WO2015017041A1 - Gas turbine engine shaft bearing configuration - Google Patents

Gas turbine engine shaft bearing configuration Download PDF

Info

Publication number
WO2015017041A1
WO2015017041A1 PCT/US2014/043175 US2014043175W WO2015017041A1 WO 2015017041 A1 WO2015017041 A1 WO 2015017041A1 US 2014043175 W US2014043175 W US 2014043175W WO 2015017041 A1 WO2015017041 A1 WO 2015017041A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
gas turbine
turbine engine
shaft
low pressure
Prior art date
Application number
PCT/US2014/043175
Other languages
French (fr)
Inventor
Brian D. Merry
Gabriel L. Suciu
Todd A. Davis
Gregory E. Reinhardt
Enzo Dibenedetto
Original Assignee
United Technologies Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US14/012,576 external-priority patent/US10400629B2/en
Application filed by United Technologies Corporation filed Critical United Technologies Corporation
Priority to EP14831206.9A priority Critical patent/EP3027877A4/en
Publication of WO2015017041A1 publication Critical patent/WO2015017041A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02KJET-PROPULSION PLANTS
    • F02K3/00Plants including a gas turbine driving a compressor or a ducted fan
    • F02K3/02Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber
    • F02K3/04Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type
    • F02K3/06Plants including a gas turbine driving a compressor or a ducted fan in which part of the working fluid by-passes the turbine and combustion chamber the plant including ducted fans, i.e. fans with high volume, low pressure outputs, for augmenting the jet thrust, e.g. of double-flow type with front fan
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/16Arrangement of bearings; Supporting or mounting bearings in casings
    • F01D25/162Bearing supports
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/06Arrangements of bearings; Lubricating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/20Three-dimensional
    • F05D2250/23Three-dimensional prismatic
    • F05D2250/232Three-dimensional prismatic conical
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/40Transmission of power
    • F05D2260/403Transmission of power through the shape of the drive components
    • F05D2260/4031Transmission of power through the shape of the drive components as in toothed gearing
    • F05D2260/40311Transmission of power through the shape of the drive components as in toothed gearing of the epicyclical, planetary or differential type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Definitions

  • Turbomachines such as gas turbine engines, typically include a fan section, a turbine section, a compressor section, and a combustor section.
  • the fan section drives air along a core flow path into the compressor section.
  • the compressed air is mixed with fuel and combusted in the combustor section.
  • the products of combustion are expanded in the turbine section.
  • a typical jet engine has two or three spools, or shafts, that transmit torque between the turbine and compressor sections of the engine.
  • Each of these spools is typically supported by two bearings.
  • One bearing for example, a ball bearing, is arranged at a forward end of the spool and is configured to react to both axial and radial loads.
  • Another bearing for example, a roller bearing is arranged at the aft end of the spool and is configured to react only to radial loads. This bearing arrangement fully constrains the shaft except for rotation, and axial movement of one free end is permitted to accommodate engine axial growth.
  • Planetary and star gear trains generally include three gear train elements: a central sun gear, an outer ring gear with internal gear teeth, and a plurality of planet or star gears supported by a carrier between and in meshed engagement with both the sun gear and the ring gear.
  • the gear train elements share a common longitudinal central axis, about which at least two rotate.
  • a gas turbine engine includes a core housing that includes an inlet case and an intermediate case that respectively provide an inlet case flow path and an intermediate case flow path.
  • a first shaft supports a low pressure compressor section that is arranged axially between the inlet case flow path and the intermediate case flow path.
  • a first bearing supports the first shaft relative to the inlet case.
  • a second bearing supports a second shaft relative to the intermediate case.
  • a low pressure compressor hub is mounted to the first shaft. The low pressure compressor hub extends to the low pressure compressor section between the first bearing and the second bearing.
  • the low pressure compressor hub includes a frustro-conical web which extends between the first bearing and the second bearing.
  • the frustro-conical web extends at least partially around the first bearing.
  • the low pressure compressor is radially outboard of the first bearing.
  • the low pressure compressor hub is angled, relative to an engine axis, toward the low pressure compressor section.
  • the low pressure compressor hub is mounted to a second stage disk of the low pressure compressor section.
  • the low pressure compressor section includes three stages.
  • the first shaft drives a fan through a geared architecture.
  • the first bearing is mounted to a front center body case structure.
  • the front center body case structure defines a core flow path for a core airflow.
  • the inlet case includes a first inlet case portion defining the inlet case flow path.
  • a bearing support portion is removably secured to the inlet case portion.
  • the first bearing is mounted to the bearing support portion.
  • the intermediate case includes an intermediate case portion that defines the intermediate case flow path.
  • a bearing support portion is removably secured to the intermediate case portion.
  • the second bearing is mounted to the bearing support portion.
  • the first bearing is a ball bearing.
  • the second bearing is a roller bearing.
  • first and second bearings are arranged in separate sealed lubrication compartments.
  • a geared architecture is configured to be driven by the first shaft.
  • a fan is coupled to and rotationally driven by the geared architecture.
  • the first shaft includes a main shaft and a flex shaft.
  • the flex shaft is secured to the main shaft at a first end and including a second end opposite the first end, wherein the geared architecture includes a sun gear supported on the second end.
  • the low pressure compressor hub is secured to the main shaft.
  • the low pressure compressor section includes a rotor mounted to the low pressure compressor hub.
  • the pressure compressor hub supports the first bearing.
  • the inlet case includes an inlet case portion that defines the inlet case flow path.
  • a bearing support portion is removably secured to the inlet case portion.
  • the first bearing is mounted to the bearing support portion.
  • the geared architecture includes a torque frame that supports multiple circumferentially arranged star gears that intermesh with the sun gear. The torque frame is secured to the inlet case.
  • the rotor supports multiple compressor stages.
  • the first bearing is axially aligned with and radially inward of one of the compressor stages.
  • a gas turbine engine in another exemplary embodiment, includes a core housing that provides a core flow path.
  • a shaft supports a compressor section arranged within the core flow path.
  • First and second bearings support the shaft relative to the core housing and are arranged radially inward of and axially overlapping with the compressor section.
  • a low pressure compressor hub is mounted to the shaft. The low pressure compressor hub extends to the low pressure compressor section between the first bearing and the second bearing.
  • the gas turbine engine includes a fan.
  • the compressor section is fluidly connected to the fan.
  • the compressor section comprises of a high pressure compressor and a low pressure compressor.
  • a combustor is fluidly connected to the compressor section.
  • a turbine section is fluidly connected to the combustor.
  • the gas turbine engine includes a front center body case structure.
  • the first bearing is mounted to the front center body case structure to rotationally support the shaft.
  • a geared architecture is at least partially supported by the front center body case structure.
  • a coupling shaft is mounted to the shaft and the geared architecture. The coupling shaft is at least partially supported by the first bearing.
  • the shaft drives the fan through the geared architecture.
  • the shaft is an inner shaft and comprises an outer shaft which at least partially surrounds the inner shaft.
  • the outer shaft drives the high pressure compressor.
  • the core housing includes a first inlet case portion that defines an inlet case flow path.
  • a bearing support portion is removably secured to the inlet case portion.
  • the second bearing is mounted to the bearing support portion.
  • the core housing includes an intermediate case portion that defines an intermediate case flow path.
  • a bearing support portion is removably secured to the intermediate case portion.
  • the first bearing is mounted to the bearing support portion.
  • Figure 1 schematically illustrates an embodiment of a gas turbine engine.
  • Figure 2 is a cross-sectional view of a front architecture of the gas turbine engine embodiment shown in Figure 1.
  • Figure 3 is a schematic cross-section of a gas turbine engine embodiment.
  • Figure 4 is an enlarged schematic cross-section of a sectional of the gas turbine engine embodiment which illustrates a front center body case structure.
  • Figure 5 is a schematic block diagram of a gas turbine engine embodiment with the disclosed architecture.
  • Figure 6 is a schematic block diagram of a RELATED ART gas turbine engine with the disclosed architecture.
  • Figure 7 is an enlarged schematic cross-section of the Figure 5 sectional of the gas turbine engine embodiment which illustrates a load path within the front center body case structure.
  • FIG. 1 schematically illustrates a gas turbine engine 20.
  • the gas turbine engine 20 is disclosed herein as a two-spool turbofan that generally incorporates a fan section 22, a compressor section 24, a combustor section 26 and a turbine section 28.
  • Alternative engines might include an augmentor section (not shown) among other systems or features.
  • the fan section 22 drives air along a bypass flowpath B while the compressor section 24 drives air along a core flowpath C (as shown in Figure 2) for compression and communication into the combustor section 26 then expansion through the turbine section 28.
  • the exemplary engine 20 generally includes a low speed spool 30 and a high speed spool 32 mounted for rotation about an engine central longitudinal axis A relative to an engine static structure 36 via several bearing systems 38. It should be understood that various bearing systems 38 at various locations may alternatively or additionally be provided, and the location of bearing systems 38 may be varied as appropriate to the application.
  • the low speed spool 30 generally includes an inner shaft 40 that interconnects a fan 42, a low pressure compressor 44 and a low pressure turbine 46.
  • the inner shaft 40 is connected to the fan 42 through a speed change mechanism, which in exemplary gas turbine engine 20 is illustrated as a geared architecture 48 to drive the fan 42 at a lower speed than the low speed spool 30.
  • the high speed spool 32 includes an outer shaft 50 that interconnects a high pressure compressor 52 and high pressure turbine 54.
  • a combustor 56 is arranged in exemplary gas turbine 20 between the high pressure compressor 52 and the high pressure turbine 54.
  • a mid-turbine frame 57 of the engine static structure 36 is arranged generally between the high pressure turbine 54 and the low pressure turbine 46.
  • the mid-turbine frame 57 supports one or more bearing systems 38 in the turbine section 28.
  • the inner shaft 40 and the outer shaft 50 are concentric and rotate via bearing systems 38 about the engine central longitudinal axis A, which is collinear with their longitudinal axes.
  • the core airflow C is compressed by the low pressure compressor 44 then the high pressure compressor 52, mixed and burned with fuel in the combustor 56, then expanded over the high pressure turbine 54 and low pressure turbine 46.
  • the mid-turbine frame 57 includes airfoils 59 which are in the core airflow path.
  • the turbines 46, 54 rotationally drive the respective low speed spool 30 and high speed spool 32 in response to the expansion.
  • gear system 48 may be located aft of combustor section 26 or even aft of turbine section 28, and fan section 22 may be positioned forward or aft of the location of gear system 48.
  • the engine 20 in one example a high-bypass geared aircraft engine.
  • the engine 20 bypass ratio is greater than about six (6), with an example embodiment being greater than ten (10).
  • the example speed reduction device is a geared architecture 48 however other speed reducing devices such as fluid or electromechanical devices are also within the contemplation of this disclosure.
  • the example geared architecture 48 is an epicyclic gear train, such as a star gear system or other gear system, with a gear reduction ratio of greater than about 2.3, or more specifically, a ratio of from about 2.2 to about 4.0.
  • the engine 20 bypass ratio is greater than about ten (10: 1), the fan diameter is significantly larger than that of the low pressure compressor 44, and the low pressure turbine 46 has a pressure ratio that is greater than about 5: 1.
  • Low pressure turbine 46 pressure ratio is pressure measured prior to inlet of low pressure turbine 46 as related to the pressure at the outlet of the low pressure turbine 46 prior to an exhaust nozzle. It should be understood, however, that the above parameters are only exemplary of one embodiment of a geared architecture engine and that the present invention is applicable to other gas turbine engines including direct drive turbofans.
  • a significant amount of thrust is provided by the bypass flow B due to the high bypass ratio.
  • the fan section 22 of the engine 20 is designed for a particular flight condition - typically cruise at about 0.8 Mach and about 35,000 feet.
  • TSFC Thrust Specific Fuel Consumption
  • the low fan pressure ratio as disclosed herein according to one non- limiting embodiment is less than about 1.45.
  • Low corrected fan tip speed is the actual fan tip speed in ft/sec divided by an industry standard temperature correction of [(Ta m bie n t °R) / 518.7 °R) ° '5 ].
  • the "Low corrected fan tip speed” as disclosed herein according to one non-limiting embodiment is less than about 1150 ft / second.
  • a core housing 60 includes an inlet case 62 and an intermediate case 64 that respectively provide an inlet case flowpath 63 and a compressor case flowpath 65.
  • the core housing may include additional cases.
  • the compressor section as a whole may include any number of cases.
  • the inlet and compressor case flowpaths 63, 65 in part, define a core flowpath through the engine 20, which directs a core flow C.
  • the intermediate case 64 includes multiple components, including the intermediate case portion 66, and the bearing support 68 in the example, which are removably secured to one another.
  • the bearing support portion 68 has a first bearing 70 mounted thereto, which supports the inner shaft 40 for rotation relative to the intermediate case 64.
  • the first bearing 70 is a ball bearing that constrains the inner shaft 40 against axial and radial movement at a forward portion of the inner shaft 40.
  • the first bearing 70 is arranged within a bearing compartment 71.
  • the inner shaft 40 is constructed of multiple components that include, for example, a main shaft 72, a hub 74 and a flex shaft 76, which are clamped together by a nut 80 in the example.
  • the first bearing 70 is mounted on the hub 74 (i.e., low pressure compressor hub).
  • the flex shaft 76 includes first and second opposing ends 82, 84. The first end 82 is splined to the hub 74, and the second end 84 is splined to and supports a sun gear 86 of the geared architecture 48. Bellows 78 in the flex shaft 76 accommodate vibration in the geared architecture 48.
  • the geared architecture includes star gears 88 arranged circumferentially about and intermeshing with the sun gear 86.
  • a ring gear 90 is arranged circumferentially about and intermeshes with the star gears 88.
  • a fan shaft 92 is connected to the ring gear 90 and the fan 42 ( Figure 1).
  • a torque frame 94 supports the star gears 88 and grounds the star gears 88 to the housing 60. In operation, the inner shaft 40 rotationally drives the fan shaft 92 with the rotating ring gear 90 through the grounded star gears 88.
  • the low pressure compressor 44 includes multiple compressor stages arranged between the inlet and intermediate case flowpaths 63, 65, for example, first and second compressor stages 98, 100, that are secured to the hub 74 by a rotor 96.
  • the first bearing 70 is axially aligned with one of the first and second compressor stages 98, 100.
  • a variable stator vane array 102 is arranged upstream from the first and second compressor stages 98, 100.
  • Struts 104 are arranged upstream from the variable stator vane array 102.
  • An array of fixed stator vanes 106 may be provided axially between the first and second compressor stages 98, 100.
  • the inlet case 62 includes inlet case portions 108, and bearing support 110, which are removably secured to one another.
  • the bearing support portion 110 and torque frame 94 are secured to the inlet case portion 108 at a joint 109.
  • the bearing support portion 110 supports a second bearing 112, which is a rolling bearing in one example.
  • the second bearing 112 is retained on the hub 74 by a nut 113, for example, and is arranged radially outward from the flex shaft 76 and radially between the torque frame 94 and flex shaft 76.
  • the second bearing 112 is axially aligned with and radially inward of the variable stator vane array 102.
  • the geared architecture 48 and the second bearing 112 are arranged in a lubrication compartment 114, which is separate from the bearing compartment 71 in the example.
  • FIG. 3 schematically illustrates another exemplary gas turbine engine 120.
  • the gas turbine engine 120 is disclosed herein as a two-spool turbofan that generally incorporates a fan section 122, a compressor section 124, a combustor section 126 and a turbine section 128.
  • Alternative engines might include an augmentor section (not shown) among other systems or features.
  • the fan section 122 drives air along a bypass flowpath while the compressor section 124 drives air along a core flowpath for compression and communication into the combustor section 126 then expansion through the turbine section 128.
  • turbofan gas turbine engine in the disclosed non-limiting embodiment, it should be understood that the concepts described herein are not limited to use with turbofans as the teachings may be applied to other types of turbine engines such as a three-spool (plus fan) engine wherein an intermediate spool includes an intermediate pressure compressor (IPC) between the LPC and HPC and an intermediate pressure turbine (IPT) between the HPT and LPT.
  • IPC intermediate pressure compressor
  • IPT intermediate pressure turbine
  • the engine 120 generally includes a low spool 130 and a high spool 132 mounted for rotation about an engine central longitudinal axis A relative to an engine static structure 136 via several bearing supports 138.
  • the low spool 130 generally includes an inner shaft 140 that interconnects a fan 142, a low pressure compressor 144 and a low pressure turbine 146.
  • the inner shaft 140 drives the fan 142 through a speed change mechanism, which in exemplary gas turbine engine 20 is illustrated as a geared architecture 148 to drive the fan 142 at a lower speed than the low spool 130.
  • An exemplary reduction transmission is an epicyclic transmission, namely a planetary or star gear system.
  • the high spool 132 includes an outer shaft 150 that interconnects a high pressure compressor 152 and high pressure turbine 154.
  • a combustor 156 is arranged between the high pressure compressor 152 and the high pressure turbine 154.
  • the inner shaft 140 and the outer shaft 150 are concentric and rotate about the engine central longitudinal axis A which is collinear with their longitudinal axes.
  • Core airflow is compressed by the low pressure compressor 144 then the high pressure compressor 152, mixed with the fuel and burned in the combustor 156, then expanded over the high pressure turbine 154 and low pressure turbine 146.
  • the turbines 154, 146 rotationally drive the respective low spool 130 and high spool 132 in response to the expansion.
  • bearing supports 138 includes a #2 bearing system 138-2 located radially inboard of the compressor section 124.
  • the engine static structure 136 proximate the compressor section 124 generally includes a front center body case structure 160 and an intermediate case structure 162 which mounts aft of the front center body case structure 160. It should be appreciate that various case structures may alternatively or additionally be provided, yet benefit from the architecture described herein.
  • the front center body case structure 160 generally defines an annular core flow path 164A for the core airflow into the low pressure compressor 144.
  • the intermediate case structure 162 defines a core flow path 164B which continues the core flow path 164A for the core airflow into the high pressure compressor 152 of core flow path 164C.
  • the core flow path 164B is generally radially inward of the core flow path 164A to transition into the radially smaller diameter core flow path 164C. That is, the core flow path 164B defines a "wasp waist" gas turbine engine architecture.
  • a #2 bearing system 138-2 (i.e., second bearing) at least partially supports the inner shaft 140 relative to the front center body case structure 160.
  • a #3 bearing system 138-3 (i.e., first bearing) generally supports the outer shaft 150 relative the intermediate case structure 162. That is, the #2 bearing system 138-2 at least partially supports the low spool 130 and the #3 bearing system 138-3 generally supports the high spool 132. It should be appreciated that various bearing systems such as thrust bearing structures and mount arrangements will benefit herefrom.
  • a flex support 168 provides a flexible attachment of the geared architecture 148 within the front center body case structure 160.
  • the flex support 168 reacts the torsional loads from the geared architecture 148 and facilitates vibration absorption as well as other support functions.
  • a centering spring 170 which is a generally cylindrical cagelike structural component with a multiple of beams that extend between flange end structures, resiliently positions the #2 bearing system 138-2 with respect to the low spool 130.
  • the beams are double-tapered beams arrayed circumferentially to control a radial spring rate that may be selected based on a plurality of considerations including, but not limited to, bearing loading, bearing life, rotor dynamics, and rotor deflection considerations.
  • the gearbox 172 of the geared architecture 148 is driven by the low spool 130 in the disclosed non-limiting embodiment through a coupling shaft 174.
  • the coupling shaft 174 transfers torque to the gearbox 172.
  • the #2 bearing system 138-2 facilitates the segregation of vibrations and other transients from the gearbox 172.
  • the coupling shaft 174 in the disclosed non- limiting embodiment includes a forward coupling shaft section 176 and an aft coupling shaft section 178.
  • the forward coupling shaft section 176 includes an interface spline 180 which mates with the gearbox 172.
  • An interface spline 182 of the aft coupling shaft section 178 connects the coupling shaft 174 to the low spool 130 and, in this non limiting embodiment, to a low pressure compressor hub 184 of the low pressure compressor 144.
  • a fan rotor bearing system structure 186 aft of the fan 142 extends radially inward from the front center body case structure 160.
  • the fan rotor bearing system structure 186 and the front center body case structure 160 define a bearing compartment 171.
  • various bearing supports 138-1 and seals 188 may be supported by the fan rotor bearing system structure 186 to contain oil and support rotation of an output shaft 200 which connects with the geared architecture 148 to drive the fan 142.
  • the low pressure compressor hub 184 of the low pressure compressor 144 includes a tubular hub 190 and a frustro-conical web 192.
  • the tubular hub 190 mounts to the inner shaft 140 through, for example, a splined interface.
  • the tubular hub 190 is adjacent to the #2 bearing system 138-2.
  • the frustro-conical web 192 extends in a forwardly direction from the tubular hub 190 axially between the #2 bearing system 138-2 and the #3 bearing system 138-3 (also shown in Figure 5). That is, the frustro-conical web 192 is axially located between the bearing supports 138-2, 138-3.
  • the frustro-conical web 192 mounts to a low pressure compressor rotor 194 of the low pressure compressor 144.
  • the frustro-conical web 192 extends between the bearing systems 138-2, 138-3 and mounts to a second stage of a three stage low pressure compressor rotor 194. It should be appreciated that the frustro-conical web 192 may mount to other stages in other engine architectures and such architectures may include other numbers of stages.
  • Locating the low pressure compressor hub 184 between the #2 bearing system 138-2 and the #3 bearing system 138-3 offers significant advantage to reduce deflection for the geared architecture 148 as compared to a related art architecture such as the example illustrated in Figure 6; RELATED ART. That is, both end sections of the coupling shaft 174 are tied to the front center body case structure 160 such that relative deflections between the end sections thereof are greatly reduced. This facilitates a more efficient balance of baseline torque, FBO torques, maneuver deflections and the minimization of the overall loads that are translated into the geared architecture 148. [0067] Moreover, a relatively less complicated bearing compartment 171 which facilitates increased manufacturing tolerances is defined to, for example, require fewer seals which minimizes potential oil leak sources and saves weight.
  • the architecture further facilitates an efficient load path (L; Figure 7) for the geared architecture and an overall lower overall heat generation and oil flow. That is, a more compact load path L is defined by the forward center body structure 160 alone in that the front center body structure 160 supports both the bearing system 138-2 and the geared architecture 148. Secondary benefits are reduced oil tank size, reduced cooler sizing and reduce oil quantity in the engine lubrication system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

A gas turbine engine includes a core housing that includes an inlet case and an intermediate case that respectively provide an inlet case flow path and an intermediate case flow path. A first shaft supports a low pressure compressor section that is arranged axially between the inlet case flow path and the intermediate case flow path. A first bearing supports the first shaft relative to the inlet case. A second bearing supports a second shaft relative to the intermediate case. A low pressure compressor hub is mounted to the first shaft. The low pressure compressor hub extends to the low pressure compressor section between the first bearing and the second bearing.

Description

GAS TURBINE ENGINE SHAFT BEARING CONFIGURATION
CROSS REFERENCE TO RELATED APPLICTIONS
[0001] This application claims priority to United States application No. 14/012,576 filed August 28, 2013, which claims priority to provisional application No. 61/860,329 filed on July 31, 2013. This application is also a continuation-in-part of United States Application No. 13/904,416 filed on May 29, 2013, which is a continuation of United States Application No. 13/762,970 filed on February 8, 2013, now Patent No. 8,511,061 issued August 20, 2013, which is a continuation of United States Application No. 13/362,170 filed on January 31, 2012, now Patent No. 8,402,741 issued March 26, 2013.
BACKGROUND
[0002] Turbomachines, such as gas turbine engines, typically include a fan section, a turbine section, a compressor section, and a combustor section. The fan section drives air along a core flow path into the compressor section. The compressed air is mixed with fuel and combusted in the combustor section. The products of combustion are expanded in the turbine section.
[0003] A typical jet engine has two or three spools, or shafts, that transmit torque between the turbine and compressor sections of the engine. Each of these spools is typically supported by two bearings. One bearing, for example, a ball bearing, is arranged at a forward end of the spool and is configured to react to both axial and radial loads. Another bearing, for example, a roller bearing is arranged at the aft end of the spool and is configured to react only to radial loads. This bearing arrangement fully constrains the shaft except for rotation, and axial movement of one free end is permitted to accommodate engine axial growth.
[0004] Epicyclic gearboxes with planetary or star gear trains may be used in gas turbine engines for their compact designs and efficient high gear reduction capabilities. Planetary and star gear trains generally include three gear train elements: a central sun gear, an outer ring gear with internal gear teeth, and a plurality of planet or star gears supported by a carrier between and in meshed engagement with both the sun gear and the ring gear. The gear train elements share a common longitudinal central axis, about which at least two rotate.
[0005] During flight, light weight structural cases may deflect with aero and maneuver loads which may cause significant deflection commonly known as backbone bending of the engine. This deflection may result in some misalignment of the gear train elements which may lead to efficiency losses and potential reduced gear life.
SUMMARY
[0006] In one exemplary embodiment, a gas turbine engine includes a core housing that includes an inlet case and an intermediate case that respectively provide an inlet case flow path and an intermediate case flow path. A first shaft supports a low pressure compressor section that is arranged axially between the inlet case flow path and the intermediate case flow path. A first bearing supports the first shaft relative to the inlet case. A second bearing supports a second shaft relative to the intermediate case. A low pressure compressor hub is mounted to the first shaft. The low pressure compressor hub extends to the low pressure compressor section between the first bearing and the second bearing.
[0007] In a further embodiment of the above, the low pressure compressor hub includes a frustro-conical web which extends between the first bearing and the second bearing.
[0008] In a further embodiment of the above, the frustro-conical web extends at least partially around the first bearing.
[0009] In a further embodiment of the above, the low pressure compressor is radially outboard of the first bearing.
[0010] In a further embodiment of the above, the low pressure compressor hub is angled, relative to an engine axis, toward the low pressure compressor section.
[0011] In a further embodiment of the above, the low pressure compressor hub is mounted to a second stage disk of the low pressure compressor section.
[0012] In a further embodiment of the above, the low pressure compressor section includes three stages.
[0013] In a further embodiment of the above, the first shaft drives a fan through a geared architecture. [0014] In a further embodiment of the above, the first bearing is mounted to a front center body case structure. The front center body case structure defines a core flow path for a core airflow.
[0015] In a further embodiment of the above, the inlet case includes a first inlet case portion defining the inlet case flow path. A bearing support portion is removably secured to the inlet case portion. The first bearing is mounted to the bearing support portion.
[0016] In a further embodiment of the above, the intermediate case includes an intermediate case portion that defines the intermediate case flow path. A bearing support portion is removably secured to the intermediate case portion. The second bearing is mounted to the bearing support portion.
[0017] In a further embodiment of the above, the first bearing is a ball bearing. The second bearing is a roller bearing.
[0018] In a further embodiment of the above, the first and second bearings are arranged in separate sealed lubrication compartments.
[0019] In a further embodiment of the above, a geared architecture is configured to be driven by the first shaft. A fan is coupled to and rotationally driven by the geared architecture.
[0020] In a further embodiment of the above, the first shaft includes a main shaft and a flex shaft. The flex shaft is secured to the main shaft at a first end and including a second end opposite the first end, wherein the geared architecture includes a sun gear supported on the second end.
[0021] In a further embodiment of the above, the low pressure compressor hub is secured to the main shaft. The low pressure compressor section includes a rotor mounted to the low pressure compressor hub. The pressure compressor hub supports the first bearing.
[0022] In a further embodiment of the above, the inlet case includes an inlet case portion that defines the inlet case flow path. A bearing support portion is removably secured to the inlet case portion. The first bearing is mounted to the bearing support portion. [0023] In a further embodiment of the above, the geared architecture includes a torque frame that supports multiple circumferentially arranged star gears that intermesh with the sun gear. The torque frame is secured to the inlet case.
[0024] In a further embodiment of the above, the rotor supports multiple compressor stages. The first bearing is axially aligned with and radially inward of one of the compressor stages.
[0025] In another exemplary embodiment, a gas turbine engine includes a core housing that provides a core flow path. A shaft supports a compressor section arranged within the core flow path. First and second bearings support the shaft relative to the core housing and are arranged radially inward of and axially overlapping with the compressor section. A low pressure compressor hub is mounted to the shaft. The low pressure compressor hub extends to the low pressure compressor section between the first bearing and the second bearing.
[0026] In a further embodiment of the above, the gas turbine engine includes a fan. The compressor section is fluidly connected to the fan. The compressor section comprises of a high pressure compressor and a low pressure compressor. A combustor is fluidly connected to the compressor section. A turbine section is fluidly connected to the combustor.
[0027] In a further embodiment of the above, the gas turbine engine includes a front center body case structure. The first bearing is mounted to the front center body case structure to rotationally support the shaft. A geared architecture is at least partially supported by the front center body case structure. A coupling shaft is mounted to the shaft and the geared architecture. The coupling shaft is at least partially supported by the first bearing.
[0028] In a further embodiment of the above, the shaft drives the fan through the geared architecture.
[0029] In a further embodiment of the above, the shaft is an inner shaft and comprises an outer shaft which at least partially surrounds the inner shaft. The outer shaft drives the high pressure compressor.
[0030] In a further embodiment of the above, the core housing includes a first inlet case portion that defines an inlet case flow path. A bearing support portion is removably secured to the inlet case portion. The second bearing is mounted to the bearing support portion.
[0031] In a further embodiment of the above, the core housing includes an intermediate case portion that defines an intermediate case flow path. A bearing support portion is removably secured to the intermediate case portion. The first bearing is mounted to the bearing support portion.
BRIEF DESCRIPTION OF THE DRAWINGS
[0032] The disclosure can be further understood by reference to the following detailed description when considered in connection with the accompanying drawings wherein:
[0033] Figure 1 schematically illustrates an embodiment of a gas turbine engine.
[0034] Figure 2 is a cross-sectional view of a front architecture of the gas turbine engine embodiment shown in Figure 1.
[0035] Figure 3 is a schematic cross-section of a gas turbine engine embodiment.
[0036] Figure 4 is an enlarged schematic cross-section of a sectional of the gas turbine engine embodiment which illustrates a front center body case structure.
[0037] Figure 5 is a schematic block diagram of a gas turbine engine embodiment with the disclosed architecture.
[0038] Figure 6 is a schematic block diagram of a RELATED ART gas turbine engine with the disclosed architecture.
[0039] Figure 7 is an enlarged schematic cross-section of the Figure 5 sectional of the gas turbine engine embodiment which illustrates a load path within the front center body case structure.
[0040] The embodiments, examples and alternatives of the preceding paragraphs, the claims, or the following description and drawings, including any of their various aspects or respective individual features, may be taken independently or in any combination. Features described in connection with one embodiment are applicable to all embodiments, unless such features are incompatible. DETAILED DESCRIPTION
[0041] Figure 1 schematically illustrates a gas turbine engine 20. The gas turbine engine 20 is disclosed herein as a two-spool turbofan that generally incorporates a fan section 22, a compressor section 24, a combustor section 26 and a turbine section 28. Alternative engines might include an augmentor section (not shown) among other systems or features. The fan section 22 drives air along a bypass flowpath B while the compressor section 24 drives air along a core flowpath C (as shown in Figure 2) for compression and communication into the combustor section 26 then expansion through the turbine section 28. Although depicted as a two-spool turbofan gas turbine engine in the disclosed non-limiting embodiment, it should be understood that the concepts described herein are not limited to use with two-spool turbofans as the teachings may be applied to other types of turbine engines including three-spool architectures.
[0042] The exemplary engine 20 generally includes a low speed spool 30 and a high speed spool 32 mounted for rotation about an engine central longitudinal axis A relative to an engine static structure 36 via several bearing systems 38. It should be understood that various bearing systems 38 at various locations may alternatively or additionally be provided, and the location of bearing systems 38 may be varied as appropriate to the application.
[0043] The low speed spool 30 generally includes an inner shaft 40 that interconnects a fan 42, a low pressure compressor 44 and a low pressure turbine 46. The inner shaft 40 is connected to the fan 42 through a speed change mechanism, which in exemplary gas turbine engine 20 is illustrated as a geared architecture 48 to drive the fan 42 at a lower speed than the low speed spool 30. The high speed spool 32 includes an outer shaft 50 that interconnects a high pressure compressor 52 and high pressure turbine 54. A combustor 56 is arranged in exemplary gas turbine 20 between the high pressure compressor 52 and the high pressure turbine 54. A mid-turbine frame 57 of the engine static structure 36 is arranged generally between the high pressure turbine 54 and the low pressure turbine 46. The mid-turbine frame 57 supports one or more bearing systems 38 in the turbine section 28. The inner shaft 40 and the outer shaft 50 are concentric and rotate via bearing systems 38 about the engine central longitudinal axis A, which is collinear with their longitudinal axes.
[0044] The core airflow C is compressed by the low pressure compressor 44 then the high pressure compressor 52, mixed and burned with fuel in the combustor 56, then expanded over the high pressure turbine 54 and low pressure turbine 46. The mid-turbine frame 57 includes airfoils 59 which are in the core airflow path. The turbines 46, 54 rotationally drive the respective low speed spool 30 and high speed spool 32 in response to the expansion. It will be appreciated that each of the positions of the fan section 22, compressor section 24, combustor section 26, turbine section 28, and fan drive gear system 48 may be varied. For example, gear system 48 may be located aft of combustor section 26 or even aft of turbine section 28, and fan section 22 may be positioned forward or aft of the location of gear system 48.
[0045] The engine 20 in one example a high-bypass geared aircraft engine. In a further example, the engine 20 bypass ratio is greater than about six (6), with an example embodiment being greater than ten (10). The example speed reduction device is a geared architecture 48 however other speed reducing devices such as fluid or electromechanical devices are also within the contemplation of this disclosure. The example geared architecture 48 is an epicyclic gear train, such as a star gear system or other gear system, with a gear reduction ratio of greater than about 2.3, or more specifically, a ratio of from about 2.2 to about 4.0. In one disclosed embodiment, the engine 20 bypass ratio is greater than about ten (10: 1), the fan diameter is significantly larger than that of the low pressure compressor 44, and the low pressure turbine 46 has a pressure ratio that is greater than about 5: 1. Low pressure turbine 46 pressure ratio is pressure measured prior to inlet of low pressure turbine 46 as related to the pressure at the outlet of the low pressure turbine 46 prior to an exhaust nozzle. It should be understood, however, that the above parameters are only exemplary of one embodiment of a geared architecture engine and that the present invention is applicable to other gas turbine engines including direct drive turbofans.
[0046] A significant amount of thrust is provided by the bypass flow B due to the high bypass ratio. The fan section 22 of the engine 20 is designed for a particular flight condition - typically cruise at about 0.8 Mach and about 35,000 feet. The flight condition of
0.8 Mach and 35,000 ft, with the engine at its best fuel consumption - also known as bucket cruise Thrust Specific Fuel Consumption ("TSFC"). TSFC is the industry standard parameter of lbm of fuel being burned divided by lbf of thrust the engine produces at that minimum point. "Low fan pressure ratio" is the pressure ratio across the fan blade alone, without a Fan
Exit Guide Vane ("FEGV") system. The low fan pressure ratio as disclosed herein according to one non- limiting embodiment is less than about 1.45. "Low corrected fan tip speed" is the actual fan tip speed in ft/sec divided by an industry standard temperature correction of [(Tambient °R) / 518.7 °R) °'5]. The "Low corrected fan tip speed" as disclosed herein according to one non-limiting embodiment is less than about 1150 ft / second.
[0047] Referring to Figure 2, a core housing 60 includes an inlet case 62 and an intermediate case 64 that respectively provide an inlet case flowpath 63 and a compressor case flowpath 65. In other embodiments, the core housing may include additional cases. Similarly, the compressor section as a whole may include any number of cases. Together, the inlet and compressor case flowpaths 63, 65, in part, define a core flowpath through the engine 20, which directs a core flow C.
[0048] The intermediate case 64 includes multiple components, including the intermediate case portion 66, and the bearing support 68 in the example, which are removably secured to one another. The bearing support portion 68 has a first bearing 70 mounted thereto, which supports the inner shaft 40 for rotation relative to the intermediate case 64. In one example, the first bearing 70 is a ball bearing that constrains the inner shaft 40 against axial and radial movement at a forward portion of the inner shaft 40. The first bearing 70 is arranged within a bearing compartment 71.
[0049] In the example, the inner shaft 40 is constructed of multiple components that include, for example, a main shaft 72, a hub 74 and a flex shaft 76, which are clamped together by a nut 80 in the example. The first bearing 70 is mounted on the hub 74 (i.e., low pressure compressor hub). The flex shaft 76 includes first and second opposing ends 82, 84. The first end 82 is splined to the hub 74, and the second end 84 is splined to and supports a sun gear 86 of the geared architecture 48. Bellows 78 in the flex shaft 76 accommodate vibration in the geared architecture 48.
[0050] The geared architecture includes star gears 88 arranged circumferentially about and intermeshing with the sun gear 86. A ring gear 90 is arranged circumferentially about and intermeshes with the star gears 88. A fan shaft 92 is connected to the ring gear 90 and the fan 42 (Figure 1). A torque frame 94 supports the star gears 88 and grounds the star gears 88 to the housing 60. In operation, the inner shaft 40 rotationally drives the fan shaft 92 with the rotating ring gear 90 through the grounded star gears 88. [0051] The low pressure compressor 44 includes multiple compressor stages arranged between the inlet and intermediate case flowpaths 63, 65, for example, first and second compressor stages 98, 100, that are secured to the hub 74 by a rotor 96. The first bearing 70 is axially aligned with one of the first and second compressor stages 98, 100. In one example, a variable stator vane array 102 is arranged upstream from the first and second compressor stages 98, 100. Struts 104 are arranged upstream from the variable stator vane array 102. An array of fixed stator vanes 106 may be provided axially between the first and second compressor stages 98, 100. Although a particular configuration of low pressure compressor 44 is illustrated, it should be understood that other configurations may be used and still fall within the scope of this disclosure.
[0052] The inlet case 62 includes inlet case portions 108, and bearing support 110, which are removably secured to one another. The bearing support portion 110 and torque frame 94 are secured to the inlet case portion 108 at a joint 109. The bearing support portion 110 supports a second bearing 112, which is a rolling bearing in one example. The second bearing 112 is retained on the hub 74 by a nut 113, for example, and is arranged radially outward from the flex shaft 76 and radially between the torque frame 94 and flex shaft 76. In the example, the second bearing 112 is axially aligned with and radially inward of the variable stator vane array 102. The geared architecture 48 and the second bearing 112 are arranged in a lubrication compartment 114, which is separate from the bearing compartment 71 in the example.
[0053] Figure 3 schematically illustrates another exemplary gas turbine engine 120. The gas turbine engine 120 is disclosed herein as a two-spool turbofan that generally incorporates a fan section 122, a compressor section 124, a combustor section 126 and a turbine section 128. Alternative engines might include an augmentor section (not shown) among other systems or features. The fan section 122 drives air along a bypass flowpath while the compressor section 124 drives air along a core flowpath for compression and communication into the combustor section 126 then expansion through the turbine section 128. Although depicted as a two-spool turbofan gas turbine engine in the disclosed non- limiting embodiment, it should be understood that the concepts described herein are not limited to use with turbofans as the teachings may be applied to other types of turbine engines such as a three-spool (plus fan) engine wherein an intermediate spool includes an intermediate pressure compressor (IPC) between the LPC and HPC and an intermediate pressure turbine (IPT) between the HPT and LPT.
[0054] The engine 120 generally includes a low spool 130 and a high spool 132 mounted for rotation about an engine central longitudinal axis A relative to an engine static structure 136 via several bearing supports 138. The low spool 130 generally includes an inner shaft 140 that interconnects a fan 142, a low pressure compressor 144 and a low pressure turbine 146. The inner shaft 140 drives the fan 142 through a speed change mechanism, which in exemplary gas turbine engine 20 is illustrated as a geared architecture 148 to drive the fan 142 at a lower speed than the low spool 130. An exemplary reduction transmission is an epicyclic transmission, namely a planetary or star gear system.
[0055] The high spool 132 includes an outer shaft 150 that interconnects a high pressure compressor 152 and high pressure turbine 154. A combustor 156 is arranged between the high pressure compressor 152 and the high pressure turbine 154. The inner shaft 140 and the outer shaft 150 are concentric and rotate about the engine central longitudinal axis A which is collinear with their longitudinal axes.
[0056] Core airflow is compressed by the low pressure compressor 144 then the high pressure compressor 152, mixed with the fuel and burned in the combustor 156, then expanded over the high pressure turbine 154 and low pressure turbine 146. The turbines 154, 146 rotationally drive the respective low spool 130 and high spool 132 in response to the expansion.
[0057] The main engine shafts 140, 150 are supported at a plurality of points by bearing supports 138 within the static structure 136. In one non- limiting embodiment, bearing supports 138 includes a #2 bearing system 138-2 located radially inboard of the compressor section 124.
[0058] With reference to Figure 4, the engine static structure 136 proximate the compressor section 124 generally includes a front center body case structure 160 and an intermediate case structure 162 which mounts aft of the front center body case structure 160. It should be appreciate that various case structures may alternatively or additionally be provided, yet benefit from the architecture described herein.
[0059] The front center body case structure 160 generally defines an annular core flow path 164A for the core airflow into the low pressure compressor 144. The intermediate case structure 162 defines a core flow path 164B which continues the core flow path 164A for the core airflow into the high pressure compressor 152 of core flow path 164C. The core flow path 164B is generally radially inward of the core flow path 164A to transition into the radially smaller diameter core flow path 164C. That is, the core flow path 164B defines a "wasp waist" gas turbine engine architecture.
[0060] A #2 bearing system 138-2 (i.e., second bearing) at least partially supports the inner shaft 140 relative to the front center body case structure 160. A #3 bearing system 138-3 (i.e., first bearing) generally supports the outer shaft 150 relative the intermediate case structure 162. That is, the #2 bearing system 138-2 at least partially supports the low spool 130 and the #3 bearing system 138-3 generally supports the high spool 132. It should be appreciated that various bearing systems such as thrust bearing structures and mount arrangements will benefit herefrom.
[0061] A flex support 168 provides a flexible attachment of the geared architecture 148 within the front center body case structure 160. The flex support 168 reacts the torsional loads from the geared architecture 148 and facilitates vibration absorption as well as other support functions. A centering spring 170, which is a generally cylindrical cagelike structural component with a multiple of beams that extend between flange end structures, resiliently positions the #2 bearing system 138-2 with respect to the low spool 130. In one embodiment, the beams are double-tapered beams arrayed circumferentially to control a radial spring rate that may be selected based on a plurality of considerations including, but not limited to, bearing loading, bearing life, rotor dynamics, and rotor deflection considerations.
[0062] The gearbox 172 of the geared architecture 148 is driven by the low spool 130 in the disclosed non-limiting embodiment through a coupling shaft 174. The coupling shaft 174 transfers torque to the gearbox 172. The #2 bearing system 138-2 facilitates the segregation of vibrations and other transients from the gearbox 172. The coupling shaft 174 in the disclosed non- limiting embodiment includes a forward coupling shaft section 176 and an aft coupling shaft section 178. The forward coupling shaft section 176 includes an interface spline 180 which mates with the gearbox 172. An interface spline 182 of the aft coupling shaft section 178 connects the coupling shaft 174 to the low spool 130 and, in this non limiting embodiment, to a low pressure compressor hub 184 of the low pressure compressor 144.
[0063] A fan rotor bearing system structure 186 aft of the fan 142 extends radially inward from the front center body case structure 160. The fan rotor bearing system structure 186 and the front center body case structure 160 define a bearing compartment 171. It should be appreciated that various bearing supports 138-1 and seals 188 (illustrated schematically and in Figure 4) may be supported by the fan rotor bearing system structure 186 to contain oil and support rotation of an output shaft 200 which connects with the geared architecture 148 to drive the fan 142.
[0064] The low pressure compressor hub 184 of the low pressure compressor 144 includes a tubular hub 190 and a frustro-conical web 192. The tubular hub 190 mounts to the inner shaft 140 through, for example, a splined interface. The tubular hub 190 is adjacent to the #2 bearing system 138-2. The frustro-conical web 192 extends in a forwardly direction from the tubular hub 190 axially between the #2 bearing system 138-2 and the #3 bearing system 138-3 (also shown in Figure 5). That is, the frustro-conical web 192 is axially located between the bearing supports 138-2, 138-3.
[0065] The frustro-conical web 192 mounts to a low pressure compressor rotor 194 of the low pressure compressor 144. In the disclosed non-limiting embodiment, the frustro-conical web 192 extends between the bearing systems 138-2, 138-3 and mounts to a second stage of a three stage low pressure compressor rotor 194. It should be appreciated that the frustro-conical web 192 may mount to other stages in other engine architectures and such architectures may include other numbers of stages.
[0066] Locating the low pressure compressor hub 184 between the #2 bearing system 138-2 and the #3 bearing system 138-3 offers significant advantage to reduce deflection for the geared architecture 148 as compared to a related art architecture such as the example illustrated in Figure 6; RELATED ART. That is, both end sections of the coupling shaft 174 are tied to the front center body case structure 160 such that relative deflections between the end sections thereof are greatly reduced. This facilitates a more efficient balance of baseline torque, FBO torques, maneuver deflections and the minimization of the overall loads that are translated into the geared architecture 148. [0067] Moreover, a relatively less complicated bearing compartment 171 which facilitates increased manufacturing tolerances is defined to, for example, require fewer seals which minimizes potential oil leak sources and saves weight.
[0068] The architecture further facilitates an efficient load path (L; Figure 7) for the geared architecture and an overall lower overall heat generation and oil flow. That is, a more compact load path L is defined by the forward center body structure 160 alone in that the front center body structure 160 supports both the bearing system 138-2 and the geared architecture 148. Secondary benefits are reduced oil tank size, reduced cooler sizing and reduce oil quantity in the engine lubrication system.
[0069] It should also be understood that although a particular component arrangement is disclosed in the illustrated embodiment, other arrangements will benefit herefrom. Although particular step sequences are shown, described, and claimed, it should be understood that steps may be performed in any order, separated or combined unless otherwise indicated and will still benefit from the present invention.
[0070] Although the different examples have specific components shown in the illustrations, embodiments of this invention are not limited to those particular combinations. It is possible to use some of the components or features from one of the examples in combination with features or components from another one of the examples.
[0071] Although an example embodiment has been disclosed, a worker of ordinary skill in this art would recognize that certain modifications would come within the scope of the claims. For that reason, the following claims should be studied to determine their true scope and content.

Claims

CLAIMS What is claimed is:
1. A gas turbine engine comprising:
a core housing including an inlet case and an intermediate case that respectively provide an inlet case flow path and an intermediate case flow path;
a first shaft supporting a low pressure compressor section that is arranged axially between the inlet case flow path and the intermediate case flow path;
a first bearing supporting the first shaft relative to the inlet case;
a second bearing supporting a second shaft relative to the intermediate case; and a low pressure compressor hub mounted to the first shaft, the low pressure compressor hub extends to the low pressure compressor section between the first bearing and the second bearing.
2. The gas turbine engine as recited in claim 1, wherein the low pressure compressor hub includes a frustro-conical web which extends between the first bearing and the second bearing.
3. The gas turbine engine as recited in claim 2, wherein the frustro-conical web extends at least partially around the first bearing.
4. The gas turbine engine as recited in claim 3, wherein the low pressure compressor is radially outboard of the first bearing.
5. The gas turbine engine as recited in claim 1, wherein the low pressure compressor hub is angled, relative to an engine axis, toward the low pressure compressor section.
6. The gas turbine engine as recited in claim 1, wherein low pressure compressor hub is mounted to a second stage disk of the low pressure compressor section.
7. The gas turbine engine as recited in claim 6, wherein the low pressure compressor section includes three stages.
8. The gas turbine engine as recited in claim 1, wherein the first shaft drives a fan through a geared architecture.
9. The gas turbine engine as recited in claim 1, wherein the first bearing is mounted to a front center body case structure, the front center body case structure defines a core flow path for a core airflow.
10. The gas turbine engine according to claim 1, wherein the inlet case includes a first inlet case portion defining the inlet case flow path, and a bearing support portion removably secured to the inlet case portion, the first bearing mounted to the bearing support portion.
11. The gas turbine engine according to claim 1, wherein the intermediate case includes an intermediate case portion defining the intermediate case flow path, and a bearing support portion removably secured to the intermediate case portion, the second bearing mounted to the bearing support portion.
12. The gas turbine engine according to claim 1, wherein the first bearing is a ball bearing and the second bearing is a roller bearing.
13. The gas turbine engine according to claim 12, wherein the first and second bearings are arranged in separate sealed lubrication compartments.
14. The gas turbine engine according to claim 1, comprising a geared architecture configured to be driven by the first shaft, and a fan coupled to and rotationally driven by the geared architecture.
15. The gas turbine engine according to claim 14, wherein the first shaft includes a main shaft and a flex shaft, the flex shaft secured to the main shaft at a first end and including a second end opposite the first end, wherein the geared architecture includes a sun gear supported on the second end.
16. The gas turbine engine according to claim 15, wherein the low pressure compressor hub is secured to the main shaft, and the low pressure compressor section includes a rotor mounted to the low pressure compressor hub, the low pressure compressor hub supporting the first bearing.
17. The gas turbine engine according to claim 16, wherein the inlet case includes an inlet case portion defining the inlet case flow path, and a bearing support portion removably secured to the inlet case portion, the first bearing mounted to the bearing support portion.
18. The gas turbine engine according to claim 17, wherein the geared architecture includes a torque frame supporting multiple circumferentially arranged star gears intermeshing with the sun gear, the torque frame secured to the inlet case.
19. The gas turbine engine according to claim 16, wherein the rotor supports multiple compressor stages, and the first bearing is axially aligned with and radially inward of one of the compressor stages.
20. A gas turbine engine comprising:
a core housing providing a core flow path;
a shaft supporting a compressor section arranged within the core flow path;
first and second bearings supporting the shaft relative to the core housing and are arranged radially inward of and axially overlapping with the compressor section; and
a low pressure compressor hub mounted to the shaft, the low pressure compressor hub extends to the low pressure compressor section between the first bearing and the second bearing.
21. The gas turbine engine according to claim 20, further comprising:
a fan, wherein the compressor section is fluidly connected to the fan, the compressor section comprising a high pressure compressor and a low pressure compressor;
a combustor fluidly connected to the compressor section;
a turbine section fluidly connected to the combustor.
22. The gas turbine engine according to claim 21, further comprising:
a front center body case structure, the first bearing is mounted to the front center body case structure to rotationally support the shaft;
a geared architecture at least partially supported by the front center body case structure; and
a coupling shaft mounted to the shaft and the geared architecture, the coupling shaft at least partially supported by the first bearing.
23. The gas turbine engine as recited in claim 22, wherein the shaft drives the fan through the geared architecture.
24. The gas turbine engine as recited in claim 22, wherein the shaft is an inner shaft, and comprising an outer shaft which at least partially surrounds the inner shaft, the outer shaft drives the high pressure compressor.
25. The gas turbine engine according to claim 20, wherein the core housing includes a first inlet case portion defining an inlet case flow path, and a bearing support portion removably secured to the inlet case portion, the second bearing mounted to the bearing support portion.
26. The gas turbine engine according to claim 20, wherein the core housing includes an intermediate case portion defining an intermediate case flow path, and a bearing support portion removably secured to the intermediate case portion, the first bearing mounted to the bearing support portion.
PCT/US2014/043175 2013-07-31 2014-06-19 Gas turbine engine shaft bearing configuration WO2015017041A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14831206.9A EP3027877A4 (en) 2013-07-31 2014-06-19 Gas turbine engine shaft bearing configuration

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201361860329P 2013-07-31 2013-07-31
US61/860,329 2013-07-31
US14/012,576 2013-08-28
US14/012,576 US10400629B2 (en) 2012-01-31 2013-08-28 Gas turbine engine shaft bearing configuration

Publications (1)

Publication Number Publication Date
WO2015017041A1 true WO2015017041A1 (en) 2015-02-05

Family

ID=52432314

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2014/043175 WO2015017041A1 (en) 2013-07-31 2014-06-19 Gas turbine engine shaft bearing configuration

Country Status (2)

Country Link
EP (1) EP3027877A4 (en)
WO (1) WO2015017041A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3112648A1 (en) * 2015-06-29 2017-01-04 United Technologies Corporation Gas turbine engine with geared architecture
US9657572B2 (en) 2006-08-15 2017-05-23 United Technologies Corporation Ring gear mounting arrangement with oil scavenge scheme
EP3179056A3 (en) * 2015-12-07 2017-10-04 United Technologies Corporation Gear driven turbofan
US9976437B2 (en) 2006-08-15 2018-05-22 United Technologies Corporation Epicyclic gear train
US10082105B2 (en) 2006-08-15 2018-09-25 United Technologies Corporation Gas turbine engine with geared architecture
US10196989B2 (en) 2006-08-15 2019-02-05 United Technologies Corporation Gas turbine engine gear train

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010047651A1 (en) * 2000-06-02 2001-12-06 Honda Giken Kogyo Kabushiki Kaisha Device for supplying seal air to bearing boxes of a gas turbine engine
US20080148707A1 (en) * 2006-12-21 2008-06-26 Jan Christopher Schilling Turbofan engine assembly and method of assembling same
US20080152477A1 (en) * 2006-12-20 2008-06-26 General Electric Company Bearing assembly and method of assembling the same
US20120195753A1 (en) * 2009-11-20 2012-08-02 Davis Todd A Gas turbine engine architecture with low pressure compressor hub between high and low rotor thrust bearings
US8402741B1 (en) * 2012-01-31 2013-03-26 United Technologies Corporation Gas turbine engine shaft bearing configuration

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4704862A (en) * 1985-05-29 1987-11-10 United Technologies Corporation Ducted prop engine
US8511987B2 (en) * 2009-11-20 2013-08-20 United Technologies Corporation Engine bearing support
BR102012027097B1 (en) * 2011-11-23 2022-01-04 United Technologies Corporation GAS TURBINE ENGINE

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010047651A1 (en) * 2000-06-02 2001-12-06 Honda Giken Kogyo Kabushiki Kaisha Device for supplying seal air to bearing boxes of a gas turbine engine
US20080152477A1 (en) * 2006-12-20 2008-06-26 General Electric Company Bearing assembly and method of assembling the same
US20080148707A1 (en) * 2006-12-21 2008-06-26 Jan Christopher Schilling Turbofan engine assembly and method of assembling same
US20120195753A1 (en) * 2009-11-20 2012-08-02 Davis Todd A Gas turbine engine architecture with low pressure compressor hub between high and low rotor thrust bearings
US8402741B1 (en) * 2012-01-31 2013-03-26 United Technologies Corporation Gas turbine engine shaft bearing configuration

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3027877A4 *

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10890245B2 (en) 2006-08-15 2021-01-12 Raytheon Technologies Corporation Epicyclic gear train
US11680492B2 (en) 2006-08-15 2023-06-20 Raytheon Technologies Corporation Epicyclic gear train
US10527151B1 (en) 2006-08-15 2020-01-07 United Technologies Corporation Gas turbine engine with geared architecture
US9951860B2 (en) 2006-08-15 2018-04-24 United Technologies Corporation Ring gear mounting arrangement with oil scavenge scheme
US9976437B2 (en) 2006-08-15 2018-05-22 United Technologies Corporation Epicyclic gear train
US10570855B2 (en) 2006-08-15 2020-02-25 United Technologies Corporation Gas turbine engine with geared architecture
US10082105B2 (en) 2006-08-15 2018-09-25 United Technologies Corporation Gas turbine engine with geared architecture
US10107231B2 (en) 2006-08-15 2018-10-23 United Technologies Corporation Gas turbine engine with geared architecture
US10125858B2 (en) 2006-08-15 2018-11-13 United Technologies Corporation Ring gear mounting arrangement with oil scavenge scheme
US10577965B2 (en) 2006-08-15 2020-03-03 United Technologies Corporation Epicyclic gear train
US11499624B2 (en) 2006-08-15 2022-11-15 Raytheon Technologies Corporation Ring gear mounting arrangement with oil scavenge scheme
US9657572B2 (en) 2006-08-15 2017-05-23 United Technologies Corporation Ring gear mounting arrangement with oil scavenge scheme
US10196989B2 (en) 2006-08-15 2019-02-05 United Technologies Corporation Gas turbine engine gear train
US10591047B2 (en) 2006-08-15 2020-03-17 United Technologies Corporation Ring gear mounting arrangement with oil scavenge scheme
US10830334B2 (en) 2006-08-15 2020-11-10 Raytheon Technologies Corporation Ring gear mounting arrangement with oil scavenge scheme
US11378039B2 (en) 2006-08-15 2022-07-05 Raytheon Technologies Corporation Ring gear mounting arrangement with oil scavenge scheme
US10907579B2 (en) 2006-08-15 2021-02-02 Raytheon Technologies Corporation Gas turbine engine with geared architecture
US11221066B2 (en) 2006-08-15 2022-01-11 Raytheon Technologies Corporation Ring gear mounting arrangement with oil scavenge scheme
US11319831B2 (en) 2006-08-15 2022-05-03 Raytheon Technologies Corporation Epicyclic gear train
EP3112648A1 (en) * 2015-06-29 2017-01-04 United Technologies Corporation Gas turbine engine with geared architecture
EP4067628A1 (en) * 2015-12-07 2022-10-05 Raytheon Technologies Corporation Gear driven gas turbine engine assembly
EP3179056A3 (en) * 2015-12-07 2017-10-04 United Technologies Corporation Gear driven turbofan
US10066734B2 (en) 2015-12-07 2018-09-04 United Technologies Corporation Gear driven gas turbine engine assembly

Also Published As

Publication number Publication date
EP3027877A4 (en) 2017-04-05
EP3027877A1 (en) 2016-06-08

Similar Documents

Publication Publication Date Title
US11486269B2 (en) Gas turbine engine shaft bearing configuration
US11698007B2 (en) Flexible support structure for a geared architecture gas turbine engine
EP2809914B1 (en) Gas turbine engine shaft bearing configuration
US8814503B2 (en) Flexible support structure for a geared architecture gas turbine engine
EP3343010B1 (en) Geared turbofan with non-epicyclic gear reduction system
EP2820266A2 (en) Counter-rotating low pressure turbine with gear system mounted to turbine exhaust case
US8770922B2 (en) Flexible support structure for a geared architecture gas turbine engine
WO2015017041A1 (en) Gas turbine engine shaft bearing configuration
US20150089959A1 (en) Gas turbine engine shaft bearing configuration
EP3097275B1 (en) Flexible support structure for a geared architecture gas turbine engine
EP2809937A1 (en) Gas turbine engine shaft bearing arrangement
EP2899389A1 (en) Flexible support structure for a geared architecture gas turbine engine
EP3048284A1 (en) Flexible support structure for a geared architecture gas turbine engine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14831206

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014831206

Country of ref document: EP