WO2015017980A1 - 数据传输方法和装置 - Google Patents

数据传输方法和装置 Download PDF

Info

Publication number
WO2015017980A1
WO2015017980A1 PCT/CN2013/080909 CN2013080909W WO2015017980A1 WO 2015017980 A1 WO2015017980 A1 WO 2015017980A1 CN 2013080909 W CN2013080909 W CN 2013080909W WO 2015017980 A1 WO2015017980 A1 WO 2015017980A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
uplink scheduling
base station
tsc
block
Prior art date
Application number
PCT/CN2013/080909
Other languages
English (en)
French (fr)
Inventor
陈亮
张凡
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201380001206.XA priority Critical patent/CN104770043A/zh
Priority to PCT/CN2013/080909 priority patent/WO2015017980A1/zh
Publication of WO2015017980A1 publication Critical patent/WO2015017980A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present invention relates to communications technologies, and in particular, to a data transmission method and apparatus.
  • GPRS General Packet Radio Service
  • TBF Temporary Block Flow
  • the GPRS network adopts an uplink resource allocation mode based on an Upstate State Flag (USF): when the network establishes an uplink TBF, the terminal allocates a USF to the terminal, and the terminal monitors the radio block on the downlink PDCH, if The USF carried in the header of a radio block is the same as the USF allocated to itself, indicating that the terminal can perform data transmission in the next radio block or multiple radio blocks of the uplink PDCH corresponding to the downlink PDCH.
  • USF Upstate State Flag
  • a data transmission method including:
  • the uplink scheduling parameter includes an uplink state identifier USF and a training sequence TSC, such that the at least two terminals have the same USF and different TSCs, and the at least two terminals are multiplexed in On the same packet data channel PDCH;
  • the uplink scheduling parameter carried in the downlink block includes only an uplink scheduling parameter that is allocated to one of the at least two terminals, so that the terminal that receives the downlink block is configured according to the
  • the uplink scheduling parameter carried in the downlink block and the uplink scheduling parameter allocated to the terminal that receives the downlink block determine whether to send an uplink block.
  • the method further includes: receiving an uplink block sent by the one terminal on the PDCH, where the uplink block is And including a TSC in the uplink scheduling parameter allocated for the one terminal; decoding the uplink block by using the TSC allocated for the one terminal.
  • a data transmission method including:
  • the terminal receives an uplink scheduling parameter that is allocated by the base station to the terminal, where the uplink scheduling parameter includes an uplink state identifier USF and a training sequence TSC;
  • the terminal determines whether to send an uplink block according to the uplink scheduling parameter carried in the downlink block and the uplink scheduling parameter that is allocated by the base station to the terminal
  • the method includes: if the terminal determines that the TSC in the downlink block is the same as the TSC in the uplink scheduling parameter allocated by the base station to the terminal, and the USF in the downlink block is allocated to the base station When the USF in the uplink scheduling parameter of the terminal is the same, it is determined to send an uplink block to the base station.
  • the determining, by the TSC in the downlink block, and the uplink scheduling parameter that the base station allocates to the terminal The TSC is the same, and the USF in the downlink block is the same as the USF in the uplink scheduling parameter that is allocated to the terminal by the base station, and includes: the terminal uses the uplink allocated by the base station to the terminal The TSC in the scheduling parameter successfully decodes the downlink block, and obtains the downlink The USF in the block determines that the TSC in the downlink block is the same as the TSC in the uplink scheduling parameter that the base station allocates to the terminal; the terminal determines that in the downlink block Whether the USF is the same as the USF in the uplink scheduling parameter allocated by the base station to the terminal, and if yes, determining the USF in the downlink block and the location allocated by the base station to the terminal The USF in the uplink scheduling parameter is the same.
  • the determining, by the TSC in the downlink block, and the uplink scheduling parameter that the base station allocates to the terminal The TSC is the same, and the USF in the downlink block is the same as the USF in the uplink scheduling parameter that is allocated to the terminal by the base station, and includes: the terminal attempts to decode the downlink block by using each TSC used by the base station.
  • the USF in the downlink block obtained by decoding the downlink block is the same as the USF in the uplink scheduling parameter allocated by the base station to the terminal, and the terminal determines the location in the downlink block.
  • the TSC is the same as the TSC in the uplink scheduling parameter allocated by the base station to the terminal, and the USF in the downlink block and the uplink tone allocated by the base station to the terminal
  • the USF in the degree parameter is the same.
  • a base station including:
  • An information distribution unit configured to allocate an uplink scheduling parameter to the at least two terminals, where the uplink scheduling parameter includes an uplink state identifier USF and a training sequence TSC, such that the at least two terminals have the same USF and different TSCs, where the at least two Two terminals are multiplexed on the same packet data channel PDCH;
  • a data transceiver unit configured to send a downlink block on the PDCH, where an uplink scheduling parameter carried in the downlink block only includes an uplink scheduling parameter of one terminal of at least two terminals allocated by the information distribution unit, so that the uplink scheduling parameter is received.
  • the terminal of the downlink block determines whether to send an uplink block according to the uplink scheduling parameter carried in the downlink block and an uplink scheduling parameter that is allocated by the information allocation unit to the terminal that receives the downlink fast.
  • the data transceiver unit is further configured to: receive an uplink block sent by the one terminal on the PDCH, where the uplink block includes The unit is a TSC in the uplink scheduling parameter allocated by the one terminal; and decoding the uplink block by using the TSC allocated for the one terminal.
  • a terminal including:
  • the information receiving unit is configured to receive an uplink scheduling parameter that is allocated by the base station to the terminal, where the uplink scheduling parameter includes an uplink state identifier USF and a training sequence TSC;
  • a data transceiving unit configured to receive, by the base station, a downlink block that is sent by the base station, and a data processing unit, configured to: according to the uplink scheduling parameter carried in the downlink block received by the data transceiver unit, and the information receiving unit Receiving the allocated uplink scheduling parameter, determining whether to send an uplink block, and if yes, instructing the data transceiver unit to send an uplink block to the base station on the PDCH.
  • the data processing unit is specifically configured to: if determining, by the data transceiver unit, the TSC in the downlink block and the information received by the information receiving unit When the TSC in the uplink scheduling parameter is the same, and the USF in the downlink block is the same as the USF in the uplink scheduling parameter received by the information receiving unit, the data sending and receiving unit is instructed on the PDCH.
  • the base station transmits an uplink block.
  • the data processing unit is specifically configured to: if using the uplink scheduling parameter received by the information receiving unit Determining, by the TSC, the downlink block received by the data transceiver unit, and obtaining the USF in the downlink block, determining the TSC in the downlink block and the uplink received by the information receiving unit Determining, in the scheduling parameter, the TSC is the same; determining whether the USF in the downlink block is the same as the USF in the uplink scheduling parameter received by the information receiving unit, and if yes, determining the downlink block The USF is the same as the USF in the uplink scheduling parameter received by the information receiving unit.
  • the data processing unit is specifically configured to: use each TSC used by the base station to attempt to decode the downlink block, determine Determining, in each TSC, a target TSC of the downlink block; if the target TSC is the same as the TSC in the uplink scheduling parameter received by the information receiving unit, and decoding the downlink block by using the target TSC Determining, by the USF, that the USF in the downlink block is the same as the USF in the uplink scheduling parameter that is received by the information receiving unit, determining that the USF in the downlink block is received by the information receiving unit
  • the USF in the uplink scheduling parameter is the same, and the TSC in the downlink block is the same as the TSC in the uplink scheduling parameter received by the information receiving unit.
  • the fifth aspect provides a data transmission system, including: the base station of any one of the foregoing aspects, and the terminal of any one of the foregoing fourth aspects.
  • FIG. 1 is an application architecture diagram of an embodiment of a data transmission method according to the present invention
  • FIG. 2 is a schematic flow chart of an embodiment of a data transmission method according to the present invention.
  • FIG. 3 is a schematic flowchart of another embodiment of a data transmission method according to the present invention.
  • FIG. 4 is a schematic diagram of a common pulse in another embodiment of a data transmission method according to the present invention.
  • FIG. 5 is a schematic flowchart diagram of still another embodiment of a data transmission method according to the present invention.
  • FIG. 6 is a schematic flowchart of still another embodiment of a data transmission method according to the present invention.
  • FIG. 7 is a schematic flowchart of still another embodiment of a data transmission method according to the present invention.
  • FIG. 8 is a schematic structural diagram of an embodiment of a base station according to the present invention.
  • FIG. 9 is a schematic structural diagram of a terminal embodiment of the present invention.
  • FIG. 1 is an application architecture diagram of an embodiment of a data transmission method according to the present invention.
  • GPRS General Packet Radio Service
  • Enhanced GPRS GPRS
  • EGPRS Enhanced GPRS
  • the base station transmits the downlink block to the terminal, and the terminal transmits the uplink block to the base station.
  • the time-frequency resource where the data transmission is located that is, the PDCH, can be occupied by multiple terminals at the same time.
  • an uplink PDCH can be occupied by terminal A and terminal B shown in FIG.
  • the scheduling method may include the following steps:
  • the parameter issuance phase the terminal sends a request to the base station to indicate that it will send data, and the base station establishes an uplink TBF with the terminal, and sends a control message to the terminal (for example, immediate
  • the control message is mainly used to send some parameters required for data transmission to the terminal, including: USF (the terminal determines whether the base station needs to be based on the parameter when scheduling its own uplink), TSC (the terminal decodes the downlink block according to the TSC)
  • the base station can establish a downlink TBF with the terminal, and send a Temporary Flow Identity (TFI) to the terminal in the control message. Determine whether the downlink block is sent to itself, etc.;
  • TFI Temporary Flow Identity
  • a downlink scheduling phase after transmitting the foregoing control message to the terminal, the base station sends a downlink block to the terminal;
  • the downlink block includes a header portion (Header) and a data portion (Data), and the base station carries the TFI and the USF in the block header portion of the downlink block, and
  • the data part of the downlink block carries the TSC, where the TFI is the TFI corresponding to the terminal that is sent by the downlink block;
  • the downlink block further includes an uplink scheduling parameter, where the uplink scheduling parameter is used to indicate that the next uplink block is to be scheduled to be sent.
  • the terminal may determine, according to the uplink scheduling parameter, whether the current base station schedules itself to send an uplink block.
  • Uplink transmission phase If the terminal determines that the uplink scheduling terminal is itself according to the uplink scheduling parameter included in the downlink block, the terminal will send data to the base station in the next uplink block. In addition, if the terminal further establishes a downlink TBF with the base station, the terminal further determines, according to the TFI included in the downlink block header, whether the data portion of the downlink block is sent to itself, if the TFI in the downlink block header is When the TFI allocated by the base station in the parameter delivery phase is the same, it indicates that this is sent to itself, and the terminal will continue to decode the data part of the downlink block.
  • a downlink TBF is established between the two, and the terminal determines, according to the TFI in the downlink block header, whether the downlink block is sent by the base station to itself; if the terminal has data to The uplink TBF is established between the two, and the terminal determines whether the base station schedules its own uplink according to the uplink scheduling parameter (for example, including the USF) in the downlink block header.
  • the uplink scheduling parameter for example, including the USF
  • the foregoing uplink scheduling parameters are designed, and are compared with the prior art as follows:
  • the uplink scheduling parameters of the prior art are only USF, and the USF is used by the USF.
  • the base station wants to schedule the uplink multiplexed PDCH of the terminal A and the terminal B in FIG. 1 , the base station carries the USF1 corresponding to the terminal A in the downlink block, and the terminal A discovers that the USF1 carried in the downlink block is in the The USF1 allocated by the base station in the parameter delivery phase starts transmitting data to the base station in the next uplink block.
  • the base station also carries the USF2 corresponding to the terminal B in the downlink block sent to the terminal B, and the terminal B starts uplink transmission according to the USF2. data. That is, the existing USF is used to distinguish different terminals. Since the USF has only 3 bits, the most There are 8 different USFs, which also results in up to 8 terminal uplink multiplexing.
  • the uplink scheduling parameters include: USF and TSC, that is, an overall differentiated terminal through the USF+TSC, including: a case where at least two terminals have the same USF and different TSCs.
  • the uplink scheduling parameter corresponding to terminal A is USF+TSC1
  • the uplink scheduling parameter corresponding to terminal B is USF+TSC2, that is, the two terminals are the same as USF and different TSC.
  • the USF+TSC1 is used to distinguish the terminal.
  • the base station can send the USF and the TSC1 to the terminal A, and deliver the USF and the TSC2 to the terminal B.
  • the base station carries the USF and TSC1 allocated to the terminal A in the downlink block.
  • the terminal A After receiving the downlink block, the terminal A needs to determine the USF in the downlink block. And TSC1, whether it is the same as the USF and TSC1 allocated by the base station to itself in the parameter delivery phase, and if the same, the terminal A can determine that the base station is scheduling itself. Therefore, the uplink scheduling parameter carried by the base station in the downlink block is to identify the terminal by using a combination of USF+TSC, instead of the existing USF+TSC, and the terminal also determines whether the base station schedules uplink, instead of the existing one. Only judged according to USF.
  • the method for scheduling the uplink terminal by the base station in this embodiment obviously increases the number of users that are simultaneously multiplexed (that is, the number of terminals). For example, if the base station schedules two terminals to multiplex the PDCH, it needs to use USF1 and USF2 to distinguish In the embodiment, USF1 and USF2 respectively combine two different TSCs, namely USF1+TSC1, USF1+TSC2, USF2+TSCK USF2+TSC2, so that even if there are only two USFs (USF1 and USF2), due to the combination of TSC It can be used to distinguish four terminals, and the base station can schedule four terminals to multiplex the PDCH.
  • FIG. 2 is a schematic flowchart of a data transmission method according to an embodiment of the present invention.
  • the method in this embodiment may be performed by a base station. As shown in FIG. 2, the method may include:
  • the base station When the base station or the terminal has data to send, the base station sends an uplink scheduling parameter to the terminal, and the base station sends the uplink scheduling parameter allocated to the terminal to the corresponding terminal; for example, the USF+TSC1 allocated to the terminal A is Terminal B allocates USF+TSC2, and the base station will schedule the uplink scheduling.
  • the USF+TSC1 is sent to the terminal A, and the uplink scheduling parameter USF+TSC2 is sent to the terminal B.
  • the method for the base station to send the uplink scheduling parameter to the terminal for example, the base station sends a control message for establishing a temporary block flow to the at least two terminals, and establishes a TBF between the terminal and the base station, where the control message carries the
  • the uplink scheduling parameter allocated by the terminal for example, when at least two terminals want to send data uplink to the base station, the base station may separately send a control message to the at least two terminals.
  • the control message includes: a USF, a TSC, and the like allocated by the base station to the terminal.
  • the USF and the TSC are referred to as uplink scheduling parameters, that is, the control message carries the uplink scheduling parameter.
  • At least two terminals in this embodiment may have the same USF and different TSCs; for example, as shown in FIG. 1, the USFs of the terminal A and the terminal B are the same but the TSCs are different.
  • at least two terminals in this embodiment are multiplexed on the same PDCH. For example, as shown in FIG. 1, an uplink PDCH can be occupied by terminal A and terminal B shown in FIG.
  • the uplink scheduling parameter carried in the downlink block only includes an uplink scheduling parameter that is allocated to one of the at least two terminals, so that the terminal that receives the downlink block is configured according to
  • the uplink scheduling parameter carried in the downlink block and the uplink scheduling parameter allocated to the terminal that receives the downlink block determine whether to send an uplink block.
  • the downlink block sent by the base station to the terminal carries the TFI corresponding to the destination terminal that is sent by the downlink block, so that the terminal identifies that the downlink block is sent to itself, and the base station further carries the scheduling uplink in the downlink block.
  • the uplink scheduling parameter of the terminal so that the terminal that receives the downlink block determines whether the uplink scheduling parameter carried in the downlink block and the uplink scheduling parameter that is received by the base station and is allocated to the terminal that receives the downlink block,
  • a scheduling uplink indication of the base station is received, that is, the terminal that receives the downlink block determines whether to send an uplink block to the base station according to the uplink scheduling parameter carried in the downlink block and the uplink scheduling parameter allocated by the base station.
  • the downlink block sent by the base station to the terminal A in FIG. 1 includes: USF and TSC1 allocated to terminal A in 201.
  • the USF may be carried in the block header portion of the downlink block, and the TSC is carried in the data portion of the downlink block without changing the structure of the block header.
  • the downlink block sent by the base station may be sent to other terminals than the terminal A, so the other terminal may determine whether the downlink block is sent to itself according to the TFI in the block header of the downlink block.
  • the terminal sends an uplink block to the base station; the base station may receive the uplink block sent by the terminal on the PDCH.
  • the uplink block includes a base station to allocate the terminal TSC in the upstream scheduling parameters. The base station may use the TSC allocated for the terminal to decode the uplink block to obtain uplink data sent by the terminal.
  • the at least two terminals by assigning the uplink scheduling parameters to the at least two terminals, the at least two terminals have the same USF and different TSCs, and the terminals with the same USF are distinguished by using different TSCs, instead of The terminal is differentiated only according to different USFs, and the number of terminals that can be multiplexed by the uplink PDCH is increased, and the system capacity is improved.
  • FIG. 3 is a schematic flowchart of another embodiment of a data transmission method according to the present invention.
  • the method in this embodiment may be performed by a terminal. As shown in FIG. 3, the method may include:
  • the terminal receives an uplink scheduling parameter that is allocated by the base station to the terminal, where the uplink scheduling parameter includes an uplink state identifier USF and a training sequence TSC.
  • the terminal may obtain the carried uplink scheduling parameter from a control message that is sent by the base station to establish a temporary block flow, where the control message includes: a USF, a TSC, and the like allocated by the base station to the terminal.
  • the terminal receives the downlink block sent by the base station on the packet data channel (PDCH), where the downlink block sent by the base station to the terminal carries the TFI corresponding to the destination terminal sent by the downlink block, so that the terminal identifies the downlink block accordingly. It is sent to itself; in addition, the base station also carries the uplink scheduling parameter of the terminal that schedules the uplink in the downlink block.
  • PDCH packet data channel
  • the terminal determines, according to the uplink scheduling parameter carried in the downlink block, and the uplink scheduling parameter that is allocated by the base station to the terminal, whether to send an uplink block, and if yes, send an uplink block to the base station on the PDCH. .
  • the terminal determines whether to send an uplink block according to the uplink scheduling parameter carried in the downlink block and the uplink scheduling parameter that is allocated to the terminal by the base station, and may adopt the following manner:
  • the terminal may Determining to send an uplink block to the base station.
  • the terminal may also adopt multiple manners.
  • the terminal can decode the downlink block by using the TSC in the uplink scheduling parameter that is allocated by the base station to the terminal, and if the decoding succeeds and the USF in the downlink block is obtained, the terminal can Determining that the TSC in the downlink block is the same as the TSC in the uplink scheduling parameter allocated by the base station to the terminal; and determining, by the terminal, the USF in the downlink block and the base station Whether the USF in the uplink scheduling parameter of the terminal is the same, and if yes, determining that the USF in the downlink block is the same as the USF in the uplink scheduling parameter allocated by the base station to the terminal.
  • terminal A decodes the downlink block by using TSC1.
  • the TFI and the USF carried in the block header are obtained.
  • some terminals may determine, according to the TFI, whether the downlink block is sent to itself, and some of the terminals are previously established.
  • the downlink TBF between the base station and the base station is received, and the downlink TFI delivered by the base station through the control message is received. Therefore, the terminal knows that the base station needs to send data to itself, and then the TFI and the base station can be determined according to the TFI in the downlink block header. Whether the assigned TFI is the same, if it is the same, it is determined to be sent to itself.
  • the terminal A is to transmit data to the base station, and the uplink TBF is established between the terminal A and the base station, and the uplink USF and TSC (that is, the uplink scheduling parameter) sent by the base station through the control message are received.
  • the uplink scheduling parameter in the downlink block determines whether the base station is scheduling its own uplink.
  • the terminal A uses TSC1 to decode the downlink block, if the data part of the downlink block is carried, When the TSC is the TSC1, the terminal A can correctly decode the block header of the downlink block to obtain the above TFI and USF; otherwise, the terminal A cannot decode the downlink block.
  • the terminal A cannot Decoding obtains the above TFI and USF.
  • the terminal can obtain the USF in the downlink block header by using TSC decoding, it has indicated that the TSC in the downlink block is the same as the TSC allocated by the base station to the terminal, and then the USF in the downlink block is also allocated with the base station. If the USF is the same, the USF and the TSC in the downlink block are the same as the uplink scheduling parameters allocated by the base station, and the USF in the downlink block is the same as the USF in the uplink scheduling parameter allocated by the base station to the terminal, and is downlinked.
  • the TSC in the block is the same as the TSC in the uplink scheduling parameter allocated by the base station to the terminal, that is, the base station is scheduling the terminal to go up.
  • the terminal may use the TSCs used by the base station to attempt to decode the downlink block, and determine a target TSC in the TSCs that can decode the downlink block.
  • the terminal may determine that the TSC in the downlink block is the same as the TSC in the uplink scheduling parameter allocated by the base station to the terminal, and the USF in the downlink block and the base station allocated to the terminal by the base station The USF in the uplink scheduling parameter is the same.
  • the terminal sends data to the base station in the next uplink block, and the data part of the uplink block includes the TSC allocated by the base station to the terminal.
  • the uplink block includes 4 bursts, and the bursts constituting the data block are normal bursts (Normal Burst, NB for short), and each NB includes a 26-bit TSC.
  • Normal Burst NB for short
  • each NB includes a 26-bit TSC.
  • FIG. 4 is a schematic diagram of a common pulse in another embodiment of the data transmission method of the present invention.
  • the base station When receiving the uplink block sent by the terminal, the base station obtains the uplink data sent by the terminal by using the TSC decoding uplink block allocated for the terminal.
  • the terminal receives the uplink scheduling parameter allocated by the base station, where the uplink scheduling parameter includes the USF and the TSC; the terminal receives the downlink block sent by the base station, and allocates the uplink scheduling parameter carried in the downlink block to the base station.
  • the uplink scheduling parameter of the terminal determines whether to send an uplink block, and if yes, sends an uplink block to the base station, so that the terminal can determine whether to send uplink data according to the USF and the TSC, thereby implementing different TSC differentiation in the uplink scheduling process.
  • the terminal of the USF does not distinguish the terminal based on only the different USFs, and increases the number of terminals that the uplink PDCH can reuse, thereby improving the system capacity.
  • FIG. 5 is a schematic flowchart of still another embodiment of the data transmission method according to the present invention.
  • the old terminal that is, whether the base station only schedules its own uplink terminal according to the USF
  • receives the different TSCs of the embodiment sent by the base station can also work normally, as shown in Figure 5, including:
  • the base station allocates an uplink scheduling parameter to the terminal, where the uplink scheduling parameter includes: an uplink state identifier USF and a training sequence TSC;
  • the base station allocates USF and TSC1 to terminal A, and assigns USF and TSC2 to terminal B.
  • the base station sends a downlink block to the terminal, where the downlink block includes USF and TSC1.
  • the base station may include the USF and the TSC1 corresponding to the terminal A in the downlink block. 503.
  • the terminal decodes the downlink block, and learns that the base station schedules its own uplink.
  • the terminal A is still taken as an example, and it is assumed that the terminal A is the old terminal, that is, it is determined according to the USF whether the base station schedules its own uplink terminal.
  • Terminal A uses the TSC1 allocated by the base station to decode the downlink block. Since the downlink block carries TSC1, terminal A can correctly decode it.
  • the terminal A can obtain the TFI and the USF in the downlink block header.
  • the terminal A compares the USF and the USF allocated by the base station according to the USF. If the two are the same, the terminal A sends its own data to the base station in the next uplink block.
  • terminal B For terminal B, it is assumed that terminal B is also the old terminal, and terminal B uses the TSC2 allocated by the base station to decode the downlink block. Since the downlink block carries TSC1, terminal B cannot correctly decode the downlink block, and terminal B is If the USF included in the block header is not known, the uplink transmission will not be performed.
  • the terminal sends an uplink block to the base station, where the uplink block includes: a TSC allocated by the base station.
  • the base station decodes the uplink block by using the TSC allocated for the terminal.
  • FIG. 6 is a schematic flowchart of another embodiment of a data transmission method according to the present invention.
  • a terminal that is delivered by a downlink block and a terminal that is scheduled to be uplink may be different. It is assumed that terminal C and terminal D exist, and the base station allocates USF1+ to terminal C. TSC1, TFI2+ TSC1 is allocated to the terminal D, that is, the TSCs of the two terminals are the same, and the base station wants to deliver the downlink block to the terminal D, and the scheduling terminal C uplinks.
  • the method can include:
  • the base station allocates an uplink scheduling parameter to the terminal, where the uplink scheduling parameter includes: an uplink state identifier USF and a training sequence TSC;
  • the base station establishes an uplink TBF with the terminal C, and allocates USF1 and TSC1 to the terminal C through a control message; establishes a downlink TBF between the base station and the terminal D, and allocates TFI2 and TSC1 to the terminal D through a control message.
  • the base station sends a downlink block to the terminal, where the downlink block includes: TFI2, USF1, and TSCl.
  • the base station sends a downlink block to the terminal D, and if the terminal C wants to schedule the terminal C to send data in the next uplink block, the base station may be in the downlink.
  • the block includes: TFI2 corresponding to the terminal D2, and USF1 and TSC1 corresponding to the terminal C.
  • the terminal C decodes the downlink block, and learns that the base station schedules its own uplink, and the terminal D learns that the downlink block is sent to itself. For example, since the base station allocates TSC1 for both terminal C and terminal D, both use TSC1 to decode the downlink block; if the downlink block sent by the base station includes TSC1, both terminal C and terminal D can decode and obtain the downlink block header portion. TFI2 and USF1.
  • the terminal C determines that the USF1 in the block header is the same as the USF1 allocated by the base station to itself, and can determine that the USF and the TSC included in the downlink block are the same as the uplink scheduling parameters allocated by the base station (the correct decoding can indicate that the TSC is the same).
  • the terminal D For the terminal D, according to the TFI2 of the block header portion of the downlink block, it is determined that the TFI2 in the block header is the same as the TFI2 allocated by the base station to the previous base station, and then it can be determined that the downlink block uplink scheduling parameter is sent to the terminal D, and the terminal D can continue to use the TSC1. Decode the data portion of the downstream block.
  • the terminal C sends an uplink block to the base station.
  • FIG. 7 is a schematic flowchart of still another embodiment of a data transmission method according to the present invention.
  • TSC1 and TSC2 there are two TSCs used by the network, namely TSC1 and TSC2 respectively; terminal E and terminal F exist, and terminal E establishes an uplink TBF, the base station
  • the terminal E is allocated with the USF1+TSC1
  • the terminal F establishes the uplink TBF
  • the base station allocates the TSC2+USF1 for the terminal F
  • the terminal F also establishes the downlink TBF
  • the base station allocates the TFI 1 for the terminal F.
  • the downlink block sent by the base station is sent to the terminal F, and the terminal E is scheduled to be uplinked, and the present embodiment does not limit the terminal to decode the TSC of the downlink block, and the terminal may try to use the base station after receiving the downlink block.
  • the plurality of TSCs decode the downlink block, and the plurality of TSCs used by the base station refer to the TSCs used by the base station where the terminal is located. Specifically, as shown in Figure 7, it includes:
  • the base station sends a downlink block, where the downlink block includes: TSC1, USF1, and TFI1;
  • the base station sends a downlink block to the terminal F
  • the TFI 1 corresponding to the downlink TBF established by the terminal F needs to be included in the downlink block; and the base station also wants to schedule the terminal E to send data in the next uplink block
  • the base station needs to
  • the downlink block includes uplink scheduling parameters corresponding to the uplink TBF of the terminal E, that is, USF1 and TSC1.
  • the terminal decodes the downlink block.
  • terminal E it can also use each TSC used by the base station, such as TSC1 and
  • the TSC2 attempts to decode the downlink block, and finally determines that the TSC1 is capable of decoding the downlink block, indicating that the downlink block carries the TSC1, the TSC1 is the same as the TSC allocated by the base station to the terminal E; and the decoded USF carried by the block header portion of the downlink block After comparison, the base station allocates USF1 to the terminal E, and the terminal E can determine that the base station is scheduling its own uplink.
  • terminal F it can also try to decode downlink using each TSC1 and TSC2 in the network.
  • the block can finally determine that TSC1 is capable of decoding the downlink block, indicating that the downlink block carries TSC1.
  • the terminal F also decodes that the downlink block carries the TFI 1 allocated by the base station to itself, and the terminal F can determine that the downlink block is sent to itself, and the terminal F will continue to receive and decode the data in the downlink block.
  • the terminal F also decodes that the downlink block carries USF1, but as described above, since the downlink block carries TSC1, and the TSC1+USF1 is different from the TSC2+USF1 allocated by the base station to the terminal F, the terminal F can determine the base station. It does not schedule its own uplink, and terminal F does not transmit data upstream.
  • the terminal E sends an uplink block to the base station.
  • this embodiment does not limit the manner in which the terminal knows each TSC used by the network.
  • the base station may notify the terminal by using each TSC used by the network, or the base station sends a certain signaling to the terminal. The way to inform the terminal; and the TSCs used by the base station are pre-configured.
  • FIG. 8 is a schematic structural diagram of an embodiment of a base station according to the present invention.
  • the base station may perform the method of any embodiment of the present invention.
  • the base station may include: an information distribution unit 81 and a data transceiver unit 82;
  • the information distribution unit 81 is configured to allocate an uplink scheduling parameter to the at least two terminals, where the uplink scheduling parameter includes: an uplink state identifier USF and a training sequence TSC, such that the at least two terminals have the same USF and different TSCs. Said at least two terminals are multiplexed on the same packet data channel PDCH;
  • the data transceiver unit 82 is configured to send a downlink block on the PDCH, where the uplink scheduling parameter carried in the downlink block only includes an uplink scheduling parameter of one terminal of at least two terminals allocated by the information distribution unit, so as to receive And determining, by the terminal to the downlink block, whether to send an uplink block according to the uplink scheduling parameter carried in the downlink block and an uplink scheduling parameter that is allocated by the information allocation unit to the terminal that receives the downlink fast.
  • the data transceiving unit 82 is further configured to receive an uplink block that is sent by the one terminal on the PDCH, where the uplink block includes the uplink scheduling that is allocated by the information distribution unit to the one terminal.
  • the base station in this embodiment allocates uplink scheduling parameters to at least two terminals, so that the at least two terminals have the same USF and different TSCs, so that different TSCs are used to distinguish terminals with the same USF, instead of just Differentiating terminals according to different USFs, adding uplink PDCH
  • the number of terminals that can be reused increases the system capacity.
  • FIG. 9 is a schematic structural diagram of a terminal according to an embodiment of the present invention.
  • the terminal may perform the method according to any embodiment of the present invention.
  • the terminal may include: an information receiving unit 91, a data transceiver unit 92, and a data processing unit 93; among them,
  • the information receiving unit 91 is configured to receive an uplink scheduling parameter that is allocated by the base station to the terminal, where the uplink scheduling parameter includes: an uplink state identifier USF and a training sequence TSC;
  • the data transceiver unit 92 is configured to receive, on the packet data channel PDCH, a downlink block sent by the base station;
  • the data processing unit 93 is configured to determine, according to the uplink scheduling parameter carried in the downlink block that is received by the data transceiver unit, and the allocated uplink scheduling parameter that is received by the information receiving unit, whether to send an uplink block, and if yes, And instructing the data transceiver unit to send an uplink block to the base station on the PDCH.
  • the data processing unit 93 is specifically configured to: if it is determined that the TSC in the downlink block received by the data transceiver unit is the same as the TSC in the uplink scheduling parameter received by the information receiving unit, When the USF in the downlink block is the same as the USF in the uplink scheduling parameter received by the information receiving unit, the data sending and receiving unit is instructed to send an uplink block to the base station on the PDCH.
  • the data processing unit 93 is specifically configured to: if the TSC in the uplink scheduling parameter received by using the information receiving unit successfully decodes the downlink block received by the data transceiver unit, and obtain the Determining, by the USF in the downlink block, that the TSC in the downlink block is the same as the TSC in the uplink scheduling parameter received by the information receiving unit; determining the USF in the downlink block Whether the USF in the uplink scheduling parameter received by the information receiving unit is the same, and if yes, determining the USF in the downlink block and the uplink scheduling parameter received by the information receiving unit The USF is the same.
  • the data processing unit 93 is specifically configured to: use each TSC used by the base station to attempt to decode the downlink block, and determine, in the TSC, a target TSC capable of decoding the downlink block; if the target TSC is The TSC in the uplink scheduling parameter received by the information receiving unit is the same, and the USF in the downlink block obtained by decoding the downlink block by the target TSC and the information received by the information receiving unit If the USF in the uplink scheduling parameter is the same, then the The USF in the downlink block is the same as the USF in the uplink scheduling parameter received by the information receiving unit, and the TSC in the downlink block and the uplink scheduling received by the information receiving unit The TSCs in the parameters are the same.
  • the terminal in this embodiment receives the uplink scheduling parameter allocated by the base station, where the uplink scheduling parameter includes the USF and the TSC, and receives the downlink block sent by the base station, and according to the uplink scheduling parameter carried in the downlink block and the uplink scheduling allocated by the base station to the terminal.
  • the parameter determines whether to send the uplink block, and if yes, sends the uplink block to the base station, so that the terminal can determine whether to send the uplink data according to the USF and the TSC, so that the terminal with the same USF is distinguished by using different TSCs in the uplink scheduling process.
  • the number of terminals that can be multiplexed by the uplink PDCH is increased, and the system capacity is improved.
  • the eighth embodiment provides a data transmission system including the above-described base station shown in Fig. 8 and the terminal shown in Fig. 9 described above.
  • the aforementioned program can be stored in a computer readable storage medium.
  • the program when executed, performs the steps including the above-described method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as ROM, RAM, disk or optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供一种数据传输方法和装置,其中方法包括:向至少两个终端分配上行调度参数,所述上行调度参数包括USF和TSC,使得所述至少两个终端具有相同的USF和不同的TSC,所述至少两个终端复用在同一个分组数据信道PDCH上;在所述PDCH上发送下行块,所述下行块中携带的上行调度参数只包含所述至少两个终端中一个终端的上行调度参数,以使得接收到所述下行块的终端根据所述下行块中携带的所述上行调度参数和分配给所述接收到所述下行块的所述终端的上行调度参数确定是否发送上行块。本发明增加了PDCH上复用的终端个数,提升了系统容量。

Description

数据传输方法和装置
技术领域 本发明涉及通信技术, 尤其涉及一种数据传输方法和装置。
背景技术
随着网络技术的不断发展, 通用分组无线业务 (General Packet Radio Service, 简称: GPRS ) 得到了广泛的应用。
GPRS中所有的数据传输都是通过建立临时块流 (Temporary Block Flow, 简称: TBF)来完成的, 一个 TBF用于完成若干用户数据 (如点击网页上的一 个链接所产生的数据) 的传输。 对于上行 TBF, 由于多个终端可能复用在同 一个分组数据信道 (Packet Data Channel , 简称 PDCH) 上, 为避免冲突, 网络必须通过一定的方式决定某个 PDCH 的每一个上行无线块资源属于哪一 个终端 (即哪一个终端可以在该上行无线块上发送数据) 。
目前 GPRS网络中采用的是基于上行状态标识 (Upl ink State Flag, 简 称: USF) 的上行资源分配方式: 网络在建立上行 TBF 时, 给终端分配一个 USF, 终端监视下行 PDCH上的无线块, 如果某个无线块的头部中携带的 USF 与分配给自己的 USF是相同的,则表明该终端可以在该下行 PDCH对应的上行 PDCH的下一个或多个无线块进行数据传输。
但是, 由于 USF只携带 3个信息比特, 最多只能存在 2的 3次方个不同 的 USF, 即一个上行 PDCH最多只能复用 8个终端。 当大量终端需要同时或在 同一个时间段内接入时, 则会因为 PDCH资源不足而被拒绝接入, 并因为终端 的反复尝试接入导致更多不必要的接入冲突和接入失败, 降低了无线接入的 成功率, 因此, 如何增加上行 PDCH复用的终端个数以提升系统容量成为迫切 需要解决的问题。 发明内容 本发明提供一种数据传输方法和装置, 以增加上行 PDCH复用的终端个 数, 提升系统容量。 第一方面, 提供一种数据传输方法, 包括:
向至少两个终端分配上行调度参数, 所述上行调度参数包括上行状态标 识 USF和训练序列 TSC ,使得所述至少两个终端具有相同的 USF和不同的 TSC , 所述至少两个终端复用在同一个分组数据信道 PDCH上;
在所述 PDCH上发送下行块,所述下行块中携带的上行调度参数只包含分 配给所述至少两个终端中一个终端的上行调度参数, 以使得接收到所述下行 块的终端根据所述下行块中携带的所述上行调度参数和分配给所述接收到所 述下行块的所述终端的上行调度参数确定是否发送上行块。
结合第一方面, 在第一种可能的实现方式中, 所述在所述 PDCH上发送下 行块之后, 还包括: 接收所述一个终端在所述 PDCH上发送的上行块, 所述上 行块中包括为所述一个终端分配的所述上行调度参数中的 TSC; 使用为所述 一个终端分配的所述 TSC解码所述上行块。
第二方面, 提供一种数据传输方法, 包括:
终端接收基站分配给所述终端的上行调度参数, 所述上行调度参数包括 上行状态标识 USF和训练序列 TSC;
所述终端在分组数据信道 PDCH上接收所述基站发送的下行块;
所述终端根据所述下行块中携带的上行调度参数和所述基站分配给所述 终端的所述上行调度参数确定是否发送上行块, 若是, 则在所述 PDCH上向所 述基站发送上行块。
结合第二方面, 在第一种可能的实现方式中, 所述终端根据所述下行块 中携带的上行调度参数和所述基站分配给所述终端的所述上行调度参数, 确 定是否发送上行块, 包括: 所述终端若确定所述下行块中的 TSC与所述基站 分配给所述终端的所述上行调度参数中的 TSC相同, 且所述下行块中的 USF 与所述基站分配给所述终端的所述上行调度参数中的 USF相同时, 则确定向 所述基站发送上行块。
结合第二方面的第一种可能的实现方式, 在第二种可能的实现方式中, 所述确定所述下行块中的 TSC与所述基站分配给所述终端的所述上行调度参 数中的 TSC相同, 且所述下行块中的 USF与所述基站分配给所述终端的所述 上行调度参数中的 USF相同, 包括: 所述终端若使用所述基站分配给所述终 端的所述上行调度参数中的所述 TSC成功解码所述下行块, 并获得所述下行 块中的所述 USF , 则确定所述下行块中的所述 TSC与所述基站分配给所述终 端的所述上行调度参数中的所述 TSC相同; 所述终端判断所述下行块中的所 述 USF与所述基站分配给所述终端的所述上行调度参数中的所述 USF是否相 同, 若是, 则确定所述下行块中的所述 USF与所述基站分配给所述终端的所 述上行调度参数中的所述 USF相同。
结合第二方面的第一种可能的实现方式, 在第三种可能的实现方式中, 所述确定所述下行块中的 TSC与所述基站分配给所述终端的所述上行调度参 数中的 TSC相同, 且所述下行块中的 USF与所述基站分配给所述终端的所述 上行调度参数中的 USF相同, 包括: 所述终端使用所述基站使用的各 TSC尝 试解码所述下行块, 确定所述各 TSC中能够解码所述下行块的目标 TSC; 若 所述目标 TSC与所述基站分配给所述终端的所述上行调度参数中的所述 TSC 相同,并且通过所述目标 TSC解码所述下行块获得的所述下行块中的所述 USF 与所述基站分配给所述终端的所述上行调度参数中的所述 USF相同, 则所述 终端确定所述下行块中的所述 TSC与所述基站分配给所述终端的所述上行调 度参数中的所述 TSC相同, 且所述下行块中的所述 USF与所述基站分配给所 述终端的所述上行调度参数中的所述 USF相同。
第三方面, 提供一种基站, 包括:
信息分配单元, 用于向至少两个终端分配上行调度参数, 所述上行调度 参数包括上行状态标识 USF和训练序列 TSC , 使得所述至少两个终端具有相 同的 USF和不同的 TSC , 所述至少两个终端复用在同一个分组数据信道 PDCH 上;
数据收发单元, 用于在所述 PDCH上发送下行块, 所述下行块中携带的上 行调度参数只包含所述信息分配单元分配的至少两个终端中一个终端的上行 调度参数, 以使得接收到所述下行块的终端根据所述下行块中携带的所述上 行调度参数和所述信息分配单元分配给所述接收到所述下行快的所述终端的 上行调度参数确定是否发送上行块。
结合第三方面, 在第一种可能的实现方式中, 所述数据收发单元还用于: 接收所述一个终端在所述 PDCH上发送的上行块,所述上行块中包括为所述信 息分配单元为所述一个终端分配的所述上行调度参数中的 TSC; 使用为所述 一个终端分配的所述 TSC解码所述上行块。 第四方面, 提供一种终端, 包括:
信息接收单元, 用于接收基站分配给所述终端的上行调度参数, 所述上 行调度参数包括上行状态标识 USF和训练序列 TSC ;
数据收发单元, 用于在分组数据信道 PDCH上接收基站发送的下行块; 数据处理单元, 用于根据所述数据收发单元接收的所述下行块中携带的 上行调度参数、 以及所述信息接收单元接收的所述分配的上行调度参数, 确 定是否发送上行块, 若是, 则指示所述数据收发单元在所述 PDCH上向所述基 站发送上行块。
结合第四方面, 在第一种可能的实现方式中, 所述数据处理单元, 具体 用于: 若确定所述数据收发单元接收的所述下行块中的 TSC与所述信息接收 单元接收的所述上行调度参数中的 TSC相同, 且所述下行块中的 USF与所述 信息接收单元接收的所述上行调度参数中的 USF相同时, 则指示所述数据收 发单元在所述 PDCH上向所述基站发送上行块。
结合第四方面的第一种可能的实现方式, 在第二种可能的实现方式中, 所述数据处理单元, 具体用于: 若使用所述信息接收单元接收的所述上行调 度参数中的所述 TSC成功解码所述数据收发单元接收的所述下行块, 并获得 所述下行块中的所述 USF, 则确定所述下行块中的所述 TSC与所述信息接收 单元接收的所述上行调度参数中的所述 TSC相同; 判断所述下行块中的所述 USF与所述信息接收单元接收的所述上行调度参数中的所述 USF是否相同, 若是, 则确定所述下行块中的所述 USF与所述信息接收单元接收的所述上行 调度参数中的所述 USF相同。
结合第四方面的第一种可能的实现方式, 在第三种可能的实现方式中, 所述数据处理单元, 具体用于: 使用所述基站使用的各 TSC尝试解码所述下 行块, 确定所述各 TSC中能够解码所述下行块的目标 TSC ; 若所述目标 TSC 与所述信息接收单元接收的所述上行调度参数中的所述 TSC相同, 并且通过 所述目标 TSC解码所述下行块获得的所述下行块中的所述 USF与所述信息接 收单元接收的所述上行调度参数中的所述 USF相同, 则确定所述下行块中的 所述 USF与所述信息接收单元接收的所述上行调度参数中的所述 USF相同, 且所述下行块中的所述 TSC与所述信息接收单元接收的所述上行调度参数中 的所述 TSC相同。 第五方面, 提供一种数据传输系统, 包括: 上述第三方面中任一种实现 方式的基站以及上述第四方面中任一种实现方式的终端。
本发明提供的数据传输方法和装置的技术效果是: 通过向至少两个终端 分配上行调度参数, 使得该至少两个终端具有相同的 USF和不同的 TSC, 实 现了利用不同的 TSC区分具有相同 USF的终端,而不再是仅仅根据不同的 USF 来区分终端, 增加了上行 PDCH可以复用的终端个数, 提升了系统容量。 附图说明 图 1为本发明数据传输方法实施例的应用架构图;
图 2为本发明数据传输方法一实施例的流程示意图;
图 3为本发明数据传输方法另一实施例的流程示意图;
图 4为本发明数据传输方法另一实施例中的普通脉冲示意图;
图 5为本发明数据传输方法又一实施例的流程示意图;
图 6为本发明数据传输方法又一实施例的流程示意图;
图 7为本发明数据传输方法又一实施例的流程示意图;
图 8为本发明基站实施例的结构示意图;
图 9为本发明终端实施例的结构示意图。
具体实施方式
图 1为本发明数据传输方法实施例的应用架构图, 在当前的例如通用分 组无线服务技术 (General Packet Radio Service, 简称: GPRS)和增强 GPRS
(Enhanced GPRS , 简称: EGPRS ) 中均是以块为单位来传输上下行数据的。 基站向终端传输的是下行块, 终端向基站传输的是上行块。 数据传输所在的 时频资源即 PDCH, 可以被多个终端同时占用, 例如一条上行 PDCH可以被图 1 中所示的终端 A和终端 B占用。
其中, 终端在向基站发送上行块时, 不能随意发送数据, 必须等待基站 调度才可以发送上行块; 例如, 当终端想要向基站发送上行数据时, 调度方 式可以包括如下步骤:
参数下发阶段: 终端会向基站发送用于表示自己将发送数据的请求, 基 站据此与终端之间建立上行 TBF, 向终端发送控制消息 (例如, immediate assignment控制消息) ; 该控制消息主要是用于向终端发送一些数据传输所 需要的参数, 包括: USF (终端判断基站是否调度自己上行时需要依据该参 数) 、 TSC (终端根据该 TSC解码下行块) 等; 此外, 如果基站想要向终端发 送下行数据, 则基站可以与终端建立下行 TBF, 并在控制消息中向终端下发 临时块流标识 (Temporary Flow Identity, 简称: TFI ) (终端根据 TFI判 断下行块是否是发送给自己的) 等;
下行调度阶段: 基站在向终端发送上述控制消息后, 将向终端发送下行 块; 该下行块包括块头部分 (Header) 和数据部分 (Data) , 基站在下行块 的块头部分携带 TFI和 USF, 并在下行块的数据部分携带 TSC, 其中的 TFI是 该下行块所下发的终端对应的 TFI; 该下行块中还包括上行调度参数, 该上 行调度参数是用于表示将要调度下一个上行块发送数据的终端的, 终端可以 根据该上行调度参数判断当前基站是否调度自己发送上行块。
上行发送阶段: 如果终端根据上述的下行块中包括的上行调度参数, 确 定基站调度上行的终端是自己, 则终端将在下一个上行块向基站发送数据。 此外, 如果该终端还与基站之间建立了下行 TBF, 则终端还会根据下行块块 头中包括的 TFI , 判断该下行块的数据部分是否是发送给自己的, 如果下行 块块头中的 TFI与参数下发阶段基站分配的 TFI相同, 则表明这是发送给自 己的, 终端将继续解码下行块的数据部分。
即, 基站和终端之间, 如果基站有数据要下发至终端则两者之间建立下 行 TBF, 终端根据下行块块头中的 TFI判断下行块是否是基站发送给自己的; 如果终端有数据要发送至基站则两者之间建立上行 TBF, 终端根据下行块块 头中的上行调度参数 (例如包括 USF) 判断基站是否调度自己上行。
本实施例中, 为了使得上行复用的用户数增加, 对上述的上行调度参数 进行了设计, 如下通过与现有技术相比较进行说明: 现有技术的上行调度参 数仅仅是 USF, 通过 USF来区分不同的终端, 例如, 基站如果想调度图 1中 的终端 A和终端 B上行复用 PDCH, 则在下行块中携带终端 A对应的 USF1 , 终 端 A发现该下行块中携带的 USF1即是在参数下发阶段基站分配的 USF1 , 则 在下一个上行块开始发送数据给基站; 同理, 基站也会在发送给终端 B的下 行块中携带终端 B对应的 USF2, 终端 B根据该 USF2开始上行发送数据。 即 现有的是通过不同的 USF来区分不同的终端, 由于 USF仅有 3比特, 所以最 多有 8个不同的 USF, 也导致仅能最多 8个终端上行复用。 而本实施例, 将 上行调度参数包括: USF和 TSC,即通过 USF+TSC的整体区分终端,其中包括: 至少两个终端的 USF相同且 TSC不同的情况。
具体的, 参见图 1, 终端 A对应的上行调度参数是 USF+TSC1 , 终端 B对 应的上行调度参数是 USF+TSC2 , 即这两个终端就是 USF相同且 TSC不同。 基 于此, 基站在参数下发阶段为终端分配相关参数时, 就以 USF+TSC1来区分终 端, 比如, 基站可以向终端 A下发 USF和 TSC1 , 向终端 B下发 USF和 TSC2。 在下行调度阶段时, 基站如果将调度终端 A上行发送数据, 则会在下行块中 携带上述为终端 A分配的 USF和 TSC1 ; 终端 A接收到该下行块后, 就需要确 定下行块中的 USF和 TSC1 ,与在参数下发阶段基站分配给自己的 USF和 TSC1 是否相同, 如果相同则终端 A可以确定基站在调度自己。 因此, 基站在下行 块中携带的上行调度参数就是以 USF+TSC的组合来标识终端, 而不是现有仅 根据 USF, 终端也以 USF+TSC的组合来判断基站是否调度上行, 而不是现有 仅根据 USF判断。
本实施例的基站调度上行终端的方式, 很明显可以增加同时复用的用户 数(即终端数) , 比如, 假设基站调度两个终端复用 PDCH, 则需要使用 USF1 和 USF2区分;而采用本实施例的方式, USF1和 USF2分别结合两个不同的 TSC, 即 USF1+TSC1、 USF1+TSC2、 USF2+TSCK USF2+TSC2 , 这样即使只有两个 USF (USF1和 USF2 ) , 由于结合了 TSC的组合, 可以用于区分四个终端, 基站就 可以调度四个终端复用 PDCH。
下面通过几个实施例来说明本发明的数据传输方法:
实施例一
图 2为本发明数据传输方法一实施例的流程示意图, 本实施例的方法可 以是基站执行; 如图 2所示, 该方法可以包括:
201、 向至少两个终端分配上行调度参数, 所述上行调度参数包括上行状 态标识 USF和训练序列 TSC, 使得所述至少两个终端具有相同的 USF和不同 的 TSC, 所述至少两个终端复用在同一个分组数据信道 PDCH上。
其中, 当基站或者终端有数据要发送时, 基站都会向终端下发上行调度 参数, 基站是将为终端分配的上行调度参数发送给对应的终端; 例如, 为终 端 A分配的 USF+TSC1, 为终端 B分配的是 USF+TSC2 , 则基站将上行调度参数 USF+TSC1发送给终端 A, 将上行调度参数 USF+TSC2发送给终端 B。 基站向终端发送上述的上行调度参数的方式, 例如可以是, 基站向所述 至少两个终端分别发送建立临时块流的控制消息, 在终端与基站之间建立 TBF, 所述控制消息中携带向所述终端分配的所述上行调度参数; 例如, 当有 至少两个终端都想向基站上行发送数据时, 基站可以向该至少两个终端分别 发送控制消息。 该控制消息中包含: 基站分配给该终端的 USF和 TSC等。 本 实施例将 USF和 TSC称为上行调度参数, 即控制消息中携带上行调度参数。
并且,本实施例中的至少两个终端,可以是具有相同的 USF和不同的 TSC; 例如图 1所示的, 终端 A和终端 B的 USF相同但 TSC不同。 此外, 本实施例 中的至少两个终端是复用在同一个 PDCH上, 比如图 1中所示的, 一条上行 PDCH可以被图 1中所示的终端 A和终端 B占用。
202、 在所述 PDCH上发送下行块, 所述下行块中携带的上行调度参数只 包含分配给所述至少两个终端中一个终端的上行调度参数, 以使得接收到所 述下行块的终端根据所述下行块中携带的所述上行调度参数和分配给所述接 收到所述下行块的所述终端的上行调度参数确定是否发送上行块。
其中, 基站向终端发送的下行块中, 携带该下行块发送的目的终端对应 的 TFI , 以使得终端据此识别该下行块是发送给自己的; 此外, 基站还在该 下行块中携带调度上行的终端的上行调度参数, 以使得接收到该下行块的终 端根据下行块中携带的上述上行调度参数、 以及从基站接收到的分配给接收 到所述下行块的终端的上行调度参数, 判断是否接收到了基站的调度上行指 示, 即接收到该下行块的终端会根据所述下行块中携带的上行调度参数和基 站分配的上行调度参数确定是否向基站发送上行块。
例如, 基站向图 1中的终端 A发送的下行块中包括: 在 201中为终端 A 分配的 USF和 TSC1。 其中, 可以将 USF携带在下行块的块头部分, 将 TSC携 带在下行块的数据部分, 不改变块头的结构。 基站发送的所述下行块可能是 发送给终端 A之外的其他终端的, 所以所述其他终端可以根据下行块块头中 的 TFI判断该下行块是否是发送给自己的。
进一步的, 基站在 PDCH上发送下行块之后, 如果终端根据下行块中的上 行调度参数确认基站在调度自己上行, 则终端会向基站发送上行块; 基站可 以接收该终端在 PDCH上发送的上行块,所述上行块中包括基站为该终端分配 的上行调度参数中的 TSC。 基站可以使用为终端分配的所述 TSC解码所述上 行块获得终端发送的上行数据。
本实施例的数据传输方法, 通过向至少两个终端分配上行调度参数, 使 得该至少两个终端具有相同的 USF和不同的 TSC, 实现了利用不同的 TSC区 分具有相同 USF的终端, 而不再是仅仅根据不同的 USF来区分终端, 增加了 上行 PDCH可以复用的终端个数, 提升了系统容量。
实施例二
图 3为本发明数据传输方法另一实施例的流程示意图, 本实施例的方法 可以是终端执行; 如图 3所示, 该方法可以包括:
301、终端接收基站分配给所述终端的上行调度参数, 所述上行调度参数 包括上行状态标识 USF和训练序列 TSC;
例如, 终端可以从基站发送的建立临时块流的控制消息中获得携带的所 述上行调度参数, 该控制消息中包含: 基站分配给该终端的 USF和 TSC等。
302、 终端在分组数据信道 PDCH上接收所述基站发送的下行块; 其中, 基站向终端发送的下行块中, 携带该下行块发送的目的终端对应 的 TFI , 以使得终端据此识别该下行块是发送给自己的; 此外, 基站还在该 下行块中携带调度上行的终端的上行调度参数。
303、终端根据所述下行块中携带的上行调度参数和所述基站分配给所述 终端的所述上行调度参数确定是否发送上行块, 若是, 则在所述 PDCH上向所 述基站发送上行块。
可选的, 在本步骤中, 终端根据所述下行块中携带的上行调度参数和所 述基站分配给所述终端的所述上行调度参数, 确定是否发送上行块, 可以采 用如下方式:
终端若确定下行块中的 TSC与基站分配给终端的上行调度参数中的 TSC 相同,且所述下行块中的 USF与基站分配给所述终端的上行调度参数中的 USF 相同时, 则终端可以确定向所述基站发送上行块。
进一步的, 终端在判断上述的下行块中的 TSC和 USF与基站分配的上行 调度参数中的 TSC和 USF分别相同时, 也可以采用多种方式。
一种可选方式是, 终端可以使用基站分配给所述终端的所述上行调度参 数中的 TSC解码下行块, 如果解码成功并获得下行块中的 USF, 则终端就可 以确定所述下行块中的 TSC与所述基站分配给所述终端的所述上行调度参数 中的所述 TSC相同; 并且终端判断所述下行块中的所述 USF与所述基站分配 给所述终端的所述上行调度参数中的所述 USF是否相同, 若是, 则确定所述 下行块中的所述 USF与所述基站分配给终端的所述上行调度参数中的所述 USF相同。
具体的, 以图 1中的终端 A为例, 则终端 A以 TSC1解码下行块。 在解码 下行块的块头后, 得到块头中携带的 TFI和 USF, 例如上述的, 某些终端可 以根据 TFI , 判断该下行块是否是发送给自己的, 而该某些终端是在之前已 经建立了与基站之间的下行 TBF, 并且接收了基站通过控制消息下发的下行 TFI , 所以该某些终端知道基站要发送数据给自己, 此时就可以根据下行块块 头中的 TFI判断该 TFI与基站分配的 TFI是否相同, 若相同则确定是发送给 自己的。 而终端 A是要向基站上行传输数据, 终端 A与基站之间建立了上行 TBF,并且接收了基站通过控制消息下发的上行 USF和 TSC (即上行调度参数), 则此时终端 A可以根据下行块中的上行调度参数判断基站是否在调度自己上 行。
需要说明的是, 只有当终端用于解码的 TSC与下行块中携带的 TSC相同 时, 才能正确解码出当前的下行块; 比如, 终端 A采用 TSC1解码下行块, 则 如果下行块的数据部分携带的 TSC是该 TSC1时,终端 A才能正确解码下行块 的块头, 得到上述的 TFI和 USF; 否则, 终端 A不能解码下行块, 比如如果 下行块的数据部分携带的 TSC是 TSC2 , 则终端 A不能解码获得上述的 TFI和 USF。
如上所述的, 终端只要能利用 TSC解码获得下行块块头中的 USF, 则已 经表明该下行块中的 TSC与基站分配给终端的 TSC相同, 那么此时如果下行 块中的 USF也与基站分配的 USF相同, 则可以确定下行块中的 USF和 TSC与 基站分配的上行调度参数相同, 具体是下行块中的 USF与所述基站分配给所 述终端的上行调度参数中的 USF相同, 并且下行块中的 TSC与所述基站分配 给所述终端的上行调度参数中的 TSC相同, 也即基站在调度该终端上行。
另一种可选方式是, 终端可以使用所述基站使用的各 TSC尝试解码所述 下行块, 确定所述各 TSC中能够解码所述下行块的目标 TSC;
若所述目标 TSC与所述基站分配给所述终端的所述上行调度参数中的所 述 TSC相同, 并且通过所述目标 TSC解码所述下行块获得的所述下行块中的 所述 USF与所述基站分配给所述终端的所述上行调度参数中的所述 USF相同, 则所述终端可以确定下行块中的 TSC与基站分配给所述终端的所述上行调度 参数中的所述 TSC相同, 且所述下行块中的所述 USF与所述基站分配给所述 终端的所述上行调度参数中的所述 USF相同。
进一步的, 终端在确定基站调度自己上行后, 终端将在下一个上行块向 基站发送数据, 该上行块的数据部分包括基站为终端分配的 TSC。 上行块包 括 4个 burst , 构成数据块的 burst是普通脉冲(Normal Burst , 简称: NB) , 每个 NB包含 26比特的 TSC。 该 NB的结构可以参见图 4, 图 4为本发明数据 传输方法另一实施例中的普通脉冲示意图。
而基站在接收到该终端发送的上行块时, 将使用之前为终端分配的 TSC 解码上行块获得终端发送的上行数据。
本实施例的数据传输方法, 终端接收基站分配的上行调度参数, 所述上 行调度参数包括 USF和 TSC; 终端接收基站发送的下行块, 并根据下行块中 携带的上行调度参数和基站分配给该终端的上行调度参数确定是否发送上行 块, 若是, 则向基站发送上行块, 实现了终端能够同时根据 USF和 TSC确定 是否发送上行数据, 从而实现了在上行调度过程中利用不同的 TSC区分具有 相同 USF的终端,而不再是仅仅根据不同的 USF来区分终端,增加了上行 PDCH 可以复用的终端个数, 提升了系统容量。
实施例三
图 5为本发明数据传输方法又一实施例的流程示意图, 本实施例中, 旧 终端 (即仅依据 USF判断基站是否调度自己上行的终端) 在接收到基站发送 的本实施例的不同 TSC时, 也能够正常工作, 如图 5所示, 包括:
501、 基站向终端分配上行调度参数, 所述上行调度参数包括: 上行状态 标识 USF和训练序列 TSC;
其中, 分配方法可以参见 201, 例如图 1所示的, 基站向终端 A分配 USF 和 TSC1, 向终端 B分配 USF和 TSC2。
502、 基站向终端发送下行块, 该下行块中包括 USF和 TSC1 ;
例如, 基站向终端 A发送下行块, 并且想要调度该终端 A在下一个上行 块发送数据, 则该基站可以在下行块中包括与终端 A对应的 USF和 TSC1。 503、 终端解码下行块, 得知基站调度自己上行;
其中, 仍以终端 A为例, 并且假设终端 A是旧终端, 即仅依据 USF判断 基站是否调度自己上行的终端。终端 A使用之前基站分配的 TSC1去解码下行 块, 由于下行块中携带的也是 TSC1 , 所以终端 A能够正确解码。 终端 A可以 获得下行块块头中的 TFI、 USF, 终端 A根据 USF判断, 比较该 USF与 501中 基站分配的 USF, 若两者相同, 则终端 A在下一个上行块发送自己的数据给 基站。
而对于终端 B来说, 假设终端 B也是旧终端, 终端 B使用之前基站分配 的 TSC2去解码下行块, 由于下行块中携带的是 TSC1 , 所以终端 B无法正确 解码该下行块, 则终端 B是不能够获知下行块块头中包含的 USF的, 也就不 会进行上行传输。
504、 终端向基站发送上行块, 所述上行块中包括: 基站分配的 TSC。
505、 基站使用为终端分配的 TSC解码上行块。
实施例四
图 6为本发明数据传输方法又一实施例的流程示意图, 本实施例中, 下 行块下发的终端与调度上行的终端可以不同, 假设存在终端 C和终端 D, 基 站为终端 C分配 USF1+TSC1 , 为终端 D分配 TFI2+ TSC1 , 即这两个终端的 TSC 相同, 并且基站是想将下行块下发至终端 D, 且调度终端 C上行。 如图 6所 示, 该方法可以包括:
601、 基站向终端分配上行调度参数, 所述上行调度参数包括: 上行状态 标识 USF和训练序列 TSC;
例如, 基站与终端 C之间建立上行 TBF, 并通过控制消息向终端 C分配 USF1和 TSC1 ; 基站与终端 D之间建立下行 TBF, 并通过控制消息向终端 D分 配 TFI2和 TSC1。
602、 基站向终端发送下行块, 该下行块中包括: TFI2、 USFl和 TSCl ; 例如, 基站向终端 D发送下行块, 想要调度该终端 C在下一个上行块发 送数据, 则该基站可以在下行块中包括: 与终端 D对应的 TFI2、 与终端 C对 应的 USF1和 TSC1。
603、 终端 C解码下行块, 得知基站调度自己上行, 终端 D得知该下行块 是发送给自己的; 例如, 由于基站为终端 C和终端 D分配的都是 TSC1 , 两者都采用 TSC1 解码下行块; 基站发送的下行块中包括的是 TSC1 , 则终端 C和终端 D都能够 解码获得下行块块头部分的 TFI2和 USF1。 终端 C判断块头中的 USF1与基站 分配给自己的 USF1相同,则可以确定下行块中包括的 USF和 TSC与基站分配 的上行调度参数相同 (能正确解码已经表明 TSC相同) 。
而对于终端 D, 其根据下行块块头部分的 TFI2 , 判断块头中的 TFI2与之 前基站分配给自己的 TFI2相同,则可以确定下行块上行调度参数是发送给终 端 D的, 终端 D可以继续使用 TSC1解码下行块的数据部分。
604、 终端 C向基站发送上行块。
实施例五
图 7为本发明数据传输方法又一实施例的流程示意图, 本实施例中, 假 设网络使用的 TSC有两个, 分别是 TSC1和 TSC2 ; 存在终端 E和终端 F, 终端 E建立上行 TBF, 基站为终端 E分配 USF1+TSC1 , 终端 F建立上行 TBF, 基站 为终端 F分配 TSC2+ USF1 , 终端 F还建立下行 TBF, 基站为终端 F分配 TFI 1。 本实施例是假设基站发送的下行块是发送给终端 F的, 并且要调度终端 E上 行, 且本实施例不限制终端解码下行块的 TSC, 终端可以在接收到下行块后 尝试用基站使用的多个 TSC解码下行块, 该基站使用的多个 TSC指的是终端 所在的基站使用的各 TSC。 具体的如图 7所示, 包括:
701、 基站发送下行块, 该下行块中包括: TSC1、 USF1和 TFI 1 ;
例如, 基站向终端 F发送下行块, 则需要在下行块中包括该终端 F建立 的下行 TBF对应的 TFI 1 ; 并且, 基站还想要调度终端 E在下一个上行块发送 数据, 则该基站还需要在下行块包括与终端 E的上行 TBF对应的上行调度参 数, 即 USF1和 TSC1。
702、 终端解码下行块;
例如, 对于终端 E来说, 其也可以使用基站使用的各 TSC, 例如 TSC1和
TSC2尝试解码下行块, 最终可以确定 TSC1是能够解码下行块的, 表明该下 行块携带的是 TSC1 , 该 TSC1与基站分配给终端 E的 TSC相同; 并且, 解码 出的下行块块头部分携带的 USF经过比较也是基站分配给终端 E的 USF1 , 则 终端 E可以确定基站在调度自己上行。
对于终端 F来说, 其也可以使用网络中的各 TSC1和 TSC2尝试解码下行 块, 最终可以确定 TSC1是能够解码下行块的, 表明该下行块携带的是 TSC1。 终端 F还解码出下行块中携带的是基站分配给自己的 TFI 1 , 则终端 F可以确 定该下行块是发送给自己的, 则终端 F将继续接收并解码下行块中的数据。 此外, 终端 F还解码出下行块中携带的是 USF1 , 但是如上所述的, 由于下行 块携带的是 TSC1 , 该 TSC1+USF1与基站分配给终端 F的 TSC2+ USF1不同, 则终端 F可以确定基站并没有调度自己上行, 终端 F不会上行传输数据。
703、 终端 E向基站发送上行块。
此外, 本实施例并不限制终端得知网络使用的各 TSC的方式, 可选的, 例如, 基站可以通过广播的方式将网络使用的各 TSC告知终端, 或者基站通 过向终端发送某个信令的方式告知终端;而基站所使用的各 TSC是预配置的。
实施例六
图 8为本发明基站实施例的结构示意图, 该基站可以执行本发明任意实 施例的方法, 如图 8所示, 该基站可以包括: 信息分配单元 81和数据收发单 元 82 ; 其中,
信息分配单元 81, 用于向至少两个终端分配上行调度参数, 所述上行调 度参数包括: 上行状态标识 USF和训练序列 TSC, 使得所述至少两个终端具 有相同的 USF和不同的 TSC, 所述至少两个终端复用在同一个分组数据信道 PDCH上;
数据收发单元 82, 用于在所述 PDCH上发送下行块, 所述下行块中携带 的上行调度参数只包含所述信息分配单元分配的至少两个终端中一个终端的 上行调度参数, 以使得接收到所述下行块的终端根据所述下行块中携带的所 述上行调度参数和所述信息分配单元分配给所述接收到所述下行快的所述终 端的上行调度参数确定是否发送上行块。
进一步的, 所述数据收发单元 82, 还用于接收所述一个终端在所述 PDCH 上发送的上行块, 所述上行块中包括所述信息分配单元为所述一个终端分配 的所述上行调度参数中的所述 TSC; 并使用为所述一个终端分配的所述 TSC 解码所述上行块。
本实施例的基站, 通过向至少两个终端分配上行调度参数, 使得该至少 两个终端具有相同的 USF和不同的 TSC, 实现了利用不同的 TSC区分具有相 同 USF的终端, 而不再是仅仅根据不同的 USF来区分终端, 增加了上行 PDCH 可以复用的终端个数, 提升了系统容量。
实施例七
图 9为本发明终端实施例的结构示意图, 该终端可以执行本发明任意实 施例的方法, 如图 9所示, 该终端可以包括: 信息接收单元 91、 数据收发单 元 92和数据处理单元 93 ; 其中,
信息接收单元 91, 用于接收基站分配给所述终端的上行调度参数, 所述 上行调度参数包括: 上行状态标识 USF和训练序列 TSC;
数据收发单元 92, 用于在分组数据信道 PDCH上接收所述基站发送的下 行块;
数据处理单元 93, 用于根据所述数据收发单元接收的所述下行块中携带 的上行调度参数、 以及所述信息接收单元接收的所述分配的上行调度参数, 确定是否发送上行块, 若是, 则指示所述数据收发单元在所述 PDCH上向所述 基站发送上行块。
进一步的, 所述数据处理单元 93, 具体用于若确定所述数据收发单元接 收的所述下行块中的 TSC与所述信息接收单元接收的所述上行调度参数中的 TSC相同, 且所述下行块中的 USF与所述信息接收单元接收的所述上行调度 参数中的 USF相同时,则指示所述数据收发单元在所述 PDCH上向所述基站发 送上行块。
进一步的, 所述数据处理单元 93, 具体用于若使用所述信息接收单元接 收的所述上行调度参数中的所述 TSC成功解码所述数据收发单元接收的所述 下行块, 并获得所述下行块中的所述 USF, 则确定所述下行块中的所述 TSC 与所述信息接收单元接收的所述上行调度参数中的所述 TSC相同; 判断所述 下行块中的所述 USF与所述信息接收单元接收的所述上行调度参数中的所述 USF是否相同, 若是, 则确定所述下行块中的所述 USF与所述信息接收单元 接收的所述上行调度参数中的所述 USF相同。
进一步的, 所述数据处理单元 93, 具体用于使用所述基站使用的各 TSC 尝试解码所述下行块, 确定所述各 TSC中能够解码所述下行块的目标 TSC; 若所述目标 TSC与所述信息接收单元接收的所述上行调度参数中的所述 TSC 相同,并且通过所述目标 TSC解码所述下行块获得的所述下行块中的所述 USF 与所述信息接收单元接收的所述上行调度参数中的所述 USF相同, 则确定所 述下行块中的所述 USF与所述信息接收单元接收的所述上行调度参数中的所 述 USF相同, 且所述下行块中的所述 TSC与所述信息接收单元接收的所述上 行调度参数中的所述 TSC相同。
本实施例的终端, 接收基站分配的上行调度参数, 所述上行调度参数包 括 USF和 TSC; 接收基站发送的下行块, 并根据下行块中携带的上行调度参 数和基站分配给该终端的上行调度参数确定是否发送上行块, 若是, 则向基 站发送上行块,实现了终端能够同时根据 USF和 TSC确定是否发送上行数据, 从而实现了在上行调度过程中利用不同的 TSC区分具有相同 USF的终端, 而 不再是仅仅根据不同的 USF来区分终端,增加了上行 PDCH可以复用的终端个 数, 提升了系统容量。
实施例八
实施例八提供了一种数据传输系统, 包括上述图 8所示的基站和上述图 9所示的终端。
本领域普通技术人员可以理解: 实现上述各方法实施例的全部或部分步 骤可以通过程序指令相关的硬件来完成。 前述的程序可以存储于一计算机可 读取存储介质中。 该程序在执行时, 执行包括上述各方法实施例的步骤; 而 前述的存储介质包括: R0M、 RAM, 磁碟或者光盘等各种可以存储程序代码的 介质。
最后应说明的是: 以上各实施例仅用以说明本发明的技术方案, 而非对 其限制; 尽管参照前述各实施例对本发明进行了详细的说明, 本领域的普通 技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分或者全部技术特征进行等同替换; 而这些修改或者替换, 并 不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims

权 利 要 求 书
1、 一种数据传输方法, 其特征在于, 包括:
向至少两个终端分配上行调度参数, 所述上行调度参数包括上行状态标 识 USF和训练序列 TSC,使得所述至少两个终端具有相同的 USF和不同的 TSC , 所述至少两个终端复用在同一个分组数据信道 PDCH上;
在所述 PDCH上发送下行块,所述下行块中携带的上行调度参数只包含分 配给所述至少两个终端中一个终端的上行调度参数, 以使得接收到所述下行 块的终端根据所述下行块中携带的所述上行调度参数和分配给所述接收到所 述下行块的所述终端的上行调度参数确定是否发送上行块。
2、 根据权利要求 1所述的方法, 其特征在于, 所述在所述 PDCH上发送 下行块之后, 还包括:
接收所述一个终端在所述 PDCH上发送的上行块,所述上行块中包括为所 述一个终端分配的所述上行调度参数中的 TSC;
使用为所述一个终端分配的所述 TSC解码所述上行块。
3、 一种数据传输方法, 其特征在于, 包括:
终端接收基站分配给所述终端的上行调度参数, 所述上行调度参数包括 上行状态标识 USF和训练序列 TSC;
所述终端在分组数据信道 PDCH上接收所述基站发送的下行块;
所述终端根据所述下行块中携带的上行调度参数和所述基站分配给所述 终端的所述上行调度参数确定是否发送上行块, 若是, 则在所述 PDCH上向所 述基站发送上行块。
4、 根据权利要求 3所述的方法, 其特征在于, 所述终端根据所述下行块 中携带的上行调度参数和所述基站分配给所述终端的所述上行调度参数, 确 定是否发送上行块, 包括:
所述终端若确定所述下行块中的 TSC与所述基站分配给所述终端的所述 上行调度参数中的 TSC相同, 且所述下行块中的 USF与所述基站分配给所述 终端的所述上行调度参数中的 USF相同时, 则确定向所述基站发送上行块。
5、 根据权利要求 4所述的方法, 其特征在于, 所述确定所述下行块中的 TSC与所述基站分配给所述终端的所述上行调度参数中的 TSC相同, 且所述 下行块中的 USF与所述基站分配给所述终端的所述上行调度参数中的 USF相 同, 包括:
所述终端若使用所述基站分配给所述终端的所述上行调度参数中的所述
TSC成功解码所述下行块, 并获得所述下行块中的所述 USF, 则确定所述下行 块中的所述 TSC与所述基站分配给所述终端的所述上行调度参数中的所述 TSC相同;
所述终端判断所述下行块中的所述 USF与所述基站分配给所述终端的所 述上行调度参数中的所述 USF是否相同, 若是, 则确定所述下行块中的所述 USF与所述基站分配给所述终端的所述上行调度参数中的所述 USF相同。
6、 根据权利要求 4所述的方法, 其特征在于, 所述确定所述下行块中的 TSC与所述基站分配给所述终端的所述上行调度参数中的 TSC相同, 且所述 下行块中的 USF与所述基站分配给所述终端的所述上行调度参数中的 USF相 同, 包括:
所述终端使用所述基站使用的各 TSC尝试解码所述下行块, 确定所述各 TSC中能够解码所述下行块的目标 TSC;
若所述目标 TSC与所述基站分配给所述终端的所述上行调度参数中的所 述 TSC相同, 并且通过所述目标 TSC解码所述下行块获得的所述下行块中的 所述 USF与所述基站分配给所述终端的所述上行调度参数中的所述 USF相同, 则所述终端确定所述下行块中的所述 TSC与所述基站分配给所述终端的所述 上行调度参数中的所述 TSC相同, 且所述下行块中的所述 USF与所述基站分 配给所述终端的所述上行调度参数中的所述 USF相同。
7、 一种基站, 其特征在于, 包括:
信息分配单元, 用于向至少两个终端分配上行调度参数, 所述上行调度 参数包括上行状态标识 USF和训练序列 TSC , 使得所述至少两个终端具有相 同的 USF和不同的 TSC , 所述至少两个终端复用在同一个分组数据信道 PDCH 上;
数据收发单元, 用于在所述 PDCH上发送下行块, 所述下行块中携带的上 行调度参数只包含所述信息分配单元分配的至少两个终端中一个终端的上行 调度参数, 以使得接收到所述下行块的终端根据所述下行块中携带的所述上 行调度参数和所述信息分配单元分配给所述接收到所述下行快的所述终端的 上行调度参数确定是否发送上行块。
8、根据权利要求 7所述的基站,其特征在于,所述数据收发单元还用于: 接收所述一个终端在所述 PDCH上发送的上行块,所述上行块中包括所述 信息分配单元为所述一个终端分配的所述上行调度参数中的 TSC;
使用为所述一个终端分配的所述 TSC解码所述上行块。
9、 一种终端, 其特征在于, 包括:
信息接收单元, 用于接收基站分配给所述终端的上行调度参数, 所述上 行调度参数包括上行状态标识 USF和训练序列 TSC;
数据收发单元, 用于在分组数据信道 PDCH上接收所述基站发送的下行 块;
数据处理单元, 用于根据所述数据收发单元接收的所述下行块中携带的 上行调度参数、 以及所述信息接收单元接收的所述分配的上行调度参数, 确 定是否发送上行块, 若是, 则指示所述数据收发单元在所述 PDCH上向所述基 站发送上行块。
10、 根据权利要求 9所述的终端, 其特征在于, 所述数据处理单元, 具 体用于:
若确定所述数据收发单元接收的所述下行块中的 TSC与所述信息接收单 元接收的所述上行调度参数中的 TSC相同, 且所述下行块中的 USF与所述信 息接收单元接收的所述上行调度参数中的 USF相同时, 则指示所述数据收发 单元在所述 PDCH上向所述基站发送上行块。
11、 根据权利要求 10所述的终端, 其特征在于, 所述数据处理单元, 具 体用于:
若使用所述信息接收单元接收的所述上行调度参数中的所述 TSC成功解 码所述数据收发单元接收的所述下行块, 并获得所述下行块中的所述 USF, 则确定所述下行块中的所述 TSC与所述信息接收单元接收的所述上行调度参 数中的所述 TSC相同;
判断所述下行块中的所述 USF与所述信息接收单元接收的所述上行调度 参数中的所述 USF是否相同, 若是, 则确定所述下行块中的所述 USF与所述 信息接收单元接收的所述上行调度参数中的所述 USF相同。
12、 根据权利要求 10所述的终端, 其特征在于, 所述数据处理单元, 具 体用于: 使用所述基站使用的各 TSC尝试解码所述下行块, 确定所述各 TSC中能 够解码所述下行块的目标 TSC;
若所述目标 TSC与所述信息接收单元接收的所述上行调度参数中的所述 TSC相同, 并且通过所述目标 TSC解码所述下行块获得的所述下行块中的所 述 USF与所述信息接收单元接收的所述上行调度参数中的所述 USF相同, 则 确定所述下行块中的所述 USF与所述信息接收单元接收的所述上行调度参数 中的所述 USF相同, 且所述下行块中的所述 TSC与所述信息接收单元接收的 所述上行调度参数中的所述 TSC相同。
13、 一种数据传输系统, 其特征在于, 所述系统包括:
如权利要求 7或 8所述的基站和如权利要求 10至 12任一所述的终端。
PCT/CN2013/080909 2013-08-06 2013-08-06 数据传输方法和装置 WO2015017980A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201380001206.XA CN104770043A (zh) 2013-08-06 2013-08-06 数据传输方法和装置
PCT/CN2013/080909 WO2015017980A1 (zh) 2013-08-06 2013-08-06 数据传输方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/080909 WO2015017980A1 (zh) 2013-08-06 2013-08-06 数据传输方法和装置

Publications (1)

Publication Number Publication Date
WO2015017980A1 true WO2015017980A1 (zh) 2015-02-12

Family

ID=52460485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/080909 WO2015017980A1 (zh) 2013-08-06 2013-08-06 数据传输方法和装置

Country Status (2)

Country Link
CN (1) CN104770043A (zh)
WO (1) WO2015017980A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040090948A1 (en) * 2000-12-20 2004-05-13 Mika Forssell Method in a communications system for assigning transmission resources
CN102487513A (zh) * 2010-12-03 2012-06-06 华为技术有限公司 数据传输的方法和装置
CN102598830A (zh) * 2009-11-05 2012-07-18 瑞典爱立信有限公司 扩展usf寻址空间

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040090948A1 (en) * 2000-12-20 2004-05-13 Mika Forssell Method in a communications system for assigning transmission resources
CN102598830A (zh) * 2009-11-05 2012-07-18 瑞典爱立信有限公司 扩展usf寻址空间
CN102487513A (zh) * 2010-12-03 2012-06-06 华为技术有限公司 数据传输的方法和装置

Also Published As

Publication number Publication date
CN104770043A (zh) 2015-07-08

Similar Documents

Publication Publication Date Title
WO2017128878A1 (zh) 一种资源配置方法、网络侧设备、终端及计算机存储介质
EP3091803B1 (en) Data transmission method and device in device to device (d2d) communication
CN108353422B (zh) 用于无线通信系统中的侧链路通信的方法和设备
JP6480005B2 (ja) ユーザ装置及び通知方法
CN105453675B (zh) 用于执行设备到设备通信的方法和装置
AU2014305302B2 (en) Method and apparatus for transmitting and receiving resource allocation information in a wireless communication system
JP4675167B2 (ja) チャネル割り当て方法、無線通信システム、基地局装置、ユーザ端末
EP3100551B1 (en) Telecommunications apparatus and methods
CN108207036B (zh) 一种半持久调度的方法及装置
US20210258980A1 (en) Sidelink logical channel and resource configurations
EP1973358B1 (en) Method, base station and terminal for providing a VoIP connection
CN106488384B (zh) 一种发送数据包的方法及装置
CN107005851A (zh) 一种设备到设备d2d通信方法、装置及系统
EP3120635B1 (en) User device, network node and methods thereof
US20180359620A1 (en) D2D Communication Method And Device
WO2015085552A1 (zh) 数据传输方法及装置
JP5514192B2 (ja) ネットワークにおいて通信するための方法及びそのための無線局
CN107295643B (zh) 一种调度方法、装置和设备
EP3328144B1 (en) User equipment, network equipment, and data transmission method
US10149320B2 (en) Contention based access channel signaling
US9374820B2 (en) Dynamic temporary block flow scheduling
CN112805953A (zh) 通信装置、基础设施设备和方法
WO2014000165A1 (zh) 信息传输方法、网络节点、用户设备及系统
EP3087763B1 (en) System and method for indicating a periodic resource allocation
WO2015017980A1 (zh) 数据传输方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13890999

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13890999

Country of ref document: EP

Kind code of ref document: A1