WO2015016302A1 - Brake system - Google Patents

Brake system Download PDF

Info

Publication number
WO2015016302A1
WO2015016302A1 PCT/JP2014/070195 JP2014070195W WO2015016302A1 WO 2015016302 A1 WO2015016302 A1 WO 2015016302A1 JP 2014070195 W JP2014070195 W JP 2014070195W WO 2015016302 A1 WO2015016302 A1 WO 2015016302A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing
pump
axis
brake device
oil passage
Prior art date
Application number
PCT/JP2014/070195
Other languages
French (fr)
Japanese (ja)
Inventor
利季 伊倉
亮平 丸尾
千春 中澤
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Publication of WO2015016302A1 publication Critical patent/WO2015016302A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/40Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition comprising an additional fluid circuit including fluid pressurising means for modifying the pressure of the braking fluid, e.g. including wheel driven pumps for detecting a speed condition, or pumps which are controlled by means independent of the braking system
    • B60T8/4072Systems in which a driver input signal is used as a control signal for the additional fluid circuit which is normally used for braking
    • B60T8/4081Systems with stroke simulating devices for driver input
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/36Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition including a pilot valve responding to an electromagnetic force
    • B60T8/3615Electromagnetic valves specially adapted for anti-lock brake and traction control systems
    • B60T8/3675Electromagnetic valves specially adapted for anti-lock brake and traction control systems integrated in modulator units
    • B60T8/368Electromagnetic valves specially adapted for anti-lock brake and traction control systems integrated in modulator units combined with other mechanical components, e.g. pump units, master cylinders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60TVEHICLE BRAKE CONTROL SYSTEMS OR PARTS THEREOF; BRAKE CONTROL SYSTEMS OR PARTS THEREOF, IN GENERAL; ARRANGEMENT OF BRAKING ELEMENTS ON VEHICLES IN GENERAL; PORTABLE DEVICES FOR PREVENTING UNWANTED MOVEMENT OF VEHICLES; VEHICLE MODIFICATIONS TO FACILITATE COOLING OF BRAKES
    • B60T8/00Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force
    • B60T8/32Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration
    • B60T8/34Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition
    • B60T8/36Arrangements for adjusting wheel-braking force to meet varying vehicular or ground-surface conditions, e.g. limiting or varying distribution of braking force responsive to a speed condition, e.g. acceleration or deceleration having a fluid pressure regulator responsive to a speed condition including a pilot valve responding to an electromagnetic force
    • B60T8/3615Electromagnetic valves specially adapted for anti-lock brake and traction control systems
    • B60T8/3675Electromagnetic valves specially adapted for anti-lock brake and traction control systems integrated in modulator units
    • B60T8/368Electromagnetic valves specially adapted for anti-lock brake and traction control systems integrated in modulator units combined with other mechanical components, e.g. pump units, master cylinders
    • B60T8/3685Electromagnetic valves specially adapted for anti-lock brake and traction control systems integrated in modulator units combined with other mechanical components, e.g. pump units, master cylinders characterised by the mounting of the modulator unit onto the vehicle

Definitions

  • the present invention relates to a brake device.
  • a brake device for a vehicle is known.
  • a pump is built in a housing, and an oil passage through which brake fluid flows is formed inside the housing.
  • An object of the present invention is to provide a brake device capable of simplifying an oil passage.
  • the pump is attached from the outside to the housing in which the oil passage is formed.
  • FIG. 1 It is a schematic diagram of the brake system of Example 1, and shows the circuit structure of the cross section of the master cylinder unit 1a, and the oil path of the brake device 1b. It is a perspective view of the brake device 1b of Example 1.
  • FIG. It is a top view of the brake device 1b of Example 1.
  • FIG. It is a perspective view of the brake device 1b of Example 1.
  • FIG. It is a side view of the brake device 1b of Example 1.
  • FIG. It is sectional drawing of the brake device 1b of Example 1.
  • FIG. 1 is a perspective view of a housing 10 of Example 1.
  • FIG. FIG. 12 is a perspective view of the housing 10 of FIG. 11.
  • 1 is a perspective view of a housing 10 of Example 1.
  • FIG. FIG. 14 is a perspective view of the housing 10 of FIG. 13.
  • 1 is a perspective view of a housing 10 of Example 1.
  • FIG. 16 is a perspective view of the housing 10 of FIG. 15.
  • 1 is a perspective view of a housing 10 of Example 1.
  • FIG. FIG. 18 is a perspective view of the housing 10 of FIG. 17.
  • FIG. 3 is a rear view of the housing 10 according to the first embodiment.
  • FIG. FIG. 12 is a perspective view of the housing 10 of FIG. 11.
  • 1 is a perspective view of a housing 10 of Example 1.
  • FIG. 14 is a perspective view of the housing 10 of FIG. 13.
  • 1 is
  • FIG. 22 is a perspective view of the housing 10 of FIG. 21. 1 is a side view of a housing 10 of Example 1.
  • FIG. FIG. 24 is a perspective view of the housing 10 of FIG. 23. 1 is a side view of a housing 10 of Example 1.
  • FIG. FIG. 26 is a perspective view of the housing 10 of FIG. 25. 1 is a top view of a housing 10 of Example 1.
  • FIG. FIG. 28 is a perspective view of the housing 10 of FIG. 27. 3 is a bottom view of the housing 10 of Embodiment 1.
  • FIG. FIG. 30 is a perspective view of the housing 10 of FIG. 29. It is a perspective view of the brake device 1b of Example 2.
  • FIG. It is a top view of the brake device 1b of Example 2.
  • It is a perspective view of the brake device 1b of Example 2.
  • FIG. It is a side view of the brake device 1b of Example 2.
  • It is a front view of the brake device 1b of Example 2.
  • It is a rear view
  • FIG. 1 schematically shows a braking system (braking system) of this embodiment.
  • the brake system is a hydraulic system, and applies a brake hydraulic pressure to each wheel of the vehicle to generate a braking force.
  • a wheel cylinder (caliper) W / C provided on each wheel of the vehicle generates brake operating fluid pressure (wheel cylinder fluid pressure) in response to supply of braking operation fluid pressure or control fluid pressure.
  • the brake system includes a master cylinder unit 1a and a brake device 1b.
  • FIG. 1 shows a cross section of the master cylinder unit 1a.
  • the master cylinder unit 1a is an input device to which a driver's brake operation is input, and operates according to the driver's brake operation to generate a master cylinder fluid pressure as a brake operation fluid pressure.
  • the brake device 1b is an electric actuator that is provided separately from the master cylinder unit 1a and is capable of generating brake fluid pressure based on an electric signal corresponding to a driver's brake operation. In response, a control fluid pressure is generated.
  • FIG. 1 the circuit structure of the oil path of the brake device 1b is shown.
  • the brake system has two oil passages (primary P system and secondary S system).
  • members and structures provided corresponding to each system are distinguished by adding suffixes P and S to the end of the reference numerals.
  • a vehicle to which the brake system (brake device 1b) of the present embodiment is applied is, for example, a hybrid vehicle including an electric motor (generator) in addition to an engine (internal combustion engine) as a prime mover for driving wheels, or a motor (generator). ), An electric vehicle that can generate a regenerative braking force with an electric motor.
  • a hybrid vehicle including an electric motor (generator) in addition to an engine (internal combustion engine) as a prime mover for driving wheels, or a motor (generator).
  • An electric vehicle that can generate a regenerative braking force with an electric motor.
  • the master cylinder unit 1a is integrally provided with a push rod 4b, a reservoir tank 50, a master cylinder 5, a stroke simulator 6, and a stroke simulator valve 20.
  • the master cylinder unit 1a as the input device can be reduced in size while shortening the oil passage connecting the master cylinder 5 and the stroke simulator 6 and the like.
  • the brake device 1b can be reduced in size. That is, the entire brake system can be made compact.
  • the push rod 4b is connected to the brake pedal 4 via a link type booster 4a.
  • the X-axis is provided in the axial direction of the push rod 4b, and the master cylinder 5 side is the positive direction with respect to the link type booster 4a.
  • the brake pedal 4 is an input member (brake operation member) that receives an input of a driver's brake operation.
  • the brake pedal 4 is a so-called suspension type, and an upper end portion thereof is rotatably connected to the vehicle body.
  • the brake pedal 4 is provided with a pedal stroke sensor 90 that detects a movement amount (pedal stroke) of the brake pedal 4 in the rotation direction.
  • the link type booster 4a is a link type booster that amplifies the operating force of the brake pedal 4 by the driver and transmits it to the push rod 4b. That is, the brake system of the present embodiment is interposed between the brake pedal 4 and the master cylinder 5 as a booster (brake booster) for reducing the driver's brake operation force, and generates a vehicle engine. It does not have a type (master back) that operates using intake air pressure (negative pressure). Moreover, the booster which uses an electric motor etc. is not provided. Instead, the link type booster 4a that operates mechanically according to the operation of the brake pedal 4 exhibits a boosting function that boosts or amplifies the driver's brake operating force.
  • the link type booster 4a is a link mechanism that changes the change rate (lever ratio) of the axial movement amount (rod stroke) of the push rod 4b with respect to the pedal stroke.
  • the link type booster 4 a includes a first link 41 and a second link 42 as plate-like link members that are substantially orthogonal to the rotation axis of the brake pedal 4.
  • the first link 41 has a rod shape in a side view (viewed from the direction of the rotation axis of the brake pedal 4), one end side of the first link 41 is pivotally connected to the brake pedal 4, and the other end side is pivoted relative to the second link 42. Connected as possible.
  • the second link 42 has a substantially triangular shape in a side view, and an upper end of the second link 42 is swingably connected to the vehicle body.
  • One end side of the second link 42 is pivotally connected to the other end side of the first link 41, and the other end side of the second link 42 is pivotally connected to the clevis 43.
  • the push rod 4b operates in conjunction with the link type booster 4a (brake pedal 4), and transmits the operating force of the driver boosted by the link type booster 4a to the master cylinder 5 as axial thrust.
  • a flange portion 45 is provided on the outer periphery of the push rod 4b on the X axis negative direction side.
  • An abutting member 44 whose tip is formed in a convex spherical shape is fixed to the positive end of the push rod 4b in the X axis direction.
  • the reservoir tank 50 is a first brake fluid source that stores brake fluid, and supplies the brake fluid to the master cylinder 5 and the like.
  • the reservoir tank 50 has supply ports 50a and 50b that protrude downward and open in the vertical direction, and supply ports 50c that open on the side surfaces.
  • the interior of the reservoir tank 50 is partitioned into three regions by two partition plates 50d and 50e installed so as to extend vertically upward from the bottom surface.
  • Supply ports 50a, 50b and a supply port 50c are opened in these regions, respectively.
  • the partition plates 50d and 50e store brake fluid in each region even when the vehicle tilts or accelerates / decelerates, thereby enabling the brake fluid to be supplied from the supply ports 50a to 50c.
  • the master cylinder 5 is a first brake fluid pressure generation source that generates fluid pressure (master cylinder fluid pressure) in response to a driver's brake operation.
  • the master cylinder 5 is connected to the brake device 1b via an oil passage (brake piping 2a to 2c), and the brake device 1b is connected to the wheel cylinder W / C via an oil passage (brake piping 2FL to 2RR).
  • the master cylinder 5 includes a master cylinder housing (cylinder) 500, a piston 51, and a coil spring 52.
  • the master cylinder housing 500 is formed in a bottomed cylindrical shape that extends in the X-axis direction and closes at one end side (X-axis positive direction side).
  • An axial hole 501 extending in the X-axis direction is formed inside the master cylinder housing 500.
  • the hole 501 opens on the X axis negative direction side of the master cylinder housing 500.
  • a fitting portion 502 is formed at the X axis negative direction end of the master cylinder housing 500.
  • the master cylinder 5 is a so-called tandem type, and two pistons 51P and 51S are provided in the hole 501 so as to be movable in the X-axis direction.
  • a concave spherical receiving portion 510 is formed on the inner periphery of the P-system piston 51P on the X-axis negative direction side.
  • the X-axis positive direction end of the push rod 4b (abutting member 44) formed in the convex spherical shape abuts on the receiving portion 510, and is fitted and installed so as to be rotatable.
  • the S system piston 51S is a free piston, and is installed on the X axis positive direction side of the piston 51P.
  • Each piston 51 is provided with a recess 511 that extends in the X-axis direction and opens to the X-axis positive direction side.
  • Each piston 51 is provided with a communication hole (not shown) that communicates the inner peripheral surface of the recess 511 and the outer peripheral surface of each piston 51 so as to extend in the radial direction.
  • the master cylinder housing 500 is formed with a discharge port 54 and a replenishment port 55, and these ports 54, 55 open on the inner peripheral surface of the hole 501.
  • Two discharge ports 54P of the P system are provided.
  • One of the discharge ports 54P is connected to the brake device 1b via the brake pipe 2a, and is provided so as to be able to communicate with the wheel cylinder W / C.
  • the discharge port 54S of the S system is connected to the brake device 1b via the brake pipe 2b and is provided so as to be able to communicate with the wheel cylinder W / C.
  • the other of the discharge ports 54P is connected to the stroke simulator 6 via the brake pipe 2d and is provided so as to be able to communicate with the stroke simulator 6 (main chamber 64).
  • the supply ports 55P and 55S open to the upper side in the vertical direction of the master cylinder housing 500, and are connected to the supply ports 50a and 50b of the reservoir tank 50 to communicate with the reservoir tank 50, respectively.
  • Seal members 56 and 57 having a cup-shaped cross section are fixedly installed on the inner peripheral surface of the hole 501.
  • the seal members 56 and 57 are arranged so as to sandwich the opening of the supply port 55 in the X-axis direction.
  • the inner peripheral side (lip portion) of the seal members 56 and 57 contacts the outer peripheral surface of each piston 51.
  • the seal members 56 and 57 restrict the flow of brake fluid in one direction through the gap between the inner periphery of the hole 501 and the outer periphery of the piston 51.
  • the P-system seal member 56P restricts the flow of brake fluid from the supply port 55P toward the X-axis negative direction side (outside of the master cylinder housing 500).
  • the S-system seal member 56S allows only the flow of brake fluid from the supply port 55S toward the negative X-axis direction.
  • the seal member 57 allows only the flow of brake fluid from the supply port 55 toward the X axis positive direction.
  • a hydraulic chamber 53 is defined inside the master cylinder housing 500.
  • a P-system hydraulic chamber 53P is defined between the pistons 51P and 51S (region sealed by the seal members 57P and 56S).
  • An S system hydraulic chamber 53S is defined between the piston 51S and the bottom of the master cylinder housing 500 (an area sealed by the seal member 57S).
  • a coil spring 52 as a return spring for the piston 51 is installed in each hydraulic pressure chamber 53 in a compressed state.
  • a discharge port 54 opens in each hydraulic pressure chamber 53. As shown in FIG. 1, in a state where the brake pedal 4 is not depressed (the flange portion 45 of the push rod 4b is in contact with the stopper portion 607 of the stroke simulator housing 60), each piston 51 is in the most negative direction of the X axis.
  • each piston 51 The communication hole of each piston 51 is located on the X-axis negative direction side of the seal member 57 (and on the X-axis positive direction side of the seal member 56). Therefore, the replenishment port 55 communicates with the inner peripheral side of the recess 511 of each piston 51, that is, the hydraulic chamber 53 through the communication hole.
  • the brake fluid pressure is generated by the piston 41 operating in the X-axis direction in the hole 501. Specifically, the thrust in the positive direction of the X axis of the push rod 4b is transmitted to the piston 51P by the driver's brake operation.
  • the volume of each hydraulic chamber 53 is reduced.
  • each hydraulic pressure chamber 53 and the replenishment port 55 (reservoir tank 50) is blocked, and a brake operation is performed in each hydraulic pressure chamber 53.
  • a hydraulic pressure (master cylinder hydraulic pressure) corresponding to the pressure is generated. Note that substantially the same hydraulic pressure is generated in both hydraulic pressure chambers 53.
  • Brake fluid (master cylinder fluid pressure) is supplied from each fluid pressure chamber 53 to the brake device 1b (wheel cylinder W / C) via the discharge port.
  • the stroke simulator 6 is an operation reaction force generation source that generates a pseudo operation reaction force of the brake pedal 4 and is provided so that the brake fluid flowing out from the master cylinder 5 can flow.
  • the stroke simulator 6 is connected to the master cylinder 5 through an oil passage (brake piping 2d) and is connected to the reservoir tank 50 through an oil passage (brake piping 2e).
  • the stroke simulator 6 includes a stroke simulator housing 60, a reaction force piston 61, and a coil spring 62.
  • the stroke simulator housing 60 has a main body portion 60a and a connection portion 60b integrally.
  • the main body 60a has a bottomed cylindrical shape, and a first axial hole 601, a second axial hole 602, a valve mounting hole 603, an oil passage 65, and the like are formed therein.
  • the first axial hole 601 is formed so as to extend in the X-axis direction.
  • the second axial hole 602 has a smaller diameter than the first axial hole 601 and is formed so as to extend continuously in the X-axis direction of the first axial hole 601 in the X-axis direction. Yes.
  • One end (X-axis positive direction end of the second axial hole 602) side of the main body 60a is closed, and the other end (X-axis negative direction end of the first axial hole 601) side is opened.
  • the valve mounting hole 603 is formed to extend in the X-axis direction, and opens to the X-axis positive direction side of the main body 60a.
  • the valve mounting hole 603 has a stepped shape that decreases in diameter from the X-axis positive direction side toward the X-axis negative direction side.
  • the X axis negative direction end of the valve mounting hole 603 and the x axis positive direction end of the second axial hole 602 are connected via an oil passage 65 extending in the X axis direction.
  • the connecting portion 60b is provided on the upper side in the vertical direction of the main body portion 60a.
  • the connecting portion 60b has a bottomed cylindrical shape extending in the X-axis direction.
  • a first axial hole 604, a second axial hole 605, and a third axial hole 606 are formed in the connection portion 60b.
  • the first axial hole 604 is formed in a substantially cylindrical shape extending in the X-axis direction, and opens on the x-axis positive direction side of the connecting portion 60b.
  • the diameter of the first axial hole 604 is slightly larger than the diameter of the fitting portion 502 of the master cylinder housing 500.
  • the second axial hole 605 has a smaller diameter than the first axial hole 604 and is formed so as to extend in the X-axis direction continuously to the X-axis negative direction side of the first axial hole 604. Yes.
  • the third axial hole 606 has a smaller diameter than the second axial hole 605 and is formed so as to extend in the X-axis direction continuously to the X-axis negative direction side of the second axial hole 605. And opens to the X-axis negative direction side (vehicle attachment surface 608 side) of the stroke simulator housing 60.
  • a stopper portion 607 is formed on the bottom portion of the connecting portion 60b on the X axis negative direction side so as to surround the third axial hole 606.
  • the surface on the X axis positive direction side of the stopper portion 607 is formed in a taper shape substantially parallel to the surface on the X axis negative direction side of the flange portion 45 of the push rod 4b. It is provided so as to be able to contact the surface.
  • a spring 46 as a damper is installed. Yes.
  • the pedal stroke exceeds a predetermined amount, the flange portion 45 comes into contact with the end in the negative X-axis direction of the spring 46, and the spring 46 is compressed between the flange portion 45 and the fitting portion 502.
  • the spring 46 that compresses and deforms adjusts the operating force of the brake pedal 4 by applying a reaction force to the brake pedal 4 via the push rod 4b.
  • the X-axis negative direction side of the stroke simulator housing 60 is provided in a plate shape that extends substantially orthogonal to the X-axis.
  • the plate-like portion is a fixing flange for fixing the stroke simulator housing 60 to the vehicle, and is fixed to the vehicle body by, for example, a stud shaft (a stud bolt as a fixing tool).
  • a reaction force piston 61 is installed so as to be operable in the X-axis direction.
  • the reaction force piston 61 protrudes into the first axial hole 601 on the X axis negative direction side.
  • a rod 610 as a stopper member is fixedly installed at the end of the reaction force piston 61 in the negative X-axis direction so as to extend in the negative X-axis direction.
  • a plate-like plug member 63 that closes the opening is fixedly installed in the opening on the X-axis negative direction side of the first axial hole 601.
  • a main chamber 64 and a sub chamber 66 are defined by a reaction force piston 61 inside the stroke simulator housing 60.
  • a main chamber 64 is defined in the second axial hole 602 and on the X axis positive direction side of the reaction force piston 61.
  • a sub chamber 66 is defined in the first axial hole 601 and on the X axis negative direction side of the reaction force piston 61.
  • a bottomed cylindrical spring retainer 67 is housed so as to be movable in the X-axis direction, and a coil spring 62 as a compression spring is installed in a compressed state.
  • the coil spring 62 has a first spring 62a and a second spring 62b.
  • the first spring 62a is smaller in diameter and spring constant than the second spring 62b.
  • the X-axis positive direction end of the first spring 62a is installed at the X-axis negative direction end of the reaction force piston 61, and a rod 610 is disposed on the inner peripheral side of the first spring 62a.
  • the X-axis negative direction side of the first spring 62 a is accommodated on the inner peripheral side of the spring retainer 67, and the X-axis negative direction end of the first spring 62 a is installed at the bottom of the spring retainer 67.
  • the X-axis positive direction side of the second spring 62 b is installed on the outer peripheral side of the spring retainer 67, and the X-axis positive direction end of the second spring 62 b is installed on a flange provided at the opening of the spring retainer 67.
  • the X-axis negative direction end of the second spring 62b is installed in the plug member 63.
  • An elastic member 68 is installed on the inner peripheral side of the plug member 63 with respect to the installation site of the second spring 62b so as to protrude in the positive X-axis direction.
  • the stroke simulator valve (hereinafter referred to as the SS valve) 20 is a normally shut-off (ie, closed in a non-energized state) simulator cutoff valve provided so as to be able to restrict the flow of brake fluid into the stroke simulator 6.
  • the SS valve 20 is an on / off valve whose opening and closing is controlled in a binary manner.
  • the SS valve 20 is mounted in the valve mounting hole 603.
  • the main chamber 64 of the stroke simulator 6 is connected to the SS valve 20 via an oil passage 65.
  • the SS valve 20 is connected to the hydraulic chamber 53P of the master cylinder 5 via an oil passage (brake pipe 2d).
  • the SS valve 20 is an electromagnetic valve having a valve part and a solenoid part.
  • the valve portion is a so-called poppet type that opens and closes the flow path when the valve body moves in a direction perpendicular to the valve seat surface.
  • the SS valve 20 has a solenoid 201 as a solenoid part.
  • a valve body 202, an armature 203, a plunger 204, a coil spring 205, a valve seat member 206, and a plurality of oil passage components are provided. Have.
  • the solenoid 201 is fixed to the X axis positive direction end of the main body 60a.
  • the armature 203 is fixedly installed on the inner peripheral side of the solenoid 201, and generates an electromagnetic force (magnetic attractive force) when the solenoid 201 is energized.
  • a connector portion 201a is provided at the positive end of the solenoid 201 in the X-axis direction.
  • a wiring (harness) for supplying a driving current to a terminal (electrode) of the solenoid 201 is connected to the connector portion 201a. This wiring is connected to the ECU 9 of the brake device 1b described later.
  • the valve body 202 is a non-magnetic hollow cylinder, is fixedly installed so as to be fitted to the outer periphery of the armature 203, and extends to the X axis negative direction side of the armature 203.
  • the plunger 204 is accommodated in the valve body 202 so as to reciprocate in the X-axis direction.
  • a spherical valve body 204a is provided at the tip of the plunger 204 on the X axis negative direction side.
  • the coil spring 205 is installed in a compressed state between the armature 203 and the plunger 204, and constantly urges the plunger 204 toward the X axis negative direction side.
  • the valve seat member 206 is fixedly installed on the inner peripheral side of the valve mounting hole 603.
  • the valve seat member 206 has a bottomed cylindrical shape, and a valve seat is provided on the bottom of the X-axis positive direction side.
  • An orifice 206a extending in the X-axis direction is provided through the bottom of the valve seat member 206, and opens to a central portion of the valve seat.
  • the plunger 204 is driven by the electromagnetic force of the armature 203 (suction force in the positive direction of the X axis), and the valve body 204a opens and closes the orifice 206a, so that the oil passage including the orifice 206a (the following simulator oil passage) is in communication. Is controlled.
  • the oil passage constituent member includes a first member 207 as a body that also serves as a filter, a seal member 208, and a second member 209.
  • the first member 207 is a hollow member that is fixed to the opening on the X axis positive direction side of the valve mounting hole 603 by a flange 207a.
  • a valve seat member 206 is fixedly installed on the inner peripheral side of the first member 207, and an oil passage is formed between the inner periphery of the first member 207 and the outer periphery of the valve seat member 206.
  • a filter portion is provided on the X-axis negative direction side of the flange 207a of the first member 207.
  • the second member 209 is a cylindrical filter member (retainer of the seal member 208) installed at the bottom of the valve mounting hole 603 on the negative side of the X axis, and a valve seat member 206 is installed on the inner peripheral side thereof.
  • the seal member 208 is a cup-shaped seal member similar to the seal member 56 and the like, and is installed between the first member 207 and the second member 209.
  • a valve seat member 206 is fixedly installed on the inner peripheral side of the seal member 208.
  • An oil passage is not formed between the inner periphery of the seal member 208 and the outer periphery of the valve seat member 206.
  • the lip portion on the outer peripheral side of the seal member 208 is in contact with the inner peripheral surface of the valve mounting hole 603 so as to open to the X axis positive direction side.
  • the brake fluid between the seal member 208 (lip portion) and the inner peripheral surface of the valve mounting hole 603 is allowed to flow only from the X-axis negative direction side to the X-axis positive direction side, and the reverse flow is suppressed. Is done.
  • a connection port 69 is open on the X axis positive direction side of the seal member 208 on the inner periphery of the valve mounting hole 603.
  • An oil passage 65 communicating with the main chamber 64 of the stroke simulator 6 is opened at the bottom of the valve mounting hole 603 on the negative side in the X-axis direction.
  • connection port 69 communicates with the orifice 206a via an oil passage between the outer periphery of the valve seat member 206 and the inner periphery of the first member 207.
  • the orifice 206a communicates with the oil passage 65 via an oil passage 206b provided on the inner peripheral side of the valve seat member 206.
  • a simulator oil path is formed in which the SS valve 20 switches between communication and blocking while the hydraulic chamber 53P and the main chamber 64 are connected.
  • the oil passage 65 communicates with the negative side of the X axis of the seal member 208 via the second member 209, and the oil passage 65 and the connection port 69 are connected via the seal member 208.
  • a bypass oil path that is provided in parallel to the simulator oil path and whose flow direction is restricted by the seal member 208 is configured.
  • the main chamber 64 of the stroke simulator 6 communicates with the hydraulic chamber 53P through the oil passage 65, the SS valve 20, and the brake pipe 2d.
  • the sub chamber 66 of the stroke simulator 6 is connected to the reservoir tank 50 (supply port 50c) via the brake pipe 2e.
  • the sub chamber 66 always communicates with the reservoir tank 50 and is released to a low pressure (atmospheric pressure), and constitutes a back pressure chamber of the stroke simulator 6.
  • the SS valve 20 is opened by being energized to communicate the simulator oil passage.
  • the master cylinder hydraulic pressure acts on the main chamber 64 of the stroke simulator 6 via the simulator oil passage.
  • a predetermined hydraulic pressure master cylinder hydraulic pressure
  • the reaction force piston 61 compresses the coil spring 62 and compresses the coil spring 62 by this pressure in the axial direction toward the sub chamber 66.
  • the volume of the main chamber 64 increases, and the brake fluid flows from the master cylinder 5 (hydraulic pressure chamber 53P) into the main chamber 64 via the simulator oil passage.
  • the brake fluid is discharged from the sub chamber 66 to the reservoir tank 50 through the brake pipe 2e.
  • the stroke simulator 6 creates a pedal stroke by sucking the brake fluid from the master cylinder 5, and the wheel cylinder W / C
  • the feeling of depression of the brake pedal 4 is reproduced by simulating liquid rigidity.
  • the first spring 62a is mainly compressed in the first half of the depression of the brake pedal 4.
  • the spring constant is low and the increasing gradient of the pedal reaction force is low.
  • the rod 610 comes into contact with the bottom of the spring retainer 67 from the middle stage to the latter stage of the depression of the brake pedal 4, and the second spring 62b is compressed in place of the first spring 62a.
  • the spring constant is high, and the increasing gradient of the pedal reaction force is high.
  • the pedal depression feeling becomes the same as, for example, an existing master cylinder (reproduces the feeling of filling in the first half of the depression and the rigidity feeling in the middle of the depression) Set to Thereby, pedal feeling can be improved. If the amount of movement of the reaction force piston 61 (spring retainer 67) in the negative direction of the X axis exceeds a predetermined value, the elastic member 68 contacts the bottom of the spring retainer 67 and elastically deforms. As a result, the movement of the reaction force piston 61 in the negative direction of the X-axis is restricted and the impact when the reaction is restricted is absorbed.
  • the reaction force piston 61 is caused to function as a damper.
  • the reaction force piston 61 returns to the initial position by the urging force (elastic force) of the coil spring 62.
  • the bypass oil passage allows only the flow of the brake fluid from the main chamber 64 of the stroke simulator 6 toward the hydraulic chamber 53P of the master cylinder 5, so that the brake fluid flows into the main chamber 64. Even when the SS valve 20 is closed (fixed in a closed state), the brake fluid can be returned from the main chamber 64 to the master cylinder 5 via the bypass oil passage.
  • the master cylinder housing 500 and the stroke simulator housing 60 are fixed integrally with each other. That is, the fitting portion 502 of the master cylinder housing 500 is inserted into the first axial hole 604 of the stroke simulator housing 60, and both are fitted.
  • the piston 51P protruding from the hole 501 of the master cylinder housing 500 to the X axis negative direction side is accommodated in the second axial hole 605.
  • the outer peripheral surface of the fitting portion 502 and the inner peripheral surface of the first axial hole 604 constitute a joint surface that functions as a stamped joint. Since the two housings 500 and 60 are separated and fixed integrally, the existing (general-purpose) master cylinder 5 can be used, so that versatility for different vehicle types (vehicle grades) is high.
  • the surface on the X axis negative direction side of the stroke simulator housing 60 constitutes a vehicle attachment surface 608 for attaching the stroke simulator housing 60 (master cylinder unit 1a) to the vehicle.
  • the stroke simulator housing 60 whose shape can be set relatively freely is attached to the vehicle, so that the versatility of the master cylinder 5 is improved and the master cylinder unit 1a is easily attached to the vehicle. Can do.
  • the master cylinder unit 1a When the master cylinder unit 1a is fixed to the dash panel, the X-axis negative direction side of the push rod 4b penetrates the dash panel and protrudes into the vehicle interior.
  • the master cylinder 5, the reservoir tank 50, the stroke simulator 6 and the like are installed in an engine room (or a motor room in which a power unit such as a traveling motor is installed; hereinafter simply referred to as an engine room).
  • the stroke simulator 6 and the SS valve 20 hereinafter referred to as the stroke simulator 6) and the master cylinder 5 are integrally disposed so as to overlap each other when viewed from the vertical direction when the vehicle is mounted. Further, the axial direction of the master cylinder 5 and the axial direction of the stroke simulator 6 and the like are arranged in substantially the same direction.
  • the master cylinder 5 and the stroke simulator 6 and the like are positioned up and down with their axial directions aligned. Therefore, it is possible to reduce the projected area of the master cylinder unit 1a as viewed from the vehicle longitudinal direction (the axial direction of the master cylinder 5). Further, the area (occupied area) occupied by the master cylinder unit 1a in the engine room when viewed from above can be reduced. Therefore, the vehicle mounting property of the master cylinder unit 1a and the layout property in the engine room can be improved.
  • the master cylinder unit 1a can be further downsized by integrating the housing of the SS valve 20 and the housing of the stroke simulator 6. Moreover, since the structure for connecting both 20 and 6 and the brake piping are not required, the configuration of the master cylinder unit 1a can be simplified to improve the assembling workability and the fail-safe property can be improved.
  • the x-axis is provided in the front-rear direction of the vehicle on which the brake device 1b is installed, and the rear of the vehicle is defined as the positive x-axis direction.
  • the y-axis is provided in the vehicle width direction (left-right direction or lateral direction), and the right side when viewed from the front of the vehicle (x-axis positive direction side) is defined as the y-axis positive direction.
  • the z-axis is provided in the vertical direction (vertical direction) of the vehicle, and the upper side of the vehicle is the positive z-axis direction.
  • FIG. 2 is a perspective view of the brake device 1b as viewed from the x-axis negative direction side, the y-axis positive direction side, and the z-axis positive direction side.
  • FIG. 3 is a top view of the brake device 1 as viewed from the z-axis positive direction side.
  • FIG. 4 is a perspective view of the brake device 1b as viewed from the x-axis positive direction side, the y-axis positive direction side, and the z-axis positive direction side.
  • FIG. 5 is a side view of the brake device 1b as seen from the y-axis positive direction side.
  • FIG. 6 is a front view of the brake device 1b as viewed from the x-axis positive direction side.
  • FIG. 7 is a rear view of the brake device 1b as viewed from the x-axis negative direction side.
  • 8 and 9 are exploded perspective views showing the components constituting the brake device 1b in an exploded manner.
  • FIG. 8 is an exploded perspective view seen from the x-axis positive direction side, the y-axis positive direction side, and the z-axis positive direction side.
  • FIG. 9 is an exploded perspective view seen from the x-axis positive direction side, the y-axis negative direction side, and the z-axis positive direction side.
  • FIG. 10 is a cross-sectional view of the brake device 1b.
  • a plurality of cross sections are collectively shown in one cross sectional view.
  • the cross section of the pump 7 shows a cross section cut by a plane parallel to the xy plane.
  • the brake device 1b is provided between the wheel cylinder W / C and the master cylinder unit 1a, and can individually supply the master cylinder hydraulic pressure or the control hydraulic pressure to each wheel cylinder W / C.
  • the brake device 1b includes a housing 10 and includes a pump 7 and a plurality of control valves (electromagnetic valves 21 to 25) as hydraulic devices (actuators) for generating a control hydraulic pressure.
  • An oil passage through which the brake fluid discharged from the pump 7 flows is formed inside the housing 10.
  • the solenoid valves 21 to 25 (hereinafter referred to as the solenoid valve 21 and the like) have a poppet-type valve portion and a solenoid portion, and are driven to connect and disconnect the oil passage.
  • the flow of brake fluid is controlled by opening and closing in response to this.
  • the specific configuration of the electromagnetic valves 21 to 25 is basically the same as that of the SS valve 20 except for whether or not it is a normally closed type, and thus the description thereof is omitted.
  • the brake device 1b is provided so that the wheel cylinder W / C can be increased by the hydraulic pressure generated by the pump 7 while the communication between the master cylinder 5 and the wheel cylinder W / C is cut off.
  • the brake device 1b is integrally provided with hydraulic pressure sensors 91 to 93 that detect the discharge pressure of the pump 7 and the master cylinder hydraulic pressure, and an electronic control unit (hereinafter referred to as ECU) 9 that controls the operation of the actuator. .
  • ECU electronice control unit
  • the pump 7, the motor 8, the electromagnetic valve 21, etc., the hydraulic pressure sensors 91 to 93, and the ECU 9 are attached to the housing 10.
  • the master cylinder unit 1a can be reduced in size and the wiring of the hydraulic pressure sensors 91 to 93 and the actuators to the ECU 9 can be simplified.
  • the housing 10 is fixedly installed on the vehicle body side (the floor of the engine room).
  • the housing 10 is supported by a bracket 300 fixed to the vehicle body side via a plurality of insulators 30.
  • the insulator 30 is an elastic member (damper) for suppressing (insulating) transmission of vibration from the brake device 1b to the vehicle body side.
  • the brake device 1b is disposed, for example, below the master cylinder unit 1a so that the x-axis direction in FIG. 2 coincides with the X-axis direction in FIG. Thereby, the projection area in the vertical direction (vehicle up-down direction) of the whole brake system can be reduced, and vehicle mounting property can be improved.
  • the members corresponding to the wheels FL to RR are appropriately distinguished by adding suffixes FL to RR at the end of the reference numerals.
  • the first oil passage 11 connects the master cylinder 5 (first and second liquid chambers 51P and 51S thereof) and the wheel cylinder W / C.
  • the first oil passage 11 is provided with a shut-off valve 21 that is normally open (that is, opens in a non-energized state).
  • a normally open pressure increasing valve hereinafter referred to as an IN valve
  • a bypass oil passage is provided in parallel with the first oil passage 11 by bypassing each IN valve 22 and only a brake fluid flow from the wheel cylinder W / C side to the master cylinder 5 side is allowed. 26 is provided in the bypass oil passage.
  • the suction oil passage 12 connects the reservoir 120 and the suction side of the pump 7.
  • the reservoir 120 is connected to the reservoir tank 50 of the master cylinder unit 1a via the brake pipe 2c.
  • the brake pipe 2 c communicates with the reservoir 120 by being connected to the connection port 7 b of the pump 7.
  • the discharge oil passage 13 connects between the shut-off valve 21 and the IN valve 22 in the first oil passage 11 and the discharge side of the pump 7.
  • the first damper 28, the check valve 27, the orifice 130, A second damper 29 is provided in this order.
  • the dampers 28 and 29 and the orifice 130 are pulsation reducing means for reducing pulsation of the brake fluid discharged from the pump 7.
  • the check valve 27 is a discharge valve of the pump 7 that allows only a flow of brake fluid from the discharge side of the pump 7 to the first oil passage 11 side.
  • the discharge oil path 13 is branched downstream of the second damper 29 into a P system discharge oil path 13P and an S system discharge oil path 13S.
  • the discharge oil passages 13P and 13S are connected between the shutoff valve 21 and the IN valve 22 in the first oil passage 11, and connect the first oil passage 11P of the P system and the first oil passage 11S of the S system.
  • the communication path is configured.
  • the pump 7 is connected to the wheel cylinder W / C through the communication passage (discharge oil passages 13P and 13S) and the first oil passage 11P and 11S, and the wheel cylinder is discharged by discharging brake fluid into the communication passage.
  • This is a second brake fluid pressure generation source capable of increasing the fluid pressure.
  • the discharge oil passage 13P is provided with a communication valve 23P that is normally closed (closed in a non-energized state).
  • the discharge oil passage 13S is provided with a normally closed communication valve 23S.
  • the first decompression oil passage 14 connects the suction oil passage 12 between the second damper 29 and the communication valve 23 in the discharge oil passage 13.
  • the first pressure reducing oil passage 14 is provided with a normally closed pressure regulating valve 24 as a first pressure reducing valve.
  • the second pressure reducing oil passage 15 is between the wheel cylinder W / C side of the IN valve 22 in the first oil passage 11 and between the connection portion of the suction oil passage 12 in the first pressure reducing oil passage 14 and the pressure regulating valve 24. Connect.
  • the second pressure reducing oil passage 15 is provided with a normally closed pressure reducing valve (hereinafter referred to as an OUT valve) 25 as a second pressure reducing valve.
  • each second pressure reducing oil passage 15 merges with the first pressure reducing oil passage 14 on the downstream side of the OUT valve 25 to form one oil passage, and the suction oil It is connected to the channel 12 (reservoir 120).
  • At least one of the shut-off valve 21, the IN valve 22, the pressure regulating valve 24, and the OUT valve 25 of each system has a valve in accordance with the current supplied to the solenoid. It is a proportional control valve whose opening is adjusted.
  • the other valves, that is, the communication valve 23 and the remaining OUT valve 25 (the OUT valves of the rear wheels RL and RR) are on / off valves.
  • a proportional control valve can also be used as the other valve.
  • a hydraulic pressure sensor 91 for detecting the hydraulic pressure at this point (master cylinder hydraulic pressure or hydraulic pressure in the stroke simulator 6) is provided. It has been. Between the shutoff valve 21 and the IN valve 22 in the first oil passage 11, a hydraulic pressure sensor 92 that detects the hydraulic pressure (foil cylinder hydraulic pressure) at this location is provided in each system. Between the discharge side (second damper 29) of the pump 7 in the discharge oil passage 13 and the communication valve 23, or between the connection portion of the first pressure reduction oil passage 14 and the discharge oil passage 13 and the pressure regulating valve 24, A hydraulic pressure sensor 93 for detecting the hydraulic pressure (pump discharge pressure) at this location is provided.
  • the ECU 9 receives the detection values sent from the pedal stroke sensor 90 and the hydraulic pressure sensors 91 to 93 and the information on the running state sent from the vehicle, and controls each actuator of the brake system based on a built-in program. Specifically, the opening / closing operation of the solenoid valves 20 to 25 for switching the communication state of the oil passage and the rotation speed of the motor 8 that drives the pump 7 (that is, the discharge amount of the pump 7) are controlled.
  • ABS anti-lock brake control
  • VDC vehicle behavior stabilization control
  • boost control reduces brake operation force by operating the pump 7 so that the wheel cylinder hydraulic pressure according to the operation amount of the brake pedal 4 may generate
  • produce the link type booster 4a may be omitted.
  • each actuator In a state where each actuator is not operated, the hydraulic chamber 53 of the master cylinder 5 and the wheel cylinder W / C of each wheel are in communication with each other.
  • the master cylinder hydraulic pressure generated in response to the operation of the brake pedal 4 by the driver is supplied to the wheel cylinder W / C to generate wheel cylinder hydraulic pressure (brake hydraulic pressure) (treading force brake).
  • the ECU 9 controls the SS valve 20 in the valve closing direction and cuts off the communication between the master cylinder 5 (hydraulic pressure chamber 53P) and the stroke simulator 6 (main chamber 64). Effective supply to cylinder W / C.
  • the wheel cylinder hydraulic pressure is generated by the hydraulic pressure generated by the pump 7 while the communication between the hydraulic pressure chamber 53 of the master cylinder 5 and each wheel cylinder W / C is cut off. It is possible to live.
  • the ECU 9 controls the shut-off valve 21 in the valve closing direction to make the state of the brake device 1b easy to generate the wheel cylinder hydraulic pressure by the pump 7, thereby realizing regenerative cooperative brake control and the like.
  • the pump 7 includes an oil passage (the intake oil passage 12, the discharge oil passage 13 and the like) that connects the reservoir 120 (reservoir tank 50) and the wheel cylinder W / C, and a solenoid valve that controls communication / blocking thereof.
  • the 21 and the like constitute a brake system that generates wheel cylinder hydraulic pressure by hydraulic pressure generated using the pump 7 independently of the driver's brake operation (master cylinder hydraulic pressure), forming a so-called brake-by-wire system.
  • the ECU 9 controls the SS valve 6 in the valve opening direction and causes the master cylinder 5 (hydraulic pressure chamber 53P) and the stroke simulator 6 (main chamber 64) to communicate with each other, thereby artificially generating an operation reaction force. To do.
  • the ECU 9 drives the pump 7, controls the SS valve 20 in the valve opening direction, controls the shut-off valve 21 in the valve closing direction, controls the IN valve 22 in the valve opening direction, and opens the communication valve 23.
  • the pressure control valve 24 is controlled in the valve opening direction
  • the OUT valve 25 is controlled in the valve closing direction.
  • the detected value of the hydraulic pressure sensor 91 can be regarded as substantially the same as the master cylinder hydraulic pressure, so that the hydraulic pressure sensor 91 functions as a master cylinder pressure sensor that detects the master cylinder hydraulic pressure.
  • the pump 7 is operated based on the detection value of the hydraulic pressure sensor 91 so that the wheel cylinder hydraulic pressure corresponding to the operation amount of the brake pedal 4 is generated.
  • the wheel cylinder hydraulic pressure is controlled to be the target hydraulic pressure.
  • the wheel cylinder hydraulic pressure is controlled by controlling not the pump 7 but the pressure regulating valve 24. Since the pressure regulating valve 24 is a proportional control valve, fine control is possible and smooth control of the wheel cylinder hydraulic pressure can be realized. For example, the number of rotations (discharge amount) of the pump 7 may be controlled.
  • the wheel cylinder hydraulic pressure may be controlled by controlling the OUT valve 25 instead of the pressure regulating valve 24 (or together with the pressure regulating valve 24). The pump 7 may be stopped when the wheel cylinder hydraulic pressure is reduced or maintained.
  • the pump 7 in this embodiment, a gear pump excellent in sound vibration performance and the like, specifically, an external gear pump (external gear pump) is employed.
  • the pump 7 is used in common by both systems and is driven by the same motor 8.
  • the motor 8 is an electric motor for driving the pump 7, and for example, a motor with a brush can be used.
  • the motor 8 includes a bottomed cylindrical motor case 80 and a rotating shaft 81 as an output shaft.
  • a flange portion 80 a is provided at the opening end of the motor case 80.
  • the pump 7 includes a bottomed cylindrical pump case 7a, a connection port 7b, and a pump unit (pump assembly) 7c.
  • the pump case 7a accommodates the pump unit 7c inside.
  • a flange portion 70a is provided at the opening end of the pump case 7a.
  • a reservoir 120 is provided inside the pump case 7a.
  • the reservoir 120 is a brake fluid reservoir (second brake fluid source) configured by a space between the outer periphery of the pump unit 7c and the inner periphery of the pump case 7a.
  • the connection port 7b is a port for supplying brake fluid from the outside of the pump case 7a (reservoir tank 50) to the inside of the pump case 7a (reservoir 120) via the brake pipe 2c.
  • the connection port 7b is provided in a tubular shape protruding from the bottom of the pump case 7a.
  • the connection port 7b is provided on the upper side in the vertical direction (z-axis positive direction side) of the pump case 7a.
  • the pump unit 7 c includes a side plate 71, a housing 72, a rotating shaft 73, and a gear 74.
  • the rotating shaft 73 has a drive shaft 73a and a driven shaft 73b.
  • the drive shaft 73a is rotationally driven by the motor 8.
  • the gear 74 has a drive gear 74a that rotates integrally with the drive shaft 73a, and a driven gear 74b that rotates integrally with the driven shaft 73b.
  • the driven gear 74b meshes with (engages with) the drive gear 74a.
  • the gear 74 constitutes a pump unit, and is rotated by the motor 8 to suck in the brake fluid in the reservoir 120 (reservoir tank 50) and discharge it toward the wheel cylinder W / C.
  • the side plate 71 is disposed around the gear 74 and seals a predetermined area on each end face in the axial direction of each gear 74 and partially seals the tooth tip of each gear.
  • a connected low-pressure chamber (not shown) and a high-pressure chamber (not shown) connected to the discharge passage 13 are liquid-tightly defined.
  • the housing 72 accommodates the rotating shaft 73, the gear 74, and the side plate 71 therein.
  • the housing 72 includes a pump housing 72a, a pump cover 72b, a screw member 72c, and a positioning member 72d.
  • the pump housing 72a has a bottomed cylindrical shape, and a fitting portion 720 having a slightly smaller diameter than the opening side is provided on the bottom side. A bottomed hole into which the positioning pin 39 is inserted and installed is formed at the bottom of the fitting portion 720. A part of the suction passage 12 is formed inside the pump housing 72a. The suction passage 12 is connected to the reservoir 120 through a hole 721 (see FIG. 8) that opens in the outer peripheral surface of the pump housing 72a. A part of the discharge passage 13 is formed inside the pump housing 72a.
  • the discharge passage 13 is connected to the high-pressure chamber, and is connected to the bottom of the fitting portion 720, and the discharge passage 13 of the housing 10 (an oil passage 13-0 opened at the bottom of a fitting recess 10e described later). Connected to.
  • a part of the first reduced pressure oil passage 14 is formed inside the pump housing 72a.
  • the first reduced pressure oil passage 14 is connected to the low pressure chamber and opens to the first reduced pressure oil passage 14 (the bottom of a fitting recess 10e described later) of the housing 10 through a hole opened in the bottom of the fitting portion 720. It is connected to oil passage 14-3).
  • a rotary shaft 73 is rotatably accommodated via a bearing 75 at the bottom of the pump housing 72a.
  • the pump cover 72b has a stepped bottomed cylindrical shape and is installed so that the large-diameter opening side is fitted to the inner peripheral side of the opening of the pump housing 72a.
  • the gear 74 and the side plate 71 are installed on the inner peripheral side of the opening of the pump cover 72b.
  • a rotary shaft 73 is rotatably accommodated via a bearing 75 at the bottom of the pump cover 72b.
  • the screw member 72c is installed on the outer peripheral side of the bottom portion of the pump cover 72b.
  • the pump cover 72b is pressed against the pump housing 72a by pressing the opening of the pump cover 72b toward the bottom of the pump housing 72a while the outer periphery of the screw member 72c is screwed into the inner periphery of the opening of the pump housing 72a.
  • the positioning member 72d is installed on the inner peripheral side of the opening of the pump cover 72b, and the gear 74 and the side plate 71 are sandwiched between the positioning member 72d and the bottom of the pump housing 72a, whereby the gear 74 and the side plate 71 are axially arranged. Restrict movement.
  • the end of the drive shaft 73a protrudes from the bottom of the pump housing 72a. This end is connected to the end of the rotating shaft 81 of the motor 8 via the collar member 730.
  • a hole is formed through which the end of the drive shaft 73a is installed.
  • a seal member 76 is disposed in this hole. The seal member 76 prevents the brake fluid from leaking from the hole along the outer periphery of the drive shaft 73a.
  • FIG. 11 to 30 show the entire housing 10 of this embodiment from various directions.
  • FIG. 11 is a perspective view of the housing 10 as viewed from the x-axis negative direction side, the y-axis positive direction side, and the z-axis positive direction side.
  • FIG. 13 is a perspective view of the housing 10 as viewed from the x-axis positive direction side, the y-axis positive direction side, and the z-axis positive direction side.
  • FIG. 15 is a perspective view of the housing 10 as viewed from the x-axis negative direction side, the y-axis negative direction side, and the z-axis negative direction side.
  • FIG. 11 is a perspective view of the housing 10 as viewed from the x-axis negative direction side, the y-axis positive direction side, and the z-axis negative direction side.
  • FIG. 17 is a perspective view of the housing 10 viewed from the x-axis positive direction side, the y-axis negative direction side, and the z-axis negative direction side.
  • FIG. 19 is a rear view of the housing 10 as viewed from the x-axis negative direction side.
  • FIG. 21 is a front view of the housing 10 as viewed from the x-axis positive direction side.
  • FIG. 23 is a side view of the housing 10 as viewed from the y-axis positive direction.
  • FIG. 25 is a side view of the housing 10 as seen from the y-axis negative direction side.
  • FIG. 27 is a top view of the housing 10 as viewed from the z-axis positive direction side.
  • FIG. 19 is a rear view of the housing 10 as viewed from the x-axis negative direction side.
  • FIG. 21 is a front view of the housing 10 as viewed from the x-axis positive direction side.
  • FIG. 23 is a side view of the housing 10
  • the housing 10 includes a first housing part 10a and a second housing part 10b.
  • the housing 10 is made of, for example, an aluminum metal material. Inside the housing 10, a plurality of valve mounting holes 121 to 125, sensor mounting holes 191 to 193, an oil passage 11 and the like are formed by, for example, cutting (drilling) using a drill.
  • a pump 7 and a motor 8 are attached to the first housing part 10a.
  • An electromagnetic valve 21 or the like is attached to the second housing part 10b. That is, the second housing part 10b is a valve housing. Further, the ECU 9 is attached to the second housing portion 10b via a valve case 95.
  • the first housing part 10a has a substantially rectangular parallelepiped shape.
  • the first housing portion 10a has a surface 101 (first surface) and a surface 102 (second surface) as a substantially square surface composed of the side having the largest dimension and the second longest side. ).
  • the surfaces 101 and 102 are opposed to each other, and the first housing portion 10a has a flat plate shape sandwiched between the surfaces 101 and 102. That is, the distance between the surfaces 101 and 102 is shorter than the dimensions of the above-mentioned sides constituting the surfaces 101 and 102.
  • the housing 10 is installed such that the side having the maximum dimension extends in the z-axis direction and the second longest side extends in the y-axis direction.
  • the surfaces 101 and 102 face each other in the x-axis direction.
  • the surface 101 is disposed so as to face the x-axis positive direction side, and the surface 102 faces the x-axis negative direction side.
  • the first housing portion 10a includes a surface 103 facing the positive y-axis direction, a surface 106 facing the positive z-axis direction, and a surface 107 facing the negative z-axis direction as surfaces connecting the surfaces 101 and 102.
  • the first housing part 10a is formed integrally with the second housing part 10b on the y-axis negative direction side. That is, the surface of the first housing portion 10a on the negative y-axis direction is a fixed surface on which the first housing portion 10a is fixed integrally with the second housing portion 10b via this surface.
  • the pump 7 is attached to the surface 101. That is, the surface 101 is a pump mounting surface to which the pump 7 is mounted.
  • the outer edge portion of the surface 101 has three locations (two locations on the z-axis positive direction side on the z-axis positive direction side and the y-axis negative direction side, and one location on the z-axis negative direction side substantially in the y-axis direction),
  • a bottomed hole 131 for fastening the pump case 7a of the pump 7 to the first housing part 10a with a bolt 31 is formed.
  • the bolt 31 inserted through the flange portion 70a of the pump case 7a is screwed into the bottomed hole 131, whereby the pump case 7a (pump 7) is fixedly installed on the surface 101.
  • An annular groove for installing the seal member 78 is provided on the surface of the flange portion 70 a facing the surface 101.
  • the seal member 78 suppresses leakage of brake fluid from the reservoir 120 toward the outside.
  • a bottomed cylindrical fitting recess 10e for fitting the pump housing 72a (fitting portion 720) of the pump unit 7c to the first housing portion 10a so as to be surrounded by the hole 131. Is formed.
  • the diameter of the fitting recess 10e is slightly larger than the diameter of the fitting portion 720.
  • the depth (x-axis direction dimension) of the fitting recess 10e is set to about 1/5 of the thickness (x-axis direction dimension) of the first housing part 10a.
  • the pump 7 By fitting the pump housing 72a and the first housing portion 10a, the pump 7 (pump unit 7c) can be easily assembled to the housing 10 (first housing portion 10a).
  • through holes 134 for fastening the pump housing 72a to the first housing part 10a with bolts 34 are formed in two places.
  • a bottomed hole 139 for positioning the pump housing 72a (fitting portion 720) of the pump unit 7c with the pin 39 with respect to the first housing portion 10a is formed on the y axis positive direction side of the bottom portion of the fitting recess 10e.
  • An annular groove 177 for installing the seal member 77 is provided along the outer peripheral edge of the bottom of the fitting recess 10e (see FIG. 21). The seal member 77 prevents the brake fluid from leaking from the reservoir 120 toward the following through hole 136.
  • a motor 8 is attached to the surface 102. That is, the surface 102 is a motor attachment surface to which the motor 8 is attached.
  • the motor case 80 of the motor 8 is fastened to the outer edge portion of the surface 102 with bolts 32 at two locations (the y-axis negative direction side on the z-axis positive direction side and the y-axis positive direction side on the z-axis negative direction side).
  • a bottomed hole 132 is formed. Near the center of the surface 102, a bottomed cylindrical bearing recess 10f for fitting and installing a bearing 81a that supports the shaft 81 of the motor 8 is formed.
  • a through hole 136 is formed in which a connecting portion (collar member 730) between the shaft 81 of the motor 8 and the drive shaft 73a of the pump 7 is accommodated.
  • the through hole 136 opens on the x-axis positive direction side on the y-axis negative direction side of the bottom of the fitting recess 10e.
  • the heads of the bolts 34 are accommodated in two places (the z-axis negative direction side of the bearing recess 10f, the y-axis positive direction side and the z-axis positive direction side of the bearing recess 10f).
  • Recesses 10g and 10h are formed.
  • a through hole 134 is opened at the bottom of the recesses 10g and 10h.
  • a terminal insertion hole 137 for receiving a terminal (electrode) of the motor 8 is opened on the negative y-axis side of the recess 10g.
  • the terminal insertion hole 137 is a bottomed hole extending from the surface 102 to the x axis positive direction side to a predetermined depth inside the first housing portion 10a.
  • a terminal insertion hole 138 is connected to the positive end of the terminal insertion hole 137 in the x-axis direction.
  • connection port 111S for connecting a brake pipe 2b (connected to the discharge port 54S of the master cylinder 5) is opened at the end of the surface 103 on the positive side of the z-axis.
  • the connection port 111S has a bottomed cylindrical shape and is formed so as to extend from the surface 103 to the y axis negative direction side to a predetermined depth.
  • a bottomed hole 130 for fastening and fixing a bolt portion of the insulator 30 is formed in the center of the surface 103 in the z-axis direction.
  • a first damper mounting hole 128 having a bottomed cylindrical shape for fitting and installing the first damper 28 is formed slightly on the negative side in the z-axis direction from the approximate center of the surface 103 in the z-axis direction.
  • a check valve 27 integrated with the filter member
  • a check valve mounting hole 127 is formed on the surface 107 of the first housing portion 10a.
  • a bottomed cylindrical second damper mounting hole 129 is formed in order to fit and install the second damper 29 slightly to the y axis negative direction side from the approximate center in the y axis direction.
  • a bottomed hole 130 for fastening and fixing the bolt portion of the insulator 30 is formed at the end in the negative y-axis direction.
  • the second housing part 10b has a substantially rectangular parallelepiped shape.
  • the second housing portion 10b has a surface 104 (first surface) and a surface 105 (second surface) as a substantially rectangular surface composed of the side having the largest dimension and the second longest side. ).
  • the surfaces 104 and 105 face each other, and the second housing portion 10b has a flat plate shape sandwiched between the surfaces 104 and 105. That is, the distance between the surfaces 104 and 105 is shorter than the dimensions of the above-mentioned sides constituting the surfaces 104 and 105.
  • the housing 10 is installed such that the side having the maximum dimension extends in the x-axis direction and the second longest side extends in the z-axis direction.
  • the surfaces 104 and 105 face each other in the y-axis direction.
  • the surface 104 is arranged so as to face the y-axis negative direction side, and the surface 105 faces the y-axis positive direction side.
  • the second housing part 10b has, as surfaces connecting the surfaces 104 and 105, a surface 106 facing the z-axis positive direction side, a surface 107 facing the z-axis negative direction side, a surface 108 facing the x-axis positive direction side, and an x-axis And a surface 109 facing the negative direction side.
  • the dimension of the second longest side extending in the z-axis direction is substantially equal to the side of the first housing part 10a extending in the z-axis direction and having the maximum dimension.
  • the surfaces 106 and 107 are common to the first housing part 10a (each constitutes the same plane).
  • the second housing portion 10b is formed integrally with the first housing portion 10a on the surface 105 side (y-axis positive direction side). That is, the surface 105 is a fixed surface on which the second housing part 10b is fixed integrally with the first housing part 10a via the surface 105.
  • the housing 10 includes a portion excluding the surfaces 101 and 102 of the first housing portion 10a (of the y-axis negative direction side) and a portion of the second housing portion 10b excluding the surface 104 (of which the y-axis positive side). It is configured (or formed) integrally with the direction side surface 105).
  • the first housing portion 10a is connected to the second housing portion 10b in the middle of the surface 105 in the x-axis direction, more specifically, slightly closer to the x-axis negative direction than the center of the surface 105 in the x-axis direction.
  • the surface 105 extends so as to protrude in the positive y-axis direction.
  • the housing 10 is T-shaped when viewed from the z-axis direction (with the y-axis negative direction side facing up).
  • the pump 7 is installed in a recess sandwiched between the surface 101 of the first housing portion 10a and the surface 105 of the second housing portion 10b (L-shaped when viewed from the z-axis direction).
  • the rotation shaft 73 of the pump 7 (and the shaft of the pump case 7a) and the connection port 7b are arranged so as to extend in the x-axis direction (see FIG. 3).
  • the drive shaft 73a (and drive gear 74a) of the pump 7 is located on the negative side of the y-axis with respect to the driven shaft 73b (and driven gear 74b), that is, on the driven shaft 73b (and driven gear 74b) and the second housing portion 10b. It is arranged at the sandwiched position.
  • the center z-axis position of the drive shaft 73a (and drive gear 74a) is substantially equal to the center z-axis position of the driven shaft 73b (and driven gear 74b).
  • the second housing portion 10b has an x-axis positive direction side and a z-axis positive direction side on the side of the surface 105 forming the concave portion (on the positive side in the x-axis direction than the connecting portion of the first housing portion 10a on the surface 105).
  • a convex portion 10c is formed at the end.
  • the convex portion 10c has a substantially rectangular shape when viewed from the y-axis positive direction side, and is formed so as to slightly protrude from the surface 105 to the y-axis positive direction side.
  • a connection port 111P for connecting the brake pipe 2a (connected to the discharge port 54P of the master cylinder 5) opens on the surface of the convex portion 10c on the y-axis positive direction side.
  • the motor 8 is installed in a recess (L-shaped as viewed from the z-axis direction) sandwiched between the surface 102 of the first housing portion 10a and the surface 105 of the second housing portion 10b.
  • the rotation shaft 81 of the motor 8 (and the shaft of the motor case 80) is disposed so as to extend in the x-axis direction.
  • the second housing portion 10b has an accommodating concave portion 10d at the center in the positive z-axis direction on the surface 105 side that forms the concave portion (on the negative side in the x-axis direction relative to the connection portion of the first housing portion 10a on the surface 105). It is formed to extend in the x-axis direction.
  • the housing recess 10d has a shape cut out in a substantially arc shape when viewed from the x-axis direction, and is formed to be slightly recessed in the y-axis negative direction side from the surface 105.
  • the accommodating recess 10d accommodates a part (y-axis negative direction side portion) of the peripheral wall (mainly the flange portion 80a in this embodiment) of the motor case 80.
  • a plurality of control valves (electromagnetic valves 21 to 25) and hydraulic pressure sensors 91 to 93 are attached to the surface 104. That is, the surface 104 is a valve mounting surface to which the electromagnetic valve 21 and the like are mounted. On the surface 104, bottomed cylindrical valve mounting holes 121 to 125 for fitting and installing a valve portion such as the solenoid valve 21 and sensor mounting holes 191 to 193 for fitting and installing hydraulic pressure sensors 91 to 93 are installed. Is open.
  • the valve mounting holes 121 to 125 are stepped so as to extend in the y-axis direction from the surface 104 to the inside of the second housing part 10b to a depth of about 1/2 to 2/3 of the y-axis direction dimension of the second housing part 10b.
  • the sensor mounting holes 191 to 193 are formed in a bottomed cylindrical shape so as to extend in the y-axis direction from the surface 104 to the inside of the second housing part 10b to a depth of about 1/4 of the y-axis direction dimension of the second housing part 10b. Is formed.
  • the shut-off valve mounting holes 121S and 121P for fitting and installing the valve portion of the shut-off valve 21 are slightly closer to the negative x-axis direction than the approximate center in the x-axis direction on the surface 104 (the first housing portion 10a relative to the second housing portion 10b). At the z-axis positive direction side and the z-axis negative direction side.
  • the IN valve mounting holes 122FL to 122RR for fitting and installing the valve portion of the IN valve 22 are provided on the x-axis positive direction side of the surface 104 so as to be aligned in the z-axis direction.
  • the IN valve mounting holes 122RL and 122FR are disposed close to the z-axis positive direction side, and the IN valve mounting holes 122FL and 122RR are disposed close to the z-axis negative direction side.
  • the communication valve mounting holes 123S and 123P for fitting and installing the valve portion of the communication valve 23 are on the x-axis negative direction side, z-axis positive direction side and z-axis negative direction side with respect to the shut-off valve mounting hole 121 on the surface 104. Is provided.
  • the communication valve mounting hole 123S is disposed slightly on the negative z-axis direction side with respect to the shut-off valve mounting hole 121S, and the communication valve mounting hole 123P is disposed slightly on the z-axis positive direction side with respect to the shut-off valve mounting hole 121P. Yes.
  • the pressure regulating valve mounting hole 124 for fitting and installing the valve portion of the pressure regulating valve 24 is slightly closer to the x-axis negative direction than the approximate center in the x-axis direction on the surface 104 and is provided at the approximate center in the z-axis direction. .
  • the pressure regulating valve mounting hole 124 is disposed slightly closer to the x-axis positive direction side than the shutoff valve mounting hole 121.
  • the OUT valve mounting holes 125FL to 125RR for fitting and installing the valve portion of the OUT valve 25 are slightly closer to the x-axis positive direction than the approximate center in the x-axis direction on the surface 104 (the IN valve mounting hole 122 and the pressure regulating valve mounting hole 124 Between the z-axis direction and the z-axis direction.
  • OUT valve mounting holes 125RL and 125FR are arranged close to the z-axis positive direction side, and OUT valve mounting holes 125FL and 125RR are arranged close to the z-axis negative direction side.
  • the sensor mounting hole 191 is provided at the positive end in the x-axis direction on the surface 104 and substantially at the center in the z-axis direction.
  • the sensor mounting hole 191 is a position that slightly overlaps the IN valve mounting hole 122 in the x-axis direction, and is disposed between the IN valve mounting holes 122FR and 122FL in the z-axis direction.
  • the sensor mounting holes 192S and 192P are provided in the x-axis negative direction side of the surface 104 and substantially at the center in the z-axis direction.
  • the sensor mounting hole 192 is a position where most of the sensor mounting hole 123 overlaps with the communication valve mounting hole 123 in the x-axis direction, and is disposed between the communication valve mounting holes 123S and 123P in the z-axis direction.
  • the sensor mounting hole 193 is provided at the end in the x-axis negative direction on the surface 104 and substantially at the center in the z-axis direction.
  • the sensor mounting hole 193 is a position that slightly overlaps the sensor mounting hole 192 in the x-axis direction, and is disposed between the sensor mounting holes 192S and 192P in the z-axis direction.
  • a terminal insertion hole 138 for receiving a terminal (electrode) of the motor 8 is opened on the surface 104.
  • the terminal insertion hole 138 extends from the end of the terminal insertion hole 137 in the positive x-axis direction to the inside of the first housing part 10a and the second housing part 10b in the negative y-axis direction and opens on the surface 104.
  • the terminal insertion hole 138 is disposed between the shutoff valve mounting hole 121P, the pressure regulating valve mounting hole 124, and the sensor mounting hole 192P.
  • the valve portion such as the electromagnetic valve 21 is installed such that its valve body and armature protrude in a direction perpendicular to the surface 104 (y-axis negative direction side).
  • the solenoid valve 21 and the like are attached so that its plunger (valve element) operates (reciprocates) in the y-axis direction.
  • the driving direction of the electromagnetic valve 21 and the like is a radial direction of the motor 8 (a direction orthogonal to the rotation shaft 81 of the motor 8).
  • a resin valve case 95 is installed so as to cover the surface 104.
  • the valve case 95 is a bottomed box-shaped first case member, and a solenoid portion such as the electromagnetic valve 21 is fixedly installed therein.
  • Four bottomed holes 133 are formed in the outer edge portion of the surface 104 of the second housing portion 10b.
  • Bolts 33 are inserted into the four corners of the opening of the valve case 95, and these bolts 33 are screwed into the bottomed holes 133, whereby the valve case 95 is fastened and fixed to the surface 104.
  • the valve portion (valve body or armature) of the corresponding valve is accommodated on the inner peripheral side of the solenoid portion.
  • a substrate 94 of the ECU 9 is installed on the surface of the bottom portion of the valve case 95 opposite to the surface 104 (y-axis negative direction side).
  • the substrate 94 is connected to the solenoid portions of the solenoid valves 21 to 25, the hydraulic pressure sensors 91 to 93, and the motor 8 through terminals (electrodes).
  • a resin ECU cover 96 is installed on the bottom of the valve case 95 so as to cover the surface opposite to the surface 104 (y-axis negative direction side).
  • the ECU cover 96 is a second case member that accommodates the substrate 94.
  • connection ports 111FL to 111RR for connecting brake pipes 2FL to 2RR (connected to the wheel cylinder W / C) are opened.
  • the connection ports 111FL to 111RR are arranged in the z-axis direction and closer to the negative y-axis direction of the surface 108.
  • a bottomed hole 130 for fastening and fixing the bolt portion of the insulator 30 is formed in the surface 109 slightly on the positive side in the z-axis direction from the center in the z-axis direction.
  • the bracket 300 is provided so as to be fixedly installed on the vehicle body side (the floor of the engine room), and is fixed to the surfaces 103 and 107 of the first housing portion 10a and the surface 104 of the second housing portion 10b via the insulator 30.
  • a part of the first oil passage 11S (an oil passage 11S-1, 11S-2 and a part of the oil passage 11S-3 described later) is formed inside the first housing portion 10a, and the first housing portion
  • An oil passage relating to the pump 7 attached to 10a that is, a part of the discharge oil passage 13 (oil passages 13-0 to 13-3 and a part of the oil passage 13-4 described later) and the first decompression oil passage 14 Part (a part of an oil passage 14-2 and an oil passage 14-3 described later) is formed.
  • the discharge oil passage 13 is an oil passage through which brake fluid discharged from the pump 7 flows.
  • the first decompression oil passage 14 is also a suction oil passage for absorbing brake fluid to the pump 7.
  • a connecting oil passage (a part of an oil passage 11S-3 and an oil passage 11S-10, which will be described later, and oil passages 11P-1 to 11P) connected to the oil passage of the first housing portion 10a.
  • the electromagnetic valve 21 and the like attached to the second housing portion 10b are driven to connect and disconnect the connection oil passage.
  • the first oil passage 11S is composed of oil passages 11S-1 to 11S-11.
  • the oil passage 11S-1 is formed so as to extend in the y-axis negative direction in the first housing portion 10a from the bottom of the connection port 111S to the vicinity of the end of the fitting recess 10e in the y-axis negative direction (see FIG. 20).
  • the oil passage 11S-2 is formed so as to extend in the negative z-axis direction inside the first housing part 10a from the surface 106 of the first housing part 10a to the vicinity of the fitting recess 10e. Is connected to the y-axis negative direction end of the oil passage 11S-1.
  • the oil passage 11S-3 is fitted in the y-axis positive direction from a position slightly closer to the x-axis negative direction than the center in the x-axis direction on the surface 104 of the second housing portion 10b and closer to the z-axis positive direction than the center in the z-axis direction. It is formed so as to extend inside the first housing portion 10a and the second housing portion 10b to the vicinity of the recess 10e, and its y-axis positive direction end is connected to the z-axis negative direction end of the oil passage 11S-2. .
  • the oil passage 11S-4 extends from the position slightly closer to the x-axis negative direction than the center in the x-axis direction on the surface 106 of the second housing portion 10b and slightly closer to the y-axis negative direction than the center in the y-axis direction. Is formed so as to extend in the negative z-axis direction, and the negative end in the z-axis direction is connected to the oil passage 11S-3.
  • the oil passage 11S-4 is connected to the shut-off valve mounting hole 121S at substantially the center in the z-axis direction.
  • the oil passage 11S-5 is formed so as to slightly extend in the positive y-axis direction from the bottom of the shut-off valve mounting hole 121S to the inside of the second housing portion 10b (see FIGS.
  • the oil passage 11S-6 is slightly closer to the negative x-axis direction than the center in the x-axis direction on the surface 106 of the second housing part 10b (approximately the center in the x-axis direction of the first housing part 10a) and from the position of the y-axis positive direction end.
  • the interior of the second housing portion 10b is formed so as to extend in the z-axis negative direction to the vicinity of the z-axis negative direction end of the shut-off valve mounting hole 121S, and is connected to the oil passage 11S-5 at substantially the center in the z-axis direction. ing.
  • the oil passage 11S-7 extends from the position on the surface 108 of the second housing portion 10b in the positive y-axis direction and closer to the z-axis positive direction (between the connection ports 111RL and 111FR) than the center in the z-axis direction.
  • the second housing portion 10b is formed so as to extend in the negative x-axis direction to a position closer to the negative x-axis direction than the center in the negative x-axis direction (near the negative end of the shut-off valve mounting hole 121S in the negative x-axis direction).
  • the oil passage 11S-7 is connected to the z-axis negative direction end of the oil passage 11S-6 in the vicinity of the x-axis negative direction end.
  • the oil passage 11S-8 is located from the position in the x-axis positive direction side of the surface 106 of the second housing portion 10b in the x-axis positive direction (substantially the center in the x-axis direction of the IN valve mounting hole 122RL) and the y-axis positive direction end. 2
  • the interior of the second housing portion 10b is formed so as to extend in the negative z-axis direction to the z-axis positive direction side (substantially the middle of the IN valve mounting hole 122FR in the z-axis direction) slightly from the z-axis direction center of the housing portion 10b.
  • And is connected to the oil passage 11S-7 at a position in the z-axis direction between the IN valve mounting holes 122RL and 122FR (see FIG.
  • the oil passages 11RL-9 and 11FR-9 are formed so as to extend slightly from the bottom of the IN valve mounting holes 122RL and 122FR in the second housing portion 10b in the y-axis positive direction, respectively. The end is connected to the oil passage 11S-8 (see FIG. 22).
  • the oil passages 11RL-10 and 11FR-10 are respectively connected to the x-axis positive side from the bottom of the connection ports 111RL and 111FR than the center of the second housing portion 10b in the x-axis direction (from the center of the OUT valve mounting hole 125 in the x-axis direction).
  • the second housing portion 10b is formed so as to extend in the x-axis negative direction up to a position slightly closer to the x-axis negative direction (see FIGS.
  • the oil passage 11S-11 is closer to the x-axis negative direction side than the center in the x-axis direction on the surface 106 of the second housing portion 10b (slightly closer to the x-axis positive direction than the center of the communication valve mounting hole 123S in the x-axis direction).
  • the interior of the second housing portion 10b extends in the negative z-axis direction from a position on the negative y-axis side with respect to the center in the y-axis direction to a slightly positive z-axis direction side with respect to the z-axis direction in the second housing portion 10b.
  • the z-axis negative direction end is connected to the bottom of the sensor mounting hole 192S (see FIGS. 20 and 24).
  • the oil passage 11S-11 is connected to the communication valve mounting hole 123S at substantially the center in the z-axis direction.
  • the first oil passage 11P is composed of oil passages 11P-1 to 11P-12.
  • the oil passage 11P-1 extends in the y-axis negative direction from the bottom of the connection port 111P to the y-axis positive side slightly from the y-axis direction center of the second housing part 10b. It is formed (see FIG. 28).
  • the oil passage 11P-2 is located on the surface 107 of the second housing part 10b in the x-axis positive direction end (near the x-axis positive direction end of the IN valve mounting hole 122) and slightly in the y-axis positive direction side from the center in the y-axis direction.
  • the oil path 11P-3 is the x-axis positive direction end (the position overlapping the x-axis positive direction side of the IN valve mounting hole 122 in the x-axis direction) on the surface 104 of the second housing portion 10b and the z-axis from the center in the z-axis direction.
  • the oil passage 11P-3-1 is located on the negative side of the y-axis direction on the surface 108 of the second housing part 10b in the negative y-axis direction (the position of the connection ports 111FL to 111RR in the y-axis direction) and z-axis relative to the center of the z-axis direction.
  • the interior of the housing portion 10b is formed so as to extend in the negative x-axis direction (see FIGS. 22 and 26).
  • the oil passage 11P-4 is slightly on the x-axis negative direction side (substantially the center in the x-axis direction of the first housing part 10a) on the surface 107 of the second housing part 10b and slightly on the y-axis direction side.
  • the interior of the second housing part 10b is formed so as to extend in the positive z-axis direction from the position on the negative side in the axial direction, and the positive end in the z-axis direction is connected to the shut-off valve mounting hole 121P (FIG. 16, FIG. 30).
  • the oil passage 11P-5 extends in the y-axis positive direction from the bottom of the shut-off valve mounting hole 121P to the y-axis negative direction side of the second housing part 10b from the y-axis direction center. It is formed (see FIGS. 20 and 30).
  • the oil passage 11P-6 is slightly in the x-axis negative direction side (substantially the center in the x-axis direction of the first housing portion 10a) on the surface 107 of the second housing part 10b and the y-axis from the center in the y-axis direction.
  • the interior of the second housing part 10b extends in the positive z-axis direction from the position on the positive direction side to the negative z-axis direction (between the connection ports 111FL and 111RR) from the center in the z-axis direction of the second housing part 10b. It is formed (see FIGS. 14 and 30).
  • the oil passage 11P-7 is located on the surface 108 of the second housing portion 10b on the y-axis positive side with respect to the y-axis direction center and on the z-axis negative direction side (between the connection ports 111FL and 111RR) with respect to the z-axis direction center. From the center of the second housing part 10b to the x-axis negative direction side (near the x-axis negative direction end of the shut-off valve mounting hole 121) slightly in the x-axis negative direction. It is formed to extend (see FIGS. 22 and 30). The oil passage 11P-7 is connected to the z-axis positive direction end of the oil passage 11P-6 in the vicinity of the x-axis negative direction end.
  • the oil passage 11P-8 is located on the x-axis positive direction side of the surface 107 of the second housing portion 10b in the x-axis positive direction side (substantially the center of the IN valve mounting hole 122 in the x-axis direction) and y-axis positive side of the y-axis direction center. From the position on the direction side to the position closer to the z-axis negative direction than the center of the second housing part 10b in the z-axis direction (approximately the center of the IN valve mounting hole 122FL in the z-axis direction) It is formed to extend in the direction, and is connected to the oil passage 11P-7 at substantially the center in the z-axis direction (see FIGS. 24 and 30).
  • the oil passages 11FL-9 and 11RR-9 are formed so as to extend slightly from the bottom of the IN valve mounting holes 122FL and 122RR in the second housing part 10b in the y-axis positive direction, respectively. The end is connected to the oil passage 11P-8 (see FIGS. 14 and 30).
  • the oil passages 11FL-12 and 11RR-12 are formed so as to extend in the x-axis negative direction from the bottoms of the connection ports 111FL and 111RR, respectively, and the x-axis negative direction ends are respectively IN They are connected to the valve mounting holes 122FL and 122RR (see FIGS. 24 and 30).
  • the oil passages 11FL-10 and 11RR-10 are respectively connected to the x-axis positive direction side from the bottom of the connection ports 111FL and 111RR in the x-axis direction of the second housing portion 10b (from the center of the OUT valve mounting hole 125 in the x-axis direction).
  • the interior of the second housing portion 10b is formed to extend in the x-axis negative direction to a position slightly closer to the x-axis negative direction (see FIGS. 24 and 30).
  • the oil passages 11FL-10 and 11RR-10 are respectively connected to the peripheral walls of the IN valve mounting holes 122FL and 122RR at intermediate positions in the x-axis direction.
  • connection port 111P ⁇ oil passage 11P-1 to 11P-4 ⁇ shutoff valve mounting hole 121P ⁇ oil passage 11P-5 to 11P-8 ⁇ oil passage 11FL-9, 11RR-9 ⁇ IN valve mounting hole 122FL , 122RR ⁇ oil path 11FL-10, 11RR-10 ⁇ connection port 111FL, 111RR ”in this order.
  • the oil passage 11P-11 is closer to the x-axis negative direction than the center in the x-axis direction on the surface 107 of the second housing portion 10b (slightly closer to the x-axis positive direction than the center in the x-axis direction of the communication valve mounting hole 123S).
  • the interior of the second housing portion 10b extends in the positive z-axis direction from a position on the negative y-axis side with respect to the center in the y-axis direction to a slightly negative z-axis direction side from the center in the z-axis direction with respect to the second housing portion 10b.
  • the z-axis positive direction end is connected to the bottom of the sensor mounting hole 192P (see FIGS. 24 and 30).
  • the oil passage 11P-11 is connected to the communication valve mounting hole 123P at substantially the center in the z-axis direction.
  • the oil passage 11P-12 is formed so as to extend in the y-axis positive direction from the bottom of the sensor mounting hole 191 to the inside of the second housing portion 10b, and its y-axis positive direction end is connected to the oil passage 11P-2. (See FIGS. 22 and 28).
  • the discharge oil passage 13 is composed of oil passages 13-0 to 13-13.
  • the oil passage 13-0 extends from the position on the y-axis negative direction side and the z-axis negative direction side at the bottom of the fitting recess 10e of the first housing portion 10a to the position approximately at the center of the first housing portion 10a in the x-axis direction.
  • One housing portion 10a is formed so as to extend in the negative x-axis direction (see FIG. 22).
  • the oil passage 13-1 extends in the z-axis positive direction from the bottom of the check valve mounting hole 127 to the z-axis negative direction side slightly from the z-axis direction center of the first housing part 10a. (See FIG. 20).
  • the oil path 13-1 is connected to the x-axis positive direction end of the oil path 13-0 and the oil path 13-1 is connected to the bottom of the first damper mounting hole 128. ing.
  • the oil passage 13-2 extends from a position on the surface 103 of the first housing portion 10a approximately in the x-axis direction and on the z-axis negative direction side to a position on the y-axis positive direction side relative to the y-axis direction center of the first housing portion 10a.
  • the first housing portion 10a is formed to extend in the negative y-axis direction (see FIGS. 20 and 24).
  • the oil passage 13-2 is connected to the check valve mounting hole 127 at a substantially central position in the y-axis direction.
  • the y-axis negative direction end of the oil passage 13-2 is connected to the second damper mounting hole 129.
  • the oil passage 13-3 extends from the bottom of the second damper mounting hole 129 to the x-axis positive direction side of the first housing part 10a in the x-axis direction (near the bottom of the fitting recess 10e) and the y-axis of the fitting recess 10e.
  • the interior of the first housing portion 10a is slightly extended in the x-axis negative direction, slightly in the y-axis negative direction, and slightly in the z-axis positive direction to the vicinity of the negative direction side and to a position substantially in the center of the first housing portion 10a in the z-axis direction. (See FIGS. 20 and 30).
  • the oil passage 13-4 is formed so as to extend from the bottom of the pressure regulating valve mounting hole 124 in the second housing portion 10b and the first housing portion 10a in the y-axis positive direction, and the y-axis positive direction end is oil It is connected to the end of the path 13-3 (opposite to the side connected to the second damper mounting hole 129) (see FIGS. 20 and 30).
  • the oil passage 13-5 is formed so as to extend in the negative x-axis direction inside the second housing part 10b from the position in the negative y-axis direction on the surface 108 of the second housing part 10b and the substantially central position in the z-axis direction.
  • the x-axis negative direction end is connected to the oil passage 13-4 (see FIGS. 22 and 28).
  • the oil passage 13-6 has a position near the x-axis negative direction side of the pressure regulating valve mounting hole 124 on the surface 104 of the second housing portion 10b and substantially in the center in the z-axis direction (the pressure regulating valve mounting hole 124 and the sensor mounting holes 192S, 192P To the y-axis positive direction end of the second housing part 10b so as to extend inside the second housing part 10b in the y-axis positive direction, and the y-axis positive direction end is an oil passage 13-5 is connected to the negative end of the x-axis (see FIGS. 26 and 30).
  • the oil passage 13-7 is formed so as to extend in the x-axis positive direction inside the second housing portion 10b from a position substantially in the y-axis direction and substantially in the z-axis direction on the surface 109 of the second housing portion 10b.
  • the x-axis positive direction end is connected to the approximate center of the oil path 13-6 in the y-axis direction (see FIGS. 20 and 30).
  • the oil passage 13-8 is located near the x-axis negative direction end on the surface 107 of the second housing part 10b and slightly closer to the y-axis positive direction than the center in the y-axis direction than the center in the z-axis direction of the second housing part 10b.
  • the interior of the second housing part 10b is formed so as to extend in the z-axis positive direction to the position on the z-axis positive direction side (substantially the center in the z-axis direction of the communication valve mounting hole 123S) (see FIGS. 24 and 30).
  • the x-axis negative direction side of the oil passage 13-7 is connected to the middle position in the z-axis direction of the oil passage 13-8.
  • the oil passage 13S-9 is located near the end in the negative x-axis direction on the surface 104 of the second housing portion 10b (the negative x-axis side of the communication valve mounting hole 123S) and in the positive z-axis direction (communication valve) from the center in the z-axis direction.
  • the interior of the second housing portion 10b extends in the y-axis positive direction from a position substantially in the z-axis direction of the mounting hole 123S to a position slightly closer to the y-axis positive direction than the center of the second housing portion 10b in the y-axis direction. It is formed (see FIGS. 20 and 26).
  • the z-axis positive direction end of the oil path 13-8 is connected to the y-axis positive direction side of the oil path 13S-9.
  • the oil passage 13S-10 is formed on the surface 109 of the second housing portion 10b in the y-axis direction with respect to the y-axis direction and on the z-axis direction with respect to the z-axis center (substantially in the z-axis direction of the communication valve mounting hole 123S).
  • the inside of the second housing portion 10b extends in the positive x-axis direction from the center) position to the x-axis negative direction side (substantially the middle in the x-axis direction of the communication valve mounting hole 123S) from the center in the x-axis direction of the second housing portion 10b. (See FIGS. 20 and 28).
  • the y-axis positive direction end of the oil passage 13S-9 is connected to the x-axis negative direction side of the oil passage 13S-10.
  • the oil passage 13S-11 is formed so as to slightly extend in the y-axis positive direction from the bottom of the communication valve mounting hole 123S to the inside of the second housing portion 10b.
  • the x-axis positive direction end of the oil passage 13S-10 is connected to the oil passage 13S-11.
  • the oil passage 13S-12 is formed so as to extend in the x-axis negative direction and the y-axis negative direction in the second housing portion 10b from the x-axis negative direction end of the oil passage 11S-7 to the communication valve mounting hole 123S. (See FIGS. 26 and 28).
  • the oil passage 13P-9 is near the end in the negative x-axis direction on the surface 104 of the second housing part 10b (the negative x-axis side of the communication valve mounting hole 123P) and on the negative z-axis side (communication valve) from the center in the z-axis direction.
  • the interior of the second housing portion 10b extends in the positive y-axis direction from a position substantially in the z-axis direction of the mounting hole 123P to a position slightly closer to the positive y-axis direction than the center of the second housing portion 10b in the y-axis direction. It is formed (see FIGS. 20 and 26).
  • the z-axis negative direction side of the oil passage 13-8 is connected to the y-axis positive direction side of the oil passage 13P-9.
  • the oil passage 13P-10 is formed on the surface 109 of the second housing part 10b with respect to the y-axis positive direction side with respect to the y-axis positive direction side and with respect to the z-axis negative direction side with respect to the z-axis negative direction side.
  • the inside of the second housing portion 10b extends in the positive x-axis direction from the position of the center) to the position on the negative x-axis side of the second housing portion 10b in the x-axis direction (substantially the middle of the communication valve mounting hole 123P in the x-axis direction). (See FIGS. 20 and 30).
  • the y-axis positive direction end of the oil passage 13P-9 is connected to the x-axis negative direction side of the oil passage 13P-10.
  • the oil passage 13P-11 is formed so as to slightly extend in the positive direction of the y-axis from the bottom of the communication valve mounting hole 123P inside the second housing portion 10b.
  • the x-axis positive direction end of the oil passage 13P-10 is connected to the oil passage 13P-11.
  • the oil passage 13P-12 is formed so as to extend in the x-axis negative direction and the y-axis negative direction from the x-axis negative direction end of the oil passage 11P-7 to the communication valve mounting hole 123P. (See FIGS. 26 and 30).
  • the discharge oil passage 13 is configured in the order of “discharge passage 13 inside the pump housing 72a ⁇ oil passage 13-0 to 13-12 ⁇ communication valve mounting hole 123”.
  • the oil passage 13-13 is formed so as to extend in the y-axis positive direction from the bottom of the sensor mounting hole 193 to the inside of the second housing portion 10b, and its y-axis positive end is connected to the oil passage 13-7. They are connected (see FIGS. 20 and 30).
  • the first decompression oil passage 14 is composed of oil passages 14-1 to 14-3.
  • the oil passage 14-3 is slightly more negative in the x-axis than the center in the x-axis direction of the first housing part 10a from the position in the center in the y-axis direction and the positive side in the z-axis direction at the bottom of the fitting recess 10e of the first housing part 10a.
  • the first housing portion 10a is formed so as to extend in the negative x-axis direction to the position on the direction side (see FIGS. 20 and 28).
  • the oil passage 14-2 is slightly closer to the x-axis negative direction than the center in the x-axis direction on the surface 104 of the second housing portion 10b and slightly closer to the z-axis positive direction than the center in the z-axis direction (the x-axis of the pressure regulating valve mounting hole 124).
  • the interior of the second housing portion 10b and the first housing portion 10a extends in the y-axis positive direction from the position in the negative direction side and in the vicinity of the z-axis positive direction side) and is connected to the x-axis negative direction end of the oil passage 14-3. (See FIGS. 26 and 28).
  • the oil passage 14-1 extends from the peripheral wall of the pressure regulating valve mounting hole 124 on the x-axis negative direction side and z-axis positive direction side to the inside of the second housing portion 10b in the x-axis negative direction, the y-axis positive direction, and the z-axis positive direction. It is formed so as to extend and connect to the negative direction side of the oil path 14-2 (see FIGS. 20 and 26). “(Connection part of oil passage 13-5 in oil passage 13-4 ⁇ ) pressure regulating valve mounting hole 124 ⁇ oil passages 14-1 to 14-3 ⁇ first decompression oil passage 14 inside pump housing 72a”
  • the 1st pressure reduction oil path 14 is comprised.
  • the second decompression oil passage 15 is composed of oil passages 15-1 to 15-3.
  • the oil passage 15-1 slightly extends inside the second housing portion 10b from the bottom of each OUT valve mounting hole 125 to a position slightly closer to the y-axis positive direction than the center of the second housing portion 10b in the y-axis direction. It is formed to extend in the positive direction (see FIGS. 28 and 30).
  • the oil passage 15-2 is on the x-axis positive side of the surface 107 of the second housing portion 10b in the x-axis positive direction side (slightly on the x-axis negative direction side of the OUT valve mounting hole 125 in the x-axis direction) and y From the position slightly closer to the y-axis positive direction than the axial center to the vicinity of the z-axis positive direction end of the second housing part 10b (the z-axis position of the connection port 111RL), the inside of the second housing part 10b is in the z-axis positive direction. (See FIGS. 24 and 30).
  • the y-axis positive direction end of each oil passage 15-1 is connected to the oil passage 15-2.
  • the oil passage 15-3 extends from the middle position of the oil passage 15-2 in the z-axis direction (between the OUT valve mounting holes 125FR and 125FL) in the second housing portion 10b in the negative x-axis direction and the negative y-axis direction. It is connected to the peripheral wall of the pressure regulating valve mounting hole 124 (see FIGS. 26 and 28). “(From the connection part of the IN valve mounting hole 122 to the connection part of the OUT valve mounting hole 125 in the oil passage 11-10 ⁇ the oil passage 15-1 to 15-3 ⁇ the pressure regulation valve mounting hole 124” in this order. A decompression oil passage 15 is configured.
  • the master cylinder unit 1a and the brake device 1b are provided separately (separated). Therefore, the versatility of each of the units 1a to 1b is high, and the brake system can be easily applied to different vehicle types. Moreover, compared with the case where the master cylinder unit 1a and the brake device 1b are integrally formed, the units 1a to 1b can be downsized by the respective methods. Generally, the installation space of each of the units 1a to 1b in the vehicle is limited. However, by reducing the size of these units, the layout flexibility in the vehicle can be improved.
  • oil passages 11, 13 to 15 (hereinafter referred to as the oil passage 11 etc.) through which the brake fluid discharged from the pump 7 flows are formed.
  • the oil passage 11 etc. since it is necessary to arrange
  • the pump 7 is attached to the housing 10 from the outside. That is, the pump 7 is provided outside the housing 10 instead of inside. Therefore, since the installation space of the pump 7 can be omitted inside the housing 10, it is not necessary to arrange the oil passage 11 or the like so as to avoid this installation space. Thereby, the handling of the oil passage 11 and the like can be simplified. Further, since the oil passage 11 and the like can be arranged efficiently by simplifying the handling of the oil passage 11 and the like in this way, useless space in the housing 10 is saved (the inside of the housing 10 is used more effectively). )be able to. Thereby, the whole housing 10 can be made compact and the size and weight of the brake device 1b can be reduced.
  • the “installation space for the pump 7” refers to a space for housing the pump portion such as the gear 74 in the housing 10, and includes a fitting recess 10e for simply fitting one end of the pump housing 72a. Absent.
  • the housing 10 includes a first housing part 10a to which the pump 7 is attached to the surface 101, and a second housing part 10b to which the electromagnetic valve 21 and the like are attached.
  • a control valve (solenoid valve) and a hydraulic pressure sensor are arranged so as to avoid a relatively large-diameter pump arranged at a substantially central portion of the (substantially rectangular parallelepiped) housing, and further, a sewing between them is performed. Since the oil passage was formed inside the housing, the configuration of the oil passage was very complicated. In addition, useless space is generated inside the housing.
  • the solenoid valve 21 and the like and the hydraulic pressure sensors 91 to 93 so as to avoid the installation space of the pump 7 in the second housing portion 10b, and these are disposed in the second housing portion 10b. Can be arranged efficiently. Therefore, the configuration of the oil passage 11 and the like inside the second housing portion 10b can be simplified. Further, it is possible to reduce the size of the second housing portion 10b by omitting a useless space inside the second housing portion 10b.
  • the first housing part 10a to which the pump 7 is attached does not need to be attached with the solenoid valve 21 or the like or the hydraulic pressure sensors 91 to 93, so the first housing part 10a can be downsized.
  • the entire housing 10 can be made smaller and lighter than before.
  • a first housing part 10a to which the pump 7 is attached from the outside, and a second housing part 10b in which an oil passage 11 to which the electromagnetic valve 21 and the like are connected are connected.
  • Divided structurally. Therefore, the degree of freedom in designing the oil passage 11 and the like can be improved.
  • the arrangement of the oil passage 11 and the like inside the second housing portion 10b can be designed without being directly restricted by the positions of the suction portion and the discharge portion of the pump 7. Therefore, the handling of the oil passage 11 and the like inside the housing 10 can be simplified more effectively, and the entire housing 10 can be made compact.
  • the first housing portion 10a includes a surface 102 facing the surface 101, and a motor 8 for driving the pump 7 is attached to the surface 102. Therefore, it is possible to reduce the size and weight of the brake device 1b. That is, for example, compared to the case where the motor 8 is attached to the surfaces 101, 103, 106, and 107 other than the surface 102 of the first housing portion 10a, the pump 7 and the motor 8 are attached to the opposing surfaces 101 and 102, respectively. When viewed from the direction (x-axis direction), the area where the pump 7 and the motor 8 overlap can be increased. Therefore, the projected area of the first housing part 10a viewed from the normal direction (x-axis direction) can be suppressed.
  • the layout of the first housing portion 10a can be improved, and the external dimensions (dimensions in the y-axis direction and the z-axis direction) of the brake device 1b viewed from the normal direction (x-axis direction) can be suppressed.
  • the motor 8 in order to connect the pump 7 (the drive shaft 73a) and the motor 8 (the rotation shaft 81), a predetermined structure is required, and a space for that is required.
  • the motor 8 is attached to the surface 102 opposite to the surface 101 to which the pump 7 is attached, so that the portion sandwiched between the surface 101 and the surface 102 in the first housing portion 10a can be used as the space. .
  • the axial direction of the pump 7 and the axial direction of the motor 8 are both normal directions of the surfaces 101 and 102 (x-axis direction). Therefore, the above-described effects can be improved.
  • the rotation shaft 81 of the motor 8 and the drive shaft 73a of the pump 7 are arranged on substantially the same straight line, and both are located inside the first housing portion 10a (a portion sandwiched between the surface 101 and the surface 102). Connected. Therefore, the area where the pump 7 and the motor 8 overlap can be made as large as possible when viewed from the normal direction (x-axis direction).
  • the size of the first housing portion 10a viewed from the normal direction (x-axis direction) is set to the larger one of the pump 7 and the motor 8 in the radial direction (the motor 8 in this embodiment). This is limited to the size required for this purpose. Therefore, the outer dimensions (dimensions in the y-axis direction and the z-axis direction) of the brake device 1b viewed from the normal direction (x-axis direction) can be suppressed. Further, the distance between the surface 101 and the surface 102 in the first housing portion 10a is set so that the drive shaft 73a of the pump 7 and the rotary shaft 81 of the motor 8 are secured (while ensuring the strength necessary for mounting the motor 8 etc.).
  • the size is limited to a size necessary for accommodating the collar member 730 for connecting the motor and the bearing 81a for supporting the rotating shaft 81 of the motor 8.
  • the thickness (x-axis direction dimension) of the plate-shaped first housing part 10a is made as thin as possible. Thereby, the dimension of the brake device 1b in the x-axis direction can also be suppressed.
  • the first housing portion 10a has a discharge oil passage 13 (one of the oil passages 13-0 to 13-3 and one of the oil passages 13-4) through which brake fluid discharged from the pump 7 flows as a minimum required oil passage. Part) may be formed. Therefore, the distance between the surface 101 and the surface 102 in the first housing part 10a can be limited as much as possible (for example, more than the distance between the surface 104 and the surface 105 in the second housing part 10b).
  • the first pressure reduction oil passage connected to the oil passage (a part of the oil passage 14-1 and the oil passage 14-2) of the second housing portion 10 b and communicating with the pump 7
  • the brake fluid from the master cylinder 5 is connected to the brake pipe 2b (part of the oil passage 14-2 and the oil passage 14-3) and the oil passage of the second housing portion 10b (part of the oil passage 11S-3).
  • a first oil passage (a part of the oil passages 11S-1, 11S-2 and the oil passage 11S-3) for sending to the oil passage 11S-10) is formed inside the first housing portion 10a.
  • the addition of the oil passages 11 and 14 changes the distance between the surface 101 and the surface 102 in the first housing portion 10a. Is not like bringing
  • the second housing portion 10b includes a surface 104 to which the solenoid valve 21 and the like are attached. As described above, in the second housing portion 10b, the solenoid valves 21 and the like are integrated and attached to one surface 104, so that the solenoid valve 21 and the like are provided on the surfaces other than the surface 104 (the surfaces 106 to 109 continuous with the surface 104). Compared to the case where the second housing part 10b (including the solenoid valve 21 etc.) is seen from the normal direction (y-axis direction) of the surface 104, the size (dimensions in the x-axis direction and the z-axis direction) Can be suppressed.
  • the second housing in the normal direction (y-axis direction) of the surface 104 as compared with the case where the electromagnetic valve 21 and the like are attached not only to the surface 104 but also to the surface 105 facing the surface 104.
  • the dimension of the part 10b can also be suppressed. Therefore, it is possible to suppress the external dimensions of the brake device 1b in the above directions (x-axis direction, y-axis direction, and z-axis direction).
  • the layout property of the 2nd housing part 10b with respect to the 1st housing part 10a can be improved by integrating the solenoid valves 21 grade
  • the brake device 1b includes a valve case 95 as a case member that covers the surface 104 of the second housing portion 10b.
  • the valve case 95 is provided with a solenoid portion such as the electromagnetic valve 21 and a board 94 of the ECU 9.
  • the substrate 94 is connected to the solenoid portions of the solenoid valves 21 to 25 through terminals (electrodes). Therefore, a so-called electromechanically integrated brake device 1b in which the electrical connection configuration between the ECU 9 and the hydraulic control mechanism including the hydraulic device (actuator) is simplified can be realized relatively easily.
  • hydraulic pressure sensors 91 to 93 are attached to the surface 104, and the terminals of the motor 8 protrude. Therefore, the same effect as the above can be obtained.
  • a wiring (harness) 35 for supplying a drive current to the terminal (electrode) of the motor 8 may be provided outside the housing 10.
  • terminal insertion holes 137 and 138 for receiving the terminals (electrodes) of the motor 8 are formed inside the housing 10. Therefore, since the connection between the motor 8 and the ECU 9 via the wiring outside the housing 10 can be made unnecessary, the configuration of the brake device 1b can be simplified.
  • the housing 10 can be reduced in size and weight by collecting the solenoid valves 21 and the like and attaching them to one surface 104. That is, as shown in FIG. 25, on the surface 104, the valve mounting holes 121 to 125 and the sensor mounting holes 191 to 193 to which the electromagnetic valves 21 and the hydraulic pressure sensors 91 to 93 are mounted are arranged relatively densely. ing. Thereby, the dimension of the 2nd housing part 10b in each direction (x-axis direction, y-axis direction, and z-axis direction) is made as small as possible.
  • the holes 121 to 125 and 191 to 193 are densely arranged in this way means that the oil passages 11 and the like connected thereto are also densely arranged.
  • the holes 121 to 125 and 191 to 193 are not only arranged close to each other, but also share an oil passage for connecting parts having different functions in the same system (for example, the connection port 111 and the valves 22 and 25).
  • the oil passage 11-10 that connects the two is sufficient, and the oil passage that connects the parts having the same function is shared between the systems (for example, the oil path 15-2 that connects the valves 25 of both systems) Can be arranged efficiently.
  • the configuration of the oil passage 11 and the like is simplified as much as possible.
  • the first housing part 10a and the second housing part 10b are integrally connected.
  • the housing 10 is integrally configured by the first housing part 10a and the second housing part 10b. Therefore, it is not necessary to separately provide a brake pipe for connecting the oil passage (the discharge oil passage 13 and the like) on the first housing portion 10a side and the oil passage 11 and the like on the second housing portion 10b side. Therefore, the configuration of the brake device 1b can be simplified and the size thereof can be reduced.
  • the first housing part 10a and the second housing part 10b are integrally formed. In other words, each housing part 10a, 10b is provided as a part of one housing member configured integrally.
  • the housing 10 is integrally configured by a portion excluding the surface 101 and the surface 102 of the first housing portion 10a and a portion excluding the surface 104 of the second housing portion 10b.
  • the surface excluding the surfaces 101 and 102 of the first housing portion 10a and the surface excluding the surface 104 of the second housing portion 10b are integrally connected. Therefore, while avoiding interference between the pump 7 (attached to the surface 101) and the electromagnetic valve 21 (attached to the surface 104), the area of the surface 101 (where the pump 7 is attached) and the (electromagnetic valve 21 etc. attached) Therefore, the size of the brake device 1b can be reduced.
  • the first housing portion is avoided while avoiding interference between the pump 7 and the motor 8 and the electromagnetic valve 21 and the like. Both the area of the surface 101 and the surface 102 of 10a and the area of the surface 104 of the second housing part 10b can be suppressed.
  • the housing 10 is arranged so that the installation region of the solenoid valve 21 and the like and the pump 7 overlap at least partially when viewed from the normal direction (y-axis direction) of the surface 104 of the second housing portion 10b.
  • the portion excluding the surface 101 and the surface 102 of the first housing part 10a faces the surface 104 of the second housing part 10b. Connected to the side (surface 105 side).
  • the projection area of the brake device 1b seen from the said normal line direction (y-axis direction) can be made small, and the external dimension (dimension in the x-axis direction and z-axis direction) can be suppressed.
  • the portion of the first housing portion 10a excluding the surface 101 and the surface 102 is connected to the portion of the second housing portion 10b excluding the surface 104 and the surface 105 (any one of the surfaces 106 to 109).
  • the present embodiment connected to the surface 105 side of the second housing portion 10b increases the outer dimension of the housing 10 in the normal direction (y-axis direction) of the surface 104, but the normal direction ( The external dimensions (dimensions in the x-axis direction and the z-axis direction) of the brake device 1b viewed from the y-axis direction can be suppressed.
  • the maximum values of the outer dimensions of the brake device 1b in all directions of the x axis, the y axis, and the z axis are compared, the maximum value can be made smaller in the present embodiment than in the above case. In other words, the external dimensions in either direction will not be too large).
  • the external dimension in each direction of the brake device 1b can be suppressed with a better balance in the present embodiment than in the above case.
  • the dimension is larger than the dimension in the linear direction (y-axis direction) (in other words, the second housing portion 10b is a flat plate shape in which the valve mounting surface 104 has the maximum area among the surfaces 104 to 109). to cause.
  • the housing 10 when viewed from the normal direction (y-axis direction) of the surface 104 of the second housing portion 10b, the housing 10 is arranged such that the installation region of the electromagnetic valve 21 and the like, the pump 7 and the motor 8 are at least partially overlapped. Configured. Specifically, when viewed from the normal direction (y-axis direction), the surface 101 and the surface 102 of the first housing portion 10a are within the surface 104 (and the surface 105 opposite thereto) of the second housing portion 10b. In other words, a predetermined (greater than zero) distance is formed between the surfaces 101 and 102 and the outer edge of the surface 104 (surface 105).
  • the installation region of the solenoid valve 21 and the like, and the pump 7 and the motor 8 overlap at least partially, so that the normal direction (y-axis direction) can be seen.
  • the outer dimensions of the brake device 1b can be suppressed.
  • the area where the installation area (surface 104) of the solenoid valve 21 and the pump 7 overlaps, and the installation area (surface 104) of the solenoid valve 21 and the like The total area with the area where the motor 8 overlaps is as small as possible. Thereby, the external dimension of the brake device 1b seen from the said normal line direction (y-axis direction) is suppressed as much as possible.
  • the degree of freedom in designing the oil passage 11 and the like can be improved. That is, suppose a case where both the pump 7 and the motor 8 are attached to the surface 101 side (for example, the axes of the pump 7 and the motor 8 are aligned). In this case, as described above, the total area where the installation region (surface 104) of the solenoid valve 21 and the like overlaps with the pump 7 and the motor 8 when viewed from the normal direction (y-axis direction) of the surface 104 of the second housing portion 10b.
  • connection position with respect to the 2nd housing part 10b of the 1st housing part 10a will be limited to the outer edge side instead of the position of the intermediate
  • the connection position of the first housing part 10a (the internal oil passage) with respect to the second housing part 10b is relatively limited under the requirement of suppressing the total area. Absent. Therefore, the degree of freedom in designing the oil passage 11 and the like of the second housing portion 10b can be improved.
  • the portion excluding the surface 101 and the surface 102 of the first housing part 10a is connected to the side (surface 105 side) facing the surface 104 of the second housing part 10b, and the axial direction of the pump 7
  • the axial direction of the motor 8 is the normal direction (x-axis direction) of the surface 101 and the surface 102 of the first housing portion 10a.
  • the second housing portion 10b is disposed on the radial direction side rather than the axial direction side of the pump 7 and the motor 8.
  • the axial directions of the pump 7 and the motor 8 are substantially parallel to the surface 104 and the surface 105 of the second housing portion 10b.
  • the electromagnetic valve 21 and the like are attached to the surface 104 of the second housing portion 10b and are driven in a direction substantially orthogonal to the surface 104. That is, the electromagnetic valve 21 and the like are attached so as to operate in the radial direction of the motor 8 (direction orthogonal to the rotation shaft 81 of the motor 8). Therefore, the pump 7, the motor 8, the electromagnetic valve 21 and the like are efficiently arranged with respect to the housing 10, and the outer dimensions of the brake device 1b in each of the x-axis, y-axis, and z-axis directions are suppressed in a balanced manner.
  • the brake device 1b can be reduced in size.
  • the axial direction of the pump 7 and the motor 8 is not substantially orthogonal to the surface 104 and the surface 105 but arranged substantially parallel to each other, and the size of the first housing portion 10a when viewed from the axial direction of the pump 7 and the motor 8 (
  • the dimension in the y-axis direction and the z-axis direction) is limited to the size necessary for mounting the larger one in the radial direction (the motor 8 in this embodiment) of the pump 7 and the motor 8.
  • the external dimension of the brake device 1b in the direction (y-axis direction) orthogonal to the surface 104 and the surface 105 can be suppressed.
  • the size of the second housing portion 10b (dimensions in the x-axis direction and the z-axis direction) is suppressed as viewed from the operation direction of the electromagnetic valve 21 and the like, and the installation area (surfaces 104 and 105) of the electromagnetic valve 21 and the like ),
  • the pump 7 and the motor 8 can be overlapped, so that the outer dimensions of the brake device 1b viewed from the operation direction can be suppressed.
  • the accommodating recess 10d formed in the second housing part 10b accommodates a part of the peripheral wall (including the flange part 80a) of the motor case 80. Therefore, as compared with the case where the housing recess 10d is not formed in the second housing portion 10b, the outer dimensions of the brake device 1b as a whole are suppressed by the amount that the peripheral wall of the motor case 80 is housed in the housing recess 10d, and the size is reduced.
  • the second housing portion 10b is basically a rectangular parallelepiped.
  • the oil passage 11 and the like are formed linearly.
  • the oil passage 11 or the like is formed so as to be substantially parallel to each side of the second housing portion 10b, and the distance between the oil passage 11 or the like, or between the oil passage 11 and the second housing portion 10b. If the distance between each surface 105 and the like is made as short as possible (in other words, the oil passage 11 and the like are more closely packed), the space inside the second housing part 10b is efficiently used, and the second housing part 10b can be miniaturized. Even in this case, it is possible to create a space for forming the housing recess 10d in a portion of the second housing portion 10b that faces the motor 8 (the peripheral wall of the motor case 80).
  • the oil is close to the surface 105 in the y-axis negative direction at approximately the center in the z-axis direction on the x-axis positive direction side of the connection portion of the first housing portion 10a on the surface 105.
  • the path 13-5 is formed, on the x-axis negative direction side with respect to the connecting portion, an oil path is formed in the approximate center of the z-axis and close to the surface 105 in the negative y-axis direction. Therefore, the surface 105 can be recessed in the negative y-axis direction at this portion.
  • the brake device 1b can be further reduced in size.
  • an accommodation recess for accommodating a part of the pump case 7a is provided on the surface 105 of the second housing portion 10b on the x-axis positive direction side of the connection portion of the first housing portion 10a.
  • the accommodating recess may accommodate not only a part of the peripheral wall of the motor case 80 but also a part of the peripheral wall of the pump case 7a together with a part of the peripheral wall of the motor case 80 (for example, more than the motor 8).
  • the radial dimension of the pump 7 is large). In this case as well, the outer dimensions of the brake device 1b can be suppressed in the same manner as described above.
  • the housing recess 10d is formed on the surface 105 side of the second housing part 10b, the outer dimensions of the brake device 1b in the normal direction (y-axis direction) of the surface 104 of the second housing part 10b can be suppressed. That is, in the present embodiment, since the portion excluding the surface 101 and the surface 102 of the first housing part 10a is connected to the side (the surface 105 side) facing the surface 104 of the second housing part 10b, the motor is attached to the surface 105. 8 are arranged to face each other. For this reason, the outer dimension of the brake device 1b may increase in the normal direction (y-axis direction). On the other hand, by forming the housing recess 10d on the surface 105 side, the direction (y-axis direction) The increase in the external dimension can be suppressed.
  • the axial directions of the pump 7 and the motor 8 are both the normal direction (the x-axis direction) of the surface 101 and the surface 102 of the first housing portion 10a
  • the axial direction of the pump 7 and the motor 8 is the second housing.
  • the peripheral walls extending substantially in the x-axis direction of the motor case 80 and the pump case 7a are arranged so as to face the surface 105 in parallel with the surface 105 of the portion 10b.
  • the accommodating recess 10d accommodates at least a part of the flange portion 80a (the y-axis negative direction side portion) of the motor case 80.
  • a driven gear 74b (driven shaft) that meshes with the driving gear 74a with respect to a driving gear 74a (driven shaft 73a) disposed substantially coaxially with the rotating shaft 81 of the motor 8. 73b) is offset.
  • the housing recess 10d is formed in a portion of the surface 105 facing the peripheral wall of the motor case 80 to accommodate the peripheral wall, while the housing recess is not formed in a portion facing the peripheral wall of the pump case 7a.
  • the driven gear 74b is arranged on the negative side of the y-axis with respect to the drive gear 74a (the space between the drive gear 74a and the surface 105 of the second housing portion 10b), the driven gear 74b is placed in the space.
  • the space required for the arrangement cannot be secured, and the surface 105 and the pump 7 (pump case 7a) may interfere with each other.
  • the driven gear 74b is arranged on the y-axis positive direction side (the side opposite to the second housing portion 10b) with respect to the drive gear 74a.
  • the drive gear 74a is disposed at a position sandwiched between the driven gear 74b and the second housing portion 10b.
  • the z-axis position at the center of the drive gear 74a is substantially equal to the z-axis position at the center of the driven gear 74b.
  • the driven gear 74b is positioned in the positive z-axis direction with respect to the drive gear 74a. You may arrange
  • the radial dimension of the motor 8 is larger than the radial dimension of the pump 7.
  • the pump 7 is suppressed from protruding outward in the radial direction from the outer edge of the motor 8 on the driven gear 74 b side (offset with respect to the rotating shaft 81 of the motor 8).
  • the pump 7 when viewed from the axial direction (x-axis direction) of the pump 7 and the motor 8, the pump 7 is provided so that almost the entire range thereof overlaps the motor 8. Therefore, the size of the surface 102 (and the surface 101) of the first housing portion 10a can be limited to a size necessary for mounting the motor 8.
  • the dimension of the first housing portion 10a in the y-axis direction can be further shortened by the amount that accommodates a part of the peripheral wall of the case 80 in the housing recess 10d. Therefore, the housing 10 can be reduced in size and the weight thereof can be reduced, and the brake device 1b can be further reduced in size and weight.
  • the drive gear 74a (drive shaft 73a) is disposed substantially coaxially with the rotation shaft 81 of the motor 8
  • the pump 7 is on the side of the driven gear 74b (offset with respect to the rotation shaft 81 of the motor 8).
  • the motor 8 protrudes radially outward from the outer edge.
  • the driven gear 74b is arranged on the y-axis negative direction side (position between the drive gear 74a and the second housing portion 10b) with respect to the drive gear 74a, and the surface 105 of the second housing portion 10b.
  • a housing recess may be formed in the housing, and the housing recess may be provided so as to receive a part of the peripheral wall of the pump case 7a (which protrudes to the y axis negative direction side from the outer edge of the motor 8).
  • the dimension of the brake device 1b in the y-axis direction can be suppressed by accommodating at least part of the peripheral wall (including the flange portion 70a) of the pump case 7a.
  • the entire brake device 1b can be reduced in size by efficiently arranging the pump 7 (positional relationship between the gears 74a and 74b).
  • the pump 7 includes a connection port 7b for supplying brake fluid from the outside (brake pipe 2c) to the inside (reservoir 120) of the pump case 7a, integrally with the pump case 7a. That is, the brake fluid is provided from the master cylinder unit 1a (reservoir tank 50) to the inside of the pump case 7a (pump unit 7c) via the brake pipe 2c and the connection port 7b. Therefore, the suction of the brake fluid from the outside of the brake device 1 b by the pump 7 can be easily performed without using the housing 10. That is, it is not necessary to form the oil passage for the suction inside the housing 10. Therefore, the housing 10 can be downsized.
  • the reservoir 120 is provided not only on the master cylinder unit 1a side (reservoir tank 50) but also on the brake device 1b side.
  • the reservoir 120 is supplied with the brake fluid supply source (to the pump 7) and the wheel cylinder W / Functions as a discharge destination (from C).
  • the wheel cylinder hydraulic pressure increase / decrease control by the brake device 1b can be continued even in the event of failure.
  • the reservoir 120 may be provided inside the housing 10. However, in this case, it is necessary to prepare a large space inside the housing 10 in order to make the reservoir 120 have a sufficient capacity.
  • the reservoir 120 is provided not on the housing 10 but on the pump 7 side. Therefore, it is possible to reduce the size of the housing 10 and facilitate the layout inside the housing 10 while obtaining the reservoir 120 having a sufficient capacity.
  • the reservoir 120 is configured inside the pump case 7a (between the outer periphery of the pump unit 7c and the inner periphery of the pump case 7a). Therefore, a sufficiently large reservoir 120 can be provided relatively easily. Further, the increase in the size of the pump 7 due to the provision of the reservoir 120 does not cause an increase in the size of the entire brake device 1b.
  • a housing 10 having an oil passage 11 and the like through which brake fluid discharged from the pump 7 circulates is formed.
  • the housing 10 has a pump 101 attached to a surface 101 (first surface).
  • the first housing portion 10a includes a surface 102 (second surface) facing the surface 101 (first surface), and a motor 8 for driving the pump 7 is attached to the surface 102. Yes.
  • the first housing portion 10a includes a surface 102 (second surface) facing the surface 101 (first surface), and a motor 8 for driving the pump 7 is attached to the surface 102.
  • the second housing portion 10b includes a surface 104 (first surface) to which control valves (solenoid valves 21 to 25) are attached.
  • the housing 10 excludes the surface 101 and the surface 102 of the first housing portion 10a.
  • the motor 8 includes a cylindrical motor case 80, and the pump 7 includes a pump case 7a that accommodates the pump portion therein.
  • the second housing portion 10b is formed with an accommodation recess 10d for accommodating a part of at least one of the peripheral walls of the cases 80 and 7a.
  • the pump 7 is an external gear pump provided with a drive shaft 73a that is rotationally driven by the motor 8, a drive gear 74a that rotates integrally with the drive shaft 73a, and a driven gear 74b that meshes with the drive gear 74a.
  • the drive gear 74a is disposed at a position sandwiched between the driven gear 74b and the second housing portion 10b. Therefore, even when a circumscribed type is adopted as the pump 7, the size of the brake device 1b can be reduced.
  • FIGS. 31 to 36 show the entire brake device 1b of the second embodiment from the same directions as in FIGS.
  • the brake device 1b of the present embodiment mainly includes a point in which the first housing part 10a and the second housing part 10b are configured separately, and the axes of the pump 7 and the motor 8 are not in the x-axis direction, but in the z-direction.
  • the brake device 1b is different from the brake device 1b of the first embodiment in that it is arranged so as to extend in the axial direction.
  • the brake device 1b according to the present embodiment was changed in direction so that the surfaces 102 and 109 of the housing 10 of the brake device 1b according to the first embodiment faced the z-axis negative direction side (the brake according to the first embodiment as viewed from the y-axis positive direction side).
  • Device 1b is rotated 90 degrees counterclockwise).
  • the pump 7 and the motor 8 are vertically arranged.
  • the bracket 300 is fixed to the surface 109 of the second housing portion 10b, and is provided so as to be fixedly installed on the vehicle body side (the floor of the engine room) via the insulator 30.
  • the axial end of the motor 8 (motor housing 80) that protrudes in the negative z-axis direction from the surface 109 of the second housing part 10b passes through a hole provided in the bracket 300.
  • the connection port 7b of the pump 7 is provided so as to protrude and extend from the z-axis positive direction end of the peripheral wall of the pump case 7a extending in the z-axis direction to the x-axis negative direction side and the y-axis negative direction side.
  • the pump case 7a is fixedly installed on the surface 101 with bolts 31 at two places instead of the three places as in the first embodiment.
  • the pump 7 is cantilevered on the surface 101 at one end in the axial direction (end in the x-axis negative direction). This is because the mounting strength of the pump 7 is not so much required as compared with the supporting Example 1.
  • the first housing portion 10a and the second housing portion 10b configured separately are integrally connected and integrated via a fixing member (constitute one housing 10).
  • the first housing part 10a has two connection parts 10i for connecting and fixing the first housing part 10a to the second housing part 10b.
  • the connecting portions 10i are provided at both ends in the x-axis direction at the end of the surface 101 on the y-axis negative direction side so as to protrude and extend in the z-axis positive direction from the surface 101, and are formed integrally with the first housing portion 10a. ing.
  • Bolt holes are formed through the connecting portion 10i in the y-axis direction.
  • a bottomed hole for fastening the connecting part 10i to the second housing part 10b by a bolt 36 as a fixing member is formed at a position corresponding to the bolt hole.
  • the bolt 36 inserted through the bolt hole of the connecting portion 10i is in the state where the surface of the first housing portion 10a including the connecting portion 10i is in contact with the surface 105 of the second housing portion 10b. Screw into the hole. As a result, the first housing portion 10a is fixedly installed on the surface 105.
  • a part of the discharge oil passage 13 formed inside the first housing portion 10a and a part of the first pressure reduction oil passage 14 are formed in the oil passage 13 formed inside the second housing portion 10b. , 14 are connected to each other, and oil passages 13, 14 are formed between the housing portions 10a, 10b.
  • the brake device 1b of the present embodiment does not include the dampers 28 and 29 as in the first embodiment.
  • the first housing portion 10a is not formed with the damper mounting holes 128 and 129 as in the first embodiment. Further, the connection port 111S and the first oil passage 11S are not formed in the first housing part 10a as in the first embodiment.
  • the corners at both ends in the x-axis direction at the end of the first housing portion 10a on the y-axis positive direction side are cut out in a planar shape, and two cut-out surfaces 103a are formed.
  • convex portions 10c are formed at both ends in the x-axis direction at the end on the z-axis positive direction side of the surface 105.
  • the convex portion 10c has a substantially rectangular shape when viewed from the y-axis positive direction side, and is formed so as to slightly protrude from the surface 105 to the y-axis positive direction side.
  • connection ports 111P and 111S are opened at both ends in the x-axis direction at the end of the surface 108 on the y-axis positive direction side so as to straddle the surface on the z-axis positive direction side of the convex portion 10c. .
  • both housing portions 10a and 10b can be integrated relatively easily.
  • a member other than a bolt may be used as the fixing member, or the housing portions 10a and 10b may be integrally fixed using a configuration (welding or the like) other than the fixing member.
  • the first housing portion 10a is not formed with the damper mounting holes 128, 129, the connection port 111S, and the first oil passage 11S, but has a notch surface 103a. As a result, the first housing portion 10a can be reduced in size and weight.
  • the same effect as that of the first embodiment is obtained by the same configuration as that of the first embodiment.
  • the effects are described below.
  • the first housing portion 10a and the second housing portion 10b are configured separately, and the first housing portion 10a includes a surface 102 (second surface) that faces the surface 101 (first surface).
  • the second housing portion 10b includes a surface 104 (first surface) on which control valves (solenoid valves 21 to 25) are attached, and a surface excluding the surface 101 and the surface 102 of the first housing portion 10a (y
  • the surface on the negative axis side) and the surface (surface 105) excluding the surface 104 of the second housing portion 10b are integrally connected. Therefore, it is possible to reduce the size and weight of the brake device 1b.
  • the brake device 1b (brake system) of the embodiment is suitable for a vehicle that can generate a regenerative braking force, but can also be applied to other vehicles (non-electric vehicles that use only an engine as a drive source).
  • the configuration of the master cylinder unit 1a is not limited to that of the embodiment.
  • another type of booster such as a master back may be provided.
  • the arrangement of the brake device 1b in the vehicle (the arrangement in the axial direction of the pump 7 and the motor 8, the layout of the first housing portion 10a and the second housing portion 10b, etc.) is not limited to that of the embodiment.
  • the circuit configuration of the oil passage of the brake device 1b and the control configuration of the ECU 9 are not limited to those of the embodiment.
  • the arrangement configuration of the first housing portion 10a and the second housing portion 10b in the housing 10 is not limited to that of the embodiment.
  • the specific arrangement of the oil passage in the housing 10 is not limited to that of the embodiment, and an optimum arrangement can be selected according to the circuit configuration of the oil passage.
  • the pump 7 is not limited to a circumscribed type, and is not limited to a gear pump. Whether or not the reservoir 120 and the connection port 7b are provided is arbitrary.
  • a housing having an oil passage through which brake fluid discharged from the pump flows is formed.
  • the housing includes a first housing part having the pump attached to a first surface;
  • a brake device comprising: a second housing portion to which a control valve driven to connect and disconnect the oil passage is attached.
  • the first housing part includes a second surface facing the first surface, A motor for driving the pump may be attached to the second surface.
  • the second housing part includes a first surface to which the control valve is attached, The housing is integrally formed by a portion of the first housing portion excluding the first surface and the second surface and a portion of the second housing portion excluding the first surface. Also good.
  • the first housing part and the second housing part are configured separately, The first housing part includes a second surface facing the first surface, The second housing part includes a first surface to which the control valve is attached, The surface excluding the first surface and the second surface of the first housing part and the surface excluding the first surface of the second housing part may be integrally connected. Good.
  • the first housing portion is connected to the oil passage of the second housing portion, and an intake oil passage for absorbing brake fluid to the pump; A discharge oil passage through which brake fluid discharged from the pump flows may be formed.
  • the first housing part and the second housing part may be integrated via a fixing member.
  • the first housing part includes a second surface facing the first surface
  • a motor for driving the pump is attached to the second surface
  • the second housing part includes a first surface to which the control valve is attached
  • the housing is configured integrally with a portion of the first housing portion excluding the first surface and the second surface and a portion of the second housing portion excluding the first surface
  • the motor includes a cylindrical motor case
  • the pump includes a pump case that houses a pump portion therein
  • the second housing part may be formed with a housing recess that houses a part of at least one peripheral wall of the case.
  • the pump is an external gear pump including a drive shaft that is rotationally driven by a motor, a drive gear that rotates integrally with the drive shaft, and a driven gear that meshes with the drive gear, The drive gear may be disposed at a position sandwiched between the driven gear and the second housing part.
  • the motor includes a cylindrical motor case, The second housing part may be formed with a housing recess that houses a part of the peripheral wall of the motor case.
  • the pump includes a pump case that houses a pump part therein, A connection port for supplying brake fluid from the outside to the inside of the pump case via the pump case may be provided.
  • a reservoir may be provided inside the pump case.
  • the control valve may be mounted so as to be driven in a radial direction of a motor for driving the pump and in a direction orthogonal to the rotation axis of the motor.
  • a pump that operates so as to generate a wheel cylinder hydraulic pressure corresponding to an operation amount of the brake operation member;
  • An oil passage through which the brake fluid discharged from the pump flows is formed, and a first housing portion having a pump mounting surface to which the pump is mounted;
  • a brake device comprising: a second housing portion having a valve mounting surface to which a control valve driven to connect and disconnect the oil passage is mounted.
  • a motor for driving the pump; A motor mounting surface to which the motor is mounted may be provided on a surface facing the pump mounting surface.
  • the second housing part may be formed integrally with the first housing part on a surface side facing the valve mounting surface.
  • the motor includes a cylindrical motor case, An accommodation recess for accommodating a part of the peripheral wall of the motor case may be formed on the surface of the second housing portion that faces the valve mounting surface.
  • the pump may include a pump case that houses a pump unit therein, and may include a reservoir inside the pump case.
  • a first housing part in which an oil passage is formed, a pump is attached to a first surface of two surfaces facing each other, and a motor for driving the pump is attached to a second surface;
  • a connection oil passage that is connected to the oil passage is formed therein, and a control valve for connecting and disconnecting the connection oil passage is attached to the attachment surface of two surfaces of the attachment surface and the fixing surface facing each other, and the fixing surface
  • a second housing part fixed integrally with the first housing part via
  • a brake device comprising: a case member that covers the mounting surface of the second housing portion.
  • the motor includes a cylindrical motor case, An accommodation recess for accommodating a part of the peripheral wall of the motor case may be formed in the second housing portion.
  • the pump is an external gear pump including a drive shaft that is rotationally driven by the motor, a drive gear that rotates integrally with the drive shaft, and a driven gear that meshes with the drive gear,
  • the brake device wherein the drive gear is disposed at a position sandwiched between the driven gear and the second housing part.
  • Patent Document 1 All disclosures including the specification, claims, drawings and abstract of Japanese Patent Publication No. 2006-8107 (Patent Document 1) are incorporated herein by reference in their entirety.

Abstract

 The present invention provides a brake system of which an oil passage can be simplified. A brake system is provided with a housing (10) inside of which is formed an oil passage (11) or the like for channeling therein brake fluid discharged from a pump (7), the housing (10) comprising a first housing part (10a) having a first surface (101) to which the pump (7) is attached, and a second housing part (10b) to which are attached control valves (21-25) driven in order to connect and disconnect the oil passage (11) or the like.

Description

ブレーキ装置Brake device
 本発明は、ブレーキ装置に関する。 The present invention relates to a brake device.
 従来、車両用のブレーキ装置が知られている。例えば特許文献1に記載のブレーキ装置は、ハウジングにポンプが内蔵されると共に、ブレーキ液が流通する油路が上記ハウジングの内部に形成されている。 Conventionally, a brake device for a vehicle is known. For example, in the brake device described in Patent Document 1, a pump is built in a housing, and an oil passage through which brake fluid flows is formed inside the housing.
特開2006-8107号公報JP 2006-8107 A
 しかし、従来のブレーキ装置では、油路が複雑となるおそれがあった。本発明の目的とするところは、油路の簡素化を図ることができるブレーキ装置を提供することにある。 However, in the conventional brake device, the oil path may be complicated. An object of the present invention is to provide a brake device capable of simplifying an oil passage.
 上記目的を達成するため、本発明のブレーキ装置では、油路が内部に形成されたハウジングに対してポンプを外から取り付けた。 In order to achieve the above object, in the brake device of the present invention, the pump is attached from the outside to the housing in which the oil passage is formed.
 よって、油路の簡素化を図ることができる。 Therefore, the oil passage can be simplified.
実施例1のブレーキシステムの模式図であり、マスタシリンダユニット1aの断面とブレーキ装置1bの油路の回路構成を示す。It is a schematic diagram of the brake system of Example 1, and shows the circuit structure of the cross section of the master cylinder unit 1a, and the oil path of the brake device 1b. 実施例1のブレーキ装置1bの斜視図である。It is a perspective view of the brake device 1b of Example 1. FIG. 実施例1のブレーキ装置1bの上面図である。It is a top view of the brake device 1b of Example 1. 実施例1のブレーキ装置1bの斜視図である。It is a perspective view of the brake device 1b of Example 1. FIG. 実施例1のブレーキ装置1bの側面図である。It is a side view of the brake device 1b of Example 1. 実施例1のブレーキ装置1bの正面図である。It is a front view of the brake device 1b of Example 1. 実施例1のブレーキ装置1bの背面図である。It is a rear view of the brake device 1b of Example 1. 実施例1のブレーキ装置1bの分解斜視図である。It is a disassembled perspective view of the brake device 1b of Example 1. FIG. 実施例1のブレーキ装置1bの分解斜視図である。It is a disassembled perspective view of the brake device 1b of Example 1. FIG. 実施例1のブレーキ装置1bの断面図である。It is sectional drawing of the brake device 1b of Example 1. FIG. 実施例1のハウジング10の斜視図である。1 is a perspective view of a housing 10 of Example 1. FIG. 図11のハウジング10の透視図である。FIG. 12 is a perspective view of the housing 10 of FIG. 11. 実施例1のハウジング10の斜視図である。1 is a perspective view of a housing 10 of Example 1. FIG. 図13のハウジング10の透視図である。FIG. 14 is a perspective view of the housing 10 of FIG. 13. 実施例1のハウジング10の斜視図である。1 is a perspective view of a housing 10 of Example 1. FIG. 図15のハウジング10の透視図である。FIG. 16 is a perspective view of the housing 10 of FIG. 15. 実施例1のハウジング10の斜視図である。1 is a perspective view of a housing 10 of Example 1. FIG. 図17のハウジング10の透視図である。FIG. 18 is a perspective view of the housing 10 of FIG. 17. 実施例1のハウジング10の背面図である。FIG. 3 is a rear view of the housing 10 according to the first embodiment. 図19のハウジング10の透視図である。FIG. 20 is a perspective view of the housing 10 of FIG. 19. 実施例1のハウジング10の正面図である。1 is a front view of a housing 10 of Example 1. FIG. 図21のハウジング10の透視図である。FIG. 22 is a perspective view of the housing 10 of FIG. 21. 実施例1のハウジング10の側面図である。1 is a side view of a housing 10 of Example 1. FIG. 図23のハウジング10の透視図である。FIG. 24 is a perspective view of the housing 10 of FIG. 23. 実施例1のハウジング10の側面図である。1 is a side view of a housing 10 of Example 1. FIG. 図25のハウジング10の透視図である。FIG. 26 is a perspective view of the housing 10 of FIG. 25. 実施例1のハウジング10の上面図である。1 is a top view of a housing 10 of Example 1. FIG. 図27のハウジング10の透視図である。FIG. 28 is a perspective view of the housing 10 of FIG. 27. 実施例1のハウジング10の下面図である。3 is a bottom view of the housing 10 of Embodiment 1. FIG. 図29のハウジング10の透視図である。FIG. 30 is a perspective view of the housing 10 of FIG. 29. 実施例2のブレーキ装置1bの斜視図である。It is a perspective view of the brake device 1b of Example 2. FIG. 実施例2のブレーキ装置1bの上面図である。It is a top view of the brake device 1b of Example 2. 実施例2のブレーキ装置1bの斜視図である。It is a perspective view of the brake device 1b of Example 2. FIG. 実施例2のブレーキ装置1bの側面図である。It is a side view of the brake device 1b of Example 2. 実施例2のブレーキ装置1bの正面図である。It is a front view of the brake device 1b of Example 2. 実施例2のブレーキ装置1bの背面図である。It is a rear view of the brake device 1b of Example 2.
 以下、本発明のブレーキ装置を実現する形態を、図面に基づき説明する。 Hereinafter, modes for realizing the brake device of the present invention will be described with reference to the drawings.
 [実施例1] まず、構成について説明する。図1は、本実施例の制動系(ブレーキシステム)を模式的に示す。ブレーキシステムは液圧式であり、車両の各車輪にブレーキ液圧を付与して制動力を発生させる。車両の各車輪に設けられたホイルシリンダ(キャリパ)W/Cは、制動操作液圧や制御液圧の供給を受けてブレーキ作動液圧(ホイルシリンダ液圧)を発生する。ブレーキシステムは、マスタシリンダユニット1aとブレーキ装置1bを備えている。図1では、マスタシリンダユニット1aの断面を示す。マスタシリンダユニット1aは、運転者のブレーキ操作が入力される入力装置であり、運転者のブレーキ操作に応じて作動して制動操作液圧としてのマスタシリンダ液圧を発生する。ブレーキ装置1bは、マスタシリンダユニット1aとは別体に設けられ、運転者のブレーキ操作に応じた電気信号に基づいてブレーキ液圧を発生可能な電動アクチュエータであり、ブレーキ操作状態又は車両の状態に応じて制御液圧を発生する。図1では、ブレーキ装置1bの油路の回路構成を示す。ブレーキシステムは、2系統(プライマリP系統及びセカンダリS系統)の油路を有している。以下、各系統に対応して設けられた部材や構造にはその符号の末尾に添字P,Sを付して区別する。本実施例のブレーキシステム(ブレーキ装置1b)が適用される車両は、例えば、車輪を駆動する原動機としてエンジン(内燃機関)のほか電動式のモータ(ジェネレータ)を備えたハイブリッド車や、モータ(ジェネレータ)のみを備えた電気自動車等の、電動機により回生制動力を発生可能な電動車両である。 [Example 1] First, the configuration will be described. FIG. 1 schematically shows a braking system (braking system) of this embodiment. The brake system is a hydraulic system, and applies a brake hydraulic pressure to each wheel of the vehicle to generate a braking force. A wheel cylinder (caliper) W / C provided on each wheel of the vehicle generates brake operating fluid pressure (wheel cylinder fluid pressure) in response to supply of braking operation fluid pressure or control fluid pressure. The brake system includes a master cylinder unit 1a and a brake device 1b. FIG. 1 shows a cross section of the master cylinder unit 1a. The master cylinder unit 1a is an input device to which a driver's brake operation is input, and operates according to the driver's brake operation to generate a master cylinder fluid pressure as a brake operation fluid pressure. The brake device 1b is an electric actuator that is provided separately from the master cylinder unit 1a and is capable of generating brake fluid pressure based on an electric signal corresponding to a driver's brake operation. In response, a control fluid pressure is generated. In FIG. 1, the circuit structure of the oil path of the brake device 1b is shown. The brake system has two oil passages (primary P system and secondary S system). Hereinafter, members and structures provided corresponding to each system are distinguished by adding suffixes P and S to the end of the reference numerals. A vehicle to which the brake system (brake device 1b) of the present embodiment is applied is, for example, a hybrid vehicle including an electric motor (generator) in addition to an engine (internal combustion engine) as a prime mover for driving wheels, or a motor (generator). ), An electric vehicle that can generate a regenerative braking force with an electric motor.
 マスタシリンダユニット1aは、プッシュロッド4bとリザーバタンク50とマスタシリンダ5とストロークシミュレータ6とストロークシミュレータバルブ20とを一体的に備えている。これらを一体的に構成することで、マスタシリンダ5とストロークシミュレータ6等との間を接続する油路を短縮化しつつ、入力装置としてのマスタシリンダユニット1aを小型化することができる。また、ブレーキ装置1bを小型化することができる。すなわち、ブレーキシステム全体をコンパクト化できる。プッシュロッド4bは、リンク式倍力装置4aを介してブレーキペダル4に連結されている。以下、説明のため、プッシュロッド4bの軸方向にX軸を設け、リンク式倍力装置4aに対しマスタシリンダ5の側を正方向とする。ブレーキペダル4は、運転者のブレーキ操作の入力を受ける入力部材(ブレーキ操作部材)である。ブレーキペダル4は所謂吊下げ型であり、上端部が車体に対し回動可能に連結されている。ブレーキペダル4には、ブレーキペダル4の回転方向移動量(ペダルストローク)を検出するペダルストロークセンサ90が設けられている。 The master cylinder unit 1a is integrally provided with a push rod 4b, a reservoir tank 50, a master cylinder 5, a stroke simulator 6, and a stroke simulator valve 20. By constituting these integrally, the master cylinder unit 1a as the input device can be reduced in size while shortening the oil passage connecting the master cylinder 5 and the stroke simulator 6 and the like. Moreover, the brake device 1b can be reduced in size. That is, the entire brake system can be made compact. The push rod 4b is connected to the brake pedal 4 via a link type booster 4a. Hereinafter, for the sake of explanation, the X-axis is provided in the axial direction of the push rod 4b, and the master cylinder 5 side is the positive direction with respect to the link type booster 4a. The brake pedal 4 is an input member (brake operation member) that receives an input of a driver's brake operation. The brake pedal 4 is a so-called suspension type, and an upper end portion thereof is rotatably connected to the vehicle body. The brake pedal 4 is provided with a pedal stroke sensor 90 that detects a movement amount (pedal stroke) of the brake pedal 4 in the rotation direction.
 リンク式倍力装置4aは、運転者によるブレーキペダル4の操作力を増幅してプッシュロッド4bへ伝達するリンク式の倍力装置である。すなわち、本実施例のブレーキシステムは、運転者のブレーキ操作力を低減するための倍力装置(ブレーキブースタ)として、ブレーキペダル4とマスタシリンダ5との間に介装され、車両のエンジンが発生する吸気圧(負圧)を用いて作動する形式のもの(マスターバック)を備えない。また、電動モータ等を用いるブースタを備えない。その代わりに、ブレーキペダル4の操作に応じて機構的に作動するリンク式倍力装置4aが、運転者のブレーキ操作力を倍力ないし増幅する倍力機能を発揮する。これにより、ブレーキシステムを簡素化することができ、車両への適用性を向上できる。リンク式倍力装置4aは、ペダルストロークに対するプッシュロッド4bの軸方向移動量(ロッドストローク)の変化割合(レバー比)を可変にするリンク機構である。リンク式倍力装置4aは、ブレーキペダル4の回転軸に対し略直交する板状のリンク部材として、第1リンク41と第2リンク42を備えている。第1リンク41は、側面視で(ブレーキペダル4の回転軸方向から見て)棒状であり、一端側がブレーキペダル4に対し回動可能に接続され、他端側が第2リンク42に対し回動可能に接続されている。第2リンク42は、側面視で略三角状であり、上端が車体に対し揺動自在に連結されている。第2リンク42の一端側は第1リンク41の他端側に対し回動可能に接続され、第2リンク42の他端側はクレビス43に対し回動可能に接続されている。 The link type booster 4a is a link type booster that amplifies the operating force of the brake pedal 4 by the driver and transmits it to the push rod 4b. That is, the brake system of the present embodiment is interposed between the brake pedal 4 and the master cylinder 5 as a booster (brake booster) for reducing the driver's brake operation force, and generates a vehicle engine. It does not have a type (master back) that operates using intake air pressure (negative pressure). Moreover, the booster which uses an electric motor etc. is not provided. Instead, the link type booster 4a that operates mechanically according to the operation of the brake pedal 4 exhibits a boosting function that boosts or amplifies the driver's brake operating force. Thereby, a brake system can be simplified and the applicability to a vehicle can be improved. The link type booster 4a is a link mechanism that changes the change rate (lever ratio) of the axial movement amount (rod stroke) of the push rod 4b with respect to the pedal stroke. The link type booster 4 a includes a first link 41 and a second link 42 as plate-like link members that are substantially orthogonal to the rotation axis of the brake pedal 4. The first link 41 has a rod shape in a side view (viewed from the direction of the rotation axis of the brake pedal 4), one end side of the first link 41 is pivotally connected to the brake pedal 4, and the other end side is pivoted relative to the second link 42. Connected as possible. The second link 42 has a substantially triangular shape in a side view, and an upper end of the second link 42 is swingably connected to the vehicle body. One end side of the second link 42 is pivotally connected to the other end side of the first link 41, and the other end side of the second link 42 is pivotally connected to the clevis 43.
 プッシュロッド4bは、リンク式倍力装置4a(ブレーキペダル4)に連動して作動し、リンク式倍力装置4aにより倍力された運転者の操作力を軸方向の推力としてマスタシリンダ5に伝達する。プッシュロッド4bのX軸負方向側の外周にはフランジ部45が設けられている。プッシュロッド4bのX軸正方向端には、先端が凸球面状に形成された当接部材44が固定されている。リザーバタンク50は、ブレーキ液を貯留する第1のブレーキ液源であり、マスタシリンダ5等へブレーキ液を供給する。リザーバタンク50は、鉛直方向下側に突出して開口する供給口50a,50bと、側面に開口する供給口50cとを有している。リザーバタンク50の内部は、底面から鉛直方向上側へ延びるように設置された2枚の仕切板50d,50eにより3つの領域に仕切られている。これらの領域には供給口50a,50bと供給口50cがそれぞれ開口する。仕切板50d,50eは、例えば車両が傾いたり加減速したりしても各領域にブレーキ液を貯留し、これにより各供給口50a~50cからのブレーキ液の供給を可能とする。 The push rod 4b operates in conjunction with the link type booster 4a (brake pedal 4), and transmits the operating force of the driver boosted by the link type booster 4a to the master cylinder 5 as axial thrust. To do. A flange portion 45 is provided on the outer periphery of the push rod 4b on the X axis negative direction side. An abutting member 44 whose tip is formed in a convex spherical shape is fixed to the positive end of the push rod 4b in the X axis direction. The reservoir tank 50 is a first brake fluid source that stores brake fluid, and supplies the brake fluid to the master cylinder 5 and the like. The reservoir tank 50 has supply ports 50a and 50b that protrude downward and open in the vertical direction, and supply ports 50c that open on the side surfaces. The interior of the reservoir tank 50 is partitioned into three regions by two partition plates 50d and 50e installed so as to extend vertically upward from the bottom surface. Supply ports 50a, 50b and a supply port 50c are opened in these regions, respectively. For example, the partition plates 50d and 50e store brake fluid in each region even when the vehicle tilts or accelerates / decelerates, thereby enabling the brake fluid to be supplied from the supply ports 50a to 50c.
 マスタシリンダ5は、運転者のブレーキ操作に応じて液圧(マスタシリンダ液圧)を発生する第1のブレーキ液圧発生源である。マスタシリンダ5は、油路(ブレーキ配管2a~2c)を介してブレーキ装置1bに接続し、ブレーキ装置1bは油路(ブレーキ配管2FL~2RR)を介してホイルシリンダW/Cに接続している。マスタシリンダ5は、マスタシリンダハウジング(シリンダ)500とピストン51とコイルスプリング52を有している。マスタシリンダハウジング500は、X軸方向に延びると共に一端側(X軸正方向側)が閉塞する有底円筒状に形成されている。マスタシリンダハウジング500の内部にはX軸方向に延びる軸方向孔501が形成されている。孔501はマスタシリンダハウジング500のX軸負方向側に開口する。マスタシリンダハウジング500のX軸負方向端には嵌合部502が形成されている。マスタシリンダ5は、所謂タンデム型であり、孔501内には2つのピストン51P,51SがX軸方向に移動可能に設けられている。P系統のピストン51PのX軸負方向側の内周には凹球面状の受け部510が形成されている。受け部510には、プッシュロッド4b(当接部材44)の凸球面状に形成されたX軸正方向端が当接し、回動可能に嵌合設置されている。S系統のピストン51Sは、フリーピストンであり、ピストン51PのX軸正方向側に設置される。各ピストン51には、X軸方向に延びてX軸正方向側に開口する凹部511が設けられている。各ピストン51には、凹部511の内周面と各ピストン51の外周面とを連通する図外の連通孔が径方向に延びるように設けられている。 The master cylinder 5 is a first brake fluid pressure generation source that generates fluid pressure (master cylinder fluid pressure) in response to a driver's brake operation. The master cylinder 5 is connected to the brake device 1b via an oil passage (brake piping 2a to 2c), and the brake device 1b is connected to the wheel cylinder W / C via an oil passage (brake piping 2FL to 2RR). . The master cylinder 5 includes a master cylinder housing (cylinder) 500, a piston 51, and a coil spring 52. The master cylinder housing 500 is formed in a bottomed cylindrical shape that extends in the X-axis direction and closes at one end side (X-axis positive direction side). An axial hole 501 extending in the X-axis direction is formed inside the master cylinder housing 500. The hole 501 opens on the X axis negative direction side of the master cylinder housing 500. A fitting portion 502 is formed at the X axis negative direction end of the master cylinder housing 500. The master cylinder 5 is a so-called tandem type, and two pistons 51P and 51S are provided in the hole 501 so as to be movable in the X-axis direction. A concave spherical receiving portion 510 is formed on the inner periphery of the P-system piston 51P on the X-axis negative direction side. The X-axis positive direction end of the push rod 4b (abutting member 44) formed in the convex spherical shape abuts on the receiving portion 510, and is fitted and installed so as to be rotatable. The S system piston 51S is a free piston, and is installed on the X axis positive direction side of the piston 51P. Each piston 51 is provided with a recess 511 that extends in the X-axis direction and opens to the X-axis positive direction side. Each piston 51 is provided with a communication hole (not shown) that communicates the inner peripheral surface of the recess 511 and the outer peripheral surface of each piston 51 so as to extend in the radial direction.
 マスタシリンダハウジング500には、吐出ポート54と補給ポート55が形成されており、これらのポート54,55は孔501の内周面に開口する。P系統の吐出ポート54Pは2つ設けられている。吐出ポート54Pの一方は、ブレーキ配管2aを介してブレーキ装置1bに接続しており、ホイルシリンダW/Cと連通可能に設けられている。S系統の吐出ポート54Sは、ブレーキ配管2bを介してブレーキ装置1bに接続しており、ホイルシリンダW/Cと連通可能に設けられている。吐出ポート54Pの他方は、ブレーキ配管2dを介してストロークシミュレータ6に接続し、ストロークシミュレータ6(主室64)と連通可能に設けられている。補給ポート55P,55Sは、マスタシリンダハウジング500の鉛直方向上側に開口し、それぞれリザーバタンク50の供給口50a,50bに接続してリザーバタンク50と連通する。孔501の内周面には、断面がカップ状のシール部材56,57が固定設置されている。シール部材56,57は、補給ポート55の開口をX軸方向で挟むように配置されている。シール部材56,57の内周側(リップ部)は各ピストン51の外周面に当接する。シール部材56,57は、孔501の内周とピストン51の外周との間の隙間を通るブレーキ液の流れを一方向に規制する。P系統のシール部材56Pは、補給ポート55PからX軸負方向側(マスタシリンダハウジング500の外部)へ向かうブレーキ液の流れを規制する。S系統のシール部材56Sは、補給ポート55SからX軸負方向側へ向かうブレーキ液の流れのみを許容する。シール部材57は、補給ポート55からX軸正方向側へ向かうブレーキ液の流れのみを許容する。 The master cylinder housing 500 is formed with a discharge port 54 and a replenishment port 55, and these ports 54, 55 open on the inner peripheral surface of the hole 501. Two discharge ports 54P of the P system are provided. One of the discharge ports 54P is connected to the brake device 1b via the brake pipe 2a, and is provided so as to be able to communicate with the wheel cylinder W / C. The discharge port 54S of the S system is connected to the brake device 1b via the brake pipe 2b and is provided so as to be able to communicate with the wheel cylinder W / C. The other of the discharge ports 54P is connected to the stroke simulator 6 via the brake pipe 2d and is provided so as to be able to communicate with the stroke simulator 6 (main chamber 64). The supply ports 55P and 55S open to the upper side in the vertical direction of the master cylinder housing 500, and are connected to the supply ports 50a and 50b of the reservoir tank 50 to communicate with the reservoir tank 50, respectively. Seal members 56 and 57 having a cup-shaped cross section are fixedly installed on the inner peripheral surface of the hole 501. The seal members 56 and 57 are arranged so as to sandwich the opening of the supply port 55 in the X-axis direction. The inner peripheral side (lip portion) of the seal members 56 and 57 contacts the outer peripheral surface of each piston 51. The seal members 56 and 57 restrict the flow of brake fluid in one direction through the gap between the inner periphery of the hole 501 and the outer periphery of the piston 51. The P-system seal member 56P restricts the flow of brake fluid from the supply port 55P toward the X-axis negative direction side (outside of the master cylinder housing 500). The S-system seal member 56S allows only the flow of brake fluid from the supply port 55S toward the negative X-axis direction. The seal member 57 allows only the flow of brake fluid from the supply port 55 toward the X axis positive direction.
 マスタシリンダハウジング500の内部には液圧室53が画成されている。両ピストン51P,51Sの間(シール部材57P,56Sによりシールされる領域)にP系統の液圧室53Pが画成されている。ピストン51Sとマスタシリンダハウジング500の底部との間(シール部材57Sによりシールされる領域)にS系統の液圧室53Sが画成されている。各液圧室53内には、ピストン51の戻しばねとしてのコイルスプリング52が押し縮められた状態で設置されている。各液圧室53には吐出ポート54が開口する。図1に示すように、ブレーキペダル4が踏み込まれていない状態(プッシュロッド4bのフランジ部45がストロークシミュレータハウジング60のストッパ部607に当接した状態)で、各ピストン51は最もX軸負方向側に位置し、各ピストン51の連通孔はシール部材57よりもX軸負方向側(かつシール部材56よりもX軸正方向側)に位置する。よって、補給ポート55は連通孔を介して各ピストン51の凹部511の内周側すなわち液圧室53に連通する。孔501内をX軸方向にピストン41が作動することでブレーキ液圧が発生する。具体的には、運転者のブレーキ操作によって、プッシュロッド4bのX軸正方向の推力がピストン51Pに伝達される。各ピストン51がX軸正方向側にストロークすると、各液圧室53の容積が縮小する。連通孔がシール部材57よりもX軸正方向側に位置するようになると、各液圧室53と補給ポート55(リザーバタンク50)との連通が遮断され、各液圧室53内にブレーキ操作に応じた液圧(マスタシリンダ液圧)が発生する。なお、両液圧室53には略同じ液圧が発生する。各液圧室53から吐出ポート54を介してブレーキ装置1b(ホイルシリンダW/C)に向けてブレーキ液(マスタシリンダ液圧)が供給される。 A hydraulic chamber 53 is defined inside the master cylinder housing 500. A P-system hydraulic chamber 53P is defined between the pistons 51P and 51S (region sealed by the seal members 57P and 56S). An S system hydraulic chamber 53S is defined between the piston 51S and the bottom of the master cylinder housing 500 (an area sealed by the seal member 57S). A coil spring 52 as a return spring for the piston 51 is installed in each hydraulic pressure chamber 53 in a compressed state. A discharge port 54 opens in each hydraulic pressure chamber 53. As shown in FIG. 1, in a state where the brake pedal 4 is not depressed (the flange portion 45 of the push rod 4b is in contact with the stopper portion 607 of the stroke simulator housing 60), each piston 51 is in the most negative direction of the X axis. The communication hole of each piston 51 is located on the X-axis negative direction side of the seal member 57 (and on the X-axis positive direction side of the seal member 56). Therefore, the replenishment port 55 communicates with the inner peripheral side of the recess 511 of each piston 51, that is, the hydraulic chamber 53 through the communication hole. The brake fluid pressure is generated by the piston 41 operating in the X-axis direction in the hole 501. Specifically, the thrust in the positive direction of the X axis of the push rod 4b is transmitted to the piston 51P by the driver's brake operation. When each piston 51 strokes in the positive direction of the X axis, the volume of each hydraulic chamber 53 is reduced. When the communication hole is positioned on the X axis positive direction side with respect to the seal member 57, the communication between each hydraulic pressure chamber 53 and the replenishment port 55 (reservoir tank 50) is blocked, and a brake operation is performed in each hydraulic pressure chamber 53. A hydraulic pressure (master cylinder hydraulic pressure) corresponding to the pressure is generated. Note that substantially the same hydraulic pressure is generated in both hydraulic pressure chambers 53. Brake fluid (master cylinder fluid pressure) is supplied from each fluid pressure chamber 53 to the brake device 1b (wheel cylinder W / C) via the discharge port.
 ストロークシミュレータ6は、マスタシリンダ5から流出したブレーキ液が流入可能に設けられ、ブレーキペダル4の擬似操作反力を生成する操作反力発生源である。ストロークシミュレータ6は、油路(ブレーキ配管2d)を介してマスタシリンダ5に接続すると共に、油路(ブレーキ配管2e)を介してリザーバタンク50に接続している。ストロークシミュレータ6は、ストロークシミュレータハウジング60と反力ピストン61とコイルスプリング62を有している。ストロークシミュレータハウジング60は、本体部60aと接続部60bとを一体に有している。本体部60aは、有底円筒状であり、内部には、第1の軸方向孔601と第2の軸方向孔602とバルブ装着孔603と油路65等が形成されている。第1の軸方向孔601はX軸方向に延びるように形成されている。第2の軸方向孔602は、第1の軸方向孔601よりも小径であって、第1の軸方向孔601のX軸正方向側に連続してX軸方向に延びるように形成されている。本体部60aの一端(第2の軸方向孔602のX軸正方向端)側は閉塞し、他端(第1の軸方向孔601のX軸負方向端)側は開口している。バルブ装着孔603は、X軸方向に延びるように形成されており、本体部60aのX軸正方向側に開口する。バルブ装着孔603は、X軸正方向側からX軸負方向側へ向かうにつれて小径となる段付き形状である。バルブ装着孔603のX軸負方向端と第2の軸方向孔602のx軸正方向端とは、X軸方向に延びる油路65を介して接続している。 The stroke simulator 6 is an operation reaction force generation source that generates a pseudo operation reaction force of the brake pedal 4 and is provided so that the brake fluid flowing out from the master cylinder 5 can flow. The stroke simulator 6 is connected to the master cylinder 5 through an oil passage (brake piping 2d) and is connected to the reservoir tank 50 through an oil passage (brake piping 2e). The stroke simulator 6 includes a stroke simulator housing 60, a reaction force piston 61, and a coil spring 62. The stroke simulator housing 60 has a main body portion 60a and a connection portion 60b integrally. The main body 60a has a bottomed cylindrical shape, and a first axial hole 601, a second axial hole 602, a valve mounting hole 603, an oil passage 65, and the like are formed therein. The first axial hole 601 is formed so as to extend in the X-axis direction. The second axial hole 602 has a smaller diameter than the first axial hole 601 and is formed so as to extend continuously in the X-axis direction of the first axial hole 601 in the X-axis direction. Yes. One end (X-axis positive direction end of the second axial hole 602) side of the main body 60a is closed, and the other end (X-axis negative direction end of the first axial hole 601) side is opened. The valve mounting hole 603 is formed to extend in the X-axis direction, and opens to the X-axis positive direction side of the main body 60a. The valve mounting hole 603 has a stepped shape that decreases in diameter from the X-axis positive direction side toward the X-axis negative direction side. The X axis negative direction end of the valve mounting hole 603 and the x axis positive direction end of the second axial hole 602 are connected via an oil passage 65 extending in the X axis direction.
 接続部60bは、本体部60aの鉛直方向上側に設けられている。接続部60bはX軸方向に延びる有底円筒状である。接続部60bの内部には第1の軸方向孔604と第2の軸方向孔605と第3の軸方向孔606が形成されている。第1の軸方向孔604は、X軸方向に延びる略円筒状に形成されており、接続部60bのx軸正方向側に開口する。第1の軸方向孔604の径はマスタシリンダハウジング500の嵌合部502の径よりも僅かに大きく設けられている。第2の軸方向孔605は、第1の軸方向孔604よりも小径であって、第1の軸方向孔604のX軸負方向側に連続してX軸方向に延びるように形成されている。第3の軸方向孔606は、第2の軸方向孔605よりも小径であって、第2の軸方向孔605のX軸負方向側に連続してX軸方向に延びるように形成されており、ストロークシミュレータハウジング60のX軸負方向側(車両取り付け面608の側)に開口する。接続部60bのX軸負方向側の底部には、第3の軸方向孔606を取り囲むようにストッパ部607が形成されている。ストッパ部607のX軸正方向側の面は、プッシュロッド4bのフランジ部45のX軸負方向側の面と略平行なテーパ状に形成されており、フランジ部45のX軸負方向側の面と当接可能に設けられている。 The connecting portion 60b is provided on the upper side in the vertical direction of the main body portion 60a. The connecting portion 60b has a bottomed cylindrical shape extending in the X-axis direction. A first axial hole 604, a second axial hole 605, and a third axial hole 606 are formed in the connection portion 60b. The first axial hole 604 is formed in a substantially cylindrical shape extending in the X-axis direction, and opens on the x-axis positive direction side of the connecting portion 60b. The diameter of the first axial hole 604 is slightly larger than the diameter of the fitting portion 502 of the master cylinder housing 500. The second axial hole 605 has a smaller diameter than the first axial hole 604 and is formed so as to extend in the X-axis direction continuously to the X-axis negative direction side of the first axial hole 604. Yes. The third axial hole 606 has a smaller diameter than the second axial hole 605 and is formed so as to extend in the X-axis direction continuously to the X-axis negative direction side of the second axial hole 605. And opens to the X-axis negative direction side (vehicle attachment surface 608 side) of the stroke simulator housing 60. A stopper portion 607 is formed on the bottom portion of the connecting portion 60b on the X axis negative direction side so as to surround the third axial hole 606. The surface on the X axis positive direction side of the stopper portion 607 is formed in a taper shape substantially parallel to the surface on the X axis negative direction side of the flange portion 45 of the push rod 4b. It is provided so as to be able to contact the surface.
 マスタシリンダハウジング500(嵌合部502)のX軸負方向端とプッシュロッド4bのフランジ部45との間(ピストン51Pの外周)には、ダンパとしてのばね(皿ばね等)46が設置されている。ペダルストロークが所定量以上になると、ばね46のX軸負方向端にフランジ部45が当接するようになり、ばね46はフランジ部45と嵌合部502との間で押し縮められる。圧縮変形するばね46は、プッシュロッド4bを介してブレーキペダル4に反力を付与することで、ブレーキペダル4の操作力を調整する。これにより、ブレーキペダル4の操作量の全領域で、より好ましいブレーキ特性を発揮することが可能となる。例えば、リンク式倍力装置4aのリンク機構の特性を、車両搭載時の制約条件下で所定の倍力性能を得ることができるものにしようとすると、ブレーキ操作後期のペダルストローク領域でレバー比が過度に上昇する等、好ましいブレーキ特性(踏力とペダルストロークと減速度の関係)を得ることができないおそれがある。これに対し、ばね46がブレーキ操作後期に押し縮められることでペダル反力を増加させ、踏力を減衰させることで、ブレーキペダル4の操作量の全領域で好ましいブレーキ特性を得ることが可能となる。ストロークシミュレータハウジング60のX軸負方向側は、X軸に対して略直交して広がる板状に設けられている。この板状部分は、ストロークシミュレータハウジング60を車両に固定するための固定フランジであり、例えばスタッド軸(固定具としてのスタッドボルト)により車体に固定される。 Between the end of the master cylinder housing 500 (fitting portion 502) in the negative X-axis direction and the flange portion 45 of the push rod 4b (the outer periphery of the piston 51P), a spring (a disc spring or the like) 46 as a damper is installed. Yes. When the pedal stroke exceeds a predetermined amount, the flange portion 45 comes into contact with the end in the negative X-axis direction of the spring 46, and the spring 46 is compressed between the flange portion 45 and the fitting portion 502. The spring 46 that compresses and deforms adjusts the operating force of the brake pedal 4 by applying a reaction force to the brake pedal 4 via the push rod 4b. As a result, more preferable brake characteristics can be exhibited in the entire range of the operation amount of the brake pedal 4. For example, if the characteristic of the link mechanism of the link type booster 4a is made to be able to obtain a predetermined boosting performance under the constraint conditions when the vehicle is mounted, the lever ratio is reduced in the pedal stroke region in the latter half of the brake operation. There is a possibility that preferable braking characteristics (relationship between pedaling force, pedal stroke, and deceleration) cannot be obtained such as excessive increase. On the other hand, when the spring 46 is compressed in the latter half of the brake operation, the pedal reaction force is increased and the pedal force is attenuated, so that preferable brake characteristics can be obtained in the entire range of the operation amount of the brake pedal 4. . The X-axis negative direction side of the stroke simulator housing 60 is provided in a plate shape that extends substantially orthogonal to the X-axis. The plate-like portion is a fixing flange for fixing the stroke simulator housing 60 to the vehicle, and is fixed to the vehicle body by, for example, a stud shaft (a stud bolt as a fixing tool).
 ストロークシミュレータハウジング60の本体部60aの第2の軸方向孔602内には、反力ピストン61がX軸方向に作動可能に設置されている。反力ピストン61のX軸負方向側は、第1の軸方向孔601内に突出する。反力ピストン61のX軸負方向端には、X軸負方向側に延びるように、ストッパ部材としてのロッド610が固定設置されている。第1の軸方向孔601のX軸負方向側の開口部には、この開口部を閉塞する板状のプラグ部材63が固定設置されている。ストロークシミュレータハウジング60の内部には、反力ピストン61により主室64と副室66が画成されている。第2の軸方向孔602内であって反力ピストン61よりもX軸正方向側に主室64が画成されている。第1の軸方向孔601内であって反力ピストン61よりもX軸負方向側に副室66が画成されている。副室66の内部には、有底筒状のスプリングリテーナ67がX軸方向に移動自在に収容されていると共に、圧縮ばねとしてのコイルスプリング62が押し縮められた状態で設置されている。コイルスプリング62は、第1スプリング62aと第2スプリング62bを有している。第1スプリング62aは第2スプリング62bよりも直径及びばね定数が小さく設けられている。第1スプリング62aのX軸正方向端は反力ピストン61のX軸負方向端に設置され、第1スプリング62aの内周側にはロッド610が配置されている。第1スプリング62aのX軸負方向側はスプリングリテーナ67の内周側に収容され、第1スプリング62aのX軸負方向端はスプリングリテーナ67の底部に設置されている。第2スプリング62bのX軸正方向側はスプリングリテーナ67の外周側に設置され、第2スプリング62bのX軸正方向端はスプリングリテーナ67の開口部に設けられたフランジに設置されている。第2スプリング62bのX軸負方向端はプラグ部材63に設置されている。プラグ部材63における第2スプリング62bの設置部位よりも内周側には、X軸正方向側に突出するように弾性部材68が設置されている。 In the second axial hole 602 of the main body 60a of the stroke simulator housing 60, a reaction force piston 61 is installed so as to be operable in the X-axis direction. The reaction force piston 61 protrudes into the first axial hole 601 on the X axis negative direction side. A rod 610 as a stopper member is fixedly installed at the end of the reaction force piston 61 in the negative X-axis direction so as to extend in the negative X-axis direction. A plate-like plug member 63 that closes the opening is fixedly installed in the opening on the X-axis negative direction side of the first axial hole 601. A main chamber 64 and a sub chamber 66 are defined by a reaction force piston 61 inside the stroke simulator housing 60. A main chamber 64 is defined in the second axial hole 602 and on the X axis positive direction side of the reaction force piston 61. A sub chamber 66 is defined in the first axial hole 601 and on the X axis negative direction side of the reaction force piston 61. Inside the sub chamber 66, a bottomed cylindrical spring retainer 67 is housed so as to be movable in the X-axis direction, and a coil spring 62 as a compression spring is installed in a compressed state. The coil spring 62 has a first spring 62a and a second spring 62b. The first spring 62a is smaller in diameter and spring constant than the second spring 62b. The X-axis positive direction end of the first spring 62a is installed at the X-axis negative direction end of the reaction force piston 61, and a rod 610 is disposed on the inner peripheral side of the first spring 62a. The X-axis negative direction side of the first spring 62 a is accommodated on the inner peripheral side of the spring retainer 67, and the X-axis negative direction end of the first spring 62 a is installed at the bottom of the spring retainer 67. The X-axis positive direction side of the second spring 62 b is installed on the outer peripheral side of the spring retainer 67, and the X-axis positive direction end of the second spring 62 b is installed on a flange provided at the opening of the spring retainer 67. The X-axis negative direction end of the second spring 62b is installed in the plug member 63. An elastic member 68 is installed on the inner peripheral side of the plug member 63 with respect to the installation site of the second spring 62b so as to protrude in the positive X-axis direction.
 ストロークシミュレータバルブ(以下、SS弁という。)20は、ストロークシミュレータ6へのブレーキ液の流入を制限可能に設けられた、常閉の(すなわち非通電状態で閉弁する)シミュレータ遮断弁である。SS弁20は、弁の開閉が二値的に切り替え制御されるオン・オフ弁である。SS弁20はバルブ装着孔603に装着される。ストロークシミュレータ6の主室64は、油路65を介してSS弁20に接続している。SS弁20は、油路(ブレーキ配管2d)を介してマスタシリンダ5の液圧室53Pに接続している。SS弁20は、弁部とソレノイド部を有する電磁弁である。弁部は、弁体が弁座シート面に対して直角方向に移動することで流路を開閉する所謂ポペット形式である。SS弁20は、ソレノイド部としてソレノイド201を有し、弁部として、バルブボディ202と、アーマチュア203と、プランジャ204と、コイルスプリング205と、弁座部材206と、複数の油路構成部材とを有している。 The stroke simulator valve (hereinafter referred to as the SS valve) 20 is a normally shut-off (ie, closed in a non-energized state) simulator cutoff valve provided so as to be able to restrict the flow of brake fluid into the stroke simulator 6. The SS valve 20 is an on / off valve whose opening and closing is controlled in a binary manner. The SS valve 20 is mounted in the valve mounting hole 603. The main chamber 64 of the stroke simulator 6 is connected to the SS valve 20 via an oil passage 65. The SS valve 20 is connected to the hydraulic chamber 53P of the master cylinder 5 via an oil passage (brake pipe 2d). The SS valve 20 is an electromagnetic valve having a valve part and a solenoid part. The valve portion is a so-called poppet type that opens and closes the flow path when the valve body moves in a direction perpendicular to the valve seat surface. The SS valve 20 has a solenoid 201 as a solenoid part. As the valve part, a valve body 202, an armature 203, a plunger 204, a coil spring 205, a valve seat member 206, and a plurality of oil passage components are provided. Have.
 ソレノイド201は、本体部60aのX軸正方向端に固定される。アーマチュア203は、ソレノイド201の内周側に固定設置されており、ソレノイド201に通電されることにより電磁力(磁気吸引力)を発生する。ソレノイド201のX軸正方向端にはコネクタ部201aが設けられている。コネクタ部201aには、ソレノイド201の端子(電極)に駆動電流を供給する配線(ハーネス)が接続される。この配線は後述するブレーキ装置1bのECU9に接続される。バルブボディ202は、非磁性体の中空のシリンダであり、アーマチュア203の外周に嵌合するように固定設置され、アーマチュア203のX軸負方向側に延びる。プランジャ204は、バルブボディ202内をX軸方向に往復移動可能に収容されている。プランジャ204のX軸負方向側の先端には球状の弁体204aが設けられている。コイルスプリング205は、アーマチュア203とプランジャ204との間に圧縮状態で設置され、プランジャ204をX軸負方向側に常時付勢する。弁座部材206はバルブ装着孔603の内周側に固定設置されている。弁座部材206は有底筒状であり、そのX軸正方向側の底部には弁座が設けられている。弁座部材206の上記底部にはX軸方向に延びるオリフィス206aが貫通して設けられており、弁座の中央部位に開口する。プランジャ204がアーマチュア203の電磁力(X軸正方向側への吸引力)により駆動され、弁体204aがオリフィス206aを開閉することで、オリフィス206aを含む油路(下記シミュレータ油路)の連通状態が制御される。 The solenoid 201 is fixed to the X axis positive direction end of the main body 60a. The armature 203 is fixedly installed on the inner peripheral side of the solenoid 201, and generates an electromagnetic force (magnetic attractive force) when the solenoid 201 is energized. A connector portion 201a is provided at the positive end of the solenoid 201 in the X-axis direction. A wiring (harness) for supplying a driving current to a terminal (electrode) of the solenoid 201 is connected to the connector portion 201a. This wiring is connected to the ECU 9 of the brake device 1b described later. The valve body 202 is a non-magnetic hollow cylinder, is fixedly installed so as to be fitted to the outer periphery of the armature 203, and extends to the X axis negative direction side of the armature 203. The plunger 204 is accommodated in the valve body 202 so as to reciprocate in the X-axis direction. A spherical valve body 204a is provided at the tip of the plunger 204 on the X axis negative direction side. The coil spring 205 is installed in a compressed state between the armature 203 and the plunger 204, and constantly urges the plunger 204 toward the X axis negative direction side. The valve seat member 206 is fixedly installed on the inner peripheral side of the valve mounting hole 603. The valve seat member 206 has a bottomed cylindrical shape, and a valve seat is provided on the bottom of the X-axis positive direction side. An orifice 206a extending in the X-axis direction is provided through the bottom of the valve seat member 206, and opens to a central portion of the valve seat. The plunger 204 is driven by the electromagnetic force of the armature 203 (suction force in the positive direction of the X axis), and the valve body 204a opens and closes the orifice 206a, so that the oil passage including the orifice 206a (the following simulator oil passage) is in communication. Is controlled.
 油路構成部材は、フィルタを兼ねたボディとしての第1部材207と、シール部材208と、第2部材209とを有している。第1部材207は、バルブ装着孔603のX軸正方向側の開口部にフランジ207aにより固定される中空部材である。第1部材207の内周側には弁座部材206が固定設置され、第1部材207の内周と弁座部材206の外周との間には油路が形成される。第1部材207のフランジ207aよりもX軸負方向側にはフィルタ部が設けられている。第2部材209は、バルブ装着孔603のX軸負方向側の底部に設置される円筒状のフィルタ部材(シール部材208のリテーナ)であり、その内周側には弁座部材206が設置される。シール部材208は、シール部材56等と同様の断面カップ状のシール部材であり、第1部材207と第2部材209との間に設置される。シール部材208の内周側には弁座部材206が固定設置される。シール部材208の内周と弁座部材206の外周との間には油路が形成されていない。シール部材208の外周側のリップ部は、X軸正方向側に開くようにバルブ装着孔603の内周面に接する。シール部材208(リップ部)とバルブ装着孔603の内周面との間のブレーキ液の流通は、X軸負方向側からX軸正方向側への流れのみ許容され、逆方向の流れが抑制される。バルブ装着孔603の内周におけるシール部材208のX軸正方向側には、接続ポート69が開口している。バルブ装着孔603のX軸負方向側の底部には、ストロークシミュレータ6の主室64に連通する油路65が開口している。接続ポート69は、弁座部材206の外周と第1部材207の内周との間の油路を介して、オリフィス206aに連通している。オリフィス206aは、弁座部材206の内周側に設けられた油路206bを介して油路65に連通している。この経路により、液圧室53Pと主室64とを接続しつつ、SS弁20により連通・遮断が切り替えられるシミュレータ油路が構成される。また、油路65は第2部材209を介してシール部材208のX軸負方向側と連通しており、シール部材208を介して油路65と接続ポート69とが接続されている。この経路により、上記シミュレータ油路に並列に設けられ、シール部材208により流れの方向が規制されるバイパス油路が構成される。 The oil passage constituent member includes a first member 207 as a body that also serves as a filter, a seal member 208, and a second member 209. The first member 207 is a hollow member that is fixed to the opening on the X axis positive direction side of the valve mounting hole 603 by a flange 207a. A valve seat member 206 is fixedly installed on the inner peripheral side of the first member 207, and an oil passage is formed between the inner periphery of the first member 207 and the outer periphery of the valve seat member 206. A filter portion is provided on the X-axis negative direction side of the flange 207a of the first member 207. The second member 209 is a cylindrical filter member (retainer of the seal member 208) installed at the bottom of the valve mounting hole 603 on the negative side of the X axis, and a valve seat member 206 is installed on the inner peripheral side thereof. The The seal member 208 is a cup-shaped seal member similar to the seal member 56 and the like, and is installed between the first member 207 and the second member 209. A valve seat member 206 is fixedly installed on the inner peripheral side of the seal member 208. An oil passage is not formed between the inner periphery of the seal member 208 and the outer periphery of the valve seat member 206. The lip portion on the outer peripheral side of the seal member 208 is in contact with the inner peripheral surface of the valve mounting hole 603 so as to open to the X axis positive direction side. The brake fluid between the seal member 208 (lip portion) and the inner peripheral surface of the valve mounting hole 603 is allowed to flow only from the X-axis negative direction side to the X-axis positive direction side, and the reverse flow is suppressed. Is done. A connection port 69 is open on the X axis positive direction side of the seal member 208 on the inner periphery of the valve mounting hole 603. An oil passage 65 communicating with the main chamber 64 of the stroke simulator 6 is opened at the bottom of the valve mounting hole 603 on the negative side in the X-axis direction. The connection port 69 communicates with the orifice 206a via an oil passage between the outer periphery of the valve seat member 206 and the inner periphery of the first member 207. The orifice 206a communicates with the oil passage 65 via an oil passage 206b provided on the inner peripheral side of the valve seat member 206. By this path, a simulator oil path is formed in which the SS valve 20 switches between communication and blocking while the hydraulic chamber 53P and the main chamber 64 are connected. The oil passage 65 communicates with the negative side of the X axis of the seal member 208 via the second member 209, and the oil passage 65 and the connection port 69 are connected via the seal member 208. By this path, a bypass oil path that is provided in parallel to the simulator oil path and whose flow direction is restricted by the seal member 208 is configured.
 すなわち、ストロークシミュレータ6の主室64は、油路65、SS弁20及びブレーキ配管2dを介して液圧室53Pと連通する。ストロークシミュレータ6の副室66は、ブレーキ配管2eを介してリザーバタンク50(供給口50c)に接続している。副室66はリザーバタンク50と常時連通し、低圧(大気圧)に解放されており、ストロークシミュレータ6の背圧室を構成する。SS弁20の開弁時、運転者のブレーキ操作によってマスタシリンダ5(液圧室53P)から流出したブレーキ液がシミュレータ油路を介してストロークシミュレータハウジング60の内部(主室64)に流入する。このブレーキ液により、孔602内を軸方向に反力ピストン61が作動する。これによりブレーキペダル4の操作反力を擬似的に生成し、これをブレーキペダル4に付与する。具体的には、SS弁20は通電されることにより開弁してシミュレータ油路を連通させる。マスタシリンダ液圧がシミュレータ油路を介してストロークシミュレータ6の主室64に作用する。主室64における反力ピストン61の受圧面に所定以上の油圧(マスタシリンダ液圧)が作用すると、この圧力により反力ピストン61がコイルスプリング62を押し縮めつつ副室66の側に軸方向に移動する。主室64の容積が拡大し、マスタシリンダ5(液圧室53P)からシミュレータ油路を介して主室64にブレーキ液が流入する。また、副室66からブレーキ配管2eを介してリザーバタンク50へブレーキ液が排出される。このように、ストロークシミュレータ6は、運転者がブレーキ操作を行う(ブレーキペダル4を踏込む)と、マスタシリンダ5からブレーキ液を吸入することでペダルストロークを創生し、ホイルシリンダW/Cの液剛性を模擬して、ブレーキペダル4の踏込み感を再現する。 That is, the main chamber 64 of the stroke simulator 6 communicates with the hydraulic chamber 53P through the oil passage 65, the SS valve 20, and the brake pipe 2d. The sub chamber 66 of the stroke simulator 6 is connected to the reservoir tank 50 (supply port 50c) via the brake pipe 2e. The sub chamber 66 always communicates with the reservoir tank 50 and is released to a low pressure (atmospheric pressure), and constitutes a back pressure chamber of the stroke simulator 6. When the SS valve 20 is opened, the brake fluid that has flowed out of the master cylinder 5 (hydraulic pressure chamber 53P) by the driver's brake operation flows into the stroke simulator housing 60 (main chamber 64) through the simulator oil passage. This brake fluid actuates the reaction force piston 61 in the axial direction in the hole 602. As a result, an operational reaction force of the brake pedal 4 is artificially generated and applied to the brake pedal 4. Specifically, the SS valve 20 is opened by being energized to communicate the simulator oil passage. The master cylinder hydraulic pressure acts on the main chamber 64 of the stroke simulator 6 via the simulator oil passage. When a predetermined hydraulic pressure (master cylinder hydraulic pressure) acts on the pressure receiving surface of the reaction force piston 61 in the main chamber 64, the reaction force piston 61 compresses the coil spring 62 and compresses the coil spring 62 by this pressure in the axial direction toward the sub chamber 66. Moving. The volume of the main chamber 64 increases, and the brake fluid flows from the master cylinder 5 (hydraulic pressure chamber 53P) into the main chamber 64 via the simulator oil passage. Also, the brake fluid is discharged from the sub chamber 66 to the reservoir tank 50 through the brake pipe 2e. Thus, when the driver performs a brake operation (depresses the brake pedal 4), the stroke simulator 6 creates a pedal stroke by sucking the brake fluid from the master cylinder 5, and the wheel cylinder W / C The feeling of depression of the brake pedal 4 is reproduced by simulating liquid rigidity.
 ここで、ブレーキペダル4の踏込み前期には主に第1スプリング62aが押し縮められる。この間は、ばね定数が低く、ペダル反力の増加勾配が低い。ブレーキペダル4の踏込み中期から後期にかけてはロッド610がスプリングリテーナ67の底部に当接するようになり、第1スプリング62aに代わって第2スプリング62bが押し縮められる。この間は、ばね定数が高く、ペダル反力の増加勾配が高い。このようにコイルスプリング62を2段ばねとしてこれらのばね定数を調整することにより、ペダル踏込み感が例えば既存のマスタシリンダと同様となる(踏込み前期のブカ埋め感と踏込み中期以降の剛性感を再現する)ように設定する。これにより、ペダルフィーリングを向上することができる。なお、反力ピストン61(スプリングリテーナ67)のX軸負方向側への移動量が所定以上になると、弾性部材68がスプリングリテーナ67の底部に当接し、弾性変形するようになる。これにより、反力ピストン61のX軸負方向側への移動を規制すると共に、規制する際の衝撃を吸収する。すなわち、反力ピストン61をダンパとして機能させる。運転者がブレーキ操作を終了し(ブレーキペダル4を踏戻し)、主室64内の圧力が所定未満に減少すると、コイルスプリング62の付勢力(弾性力)により反力ピストン61が初期位置に復帰する。なお、上記バイパス油路は、ストロークシミュレータ6の主室64からマスタシリンダ5の液圧室53Pへ向かうブレーキ液の流れのみを許容することで、主室64の内部にブレーキ液が流入した状態でSS弁20が閉故障(閉じた状態で固着)した場合であっても、主室64から上記バイパス油路を介してマスタシリンダ5の側へブレーキ液を戻すことを可能にする。 Here, the first spring 62a is mainly compressed in the first half of the depression of the brake pedal 4. During this time, the spring constant is low and the increasing gradient of the pedal reaction force is low. The rod 610 comes into contact with the bottom of the spring retainer 67 from the middle stage to the latter stage of the depression of the brake pedal 4, and the second spring 62b is compressed in place of the first spring 62a. During this time, the spring constant is high, and the increasing gradient of the pedal reaction force is high. By adjusting these spring constants with the coil spring 62 as a two-stage spring in this way, the pedal depression feeling becomes the same as, for example, an existing master cylinder (reproduces the feeling of filling in the first half of the depression and the rigidity feeling in the middle of the depression) Set to Thereby, pedal feeling can be improved. If the amount of movement of the reaction force piston 61 (spring retainer 67) in the negative direction of the X axis exceeds a predetermined value, the elastic member 68 contacts the bottom of the spring retainer 67 and elastically deforms. As a result, the movement of the reaction force piston 61 in the negative direction of the X-axis is restricted and the impact when the reaction is restricted is absorbed. That is, the reaction force piston 61 is caused to function as a damper. When the driver finishes the brake operation (steps back on the brake pedal 4) and the pressure in the main chamber 64 decreases below a predetermined value, the reaction force piston 61 returns to the initial position by the urging force (elastic force) of the coil spring 62. To do. The bypass oil passage allows only the flow of the brake fluid from the main chamber 64 of the stroke simulator 6 toward the hydraulic chamber 53P of the master cylinder 5, so that the brake fluid flows into the main chamber 64. Even when the SS valve 20 is closed (fixed in a closed state), the brake fluid can be returned from the main chamber 64 to the master cylinder 5 via the bypass oil passage.
 マスタシリンダハウジング500とストロークシミュレータハウジング60は互いに一体的に固定される。すなわち、ストロークシミュレータハウジング60の第1の軸方向孔604にマスタシリンダハウジング500の嵌合部502を挿入し、両者を嵌合させる。マスタシリンダハウジング500の孔501からX軸負方向側に突出するピストン51Pは第2の軸方向孔605内に収容される。嵌合部502の外周面及び第1の軸方向孔604の内周面は、印籠継手として機能する接合面を構成する。両ハウジング500,60を別体としつつこれらを一体的に固定するようにしたことで、既存の(汎用)マスタシリンダ5を利用できることから、異なる車種(車格)に対する汎用性が高い。両ハウジング500,60を印籠接合させることで、既存のマスタシリンダの流用がより容易になる。ストロークシミュレータハウジング60のX軸負方向側の面は、ストロークシミュレータハウジング60(マスタシリンダユニット1a)を車両に取付けるための車両取り付け面608を構成する。このように、形状を比較的自由に設定できるストロークシミュレータハウジング60のほうを車両に取付けるようにしたことで、マスタシリンダ5の汎用性を向上しつつ、マスタシリンダユニット1aを容易に車両に取り付けることができる。 The master cylinder housing 500 and the stroke simulator housing 60 are fixed integrally with each other. That is, the fitting portion 502 of the master cylinder housing 500 is inserted into the first axial hole 604 of the stroke simulator housing 60, and both are fitted. The piston 51P protruding from the hole 501 of the master cylinder housing 500 to the X axis negative direction side is accommodated in the second axial hole 605. The outer peripheral surface of the fitting portion 502 and the inner peripheral surface of the first axial hole 604 constitute a joint surface that functions as a stamped joint. Since the two housings 500 and 60 are separated and fixed integrally, the existing (general-purpose) master cylinder 5 can be used, so that versatility for different vehicle types (vehicle grades) is high. By joining the two housings 500 and 60 together, the existing master cylinder can be used more easily. The surface on the X axis negative direction side of the stroke simulator housing 60 constitutes a vehicle attachment surface 608 for attaching the stroke simulator housing 60 (master cylinder unit 1a) to the vehicle. As described above, the stroke simulator housing 60 whose shape can be set relatively freely is attached to the vehicle, so that the versatility of the master cylinder 5 is improved and the master cylinder unit 1a is easily attached to the vehicle. Can do.
 マスタシリンダユニット1aがダッシュパネルに固定された状態で、プッシュロッド4bのX軸負方向側がダッシュパネルを貫通して車室内に突出する。マスタシリンダ5やリザーバタンク50、ストロークシミュレータ6等がエンジンルーム(ないし走行用モータ等のパワーユニットが設置されるモータルーム。以下、単にエンジンルームという)内に設置される。ストロークシミュレータ6及びSS弁20(以下、ストロークシミュレータ6等という。)とマスタシリンダ5とは、車両搭載時に鉛直方向から見て互いに重なり合うよう一体的に配置されている。また、マスタシリンダ5の軸方向とストロークシミュレータ6等の軸方向とが互いに略同方向になるよう配置されている。これにより、車両搭載時にマスタシリンダ5とストロークシミュレータ6等が軸方向を合わせた状態で上下の位置になる。よって、車両前後方向(マスタシリンダ5の軸方向)から見たマスタシリンダユニット1aの投影面積を低減することができる。また、上方から見たときにエンジンルーム内でマスタシリンダユニット1aが占める領域(占有面積)を低減することができる。よって、マスタシリンダユニット1aの車両搭載性及びエンジンルーム内でのレイアウト性を向上することができる。なお、SS弁20のハウジングとストロークシミュレータ6のハウジングを一体化したことで、マスタシリンダユニット1aをより小型化することができる。また、両者20,6を接続するための構造やブレーキ配管が不要となるため、マスタシリンダユニット1aの構成を簡素化して組付け作業性を向上しつつフェールセーフ性を向上できる。 When the master cylinder unit 1a is fixed to the dash panel, the X-axis negative direction side of the push rod 4b penetrates the dash panel and protrudes into the vehicle interior. The master cylinder 5, the reservoir tank 50, the stroke simulator 6 and the like are installed in an engine room (or a motor room in which a power unit such as a traveling motor is installed; hereinafter simply referred to as an engine room). The stroke simulator 6 and the SS valve 20 (hereinafter referred to as the stroke simulator 6) and the master cylinder 5 are integrally disposed so as to overlap each other when viewed from the vertical direction when the vehicle is mounted. Further, the axial direction of the master cylinder 5 and the axial direction of the stroke simulator 6 and the like are arranged in substantially the same direction. As a result, when the vehicle is mounted, the master cylinder 5 and the stroke simulator 6 and the like are positioned up and down with their axial directions aligned. Therefore, it is possible to reduce the projected area of the master cylinder unit 1a as viewed from the vehicle longitudinal direction (the axial direction of the master cylinder 5). Further, the area (occupied area) occupied by the master cylinder unit 1a in the engine room when viewed from above can be reduced. Therefore, the vehicle mounting property of the master cylinder unit 1a and the layout property in the engine room can be improved. The master cylinder unit 1a can be further downsized by integrating the housing of the SS valve 20 and the housing of the stroke simulator 6. Moreover, since the structure for connecting both 20 and 6 and the brake piping are not required, the configuration of the master cylinder unit 1a can be simplified to improve the assembling workability and the fail-safe property can be improved.
 図2~図7は、本実施例のブレーキ装置1bの全体を各方向から示す。以下、説明の便宜上、直交座標系を設ける。ブレーキ装置1bが設置される車両の前後方向にx軸を設け、車両後方をx軸正方向とする。車両の幅方向(左右方向ないし横方向)にy軸を設け、車両前方(x軸正方向側)から見て右側をy軸正方向とする。車両の上下方向(鉛直方向)にz軸を設け、車両上方をz軸正方向とする。図2はブレーキ装置1bをx軸負方向側かつy軸正方向側かつz軸正方向側から見た斜視図である。図3はブレーキ装置1をz軸正方向側から見た上面図である。図4はブレーキ装置1bをx軸正方向側かつy軸正方向側かつz軸正方向側から見た斜視図である。図5はブレーキ装置1bをy軸正方向側から見た側面図である。図6はブレーキ装置1bをx軸正方向側から見た正面図である。図7はブレーキ装置1bをx軸負方向側から見た背面図である。図8及び図9は、ブレーキ装置1bを構成する各部品を分解して示す分解斜視図である。図8はx軸正方向側かつy軸正方向側かつz軸正方向側から見た分解斜視図である。図9はx軸正方向側かつy軸負方向側かつz軸正方向側から見た分解斜視図である。図10は、ブレーキ装置1bの断面図である。説明の便宜上、複数箇所の断面を1つの断面図にまとめて示す。ポンプ7の断面は、xy平面に平行な平面で切った断面を示す。 2 to 7 show the entire brake device 1b of this embodiment from various directions. Hereinafter, for convenience of explanation, an orthogonal coordinate system is provided. The x-axis is provided in the front-rear direction of the vehicle on which the brake device 1b is installed, and the rear of the vehicle is defined as the positive x-axis direction. The y-axis is provided in the vehicle width direction (left-right direction or lateral direction), and the right side when viewed from the front of the vehicle (x-axis positive direction side) is defined as the y-axis positive direction. The z-axis is provided in the vertical direction (vertical direction) of the vehicle, and the upper side of the vehicle is the positive z-axis direction. FIG. 2 is a perspective view of the brake device 1b as viewed from the x-axis negative direction side, the y-axis positive direction side, and the z-axis positive direction side. FIG. 3 is a top view of the brake device 1 as viewed from the z-axis positive direction side. FIG. 4 is a perspective view of the brake device 1b as viewed from the x-axis positive direction side, the y-axis positive direction side, and the z-axis positive direction side. FIG. 5 is a side view of the brake device 1b as seen from the y-axis positive direction side. FIG. 6 is a front view of the brake device 1b as viewed from the x-axis positive direction side. FIG. 7 is a rear view of the brake device 1b as viewed from the x-axis negative direction side. 8 and 9 are exploded perspective views showing the components constituting the brake device 1b in an exploded manner. FIG. 8 is an exploded perspective view seen from the x-axis positive direction side, the y-axis positive direction side, and the z-axis positive direction side. FIG. 9 is an exploded perspective view seen from the x-axis positive direction side, the y-axis negative direction side, and the z-axis positive direction side. FIG. 10 is a cross-sectional view of the brake device 1b. For convenience of explanation, a plurality of cross sections are collectively shown in one cross sectional view. The cross section of the pump 7 shows a cross section cut by a plane parallel to the xy plane.
 ブレーキ装置1bは、ホイルシリンダW/Cとマスタシリンダユニット1aとの間に設けられており、各ホイルシリンダW/Cにマスタシリンダ液圧又は制御液圧を個別に供給可能である。ブレーキ装置1bは、ハウジング10を備えていると共に、制御液圧を発生するための液圧機器(アクチュエータ)として、ポンプ7及び複数の制御バルブ(電磁弁21~25)を有している。ハウジング10の内部には、ポンプ7から吐出されたブレーキ液が流通する油路が形成されている。電磁弁21~25(以下、電磁弁21等という。)は、SS弁20と同様、ポペット形式の弁部とソレノイド部を有しており、上記油路を断接するために駆動され、制御信号に応じて開閉動作してブレーキ液の流れを制御する。電磁弁21~25の具体的な構成は、常閉式であるか否か等を除けばSS弁20と基本的に同様であるため、説明を省略する。ブレーキ装置1bは、マスタシリンダ5とホイルシリンダW/Cとの連通を遮断した状態で、ポンプ7が発生する液圧によりホイルシリンダW/Cを増圧可能に設けられている。 The brake device 1b is provided between the wheel cylinder W / C and the master cylinder unit 1a, and can individually supply the master cylinder hydraulic pressure or the control hydraulic pressure to each wheel cylinder W / C. The brake device 1b includes a housing 10 and includes a pump 7 and a plurality of control valves (electromagnetic valves 21 to 25) as hydraulic devices (actuators) for generating a control hydraulic pressure. An oil passage through which the brake fluid discharged from the pump 7 flows is formed inside the housing 10. Like the SS valve 20, the solenoid valves 21 to 25 (hereinafter referred to as the solenoid valve 21 and the like) have a poppet-type valve portion and a solenoid portion, and are driven to connect and disconnect the oil passage. The flow of brake fluid is controlled by opening and closing in response to this. The specific configuration of the electromagnetic valves 21 to 25 is basically the same as that of the SS valve 20 except for whether or not it is a normally closed type, and thus the description thereof is omitted. The brake device 1b is provided so that the wheel cylinder W / C can be increased by the hydraulic pressure generated by the pump 7 while the communication between the master cylinder 5 and the wheel cylinder W / C is cut off.
 ブレーキ装置1bは、ポンプ7の吐出圧やマスタシリンダ液圧を検出する液圧センサ91~93と、アクチュエータの作動を制御する電子制御ユニット(以下、ECUという)9とを一体的に備えている。ポンプ7、モータ8、電磁弁21等、液圧センサ91~93、及びECU9は、ハウジング10に取り付けられている。ECU9をマスタシリンダユニット1aの側でなくブレーキ装置1bの側に取り付けたことで、マスタシリンダユニット1aを小型化できると共に、液圧センサ91~93やアクチュエータとECU9とを接続する配線の取り回しを簡素化することができる。ハウジング10は車体側(エンジンルームの床)へ固定設置される。ハウジング10は、車体側に固定されたブラケット300に複数のインシュレータ30を介して支持される。インシュレータ30は、ブレーキ装置1bから車体側への振動の伝達を抑制(絶縁)するための弾性部材(ダンパ)である。ブレーキ装置1bは、例えば、マスタシリンダユニット1aの下側に、図2のx軸方向が図1のX軸方向と一致するように配置される。これにより、ブレーキシステム全体の鉛直方向(車両上下方向)での投影面積を少なくして、車両搭載性を向上できる。 The brake device 1b is integrally provided with hydraulic pressure sensors 91 to 93 that detect the discharge pressure of the pump 7 and the master cylinder hydraulic pressure, and an electronic control unit (hereinafter referred to as ECU) 9 that controls the operation of the actuator. . The pump 7, the motor 8, the electromagnetic valve 21, etc., the hydraulic pressure sensors 91 to 93, and the ECU 9 are attached to the housing 10. By attaching the ECU 9 not to the master cylinder unit 1a but to the brake device 1b, the master cylinder unit 1a can be reduced in size and the wiring of the hydraulic pressure sensors 91 to 93 and the actuators to the ECU 9 can be simplified. Can be The housing 10 is fixedly installed on the vehicle body side (the floor of the engine room). The housing 10 is supported by a bracket 300 fixed to the vehicle body side via a plurality of insulators 30. The insulator 30 is an elastic member (damper) for suppressing (insulating) transmission of vibration from the brake device 1b to the vehicle body side. The brake device 1b is disposed, for example, below the master cylinder unit 1a so that the x-axis direction in FIG. 2 coincides with the X-axis direction in FIG. Thereby, the projection area in the vertical direction (vehicle up-down direction) of the whole brake system can be reduced, and vehicle mounting property can be improved.
 以下、ブレーキ装置1bの油路の回路構成を図1に基づき説明する。各車輪FL~RRに対応する部材には、その符号の末尾にそれぞれ添字FL~RRを付して適宜区別する。第1油路11は、マスタシリンダ5(の第1,第2液室51P,51S)とホイルシリンダW/Cとを接続する。第1油路11には、常開の(すなわち非通電状態で開弁する)遮断弁21が設けられている。第1油路11における遮断弁21よりもホイルシリンダW/C側には、各車輪FL~RRに対応して(油路11FL~11RRに)常開の増圧弁(以下、IN弁という。)22が設けられている。また、各IN弁22をバイパスして第1油路11と並列にバイパス油路が設けられており、ホイルシリンダW/C側からマスタシリンダ5側へのブレーキ液の流れのみを許容するチェック弁26が上記バイパス油路に設けられている。吸入油路12は、リザーバ120とポンプ7の吸入側とを接続する。リザーバ120は、ブレーキ配管2cを介してマスタシリンダユニット1aのリザーバタンク50に接続している。ブレーキ配管2cは、ポンプ7の接続ポート7bに接続されることで、リザーバ120に連通する。 Hereinafter, the circuit configuration of the oil passage of the brake device 1b will be described with reference to FIG. The members corresponding to the wheels FL to RR are appropriately distinguished by adding suffixes FL to RR at the end of the reference numerals. The first oil passage 11 connects the master cylinder 5 (first and second liquid chambers 51P and 51S thereof) and the wheel cylinder W / C. The first oil passage 11 is provided with a shut-off valve 21 that is normally open (that is, opens in a non-energized state). On the wheel cylinder W / C side with respect to the shutoff valve 21 in the first oil passage 11, a normally open pressure increasing valve (hereinafter referred to as an IN valve) corresponding to each wheel FL to RR (to the oil passages 11FL to 11RR). 22 is provided. In addition, a bypass oil passage is provided in parallel with the first oil passage 11 by bypassing each IN valve 22 and only a brake fluid flow from the wheel cylinder W / C side to the master cylinder 5 side is allowed. 26 is provided in the bypass oil passage. The suction oil passage 12 connects the reservoir 120 and the suction side of the pump 7. The reservoir 120 is connected to the reservoir tank 50 of the master cylinder unit 1a via the brake pipe 2c. The brake pipe 2 c communicates with the reservoir 120 by being connected to the connection port 7 b of the pump 7.
 吐出油路13は、第1油路11における遮断弁21とIN弁22との間とポンプ7の吐出側とを接続する。吐出油路13におけるポンプ7の吐出側には、ポンプ7から吐出されたブレーキ液が流れる方向に沿って(下流側に向って)、第1ダンパ28と、チェック弁27と、オリフィス130と、第2ダンパ29とが、この順に並んで設けられている。ダンパ28,29及びオリフィス130は、ポンプ7が吐出するブレーキ液の脈動を低減する脈動低減手段である。チェック弁27は、ポンプ7の吐出側から第1油路11側へのブレーキ液の流れのみを許容するポンプ7の吐出弁である。吐出油路13は、第2ダンパ29の下流側で、P系統の吐出油路13PとS系統の吐出油路13Sとに分岐している。吐出油路13P,13Sは、第1油路11における遮断弁21とIN弁22との間に接続しており、P系統の第1油路11PとS系統の第1油路11Sとを接続する連通路を構成している。ポンプ7は、上記連通路(吐出油路13P,13S)及び第1油路11P,11Sを介してホイルシリンダW/Cと接続しており、上記連通路にブレーキ液を吐出することでホイルシリンダ液圧を増圧可能な第2のブレーキ液圧発生源である。吐出油路13Pには、常閉の(非通電状態で閉弁する)連通弁23Pが設けられている。吐出油路13Sには、常閉の連通弁23Sが設けられている。常閉の連通弁23を設けたことで、電源失陥時にも両系統のブレーキ液圧系を独立とし、各系統で独立に踏力によるホイルシリンダ増圧を可能としている。 The discharge oil passage 13 connects between the shut-off valve 21 and the IN valve 22 in the first oil passage 11 and the discharge side of the pump 7. On the discharge side of the pump 7 in the discharge oil passage 13, along the direction in which the brake fluid discharged from the pump 7 flows (toward the downstream side), the first damper 28, the check valve 27, the orifice 130, A second damper 29 is provided in this order. The dampers 28 and 29 and the orifice 130 are pulsation reducing means for reducing pulsation of the brake fluid discharged from the pump 7. The check valve 27 is a discharge valve of the pump 7 that allows only a flow of brake fluid from the discharge side of the pump 7 to the first oil passage 11 side. The discharge oil path 13 is branched downstream of the second damper 29 into a P system discharge oil path 13P and an S system discharge oil path 13S. The discharge oil passages 13P and 13S are connected between the shutoff valve 21 and the IN valve 22 in the first oil passage 11, and connect the first oil passage 11P of the P system and the first oil passage 11S of the S system. The communication path is configured. The pump 7 is connected to the wheel cylinder W / C through the communication passage (discharge oil passages 13P and 13S) and the first oil passage 11P and 11S, and the wheel cylinder is discharged by discharging brake fluid into the communication passage. This is a second brake fluid pressure generation source capable of increasing the fluid pressure. The discharge oil passage 13P is provided with a communication valve 23P that is normally closed (closed in a non-energized state). The discharge oil passage 13S is provided with a normally closed communication valve 23S. By providing the normally closed communication valve 23, the brake fluid pressure systems of both systems are made independent even when the power supply fails, and the wheel cylinder pressure can be increased by the pedaling force independently in each system.
 第1減圧油路14は、吐出油路13における第2ダンパ29と連通弁23との間と吸入油路12とを接続する。第1減圧油路14には、第1減圧弁としての常閉の調圧弁24が設けられている。第2減圧油路15は、第1油路11におけるIN弁22よりもホイルシリンダW/C側と、第1減圧油路14における吸入油路12との接続部位と調圧弁24との間とを接続する。第2減圧油路15には、第2減圧弁としての常閉の減圧弁(以下、OUT弁という。)25が設けられている。OUT弁25に対してホイルシリンダW/C側を上流とすると、各第2減圧油路15はOUT弁25の下流側で第1減圧油路14と合流して1つの油路となり、吸入油路12(リザーバ120)に接続している。 The first decompression oil passage 14 connects the suction oil passage 12 between the second damper 29 and the communication valve 23 in the discharge oil passage 13. The first pressure reducing oil passage 14 is provided with a normally closed pressure regulating valve 24 as a first pressure reducing valve. The second pressure reducing oil passage 15 is between the wheel cylinder W / C side of the IN valve 22 in the first oil passage 11 and between the connection portion of the suction oil passage 12 in the first pressure reducing oil passage 14 and the pressure regulating valve 24. Connect. The second pressure reducing oil passage 15 is provided with a normally closed pressure reducing valve (hereinafter referred to as an OUT valve) 25 as a second pressure reducing valve. If the wheel cylinder W / C side is upstream of the OUT valve 25, each second pressure reducing oil passage 15 merges with the first pressure reducing oil passage 14 on the downstream side of the OUT valve 25 to form one oil passage, and the suction oil It is connected to the channel 12 (reservoir 120).
 遮断弁21、IN弁22、調圧弁24、及び各系統のOUT弁25のうち少なくとも1つ(本実施例では前輪FL,FRのOUT弁)は、ソレノイドに供給される電流に応じて弁の開度が調整される比例制御弁である。他の弁、すなわち連通弁23、及び残りのOUT弁25(後輪RL,RRのOUT弁)は、オン・オフ弁である。尚、上記他の弁に比例制御弁を用いることも可能である。P系統の第1油路11Pにおける遮断弁21とマスタシリンダ5との間には、この箇所の液圧(マスタシリンダ液圧ないしストロークシミュレータ6内の液圧)を検出する液圧センサ91が設けられている。第1油路11における遮断弁21とIN弁22との間には、この箇所の液圧(ホイルシリンダ液圧)を検出する液圧センサ92が各系統に設けられている。吐出油路13におけるポンプ7の吐出側(第2ダンパ29)と連通弁23との間、ないし第1減圧油路14における吐出油路13との接続部位と調圧弁24との間には、この箇所の液圧(ポンプ吐出圧)を検出する液圧センサ93が設けられている。 At least one of the shut-off valve 21, the IN valve 22, the pressure regulating valve 24, and the OUT valve 25 of each system (in this embodiment, the OUT valve of the front wheels FL and FR) has a valve in accordance with the current supplied to the solenoid. It is a proportional control valve whose opening is adjusted. The other valves, that is, the communication valve 23 and the remaining OUT valve 25 (the OUT valves of the rear wheels RL and RR) are on / off valves. A proportional control valve can also be used as the other valve. Between the shutoff valve 21 and the master cylinder 5 in the first oil passage 11P of the P system, a hydraulic pressure sensor 91 for detecting the hydraulic pressure at this point (master cylinder hydraulic pressure or hydraulic pressure in the stroke simulator 6) is provided. It has been. Between the shutoff valve 21 and the IN valve 22 in the first oil passage 11, a hydraulic pressure sensor 92 that detects the hydraulic pressure (foil cylinder hydraulic pressure) at this location is provided in each system. Between the discharge side (second damper 29) of the pump 7 in the discharge oil passage 13 and the communication valve 23, or between the connection portion of the first pressure reduction oil passage 14 and the discharge oil passage 13 and the pressure regulating valve 24, A hydraulic pressure sensor 93 for detecting the hydraulic pressure (pump discharge pressure) at this location is provided.
 ECU9は、ペダルストロークセンサ90及び液圧センサ91~93から送られる検出値、及び車両から送られる走行状態に関する情報が入力され、内蔵されるプログラムに基づき、ブレーキシステムの各アクチュエータを制御する。具体的には、油路の連通状態を切り替える電磁弁20~25の開閉動作や、ポンプ7を駆動するモータ8の回転数(すなわちポンプ7の吐出量)を制御する。これによりホイルシリンダW/Cの液圧を制御することで、制動による車輪のスリップを抑制(ロック傾向を緩和)するためのアンチロックブレーキ制御(ABS)や、車両の運動制御(横滑り防止等の車両挙動安定化制御。VDC)のためのブレーキ制御や、先行車追従制御等の自動ブレーキ制御や、ジェネレータ等を用いた回生ブレーキと協調して目標減速度(目標制動力)を達成するようにホイルシリンダ液圧を制御する回生協調ブレーキ制御等を実現する。回生協調ブレーキ制御では、例えば運転者の要求する制動力を発生させるために回生制動力では足りない分の液圧制動力を発生する。なお、ブレーキペダル4の操作量に応じたホイルシリンダ液圧が発生するようにポンプ7を作動させることでブレーキ操作力を低減する倍力制御を実行することとしてもよい。この場合、リンク式倍力装置4aを省略してもよい。 The ECU 9 receives the detection values sent from the pedal stroke sensor 90 and the hydraulic pressure sensors 91 to 93 and the information on the running state sent from the vehicle, and controls each actuator of the brake system based on a built-in program. Specifically, the opening / closing operation of the solenoid valves 20 to 25 for switching the communication state of the oil passage and the rotation speed of the motor 8 that drives the pump 7 (that is, the discharge amount of the pump 7) are controlled. By controlling the hydraulic pressure of the wheel cylinder W / C, anti-lock brake control (ABS) for suppressing wheel slip due to braking (relaxing the locking tendency) and vehicle motion control (side slip prevention, etc.) To achieve target deceleration (target braking force) in coordination with brake control for vehicle behavior stabilization control (VDC), automatic brake control such as preceding vehicle follow-up control, and regenerative braking using a generator, etc. Regenerative cooperative brake control that controls wheel cylinder hydraulic pressure is realized. In the regenerative cooperative brake control, for example, a hydraulic braking force that is insufficient for the regenerative braking force is generated to generate the braking force requested by the driver. In addition, it is good also as performing boost control which reduces brake operation force by operating the pump 7 so that the wheel cylinder hydraulic pressure according to the operation amount of the brake pedal 4 may generate | occur | produce. In this case, the link type booster 4a may be omitted.
 各アクチュエータが非作動である状態では、マスタシリンダ5の液圧室53と各車輪のホイルシリンダW/Cとが連通した状態となる。運転者によるブレーキペダル4の操作に応じて発生するマスタシリンダ液圧はホイルシリンダW/Cへ供給され、ホイルシリンダ液圧(ブレーキ液圧)を発生させる(踏力ブレーキ)。このとき、ECU9は、SS弁20を閉弁方向に制御し、マスタシリンダ5(液圧室53P)とストロークシミュレータ6(主室64)との連通を遮断することで、マスタシリンダ液圧がホイルシリンダW/Cへ有効に供給されるようにする。一方、各アクチュエータが作動した状態では、マスタシリンダ5の液圧室53と各ホイルシリンダW/Cとの連通を遮断しつつ、ポンプ7を用いて発生させた液圧によりホイルシリンダ液圧を創生することが可能である。ECU9は、遮断弁21を閉弁方向に制御することで、ブレーキ装置1bの状態を、ポンプ7によるホイルシリンダ液圧の創生が容易な状態とし、回生協調ブレーキ制御等を実現する。この状態で、ポンプ7を含み、リザーバ120(リザーバタンク50)とホイルシリンダW/Cとを接続する油路(吸入油路12、吐出油路13等)及びその連通・遮断を制御する電磁弁21等は、運転者のブレーキ操作(マスタシリンダ液圧)とは独立にポンプ7を用いて発生させた液圧によりホイルシリンダ液圧を創生するブレーキ系統を構成し、所謂ブレーキバイワイヤシステムを形成する。このとき、ECU9は、SS弁6を開弁方向に制御し、マスタシリンダ5(液圧室53P)とストロークシミュレータ6(主室64)とを連通させることで、操作反力を擬似的に生成する。 In a state where each actuator is not operated, the hydraulic chamber 53 of the master cylinder 5 and the wheel cylinder W / C of each wheel are in communication with each other. The master cylinder hydraulic pressure generated in response to the operation of the brake pedal 4 by the driver is supplied to the wheel cylinder W / C to generate wheel cylinder hydraulic pressure (brake hydraulic pressure) (treading force brake). At this time, the ECU 9 controls the SS valve 20 in the valve closing direction and cuts off the communication between the master cylinder 5 (hydraulic pressure chamber 53P) and the stroke simulator 6 (main chamber 64). Effective supply to cylinder W / C. On the other hand, in the state where each actuator is operated, the wheel cylinder hydraulic pressure is generated by the hydraulic pressure generated by the pump 7 while the communication between the hydraulic pressure chamber 53 of the master cylinder 5 and each wheel cylinder W / C is cut off. It is possible to live. The ECU 9 controls the shut-off valve 21 in the valve closing direction to make the state of the brake device 1b easy to generate the wheel cylinder hydraulic pressure by the pump 7, thereby realizing regenerative cooperative brake control and the like. In this state, the pump 7 includes an oil passage (the intake oil passage 12, the discharge oil passage 13 and the like) that connects the reservoir 120 (reservoir tank 50) and the wheel cylinder W / C, and a solenoid valve that controls communication / blocking thereof. 21 and the like constitute a brake system that generates wheel cylinder hydraulic pressure by hydraulic pressure generated using the pump 7 independently of the driver's brake operation (master cylinder hydraulic pressure), forming a so-called brake-by-wire system. To do. At this time, the ECU 9 controls the SS valve 6 in the valve opening direction and causes the master cylinder 5 (hydraulic pressure chamber 53P) and the stroke simulator 6 (main chamber 64) to communicate with each other, thereby artificially generating an operation reaction force. To do.
 例えば、ECU9は、ポンプ7を駆動し、SS弁20を開弁方向に制御し、遮断弁21を閉弁方向に制御し、IN弁22を開弁方向に制御し、連通弁23を開弁方向に制御し、調圧弁24を開弁方向に制御し、OUT弁25を閉弁方向に制御する。この制御中、液圧センサ91の検出値はマスタシリンダ液圧と略同視できるため、液圧センサ91はマスタシリンダ液圧を検出するマスタシリンダ圧センサとして機能する。例えば、液圧センサ91の検出値に基づき、ブレーキペダル4の操作量に応じたホイルシリンダ液圧が発生するように、ポンプ7を作動させる。液圧センサ92,93の検出値に基づき、調圧弁24の開弁状態(弁開度)を制御することで、ホイルシリンダ液圧が目標液圧となるように制御する。本実施例では、基本的に、ポンプ7ではなく調圧弁24を制御することによりホイルシリンダ液圧を制御する。調圧弁24を比例制御弁としているため、細かい制御が可能となり、ホイルシリンダ液圧の滑らかな制御が実現可能となっている。なお、これに限らず例えばポンプ7の回転数(吐出量)を制御することとしてもよい。調圧弁24の代わりに(又は調圧弁24と共に)OUT弁25を制御することによりホイルシリンダ液圧を制御することとしてもよい。また、ホイルシリンダ液圧の減圧時や保持時にはポンプ7を停止することとしてもよい。 For example, the ECU 9 drives the pump 7, controls the SS valve 20 in the valve opening direction, controls the shut-off valve 21 in the valve closing direction, controls the IN valve 22 in the valve opening direction, and opens the communication valve 23. The pressure control valve 24 is controlled in the valve opening direction, and the OUT valve 25 is controlled in the valve closing direction. During this control, the detected value of the hydraulic pressure sensor 91 can be regarded as substantially the same as the master cylinder hydraulic pressure, so that the hydraulic pressure sensor 91 functions as a master cylinder pressure sensor that detects the master cylinder hydraulic pressure. For example, the pump 7 is operated based on the detection value of the hydraulic pressure sensor 91 so that the wheel cylinder hydraulic pressure corresponding to the operation amount of the brake pedal 4 is generated. By controlling the valve opening state (valve opening degree) of the pressure regulating valve 24 based on the detection values of the hydraulic pressure sensors 92 and 93, the wheel cylinder hydraulic pressure is controlled to be the target hydraulic pressure. In this embodiment, basically, the wheel cylinder hydraulic pressure is controlled by controlling not the pump 7 but the pressure regulating valve 24. Since the pressure regulating valve 24 is a proportional control valve, fine control is possible and smooth control of the wheel cylinder hydraulic pressure can be realized. For example, the number of rotations (discharge amount) of the pump 7 may be controlled. The wheel cylinder hydraulic pressure may be controlled by controlling the OUT valve 25 instead of the pressure regulating valve 24 (or together with the pressure regulating valve 24). The pump 7 may be stopped when the wheel cylinder hydraulic pressure is reduced or maintained.
 ポンプ7として、本実施例では、音振性能等で優れたギヤポンプ、具体的には外接歯車式ポンプ(外接ギヤポンプ)を採用する。ポンプ7は両系統で共通に用いられ、同一のモータ8により駆動される。モータ8は、ポンプ7を駆動するための電動機であり、例えばブラシ付きモータを用いることができる。モータ8は、有底円筒状のモータケース80と、出力軸としての回転軸81を備えている。モータケース80の開口端にはフランジ部80aが設けられている。ポンプ7は、有底円筒状のポンプケース7aと、接続ポート7bと、ポンプユニット(ポンプ組立体)7cを備えている。ポンプケース7aは、内部にポンプユニット7cを収容する。ポンプケース7aの開口端にはフランジ部70aが設けられている。ポンプケース7aの内部には、リザーバ120が設けられている。リザーバ120は、ポンプユニット7cの外周とポンプケース7aの内周との間の空間により構成されるブレーキ液溜まり(第2のブレーキ液源)である。接続ポート7bは、ポンプケース7aの外部(リザーバタンク50)からブレーキ配管2cを介してポンプケース7aの内部(リザーバ120)へブレーキ液を供給するためのポートである。接続ポート7bは、ポンプケース7aの底部から突出する管状に設けられている。接続ポート7bは、ポンプケース7aの鉛直方向上側(z軸正方向側)に設けられている。 As the pump 7, in this embodiment, a gear pump excellent in sound vibration performance and the like, specifically, an external gear pump (external gear pump) is employed. The pump 7 is used in common by both systems and is driven by the same motor 8. The motor 8 is an electric motor for driving the pump 7, and for example, a motor with a brush can be used. The motor 8 includes a bottomed cylindrical motor case 80 and a rotating shaft 81 as an output shaft. A flange portion 80 a is provided at the opening end of the motor case 80. The pump 7 includes a bottomed cylindrical pump case 7a, a connection port 7b, and a pump unit (pump assembly) 7c. The pump case 7a accommodates the pump unit 7c inside. A flange portion 70a is provided at the opening end of the pump case 7a. A reservoir 120 is provided inside the pump case 7a. The reservoir 120 is a brake fluid reservoir (second brake fluid source) configured by a space between the outer periphery of the pump unit 7c and the inner periphery of the pump case 7a. The connection port 7b is a port for supplying brake fluid from the outside of the pump case 7a (reservoir tank 50) to the inside of the pump case 7a (reservoir 120) via the brake pipe 2c. The connection port 7b is provided in a tubular shape protruding from the bottom of the pump case 7a. The connection port 7b is provided on the upper side in the vertical direction (z-axis positive direction side) of the pump case 7a.
 図10に示すように、ポンプユニット7cは、側板71とハウジング72と回転軸73とギヤ74とを備えている。回転軸73は、駆動軸73aと従動軸73bを有している。駆動軸73aはモータ8により回転駆動される。ギヤ74は、駆動軸73aと一体的に回転する駆動ギヤ74aと、従動軸73bと一体的に回転する従動ギヤ74bとを有している。従動ギヤ74bは駆動ギヤ74aに歯合する(互いに噛合う)。ギヤ74はポンプ部を構成しており、モータ8により回転駆動されてリザーバ120(リザーバタンク50)内のブレーキ液を吸入し、ホイルシリンダW/Cに向けて吐出する。側板71は、ギヤ74の周囲に配置され、各ギヤ74の軸方向両端面の所定領域をそれぞれシールすると共に各ギヤの歯先を部分的にシールすることで、吸入通路12(リザーバ120)に接続された図外の低圧室と吐出通路13に接続された図外の高圧室とを液密に画成する。ハウジング72は、回転軸73やギヤ74や側板71を内部に収容する。ハウジング72は、ポンプハウジング72aとポンプカバー72bとねじ部材72cと位置決め部材72dとを有している。 As shown in FIG. 10, the pump unit 7 c includes a side plate 71, a housing 72, a rotating shaft 73, and a gear 74. The rotating shaft 73 has a drive shaft 73a and a driven shaft 73b. The drive shaft 73a is rotationally driven by the motor 8. The gear 74 has a drive gear 74a that rotates integrally with the drive shaft 73a, and a driven gear 74b that rotates integrally with the driven shaft 73b. The driven gear 74b meshes with (engages with) the drive gear 74a. The gear 74 constitutes a pump unit, and is rotated by the motor 8 to suck in the brake fluid in the reservoir 120 (reservoir tank 50) and discharge it toward the wheel cylinder W / C. The side plate 71 is disposed around the gear 74 and seals a predetermined area on each end face in the axial direction of each gear 74 and partially seals the tooth tip of each gear. A connected low-pressure chamber (not shown) and a high-pressure chamber (not shown) connected to the discharge passage 13 are liquid-tightly defined. The housing 72 accommodates the rotating shaft 73, the gear 74, and the side plate 71 therein. The housing 72 includes a pump housing 72a, a pump cover 72b, a screw member 72c, and a positioning member 72d.
 ポンプハウジング72aは、有底円筒状であり、その底部側には、開口部側よりもやや小径の嵌合部720が設けられている。嵌合部720の底部には、位置決め用のピン39が挿入設置される有底孔が形成されている。ポンプハウジング72aの内部には吸入通路12の一部が形成されている。吸入通路12はポンプハウジング72aの外周面に開口する孔721(図8参照)を介してリザーバ120に接続している。また、ポンプハウジング72aの内部には吐出通路13の一部が形成されている。吐出通路13は、上記高圧室に接続すると共に、嵌合部720の底部に開口する孔を介してハウジング10の吐出通路13(後述する嵌合凹部10eの底部に開口する油路13-0)に接続している。また、ポンプハウジング72aの内部には第1減圧油路14の一部が形成されている。第1減圧油路14は、上記低圧室に接続すると共に、嵌合部720の底部に開口する孔を介してハウジング10の第1減圧油路14(後述する嵌合凹部10eの底部に開口する油路14-3)に接続している。ポンプハウジング72aの底部には、軸受75を介して回転軸73が回転自在に収容される。 The pump housing 72a has a bottomed cylindrical shape, and a fitting portion 720 having a slightly smaller diameter than the opening side is provided on the bottom side. A bottomed hole into which the positioning pin 39 is inserted and installed is formed at the bottom of the fitting portion 720. A part of the suction passage 12 is formed inside the pump housing 72a. The suction passage 12 is connected to the reservoir 120 through a hole 721 (see FIG. 8) that opens in the outer peripheral surface of the pump housing 72a. A part of the discharge passage 13 is formed inside the pump housing 72a. The discharge passage 13 is connected to the high-pressure chamber, and is connected to the bottom of the fitting portion 720, and the discharge passage 13 of the housing 10 (an oil passage 13-0 opened at the bottom of a fitting recess 10e described later). Connected to. A part of the first reduced pressure oil passage 14 is formed inside the pump housing 72a. The first reduced pressure oil passage 14 is connected to the low pressure chamber and opens to the first reduced pressure oil passage 14 (the bottom of a fitting recess 10e described later) of the housing 10 through a hole opened in the bottom of the fitting portion 720. It is connected to oil passage 14-3). A rotary shaft 73 is rotatably accommodated via a bearing 75 at the bottom of the pump housing 72a.
 ポンプカバー72bは、段付きの有底円筒状であり、大径の開口部側がポンプハウジング72aの開口部の内周側に嵌合するように設置される。ギヤ74及び側板71はポンプカバー72bの開口部の内周側に設置されている。ポンプカバー72bの底部には、軸受75を介して回転軸73が回転自在に収容される。ねじ部材72cは、ポンプカバー72bの底部の外周側に設置される。ねじ部材72cの外周がポンプハウジング72aの開口部の内周に螺合しつつポンプカバー72bの開口部をポンプハウジング72aの底部に向けて押圧することにより、ポンプカバー72bがポンプハウジング72aに対して締結固定される。位置決め部材72dは、ポンプカバー72bの開口部の内周側に設置され、ギヤ74及び側板71を位置決め部材72dとポンプハウジング72aの底部との間に挟み込むことで、ギヤ74及び側板71の軸方向移動を規制する。ポンプハウジング72aの底部からは駆動軸73aの端部が突出する。この端部は、カラー部材730を介してモータ8の回転軸81の端部に連結される。ポンプハウジング72aの底部には、駆動軸73aの上記端部が貫通して設置される孔が形成されている。この孔には、シール部材76が配置されている。シール部材76は、上記孔から駆動軸73aの外周に沿ってブレーキ液が漏洩することを抑制する。 The pump cover 72b has a stepped bottomed cylindrical shape and is installed so that the large-diameter opening side is fitted to the inner peripheral side of the opening of the pump housing 72a. The gear 74 and the side plate 71 are installed on the inner peripheral side of the opening of the pump cover 72b. A rotary shaft 73 is rotatably accommodated via a bearing 75 at the bottom of the pump cover 72b. The screw member 72c is installed on the outer peripheral side of the bottom portion of the pump cover 72b. The pump cover 72b is pressed against the pump housing 72a by pressing the opening of the pump cover 72b toward the bottom of the pump housing 72a while the outer periphery of the screw member 72c is screwed into the inner periphery of the opening of the pump housing 72a. Fastened and fixed. The positioning member 72d is installed on the inner peripheral side of the opening of the pump cover 72b, and the gear 74 and the side plate 71 are sandwiched between the positioning member 72d and the bottom of the pump housing 72a, whereby the gear 74 and the side plate 71 are axially arranged. Restrict movement. The end of the drive shaft 73a protrudes from the bottom of the pump housing 72a. This end is connected to the end of the rotating shaft 81 of the motor 8 via the collar member 730. At the bottom of the pump housing 72a, a hole is formed through which the end of the drive shaft 73a is installed. A seal member 76 is disposed in this hole. The seal member 76 prevents the brake fluid from leaking from the hole along the outer periphery of the drive shaft 73a.
 図11~図30は、本実施例のハウジング10の全体を各方向から示す。図11はハウジング10をx軸負方向側かつy軸正方向側かつz軸正方向側から見た斜視図である。図13はハウジング10をx軸正方向側かつy軸正方向側かつz軸正方向側から見た斜視図である。図15はハウジング10をx軸負方向側かつy軸負方向側かつz軸負方向側から見た斜視図である。図17はハウジング10をx軸正方向側かつy軸負方向側かつz軸負方向側から見た斜視図である。図19はハウジング10をx軸負方向側から見た背面図である。図21はハウジング10をx軸正方向側から見た正面図である。図23はハウジング10をy軸正方向側から見た側面図である。図25はハウジング10をy軸負方向側から見た側面図である。図27はハウジング10をz軸正方向側から見た上面図である。図29はハウジング10をz軸負方向側から見た下面図である。図12,14,16,18,20,22,24,26,28,30は、それぞれ図11,13,15,17,19,21,23,25,27,29のハウジング10の内部に形成された各孔(油路等)を透視して図示する。ハウジング10は、第1ハウジング部10aと第2ハウジング部10bからなる。ハウジング10は例えばアルミ系金属材料で作られている。ハウジング10の内部には、バルブ装着孔121~125やセンサ装着孔191~193や油路11等が、例えばドリルを用いた切削(穴開け)加工により複数形成されている。第1ハウジング部10aには、ポンプ7及びモータ8が取り付けられる。第2ハウジング部10bには、電磁弁21等が取り付けられる。すなわち、第2ハウジング部10bはバルブハウジングである。また、第2ハウジング部10bには、バルブケース95を介してECU9が取り付けられる。 11 to 30 show the entire housing 10 of this embodiment from various directions. FIG. 11 is a perspective view of the housing 10 as viewed from the x-axis negative direction side, the y-axis positive direction side, and the z-axis positive direction side. FIG. 13 is a perspective view of the housing 10 as viewed from the x-axis positive direction side, the y-axis positive direction side, and the z-axis positive direction side. FIG. 15 is a perspective view of the housing 10 as viewed from the x-axis negative direction side, the y-axis negative direction side, and the z-axis negative direction side. FIG. 17 is a perspective view of the housing 10 viewed from the x-axis positive direction side, the y-axis negative direction side, and the z-axis negative direction side. FIG. 19 is a rear view of the housing 10 as viewed from the x-axis negative direction side. FIG. 21 is a front view of the housing 10 as viewed from the x-axis positive direction side. FIG. 23 is a side view of the housing 10 as viewed from the y-axis positive direction. FIG. 25 is a side view of the housing 10 as seen from the y-axis negative direction side. FIG. 27 is a top view of the housing 10 as viewed from the z-axis positive direction side. FIG. 29 is a bottom view of the housing 10 as seen from the z-axis negative direction side. 12, 14, 16, 18, 20, 22, 24, 26, 28, and 30 are formed inside the housing 10 of FIGS. Each of the holes (oil passages and the like) is shown through. The housing 10 includes a first housing part 10a and a second housing part 10b. The housing 10 is made of, for example, an aluminum metal material. Inside the housing 10, a plurality of valve mounting holes 121 to 125, sensor mounting holes 191 to 193, an oil passage 11 and the like are formed by, for example, cutting (drilling) using a drill. A pump 7 and a motor 8 are attached to the first housing part 10a. An electromagnetic valve 21 or the like is attached to the second housing part 10b. That is, the second housing part 10b is a valve housing. Further, the ECU 9 is attached to the second housing portion 10b via a valve case 95.
 第1ハウジング部10aは、略直方体状である。第1ハウジング部10aは、各辺のうち寸法が最大である辺と2番目に長い辺とにより構成される略正方形の面として、面101(第1の面)と面102(第2の面)を備えている。面101,102は互いに対向しており、第1ハウジング部10aは、面101,102に挟まれた扁平な板状である。すなわち、面101,102間の距離は、面101,102を構成する上記各辺の寸法よりも、短い。上記寸法が最大である辺がz軸方向に延びるように、また上記2番目に長い辺がy軸方向に延びるように、ハウジング10が設置される。このとき、面101,102はx軸方向で互いに対向する。面101がx軸正方向側を向き、面102がx軸負方向側を向くように配置する。第1ハウジング部10aは、面101,102を接続する面として、y軸正方向側を向く面103と、z軸正方向側を向く面106と、z軸負方向側を向く面107とを備える。第1ハウジング部10aは、y軸負方向側で、第2ハウジング部10bと一体的に形成されている。すなわち、第1ハウジング部10aのy軸負方向側の面は、この面を介して第1ハウジング部10aが第2ハウジング部10bと一体的に固定される固定面である。 The first housing part 10a has a substantially rectangular parallelepiped shape. The first housing portion 10a has a surface 101 (first surface) and a surface 102 (second surface) as a substantially square surface composed of the side having the largest dimension and the second longest side. ). The surfaces 101 and 102 are opposed to each other, and the first housing portion 10a has a flat plate shape sandwiched between the surfaces 101 and 102. That is, the distance between the surfaces 101 and 102 is shorter than the dimensions of the above-mentioned sides constituting the surfaces 101 and 102. The housing 10 is installed such that the side having the maximum dimension extends in the z-axis direction and the second longest side extends in the y-axis direction. At this time, the surfaces 101 and 102 face each other in the x-axis direction. The surface 101 is disposed so as to face the x-axis positive direction side, and the surface 102 faces the x-axis negative direction side. The first housing portion 10a includes a surface 103 facing the positive y-axis direction, a surface 106 facing the positive z-axis direction, and a surface 107 facing the negative z-axis direction as surfaces connecting the surfaces 101 and 102. The first housing part 10a is formed integrally with the second housing part 10b on the y-axis negative direction side. That is, the surface of the first housing portion 10a on the negative y-axis direction is a fixed surface on which the first housing portion 10a is fixed integrally with the second housing portion 10b via this surface.
 面101には、ポンプ7が取り付けられている。すなわち、面101は、ポンプ7が取り付けられるポンプ取り付け面である。面101の外縁部には、3箇所(z軸正方向側におけるy軸正方向側とy軸負方向側の2箇所と、z軸負方向側におけるy軸方向略中央の1箇所)に、ポンプ7のポンプケース7aをボルト31により第1ハウジング部10aに締結するための有底孔131が形成されている。ポンプケース7aのフランジ部70aに挿通されたボルト31が有底孔131に螺合することで、ポンプケース7a(ポンプ7)が面101に固定設置される。面101に対向するフランジ部70aの面には、シール部材78を設置するための円環状の溝が設けられている。シール部材78は、リザーバ120から外部に向ってブレーキ液が漏洩することを抑制する。面101の略中央には、孔131に囲まれるように、ポンプユニット7cのポンプハウジング72a(嵌合部720)を第1ハウジング部10aに嵌合するための有底円筒状の嵌合凹部10eが形成されている。嵌合凹部10eの径は嵌合部720の径よりも僅かに大きく設けられている。嵌合凹部10eの深さ(x軸方向寸法)は、第1ハウジング部10aの厚み(x軸方向寸法)の1/5程度に設けられている。ポンプハウジング72aと第1ハウジング部10aを嵌合させることで、ポンプ7(ポンプユニット7c)のハウジング10(第1ハウジング部10a)への組み付けが容易になる。嵌合凹部10eの底部には、ポンプハウジング72aをボルト34により第1ハウジング部10aに締結するための貫通孔134が2箇所に形成されている。嵌合凹部10eの底部のy軸正方向側には、ポンプユニット7cのポンプハウジング72a(嵌合部720)を第1ハウジング部10aに対してピン39により位置決めするための有底孔139が形成されている。また、嵌合凹部10eの底部には、その外周縁に沿って、シール部材77を設置するための円環状の溝177が設けられている(図21参照)。シール部材77は、リザーバ120から下記貫通孔136に向ってブレーキ液が漏洩することを抑制する。 The pump 7 is attached to the surface 101. That is, the surface 101 is a pump mounting surface to which the pump 7 is mounted. The outer edge portion of the surface 101 has three locations (two locations on the z-axis positive direction side on the z-axis positive direction side and the y-axis negative direction side, and one location on the z-axis negative direction side substantially in the y-axis direction), A bottomed hole 131 for fastening the pump case 7a of the pump 7 to the first housing part 10a with a bolt 31 is formed. The bolt 31 inserted through the flange portion 70a of the pump case 7a is screwed into the bottomed hole 131, whereby the pump case 7a (pump 7) is fixedly installed on the surface 101. An annular groove for installing the seal member 78 is provided on the surface of the flange portion 70 a facing the surface 101. The seal member 78 suppresses leakage of brake fluid from the reservoir 120 toward the outside. At the approximate center of the surface 101, a bottomed cylindrical fitting recess 10e for fitting the pump housing 72a (fitting portion 720) of the pump unit 7c to the first housing portion 10a so as to be surrounded by the hole 131. Is formed. The diameter of the fitting recess 10e is slightly larger than the diameter of the fitting portion 720. The depth (x-axis direction dimension) of the fitting recess 10e is set to about 1/5 of the thickness (x-axis direction dimension) of the first housing part 10a. By fitting the pump housing 72a and the first housing portion 10a, the pump 7 (pump unit 7c) can be easily assembled to the housing 10 (first housing portion 10a). At the bottom of the fitting recess 10e, through holes 134 for fastening the pump housing 72a to the first housing part 10a with bolts 34 are formed in two places. A bottomed hole 139 for positioning the pump housing 72a (fitting portion 720) of the pump unit 7c with the pin 39 with respect to the first housing portion 10a is formed on the y axis positive direction side of the bottom portion of the fitting recess 10e. Has been. An annular groove 177 for installing the seal member 77 is provided along the outer peripheral edge of the bottom of the fitting recess 10e (see FIG. 21). The seal member 77 prevents the brake fluid from leaking from the reservoir 120 toward the following through hole 136.
 面102には、モータ8が取り付けられている。すなわち、面102は、モータ8が取り付けられるモータ取り付け面である。面102の外縁部には、2箇所(z軸正方向側におけるy軸負方向側と、z軸負方向側におけるy軸正方向側)に、モータ8のモータケース80をボルト32により締結するための有底孔132が形成されている。面102の略中央には、モータ8の軸81を支持する軸受81aを嵌合設置するための有底円筒状の軸受凹部10fが形成されている。軸受凹部10fの底部には、モータ8の軸81とポンプ7の駆動軸73aとの連結部位(カラー部材730)が収容される貫通孔136が形成されている。貫通孔136はx軸正方向側で嵌合凹部10eの底部のy軸負方向側に開口する。軸受凹部10fの近傍には、2箇所(軸受凹部10fのz軸負方向側と、軸受凹部10fのy軸正方向側かつz軸正方向側)に、ボルト34の頭部を収容するための凹部10g,10hが形成されている。凹部10g,10hの底部には、貫通孔134が開口する。面102には、凹部10gのy軸負方向側に、モータ8の端子(電極)を収容するための端子挿入孔137が開口している。端子挿入孔137は面102からx軸正方向側に第1ハウジング部10aの内部の所定深さまで延びる有底孔である。端子挿入孔137のx軸正方向端には端子挿入孔138が接続している。 A motor 8 is attached to the surface 102. That is, the surface 102 is a motor attachment surface to which the motor 8 is attached. The motor case 80 of the motor 8 is fastened to the outer edge portion of the surface 102 with bolts 32 at two locations (the y-axis negative direction side on the z-axis positive direction side and the y-axis positive direction side on the z-axis negative direction side). A bottomed hole 132 is formed. Near the center of the surface 102, a bottomed cylindrical bearing recess 10f for fitting and installing a bearing 81a that supports the shaft 81 of the motor 8 is formed. At the bottom of the bearing recess 10f, a through hole 136 is formed in which a connecting portion (collar member 730) between the shaft 81 of the motor 8 and the drive shaft 73a of the pump 7 is accommodated. The through hole 136 opens on the x-axis positive direction side on the y-axis negative direction side of the bottom of the fitting recess 10e. In the vicinity of the bearing recess 10f, the heads of the bolts 34 are accommodated in two places (the z-axis negative direction side of the bearing recess 10f, the y-axis positive direction side and the z-axis positive direction side of the bearing recess 10f). Recesses 10g and 10h are formed. A through hole 134 is opened at the bottom of the recesses 10g and 10h. In the surface 102, a terminal insertion hole 137 for receiving a terminal (electrode) of the motor 8 is opened on the negative y-axis side of the recess 10g. The terminal insertion hole 137 is a bottomed hole extending from the surface 102 to the x axis positive direction side to a predetermined depth inside the first housing portion 10a. A terminal insertion hole 138 is connected to the positive end of the terminal insertion hole 137 in the x-axis direction.
 面103のz軸正方向側の端には、(マスタシリンダ5の吐出ポート54Sと接続する)ブレーキ配管2bが接続するための接続ポート111Sが開口する。接続ポート111Sは有底円筒状であり、面103からy軸負方向側に所定深さまで延びるように形成されている。面103のz軸方向略中央には、インシュレータ30のボルト部分を締結固定するための有底孔130が形成されている。面103のz軸方向略中央よりも若干z軸負方向側には、第1ダンパ28を嵌合設置するための有底円筒状の第1ダンパ装着孔128が形成されている。第1ハウジング部10aの面107には、y軸方向略中央よりも若干y軸正方向側に、チェック弁27(フィルタ部材と一体化されたもの)を嵌合設置するため有底円筒状のチェック弁装着孔127が形成されている。y軸方向略中央よりも若干y軸負方向側に、第2ダンパ29を嵌合設置するため有底円筒状の第2ダンパ装着孔129が形成されている。y軸負方向端に、インシュレータ30のボルト部分を締結固定するための有底孔130が形成されている。 A connection port 111S for connecting a brake pipe 2b (connected to the discharge port 54S of the master cylinder 5) is opened at the end of the surface 103 on the positive side of the z-axis. The connection port 111S has a bottomed cylindrical shape and is formed so as to extend from the surface 103 to the y axis negative direction side to a predetermined depth. A bottomed hole 130 for fastening and fixing a bolt portion of the insulator 30 is formed in the center of the surface 103 in the z-axis direction. A first damper mounting hole 128 having a bottomed cylindrical shape for fitting and installing the first damper 28 is formed slightly on the negative side in the z-axis direction from the approximate center of the surface 103 in the z-axis direction. On the surface 107 of the first housing portion 10a, a check valve 27 (integrated with the filter member) is fitted and installed slightly on the positive side in the y-axis direction from the approximate center in the y-axis direction. A check valve mounting hole 127 is formed. A bottomed cylindrical second damper mounting hole 129 is formed in order to fit and install the second damper 29 slightly to the y axis negative direction side from the approximate center in the y axis direction. A bottomed hole 130 for fastening and fixing the bolt portion of the insulator 30 is formed at the end in the negative y-axis direction.
 第2ハウジング部10bは、略直方体状である。第2ハウジング部10bは、各辺のうち寸法が最大である辺と2番目に長い辺とにより構成される略長方形の面として、面104(第1の面)と面105(第2の面)を備えている。面104,105は互いに対向しており、第2ハウジング部10bは、面104,105に挟まれた扁平な板状である。すなわち、面104,105間の距離は、面104,105を構成する上記各辺の寸法よりも、短い。上記寸法が最大である辺がx軸方向に延びるように、また上記2番目に長い辺がz軸方向に延びるように、ハウジング10が設置される。このとき、面104,105はy軸方向で互いに対向する。面104がy軸負方向側を向き、面105がy軸正方向側を向くように配置する。第2ハウジング部10bは、面104,105を接続する面として、z軸正方向側を向く面106と、z軸負方向側を向く面107と、x軸正方向側を向く面108と、x軸負方向側を向く面109とを備える。z軸方向に延びる上記2番目に長い辺の寸法は、第1ハウジング部10aのz軸方向に延びる上記寸法が最大である辺と略等しい。面106,107は第1ハウジング部10aと共通である(それぞれ同一の平面を構成する)。 The second housing part 10b has a substantially rectangular parallelepiped shape. The second housing portion 10b has a surface 104 (first surface) and a surface 105 (second surface) as a substantially rectangular surface composed of the side having the largest dimension and the second longest side. ). The surfaces 104 and 105 face each other, and the second housing portion 10b has a flat plate shape sandwiched between the surfaces 104 and 105. That is, the distance between the surfaces 104 and 105 is shorter than the dimensions of the above-mentioned sides constituting the surfaces 104 and 105. The housing 10 is installed such that the side having the maximum dimension extends in the x-axis direction and the second longest side extends in the z-axis direction. At this time, the surfaces 104 and 105 face each other in the y-axis direction. The surface 104 is arranged so as to face the y-axis negative direction side, and the surface 105 faces the y-axis positive direction side. The second housing part 10b has, as surfaces connecting the surfaces 104 and 105, a surface 106 facing the z-axis positive direction side, a surface 107 facing the z-axis negative direction side, a surface 108 facing the x-axis positive direction side, and an x-axis And a surface 109 facing the negative direction side. The dimension of the second longest side extending in the z-axis direction is substantially equal to the side of the first housing part 10a extending in the z-axis direction and having the maximum dimension. The surfaces 106 and 107 are common to the first housing part 10a (each constitutes the same plane).
 第2ハウジング部10bは、面105の側(y軸正方向側)で、第1ハウジング部10aと一体的に形成されている。すなわち、面105は、この面105を介して第2ハウジング部10bが第1ハウジング部10aと一体的に固定される固定面である。本実施例では、ハウジング10は、第1ハウジング部10aの面101,102を除いた部分(のうちy軸負方向側)と、第2ハウジング部10bの面104を除いた部分(のうちy軸正方向側の面105)とにより、一体的に構成(ないし形成)されている。第1ハウジング部10aは、第2ハウジング部10bに対し、面105のx軸方向中央側、より具体的には面105のx軸方向中央よりも若干x軸負方向寄りに接続しており、面105からy軸正方向側に突出するように延びている。ハウジング10を(y軸負方向側を上にして)z軸方向から見るとT字状である。 The second housing portion 10b is formed integrally with the first housing portion 10a on the surface 105 side (y-axis positive direction side). That is, the surface 105 is a fixed surface on which the second housing part 10b is fixed integrally with the first housing part 10a via the surface 105. In the present embodiment, the housing 10 includes a portion excluding the surfaces 101 and 102 of the first housing portion 10a (of the y-axis negative direction side) and a portion of the second housing portion 10b excluding the surface 104 (of which the y-axis positive side). It is configured (or formed) integrally with the direction side surface 105). The first housing portion 10a is connected to the second housing portion 10b in the middle of the surface 105 in the x-axis direction, more specifically, slightly closer to the x-axis negative direction than the center of the surface 105 in the x-axis direction. The surface 105 extends so as to protrude in the positive y-axis direction. The housing 10 is T-shaped when viewed from the z-axis direction (with the y-axis negative direction side facing up).
 第1ハウジング部10aの面101と第2ハウジング部10bの面105とにより挟まれた(z軸方向から見てL字状の)凹部に、ポンプ7が設置される。ポンプ7の回転軸73(及びポンプケース7aの軸)並びに接続ポート7bは、x軸方向に延びるように配置されている(図3参照)。ポンプ7の駆動軸73a(及び駆動ギヤ74a)は、従動軸73b(及び従動ギヤ74b)に対してy軸負方向側、すなわち従動軸73b(及び従動ギヤ74b)と第2ハウジング部10bとに挟まれた位置に配置されている。駆動軸73a(及び駆動ギヤ74a)の中心のz軸方向位置は、従動軸73b(及び従動ギヤ74b)の中心のz軸方向位置に略等しい。第2ハウジング部10bには、上記凹部を形成する面105の側(面105における第1ハウジング部10aの接続部位よりもx軸正方向側)におけるx軸正方向側かつz軸正方向側の端に、凸部10cが形成されている。凸部10cは、y軸正方向側から見て略矩形状であり、面105からy軸正方向側に若干突出するように形成されている。凸部10cのy軸正方向側の面には、(マスタシリンダ5の吐出ポート54Pと接続する)ブレーキ配管2aが接続するための接続ポート111Pが開口する。第1ハウジング部10aの面102と第2ハウジング部10bの面105とにより挟まれた(z軸方向から見てL字状の)凹部に、モータ8が設置される。モータ8の回転軸81(及びモータケース80の軸)は、x軸方向に延びるように配置されている。第2ハウジング部10bには、上記凹部を形成する面105の側(面105における第1ハウジング部10aの接続部位よりもx軸負方向側)におけるz軸正方向略中央に、収容凹部10dがx軸方向に延びるように形成されている。収容凹部10dは、x軸方向から見て略円弧状に切り欠かれた形状であり、面105よりもy軸負方向側に若干凹むように形成されている。収容凹部10dは、モータケース80の周壁(本実施例では主にフランジ部80a)の一部(y軸負方向側部分)を収容する。 The pump 7 is installed in a recess sandwiched between the surface 101 of the first housing portion 10a and the surface 105 of the second housing portion 10b (L-shaped when viewed from the z-axis direction). The rotation shaft 73 of the pump 7 (and the shaft of the pump case 7a) and the connection port 7b are arranged so as to extend in the x-axis direction (see FIG. 3). The drive shaft 73a (and drive gear 74a) of the pump 7 is located on the negative side of the y-axis with respect to the driven shaft 73b (and driven gear 74b), that is, on the driven shaft 73b (and driven gear 74b) and the second housing portion 10b. It is arranged at the sandwiched position. The center z-axis position of the drive shaft 73a (and drive gear 74a) is substantially equal to the center z-axis position of the driven shaft 73b (and driven gear 74b). The second housing portion 10b has an x-axis positive direction side and a z-axis positive direction side on the side of the surface 105 forming the concave portion (on the positive side in the x-axis direction than the connecting portion of the first housing portion 10a on the surface 105). A convex portion 10c is formed at the end. The convex portion 10c has a substantially rectangular shape when viewed from the y-axis positive direction side, and is formed so as to slightly protrude from the surface 105 to the y-axis positive direction side. A connection port 111P for connecting the brake pipe 2a (connected to the discharge port 54P of the master cylinder 5) opens on the surface of the convex portion 10c on the y-axis positive direction side. The motor 8 is installed in a recess (L-shaped as viewed from the z-axis direction) sandwiched between the surface 102 of the first housing portion 10a and the surface 105 of the second housing portion 10b. The rotation shaft 81 of the motor 8 (and the shaft of the motor case 80) is disposed so as to extend in the x-axis direction. The second housing portion 10b has an accommodating concave portion 10d at the center in the positive z-axis direction on the surface 105 side that forms the concave portion (on the negative side in the x-axis direction relative to the connection portion of the first housing portion 10a on the surface 105). It is formed to extend in the x-axis direction. The housing recess 10d has a shape cut out in a substantially arc shape when viewed from the x-axis direction, and is formed to be slightly recessed in the y-axis negative direction side from the surface 105. The accommodating recess 10d accommodates a part (y-axis negative direction side portion) of the peripheral wall (mainly the flange portion 80a in this embodiment) of the motor case 80.
 面104には、複数の制御バルブ(電磁弁21~25)及び液圧センサ91~93が取り付けられている。すなわち、面104は、電磁弁21等が取り付けられるバルブ取り付け面である。面104には、電磁弁21等の弁部を嵌合設置するための有底円筒状のバルブ装着孔121~125、及び液圧センサ91~93を嵌合設置するためセンサ装着孔191~193が開口している。バルブ装着孔121~125は、面104から第2ハウジング部10bの内部を第2ハウジング部10bのy軸方向寸法の1/2~2/3程度の深さまでy軸方向に延びるように、段付きの有底円筒状に形成されている。センサ装着孔191~193は、面104から第2ハウジング部10bの内部を第2ハウジング部10bのy軸方向寸法の1/4程度の深さまでy軸方向に延びるように、有底円筒状に形成されている。遮断弁21の弁部を嵌合設置するための遮断弁装着孔121S,121Pは、面104におけるx軸方向略中央よりも若干x軸負方向寄り(第2ハウジング部10bに対する第1ハウジング部10aの接続位置)に、z軸正方向側とz軸負方向側に設けられている。IN弁22の弁部を嵌合設置するためのIN弁装着孔122FL~122RRは、面104におけるx軸正方向側に、z軸方向に並ぶように設けられている。z軸正方向側にはIN弁装着孔122RL,122FRが近接して配置され、z軸負方向側にはIN弁装着孔122FL,122RRが近接して配置されている。連通弁23の弁部を嵌合設置するための連通弁装着孔123S,123Pは、面104における遮断弁装着孔121よりもx軸負方向側に、z軸正方向側とz軸負方向側に設けられている。連通弁装着孔123Sは、遮断弁装着孔121Sよりも僅かにz軸負方向側に配置され、連通弁装着孔123Pは、遮断弁装着孔121Pよりも僅かにz軸正方向側に配置されている。 A plurality of control valves (electromagnetic valves 21 to 25) and hydraulic pressure sensors 91 to 93 are attached to the surface 104. That is, the surface 104 is a valve mounting surface to which the electromagnetic valve 21 and the like are mounted. On the surface 104, bottomed cylindrical valve mounting holes 121 to 125 for fitting and installing a valve portion such as the solenoid valve 21 and sensor mounting holes 191 to 193 for fitting and installing hydraulic pressure sensors 91 to 93 are installed. Is open. The valve mounting holes 121 to 125 are stepped so as to extend in the y-axis direction from the surface 104 to the inside of the second housing part 10b to a depth of about 1/2 to 2/3 of the y-axis direction dimension of the second housing part 10b. It is formed in a cylindrical shape with a bottom. The sensor mounting holes 191 to 193 are formed in a bottomed cylindrical shape so as to extend in the y-axis direction from the surface 104 to the inside of the second housing part 10b to a depth of about 1/4 of the y-axis direction dimension of the second housing part 10b. Is formed. The shut-off valve mounting holes 121S and 121P for fitting and installing the valve portion of the shut-off valve 21 are slightly closer to the negative x-axis direction than the approximate center in the x-axis direction on the surface 104 (the first housing portion 10a relative to the second housing portion 10b). At the z-axis positive direction side and the z-axis negative direction side. The IN valve mounting holes 122FL to 122RR for fitting and installing the valve portion of the IN valve 22 are provided on the x-axis positive direction side of the surface 104 so as to be aligned in the z-axis direction. The IN valve mounting holes 122RL and 122FR are disposed close to the z-axis positive direction side, and the IN valve mounting holes 122FL and 122RR are disposed close to the z-axis negative direction side. The communication valve mounting holes 123S and 123P for fitting and installing the valve portion of the communication valve 23 are on the x-axis negative direction side, z-axis positive direction side and z-axis negative direction side with respect to the shut-off valve mounting hole 121 on the surface 104. Is provided. The communication valve mounting hole 123S is disposed slightly on the negative z-axis direction side with respect to the shut-off valve mounting hole 121S, and the communication valve mounting hole 123P is disposed slightly on the z-axis positive direction side with respect to the shut-off valve mounting hole 121P. Yes.
 調圧弁24の弁部を嵌合設置するための調圧弁装着孔124は、面104におけるx軸方向略中央よりも若干x軸負方向寄りであって、z軸方向略中央に設けられている。調圧弁装着孔124は、遮断弁装着孔121よりも僅かにx軸正方向側に配置されている。OUT弁25の弁部を嵌合設置するためのOUT弁装着孔125FL~125RRは、面104におけるx軸方向略中央よりも若干x軸正方向寄り(IN弁装着孔122と調圧弁装着孔124との間)に、z軸方向に並ぶように設けられている。z軸正方向側にはOUT弁装着孔125RL,125FRが近接して配置され、z軸負方向側にはOUT弁装着孔125FL,125RRが近接して配置されている。液圧センサ91を嵌合設置するためセンサ装着孔191は、面104におけるx軸正方向端であって、z軸方向略中央に設けられている。センサ装着孔191は、x軸方向でIN弁装着孔122と若干重なり合う位置であって、z軸方向でIN弁装着孔122FR,122FLの間に配置されている。液圧センサ92を嵌合設置するためセンサ装着孔192S,192Pは、面104におけるx軸負方向側であって、z軸方向略中央に設けられている。センサ装着孔192は、x軸方向で連通弁装着孔123と大部分が重なり合う位置であって、z軸方向で連通弁装着孔123S,123Pの間に配置されている。液圧センサ93を嵌合設置するためセンサ装着孔193は、面104におけるx軸負方向端であって、z軸方向略中央に設けられている。センサ装着孔193は、x軸方向でセンサ装着孔192と若干重なり合う位置であって、z軸方向でセンサ装着孔192S,192Pの間に配置されている。 The pressure regulating valve mounting hole 124 for fitting and installing the valve portion of the pressure regulating valve 24 is slightly closer to the x-axis negative direction than the approximate center in the x-axis direction on the surface 104 and is provided at the approximate center in the z-axis direction. . The pressure regulating valve mounting hole 124 is disposed slightly closer to the x-axis positive direction side than the shutoff valve mounting hole 121. The OUT valve mounting holes 125FL to 125RR for fitting and installing the valve portion of the OUT valve 25 are slightly closer to the x-axis positive direction than the approximate center in the x-axis direction on the surface 104 (the IN valve mounting hole 122 and the pressure regulating valve mounting hole 124 Between the z-axis direction and the z-axis direction. OUT valve mounting holes 125RL and 125FR are arranged close to the z-axis positive direction side, and OUT valve mounting holes 125FL and 125RR are arranged close to the z-axis negative direction side. In order to fit and install the hydraulic pressure sensor 91, the sensor mounting hole 191 is provided at the positive end in the x-axis direction on the surface 104 and substantially at the center in the z-axis direction. The sensor mounting hole 191 is a position that slightly overlaps the IN valve mounting hole 122 in the x-axis direction, and is disposed between the IN valve mounting holes 122FR and 122FL in the z-axis direction. In order to fit and install the hydraulic pressure sensor 92, the sensor mounting holes 192S and 192P are provided in the x-axis negative direction side of the surface 104 and substantially at the center in the z-axis direction. The sensor mounting hole 192 is a position where most of the sensor mounting hole 123 overlaps with the communication valve mounting hole 123 in the x-axis direction, and is disposed between the communication valve mounting holes 123S and 123P in the z-axis direction. In order to fit and install the hydraulic pressure sensor 93, the sensor mounting hole 193 is provided at the end in the x-axis negative direction on the surface 104 and substantially at the center in the z-axis direction. The sensor mounting hole 193 is a position that slightly overlaps the sensor mounting hole 192 in the x-axis direction, and is disposed between the sensor mounting holes 192S and 192P in the z-axis direction.
 また、面104には、モータ8の端子(電極)を収容するための端子挿入孔138が開口する。端子挿入孔138は、端子挿入孔137のx軸正方向端から第1ハウジング部10a及び第2ハウジング部10bの内部をy軸負方向側に延びて、面104に開口する。端子挿入孔138は、遮断弁装着孔121Pと調圧弁装着孔124とセンサ装着孔192Pとの間に配置されている。電磁弁21等の弁部は、そのバルブボディやアーマチュアが面104に対して直角方向(y軸負方向側)に突出するように設置される。すなわち、電磁弁21等は、そのプランジャ(弁体)がy軸方向に作動(往復移動)するよう取り付けられる。この電磁弁21等の駆動方向は、モータ8の半径方向(モータ8の回転軸81に対して直交する方向)である。 In addition, a terminal insertion hole 138 for receiving a terminal (electrode) of the motor 8 is opened on the surface 104. The terminal insertion hole 138 extends from the end of the terminal insertion hole 137 in the positive x-axis direction to the inside of the first housing part 10a and the second housing part 10b in the negative y-axis direction and opens on the surface 104. The terminal insertion hole 138 is disposed between the shutoff valve mounting hole 121P, the pressure regulating valve mounting hole 124, and the sensor mounting hole 192P. The valve portion such as the electromagnetic valve 21 is installed such that its valve body and armature protrude in a direction perpendicular to the surface 104 (y-axis negative direction side). That is, the solenoid valve 21 and the like are attached so that its plunger (valve element) operates (reciprocates) in the y-axis direction. The driving direction of the electromagnetic valve 21 and the like is a radial direction of the motor 8 (a direction orthogonal to the rotation shaft 81 of the motor 8).
 第2ハウジング部10bには、面104を覆うように、例えば樹脂製のバルブケース95が設置される。バルブケース95は有底箱状の第1ケース部材であり、その内部には電磁弁21等のソレノイド部が固定設置されている。第2ハウジング部10bの面104の外縁部には、4箇所に有底孔133が形成されている。バルブケース95の開口部の4隅にボルト33が挿通され、これらのボルト33が有底孔133に螺合することで、面104にバルブケース95が締結固定される。その際、ソレノイド部の内周側に、対応する弁の弁部(バルブボディやアーマチュア)が収容される。バルブケース95の底部における面104とは反対側(y軸負方向側)の面には、ECU9の基板94が設置される。基板94は端子(電極)を介して電磁弁21~25のソレノイド部や液圧センサ91~93やモータ8と接続する。バルブケース95の底部には、面104とは反対側(y軸負方向側)の上記面を覆うように、例えば樹脂製のECUカバー96が設置される。ECUカバー96は基板94を収容する第2ケース部材である。 In the second housing portion 10b, for example, a resin valve case 95 is installed so as to cover the surface 104. The valve case 95 is a bottomed box-shaped first case member, and a solenoid portion such as the electromagnetic valve 21 is fixedly installed therein. Four bottomed holes 133 are formed in the outer edge portion of the surface 104 of the second housing portion 10b. Bolts 33 are inserted into the four corners of the opening of the valve case 95, and these bolts 33 are screwed into the bottomed holes 133, whereby the valve case 95 is fastened and fixed to the surface 104. At that time, the valve portion (valve body or armature) of the corresponding valve is accommodated on the inner peripheral side of the solenoid portion. A substrate 94 of the ECU 9 is installed on the surface of the bottom portion of the valve case 95 opposite to the surface 104 (y-axis negative direction side). The substrate 94 is connected to the solenoid portions of the solenoid valves 21 to 25, the hydraulic pressure sensors 91 to 93, and the motor 8 through terminals (electrodes). For example, a resin ECU cover 96 is installed on the bottom of the valve case 95 so as to cover the surface opposite to the surface 104 (y-axis negative direction side). The ECU cover 96 is a second case member that accommodates the substrate 94.
 面108には、(ホイルシリンダW/Cと接続する)ブレーキ配管2FL~2RRが接続するための接続ポート111FL~111RRが開口する。接続ポート111FL~111RRは、面108のy軸負方向寄りに、z軸方向に並んでいる。面109には、z軸方向中央よりも若干z軸正方向側に、インシュレータ30のボルト部分を締結固定するための有底孔130が形成されている。 On the surface 108, connection ports 111FL to 111RR for connecting brake pipes 2FL to 2RR (connected to the wheel cylinder W / C) are opened. The connection ports 111FL to 111RR are arranged in the z-axis direction and closer to the negative y-axis direction of the surface 108. A bottomed hole 130 for fastening and fixing the bolt portion of the insulator 30 is formed in the surface 109 slightly on the positive side in the z-axis direction from the center in the z-axis direction.
 なお、ブラケット300は、車体側(エンジンルームの床)へ固定設置可能に設けられると共に、インシュレータ30を介して第1ハウジング部10aの面103,107及び第2ハウジング部10bの面104に固定される。 The bracket 300 is provided so as to be fixedly installed on the vehicle body side (the floor of the engine room), and is fixed to the surfaces 103 and 107 of the first housing portion 10a and the surface 104 of the second housing portion 10b via the insulator 30.
 次に、ハウジング10の内部における油路の配置について説明する。第1ハウジング部10aの内部には、第1油路11Sの一部(後述する油路11S-1,11S-2及び油路11S-3の一部)が形成されると共に、第1ハウジング部10aに取り付けられたポンプ7に関わる油路、すなわち吐出油路13の一部(後述する油路13-0~13-3及び油路13-4の一部)と第1減圧油路14の一部(後述する油路14-2の一部及び油路14-3)が形成されている。吐出油路13は、ポンプ7から吐出されたブレーキ液が流通する油路である。第1減圧油路14は、ポンプ7へブレーキ液を吸収するための吸入油路でもある。第2ハウジング部10bの内部には、第1ハウジング部10aの上記油路と接続する接続油路(後述する油路11S-3の一部及び油路11S-10並びに油路11P-1~11P-10、油路13-4の一部及び油路油路13-5~13-12、油路14-1及び油路14-2の一部)が形成されている。第2ハウジング部10bに取り付けられた電磁弁21等は、上記接続油路を断接するために駆動される。 Next, the arrangement of the oil passage inside the housing 10 will be described. A part of the first oil passage 11S (an oil passage 11S-1, 11S-2 and a part of the oil passage 11S-3 described later) is formed inside the first housing portion 10a, and the first housing portion An oil passage relating to the pump 7 attached to 10a, that is, a part of the discharge oil passage 13 (oil passages 13-0 to 13-3 and a part of the oil passage 13-4 described later) and the first decompression oil passage 14 Part (a part of an oil passage 14-2 and an oil passage 14-3 described later) is formed. The discharge oil passage 13 is an oil passage through which brake fluid discharged from the pump 7 flows. The first decompression oil passage 14 is also a suction oil passage for absorbing brake fluid to the pump 7. Inside the second housing portion 10b is a connecting oil passage (a part of an oil passage 11S-3 and an oil passage 11S-10, which will be described later, and oil passages 11P-1 to 11P) connected to the oil passage of the first housing portion 10a. -10, a part of the oil passage 13-4 and a part of the oil passage oil passages 13-5 to 13-12, a part of the oil passage 14-1 and the oil passage 14-2). The electromagnetic valve 21 and the like attached to the second housing portion 10b are driven to connect and disconnect the connection oil passage.
 具体的には、第1油路11Sは、油路11S-1~11S-11から構成される。油路11S-1は、接続ポート111Sの底部から嵌合凹部10eのy軸負方向端近傍まで第1ハウジング部10aの内部をy軸負方向に延びるように形成されている(図20参照)。油路11S-2は、第1ハウジング部10aの面106から嵌合凹部10eの近傍まで第1ハウジング部10aの内部をz軸負方向に延びるように形成されており、そのz軸正方向側で油路11S-1のy軸負方向端に接続している。油路11S-3は、第2ハウジング部10bの面104におけるx軸方向中央よりも若干x軸負方向寄りかつz軸方向中央よりもz軸正方向寄りの位置からy軸正方向に嵌合凹部10eの近傍まで第1ハウジング部10a及び第2ハウジング部10bの内部を延びるように形成されており、そのy軸正方向端が油路11S-2のz軸負方向端に接続している。油路11S-4は、第2ハウジング部10bの面106におけるx軸方向中央よりも若干x軸負方向寄りかつy軸方向中央よりも若干y軸負方向寄りの位置から、第2ハウジング部10bの内部をz軸負方向に延びるように形成されており、そのz軸負方向端が油路11S-3に接続している。油路11S-4は、そのz軸方向略中央で遮断弁装着孔121Sに接続している。油路11S-5は、遮断弁装着孔121Sの底部から第2ハウジング部10bの内部をy軸正方向に僅かに延びるように形成されている(図20,図28参照)。油路11S-6は、第2ハウジング部10bの面106におけるx軸方向中央よりも若干x軸負方向寄り(第1ハウジング部10aのx軸方向略中央)かつy軸正方向端の位置から遮断弁装着孔121Sのz軸負方向端近傍まで、第2ハウジング部10bの内部をz軸負方向に延びるように形成されており、そのz軸方向略中央で油路11S-5に接続している。油路11S-7は、第2ハウジング部10bの面108におけるy軸正方向端かつz軸方向中央よりもz軸正方向寄り(接続ポート111RL,111FRの間)の位置から第1ハウジング部10aのx軸方向中央よりもx軸負方向寄り(遮断弁装着孔121Sのx軸負方向端近傍)の位置まで第2ハウジング部10bの内部をx軸負方向に延びるように形成されている。油路11S-7は、そのx軸負方向端近傍で油路11S-6のz軸負方向端に接続している。油路11S-8は、第2ハウジング部10bの面106におけるx軸方向中央よりもx軸正方向側(IN弁装着孔122RLのx軸方向略中央)かつy軸正方向端の位置から第2ハウジング部10bのz軸方向中央よりも若干z軸正方向側(IN弁装着孔122FRのz軸方向略中央)まで、第2ハウジング部10bの内部をz軸負方向に延びるように形成されており、IN弁装着孔122RL,122FRの間のz軸方向位置で油路11S-7に接続している(図24参照)。油路11RL-9,11FR-9は、それぞれIN弁装着孔122RL,122FRの底部から第2ハウジング部10bの内部をy軸正方向に僅かに延びるように形成されており、そのy軸正方向端が油路11S-8に接続している(図22参照)。油路11RL-10,11FR-10は、それぞれ接続ポート111RL,111FRの底部から第2ハウジング部10bのx軸方向中央よりもx軸正方向側(OUT弁装着孔125のx軸方向中央よりも若干x軸負方向寄り)の位置まで、第2ハウジング部10bの内部をx軸負方向に延びるように形成されている(図26,図28参照)。油路11RL-10,11FR-10は、そのx軸方向中間位置でそれぞれIN弁装着孔122RL,122FRの周壁に接続している。油路11RL-10,11FR-10のx軸負方向端は、それぞれOUT弁装着孔125RL,125FRの周壁に接続している。このように、「接続ポート111S→油路11S-1~11S-4→遮断弁装着孔121S→油路11S-5~11S-8→油路11RL-9, 11FR-9→IN弁装着孔122RL,122FR→油路11RL-10,11FR-10→接続ポート111RL,111FR」の順で、油路11Sが構成されている。なお、油路11S-11は、第2ハウジング部10bの面106におけるx軸方向中央よりもx軸負方向側(連通弁装着孔123Sのx軸方向中央よりも僅かにx軸正方向寄り)かつy軸方向中央よりもy軸負方向側の位置から第2ハウジング部10bのz軸方向中央よりも若干z軸正方向側まで、第2ハウジング部10bの内部をz軸負方向に延びるように形成されており、そのz軸負方向端がセンサ装着孔192Sの底部に接続している(図20,図24参照)。油路11S-11は、そのz軸方向略中央で連通弁装着孔123Sに接続している。 Specifically, the first oil passage 11S is composed of oil passages 11S-1 to 11S-11. The oil passage 11S-1 is formed so as to extend in the y-axis negative direction in the first housing portion 10a from the bottom of the connection port 111S to the vicinity of the end of the fitting recess 10e in the y-axis negative direction (see FIG. 20). . The oil passage 11S-2 is formed so as to extend in the negative z-axis direction inside the first housing part 10a from the surface 106 of the first housing part 10a to the vicinity of the fitting recess 10e. Is connected to the y-axis negative direction end of the oil passage 11S-1. The oil passage 11S-3 is fitted in the y-axis positive direction from a position slightly closer to the x-axis negative direction than the center in the x-axis direction on the surface 104 of the second housing portion 10b and closer to the z-axis positive direction than the center in the z-axis direction. It is formed so as to extend inside the first housing portion 10a and the second housing portion 10b to the vicinity of the recess 10e, and its y-axis positive direction end is connected to the z-axis negative direction end of the oil passage 11S-2. . The oil passage 11S-4 extends from the position slightly closer to the x-axis negative direction than the center in the x-axis direction on the surface 106 of the second housing portion 10b and slightly closer to the y-axis negative direction than the center in the y-axis direction. Is formed so as to extend in the negative z-axis direction, and the negative end in the z-axis direction is connected to the oil passage 11S-3. The oil passage 11S-4 is connected to the shut-off valve mounting hole 121S at substantially the center in the z-axis direction. The oil passage 11S-5 is formed so as to slightly extend in the positive y-axis direction from the bottom of the shut-off valve mounting hole 121S to the inside of the second housing portion 10b (see FIGS. 20 and 28). The oil passage 11S-6 is slightly closer to the negative x-axis direction than the center in the x-axis direction on the surface 106 of the second housing part 10b (approximately the center in the x-axis direction of the first housing part 10a) and from the position of the y-axis positive direction end. The interior of the second housing portion 10b is formed so as to extend in the z-axis negative direction to the vicinity of the z-axis negative direction end of the shut-off valve mounting hole 121S, and is connected to the oil passage 11S-5 at substantially the center in the z-axis direction. ing. The oil passage 11S-7 extends from the position on the surface 108 of the second housing portion 10b in the positive y-axis direction and closer to the z-axis positive direction (between the connection ports 111RL and 111FR) than the center in the z-axis direction. The second housing portion 10b is formed so as to extend in the negative x-axis direction to a position closer to the negative x-axis direction than the center in the negative x-axis direction (near the negative end of the shut-off valve mounting hole 121S in the negative x-axis direction). The oil passage 11S-7 is connected to the z-axis negative direction end of the oil passage 11S-6 in the vicinity of the x-axis negative direction end. The oil passage 11S-8 is located from the position in the x-axis positive direction side of the surface 106 of the second housing portion 10b in the x-axis positive direction (substantially the center in the x-axis direction of the IN valve mounting hole 122RL) and the y-axis positive direction end. 2 The interior of the second housing portion 10b is formed so as to extend in the negative z-axis direction to the z-axis positive direction side (substantially the middle of the IN valve mounting hole 122FR in the z-axis direction) slightly from the z-axis direction center of the housing portion 10b. And is connected to the oil passage 11S-7 at a position in the z-axis direction between the IN valve mounting holes 122RL and 122FR (see FIG. 24). The oil passages 11RL-9 and 11FR-9 are formed so as to extend slightly from the bottom of the IN valve mounting holes 122RL and 122FR in the second housing portion 10b in the y-axis positive direction, respectively. The end is connected to the oil passage 11S-8 (see FIG. 22). The oil passages 11RL-10 and 11FR-10 are respectively connected to the x-axis positive side from the bottom of the connection ports 111RL and 111FR than the center of the second housing portion 10b in the x-axis direction (from the center of the OUT valve mounting hole 125 in the x-axis direction). The second housing portion 10b is formed so as to extend in the x-axis negative direction up to a position slightly closer to the x-axis negative direction (see FIGS. 26 and 28). The oil passages 11RL-10 and 11FR-10 are connected to the peripheral walls of the IN valve mounting holes 122RL and 122FR, respectively, at intermediate positions in the x-axis direction. The x-axis negative direction ends of the oil passages 11RL-10 and 11FR-10 are connected to the peripheral walls of the OUT valve mounting holes 125RL and 125FR, respectively. In this way, “connection port 111S → oil path 11S-1 to 11S-4 → shut-off valve mounting hole 121S → oil path 11S-5 to 11S-8 → oil path 11RL-9, 11FR-9 → IN valve mounting hole 122RL , 122FR → oil passage 11RL-10, 11FR-10 → connection ports 111RL, 111FR ”in this order. The oil passage 11S-11 is closer to the x-axis negative direction side than the center in the x-axis direction on the surface 106 of the second housing portion 10b (slightly closer to the x-axis positive direction than the center of the communication valve mounting hole 123S in the x-axis direction). The interior of the second housing portion 10b extends in the negative z-axis direction from a position on the negative y-axis side with respect to the center in the y-axis direction to a slightly positive z-axis direction side with respect to the z-axis direction in the second housing portion 10b. The z-axis negative direction end is connected to the bottom of the sensor mounting hole 192S (see FIGS. 20 and 24). The oil passage 11S-11 is connected to the communication valve mounting hole 123S at substantially the center in the z-axis direction.
 第1油路11Pは、油路11P-1~11P-12から構成される。油路11P-1は、接続ポート111Pの底部から第2ハウジング部10bのy軸方向中央よりも僅かにy軸正方向側まで、第2ハウジング部10bの内部をy軸負方向に延びるように形成されている(図28参照)。油路11P-2は、第2ハウジング部10bの面107におけるx軸正方向端(IN弁装着孔122のx軸正方向端近傍)かつy軸方向中央よりも僅かにy軸正方向側の位置から第2ハウジング部10bの内部をz軸正方向に延びるように形成されており、そのz軸正方向端で油路11P-1のy軸負方向端に接続している(図26,図30参照)。油路11P-3は、第2ハウジング部10bの面104におけるx軸正方向端(IN弁装着孔122のx軸正方向側とx軸方向で重なる位置)かつz軸方向中央よりもz軸負方向側(IN弁装着孔122FL,122RRの間)の位置から第2ハウジング部10bの内部をy軸正方向に延びるように形成されており、そのy軸正方向端が油路11P-2に接続している(図22参照)。油路11P-3-1は、第2ハウジング部10bの面108におけるy軸方向中央よりもy軸負方向側(接続ポート111FL~111RRのy軸方向位置)かつz軸方向中央よりもz軸負方向側(接続ポート111FL,111RRの間)の位置から第2ハウジング部10bのx軸方向中央よりも若干x軸負方向側(第1ハウジング部10aのx軸方向略中央)まで、第2ハウジング部10bの内部をx軸負方向に延びるように形成されている(図22,図26参照)。油路11P-4は、第2ハウジング部10bの面107におけるx軸方向中央よりも若干x軸負方向側(第1ハウジング部10aのx軸方向略中央)かつy軸方向中央よりも若干y軸負方向側の位置から第2ハウジング部10bの内部をz軸正方向に延びるように形成されており、そのz軸正方向端が遮断弁装着孔121Pに接続している(図16,図30参照)。油路11P-5は、遮断弁装着孔121Pの底部から第2ハウジング部10bのy軸方向中央よりもy軸負方向側まで、第2ハウジング部10bの内部をy軸正方向に延びるように形成されている(図20,図30参照)。油路11P-6は、第2ハウジング部10bの面107におけるx軸方向中央よりも若干x軸負方向側(第1ハウジング部10aのx軸方向略中央)かつy軸方向中央よりもy軸正方向側の位置から第2ハウジング部10bのz軸方向中央よりもz軸負方向寄り(接続ポート111FL,111RRの間)まで、第2ハウジング部10bの内部をz軸正方向に延びるように形成されている(図14,図30参照)。油路11P-7は、第2ハウジング部10bの面108におけるy軸方向中央よりもy軸正方向側かつz軸方向中央よりもz軸負方向側(接続ポート111FL,111RRの間)の位置から第2ハウジング部10bのx軸方向中央よりも若干x軸負方向側(遮断弁装着孔121のx軸負方向端近傍)の位置まで、第2ハウジング部10bの内部をx軸負方向に延びるように形成されている(図22,図30参照)。油路11P-7は、そのx軸負方向端近傍で油路11P-6のz軸正方向端に接続している。油路11P-8は、第2ハウジング部10bの面107におけるx軸方向中央よりもx軸正方向側(IN弁装着孔122のx軸方向略中央)かつy軸方向中央よりもy軸正方向側の位置から第2ハウジング部10bのz軸方向中央よりもz軸負方向寄り(IN弁装着孔122FLのz軸方向略中央)の位置まで、第2ハウジング部10bの内部をz軸正方向に延びるように形成されており、そのz軸方向略中央で油路11P-7に接続している(図24,図30参照)。油路11FL-9,11RR-9は、それぞれIN弁装着孔122FL,122RRの底部から第2ハウジング部10bの内部をy軸正方向に僅かに延びるように形成されており、そのy軸正方向端が油路11P-8に接続している(図14,図30参照)。油路11FL-12,11RR-12は、それぞれ接続ポート111FL,111RRの底部から第2ハウジング部10bの内部をx軸負方向に延びるように形成されており、そのx軸負方向端がそれぞれIN弁装着孔122FL,122RRに接続している(図24,図30参照)。油路11FL-10,11RR-10は、それぞれ接続ポート111FL,111RRの底部から第2ハウジング部10bのx軸方向中央よりもx軸正方向側(OUT弁装着孔125のx軸方向中央よりも若干x軸負方向寄り)の位置まで、第2ハウジング部10bの内部をx軸負方向に延びるように形成されている(図24,図30参照)。油路11FL-10,11RR-10は、そのx軸方向中間位置でそれぞれIN弁装着孔122FL,122RRの周壁に接続している。油路11FL-10,11RR-10のx軸負方向端は、それぞれOUT弁装着孔125FL,125RRの周壁に接続している。このように、「接続ポート111P→油路11P-1~11P-4→遮断弁装着孔121P→油路11P-5~11P-8→油路11FL-9,11RR-9→IN弁装着孔122FL,122RR→油路11FL-10,11RR-10→接続ポート111FL,111RR」の順で、油路11Pが構成されている。なお、油路11P-11は、第2ハウジング部10bの面107におけるx軸方向中央よりもx軸負方向側(連通弁装着孔123Sのx軸方向中央よりも僅かにx軸正方向寄り)かつy軸方向中央よりもy軸負方向側の位置から第2ハウジング部10bのz軸方向中央よりも若干z軸負方向側まで、第2ハウジング部10bの内部をz軸正方向に延びるように形成されており、そのz軸正方向端がセンサ装着孔192Pの底部に接続している(図24,図30参照)。油路11P-11は、そのz軸方向略中央で連通弁装着孔123Pに接続している。油路11P-12は、センサ装着孔191の底部から第2ハウジング部10bの内部をy軸正方向に延びるように形成されており、そのy軸正方向端が油路11P-2に接続している(図22,図28参照)。 The first oil passage 11P is composed of oil passages 11P-1 to 11P-12. The oil passage 11P-1 extends in the y-axis negative direction from the bottom of the connection port 111P to the y-axis positive side slightly from the y-axis direction center of the second housing part 10b. It is formed (see FIG. 28). The oil passage 11P-2 is located on the surface 107 of the second housing part 10b in the x-axis positive direction end (near the x-axis positive direction end of the IN valve mounting hole 122) and slightly in the y-axis positive direction side from the center in the y-axis direction. It is formed so as to extend in the z-axis positive direction from the position inside the second housing portion 10b, and is connected to the y-axis negative direction end of the oil passage 11P-1 at the z-axis positive direction end (FIG. 26, (See FIG. 30). The oil path 11P-3 is the x-axis positive direction end (the position overlapping the x-axis positive direction side of the IN valve mounting hole 122 in the x-axis direction) on the surface 104 of the second housing portion 10b and the z-axis from the center in the z-axis direction. It is formed to extend in the y-axis positive direction from the position on the negative direction side (between the IN valve mounting holes 122FL and 122RR) in the second housing portion 10b, and the y-axis positive direction end is the oil passage 11P-2. (See FIG. 22). The oil passage 11P-3-1 is located on the negative side of the y-axis direction on the surface 108 of the second housing part 10b in the negative y-axis direction (the position of the connection ports 111FL to 111RR in the y-axis direction) and z-axis relative to the center of the z-axis direction. From the position of the negative direction side (between the connection ports 111FL and 111RR) to the second side of the second housing part 10b slightly from the center of the x axis direction to the x axis negative direction side (substantially the center of the first housing part 10a in the x axis direction) The interior of the housing portion 10b is formed so as to extend in the negative x-axis direction (see FIGS. 22 and 26). The oil passage 11P-4 is slightly on the x-axis negative direction side (substantially the center in the x-axis direction of the first housing part 10a) on the surface 107 of the second housing part 10b and slightly on the y-axis direction side. The interior of the second housing part 10b is formed so as to extend in the positive z-axis direction from the position on the negative side in the axial direction, and the positive end in the z-axis direction is connected to the shut-off valve mounting hole 121P (FIG. 16, FIG. 30). The oil passage 11P-5 extends in the y-axis positive direction from the bottom of the shut-off valve mounting hole 121P to the y-axis negative direction side of the second housing part 10b from the y-axis direction center. It is formed (see FIGS. 20 and 30). The oil passage 11P-6 is slightly in the x-axis negative direction side (substantially the center in the x-axis direction of the first housing portion 10a) on the surface 107 of the second housing part 10b and the y-axis from the center in the y-axis direction. The interior of the second housing part 10b extends in the positive z-axis direction from the position on the positive direction side to the negative z-axis direction (between the connection ports 111FL and 111RR) from the center in the z-axis direction of the second housing part 10b. It is formed (see FIGS. 14 and 30). The oil passage 11P-7 is located on the surface 108 of the second housing portion 10b on the y-axis positive side with respect to the y-axis direction center and on the z-axis negative direction side (between the connection ports 111FL and 111RR) with respect to the z-axis direction center. From the center of the second housing part 10b to the x-axis negative direction side (near the x-axis negative direction end of the shut-off valve mounting hole 121) slightly in the x-axis negative direction. It is formed to extend (see FIGS. 22 and 30). The oil passage 11P-7 is connected to the z-axis positive direction end of the oil passage 11P-6 in the vicinity of the x-axis negative direction end. The oil passage 11P-8 is located on the x-axis positive direction side of the surface 107 of the second housing portion 10b in the x-axis positive direction side (substantially the center of the IN valve mounting hole 122 in the x-axis direction) and y-axis positive side of the y-axis direction center. From the position on the direction side to the position closer to the z-axis negative direction than the center of the second housing part 10b in the z-axis direction (approximately the center of the IN valve mounting hole 122FL in the z-axis direction) It is formed to extend in the direction, and is connected to the oil passage 11P-7 at substantially the center in the z-axis direction (see FIGS. 24 and 30). The oil passages 11FL-9 and 11RR-9 are formed so as to extend slightly from the bottom of the IN valve mounting holes 122FL and 122RR in the second housing part 10b in the y-axis positive direction, respectively. The end is connected to the oil passage 11P-8 (see FIGS. 14 and 30). The oil passages 11FL-12 and 11RR-12 are formed so as to extend in the x-axis negative direction from the bottoms of the connection ports 111FL and 111RR, respectively, and the x-axis negative direction ends are respectively IN They are connected to the valve mounting holes 122FL and 122RR (see FIGS. 24 and 30). The oil passages 11FL-10 and 11RR-10 are respectively connected to the x-axis positive direction side from the bottom of the connection ports 111FL and 111RR in the x-axis direction of the second housing portion 10b (from the center of the OUT valve mounting hole 125 in the x-axis direction). The interior of the second housing portion 10b is formed to extend in the x-axis negative direction to a position slightly closer to the x-axis negative direction (see FIGS. 24 and 30). The oil passages 11FL-10 and 11RR-10 are respectively connected to the peripheral walls of the IN valve mounting holes 122FL and 122RR at intermediate positions in the x-axis direction. The ends in the negative x-axis direction of the oil passages 11FL-10 and 11RR-10 are connected to the peripheral walls of the OUT valve mounting holes 125FL and 125RR, respectively. In this way, “connection port 111P → oil passage 11P-1 to 11P-4 → shutoff valve mounting hole 121P → oil passage 11P-5 to 11P-8 → oil passage 11FL-9, 11RR-9 → IN valve mounting hole 122FL , 122RR → oil path 11FL-10, 11RR-10 → connection port 111FL, 111RR ”in this order. The oil passage 11P-11 is closer to the x-axis negative direction than the center in the x-axis direction on the surface 107 of the second housing portion 10b (slightly closer to the x-axis positive direction than the center in the x-axis direction of the communication valve mounting hole 123S). In addition, the interior of the second housing portion 10b extends in the positive z-axis direction from a position on the negative y-axis side with respect to the center in the y-axis direction to a slightly negative z-axis direction side from the center in the z-axis direction with respect to the second housing portion 10b. The z-axis positive direction end is connected to the bottom of the sensor mounting hole 192P (see FIGS. 24 and 30). The oil passage 11P-11 is connected to the communication valve mounting hole 123P at substantially the center in the z-axis direction. The oil passage 11P-12 is formed so as to extend in the y-axis positive direction from the bottom of the sensor mounting hole 191 to the inside of the second housing portion 10b, and its y-axis positive direction end is connected to the oil passage 11P-2. (See FIGS. 22 and 28).
 吐出油路13は、油路13-0~13-13から構成される。油路13-0は、第1ハウジング部10aの嵌合凹部10eの底部におけるy軸負方向側かつz軸負方向側の位置から第1ハウジング部10aのx軸方向略中央の位置まで、第1ハウジング部10aの内部をx軸負方向に延びるように形成されている(図22参照)。油路13-1は、チェック弁装着孔127の底部から第1ハウジング部10aのz軸方向中央よりも若干z軸負方向側まで、第1ハウジング部10aの内部をz軸正方向に延びるように形成されている(図20参照)。油路13-1のx軸正方向側は油路13-0のx軸負方向端と接続し、油路13-1のy軸正方向側は第1ダンパ装着孔128の底部と接続している。油路13-2は、第1ハウジング部10aの面103におけるx軸方向略中央かつz軸負方向側の位置から第1ハウジング部10aのy軸方向中央よりもy軸正方向側の位置まで、第1ハウジング部10aの内部をy軸負方向に延びるように形成されている(図20,図24参照)。油路13-2は、そのy軸方向略中央位置でチェック弁装着孔127と接続している。油路13-2のy軸負方向端は第2ダンパ装着孔129と接続している。油路13-3は、第2ダンパ装着孔129の底部から第1ハウジング部10aのx軸方向中央よりもx軸正方向側(嵌合凹部10eの底部近傍)かつ嵌合凹部10eのy軸負方向側近傍かつ第1ハウジング部10aのz軸方向略中央の位置まで、第1ハウジング部10aの内部を若干x軸負方向かつ若干y軸負方向かつz軸正方向に延びるように形成されている(図20,図30参照)。油路13-4は、調圧弁装着孔124の底部から第2ハウジング部10b及び第1ハウジング部10aの内部をy軸正方向に延びるように形成されており、そのy軸正方向端は油路13-3の(第2ダンパ装着孔129に接続する側とは反対側の)端に接続している(図20,図30参照)。油路13-5は、第2ハウジング部10bの面108におけるy軸負方向端かつz軸方向略中央の位置から第2ハウジング部10bの内部をx軸負方向に延びるように形成されており、そのx軸負方向端は油路13-4に接続している(図22,図28参照)。油路13-6は、第2ハウジング部10bの面104における調圧弁装着孔124のx軸負方向側の近傍かつz軸方向略中央の位置(調圧弁装着孔124とセンサ装着孔192S,192Pに囲まれた位置)から第2ハウジング部10bのy軸正方向端まで、第2ハウジング部10bの内部をy軸正方向に延びるように形成されており、そのy軸正方向端は油路13-5のx軸負方向端に接続している(図26,図30参照)。油路13-7は、第2ハウジング部10bの面109におけるy軸方向略中央かつz軸方向略中央の位置から第2ハウジング部10bの内部をx軸正方向に延びるように形成されており、そのx軸正方向端は油路13-6のy軸方向略中央に接続している(図20,図30参照)。油路13-8は、第2ハウジング部10bの面107におけるx軸負方向端近傍かつy軸方向中央よりも若干y軸正方向寄りの位置から第2ハウジング部10bのz軸方向中央よりもz軸正方向側(連通弁装着孔123Sのz軸方向略中央)の位置まで第2ハウジング部10bの内部をz軸正方向に延びるように形成されている(図24,図30参照)。油路13-8のz軸方向中間位置には、油路13-7のx軸負方向側が接続している。油路13S-9は、第2ハウジング部10bの面104におけるx軸負方向端近傍(連通弁装着孔123Sのx軸負方向側)かつz軸方向中央よりもz軸正方向側(連通弁装着孔123Sのz軸方向略中央)の位置から第2ハウジング部10bのy軸方向中央よりも若干y軸正方向寄りの位置まで第2ハウジング部10bの内部をy軸正方向に延びるように形成されている(図20,図26参照)。油路13S-9のy軸正方向側には油路13-8のz軸正方向端が接続している。油路13S-10は、第2ハウジング部10bの面109におけるy軸方向中央よりもy軸正方向側かつz軸方向中央よりもz軸正方向側(連通弁装着孔123Sのz軸方向略中央)の位置から第2ハウジング部10bのx軸方向中央よりもx軸負方向側(連通弁装着孔123Sのx軸方向略中央)の位置まで第2ハウジング部10bの内部をx軸正方向に延びるように形成されている(図20,図28参照)。油路13S-10のx軸負方向側には油路13S-9のy軸正方向端が接続している。油路13S-11は、連通弁装着孔123Sの底部から第2ハウジング部10bの内部をy軸正方向に僅かに延びるように形成されている。油路13S-11には、油路13S-10のx軸正方向端が接続している。油路13S-12は、油路11S-7のx軸負方向端から連通弁装着孔123Sまで、第2ハウジング部10bの内部をx軸負方向かつy軸負方向に延びるように形成されている(図26,図28参照)。油路13P-9は、第2ハウジング部10bの面104におけるx軸負方向端近傍(連通弁装着孔123Pのx軸負方向側)かつz軸方向中央よりもz軸負方向側(連通弁装着孔123Pのz軸方向略中央)の位置から第2ハウジング部10bのy軸方向中央よりも若干y軸正方向寄りの位置まで第2ハウジング部10bの内部をy軸正方向に延びるように形成されている(図20,図26参照)。油路13P-9のy軸正方向側には油路13-8のz軸負方向側が接続している。油路13P-10は、第2ハウジング部10bの面109におけるy軸方向中央よりもy軸正方向側かつz軸方向中央よりもz軸負方向側(連通弁装着孔123Pのz軸方向略中央)の位置から第2ハウジング部10bのx軸方向中央よりもx軸負方向側(連通弁装着孔123Pのx軸方向略中央)の位置まで第2ハウジング部10bの内部をx軸正方向に延びるように形成されている(図20,図30参照)。油路13P-10のx軸負方向側には油路13P-9のy軸正方向端が接続している。油路13P-11は、連通弁装着孔123Pの底部から第2ハウジング部10bの内部をy軸正方向に僅かに延びるように形成されている。油路13P-11には、油路13P-10のx軸正方向端が接続している。油路13P-12は、油路11P-7のx軸負方向端から連通弁装着孔123Pまで、第2ハウジング部10bの内部をx軸負方向かつy軸負方向に延びるように形成されている(図26,図30参照)。このように、「ポンプハウジング72aの内部の吐出通路13→油路13-0~13-12→連通弁装着孔123」の順で、吐出油路13が構成されている。なお、油路13-13は、センサ装着孔193の底部から第2ハウジング部10bの内部をy軸正方向に延びるように形成されており、そのy軸正方向端が油路13-7に接続している(図20,図30参照)。 The discharge oil passage 13 is composed of oil passages 13-0 to 13-13. The oil passage 13-0 extends from the position on the y-axis negative direction side and the z-axis negative direction side at the bottom of the fitting recess 10e of the first housing portion 10a to the position approximately at the center of the first housing portion 10a in the x-axis direction. One housing portion 10a is formed so as to extend in the negative x-axis direction (see FIG. 22). The oil passage 13-1 extends in the z-axis positive direction from the bottom of the check valve mounting hole 127 to the z-axis negative direction side slightly from the z-axis direction center of the first housing part 10a. (See FIG. 20). The oil path 13-1 is connected to the x-axis positive direction end of the oil path 13-0 and the oil path 13-1 is connected to the bottom of the first damper mounting hole 128. ing. The oil passage 13-2 extends from a position on the surface 103 of the first housing portion 10a approximately in the x-axis direction and on the z-axis negative direction side to a position on the y-axis positive direction side relative to the y-axis direction center of the first housing portion 10a. The first housing portion 10a is formed to extend in the negative y-axis direction (see FIGS. 20 and 24). The oil passage 13-2 is connected to the check valve mounting hole 127 at a substantially central position in the y-axis direction. The y-axis negative direction end of the oil passage 13-2 is connected to the second damper mounting hole 129. The oil passage 13-3 extends from the bottom of the second damper mounting hole 129 to the x-axis positive direction side of the first housing part 10a in the x-axis direction (near the bottom of the fitting recess 10e) and the y-axis of the fitting recess 10e. The interior of the first housing portion 10a is slightly extended in the x-axis negative direction, slightly in the y-axis negative direction, and slightly in the z-axis positive direction to the vicinity of the negative direction side and to a position substantially in the center of the first housing portion 10a in the z-axis direction. (See FIGS. 20 and 30). The oil passage 13-4 is formed so as to extend from the bottom of the pressure regulating valve mounting hole 124 in the second housing portion 10b and the first housing portion 10a in the y-axis positive direction, and the y-axis positive direction end is oil It is connected to the end of the path 13-3 (opposite to the side connected to the second damper mounting hole 129) (see FIGS. 20 and 30). The oil passage 13-5 is formed so as to extend in the negative x-axis direction inside the second housing part 10b from the position in the negative y-axis direction on the surface 108 of the second housing part 10b and the substantially central position in the z-axis direction. The x-axis negative direction end is connected to the oil passage 13-4 (see FIGS. 22 and 28). The oil passage 13-6 has a position near the x-axis negative direction side of the pressure regulating valve mounting hole 124 on the surface 104 of the second housing portion 10b and substantially in the center in the z-axis direction (the pressure regulating valve mounting hole 124 and the sensor mounting holes 192S, 192P To the y-axis positive direction end of the second housing part 10b so as to extend inside the second housing part 10b in the y-axis positive direction, and the y-axis positive direction end is an oil passage 13-5 is connected to the negative end of the x-axis (see FIGS. 26 and 30). The oil passage 13-7 is formed so as to extend in the x-axis positive direction inside the second housing portion 10b from a position substantially in the y-axis direction and substantially in the z-axis direction on the surface 109 of the second housing portion 10b. The x-axis positive direction end is connected to the approximate center of the oil path 13-6 in the y-axis direction (see FIGS. 20 and 30). The oil passage 13-8 is located near the x-axis negative direction end on the surface 107 of the second housing part 10b and slightly closer to the y-axis positive direction than the center in the y-axis direction than the center in the z-axis direction of the second housing part 10b. The interior of the second housing part 10b is formed so as to extend in the z-axis positive direction to the position on the z-axis positive direction side (substantially the center in the z-axis direction of the communication valve mounting hole 123S) (see FIGS. 24 and 30). The x-axis negative direction side of the oil passage 13-7 is connected to the middle position in the z-axis direction of the oil passage 13-8. The oil passage 13S-9 is located near the end in the negative x-axis direction on the surface 104 of the second housing portion 10b (the negative x-axis side of the communication valve mounting hole 123S) and in the positive z-axis direction (communication valve) from the center in the z-axis direction. The interior of the second housing portion 10b extends in the y-axis positive direction from a position substantially in the z-axis direction of the mounting hole 123S to a position slightly closer to the y-axis positive direction than the center of the second housing portion 10b in the y-axis direction. It is formed (see FIGS. 20 and 26). The z-axis positive direction end of the oil path 13-8 is connected to the y-axis positive direction side of the oil path 13S-9. The oil passage 13S-10 is formed on the surface 109 of the second housing portion 10b in the y-axis direction with respect to the y-axis direction and on the z-axis direction with respect to the z-axis center (substantially in the z-axis direction of the communication valve mounting hole 123S). The inside of the second housing portion 10b extends in the positive x-axis direction from the center) position to the x-axis negative direction side (substantially the middle in the x-axis direction of the communication valve mounting hole 123S) from the center in the x-axis direction of the second housing portion 10b. (See FIGS. 20 and 28). The y-axis positive direction end of the oil passage 13S-9 is connected to the x-axis negative direction side of the oil passage 13S-10. The oil passage 13S-11 is formed so as to slightly extend in the y-axis positive direction from the bottom of the communication valve mounting hole 123S to the inside of the second housing portion 10b. The x-axis positive direction end of the oil passage 13S-10 is connected to the oil passage 13S-11. The oil passage 13S-12 is formed so as to extend in the x-axis negative direction and the y-axis negative direction in the second housing portion 10b from the x-axis negative direction end of the oil passage 11S-7 to the communication valve mounting hole 123S. (See FIGS. 26 and 28). The oil passage 13P-9 is near the end in the negative x-axis direction on the surface 104 of the second housing part 10b (the negative x-axis side of the communication valve mounting hole 123P) and on the negative z-axis side (communication valve) from the center in the z-axis direction. The interior of the second housing portion 10b extends in the positive y-axis direction from a position substantially in the z-axis direction of the mounting hole 123P to a position slightly closer to the positive y-axis direction than the center of the second housing portion 10b in the y-axis direction. It is formed (see FIGS. 20 and 26). The z-axis negative direction side of the oil passage 13-8 is connected to the y-axis positive direction side of the oil passage 13P-9. The oil passage 13P-10 is formed on the surface 109 of the second housing part 10b with respect to the y-axis positive direction side with respect to the y-axis positive direction side and with respect to the z-axis negative direction side with respect to the z-axis negative direction side. The inside of the second housing portion 10b extends in the positive x-axis direction from the position of the center) to the position on the negative x-axis side of the second housing portion 10b in the x-axis direction (substantially the middle of the communication valve mounting hole 123P in the x-axis direction). (See FIGS. 20 and 30). The y-axis positive direction end of the oil passage 13P-9 is connected to the x-axis negative direction side of the oil passage 13P-10. The oil passage 13P-11 is formed so as to slightly extend in the positive direction of the y-axis from the bottom of the communication valve mounting hole 123P inside the second housing portion 10b. The x-axis positive direction end of the oil passage 13P-10 is connected to the oil passage 13P-11. The oil passage 13P-12 is formed so as to extend in the x-axis negative direction and the y-axis negative direction from the x-axis negative direction end of the oil passage 11P-7 to the communication valve mounting hole 123P. (See FIGS. 26 and 30). Thus, the discharge oil passage 13 is configured in the order of “discharge passage 13 inside the pump housing 72a → oil passage 13-0 to 13-12 → communication valve mounting hole 123”. The oil passage 13-13 is formed so as to extend in the y-axis positive direction from the bottom of the sensor mounting hole 193 to the inside of the second housing portion 10b, and its y-axis positive end is connected to the oil passage 13-7. They are connected (see FIGS. 20 and 30).
 第1減圧油路14は油路14-1~14-3から構成される。油路14-3は、第1ハウジング部10aの嵌合凹部10eの底部におけるy軸方向略中央かつz軸正方向側の位置から第1ハウジング部10aのx軸方向中央よりも若干x軸負方向側の位置まで、第1ハウジング部10aの内部をx軸負方向に延びるように形成されている(図20,図28参照)。油路14-2は、第2ハウジング部10bの面104におけるx軸方向中央よりも若干x軸負方向寄りかつz軸方向中央よりも若干z軸正方向寄り(調圧弁装着孔124のx軸負方向側かつz軸正方向側の近傍)の位置から第2ハウジング部10b及び第1ハウジング部10aの内部をy軸正方向に延びて油路14-3のx軸負方向端に接続するように形成されている(図26,図28参照)。油路14-1は、調圧弁装着孔124のx軸負方向側かつz軸正方向側の周壁から第2ハウジング部10bの内部をx軸負方向かつy軸正方向かつz軸正方向に延びて油路14-2のy軸負方向側に接続するように形成されている(図20,図26参照)。「(油路13-4における油路13-5の接続部位→)調圧弁装着孔124→油路14-1~14-3→ポンプハウジング72aの内部の第1減圧油路14」の順で、第1減圧油路14が構成されている。 The first decompression oil passage 14 is composed of oil passages 14-1 to 14-3. The oil passage 14-3 is slightly more negative in the x-axis than the center in the x-axis direction of the first housing part 10a from the position in the center in the y-axis direction and the positive side in the z-axis direction at the bottom of the fitting recess 10e of the first housing part 10a. The first housing portion 10a is formed so as to extend in the negative x-axis direction to the position on the direction side (see FIGS. 20 and 28). The oil passage 14-2 is slightly closer to the x-axis negative direction than the center in the x-axis direction on the surface 104 of the second housing portion 10b and slightly closer to the z-axis positive direction than the center in the z-axis direction (the x-axis of the pressure regulating valve mounting hole 124). The interior of the second housing portion 10b and the first housing portion 10a extends in the y-axis positive direction from the position in the negative direction side and in the vicinity of the z-axis positive direction side) and is connected to the x-axis negative direction end of the oil passage 14-3. (See FIGS. 26 and 28). The oil passage 14-1 extends from the peripheral wall of the pressure regulating valve mounting hole 124 on the x-axis negative direction side and z-axis positive direction side to the inside of the second housing portion 10b in the x-axis negative direction, the y-axis positive direction, and the z-axis positive direction. It is formed so as to extend and connect to the negative direction side of the oil path 14-2 (see FIGS. 20 and 26). “(Connection part of oil passage 13-5 in oil passage 13-4 →) pressure regulating valve mounting hole 124 → oil passages 14-1 to 14-3 → first decompression oil passage 14 inside pump housing 72a” The 1st pressure reduction oil path 14 is comprised.
 第2減圧油路15は油路15-1~15-3から構成される。油路15-1は、各OUT弁装着孔125の底部から第2ハウジング部10bのy軸方向中央よりも若干y軸正方向寄りの位置まで、第2ハウジング部10bの内部を僅かにy軸正方向に延びるように形成されている(図28,図30参照)。油路15-2は、第2ハウジング部10bの面107におけるx軸方向中央よりもx軸正方向側(OUT弁装着孔125のx軸方向中央よりも僅かにx軸負方向側)かつy軸方向中央よりも若干y軸正方向寄りの位置から第2ハウジング部10bのz軸正方向端近傍(接続ポート111RLのz軸方向位置)まで、第2ハウジング部10bの内部をz軸正方向に延びるように形成されている(図24,図30参照)。油路15-2には、各油路15-1のy軸正方向端が接続している。油路15-3は、油路15-2のz軸方向中間位置(OUT弁装着孔125FR,125FLの間)から第2ハウジング部10bの内部をx軸負方向かつy軸負方向に延びて調圧弁装着孔124の周壁に接続している(図26,図28参照)。「(油路11-10におけるIN弁装着孔122の接続部位からOUT弁装着孔125の接続部位まで→)油路15-1~15-3→調圧弁装着孔124」の順で、第2減圧油路15が構成されている。 The second decompression oil passage 15 is composed of oil passages 15-1 to 15-3. The oil passage 15-1 slightly extends inside the second housing portion 10b from the bottom of each OUT valve mounting hole 125 to a position slightly closer to the y-axis positive direction than the center of the second housing portion 10b in the y-axis direction. It is formed to extend in the positive direction (see FIGS. 28 and 30). The oil passage 15-2 is on the x-axis positive side of the surface 107 of the second housing portion 10b in the x-axis positive direction side (slightly on the x-axis negative direction side of the OUT valve mounting hole 125 in the x-axis direction) and y From the position slightly closer to the y-axis positive direction than the axial center to the vicinity of the z-axis positive direction end of the second housing part 10b (the z-axis position of the connection port 111RL), the inside of the second housing part 10b is in the z-axis positive direction. (See FIGS. 24 and 30). The y-axis positive direction end of each oil passage 15-1 is connected to the oil passage 15-2. The oil passage 15-3 extends from the middle position of the oil passage 15-2 in the z-axis direction (between the OUT valve mounting holes 125FR and 125FL) in the second housing portion 10b in the negative x-axis direction and the negative y-axis direction. It is connected to the peripheral wall of the pressure regulating valve mounting hole 124 (see FIGS. 26 and 28). “(From the connection part of the IN valve mounting hole 122 to the connection part of the OUT valve mounting hole 125 in the oil passage 11-10 → the oil passage 15-1 to 15-3 → the pressure regulation valve mounting hole 124” in this order. A decompression oil passage 15 is configured.
 (作用) 次に、作用について説明する。本実施例のブレーキシステムでは、マスタシリンダユニット1aとブレーキ装置1bとが別体に(分離して)設けられている。よって、ユニット1aないし装置1bそれぞれの汎用性が高く、ブレーキシステムを異なる車種にも適用しやすい。また、マスタシリンダユニット1aとブレーキ装置1bを一体的に構成した場合に比べ、ユニット1aないし装置1bをそれぞれの方法で小型化することができる。一般にユニット1aないし装置1bそれぞれの車両における設置スペースは限られているところ、これらを小型化することで、車両におけるこれらのレイアウト自由度を向上することができる。 (Action) Next, the action will be described. In the brake system of the present embodiment, the master cylinder unit 1a and the brake device 1b are provided separately (separated). Therefore, the versatility of each of the units 1a to 1b is high, and the brake system can be easily applied to different vehicle types. Moreover, compared with the case where the master cylinder unit 1a and the brake device 1b are integrally formed, the units 1a to 1b can be downsized by the respective methods. Generally, the installation space of each of the units 1a to 1b in the vehicle is limited. However, by reducing the size of these units, the layout flexibility in the vehicle can be improved.
 ブレーキ装置1bのハウジング10の内部には、ポンプ7から吐出されたブレーキ液が流通する油路11,13~15(以下、油路11等という。)が形成されている。仮に、ハウジング10にポンプ7を内蔵する構成とした場合には、ハウジング10の内部においてポンプ7の設置スペースを回避するように油路11等を配置する必要があるため、油路11等の配置構成(取り回し)が複雑となるおそれがある。また、ポンプ7の設置スペースを回避するように油路11等を配置することで、油路11等を効率的に配置できず、ハウジング10内に無駄なスペースを生じるため、ブレーキ装置1bが大型化するおそれがある。これに対し、本実施例では、ハウジング10に対してポンプ7を外から取り付けるようにした。すなわち、ポンプ7をハウジング10の内部ではなく外部に設けた。よって、ハウジング10の内部において、ポンプ7の設置スペースを省略することができるため、この設置スペースを回避するように油路11等を配置する必要がなくなる。これにより、油路11等の取り回しを簡素化することができる。また、このように油路11等の取り回しを簡素化して油路11等を効率的に配置することができるため、ハウジング10内の無駄なスペースを省く(ハウジング10の内部をより有効に利用する)ことができる。これにより、ハウジング10の全体をコンパクトにして、ブレーキ装置1bの小型化・軽量化を図ることができる。なお、上記「ポンプ7の設置スペース」は、ハウジング10の内部においてギヤ74等のポンプ部を収容するための空間を指し、単にポンプハウジング72aの一端を嵌合するための嵌合凹部10eを含まない。 In the housing 10 of the brake device 1b, oil passages 11, 13 to 15 (hereinafter referred to as the oil passage 11 etc.) through which the brake fluid discharged from the pump 7 flows are formed. Temporarily, when it is set as the structure which incorporates the pump 7 in the housing 10, since it is necessary to arrange | position the oil path 11 etc. so that the installation space of the pump 7 may be avoided inside the housing 10, arrangement | positioning of the oil path 11 grade | etc., The configuration (handling) may be complicated. Further, by arranging the oil passage 11 and the like so as to avoid the installation space of the pump 7, the oil passage 11 and the like cannot be arranged efficiently, and a wasteful space is generated in the housing 10, so that the brake device 1b is large. There is a risk of becoming. On the other hand, in this embodiment, the pump 7 is attached to the housing 10 from the outside. That is, the pump 7 is provided outside the housing 10 instead of inside. Therefore, since the installation space of the pump 7 can be omitted inside the housing 10, it is not necessary to arrange the oil passage 11 or the like so as to avoid this installation space. Thereby, the handling of the oil passage 11 and the like can be simplified. Further, since the oil passage 11 and the like can be arranged efficiently by simplifying the handling of the oil passage 11 and the like in this way, useless space in the housing 10 is saved (the inside of the housing 10 is used more effectively). )be able to. Thereby, the whole housing 10 can be made compact and the size and weight of the brake device 1b can be reduced. The “installation space for the pump 7” refers to a space for housing the pump portion such as the gear 74 in the housing 10, and includes a fitting recess 10e for simply fitting one end of the pump housing 72a. Absent.
 具体的には、ハウジング10は、面101にポンプ7が取り付けられる第1ハウジング部10aと、電磁弁21等が取り付けられる第2ハウジング部10bとからなる。従来は、(略直方体の)ハウジングの略中央部に配置された比較的大径のポンプを避けるように制御バルブ(電磁弁)や液圧センサを配置し、更に、それらの間を縫うようにハウジング内部に油路を形成していたため、油路の構成が非常に煩雑となっていた。また、ハウジング内部に無駄なスペースを生じていた。これに対し、本実施例では、第2ハウジング部10bにおいて、ポンプ7の設置スペースを避けるように電磁弁21等や液圧センサ91~93を配置する必要がなく、これらを第2ハウジング部10bに効率的に配置することができる。よって、第2ハウジング部10bの内部の油路11等の構成を簡素化することができる。また、第2ハウジング部10bの内部の無駄なスペースを省いて、第2ハウジング部10bを小型化することができる。一方、ポンプ7が取り付けられる第1ハウジング部10aには、電磁弁21等や液圧センサ91~93を取り付ける必要がなくなるため、第1ハウジング部10aを小型化することもできる。よって、ハウジング10の全体を従来よりも小型化・軽量化することが可能である。言い換えると、ハウジング10を構成する部分として、ポンプ7が外部から取り付けられる第1ハウジング部10aと、電磁弁21等が断接する油路11等が内部に設けられた第2ハウジング部10bとを、構造上、分けた。よって、油路11等の設計自由度を向上することができる。例えば、ポンプ7の吸入部や吐出部の位置に直接拘束されることなく、第2ハウジング部10bの内部における油路11等の配置を設計することができる。したがって、より効果的に、ハウジング10の内部における油路11等の取り回しを簡素化し、ハウジング10の全体をコンパクト化することができる。 Specifically, the housing 10 includes a first housing part 10a to which the pump 7 is attached to the surface 101, and a second housing part 10b to which the electromagnetic valve 21 and the like are attached. Conventionally, a control valve (solenoid valve) and a hydraulic pressure sensor are arranged so as to avoid a relatively large-diameter pump arranged at a substantially central portion of the (substantially rectangular parallelepiped) housing, and further, a sewing between them is performed. Since the oil passage was formed inside the housing, the configuration of the oil passage was very complicated. In addition, useless space is generated inside the housing. On the other hand, in the present embodiment, it is not necessary to arrange the solenoid valve 21 and the like and the hydraulic pressure sensors 91 to 93 so as to avoid the installation space of the pump 7 in the second housing portion 10b, and these are disposed in the second housing portion 10b. Can be arranged efficiently. Therefore, the configuration of the oil passage 11 and the like inside the second housing portion 10b can be simplified. Further, it is possible to reduce the size of the second housing portion 10b by omitting a useless space inside the second housing portion 10b. On the other hand, the first housing part 10a to which the pump 7 is attached does not need to be attached with the solenoid valve 21 or the like or the hydraulic pressure sensors 91 to 93, so the first housing part 10a can be downsized. Therefore, the entire housing 10 can be made smaller and lighter than before. In other words, as a part constituting the housing 10, a first housing part 10a to which the pump 7 is attached from the outside, and a second housing part 10b in which an oil passage 11 to which the electromagnetic valve 21 and the like are connected are connected. Divided structurally. Therefore, the degree of freedom in designing the oil passage 11 and the like can be improved. For example, the arrangement of the oil passage 11 and the like inside the second housing portion 10b can be designed without being directly restricted by the positions of the suction portion and the discharge portion of the pump 7. Therefore, the handling of the oil passage 11 and the like inside the housing 10 can be simplified more effectively, and the entire housing 10 can be made compact.
 第1ハウジング部10aは、面101に対向する面102を備え、面102には、ポンプ7を駆動するためのモータ8が取り付けられている。よって、ブレーキ装置1bの小型化・軽量化を図ることができる。すなわち、例えば第1ハウジング部10aの面102以外の面101,103,106,107にモータ8を取り付けた場合に比べ、対向する面101,102にそれぞれポンプ7とモータ8を取り付けたことで、面101又は面102の法線方向(x軸方向)から見て、ポンプ7とモータ8とが重なる面積を増やすことができる。よって、上記法線方向(x軸方向)から見た第1ハウジング部10aの投影面積を抑制することができる。したがって、第1ハウジング部10aのレイアウト性を向上し、また上記法線方向(x軸方向)から見たブレーキ装置1bの外形寸法(y軸方向及びz軸方向の寸法)を抑制することができる。また、一般にポンプ7(の駆動軸73a)とモータ8(の回転軸81)を接続するためには所定の構造を必要とし、そのためのスペースを要する。本実施例では、ポンプ7が取り付けられる面101に対向する面102にモータ8を取り付けることで、第1ハウジング部10aにおける面101と面102に挟まれた部分を上記スペースとして利用することができる。よって、上記スペースを別途設ける必要がなくなるため、ブレーキ装置1bの小型化を図ることができる。また、ポンプ7の軸方向とモータ8の軸方向を、共に、面101及び面102の法線方向(x軸方向)とした。よって、上記作用効果を向上することができる。具体的には、モータ8の回転軸81とポンプ7の駆動軸73aとを略同一直線上に配置し、両者を第1ハウジング部10aの内部(面101と面102に挟まれた部分)で接続した。よって、上記法線方向(x軸方向)から見てポンプ7とモータ8が重なる面積を可及的に大きくすることができる。本実施例では、上記法線方向(x軸方向)から見た第1ハウジング部10aの大きさを、ポンプ7とモータ8のうち径方向寸法が大きい方(本実施例ではモータ8)を取り付けるために必要な大きさに制限している。よって、上記法線方向(x軸方向)から見たブレーキ装置1bの外形寸法(y軸方向及びz軸方向の寸法)を抑制することができる。また、第1ハウジング部10aにおける面101と面102との間の距離を、(モータ8等の取り付けに必要な強度を確保しつつ、)ポンプ7の駆動軸73aとモータ8の回転軸81とを接続するためのカラー部材730を収容したり、モータ8の回転軸81を支持するための軸受81aを設置したりするために必要な大きさに制限している。言換えると、板状である第1ハウジング部10aの厚さ(x軸方向寸法)をできるだけ薄くしている。これにより、x軸方向におけるブレーキ装置1bの寸法も抑制することが可能となる。 The first housing portion 10a includes a surface 102 facing the surface 101, and a motor 8 for driving the pump 7 is attached to the surface 102. Therefore, it is possible to reduce the size and weight of the brake device 1b. That is, for example, compared to the case where the motor 8 is attached to the surfaces 101, 103, 106, and 107 other than the surface 102 of the first housing portion 10a, the pump 7 and the motor 8 are attached to the opposing surfaces 101 and 102, respectively. When viewed from the direction (x-axis direction), the area where the pump 7 and the motor 8 overlap can be increased. Therefore, the projected area of the first housing part 10a viewed from the normal direction (x-axis direction) can be suppressed. Therefore, the layout of the first housing portion 10a can be improved, and the external dimensions (dimensions in the y-axis direction and the z-axis direction) of the brake device 1b viewed from the normal direction (x-axis direction) can be suppressed. . In general, in order to connect the pump 7 (the drive shaft 73a) and the motor 8 (the rotation shaft 81), a predetermined structure is required, and a space for that is required. In this embodiment, the motor 8 is attached to the surface 102 opposite to the surface 101 to which the pump 7 is attached, so that the portion sandwiched between the surface 101 and the surface 102 in the first housing portion 10a can be used as the space. . Therefore, since it is not necessary to provide the space separately, the size of the brake device 1b can be reduced. The axial direction of the pump 7 and the axial direction of the motor 8 are both normal directions of the surfaces 101 and 102 (x-axis direction). Therefore, the above-described effects can be improved. Specifically, the rotation shaft 81 of the motor 8 and the drive shaft 73a of the pump 7 are arranged on substantially the same straight line, and both are located inside the first housing portion 10a (a portion sandwiched between the surface 101 and the surface 102). Connected. Therefore, the area where the pump 7 and the motor 8 overlap can be made as large as possible when viewed from the normal direction (x-axis direction). In the present embodiment, the size of the first housing portion 10a viewed from the normal direction (x-axis direction) is set to the larger one of the pump 7 and the motor 8 in the radial direction (the motor 8 in this embodiment). This is limited to the size required for this purpose. Therefore, the outer dimensions (dimensions in the y-axis direction and the z-axis direction) of the brake device 1b viewed from the normal direction (x-axis direction) can be suppressed. Further, the distance between the surface 101 and the surface 102 in the first housing portion 10a is set so that the drive shaft 73a of the pump 7 and the rotary shaft 81 of the motor 8 are secured (while ensuring the strength necessary for mounting the motor 8 etc.). The size is limited to a size necessary for accommodating the collar member 730 for connecting the motor and the bearing 81a for supporting the rotating shaft 81 of the motor 8. In other words, the thickness (x-axis direction dimension) of the plate-shaped first housing part 10a is made as thin as possible. Thereby, the dimension of the brake device 1b in the x-axis direction can also be suppressed.
 なお、第1ハウジング部10aには、最低限必要な油路として、ポンプ7から吐出されたブレーキ液が流れる吐出油路13(油路13-0~13-3及び油路13-4の一部)が形成されていればよい。よって、第1ハウジング部10aにおける面101と面102との間の距離を可及的に(例えば第2ハウジング部10bにおける面104と面105との間の距離よりも)制限することができる。本実施例では、吐出油路13のほか、第2ハウジング部10bの油路(油路14-1及び油路14-2の一部)と接続してポンプ7に連通する第1減圧油路(油路14-2の一部及び油路14-3)と、ブレーキ配管2bと接続してマスタシリンダ5からのブレーキ液を第2ハウジング部10bの油路(油路11S-3の一部及び油路11S-10)へ送るための第1油路(油路11S-1,11S-2及び油路11S-3の一部)とが、第1ハウジング部10aの内部に形成されている。但し、第1ハウジング部10aに吐出油路13のみが形成されていた場合に対し、上記油路11,14の追加は、第1ハウジング部10aにおける面101と面102との間の距離の変更をもたらすようなものではない。 The first housing portion 10a has a discharge oil passage 13 (one of the oil passages 13-0 to 13-3 and one of the oil passages 13-4) through which brake fluid discharged from the pump 7 flows as a minimum required oil passage. Part) may be formed. Therefore, the distance between the surface 101 and the surface 102 in the first housing part 10a can be limited as much as possible (for example, more than the distance between the surface 104 and the surface 105 in the second housing part 10b). In the present embodiment, in addition to the discharge oil passage 13, the first pressure reduction oil passage connected to the oil passage (a part of the oil passage 14-1 and the oil passage 14-2) of the second housing portion 10 b and communicating with the pump 7 The brake fluid from the master cylinder 5 is connected to the brake pipe 2b (part of the oil passage 14-2 and the oil passage 14-3) and the oil passage of the second housing portion 10b (part of the oil passage 11S-3). And a first oil passage (a part of the oil passages 11S-1, 11S-2 and the oil passage 11S-3) for sending to the oil passage 11S-10) is formed inside the first housing portion 10a. . However, in contrast to the case where only the discharge oil passage 13 is formed in the first housing portion 10a, the addition of the oil passages 11 and 14 changes the distance between the surface 101 and the surface 102 in the first housing portion 10a. Is not like bringing
 第2ハウジング部10bは、電磁弁21等が取り付けられる面104を備えている。このように、第2ハウジング部10bにおいて、電磁弁21等を集約して1つの面104に取り付けることで、面104以外の面(面104に連続する各面106~109)に電磁弁21等を取り付けた場合に比べ、面104の法線方向(y軸方向)から見て、(電磁弁21等を含む)第2ハウジング部10bの大きさ(x軸方向及びz軸方向の寸法)を抑制することができる。また、面104だけでなく面104に対向する面105にも電磁弁21等を取り付けた場合に比べ、面104の法線方向(y軸方向)における(電磁弁21等を含む)第2ハウジング部10bの寸法を抑制することもできる。よって、上記各方向(x軸方向、y軸方向、及びz軸方向)におけるブレーキ装置1bの外形寸法を抑制することが可能となる。また、電磁弁21等を集約して面104に取り付けることで、第1ハウジング部10aに対する第2ハウジング部10bのレイアウト性を向上することができる。また、電磁弁21等に通電するための配線の取り回し性(電気的な接続性)を向上することもできる。具体的には、ブレーキ装置1bは、第2ハウジング部10bの面104を覆うケース部材としてバルブケース95を備えている。バルブケース95には電磁弁21等のソレノイド部が設置されると共にECU9の基板94が設置されている。基板94は端子(電極)を介して電磁弁21~25のソレノイド部と接続する。よって、液圧機器(アクチュエータ)を備えた液圧制御機構とECU9との電気的な接続構成を容易化した所謂機電一体型のブレーキ装置1bを比較的容易に実現することができる。さらに、面104には液圧センサ91~93が取り付けられ、モータ8の端子が突出する。よって、上記と同様の作用効果を得ることができる。なお、図2等に示すように、モータ8の端子(電極)に駆動電流を供給する配線(ハーネス)35をハウジング10の外部に設けることとしてもよい。本実施例では、ハウジング10の内部にモータ8の端子(電極)を収容する端子挿入孔137,138を形成した。よって、ハウジング10の外部の配線を介したモータ8とECU9との接続を不要にできるため、ブレーキ装置1bの構成を簡素化することができる。 The second housing portion 10b includes a surface 104 to which the solenoid valve 21 and the like are attached. As described above, in the second housing portion 10b, the solenoid valves 21 and the like are integrated and attached to one surface 104, so that the solenoid valve 21 and the like are provided on the surfaces other than the surface 104 (the surfaces 106 to 109 continuous with the surface 104). Compared to the case where the second housing part 10b (including the solenoid valve 21 etc.) is seen from the normal direction (y-axis direction) of the surface 104, the size (dimensions in the x-axis direction and the z-axis direction) Can be suppressed. In addition, the second housing (including the electromagnetic valve 21 and the like) in the normal direction (y-axis direction) of the surface 104 as compared with the case where the electromagnetic valve 21 and the like are attached not only to the surface 104 but also to the surface 105 facing the surface 104. The dimension of the part 10b can also be suppressed. Therefore, it is possible to suppress the external dimensions of the brake device 1b in the above directions (x-axis direction, y-axis direction, and z-axis direction). Moreover, the layout property of the 2nd housing part 10b with respect to the 1st housing part 10a can be improved by integrating the solenoid valves 21 grade | etc., And attaching to the surface 104. FIG. In addition, the wiring property (electrical connectivity) for energizing the solenoid valve 21 and the like can be improved. Specifically, the brake device 1b includes a valve case 95 as a case member that covers the surface 104 of the second housing portion 10b. The valve case 95 is provided with a solenoid portion such as the electromagnetic valve 21 and a board 94 of the ECU 9. The substrate 94 is connected to the solenoid portions of the solenoid valves 21 to 25 through terminals (electrodes). Therefore, a so-called electromechanically integrated brake device 1b in which the electrical connection configuration between the ECU 9 and the hydraulic control mechanism including the hydraulic device (actuator) is simplified can be realized relatively easily. Further, hydraulic pressure sensors 91 to 93 are attached to the surface 104, and the terminals of the motor 8 protrude. Therefore, the same effect as the above can be obtained. As shown in FIG. 2 and the like, a wiring (harness) 35 for supplying a drive current to the terminal (electrode) of the motor 8 may be provided outside the housing 10. In this embodiment, terminal insertion holes 137 and 138 for receiving the terminals (electrodes) of the motor 8 are formed inside the housing 10. Therefore, since the connection between the motor 8 and the ECU 9 via the wiring outside the housing 10 can be made unnecessary, the configuration of the brake device 1b can be simplified.
 また、第2ハウジング部10bにおいて、電磁弁21等を集約して1つの面104に取り付けることで、ハウジング10を小型化・軽量化することが可能となる。すなわち、図25に示すように、面104において、電磁弁21等や液圧センサ91~93が取り付けられるバルブ装着孔121~125、及びセンサ装着孔191~193は、比較的密集して配置されている。これにより、各方向(x軸方向、y軸方向、及びz軸方向)における第2ハウジング部10bの寸法をできるだけ小さくしている。このように孔121~125,191~193が密集して配置されていることは、これらに接続する油路11等も密集して配列されていることを意味する。また、孔121~125,191~193は、互いに近接して配置されているだけでなく、同じ系統内の異機能の部品同士を接続する油路を共通化したり(例えば接続ポート111と弁22,25とを接続する油路11-10が1本で足り)、同機能の部品同士を接続する油路を系統間で共通化したりする(例えば両系統の各弁25を接続する油路15-2が1本で足りる)ことができるよう、効率的に配列されている。これらより、油路11等の構成をできるだけ簡素化している。 Further, in the second housing portion 10b, the housing 10 can be reduced in size and weight by collecting the solenoid valves 21 and the like and attaching them to one surface 104. That is, as shown in FIG. 25, on the surface 104, the valve mounting holes 121 to 125 and the sensor mounting holes 191 to 193 to which the electromagnetic valves 21 and the hydraulic pressure sensors 91 to 93 are mounted are arranged relatively densely. ing. Thereby, the dimension of the 2nd housing part 10b in each direction (x-axis direction, y-axis direction, and z-axis direction) is made as small as possible. The fact that the holes 121 to 125 and 191 to 193 are densely arranged in this way means that the oil passages 11 and the like connected thereto are also densely arranged. In addition, the holes 121 to 125 and 191 to 193 are not only arranged close to each other, but also share an oil passage for connecting parts having different functions in the same system (for example, the connection port 111 and the valves 22 and 25). The oil passage 11-10 that connects the two is sufficient, and the oil passage that connects the parts having the same function is shared between the systems (for example, the oil path 15-2 that connects the valves 25 of both systems) Can be arranged efficiently. Thus, the configuration of the oil passage 11 and the like is simplified as much as possible.
 第1ハウジング部10aと第2ハウジング部10bとは一体的に接続されている。言換えると、ハウジング10は、第1ハウジング部10aと第2ハウジング部10bとにより、一体的に構成されている。よって、第1ハウジング部10aの側の油路(吐出油路13等)と第2ハウジング部10bの側の油路11等とを接続するためのブレーキ配管を別途設けることが不要となる。したがって、ブレーキ装置1bの構成を簡素化できると共に、その小型化を図ることができる。本実施例では、第1ハウジング部10aと第2ハウジング部10bとを一体的に形成した。言換えると、一体に構成された1つのハウジング部材の部分として各ハウジング部10a,10bを設けた。よって、両ハウジング部10a,10bを一体化するためにこれらを接続したり固定したりするための部材や構成が不要となる。また、両ハウジング部10a,10bの油路の接続部位からブレーキ液が漏れることを抑制するためにシール構造やシール部材を設ける必要がない。したがって、ブレーキ装置1bの構成や組付け工程を簡素化することができる。また、部品点数を削減することができる。 The first housing part 10a and the second housing part 10b are integrally connected. In other words, the housing 10 is integrally configured by the first housing part 10a and the second housing part 10b. Therefore, it is not necessary to separately provide a brake pipe for connecting the oil passage (the discharge oil passage 13 and the like) on the first housing portion 10a side and the oil passage 11 and the like on the second housing portion 10b side. Therefore, the configuration of the brake device 1b can be simplified and the size thereof can be reduced. In this embodiment, the first housing part 10a and the second housing part 10b are integrally formed. In other words, each housing part 10a, 10b is provided as a part of one housing member configured integrally. This eliminates the need for a member or configuration for connecting or fixing the housing portions 10a and 10b in order to integrate them. Further, it is not necessary to provide a seal structure or a seal member in order to suppress the brake fluid from leaking from the connection portion of the oil passages of both housing portions 10a and 10b. Accordingly, the configuration and assembly process of the brake device 1b can be simplified. In addition, the number of parts can be reduced.
 具体的には、ハウジング10を、第1ハウジング部10aの面101及び面102を除いた部分と、第2ハウジング部10bの面104を除いた部分とにより一体的に構成した。言換えると、第1ハウジング部10aの面101,102を除いた面と、第2ハウジング部10bの面104を除いた面とを一体的に接続した。よって、(面101に取り付けられる)ポンプ7と(面104に取り付けられる)電磁弁21等との干渉を回避しつつ、(ポンプ7が取り付けられる)面101の面積と(電磁弁21等が取り付けられる)面104の面積とを共に抑制することができるため、ブレーキ装置1bの小型化を図ることができる。特に、本実施例のように第1ハウジング部10aの面101に対向する面102にモータ8を取り付ける場合、ポンプ7及びモータ8と電磁弁21等との干渉を回避しつつ、第1ハウジング部10aの面101及び面102の面積と第2ハウジング部10bの面104の面積とを共に抑制することができる。 Specifically, the housing 10 is integrally configured by a portion excluding the surface 101 and the surface 102 of the first housing portion 10a and a portion excluding the surface 104 of the second housing portion 10b. In other words, the surface excluding the surfaces 101 and 102 of the first housing portion 10a and the surface excluding the surface 104 of the second housing portion 10b are integrally connected. Therefore, while avoiding interference between the pump 7 (attached to the surface 101) and the electromagnetic valve 21 (attached to the surface 104), the area of the surface 101 (where the pump 7 is attached) and the (electromagnetic valve 21 etc. attached) Therefore, the size of the brake device 1b can be reduced. In particular, when the motor 8 is attached to the surface 102 facing the surface 101 of the first housing portion 10a as in this embodiment, the first housing portion is avoided while avoiding interference between the pump 7 and the motor 8 and the electromagnetic valve 21 and the like. Both the area of the surface 101 and the surface 102 of 10a and the area of the surface 104 of the second housing part 10b can be suppressed.
 さらに、本実施例では、第2ハウジング部10bの面104の法線方向(y軸方向)から見て、電磁弁21等の設置領域とポンプ7とが少なくとも部分的に重なるように、ハウジング10を構成した。具体的には、第1ハウジング部10aの面101及び面102を除いた部分(本実施例では第1ハウジング部10aのy軸負方向側)を、第2ハウジング部10bの面104に対向する側(面105の側)に接続した。これにより、上記法線方向(y軸方向)から見たブレーキ装置1bの投影面積を小さくし、その外形寸法(x軸方向及びz軸方向の寸法)を抑制することができる。言換えると、第1ハウジング部10aの面101及び面102を除いた部分を、第2ハウジング部10bの面104及び面105を除いた部分(面106~109のいずれかの側)に接続した場合に比べ、第2ハウジング部10bの面105の側に接続した本実施例のほうが、面104の法線方向(y軸方向)におけるハウジング10の外形寸法は増大するものの、上記法線方向(y軸方向)から見たブレーキ装置1bの外形寸法(x軸方向及びz軸方向の寸法)を抑制することができる。そして、ブレーキ装置1bのx軸、y軸、z軸の全方向での外形寸法の最大値を比較すると、上記場合に比べ、本実施例のほうが、上記最大値を小さくすることができる(言換えると、いずれかの方向での外形寸法が大きくなりすぎない)。よって、上記場合よりも、本実施例のほうが、ブレーキ装置1bの各方向での外形寸法をバランスよく抑制することができる。なお、これは、第2ハウジング部10bの寸法のうち、(電磁弁21等が取り付けられる)面104を構成する各方向(x軸方向及びz軸方向)の寸法のほうが、上記面104の法線方向(y軸方向)での寸法よりも大きい(言換えると、第2ハウジング部10bはその各面104~109のうちバルブ取り付け面104が最大面積となる扁平な板状である)ことに起因する。 Further, in the present embodiment, the housing 10 is arranged so that the installation region of the solenoid valve 21 and the like and the pump 7 overlap at least partially when viewed from the normal direction (y-axis direction) of the surface 104 of the second housing portion 10b. Configured. Specifically, the portion excluding the surface 101 and the surface 102 of the first housing part 10a (in this embodiment, the negative y-axis side of the first housing part 10a) faces the surface 104 of the second housing part 10b. Connected to the side (surface 105 side). Thereby, the projection area of the brake device 1b seen from the said normal line direction (y-axis direction) can be made small, and the external dimension (dimension in the x-axis direction and z-axis direction) can be suppressed. In other words, the portion of the first housing portion 10a excluding the surface 101 and the surface 102 is connected to the portion of the second housing portion 10b excluding the surface 104 and the surface 105 (any one of the surfaces 106 to 109). Compared to the case, the present embodiment connected to the surface 105 side of the second housing portion 10b increases the outer dimension of the housing 10 in the normal direction (y-axis direction) of the surface 104, but the normal direction ( The external dimensions (dimensions in the x-axis direction and the z-axis direction) of the brake device 1b viewed from the y-axis direction can be suppressed. When the maximum values of the outer dimensions of the brake device 1b in all directions of the x axis, the y axis, and the z axis are compared, the maximum value can be made smaller in the present embodiment than in the above case. In other words, the external dimensions in either direction will not be too large). Therefore, the external dimension in each direction of the brake device 1b can be suppressed with a better balance in the present embodiment than in the above case. This is because the dimension of each direction (x-axis direction and z-axis direction) constituting the surface 104 (to which the solenoid valve 21 or the like is attached) out of the dimensions of the second housing portion 10b is the method of the surface 104. The dimension is larger than the dimension in the linear direction (y-axis direction) (in other words, the second housing portion 10b is a flat plate shape in which the valve mounting surface 104 has the maximum area among the surfaces 104 to 109). to cause.
 さらに、第2ハウジング部10bの面104の法線方向(y軸方向)から見て、電磁弁21等の設置領域とポンプ7及びモータ8とが、それぞれ少なくとも部分的に重なるように、ハウジング10を構成した。具体的には、上記法線方向(y軸方向)から見て、第1ハウジング部10aの面101及び面102が第2ハウジング部10bの面104(及びこれに対向する面105)内に収まるように、言換えると、面101,102から面104(面105)の外縁までの間に所定の(ゼロより大きい)距離ができるようにした。これにより、上記法線方向(y軸方向)から見て、電磁弁21等の設置領域とポンプ7及びモータ8とが少なくとも部分的に重なることで、上記法線方向(y軸方向)から見たブレーキ装置1bの外形寸法を抑制することができる。本実施例では、上記法線方向(y軸方向)から見て、電磁弁21等の設置領域(面104)とポンプ7とが重なる面積と、電磁弁21等の設置領域(面104)とモータ8とが重なる面積との合計がなるべく小さくなるように設けている。これにより、上記法線方向(y軸方向)から見たブレーキ装置1bの外形寸法を可及的に抑制している。 Further, when viewed from the normal direction (y-axis direction) of the surface 104 of the second housing portion 10b, the housing 10 is arranged such that the installation region of the electromagnetic valve 21 and the like, the pump 7 and the motor 8 are at least partially overlapped. Configured. Specifically, when viewed from the normal direction (y-axis direction), the surface 101 and the surface 102 of the first housing portion 10a are within the surface 104 (and the surface 105 opposite thereto) of the second housing portion 10b. In other words, a predetermined (greater than zero) distance is formed between the surfaces 101 and 102 and the outer edge of the surface 104 (surface 105). Thus, when viewed from the normal direction (y-axis direction), the installation region of the solenoid valve 21 and the like, and the pump 7 and the motor 8 overlap at least partially, so that the normal direction (y-axis direction) can be seen. The outer dimensions of the brake device 1b can be suppressed. In this embodiment, when viewed from the normal direction (y-axis direction), the area where the installation area (surface 104) of the solenoid valve 21 and the pump 7 overlaps, and the installation area (surface 104) of the solenoid valve 21 and the like The total area with the area where the motor 8 overlaps is as small as possible. Thereby, the external dimension of the brake device 1b seen from the said normal line direction (y-axis direction) is suppressed as much as possible.
 なお、本実施例では、第1ハウジング部10aの(ポンプ7が取り付けられる)面101に対向する面102にモータ8を取り付けるようにしたため、油路11等の設計自由度を向上することができる。すなわち、仮に、面101の側にポンプ7とモータ8の両方を(例えばポンプ7とモータ8の軸が一直線上になるように)取り付けた場合を考える。この場合、上記のように第2ハウジング部10bの面104の法線方向(y軸方向)から見て電磁弁21等の設置領域(面104)とポンプ7及びモータ8とが重なる面積の合計がなるべく小さくなるようにしようとすると、第1ハウジング部10aの第2ハウジング部10bに対する接続位置が、本実施例のような第2ハウジング部10bの中間側の位置ではなく外縁側に限定される。よって、第1ハウジング部10aの内部の油路が第2ハウジング部10bに対して接続する位置も上記外縁側に限定されるため、第2ハウジング部10bの内部における油路11等の設計自由度が制限されるおそれがある。これに対し、本実施例では、上記面積の合計を抑制するという要求下で、第1ハウジング部10a(の内部の油路)の第2ハウジング部10bに対する接続位置が限定されることが比較的ない。よって、第2ハウジング部10bの油路11等の設計自由度を向上することができる。 In the present embodiment, since the motor 8 is attached to the surface 102 of the first housing portion 10a that faces the surface 101 (where the pump 7 is attached), the degree of freedom in designing the oil passage 11 and the like can be improved. . That is, suppose a case where both the pump 7 and the motor 8 are attached to the surface 101 side (for example, the axes of the pump 7 and the motor 8 are aligned). In this case, as described above, the total area where the installation region (surface 104) of the solenoid valve 21 and the like overlaps with the pump 7 and the motor 8 when viewed from the normal direction (y-axis direction) of the surface 104 of the second housing portion 10b. If it tries to make as small as possible, the connection position with respect to the 2nd housing part 10b of the 1st housing part 10a will be limited to the outer edge side instead of the position of the intermediate | middle side of the 2nd housing part 10b like a present Example. . Therefore, since the position where the oil passage inside the first housing portion 10a is connected to the second housing portion 10b is also limited to the outer edge side, the degree of freedom in designing the oil passage 11 and the like inside the second housing portion 10b. May be restricted. On the other hand, in the present embodiment, the connection position of the first housing part 10a (the internal oil passage) with respect to the second housing part 10b is relatively limited under the requirement of suppressing the total area. Absent. Therefore, the degree of freedom in designing the oil passage 11 and the like of the second housing portion 10b can be improved.
 また、第1ハウジング部10aの面101及び面102を除いた部分を、第2ハウジング部10bの面104に対向する側(面105の側)に接続したことに加え、ポンプ7の軸方向とモータ8の軸方向を、共に、第1ハウジング部10aの面101及び面102の法線方向(x軸方向)とした。これにより、ポンプ7とモータ8の軸方向側ではなく半径方向側に、第2ハウジング部10bが配置される。具体的には、ポンプ7とモータ8の軸方向を、第2ハウジング部10bの面104及び面105に対し略平行としている。一方、電磁弁21等は、第2ハウジング部10bの面104に取り付けられ、面104に略直交する方向に駆動される。すなわち、電磁弁21等は、モータ8の半径方向(モータ8の回転軸81に直交する方向)に作動するよう、取り付けられている。よって、ハウジング10に対してポンプ7、モータ8、及び電磁弁21等を効率的に配置し、x軸、y軸、z軸の各方向でのブレーキ装置1bの外形寸法をバランスよく抑制して、ブレーキ装置1bを小型化することができる。例えば、ポンプ7とモータ8の軸方向を面104及び面105に対し直交させるのではなく略平行に配置すると共に、ポンプ7及びモータ8の軸方向から見て第1ハウジング部10aの大きさ(y軸方向及びz軸方向の寸法)をポンプ7とモータ8のうち径方向寸法が大きい方(本実施例ではモータ8)の取り付けに必要な大きさに制限している。これにより、面104及び面105に対し直交する方向(y軸方向)におけるブレーキ装置1bの外形寸法を抑制できる。また、上記のように、電磁弁21等の作動方向から見て第2ハウジング部10bの大きさ(x軸方向及びz軸方向の寸法)を抑制すると共に電磁弁21等の設置領域(面104,105)とポンプ7及びモータ8とが重なるようにすることで、上記作動方向から見たブレーキ装置1bの外形寸法を抑制できる。 Further, the portion excluding the surface 101 and the surface 102 of the first housing part 10a is connected to the side (surface 105 side) facing the surface 104 of the second housing part 10b, and the axial direction of the pump 7 The axial direction of the motor 8 is the normal direction (x-axis direction) of the surface 101 and the surface 102 of the first housing portion 10a. As a result, the second housing portion 10b is disposed on the radial direction side rather than the axial direction side of the pump 7 and the motor 8. Specifically, the axial directions of the pump 7 and the motor 8 are substantially parallel to the surface 104 and the surface 105 of the second housing portion 10b. On the other hand, the electromagnetic valve 21 and the like are attached to the surface 104 of the second housing portion 10b and are driven in a direction substantially orthogonal to the surface 104. That is, the electromagnetic valve 21 and the like are attached so as to operate in the radial direction of the motor 8 (direction orthogonal to the rotation shaft 81 of the motor 8). Therefore, the pump 7, the motor 8, the electromagnetic valve 21 and the like are efficiently arranged with respect to the housing 10, and the outer dimensions of the brake device 1b in each of the x-axis, y-axis, and z-axis directions are suppressed in a balanced manner. The brake device 1b can be reduced in size. For example, the axial direction of the pump 7 and the motor 8 is not substantially orthogonal to the surface 104 and the surface 105 but arranged substantially parallel to each other, and the size of the first housing portion 10a when viewed from the axial direction of the pump 7 and the motor 8 ( The dimension in the y-axis direction and the z-axis direction) is limited to the size necessary for mounting the larger one in the radial direction (the motor 8 in this embodiment) of the pump 7 and the motor 8. Thereby, the external dimension of the brake device 1b in the direction (y-axis direction) orthogonal to the surface 104 and the surface 105 can be suppressed. Further, as described above, the size of the second housing portion 10b (dimensions in the x-axis direction and the z-axis direction) is suppressed as viewed from the operation direction of the electromagnetic valve 21 and the like, and the installation area (surfaces 104 and 105) of the electromagnetic valve 21 and the like ), The pump 7 and the motor 8 can be overlapped, so that the outer dimensions of the brake device 1b viewed from the operation direction can be suppressed.
 第2ハウジング部10bに形成された収容凹部10dは、モータケース80の周壁(フランジ部80aを含む)の一部を収容する。よって、第2ハウジング部10bに収容凹部10dを形成しない場合に比べ、収容凹部10dにモータケース80の周壁が収容される分だけ、全体としてみたブレーキ装置1bの外形寸法を抑制し、これを小型化することができる。すなわち、本実施例では、第2ハウジング部10bを基本的には直方体状としている。また、油路11等は直線的に形成される。よって、第2ハウジング部10bの各辺に対し基本的に略平行となるように油路11等を形成し、油路11等の間の距離や、油路11等と第2ハウジング部10bの各面105等との間の距離をできるだけ短くすれば(言換えると油路11等をより密集させれば)、第2ハウジング部10bの内部のスペースを効率的に利用し、第2ハウジング部10bを小型化できる。この場合でも、第2ハウジング部10bにおいてモータ8(モータケース80の周壁)に対向する部位に、収容凹部10dを形成するだけのスペースを生むことは可能である。具体的には、本実施例では、面105における第1ハウジング部10aの接続部位よりもx軸正方向側では、z軸方向略中央で、面105に対しy軸負方向に近接して油路13-5が形成されているのに対し、上記接続部位よりもx軸負方向側では、z軸方向略中央で、面105に対しy軸負方向に近接して油路が形成されていないため、この部位でy軸負方向側に面105を凹ませることができる。上記スペースを収容凹部10dの形成のために有効活用することで、ブレーキ装置1bのより一層の小型化を図ることができる。なお、第2ハウジング部10bの面105における第1ハウジング部10aの接続部位よりもx軸正方向側に、収容凹部10dと同様の、ポンプケース7aの一部を収容する収容凹部を設けることとしてもよい。すなわち、収容凹部は、モータケース80の周壁の一部だけでなく、又はモータケース80の周壁の一部と共に、ポンプケース7aの周壁の一部を収容することとしてもよい(例えばモータ8よりもポンプ7の径方向寸法が大きいようなとき)。この場合も、上記と同様にして、ブレーキ装置1bの外形寸法を抑制することが可能である。 The accommodating recess 10d formed in the second housing part 10b accommodates a part of the peripheral wall (including the flange part 80a) of the motor case 80. Therefore, as compared with the case where the housing recess 10d is not formed in the second housing portion 10b, the outer dimensions of the brake device 1b as a whole are suppressed by the amount that the peripheral wall of the motor case 80 is housed in the housing recess 10d, and the size is reduced. Can be That is, in the present embodiment, the second housing portion 10b is basically a rectangular parallelepiped. The oil passage 11 and the like are formed linearly. Therefore, the oil passage 11 or the like is formed so as to be substantially parallel to each side of the second housing portion 10b, and the distance between the oil passage 11 or the like, or between the oil passage 11 and the second housing portion 10b. If the distance between each surface 105 and the like is made as short as possible (in other words, the oil passage 11 and the like are more closely packed), the space inside the second housing part 10b is efficiently used, and the second housing part 10b can be miniaturized. Even in this case, it is possible to create a space for forming the housing recess 10d in a portion of the second housing portion 10b that faces the motor 8 (the peripheral wall of the motor case 80). Specifically, in the present embodiment, the oil is close to the surface 105 in the y-axis negative direction at approximately the center in the z-axis direction on the x-axis positive direction side of the connection portion of the first housing portion 10a on the surface 105. Whereas the path 13-5 is formed, on the x-axis negative direction side with respect to the connecting portion, an oil path is formed in the approximate center of the z-axis and close to the surface 105 in the negative y-axis direction. Therefore, the surface 105 can be recessed in the negative y-axis direction at this portion. By effectively utilizing the space for forming the housing recess 10d, the brake device 1b can be further reduced in size. It is to be noted that an accommodation recess for accommodating a part of the pump case 7a, similar to the accommodation recess 10d, is provided on the surface 105 of the second housing portion 10b on the x-axis positive direction side of the connection portion of the first housing portion 10a. Also good. That is, the accommodating recess may accommodate not only a part of the peripheral wall of the motor case 80 but also a part of the peripheral wall of the pump case 7a together with a part of the peripheral wall of the motor case 80 (for example, more than the motor 8). When the radial dimension of the pump 7 is large). In this case as well, the outer dimensions of the brake device 1b can be suppressed in the same manner as described above.
 第2ハウジング部10bの面105の側に収容凹部10dを形成したため、第2ハウジング部10bの面104の法線方向(y軸方向)におけるブレーキ装置1bの外形寸法を抑制することができる。すなわち、本実施例では、第1ハウジング部10aの面101及び面102を除いた部分を、第2ハウジング部10bの面104に対向する側(面105の側)に接続したため、面105にモータ8が対向して配置される。このため、上記法線方向(y軸方向)においてブレーキ装置1bの外形寸法が増大するおそれがあるのに対し、面105の側に収容凹部10dを形成することで、上記方向(y軸方向)における外形寸法の増大を抑制することができる。 Since the housing recess 10d is formed on the surface 105 side of the second housing part 10b, the outer dimensions of the brake device 1b in the normal direction (y-axis direction) of the surface 104 of the second housing part 10b can be suppressed. That is, in the present embodiment, since the portion excluding the surface 101 and the surface 102 of the first housing part 10a is connected to the side (the surface 105 side) facing the surface 104 of the second housing part 10b, the motor is attached to the surface 105. 8 are arranged to face each other. For this reason, the outer dimension of the brake device 1b may increase in the normal direction (y-axis direction). On the other hand, by forming the housing recess 10d on the surface 105 side, the direction (y-axis direction) The increase in the external dimension can be suppressed.
 本実施例では、ポンプ7とモータ8の軸方向を共に第1ハウジング部10aの面101及び面102の法線方向(x軸方向)としたため、ポンプ7とモータ8の軸方向は第2ハウジング部10bの面105に対し略平行となり、モータケース80及びポンプケース7aのx軸方向に延びる周壁が面105に対向して配置される。収容凹部10dは少なくともモータケース80のフランジ部80aの一部(y軸負方向側部分)を収容する。ここで、ポンプ7は外接式であるため、モータ8の回転軸81に対し略同軸に配置される駆動ギヤ74a(駆動軸73a)に対し、駆動ギヤ74aに歯合する従動ギヤ74b(従動軸73b)がオフセットしている。本実施例のように、面105においてモータケース80の周壁に対向する部位に収容凹部10dを形成してこの周壁を収容する一方、ポンプケース7aの周壁に対向する部位に収容凹部を形成しない場合には、仮に、従動ギヤ74bを駆動ギヤ74aに対してy軸負方向側(駆動ギヤ74aと第2ハウジング部10bの面105との間の空間)に配置すると、上記空間に従動ギヤ74bを配置するために必要なスペースを確保できず、面105とポンプ7(ポンプケース7a)とが干渉するおそれがある。これに対し、本実施例では、従動ギヤ74bを駆動ギヤ74aに対してy軸正方向側(第2ハウジング部10bとは反対の側)に配置している。言換えると、駆動ギヤ74aが、従動ギヤ74bと第2ハウジング部10bに挟まれた位置に配置されている。よって、第2ハウジング部10bの面105とポンプ7(ポンプケース7a)との干渉を回避しつつ、収容凹部10dにモータケース80の周壁を収容することが可能となり、これによりy軸方向におけるブレーキ装置1bの外形寸法の増大を抑制することができる。なお、本実施例では、駆動ギヤ74aの中心のz軸方向位置が従動ギヤ74bの中心のz軸方向位置に略等しいこととしたが、従動ギヤ74bを駆動ギヤ74aに対してz軸正方向側又はz軸負方向側に配置してもよい。この場合も、従動ギヤ74b(の中心)を駆動ギヤ74a(の中心)に対してy軸正方向側に配置すれば、上記作用効果を得ることができる。 In this embodiment, since the axial directions of the pump 7 and the motor 8 are both the normal direction (the x-axis direction) of the surface 101 and the surface 102 of the first housing portion 10a, the axial direction of the pump 7 and the motor 8 is the second housing. The peripheral walls extending substantially in the x-axis direction of the motor case 80 and the pump case 7a are arranged so as to face the surface 105 in parallel with the surface 105 of the portion 10b. The accommodating recess 10d accommodates at least a part of the flange portion 80a (the y-axis negative direction side portion) of the motor case 80. Here, since the pump 7 is circumscribed, a driven gear 74b (driven shaft) that meshes with the driving gear 74a with respect to a driving gear 74a (driven shaft 73a) disposed substantially coaxially with the rotating shaft 81 of the motor 8. 73b) is offset. As in the present embodiment, the housing recess 10d is formed in a portion of the surface 105 facing the peripheral wall of the motor case 80 to accommodate the peripheral wall, while the housing recess is not formed in a portion facing the peripheral wall of the pump case 7a. For example, if the driven gear 74b is arranged on the negative side of the y-axis with respect to the drive gear 74a (the space between the drive gear 74a and the surface 105 of the second housing portion 10b), the driven gear 74b is placed in the space. The space required for the arrangement cannot be secured, and the surface 105 and the pump 7 (pump case 7a) may interfere with each other. On the other hand, in the present embodiment, the driven gear 74b is arranged on the y-axis positive direction side (the side opposite to the second housing portion 10b) with respect to the drive gear 74a. In other words, the drive gear 74a is disposed at a position sandwiched between the driven gear 74b and the second housing portion 10b. Therefore, it is possible to accommodate the peripheral wall of the motor case 80 in the accommodating recess 10d while avoiding interference between the surface 105 of the second housing part 10b and the pump 7 (pump case 7a), and thereby the brake in the y-axis direction can be accommodated. An increase in the external dimension of the device 1b can be suppressed. In the present embodiment, the z-axis position at the center of the drive gear 74a is substantially equal to the z-axis position at the center of the driven gear 74b. However, the driven gear 74b is positioned in the positive z-axis direction with respect to the drive gear 74a. You may arrange | position to the side or z-axis negative direction side. Also in this case, if the driven gear 74b (center) is arranged on the y-axis positive direction side with respect to the drive gear 74a (center), the above-described effects can be obtained.
 本実施例では、モータ8の径方向寸法はポンプ7の径方向寸法よりも大きい。そして、ポンプ7が、(モータ8の回転軸81に対しオフセットしている)従動ギヤ74bの側で、モータ8の外縁よりも半径方向外側にはみ出ることが抑制されている。言換えると、ポンプ7とモータ8の軸方向(x軸方向)から見て、ポンプ7はその殆ど全範囲がモータ8に重なるように設けられている。よって、第1ハウジング部10aの面102(及び面101)の大きさを、モータ8を取り付けるために必要な大きさに制限することができる。さらに、上記のように収容凹部10dを設けることで、ケース80の周壁の一部を収容凹部10dに収容する分だけ、第1ハウジング部10aのy軸方向寸法を一層短縮することができる。よって、ハウジング10を小型化すると共にその重量を軽減することができ、ブレーキ装置1bをより小型化・軽量化することができる。なお、モータ8の回転軸81に対し駆動ギヤ74a(駆動軸73a)を略同軸に配置した場合に、ポンプ7が、(モータ8の回転軸81に対しオフセットしている)従動ギヤ74bの側で、モータ8の外縁よりも半径方向外側にはみ出るときも考えられる。このようなときは、従動ギヤ74bを駆動ギヤ74aに対してy軸負方向側(駆動ギヤ74aと第2ハウジング部10bに挟まれた位置)に配置すると共に、第2ハウジング部10bの面105に収容凹部を形成し、この収容凹部が(モータ8の外縁よりもy軸負方向側にはみ出た)ポンプケース7aの周壁の一部を収容するように設けてもよい。この場合、上記収容凹部が少なくともポンプケース7aの周壁(フランジ部70aを含む)の一部を収容することで、ブレーキ装置1bのy軸方向寸法を抑制することができる。 In this embodiment, the radial dimension of the motor 8 is larger than the radial dimension of the pump 7. The pump 7 is suppressed from protruding outward in the radial direction from the outer edge of the motor 8 on the driven gear 74 b side (offset with respect to the rotating shaft 81 of the motor 8). In other words, when viewed from the axial direction (x-axis direction) of the pump 7 and the motor 8, the pump 7 is provided so that almost the entire range thereof overlaps the motor 8. Therefore, the size of the surface 102 (and the surface 101) of the first housing portion 10a can be limited to a size necessary for mounting the motor 8. Furthermore, by providing the housing recess 10d as described above, the dimension of the first housing portion 10a in the y-axis direction can be further shortened by the amount that accommodates a part of the peripheral wall of the case 80 in the housing recess 10d. Therefore, the housing 10 can be reduced in size and the weight thereof can be reduced, and the brake device 1b can be further reduced in size and weight. When the drive gear 74a (drive shaft 73a) is disposed substantially coaxially with the rotation shaft 81 of the motor 8, the pump 7 is on the side of the driven gear 74b (offset with respect to the rotation shaft 81 of the motor 8). Thus, it can be considered that the motor 8 protrudes radially outward from the outer edge. In such a case, the driven gear 74b is arranged on the y-axis negative direction side (position between the drive gear 74a and the second housing portion 10b) with respect to the drive gear 74a, and the surface 105 of the second housing portion 10b. A housing recess may be formed in the housing, and the housing recess may be provided so as to receive a part of the peripheral wall of the pump case 7a (which protrudes to the y axis negative direction side from the outer edge of the motor 8). In this case, the dimension of the brake device 1b in the y-axis direction can be suppressed by accommodating at least part of the peripheral wall (including the flange portion 70a) of the pump case 7a.
 以上のように、ポンプ7として外接式を採用した場合にも、ポンプ7(ギヤ74a,74bの位置関係)を効率よく配置することで、ブレーキ装置1bの全体を小型化することができる。 As described above, even when the external connection type is adopted as the pump 7, the entire brake device 1b can be reduced in size by efficiently arranging the pump 7 (positional relationship between the gears 74a and 74b).
 ポンプ7は、ポンプケース7aの外部(ブレーキ配管2c)から内部(リザーバ120)へブレーキ液を供給するための接続ポート7bを、ポンプケース7aと一体に備えている。すなわち、マスタシリンダユニット1a(リザーバタンク50)からブレーキ配管2c及び接続ポート7bを介してブレーキ液をポンプケース7aの内部(ポンプユニット7c)へ供給することが可能に設けられている。よって、ポンプ7によるブレーキ装置1bの外部からのブレーキ液の吸入を、ハウジング10を介さずに容易に行うことができる。すなわち、上記吸入のための油路をハウジング10の内部に形成する必要がない。よって、ハウジング10の小型化を図ることができる。 The pump 7 includes a connection port 7b for supplying brake fluid from the outside (brake pipe 2c) to the inside (reservoir 120) of the pump case 7a, integrally with the pump case 7a. That is, the brake fluid is provided from the master cylinder unit 1a (reservoir tank 50) to the inside of the pump case 7a (pump unit 7c) via the brake pipe 2c and the connection port 7b. Therefore, the suction of the brake fluid from the outside of the brake device 1 b by the pump 7 can be easily performed without using the housing 10. That is, it is not necessary to form the oil passage for the suction inside the housing 10. Therefore, the housing 10 can be downsized.
 本実施例では、マスタシリンダユニット1aの側(リザーバタンク50)だけでなく、ブレーキ装置1bの側にもリザーバ120を備えている。万一、ブレーキ配管2cが脱落したり、ブレーキ配管2cからブレーキ液が漏れ出したりする態様の失陥時にも、リザーバ120が、ブレーキ液の(ポンプ7への)供給源や(ホイルシリンダW/Cからの)排出先等として機能する。これにより、ブレーキ装置1bによるホイルシリンダ液圧の増減圧制御を失陥時にも継続可能としている。ここで、ハウジング10の内部にリザーバ120を設けることも可能である。しかし、この場合、リザーバ120を十分な容量とするために、ハウジング10の内部で大きなスペースを準備することが必要になる。よって、ハウジング10が大型化したり、ハウジング10内のレイアウトが困難になったりするおそれがある。これに対し、本実施例では、リザーバ120をハウジング10の内部ではなくポンプ7の側に備えた。よって、十分な容量のリザーバ120を得つつ、ハウジング10の小型化を図り、ハウジング10内のレイアウトを容易化することができる。具体的には、ポンプケース7aの内部(ポンプユニット7cの外周とポンプケース7aの内周との間)にリザーバ120を構成した。よって、十分な容量のリザーバ120を比較的容易に設けることができる。また、リザーバ120を備えたことによるポンプ7のサイズ増大は、ブレーキ装置1bの全体の大型化をもたらすようなものではない。 In this embodiment, the reservoir 120 is provided not only on the master cylinder unit 1a side (reservoir tank 50) but also on the brake device 1b side. In the unlikely event that the brake pipe 2c falls off or the brake fluid leaks out of the brake pipe 2c, the reservoir 120 is supplied with the brake fluid supply source (to the pump 7) and the wheel cylinder W / Functions as a discharge destination (from C). As a result, the wheel cylinder hydraulic pressure increase / decrease control by the brake device 1b can be continued even in the event of failure. Here, the reservoir 120 may be provided inside the housing 10. However, in this case, it is necessary to prepare a large space inside the housing 10 in order to make the reservoir 120 have a sufficient capacity. Therefore, there is a possibility that the housing 10 becomes large or the layout inside the housing 10 becomes difficult. On the other hand, in this embodiment, the reservoir 120 is provided not on the housing 10 but on the pump 7 side. Therefore, it is possible to reduce the size of the housing 10 and facilitate the layout inside the housing 10 while obtaining the reservoir 120 having a sufficient capacity. Specifically, the reservoir 120 is configured inside the pump case 7a (between the outer periphery of the pump unit 7c and the inner periphery of the pump case 7a). Therefore, a sufficiently large reservoir 120 can be provided relatively easily. Further, the increase in the size of the pump 7 due to the provision of the reservoir 120 does not cause an increase in the size of the entire brake device 1b.
 以下、実施例1から把握される発明とその効果を列挙する。
(1)内部にポンプ7から吐出されたブレーキ液が流通する油路11等が形成されたハウジング10を備え、ハウジング10は、面101(第1の面)にポンプ7が取り付けられている第1ハウジング部10aと、油路11等を断接するために駆動される制御バルブ(電磁弁21~25)が取り付けられている第2ハウジング部10bとからなる。 よって、油路11等を簡素化することができる。また、ブレーキ装置1bの小型化・軽量化を図ることができる。
(2)第1ハウジング部10aは、面101(第1の面)に対向する面102(第2の面)を備え、面102には、ポンプ7を駆動するためのモータ8が取り付けられている。 よって、ブレーキ装置1bの小型化・軽量化を図ることができる。
(3)第1ハウジング部10aは、面101(第1の面)に対向する面102(第2の面)を備え、面102には、ポンプ7を駆動するためのモータ8が取り付けられ、第2ハウジング部10bは、制御バルブ(電磁弁21~25)が取り付けられている面104(第1の面)を備え、ハウジング10は、第1ハウジング部10aの面101及び面102を除いた部分と、第2ハウジング部10bの面104を除いた部分とにより一体的に構成され、モータ8は円筒状のモータケース80を備え、ポンプ7は内部にポンプ部を収容するポンプケース7aを備え、第2ハウジング部10bには、ケース80,7aの少なくとも一方の周壁の一部を収容する収容凹部10dを形成した。 よって、ブレーキ装置1bのより一層の小型化を図ることができる。
(4)ポンプ7は、モータ8により回転駆動する駆動軸73aと、駆動軸73aと一体的に回転する駆動ギヤ74aと、駆動ギヤ74aに歯合する従動ギヤ74bとを備えた外接ギヤポンプであって、駆動ギヤ74aは、従動ギヤ74bと第2ハウジング部10bに挟まれた位置に配置されている。 よって、ポンプ7として外接式を採用した場合にも、ブレーキ装置1bの小型化を図ることができる。
Hereinafter, the invention grasped from the first embodiment and its effects are listed.
(1) A housing 10 having an oil passage 11 and the like through which brake fluid discharged from the pump 7 circulates is formed. The housing 10 has a pump 101 attached to a surface 101 (first surface). 1 housing portion 10a and a second housing portion 10b to which control valves (electromagnetic valves 21 to 25) driven to connect and disconnect the oil passage 11 and the like are attached. Therefore, the oil path 11 etc. can be simplified. Further, the brake device 1b can be reduced in size and weight.
(2) The first housing portion 10a includes a surface 102 (second surface) facing the surface 101 (first surface), and a motor 8 for driving the pump 7 is attached to the surface 102. Yes. Therefore, it is possible to reduce the size and weight of the brake device 1b.
(3) The first housing portion 10a includes a surface 102 (second surface) facing the surface 101 (first surface), and a motor 8 for driving the pump 7 is attached to the surface 102. The second housing portion 10b includes a surface 104 (first surface) to which control valves (solenoid valves 21 to 25) are attached. The housing 10 excludes the surface 101 and the surface 102 of the first housing portion 10a. The motor 8 includes a cylindrical motor case 80, and the pump 7 includes a pump case 7a that accommodates the pump portion therein. The second housing portion 10b is formed with an accommodation recess 10d for accommodating a part of at least one of the peripheral walls of the cases 80 and 7a. Therefore, the brake device 1b can be further downsized.
(4) The pump 7 is an external gear pump provided with a drive shaft 73a that is rotationally driven by the motor 8, a drive gear 74a that rotates integrally with the drive shaft 73a, and a driven gear 74b that meshes with the drive gear 74a. The drive gear 74a is disposed at a position sandwiched between the driven gear 74b and the second housing portion 10b. Therefore, even when a circumscribed type is adopted as the pump 7, the size of the brake device 1b can be reduced.
 [実施例2] まず、構成について説明する。図31~図36は、実施例2のブレーキ装置1bの全体を、図2~図7と同様の各方向から示す。以下、実施例1と対応する構成については同一の符号を付して説明を適宜省略する。本実施例のブレーキ装置1bは、主に、第1ハウジング部10aと第2ハウジング部10bがそれぞれ別体に構成されている点、及び、ポンプ7とモータ8の軸がx軸方向でなくz軸方向に延びるように配置されている点で、実施例1のブレーキ装置1bと相違する。本実施例のブレーキ装置1bは、実施例1のブレーキ装置1bのハウジング10の面102,109がz軸負方向側を向くように向きを変えた(y軸正方向側から見て実施例1のブレーキ装置1bを反時計回り方向に90度回転させた)ものに相当する。ポンプ7とモータ8をいわば縦置きにしたものである。 [Example 2] First, the configuration will be described. FIGS. 31 to 36 show the entire brake device 1b of the second embodiment from the same directions as in FIGS. Hereinafter, configurations corresponding to those of the first embodiment are denoted by the same reference numerals, and description thereof is appropriately omitted. The brake device 1b of the present embodiment mainly includes a point in which the first housing part 10a and the second housing part 10b are configured separately, and the axes of the pump 7 and the motor 8 are not in the x-axis direction, but in the z-direction. The brake device 1b is different from the brake device 1b of the first embodiment in that it is arranged so as to extend in the axial direction. The brake device 1b according to the present embodiment was changed in direction so that the surfaces 102 and 109 of the housing 10 of the brake device 1b according to the first embodiment faced the z-axis negative direction side (the brake according to the first embodiment as viewed from the y-axis positive direction side). Device 1b is rotated 90 degrees counterclockwise). In other words, the pump 7 and the motor 8 are vertically arranged.
 ブラケット300は、第2ハウジング部10bの面109に固定されると共に、インシュレータ30を介して車体側(エンジンルームの床)へ固定設置可能に設けられている。第2ハウジング部10bの面109よりもz軸負方向側に突出するモータ8(モータハウジング80)の軸方向端は、ブラケット300に設けられた孔を貫通する。ポンプ7の接続ポート7bは、z軸方向に延びるポンプケース7aの周壁のz軸正方向端からx軸負方向側かつy軸負方向側に突出して延びるように設けられている。ポンプケース7aは、実施例1のような3箇所ではなく2箇所でボルト31により面101に固定設置される。これは、ポンプ7の重量が面101に対しその法線方向(z軸負方向)に作用する本実施例では、ポンプ7をその軸方向一端(x軸負方向端)で面101に片持ち支持する実施例1に比べ、ポンプ7の取り付け強度があまり必要とされないことによる。 The bracket 300 is fixed to the surface 109 of the second housing portion 10b, and is provided so as to be fixedly installed on the vehicle body side (the floor of the engine room) via the insulator 30. The axial end of the motor 8 (motor housing 80) that protrudes in the negative z-axis direction from the surface 109 of the second housing part 10b passes through a hole provided in the bracket 300. The connection port 7b of the pump 7 is provided so as to protrude and extend from the z-axis positive direction end of the peripheral wall of the pump case 7a extending in the z-axis direction to the x-axis negative direction side and the y-axis negative direction side. The pump case 7a is fixedly installed on the surface 101 with bolts 31 at two places instead of the three places as in the first embodiment. In this embodiment in which the weight of the pump 7 acts on the surface 101 in the normal direction (z-axis negative direction), the pump 7 is cantilevered on the surface 101 at one end in the axial direction (end in the x-axis negative direction). This is because the mounting strength of the pump 7 is not so much required as compared with the supporting Example 1.
 別体に構成された第1ハウジング部10aと第2ハウジング部10bは、固定部材を介して一体的に接続され、一体化されている(1つのハウジング10を構成している)。第1ハウジング部10aは、第1ハウジング部10aを第2ハウジング部10bに接続・固定するための接続部10iを2箇所に有している。接続部10iは、面101のy軸負方向側の端におけるx軸方向両端に、面101からz軸正方向に突出して延びるように設けられており、第1ハウジング部10aと一体に形成されている。接続部10iにはボルト孔がy軸方向に貫通形成されている。第2ハウジング部10bの面105には、上記ボルト孔に対応する位置に、固定部材としてのボルト36により接続部10iを第2ハウジング部10bに締結するための有底孔が形成されている。接続部10iを含む第1ハウジング部10aのy軸負方向側の面が第2ハウジング部10bの面105に接した状態で、接続部10iの上記ボルト孔に挿通されたボルト36が上記有底孔に螺合する。これにより、第1ハウジング部10aが面105に固定設置される。 The first housing portion 10a and the second housing portion 10b configured separately are integrally connected and integrated via a fixing member (constitute one housing 10). The first housing part 10a has two connection parts 10i for connecting and fixing the first housing part 10a to the second housing part 10b. The connecting portions 10i are provided at both ends in the x-axis direction at the end of the surface 101 on the y-axis negative direction side so as to protrude and extend in the z-axis positive direction from the surface 101, and are formed integrally with the first housing portion 10a. ing. Bolt holes are formed through the connecting portion 10i in the y-axis direction. On the surface 105 of the second housing part 10b, a bottomed hole for fastening the connecting part 10i to the second housing part 10b by a bolt 36 as a fixing member is formed at a position corresponding to the bolt hole. The bolt 36 inserted through the bolt hole of the connecting portion 10i is in the state where the surface of the first housing portion 10a including the connecting portion 10i is in contact with the surface 105 of the second housing portion 10b. Screw into the hole. As a result, the first housing portion 10a is fixedly installed on the surface 105.
 実施例1と同様、第1ハウジング部10aの内部に形成された吐出油路13の一部と第1減圧油路14の一部は、第2ハウジング部10bの内部に形成された油路13,14の一部とそれぞれ接続しており、ハウジング部10a,10b間で油路13,14が構成されている。本実施例のブレーキ装置1bは、実施例1のようなダンパ28,29を備えていない。第1ハウジング部10aには、実施例1のようなダンパ装着孔128,129が形成されていない。また、第1ハウジング部10aには、実施例1のような接続ポート111Sや第1油路11Sの一部が形成されていない。第1ハウジング部10aのy軸正方向側の端におけるx軸方向両端の角部は平面状に切り欠かれており、2つの切り欠き面103aが形成されている。第2ハウジング部10bには、面105のz軸正方向側の端におけるx軸方向両端に、凸部10cが形成されている。凸部10cは、y軸正方向側から見て略矩形状であり、面105からy軸正方向側に若干突出するように形成されている。第2ハウジング部10bには、面108のy軸正方向側の端におけるx軸方向両端に、凸部10cのz軸正方向側の面に跨るように、接続ポート111P,111Sがそれぞれ開口する。 As in the first embodiment, a part of the discharge oil passage 13 formed inside the first housing portion 10a and a part of the first pressure reduction oil passage 14 are formed in the oil passage 13 formed inside the second housing portion 10b. , 14 are connected to each other, and oil passages 13, 14 are formed between the housing portions 10a, 10b. The brake device 1b of the present embodiment does not include the dampers 28 and 29 as in the first embodiment. The first housing portion 10a is not formed with the damper mounting holes 128 and 129 as in the first embodiment. Further, the connection port 111S and the first oil passage 11S are not formed in the first housing part 10a as in the first embodiment. The corners at both ends in the x-axis direction at the end of the first housing portion 10a on the y-axis positive direction side are cut out in a planar shape, and two cut-out surfaces 103a are formed. On the second housing portion 10b, convex portions 10c are formed at both ends in the x-axis direction at the end on the z-axis positive direction side of the surface 105. The convex portion 10c has a substantially rectangular shape when viewed from the y-axis positive direction side, and is formed so as to slightly protrude from the surface 105 to the y-axis positive direction side. In the second housing portion 10b, connection ports 111P and 111S are opened at both ends in the x-axis direction at the end of the surface 108 on the y-axis positive direction side so as to straddle the surface on the z-axis positive direction side of the convex portion 10c. .
 次に、作用について説明する。第1ハウジング部10aと第2ハウジング部10bを別体に構成することで、各ハウジング部10a,10bの形成や加工を容易化することが可能となる。また、固定部材(ボルト36)を用いることで、両ハウジング部10a,10bを比較的容易に一体化することができる。なお、固定部材としてボルト以外の部材を用いてもよいし、固定部材以外の構成(溶接等)を用いて両ハウジング部10a,10bを一体的に固定することとしてもよい。第1ハウジング部10aには、ダンパ装着孔128,129や接続ポート111Sや第1油路11Sの一部が形成されていない一方で、切り欠き面103aが形成されている。これにより第1ハウジング部10aの小型化・軽量化を図ることができる。その他、実施例1と同様の構成により実施例1と同様の作用効果を得る。 Next, the operation will be described. By forming the first housing part 10a and the second housing part 10b separately, it becomes possible to facilitate the formation and processing of the housing parts 10a and 10b. Further, by using the fixing member (bolt 36), both housing portions 10a and 10b can be integrated relatively easily. Note that a member other than a bolt may be used as the fixing member, or the housing portions 10a and 10b may be integrally fixed using a configuration (welding or the like) other than the fixing member. The first housing portion 10a is not formed with the damper mounting holes 128, 129, the connection port 111S, and the first oil passage 11S, but has a notch surface 103a. As a result, the first housing portion 10a can be reduced in size and weight. In addition, the same effect as that of the first embodiment is obtained by the same configuration as that of the first embodiment.
 以下に、効果を記載する。
(5)第1ハウジング部10aと第2ハウジング部10bはそれぞれ別体に構成され、第1ハウジング部10aは、面101(第1の面)に対向する面102(第2の面)を備え、第2ハウジング部10bは、制御バルブ(電磁弁21~25)が取り付けられている面104(第1の面)を備え、第1ハウジング部10aの面101及び面102を除いた面(y軸負方向側の面)と、第2ハウジング部10bの面104を除いた面(面105)とが一体的に接続している。 よって、ブレーキ装置1bの小型化・軽量化を図ることができる。
The effects are described below.
(5) The first housing portion 10a and the second housing portion 10b are configured separately, and the first housing portion 10a includes a surface 102 (second surface) that faces the surface 101 (first surface). The second housing portion 10b includes a surface 104 (first surface) on which control valves (solenoid valves 21 to 25) are attached, and a surface excluding the surface 101 and the surface 102 of the first housing portion 10a (y The surface on the negative axis side) and the surface (surface 105) excluding the surface 104 of the second housing portion 10b are integrally connected. Therefore, it is possible to reduce the size and weight of the brake device 1b.
 以上、本発明の幾つかの実施形態を実施例に基づいて説明したが、本発明の新規の教示や利点から実質的に外れることなく例示の実施形態に、多様な変更または改良を加えることが可能であることが当業者には容易に理解できるであろう。従って、その様な変更または改良を加えた形態も本発明の技術的範囲に含むことを意図する。 Although several embodiments of the present invention have been described based on examples, various modifications or improvements may be made to the illustrated embodiments without substantially departing from the novel teachings and advantages of the present invention. Those skilled in the art will readily understand that this is possible. Therefore, it is intended that the embodiment added with such changes or improvements is also included in the technical scope of the present invention.
 例えば、実施例のブレーキ装置1b(ブレーキシステム)は、回生制動力を発生可能な車両に好適であるが、それ以外の車両(エンジンのみを駆動源とする非電動車両)にも適用可能である。マスタシリンダユニット1aの構成は実施例のものに限らない。リンク式倍力装置の代わりにマスターバック等、他の形式の倍力装置を備えてもよい。車両におけるブレーキ装置1bの配置(ポンプ7やモータ8の軸方向の配置、第1ハウジング部10aと第2ハウジング部10bのレイアウト等)は、実施例のものに限らない。ブレーキ装置1bの油路の回路構成やECU9の制御構成は実施例のものに限らない。ハウジング10における第1ハウジング部10aと第2ハウジング部10bの配置構成は実施例のものに限らない。ハウジング10における具体的な油路の配置構成は実施例のものに限らず、油路の回路構成に応じて最適な配置を選択可能である。ポンプ7は外接式に限らず、またギヤポンプに限らない。リザーバ120や接続ポート7bを設けるか否かは任意である。 For example, the brake device 1b (brake system) of the embodiment is suitable for a vehicle that can generate a regenerative braking force, but can also be applied to other vehicles (non-electric vehicles that use only an engine as a drive source). . The configuration of the master cylinder unit 1a is not limited to that of the embodiment. Instead of the link booster, another type of booster such as a master back may be provided. The arrangement of the brake device 1b in the vehicle (the arrangement in the axial direction of the pump 7 and the motor 8, the layout of the first housing portion 10a and the second housing portion 10b, etc.) is not limited to that of the embodiment. The circuit configuration of the oil passage of the brake device 1b and the control configuration of the ECU 9 are not limited to those of the embodiment. The arrangement configuration of the first housing portion 10a and the second housing portion 10b in the housing 10 is not limited to that of the embodiment. The specific arrangement of the oil passage in the housing 10 is not limited to that of the embodiment, and an optimum arrangement can be selected according to the circuit configuration of the oil passage. The pump 7 is not limited to a circumscribed type, and is not limited to a gear pump. Whether or not the reservoir 120 and the connection port 7b are provided is arbitrary.
 また、本願発明に係る実施例は、下記のように構成してもよい。
(1)内部にポンプから吐出されたブレーキ液が流通する油路が形成されたハウジングを備え、
 前記ハウジングは、第1の面に前記ポンプが取り付けられている第1ハウジング部と、
 前記油路を断接するために駆動される制御バルブが取り付けられている第2ハウジング部とからなるように構成することを特徴とするブレーキ装置。
(2)(1)のブレーキ装置において、
 前記第1ハウジング部は、前記第1の面に対向する第2の面を備え、
 前記第2の面には、前記ポンプを駆動するためのモータが取り付けられているようにしてもよい。
(3)(2)のブレーキ装置において、
 前記第2ハウジング部は、前記制御バルブが取り付けられている第1の面を備え、
 前記ハウジングを、前記第1ハウジング部の前記第1の面及び前記第2の面を除いた部分と、前記第2ハウジング部の前記第1の面を除いた部分とにより一体的に形成してもよい。
(4)(1)のブレーキ装置において、
 前記第1ハウジング部と第2ハウジング部はそれぞれ別体に構成され、
 前記第1ハウジング部は、前記第1の面に対向する第2の面を備え、
 前記第2ハウジング部は、前記制御バルブが取り付けられている第1の面を備え、
 前記第1ハウジング部の前記第1の面及び前記第2の面を除いた面と、前記第2ハウジング部の前記第1の面を除いた面とが一体的に接続して構成してもよい。
(5)(4)のブレーキ装置において、
 前記第1ハウジング部には、前記第2ハウジング部の油路と接続して前記ポンプへブレーキ液を吸収するための吸入油路と、
 前記ポンプから吐出されたブレーキ液が流れる吐出油路とが形成されてもよい。
(6)(4)のブレーキ装置において、
前記第1ハウジング部と前記第2ハウジング部は固定部材を介して一体化されていてもよい。
(7)(1)のブレーキ装置において、
 前記第1ハウジング部は、前記第1の面に対向する第2の面を備え、
 前記第2の面には、前記ポンプを駆動するためのモータが取り付けられ、
 前記第2ハウジング部は、前記制御バルブが取り付けられている第1の面を備え、
 前記ハウジングは、前記第1ハウジング部の前記第1の面及び前記第2の面を除いた部分と、前記第2ハウジング部の前記第1の面を除いた部分とにより一体的に構成され、
 前記モータは円筒状のモータケースを備え、
 前記ポンプは内部にポンプ部を収容するポンプケースを備え、
 前記第2ハウジング部には、前記ケースの少なくとも一方の周壁の一部を収容する収容凹部を形成してもよい。
(8)(1)のブレーキ装置において、
 前記ポンプは、モータにより回転駆動する駆動軸と、前記駆動軸と一体的に回転する駆動ギヤと、前記駆動ギヤに歯合する従動ギヤとを備えた外接ギヤポンプであって、
 前記駆動ギヤは、前記従動ギヤと前記第2ハウジング部に挟まれた位置に配置されていてもよい。
(9)(8)のブレーキ装置において、
 前記モータは円筒状のモータケースを備え、
 前記第2ハウジング部には、前記モータケースの周壁の一部を収容する収容凹部を形成してもよい。
(10)(1)のブレーキ装置において、
 前記ポンプは、内部にポンプ部を収容するポンプケースと、
 前記ポンプケースを介して外部から前記ポンプケースの内部へブレーキ液を供給するための接続ポートとを備えてもよい。
(11)(10)のブレーキ装置において、
 前記ポンプケースの内部にリザーバを備えるようにしてもよい。
(12)(1)のブレーキ装置において、
 前記制御バルブは、前記ポンプを駆動するためのモータの半径方向であって前記モータの回転軸の直交方向に駆動するよう取り付けられていてもよい。
(13)ブレーキ操作部材の操作量に応じたホイルシリンダ液圧が発生するように作動するポンプと、
 前記ポンプから吐出されたブレーキ液が流通する油路が形成され、前記ポンプが取り付けられるポンプ取り付け面を備えた第1ハウジング部と、
 前記油路を断接するために駆動される制御バルブが取り付けられるバルブ取り付け面を備えた第2ハウジング部とからなることを特徴とするブレーキ装置。
(14)(13)のブレーキ装置において、
 前記ポンプを駆動するモータを備え、
 前記ポンプ取り付け面に対向する面に、前記モータが取り付けられるモータ取り付け面を備えることができる。
(15)(14)のブレーキ装置において、
 前記第2ハウジング部は、前記バルブ取り付け面に対向する面側で、前記第1ハウジング部と一体的に形成されていてもよい。
(16)(15)のブレーキ装置において、
 前記モータは円筒状のモータケースを備え、
 前記第2ハウジング部の前記バルブ取り付け面に対向する面側に、前記モータケースの周壁の一部を収容する収容凹部を形成してもよい。
(17)(13)のブレーキ装置において、
 前記ポンプは、内部にポンプ部を収容するポンプケースを備え、前記ポンプケースの内部にリザーバを備えてもよい。
(18)内部に油路が形成され、互いに対向する2面のうち第1の面にポンプが取り付けられ、第2の面に前記ポンプを駆動するモータが取り付けられた第1ハウジング部と、
 内部に前記油路と接続する接続油路が形成され、互いに対向する取り付け面及び固定面の2面のうち前記取り付け面に前記接続油路を断接するための制御バルブが取り付けられ、前記固定面を介して前記第1ハウジング部と一体的に固定された第2ハウジング部と、
 前記第2ハウジング部の前記取り付け面を覆うケース部材とを備えたことを特徴とするブレーキ装置。
(19)(18)のブレーキ装置において、
 前記モータは円筒状のモータケースを備え、
 前記第2ハウジング部に、前記モータケースの周壁の一部を収容する収容凹部を形成してもよい。
(20)(18)のブレーキ装置において、
 前記ポンプは、前記モータにより回転駆動する駆動軸と、前記駆動軸と一体的に回転する駆動ギヤと、前記駆動ギヤに歯合する従動ギヤとを備えた外接ギヤポンプであって、
 前記駆動ギヤは、前記従動ギヤと前記第2ハウジング部に挟まれた位置に配置されていることを特徴とするブレーキ装置。
Moreover, you may comprise the Example which concerns on this invention as follows.
(1) A housing having an oil passage through which brake fluid discharged from the pump flows is formed.
The housing includes a first housing part having the pump attached to a first surface;
A brake device comprising: a second housing portion to which a control valve driven to connect and disconnect the oil passage is attached.
(2) In the brake device of (1),
The first housing part includes a second surface facing the first surface,
A motor for driving the pump may be attached to the second surface.
(3) In the brake device of (2),
The second housing part includes a first surface to which the control valve is attached,
The housing is integrally formed by a portion of the first housing portion excluding the first surface and the second surface and a portion of the second housing portion excluding the first surface. Also good.
(4) In the brake device of (1),
The first housing part and the second housing part are configured separately,
The first housing part includes a second surface facing the first surface,
The second housing part includes a first surface to which the control valve is attached,
The surface excluding the first surface and the second surface of the first housing part and the surface excluding the first surface of the second housing part may be integrally connected. Good.
(5) In the brake device of (4),
The first housing portion is connected to the oil passage of the second housing portion, and an intake oil passage for absorbing brake fluid to the pump;
A discharge oil passage through which brake fluid discharged from the pump flows may be formed.
(6) In the brake device of (4),
The first housing part and the second housing part may be integrated via a fixing member.
(7) In the brake device of (1),
The first housing part includes a second surface facing the first surface,
A motor for driving the pump is attached to the second surface,
The second housing part includes a first surface to which the control valve is attached,
The housing is configured integrally with a portion of the first housing portion excluding the first surface and the second surface and a portion of the second housing portion excluding the first surface,
The motor includes a cylindrical motor case,
The pump includes a pump case that houses a pump portion therein,
The second housing part may be formed with a housing recess that houses a part of at least one peripheral wall of the case.
(8) In the brake device of (1),
The pump is an external gear pump including a drive shaft that is rotationally driven by a motor, a drive gear that rotates integrally with the drive shaft, and a driven gear that meshes with the drive gear,
The drive gear may be disposed at a position sandwiched between the driven gear and the second housing part.
(9) In the brake device of (8),
The motor includes a cylindrical motor case,
The second housing part may be formed with a housing recess that houses a part of the peripheral wall of the motor case.
(10) In the brake device of (1),
The pump includes a pump case that houses a pump part therein,
A connection port for supplying brake fluid from the outside to the inside of the pump case via the pump case may be provided.
(11) In the brake device of (10),
A reservoir may be provided inside the pump case.
(12) In the brake device of (1),
The control valve may be mounted so as to be driven in a radial direction of a motor for driving the pump and in a direction orthogonal to the rotation axis of the motor.
(13) a pump that operates so as to generate a wheel cylinder hydraulic pressure corresponding to an operation amount of the brake operation member;
An oil passage through which the brake fluid discharged from the pump flows is formed, and a first housing portion having a pump mounting surface to which the pump is mounted;
A brake device comprising: a second housing portion having a valve mounting surface to which a control valve driven to connect and disconnect the oil passage is mounted.
(14) In the brake device of (13),
A motor for driving the pump;
A motor mounting surface to which the motor is mounted may be provided on a surface facing the pump mounting surface.
(15) In the brake device of (14),
The second housing part may be formed integrally with the first housing part on a surface side facing the valve mounting surface.
(16) In the brake device of (15),
The motor includes a cylindrical motor case,
An accommodation recess for accommodating a part of the peripheral wall of the motor case may be formed on the surface of the second housing portion that faces the valve mounting surface.
(17) In the brake device of (13),
The pump may include a pump case that houses a pump unit therein, and may include a reservoir inside the pump case.
(18) a first housing part in which an oil passage is formed, a pump is attached to a first surface of two surfaces facing each other, and a motor for driving the pump is attached to a second surface;
A connection oil passage that is connected to the oil passage is formed therein, and a control valve for connecting and disconnecting the connection oil passage is attached to the attachment surface of two surfaces of the attachment surface and the fixing surface facing each other, and the fixing surface A second housing part fixed integrally with the first housing part via
A brake device comprising: a case member that covers the mounting surface of the second housing portion.
(19) In the brake device of (18),
The motor includes a cylindrical motor case,
An accommodation recess for accommodating a part of the peripheral wall of the motor case may be formed in the second housing portion.
(20) In the brake device of (18),
The pump is an external gear pump including a drive shaft that is rotationally driven by the motor, a drive gear that rotates integrally with the drive shaft, and a driven gear that meshes with the drive gear,
The brake device, wherein the drive gear is disposed at a position sandwiched between the driven gear and the second housing part.
 以上、本発明の幾つかの実施形態のみを説明したが、本発明の新規の教示や利点から実質的に外れることなく例示の実施形態に、多様な変更または改良を加えることが可能であることが当業者には容易に理解できるであろう。従って、その様な変更または改良を加えた形態も本発明の技術的範囲に含むことを意図する。 Although only a few embodiments of the present invention have been described above, various modifications or improvements can be made to the illustrated embodiments without substantially departing from the novel teachings and advantages of the present invention. Will be easily understood by those skilled in the art. Therefore, it is intended that the embodiment added with such changes or improvements is also included in the technical scope of the present invention.
 本願は、2013年8月1日出願の日本特許出願番号2013-160053号に基づく優先権を主張する。2013年8月1日出願の日本特許出願番号2013-160053号の明細書、特許請求の範囲、図面及び要約書を含む全ての開示内容は、参照により全体として本願に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2013-160053 filed on Aug. 1, 2013. The entire disclosure including the specification, claims, drawings and abstract of Japanese Patent Application No. 2013-160053 filed on Aug. 1, 2013 is incorporated herein by reference in its entirety.
 日本特許公開公報第2006-8107号公報(特許文献1)の明細書、特許請求の範囲、図面及び要約書を含む全ての開示は、参照により全体として本願に組み込まれる。 All disclosures including the specification, claims, drawings and abstract of Japanese Patent Publication No. 2006-8107 (Patent Document 1) are incorporated herein by reference in their entirety.
1b  ブレーキ装置7   ポンプ7a  ポンプケース73a 駆動軸74a 駆動ギヤ74b 従動ギヤ8   モータ80  モータケース10  ハウジング10a 第1ハウジング部10b 第2ハウジング部10d 収容凹部101 面(第1の面)102 面(第2の面)104 面(第1の面)11~15 油路21~25 電磁弁(制御バルブ) 1b Brake device 7 Pump 7a Pump case 73a Drive shaft 74a Drive gear 74b Driven gear 8 Motor 80 Motor case 10 Housing 10a First housing portion 10b Second housing portion 10d Housing recess 101 surface (first surface) 102 surface (second surface) Surface) 104 surface (first surface) 11-15 oil passage 21-25 solenoid valve (control valve)

Claims (20)

  1.  内部にポンプから吐出されたブレーキ液が流通する油路が形成されたハウジングを備え、
     前記ハウジングは、第1の面に前記ポンプが取り付けられている第1ハウジング部と、
     前記油路を断接するために駆動される制御バルブが取り付けられている第2ハウジング部とからなることを特徴とするブレーキ装置。
    It has a housing in which an oil passage through which brake fluid discharged from the pump flows is formed,
    The housing includes a first housing part having the pump attached to a first surface;
    A brake device comprising: a second housing portion to which a control valve driven to connect and disconnect the oil passage is attached.
  2.  請求項1に記載のブレーキ装置において、
     前記第1ハウジング部は、前記第1の面に対向する第2の面を備え、
     前記第2の面には、前記ポンプを駆動するためのモータが取り付けられていることを特徴とするブレーキ装置。
    The brake device according to claim 1, wherein
    The first housing part includes a second surface facing the first surface,
    A brake device, wherein a motor for driving the pump is attached to the second surface.
  3.  請求項2に記載のブレーキ装置において、
     前記第2ハウジング部は、前記制御バルブが取り付けられている第1の面を備え、
     前記ハウジングを、前記第1ハウジング部の前記第1の面及び前記第2の面を除いた部分と、前記第2ハウジング部の前記第1の面を除いた部分とにより一体的に形成したことを特徴とするブレーキ装置。
    The brake device according to claim 2,
    The second housing part includes a first surface to which the control valve is attached,
    The housing is integrally formed by a portion of the first housing portion excluding the first surface and the second surface and a portion of the second housing portion excluding the first surface. Brake device characterized by.
  4.  請求項1に記載のブレーキ装置において、
     前記第1ハウジング部と第2ハウジング部はそれぞれ別体に構成され、
     前記第1ハウジング部は、前記第1の面に対向する第2の面を備え、
     前記第2ハウジング部は、前記制御バルブが取り付けられている第1の面を備え、
     前記第1ハウジング部の前記第1の面及び前記第2の面を除いた面と、前記第2ハウジング部の前記第1の面を除いた面とが一体的に接続していることを特徴とするブレーキ装置。
    The brake device according to claim 1, wherein
    The first housing part and the second housing part are configured separately,
    The first housing part includes a second surface facing the first surface,
    The second housing part includes a first surface to which the control valve is attached,
    The surface of the first housing part excluding the first surface and the second surface is integrally connected to the surface of the second housing part excluding the first surface. And brake device.
  5.  請求項4に記載のブレーキ装置において、
     前記第1ハウジング部には、前記第2ハウジング部の油路と接続して前記ポンプへブレーキ液を吸収するための吸入油路と、
     前記ポンプから吐出されたブレーキ液が流れる吐出油路とが形成されていることを特徴とするブレーキ装置。
    The brake device according to claim 4,
    The first housing portion is connected to the oil passage of the second housing portion, and an intake oil passage for absorbing brake fluid to the pump;
    A brake device characterized in that a discharge oil passage through which brake fluid discharged from the pump flows is formed.
  6.  請求項4に記載のブレーキ装置において、
    前記第1ハウジング部と前記第2ハウジング部は固定部材を介して一体化されていることを特徴とするブレーキ装置。
    The brake device according to claim 4,
    The brake device, wherein the first housing part and the second housing part are integrated via a fixing member.
  7.  請求項1に記載のブレーキ装置において、
     前記第1ハウジング部は、前記第1の面に対向する第2の面を備え、
     前記第2の面には、前記ポンプを駆動するためのモータが取り付けられ、
     前記第2ハウジング部は、前記制御バルブが取り付けられている第1の面を備え、
     前記ハウジングは、前記第1ハウジング部の前記第1の面及び前記第2の面を除いた部分と、前記第2ハウジング部の前記第1の面を除いた部分とにより一体的に構成され、
     前記モータは円筒状のモータケースを備え、
     前記ポンプは内部にポンプ部を収容するポンプケースを備え、
     前記第2ハウジング部には、前記ケースの少なくとも一方の周壁の一部を収容する収容凹部を形成したことを特徴とするブレーキ装置。
    The brake device according to claim 1, wherein
    The first housing part includes a second surface facing the first surface,
    A motor for driving the pump is attached to the second surface,
    The second housing part includes a first surface to which the control valve is attached,
    The housing is configured integrally with a portion of the first housing portion excluding the first surface and the second surface and a portion of the second housing portion excluding the first surface,
    The motor includes a cylindrical motor case,
    The pump includes a pump case that houses a pump portion therein,
    The brake device according to claim 1, wherein the second housing portion is formed with a housing recess for housing a part of at least one peripheral wall of the case.
  8.  請求項1に記載のブレーキ装置において、
     前記ポンプは、モータにより回転駆動する駆動軸と、前記駆動軸と一体的に回転する駆動ギヤと、前記駆動ギヤに歯合する従動ギヤとを備えた外接ギヤポンプであって、
     前記駆動ギヤは、前記従動ギヤと前記第2ハウジング部に挟まれた位置に配置されていることを特徴とするブレーキ装置。
    The brake device according to claim 1, wherein
    The pump is an external gear pump including a drive shaft that is rotationally driven by a motor, a drive gear that rotates integrally with the drive shaft, and a driven gear that meshes with the drive gear,
    The brake device, wherein the drive gear is disposed at a position sandwiched between the driven gear and the second housing part.
  9.  請求項8に記載のブレーキ装置において、
     前記モータは円筒状のモータケースを備え、
     前記第2ハウジング部には、前記モータケースの周壁の一部を収容する収容凹部を形成したことを特徴とするブレーキ装置。
    The brake device according to claim 8,
    The motor includes a cylindrical motor case,
    The brake device according to claim 1, wherein an accommodation recess for accommodating a part of a peripheral wall of the motor case is formed in the second housing portion.
  10.  請求項1に記載のブレーキ装置において、
     前記ポンプは、内部にポンプ部を収容するポンプケースと、
     前記ポンプケースを介して外部から前記ポンプケースの内部へブレーキ液を供給するための接続ポートとを備えたことを特徴とするブレーキ装置。
    The brake device according to claim 1, wherein
    The pump includes a pump case that houses a pump part therein,
    A brake device comprising: a connection port for supplying brake fluid from the outside to the inside of the pump case via the pump case.
  11.  請求項10に記載のブレーキ装置において、
     前記ポンプケースの内部にリザーバを備えたことを特徴とするブレーキ装置。
    The brake device according to claim 10, wherein
    A brake device comprising a reservoir inside the pump case.
  12.  請求項1に記載のブレーキ装置において、
     前記制御バルブは、前記ポンプを駆動するためのモータの半径方向であって前記モータの回転軸の直交方向に駆動するよう取り付けられていることを特徴とするブレーキ装置。
    The brake device according to claim 1, wherein
    The brake device, wherein the control valve is mounted so as to be driven in a radial direction of a motor for driving the pump and in a direction orthogonal to a rotation axis of the motor.
  13.  ブレーキ操作部材の操作量に応じたホイルシリンダ液圧が発生するように作動するポンプと、
     前記ポンプから吐出されたブレーキ液が流通する油路が形成され、前記ポンプが取り付けられるポンプ取り付け面を備えた第1ハウジング部と、
     前記油路を断接するために駆動される制御バルブが取り付けられるバルブ取り付け面を備えた第2ハウジング部とからなることを特徴とするブレーキ装置。
    A pump that operates so as to generate a wheel cylinder hydraulic pressure corresponding to an operation amount of the brake operation member;
    An oil passage through which the brake fluid discharged from the pump flows is formed, and a first housing portion having a pump mounting surface to which the pump is mounted;
    A brake device comprising: a second housing portion having a valve mounting surface to which a control valve driven to connect and disconnect the oil passage is mounted.
  14.  請求項13に記載のブレーキ装置において、
     前記ポンプを駆動するモータを備え、
     前記ポンプ取り付け面に対向する面に、前記モータが取り付けられるモータ取り付け面を備えたことを特徴とするブレーキ装置。
    The brake device according to claim 13,
    A motor for driving the pump;
    A brake device comprising a motor mounting surface to which the motor is mounted on a surface facing the pump mounting surface.
  15.  請求項14に記載のブレーキ装置において、
     前記第2ハウジング部は、前記バルブ取り付け面に対向する面側で、前記第1ハウジング部と一体的に形成されていることを特徴とするブレーキ装置。
    The brake device according to claim 14,
    The second housing portion is formed integrally with the first housing portion on a surface side facing the valve mounting surface.
  16.  請求項15に記載のブレーキ装置において、
     前記モータは円筒状のモータケースを備え、
     前記第2ハウジング部の前記バルブ取り付け面に対向する面側に、前記モータケースの周壁の一部を収容する収容凹部を形成したことを特徴とするブレーキ装置。
    The brake device according to claim 15,
    The motor includes a cylindrical motor case,
    The brake device according to claim 1, wherein an accommodation recess for accommodating a part of a peripheral wall of the motor case is formed on a surface of the second housing portion that faces the valve mounting surface.
  17.  請求項13に記載のブレーキ装置において、
     前記ポンプは、内部にポンプ部を収容するポンプケースを備え、前記ポンプケースの内部にリザーバを備えたことを特徴とするブレーキ装置。
    The brake device according to claim 13,
    The pump includes a pump case that accommodates a pump portion therein, and a reservoir provided in the pump case.
  18.  内部に油路が形成され、互いに対向する2面のうち第1の面にポンプが取り付けられ、第2の面に前記ポンプを駆動するモータが取り付けられた第1ハウジング部と、
     内部に前記油路と接続する接続油路が形成され、互いに対向する取り付け面及び固定面の2面のうち前記取り付け面に前記接続油路を断接するための制御バルブが取り付けられ、前記固定面を介して前記第1ハウジング部と一体的に固定された第2ハウジング部と、
     前記第2ハウジング部の前記取り付け面を覆うケース部材とを備えたことを特徴とするブレーキ装置。
    An oil passage is formed inside, a pump is attached to the first surface of the two surfaces facing each other, and a first housing part to which a motor for driving the pump is attached to the second surface;
    A connection oil passage that is connected to the oil passage is formed therein, and a control valve for connecting and disconnecting the connection oil passage is attached to the attachment surface of two surfaces of the attachment surface and the fixing surface facing each other, A second housing part fixed integrally with the first housing part via
    A brake device comprising: a case member that covers the mounting surface of the second housing portion.
  19.  請求項18に記載のブレーキ装置において、
     前記モータは円筒状のモータケースを備え、
     前記第2ハウジング部に、前記モータケースの周壁の一部を収容する収容凹部を形成したことを特徴とするブレーキ装置。
    The brake device according to claim 18,
    The motor includes a cylindrical motor case,
    The brake device according to claim 1, wherein an accommodation recess for accommodating a part of a peripheral wall of the motor case is formed in the second housing part.
  20.  請求項18に記載のブレーキ装置において、
     前記ポンプは、前記モータにより回転駆動する駆動軸と、前記駆動軸と一体的に回転する駆動ギヤと、前記駆動ギヤに歯合する従動ギヤとを備えた外接ギヤポンプであって、
     前記駆動ギヤは、前記従動ギヤと前記第2ハウジング部に挟まれた位置に配置されていることを特徴とするブレーキ装置。
     
     
    The brake device according to claim 18,
    The pump is an external gear pump including a drive shaft that is rotationally driven by the motor, a drive gear that rotates integrally with the drive shaft, and a driven gear that meshes with the drive gear,
    The brake device, wherein the drive gear is disposed at a position sandwiched between the driven gear and the second housing part.

PCT/JP2014/070195 2013-08-01 2014-07-31 Brake system WO2015016302A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-160053 2013-08-01
JP2013160053A JP2015030333A (en) 2013-08-01 2013-08-01 Brake control system

Publications (1)

Publication Number Publication Date
WO2015016302A1 true WO2015016302A1 (en) 2015-02-05

Family

ID=52431829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070195 WO2015016302A1 (en) 2013-08-01 2014-07-31 Brake system

Country Status (2)

Country Link
JP (1) JP2015030333A (en)
WO (1) WO2015016302A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3363700A1 (en) * 2017-02-17 2018-08-22 Nissin Kogyo Co., Ltd. Base of brake fluid pressure control device for vehicle and brake fluid pressure control device for vehicle
WO2019002475A1 (en) * 2017-06-29 2019-01-03 Ipgate Ag Device for a hydraulic actuating system
GB2580043A (en) * 2018-12-20 2020-07-15 Continental Automotive Romania Srl A valve support with sealing means for hydraulic electronic control unit brake system and brake control system using said valve support
US11447115B2 (en) * 2018-03-05 2022-09-20 Robert Bosch Gmbh Brake fluid pressure control device
US11458943B2 (en) 2017-05-22 2022-10-04 Lsp Innovative Automotive Systems Gmbh Brake device, in particular for electrically driven motor vehicles

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6593688B2 (en) * 2015-08-20 2019-10-23 日立オートモティブシステムズ株式会社 Brake device and brake system
JP6493758B2 (en) * 2015-08-26 2019-04-03 日立オートモティブシステムズ株式会社 Pump device and brake system
JP6532104B2 (en) * 2015-09-30 2019-06-19 日立オートモティブシステムズ株式会社 Hydraulic control device and brake system
JP6521831B2 (en) * 2015-10-21 2019-05-29 日立オートモティブシステムズ株式会社 Hydraulic control device and brake system
JP6544643B2 (en) * 2015-10-26 2019-07-17 日立オートモティブシステムズ株式会社 Hydraulic control device and brake system
JP6535952B2 (en) * 2015-11-20 2019-07-03 日立オートモティブシステムズ株式会社 Hydraulic control device and brake system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1178829A (en) * 1997-08-29 1999-03-23 Denso Corp Actuator for abs
JP2005153565A (en) * 2003-11-20 2005-06-16 Hitachi Ltd Brake hydraulic pressure control device
JP2012214120A (en) * 2011-03-31 2012-11-08 Nissin Kogyo Co Ltd Vehicle brake fluid pressure control device

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH061227A (en) * 1992-06-23 1994-01-11 Mazda Motor Corp Vehicle braking device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1178829A (en) * 1997-08-29 1999-03-23 Denso Corp Actuator for abs
JP2005153565A (en) * 2003-11-20 2005-06-16 Hitachi Ltd Brake hydraulic pressure control device
JP2012214120A (en) * 2011-03-31 2012-11-08 Nissin Kogyo Co Ltd Vehicle brake fluid pressure control device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108454598B (en) * 2017-02-17 2021-04-02 日信工业株式会社 Base body of brake hydraulic pressure control device for vehicle and brake hydraulic pressure control device for vehicle
JP2018131183A (en) * 2017-02-17 2018-08-23 日信工業株式会社 Base of vehicular brake hydraulic control device and vehicular brake hydraulic control device
CN108454598A (en) * 2017-02-17 2018-08-28 日信工业株式会社 The matrix and hydraulic brake controlling device for vehicle of hydraulic brake controlling device for vehicle
EP3363700A1 (en) * 2017-02-17 2018-08-22 Nissin Kogyo Co., Ltd. Base of brake fluid pressure control device for vehicle and brake fluid pressure control device for vehicle
US11458943B2 (en) 2017-05-22 2022-10-04 Lsp Innovative Automotive Systems Gmbh Brake device, in particular for electrically driven motor vehicles
GB2578986B (en) * 2017-06-29 2022-09-07 Ipgate Ag Device for a hydraulic actuating system
GB2578986A (en) * 2017-06-29 2020-06-03 Ipgate Ag Device for a hydraulic actuating system
CN110799393A (en) * 2017-06-29 2020-02-14 爱皮加特股份公司 Device for a hydraulic actuating system
CN110799393B (en) * 2017-06-29 2022-09-13 爱皮加特股份公司 Device for a hydraulic actuating system
WO2019002475A1 (en) * 2017-06-29 2019-01-03 Ipgate Ag Device for a hydraulic actuating system
US11685355B2 (en) 2017-06-29 2023-06-27 Ipgate Ag Device for a hydraulic actuating system
US11447115B2 (en) * 2018-03-05 2022-09-20 Robert Bosch Gmbh Brake fluid pressure control device
GB2580043A (en) * 2018-12-20 2020-07-15 Continental Automotive Romania Srl A valve support with sealing means for hydraulic electronic control unit brake system and brake control system using said valve support
GB2580043B (en) * 2018-12-20 2021-01-06 Continental Automotive Romania Srl A valve support with sealing means for hydraulic electronic control unit braking system and braking control system using said valve support

Also Published As

Publication number Publication date
JP2015030333A (en) 2015-02-16

Similar Documents

Publication Publication Date Title
WO2015016302A1 (en) Brake system
JP6532104B2 (en) Hydraulic control device and brake system
JP6115944B2 (en) Brake device and brake system
CN108349463B (en) Hydraulic control device and brake system
JP6115943B2 (en) Brake device and brake system
JP6245634B2 (en) Hydraulic pressure generator
CN107264505B (en) Hydraulic pressure generating device
JP5200092B2 (en) Brake system for vehicle and input device thereof
JP6575025B2 (en) Hydraulic control device and brake system
JP6616487B2 (en) Brake device
JP6461388B2 (en) Brake device
JP6557312B2 (en) Hydraulic pressure generator
JP7112467B2 (en) brake device
JP6437068B2 (en) Brake device
JP2017061318A (en) Brake device
JP5276646B2 (en) Input device for vehicle brake system
JP6214069B2 (en) Brake device
JP2020059504A (en) Brake device
JP5297439B2 (en) Piping support structure for electric brake actuator
JP2023129570A (en) brake device
JP2019059470A (en) Brake device
JP2012106627A (en) Vehicle body mounting structure of electric brake actuator
JP2012106629A (en) Displacement suppression structure of electric brake actuator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14831670

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14831670

Country of ref document: EP

Kind code of ref document: A1