reflecting portion 425 is obtained. It is determined.
  • the measurement error alarm information When the measurement error alarm information is output, a warning indicating the measurement error is executed. Therefore, when the apparatus is removed from the measurement target for some reason, it is possible to notify the user to that effect. In addition, when it determines with it being a measurement error, biometric information is not calculated from a received light signal.
  • step S207: NO when it is determined that the signal intensity is equal to or less than the threshold value B (step S207: NO), it is determined that either the light emitting unit 110 or the light receiving unit 120 has failed. Specifically, the amount of light received by the light receiving unit 120 is not a value corresponding to the return light from the living body 500 to be measured, and is not a value corresponding to the return light from the reflection unit 425. Therefore, it is determined that the irradiation amount has decreased or the light receiving sensitivity has decreased due to the failure of the light receiving unit 120. As described above, when it is determined that the device has failed, the failure information is output from the device failure determination unit 170 (step S209). Note that even when it is determined that the device is out of order, biometric information is not calculated from the received light signal, as in the case of a measurement error.
  • step S210: YES If it is determined that all the measurements have not been completed (step S210: NO), the processes after step S202 are repeatedly executed.
  • the information measuring instrument 100b in addition to whether or not the apparatus is normally attached to the measurement target, it is possible to determine a failure of the apparatus. Therefore, it is possible to prevent the inappropriate measurement from being performed more reliably.
  • the above-described failure determination process can be realized without changing the physical configuration of the probe unit 200 or the like (that is, with the same configuration as in the first embodiment). Therefore, it is possible to prevent complication of the device configuration and increase in cost.
  • the third embodiment differs from the second embodiment described above only in part of the configuration and operation, and is substantially the same for many other parts. Therefore, in the following, portions different from the second embodiment already described will be described in detail, and description of overlapping portions will be omitted as appropriate.
  • FIG. 10 is a partially enlarged view showing the configuration of the information measuring instrument according to the third embodiment.
  • the reflectance of the reflecting portion 425b is set to be lower than the reflectance of the living body 500 that is the measurement target.
  • the reflection part 425b includes a silicon material or the like having a reflectance of 30% or less, for example.
  • the information measuring instrument 100c includes the transmitted light adjusting plate 600 on the surface portion of the detection element 250 (that is, between the light emitting unit 110 and the light receiving unit 120 and the position where the measurement target is to be disposed). It has been.
  • the transmitted light adjusting plate 600 is configured to transmit a part of the light emitted from the light emitting unit 110 and reflect the other part. Thereby, a part of the irradiated light is transmitted to the living body 500 and the reflector 425 that are the measurement target, and the other part is directly reflected to the light receiving unit 120 side.
  • the transmitted light adjusting plate 600 is configured as an acrylic plate, for example.
  • the reflectance is about 7% when it is transparent, but the reflectance can be adjusted by coloring.
  • the reflectance of the transmitted light adjusting plate 600 is a value that realizes a received light amount that can determine whether or not a device has failed even when the received light amount of reflected light from the reflecting portion 425b is small.
  • FIG. 11 is a flowchart showing a series of processes of the information measuring instrument according to the third embodiment.
  • step S301 when the information measuring instrument 100c according to the third embodiment is in operation, first, laser light is emitted from the light emitting unit 110 (step S301). As shown in FIG. 5, the light emitted from the light emitting unit 110 is reflected by the measurement target when the measurement target exists, and as shown in FIG. 6, when the measurement target does not exist, the reflection unit 425b. Is reflected by. The return light is received by the light receiving unit 120, and a light reception signal based on the amount of received light is generated (step S302).
  • the light reception signal generated by the light receiving unit 120 is amplified by the amplifier 130 and digitally converted by the A / D converter 140 (step S303).
  • the light reception signal is a signal indicating the magnitude of the amount of light received by the light receiving unit 120 as a digital value.
  • the living body detection determination unit 160 determines whether the signal intensity of the light reception signal is greater than a predetermined threshold C (step S304).
  • the “threshold value C” is set based on the reflectance of the living body 500 that is the measurement target and the reflectance of the reflection unit 425b, and the return light from the living body 500 that is the measurement target is determined from the signal intensity. It is used to determine whether the object is from the reflection unit 425b.
  • step S304 When the signal intensity is greater than the threshold C (step S304: YES), it is determined that the received return light is from the living body 500, and the biological information calculation unit 150 calculates the biological information from the received light signal (step S305). ). The calculated biological information is output to the outside of the apparatus (step S306) and displayed on, for example, a display.
  • step S304 when the signal strength is equal to or lower than the threshold value C (step S304: NO), it is further determined whether or not the signal strength is larger than the threshold value D (step S307). That is, it is determined whether the signal intensity is a value within the range from the threshold value C to the threshold value D or less than the threshold value D.
  • the “threshold D” here is set based on the reflectance of the living body 500 to be measured and the amount of light received that is estimated to be received when the device malfunctions. Used to discriminate.
  • step S307 If it is determined that the signal intensity is greater than the threshold value D (step S307: YES), the received return light is from the reflection unit 425b (that is, the return light from the living body 500 is not received).
  • Measurement error alarm information is output from the living body detection determination unit 160 (step S308). That is, light that is weaker than the return light from the living body 500 is received, but stronger light is received than in the case of a failure, and thus return light from the living body 500 to be measured is not obtained. First, it is determined that the return light from the reflection unit 425 is obtained.
  • the measurement error alarm information When the measurement error alarm information is output, a warning indicating the measurement error is executed. Therefore, when the apparatus is removed from the measurement target for some reason, it is possible to notify the user to that effect. In addition, when it determines with it being a measurement error, biometric information is not calculated from a received light signal.
  • step S307 when it is determined that the signal intensity is equal to or less than the threshold value D (step S307: NO), it is determined that either the light emitting unit 110 or the light receiving unit 120 is out of order. Specifically, the amount of light received by the light receiving unit 120 is not a value corresponding to the return light from the living body 500 to be measured, and is not a value corresponding to the return light from the reflection unit 425. Therefore, it is determined that the irradiation amount has decreased or the light receiving sensitivity has decreased due to the failure of the light receiving unit 120. As described above, when it is determined that the device has failed, the failure information is output from the device failure determination unit 170 (step S309). Note that even when it is determined that the device is out of order, biometric information is not calculated from the received light signal, as in the case of a measurement error.
  • step S310: YES If it is determined that all the measurements have not been completed (step S310: NO), the processes after step S202 are repeatedly executed.
  • the information measuring instrument 100c in the same way as in the second embodiment, in addition to whether or not the apparatus is normally attached to the measurement target, it is determined whether or not the apparatus has failed. it can.
  • the third embodiment in particular, since the reflectance of the reflecting portion 425b is set lower than that of the living body 500, whether the amount of received light is small due to reflection by the reflecting portion 425b when the amount of received light is relatively small. Alternatively, it is difficult to determine whether the size is reduced due to a failure.
  • the transmitted light adjustment plate 600 since the transmitted light adjustment plate 600 is provided, a part of the light emitted from the light emitting unit 110 is directed directly to the light receiving unit 120. Therefore, the light receiving unit 120 can expect a received light amount that is greater than a certain level. Therefore, even when the return light from the reflecting portion 425b is weak, it is possible to detect a failure of the apparatus suitably.
  • the present invention is not limited to the above-described embodiments, and can be appropriately changed without departing from the spirit or idea of the invention that can be read from the claims and the entire specification, and an information detector with such a change.
  • an information measuring instrument and an information detection method are also included in the technical scope of the present invention.
  • DESCRIPTION OF SYMBOLS 100 Information measuring instrument 110 Light-emitting part 120 Light-receiving part 130 Amplifier 140 A / D converter 150 Biometric information calculating part 160 Biological detection judgment part 170 Device failure judgment part 200 Probe part 250 Detection element 300 Connection cable 310 Connection terminal 400 Clip part 410 1st Clip member 420 Second clip member 425 Reflecting portion 430 Clip connecting portion 440 Cable clamp 500 Living body 510 Fingertip 600 Transmitted light adjusting plate

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Cardiology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Optics & Photonics (AREA)
  • Physiology (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

An information detector (100) comprises: an illumination means (110) which emits light; a reflection means (425) which has a reflectance that is different from an object to be measured (500); a light receiving means (120) which receives return light of light emitted from a light emission part; and a determination means (160) which determines, on the basis of an amount of light received by the light receiving means, whether the return light is return light from the object to be measured or return light from the reflection means. According to the present invention, a favorable measurement of biometric information can be realized by being capable of determining, for example, whether or not a device is properly attached to the object to be measured.

Description

情報検出器及び情報計測器、並びに情報検出方法Information detector, information measuring instrument, and information detecting method
 本発明は、例えば光を計測対象に照射することで、計測対象に関する各種情報を検出する情報検出器及び情報計測器、並びに情報検出方法の技術分野に関する。 The present invention relates to a technical field of an information detector, an information measuring device, and an information detecting method for detecting various kinds of information related to the measuring object by irradiating the measuring object with light, for example.
 この種の装置として、例えば生体に対して光を照射すると共に、生体で反射又は透過された光を検出することで、血流や脈波等の生体に関する情報を取得する装置が知られている。このような装置は、例えば生体の指や耳等に装着されて使用されるが、装着態様によっては計測対象から外れてしまうこともあり得る。このため特許文献1では、タッチセンサを利用して、生体が計測部に触れているか否かを判別する装置が提案されている。 As this type of device, for example, there is known a device that obtains information about a living body such as blood flow and pulse wave by irradiating the living body with light and detecting light reflected or transmitted by the living body. . Such an apparatus is used by being mounted on, for example, a finger or ear of a living body, but may be removed from the measurement target depending on the mounting mode. For this reason, Patent Document 1 proposes an apparatus that uses a touch sensor to determine whether or not a living body is touching a measurement unit.
 また上述した装置では、例えば光を照射する発光部、或いは光を受光する受光部等に故障等の異常が発生した場合には、正確な計測が行えなくなる。このため、例えば特許文献2では、受光した光の量によって発光素子の劣化具合を調べる手段を有する装置が提案されている。 In the above-described apparatus, for example, when an abnormality such as a failure occurs in a light emitting unit that emits light or a light receiving unit that receives light, accurate measurement cannot be performed. For this reason, for example, Patent Document 2 proposes an apparatus having means for examining the deterioration of a light emitting element based on the amount of received light.
特開2009-183289号公報JP 2009-183289 A 特開2004-298619号公報JP 2004-298619A
 しかしながら、上述した特許文献1に記載されているような装置では、タッチセンサを別途備える必要があるため、装置の構成が複雑化すると共にコストも増大してしまう。また、特許文献2に記載されているような装置においても、発光素子の劣化具合を調べる手段を別途備える必要があるため、同様に装置の構成が複雑化すると共にコストが増大してしまう。 However, in the device described in Patent Document 1 described above, since it is necessary to separately include a touch sensor, the configuration of the device becomes complicated and the cost increases. In addition, in the apparatus as described in Patent Document 2, since it is necessary to separately include a means for checking the deterioration degree of the light emitting element, the structure of the apparatus is similarly complicated and the cost is increased.
 本発明が解決しようとする課題には上記のようなものが一例として挙げられる。本発明は、比較的簡単な構成で、計測対象に対して正常に装置が取付けられているか否かを判別可能な情報検出器及び情報計測器、並びに情報検出方法を提供することを課題とする。 Examples of problems to be solved by the present invention include the above. An object of the present invention is to provide an information detector, an information measuring device, and an information detection method capable of determining whether or not a device is normally attached to a measurement target with a relatively simple configuration. .
 上記課題を解決するための情報検出器は、光を照射する照射手段と、計測対象とは異なる反射率を有する反射手段と、前記発光部から照射された光の戻り光を受光する受光手段と、前記受光手段における受光量に基づき、前記戻り光が、前記計測対象からの戻り光であるのか、又は前記反射手段からの戻り光であるのかを判別する判別手段とを備える。 An information detector for solving the above problems includes an irradiating means for irradiating light, a reflecting means having a reflectance different from that of a measurement object, and a light receiving means for receiving a return light of the light emitted from the light emitting unit. And determining means for determining whether the return light is the return light from the measurement object or the return light from the reflection means based on the amount of light received by the light receiving means.
 上記課題を解決するための情報計測器は、上述した情報検出器(但し、その各種態様を含む)と、前記判別手段における判別結果に基づいて、前記情報検出器の異常を検出する異常検出手段と、前記異常が検出された場合に、前記異常が検出されたことを知らせる警告又は前記情報検出器による計測の停止の少なくとも一方を実行する警告停止手段とを備える。 An information measuring instrument for solving the above-mentioned problems is an abnormality detector that detects an abnormality of the information detector based on the above-described information detector (including various aspects thereof) and the discrimination result in the discrimination means. And a warning stop means for executing at least one of a warning notifying that the abnormality has been detected and a stop of measurement by the information detector when the abnormality is detected.
 上記課題を解決するための情報検出方法は、光を照射する照射手段と、計測対象とは異なる反射率を有する反射手段と、前記発光部から照射された光の戻り光を受光する受光手段とを備える情報検出器における情報検出方法であって、前記受光手段における受光量に基づき、前記戻り光が、前記計測対象からの戻り光であるのか、又は前記反射手段からの戻り光であるのかを判別する判別工程を備える。 An information detection method for solving the above-described problems includes an irradiating unit that irradiates light, a reflecting unit that has a reflectance different from that of the measurement target, and a light receiving unit that receives return light of the light emitted from the light emitting unit. An information detection method in an information detector comprising: whether the return light is return light from the measurement object or return light from the reflection means based on the amount of light received by the light receiving means. A determination step for determining is provided.
第1実施例に係る情報計測器の全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the information measuring device which concerns on 1st Example. プローブ部の構成を示す斜視図である。It is a perspective view which shows the structure of a probe part. クリップ部を装着したプローブ部の構成を示す斜視図(その1)である。It is a perspective view (the 1) which shows the structure of the probe part equipped with the clip part. クリップ部を装着したプローブ部の構成を示す斜視図(その2)である。It is a perspective view (the 2) which shows the structure of the probe part equipped with the clip part. 生体計測時の情報計測器を示す側面図である。It is a side view which shows the information measuring device at the time of biological measurement. 生体非計測時の情報計測器を示す側面図である。It is a side view which shows the information measuring device at the time of living body non-measurement. 第1実施例に係る情報計測器の一連の処理を示すフローチャートである。It is a flowchart which shows a series of processes of the information measuring device which concerns on 1st Example. 第2実施例に係る情報計測器の全体構成を示すブロック図である。It is a block diagram which shows the whole structure of the information measuring device which concerns on 2nd Example. 第2実施例に係る情報計測器の一連の処理を示すフローチャートである。It is a flowchart which shows a series of processes of the information measuring device which concerns on 2nd Example. 第3実施例に係る情報計測器の構成を示す部分拡大図である。It is the elements on larger scale which show the structure of the information measuring device which concerns on 3rd Example. 第3実施例に係る情報計測器の一連の処理を示すフローチャートである。It is a flowchart which shows a series of processes of the information measuring device which concerns on 3rd Example.
 本実施形態に係る情報検出器は、光を照射する照射手段と、計測対象とは異なる反射率を有する反射手段と、前記発光部から照射された光の戻り光を受光する受光手段と、前記受光手段における受光量に基づき、前記戻り光が、前記計測対象からの戻り光であるのか、又は前記反射手段からの戻り光であるのかを判別する判別手段とを備える。 The information detector according to the present embodiment includes an irradiating unit that irradiates light, a reflecting unit that has a reflectance different from that of the measurement target, a light receiving unit that receives return light of the light emitted from the light emitting unit, and And a discriminating unit that discriminates whether the return light is the return light from the measurement object or the return light from the reflection unit based on the amount of light received by the light receiving unit.
 本実施形態の情報検出器によれば、その動作時には、例えば発光ダイオードとして構成される発光手段から計測対象に対して光が照射されると共に、例えばフォトダイオード等として構成される受光手段により計測対象からの戻り光が受光される。受光手段で受光された戻り光は、計測対象に関する情報を示す信号として処理され、例えば計測対象である生体の血流速度や脈波等が検出される。 According to the information detector of the present embodiment, during the operation, the measurement target is irradiated with light from the light emitting means configured as, for example, a light emitting diode, and is measured by the light receiving means configured as, for example, a photodiode. Return light from is received. The return light received by the light receiving means is processed as a signal indicating information relating to the measurement target, and for example, the blood flow velocity or pulse wave of the living body that is the measurement target is detected.
 ここで、上述した計測動作は、受光手段及び発光手段の位置が、計測対象に対して適切な位置とされた状態で実行される。例えば情報検出器は、計測対象である生体の一部に装着された状態で使用される。より具体的には、例えば情報検出器はクリップ部材を備えて構成され、クリップ部材で生体の一部を挟持した状態で計測を行う。 Here, the measurement operation described above is executed in a state where the positions of the light receiving means and the light emitting means are set to appropriate positions with respect to the measurement target. For example, the information detector is used in a state where it is attached to a part of a living body to be measured. More specifically, for example, the information detector includes a clip member, and performs measurement in a state where a part of the living body is sandwiched between the clip members.
 しかしながら、情報検出器は、その装着態様によっては計測中に計測対象から外れてしまうことがある。この場合、発光手段からの光が計測対象に照射されなくなってしまう、或いは受光手段が計測対象からの戻り光を受光できなくなってしまうため、正確な計測が実行できなくなる。このため本実施形態に係る情報検出器は、上述した計測動作と並行して又は独立して、装置が正常に計測対象の計測を実行できているか否かを判定する計測判定動作を実行可能とされている。 However, the information detector may be removed from the measurement target during measurement depending on the mounting mode. In this case, since the light from the light emitting unit is not irradiated to the measurement target, or the light receiving unit cannot receive the return light from the measurement target, accurate measurement cannot be performed. For this reason, the information detector according to the present embodiment can execute a measurement determination operation for determining whether or not the apparatus can normally perform measurement of the measurement target in parallel or independently of the measurement operation described above. Has been.
 計測判定動作を実行するため、本実施形態に係る情報検出器は、計測対象とは異なる反射率を有する反射手段を備えている。なお、本実施形態における「反射」とは、光の一方向への跳ね返りを指すのみではなく、光が様々な方向に進路を変える「散乱」を含む広い概念である。よって、本実施形態における「反射手段」は、「散乱手段」と言い換えることもできる。また、本実施形態における「戻り光」は、「反射光」だけでなく「散乱光」を含んでいてもよい。 In order to execute the measurement determination operation, the information detector according to the present embodiment includes a reflection unit having a reflectance different from that of the measurement target. Note that “reflection” in the present embodiment is not only a reflection of light in one direction but also a broad concept including “scattering” in which the light travels in various directions. Therefore, the “reflecting means” in the present embodiment can be rephrased as “scattering means”. The “return light” in the present embodiment may include not only “reflected light” but also “scattered light”.
 反射手段は、計測対象より小さい反射率を有する部材で構成されてもよいし、計測対象より大きい反射率を有する部材で構成されてもよい。反射手段は、発光手段により光を照射可能な位置且つ受光手段に戻り光を受光させることが可能な位置に配置されている。また反射手段は、正常な位置に配置された計測対象によって、発光手段及び受光手段から隔離されるような位置に配置されることが好ましい。 The reflection means may be configured with a member having a smaller reflectance than the measurement target, or may be configured with a member having a higher reflectance than the measurement target. The reflecting means is disposed at a position where the light emitting means can irradiate light and a position where the light receiving means can receive the return light. Moreover, it is preferable that the reflecting means is arranged at a position that is isolated from the light emitting means and the light receiving means by a measurement object arranged at a normal position.
 上述した構成によれば、例えば発光手段からの光が、計測対象ではなく反射手段において反射され、その戻り光が受光手段に受光された場合には、反射手段の反射率が計測対象と異なるが故に、計測対象を計測している場合とは異なる計測結果が得られる。即ち、反射手段の反射率が計測対象より大きい場合には、比較的大きい値として受光量が計測され、反射手段の反射率が計測対象より小さい場合には、比較的小さい値として受光量が計測される。これを利用して、判別手段では、受光手段における受光量に基づいて、受光された戻り光が計測対象からの戻り光であるのか、或いは反射手段からの戻り光であるのかが判別される。具体的には、受光量が計測対象の反射率に対応する範囲内の値である場合には、計測対象からの戻り光を受光していると判別され、受光量が反射手段の反射率に対応する範囲内の値である場合には、計測対象からの戻り光を受光していないと判別される。 According to the configuration described above, for example, when the light from the light emitting unit is reflected by the reflecting unit, not the measurement target, and the return light is received by the light receiving unit, the reflectance of the reflecting unit is different from the measurement target. Therefore, a measurement result different from the case where the measurement object is measured is obtained. That is, when the reflectance of the reflecting means is larger than the measurement target, the received light amount is measured as a relatively large value, and when the reflectance of the reflecting means is smaller than the measurement target, the received light amount is measured as a relatively small value. Is done. Using this, the determination means determines whether the received return light is the return light from the measurement object or the return light from the reflection means based on the amount of light received by the light reception means. Specifically, when the amount of received light is a value within the range corresponding to the reflectance of the measurement target, it is determined that the return light from the measurement target is received, and the amount of received light is the reflectance of the reflecting means. When the value is within the corresponding range, it is determined that the return light from the measurement target is not received.
 以上の結果、本実施形態に係る情報検出器によれば、装置が正常に計測対象を計測しているのか否かを好適に判定できる。従って、例えば装置が計測対象から外れた状態で不適切な計測が実行され続けることを回避でき、計測対象に関する情報をより好適に計測できる。 As a result of the above, according to the information detector according to the present embodiment, it can be suitably determined whether or not the apparatus is measuring the measurement target normally. Therefore, for example, it is possible to avoid that inappropriate measurement is continuously performed in a state where the apparatus is removed from the measurement target, and it is possible to more appropriately measure information related to the measurement target.
 本実施形態に係る情報検出器の一態様では、前記反射手段は、前記計測対象が配置されるべき位置に存在する場合には前記発光部からの光が照射されず、前記計測対象が前記配置されるべき位置に存在しない場合には前記発光部からの光が照射される位置に配置されている。 In one aspect of the information detector according to the present embodiment, the reflection means is not irradiated with light from the light emitting unit when the measurement target is located at a position where the measurement target is to be arranged, and the measurement target is the arrangement. When it does not exist at the position where it should be, it is arranged at a position where the light from the light emitting unit is irradiated.
 この態様によれば、計測対象が配置されるべき位置に存在する場合(即ち、計測対象に関する情報を計測するのに適切な位置に配置されている場合)には、反射手段には発光部からの光が照射されない。よって、この場合には、受光手段で受光される戻り光に反射手段からの戻り光は含まれない。一方で、計測対象が配置されるべき位置に存在しない場合(即ち、計測対象に関する情報を計測するのに適切な位置に配置されていない場合)には、反射手段に発光部からの光が照射される。よって、この場合には、受光手段で受光される戻り光は反射手段からの戻り光となる。 According to this aspect, when the measurement target is present at the position where the measurement target is to be placed (that is, when the measurement target is placed at an appropriate position for measuring the information related to the measurement target), the reflecting means is provided from the light emitting unit. Is not irradiated. Therefore, in this case, the return light received by the light receiving means does not include the return light from the reflecting means. On the other hand, when the measurement target does not exist at the position where the measurement target should be placed (that is, when the measurement target is not placed at an appropriate position for measuring the information about the measurement target), the light from the light emitting unit is irradiated on the reflecting means. Is done. Therefore, in this case, the return light received by the light receiving means becomes the return light from the reflecting means.
 上述したように反射手段を配置すれば、計測対象を正常に計測できていない場合にのみ、反射手段からの戻り光が受光される。よって、装置が正常に計測対象を計測しているのか否かを、より好適に判定できる。 If the reflecting means is arranged as described above, the return light from the reflecting means is received only when the measurement target cannot be measured normally. Therefore, it can be more suitably determined whether or not the apparatus is measuring the measurement target normally.
 本実施形態に係る情報検出器の他の態様では、前記判別手段は、前記受光手段における受光量に基づき、前記照射手段の照射状態又は前記受光手段の受光状態の少なくとも一方を更に判別する。 In another aspect of the information detector according to the present embodiment, the determination unit further determines at least one of an irradiation state of the irradiation unit and a light reception state of the light reception unit based on the amount of light received by the light reception unit.
 上述した照射手段や受光手段には、その照射状態及び受光状態について故障等による異常が発生することがある。照射手段や受光手段に異常が発生してしまうと、光の照射或いは受光が正確に行えないため、計測対象に関する情報を正確に検出できなくなってしまう。このため本態様に係る情報検出器は、上述した計測判定動作に加えて、装置の異常を検出するための異常検出動作を実行可能とされている。 In the irradiation means and the light receiving means described above, abnormalities due to failure or the like may occur in the irradiation state and the light receiving state. If an abnormality occurs in the irradiating means or the light receiving means, it is impossible to accurately irradiate or receive light, so that information relating to the measurement target cannot be detected accurately. For this reason, in addition to the measurement determination operation described above, the information detector according to this aspect can execute an abnormality detection operation for detecting an abnormality of the apparatus.
 ここで、照射手段の照射状態異常としては、例えば故障により照射する光の量が極端に低下してしまう場合が挙げられる。また、受光手段の受光状態異常としては、例えば故障により受光感度が極端に低下してしまう場合が挙げられる。このように、照射手段又は受光手段に異常が発生すると、受光手段において検出される受光量が通常時と比べて大きく低下することが分かる。なお、異常の種類によっては、受光量が通常時と比べて大きく上昇することもあり得る。 Here, as the irradiation state abnormality of the irradiation means, for example, there is a case where the amount of light irradiated due to a failure is extremely reduced. Further, as the light receiving state abnormality of the light receiving means, for example, a case where the light receiving sensitivity is extremely lowered due to a failure. Thus, it can be seen that when an abnormality occurs in the irradiating means or the light receiving means, the amount of received light detected by the light receiving means is greatly reduced compared to the normal time. Note that, depending on the type of abnormality, the amount of received light may increase significantly compared to normal times.
 これを利用して、判別手段では、受光手段における受光量が、計測対象からの戻り光に対応する範囲内の値でもなく、反射手段からの戻り光に対応する範囲内の値でもない場合に、装置に異常が発生していると判断される。よって、好適に装置に異常が発生していることを検出することができる。なお、本態様に係る異常検出動作は、反射手段への光の照射及び反射光の受光によって実現されるため、上述した計測判定動作と並行して実行することも可能である。 By using this, the determination unit is configured such that the amount of light received by the light receiving unit is not a value within the range corresponding to the return light from the measurement target and is not a value within the range corresponding to the return light from the reflection unit. It is determined that an abnormality has occurred in the device. Therefore, it is possible to detect that an abnormality has occurred in the apparatus. Note that the abnormality detection operation according to this aspect is realized by irradiating the reflection means with light and receiving the reflected light, and thus can be performed in parallel with the above-described measurement determination operation.
 上述した照射手段の照射状態又は受光手段の受光状態の少なくとも一方を判別する態様では、前記発光部から照射された光の一部を前記計測対象及び前記反射手段側へ透過すると共に、他の一部を前記受光手段に反射する透過反射手段を更に備えてもよい。 In the aspect of determining at least one of the irradiation state of the irradiation unit or the light reception state of the light receiving unit described above, a part of the light irradiated from the light emitting unit is transmitted to the measurement target and the reflection unit side, and the other one is transmitted. A transmissive reflecting means for reflecting the part to the light receiving means may be further provided.
 この場合、照射手段及び受光手段と、反射手段との間に、照射された光の一部を透過し、他の一部を反射する透過反射手段が配置される。このため、照射手段から照射された光は、全て反射手段側へ向かうのではなく、透過反射手段を透過した一部の光のみが反射手段側へと向かう。一方で、透過反射手段で反射された他の一部は、反射手段側へ向かうことなく、直接受光手段へと向かう。 In this case, a transmission / reflection unit that transmits part of the irradiated light and reflects the other part is disposed between the irradiation unit, the light receiving unit, and the reflection unit. For this reason, all the light irradiated from the irradiation means does not go to the reflection means side, but only a part of the light transmitted through the transmission reflection means goes to the reflection means side. On the other hand, the other part reflected by the transmissive reflecting means goes directly to the light receiving means without going to the reflecting means side.
 上述した構成によれば、異常検出動作を実行する際に、反射手段が比較的反射率の低いものとして構成されている場合であっても、好適に異常を検出できる。具体的には、仮に反射手段の反射率が計測対象より低いものとして構成されているとすると、受光手段における受光量が小さい場合に、反射手段による反射で小さくなっているのか、或いは異常により小さくなっているのかを判別するのが困難である。 According to the above-described configuration, when performing the abnormality detection operation, it is possible to suitably detect an abnormality even when the reflecting means is configured with a relatively low reflectance. Specifically, assuming that the reflectance of the reflecting means is lower than that of the object to be measured, if the amount of light received by the light receiving means is small, it is reduced due to reflection by the reflecting means or abnormally small. It is difficult to determine whether it is.
 しかるに本態様では、透過反射手段により、照射手段から照射された一部の光が直接受光手段に向かうため、受光手段では一定以上の受光量が見込める。よって、反射手段からの戻り光が弱い場合であっても、好適に装置の異常を検出することができる。 However, in this embodiment, since a part of the light emitted from the irradiating means is directed directly to the light receiving means by the transmission / reflecting means, the light receiving means can expect a certain amount of received light. Therefore, even when the return light from the reflecting means is weak, it is possible to detect an abnormality of the apparatus suitably.
 本実施形態に係る情報検出器の他の態様では、前記発光部は、レーザ光源である。 In another aspect of the information detector according to the present embodiment, the light emitting unit is a laser light source.
 この態様によれば、指向性や収束性、及び制御性に優れたレーザ光源を利用することで、より好適に計測判定動作及び異常検出動作を実行できる。 According to this aspect, the measurement determination operation and the abnormality detection operation can be more suitably executed by using the laser light source excellent in directivity, convergence, and controllability.
 本実施形態に係る情報計測器は、上述した情報検出器(但し、その各種態様を含む)と、前記判別手段における判別結果に基づいて、前記情報検出器の異常を検出する異常検出手段と、前記異常が検出された場合に、前記異常が検出されたことを知らせる警告又は前記情報検出器による計測の停止の少なくとも一方を実行する警告停止手段とを備える。 The information measuring instrument according to the present embodiment includes the above-described information detector (including various aspects thereof), an abnormality detection unit that detects an abnormality of the information detector based on a determination result in the determination unit, And a warning stop means for executing at least one of a warning notifying that the abnormality is detected and a stop of measurement by the information detector when the abnormality is detected.
 本実施形態の情報計測器によれば、上述した計測判定手段によって装置が計測対象を正常に計測していない場合、又は照射手段及び受光手段に異常が発生している場合に、警告又は計測の停止が行われる。よって、異常が発生したまま計測が実行され続けてしまうことを好適に回避することが可能である。 According to the information measuring instrument of this embodiment, when the apparatus does not normally measure the measurement target by the above-described measurement determination unit, or when an abnormality has occurred in the irradiation unit and the light receiving unit, a warning or measurement is performed. A stop is made. Therefore, it is possible to suitably avoid that measurement continues to be performed while an abnormality has occurred.
 本実施形態に係る情報計測方法は、光を照射する照射手段と、計測対象とは異なる反射率を有する反射手段と、前記発光部から照射された光の戻り光を受光する受光手段とを備える情報検出器における情報検出方法であって、前記受光手段における受光量に基づき、前記戻り光が、前記計測対象からの戻り光であるのか、又は前記反射手段からの戻り光であるのかを判別する判別工程を備える。 The information measuring method according to the present embodiment includes an irradiating unit that irradiates light, a reflecting unit that has a reflectance different from that of the measurement target, and a light receiving unit that receives return light of the light emitted from the light emitting unit. An information detection method in an information detector, wherein whether the return light is return light from the measurement object or return light from the reflection means is determined based on the amount of light received by the light receiving means. A discrimination step is provided.
 本実施形態の情報検出方法によれば、上述した本実施形態に係る情報検出器と同様に、装置が正常に計測対象を計測しているのか否かを好適に判定できる。従って、例えば装置が計測対象から外れた状態で不適切な計測が実行され続けることを回避でき、計測対象に関する情報をより好適に計測できる。 According to the information detection method of the present embodiment, it is possible to suitably determine whether or not the apparatus is measuring a measurement target normally, similarly to the information detector according to the present embodiment described above. Therefore, for example, it is possible to avoid that inappropriate measurement is continuously performed in a state where the apparatus is removed from the measurement target, and it is possible to more appropriately measure information related to the measurement target.
 なお、本実施形態に係る情報検出方法においても、上述した本実施形態に係る情報検出器における各種態様と同様の各種態様を採ることが可能である。 In the information detection method according to the present embodiment, it is possible to adopt various aspects similar to the various aspects of the information detector according to the present embodiment described above.
 本実施形態に係る情報検出器及び情報計測器の作用及び他の利得については、以下に示す実施例において、より詳細に説明する。 The operation and other gains of the information detector and the information measuring instrument according to this embodiment will be described in more detail in the following examples.
 以下では、図面を参照して情報検出器及び情報計測器、並びに情報検出方法の実施例について詳細に説明する。 Hereinafter, embodiments of an information detector, an information measuring device, and an information detection method will be described in detail with reference to the drawings.
 <第1実施例>
 第1実施例に係る情報計測器について説明する。なお、以下では、情報検出器を含む情報計測器が生体に関する情報(例えば、血流量や脈波等)を検出する生体情報検出装置として構成される場合を例にとり説明する。
<First embodiment>
An information measuring instrument according to the first embodiment will be described. In the following description, an example in which an information measuring instrument including an information detector is configured as a biological information detection device that detects information related to a living body (for example, blood flow, pulse wave, etc.) will be described.
 <装置構成>
 先ず、本実施例の情報計測器の全体構成について、図1を参照して説明する。ここに図1は、第1実施例に係る情報計測器の全体構成を示すブロック図である。
<Device configuration>
First, the overall configuration of the information measuring instrument of the present embodiment will be described with reference to FIG. FIG. 1 is a block diagram showing the overall configuration of the information measuring instrument according to the first embodiment.
 図1において、本実施例に係る情報計測器100は、発光部110、受光部120、増幅器130、A/Dコンバータ140、生体情報演算部150、及び生体検出判断部160を備えて構成されている。 In FIG. 1, the information measuring instrument 100 according to the present embodiment includes a light emitting unit 110, a light receiving unit 120, an amplifier 130, an A / D converter 140, a biological information calculation unit 150, and a biological detection determination unit 160. Yes.
 発光部110は、「照射手段」の一具体例であり、例えばレーザ光源を含んで構成されている。発光部110は、計測対象である生体500に向けて光を照射可能とされている。 The light emitting unit 110 is a specific example of “irradiation means” and includes, for example, a laser light source. The light emitting unit 110 can irradiate light toward the living body 500 that is a measurement target.
 受光部120は、「受光手段」の一具体例であり、例えばフォトダイオードを含んで構成されている。受光部120は、計測対象である生体500からの戻り光(即ち、発光部110から照射された光のうち、生体500において散乱された光)を受光し、受光量に応じた信号を出力可能とされている。 The light receiving unit 120 is a specific example of “light receiving means” and includes, for example, a photodiode. The light receiving unit 120 can receive the return light from the living body 500 to be measured (that is, the light scattered from the living body 500 out of the light emitted from the light emitting unit 110) and output a signal corresponding to the amount of received light. It is said that.
 増幅器130は、増幅回路を含んで構成されており、受光部120から入力された信号を増幅して、A/Dコンバータ140へと出力可能とされている。 The amplifier 130 is configured to include an amplification circuit, and can amplify the signal input from the light receiving unit 120 and output it to the A / D converter 140.
 A/Dコンバータ140は、増幅器130からアナログ信号として入力される信号を、デジタル信号に変換して出力する。A/Dコンバータ140は、デジタル変換した信号を、生体情報演算部150及び生体検出判断部160に夫々出力可能とされている。 The A / D converter 140 converts the signal input as an analog signal from the amplifier 130 into a digital signal and outputs it. The A / D converter 140 can output the digitally converted signal to the biological information calculation unit 150 and the biological detection determination unit 160, respectively.
 生体情報演算部150は、A/Dコンバータ140から入力される信号に基づいて、計測対象である生体500に関する情報を演算し出力する。生体情報演算部150は、例えば生体500の血流速度や脈波等を演算して出力する。 The biological information calculation unit 150 calculates and outputs information related to the biological object 500 to be measured based on the signal input from the A / D converter 140. The biological information calculation unit 150 calculates and outputs a blood flow velocity, a pulse wave, and the like of the living body 500, for example.
 生体検出判断部160は、「判別手段」の一具体例であり、A/Dコンバータ140から入力される信号に基づいて、受光部120で受光された光が、計測対象である生体500からの戻り光であるか否かを判別する。生体検出判断部160は、受光された光が生体500からの戻り光である場合には、生体情報演算部150に対し生体情報の演算を実行するよう指示を出す。一方で、生体検出判断部160は、受光された光が生体500からの戻り光でない場合には、計測エラーアラーム情報を出力する。 The living body detection determination unit 160 is a specific example of the “determination unit”, and based on the signal input from the A / D converter 140, the light received by the light receiving unit 120 from the living body 500 that is the measurement target. It is determined whether or not the light is returning light. When the received light is a return light from the living body 500, the living body detection determining unit 160 instructs the living body information calculating unit 150 to perform the calculation of the living body information. On the other hand, when the received light is not the return light from the living body 500, the living body detection determining unit 160 outputs measurement error alarm information.
 なお、本実施例に係る情報計測器は、上述した各部材に加えて、「反射手段」の一具体例である反射部を備えるが、ここでは図示を省略している。反射部の構成、及び反射部を利用した判定動作については、後に詳述する。 Note that the information measuring instrument according to the present embodiment includes a reflecting portion which is a specific example of “reflecting means” in addition to the above-described members, but the illustration thereof is omitted here. The configuration of the reflector and the determination operation using the reflector will be described in detail later.
 次に、上述した発光部110及び受光部120を備えるプローブ部200の具体的な構成について、図2を参照して説明する。ここに図2は、実施例に係るプローブ部200の構成を示す斜視図である。 Next, a specific configuration of the probe unit 200 including the light emitting unit 110 and the light receiving unit 120 described above will be described with reference to FIG. FIG. 2 is a perspective view illustrating the configuration of the probe unit 200 according to the embodiment.
 図2において、プローブ部200は、発光部110及び受光部120(図1参照)を含んでなる検出素子250を表面に露出させて備える部材として形成されており、その端部には接続ケーブル300が接続されている。接続ケーブル300におけるプローブ部100と反対側の端部には、接続端子310が設けられている。接続端子310は、生体情報演算部150や生体検出判断部160等を備える不図示の本体部と接続可能とされている。 In FIG. 2, the probe unit 200 is formed as a member including a detection element 250 including a light emitting unit 110 and a light receiving unit 120 (see FIG. 1) exposed on the surface, and a connection cable 300 is provided at an end thereof. Is connected. A connection terminal 310 is provided at the end of the connection cable 300 opposite to the probe unit 100. The connection terminal 310 can be connected to a main body (not shown) including the biological information calculation unit 150, the biological detection determination unit 160, and the like.
 次に、上述したプローブ部200に取付けられるクリップ部400の構成について、図3及び図4を参照して説明する。ここに図3及び図4は夫々、クリップ部400を装着したプローブ部200の構成を示す斜視図である。 Next, the configuration of the clip part 400 attached to the probe part 200 described above will be described with reference to FIGS. 3 and 4 are perspective views showing the configuration of the probe unit 200 with the clip unit 400 attached thereto.
 図3及び図4において、クリップ部400は、第1クリップ部材410と、第2クリップ部材420とが、クリップ接続部430において接続されることで構成されている。第1クリップ部材410及び第2クリップ部材420は、クリップ接続部430を支点として開閉動作が可能とされており、その間に計測対象である生体等を挟持することができる。 3 and 4, the clip portion 400 is configured by connecting a first clip member 410 and a second clip member 420 at a clip connecting portion 430. The first clip member 410 and the second clip member 420 can be opened and closed with the clip connecting portion 430 as a fulcrum, and a living body or the like to be measured can be held between them.
 プローブ部200は、上述したクリップ部400における第1クリップ部材410に挿入される。具体的には、プローブ部200における検出素子250が、第1クリップ部材410の開口部から、第2クリップ部材420側に露出するように配置される(図4参照)。なお、プローブ部200に接続されている接続ケーブル300は、第2クリップ部材420におけるケーブルクランプ440において保持可能とされる。 The probe unit 200 is inserted into the first clip member 410 in the clip unit 400 described above. Specifically, the detection element 250 in the probe unit 200 is disposed so as to be exposed to the second clip member 420 side from the opening of the first clip member 410 (see FIG. 4). The connection cable 300 connected to the probe unit 200 can be held by the cable clamp 440 in the second clip member 420.
 <装着方法>
 次に、本実施例に係る情報計測器の計測対象への装着方法について、図5を参照して説明する。ここに図5は、生体計測時の情報計測器を示す側面図である。
<Installation method>
Next, a method of mounting the information measuring instrument according to the present embodiment on a measurement target will be described with reference to FIG. FIG. 5 is a side view showing the information measuring instrument at the time of biological measurement.
 図5において、本実施例に係る情報計測器100は、例えば生体の指先510に装着して使用される。具体的には、図に示すように、生体の指先510を第1クリップ部材410及び第2クリップ部材420で挟み込むようにする。このようにすれば、第1クリップ部材410に挿入されているプローブ部200の検出素子250が生体の指先510に対向するように配置される。よって、発光部110から計測対象に対して光を照射すると共に、受光部120において計測対象からの戻り光を検出できる。従って、本実施例に係る情報計測器100によれば、計測対象である生体500に関する情報を好適に検出できる。 In FIG. 5, the information measuring instrument 100 according to the present embodiment is used by being worn on a fingertip 510 of a living body, for example. Specifically, as shown in the drawing, the fingertip 510 of the living body is sandwiched between the first clip member 410 and the second clip member 420. In this way, the detection element 250 of the probe unit 200 inserted in the first clip member 410 is arranged so as to face the fingertip 510 of the living body. Therefore, the light emitting unit 110 can irradiate the measurement target with light, and the light receiving unit 120 can detect return light from the measurement target. Therefore, according to the information measuring instrument 100 according to the present embodiment, it is possible to suitably detect information related to the living body 500 that is a measurement target.
 なお、生体情報の検出については、既存の検出方法(例えば、レーザードップラーフローメトリー法等)の各種手法を用いることができるため、ここでの詳細な説明は省略する。ちなみに、本実施例に係る情報計測器100は、生体情報が検知可能な位置であれば、指先510以外の部位(例えば、耳たぶ等)を挟持するように装着されても構わない。 In addition, about the detection of biological information, since various methods of the existing detection method (for example, laser Doppler flowmetry method etc.) can be used, detailed description here is abbreviate | omitted. Incidentally, the information measuring instrument 100 according to the present embodiment may be mounted so as to sandwich a part other than the fingertip 510 (for example, an earlobe) as long as the biological information can be detected.
 <反射部の構成>
 次に、本実施例に係る情報計測器に備えられる反射部の構成について、既出の図5に加えて、図6を参照して説明する。ここに図6は、生体非計測時の情報計測器を示す側面図である。
<Structure of the reflection part>
Next, the configuration of the reflection unit provided in the information measuring instrument according to the present embodiment will be described with reference to FIG. 6 in addition to FIG. FIG. 6 is a side view showing the information measuring instrument when the living body is not measured.
 図5及び図6において、本実施例に係る情報計測器100では、第2クリップ部材430における第1クリップ部材410に対向する面に反射部425が配置されている。反射部425は、「反射手段」の一具体例であり、金属や樹脂等の比較的反射率が高い部材によって構成されている。本実施例に係る反射部425は特に、その反射率が計測対象である生体500の反射率より大きくなるように設定されている。 5 and 6, in the information measuring instrument 100 according to the present embodiment, the reflecting portion 425 is disposed on the surface of the second clip member 430 that faces the first clip member 410. The reflecting portion 425 is a specific example of “reflecting means”, and is configured by a member having a relatively high reflectance such as metal or resin. In particular, the reflection unit 425 according to the present embodiment is set so that the reflectance is larger than the reflectance of the living body 500 that is the measurement target.
 一般的に、光を人肌に照射した場合の反射率は、光の波長によって異なり、例えば650nmから900nmの波長の光を使用する場合には、反射率は50%から70%程度になる。よって、ここでの反射部425には、反射率が90%を超えるような鏡や、白色プラスチック等を使用すればよい。なお、後に詳述するように、反射部425の反射率を、計測対象の反射率より低い値に設定してもよい。 Generally, the reflectance when light is applied to human skin differs depending on the wavelength of light. For example, when light having a wavelength of 650 nm to 900 nm is used, the reflectance is about 50% to 70%. Therefore, a mirror having a reflectance exceeding 90%, white plastic, or the like may be used for the reflecting portion 425 here. As will be described in detail later, the reflectance of the reflecting portion 425 may be set to a value lower than the reflectance of the measurement target.
 ここで、図5に示すように、クリップ部400に計測対象である生体の指先510が挟持されている場合には、反射部425には、検出素子250に含まれる発光部110からの光は照射されない。即ち、発光部110から照射される光は、生体の指先510によって遮蔽され、反射部425には照射されない。 Here, as shown in FIG. 5, when the biological fingertip 510 to be measured is sandwiched between the clip unit 400, the light from the light emitting unit 110 included in the detection element 250 is transmitted to the reflection unit 425. Not irradiated. That is, light emitted from the light emitting unit 110 is shielded by the fingertip 510 of the living body and is not irradiated to the reflecting unit 425.
 一方で、図6に示すように、クリップ部400に計測対象が挟持されていない状態では、検出素子250と反射部425とは、その間に何も介在しない状態で対向配置されることになる。よって、発光部110から照射された光は反射部425に照射され、反射部425で反射された光は受光部120で受光される。 On the other hand, as shown in FIG. 6, in a state where the measurement target is not sandwiched between the clip portions 400, the detection element 250 and the reflection portion 425 are opposed to each other with nothing interposed therebetween. Therefore, the light emitted from the light emitting unit 110 is emitted to the reflecting unit 425, and the light reflected by the reflecting unit 425 is received by the light receiving unit 120.
 後述する計測判定動作は、このように、受光部120で受光された光が計測対象からの戻り光であるか、或いは反射部425からの戻り光であるか否かを判定することで実行される。 The measurement determination operation described later is executed by determining whether the light received by the light receiving unit 120 is the return light from the measurement target or the return light from the reflection unit 425 as described above. The
 <動作説明>
 次に、本実施例に係る情報計測器の動作について、図7を参照して説明する。ここに図7は、第1実施例に係る情報計測器の一連の処理を示すフローチャートである。
<Description of operation>
Next, the operation of the information measuring instrument according to the present embodiment will be described with reference to FIG. FIG. 7 is a flowchart showing a series of processes of the information measuring instrument according to the first embodiment.
 図7において、本実施例に係る情報計測器100の動作時には、先ず発光部110からレーザ光が照射される(ステップS101)。発光部110から照射された光は、図5に示すように、計測対象が存在する場合には計測対象において反射され、図6に示すように、計測対象が存在しない場合には、反射部425によって反射される。そして、その戻り光は、受光部120において受光され、受光量に基づいた受光信号が生成される(ステップS102)。 Referring to FIG. 7, when the information measuring instrument 100 according to the present embodiment is in operation, first, laser light is emitted from the light emitting unit 110 (step S101). As shown in FIG. 5, the light emitted from the light emitting unit 110 is reflected by the measurement target when the measurement target exists, and as shown in FIG. 6, the reflection unit 425 when the measurement target does not exist. Is reflected by. The return light is received by the light receiving unit 120, and a light reception signal based on the amount of received light is generated (step S102).
 受光部120で生成された受光信号は、増幅器130において増幅され、A/Dコンバータ140においてデジタル変換される(ステップS103)。これにより、受光信号は、受光部120での受光量の大きさをデジタル値として示す信号となる。 The light reception signal generated by the light receiving unit 120 is amplified by the amplifier 130 and digitally converted by the A / D converter 140 (step S103). Thus, the light reception signal is a signal indicating the magnitude of the amount of light received by the light receiving unit 120 as a digital value.
 受光信号がデジタル化されると、生体検出判断部160において、受光信号の信号強度が所定の閾値Aより小さいか否かが判定される(ステップS104)。なお、ここでの「閾値A」は、計測対象である生体500の反射率及び反射部425の反射率に基づいて設定されており、信号強度から、戻り光が計測対象である生体500からのものであるのか、或いは反射部425からのものであるのかを判別するために用いられる。 When the light reception signal is digitized, the living body detection determination unit 160 determines whether the signal intensity of the light reception signal is smaller than a predetermined threshold A (step S104). Here, the “threshold A” is set based on the reflectance of the living body 500 that is the measurement target and the reflectance of the reflection unit 425, and the return light from the living body 500 that is the measurement target is determined from the signal intensity. It is used to determine whether the object is from the reflection unit 425 or not.
 ここで、信号強度が閾値Aより小さい場合(ステップS104:YES)、受光した戻り光は生体500からのものであると判定され、生体情報演算部150において、受光信号から生体情報が算出される(ステップS105)。算出された生体情報は、装置外部に出力され(ステップS106)、例えばディスプレイ等に表示される。 Here, when the signal intensity is smaller than the threshold value A (step S104: YES), it is determined that the received return light is from the living body 500, and the living body information calculation unit 150 calculates the living body information from the received light signal. (Step S105). The calculated biological information is output to the outside of the apparatus (step S106) and displayed on, for example, a display.
 一方、信号強度が閾値A以上である場合(ステップS104:NO)、受光した戻り光は反射部425からのものである(即ち、生体500からの戻り光を受光できていない状態である)と判定され、生体検出判断部160から計測エラーアラーム情報が出力される(ステップS107)。即ち、生体500からの戻り光より強い光が受光されているため、計測されるべき生体500からの戻り光が得られておらず、反射部425からの戻り光が得られている状態であると判定される。 On the other hand, when the signal intensity is greater than or equal to the threshold A (step S104: NO), the received return light is from the reflection unit 425 (that is, the return light from the living body 500 is not received). The measurement error alarm information is output from the living body detection determination unit 160 (step S107). That is, since the light stronger than the return light from the living body 500 is received, the return light from the living body 500 to be measured is not obtained, and the return light from the reflecting portion 425 is obtained. It is determined.
 計測エラーアラーム情報が出力されると、計測エラーを示す警告が実行される。よって、何らかの原因で装置が計測対象から外れてしまった場合に、その旨を使用者に知らせることができる。なお、計測エラーであると判定された場合、受光信号から生体情報は算出されない。 When the measurement error alarm information is output, a warning indicating the measurement error is executed. Therefore, when the apparatus is removed from the measurement target for some reason, it is possible to notify the user to that effect. In addition, when it determines with it being a measurement error, biometric information is not calculated from a received light signal.
 上述した一連の処理は、全ての計測が終了したと判定されると(ステップS108:YES)、終了する。なお、全ての計測が終了していないと判定された場合(ステップS108:NO)、ステップS102以降の処理が繰り返し実行される。 The above-described series of processing ends when it is determined that all measurements have been completed (step S108: YES). If it is determined that all the measurements have not been completed (step S108: NO), the processes after step S102 are repeatedly executed.
 以上説明したように、第1実施例に係る情報計測器100では、計測対象である生体500より高い反射率を有する反射板425を備えることで、生体500に対する計測を正常に実行できているか否かを判別できる。よって、不適切な計測が実行され続けることを回避でき、より好適な計測環境を実現することが可能である。 As described above, in the information measuring instrument 100 according to the first embodiment, whether or not the measurement of the living body 500 can be normally performed by including the reflecting plate 425 having a higher reflectance than the living body 500 that is the measurement target. Can be determined. Therefore, it is possible to prevent inappropriate measurement from being performed, and it is possible to realize a more preferable measurement environment.
 <第2実施例>
 続いて、第2実施例に係る情報計測器100bについて説明する。なお、第2実施例は、上述した第1実施例と一部の構成及び動作が異なるのみで、他の多くの部分については概ね同様である。このため、以下では、既に述べた第1実施例と異なる部分について詳細に説明し、重複する部分については適宜説明を省略するものとする。
<Second embodiment>
Next, the information measuring instrument 100b according to the second embodiment will be described. The second embodiment differs from the first embodiment described above only in part of the configuration and operation, and is substantially the same in many other parts. For this reason, below, a different part from the already described 1st Example is demonstrated in detail, and description is abbreviate | omitted suitably about the overlapping part.
 <装置構成>
 先ず、第2実施例に係る情報計測器100bの構成について、図8を参照して説明する。ここに図8は、第2実施例に係る情報計測器の全体構成を示すブロック図である。
<Device configuration>
First, the configuration of the information measuring instrument 100b according to the second embodiment will be described with reference to FIG. FIG. 8 is a block diagram showing the overall configuration of the information measuring instrument according to the second embodiment.
 図8において、第2実施例に係る情報計測器100bは、第1実施例に係る情報計測器100が備える各部材に加えて、装置故障判断部170を備えて構成されている。 In FIG. 8, the information measuring device 100b according to the second embodiment is configured to include an apparatus failure determination unit 170 in addition to the members included in the information measuring device 100 according to the first embodiment.
 装置故障判断部170は、「判別手段」の一具体例であり、A/Dコンバータ140から入力される信号に基づいて、発光部110及び受光部120に故障が発生しているか否かを判別する。装置故障判断部170は、発光部110及び受光部120に故障が発生していないと判定した場合には、生体情報演算部150に対し生体情報の演算を実行するよう指示を出す。一方、装置故障判断部170は、発光部110及び受光部120に故障が発生していると判定した場合には、計測器故障情報を出力する。 The device failure determination unit 170 is a specific example of the “determination unit”, and determines whether or not a failure has occurred in the light emitting unit 110 and the light receiving unit 120 based on a signal input from the A / D converter 140. To do. When the device failure determination unit 170 determines that no failure has occurred in the light emitting unit 110 and the light receiving unit 120, the device failure determination unit 170 instructs the biological information calculation unit 150 to perform calculation of biological information. On the other hand, if the device failure determination unit 170 determines that a failure has occurred in the light emitting unit 110 and the light receiving unit 120, the device failure determination unit 170 outputs measuring instrument failure information.
 なお、第2実施例に係る情報計測器100bにおけるプローブ部200の構成は、図2から図4等に示した第1実施例のものと同様である。 The configuration of the probe unit 200 in the information measuring instrument 100b according to the second embodiment is the same as that of the first embodiment shown in FIGS.
 <動作説明>
 次に、第2実施例に係る情報計測器100bの動作について、図9を参照して説明する。ここに図9は、第2実施例に係る情報計測器の一連の処理を示すフローチャートである。
<Description of operation>
Next, the operation of the information measuring instrument 100b according to the second embodiment will be described with reference to FIG. FIG. 9 is a flowchart showing a series of processes of the information measuring instrument according to the second embodiment.
 図9において、第2実施例に係る情報計測器100bの動作時には、先ず発光部110からレーザ光が照射される(ステップS201)。発光部110から照射された光は、図5に示すように、計測対象が存在する場合には計測対象において反射され、図6に示すように、計測対象が存在しない場合には、反射部425によって反射される。そして、その戻り光は、受光部120において受光され、受光量に基づいた受光信号が生成される(ステップS202)。 In FIG. 9, when the information measuring device 100b according to the second embodiment is in operation, first, laser light is emitted from the light emitting unit 110 (step S201). As shown in FIG. 5, the light emitted from the light emitting unit 110 is reflected by the measurement target when the measurement target exists, and as shown in FIG. 6, the reflection unit 425 when the measurement target does not exist. Is reflected by. Then, the return light is received by the light receiving unit 120, and a light reception signal based on the amount of received light is generated (step S202).
 受光部120で生成された受光信号は、増幅器130において増幅され、A/Dコンバータ140においてデジタル変換される(ステップS203)。これにより、受光信号は、受光部120での受光量の大きさをデジタル値として示す信号となる。 The light reception signal generated by the light receiving unit 120 is amplified by the amplifier 130 and digitally converted by the A / D converter 140 (step S203). Thus, the light reception signal is a signal indicating the magnitude of the amount of light received by the light receiving unit 120 as a digital value.
 受光信号がデジタル化されると、生体検出判断部160において、受光信号の信号強度が所定の閾値Aより小さく且つ所定の閾値Bより大きいか否かが判定される(ステップS204)。なお、ここでの「閾値A」は、第1実施例と同様に、計測対象である生体500の反射率及び反射部425の反射率に基づいて設定されており、信号強度から、戻り光が計測対象である生体500からのものであるのか、或いは反射部425からのものであるのかを判別するために用いられる。一方で、「閾値B」は、計測対象である生体500の反射率及び装置の故障時に受光されると推測される受光量に基づいて設定されており、信号強度から、装置の故障を判別するために用いられる。 When the light reception signal is digitized, the living body detection determination unit 160 determines whether or not the signal intensity of the light reception signal is smaller than the predetermined threshold A and larger than the predetermined threshold B (step S204). Note that the “threshold A” here is set based on the reflectance of the living body 500 to be measured and the reflectance of the reflecting portion 425 as in the first embodiment, and the return light is determined from the signal intensity. It is used to determine whether the measurement object is from the living body 500 or the reflection unit 425. On the other hand, the “threshold value B” is set based on the reflectance of the living body 500 to be measured and the amount of light received that is estimated to be received when the device fails, and determines the failure of the device from the signal intensity. Used for.
 ここで、信号強度が閾値Aより小さく且つ閾値Bより大きい場合(ステップS204:YES)、受光した戻り光は生体500からのものであると判定され、生体情報演算部150において、受光信号から生体情報が算出される(ステップS205)。算出された生体情報は、装置外部に出力され(ステップS206)、例えばディスプレイ等に表示される。 Here, when the signal intensity is smaller than the threshold value A and larger than the threshold value B (step S204: YES), it is determined that the received return light is from the living body 500, and the living body information calculation unit 150 determines the living body from the received light signal. Information is calculated (step S205). The calculated biological information is output to the outside of the apparatus (step S206) and displayed on, for example, a display.
 一方、信号強度が閾値Aより小さく且つ閾値Bより大きい値でない場合(ステップS204:NO)、更に、信号強度が閾値A以上であるか否かが判定される(ステップS207)。即ち、信号強度が閾値A以上であるのか、或いは閾値B以下であるのかが判定される。 On the other hand, if the signal strength is less than the threshold value A and not greater than the threshold value B (step S204: NO), it is further determined whether or not the signal strength is greater than or equal to the threshold value A (step S207). That is, it is determined whether the signal intensity is greater than or equal to threshold A or less than or equal to threshold B.
 ここで、信号強度が閾値A以上であると判定されると(ステップS207:YES)、受光した戻り光は反射部425からのものである(即ち、生体500からの戻り光を受光できていない状態である)と判定され、生体検出判断部160から計測エラーアラーム情報が出力される(ステップS208)。即ち、生体500からの戻り光より強い光が受光されているため、計測されるべき生体500からの戻り光が得られておらず、反射部425からの戻り光が得られている状態であると判定される。 Here, if it is determined that the signal intensity is greater than or equal to the threshold A (step S207: YES), the received return light is from the reflection unit 425 (that is, the return light from the living body 500 cannot be received). The measurement error alarm information is output from the living body detection determination unit 160 (step S208). That is, since the light stronger than the return light from the living body 500 is received, the return light from the living body 500 to be measured is not obtained, and the return light from the reflecting portion 425 is obtained. It is determined.
 計測エラーアラーム情報が出力されると、計測エラーを示す警告が実行される。よって、何らかの原因で装置が計測対象から外れてしまった場合に、その旨を使用者に知らせることができる。なお、計測エラーであると判定された場合、受光信号から生体情報は算出されない。 When the measurement error alarm information is output, a warning indicating the measurement error is executed. Therefore, when the apparatus is removed from the measurement target for some reason, it is possible to notify the user to that effect. In addition, when it determines with it being a measurement error, biometric information is not calculated from a received light signal.
 一方で、信号強度が閾値B以下であると判定されると(ステップS207:NO)、発光部110又は受光部120のいずれかが故障していると判断される。具体的には、受光部120における受光量が、計測対象である生体500からの戻り光に対応する値でもなく、反射部425からの戻り光に対応する値でもないため、発光部110の故障により照射量が低下している、或いは受光部120の故障により受光感度が低下していると判断される。このように、装置が故障していると判断された場合には、装置故障判断部170から故障情報が出力される(ステップS209)。なお、装置が故障していると判定された場合も、計測エラーの場合と同様に、受光信号から生体情報は算出されない。 On the other hand, when it is determined that the signal intensity is equal to or less than the threshold value B (step S207: NO), it is determined that either the light emitting unit 110 or the light receiving unit 120 has failed. Specifically, the amount of light received by the light receiving unit 120 is not a value corresponding to the return light from the living body 500 to be measured, and is not a value corresponding to the return light from the reflection unit 425. Therefore, it is determined that the irradiation amount has decreased or the light receiving sensitivity has decreased due to the failure of the light receiving unit 120. As described above, when it is determined that the device has failed, the failure information is output from the device failure determination unit 170 (step S209). Note that even when it is determined that the device is out of order, biometric information is not calculated from the received light signal, as in the case of a measurement error.
 上述した一連の処理は、全ての計測が終了したと判定されると(ステップS210:YES)、終了する。なお、全ての計測が終了していないと判定された場合(ステップS210:NO)、ステップS202以降の処理が繰り返し実行される。 The above-described series of processing ends when it is determined that all measurements have been completed (step S210: YES). If it is determined that all the measurements have not been completed (step S210: NO), the processes after step S202 are repeatedly executed.
 以上説明したように、第2実施例に係る情報計測器100bによれば、装置が正常に計測対象に装着されているか否かに加えて、装置の故障を判別できる。よって、より確実に不適切な計測が実行され続けてしまうことを防止できる。そして特に、上述した故障の判別処理は、プローブ部200等の物理的構成を変更せずに(即ち、第1実施例と同様の構成で)実現できる。よって、装置構成の複雑化やコストの増大を防止することができる。 As described above, according to the information measuring instrument 100b according to the second embodiment, in addition to whether or not the apparatus is normally attached to the measurement target, it is possible to determine a failure of the apparatus. Therefore, it is possible to prevent the inappropriate measurement from being performed more reliably. In particular, the above-described failure determination process can be realized without changing the physical configuration of the probe unit 200 or the like (that is, with the same configuration as in the first embodiment). Therefore, it is possible to prevent complication of the device configuration and increase in cost.
 <第3実施例>
 続いて、第3実施例に係る情報計測器100cについて説明する。なお、第3実施例は、上述した第2実施例と一部の構成及び動作が異なるのみで、他の多くの部分については概ね同様である。このため、以下では、既に述べた第2実施例と異なる部分について詳細に説明し、重複する部分については適宜説明を省略するものとする。
<Third embodiment>
Then, the information measuring device 100c which concerns on 3rd Example is demonstrated. The third embodiment differs from the second embodiment described above only in part of the configuration and operation, and is substantially the same for many other parts. Therefore, in the following, portions different from the second embodiment already described will be described in detail, and description of overlapping portions will be omitted as appropriate.
 <装置構成>
 先ず、第3実施例に係る情報計測器100cの構成について、図10を参照して説明する。ここに図10は、第3実施例に係る情報計測器の構成を示す部分拡大図である。
<Device configuration>
First, the configuration of the information measuring instrument 100c according to the third embodiment will be described with reference to FIG. FIG. 10 is a partially enlarged view showing the configuration of the information measuring instrument according to the third embodiment.
 図10において、第3実施例に係る情報計測器100cでは、反射部425bの反射率が、計測対象である生体500の反射率より低くなるよう設定されている。反射部425bは、例えば反射率が30%以下となるようなシリコン素材等を含んで構成される。 In FIG. 10, in the information measuring device 100c according to the third example, the reflectance of the reflecting portion 425b is set to be lower than the reflectance of the living body 500 that is the measurement target. The reflection part 425b includes a silicon material or the like having a reflectance of 30% or less, for example.
 また第3実施例に係る情報計測器100cは、検出素子250の表面部分(即ち、発光部110及び受光部120と計測対象が配置されるべき位置との間に)透過光調整板600が備えられている。透過光調整板600は、発光部110から照射された光の一部を透過すると共に、他部を反射するように構成されている。これにより、照射された光の一部は計測対象である生体500及び反射板425側に透過され、他部は直接受光部120側へ反射される。 In addition, the information measuring instrument 100c according to the third embodiment includes the transmitted light adjusting plate 600 on the surface portion of the detection element 250 (that is, between the light emitting unit 110 and the light receiving unit 120 and the position where the measurement target is to be disposed). It has been. The transmitted light adjusting plate 600 is configured to transmit a part of the light emitted from the light emitting unit 110 and reflect the other part. Thereby, a part of the irradiated light is transmitted to the living body 500 and the reflector 425 that are the measurement target, and the other part is directly reflected to the light receiving unit 120 side.
 透過光調整板600は、例えばアクリル板として構成される。アクリル板を用いる場合、透明なものでは7%程度の反射率であるが、着色により反射率を調整することもできる。透過光調整板600の反射率は、後述するように、反射部425bからの反射光の受光量が小さい場合であっても、装置の故障を判別できる程度の受光量が実現されるような値として設定される。 The transmitted light adjusting plate 600 is configured as an acrylic plate, for example. When an acrylic plate is used, the reflectance is about 7% when it is transparent, but the reflectance can be adjusted by coloring. As will be described later, the reflectance of the transmitted light adjusting plate 600 is a value that realizes a received light amount that can determine whether or not a device has failed even when the received light amount of reflected light from the reflecting portion 425b is small. Set as
 <動作説明>
 次に、第3実施例に係る情報計測器100cの動作について、図11を参照して説明する。ここに図11は、第3実施例に係る情報計測器の一連の処理を示すフローチャートである。
<Description of operation>
Next, the operation of the information measuring instrument 100c according to the third embodiment will be described with reference to FIG. FIG. 11 is a flowchart showing a series of processes of the information measuring instrument according to the third embodiment.
 図11において、第3実施例に係る情報計測器100cの動作時には、先ず発光部110からレーザ光が照射される(ステップS301)。発光部110から照射された光は、図5に示すように、計測対象が存在する場合には計測対象において反射され、図6に示すように、計測対象が存在しない場合には、反射部425bによって反射される。そして、その戻り光は、受光部120において受光され、受光量に基づいた受光信号が生成される(ステップS302)。 In FIG. 11, when the information measuring instrument 100c according to the third embodiment is in operation, first, laser light is emitted from the light emitting unit 110 (step S301). As shown in FIG. 5, the light emitted from the light emitting unit 110 is reflected by the measurement target when the measurement target exists, and as shown in FIG. 6, when the measurement target does not exist, the reflection unit 425b. Is reflected by. The return light is received by the light receiving unit 120, and a light reception signal based on the amount of received light is generated (step S302).
 受光部120で生成された受光信号は、増幅器130において増幅され、A/Dコンバータ140においてデジタル変換される(ステップS303)。これにより、受光信号は、受光部120での受光量の大きさをデジタル値として示す信号となる。 The light reception signal generated by the light receiving unit 120 is amplified by the amplifier 130 and digitally converted by the A / D converter 140 (step S303). Thus, the light reception signal is a signal indicating the magnitude of the amount of light received by the light receiving unit 120 as a digital value.
 受光信号がデジタル化されると、生体検出判断部160において、受光信号の信号強度が所定の閾値Cより大きいか否かが判定される(ステップS304)。なお、ここでの「閾値C」は、計測対象である生体500の反射率及び反射部425bの反射率に基づいて設定されており、信号強度から、戻り光が計測対象である生体500からのものであるのか、或いは反射部425bからのものであるのかを判別するために用いられる。 When the light reception signal is digitized, the living body detection determination unit 160 determines whether the signal intensity of the light reception signal is greater than a predetermined threshold C (step S304). Here, the “threshold value C” is set based on the reflectance of the living body 500 that is the measurement target and the reflectance of the reflection unit 425b, and the return light from the living body 500 that is the measurement target is determined from the signal intensity. It is used to determine whether the object is from the reflection unit 425b.
 信号強度が閾値Cより大きい場合(ステップS304:YES)、受光した戻り光は生体500からのものであると判定され、生体情報演算部150において、受光信号から生体情報が算出される(ステップS305)。算出された生体情報は、装置外部に出力され(ステップS306)、例えばディスプレイ等に表示される。 When the signal intensity is greater than the threshold C (step S304: YES), it is determined that the received return light is from the living body 500, and the biological information calculation unit 150 calculates the biological information from the received light signal (step S305). ). The calculated biological information is output to the outside of the apparatus (step S306) and displayed on, for example, a display.
 一方、信号強度が閾値C以下である場合(ステップS304:NO)、更に、信号強度が閾値Dより大きいか否かが判定される(ステップS307)。即ち、信号強度が閾値Cから閾値Dまでの範囲内の値であるのか、或いは閾値D以下であるのかが判定される。なお、ここでの「閾値D」は、計測対象である生体500の反射率及び装置の故障時に受光されると推測される受光量に基づいて設定されており、信号強度から、装置の故障を判別するために用いられる。 On the other hand, when the signal strength is equal to or lower than the threshold value C (step S304: NO), it is further determined whether or not the signal strength is larger than the threshold value D (step S307). That is, it is determined whether the signal intensity is a value within the range from the threshold value C to the threshold value D or less than the threshold value D. Note that the “threshold D” here is set based on the reflectance of the living body 500 to be measured and the amount of light received that is estimated to be received when the device malfunctions. Used to discriminate.
 信号強度が閾値Dより大きいと判定されると(ステップS307:YES)、受光した戻り光は反射部425bからのものである(即ち、生体500からの戻り光を受光できていない状態である)と判定され、生体検出判断部160から計測エラーアラーム情報が出力される(ステップS308)。即ち、生体500からの戻り光より弱い光が受光されているが、故障している場合と比べると強い光が受光されているため、計測されるべき生体500からの戻り光が得られておらず、反射部425からの戻り光が得られている状態であると判定される。 If it is determined that the signal intensity is greater than the threshold value D (step S307: YES), the received return light is from the reflection unit 425b (that is, the return light from the living body 500 is not received). Measurement error alarm information is output from the living body detection determination unit 160 (step S308). That is, light that is weaker than the return light from the living body 500 is received, but stronger light is received than in the case of a failure, and thus return light from the living body 500 to be measured is not obtained. First, it is determined that the return light from the reflection unit 425 is obtained.
 計測エラーアラーム情報が出力されると、計測エラーを示す警告が実行される。よって、何らかの原因で装置が計測対象から外れてしまった場合に、その旨を使用者に知らせることができる。なお、計測エラーであると判定された場合、受光信号から生体情報は算出されない。 When the measurement error alarm information is output, a warning indicating the measurement error is executed. Therefore, when the apparatus is removed from the measurement target for some reason, it is possible to notify the user to that effect. In addition, when it determines with it being a measurement error, biometric information is not calculated from a received light signal.
 一方で、信号強度が閾値D以下であると判定されると(ステップS307:NO)、発光部110又は受光部120のいずれかが故障していると判断される。具体的には、受光部120における受光量が、計測対象である生体500からの戻り光に対応する値でもなく、反射部425からの戻り光に対応する値でもないため、発光部110の故障により照射量が低下している、或いは受光部120の故障により受光感度が低下していると判断される。このように、装置が故障していると判断された場合には、装置故障判断部170から故障情報が出力される(ステップS309)。なお、装置が故障していると判定された場合も、計測エラーの場合と同様に、受光信号から生体情報は算出されない。 On the other hand, when it is determined that the signal intensity is equal to or less than the threshold value D (step S307: NO), it is determined that either the light emitting unit 110 or the light receiving unit 120 is out of order. Specifically, the amount of light received by the light receiving unit 120 is not a value corresponding to the return light from the living body 500 to be measured, and is not a value corresponding to the return light from the reflection unit 425. Therefore, it is determined that the irradiation amount has decreased or the light receiving sensitivity has decreased due to the failure of the light receiving unit 120. As described above, when it is determined that the device has failed, the failure information is output from the device failure determination unit 170 (step S309). Note that even when it is determined that the device is out of order, biometric information is not calculated from the received light signal, as in the case of a measurement error.
 上述した一連の処理は、全ての計測が終了したと判定されると(ステップS310:YES)、終了する。なお、全ての計測が終了していないと判定された場合(ステップS310:NO)、ステップS202以降の処理が繰り返し実行される。 The above-described series of processing ends when it is determined that all measurements have been completed (step S310: YES). If it is determined that all the measurements have not been completed (step S310: NO), the processes after step S202 are repeatedly executed.
 以上説明したように、第3実施例に係る情報計測器100cによれば、第2実施例と同様に、装置が正常に計測対象に装着されているか否かに加えて、装置の故障を判別できる。また第3実施例では特に、反射部425bの反射率が生体500より低く設定されているが故に、受光量が比較的小さい場合に、受光量が反射部425bによる反射で小さくなっているのか、或いは故障により小さくなっているのかを判別するのが困難である。これに対し本実施例では、透過光調整板600を備えるため、発光部110から照射された一部の光が直接受光部120に向かう。よって、受光部120では一定以上の受光量が見込める。従って、反射部425bからの戻り光が弱い場合であっても、好適に装置の故障を検出することができる。 As described above, according to the information measuring instrument 100c according to the third embodiment, in the same way as in the second embodiment, in addition to whether or not the apparatus is normally attached to the measurement target, it is determined whether or not the apparatus has failed. it can. In the third embodiment, in particular, since the reflectance of the reflecting portion 425b is set lower than that of the living body 500, whether the amount of received light is small due to reflection by the reflecting portion 425b when the amount of received light is relatively small. Alternatively, it is difficult to determine whether the size is reduced due to a failure. On the other hand, in this embodiment, since the transmitted light adjustment plate 600 is provided, a part of the light emitted from the light emitting unit 110 is directed directly to the light receiving unit 120. Therefore, the light receiving unit 120 can expect a received light amount that is greater than a certain level. Therefore, even when the return light from the reflecting portion 425b is weak, it is possible to detect a failure of the apparatus suitably.
 本発明は、上述した実施形態に限られるものではなく、特許請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う情報検出器及び情報計測器、並びに情報検出方法もまた本発明の技術的範囲に含まれるものである。 The present invention is not limited to the above-described embodiments, and can be appropriately changed without departing from the spirit or idea of the invention that can be read from the claims and the entire specification, and an information detector with such a change. In addition, an information measuring instrument and an information detection method are also included in the technical scope of the present invention.
 100 情報計測器
 110 発光部
 120 受光部
 130 増幅器
 140 A/Dコンバータ
 150 生体情報演算部
 160 生体検出判断部
 170 装置故障判断部
 200 プローブ部
 250 検出素子
 300 接続ケーブル
 310 接続端子
 400 クリップ部
 410 第1クリップ部材
 420 第2クリップ部材
 425 反射部
 430 クリップ接続部
 440 ケーブルクランプ
 500 生体
 510 指先
 600 透過光調整板
DESCRIPTION OF SYMBOLS 100 Information measuring instrument 110 Light-emitting part 120 Light-receiving part 130 Amplifier 140 A / D converter 150 Biometric information calculating part 160 Biological detection judgment part 170 Device failure judgment part 200 Probe part 250 Detection element 300 Connection cable 310 Connection terminal 400 Clip part 410 1st Clip member 420 Second clip member 425 Reflecting portion 430 Clip connecting portion 440 Cable clamp 500 Living body 510 Fingertip 600 Transmitted light adjusting plate

Claims (7)

  1.  光を照射する照射手段と、
     計測対象とは異なる反射率を有する反射手段と、
     前記発光部から照射された光の戻り光を受光する受光手段と、
     前記受光手段における受光量に基づき、前記戻り光が、前記計測対象からの戻り光であるのか、又は前記反射手段からの戻り光であるのかを判別する判別手段と
     を備えることを特徴とする情報検出器。
    Irradiating means for irradiating light;
    Reflection means having a different reflectance from the measurement object;
    A light receiving means for receiving a return light of the light emitted from the light emitting section;
    And a discriminating means for discriminating whether the return light is the return light from the measurement object or the return light from the reflection means based on the amount of light received by the light receiving means. Detector.
  2.  前記反射手段は、前記計測対象が配置されるべき位置に存在する場合には前記発光部からの光が照射されず、前記計測対象が前記配置されるべき位置に存在しない場合には前記発光部からの光が照射される位置に配置されていることを特徴とする請求項1に記載の情報検出器。 The reflection means is not irradiated with light from the light emitting unit when the measurement target is present at a position where the measurement target is to be disposed, and the light emitting unit when the measurement target is not present at the position where the measurement target is to be disposed. The information detector according to claim 1, wherein the information detector is disposed at a position irradiated with light from the information detector.
  3.  前記判別手段は、前記受光手段における受光量に基づき、前記照射手段の照射状態又は前記受光手段の受光状態の少なくとも一方を更に判別することを特徴とする請求項1又は2に記載の情報検出器。 The information detector according to claim 1, wherein the determination unit further determines at least one of an irradiation state of the irradiation unit and a light reception state of the light reception unit based on the amount of light received by the light reception unit. .
  4.  前記発光部から照射された光の一部を前記計測対象及び前記反射手段側へ透過すると共に、他の一部を前記受光手段に反射する透過反射手段を更に備えることを特徴とする請求項3に記載の情報検出器。 4. The apparatus according to claim 3, further comprising a transmission / reflection unit configured to transmit a part of the light emitted from the light emitting unit to the measurement target and the reflection unit side and reflect the other part to the light receiving unit. Information detector described in 1.
  5.  前記発光部は、レーザ光源であることを特徴とする請求項1から4のいずれか一項に記載の情報検出器。 The information detector according to any one of claims 1 to 4, wherein the light emitting unit is a laser light source.
  6.  請求項1から5のいずれか一項に記載の情報検出器と、
     前記判別手段における判別結果に基づいて、前記情報検出器の異常を検出する異常検出手段と、
     前記異常が検出された場合に、前記異常が検出されたことを知らせる警告又は前記情報検出器による計測の停止の少なくとも一方を実行する警告停止手段と
     を備えることを特徴とする情報計測器。
    An information detector according to any one of claims 1 to 5;
    An abnormality detection means for detecting an abnormality of the information detector based on a determination result in the determination means;
    An information measuring device, comprising: a warning stopping unit that executes at least one of a warning notifying that the abnormality has been detected and a stop of measurement by the information detector when the abnormality is detected.
  7.  光を照射する照射手段と、計測対象とは異なる反射率を有する反射手段と、前記発光部から照射された光の戻り光を受光する受光手段とを備える情報検出器における情報検出方法であって、
     前記受光手段における受光量に基づき、前記戻り光が、前記計測対象からの戻り光であるのか、又は前記反射手段からの戻り光であるのかを判別する判別工程を備えることを特徴とする情報検出方法。
    An information detection method for an information detector, comprising: an irradiating means for irradiating light; a reflecting means having a reflectance different from that of a measurement object; and a light receiving means for receiving a return light of the light emitted from the light emitting unit. ,
    An information detection comprising: a determination step of determining whether the return light is return light from the measurement object or return light from the reflection means based on the amount of light received by the light receiving means. Method.
PCT/JP2013/071111 2013-08-05 2013-08-05 Information detector and information measurement device, and information detection method WO2015019392A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2013/071111 WO2015019392A1 (en) 2013-08-05 2013-08-05 Information detector and information measurement device, and information detection method
JP2015530560A JP6085030B2 (en) 2013-08-05 2013-08-05 Information detector, information measuring instrument, and information detecting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/071111 WO2015019392A1 (en) 2013-08-05 2013-08-05 Information detector and information measurement device, and information detection method

Publications (1)

Publication Number Publication Date
WO2015019392A1 true WO2015019392A1 (en) 2015-02-12

Family

ID=52460766

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/071111 WO2015019392A1 (en) 2013-08-05 2013-08-05 Information detector and information measurement device, and information detection method

Country Status (2)

Country Link
JP (1) JP6085030B2 (en)
WO (1) WO2015019392A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021103111A (en) * 2019-12-25 2021-07-15 ダイキン工業株式会社 Stain evaluation method, waterdrop evaluation method, repellent evaluation method, and repellent evaluation device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6427532A (en) * 1987-07-23 1989-01-30 Matsushita Electric Ind Co Ltd Acceleration pulse wave meter
JPH10272115A (en) * 1997-03-31 1998-10-13 Shimadzu Corp Magnetic resonance imaging apparatus
JPH11137517A (en) * 1997-11-14 1999-05-25 Matsushita Electric Ind Co Ltd Imaging device
JP2004298619A (en) * 2003-03-20 2004-10-28 Seiko Instruments Inc Deterioration detecting apparatus, deterioration detecting method, and deterioration detecting system of sensor device
JP2005348912A (en) * 2004-06-10 2005-12-22 Matsushita Electric Ind Co Ltd Biological information measuring apparatus, reference device, and usage of biological information measuring apparatus
JP2009153832A (en) * 2007-12-27 2009-07-16 Toshiba Corp Device for measuring pulse wave
JP3180988U (en) * 2012-11-02 2013-01-17 中原大學 Optical imaging device for measuring PPG signal

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6427532A (en) * 1987-07-23 1989-01-30 Matsushita Electric Ind Co Ltd Acceleration pulse wave meter
JPH10272115A (en) * 1997-03-31 1998-10-13 Shimadzu Corp Magnetic resonance imaging apparatus
JPH11137517A (en) * 1997-11-14 1999-05-25 Matsushita Electric Ind Co Ltd Imaging device
JP2004298619A (en) * 2003-03-20 2004-10-28 Seiko Instruments Inc Deterioration detecting apparatus, deterioration detecting method, and deterioration detecting system of sensor device
JP2005348912A (en) * 2004-06-10 2005-12-22 Matsushita Electric Ind Co Ltd Biological information measuring apparatus, reference device, and usage of biological information measuring apparatus
JP2009153832A (en) * 2007-12-27 2009-07-16 Toshiba Corp Device for measuring pulse wave
JP3180988U (en) * 2012-11-02 2013-01-17 中原大學 Optical imaging device for measuring PPG signal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021103111A (en) * 2019-12-25 2021-07-15 ダイキン工業株式会社 Stain evaluation method, waterdrop evaluation method, repellent evaluation method, and repellent evaluation device

Also Published As

Publication number Publication date
JPWO2015019392A1 (en) 2017-03-02
JP6085030B2 (en) 2017-02-22

Similar Documents

Publication Publication Date Title
EP2277440B1 (en) Self-luminous sensor device
KR20160087689A (en) Apparatus and method for attenuated total reflection spectroscopic analysis apparatus having measuring apparatus for specimen contacting area
JP2008048987A (en) Pulse wave measuring apparatus
JP6085030B2 (en) Information detector, information measuring instrument, and information detecting method
KR20100018127A (en) Apparatus and method for measuring blood pressure
JP4419540B2 (en) Pulse wave detector
JP6126231B2 (en) Measuring instrument
JP5333944B2 (en) smoke detector
CN107991286A (en) Raman spectrum detection device and method based on reflected optical power
JP2017094173A (en) Information detection apparatus and information detection method
JP5170379B2 (en) Sugar content measuring apparatus and sugar content measuring method for fruit vegetables
JP6694676B2 (en) probe
JP2015029760A (en) Information detector and information detection method
US20220047168A1 (en) Device for optoacoustic imaging and corresponding control method
CN207779902U (en) Raman spectrum detection device based on reflected optical power
JP4328129B2 (en) Scattering absorber measurement apparatus calibration method, calibration apparatus, and scattering absorber measurement system using the same
US20230367009A1 (en) Distance measurement using field of view
JP6705593B2 (en) measuring device
KR102434637B1 (en) Contact force and gas concentration sensing apparatus
WO2021199773A1 (en) Biological information measurement device, biological information measurement system, and biological information measurement method
JP4400643B2 (en) Pulse wave sensor
JPWO2016002356A1 (en) measuring device
JP2009201918A (en) Pulse wave detecting device
JP2000136997A (en) Optical measuring device
JP2021137606A (en) Measuring device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13890907

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015530560

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13890907

Country of ref document: EP

Kind code of ref document: A1