WO2015016643A1 - Super absorbent polymer - Google Patents

Super absorbent polymer Download PDF

Info

Publication number
WO2015016643A1
WO2015016643A1 PCT/KR2014/007068 KR2014007068W WO2015016643A1 WO 2015016643 A1 WO2015016643 A1 WO 2015016643A1 KR 2014007068 W KR2014007068 W KR 2014007068W WO 2015016643 A1 WO2015016643 A1 WO 2015016643A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer
weight
water
super absorbent
acrylate
Prior art date
Application number
PCT/KR2014/007068
Other languages
French (fr)
Korean (ko)
Inventor
이상기
김미영
이종민
장민석
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201480041041.3A priority Critical patent/CN105392805B/en
Priority to US14/904,155 priority patent/US9950308B2/en
Priority claimed from KR1020140098044A external-priority patent/KR20150016126A/en
Publication of WO2015016643A1 publication Critical patent/WO2015016643A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/60Liquid-swellable gel-forming materials, e.g. super-absorbents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof

Definitions

  • the present invention relates to a superabsorbent polymer which is excellent in basic physical properties such as absorbency and exhibits a fast absorption rate under pressure.
  • Super Absorbent Polymer is a synthetic polymer material capable of absorbing water of 500 to 1,000 times its own weight. It is named after Absorbent Gel Mater i al). Such superabsorbent polymers have been put into practical use as sanitary instruments, and are currently used in gardening, soil repair agents, civil engineering and building index materials in addition to sanitary products such as paper diapers for children . It is widely used as a material for raising seedlings, seedling sheets, freshness retainers in food distribution, and for steaming.
  • Reverse phase suspension polymerization is disclosed in, for example, Japanese Patent Laid-Open No. 56-161408, Japanese Patent Laid-Open No. 158209, Japanese Patent Laid-Open No. 57-198714, and the like.
  • a thermal polymerization method is carried out by breaking and polymerizing a polymer gel in a kneader having several shafts, and a photopolymerization method which simultaneously performs polymerization and drying by irradiating ultraviolet rays or the like on a belt with a high concentration of aqueous solution. Etc This is known.
  • the hydrous gel polymer obtained through the polymerization reaction as described above is generally pulverized through a drying process and commercially available as a powder product.
  • permeability is a measure of the fluidity of the absorbed liquid.
  • the transmittance may vary depending on the characteristics of the particle size distribution of the crosslinked resin, the particle shape and the connectivity of the openings between the particles, the surface modification of the swollen gel, and the like.
  • the fluidity of the liquid passing through the swollen particles depends on the transmittance of the superabsorbent polymer composition. When the transmittance is low, the liquid cannot easily flow through the super absorbent polymer composition.
  • One method of increasing the transmittance in a super absorbent polymer is to perform a surface crosslinking reaction after polymerization of the resin, and at this time, a method of adding silica (si ⁇ ca) or clay (cl ay) together with the surface crosslinking agent has been used.
  • a method of adding silica (si ⁇ ca) or clay (cl ay) together with the surface crosslinking agent has been used.
  • US Pat. Nos. 5,140, 076 and 4,734,478 disclose the addition of silica of surface crosslinking of dry superabsorbent resin powders.
  • the transmittance is improved.
  • the water retention capacity or the pressure absorption capacity is decreased in proportion to the silica, and the clay is easily separated from the superabsorbent polymer due to the external physical lamination.
  • the superabsorbent water retention ability and the pressure-absorbing capacity is above a certain level, but has not been developed a superabsorbent polymer that exhibits a fast absorption characteristics under pressure and exhibits a substantially fast absorption characteristics when applied to an actual diaper.
  • the present invention is excellent in the physical properties through the surface treatment of the super absorbent polymer, in particular excellent in the initial absorbency, after a long time the water is hardly coming out under pressure under the excellent absorbency, the superabsorbent resin showing a fast absorption rate under pressure To provide.
  • the present invention also provides a method for producing the superabsorbent polymer. [Measures of problem]
  • the present invention relates to a crosslinked polymer obtained by surface-crosslinking a base resin in a powder form obtained by polymerizing a water-soluble ethylene-based unsaturated monomer containing an acidic group and at least partially neutralized with two or more internal crosslinking agents with a di- or glycol-based compound having 2 to 8 carbon atoms. It has a centrifugal water retention capacity (CRC) of 28 g / g or more and a pressure absorption capacity of 0.9 psi (AU).
  • CRC centrifugal water retention capacity
  • L) is at least 18 g / g
  • gel bed permeability (GBP) is at least 45 darcy
  • the present invention also provides a water-soluble ethylenically unsaturated monomer containing an acidic group and at least partially neutralized, two or more internal crosslinkers, photopolymerization initiators, and thermal polymerization initiators having a cure dose of from 0.1 to 0.35 J / cuf.
  • Thermally polymerizing and photopolymerizing the monomer composition to form a hydrogel polymer Drying the hydrogel polymer; Pulverizing the dried polymer; And adding a compound represented by the following Chemical Formula 1 and a polyvalent metal cation to the ground polymer to perform surface crosslinking reaction.
  • R 2 is the same or different and is each independently a hydroxyl group, an amine group, an epoxide group or an isocyanate group;
  • n is an integer of 1-3.
  • the properties of the final diaper can be improved.
  • the present invention was completed by confirming that the diaper to which the technique was applied can be produced. Accordingly, according to one embodiment of the present invention, a superabsorbent polymer having excellent initial absorbency and hardly coming out of moisture under a pressurized state even after a long time is provided has an excellent absorbency.
  • the superabsorbent polymer of the present invention has a centrifugal water retention capacity (CRC) of 28 g / g or more, a 0.9 ps i pressure absorption capacity (AUL) of 18 g / g or more, a gel bed transmittance (GBP) of 45 darcy or more ,
  • the pressurized absorption rate of 0.3 psi is 30 to 200 seconds upon tertiary injection with 0.9 wt% saline.
  • the superabsorbent polymer of the present invention is photopolymerized and thermally polymerized by using two or more kinds of polyethyleneglycol diacrylate as an internal crosslinking agent, as described below. Even after the elapse of time under the pressurized state hardly comes out of the moisture can exhibit excellent absorption ability. Accordingly, superabsorbent polymers that satisfy certain parameter properties of the present invention are not only various hygiene products; It is widely used for materials such as horticultural soil repair, civil engineering, construction index, seedling sheet, freshness keeping in food distribution, and steaming.
  • the synergistic effect of the superabsorbent polymer can be synergistically achieved through the combination of physical properties that simultaneously optimize both centrifugal water retention capacity (CRC), pressure absorption capacity (AUL), gel bed permeability (GBP), and pressure absorption rate. Can provide. Therefore, the present invention can induce excellent physical properties and comfortable fit in manufacturing the absorber.
  • the centrifugal water retention capacity (C RC) for the physiological saline may be represented by the following Equation 1.
  • W 0 (g) is the weight of water absorbent resin (g)
  • W g) is the weight of the device measured after dehydration at 250G for 3 minutes using a centrifuge without using water absorbent resin
  • ⁇ 2 (g) Is the device weight including the absorbent resin after immersion of the absorbent resin in 0.9 mass% physiological saline at room temperature for 30 minutes, followed by dehydration at 250 G for 3 minutes using a centrifuge.
  • the absorbent weight W 0 (g) can be measured by the weight of the absorbent resin classified to 300 to 600 micrometers ( ⁇ ).
  • the centrifugal water retention capacity (CRC) of the superabsorbent polymer for physiological saline may be 28 gig or more or 28 g / g to 34 g / g, preferably 29 g / g or more, more preferably 30 g. It can be more than / g.
  • the centrifugal water-retaining capacity (CRC) for the saline solution is less than 28 g / g, the diaper water-retaining ability is lowered, which may cause a problem of bad diaper physical properties.
  • the pressure absorption capacity (AUL) of 9 ps i may be represented by the following formula (2).
  • AUL (g / g) [W 4 (g)-W 3 (g)] / 0 (g)
  • W 0 (g) is the weight of the absorbent resin (g)
  • W 3 (g) is the sum of the weight of the absorbent resin and the weight of the device capable of applying a load to the absorbent resin
  • W 4 (g) is the load ( 0.9 psi) is the sum of the weight of the absorbent resin absorbed by the moisture after supplying the absorbent resin with water for 1 hour and the weight of the device capable of applying a load to the absorbent resin.
  • the 0.9 ps i of a pressure absorbent capacity (AUL) is 300 to 600 micrometers (; Mil) classified into a pressure absorbing capacity (AUL) measurement kit and weighed 0.9 psi It can be measured after pressure swelling for 1 hour under 0.9% salt water in the state of raising the weight. At this time, after 1 hour, the cell can be weighed to measure the absorbency (AUL) under pressure. In this case, the absorbent weight W 0 (g) can be measured by the weight of the absorbent resin classified as 300 to 600 micrometer / m).
  • W 0 (g) described in Formulas 1 to 2 corresponds to the weight (g) of the absorbent resin applied to each property value, and may be the same or different.
  • the gel permeability (GB P) of the superabsorbent polymer to the saline solution may be 45 darcy or more, preferably 48 darcy or more, and more preferably 55 darcy or more. Higher gel bed transmittance is better, but too high gel bed transmittance In this case, deterioration of water-retaining capacity or pressure-absorbing capacity may occur.
  • the gel bed permeability (GBP) is expressed as "darcy" which is the CGS unit for permeability.
  • the fluid 1 cm 2 having a viscosity of 1 cps is the transmittance of the solid flowing within 1 second through the cross section thickness 1 cm and the cross section area 1 cm 2 . Since the transmittance has no SI unit for transmittance, it has the same unit as the area and m 2 is used. 1 different time is about 0. 98692 X 10 "12 m 2 or about 0.998692 10 " 8 cm 2 .
  • a method for measuring such gel bed permeability is specified in US Pat. No. 7, 7,179, 851.
  • the gel bed permeability is a measure of the permeability of the swelling bed of gel particles (e.g., surface treated absorbent material or superabsorbent material prior to surface treatment), especially under conditions referred to as “free swelling” conditions. will be.
  • gel particles e.g, superabsorbent materials as used herein
  • under " loaded " conditions normally matched by the wearer to the wearer's normal use load eg, sitting, walking, bending, etc.
  • the gel bed permeability (0.3 ps i GBP or 0.3 GBP) under load is at least 2.5 darcy, preferably at least 2.8 da rcy, more preferably at 3.0 It can be more than darcy.
  • the high permeability of the gel bed under subdivision means that the gel strength is high, which may be an indicator that simulates the permeability of the baby after pressing urine weight.
  • the superabsorbent polymer of the present invention exhibits a fast absorption rate under pressure while the liquid-permeable, water-retaining ability, and pressure-absorbing ability as described above are above a certain level. It has a characteristic to appear.
  • the superabsorbent polymer has a pressure absorption rate of 0.3 ps i at the third injection of 0.9 wt% physiological saline is 30 to 200 seconds (sec), preferably 40 to 190 seconds, more preferably 50 To 180 seconds. The faster the absorption rate under pressure, the better. However, if the pressure absorption rate is slower than 200 seconds, urine leakage may occur due to the slow absorption of urine in the diaper.
  • the pressure-absorbing rate of the superabsorbent polymer is 2 g of an absorbent resin under a pressurized condition of 0.3 ps i and 10 mL of 0.9 wt. 3 ⁇ 4> saline solution is repeated three times at three minute intervals. The rate of absorption for saline is measured.
  • the pressure absorption rate may be measured using a device as shown in FIG. 1, and includes a cylinder (cyl inder, w / o-ring: Mesh # 400) and a plunger (pi Linger, Mesh # 100), It can be measured with 0.9 wt% physiological saline solution using a device equipped with a weight.
  • the device for measuring the absorption rate under pressure in the present invention is unlike the conventional superabsorbent resin measured by sucking the brine, etc., the superabsorbent resin (layer) It is characterized by measuring by injecting from the top of the).
  • the absorption rate under pressure can be measured by repeated experiments over three or more times.
  • the filter paper (Whatman paper 4) at the bottom of the cylinder of Figure 1, evenly by quantifying 2 g of the super absorbent polymer of the present invention.
  • the plunger is then removed, 0.3 psi weight, load is added and 10 mL of 0.9% salt ine solut ion is poured into the hole of the plunger, and the plunger Looks into the hole of Measure the time the brine disappears completely.
  • this operation is repeated three times or more, and the time (second, sec) measured in the third trial is defined as the pressure absorption rate.
  • the conventional method of absorbing brine under pressure is a method of diffusion absorption from the bottom up
  • the method of measuring the rate of absorption under pressure according to the present invention is a method of injecting salt water from above. This is a very important measurement because it can best simulate the actual diaper, for example, it can best simulate the way the child peees and the diaper absorbs, and can also predict the diaper performance between products with different physical properties. It can be the way.
  • the super absorbent polymer will absorb the physiological saline at a very fast rate in the first and second experiments.
  • the pressure absorption rate in the third experiment can be differentiated according to the performance of each super absorbent polymer.
  • the pressure absorption rate of 0.3 psi in the third injection into 0.9 wt% physiological saline should be maintained in an optimized range of 30 to 200 seconds (sec). Even if the absorbent capacity is above a certain level, it exhibits a fast absorption characteristic under pressure, and can exhibit a substantially fast absorption characteristic when applied to an actual diaper.
  • the superabsorbent polymer of the present invention is a di- or glycol-based base resin having a powder form in which a water-soluble ethylenically unsaturated monomer containing an acidic group and at least partially neutralized is polymerized with two or more complex internal crosslinking agents. With compound And crosslinked polymers surface-crosslinked.
  • crosslinking density of the crosslinked polymer may be a factor influencing the pressure absorption capacity (AUL) value, and it is preferable to surface crosslink the base resin according to the method of the present invention.
  • AUL pressure absorption capacity
  • the water-soluble ethylenically unsaturated monomer is acrylic acid, methacrylic acid, maleic anhydride, fumaric acid, crotonic acid, itaconic acid, 2-acryloylethane sulfonic acid 2-methacryloyl ethanesulfonic acid, 2 '(meth) acryloyl Anionic monomers of propanesulfonic acid or 2— (meth) acrylamide-2-methyl propane sulfonic acid and salts thereof; (Meth) acrylamide, N-substituted
  • the acrylic acid may be at least about 50 mol%, or at least about 60 mol%, or at least about 70 mol%, and may be neutralized, whereby the overall physical properties of the present invention may be more effectively achieved. That is, the water-soluble ethylenically unsaturated monomer may have a neutralization degree of about 50 mol or more for acid groups.
  • a method for producing a super absorbent polymer as described above includes an acid group.
  • High temperature at least partially neutralized water-soluble ethylenically unsaturated monomer, thermal polymerization to a monomer composition comprising two or more internal crosslinkers, a photopolymerization initiator, and a thermal polymerization initiator having a cure dose of from 0. 16 to 0.35 J / citf.
  • R 2 is the same or different and is each independently a hydroxyl group, an amine group, an epoxide group or an isocyanate group;
  • n is an integer of 1-3.
  • the polymerization proceeds using two or more kinds of polyethylene glycol diacrylate as the internal crosslinking agent, and the surface crosslinking temperature conditions are optimized and applied in a specific range, thereby providing excellent physical properties and particularly initial absorbency. It is excellent, it is possible to produce a superabsorbent polymer having excellent properties of water absorption since moisture does not come out from the pressurized state even after a long time.
  • the synergistic effect can be provided by a combination of physical properties that simultaneously optimizes the centrifugal water retention capacity (CRC), the pressure absorption capacity (AUL), and the gel bed permeability (GB P) of the high absorbent resin thus prepared.
  • the surface crosslinking reaction may be performed by further adding one or more materials selected from the group consisting of materials satisfying cm 3 ) 1/2 .
  • the manufacturing method of the super absorbent polymer it is possible to manufacture a superabsorbent polymer having improved physical properties without improving water retention or pressurized absorbent capacity while having improved liquid permeability.
  • the monomer composition which is a raw material of the super absorbent polymer includes a water-soluble ethylenically unsaturated monomer, a photopolymerization initiator, and a thermal polymerization initiator.
  • the water-soluble ethylenically unsaturated monomer may be used without any limitation any monomers commonly used in the production of superabsorbent polymers. Any one or more monomers selected from the group consisting of anionic monomers and salts thereof, nonionic hydrophilic containing monomers and amino group-containing unsaturated monomers and quaternized compounds thereof can be used.
  • acrylic acid or its' salts may be used an alkali metal salt such as acrylic acid or its sodium salt, and becomes possible to manufacture the water-absorbent resin using these monomers are beams having excellent physical properties come.
  • an alkali metal salt of acrylic acid is used as a monomer, acrylic acid may be neutralized with a basic compound such as caustic soda (NaOH).
  • the concentration of the water-soluble ethylenically unsaturated monomer may be about 20 to about 60% by weight, preferably about 40 to about 50% by weight relative to the monomer composition including the raw material and the solvent of the superabsorbent polymer.
  • the concentration may be appropriate in consideration of the reaction time, polymerization time and reaction conditions. However, when the concentration of the monomer is too low, the yield of the superabsorbent polymer may be low and economic problems may occur. On the contrary, when the concentration is too high, a part of the monomer may be precipitated or the grinding efficiency of the polymerized hydrogel polymer may be low. It may cause process problems such as appearing, and the physical properties of the super absorbent polymer may decrease.
  • thermo polymerization initiator by including a thermal polymerization initiator together with a photopolymerization initiator, a certain amount of heat is generated by irradiation such as ultraviolet irradiation, and a certain amount of heat is generated as the polymerization reaction is exothermic. Light into generation At the same time as the polymerization, thermal polymerization can proceed.
  • the photopolymerization initiator may be used without any limitation as long as it is a compound capable of forming radicals by light such as ultraviolet rays.
  • photopolymerization initiator examples include benzoin ether, dialkyl acetophenone, hydroxyl alkylketone e, phenylglyoxylate, and benzyldimethyl ketal (for example, benzoin ether).
  • benzoin ether dialkyl acetophenone, hydroxyl alkylketone e, phenylglyoxylate, and benzyldimethyl ketal (for example, benzoin ether).
  • One or more selected from the group consisting of Benzyl Dimethyl Ke etal, acyl phosphine and alpha -aminoketone can be used.
  • acyl phosphine examples include commercially available luci r in TP0, that is, 2, 4, 6_trimethyl-benzoyl-trimethyl phosphine oxide (2, 4, 6-tr imethyl benzoyl- tr imethyl phosphine oxide) Can be used.
  • 2, 4, 6_trimethyl-benzoyl-trimethyl phosphine oxide 2, 4, 6-tr imethyl benzoyl- tr imethyl phosphine oxide
  • a wider variety of photopolymerization initiators are well specified in Reinhold Schwa lm, "UV Coat ings: Basics, Recent Developments and New Application (Elsevier 2007) p 115", and are not limited to the examples described above.
  • the photopolymerization initiator may be included in a concentration of 40 to 200 ppm with respect to the monomer composition, preferably 45 to 180 ppm, more preferably may be included in a concentration of 50 to 170 ppm.
  • concentration of the photopolymerization initiator is too low, the polymerization rate may be slow.
  • concentration of the photopolymerization initiator is too high, the molecular weight of the superabsorbent polymer may be low and the physical properties may be uneven.
  • a persulfate-based initiator containing sulfur may be used as the thermal polymerization initiator.
  • examples of persulfate-based initiators include sodium persulfate (Sodium pe rsul fate; Na 2 S 2 0 8 ), potassium persulfate (K 2 S 2 0 8 ), and ammonium persulfate (AH onium persul fate; (NH 4 ) 2 S 2 0 8 ) There may be more than one selected.
  • the thermal polymerization initiator may be included in an amount of about 0.05 to about 0.3% by weight based on the monomer composition, preferably 0.08 to 0.25 weight 3 ⁇ 4 (wt>), more preferably 0.1 to 0.2 weight It may be included at a concentration of%.
  • the content of the thermal polymerization initiator is too low, additional thermal polymerization hardly occurs, so that the effect of adding the thermal polymerization initiator may be insignificant.
  • the content of the thermal polymerization initiator is excessively large, the molecular weight of the superabsorbent polymer is small and the physical properties are uneven. Can be done.
  • the monomer composition may include a composite internal crosslinking agent using two or more internal crosslinking agents as a raw material of the super absorbent polymer.
  • the internal crosslinking agent may include at least one functional group capable of reacting with the water-soluble substituent of the water-soluble ethylenically unsaturated monomer and at least one ethylenically unsaturated group; Or the water-soluble substituent of the said monomer and / or the water-soluble substituent formed by the hydrolysis of the monomer, and the crosslinking agent which has 2 or more of the functional groups which can react can be used in combination of 2 or more types.
  • the internal crosslinking agent may be one having two to three functional groups as described above.
  • the two or more internal crosslinking agents may be selected from the group consisting of polyfunctional acrylate compounds each having a plurality of ethylene oxide groups.
  • the polyfunctional acrylate compound having a plurality of alkylene oxide groups is polyethylenegly Polyethyl diacrylate (PEGDA), ethoxylated trimethyl propane triacrylate (Ethoxylated-TMPTA), may be selected from the group consisting of nucleic acid diol diacrylate triethylene glycol diacrylate.
  • the internal crosslinking agent may have a curing amount of 80% or more to 180% or less relative to the curing amount (acrylic acid) of the curing amount (acrylic acid) in terms of uniformity of the internal crosslinking.
  • the internal crosslinking agent is preferably a curing amount of 90% or more to 160% or less, more preferably 95% or more to 155% or less of the cure dose of acrylic acid (acrylic acid) It may have an amount.
  • the internal crosslinking agent may have a curing dose of 0.16 to 0.35 J / cu, preferably 0.18 to 0.32 J / cuf, more preferably 0.2 to 0.3 J / ciif.
  • the amount of curing of the internal crosslinking agent is an amount of energy required for curing. That is, the same number indicating the cure dose ( cure dose) is required to increase the energy required for the ksutok curing.
  • the values expressed as the cure dose may be measured using a photometer.
  • the illuminance of the lamp may be set in a predetermined curing device accessory, and the sample may be sent on the belt of the curing machine and evaluated through the UV curing machine. At this time, it can be measured by evaluating how many times the curing machine has passed based on the speed and light quantity of the conveyor of the curing machine, and calculating the total energy after the surface has been cured. Therefore, there is no limitation on the amount of separate sample when measuring the cure dose. Also, as a more specific example, when making such a measurement, a solution of about 0.5 cm in 100 mm saale is applied to the conveyor belt. It can be measured by operating the high belt.
  • Such a composite internal crosslinking agent is about 0.05 to about the monomer composition It can be included at a concentration of about 3% by weight to crosslink the polymerized polymer.
  • the composite internal crosslinking agent may preferably be included in an amount of about 0.01 to 2.5 wt%, more preferably about 0.1 to 2 wt%.
  • the monomer composition of the super absorbent polymer may further include additives such as thickeners, plasticizers, preservative stabilizers, antioxidants and the like as necessary.
  • Raw materials such as the above-mentioned water-soluble ethylenically unsaturated monomers, photopolymerization initiators, thermal polymerization initiators, internal crosslinking agents and additives may be prepared in the form of a monomer composition solution dissolved in a solvent.
  • the solvent that can be used at this time can be used without limitation of the composition as long as it can dissolve the above-mentioned components, for example, water, ethanol, ethylene glycol, diethylene glycol, triethylene glycol, 1, 4-butanedi , Propylene glycol, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, methyl ethyl ketone, acetone, methyl amyl ketone, cyclonucleanone, cyclopentanone, diethylene glycol monomethyl ether , Diethylene glycol ethyl ether, toluene, xylene, butyrolactone, and carby may be used in combination of one or more selected from methyl cellosolve acetate, ⁇ , ⁇ -dimethylacetamide, and the like.
  • the solvent may be included in the remaining amount except for the above-described components with respect to the total content of the monomer composition.
  • hydrogel polymerization by thermal polymerization or photopolymerization of such a monomer composition there is no restriction
  • the polymerization method is largely divided into thermal polymerization and photopolymerization according to the polymerization energy source, when the thermal polymerization is usually carried out, it can be carried out in a semi-unggi with a stirring shaft such as kneader, when the photopolymerization, Although it can proceed in a semi-unggi equipped with a movable conveyor belt, the above-described polymerization method is an example, the present invention is not limited to the above-described polymerization method.
  • the polymerization process is carried out at a polymerization temperature of about 35 ° C or more or 35 to 90 ° C thermal polymerization process, and together with the photopolymerization by irradiation of light in the ultraviolet (UV) region of about 100 to 400 ⁇ Can be done.
  • a polymerization temperature of about 35 ° C or more or 35 to 90 ° C thermal polymerization process, and together with the photopolymerization by irradiation of light in the ultraviolet (UV) region of about 100 to 400 ⁇ Can be done.
  • UV ultraviolet
  • the hydrous gel polymer obtained by supplying hot air or by thermal polymerization by heating the reaction machine according to the shape of the stirring shaft provided in the reaction machine may be used in a reaction vessel such as a kneader having a stirring shaft.
  • the hydrogel polymer discharged into the form may be in the form of several centimeters to several millimeters.
  • the size of the obtained water-containing gel polymer may vary depending on the concentration and the injection speed of the monomer composition to be injected, and a hydrogel polymer having a weight average particle diameter of 2 to 50 TM may be obtained.
  • the form of the hydrous gel polymer generally obtained may be a sheet-like hydrogel polymer having a width of the belt.
  • the thickness of the polymer sheet Depending on the concentration of the monomer composition introduced and the rate of injection, it is usually desirable to feed the monomer composition so that a polymer on a sheet having a thickness of about 0.5 to about 5 cm can be obtained.
  • the water content of the hydrogel polymer obtained by the above method may be about 40 to about 80% by weight.
  • the "water content” as used throughout the specification means the value of the moisture content of the total water-containing gel-like polymer is the weight of the water-containing gel polymer minus the increase in the dry polymer. Specifically, it is defined as a value calculated by measuring the weight loss according to the water vaporization of the evaporator during the process of drying the temperature of the evaporator through infrared heating. At this time, the drying conditions are raised to about 1 80 ° C at room temperature and then maintained at 180 ° C. The total drying time is set to 20 minutes, including 5 minutes of temperature rise step, the water content is measured.
  • the pulverizer used is not limited in configuration, but specifically, a vertical pulverizer, a turbo cutter, a turbo grinder, a rotary cutter, and a rotary cutter.
  • mi ll), cutter mi ll It may include any one selected from a group of crushing machines consisting of a disc crusher, a shred crusher, a crusher, a chopper, and a di sc cutter. However, it is not limited to the example mentioned above.
  • the coarsely pulverizing step may be pulverized so that the particle size of the hydrogel polymer is about 2 to about 10 mm 3.
  • the drying temperature of the drying step may be about 150 to about 250 ° C. If the drying temperature is less than 150 ° C, the drying time may be too long and the properties of the final superabsorbent polymer may be lowered. If the drying temperature exceeds 250 ° C, only the polymer surface is dried excessively. Fine powder may generate
  • drying time in consideration of the process efficiency, etc., it may proceed for about 20 to about 90 minutes, but is not limited thereto.
  • the drying method of the drying step is also commonly used as a drying step of the hydrogel polymer, it can be selected and used without limitation of the configuration. Specifically, the drying step may be performed by a method such as hot air supply, infrared irradiation, microwave irradiation, or ultraviolet irradiation.
  • the water content of the polymer after the drying step may be about 0.1 to about 10% by weight.
  • the polymer powder obtained after the milling step may have a particle diameter of about 150 to about 850 mm 3.
  • the mill which particle size is used to crush the same specifically, pin mill (pin mill), a hammer mill (hammer mill), switch 'keuryu mill (screw mi 11), a roll mill (roll mill), disc mill (disc mill ) Or a jog mill, etc., but the present invention is not limited to the above examples.
  • the polymer powder obtained after grinding may be subjected to a separate process of classifying according to the particle size.
  • the polymer having a particle size of about 150 to about 850 / m may be classified, and only a polymer powder having such a particle size may be produced through a surface crosslinking reaction step.
  • a surface crosslinking reaction is performed by adding a compound represented by the following formula (1) and a polyvalent metal cation to the ground polymer.
  • R 2 is the same or different and is each independently a hydroxyl group, an amine group, an epoxide group or an isocyanate group;
  • n is an integer of 1-3.
  • Surface crosslinking is the step of increasing the crosslink density near the surface of the superabsorbent polymer particles with respect to the crosslink density inside the particles.
  • the surface crosslinking agent is applied to the surface of the super absorbent polymer particles.
  • this reaction occurs on the surface of the superabsorbent resin particles, which improves the crosslinkability on the surface of the particles without substantially affecting the interior of the particles.
  • surface crosslinked superabsorbent polymer particles have a higher degree of crosslinking in the vicinity of the surface than in the interior.
  • the surface crosslinking agent includes a compound represented by the following Formula 1 and a polyvalent metal cation.
  • Compounds represented by the following formula (1) and polyvalent metal cations may be used alone or in combination of two or more materials.
  • 3 ⁇ 4 are the same or different and each independently represent a hydroxyl group, an amine group, Epoxide group or isocyanate group;
  • n is an integer of 1-3.
  • the crosslinking distance can be further reduced by forming a chelate with the carboxyl group (C00H) of the superabsorbent polymer.
  • the surface crosslinking reaction may be performed by further adding one or more materials selected from the group consisting of two satisfying materials.
  • Examples of the material satisfying ⁇ ⁇ ⁇ ll (J / cm 3 ) 1/2 include 1,6-nucleic acid diol, propylene glycol, 1,2-nucleic acid di, 1,3-butanediol, 2-methyl-1, 3-propanediol, 2,5-nucleic acid di-, 2-methyl-1,3-pentanediol, or 2-methyl-2,4-pentanediol, and the above ⁇ ⁇ ⁇ 4.5 (J / cm 3 )
  • Substances satisfying 1/2 include 1,2-propylene carbonate.
  • the present invention is not limited thereto, and as long as the substance satisfies the range of the parameter, a substance not shown in Table 2 may be used.
  • the Hansen solubility parameter was proposed by Charles Hansen as a method of predicting when one substance is dissolved in another to form a solution. This is for example INDUSTRIAL SOLVENT S HANDBOOKj (published by pp. 35-68, Marcel Dekker, Inc., 1996) or "() I RECTORY OF SOLVENTSj (pp.22-29, Blackie Academic & Professional, 1996). Etc Parameters described in.
  • the cohesive energy in order to calculate the solubility parameter, the cohesive energy must be obtained.
  • the cohesive energy affecting the solubility constant is classified into three categories.
  • the similarity of the solubility of the two substances can be calculated by the difference of the Hansen solubility parameter of the two substances.
  • each Hansen solubility parameter value is A for each (S D A , ⁇ ⁇ ⁇ , ⁇ ⁇ ⁇ ) ⁇ ⁇ ( ⁇ ⁇ ⁇ ⁇ , ⁇ ⁇ Assuming that ⁇ ), the difference (Ra) between the Hansen solubility parameter values of the two materials can be calculated by the following equation.
  • Ra (4 * (5 D A ⁇ ⁇ D B ) 2 + ( ⁇ P A - ⁇ ⁇ ⁇ ) 2 + ( ⁇ ⁇ ⁇ - ⁇ ⁇ ⁇ ) 2 ) 172
  • porous inorganic materials such as silica, clay, alumina, silica-alumina composite, nanosilica, titania, zinc oxide, aluminum cellulose, etc. It can be added to carry out the surface crosslinking reaction.
  • the porous inorganic material may be used in powder form or in liquid form, and in particular, may be used as alumina powder, silica ⁇ alumina powder, titania powder, or nanosilica solution.
  • the porous inorganic material may be included in an amount of about 0.05 to about 2% by weight relative to the monomer composition, preferably 0.08 to 0.18% by weight (wt%), more preferably used in 0.1 to 0.15% by weight Can be.
  • the surface crosslinking agent and the polymer powder may be mixed in a semi-permanent mixture, or the surface crosslinking agent may be sprayed onto the polymer powder, or the polymer and surface crosslinking agent may be continuously supplied to the mixer to be mixed and mixed.
  • the surface crosslinking agent When the surface crosslinking agent is added, water and methane may be further mixed and added together. When water and methanol are added, there is an advantage that the surface crosslinker can be evenly dispersed in the polymer. At this time, the content of water and methane added is added to 100 parts by weight of polymer for the purpose of inducing even dispersion of the surface crosslinking agent and preventing aggregation of the polymer powder and optimizing the surface penetration depth of the crosslinking agent. It can be applied by adjusting the rate.
  • the surface crosslinking reaction may be achieved by heating the polymer particles to which the surface crosslinking agent is added at about 160 ° C. for at least 20 minutes.
  • the surface crosslinking process conditions of the present invention can be carried out while maintaining a maximum reaction temperature 190 to 200 ° C, a total reaction time 0.5 to 1 hour, a reaction temperature of 160 ° C or more 25 minutes or more.
  • the temperature raising means for surface crosslinking reaction is not specifically limited. It can be heated by supplying a heat medium or by directly supplying a heat source.
  • the type of heat medium that can be used a heated fluid such as steam, hot air, or hot oil may be used, but the present invention is not limited thereto, and the temperature of the heat medium to be supplied is a means of heating medium, a rate of temperature increase, and a temperature increase. It may be appropriately selected in consideration of the target temperature.
  • the heat source directly supplied may be a method of heating by electricity or heating by gas.
  • the present invention is not limited to the above examples.
  • before or after the surface cross-linking reaction may be carried out to include a step of cross-linking, or before or after the surface cross-linking reaction may include a step of mixing the cross-linked inorganic (inorgani c) material.
  • a method of mixing silica in a dry manner is carried out by injecting a silica powder into a plastic bag in a powdered product and shaking it from side to side to obtain a dry product easily.
  • silica-dried products can be obtained by quantitatively injecting silica in the process of rapidly stirring the stirring shaft with paddles capable of mixing the powder in the process of flowing the product onto the line.
  • the superabsorbent polymer obtained according to the preparation method of the present invention may have improved fluid permeability without deteriorating physical properties such as water-retaining capacity and pressure-absorbing capacity, and may exhibit a fast absorption rate under pressure.
  • matters other than those described above can be added or subtracted as necessary, and therefore the present invention is not particularly limited.
  • centrifugal water-retaining capacity CRC
  • pressure-absorbing capacity CRC
  • the superabsorbent polymer of the present invention can be applied to the production of hygiene products having a comfortable and comfortable fit due to a small amount of moisture (content of rewet ting) that is cut off even after a certain time.
  • FIG. 1 is a schematic diagram showing an example of an apparatus for measuring the pressure absorption rate for the super absorbent polymer according to one embodiment of the present invention.
  • FIG. 2 is a schematic diagram showing an example of a gel bed permeability (GBP) measuring apparatus according to an embodiment of the present invention
  • Figure 3 and Figure 4 is an example of the gel bed permeability measurement cylinder and mesh arrangement, respectively It is a schematic diagram showing.
  • the solution was poured into a Vat-shaped tray (15 cm x 15 cm) mounted in a square polymerizer equipped with a light irradiation device on the top and preheated to 80 ° C., and photo-initiated by light irradiation. After about 25 seconds of light irradiation, the gel is generated from the surface, and after 50 seconds, the polymerization reaction occurs at the same time as the foaming. After cutting, a chopping process was performed using a meat chopper to prepare a powder.
  • the crumb was dried in Aubonn, which was capable of transferring air volume up and down.
  • the hot air at 18 0 ° C was dried uniformly by flowing 15 minutes downwards and upwards and 15 minutes upwards and downwards, and after drying, the water content of the dried body was 2% or less.
  • the resultant was pulverized with a grinder and classified to prepare a base resin by selecting 150 to 850 sizes.
  • the water-retaining capacity of the base resin thus prepared was 36.5 g / g, and the content of aqueous pen was 12.5 weight 3 ⁇ 4>.
  • Silica dry-treated samples were prepared by mixing 0.08 g of Aerosil 200 in a dry manner to the obtained 100 g surface-treated superabsorbent polymer.
  • Example 2 Silica dry-treated samples were prepared by mixing 0.08 g of Aerosil 200 in a dry manner to the obtained 100 g surface-treated superabsorbent polymer.
  • Super absorbent polymer was prepared in the same manner as in Example 1, except that 0.2 g of ' cerite (Ceiite) was used in place of the aerosol 200 used in the dry process.
  • Example 3
  • Example 4 For the base resin obtained in Example 1, 3 g of water, 1.0 g of ethylene carbonate, and 0.1 g of aerosil 200 were mixed with 100 g of the base resin in a surface crosslinking treatment. Subsequently, surface crosslinking reaction was carried out at 190 ° C. for 30 minutes, and after grinding, a sieve was used to obtain a surface-treated superabsorbent polymer having a particle size of 150 to 850 jm. Others manufactured the high water absorbing resin in the same manner as in Example 1. Example 4
  • Example 5 The base resin obtained in Example 1 was subjected to a surface crosslinking treatment.
  • a super absorbent polymer was prepared in the same manner as in Example 1, except that 3 g of water, 1.0 g of 1,3-propanedi and 0.5 g of propylene glycol were used relative to 100 g of the base resin.
  • Example 5
  • Example 2 In performing the same polymerization as in Example 1, a solution (A solution) containing 33 g of 5% polyethylene glycol diacrylate (PEGDA, molecular weight 400, Cure Dose 200 mJ / cm 2 ) diluted in acrylic acid was injected as an internal crosslinking agent. Then, 3 g of 5% hexanediol diacrylate (HDDA, Hexanedi ol diacrylate, Cure Dose 320 mJ / cm 2 ) diluted in acrylic acid was injected with a mixed solution (B solution). The water holding capacity of the base resin thus obtained was 37.2 g / g. Thereafter, the surface cross-linking treatment was performed in the same manner as in Example 3. Comparative Example 1
  • an internal crosslinking agent was used as a single component, and a base was prepared by mixing 55 g of 5% polyethylene glycol diacrylate (PEGDA, molecular weight 400, Cure Dose 200 mJ / cm 2 ) diluted in the acrylic acid-containing solution (A solution). It was. The water retention capacity of the base resin thus obtained was 36.2 g / g.
  • Other surface treatment procedures were prepared in the same manner as in Example 1.
  • Comparative Example 2 For example, an internal crosslinking agent is used as a single component, and 5% polyethylene glycol diacrylate (PEGDA, molecular weight 400, Cure Dose 200 mJ / cm 2 ) is not used in the acrylic acid-containing solution (A solution), and diluted 5% ethylene oxide is used. 38 g of trimethylolpropane triacrylate (Ethoxyl ated-TMPTA, TMP (E0) 9TA, M-3190 US Specialty Chemical, Cure Dose 200 mJ / cm 2 ) containing 9 mol Solutions) were combined. The water holding capacity of the base resin thus obtained was 33.2 g / g. Other surface treatment process was prepared in the same manner as in Example 1 superabsorbent polymer. Comparative Example 3
  • Example 2 In the same polymerization as in Example 1, a solution (A solution) containing 26 g of 5% polyethylene glycol diacrylate (PEGDA, molecular weight 400, Cure Dose 200 mJ / cm 2 ) diluted with an internal crosslinking agent was injected. , Trimethylolpropane triacrylate containing 5 mol% of diluted 5% propylene oxide (Propoxyl ated-TMPTA, TMP (P0) 5TA, Miwonspae 16 g of Shirty Chemical, Cure Dose 490 mJ / cm 2 ) were injected with a mixed solution (B solution). The water holding capacity of the base resin thus obtained was 38.4 g / g. Thereafter, the surface cross-linking treatment was performed in the same manner as in Example 1.
  • PEGDA polyethylene glycol diacrylate
  • PEGDA polyethylene glycol diacrylate
  • PEGDA polyethylene glycol diacrylate
  • PEGDA polyethylene glycol diacrylate
  • Example 2 In the same polymerization as in Example 1, a solution (A solution) mixed with 26 g of 5% polyethylene glycol diacrylate (PEGDA, molecular weight 400 and Cure Dose 200 mJ / cm 2 ) distilled with an internal crosslinking agent was injected. Then, 12 g of dilute 5% pentaerythritol tetraacrylate (PETTA, Miwon Specialty Chemicals, Cure Dose 158 m J / cm 2 ) was mixed with a solution (B solution). Injected. The water holding capacity of the base resin thus obtained was 34.3 g / g. Thereafter, the surface cross-linking treatment proceeded in the same manner as in Example 1.
  • PEGDA polyethylene glycol diacrylate
  • PEGDA polyethylene glycol diacrylate
  • Cure Dose 200 mJ / cm 2 dilute 5% pentaerythritol tetraacrylate
  • Example 1-5 Comparative Example 1-5 was uniformly sealed in a non-woven bag and sealed, 0.9 mass% of physiological saline was added to the silver. Flooded in. After 30 minutes, the envelope was centrifuged and drained at 250 G for 3 minutes, and then the mass W 2 (g) of the envelope was measured. In addition, after performing the same operation without using resin, the mass Kg at that time was measured.
  • W 0 (g) is the weight of the absorbent resin (g)
  • Kg is the weight of the device measured after dehydration at 250G for 3 minutes using a centrifuge, without using a water absorbent resin
  • W 2 (g) is the device weight measured after absorbing the absorbent resin in 0.9 mass% physiological saline at room temperature for 30 minutes, followed by dehydration at 250 G for 3 minutes using a centrifuge.
  • AUL Absorbency under Load
  • a stainless steel 400 mesh wire was mounted on the bottom of a plastic cylinder having an inner diameter of 25 ⁇ .
  • the resin W 0 (g, 0. 16 g) obtained in Example 1-7 and Comparative Example 1-4 was uniformly sprayed on a wire mesh under conditions of a room temperature and a humidity of 50%, and 5. 1 kPa (0.9 ps i) thereon.
  • Piston which can give more uniform load, has an outer diameter of less than 25 ⁇ and is not equal to the inner wall of the cylinder.
  • the weight W 3 (g) of the apparatus was measured.
  • a glass filter having a diameter of 90 mm and a 5 mm thick glass filter was placed inside the petri dish having a diameter of 150 mm 3, and the physiological saline consisting of 0.90 wt% sodium chloride was made at the same level as the upper surface of the glass filter.
  • One sheet of filter paper 90 mm in diameter was loaded thereon. The measuring device was placed on the filter paper and the liquid was absorbed for 1 hour under load.
  • AUL (g / g) [W 4 (g) -3 (g)] / W 0 (g)
  • W 0 (g) is the weight of the absorbent resin (g) .
  • W 3 (g) is the sum of the weight of the absorbent resin and the weight of the device capable of applying a load to the absorbent resin
  • W 4 (g) is the sum of the weight of the absorbent resin absorbed by the moisture after supplying the absorbent resin for 1 hour under a load (0.9 psi) and the weight of the device capable of applying a load to the absorbent resin.
  • GBP Gel Bed Permeability
  • the superabsorbent polymer according to the present invention exhibits certain properties or characteristics when measuring free swell gel bed permeability (GBP), gel bed permeability under load (“0.3 GBP").
  • GBP free swell gel bed permeability
  • the free swelling gel bed permeability test is a different measurement of the permeability of a swelling bed of superabsorbent material (eg, separation from an absorbent structure) under specified pressure, after a state usually referred to as a "free swelling" state.
  • the gel bed permeability under load (“0.3 GBP") is obtained by bringing the superabsorbent polymer composition to a "prescribed pressure state of about 0.3 psi" followed by gel particles (e.g., superabsorbent or absorbent material as used herein). Means the transmittance of the swelling bed.
  • the free swell gel bed permeability (GBP) test is performed under swelling of gel particles (e.g., surface treated absorbent material or superabsorbent material prior to surface treatment) under conditions commonly referred to as “free swelling” conditions.
  • the transmission of the bed is measured.
  • “Free swelling”' will be described as allowing the gel particles to swell without limiting load upon absorption of the test solution.
  • “Free swelling”' will mean that the superabsorbent polymer has no swelling limiting load upon absorption of the test solution. It will be described as causing swelling.
  • Suitable apparatus for performing the transmittance test are shown in FIGS. 3 and 4, and generally indicated as 28 in FIG. 3.
  • Test apparatus 28 includes a sample vessel (typically labeled 30) and a piston (typically labeled 36).
  • the piston 36 includes a cylindrical LEXANR shaft 38 having a central cylindrical hole 40 drilled below the longitudinal axis of the shaft. Both ends of the shaft 38 are machined to provide the upper and lower ends (indicated by 42 and 46, respectively).
  • the increase (indicated by 48) is above one end 42 and has a cylindrical hole 48a drilled through at least a portion of its center.
  • the circular piston head 50 is located above the other end 46, with an enlarged inner ring of seven holes (60, each of which has a diameter of about 0.95 cm) and fourteen holes (54, each of them). Angle is about 0.95 cm in diameter).
  • the holes 54 and 60 are drilled from the top to the bottom of the piston head 50.
  • the piston head 50 also has a cylindrical hole 62 drilled in its center to receive the end 46 of the shaft 38.
  • the lower part of the piston head 50 may also be covered with a biaxially stretched 400 mesh stainless steel screen 64 ' .
  • the sample vessel 30 includes a cylinder 34 and a 400 mesh stainless steel skinned screen 66, which is taut biaxially stretched and attached to the lower end of the cylinder.
  • the superabsorbent polymer sample (designated 68 in FIG. 3) is supported on the screen 66 inside the cylinder 34 during the test.
  • the cylinder 34 may be perforated with a transparent LEXANR rod or equivalent material or cut into a lexan tube or equivalent material, having an internal diameter of about 6 cm (eg, a cross-sectional area of about 28.27 cm 2 ) and a wall thickness of about It is 0.5 cm high and about 10 cm high.
  • a drain hole (not shown) is formed in the sidewall of the cylinder 34 at a height of about 7.8 cm above the screen 66 to drain the liquid from the cylinder, so that the fluid level in the sample vessel at about 7.8 cm above the screen 66. Keep it.
  • the piston head 50 is machined from a lexan rod or equivalent material and has a height of approximately 16 mm and a diameter of a predetermined size so that it still slides freely while fitting it to the minimum wall space inside the cylinder 34.
  • the shaft 38 is machined from a lexan rod or equivalent material and has an outer diameter of about 2.22 cm and an inner diameter of about 0.64 cm.
  • the shaft upper end 42 is approximately 2.54 cm in length and approximately 1.58 cm in diameter.
  • the annular slad 47 is formed to support the weight 48.
  • the annular weight 48 is about 1.59 cm in internal diameter, so that it slips over the upper end 42 of the shaft 38 and is present on the annular shoulder 47 formed thereon.
  • the annular extender 48 may be made of stainless steel or made of a corrosion resistant adult suitable material in the presence of a test solution that is 0.9 wt% sodium chloride in distilled water.
  • the combined weight of the piston 36 and the annular weight 48 corresponds to approximately 596 g, which means that the pressure applied to the absorbent structure sample 68 is about 0.3 ps i or about 20.7 g / for a sample area of about 28.27 cm 2 . It is said to be cm 2 .
  • the sample vessel 30 When the test solution is flowed into the test apparatus during the test described below, the sample vessel 30 generally remains on a 16 mesh rigid stainless steel support screen (not shown): or the sample vessel 30 In order not to limit the flow from the bottom of the vessel, it rests on a support ring (not shown) having a diameter size substantially the same as the cylinder 34.
  • a piston 36 with a weight 48 disposed thereon is placed in the hollow sample vessel 30 and a cylinder 34 from the bottom of the weight 48.
  • the height up to the top of the c) is measured with a caliper with suitable measurement accuracy up to 0.01 mm.
  • the same piston 36 and extension 48 should be used for the measurement when the superabsorbent polymer sample 68 is water swelled after saturation.
  • the sample tested is made from superabsorbent material particles, which are prescreened through a US standard 30 mesh screen and held on a US standard 50 mesh screen.
  • the test sample contains particles in the size range of about 300 to about 600.
  • the particles can be prescreened manually or automatically.
  • About 2.0 g of sample was placed in sample vessel 30, and then in the absence of piston 36 and weight 48, the vessel was immersed in the test solution for a period of about 60 minutes to saturate the sample and swell the sample without limiting load. All.
  • the piston 36 and weight 48 are placed over the saturated sample pool 68 of the sample vessel 30 and then the sample vessel 30, the piston 36, the weight 48 and the sample. (68) is removed from the solution.
  • the thickness of the saturating sample 68 is re-established from the bottom of the weight 48 to the top of the cylinder 34, using the same clipper or meter (where the zero does not change from the initial height measurement) used previously. Is determined by.
  • the height measurement obtained by the measurement of the hollow sample vessel 30, the piston 36 and the height 48 is subtracted from the height measurement obtained after saturation of the sample 48. The value obtained is the thickness or height ("H") of the swelling sample.
  • Permeability measurements are initiated by delivering a flow of test solution to a sample vessel 30 having a saturated sample 68, a piston 36, and a weight 48 therein. Adjust the flow rate of the test solution to the vessel to maintain a fluid height of about 7.8 cm above the bottom of the sample vessel. The amount versus time of solution passing through sample 68 is determined gravimetrically. The data point is maintained when the fluid level is stabilized at a height of about 7.8 cm Collect every second for more than 20 seconds. The flow rate (Q) through the swelling sample (68) is measured in g / s by a linear least squares approximation of fluid (g) versus time (seconds) through the sample 68.
  • the transmittance (darsi) is calculated according to the following equation (3).
  • K is the transmittance (cm 2)
  • Q is the flow rate (g / speed)
  • H is the height of the sample (cm)
  • Mu is the liquid viscosity (poi se) (the test solution used in the test Approximately 1 cps)
  • A is the cross-sectional area for liquid flow (cm 2 )
  • Rho is the liquid density (g / cm 3 ) (for the test solution used in the test)
  • P is hydrostatic pressure (dynes / cm 2 ) (typically about 3, 923 dynes / cm 2 ).
  • the hydrostatic pressure is calculated from the following equation (4).
  • Rho is the liquid density (g / cm 3 )
  • g is the weight acceleration, typically 981 cm / sec 2
  • h is the fluid height (eg 7.8 cm for the permeability test described herein). )to be.
  • Testing gel bed permeation under load is typically performed by gel particles (eg, The transmittance of the swelling bed of the superabsorbent material or absorbent material as used in the circle is measured.
  • the term "loading" means that the swelling of the particles is limited by the loading that normally matches the normal working load (eg, sitting, walking, bending, etc.) applied to the particles by the wearer.
  • the gel bed permeation test under load is substantially the same as the free swelled gel bed permeability test described previously, except for the following.
  • About 2.0 g of sample is placed in the sample vessel 30, uniformly dispersed in the bottom of the sample vessel, the piston 36 and the weight 48 are placed on the sample inside the sample vessel, and then the sample vessel (the piston and weight inside Submerged) in a test solution (0.9 wt% NaCl saline) for about 60 minutes.
  • a test solution 0. wt% NaCl saline
  • the pressure absorption rate (Strike thru timeime under load, the welding rate of SAP under load) was measured by the following method.
  • a cylinder (cyl inder, w / oring: Mesh # 400), a plunger (plunger, Mesh # 100), and a weight (weight, 0.3 psi) were used.
  • the test apparatus used was a free swelled gel bed permeability (GBP) test equipment shown in FIG.
  • the weight used was 2.07 kPa (0.3 psi) In order to give more load evenly, there is no inner wall of the outer cylinder and the movement of the upper and lower sides is not disturbed.
  • the mandarin paper (What man paper 4) was laid on the bottom of the cylinder of the device, the superabsorbent resin was weighed and evenly spread by 2 g.
  • the superabsorbent polymer of Example 1-5 according to the present invention exhibits improved fluid permeability, water retention, and pressure absorption ability as compared to Comparative Example 1-5, and has quick absorption characteristics under pressure. And excellent absorbency, and can produce diapers and the like to which ultra-thin technology is applied.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Hematology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

The present invention relates to a super absorbent polymer which has excellent initial water absorption and which is watertight under pressure, even after time has elapsed, and concurrently optimizes, to predetermined ranges, centrifuge repair capability (CRC), absorbency under load (AUL), gel bed permeability (GBP), and absorption rate under pressure, etc. of the super absorbent polymer, thereby being capable of improving the physical properties of the final diaper, and thereby being capable of manufacturing a diaper to which ultra-thin technology has been applied.

Description

【명세서】  【Specification】
【발명의 명칭】  [Name of invention]
고흡수성 수지  Superabsorbent polymer
【기술분야】  Technical Field
본 발명은 흡수성 등의 기본 물성이 우수하고, 가압 하에 빠른 흡수 속도를 나타내는 고흡수성 수지에 관한 것이다.  The present invention relates to a superabsorbent polymer which is excellent in basic physical properties such as absorbency and exhibits a fast absorption rate under pressure.
【발명의 배경이 되는 기술】  [Technique to become background of invention]
고흡수성 수지 (Super Absorbent Polymer , SAP)란 자체 무게의 5백 내지 1 천 배 정도의 수분을 흡수할 수 있는 기능을 가진 합성 고분자 물질로서, 개발업 체마다 SAM(Super Absorbency Mater i al ) , AGM(Absorbent Gel Mater i al ) 등 각기 다른 이름으로 명명하고 있다. 상기와 같은 고흡수성 수지는 생리용구로 실용화 되기 시작해서, 현재는 어린이용 종이기저귀 등 위생용품 외에 원예용 토양보수 제, 토목, 건축용 지수재., 육묘용 시트, 식품유통분야에서의 신선도 유지제, 및 찜질용 등의 재료로 널리 사용되고 있다. Super Absorbent Polymer (SAP) is a synthetic polymer material capable of absorbing water of 500 to 1,000 times its own weight. It is named after Absorbent Gel Mater i al). Such superabsorbent polymers have been put into practical use as sanitary instruments, and are currently used in gardening, soil repair agents, civil engineering and building index materials in addition to sanitary products such as paper diapers for children . It is widely used as a material for raising seedlings, seedling sheets, freshness retainers in food distribution, and for steaming.
상기와 같은 고흡수성 수지를 제조하는 방법으로는 역상현탁중합에 의한 방법 또는 수용액 중합에 의한 방법 등이 알려져 있다. 역상현탁중합에 대해서는 예를 들면 일본 특개소 56-161408, 특개소 5그 158209 , 및 특개소 57-198714 등 에 개시되어 있다.  As a method for producing such a super absorbent polymer, a method by reverse phase suspension polymerization or a method by aqueous solution polymerization is known. Reverse phase suspension polymerization is disclosed in, for example, Japanese Patent Laid-Open No. 56-161408, Japanese Patent Laid-Open No. 158209, Japanese Patent Laid-Open No. 57-198714, and the like.
수용액 중합에 의한 방법으로는 또 다시, 여러 개의 축을 구비한 반죽기 내에서 중합겔을 파단, 넁각하면서 중합하는 열중합 방법, 및 고농도 수용액을 벨트상에서 자외선 등을 조사하여 중합과 건조를 동시에 행하는 광중합 방법 등 이 알려져 있다. As a method of aqueous solution polymerization, a thermal polymerization method is carried out by breaking and polymerizing a polymer gel in a kneader having several shafts, and a photopolymerization method which simultaneously performs polymerization and drying by irradiating ultraviolet rays or the like on a belt with a high concentration of aqueous solution. Etc This is known.
상기와 같은 중합 반웅을 거쳐 얻은 함수겔상 중합체는 일반적으로 건조 공정을 거쳐 분쇄한 뒤 분말상의 제품으로 시판된다.  The hydrous gel polymer obtained through the polymerization reaction as described above is generally pulverized through a drying process and commercially available as a powder product.
고흡수성 수지를 이용한 제품에서 투과율 (permeabi l i ty)은 흡수되는 액체 의 유동성을 측정하는 척도이다. 투과율은 가교결합된 수지의 입자 크기 분포, 입자 형상 및 입자들 사이의 개구부의 연결성, 팽윤된 겔의 표면 개질 등의 특성 에 따라 달라질 수 있다. 고흡수성 수지 조성물의 투과율에 따라 팽윤된 입자들 을 통과하는 액체의 유동성이 달라진다. 투과율이 낮으면 액체가 고흡수성 수지 조성물을 통하여 용이하게 유동할 수 없게 된다.  In products with superabsorbent polymers, permeability is a measure of the fluidity of the absorbed liquid. The transmittance may vary depending on the characteristics of the particle size distribution of the crosslinked resin, the particle shape and the connectivity of the openings between the particles, the surface modification of the swollen gel, and the like. The fluidity of the liquid passing through the swollen particles depends on the transmittance of the superabsorbent polymer composition. When the transmittance is low, the liquid cannot easily flow through the super absorbent polymer composition.
고흡수성 수지에서 투과율을 증가시키는 한 가지 방법으로 수지 중합 후 표면 가교 반응을 수행하는 방법이 있으며 이때 표면 가교제와 함께 실리카 (si Π ca)나 클레이 (c l ay) 등을 첨가하는 방법이 이용되어 왔다. 예를 들면, 미국 특허 제 5 , 140 , 076호 및 제 4,734,478호는 건조 고흡수성 수지 분말의 표면 가교결합 증의 실리카의 첨가를 개시하고 있다.  One method of increasing the transmittance in a super absorbent polymer is to perform a surface crosslinking reaction after polymerization of the resin, and at this time, a method of adding silica (si Π ca) or clay (cl ay) together with the surface crosslinking agent has been used. . For example, US Pat. Nos. 5,140, 076 and 4,734,478 disclose the addition of silica of surface crosslinking of dry superabsorbent resin powders.
그러나, 상기 실리카나 클레이 등을 첨가함에 따라 투과율은 향상되나 이에 비례하여 보수능 또는 가압 흡수능의 저하가 나타나고 이동시 외부의 물리적 층격에 의해 고흡수성 수지와 분리되기 쉬운 문제점이 있다. 또한, 이전에 통액성 보수능 및 가압 흡수능이 일정 수준 이상으로 되면서도, 가압 하에서 빠른 흡수 특성을 나타내어 실제 기저귀 등에 적용시 실질적으로 빠른 흡수 특성을 나타내는 고흡수성 수지는 개발된 바 없다.  However, as the silica or clay is added, the transmittance is improved. However, there is a problem in that the water retention capacity or the pressure absorption capacity is decreased in proportion to the silica, and the clay is easily separated from the superabsorbent polymer due to the external physical lamination. In addition, the superabsorbent water retention ability and the pressure-absorbing capacity is above a certain level, but has not been developed a superabsorbent polymer that exhibits a fast absorption characteristics under pressure and exhibits a substantially fast absorption characteristics when applied to an actual diaper.
【발명의 내용】 【해결하고자 하는 과제】 [Content of invention] Problem to be solved
본 발명은 고흡수성 수지의 표면 처리를 통해 물성이 우수하면서 특히 초기 흡수성이 우수하고, 장시간 경과후에도 가압상태에서 수분이 거의 베어 나오지 않아 흡수능이 우수하며 , 가압 하에 빠른 흡수 속도를 나타내는 고흡수성 수지를 제공하고자 한다.  The present invention is excellent in the physical properties through the surface treatment of the super absorbent polymer, in particular excellent in the initial absorbency, after a long time the water is hardly coming out under pressure under the excellent absorbency, the superabsorbent resin showing a fast absorption rate under pressure To provide.
본 발명은 또한, 상기 고흡수성 수지를 제조하는 방법을 제공하고자 한다. 【과제의 해결 수단】  The present invention also provides a method for producing the superabsorbent polymer. [Measures of problem]
본 발명은 산성기를 포함하고 적어도 일부가 중화된 수용성 에틸렌계 불 포화 단량체를 2 종 이상의 내부 가교제로 중합시킨 분말 형태의 베이스 수지를 탄소수 2 내지 8 의 디을 또는 글리콜계 화합물로 표면 가교시킨 가교 중합체를 포함하고, 원심분리 보수능 (CRC)이 28 g/g 이상이고, 0.9 psi의 가압 흡수능 (AU The present invention relates to a crosslinked polymer obtained by surface-crosslinking a base resin in a powder form obtained by polymerizing a water-soluble ethylene-based unsaturated monomer containing an acidic group and at least partially neutralized with two or more internal crosslinking agents with a di- or glycol-based compound having 2 to 8 carbon atoms. It has a centrifugal water retention capacity (CRC) of 28 g / g or more and a pressure absorption capacity of 0.9 psi (AU).
L)이 18 g/g 이상이고, 겔 베드 투과율 (GBP)이 45 darcy 이상이며, 0.9 중량 % 생 리식염수에 대한 3 차 주입시 0.3 ps i 가압 흡수 속도가 30 내지 200 초인 고흡 수성 수지를 제송한다. L) is at least 18 g / g, gel bed permeability (GBP) is at least 45 darcy, and 0.3 ps i pressurized absorption rate of 30 ps. do.
본 발명은 또한, 산성기를 포함하고 적어도 일부가 중화된 수용성 에틸렌 계 불포화 단량체, 경화량 (cure dose)이 0. 16 내지 0.35 J/cuf인 2종 이상의 내부 가교제, 광중합 개시제, 및 열중합 개시제를 포함하는 단량체 조성물에 열중합 및 광중합을 진행하여 함수겔상 중합체를 형성하는 단계; 상기 함수겔상 증합체 를 건조하는 단계; 상기 건조된 중합체를 분쇄하는 단계; 및 상기 분쇄된 중합체 에 하기 화학식 1 로 표시되는 화합물 및 다가의 금속 양이온을 첨가하여 표면 가교 반웅을 수행하는 단계;를 포함하는 고흡수성 수지의 제조 방법을 제공한다. [화학식 1] The present invention also provides a water-soluble ethylenically unsaturated monomer containing an acidic group and at least partially neutralized, two or more internal crosslinkers, photopolymerization initiators, and thermal polymerization initiators having a cure dose of from 0.1 to 0.35 J / cuf. Thermally polymerizing and photopolymerizing the monomer composition to form a hydrogel polymer; Drying the hydrogel polymer; Pulverizing the dried polymer; And adding a compound represented by the following Chemical Formula 1 and a polyvalent metal cation to the ground polymer to perform surface crosslinking reaction. [Formula 1]
Rr(CH2)n-R2 Rr (CH 2 ) n -R 2
상기 화학식 1에서,  In Chemical Formula 1,
및 R2는 동일하거나 상이하며 각각 독립적으로 히드록시기, 아민기, 에폭사이드기 또는 이소시아네이트기이고; And R 2 is the same or different and is each independently a hydroxyl group, an amine group, an epoxide group or an isocyanate group;
n은 1 내지 3의 정수이다.  n is an integer of 1-3.
이하, 발명의 구체적인 구현예에 따라 고흡수성 수지 및 이를 제조하는 방법에 대해 보다 상세히 설명하기로 한다. 다만, 이는 발명의 하나의 예시로서 제시되는 것으로, 이에 의해 발명의 권리 범위가 한정되는 것은 아니며, 발명의 권리 범위내에서 구현예에 대한 다양한 변형이 가능함은 당업자에게 자명하다. 추가적으로, 본 명세서 전체에서 특별한 언급이 없는 한 "포함 " 또는 "함 유1'라 함은 어떤 구성요소 (또는 구성 성분)를 별다른 제한없이 포함함을 지칭하 며, 다론 구성요소 (또는 구성 성분)의 부가를 제외하는 것으로 해석될 수 없다. 본 발명자돌은 초기 흡수성이 우수하고, 장시간 경과후에도 가압상태에서 수분이 거의 베어 나오지 않아 흡수능이 우수한 고흡수성 수지에 대한 연구를 거듭하는 과정에서, 고흡수성 수지의 원심분리 보수능 (CRC) , 가압 흡수능 (AUU , 겔 베드 투과율 (GBP) , 가압 흡수 속도를 모두 동시에 소정의 범위로 최적화할 경 우에 , 최종 기저귀에서의 물성향상이 가능하고, 이를 통해 초박형 기술이 적용된 기저귀를 생산할 수 있음을 확인하여 본 발명을 완성하였다. 이에 발명의 일 구현예에 따르면, 초기 흡수성이 우수하고, 장시간 경과 후에도 가압상태에서 수분이 거의 베어 나오지 않아 흡수능이 우수한 고흡수성 수지가 제공된다. 본 발명의 고흡수성 수지는 원심분리 보수능 (CRC)이 28 g/g 이 상이고, 0.9 ps i의 가압 흡수능 (AUL)이 18 g/g 이상이고, 겔 베드 투과율 (GBP)이 45 darcy 이상이며, 0.9 증량 % 생리식염수에 대한 3 차주입시 0.3 psi의 가압 흡수 속도가 30 내지 200 초이다. Hereinafter, a super absorbent polymer and a method of preparing the same according to specific embodiments of the present invention will be described in detail. However, this is presented as an example of the invention, thereby not limited to the scope of the invention, it is apparent to those skilled in the art that various modifications to the embodiment is possible within the scope of the invention. In addition, unless otherwise indicated throughout the specification, "including" or "containing 1 " refers to the inclusion of any component (or component) without particular limitation, and other components (or components). The inventors of the present invention have excellent initial absorbency, and after a long period of time, water absorbed hardly under pressure under a long period of time, and thus the superabsorbent polymer has been excellently absorbed. When the resin's centrifugation water retention capacity (CRC), pressure absorption capacity (AUU), gel bed permeability (GBP), and pressure absorption rate are all optimized at the same time, the properties of the final diaper can be improved. The present invention was completed by confirming that the diaper to which the technique was applied can be produced. Accordingly, according to one embodiment of the present invention, a superabsorbent polymer having excellent initial absorbency and hardly coming out of moisture under a pressurized state even after a long time is provided has an excellent absorbency. The superabsorbent polymer of the present invention has a centrifugal water retention capacity (CRC) of 28 g / g or more, a 0.9 ps i pressure absorption capacity (AUL) of 18 g / g or more, a gel bed transmittance (GBP) of 45 darcy or more , The pressurized absorption rate of 0.3 psi is 30 to 200 seconds upon tertiary injection with 0.9 wt% saline.
특히 본 발명의 고흡수성 수지는 후술되는 바와 같이 내부 가교제로 폴 리에틸렌글리콜 디아크릴레이트 등의 2 종 이상을 사용하여 광중합 및 열중합을 진행함으로써, 물성이 우수하면서 특히 초기 흡수성이 우수하고, 장시간 경과 후 에도 가압상태에서 수분이 거의 베어 나오지 않아 흡수능이 우수한 특성을 나타 낼 수 있다. 이에 따라, 본 발명의 특정 파라미터 물성을 만족하는 고흡수성 수 지는 다양한 위생용품뿐 아니라; 원예용 토양보수제, 토목, 건축용 지수재, 육묘 용 시트, 식품유통분야에서의 신선도 유지제, 및 찜질용 등의 재료에 널리 사용 가능하다.  In particular, the superabsorbent polymer of the present invention is photopolymerized and thermally polymerized by using two or more kinds of polyethyleneglycol diacrylate as an internal crosslinking agent, as described below. Even after the elapse of time under the pressurized state hardly comes out of the moisture can exhibit excellent absorption ability. Accordingly, superabsorbent polymers that satisfy certain parameter properties of the present invention are not only various hygiene products; It is widely used for materials such as horticultural soil repair, civil engineering, construction index, seedling sheet, freshness keeping in food distribution, and steaming.
본 발명은 상술한 바와 같이 고흡수성 수지의 원심분리 보수능 (CRC) , 가 압 흡수능 (AUL) , 겔 베드 투과율 (GBP) , 및 가압 흡수 속도를 모두 동시에 최적화 하는 복합적인 물성 결합으로 시너지 효과를 제공할 수 있다. 따라서, 본 발명 은 흡수체 제조시의 우수한 물성과 편안한 착용감을 유도할 수 있다.  As described above, the synergistic effect of the superabsorbent polymer can be synergistically achieved through the combination of physical properties that simultaneously optimize both centrifugal water retention capacity (CRC), pressure absorption capacity (AUL), gel bed permeability (GBP), and pressure absorption rate. Can provide. Therefore, the present invention can induce excellent physical properties and comfortable fit in manufacturing the absorber.
본 발명의 고흡수성 수지에서 상기 생리식염수에 대한 원심분리 보수능 (C RC)은 하기 계산식 1에 따라 표시되는 것이 될 수 있다.  In the superabsorbent polymer of the present invention, the centrifugal water retention capacity (C RC) for the physiological saline may be represented by the following Equation 1.
[계산식 1] CRC(g/g) = { [W2(g) - W1(g) ] /W0(g) } ᅳ 1 [Calculation 1] CRC (g / g) = {[W 2 (g)-W 1 (g)] / W 0 (g)} ᅳ 1
상기 계산식 1에서,  In Formula 1,
W0 (g)는 흡수성 수지의 무게 (g)이고, W g)는 흡수성 수지를 사용하지 않 고, 원심분리기를 사용하여 250G로 3분간 탈수한 후에 측정한 장치 무게이고, Ψ2 (g)는 상온에 0.9 질량 %의 생리식염수에 흡수성 수지를 30 분 동안 침수한 후에, 원심분리기를 사용하여 250G로 3 분간 탈수한 후에 흡수성 수지를 포함하여 측 정한 장치 무게이다. 특히, 상기 흡수성 무게 W0(g)는 300 내지 600 마이크로미 터 ( )로 분급된 흡수성 수지의 무게로 측정될 수 있다ᅳ W 0 (g) is the weight of water absorbent resin (g), W g) is the weight of the device measured after dehydration at 250G for 3 minutes using a centrifuge without using water absorbent resin, Ψ 2 (g) Is the device weight including the absorbent resin after immersion of the absorbent resin in 0.9 mass% physiological saline at room temperature for 30 minutes, followed by dehydration at 250 G for 3 minutes using a centrifuge. In particular, the absorbent weight W 0 (g) can be measured by the weight of the absorbent resin classified to 300 to 600 micrometers (미).
상기 고흡수성 수지의 생리식염수에 대한 원심분리 보수능 (CRC)은 28 gig 이상 또는 28 g/g 내지 34 g/g이 될 수 있으며, 바람직하게는 29 g/g 이상, 좀더 바람직하게는 30 g/g 이상이 될 수 있다. 상기 생리 식염수에 대한 원심분 리 보수능 (CRC)은 28 g/g 미만이 되면, 기저귀 보수능이 저하되어 기저귀 물성을 나쁘게 하는 문제가 발생할 수 있다.  The centrifugal water retention capacity (CRC) of the superabsorbent polymer for physiological saline may be 28 gig or more or 28 g / g to 34 g / g, preferably 29 g / g or more, more preferably 30 g. It can be more than / g. When the centrifugal water-retaining capacity (CRC) for the saline solution is less than 28 g / g, the diaper water-retaining ability is lowered, which may cause a problem of bad diaper physical properties.
또한, 본 발명의 고흡수성 수지에서 상기 생리식염수에 대한 0 . 9 ps i의 가압 흡수능 (AUL)은 하기 계산식 2로 표시되는 것일 수 있다.  In addition, in the super absorbent polymer of the present invention 0. The pressure absorption capacity (AUL) of 9 ps i may be represented by the following formula (2).
[계산식 2]  [Calculation 2]
AUL (g/g) = [W4(g) - W3(g) ] / 0(g) AUL (g / g) = [W 4 (g)-W 3 (g)] / 0 (g)
상기 계산식 2에서,  In the formula 2,
W0(g)는 흡수성 수지의 무게 (g)이고, W3(g)는 흡수성 수지의 무게 및 상기 흡수성 수지에 하중을 부여할 수 있는 장치 무게의 총합이고, W4(g)는 하중 (0.9 psi ) 하에 1 시간 동안 상기 흡수성 수지에 수분을 공급한 후의 수분이 흡수된 흡수성 수지의 무게 및 상기 흡수성 수지에 하중올 부여할 수 있는 장치 무게의 총합이다. W 0 (g) is the weight of the absorbent resin (g), W 3 (g) is the sum of the weight of the absorbent resin and the weight of the device capable of applying a load to the absorbent resin, and W 4 (g) is the load ( 0.9 psi) is the sum of the weight of the absorbent resin absorbed by the moisture after supplying the absorbent resin with water for 1 hour and the weight of the device capable of applying a load to the absorbent resin.
본 발명의 일례로, 상기 0.9 ps i의 가압 흡수능 (AUL)은 300 내지 600 마 이크로미터 (; Mil) 분급된 흡수성 수지 0. 16 g을 가압 흡수능 (AUL) 측정 키트에 넣 고 0.9 psi의 분동 (weight )을 올린 상태에서 0.9%소금물 하에서 1 시간 가압 팽 윤시킨 후에 측정할 수 있다. 이때, 1 시간 경과후 셀의 무게를 재어 가압 하에 서의 흡수능 (AUL)을 측정할 수 있다. 이 경우, 상기 흡수성 무게 W0(g)는 300 내 지 600 마이크로미터 /m)로 분급된 흡수성 수지의 무게로 측정될 수 있다. In one example of the invention, the 0.9 ps i of a pressure absorbent capacity (AUL) is 300 to 600 micrometers (; Mil) classified into a pressure absorbing capacity (AUL) measurement kit and weighed 0.9 psi It can be measured after pressure swelling for 1 hour under 0.9% salt water in the state of raising the weight. At this time, after 1 hour, the cell can be weighed to measure the absorbency (AUL) under pressure. In this case, the absorbent weight W 0 (g) can be measured by the weight of the absorbent resin classified as 300 to 600 micrometer / m).
상기 고흡수성 수지의 생리식염수에 대한 0.9 psi의 가압 흡수능 (AUL)은 0.9 psi of pressure-absorbing capacity (AUL) of the superabsorbent polymer in physiological saline is
18 g/g 이상, 바람직하게는 18.5 g/g 이상, 좀더 바람직하게는 19 g/g 이상이 될 수 있다. 가압흡수능은 높을수록 좋으나 가압흡수능은 보수능과 상반되는 물성 으로 가압흡수능을 너무 높이는 경우에는 보수능의 저하가 발생할 수 있다. 가압 흡수능과 보수능을 동시에 향상시키는 것이 중요한 기술 요소이다. 18 g / g or more, preferably 18.5 g / g or more, more preferably 19 g / g or more. The higher the pressure absorption capacity is better, but the pressure absorption capacity is a property opposite to the water retention capacity, if the pressure absorption capacity is too high, the water retention capacity may decrease. Improving the pressure absorption capacity and water retention capacity at the same time is an important technical factor.
본 발명에서 상기 계산식 1 내지 2에 기재된 W0(g)는 각각의 물성값에 적 용한 흡수성 수지의 무게 (g)에 해당하는 것으로, 각각 동일하거나 상이할 수 있 다. In the present invention, W 0 (g) described in Formulas 1 to 2 corresponds to the weight (g) of the absorbent resin applied to each property value, and may be the same or different.
본 발명에서 상기 고흡수성 수지의 생리식염수에 대한 겔 베드 투과율 (GB P)은 45 darcy 이상, 바람직하게는 48 darcy 이상, 좀더 바람직하게는 55 darcy 이상이 될 수 있다. 겔베드 투과율은 높올수록 좋으나 겔베드 투과율을 너무 높 이는 경우에는 ,보수능이나 가압흡수능의 저하가 발생할 수 있다. 여기서, 상기 겔 베드 투과율 (GBP)은 투과율에 대한 CGS 단위인 "다르시 ( darcy) "로 표시된다. 예컨대, 1 다르시는, 고체의 두 단면의 압력차가 1 기압인 경우, 점도 1 cps의 유체 1cm2이 단면 두께 1cm 및 단면적 1cm2를 통해 1초 이내에 유동하는 고체의 투과율이다. 투과율은, 투과율에 대한 SI 단위가 없기 때문에 , 면적과 동일한 단 위를 갖고, m 2이 사용된다. 1 다르시는 약 0 . 98692 X 10"12 m2 또는 약 0 .98692 10"8 cm2과 동일하다. 이러한 겔베드 투과율을 측정하는 방법은 미국특허공보 US 7 , 179 , 851호에 명시되어 있다. In the present invention, the gel permeability (GB P) of the superabsorbent polymer to the saline solution may be 45 darcy or more, preferably 48 darcy or more, and more preferably 55 darcy or more. Higher gel bed transmittance is better, but too high gel bed transmittance In this case, deterioration of water-retaining capacity or pressure-absorbing capacity may occur. Here, the gel bed permeability (GBP) is expressed as "darcy" which is the CGS unit for permeability. For example, when the pressure difference between two cross sections of a solid is 1 atm, the fluid 1 cm 2 having a viscosity of 1 cps is the transmittance of the solid flowing within 1 second through the cross section thickness 1 cm and the cross section area 1 cm 2 . Since the transmittance has no SI unit for transmittance, it has the same unit as the area and m 2 is used. 1 different time is about 0. 98692 X 10 "12 m 2 or about 0.998692 10 " 8 cm 2 . A method for measuring such gel bed permeability is specified in US Pat. No. 7, 7,179, 851.
상기 겔 베드 투과율 (GBP )은 특히, "자유 팽윤" 상태로서 언급되는 상태 하에서, 겔 입자 (예를 들면, 표면 처리된 흡수성 재료 또는 표면 처리하기 전의 고흡수성 재료)의 팽윤 베드의 투과율을 측정한 것이다. 다만, 착용자에 의해 입 자에 적용되는 통상의 사용 하중 (예: 앉기, 걷기, 구부리기 등)과 통상 일치하는 "하중하" 조건 하에서 겔 입자 (예를 들면, 본원에 사용된 바와 같은 고흡수성 재 료 또는 흡수성 재료)의 팽윤 베드의 투과율을 측정하는 경우 즉, 하중하의 겔 베드 투과율 (0.3 ps i GBP 또는 0.3 GBP)은 2 .5 darcy 이상, 바람직하게는 2.8 da rcy 이상, 좀더 바람직하게는 3.0 darcy 이상이 될 수 있다. 이러한 하증하의 겔 베드 투과율이 높다는 것은 겔강도가 높다는 것을 의미하며, 이는 아기가 소변을 본 후 몸무게로 누르는 상태에서의 투과성을 모사하는 지표가 될 수 있다.  The gel bed permeability (GBP) is a measure of the permeability of the swelling bed of gel particles (e.g., surface treated absorbent material or superabsorbent material prior to surface treatment), especially under conditions referred to as "free swelling" conditions. will be. However, gel particles (eg, superabsorbent materials as used herein) under " loaded " conditions normally matched by the wearer to the wearer's normal use load (eg, sitting, walking, bending, etc.). When measuring the permeability of the swelling bed of a polymeric or absorbent material, i.e. the gel bed permeability (0.3 ps i GBP or 0.3 GBP) under load is at least 2.5 darcy, preferably at least 2.8 da rcy, more preferably at 3.0 It can be more than darcy. The high permeability of the gel bed under subdivision means that the gel strength is high, which may be an indicator that simulates the permeability of the baby after pressing urine weight.
또한, 본 발명의 고흡수성 수지는 상술한 바와 같은 통액성, 보수능 및 가압 흡수능이 일정 수준 이상으로 되면서도, 가압 하에서 빠른 흡수 속도를 나 타내는 특성을 갖는다. 특히, 상기 고흡수성 수지는 0.9 중량 % 생리식염수에 대 한 3 차 주입시 0.3 ps i의 가압 흡수 속도는 30 내지 200 초 (sec)이고, 바람직하 게는 40 내지 190 초, 좀더 바람직하게는 50 내지 180 초일 수 있다. 가압하 흡 수속도는 빠를수록 좋으나 가압흡수속도가 200 초 이상으로 느리면 실제 기저귀 에서 소변의 흡수가 느려 소변이 새는 현상이 발생할 수 있다. 특히, 상기 고흡 수성 수지의 가압 흡수 속도는 0.3 ps i의 가압 조건 하에서 흡수성 수지 2 g을 주입하고 0.9 중량 ¾> 생리식염수 10 mL를 3 분 간격으로 3 회 반복 주입하면서, 3 차 주입시 상기 생리식염수에 대한 흡수 속도를 측정한 것이다. In addition, the superabsorbent polymer of the present invention exhibits a fast absorption rate under pressure while the liquid-permeable, water-retaining ability, and pressure-absorbing ability as described above are above a certain level. It has a characteristic to appear. In particular, the superabsorbent polymer has a pressure absorption rate of 0.3 ps i at the third injection of 0.9 wt% physiological saline is 30 to 200 seconds (sec), preferably 40 to 190 seconds, more preferably 50 To 180 seconds. The faster the absorption rate under pressure, the better. However, if the pressure absorption rate is slower than 200 seconds, urine leakage may occur due to the slow absorption of urine in the diaper. In particular, the pressure-absorbing rate of the superabsorbent polymer is 2 g of an absorbent resin under a pressurized condition of 0.3 ps i and 10 mL of 0.9 wt. ¾> saline solution is repeated three times at three minute intervals. The rate of absorption for saline is measured.
본 발명에서 상기 가압 흡수 속도는 도 1 에 나타낸 바와 같은 장치를 사 용하여 측정할 수 있으며, 실린더 (cyl inder , w/o-ring: Mesh #400) 및 플런져 (pi Linger , Mesh #100), 웨이트 (weight )가 구비된 장치를 사용하여 0.9 중량 % 생리식 염수 용액으로 측정할 수 있다. 특히, 본 발명에서 가압하의 흡수 속도를 측정하 는 장치는 기존의 고흡수성 수지가 소금물 등을 빨아 올리는 방식으로 측정한 것 과는 달리, 소금물을 실제 적용시와 더욱 유사한 방식으로 고흡수성 수지 ( layer) 의 상단에서 주입하여 측정하는 것을 특징으로 한다. 또한, 상기 가압하의 흡수 속도는 3 번 이상에 걸쳐서 반복 실험으로 측정할 수 있다. 좀더 구체적인 일례 에서, 먼저 도 1 의 실린더 하단에 거름종이 (Whatman paper 4)를 깔고 , 본 발명 의 고흡수성 수지를 2 g 정량하여 고르게 펴 준다. 이후 플런져 (plunger)를 을리 고, 0.3 psi의 하증 (weight , load)를 가한 뒤 플런져 (plunger )의 구멍으로 10 mL 의 0.9% 소금물 (sal ine solut ion)을 붓고, 플런져 (plunger )의 구멍으로 보이는 소금물이 완전히 사라지는 시간을 잰다. 본 발명에서는 이러한 작업을 3 회 이상 에 걸쳐 반복 실시하며, 3 차 시도시 측정한 시간 (초, sec)을 가압 흡수 속도로 정의한다. 특히, 기존의 가압 하 소금물 흡수방식은 아래에서 위로 확산 흡수하 는 방식인데 비해, 본 발명에 따라 가압하의 흡수 속도를 측정하는 방법은 소금 물을 위에서 주입하는 방식으로, 이런 방식으로 소금물을 주입하면 실제 기저귀 를 잘 모사할 수 있고, 예컨대, 아이가 오줌을 누어서 기저귀가 흡수하는 방식을 가장 잘 모사할 수 있으며, 또한 물성이 다른 제품간 기저귀 성능을 미리 예측 해 볼 수 있다는 점에서 매우 중요한 측정방식이 될 수 있다. In the present invention, the pressure absorption rate may be measured using a device as shown in FIG. 1, and includes a cylinder (cyl inder, w / o-ring: Mesh # 400) and a plunger (pi Linger, Mesh # 100), It can be measured with 0.9 wt% physiological saline solution using a device equipped with a weight. In particular, the device for measuring the absorption rate under pressure in the present invention is unlike the conventional superabsorbent resin measured by sucking the brine, etc., the superabsorbent resin (layer) It is characterized by measuring by injecting from the top of the). In addition, the absorption rate under pressure can be measured by repeated experiments over three or more times. In a more specific example, first spread the filter paper (Whatman paper 4) at the bottom of the cylinder of Figure 1, evenly by quantifying 2 g of the super absorbent polymer of the present invention. The plunger is then removed, 0.3 psi weight, load is added and 10 mL of 0.9% salt ine solut ion is poured into the hole of the plunger, and the plunger Looks into the hole of Measure the time the brine disappears completely. In the present invention, this operation is repeated three times or more, and the time (second, sec) measured in the third trial is defined as the pressure absorption rate. In particular, the conventional method of absorbing brine under pressure is a method of diffusion absorption from the bottom up, whereas the method of measuring the rate of absorption under pressure according to the present invention is a method of injecting salt water from above. This is a very important measurement because it can best simulate the actual diaper, for example, it can best simulate the way the child peees and the diaper absorbs, and can also predict the diaper performance between products with different physical properties. It can be the way.
이때, 상술한 바와 같은 방법으로 고흡수성 수지의 가압 흡수 속도를 측 정하는 과정에서 살펴보면, 상기 고흡수성 수지는 1차 및 2차 실험에서 매우 빠 른 속도로 생리식염수를 흡수하게 된다. 이렇게 1차 및 2차 실험에서 층분한 수 분 흡수로 수지의 수분 팽윤도가 높아지면, 3 차 실험에서 가압 흡수 속도는 각 각의 고흡수성 수지의 성능에 따라 차별화될 수 있다. 본 발명의 고흡수성 수지 에서처럼 이렇게 측정한 0.9 중량 % 생리식염수에 대한 3 차주입시 0.3 psi의 가 압 흡수 속도가 30 내지 200 초 (sec)로 최적화된 범위를 유지하여야만, 통액성, 보수능 및 가압 흡수능이 일정 수준 이상으로 되면서도, 가압 하에서 빠른 흡수 특성을 나타내어 실제 기저귀 등에 적용시 실질적으로 빠른 흡수 특성을 나타낼 수 있다.  At this time, looking at the process of measuring the pressure absorption rate of the super absorbent polymer by the method described above, the super absorbent polymer will absorb the physiological saline at a very fast rate in the first and second experiments. Thus, when the water swelling degree of the resin is increased due to the moisture absorption in the first and second experiments, the pressure absorption rate in the third experiment can be differentiated according to the performance of each super absorbent polymer. As in the superabsorbent polymer of the present invention, the pressure absorption rate of 0.3 psi in the third injection into 0.9 wt% physiological saline should be maintained in an optimized range of 30 to 200 seconds (sec). Even if the absorbent capacity is above a certain level, it exhibits a fast absorption characteristic under pressure, and can exhibit a substantially fast absorption characteristic when applied to an actual diaper.
한편, 본 발명의 고흡수성 수지는, 산성기를 포함하고 적어도 일부가 중 화된 수용성 에틸렌계 불포화 단량체를 2 종 이상의 복합 내부 가교제로 중합시 킨 분말 형태의 베이스 수지를 탄소수 2 내지 8 의 디을 또는 글리콜계 화합물로 표면 가교시킨 가교 중합체를 포함할 수 있다. On the other hand, the superabsorbent polymer of the present invention is a di- or glycol-based base resin having a powder form in which a water-soluble ethylenically unsaturated monomer containing an acidic group and at least partially neutralized is polymerized with two or more complex internal crosslinking agents. With compound And crosslinked polymers surface-crosslinked.
또한, 상기 가교 중합체의 가교밀도는 상기 가압 흡수능 (AUL) 수치에 영 향을 미치는 요소가 될 수 있는 바, 본 발명의 따른 방법에 따라 베이스 수지를 표면 가교시키는 것이 바람직하다.  In addition, the crosslinking density of the crosslinked polymer may be a factor influencing the pressure absorption capacity (AUL) value, and it is preferable to surface crosslink the base resin according to the method of the present invention.
상기 수용성 에틸렌계 불포화 단량체는 아크릴산, 메타아크릴산, 무수말 레인산, 푸말산, 크로톤산, 이타콘산, 2-아크릴로일에탄 술폰산 2-메타아크릴로 일에탄술폰산, 2ᅳ (메타)아크릴로일프로판술폰산, 또는 2— (메타)아크릴아미드 -2- 메틸 프로판 술폰산의 음이온성 단량체와 이의 염 ; (메타)아크릴아미드, N-치환 The water-soluble ethylenically unsaturated monomer is acrylic acid, methacrylic acid, maleic anhydride, fumaric acid, crotonic acid, itaconic acid, 2-acryloylethane sulfonic acid 2-methacryloyl ethanesulfonic acid, 2 '(meth) acryloyl Anionic monomers of propanesulfonic acid or 2— (meth) acrylamide-2-methyl propane sulfonic acid and salts thereof; (Meth) acrylamide, N-substituted
(메타)아크릴레이트, 2-히드록시에틸 (메타)아크릴레이트, 2-히드록시프로필 (메 타)아크릴레이트, 메특시폴리에틸렌글리콜 (메타)아크릴레이트 또는 폴리에틸렌 글리콜 (메타)아크릴레이트의 비이은계 친수성 함유 단량체; 및 (Ν , Ν)-디메틸아미 노에틸 (메타)아크릴레이트 또는 (Ν , Ν) -디메틸아미노프로필 (메타)아크릴아미드의 아미노기 함유 불포화 단량체와 그의 4 급화물;로 이루어진 군에서 선택된 1 종 이상을 포함할 수 있다. 이 중에서, 수산화 나트륨 등의 강염기로 적어도 일부의 산성기가 중화된 아크릴산 및 이의 염을 상기 단량체로서 적절히 사용할 수 있다. 이러한 단량체에서, 상기 아크릴산은 약 50 몰% 이상, 혹은 약 60 몰% 이상, 혹 은 약 70 몰% 이상 중화된 것으로 될 수 있고, 이를 통해 본 발명의 제반 물성을 보다 효과적으로 달성할 수 있다. 즉, 상기 수용성 에틸렌계 불포화 단량체는 산 성기에 대한 중화도가 약 50 mo l 이상이 될 수 있다. (Meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, mesopolyethylene glycol (meth) acrylate or polyethylene glycol (meth) acrylate Hydrophilic containing monomers; And amino group-containing unsaturated monomers of (Ν, Ν) -dimethylaminoethyl (meth) acrylate or (Ν, Ν) -dimethylaminopropyl (meth) acrylamide and quaternary compounds thereof; It may include. Among these, acrylic acid in which at least part of an acidic group is neutralized by strong bases, such as sodium hydroxide, and its salt can be used suitably as said monomer. In such a monomer, the acrylic acid may be at least about 50 mol%, or at least about 60 mol%, or at least about 70 mol%, and may be neutralized, whereby the overall physical properties of the present invention may be more effectively achieved. That is, the water-soluble ethylenically unsaturated monomer may have a neutralization degree of about 50 mol or more for acid groups.
한편, 발명의 다른 구현예에 따르면, 상술한 바와 같은 고흡수성 수지를 제조하는 방법이 제공된다. 상기 고흡수성 수지의 제조 방법은 산성기를 포함하 고 적어도 일부가 중화된 수용성 에틸렌계 불포화 단량체, 경화량 (cure dose)이 0. 16 내지 0.35 J/citf인 2 종 이상의 내부 가교제, 광중합개시제, 및 열중합 개시 제를 포함하는 단량체 조성물에 열중합 및 광증합을 진행하여 함수겔상 중합체를 형성하는 단계; 상기 함수겔상 중합체를 건조하는 단계; 상기 건조된 증합체를 분쇄하는 단계; 및 분쇄된 중합체에 하기 화학식 1 로 표시되는 화합물 및 다가 의 금속 양이온을 첨가하여 표면 가교 반웅을 수행하는 단계를 포함한다. On the other hand, according to another embodiment of the invention, there is provided a method for producing a super absorbent polymer as described above. The manufacturing method of the super absorbent polymer includes an acid group. High temperature at least partially neutralized water-soluble ethylenically unsaturated monomer, thermal polymerization to a monomer composition comprising two or more internal crosslinkers, a photopolymerization initiator, and a thermal polymerization initiator having a cure dose of from 0. 16 to 0.35 J / citf. And photopolymerization to form a hydrogel polymer; Drying the hydrogel polymer; Pulverizing the dried polymer; And adding a compound represented by the following Chemical Formula 1 and a polyvalent metal cation to the ground polymer to perform a surface crosslinking reaction.
[화학식 1] [Formula 1]
Figure imgf000014_0001
Figure imgf000014_0001
상기 화학식 1에서,  In Chemical Formula 1,
및 R2는 동일하거나 상이하며 각각 독립적으로 히드록시기, 아민기, 에폭사이드기 또는 이소시아네이트기이고; And R 2 is the same or different and is each independently a hydroxyl group, an amine group, an epoxide group or an isocyanate group;
n은 1 내지 3의 정수이다.  n is an integer of 1-3.
특히, 본 발명에서는 상술하는 바와 같이 내부 가교제로 폴리에틸렌글리 콜 디아크릴레이트 등을 2 종 이상 사용하여 중합 진행하며, 표면가교 온도 조건 을 특정 범위로 최적화하여 적용함으로써, 물성이 우수하면서 특히 초기 흡수성 이 우수하고, 장시간 경과후에도 가압상태에서 수분이 거와베어 나오지 않아 흡 수능이 우수한 특성을 갖는 고흡수성 수지를 제조할 수 있다. 이렇게 제조된 고 흡수성 수지의 원심분리 보수능 (CRC) , 가압 흡수능 (AUL) , 및 겔 베드 투과율 (GB P)를 모두 동시에 최적화하는 복합적인 물성 결합으로 시너지 효과를 제공할 수 있다. 본 발명의 고흡수성 수지의 제조 공정에서는, 한센 용해도 파라미터에 의 해 정의되는 δ ρ 이 δ ρ < 11 (J/cm3)1/2 를 만족하는 물질 및 δ Η 가 δ Η < 4.5(J/ cm3)1/2를 만족하는 물질로 이루어진 군으로부터 선택되는 1 종 이상의 물질을 더 첨가하여 표면 가교 반웅을 수행할 수 있다. Particularly, in the present invention, as described above, the polymerization proceeds using two or more kinds of polyethylene glycol diacrylate as the internal crosslinking agent, and the surface crosslinking temperature conditions are optimized and applied in a specific range, thereby providing excellent physical properties and particularly initial absorbency. It is excellent, it is possible to produce a superabsorbent polymer having excellent properties of water absorption since moisture does not come out from the pressurized state even after a long time. The synergistic effect can be provided by a combination of physical properties that simultaneously optimizes the centrifugal water retention capacity (CRC), the pressure absorption capacity (AUL), and the gel bed permeability (GB P) of the high absorbent resin thus prepared. In the manufacturing process of the super absorbent polymer of the present invention, a substance whose δ ρ defined by the Hansen solubility parameter satisfies δ ρ <11 (J / cm 3 ) 1/2 and δ Η is δ Η <4.5 (J / The surface crosslinking reaction may be performed by further adding one or more materials selected from the group consisting of materials satisfying cm 3 ) 1/2 .
상기 고흡수성 수지의 제조 방법에 따르면, 향상된 통액성을 가지면서도 보수능 또는 가압 흡수능의 저하가 없어 물성이 향상된 고흡수성 수지를 제조할 수 있다.  According to the manufacturing method of the super absorbent polymer, it is possible to manufacture a superabsorbent polymer having improved physical properties without improving water retention or pressurized absorbent capacity while having improved liquid permeability.
또한, 본 발명의 고흡수성 수지의 제조 방법에서, 상기 고흡수성 수지의 원료 물질인 단량체 조성물은 수용성 에틸렌계 불포화 단량체, 광증합 개시제, 및 열중합 개시제를 포함한다.  In addition, in the manufacturing method of the super absorbent polymer of the present invention, the monomer composition which is a raw material of the super absorbent polymer includes a water-soluble ethylenically unsaturated monomer, a photopolymerization initiator, and a thermal polymerization initiator.
상기 수용성 에틸렌계 불포화 단량체는 고흡수성 수지의 제조에 통상 사 용되는 임의의 단량체를 별다른 제한없이 사용할 수 있다. 여기에는 음이온상 단 량체와 그 염, 비이온계 친수성 함유 단량체 및 아미노기 함유 불포화 단량체 및 그의 4 급화물로 이루어진 군에서 선택되는 어느 하나 이상의 단량체를 사용할 수 있다.  The water-soluble ethylenically unsaturated monomer may be used without any limitation any monomers commonly used in the production of superabsorbent polymers. Any one or more monomers selected from the group consisting of anionic monomers and salts thereof, nonionic hydrophilic containing monomers and amino group-containing unsaturated monomers and quaternized compounds thereof can be used.
구체적으로는 (메타)아크릴산, 무수말레인산, 푸말산, 크로톤산, 이타콘 산, 2-아크릴로일에탄 술폰산, 2-메타아크릴로일에탄술폰산, 2- (메타)아크릴로일 프로판술폰산 또는 2ᅳ (메타)아크릴아미드 -2-메틸 프로판 술폰산의 음이온성 단량 체와 그 염; (메타)아크릴아미드, N-치환 (메타)아크릴레이트, 2-히드록시에틸 (메 타)아크릴레이트, 2-히드록시프로필 (메타)아크릴레이트, 메록시폴리에틸렌글리콜 (메타)아크릴레이트 또는 풀리에틸렌 글리콜 (메타)아크릴레이트의 비이은계 친수 성 함유 단량체; 및 (Ν,Ν)-디메틸아미노에틸 (메타) 아크릴레이트 또는 (Ν , Ν)ᅳ디 메틸아미노프로필 (메타)아크릴아미드의 아미노기 함유 불포화 단량체 및 그의 4 급화물로 이루어진 군에서 선택된 어느 하나 이상을 사용할 수 있다. Specifically, (meth) acrylic acid, maleic anhydride, fumaric acid, crotonic acid, itaconic acid, 2-acryloylethane sulfonic acid, 2-methacryloylethanesulfonic acid, 2- (meth) acryloyl propanesulfonic acid or 2 음이온 anionic monomers of (meth) acrylamide-2-methyl propane sulfonic acid and salts thereof; (Meth) acrylamide, N-substituted (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, hydroxypolyethylene glycol Non-silver-based hydrophilic monomers of (meth) acrylate or pulley ethylene glycol (meth) acrylate; And amino group-containing unsaturated monomers of (Ν, Ν) -dimethylaminoethyl (meth) acrylate or (Ν, Ν) ᅳ dimethylaminopropyl (meth) acrylamide, and quaternary compounds thereof. Can be.
더욱 바람직하게는 아크릴산 또는 그 '염 , 예를 들어 , 아크릴산 또는 그 나트륨염 등의 알칼리 금속염을 사용할 수 있는데, 이러한 단량체를 사용하여 보 다 우수한 물성올 갖는 고흡수성 수지의 제조가 가능해 진다. 상기 아크릴산의 알칼리 금속염을 단량체로 사용하는 경우, 아크릴산을 가성소다 (NaOH)와 같은 염 기성 화합물로 중화시켜 사용할 수 있다. More preferably contains acrylic acid or its' salts, for example, may be used an alkali metal salt such as acrylic acid or its sodium salt, and becomes possible to manufacture the water-absorbent resin using these monomers are beams having excellent physical properties come. When the alkali metal salt of acrylic acid is used as a monomer, acrylic acid may be neutralized with a basic compound such as caustic soda (NaOH).
상기 수용성 에틸렌계 불포화 단량체의 농도는, 상기 고흡수성 수지의 원 료 물질 및 용매를 포함하는 단량체 조성물에 대해 약 20 내지 약 60 증량 % , 바 람작하게는 약 40 내지 약 50 중량 %로 될 수 있으며 , 중합 시간 및 반웅 조건 등 을 고려해 적절한 농도로 될 수 있다. 다만, 상기 단량체의 농도가 지나치게 낮 아지면 고흡수성 수지의 수율이 낮고 경제성에 문제가 생길 수 있고, 반대로 농 도가 지나치게 높아지면 단량체의 일부가 석출되거나 중합된 함수겔상 중합체의 분쇄 시 분쇄 효을이 낮게 나타나는 등 공정상 문제가 생길 수 있으며 고흡수성 수지의 물성이 저하될 수 있다.  The concentration of the water-soluble ethylenically unsaturated monomer may be about 20 to about 60% by weight, preferably about 40 to about 50% by weight relative to the monomer composition including the raw material and the solvent of the superabsorbent polymer. The concentration may be appropriate in consideration of the reaction time, polymerization time and reaction conditions. However, when the concentration of the monomer is too low, the yield of the superabsorbent polymer may be low and economic problems may occur. On the contrary, when the concentration is too high, a part of the monomer may be precipitated or the grinding efficiency of the polymerized hydrogel polymer may be low. It may cause process problems such as appearing, and the physical properties of the super absorbent polymer may decrease.
본 발명의 고흡수성 수지 제조 방법에서는 광중합 개시제와 함께 열중합 개시제를 함께 포함함으로써 , 자외선 조사 등의 조사에 의해 일정량의 열이 발생 하고, 또한 발열 반응인 중합 반웅의 진행에 따라 어느 정도의 열이 발생으로 광 중합과 동시에 열증합을 진행할 수 있다. In the superabsorbent polymer production method of the present invention, by including a thermal polymerization initiator together with a photopolymerization initiator, a certain amount of heat is generated by irradiation such as ultraviolet irradiation, and a certain amount of heat is generated as the polymerization reaction is exothermic. Light into generation At the same time as the polymerization, thermal polymerization can proceed.
상기 광중합 개시제는 자외선과 같은 광에 의해 라디칼을 형성할 수 있는 화합물이면 그 구성의 한정이 없이 사용될 수 있다.  The photopolymerization initiator may be used without any limitation as long as it is a compound capable of forming radicals by light such as ultraviolet rays.
상기 광중합 개시제로는 예를 들어, 벤조인 에테르 (benzoin ether) , 디알 킬아세토페논 (dialkyl acetophenone) , 하이드록실 알킬케론 (hydroxy 1 alkylketon e) , 페닐글리옥실레이트 (phenyl glyoxylate) , 벤질디메틸케탈 (Benzyl Dimethyl K etal ) , 아실포스핀 (acyl phosphine) 및 알파 -아미노케톤 ( α -aminoketone)으로 이 루어진 군에서 선택되는 하나 이상을 사용할 수 있다. 한편, 아실포스핀의 구체 예로, 상용하는 luci r in TP0, 즉, 2 , 4 , 6_트리메틸 -벤조일-트리메틸 포스핀 옥사 이드 (2 ,4 , 6—tr imethyl一 benzoyl— tr imethyl phosphine oxide)를 사용할 수 있다. 보다 다양한 광중합 개시제에 대해서는 Reinhold Schwa lm 저서인 "UV Coat ings : Basics , Recent Developments and New Appl icat ion(Elsevier 2007 년) p 115"에 잘 명시되어 있으며, 상술한 예에 한정되지 않는다.  Examples of the photopolymerization initiator include benzoin ether, dialkyl acetophenone, hydroxyl alkylketone e, phenylglyoxylate, and benzyldimethyl ketal (for example, benzoin ether). One or more selected from the group consisting of Benzyl Dimethyl Ke etal, acyl phosphine and alpha -aminoketone can be used. On the other hand, specific examples of acyl phosphine include commercially available luci r in TP0, that is, 2, 4, 6_trimethyl-benzoyl-trimethyl phosphine oxide (2, 4, 6-tr imethyl benzoyl- tr imethyl phosphine oxide) Can be used. A wider variety of photopolymerization initiators are well specified in Reinhold Schwa lm, "UV Coat ings: Basics, Recent Developments and New Application (Elsevier 2007) p 115", and are not limited to the examples described above.
상기 광중합 개시제는 단량체 조성물에 대하여 40 내지 200 ppm의 농도로 포함될 수 있으며, 바람직하게는 45 내지 180 ppm, 좀더 바람직하게는 50 내지 170 ppm의 농도로 포함될 수 있다. 이러한 광중합 개시제의 농도가 지나치게 낮 을 경우 증합 속도가 느려질 수 있고, 광중합 개시제의 농도가 지나치게 높으면 고흡수성 수지의 분자량이 작고 물성이 불균일해질 수 있다.  The photopolymerization initiator may be included in a concentration of 40 to 200 ppm with respect to the monomer composition, preferably 45 to 180 ppm, more preferably may be included in a concentration of 50 to 170 ppm. When the concentration of the photopolymerization initiator is too low, the polymerization rate may be slow. When the concentration of the photopolymerization initiator is too high, the molecular weight of the superabsorbent polymer may be low and the physical properties may be uneven.
또한, 상기 열중합 개시제로는 황을 포함하는 과황산염계 개시제 등을 사 용할 수 있다. 구체적으로, 과황산염계 개시제의 예로는 과황산나트륨 (Sodium pe rsul fate ; Na2S208) , 과황산칼륨 (Potass ium persul fate ; K2S208) , 및 과황산암모늄 (A讓 onium persul fate ; (NH4)2S208)으로 이루어진 군에서 선택되는 하나 이상이 될 수 있다. In addition, a persulfate-based initiator containing sulfur may be used as the thermal polymerization initiator. Specifically, examples of persulfate-based initiators include sodium persulfate (Sodium pe rsul fate; Na 2 S 2 0 8 ), potassium persulfate (K 2 S 2 0 8 ), and ammonium persulfate (AH onium persul fate; (NH 4 ) 2 S 2 0 8 ) There may be more than one selected.
상기 열중합 개시제는 단량체 조성물에 대하여 약 0.05 내지 약 0 .3 중 량%의 함량으로 포함될 수 있으며, 바람직하게는 0.08 내지 0.25 증량 ¾(wt >) , 좀 더 바람직하게는 0. 1 내지 0.2 중량 %의 농도로 포함될 수 있다. 이러한 열 중합 개시제의 함량이 지나치게 낮을 경우 추가적인 열중합이 거의 일어나지 않아 열 중합 개시제의 추가에 따른 효과가 미미할 수 있고, 열중합 개시제의 함량이 지 나치게 많으면 고흡수성 수지의 분자량이 작고 물성이 불균일해질 수 있다. 본 발명의 일 실시예에 따르면, 상기 단량체 조성물 조성물은 고흡수성 수지의 원료 물질로서 내부 가교제 2 종 이상을 사용한 복합 내부 가교제를 포함 할 수 있다. 상기 내부 가교제로는 상기 수용성 에틸렌계 불포화 단량체의 수용 성 치환기와 반웅할 수 있는 관능기를 1 개 이상 가지면서, 에틸렌성 불포화기를 1 개 이상 갖는 가교제; 혹은 상기 단량체의 수용성 치환기 및 /또는 단량체의 가 수분해에 의해 형성된 수용성 치환기와 반웅할 수 있는 관능기를 2 개 이상 갖는 가교제를 2 종 이상으로 복합하여 사용할 수 있다. 이때, 상기 내부가교제는 상 술한 바와 같은 관능기를 2개 내지 3개를 갖는 것일 수 있다.  The thermal polymerization initiator may be included in an amount of about 0.05 to about 0.3% by weight based on the monomer composition, preferably 0.08 to 0.25 weight ¾ (wt>), more preferably 0.1 to 0.2 weight It may be included at a concentration of%. When the content of the thermal polymerization initiator is too low, additional thermal polymerization hardly occurs, so that the effect of adding the thermal polymerization initiator may be insignificant. When the content of the thermal polymerization initiator is excessively large, the molecular weight of the superabsorbent polymer is small and the physical properties are uneven. Can be done. According to an embodiment of the present invention, the monomer composition may include a composite internal crosslinking agent using two or more internal crosslinking agents as a raw material of the super absorbent polymer. The internal crosslinking agent may include at least one functional group capable of reacting with the water-soluble substituent of the water-soluble ethylenically unsaturated monomer and at least one ethylenically unsaturated group; Or the water-soluble substituent of the said monomer and / or the water-soluble substituent formed by the hydrolysis of the monomer, and the crosslinking agent which has 2 or more of the functional groups which can react can be used in combination of 2 or more types. In this case, the internal crosslinking agent may be one having two to three functional groups as described above.
특히, 상기 2 종 이상의 내부 가교제는 각각 복수의 에틸렌 옥사이드기를 갖는 다관능 아크릴레이트계 화합물로 이루어진 군에서 선택될 수 있다. 상기 복 수의 알킬렌 옥사이드기를 갖는 다관능 아크릴레이트계 화합물은 폴리에틸렌글리 콜 디아크릴레이트 (PEGDA, polyethyleneglycol diacrylate), 에톡실레이티드 트 리메틸을프로판 트리아크릴레이트 (Ethoxylated-TMPTA), 핵산디올디아크릴레이트 트리에틸렌글리콜 디아크릴레이트로 이루어진 군에서 선택되는 것일 수 있다. 또한, 상기 내부 가교제는 내부가교의 균일성 측면에서 아크릴산 (acrylic acid)의 경화량 (cure dose) 대비 80% 이상부터 180% 이하까지의 경화량올 갖는 것일 수 있다. 더욱이, 상기 내부 가교제는 바람직하게는 아크릴산 (acrylic aci d)의 경화량 (cure dose) 대비 90% 이상부터 160% 이하까지의 경화량, 좀더 바람 직하게는 95% 이상부터 155% 이하까지의 경화량을 갖는 것일 수 있다. 예컨대, 상기 내부 가교제는 0.16 내지 0.35 J/cu , 바람직하게는 0.18 내지 0.32 J/cuf, 좀더 바람직하게는 0.2 내지 0.3 J/ciif의 경화량 (cure dose)을 갖는 것일 수 있다. 여기서, 상기 내부 가교제는 경화량 (cure dose)은 경화에 필요한 에너지 량이다. 즉, 상기 경화량 (cure dose)을 나타내는 슷자가 클수톡 경화를 위해 필 요한 에너지가 많아지게 된다. 또한, 상기 경화량 (cure dose)으로 표현되는 값들 은 광량계를 이용하여 측정할 수 있다. 예컨대, 미리 정해진 경화기 악세사리에 램프의 조도를 셋팅해 놓고, 경화기의 벨트상으로 시료를 보내서 UV 경화기를 통 과하여 평가할 수 있다. 이때, 경화기의 컨베이어의 속도, 광량을 기준으로 경화 기를 몇번 통과했는지를 평가하며 , 표면이 경화된 후의 토탈 에너지를 산출하는 방식으로 측정할 수 있다. 따라서, 상기 경화량 (cure dose) 측정시 별도의 시료 량에는 제한이 없다. 또한, 좀 더 구체적인 일례로서, 이러한 측정을 할 때에는 100 mm 샤알레에 용액을 0.5 cm 정도의 두께로 을린 뒤 컨베이어 벨트상에 을리 고 벨트를 가동하여 측정할 수 있다. In particular, the two or more internal crosslinking agents may be selected from the group consisting of polyfunctional acrylate compounds each having a plurality of ethylene oxide groups. The polyfunctional acrylate compound having a plurality of alkylene oxide groups is polyethylenegly Polyethyl diacrylate (PEGDA), ethoxylated trimethyl propane triacrylate (Ethoxylated-TMPTA), may be selected from the group consisting of nucleic acid diol diacrylate triethylene glycol diacrylate. In addition, the internal crosslinking agent may have a curing amount of 80% or more to 180% or less relative to the curing amount (acrylic acid) of the curing amount (acrylic acid) in terms of uniformity of the internal crosslinking. Furthermore, the internal crosslinking agent is preferably a curing amount of 90% or more to 160% or less, more preferably 95% or more to 155% or less of the cure dose of acrylic acid (acrylic acid) It may have an amount. For example, the internal crosslinking agent may have a curing dose of 0.16 to 0.35 J / cu, preferably 0.18 to 0.32 J / cuf, more preferably 0.2 to 0.3 J / ciif. Herein, the amount of curing of the internal crosslinking agent is an amount of energy required for curing. That is, the same number indicating the cure dose ( cure dose) is required to increase the energy required for the ksutok curing. In addition, the values expressed as the cure dose may be measured using a photometer. For example, the illuminance of the lamp may be set in a predetermined curing device accessory, and the sample may be sent on the belt of the curing machine and evaluated through the UV curing machine. At this time, it can be measured by evaluating how many times the curing machine has passed based on the speed and light quantity of the conveyor of the curing machine, and calculating the total energy after the surface has been cured. Therefore, there is no limitation on the amount of separate sample when measuring the cure dose. Also, as a more specific example, when making such a measurement, a solution of about 0.5 cm in 100 mm saale is applied to the conveyor belt. It can be measured by operating the high belt.
내부 가교제로 사용될 수 있는 몇 가지 물질에 대한 경화량 (cure dose) 값은 하기 표 1에 나타낸 바와 같다. The cure dose values for some materials that can be used as internal crosslinkers are shown in Table 1 below.
【표 1】  Table 1
Figure imgf000020_0001
본 발명에서는 상기 표 1 에 기재된 다양한 아크릴계 탄화수소 화합물 중 에서 경화량 (cure dose)가 아크릴산 (AA: acetic acid) 기준으로 60% 이내의 차이 를 갖는 성분을 2 종 이상 복합 사용함으로써, 물성이 우수하면서 특히 초기 흡 수성이 우수하고, 장시간 경과 후에도 가압상태에서 수분이 거의 베어 나오지 않 아 흡수능이 우수한 고흡수성 수지를 제조할 수 있다.
Figure imgf000020_0001
In the present invention, by using two or more kinds of components having a cure dose of 60% or less based on acrylic acid (AA) among various acrylic hydrocarbon compounds listed in Table 1 above, In particular, it is possible to prepare a super absorbent polymer having excellent initial absorbency and excellent water absorption since water hardly comes out under pressure even after a long time.
이러한 복합 내부 가교제는 상기 단량체 조성물에 대하여 약 0.05 내지 약 3 중량 %의 농도로 포함되어, 중합된 고분자를 가교시킬 수 있다. 상기 복합 내부 가교제는 바람직하게는 약 0. 1 내지 2.5 중량 %, 좀더 바람직하게는 약 0. 15 내지 2 중량 %로 포함될 수 있다. Such a composite internal crosslinking agent is about 0.05 to about the monomer composition It can be included at a concentration of about 3% by weight to crosslink the polymerized polymer. The composite internal crosslinking agent may preferably be included in an amount of about 0.01 to 2.5 wt%, more preferably about 0.1 to 2 wt%.
본 발명의 제조방법에서, 고흡수성 수지의 상기 단량체 조성물은 필요에 따라 증점제 (thi ckener ) , 가소제, 보존안정제, 산화방지제 등의 첨가제를 더 포 함할 수 있다.  In the production method of the present invention, the monomer composition of the super absorbent polymer may further include additives such as thickeners, plasticizers, preservative stabilizers, antioxidants and the like as necessary.
상술한 수용성 에틸렌계 불포화 단량체, 광증합 개시제, 열중합 개시제, 내부 가교제 및 첨가제와 같은 원료 물질은 용매에 용해된 단량체 조성물 용액의 형태로 준비될 수 있다.  Raw materials such as the above-mentioned water-soluble ethylenically unsaturated monomers, photopolymerization initiators, thermal polymerization initiators, internal crosslinking agents and additives may be prepared in the form of a monomer composition solution dissolved in a solvent.
이 때 사용할 수 있는 상기 용매는 상술한 성분들을 용해할 수 있으면 그 구성의 한정이 없이 사용될 수 있으며, 예를 들어 물, 에탄올, 에틸렌글리콜, 디에틸렌글리콜, 트리에틸렌글리콜, 1 , 4-부탄디을, 프로필렌글리콜, 에틸렌글리 콜모노부틸에테르, 프로필렌글리콜모노메틸에테르, 프로필렌글리콜모노메틸에테 르아세테이트, 메틸에틸케톤, 아세톤, 메틸아밀케톤, 시클로핵사논, 시클로펜타 논, 디에틸렌글리콜모노메틸에테르, 디에틸렌글리콜에틸에테르, 를루엔, 크실렌, 부틸로락톤, 카르비를, 메틸셀로솔브아세테이트 및 Ν , Ν-디메틸아세트아미드 등 에서 선택된 1종 이상을 조합하여 사용할 수 있다.  The solvent that can be used at this time can be used without limitation of the composition as long as it can dissolve the above-mentioned components, for example, water, ethanol, ethylene glycol, diethylene glycol, triethylene glycol, 1, 4-butanedi , Propylene glycol, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, methyl ethyl ketone, acetone, methyl amyl ketone, cyclonucleanone, cyclopentanone, diethylene glycol monomethyl ether , Diethylene glycol ethyl ether, toluene, xylene, butyrolactone, and carby may be used in combination of one or more selected from methyl cellosolve acetate, Ν, Ν-dimethylacetamide, and the like.
상기 용매는 단량체 조성물의 총 함량에 대하여 상술한 성분을 제외한 잔 량으로 포함될 수 있다.  The solvent may be included in the remaining amount except for the above-described components with respect to the total content of the monomer composition.
한편, 이와 같은 단량체 조성물을 열중합 또는 광증합하여 함수겔상 중합 체를 형성하는 방법 또한 통상 사용되는 중합 방법이면, 특별히 구성의 한정이 없다. On the other hand, hydrogel polymerization by thermal polymerization or photopolymerization of such a monomer composition There is no restriction | limiting in particular if the method of forming a sieve is also the polymerization method normally used.
구체적으로, 중합 방법은 중합 에너지원에 따라 크게 열중합 및 광중합으 로 나뉘며, 통상 열중합을 진행하는 경우, 니더 (kneader )와 같은 교반축을 가진 반웅기에서 진행될 수 있으며, 광중합을 진행하는 경우, 이동 가능한 컨베이어 벨트를 구비한 반웅기에서 진행될 수 있으나, 상술한 중합 방법은 일 예이며, 본 발명은 상술한 중합 방법에 한정되지는 않는다.  Specifically, the polymerization method is largely divided into thermal polymerization and photopolymerization according to the polymerization energy source, when the thermal polymerization is usually carried out, it can be carried out in a semi-unggi with a stirring shaft such as kneader, when the photopolymerization, Although it can proceed in a semi-unggi equipped with a movable conveyor belt, the above-described polymerization method is an example, the present invention is not limited to the above-described polymerization method.
일 예로, 상기 중합 공정은 약 증합온도는 35 °C 이상 또는 35 내지 90 °C로 열중합 공정올 수행하며, 이와 함께 약 100 내지 400 ηηι의 자외선 (UV) 영 역의 빛을 조사하여 광중합을 수행할 수 있다. For example, the polymerization process is carried out at a polymerization temperature of about 35 ° C or more or 35 to 90 ° C thermal polymerization process, and together with the photopolymerization by irradiation of light in the ultraviolet (UV) region of about 100 to 400 ηηι Can be done.
또한 상술한 바와 같이 교반축을 구비한 니더 (kneader )와 같은 반웅기에 , 열풍을 공급하거나 반웅기를 가열하여 열중합올 하여 얻어진 함수겔상 중합체는 반웅기에 구비된 교반축의 형태에 따라, 반웅기 배출구로 배출되는 함수겔상 중 합체는 수 센티미터 내지 수 밀리미터 형태일 수 있다. 구체적으로, 얻어지는 함 수겔상 중합체의 크기는 주입되는 단량체 조성물의 농도 및 주입속도 등에 따라 다양하게 나타날 수 있는데, 통상 중량 평균 입경이 2 내지 50™인 함수겔상 중 합체가 얻어질 수 있다.  In addition, as described above, the hydrous gel polymer obtained by supplying hot air or by thermal polymerization by heating the reaction machine according to the shape of the stirring shaft provided in the reaction machine, may be used in a reaction vessel such as a kneader having a stirring shaft. The hydrogel polymer discharged into the form may be in the form of several centimeters to several millimeters. Specifically, the size of the obtained water-containing gel polymer may vary depending on the concentration and the injection speed of the monomer composition to be injected, and a hydrogel polymer having a weight average particle diameter of 2 to 50 ™ may be obtained.
한편, 상술한 바와 같이 이동 가능한 컨베이어 벨트를 구비한 반웅기에서 광중합을 진행하는 경우, 통상 얻어지는 함수겔상 중합체의 형태는 벨트의 너비 를 가진 시트 상의 함수겔상 중합체일 수 있다. 이 때, 중합체 시트의 두께는 주 입되는 단량체 조성물의 농도 및 주입속도에 따라 달라지나, 통상 약 0.5 내지 약 5cm의 두께를 가진 시트 상의 중합체가 얻어질 수 있도록 단량체 조성물을 공 급하는 것이 바람직하다. 시트 상의 중합체의 두께가 지나치게 얇을 정도로 단량 체 조성물을 공급하는 경우, 생산 효율이 낮아 바람직하지 않으며, 시트 상의 중 합체 두께가 5cm를 초과하는 경우에는 지나치게 두꺼운 두께로 인해, 중합 반응 이 전 두께에 걸쳐 고르게 일어나지 않을 수가 있다. On the other hand, when the photopolymerization is carried out in a semi-unggi equipped with a movable conveyor belt as described above, the form of the hydrous gel polymer generally obtained may be a sheet-like hydrogel polymer having a width of the belt. At this time, the thickness of the polymer sheet Depending on the concentration of the monomer composition introduced and the rate of injection, it is usually desirable to feed the monomer composition so that a polymer on a sheet having a thickness of about 0.5 to about 5 cm can be obtained. When supplying the monomer composition to such an extent that the thickness of the polymer on the sheet is too thin, it is not preferable because of low production efficiency, and when the polymer thickness on the sheet exceeds 5 cm, due to the excessively thick thickness, the polymerization reaction is carried over the entire thickness. It may not happen evenly.
이때 이와 같은 방법으로 얻어진 함수겔상 중합체의 통상 함수율은 약 40 내지 약 80 중량%일 수 있다. 한편, 본 명세서 전체에서 "함수율"은 전체 함수 겔상 증합체 중량에 대해 차지하는 수분의 함량으로 함수겔상 중합체의 중량에서 건조 상태의 중합체의 증량을 뺀 값을 의미한다. 구체적으로는, 적외선 가열을 통해 증합체의 온도를 을려 건조하는 과정에서 증합체 증의 수분증발에 따른 무 게감소분을 측정하여 계산된 값으로 정의한다. 이때, 건조 조건은 상온에서 약 1 80 °C까지 온도를 상승시킨 뒤 180 °C에서 유지하는 방식으로 총 건조시간은 온 도상승단계 5분올 포함하여 20분으로 설정하여, 함수율을 측정한다. In this case, the water content of the hydrogel polymer obtained by the above method may be about 40 to about 80% by weight. On the other hand, the "water content" as used throughout the specification means the value of the moisture content of the total water-containing gel-like polymer is the weight of the water-containing gel polymer minus the increase in the dry polymer. Specifically, it is defined as a value calculated by measuring the weight loss according to the water vaporization of the evaporator during the process of drying the temperature of the evaporator through infrared heating. At this time, the drying conditions are raised to about 1 80 ° C at room temperature and then maintained at 180 ° C. The total drying time is set to 20 minutes, including 5 minutes of temperature rise step, the water content is measured.
다음에, 얻어진 함수겔상 중합체를 건조하는 단계를 수행한다.  Next, the step of drying the obtained hydrogel polymer is carried out.
이때 필요에 따라서 상기 건조 단계의 효율을 높이기 위해 건조 전에 조 분쇄하는 단계를 더 거칠 수 있다.  At this time, if necessary to coarse grinding before drying to increase the efficiency of the drying step may be more rough.
이때, 사용되는 분쇄기는 구성의 한정은 없으나, 구체적으로, 수직형 절 단기 (Vert ical pulver izer ) , 터보 커터 (Turbo cutter) , 터보 글라인더 (Turbo gri nder) , 회전 절단식 분쇄기 (Rotary cutter mi l l ) , 절단식 분쇄기 (Cutter mi l l ) , 원판 분쇄기 (Di sc mi l l ) , 조각 파쇄기 (Shred crusher ) , 파쇄기 (Crusher ) , 초퍼 (c hopper ) 및 원판식 절단기 (Di sc cut ter )로 이루어진 분쇄 기기 군에서 선택되는 어느 하나를 포함할 수 있으나, 상술한 예에 한정되지는 않는다. At this time, the pulverizer used is not limited in configuration, but specifically, a vertical pulverizer, a turbo cutter, a turbo grinder, a rotary cutter, and a rotary cutter. mi ll), cutter mi ll, It may include any one selected from a group of crushing machines consisting of a disc crusher, a shred crusher, a crusher, a chopper, and a di sc cutter. However, it is not limited to the example mentioned above.
이때 조분쇄 단계는 함수겔상 중합체의 입경이 약 2 내지 약 10醒로 되도 록 분쇄할 수 있다.  In this case, the coarsely pulverizing step may be pulverized so that the particle size of the hydrogel polymer is about 2 to about 10 mm 3.
입경이 2 mm 미만으로 분쇄하는 것은 함수겔상 중합체의 높은 함수율로 인해 기술적으로 용이하지 않으며, 또한 분쇄된 입자 간에 서로 웅집되는 현상이 나타날 수도 있다. 한편, 입경이 10 睡 초과로 분쇄하는 경우, 추후 이루어지는 건조 단계의 효율 증대 효과가 미미할 수 있다.  Grinding to a particle diameter of less than 2 mm is not technically easy due to the high water content of the hydrogel polymer, and may also cause a phenomenon in which the milled particles cross each other. On the other hand, in the case where the particle size is pulverized more than 10 mm 3, the effect of increasing the efficiency of the subsequent drying step may be minimal.
상기와 같이 조분쇄되거나, 흑은 조분쇄 단계를 거치지 않은 증합 직후의 함수겔상 중합체에 대해 건조를 수행한다. 이때 상기 건조 단계의 건조 온도는 약 150 내지 약 250 °C일 수 있다. 건조 온도가 150 °C 미만인 경우, 건조 시간 이 지나치게 길어지고 최종 형성되는 고흡수성 수지의 물성이 저하될 우려가 있 고, 건조 온도가 250 °C를 초과하는 경우, 지나치게 중합체 표면만 건조되어, 추 후 이루어지는 분쇄 공정에서 미분이 발생할 수도 있고, 최종 형성되는 고흡수성 수지의 물성이 저하될 우려가 있다. 따라서 바람직하게 상기 건조는 약 150 내 지 약 200 °C의 온도에서, 더욱 바람직하게는 약 160 내지 약 180 °C의 온도에서 진행될 수 있다. As described above, drying is performed on the hydrous gel polymer immediately after the coarse grinding or the black is not subjected to the coarse grinding step. At this time, the drying temperature of the drying step may be about 150 to about 250 ° C. If the drying temperature is less than 150 ° C, the drying time may be too long and the properties of the final superabsorbent polymer may be lowered. If the drying temperature exceeds 250 ° C, only the polymer surface is dried excessively. Fine powder may generate | occur | produce in the post grinding process, and there exists a possibility that the physical property of the superabsorbent polymer formed finally may fall. Thus, preferably, the drying may be carried out at a temperature of about 150 to about 200 ° C, more preferably at a temperature of about 160 to about 180 ° C.
한편, 건조 시간의 경우에는 공정 효율 등을 고려하여, 약 20 내지 약 90 분 동안 진행될 수 있으나, 이에 한정되지는 않는다. 상기 건조 단계의 건조 방법 역시 함수겔상 중합체의 건조 공정으로 통상 사용되는 것이면, 그 구성의 한정이 없이 선택되어 사용될 수 있다. 구체적으로, 열풍 공급, 적외선 조사, 극초단파 조사, 또는 자외선 조사 등의 방법으로 건조 단계를 진행할 수 있다. 이와 같은 건조 단계 진행 후의 중합체의 함수율은 약 0.1 내지 약 10 중량%일 수 있다. On the other hand, in the case of drying time, in consideration of the process efficiency, etc., it may proceed for about 20 to about 90 minutes, but is not limited thereto. If the drying method of the drying step is also commonly used as a drying step of the hydrogel polymer, it can be selected and used without limitation of the configuration. Specifically, the drying step may be performed by a method such as hot air supply, infrared irradiation, microwave irradiation, or ultraviolet irradiation. The water content of the polymer after the drying step may be about 0.1 to about 10% by weight.
다음에, 이와 같은 건조 단계를 거쳐 얻어진 건조된 중합체를 분쇄하는 단계를 수행한다.  Next, a step of pulverizing the dried polymer obtained through such a drying step is performed.
분쇄 단계 후 얻어지는 중합체 분말은 입경이 약 150 내지 약 850 卿일 수 있다. 이와 같은 입경으로 분쇄하기 위해 사용되는 분쇄기는 구체적으로, 핀 밀 (pin mill), 해머 밀 (hammer mill), 스'크류 밀 (screw mi 11 ) , 롤 밀 (roll mill), 디스크 밀 (disc mill) 또는 조그 밀 (jog mill) 등을 사용할 수 있으나, 상술한 예에 본 발명이 한정되는 것은 아니다. The polymer powder obtained after the milling step may have a particle diameter of about 150 to about 850 mm 3. The mill which particle size is used to crush the same specifically, pin mill (pin mill), a hammer mill (hammer mill), switch 'keuryu mill (screw mi 11), a roll mill (roll mill), disc mill (disc mill ) Or a jog mill, etc., but the present invention is not limited to the above examples.
그리고, 이와 같은 분쇄 단계 이후 최종 제품화되는 고흡수성 수지 분말 의 물성을 관리하기 위해, 분쇄 후 얻어지는 중합체 분말을 입경에 따라 분급하 는 별도의 과정을 거칠 수 있다. 바람직하게는 입경이 약 150 내지 약 850 /m인 중합체를 분급하여, 이와 같은 입경을 가진 중합체 분말에 대해서만 표면 가교 반웅 단계를 거쳐 제품화할 수 있다.  In addition, in order to manage the physical properties of the super absorbent polymer powder to be finalized after such a grinding step, the polymer powder obtained after grinding may be subjected to a separate process of classifying according to the particle size. Preferably, the polymer having a particle size of about 150 to about 850 / m may be classified, and only a polymer powder having such a particle size may be produced through a surface crosslinking reaction step.
다음에, 분쇄된 중합체에 하기 화학식 1로 표시되는 화합물 및 다가의 금 속 양이온을 첨가하여 표면 가교 반응을 수행한다.  Next, a surface crosslinking reaction is performed by adding a compound represented by the following formula (1) and a polyvalent metal cation to the ground polymer.
[화학식 1] Rr(CH2)n-R2 [Formula 1] Rr (CH 2 ) n -R 2
상기 화학식 l에서 ,  In Chemical Formula l,
및 R2는 동일하거나 상이하며 각각 독립적으로 히드록시기, 아민기, 에폭사이드기 또는 이소시아네이트기이고; And R 2 is the same or different and is each independently a hydroxyl group, an amine group, an epoxide group or an isocyanate group;
n은 1 내지 3의 정수이다.  n is an integer of 1-3.
표면 가교는 입자 내부의 가교결합 밀도와 관련하여 고흡수성 고분자 입 자 표면 근처의 가교결합 밀도를 증가시키는 단계이다. 일반적으로, 표면 가교 제는 고흡수성 수지 입자의 표면에 도포된다. 따라서, 이 반웅은 고흡수성 수지 입자의 표면 상에서 일어나며, 이는 입자 내부에는 실질적으로 영향을 미치지 않 으면서 입자의 표면 상에서의 가교 결합성은 개선시킨다. 따라서 표면 가교 결합 된 고흡수성 수지 입자는 내부에서보다 표면 부근에서 더 높은 가교 결합도를 갖 는다.  Surface crosslinking is the step of increasing the crosslink density near the surface of the superabsorbent polymer particles with respect to the crosslink density inside the particles. Generally, the surface crosslinking agent is applied to the surface of the super absorbent polymer particles. Thus, this reaction occurs on the surface of the superabsorbent resin particles, which improves the crosslinkability on the surface of the particles without substantially affecting the interior of the particles. Thus, surface crosslinked superabsorbent polymer particles have a higher degree of crosslinking in the vicinity of the surface than in the interior.
본 발명에 따르면, 상기 표면 가교제로 하기 화학식 1로 표시되는 화합물 및 다가의 금속 양이온을 포함한다. 하기 화학식 1 로 표시되는 화합물 및 다가 의 금속 양이온은 각각 단독으로 사용하거나 2 이상의 물질을 조합하여 사용할 수도 있다.  According to the present invention, the surface crosslinking agent includes a compound represented by the following Formula 1 and a polyvalent metal cation. Compounds represented by the following formula (1) and polyvalent metal cations may be used alone or in combination of two or more materials.
[화학식 1] [Formula 1]
Figure imgf000026_0001
Figure imgf000026_0001
상기 화학식 1에서,  In Chemical Formula 1,
및 ¾는 동일하거나 상이하며 각각 독립적으로 히드록시기 , 아민기, 에폭사이드기 또는 이소시아네이트기이고; And ¾ are the same or different and each independently represent a hydroxyl group, an amine group, Epoxide group or isocyanate group;
n은 1 내지 3의 정수이다.  n is an integer of 1-3.
본 발명에 따르면, 표면 가교제로 다가의 금속 양이온을 첨가함으로써, 고흡수성 수지 중합체의 카르복시기 (C00H)와 킬레이트를 형성함으로써 가교 거리 를 더욱 줄일 수 있다.  According to the present invention, by adding a polyvalent metal cation as the surface crosslinking agent, the crosslinking distance can be further reduced by forming a chelate with the carboxyl group (C00H) of the superabsorbent polymer.
본 발명의 일 실시예에 따르면, 한센 용해도 파라미터에 의해 정의되는 δρ 이 δρ< 11 (J/cm3)172 를 만족하는 물질 및 δΗ 가 δΗ< 4.5(J/cm3)1/2를 만 족하는 물질로 이루어진 군으로부터 선택되는 1 종 이상의 물질을 더 첨가하여 표면 가교 반웅을 수행할 수 있다. According to one embodiment of the invention, the δ ρ it defined by the Hansen solubility parameters δ ρ <11 (J / cm 3) The material and δ Η satisfying 172 δ Η <4.5 (J / cm 3) 1 / The surface crosslinking reaction may be performed by further adding one or more materials selected from the group consisting of two satisfying materials.
상기 δρ< ll(J/cm3)1/2를 만족하는 물질로는 1,6-핵산디올, 프로필렌 글 리콜, 1,2-핵산디을, 1,3-부탄디올, 2-메틸 -1,3-프로판디올, 2,5-핵산디을, 2-메 틸 -1,3-펜탄디올, 또는 2-메틸 -2,4-펜탄디올을 예로 들 수 있고, 상기 δΗ< 4.5 (J/cm3)1/2를 만족하는 물질은 1,2—프로필렌 카보네이트를 들 수 있다. 그러나, 본 발명이 이에 한정되는 것은 아니며, 상기 파라미터의 범위를 만족하는 물질이 라면 하기 표 2에 기재되어 있지 않은 물질이라도 가능하다. Examples of the material satisfying δ ρ <ll (J / cm 3 ) 1/2 include 1,6-nucleic acid diol, propylene glycol, 1,2-nucleic acid di, 1,3-butanediol, 2-methyl-1, 3-propanediol, 2,5-nucleic acid di-, 2-methyl-1,3-pentanediol, or 2-methyl-2,4-pentanediol, and the above δ Η <4.5 (J / cm 3 ) Substances satisfying 1/2 include 1,2-propylene carbonate. However, the present invention is not limited thereto, and as long as the substance satisfies the range of the parameter, a substance not shown in Table 2 may be used.
한센 용해도 파라미터 (Hansen solubility parameter)는 하나의 물질이 다 른 물질에 용해되어 용액을 형성하는 경우를 예측하는 방법의 일종으로 찰스 한 센 (Charles Hansen)에 의하여 제안되었다. 이는 예를 들어 INDUSTRIAL SOLVENT S HANDBOOKj (pp.35-68, Marcel Dekker , Inc., 1996 년 발행) 이나, 「[) I RECTORY OF SOLVENTSj (pp.22-29, Blackie Academic & Professional, 1996 년 발행) 등 에 기재되어 있는 파라미터이다. The Hansen solubility parameter was proposed by Charles Hansen as a method of predicting when one substance is dissolved in another to form a solution. This is for example INDUSTRIAL SOLVENT S HANDBOOKj (published by pp. 35-68, Marcel Dekker, Inc., 1996) or "() I RECTORY OF SOLVENTSj (pp.22-29, Blackie Academic & Professional, 1996). Etc Parameters described in.
통상적으로 용해도 파라미터를 계산하기 위해서는 웅집 에너지 (cohesive energy)를 구해야 하는데 한센 용해도 파라미터에서는 용해도 상수에 영향을 주 는 웅집 에너지를 하기 3 가지로 분류하여 구한다.  Generally, in order to calculate the solubility parameter, the cohesive energy must be obtained. In the Hansen solubility parameter, the cohesive energy affecting the solubility constant is classified into three categories.
δ0: 비극성 분산 에너지로 인해 발생하는 용해도 상수 (단위: (J/cm3)1/2) δΡ: 쌍극자 극성 에너지로 인해 발생하는 용해도 상수 (단위: (J/cm3)1/2) δΗ: 수소결합 에너지로 인해 발생하는 용해도 상수 (단위: (J/cm3)1/2)δ 0 : Solubility constant due to nonpolar dispersion energy (Unit: (J / cm 3 ) 1/2 ) δ Ρ : Solubility constant due to dipole polar energy (Unit: (J / cm 3 ) 1/2 ) δ Η : Solubility constant due to hydrogen bonding energy (Unit: (J / cm 3 ) 1/2 )
5tot: (( δ0)2 + ( δΡ )2+ ( δΗ)2)1/2 5 tot : ((δ 0 ) 2 + (δ Ρ ) 2 + (δ Η ) 2 ) 1/2
상기와 같은 파라미터를 구하여 두 가지 물질의 한센 용해도 파라미터의 차이로 두 물질의 용해도의 유사성을 계산할 수 있다. 예를 들어 , Α와 B의 두'물 질에 대해 각각의 한센 용해도 파라미터값이 각각 A의 경우 ( SD A, δΡ Α, δΗ Α)ᅳ Β 의 경우 (δΛ δΡ Β, δΗ Β)라고 가정할 때, 두 물질의 한센 용해도 파라미터값의 차이 (Ra)는 다음 식으로 계산할 수 있다. By obtaining the above parameters, the similarity of the solubility of the two substances can be calculated by the difference of the Hansen solubility parameter of the two substances. For example, for the two ' materials of A and B, each Hansen solubility parameter value is A for each (S D A , δ Ρ Α , δ Η Α ) ᅳ Β (δΛ δ Ρ Β , δ Η Assuming that Β ), the difference (Ra) between the Hansen solubility parameter values of the two materials can be calculated by the following equation.
Ra=(4*( 5D A ᅳ δ D B)2 + ( δ PA- δΡ Β)2+ ( δΗ Α- δΗ Β)2)172 Ra = (4 * (5 D A ᅳ δ D B ) 2 + (δ P AΡ Β ) 2 + (δ Η ΑΗ Β ) 2 ) 172
Ra값이 클수록 용해도 측면에서 두 물질의 유사성이 떨어지는 것으로 블 수 있다.  The higher the Ra value, the lower the similarity between the two in terms of solubility.
가교제로 사용될 수 있는 몇 가지 물질에 대해 Dr. Hansen 그룹에서 개발 한 HSPiP (Hansen Solubility Parameters in Practice, 3rd edition version 3.1 published by Hansen-Solubility.com) 프로그램에 따라 계산된 한센 용해도 파 라미터값은 하기 표 2에 나타낸 바와 같다. 【표 2】 For some materials that can be used as crosslinkers, A HSPiP (Hansen Solubility Parameters in Practice, 3 rd edition version 3.1 published by Hansen-Solubility.com) the Hansen solubility calculated based on the program parameters values developed by Hansen group are as shown in Table 2 below. Table 2
Figure imgf000029_0001
본 발명의 일 실시예에 따르면 , 상기 표면 가교제에 더하여 다공성인 실 리카 (silica)나 클레이 (clay), 알루미나, 실리카-알루미나 복합재, 나노실리카, 티타니아, 아연산화물, 알루미늄 셀페이트 등의 다공성 무기 물질을 추가로 첨가 하여 표면 가교 반응을 수행할 수 있다. 상기 다공성 무기 물질은 분말 형태 또 는 액상 형태로 사용할 수 있으며, 특히 알루미나 분말, 실리카ᅳ알루미나 분말, 티타니아 분말, 또는 나노실리카 용액으로 사용할 수 있다. 또한, 상기 다공성 무기 물질은 단량체 조성물에 대하여 약 0.05 내지 약 2 중량 %의 함량으로 포함 될 수 있으며, 바람직하게는 0.08 내지 0.18 중량 %(wt%), 좀더 바람직하게는 0.1 내지 0.15 증량 %로 사용될 수 있다. 상기 표면 가교제를 증합체에 첨가하는 방법에 대해서는 그 구성의 한정 은 없다. 표면 가교제와 중합체 분말을 반웅조에 넣고 흔합하거나, 중합체 분말 에 표면 가교제를 분사하는 방법, 연속적으로 운전되는 믹서에 중합체와 표면 가 교제를 연속적으로 공급하여 흔합하는 방법 등을 사용할 수 있다.
Figure imgf000029_0001
According to an embodiment of the present invention, in addition to the surface crosslinking agent, porous inorganic materials such as silica, clay, alumina, silica-alumina composite, nanosilica, titania, zinc oxide, aluminum cellulose, etc. It can be added to carry out the surface crosslinking reaction. The porous inorganic material may be used in powder form or in liquid form, and in particular, may be used as alumina powder, silica 미나 alumina powder, titania powder, or nanosilica solution. In addition, the porous inorganic material may be included in an amount of about 0.05 to about 2% by weight relative to the monomer composition, preferably 0.08 to 0.18% by weight (wt%), more preferably used in 0.1 to 0.15% by weight Can be. There is no limitation in the structure about the method of adding the said surface crosslinking agent to a built-in body. The surface crosslinking agent and the polymer powder may be mixed in a semi-permanent mixture, or the surface crosslinking agent may be sprayed onto the polymer powder, or the polymer and surface crosslinking agent may be continuously supplied to the mixer to be mixed and mixed.
상기 표면 가교제의 첨가시, 추가로 물 및 메탄을을 함께 흔합하여 첨가 할 수 있다. 물 및 메탄올을 첨가하는 경우, 표면 가교제가 중합체에 골고루 분 산될 수 있는 이점이 있다. 이때, 추가되는 물 및 메탄을의 함량은 표면 가교제 의 고른 분산을 .유도하고 증합체 분말의 뭉침 현상을 방지함과 동시에 가교제의 표면 침투 깊이를 최적화하기 위한 목적으로 중합체 100 중량부에 대한 첨가 비 율을 조절하여 적용할 수 있다.  When the surface crosslinking agent is added, water and methane may be further mixed and added together. When water and methanol are added, there is an advantage that the surface crosslinker can be evenly dispersed in the polymer. At this time, the content of water and methane added is added to 100 parts by weight of polymer for the purpose of inducing even dispersion of the surface crosslinking agent and preventing aggregation of the polymer powder and optimizing the surface penetration depth of the crosslinking agent. It can be applied by adjusting the rate.
상기 표면 가교제가 첨가된 중합체 입자에 대해 약 160 °C 이상에서 20 분 이상 동안 가열시킴으로써 표면 가교 결합 반응이 이루어질 수 있다. 특히 , 본 발명의 표면 가교 공정 조건은 최대 반웅온도 190 내지 200 °C , 총 반웅시간 0.5 내지 1시간, 160 °C 이상의 반웅 온도 25분 이상 유지하며 수행할 수 있다. 표면 가교 반웅을 위한 승온 수단은 특별히 한정되지 않는다. 열매체를 공급하거나, 열원올 직접 공급하여 가열할 수 있다. 이때, 사용 가능한 열매체의 종류로는 스팀 , 열풍, 뜨거운 기름과 같은 승온한 유체 등을 사용할 수 있으나, 본 발명이 이에 한정되는 것은 아니며, 또한 공급되는 열매체의 온도는 열매체 의 수단, 승온 속도 및 승온 목표 온도를 고려하여 적절히 선택할 수 있다. 한편, 직접 공급되는 열원으로는 전기를 통한 가열, 가스를 통한 가열 방법을 들 수 있으나, 상술한 예에 본 발명이 한정되는 것은 아니다. 또한, 상기 표면 가교 반응 전이나 후에 A1을 포함하여 가교하는 공정을 수행하거나, 표면 가교 반웅 전이나 후에 무기 ( inorgani c) 물질을 흔합하여 가교 하는 공정을 포함할 수 있다. 건식으로 실리카를 흔합하는 방법은 통상 비닐 백 에 분말상의 제품에 정해진 실리카 분말올 주입하고 좌우로 흔들어 주면 쉽게 건 식 처리된 제품을 얻을 수 있다. 상업공정에서는 제품을 라인상으로 흘려보내는 과정에서 분말을 흔합할 수 있는 패들이 부착된 교반축을 고속 교반하는 과정에 서 실리카를 정량으로 주입하여 실리카가 건식 처리된 제품을 얻을 수 있다. 상기와 같이 본 발명의 제조방법에 따라 수득된 고흡수성 수지는 보수능 과 가압흡수능 등의 물성을 저하되지 않으면서 향상된 통액성을 가질 수 있으며, 가압 하에 빠른 흡수 속도를 나타낼 수 있다. 본 발명에 있어서 상기 기재된 내용 이외의 사항은 필요에 따라 가감이 가능한 것이므로, 본 발명에서는 특별히 한정하지 아니한다. The surface crosslinking reaction may be achieved by heating the polymer particles to which the surface crosslinking agent is added at about 160 ° C. for at least 20 minutes. In particular, the surface crosslinking process conditions of the present invention can be carried out while maintaining a maximum reaction temperature 190 to 200 ° C, a total reaction time 0.5 to 1 hour, a reaction temperature of 160 ° C or more 25 minutes or more. The temperature raising means for surface crosslinking reaction is not specifically limited. It can be heated by supplying a heat medium or by directly supplying a heat source. In this case, as the type of heat medium that can be used, a heated fluid such as steam, hot air, or hot oil may be used, but the present invention is not limited thereto, and the temperature of the heat medium to be supplied is a means of heating medium, a rate of temperature increase, and a temperature increase. It may be appropriately selected in consideration of the target temperature. On the other hand, the heat source directly supplied may be a method of heating by electricity or heating by gas. However, the present invention is not limited to the above examples. In addition, before or after the surface cross-linking reaction may be carried out to include a step of cross-linking, or before or after the surface cross-linking reaction may include a step of mixing the cross-linked inorganic (inorgani c) material. In general, a method of mixing silica in a dry manner is carried out by injecting a silica powder into a plastic bag in a powdered product and shaking it from side to side to obtain a dry product easily. In the commercial process, silica-dried products can be obtained by quantitatively injecting silica in the process of rapidly stirring the stirring shaft with paddles capable of mixing the powder in the process of flowing the product onto the line. As described above, the superabsorbent polymer obtained according to the preparation method of the present invention may have improved fluid permeability without deteriorating physical properties such as water-retaining capacity and pressure-absorbing capacity, and may exhibit a fast absorption rate under pressure. In the present invention, matters other than those described above can be added or subtracted as necessary, and therefore the present invention is not particularly limited.
【발명의 효과】 본 발명에 따르면, 고흡수성 수지의 원심분리 보수능 (CRC) , 가압 흡수능 Effect of the Invention According to the present invention, centrifugal water-retaining capacity (CRC) and pressure-absorbing capacity
(AUL) , 및 겔 베드 투과율 (GBP)를 모두 동시에 우수한 범위로 최적화함으로써, 최종 기저귀에서의 물성향상이 가능하고, 이를 통해 초박형 기술이 적용된 기저 귀를 제조할 할 수 있다. By simultaneously optimizing (AUL) and gel bed permeability (GBP) to excellent ranges at the same time, it is possible to improve the physical properties of the final diaper, thereby producing a basal ear to which ultra-thin technology is applied.
. 특히, 본 발명의 고흡수성 수지는 일정 시간이 지나도 수분이 베어나오는 양 (리헷 양, content of rewet t ing)이 적어 편안하고 착용감이 우수한 위생용품의 제조에 적용할 수 있다. 【도면의 간단한 설명】 . In particular, the superabsorbent polymer of the present invention can be applied to the production of hygiene products having a comfortable and comfortable fit due to a small amount of moisture (content of rewet ting) that is cut off even after a certain time. [Brief Description of Drawings]
도 1 은 본 발명의 일 구현예에 따론 고흡수성 수지에 대한 가압 흡수 속도를 측정하는 장치의 일례를 나타낸 모식도이다.  1 is a schematic diagram showing an example of an apparatus for measuring the pressure absorption rate for the super absorbent polymer according to one embodiment of the present invention.
도 2 는 본 발명의 일 구현예에 따른 겔 베드 투과율 (GBP, Gel Bed Permeabi l i ty) 측정 장치의 일례를 나타낸 모식도이며, 도 3 과 도 4 는 각각 겔 베드 투과율 측정 실리더와 메쉬 배치의 일례를 나타낸 모식도이다.  2 is a schematic diagram showing an example of a gel bed permeability (GBP) measuring apparatus according to an embodiment of the present invention, Figure 3 and Figure 4 is an example of the gel bed permeability measurement cylinder and mesh arrangement, respectively It is a schematic diagram showing.
【발명을 실시하기 위한 구체적인 내용】  [Specific contents to carry out invention]
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실시예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.  Hereinafter, preferred examples are provided to help understanding of the present invention, but the following examples are merely to illustrate the present invention, and the scope of the present invention is not limited to the following examples.
실시예 1 Example 1
25 °C로 미리 냉각된 열매체가 순환되는 쟈켓으로 둘러 싸여진 2 L 용량 의 유리 반응기에 아크릴산 500 g에 아크릴산에 회석된 0.5% IRGACURE 819 개시 제 11 g (단량체 조성물에 대하여 110 ppm)을 흔합하고, 아크릴산에 희석된 5%폴 리에틸렌글리콜 디아크릴레이트 (PEGDA , 분자량 400 , Cure Dose 200 mJ/cm2) 26 g 을 흔합한 용액 (A 용액)을 주입하고, 아크릴산에 희석된 5% 에틸렌 옥사이드가 9 mol%포함된 트리메틸을프로판 트리아크릴레이트 (Ethoxyl ated-TMPTA, TMP(E0)9TA, M-3190 미원스페셜티 케미칼사, Cure Dose 200 mJ/cm2) 14 g을 흔합한 용액 (B 용 액)을 주입하고, 24% 가성소다 용액 800 g(C 용액)을 서서히 적가하여 흔합하였 다. 이렇게 얻어진 수용성 에틸렌계 불포화 단량체로서 아크릴산 나트륨에서 아 크릴산 중화도는 70 몰%가 되었다. In a 2 L glass reactor surrounded by a jacket in which a heat medium pre-cooled to 25 ° C. was circulated, 500 g of acrylic acid was mixed with 11 g of 0.5% IRGACURE 819 initiated with acrylic acid (110 ppm for the monomer composition), Inject 26 g of 5% polyethylene glycol diacrylate (PEGDA, molecular weight 400, Cure Dose 200 mJ / cm 2 ) diluted in acrylic acid into a mixed solution (A solution), and 5% ethylene oxide diluted in acrylic acid 9 mol% trimethyl containing propane triacrylate (Ethoxyl ated-TMPTA, TMP (E0) 9TA, M-3190 Miwon Specialty Chemicals, Cure Dose 200 mJ / cm 2 ) 14 g mixed solution (B solution) Was added and 800 g (C solution) of 24% caustic soda solution was slowly added dropwise to mix. Soluble from sodium acrylate as the water-soluble ethylenically unsaturated monomer thus obtained Krylic acid neutralization was 70 mol%.
두 용액의 흔합 시 중화열에 의해 흔합액의 온도가 80 °C 이상으로 상승 하는 것을 확인 후, 은도가 40 °C로 넁각되기를 기다렸다가 반응은도가 40 °C에 이르렀을 때 물에 희석된 2% 과황산나트륨 용액 54 g을 주입하였다. After confirming that the temperature of the mixture rises above 80 ° C due to the heat of neutralization during the mixing of the two solutions, wait for the silver to be reduced to 40 ° C and then dilute in water when the reaction reaches 40 ° C. 54 g of sodium persulfate solution were injected.
상기 용액을 광조사 장치가 상부에 장착되고 내부가 80 °C로 예열된 정방 형 중합기 내에 설치된 Vat 형태의 트레이 (tray, 가로 15cm x 세로 15cm)에 붓고 광조사를 행하여 광개시하였다. 광조사 후 약 25초 후 표면부터 겔이 발생하며 50초 정도가 되면 발포와 동시에 중합반웅이 일어나는 것을 확인 후, 그 후 3분 을 추가로 반웅 시킨 뒤 증합된 시트를 꺼내어 3cm X 3cm의 크기로 자른 뒤 미트 쵸퍼 (Meat chopper )를 이용하여 다지기 공정 (chopping)을 실시하여 가루 (crumb) 을 제조하였다. The solution was poured into a Vat-shaped tray (15 cm x 15 cm) mounted in a square polymerizer equipped with a light irradiation device on the top and preheated to 80 ° C., and photo-initiated by light irradiation. After about 25 seconds of light irradiation, the gel is generated from the surface, and after 50 seconds, the polymerization reaction occurs at the same time as the foaming. After cutting, a chopping process was performed using a meat chopper to prepare a powder.
상기 가루 (crumb)를 상하로 풍량 전이가 가능한 오본에서 건조하였다. 18 0°C의 핫 에어 (hot ai r )를 15분은 하방에서 상방으로, 15분은 상방에서 하방으로 흐르게 하여 균일하게 건조하였으며, 건조 후 건조체의 함수량은 2% 이하가 되 게 하였다. The crumb was dried in Aubonn, which was capable of transferring air volume up and down. The hot air at 18 0 ° C was dried uniformly by flowing 15 minutes downwards and upwards and 15 minutes upwards and downwards, and after drying, the water content of the dried body was 2% or less.
건조 후, 분쇄기로 분쇄한 다음 분급하여 150 내지 850 크기를 선별하 여 베이스 수지를 준비하였다. 이렇게 제조된 베이스 수지의 보수능은 36.5 g/g , 수가용 성붓 함량은 12.5 중량 ¾>였다.  After drying, the resultant was pulverized with a grinder and classified to prepare a base resin by selecting 150 to 850 sizes. The water-retaining capacity of the base resin thus prepared was 36.5 g / g, and the content of aqueous pen was 12.5 weight ¾>.
이후, 100 g 베이스 수지에 물 3 g , 메탄올 3 g , 1 , 3 프로판디을 0.3 g , 에어로실 200(aerosol 200) 0. 1 g을 흔합한 가교제 액과 흔합한 뒤 190 °C에서 30분 동안 표면가교 반응 시키고, 분쇄 후 시브 (sieve)를 이용하여 입경 크기가 150 내지 850卿의 표면처리된 고흡수성 수지를 얻었다. After, 100 g of water in the base resin 3 g, methanol, 3 g, 1, 3 propane dieul 0.3 g, Aerosil 200 (aerosol 200) 0. 1 g in a common cross-linker solution after the combined common and combined 190 ° C The surface crosslinking reaction for 30 minutes, using a sieve after grinding to obtain a surface-treated superabsorbent polymer having a particle size of 150 ~ 850 卿.
얻어진 100 g의 표면처리된 고흡수성 수지에 에어로실 200(Aerosil) 0.08 g을 건식의 방법으로 흔합하여 실리카 건식처리된 샘플을 제조하였다. 실시예 2  Silica dry-treated samples were prepared by mixing 0.08 g of Aerosil 200 in a dry manner to the obtained 100 g surface-treated superabsorbent polymer. Example 2
상기 실시예 1에서 건식 처리 사용한 에어로실 200(aerosol 200) 대신에 ' 샐라이트 (Ceiite) 0.2 g을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 고흡수성 수지를 제조하였다. 실시예 3 Super absorbent polymer was prepared in the same manner as in Example 1, except that 0.2 g of ' cerite (Ceiite) was used in place of the aerosol 200 used in the dry process. Example 3
실시예 1에서 얻어진 베이스 수지를 대상으로, 표면가교 처리를 함에 있 어서 베이스 수지 100 g 대비 물 3 g, 에틸렌카보네이트 1.0 g, 에어로실 200(ae rosol 200) 0.1 g을 흔합한 가교제 액과 흔합한 뒤, 190 °C에서 30분 동안 표면 가교 반웅시키고, 분쇄 후 시브 (sieve)를 이용하여 입경 크기가 150 내지 850 jm 의 표면처리된 고흡수성 수지를 얻었다. 그 외는 실시예 1과 동일한 방법으로 고 흡수성 수지를 제조하였다. 실시예 4 For the base resin obtained in Example 1, 3 g of water, 1.0 g of ethylene carbonate, and 0.1 g of aerosil 200 were mixed with 100 g of the base resin in a surface crosslinking treatment. Subsequently, surface crosslinking reaction was carried out at 190 ° C. for 30 minutes, and after grinding, a sieve was used to obtain a surface-treated superabsorbent polymer having a particle size of 150 to 850 jm. Others manufactured the high water absorbing resin in the same manner as in Example 1. Example 4
실시예 1에서 얻어진 베이스 수지를 대상으로, 표면가교 처리를 함에 있 어서 베이스 수지 100 g 대비 물 3 g , 1,3-프로판디을 1.0 g , 프로필렌글리콜 0.5 g을 사용한 것을 제외하고는, 실시예 1과 동일한 방법으로 고흡수성 수지를 제조하였다. 실시예 5 The base resin obtained in Example 1 was subjected to a surface crosslinking treatment. A super absorbent polymer was prepared in the same manner as in Example 1, except that 3 g of water, 1.0 g of 1,3-propanedi and 0.5 g of propylene glycol were used relative to 100 g of the base resin. Example 5
실시예 1과 같은 증합을 행함에 있어서 내부가교제로 아크릴산에 희석된 5% 폴리에틸렌글리콜 디아크릴레이트 (PEGDA , 분자량 400, Cure Dose 200 mJ/cm2) 33 g을 흔합한 용액 (A 용액)을 주입하고, 아크릴산에 희석된 5% 헥산디올디아크 릴레이트 (HDDA , Hexanedi ol di acryl ate , Cure Dose 320 mJ/cm2) 3 g을 흔합한 용 액 (B 용액)을 주입하였다. 이렇게 얻어진 베이스 수지의 보수능은 37.2 g/g이었 다. 이후 표면가교 처리 공정은 실시예 3과 동일하게 진행하였다. 비교예 1 In performing the same polymerization as in Example 1, a solution (A solution) containing 33 g of 5% polyethylene glycol diacrylate (PEGDA, molecular weight 400, Cure Dose 200 mJ / cm 2 ) diluted in acrylic acid was injected as an internal crosslinking agent. Then, 3 g of 5% hexanediol diacrylate (HDDA, Hexanedi ol diacrylate, Cure Dose 320 mJ / cm 2 ) diluted in acrylic acid was injected with a mixed solution (B solution). The water holding capacity of the base resin thus obtained was 37.2 g / g. Thereafter, the surface cross-linking treatment was performed in the same manner as in Example 3. Comparative Example 1
내부 가교제를 단독 성분으로 사용한 예로, 상기 아크릴산 함유 용액 (A 용액)에서 희석된 5% 폴리에틸렌글리콜 디아크릴레이트 (PEGDA , 분자량 400, Cure Dose 200 mJ/cm2)을 55 g으로 흔합하여 베이스를 제조하였다. 이렇게 얻어진 베 이스 수지의 보수능은 36.2 g/g이었다. 기타 표면처리 과정은 실시예 1과 동일한 방법으로 고흡수성 수지를 제조하였다. 비교예 2 내부 가교제를 단독 성분으로 사용한 예로, 상기 아크릴산 함유 용액 (A 용액)에서 5% 폴리에틸렌글리콜 디아크릴레이트 (PEGDA , 분자량 400, Cure Dose 200 mJ/cm2)를 사용하지 않으며, 희석된 5% 에틸렌 옥사이드가 9 mo l% 포함된 트리메틸올프로판 트리아크릴레이트 (Ethoxyl ated-TMPTA , TMP(E0)9TA , M-3190 미 원스페셜티 케미칼사, Cure Dose 200 mJ/cm2) 38 g을 흔합한 용액 (B 용액)을 흔 합하였다. 이렇게 얻어진 베이스 수지의 보수능은 33 .2 g/g이었다. 기타 표면처 리 과정은 실시예 1과 동일한 방법으로 고흡수성 수지를 제조하였다. 비교예 3 For example, an internal crosslinking agent was used as a single component, and a base was prepared by mixing 55 g of 5% polyethylene glycol diacrylate (PEGDA, molecular weight 400, Cure Dose 200 mJ / cm 2 ) diluted in the acrylic acid-containing solution (A solution). It was. The water retention capacity of the base resin thus obtained was 36.2 g / g. Other surface treatment procedures were prepared in the same manner as in Example 1. Comparative Example 2 For example, an internal crosslinking agent is used as a single component, and 5% polyethylene glycol diacrylate (PEGDA, molecular weight 400, Cure Dose 200 mJ / cm 2 ) is not used in the acrylic acid-containing solution (A solution), and diluted 5% ethylene oxide is used. 38 g of trimethylolpropane triacrylate (Ethoxyl ated-TMPTA, TMP (E0) 9TA, M-3190 US Specialty Chemical, Cure Dose 200 mJ / cm 2 ) containing 9 mol Solutions) were combined. The water holding capacity of the base resin thus obtained was 33.2 g / g. Other surface treatment process was prepared in the same manner as in Example 1 superabsorbent polymer. Comparative Example 3
상기 아크릴산 함유 용액 (A 용액)에서 희석된 5% 폴리에틸렌글리콜 디아 크릴레이트 (PEGDA , 분자량 400, Cure Dose 200 mJ/cm2)을 55 g으로 흔합하고 동 시에 D-소르비틀 5 g을 추가한 것을 제외하고는 비교예 1과 동일한 방법으로 고 흡수성 수지를 제조하였다. 이렇게 얻어진 베이스 수지의 보수능은 35.5 g/g이었 다. 비교예 4 5% polyethyleneglycol diacrylate (PEGDA, molecular weight 400, Cure Dose 200 mJ / cm 2 ) diluted in the acrylic acid-containing solution (A solution) was mixed at 55 g and 5 g of D-sorbetle was added at the same time. Except that a high water-absorbent resin was prepared in the same manner as in Comparative Example 1. The water holding capacity of the base resin thus obtained was 35.5 g / g. Comparative Example 4
실시예 1과 같은 중합을 행함에 있어서 내부가교제로 희석된 5% 폴리에틸 렌글리콜 디아크릴레이트 (PEGDA , 분자량 400, Cure Dose 200 mJ/cm2) 26 g을 흔 합한 용액 (A 용액 )을 주입하고, 희석된 5% 프로필렌 옥사이드가 5 mo l % 포함된 트리메틸올프로판 트리아크릴레이트 (Propoxyl ated-TMPTA , TMP(P0)5TA , 미원스페 셜티 케미칼사, Cure Dose 490 mJ/cm2) 16 g을 흔합한 용액 (B 용액)을 주입하였 다. 이렇게 얻어진 베이스 수지의 보수능은 38.4 g/g이었다. 이후 표면가교 처리 공정은 실시예 1과 동일하게 진행하였다. In the same polymerization as in Example 1, a solution (A solution) containing 26 g of 5% polyethylene glycol diacrylate (PEGDA, molecular weight 400, Cure Dose 200 mJ / cm 2 ) diluted with an internal crosslinking agent was injected. , Trimethylolpropane triacrylate containing 5 mol% of diluted 5% propylene oxide (Propoxyl ated-TMPTA, TMP (P0) 5TA, Miwonspae 16 g of Shirty Chemical, Cure Dose 490 mJ / cm 2 ) were injected with a mixed solution (B solution). The water holding capacity of the base resin thus obtained was 38.4 g / g. Thereafter, the surface cross-linking treatment was performed in the same manner as in Example 1.
비교예 5 Comparative Example 5
실시예 1과 같은 중합을 행함에 있어서 내부가교제로 회석된 5% 폴리에틸 렌글리콜 디아크릴레이트 (PEGDA , 분자량 400, Cure Dose 200 mJ/cm2) 26 g을 흔 합한 용액 ( A 용액 )을 주입하고, 회석된 5% 펜타에리트리를테트라아크릴레이트 (PETTA, Pentaerythr i tol Tr i aery l ate ; 미원스페셜티 케미칼사, Cure Dose 158 m J/cm2) 12 g을 흔합한 용액 (B 용액)을 주입하였다. 이렇게 얻어진 베이스 수지의 보수능은 34.3 g/g이었다. 이후 표면가교 처리 공정은 실시예 1과 동일하게 진행 하였다. In the same polymerization as in Example 1, a solution (A solution) mixed with 26 g of 5% polyethylene glycol diacrylate (PEGDA, molecular weight 400 and Cure Dose 200 mJ / cm 2 ) distilled with an internal crosslinking agent was injected. Then, 12 g of dilute 5% pentaerythritol tetraacrylate (PETTA, Miwon Specialty Chemicals, Cure Dose 158 m J / cm 2 ) was mixed with a solution (B solution). Injected. The water holding capacity of the base resin thus obtained was 34.3 g / g. Thereafter, the surface cross-linking treatment proceeded in the same manner as in Example 1.
시험예 Test Example
실시예 1-5 및 비교예 1—5에 따라 제조된 고흡수성 수지에 대하여 다음과 같은 방법으로 물성 평가를 수행하였으며, 측정된 물성값은 하기 표 3 에 나타낸 바와 같다.  Evaluation of physical properties of the superabsorbent polymers prepared according to Examples 1-5 and Comparative Examples 1 to 5 was carried out in the following manner, and the measured physical properties are shown in Table 3 below.
(1) 입도평가 (1) particle size evaluation
실시예 1-5 및 비교예 1-5 에 사용된 베이스 폴리머 및 고흡수성 수지의 입도는 유럽부직포산업협회 (European Disposables and Nonwovens Association, E DANA) 규격 EDANA WSP 220.2 방법에 따라 측정을 하였다. Of the base polymer and the super absorbent polymer used in Examples 1-5 and Comparative Examples 1-5 Particle size was measured according to the European Disposables and Nonwovens Association (EDANA) standard EDANA WSP 220.2 method.
(2) 원심분리 보수능 (CRC, Centrifuge Retention Capacity) (2) Centrifuge Retention Capacity (CRC)
유럽부직포산업협회 (European Disposables and Nonwovens Association, E European Disposables and Nonwovens Association, E
DANA) 규격 EDANA WSP 241.2에 따라 실시예 1-5 및 비교예 1-5의 흡수성 수지에 대하여, 무하중하 흡수배율에 의한 보수능을 측정하였다. DANA) With respect to the water absorbent resins of Examples 1-5 and Comparative Example 1-5 according to the standard EDANA WSP 241.2, the water-retaining capacity by the unloaded absorption ratio was measured.
즉, 실시예 1-5 및 비교예 1-5로 얻어진 수지 W0(g,'약 0.2g)을 부직포제 의 봉투에 균일하게 넣고 밀봉 (seal)한 후에, 상은에 0.9 질량 %의 생리식염수에 침수했다. 30분 후에 봉투를 원심 분리기를 이용하고 250G로 3분간 물기를 뺀 후에 봉투의 질량 W2(g)을 측정했다. 또 수지를 이용하지 않고 동일한 조작을 한 후에 그때의 질량 Kg)을 측정했다. That is, after the resin W 0 (g, ' about 0.2g) obtained in Example 1-5 and Comparative Example 1-5 was uniformly sealed in a non-woven bag and sealed, 0.9 mass% of physiological saline was added to the silver. Flooded in. After 30 minutes, the envelope was centrifuged and drained at 250 G for 3 minutes, and then the mass W 2 (g) of the envelope was measured. In addition, after performing the same operation without using resin, the mass Kg at that time was measured.
이렇게 얻어진 각 질량을 이용하여 다음의 계산식 1에 따라 CRC (g/g)를 산출하여 보수능을 확인하였다.  Using each mass thus obtained, CRC (g / g) was calculated according to the following equation 1 to confirm the water holding capacity.
[계산식 1]  [Calculation 1]
CRC(g/g) = {[W2(g) - W1(g)]/W0(g)> - 1 CRC (g / g) = {[W 2 (g)-W 1 (g)] / W 0 (g)>-1
상기 계산식 1에서,  In the above formula 1,
W0(g)는 흡수성 수지의 무게 (g)이고, W 0 (g) is the weight of the absorbent resin (g),
Kg)는 흡수성 수지를 사용하지 않고, 원심분리기를 사용하여 250G로 3 분간 탈수한 후에 측정한 장치 무게이고, W2(g)는 상온에 0.9 질량 %의 생리식염수에 흡수성 수지를 30분 동안 침수 한 후에, 원심분리기를 사용하여 250G로 3 분간 탈수한 후에 흡수성 수지 ¾포함 하여 측정한 장치 무게이다. (3) 가압흡수능 (AUL, Absorbency under Load) Kg) is the weight of the device measured after dehydration at 250G for 3 minutes using a centrifuge, without using a water absorbent resin, W 2 (g) is the device weight measured after absorbing the absorbent resin in 0.9 mass% physiological saline at room temperature for 30 minutes, followed by dehydration at 250 G for 3 minutes using a centrifuge. (3) Absorbency under Load (AUL)
실시예 1-5 및 비교예 1-5 의 고흡수성 수지에 대하여, 다음과 같은 방법 으로 0.9 psi의 가압 흡수능 (AUL : Absorbency under Load)을 측정하였다.  For the superabsorbent polymers of Examples 1-5 and Comparative Examples 1-5, Absorbency under Load (AUL) of 0.9 psi was measured by the following method.
먼저, 내경 25画의 플라스틱의 원통 바닥에 스테인레스제 400 mesh 철망 을 장착시켰다. 상온, 습도 50%의 조건하에서 철망상에 실시예 1-7 및 비교예 1ᅳ 4 로 얻어진 수지 W0(g , 0. 16 g)을 균일하게 살포하고 그 위에 5. 1 kPa(0.9 ps i ) 의 하중을 균일하게 더 부여할 수 있는 피스톤 (pi ston)은 외경이 25醒보다 약간 작고 원통의 내벽과 름이 없고, 상하의 움직임이 방해 받지 않게 하였다. 이때 상기 장치의 중량 W3(g)을 측정하였다. First, a stainless steel 400 mesh wire was mounted on the bottom of a plastic cylinder having an inner diameter of 25 画. The resin W 0 (g, 0. 16 g) obtained in Example 1-7 and Comparative Example 1-4 was uniformly sprayed on a wire mesh under conditions of a room temperature and a humidity of 50%, and 5. 1 kPa (0.9 ps i) thereon. Piston, which can give more uniform load, has an outer diameter of less than 25 醒 and is not equal to the inner wall of the cylinder. At this time, the weight W 3 (g) of the apparatus was measured.
직경 150 讓의 페트로 접시의 내측에 직경 90 腿로 두께 5 瞧의 유리 필 터를 두고, 0.90 중량 % 염화 나트륨으로 구성된 생리식염수를 유리 필터의 윗면 과 동일 레벨이 되도록 하였다. 그 위에 직경 90 mm의 여과지 1 장을 실었다. 여과지 위에 상기 측정장치를 싣고, 액을 하중 하에서 1 시간 동안 흡수하였다. A glass filter having a diameter of 90 mm and a 5 mm thick glass filter was placed inside the petri dish having a diameter of 150 mm 3, and the physiological saline consisting of 0.90 wt% sodium chloride was made at the same level as the upper surface of the glass filter. One sheet of filter paper 90 mm in diameter was loaded thereon. The measuring device was placed on the filter paper and the liquid was absorbed for 1 hour under load.
1 시간 후 측정 장치를 들어을리고, 그 중량 W4(g)을 측정하였다. After 1 hour, the measuring device was lifted and the weight W 4 (g) was measured.
이렇게 얻어진 각 질량을 이용하여 다음의 계산식 2 에 따라 AUL(g/g)를 산출하여 가압 흡수능을 확인하였다. [계산식 2] Using each mass thus obtained, AUL (g / g) was calculated according to the following equation 2 to confirm the pressure absorbing ability. [Calculation 2]
AUL(g/g) = [W4(g) - 3(g)]/ W0(g) AUL (g / g) = [W 4 (g) -3 (g)] / W 0 (g)
상기 계산식 2에서,  In the formula 2,
W0(g)는 흡수성 수지의 무게 (g)이고, W 0 (g) is the weight of the absorbent resin (g) ,
W3(g)는 흡수성 수지의 무게 및 상기 흡수성 수지에 하중을 부여할 수 있 는 장치 무게의 총합이고, W 3 (g) is the sum of the weight of the absorbent resin and the weight of the device capable of applying a load to the absorbent resin,
W4(g)는 하중 (0.9 psi) 하에 1 시간 동안 상기 흡수성 수지에 수분을 공급 한 후의 수분이 흡수된 흡수성 수지의 무게 및 상기 흡수성 수지에 하중을 부여 할 수 있는 장치 무게의 총합이다. W 4 (g) is the sum of the weight of the absorbent resin absorbed by the moisture after supplying the absorbent resin for 1 hour under a load (0.9 psi) and the weight of the device capable of applying a load to the absorbent resin.
(4) 겔 베드투과을 (GBP, Gel Bed Permeability) (4) Gel Bed Permeability (GBP)
실시예 1-5 및 비교예 1-5 의 고흡수성 수지에 대하여, 겔 베드 투과율 (GBP, Gel Bed Permeabi Π ty)을 측정하였다. GBP 측정방법은 미국등록특허 US 7,179,851에 명시되어 있다.  For the superabsorbent polymers of Examples 1-5 and Comparative Examples 1-5, Gel Bed Permeability (GBP) was measured. The GBP measurement method is specified in US Pat. No. 7,179,851.
특히, 본 발명에 따른 고흡수성 수지는, 자유 팽윤 겔 베드 투과율 (GBP), 하중하의 겔 베드 투과율 ("0.3 GBP")을 측정하는 경우에 특정한 특성 또는 특징 을 나타낸다. 자유 팽윤 겔 베드 투과율 시험은, 통상 "자유 팽윤" 상태로서 언 급되는 상태 이후에, 규정 압력하에 고흡수성 재료의 팽윤 베드의 투과율 (예: 흡 수성 구조물로부터 분리)을 다르시로 측정한 것이다. "자유 유동' '이라 함은 고흡 수성 재료가 시험 용액의 흡수시에 팽윤 억제 하증 없이 팽윤하는 것을 의미하는 것이다. 하중하의 겔 베드 투과율 ( "0.3 GBP" )은, 고흡수성 중합체 조성물을 "약 0.3 psi의 규정 압력 상태"로 되게 한 후, 겔 입자 (예: 본원에서 사용된 바와 같 이 고흡수성 재료 또는 흡수성 재료)의 팽윤 베드의 투과율을 의미한다. 자유 팽윤 겔 베드투과을 (GBP) 시험 In particular, the superabsorbent polymer according to the present invention exhibits certain properties or characteristics when measuring free swell gel bed permeability (GBP), gel bed permeability under load ("0.3 GBP"). The free swelling gel bed permeability test is a different measurement of the permeability of a swelling bed of superabsorbent material (eg, separation from an absorbent structure) under specified pressure, after a state usually referred to as a "free swelling" state. "Free flow"'means that the superabsorbent material swells without the swelling inhibition upon absorption of the test solution. will be. The gel bed permeability under load ("0.3 GBP") is obtained by bringing the superabsorbent polymer composition to a "prescribed pressure state of about 0.3 psi" followed by gel particles (e.g., superabsorbent or absorbent material as used herein). Means the transmittance of the swelling bed. Free Swelling Gel Bed Permeation (GBP) Test
먼저, 자유 팽윤 겔 베드 투과율 (GBP) 시험은, 통상적으로 "자유 팽윤 " 상태로서 언급되는 상태하에서, 겔 입자 (예를 들면, 표면 처리된 흡수성 재료 또 는 표면 처리하기 전의 고흡수성 재료)의 팽윤 베드의 투과율을 측정한다. "자유 팽윤' '이라 함은 겔 입자가 시험 용액의 흡수시에 제한 하중 없이 팽윤되게 하는 것으로 기재될 것이다. "자유 팽윤' '이라 함은 고흡수성 중합체가 시험 용액의 흡 수시에 팽윤 제한 하중 없이 팽윤되게 하는 것으로 기재될 것이다. 투과율 시험 을 수행하기 위한 적합한 장치는 도 3 및 도 4 에 도시되어 있고, 일반적으로 도 3 의 28 로서 표시되어 있다. 시험 장치 (28)는 샘플 용기 (일반적으로 30 으로 표 시됨) 및 피스톤 (일반적으로 36 으로 표시됨)을 포함한다. 피스톤 (36)은 샤프트 의 종축 아래에 천공된 중심 원통형 홀 (40)을 갖는 원통형 렉산 (LEXANR) 샤프트 (38)를 포함한다. 샤프트 (38)의 양 말단은 기계 가공되어 상부 및 하부 말단 (각 각 42 및 46으로 지시됨)을 제공한다. 증량 (48로 지시됨)은 한쪽 말단 (42) 위에 존재하고, 이의 중심의 일부분 이상을 통해 천공된 원통형 홀 (48a)을 갖는다. 원형 피스톤 헤드 (50)는 다른 말단 (46) 위에 위치하고, 7 개 홀 (60, 이들 각각은 직경 약 0.95 cm를 갖는 것임)의 증심 내부 환 및 14 개 홀 (54, 이들 각 각은 직경 약 0.95 cm를 갖는 것임)의 증심 외부 환이 제공되어 있다. 홀 (54, 60)은 피스톤 헤드 (50)의 상부로부터 하부까지 천공되어 있다. 피스톤 헤드 (50) 는 또한 샤프트 (38)의 말단 (46)을 수용하기 위해 이의 중심에서 천공된 원통형 홀 (62)을 갖는다. 피스톤 헤드 (50)의 하부는 또한 이축 연신된 400 메쉬의 스테 인레스 강 스크린 (64)'으로 피복될 수 있다. First, the free swell gel bed permeability (GBP) test is performed under swelling of gel particles (e.g., surface treated absorbent material or superabsorbent material prior to surface treatment) under conditions commonly referred to as "free swelling" conditions. The transmission of the bed is measured. "Free swelling"'will be described as allowing the gel particles to swell without limiting load upon absorption of the test solution. "Free swelling"' will mean that the superabsorbent polymer has no swelling limiting load upon absorption of the test solution. It will be described as causing swelling. Suitable apparatus for performing the transmittance test are shown in FIGS. 3 and 4, and generally indicated as 28 in FIG. 3. Test apparatus 28 includes a sample vessel (typically labeled 30) and a piston (typically labeled 36). The piston 36 includes a cylindrical LEXANR shaft 38 having a central cylindrical hole 40 drilled below the longitudinal axis of the shaft. Both ends of the shaft 38 are machined to provide the upper and lower ends (indicated by 42 and 46, respectively). The increase (indicated by 48) is above one end 42 and has a cylindrical hole 48a drilled through at least a portion of its center. The circular piston head 50 is located above the other end 46, with an enlarged inner ring of seven holes (60, each of which has a diameter of about 0.95 cm) and fourteen holes (54, each of them). Angle is about 0.95 cm in diameter). The holes 54 and 60 are drilled from the top to the bottom of the piston head 50. The piston head 50 also has a cylindrical hole 62 drilled in its center to receive the end 46 of the shaft 38. The lower part of the piston head 50 may also be covered with a biaxially stretched 400 mesh stainless steel screen 64 ' .
샘플 용기 (30)는 원통 (34) 및 400 메쉬 스테인레스 강 피륙 스크린 (66)을 포함하는데, 당해 스크린은 팽팽하게 이축 연신되어 있고 원통의 하부 말단에 부 착되어 있다. 고흡수성 중합체 샘플 (도 3 에서 68 로 표시됨)은 시험 동안 원통 (34) 내부의 스크린 (66) 위에 지지되어 있다.  The sample vessel 30 includes a cylinder 34 and a 400 mesh stainless steel skinned screen 66, which is taut biaxially stretched and attached to the lower end of the cylinder. The superabsorbent polymer sample (designated 68 in FIG. 3) is supported on the screen 66 inside the cylinder 34 during the test.
원통 (34)은 투명한 렉산 (LEXANR) 막대 또는 동등한 재료로 천공되거나 렉 산 관재 또는 동등한 재료로 절단될 수 있고, 내부 직경이 약 6 cm (예: 약 28.27 cm 2의 단면적)이고 벽 두께가 약 0.5 cm이며 높이가 약 10 cm이다. 배수 홀 (도시 되지 않음)은 원통으로부터 액체를 배수시키기 위해 스크린 (66) 상부 약 7.8 cm 높이에서 원통 (34)의 측벽에 형성되어, 스크린 (66) 상부 약 7.8 cm에서 샘플 용 기 중의 유체 수준을 유지시킨다. 피스톤 헤드 (50)는 렉산 막대 또는 동등한 재 료로 기계 가공되고, 대략 16 mm의 높이 및 소정 크기의 직경을 가져 , 원통 (34) 내부에 이를 최소 벽 공간으로 맞추면서 여전히 자유롭게 미끄러진다. 샤프트 (38)는 렉산 막대 또는 동등한 재료로 기계 가공되고, 약 2.22 cm의 외부 직경 및 약 0.64 cm의 내부 직경올 갖는다. The cylinder 34 may be perforated with a transparent LEXANR rod or equivalent material or cut into a lexan tube or equivalent material, having an internal diameter of about 6 cm (eg, a cross-sectional area of about 28.27 cm 2 ) and a wall thickness of about It is 0.5 cm high and about 10 cm high. A drain hole (not shown) is formed in the sidewall of the cylinder 34 at a height of about 7.8 cm above the screen 66 to drain the liquid from the cylinder, so that the fluid level in the sample vessel at about 7.8 cm above the screen 66. Keep it. The piston head 50 is machined from a lexan rod or equivalent material and has a height of approximately 16 mm and a diameter of a predetermined size so that it still slides freely while fitting it to the minimum wall space inside the cylinder 34. The shaft 38 is machined from a lexan rod or equivalent material and has an outer diameter of about 2.22 cm and an inner diameter of about 0.64 cm.
샤프트 상부 말단 (42)은 길이가 대략 2.54 cm이고 직경이 대략 1.58 cm이 며, 이에 의해 환상 슬더 (47)를 형성하여 중량 (48)을 지지한다. 환상 중량 (48)은 내부 직경이 약 1.59 cm이어서, 샤프트 (38)의 상부 말단 (42)으로 미끄러지고 그 위에 형성된 환상 숄더 (47) 위에 존재한다. 환상 증량 (48)은 스테인레스 강으로 제조되거나, 증류수 중의 0.9 중량 % 염화나트륨인 시험 용액의 존재하에 내부식 성인 다론 적합한 재료로 제조될 수 있다. 피스톤 (36) 및 환상 중량 (48)의 합한 중량은 대략 596 g에 상당하고, 이는 흡수성 구조물 샘플 (68)에 적용된 압력이 약 28.27 cm2의 샘플 면적에 대해 약 0.3 ps i 또는 약 20.7 g/cm2인 것에 상웅한 다. The shaft upper end 42 is approximately 2.54 cm in length and approximately 1.58 cm in diameter. As a result, the annular slad 47 is formed to support the weight 48. The annular weight 48 is about 1.59 cm in internal diameter, so that it slips over the upper end 42 of the shaft 38 and is present on the annular shoulder 47 formed thereon. The annular extender 48 may be made of stainless steel or made of a corrosion resistant adult suitable material in the presence of a test solution that is 0.9 wt% sodium chloride in distilled water. The combined weight of the piston 36 and the annular weight 48 corresponds to approximately 596 g, which means that the pressure applied to the absorbent structure sample 68 is about 0.3 ps i or about 20.7 g / for a sample area of about 28.27 cm 2 . It is said to be cm 2 .
시험 용액올 하기 기재된 시험 동안 시험 장치에 유동시키는 경우, 샘플 용기 (30)는 일반적으로 16 메쉬 강성 스테인레스 강 지지체 스크린 (도시되지 않 음) 위에 체류한다: 또는, 샘플 용기 (30)는, 지지체 환이 용기 하부로부터의 유 동을 제한하지 않도록, 원통 (34)과 실질적으로 동일한 직경 크기를 갖는 지지체 환 (도시되지 않음) 위에 체류한다.  When the test solution is flowed into the test apparatus during the test described below, the sample vessel 30 generally remains on a 16 mesh rigid stainless steel support screen (not shown): or the sample vessel 30 In order not to limit the flow from the bottom of the vessel, it rests on a support ring (not shown) having a diameter size substantially the same as the cylinder 34.
"자유 팽윤" 조건하에 겔 베드 투과율 시험을 수행하기 위해, 중량 (48)이 상부에 배치된 피스톤 (36)을 중공 샘플 용기 (30)에 배치하고, 중량 (48)의 하부로 부터 원통 (34)의 상부까지의 높이를 0.01 謹까지 적합한 계측 정확도를 갖는 캘 리퍼로 측정한다. 다중 시험 장치를 사용하는 경우, 각 샘플 용기 (30)의 중공 높 이를 측정하고 피스톤 (36) 및 중량 (48)이 사용된 트랙을 유지하는 것이 중요하다. 동일한 피스톤 (36) 및 증량 (48)은, 고흡수성 중합체 샘플 (68)이 포화 후에 수 팽 윤될 때의 측정에 사용되어야 한다. 시험되는 샘플은 고흡수성 재료 입자로부터 제조되며, 이는 US 표준 30메 쉬 스크린을 통해 예비 스크리닝되고 US 표준 50 메쉬 스크린 위에 유지된다. 따 라서, 시험 샘폴은 약 300 내지 약 600 크기 범위의 입자를 포함한다. 입자는 수동으로 또는 자동으로 예비 스크리닝할 수 있다. 샘플 약 2.0 g을 샘플 용기 (30)에 넣은 다음, 피스톤 (36) 및 중량 (48)의 부재하에 용기를 약 60 분의 기간 동안 시험 용액에 침지하여 샘플을 포화시키고 샘플을 제한 하중 없이 팽윤시킨 다. To perform the gel bed permeability test under “free swelling” conditions, a piston 36 with a weight 48 disposed thereon is placed in the hollow sample vessel 30 and a cylinder 34 from the bottom of the weight 48. The height up to the top of the c) is measured with a caliper with suitable measurement accuracy up to 0.01 mm. When using multiple test apparatus, it is important to measure the hollow height of each sample vessel 30 and to keep track of which piston 36 and weight 48 have been used. The same piston 36 and extension 48 should be used for the measurement when the superabsorbent polymer sample 68 is water swelled after saturation. The sample tested is made from superabsorbent material particles, which are prescreened through a US standard 30 mesh screen and held on a US standard 50 mesh screen. Thus, the test sample contains particles in the size range of about 300 to about 600. The particles can be prescreened manually or automatically. About 2.0 g of sample was placed in sample vessel 30, and then in the absence of piston 36 and weight 48, the vessel was immersed in the test solution for a period of about 60 minutes to saturate the sample and swell the sample without limiting load. All.
이 기간 말기에, 피스톤 (36) 및 중량 (48)을 샘플 용기 (30) 증의 포화 샘 풀 (68) 위에 배치한 다음, 샘플 용기 (30) , 피스톤 (36), 중량 (48) 및 샘플 (68)을 용액으로부터 제거한다. 포화 샘풀 (68)의 두께는, 앞서 사용한 동일한 클리퍼 또 는 계측기 (단, 영점은 초기 높이 측정치로부터 변하지 않음)를 사용하여, 중량 (48)의 하부로부터 원통 (34)의 상부까지 높이를 다시 축정함으로써 결정된다. 중 공 샘플 용기 (30), 피스톤 (36) 및 높이 (48)의 측정으로 수득한 높이 측정치를 샘 플 (48)의 포화 후에 수득한 높이 측정치로부터 뺀다. 수득되는 값은 두께 또는 팽윤 샘플의 높이 ( "H" )이다.  At the end of this period, the piston 36 and weight 48 are placed over the saturated sample pool 68 of the sample vessel 30 and then the sample vessel 30, the piston 36, the weight 48 and the sample. (68) is removed from the solution. The thickness of the saturating sample 68 is re-established from the bottom of the weight 48 to the top of the cylinder 34, using the same clipper or meter (where the zero does not change from the initial height measurement) used previously. Is determined by. The height measurement obtained by the measurement of the hollow sample vessel 30, the piston 36 and the height 48 is subtracted from the height measurement obtained after saturation of the sample 48. The value obtained is the thickness or height ("H") of the swelling sample.
투과율 측정은 시험 용액의 유동을 포화 샘플 (68), 피스톤 (36) 및 중량 (48)이 내부에 구비된 샘플 용기 (30)에 전달함으로써 개시한다. 시험 용액의 용 기로의 유동 속도를 조절하여 샘플 용기의 하부 위에 약 7.8 cm의 유체 높이를 유지한다. 샘플 (68)을 통과하는 용액의 양 대 시간을 중량 측정으로 측정한다. 데이타 포인트는, 유체 수준이 약 7.8 cm 높이에서 안정화되어 유지되는 경우, 20 초 이상 동안 매초 수집한다. 팽윤 샘풀 (68)을 통한 유동 속도 (Q)는, 샘플 (68)을 통과하는 유체 (g) 대 시간 (초)의 선형 최소 제곱 근사값에 의해 g/s 단위 로 측정한다. Permeability measurements are initiated by delivering a flow of test solution to a sample vessel 30 having a saturated sample 68, a piston 36, and a weight 48 therein. Adjust the flow rate of the test solution to the vessel to maintain a fluid height of about 7.8 cm above the bottom of the sample vessel. The amount versus time of solution passing through sample 68 is determined gravimetrically. The data point is maintained when the fluid level is stabilized at a height of about 7.8 cm Collect every second for more than 20 seconds. The flow rate (Q) through the swelling sample (68) is measured in g / s by a linear least squares approximation of fluid (g) versus time (seconds) through the sample 68.
투과율 (다르시 )은 다음 계산식 3에 따라 산측된다.  The transmittance (darsi) is calculated according to the following equation (3).
[계산식 3]  [Calculation 3]
K = [Q xH xMu] / [AxRho xP]  K = [Q x H xMu] / [AxRho xP]
상기 계산식 3에서 , K는 투과율 (cm2)이고, Q는 유동 속도 (g/속도)이며, H 는 샘플의 높이 (cm)이고, Mu는 액체 점도 (poi se) (시험에 사용된 시험 용액에 있 어서 대략 1 cps)이며, A는 액체 유동에 대한 단면적 (cm2)이고, Rho는 액체 밀도 (g/cm3) (당해 시험에 사용된 시험 용액에 대해)이며, P는 정수압 (dynes/cm2) (통 상적으로 약 3 , 923 dynes/cm2)이다. 정수압은 다음 계산식 4로부터 계산된다. In Equation 3, K is the transmittance (cm 2), Q is the flow rate (g / speed), H is the height of the sample (cm), and Mu is the liquid viscosity (poi se) (the test solution used in the test Approximately 1 cps), A is the cross-sectional area for liquid flow (cm 2 ), Rho is the liquid density (g / cm 3 ) (for the test solution used in the test), and P is hydrostatic pressure (dynes / cm 2 ) (typically about 3, 923 dynes / cm 2 ). The hydrostatic pressure is calculated from the following equation (4).
[계산식 4]  [Calculation 4]
P = Rho X g xh  P = Rho X g xh
상기 계산식 4에서, Rho는 액체 밀도 (g/cm3)이고, g는 중량 가속도, 통상 적으로 981 cm/sec2이며, h는 유체 높이 (예를 들면, 본원에 기재된 투과율 시험 의 경우 7.8 cm)이다. 하중하의 겔 베드투과율시험 In Equation 4, Rho is the liquid density (g / cm 3 ), g is the weight acceleration, typically 981 cm / sec 2 , h is the fluid height (eg 7.8 cm for the permeability test described herein). )to be. Gel bed transmittance test under load
하중하의 겔 베드 투과을 시험 (또는, 0.3 ps i에서의 GBP로서 표시함)은, 통상적으로 "하증하" 조건인 것으로 언급되는 조건하에, 겔 입자 (예를 들면, 본 원에 사용된 바와 같은 고흡수성 재료 또는 흡수성 재료)의 팽윤 베드의 투과율 을 측정하는 것이다. 용어 "하중하"는 입자의 팽윤이, 착용자에 의해 입자에 적 용되는 통상의 사용 하중 (예: 앉기, 걷기, 구부리기 등)과 통상 일치하는 하증에 의해 제한되는 것올.의미한다ᅳ Testing gel bed permeation under load (or denoted as GBP at 0.3 ps i) is typically performed by gel particles (eg, The transmittance of the swelling bed of the superabsorbent material or absorbent material as used in the circle is measured. The term "loading" means that the swelling of the particles is limited by the loading that normally matches the normal working load (eg, sitting, walking, bending, etc.) applied to the particles by the wearer.
보다 구체적으로, 하중하의 겔 베드 투과을 시험은 다음을 제외하고는 앞 에 기재한 자유 팽윤 겔 베드 투과율 시험과 실질적으로 동일하다. 샘플 약 2.0g 을 샘플 용기 (30)에 넣고, 샘풀 용기의 하부에 균일하게 분산시키고, 피스톤 (36) 및 중량 (48)을 샘플 용기 내부의 샘플 위에 놓은 다음, 샘플 용기 (내부에 피스톤 및 중량 구비)를 시험 용액 (0.9중량 % NaCl 염수)에 약 60분의 시간 동안 침지시 킨다. 그 결과, 샘플이 포화 및 팽윤됨에 따라 0.3 psi 제한 하중이 샘플에 적용 된다.  More specifically, the gel bed permeation test under load is substantially the same as the free swelled gel bed permeability test described previously, except for the following. About 2.0 g of sample is placed in the sample vessel 30, uniformly dispersed in the bottom of the sample vessel, the piston 36 and the weight 48 are placed on the sample inside the sample vessel, and then the sample vessel (the piston and weight inside Submerged) in a test solution (0.9 wt% NaCl saline) for about 60 minutes. As a result, a 0.3 psi limit load is applied to the sample as the sample saturates and swells.
(5) 가압흡수속도 (5) Pressurized absorption speed
실시예 1-5 및 비교예 1-5 의 고흡수성 수지에 대하여, 다음과 같은 방법 으로 가압 흡수 속도 (Str ike thru t ime under load, swel l ing rate of SAP under load)를 측정하였다.  For the superabsorbent polymers of Examples 1-5 and Comparative Examples 1-5, the pressure absorption rate (Strike thru timeime under load, the welding rate of SAP under load) was measured by the following method.
먼저, 도 1에 나타낸 바와 같이 실린더 (cyl inder , w/o-r ing: Mesh #400) 및 플런져 (plunger , Mesh #100) , 웨이트 (weight , 0.3 psi )가 구비된 장치를 사용 하였으며, 테스트에 사용된 시험장치는 도 3 에 나타낸 자유팽윤 겔 베드 투과율 (GBP) 시험장비를 이용하였다. 이 때 사용한 상기 웨이트는 2.07 kPa(0.3 psi )의 하중을 균일하게 더 부여할 수 있도록 외 원통의 내벽과 름이 없고, 상하의 움 직임이 방해 받지 않게 하였다. 또한, 상기 장치의 실린더 하단에 거름종이 (What man paper 4)를 깔고, 상기 고흡수성 수지를 2 g 정량하여 고르게 펴주었다. 이 후에, 플런져 (p lunger )를 올리고, 0.3 psi의 하중 (weight , load)를 가한 뒤 플런 져의 구멍 (plunger ho le)으로 22 'C로 설정된 0.9% 소금물 (sal ine solut ion) 10 mL를 붓고, 플런져의 구멍으로 보이는 소금물이 완전히 사라지는 시간을 측정하 였다ᅳ 이를 각각 1차, 2차, 3차로 매회 10 mL씩 5분 간격으로 3회에 걸쳐 반 복 실시하고, 각각의 흡수 속도로 소금물이 사라지는 시간 (초, sec)을 측정하였 다. First, as shown in FIG. 1, a cylinder (cyl inder, w / oring: Mesh # 400), a plunger (plunger, Mesh # 100), and a weight (weight, 0.3 psi) were used. The test apparatus used was a free swelled gel bed permeability (GBP) test equipment shown in FIG. The weight used was 2.07 kPa (0.3 psi) In order to give more load evenly, there is no inner wall of the outer cylinder and the movement of the upper and lower sides is not disturbed. In addition, the mandarin paper (What man paper 4) was laid on the bottom of the cylinder of the device, the superabsorbent resin was weighed and evenly spread by 2 g. Subsequently, raise the plunger (p lunger), apply a 0.3 psi weight (load, load), and then 10 mL of 0.9% salt ine solut ion set to 22 ' C in the plunger ho le. Pour the water, and measure the time that the brine seen through the hole of the plunger disappears completely. Repeat this three times at 5 minute intervals, 10 mL each for the 1st, 2nd, and 3rd times, respectively. We measured the time (in seconds, sec) that the brine disappeared.
【표 3】 Table 3
Figure imgf000047_0001
상기 표 3 에 나타낸 바와 같이, 본 발명에 따른 실시예 1-5 의 고흡수성 수지는 비교예 1-5 에 비하여 향상된 통액성, 보수능 및 가압 흡수능을 나타내면서도, 가압 하에서 빠른 흡수 특성을 통액성 및 우수한 흡수성을 나타내며, 초박형 기술이 적용된 기저귀 등을 생산할 수 있다.
Figure imgf000047_0001
As shown in Table 3, the superabsorbent polymer of Example 1-5 according to the present invention exhibits improved fluid permeability, water retention, and pressure absorption ability as compared to Comparative Example 1-5, and has quick absorption characteristics under pressure. And excellent absorbency, and can produce diapers and the like to which ultra-thin technology is applied.

Claims

【특허청구범위】 [Patent Claims]
【청구항 1】  [Claim 1]
산성기를 포함하고 적어도 일부가 중화된 수용성 에틸렌계 불포화 단량체 를 2 종 이상의 내부 가교제로 중합시킨 분말 형태의 베이스 수지를, 탄소수 2 내지 8의 디올 또는 글리콜계 화합물로 표면 가교시킨 가교 중합체를 포함하고, 원심분리 보수능 (CRC)이 28 g/g 이상이고, 0.9 ps i의 가압 흡수능 (AUL)이 18 g/g 이상이고, 겔 베드 투과율 (GBP)이 45 darcy 이상이며, 0.9 중량 ¾> 생리식 염수에 대한 3 차 주입시 0.3 ps i의 가압 흡수 속도가 30 내지 200 초인 고흡수 성 수지 .  A base resin in the form of a powder obtained by polymerizing a water-soluble ethylenically unsaturated monomer including an acidic group and at least partially neutralized with two or more internal crosslinking agents, and a crosslinked polymer obtained by surface crosslinking with a diol or a glycol compound having 2 to 8 carbon atoms, More than 28 g / g centrifugal water retention (CRC), more than 0.9 gs g of pressure-absorbing capacity (AUL) of 18 g / g, gel bed permeability (GBP) of 45 darcy or greater, 0.9 weight ¾> Superabsorbent resin with a pressurized absorption rate of 0.3 ps i of 30 to 200 seconds in the third injection into brine.
【청구항 2】  [Claim 2]
제 1항에 있어서,  The method of claim 1,
상기 0 .3 ps i의 가압 흡수 속도는, 0.3 ps i의 가압 조건 하에서 0.9 중 량% 생리식염수 5 내지 70 mL를 1분 내지 20분 간격으로 3회 이상 주입하였을 때, 3 차 주입시 상기 생리식염수에 대한 흡수 속도를 측정한 것인 고흡수성 수 지 .  The pressure absorption rate of the 0.3 ps i, the physiological at the third injection when 0.95% by weight of 5 to 70 mL of 0.9% by weight saline solution at intervals of 1 to 20 minutes Superabsorbent resin, measured by the rate of absorption in saline.
【청구항 3】  [Claim 3]
제 1항에 있어서,  The method of claim 1,
상기 수용성 에틸렌계 불포화 단량체는 아크릴산, 메타아크릴산, 무수말 레인산, 푸말산, 크로톤산, 이타콘산, 2-아크릴로일에탄 술폰산, 2ᅳ메타아크릴로 일에탄술폰산, 2- (메타)아크릴로일프로판술폰산, 또는 2- (메타)아크릴아미드 -2- 메틸 프로판 술폰산의 음이온성 단량체와 이의 염; (메타)아크릴아미드, N-치환 (메타)아크릴레이트, 2-히드록시에틸 (메타)아크릴레이트, 2-히드록시프로필 (메 타)아크릴레이트, 메톡시폴리에틸렌글리콜 (메타)아크릴레이트 또는 폴리에틸렌 글리콜 (메타)아크릴레이트의 비이온계 친수성 함유 단량체; 및 (Ν , Ν)-디메틸아미 노에틸 (메타)아크릴레이트 또는 (Ν , Ν)-디메틸아미노프로필 (메타)아크릴아미드의 아미노기 함유 불포화 단량체와 그의 4 급화물;로 이루어진 군에서 선택된 1 종 이상을 포함하는 고흡수성 수지. The water-soluble ethylenically unsaturated monomers are acrylic acid, methacrylic acid, maleic anhydride, fumaric acid, crotonic acid, itaconic acid, 2-acryloylethane sulfonic acid, 2'methacryloyl ethanesulfonic acid, 2- (meth) acrylo Anionic monomers of monopropanesulfonic acid or 2- (meth) acrylamide-2-methyl propane sulfonic acid and salts thereof; (Meth) acrylamide, N-substituted Nonionics of (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, methoxypolyethylene glycol (meth) acrylate or polyethylene glycol (meth) acrylate Hydrophilic containing monomers; And amino group-containing unsaturated monomers of (Ν, Ν) -dimethylaminoethyl (meth) acrylate or (Ν, Ν) -dimethylaminopropyl (meth) acrylamide and their quaternized compounds; at least one member selected from the group consisting of Super absorbent resin comprising a.
【청구항 4】  [Claim 4]
제' 1항에 있어서,  According to claim 1,
상기 2 종 이상의 내부 가교제는 각각 경화량 ( cure dose)이 0. 16 내지 0. 35 J/cui' 인 고흡수성 수지 .  The two or more internal crosslinking agents each have a cure dose of from 0.16 to 0.35 J / cui '.
【청구항 5]  [Claim 5]
제 4항에 있어서,  The method of claim 4,
상기 2 종 이상의 내부 가교제는 각각 복수의 에틸렌 옥사이드기를 갖는 다관능 아크릴레이트계 화합물로 이루어진 군에서 선택되는 고흡수성 수지.  The two or more internal crosslinking agent is a super absorbent polymer selected from the group consisting of polyfunctional acrylate compounds each having a plurality of ethylene oxide groups.
【청.구항 6】  [Q. Port 6]
제 5항에 있어서,  The method of claim 5,
상기 복수의 알킬렌 옥사이드기를 갖는 다관능 아크릴레이트계 화합물은 폴리에틸렌글리콜 디아크릴레이트 Uyethyl enegl yco l di acryl ate PEGDA) , 에특실 레이티드 트리메틸올프로판 트리아크릴레이트 (Ethoxyl ated-TMPTA) , 핵산디을디아 크릴레이트, 및 트리에틸렌글리콜 디아크릴레이트로 이루어진 군에서 선택되는 것인 고흡수성 수지 . The polyfunctional acrylate compound having a plurality of alkylene oxide groups is polyethylene glycol diacrylate Uyethyl enegl y acyl di acrylate PEGDA), ethoxylated trimethylolpropane triacrylate (Ethoxyl ated-TMPTA), nucleic acid didiadia Selected from the group consisting of acrylate and triethylene glycol diacrylate Superabsorbent polymer.
【청구항 7】  [Claim 7]
제 1항에 있어서,  The method of claim 1,
상기 원심분리 보수능 (CRC)는 하기 계산식 1 에 따라 표시되는 것인 고흡 수성 수지 :  The centrifugal water retention capacity (CRC) is a super absorbent polymer represented by the following formula 1:
[계산식 1]  [Calculation 1]
CRC(g/g) = { [W2(g) - WM l /WoCg) ) - 1 CRC (g / g) = {(W 2 (g)-WM l / WoCg))-1
상기 계산식 1에서,  In the above formula 1,
W0(g)는 흡수성 수지의 무게 (g)이고, W 0 (g) is the weight of the absorbent resin (g) ,
Kg)는 흡수성 수지를 사용하지 않고, 원심분리기를 사용하여 250G로 3 분간 탈수한 후에 측정한 장치 무게이고,  Kg) is the device weight measured after dehydration at 250G for 3 minutes using a centrifuge, without using a water absorbent resin,
W2(g)는 상온에 0.9 질량 %의 생리식염수에 흡수성 수지를 30분 동안 침수 한 후에, 원심분리기를 사용하여 250G로 3 분간 탈수한 후에 흡수성 수지를 포함 하여 측정한 장치 무게임. W 2 (g) is the device weight measured after absorbing the water absorbent resin in 0.9 mass% physiological saline at room temperature for 30 minutes, followed by dehydration at 250 G for 3 minutes using a centrifuge.
【청구항 8】  [Claim 8]
제 1항에 있어서,  The method of claim 1,
상기 0.9 psi의 가압 흡수능 (AUU는 하기 계산식 2로 표시되는 것인 고흡 수성 수지 :  Pressurized absorbent capacity of 0.9 psi (AUU is a super absorbent polymer represented by the following formula 2:
[계산식 2]  [Calculation 2]
AUL(g/g) = [W4(g) - W3(g)]/ W0(g) 상기 계산식 2에서 , AUL (g / g) = [W 4 (g)-W 3 (g)] / W 0 (g) In the formula 2,
W0(g)는 흡수성 수지의 무게 (g)이고,. W 0 (g) is the weight (g) of the absorbent resin.
W3(g)는 흡수성 수지의 무게 및 상기 흡수성 수지에 하중을 부여할 수 있 는 장치 무게의 총합이고, W 3 (g) is the sum of the weight of the absorbent resin and the weight of the device capable of applying a load to the absorbent resin,
W4(g)는 하중 (0.9 ps i ) 하에 1 시간 동안 상기 흡수성 수지에 수분을 공급 한 후의 수분이 흡수된 흡수성 수지의 무게 및 상기 흡수성 수지에 하중을 부여 할 수 있는 장치 무게의 총합임 . W 4 (g) is the sum of the weight of the absorbed water absorbed resin after supplying the absorbent resin with water for one hour under a load (0.9 ps i) and the weight of the device capable of applying a load to the absorbent resin.
【청구항 9】  [Claim 9]
산성기를 포함하고 적어도 일부가 중화된 수용성 에틸렌계 불포화 단량체, 경화량 (cure dose)이 0. 16 내지 0.35 J/cuf인 2 종 이상의 내부 가교제, 광중합 개시제, 및 열중합 개시제를 포함하는 단량체 조성물에 열중합 및 광중합을 진행 하여 함수겔상 중합체를 형성하는 단계;  A monomer composition comprising an acidic group and at least partially neutralized with a water-soluble ethylenically unsaturated monomer, two or more internal crosslinking agents having a cure dose of 0.1 to 0.35 J / cuf, a photopolymerization initiator, and a thermal polymerization initiator. Thermal polymerization and photopolymerization to form a hydrogel polymer;
상기 함수겔상 중합체를 건조하는 단계; 상기 건조된 중합체를 분쇄하는 단계; 및  Drying the hydrogel polymer; Pulverizing the dried polymer; And
상기 분쇄된 중합체에 하기 화학식 1로 표시되는 화합물 및 다가의 금속 양이온을 첨가하여 표면 가교 반응을 수행하는 단계;  Performing a surface crosslinking reaction by adding a compound represented by Chemical Formula 1 and a polyvalent metal cation to the pulverized polymer;
를 포함하는 고흡수성 수지의 제조 방법.  Method for producing a super absorbent polymer comprising a.
[화학식 1] [Formula 1]
Figure imgf000052_0001
Figure imgf000052_0001
상기 화학식 1에서, Ri 및 ¾는 동일하거나 상이하며 각각 독립적으로 히드록시기, 아민기, 에폭사이드기 또는 이소시아네이트기이고; In Chemical Formula 1, Ri and ¾ are the same or different and each independently represent a hydroxyl group, an amine group, an epoxide group or an isocyanate group;
n은 1 내지 3의 정수임 .  n is an integer from 1 to 3.
【청구항 10]  [Claim 10]
제 9항에 있어서 ,  The method of claim 9,
상기 내부 가교제는 단량체 조성물에 대하여 0.05 내지 3 증량 %로 포함되 는 고흡수성 수지의 제조 방법 .  The internal crosslinking agent is a method for producing a super absorbent polymer, which is contained in an amount of 0.05 to 3% by weight based on the monomer composition.
【청구항 11】  [Claim 11]
제 9항에 있어서,  The method of claim 9,
상기 2 종 이상의 내부 가교제는 각각 복수의 에틸렌 옥사이드기를 갖는 다관능 아크릴레이트계 화합물로 이루어진 군에서 선택되는 고흡수성 수지의 제 조 방법ᅳ  The method for producing a super absorbent polymer, wherein the two or more internal crosslinking agents are selected from the group consisting of polyfunctional acrylate compounds each having a plurality of ethylene oxide groups.
【청구항 12]  [Claim 12]
제 11항에 있어서,  The method of claim 11,
상기. 복수의 알킬렌 옥사이드기를 갖는 다관능 아크릴레이트계 화합물은 폴리에틸렌글리콜 디아크릴레이트 Oyethyleneglycol di acrylate PEGDA) , 에톡실 레이티드 트리메틸을프로판 트리아크릴레이트 (Ethoxylated-TMPTA) , 헥산디을디아 크릴레이트, 및 트리에틸렌글리콜 디아크릴레이트로 이루어진 군에서 선택되는 것인 고흡수성 수지의 제조 방법 .  remind. Polyfunctional acrylate compounds having a plurality of alkylene oxide groups include polyethylene glycol diacrylate Oyethyleneglycol di acrylate PEGDA, ethoxylated trimethyl, propane triacrylate, hexanedidiadia acrylate, and triethylene. A method for producing a super absorbent polymer, which is selected from the group consisting of glycol diacrylates.
【청구항 13】 제 9항에 있어서 , [Claim 13] The method of claim 9,
상기 광중합 개시제는 단량체 조성물에 대하여 40 내지 200 ppm으로 포함 되는 고흡수성 수지의 제조 방법.  The photopolymerization initiator is a method for producing a super absorbent polymer is contained in 40 to 200 ppm relative to the monomer composition.
【청구항 14]  [Claim 14]
제 9항에 있어서 ,  The method of claim 9,
상기 열중합 개시제는 단량체 조성물에 대하여 0.05 내지 0.3 증량 %로 포 함되는 고흡수성 수지의 제조 방법 .  The thermal polymerization initiator is a method for producing a super absorbent polymer containing from 0.05 to 0.3% by weight relative to the monomer composition.
【청구항 15]  [Claim 15]
제 9항에 있어서,  The method of claim 9,
상기 열중합 개시제는 황을 포함하는 과황산염 화합물인 고흡수성 수지의 제조 방법ᅳ  The thermal polymerization initiator is a persulfate compound containing sulfur, a method for producing a super absorbent polymer
【청구항 16】  [Claim 16]
제 9항에 있어서  The method of claim 9
상기 산성기를 포함하고 적어도 일부가 중화된 수용성 에틸렌계 불포화 단량체는 산성기에 대한 중화도가 50 mol% 이상인 고흡수성 수지의 제조 방법 . 【청구항 17】  A water-soluble ethylenically unsaturated monomer containing the acidic group and at least partially neutralized has a neutralization degree of 50 mol% or more with respect to the acidic group. [Claim 17]
제 9항에 있어서,  The method of claim 9,
상기 표면 가교 반웅은 다공성 무기 물질올 추가로 첨가하여 수행하는 고 흡수성 수지의 제조 방법 .  The surface cross-linking reaction is carried out by the addition of a porous inorganic material in addition to a method for producing a super absorbent polymer.
PCT/KR2014/007068 2013-08-01 2014-07-31 Super absorbent polymer WO2015016643A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201480041041.3A CN105392805B (en) 2013-08-01 2014-07-31 Super absorbent polymer
US14/904,155 US9950308B2 (en) 2013-08-01 2014-07-31 Superabsorbent polymer

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2013-0091627 2013-08-01
KR20130091627 2013-08-01
KR10-2014-0098044 2014-07-31
KR1020140098044A KR20150016126A (en) 2013-08-01 2014-07-31 Super absorbent polymer

Publications (1)

Publication Number Publication Date
WO2015016643A1 true WO2015016643A1 (en) 2015-02-05

Family

ID=52432094

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/007068 WO2015016643A1 (en) 2013-08-01 2014-07-31 Super absorbent polymer

Country Status (1)

Country Link
WO (1) WO2015016643A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111819230A (en) * 2018-12-10 2020-10-23 株式会社Lg化学 Method for preparing super absorbent polymer
US12006405B2 (en) * 2016-06-01 2024-06-11 Lg Chem, Ltd. Super absorbent polymer and method for producing same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060023116A (en) * 2003-04-25 2006-03-13 스톡하우젠, 인코포레이티드 Superabsorbent polymer with high permeability
KR20090123904A (en) * 2007-03-23 2009-12-02 킴벌리-클라크 월드와이드, 인크. Absorbent articles comprising high permeability superabsorbent polymer compositions
KR20110049072A (en) * 2009-11-04 2011-05-12 주식회사 엘지화학 Preparation method for water absorbent resin with high productivity
KR20110092236A (en) * 2010-02-08 2011-08-17 주식회사 엘지화학 Water absorbent resin with surface modified by cationic polymeric compound
KR20110134333A (en) * 2010-06-08 2011-12-14 주식회사 엘지화학 Process for preparing water absorbent resin with high performance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20060023116A (en) * 2003-04-25 2006-03-13 스톡하우젠, 인코포레이티드 Superabsorbent polymer with high permeability
KR20090123904A (en) * 2007-03-23 2009-12-02 킴벌리-클라크 월드와이드, 인크. Absorbent articles comprising high permeability superabsorbent polymer compositions
KR20110049072A (en) * 2009-11-04 2011-05-12 주식회사 엘지화학 Preparation method for water absorbent resin with high productivity
KR20110092236A (en) * 2010-02-08 2011-08-17 주식회사 엘지화학 Water absorbent resin with surface modified by cationic polymeric compound
KR20110134333A (en) * 2010-06-08 2011-12-14 주식회사 엘지화학 Process for preparing water absorbent resin with high performance

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12006405B2 (en) * 2016-06-01 2024-06-11 Lg Chem, Ltd. Super absorbent polymer and method for producing same
CN111819230A (en) * 2018-12-10 2020-10-23 株式会社Lg化学 Method for preparing super absorbent polymer
CN111819230B (en) * 2018-12-10 2022-08-02 株式会社Lg化学 Method for preparing super absorbent polymer
US11918978B2 (en) 2018-12-10 2024-03-05 Lg Chem, Ltd. Method of preparing superabsorbent polymer

Similar Documents

Publication Publication Date Title
US11618805B2 (en) Method for preparing superabsorbent polymer, and superabsorbent polymer prepared thereby
EP3249001B1 (en) Super absorbent resin
US9950308B2 (en) Superabsorbent polymer
US11654416B2 (en) Method for preparing super-absorbent polymer
US11325101B2 (en) Super absorbent polymer and method for preparing the same
JP6443998B2 (en) Super absorbent polymer
KR102011926B1 (en) Super absorbent polymer and preparation method thereof
KR101943031B1 (en) Super absorbent polymer and method for preparation thereof
US20210046449A1 (en) Super Absorbent Polymer and Method for Producing Same
WO2018110760A1 (en) Superabsorbent polymer and manufacturing method therefor
EP3342802B1 (en) Superabsorbent polymer and preparation method therefor
WO2015016643A1 (en) Super absorbent polymer
WO2016104962A1 (en) Superabsorbent polymer and preparation method therefor
WO2016117842A1 (en) Super-absorbent polymer and method for preparing same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480041041.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14831550

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14904155

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14831550

Country of ref document: EP

Kind code of ref document: A1