WO2015016282A1 - Pharmaceutical composition for preventing or treating radiation-induced gastrointestinal syndrome - Google Patents

Pharmaceutical composition for preventing or treating radiation-induced gastrointestinal syndrome Download PDF

Info

Publication number
WO2015016282A1
WO2015016282A1 PCT/JP2014/070127 JP2014070127W WO2015016282A1 WO 2015016282 A1 WO2015016282 A1 WO 2015016282A1 JP 2014070127 W JP2014070127 W JP 2014070127W WO 2015016282 A1 WO2015016282 A1 WO 2015016282A1
Authority
WO
WIPO (PCT)
Prior art keywords
tlr3
radiation
mice
pharmaceutical composition
rip1
Prior art date
Application number
PCT/JP2014/070127
Other languages
French (fr)
Japanese (ja)
Inventor
智 植松
直紀 武村
審良 静男
Original Assignee
国立大学法人東京大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学 filed Critical 国立大学法人東京大学
Publication of WO2015016282A1 publication Critical patent/WO2015016282A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/38Heterocyclic compounds having sulfur as a ring hetero atom
    • A61K31/381Heterocyclic compounds having sulfur as a ring hetero atom having five-membered rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/41641,3-Diazoles
    • A61K31/41781,3-Diazoles not condensed 1,3-diazoles and containing further heterocyclic rings, e.g. pilocarpine, nitrofurantoin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/7105Natural ribonucleic acids, i.e. containing only riboses attached to adenine, guanine, cytosine or uracil and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/177Receptors; Cell surface antigens; Cell surface determinants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2896Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against molecules with a "CD"-designation, not provided for elsewhere
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; CARE OF BIRDS, FISHES, INSECTS; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K2207/00Modified animals
    • A01K2207/35Animals modified by environmental factors, e.g. temperature, O2
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies

Definitions

  • the present invention relates to a preventive or therapeutic agent for gastrointestinal syndrome that may be caused by accidental exposure or radiation therapy.
  • Ionizing radiation causes various symptoms depending on the sensitivity of each organ to radiation.
  • the intestinal epithelium When exposed to 5 Gy or more, the intestinal epithelium is damaged, causing diarrhea due to decreased absorption and enteritis due to bacterial infection, resulting in subacute death.
  • gastrointestinal syndrome gastrointestinal syndrome; GIS
  • crypts containing intestinal epithelial stem cells are susceptible to damage.
  • the tumor suppressor gene p53 When radiation damages DNA in the cells of the intestinal crypts, the tumor suppressor gene p53 is activated and repairs the DNA damage. If the damage is severe and cannot be repaired, cell death is induced in a p53-dependent manner, and the cells of the crypt are killed, making it impossible to supply epithelial cells.
  • Non-patent Documents 1 and 2 Non-patent Documents 1 and 2.
  • crypt cells do not undergo p53-mediated cell death upon irradiation, but also lose their DNA repair function. Therefore, p53 ⁇ / ⁇ crypt cells are reproductive death or mitotic death independent of p53 (Non-patent Documents 1 and 2). Therefore, a therapeutic agent for GIS must not cause loss of DNA repair activity by p53, but there is no such therapeutic agent, and there has been no effective therapeutic method for GIS.
  • An object of the present invention is to provide a method for treating or preventing radiation digestive tract-induced syndrome.
  • TLR3-deficient mice are resistant to whole body irradiation with 10 Gy gamma rays. Irradiation with 10 Gy gamma rays induces p53-dependent cell death in crypt cells of the small intestine. We leaked RNA from cells destroyed by this cell death, and activated TLR3-dependent signaling by binding to TLR3 of crypt epithelial cells, resulting in a wider spectrum. The mechanism by which cell death was induced, crypts disappeared, and gastrointestinal syndrome progressed was clarified (FIG. 10).
  • the present inventors added (R) -2- (3-chloro-6-fluorobenzo [b] thiophene-2-carboxamido) -3-phenylpropanoic acid, which is an inhibitor of the interaction between TLR3 and double-stranded RNA. After administration, it was confirmed that the gastrointestinal syndrome induced after 10 Gy gamma irradiation could be suppressed as in TLR3-deficient mice.
  • a pathway for inducing cell death via IFN is known as a signal transduction pathway of TLR3.
  • a mouse (Trif ⁇ / ⁇ ) lacking a gene involved in this pathway is known.
  • Necrostatin-1 As a signal transduction pathway of TLR3 that induces cell death, the pathway shown in FIG. 12 is also known. Therefore, administration of Necrostatin-1 (Nec-1), which is known to specifically inhibit RIP1, all improved mortality, severity of diarrhea, and weight loss. It was confirmed that death was also suppressed. This strongly suggested that radiation-induced crypt cell death was induced by the pathway shown in FIG. 12, and that gastrointestinal syndrome could be prevented or treated by inhibiting signal transduction of this pathway. .
  • Nec-1 Necrostatin-1
  • a pharmaceutical composition for preventing or treating radiation-induced gastrointestinal syndrome comprising a Toll-like receptor (TLR) 3 inhibitor;
  • TLR3 inhibitor is a substance that inhibits the interaction between TLR3 and double-stranded RNA;
  • the radiation according to [2], wherein the substance that inhibits the interaction between TLR3 and double-stranded RNA is a compound represented by the following formula (I), a salt thereof, or a solvate thereof:
  • a pharmaceutical composition for preventing or treating inducible gastrointestinal syndrome [Where: n is an integer from 1 to 3; Ar 1 is an optionally substituted phenyl, indole, or naphthalene; Ar 2 is optionally substituted indole-2-yl or naphthalenyl; X 2 is —NR a —, —O—, or —S—; Z 1 and Z 2
  • the Toll-like receptor (TLR) 3 inhibitor is a group consisting of a double-stranded nucleic acid having an RNAi effect, an antisense nucleic acid, a ribozyme, a miRNA and a nucleic acid encoding the same, which suppresses the expression of the TLR3 gene.
  • the inhibitor for any of RIP1, RIP3 and FADD is Necrostatin-1, a salt thereof, or a solvate thereof, for prevention or treatment of radiation-induced gastrointestinal syndrome according to [9] above A pharmaceutical composition; [11] The inhibitor of any of RIP1, RIP3, and FADD is a dominant negative mutant of any of RIP1, RIP3, and FADD, or an antibody to any of RIP1, RIP3, and FADD, [9]
  • the inhibitor of any of RIP1, RIP3, and FADD is a double-stranded nucleic acid having an RNAi effect, an antisense nucleic acid, a ribozyme, a miRNA, and the like that inhibits the expression of any of the genes RIP1, RIP3, and FADD.
  • the pharmaceutical composition for prevention or treatment of radiation-induced gastrointestinal tract syndrome which is a nucleic acid selected from the group consisting of nucleic acids encoding this; [13]
  • a screening method for a preventive or therapeutic agent for radiation-induced gastrointestinal syndrome Contacting the candidate compound with a cell expressing TLR3 and incubating; Measuring the inhibition of binding between TLR3 and double-stranded RNA by the candidate compound, or the inhibition of TLR3-dependent and RIP1-mediated cell death induction signaling by the candidate compound, About.
  • intestinal crypt cell death can be suppressed while maintaining the DNA repair ability of p53, and gastrointestinal syndrome due to ionizing radiation can be treated or prevented. Since the pharmaceutical composition according to the present invention is effective before administration or after irradiation, it is useful even if it is administered prior to radiation treatment or after exposure to an accident. is there.
  • TLR3 exacerbates radiation-induced GIS.
  • (a) Kaplan-Meier survival analysis of Tlr3 + / + and Tlr3 ⁇ / ⁇ mice after TBI with or without pretreatment with poly I: C. n 5; * p ⁇ 0.05, ** p ⁇ 0.01 (log rank test).
  • (b) Severity of diarrhea after TBI with or without pretreatment with poly I: C and Tlr3 + / + and Tlr3 ⁇ / ⁇ mice. n 5, results are mean ⁇ standard error; * p ⁇ 0.05, ** p ⁇ 0.01 (unpaired two-tailed Student's t-test).
  • n 5; results are mean ⁇ standard error; ** p ⁇ 0.01 (unpaired two-tailed Student's t-test).
  • (d) 0 and 6 hour TUNEL staining of the small intestine of Tlr3 + / + and Tlr3 ⁇ / ⁇ mice. TUNEL-stained epithelium exhibits green fluorescence. Nuclei were stained with DAPI (blue). Scale bar is 100 ⁇ m. The right panel shows the number of TUNEL positive cells. n 4; results are mean ⁇ standard error; ** p ⁇ 0.01 (unpaired two-tailed Student's t-test).
  • n 3; results are mean ⁇ standard error; ** p ⁇ 0.01 (unpaired two-tailed Student's t-test).
  • g H & E staining of the small intestine of Tlr3 + / + and Tlr3 ⁇ / ⁇ mice on day 0 and day 5. Scale bar is 100 ⁇ m. The results are representative of 3 independent experiments. Stimulation of TLR3 with a ligand directly induces cell death in the small intestinal crypt.
  • RT-PCR upper
  • quantitative real-time PCR lower
  • LP Mucosal intrinsic cells.
  • M Size marker.
  • SP Spleen.
  • V Villi.
  • W Whole intestine.
  • n 3; results are mean ⁇ standard error.
  • (c) Survival rate of Tlr3 + / + organoid and Tlr3 ⁇ / ⁇ organoid after poly I: C treatment. n 4; results are mean ⁇ standard error; * p ⁇ 0.05 (unpaired two-tailed Student's t-test).
  • TUNEL staining of Tlr3 + / + organoid and Tlr3 ⁇ / ⁇ organoid exhibits green fluorescence. Nuclei were stained with DAPI (blue). The box is an enlarged view of the crypt-like domain. Scale bar is 100 ⁇ m.
  • TUNEL staining of small intestinal crypts 6 hours after poly I C administration of Tlr3 + / + mice and Tlr3 ⁇ / ⁇ mice. TUNEL-stained epithelium exhibits green fluorescence. Nuclei were stained with DAPI (blue). Scale bar is 100 ⁇ m. The right panel shows the number of TUNEL positive cells.
  • TLR3 mediates radiation-induced crypt cell death via the TRIF-RIP1 pathway.
  • n 4; results are mean ⁇ standard error; ** p ⁇ 0.01 (unpaired two-tailed Student's t-test).
  • (b) H & E staining of small intestinal crypts on day 3 of Tlr3 ⁇ / ⁇ mice, Inf3 ⁇ / ⁇ mice, and Ifnar3 ⁇ / ⁇ mice. Scale bar is 100 ⁇ m. Asterisk indicates microchrony. The right panel shows the number of microcolonies. n 3-5; results are mean ⁇ standard error; ** p ⁇ 0.01 (unpaired two-tailed Student's t-test).
  • TLR3-mediated crypt cell death after TBI is p53-dependent.
  • n 3; results are mean ⁇ standard error; * p ⁇ 0.05 (unpaired two-tailed Student's t-test).
  • (b) Quantitative real-time PCR of mRNA encoding Bax and PUMA in the small intestine of p53 + / + and p53 ⁇ / ⁇ mice. n 3; results are mean ⁇ standard error; * p ⁇ 0.05, ** p ⁇ 0.01 (unpaired two-tailed Student's t-test).
  • c Immunohistochemical detection of p53 in the small intestine crypts of Tlr3 + / + and Tlr3 ⁇ / ⁇ mice 0 or 6 hours after TBI and allogeneic transplantation.
  • Quantitative real-time PCR of mRNA encoding Bax and PUMA in the small intestine of Tlr3 + / + and Tlr3 ⁇ / ⁇ mice. n 3; results are mean ⁇ standard error; * p ⁇ 0.05, ** p ⁇ 0.01 (unpaired two-tailed Student's t-test).
  • n 6; results are mean ⁇ standard error; * p ⁇ 0.05, ** p ⁇ 0.01 (unpaired two-tailed Student's t-test).
  • TUNEL staining of mouse small intestinal crypts 6 hours after treatment with TLR3 / dsRNA binding inhibitor. Scale bar is 100 ⁇ m. The right panel shows the number of TUNEL positive cells. n 5; results are mean ⁇ standard error; * p ⁇ 0.05 (unpaired two-tailed Student's t-test).
  • (a) Kaplan-Meier survival analysis of mice treated with TLR3 / dsRNA binding inhibitors after TBI and allogeneic BMT. n 6; * p ⁇ 0.05 (log rank test).
  • n 4-6; results are mean ⁇ standard error; * p ⁇ 0.05 (unpaired two-tailed Student's t-test). The results are representative of two independent experiments.
  • Pathological mechanism of GIS When ionized gamma rays damage the DNA of intestinal crypt cells, p53 induces cell cycle arrest for DNA repair. When DNA damage is irreparable, p53 initiates cell death. When intracellular RNA is released from cells due to p53-mediated cell death by gamma irradiation, extensive crypt cell death is induced through TLR3, intestinal epithelial cell supply is insufficient, and chorionic epithelium is Destroyed and leads to death by GIS. The signal transduction pathway of TLR3 is shown. The signal transduction pathway of TLR3 is shown.
  • TLR3 inhibitor One embodiment of the pharmaceutical composition for preventing or treating radiation-induced gastrointestinal syndrome according to the present invention comprises a Toll-like receptor 3 (TLR3) inhibitor.
  • TLR3 inhibitor may be any substance as long as it inhibits intestinal crypt cell death induction by TLR3-dependent signaling, for example, all or one of the interactions between TLR3 and double-stranded RNA. It can be a substance that inhibits the part. Examples of such substances include low molecular weight compounds, anti-TLR3 antibodies, dominant negative mutants of TLR3, and the like.
  • a low molecular weight compound that inhibits the interaction between TLR3 and double-stranded RNA is not particularly limited.
  • compound (I) described in International Publication WO2012 / 099785 is known.
  • n is an integer from 1 to 3; Ar 1 is an optionally substituted phenyl, indole, or naphthalene; Ar 2 is optionally substituted indole-2-yl or naphthalenyl; X 2 is —NR a —, —O—, or —S—; Z 1 and Z 2 are each independently ⁇ NR a , ⁇ O, or ⁇ S; X 3 is —NR a R b , —OR c , or —SR d ; Each R a is independently hydrogen, an alkyl group, or a nitrogen protecting group; R b is hydrogen or an alkyl group; R c is independently hydrogen, an alkyl group, or a hydroxyl protecting group; and R d represents hydrogen, an alkyl group, or a thiol protecting group. ]
  • the compound (I) is represented by the following formula (II).
  • X 1 and X 2 are each independently —NR a —, —O—, or —S—; Z 1 and Z 2 are each independently ⁇ NR a , ⁇ O, or ⁇ S;
  • X 3 is —NR a R b , —OR c , or —SR d ;
  • R 1 , R 2 , R 3 and R 4 are each independently hydrogen, an alkyl group, —OR c , halogen, —NR a R b , or SR d , provided that at least one of R 1 to R 4 Is not hydrogen;
  • R b is hydrogen or an alkyl group;
  • R c is independently hydrogen, an alkyl group, or a hydroxyl protecting group; and
  • R d represents hydrogen, an alkyl group, or a thiol protecting group.
  • an anti-TLR3 antibody may be used as a substance that inhibits the interaction between TLR3 and double-stranded RNA.
  • the anti-TLR3 antibody is not particularly limited, and can be, for example, an antibody that binds to a binding site with a double-stranded RNA in TLR3.
  • “antibody” includes antibody fragments, and anti-TLR3 antibodies include monoclonal antibodies, polyclonal antibodies, recombinant antibodies, human antibodies, humanized antibodies, chimeric antibodies, single-chain antibodies, Fab fragments, F (ab ′ ) 2 antibodies, scFv, bispecific antibodies, synthetic antibodies and the like. These antibodies can be prepared according to methods known to those skilled in the art.
  • monoclonal antibodies can be obtained by isolating antibody-producing cells from non-human mammals immunized with TLR3, fusing them with myeloma cells, etc. to produce hybridomas, and purifying the antibodies produced by the hybridomas. Can do.
  • Polyclonal antibodies can be obtained from the sera of animals immunized with TLR3.
  • TLR3 used for immunization may be derived from humans or other animals, may be full length or a fragment, and can be appropriately determined by those skilled in the art. In the case of a fragment, for example, it may be a fragment containing a binding site for double-stranded RNA in TLR3.
  • a non-human monoclonal antibody that efficiently inhibits the binding between TLR3 and double-stranded RNA can also be produced by a gene recombination method. For example, after preparing total RNA from a hybridoma producing the anti-TLR3 monoclonal antibody using standard techniques, preparing mRNA encoding the anti-TLR3 antibody using a commercially available kit, and then synthesizing cDNA using reverse transcriptase Then, DNA encoding an anti-TLR3 antibody can be obtained. An anti-TLR3 antibody can be expressed by transfecting an appropriate host cell with an expression vector containing such DNA and culturing under an appropriate condition.
  • DNA encoding the CDR region can also be obtained by PCR using the above cDNA as a template.
  • a human antibody or a humanized antibody can also be prepared by a gene recombination method according to a conventional method using DNA encoding such CDR region. For example, a DNA encoding a CDR region derived from a non-human antibody and a DNA designed to link the framework region of a human antibody are synthesized by PCR, and further linked to a DNA encoding a human antibody constant region. Thus, DNA encoding a human antibody can be obtained.
  • Such DNA is expressed by a known method (a method using a restriction enzyme, etc.) and an expression vector (eg, plasmid, retrovirus, adenovirus, adeno-associated virus (AAV), plant virus such as cauliflower mosaic virus or tobacco mosaic virus, cosmid) , YAC, EBV-derived episome) and the expression vector is transfected into an appropriate host cell to obtain a transformant.
  • the expression vector may further contain a promoter that regulates the expression of the antibody gene, a replication origin, a selection marker gene, and the like. The promoter and origin of replication can be appropriately selected depending on the type of host cell and vector.
  • a human antibody of an anti-TLR3 antibody can be expressed by culturing the transformant under appropriate conditions.
  • host cells include eukaryotic cells such as mammalian cells (CHO cells, COS cells, myeloma cells, HeLa cells, Vero cells, etc.), insect cells, plant cells, fungal cells (Saccharomyces, Aspergillus, etc.), E. coli (E. Coli), prokaryotic cells such as Bacillus subtilis can be used.
  • eukaryotic cells such as mammalian cells (CHO cells, COS cells, myeloma cells, HeLa cells, Vero cells, etc.), insect cells, plant cells, fungal cells (Saccharomyces, Aspergillus, etc.), E. coli (E. Coli), prokaryotic cells such as Bacillus subtilis can be used.
  • the expressed antibody can be isolated and purified by appropriately combining known methods (for example, affinity columns using protein A, other chromatography columns, filters, ultrafiltration, salting out, dialysis, etc.). it can.
  • the anti-TLR3 antibody of the present invention is a low molecular antibody such as a Fab fragment, F (ab ′) 2 antibody, scFv, etc.
  • the antibody can be expressed by the above method using a DNA encoding the low molecular antibody, Alternatively, the antibody can be prepared by treating with an enzyme such as papain or pepsin.
  • a dominant negative mutant of TLR3 may be used as a TLR3 inhibitor.
  • a vector containing a gene encoding a dominant negative mutant may be administered to express the mutant in vivo.
  • Such vectors can be prepared by those skilled in the art according to conventional methods.
  • a method for inserting a DNA encoding a dominant negative mutant of TLR3 into a cloning site such as a plasmid, a plasmid having a backbone sequence of an adenoviral vector, and a sequence homologous thereto, and a dominant negative mutant of TLR3
  • a method of preparing a viral vector by homologous recombination by introducing both a shuttle plasmid arranged at both ends of DNA to be introduced into cells or E. coli.
  • TLR3 inhibitors also include substances that suppress all or part of TLR3 expression.
  • examples of such substances include double-stranded nucleic acids having an RNAi effect, antisense nucleic acids, ribozymes, and nucleic acids encoding them.
  • the RNAi effect is a sequence-specific gene expression suppression mechanism induced by a double-stranded nucleic acid.
  • the target specificity is very high, and it is highly safe because it uses a gene expression suppression mechanism that originally exists in vivo.
  • Examples of the double-stranded nucleic acid having an RNAi effect include siRNA.
  • siRNA When siRNA is used in mammalian cells, it is usually a double-stranded RNA of about 19 to 30 bases, and preferably about 21 to 25 bases, but a longer double strand that can be cleaved by an enzyme (Dicer) to become siRNA. It may be a strand RNA.
  • a double-stranded nucleic acid having an RNAi effect has one base sequence complementary to a part of the target nucleic acid and the other complementary sequence.
  • a double-stranded nucleic acid having an RNAi effect generally has two protruding bases (overhangs) at the 3 ′ end of each other, but may be of a blunt end type having no overhangs. .
  • a 25-base blunt-end RNA has the advantage of minimizing interferon-responsive gene activation, preventing off-target effects from the sense strand, and being very stable in serum for in vivo use Also suitable for.
  • a double-stranded nucleic acid having an RNAi effect can be designed according to a known method based on the base sequence of the target gene.
  • the double-stranded nucleic acid having an RNAi effect may be a double-stranded RNA or a DNA-RNA chimera-type double-stranded nucleic acid, and may be an artificial nucleic acid or a nucleic acid subjected to various modifications. There may be.
  • An antisense nucleic acid has a base sequence complementary to a target gene (typically mRNA that is a transcription product), and generally has a length of 10 to 100 bases, preferably 15 to 30 bases. Single-stranded nucleic acid.
  • a target gene typically mRNA that is a transcription product
  • Single-stranded nucleic acid By introducing an antisense nucleic acid into a cell and hybridizing to a target gene, gene expression is inhibited.
  • the antisense nucleic acid may not be completely complementary to the target gene as long as the effect of inhibiting the expression of the target gene is obtained.
  • Antisense nucleic acids can be appropriately designed by those skilled in the art using known software or the like.
  • the antisense nucleic acid may be any of DNA, RNA, DNA-RNA chimera, and may be modified.
  • Ribozymes are nucleic acid molecules that catalytically hydrolyze target RNA, and are composed of an antisense region having a sequence complementary to the target RNA and a catalytic center region responsible for the cleavage reaction.
  • the ribozyme can be appropriately designed by those skilled in the art according to known methods. Ribozymes are generally RNA molecules, but DNA-RNA chimeric molecules can also be used.
  • a nucleic acid encoding any one of the above-described double-stranded nucleic acid, antisense nucleic acid, and ribozyme having the RNAi effect can also be used as a TLR3 expression inhibitor of the present invention.
  • a vector containing such a nucleic acid is introduced into a cell, a double-stranded nucleic acid, an antisense nucleic acid, and a ribozyme having an RNAi effect are expressed in the cell, and each exerts a TLR3 expression suppressing effect.
  • RNA As a nucleic acid encoding a double-stranded nucleic acid having an RNAi effect, a DNA encoding each of the double strands may be used, or a single-stranded nucleic acid formed by connecting double-stranded nucleic acids via a loop is encoded. DNA may be used. In the latter case, the single-stranded RNA obtained by transcription in the cell has a complementary structure hybridized in the molecule and takes a hairpin type structure. This RNA is called shRNA (short hairpin RNA). When shRNA moves into the cytoplasm, the loop part is cleaved by the enzyme (Dicer) to form double-stranded RNA and exert RNAi effect.
  • Dicer enzyme
  • the TLR3 inhibitor contained in the pharmaceutical composition according to the present invention may be a pharmaceutically acceptable salt or solvate regardless of whether it is a low molecular compound, protein, peptide or nucleic acid.
  • One embodiment of the pharmaceutical composition for preventing or treating radiation-induced gastrointestinal syndrome comprises the inhibitor of TLR3-dependent and RIP1-mediated cell death induction signaling shown in FIG.
  • known inhibitors for RIP1 receptor interacting protein 1
  • RIP3 receptor interacting protein 3
  • FADD Fas-associated protein with Death Domain
  • the present inventors have improved the lethality, the severity of diarrhea, and the weight loss when irradiated with Necrostatin-1, a specific inhibitor for RIP1, and also suppressed cell death of small intestinal crypts Confirmed that it will be.
  • the inhibitor of TLR3-dependent and RIP1-mediated cell death induction signaling may be a dominant negative mutant of either RIP1, RIP3, or FADD, or an antibody to any of RIP1, RIP3, and FADD Good. Further, it may be a double-stranded nucleic acid having an RNAi effect, an antisense nucleic acid, a ribozyme, a miRNA, and a nucleic acid encoding the same, which inhibit the expression of any of RIP1, RIP3 and FADD genes.
  • negative dominant mutant antibody, double-stranded nucleic acid having RNAi effect, antisense nucleic acid, ribozyme, miRNA, and nucleic acid encoding the same are the same as those used for the TLR3 inhibitor, The description is omitted here.
  • the pharmaceutical composition of the present invention can be administered orally or parenterally, systemically or locally.
  • intravenous injection such as infusion, intramuscular injection, intraperitoneal injection, subcutaneous injection, suppository, enema, oral enteric solvent, etc.
  • the administration method should be selected appropriately depending on the age and symptoms of the patient Can do.
  • a pharmaceutically acceptable carrier such as a preservative and a stabilizer may be added.
  • the pharmaceutically acceptable carrier is not particularly limited as long as it is pharmacologically and pharmaceutically acceptable.
  • pharmaceutically acceptable organic solvents such as water, saline, phosphate buffer, dextrose, glycerol, ethanol, collagen, polyvinyl alcohol, polyvinyl pyrrolidone, carboxyvinyl polymer, sodium carboxymethylcellulose, sodium polyacrylate, sodium alginate , Water-soluble dextran, sodium carboxymethyl starch, pectin, methylcellulose, ethylcellulose, xanthan gum, gum arabic, casein, agar, polyethylene glycol, diglycerin, glycerin, propylene glycol, petrolatum, paraffin, stearyl alcohol, stearic acid, human serum albumin , Mannitol, sorbitol, lactose, surfactant, excipient, flavor
  • the pharmaceutical composition of the present invention can be formulated into a normal medical preparation form.
  • the medical preparation is appropriately prepared using the carrier.
  • the form of the medical preparation is not particularly limited, and is appropriately selected depending on the purpose of treatment. Typical examples thereof include tablets, pills, powders, solutions, suspensions, emulsions, granules, capsules, suppositories, injections (solutions, suspensions, emulsions) and the like. These preparations may be produced by a commonly used method.
  • the pharmaceutical composition of the present invention contains a nucleic acid
  • it can be formulated by encapsulating the nucleic acid in a carrier such as a liposome, polymer micelle, or cationic carrier.
  • a nucleic acid carrier such as protamine may also be used. It is also preferable to target the affected area by binding an antibody or the like to these carriers. It is also possible to increase the retention in blood by binding cholesterol or the like to the nucleic acid.
  • the nucleic acid when the pharmaceutical composition of the present invention contains a nucleic acid encoding siRNA or the like and is expressed in cells after administration, the nucleic acid may be a viral vector such as retrovirus, adenovirus, Sendai virus, It can also be inserted into non-viral vectors such as liposomes and administered into cells.
  • a viral vector such as retrovirus, adenovirus, Sendai virus
  • the amount of the active ingredient contained in the pharmaceutical composition of the present invention can be appropriately determined by those skilled in the art according to the type of the active ingredient.
  • the pharmaceutical composition of the present invention is administered to humans or non-human mammals (eg, mice, rats, rabbits, dogs, pigs, cows, horses, monkeys) and the like for the purpose of preventing or treating herpes virus infection. be able to.
  • the present invention also includes a method for preventing or treating radiation-induced gastrointestinal syndrome, which comprises administering the pharmaceutical composition according to the present invention described above.
  • Treatment or prevention of radiation-induced gastrointestinal syndrome includes alleviation or suppression of one or more symptoms related to radiation-induced gastrointestinal syndrome, prevention or delay of worsening or progression, prevention or delay of occurrence of symptoms, etc. Meaning, it can be evaluated by at least one of the presence or absence of diarrhea, the severity of symptoms, the weight, the survival rate, the degree of cell death of intestinal crypt cells, and the form.
  • the preventive or therapeutic method according to the present invention can be used for any gastrointestinal syndrome induced by radiation, but typically, exposure due to an accident or radiotherapy (especially treatment of peritoneal dissemination of ovarian cancer).
  • the pharmaceutical composition of the present invention alleviates the gastrointestinal syndrome even when administered after irradiation, so that the pharmaceutical composition of the present invention can be quickly used even in the event of an accidental exposure.
  • the prevention or treatment method of the present invention is used for humans or mammals other than humans (for example, mice, rats, rabbits, dogs, pigs, cows, horses, monkeys).
  • the present invention also provides a method for screening a medicament for the prevention or treatment of radiation-induced gastrointestinal syndrome.
  • One aspect of the screening method according to the present invention is: Contacting the candidate compound with a cell expressing TLR3 and incubating; Measuring the inhibition of binding between TLR3 and double-stranded RNA by the candidate compound, or the inhibition of TLR3-dependent and RIP1-mediated cell death induction signaling by the candidate compound.
  • the candidate compound may be any substance such as a low molecular compound, a high molecular compound, a peptide, a protein, a nucleic acid, a sugar, or a lipid.
  • a cell that expresses TLR3 is not particularly limited, and can be, for example, an epithelial cell that expresses TLR3.
  • Cell culture medium, candidate compound concentration, temperature, pH and other conditions in the step of incubating the candidate compound and TLR3-expressing cells in contact are appropriately selected by those skilled in the art depending on the type of cell and the type of candidate compound be able to.
  • mice were housed in standard cages with a light-dark cycle of 12 hours in a temperature-controlled room in the SPF environment of the Osaka University Infectious Animal Laboratory. Free access to standard laboratory mouse feed and drinking water.
  • GF mice were bred with vinyl isolators in laboratory animal facilities at the Institute of Medical Science, the University of Tokyo. The light / dark cycle was 12 hours, so that the autoclaved feed and sterilized water were always accessible.
  • Poly I C treatment
  • Poly I: C (poly I: C-HMW, Invivogen) was diluted with pathogen-free PBS without using a transfection reagent or a liposome carrier.
  • Poly I: C was administered by intraperitoneal injection in mice.
  • Nec-1 (Sigma-Aldrich) was dissolved in DMSO and diluted with pathogen-free PBS. Nec-1 was injected multiple times intraperitoneally in mice to achieve a significant protective effect on GIS.
  • TLR3 / dsRNA binding inhibitor (Treatment with TLR3 / dsRNA binding inhibitor) (R) -2- (3-Chloro-6-fluorobenzo [b] thiophene-2-carboxamido) -3-phenylpropanoic acid (Calbiochem), a TLR3 / dsRNA binding inhibitor, is dissolved in DMSO and free of pathogens Dilute with PBS. Inhibitors were administered multiple times by intraperitoneal injection in mice.
  • mice Female, 8-12 weeks old were exposed to 10 Gy TBI at a dose rate of 88 cGy / min using a 137 Cs irradiator (Gammacell 40 Exactor; MDS Nordion).
  • poly I C (20 mg / kg body weight) 1 hour before irradiation.
  • Nec-1 125 mg / kg body weight was administered 1 hour before, 2 hours, 24 hours, 48 hours, and 72 hours after irradiation.
  • TLR3 / dsRNA binding inhibitor (1 mg per mouse was administered 1 hour before or 1 hour after irradiation. Thereafter, the inhibitors were injected at 24 and 48 hours.
  • mice were subsequently injected once intravenously with 1 ⁇ 10 7 BM cells obtained from donor mice of matched strain, gender, and genotype. After irradiation, the mice were given 1,000 U / ml polymyxin B and 1 mg / ml neomycin in their drinking water. The severity of GIS was evaluated by observing weight loss and diarrhea. Diarrhea was scored daily on the hair near the anus and scored as 0 for no signs, 1 for light brown feces, and 2 for tar-like black feces.
  • chromophilic non-panate cells 10 or more chromophilic non-panate cells and those containing at least one panate cell were defined as regenerating crypts.
  • tibias were collected, fixed with 70% ethanol for 3 days, embedded in methyl methacrylate resin, and stained with H & E. Intestinal cell death was assessed by TUNEL staining.
  • Small intestine paraffin sections were treated with reagents from an in situ Cell Death Detection Kit, Fluorescein (Roche Diagnostics). Samples were prepared with ProLong Gold Antifade Reagent with DAPI (invitrogen) and observed under a fluorescence microscope using BZ-II Image Analysis Application. To determine the number of TUNEL positive cells per crypt, at least 50 crypts were counted.
  • mice were injected intraperitoneally with BrdU (5-bromo-2'-deoxyuridine; 50 mg / kg body weight) one hour prior to sacrifice.
  • BrdU 5-bromo-2'-deoxyuridine
  • Small intestine paraffin sections were prepared as described above. Endogenous peroxidase activity was stopped with 3% hydroperoxide for 10 minutes. Sections were treated with 2N HCl for 30 minutes, blocked with 10% goat serum (in PBS) for 30 minutes, and stained overnight at 4 ° C. with mouse anti-BrdU antibody (100 ⁇ , Ab-3, Lab Vision Corporation).
  • Sections were washed and incubated with biotin-conjugated goat anti-mouse IgG (1,500 ⁇ , Kirkegaard & Perry Laboratories) for 1 hour at 37 ° C. and then with streptavidin-conjugated horseradish peroxidase (Thermo Fisher Scientific) for 30 minutes at room temperature. Sections were visualized with 3,3′-diaminobenzidine and hydroperoxide and counterstained with hematoxylin. BrdU positive cells were counted in at least 50 crypts.
  • mice anti-p53 antibody x100, Pab 240, Abcam
  • citrate buffer pH 6.0
  • the antigen was removed by heating.
  • Detection and visualization of the primary antibody was performed by the method described above.
  • Activated caspase 3 was detected by the method described above using a rabbit anti-cleavable caspase 3 antibody (100 ⁇ , 5A1E, Cell Signaling Technology).
  • the bound primary antibody was detected by reacting with biotin-conjugated goat anti-rabbit IgG (1,500 ⁇ , Kirkegaard & Perry Laboratories) at 37 ° C. for 1 hour and visualized by the method described above. Positive cells were counted in at least 50 crypts.
  • villi, crypts and mucosal intrinsic cells were prepared from the small intestine. Briefly, small intestine tissue fragments were incubated with 2 mM EDTA (in PBS) for 30 minutes on ice. After removing EDTA, the sample was vigorously shaken with cold PBS and centrifuged to obtain a supernatant fraction rich in villi and crypts. For isolation of mucosal intrinsic cells, small intestine fragments were treated with PBS containing 10% FCS and 10 mM EDTA at 37 ° C.
  • RNA sample was analyzed for RQ1 RNase-free DNase (Promega) and incubated at 37 ° C. for 45 minutes. After purification by phenol-chloroform extraction, total RNA was ethanol precipitated and resuspended in double distilled water. 2 ⁇ g of total RNA was reverse transcribed using SuperScript III First-Strand Synthesis SuperMix (Invitrogen) and using random hexamers as primers according to the instructions. Primer sequences for PCR are as follows.
  • the primer pair and Taq polymerase (Takara Shuzo) were subjected to PCR performed under the following conditions: 94 ° C for 5 minutes; 97 ° C for 30 seconds, 57 ° C for 30 seconds, 72 ° C for 30 seconds; 72 ° C for 7 minutes.
  • PCR products were separated by agarose gel electrophoresis.
  • Quantitative real-time PCR includes cDNA, Real-time PCR Master Mix (Toyobo), and final volume containing 18S rRNA-specific primers (Applied Biosystems), or Tlr3, Bax or Puma-specific primers (Applied Biosystems) as internal controls In 25 ml solution, it was performed using ABI Prism 7700 sequence detection system (Applied Biosystems). After incubating at 95 ° C. for 10 minutes, the resulting product was amplified at 35 ° C. for 15 seconds, 60 ° C. for 60 seconds, and 50 ° C. for 120 seconds under 35 cycles.
  • RNA was isolated as described above and further separated into small RNA ( ⁇ 200 nucleotides) and large RNA (> 200 nucleotides) fractions using the miRNeasy Mini Kit and RNeasy MinElute Cleanup Kit (Qiagen). The size of the separated RNA was confirmed with Agilent 2100 Bioanalyzer and Agilent RNA 6000 Pico Kit (Agilent Technology).
  • crypts were treated with 100 mg / ml purified RNA or poly I: C complexed with Lipofectamine 2000 reagent or exposed to 10 Gy radiation. For enzyme digestion assays, crypts were incubated with 5 mg / ml DNase-free RNase (Roche Diagnostics). Images of cultured crypts were taken with a light microscope and BZ-II Image Analysis Application.
  • Viability (%) (value of treated crypt cells / value of untreated crypt cells) ⁇ 100
  • cultured crypts were recovered from Matrigel, fixed directly with 4% paraformaldehyde, and stained using in situ Cell Death Detection Kit, Fluorescein. Nuclei were stained with 10 mg / ml DAPI (4 ′, 6′-diamidino-2-phenylindole). Images were taken with a fluorescence microscope and BZ-II Image Analysis Application. For quantification of RNA in the culture supernatant, SUPERase-In RNase Inhibitor (Ambion) was added at a concentration of 0.5 U / ml.
  • RNA extraction was performed using Trizol LS reagent (Invitrogen) according to the instruction manual.
  • the purified RNA was quantified using Agilent 2100 Bioanalyzer and Agilent RNA 6000 Pico Kit.
  • intestinal homogenate The small intestine was collected 6 hours after 10 Gy irradiation, washed thoroughly with sterilized PBS, and homogenized by centrifugation at 15,000 g for 3 minutes with DMEM. The supernatant was used as an intestinal homogenate.
  • intestinal homogenates were incubated with 10 U / ml pronase, 10 U / ml RNase-free-DNase, 5 mg / ml DNase-free RNase (both Roche Diagnostics) for 1 hour at 37 ° C. .
  • HEK293 cells (ATCC) were cultured in DMEM supplemented with 10% fetal calf serum in an incubator at 37 ° C. and 5% CO 2 .
  • HEK293 cells were transiently transfected with Lipofectamine 2000 reagent with ISRE-luciferase reporter plasmid and expression vector plasmid pUNO-hTLR3 or empty control vector pUNO-mcs (Invivogen). After 12 hours, cells were seeded in 96-well flat-bottom plates at 5 ⁇ 10 4 cells per well.
  • RNA Ribonucleic acid
  • RNA Ribonucleic acid
  • 0.5 mg / ml poly I C complexed with Lipofectamine 2000 reagent, or intestinal homogenate.
  • the cells were collected, lysed with passive lysis buffer (Promega), and luciferase activity was measured using Dual-Luciferase Reporter Assay System (Promega). Renilla luciferase plasmid driven by the TK promoter was used as an internal control.
  • CD8 + dendritic cells were purified from the spleen of wild type mice (female, 8-12 weeks old) by magnetic sorting using CD8 + Dendritic Cell Isolation Kit (Miltenyi Biotec). The purity of the sorted dendritic cells was usually> 95%.
  • CD8 + dendritic cells were seeded in 96-well round bottom plates at 5 ⁇ 10 4 cells per well, in 200 ml RPMI 1640 containing 10% fetal calf serum at 37 ° C., 5% CO Cultured in 2 incubators. Cells were pretreated with 100 mM TLR3 / dsRNA binding inhibitor 1 hour prior to stimulation with 10 mg / ml poly I: C. After 12 hours of incubation, expression levels of mRNA encoding IL-12p40, IFN- ⁇ 4, and IFN- ⁇ were measured by quantitative real-time PCR.
  • TLR3 is an exacerbation factor of radiation-induced gastrointestinal syndrome (GIS).
  • GIS radiation-induced gastrointestinal syndrome
  • Tlr3 + / + mice We also examined post-irradiation diarrhea and weight loss (references 1 and 2), which are the main symptoms of GIS. Symptoms of diarrhea in untreated Tlr3 + / + mice gradually worsened after 3 days of TBI, but poly I: C-treated Tlr3 + / + mice showed more severe symptoms from day 1 ( FIG. 1b). In addition, poly I: C treatment significantly promoted weight loss in Tlr3 + / + mice (FIG. 1c). In contrast to Tlr3 + / + mice, Tlr3 ⁇ / ⁇ mice had no effect of poly I: C treatment on diarrhea and weight loss after TBI. Thus, TLR3 stimulation with poly I: C exacerbates radiation-induced GIS. Interestingly, Tlr3 -/- mice, with or without poly I: C treatment, had milder GIS symptoms including mortality, diarrhea, and weight loss compared to Tlr3 + / + mice. there were.
  • TLR3 is specifically activated after TBI and exacerbates GIS.
  • TLR3 mediates crypt cell death in radiation-induced GIS.
  • HPS hematopoietic syndrome
  • Tlr3 + / + and Tlr3 -/- mice were subjected to bone marrow transplantation (BMT) immediately after TBI.
  • BMT bone marrow transplantation
  • TBI was lethal in Tlr3 + / + mice, but Tlr3 ⁇ / ⁇ mice survived under the same conditions (FIG. 2a). This indicated that irradiated Tlr3 ⁇ / ⁇ mice died of HPS.
  • Tlr3 ⁇ / ⁇ BMT mice had significantly less diarrhea symptoms and weight loss (FIGS. 2b, c).
  • FIGS. 2b, c diarrhea symptoms and weight loss
  • Tlr3 - / - and Tlr3 + / + mice that had received a BM cells from a mouse Tlr3 + / + Tlr3 got a BM cells from a mouse - / - were prepared mouse.
  • GIS was relaxed in Tlr3 ⁇ / ⁇ recipient mice regardless of donor cells. This indicated that TLR3 on non-BM cells greatly contributed to the cause of GIS, and that TLR3 on BM cells did not contribute.
  • a TUNEL assay was performed to examine cell death of crypt epithelial cells in the small intestine. As shown in FIG.
  • Tlr3 + / + mice had few cryptomicrocolony in the small intestine, which is an indicator of crypt regeneration, but Tlr3 -/- mice had very many cryptomicrocolony. ( Figure 2e).
  • Tlr3 ⁇ / + mice showed a normal intestinal structure as normal as Tlr3 + / + mice before TBI (FIG. 2g). This indicates that TLR3 is not involved in organ formation in the small intestine.
  • the small intestine of Tlr3 + / + mice showed signs of villous destruction such as blunting, fusion, and epithelial exposure, but in the small intestine of Tlr3 -/- mice The villi structure was preserved (Fig. 2g).
  • Tlr3 ⁇ / ⁇ mice have milder radiation-induced crypt cell death than Tlr3 + / + mice, and as a result, Tlr3 ⁇ / ⁇ mice regenerated crypts on day 3. Shows that normal re-epithelialization of the small intestinal villi occurs on day 5 and prevents GIS-induced death.
  • TLR3 directly induces cell death in the small intestine crypts. Since Tlr3 + / + and Tlr3 ⁇ / ⁇ mice differed in the extent of crypt cell death after TBI, we investigated whether TLR3 is directly involved in this phenomenon. As shown in FIG. 3a, crypt epithelial cells highly expressed Tlr3 mRNA. Thus, how poly I: C acts on crypt cells was examined using an in vitro crypt cell culture method (Reference 10). Small intestine crypts of Tlr3 + / + and Tlr3 ⁇ / ⁇ mice were cultured in a Matrigel-based culture system for 6 days (FIG. 3b).
  • TLR3 induces crypt cell death after TBI via the TRIF-RIP1 pathway.
  • TLR is composed of an extracellular domain, a transmembrane domain, and a cytoplasmic signaling domain known as the Toll / interleukin-1 receptor homology (TIR) domain (Ref. 4).
  • TLR recognizes the ligand through the extracellular domain and induces homotypic binding between the TIR domain of the receptor and the TIR domain of the adapter molecule to transmit a signal.
  • TLR3 does not use the adapter myeloid differentiation factor 88 (MyD88) (11, 12).
  • TLR3 recruits another adapter molecule, TIR domain-containing adapter-inducible interferon beta (TRIF) (TIR-containing adapter molecule-1; also known as TICAM-1), and type 1 interferon (IFN) It induces the activation of interferon regulatory factor 3 (IRF3) for gene transcription (Reference 12). Therefore, we investigated the role of TRIF in GIS. Similar to Tlr3 ⁇ / ⁇ mice, Trif ⁇ / ⁇ mice survived significantly longer after 10-Gy TBI compared to Trif + / + mice. Compared to Trif + / + mice, Trif -/- mice had significantly less diarrhea symptoms and weight loss.
  • TIR domain-containing adapter-inducible interferon beta TIR-containing adapter molecule-1; also known as TICAM-1
  • IFN type 1 interferon
  • IRF3 interferon regulatory factor 3
  • Trif ⁇ / ⁇ mice showed a phenotype similar to Tlr3 ⁇ / ⁇ mice after 10-Gy TBI. Therefore, further, IRF3 - / - mice and Ifnar - / - with the mouse was examined the involvement of the GIS of IRF3 type 1 IFN receptor (IFNAR). Interestingly, there were no significant differences between survival, diarrhea, weight loss, and crypt damage between Irf3 + / + and Irf3 ⁇ / ⁇ mice (FIGS. 4a, b).
  • mice were treated with necrostatin-1 (Nec-1) (reference 15), a RIP1-specific allosteric inhibitor.
  • Nec-1 treatment improved survival and diarrhea, but did not significantly differ in weight loss.
  • Nec-1 treatment significantly increased the number of TUNEL positive crypt cells 6 hours after TBI and increased the number of microcolony 3 days after TBI (FIGS. 4c, d).
  • TLR3 mediates radiation-induced crypt cell death through the TRIF-RIP1 pathway.
  • TLR3 has been thought to induce two different cell deaths in a cell type-specific manner, apoptosis and necrosis (Reference 16).
  • Apoptosis occurs through ligand stimulation of the death receptor and activation of caspase family members in response to intracellular damage (Ref. 16).
  • binding of TRIF and RIP1 induces downstream signaling through FADD (Fas-associated protein with death domain) and caspase 8, which cleaves effector caspase 3 and apoptosis is performed (References 17, 18).
  • necroptosis is a programmed necrosis that is induced by a ligand-activated death domain receptor when caspase function is absent or inhibited (16).
  • Tlr3 + / + mice there was an increase in activated caspase 3-positive cells after TBI and poly I: C administration.
  • Tlr3 ⁇ / ⁇ mice the number of activated caspase 3 positive cells was significantly reduced after TBI and poly I: C administration.
  • crypt cell death induced by the TLR3 pathway after TBI is apoptosis.
  • TLR3-mediated crypt cell death after TBI is p53-dependent.
  • p53 has been suggested to be a major causative factor of radiation-induced crypt cell death (Ref. 3). Ionizing radiation induces phosphorylation of p53 protein, thereby inhibiting ubiquitination and subsequent proteasome degradation (Ref. 3). Phosphorylation of p53 causes nuclear accumulation of transcriptionally activated p53, and as a result, induces pro-apoptotic genes such as Bax (Bcl-2 related X protein) and PUMA (p53-upregulated modulator of apoptosis).
  • Bax Bax
  • PUMA p53-upregulated modulator of apoptosis
  • TLR3 induction is regulated by p53 in several cancer cell lines (Reference 19).
  • poly I C-mediated cell death in p53 ⁇ / ⁇ mice was examined. Similar to p53 + / + mice, intraperitoneal injection of poly I: C induced crypt epithelial cell death in p53 ⁇ / ⁇ mice (FIG. 5e).
  • Intestinal microbiota is not important for crypt cell death after TBI.
  • TLR3 The mammalian gastrointestinal tract contains a variety of microorganisms that make up the gut microbiota. Since TLR3 is known as a viral dsRNA sensor (Refs. 4, 5, and 7), crypt cell death in sterile (GF) mice after TBI was examined. However, there was no difference between GF and SPF mice regarding crypt cell death 6 hours after TBI and regeneration after 3 days. This suggests that the gut microbiota is not involved in the activation of TLR3 after TBI (FIGS. 6a, b).
  • TLR3-dependent crypt cell death In addition to exogenous ligands derived from microorganisms, TLRs have been shown to induce inflammatory responses in response to endogenous ligands released from damaged tissues (Ref. 20). Endogenous ligands derived from these hosts are cellular components or inducible gene products such as intracellular constituents, extracellular matrix proteins, and nucleic acids that exacerbate tissue damage through TLR activation. Therefore, we hypothesized that endogenous molecules are involved in TLR3-mediated crypt cell death after TBI. First, 10-Gy post-TBI small intestine homogenate is interferon-mediated via TLR3. Stimulated response element) It was investigated whether reporter activity could be stimulated.
  • small intestine homogenate significantly stimulated ISRE reporter activity in HEK293 cells when transiently transfected with an expression plasmid encoding TLR3 (FIG. 7a).
  • RNase treatment decreased the ability to stimulate ISRE reporter activity via TLR3 of small intestine homogenate, but not proteinase treatment or DNase treatment.
  • small intestine homogenate RNA stimulates TLR3.
  • crypt cell death caused by gamma irradiation in vitro is p53 dependent.
  • total RNA derived from the culture supernatant was analyzed using an Agilent 2100 bioanalyzer, and the amount and size distribution of nucleic acids were measured.
  • RNA molecules of various lengths ranging from 25 to 1000 nucleotides were detected in p53 + / + organoid culture supernatants after gamma irradiation, but not in p53 -/- organoids (FIG. 7b).
  • RNA isolated from the small intestine after TBI stimulates ISRE reporter activity via TLR3.
  • irradiated small intestine-derived total RNA significantly increased ISRE reporter activity in a TLR3-dependent manner (FIG. 7d).
  • FIG. 7b a small RNA group of 200 nucleotides or less was detected from the culture supernatant of p53 + / + organoid after ⁇ -irradiation.
  • siRNA small interfering RNA
  • RNAs such as host-derived microRNAs are involved in TLR3-mediated crypt cell death after TBI.
  • stimulation of ISRE reporter activity via TLR3 by small RNAs of 200 nucleotides or less was not observed (FIG. 7d).
  • large RNAs induce crypt cell death in vitro. Large RNA induced destruction of crypt villi organoids in Tlr3 + / + mice, but not small RNA, and large RNA did not destroy crypt chorionic organoids in Tlr3 -/- mice (Fig. 7e).
  • TLR3 / dsRNS binding inhibitors suppress mouse GIS.
  • endogenous RNA could induce TLR3-dependent crypt cell death in GIS.
  • (R) -2- (3-chloro-6-fluorobenzo [b] thiophene-2-carboxamide) -3 is a competitive inhibitor of dsRNA-TLR3 binding -Phenylpropanoic acid was used (reference 22). It was also confirmed that this low molecular weight compound suppressed the upregulation of mRNA encoding IL-12p40 in CD8 ⁇ -positive splenic dendritic cells after poly I: C stimulation. This upregulation is completely dependent on TLR3 (Ref. 6).
  • mice with a TLR3 inhibitor prior to TBI significantly increased survival and improved diarrhea and weight loss (FIGS. 8a-c). Furthermore, pretreatment with TLR3 inhibitors significantly reduced crypt cell death and increased microcolony 6 hours and 3 days after TBI (FIG. 8d, e). Inhibitor treatment resulted in a significant increase in survival and GIS symptoms even when performed after TBI (FIGS. 9a-c). Thus, inhibition of TLR3 / dsRNA binding effectively reduced crypt cell death and protected mice from GIS.
  • Apoptosis a review of programmed cell death. Toxicol. Pathol. 35, 495-516 (2007). 19. Taura, M. et al. P53 regulates Toll-like receptor 3 expression and function in human epithelial cell lines.Mol. Cell Biol. 28, 6557-6567 (2008). 20. Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805-820 (2010). 21. Kleinman, M. E. et al. Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature 452, 591-597 (2008). 22. Cheng, K., Wang, X. & Yin, H. Small-molecule inhibitors of the TLR3 / dsRNA complex.

Abstract

 The invention addresses the problem of providing a method for treating or preventing gastrointestinal syndrome due to ionizing radiation. The invention provides a pharmaceutical composition for preventing or treating radiation-induced gastrointestinal syndrome including a Toll-like receptor (TLR) 3 inhibitor or a TLR3-dependent and RIP1-mediated cell death-inducing signal transmission inhibitor.

Description

放射線誘導性消化管症候群の予防又は治療用医薬組成物Pharmaceutical composition for preventing or treating radiation-induced gastrointestinal syndrome
 本発明は、事故による被爆や放射線治療によって生じうる消化管症候群の予防又は治療剤等に関する。 The present invention relates to a preventive or therapeutic agent for gastrointestinal syndrome that may be caused by accidental exposure or radiation therapy.
 電離放射線は、各臓器の放射線への感受性によって、様々な症状を起こす。5Gy以上被爆すると、腸管上皮が障害され、吸収力低下による下痢や、細菌感染のため腸炎を発症し亜急性に死亡する。この放射線誘導性消化管症候群(gastrointestinal syndrome; GIS)では、腸管上皮細胞の幹細胞を含む陰窩が障害を受けやすい。放射線によって腸陰窩の細胞内のDNAが損傷を受けると、がん抑制遺伝子p53が活性化され、DNA損傷を修復する。損傷が重度で、修復が不可能である場合には、p53依存的に細胞死が誘導され、陰窩の細胞が死滅するため上皮細胞の供給ができなくなり、致死的となると考えられている。 Ionizing radiation causes various symptoms depending on the sensitivity of each organ to radiation. When exposed to 5 Gy or more, the intestinal epithelium is damaged, causing diarrhea due to decreased absorption and enteritis due to bacterial infection, resulting in subacute death. In this radiation-induced gastrointestinal syndrome (gastrointestinal syndrome; GIS), crypts containing intestinal epithelial stem cells are susceptible to damage. When radiation damages DNA in the cells of the intestinal crypts, the tumor suppressor gene p53 is activated and repairs the DNA damage. If the damage is severe and cannot be repaired, cell death is induced in a p53-dependent manner, and the cells of the crypt are killed, making it impossible to supply epithelial cells.
 そのため、GISの治療標的として、p53が考えられていた。しかしながら、p53の欠損は、マウスをGISから保護しないことが報告されている(非特許文献1及び2)。p53-/-マウスの陰窩細胞では、放射線照射によるp53仲介性細胞死が起こらなくなる一方、DNA修復機能も失われる。そのためp53-/-陰窩細胞は、p53非依存的に増殖死(reproductive death)又は分裂死(mitotic death)する(非特許文献1及び2)。
 したがって、GISの治療薬は、p53によるDNA修復活性を喪失させないものでなければならないが、このような治療薬はなく、これまでGISに対する有効な治療方法はなかった。
Therefore, p53 was considered as a therapeutic target for GIS. However, it has been reported that deficiency of p53 does not protect mice from GIS (Non-patent Documents 1 and 2). In p53 − / − mice, crypt cells do not undergo p53-mediated cell death upon irradiation, but also lose their DNA repair function. Therefore, p53 − / − crypt cells are reproductive death or mitotic death independent of p53 (Non-patent Documents 1 and 2).
Therefore, a therapeutic agent for GIS must not cause loss of DNA repair activity by p53, but there is no such therapeutic agent, and there has been no effective therapeutic method for GIS.
 本発明は、放射線消化管誘導性症候群の治療又は予防方法を提供することを課題とする。 An object of the present invention is to provide a method for treating or preventing radiation digestive tract-induced syndrome.
 本発明者らは、上記課題を解決するために研究を重ねた結果、TLR3欠損マウスは、10Gyのガンマ線の全身照射に抵抗性を示すことを見出した。10Gyのガンマ線を照射すると、小腸陰窩の細胞には、p53依存的な細胞死が誘導される。
 本発明者らは、この細胞死によって破壊された細胞からRNAが漏出し、陰窩の上皮細胞のTLR3に結合することによって、TLR3依存性のシグナル伝達が活性化され、その結果、さらに広範な細胞死が誘導されて陰窩が消滅し、消化管症候群が進行するというメカニズムを明らかにした(図10)。
As a result of repeated studies to solve the above problems, the present inventors have found that TLR3-deficient mice are resistant to whole body irradiation with 10 Gy gamma rays. Irradiation with 10 Gy gamma rays induces p53-dependent cell death in crypt cells of the small intestine.
We leaked RNA from cells destroyed by this cell death, and activated TLR3-dependent signaling by binding to TLR3 of crypt epithelial cells, resulting in a wider spectrum. The mechanism by which cell death was induced, crypts disappeared, and gastrointestinal syndrome progressed was clarified (FIG. 10).
 さらに、本発明者らは、TLR3と二本鎖RNAの相互作用阻害剤である(R)-2-(3-chloro-6-fluorobenzo [b] thiophene-2-carboxamido)-3-phenylpropanoic acidを投与したところ、TLR3欠損マウスと同様に、10Gyのガンマ線照射後に誘導される消化管症候群を抑制できることを確認した。(R)-2-(3-chloro-6-fluorobenzo [b] thiophene-2-carboxamido)-3-phenylpropanoic acidは、照射前に投与するとより効果的に消化管症候群の発症を抑制したが、照射後に投与しても消化管症候群の悪化を有意に抑制した。 Furthermore, the present inventors added (R) -2- (3-chloro-6-fluorobenzo [b] thiophene-2-carboxamido) -3-phenylpropanoic acid, which is an inhibitor of the interaction between TLR3 and double-stranded RNA. After administration, it was confirmed that the gastrointestinal syndrome induced after 10 Gy gamma irradiation could be suppressed as in TLR3-deficient mice. (R) -2- (3-chloro-6-fluorobenzo [b] thiophene-2-carboxamido) -3-phenylpropanoic acid suppressed the onset of gastrointestinal syndrome more effectively when administered before irradiation, Even after administration, the deterioration of gastrointestinal syndrome was significantly suppressed.
 また、TLR3のシグナル伝達経路としては、図11に示すように、IFNを介して細胞死を誘導する経路が知られているが、この経路に関与する遺伝子を欠損させたマウス(Trif-/-、Irf3-/-、及びInfar-/-マウス)を用いて調べたところ、この経路は、放射線誘導性の陰窩の細胞死には関与しないことを確認した(図4)。 Further, as shown in FIG. 11, a pathway for inducing cell death via IFN is known as a signal transduction pathway of TLR3. A mouse (Trif − / −) lacking a gene involved in this pathway is known. , Irf3 − / − , and Infar − / − mice) confirmed that this pathway was not involved in radiation-induced crypt cell death (FIG. 4).
 細胞死を誘導するTLR3のシグナル伝達経路としては、図12に示される経路も知られている。そこで、RIP1を特異的に阻害することが知られているNecrostatin-1(Nec-1)を投与したところ、致死率、下痢の重症度、及び体重減少がいずれも改善され、小腸陰窩の細胞死も抑制されることが確認された。このことは、放射線誘導性の陰窩の細胞死が図12に示される経路で誘導されることと、この経路のシグナル伝達を阻害することによって、消化管症候群を予防又は治療できることを強く示唆した。 As a signal transduction pathway of TLR3 that induces cell death, the pathway shown in FIG. 12 is also known. Therefore, administration of Necrostatin-1 (Nec-1), which is known to specifically inhibit RIP1, all improved mortality, severity of diarrhea, and weight loss. It was confirmed that death was also suppressed. This strongly suggested that radiation-induced crypt cell death was induced by the pathway shown in FIG. 12, and that gastrointestinal syndrome could be prevented or treated by inhibiting signal transduction of this pathway. .
 よって、本発明は、
〔1〕Toll様受容体(TLR)3阻害剤を含む、放射線誘導性消化管症候群の予防又は治療用医薬組成物;
〔2〕前記TLR3阻害剤は、TLR3と二本鎖RNAとの相互作用を阻害する物質である、上記〔1〕に記載の放射線誘導性消化管症候群の予防又は治療用医薬組成物;
〔3〕前記TLR3と二本鎖RNAとの相互作用を阻害する物質は、下記式(I)で表される化合物、その塩、又はその溶媒和物である、上記〔2〕に記載の放射線誘導性消化管症候群の予防又は治療用医薬組成物、
Figure JPOXMLDOC01-appb-C000003
[式中、
 nは、1から3の整数であり;
 Arは、置換基を有していてもよいフェニル、インドール、又はナフタレンであり;
 Arは、置換基を有していてもよいインドール-2-yl、又はナフタレニルであり;
 Xは-NR-、-O-、又は-S-であり;
 Z及びZは、それぞれ独立に=NR、=O、又は=Sであり;
 Xは、-NR、-OR、又は-SRであり;
 Rは、それぞれ独立に水素、アルキル基、又は窒素保護基であり;
 Rは、水素、又はアルキル基であり;
 Rは、それぞれ独立に水素、アルキル基、又は水酸基保護基であり;及び
 Rは水素、アルキル基、又はチオール保護基を表す。];
〔4〕前記化合物(I)が以下の式(II)で表される、上記〔3〕に記載の放射線誘導性消化管症候群の予防又は治療用医薬組成物、
Figure JPOXMLDOC01-appb-C000004
[式中、
 X及びXは、それぞれ独立に-NR-、-O-、又は-S-であり;
 Z及びZは、それぞれ独立に=NR、=O、又は=Sであり;
 Xは-NR、-OR、又は-SRであり;
 R、R、R及びRは、それぞれ独立に水素、アルキル基、-OR、ハロゲン、-NR、又はSRであり、但し、R乃至Rの少なくとも1つは水素ではなく;
 Rは、水素又はアルキル基であり;
 Rは、それぞれ独立に水素、アルキル基、又は水酸基保護基であり;及び
 Rは、水素、アルキル基、又はチオール保護基を表す。];
〔5〕前記化合物(II)が(R)-2-(3-chloro-6-fluorobenzo [b] thiophene-2-carboxamido)-3-phenylpropanoic acidである、上記〔3〕に記載の放射線誘導性消化管症候群の予防又は治療用医薬組成物;
〔6〕前記Toll様受容体(TLR)3阻害剤が、TLR3のドミナントネガティブ変異体、又は抗TLR3抗体である、上記〔1〕に記載の放射線誘導性消化管症候群の予防又は治療用医薬組成物;
〔7〕前記Toll様受容体(TLR)3阻害剤が、TLR3遺伝子の発現を抑制する、RNAi効果を有する二本鎖核酸、アンチセンス核酸、リボザイム、miRNA及びこれをコードする核酸からなる群より選択される核酸である、上記〔1〕に記載の放射線誘導性消化管症候群の予防又は治療用医薬組成物;
〔8〕TLR3依存性、且つRIP1介在性の細胞死誘導シグナル伝達の阻害剤を含む、放射線誘導性消化管症候群の予防又は治療用医薬組成物;
〔9〕前記TLR3依存性、且つRIP1介在性の細胞死誘導シグナル伝達の阻害剤は、RIP1、RIP3及びFADDのいずれかの阻害剤である、上記〔8〕に記載の放射線誘導性消化管症候群の予防又は治療用医薬組成物;
〔10〕前記RIP1、RIP3及びFADDのいずれかの阻害剤は、Necrostatin-1、その塩、又はその溶媒和物である、上記〔9〕に記載の放射線誘導性消化管症候群の予防又は治療用医薬組成物;
〔11〕前記RIP1、RIP3及びFADDのいずれかの阻害剤は、RIP1、RIP3及びFADDのいずれかのドミナントネガティブ変異体、又は、RIP1、RIP3及びFADDのいずれかに対する抗体である、上記〔9〕に記載の放射線誘導性消化管症候群の予防又は治療用医薬組成物;
〔12〕前記RIP1、RIP3及びFADDのいずれかの阻害剤は、RIP1、RIP3及びFADDのいずれかの遺伝子の発現を阻害する、RNAi効果を有する二本鎖核酸、アンチセンス核酸、リボザイム、miRNA及びこれをコードする核酸からなる群より選択される核酸である、上記〔9〕に記載の放射線誘導性消化管症候群の予防又は治療用医薬組成物;
〔13〕放射線誘導性消化管症候群の予防又は治療剤のスクリーニング方法であって、
 候補化合物とTLR3を発現する細胞とを接触させてインキュベートする工程と、
 前記候補化合物によるTLR3と二本鎖RNAとの結合阻害、又は、前記候補化合物によるTLR3依存性且つRIP1介在性の細胞死誘導シグナル伝達阻害を測定する工程と、を含む方法、
に関する。
Thus, the present invention
[1] A pharmaceutical composition for preventing or treating radiation-induced gastrointestinal syndrome, comprising a Toll-like receptor (TLR) 3 inhibitor;
[2] The pharmaceutical composition for prevention or treatment of radiation-induced gastrointestinal tract syndrome according to [1] above, wherein the TLR3 inhibitor is a substance that inhibits the interaction between TLR3 and double-stranded RNA;
[3] The radiation according to [2], wherein the substance that inhibits the interaction between TLR3 and double-stranded RNA is a compound represented by the following formula (I), a salt thereof, or a solvate thereof: A pharmaceutical composition for preventing or treating inducible gastrointestinal syndrome,
Figure JPOXMLDOC01-appb-C000003
[Where:
n is an integer from 1 to 3;
Ar 1 is an optionally substituted phenyl, indole, or naphthalene;
Ar 2 is optionally substituted indole-2-yl or naphthalenyl;
X 2 is —NR a —, —O—, or —S—;
Z 1 and Z 2 are each independently ═NR a , ═O, or ═S;
X 3 is —NR a R b , —OR c , or —SR d ;
Each R a is independently hydrogen, an alkyl group, or a nitrogen protecting group;
R b is hydrogen or an alkyl group;
R c is independently hydrogen, an alkyl group, or a hydroxyl protecting group; and R d represents hydrogen, an alkyl group, or a thiol protecting group. ];
[4] The pharmaceutical composition for prevention or treatment of radiation-induced gastrointestinal syndrome according to [3], wherein the compound (I) is represented by the following formula (II):
Figure JPOXMLDOC01-appb-C000004
[Where:
X 1 and X 2 are each independently —NR a —, —O—, or —S—;
Z 1 and Z 2 are each independently ═NR a , ═O, or ═S;
X 3 is —NR a R b , —OR c , or —SR d ;
R 1 , R 2 , R 3 and R 4 are each independently hydrogen, an alkyl group, —OR c , halogen, —NR a R b , or SR d , provided that at least one of R 1 to R 4 Is not hydrogen;
R b is hydrogen or an alkyl group;
R c is independently hydrogen, an alkyl group, or a hydroxyl protecting group; and R d represents hydrogen, an alkyl group, or a thiol protecting group. ];
[5] The radiation-inducing property according to [3], wherein the compound (II) is (R) -2- (3-chloro-6-fluorobenzo [b] thiophene-2-carboxamido) -3-phenylpropanoic acid A pharmaceutical composition for preventing or treating gastrointestinal syndrome;
[6] The pharmaceutical composition for prevention or treatment of radiation-induced gastrointestinal syndrome according to [1], wherein the Toll-like receptor (TLR) 3 inhibitor is a dominant negative mutant of TLR3 or an anti-TLR3 antibody. object;
[7] The Toll-like receptor (TLR) 3 inhibitor is a group consisting of a double-stranded nucleic acid having an RNAi effect, an antisense nucleic acid, a ribozyme, a miRNA and a nucleic acid encoding the same, which suppresses the expression of the TLR3 gene. The pharmaceutical composition for prevention or treatment of radiation-induced gastrointestinal syndrome according to [1], which is a selected nucleic acid;
[8] A pharmaceutical composition for preventing or treating radiation-induced gastrointestinal syndrome, comprising an inhibitor of TLR3-dependent and RIP1-mediated cell death induction signaling;
[9] The radiation-induced gastrointestinal syndrome according to [8], wherein the TLR3-dependent and RIP1-mediated cell death induction signaling inhibitor is any one of RIP1, RIP3 and FADD. A pharmaceutical composition for the prevention or treatment of
[10] The inhibitor for any of RIP1, RIP3 and FADD is Necrostatin-1, a salt thereof, or a solvate thereof, for prevention or treatment of radiation-induced gastrointestinal syndrome according to [9] above A pharmaceutical composition;
[11] The inhibitor of any of RIP1, RIP3, and FADD is a dominant negative mutant of any of RIP1, RIP3, and FADD, or an antibody to any of RIP1, RIP3, and FADD, [9] A pharmaceutical composition for preventing or treating radiation-induced gastrointestinal tract syndrome according to claim 1;
[12] The inhibitor of any of RIP1, RIP3, and FADD is a double-stranded nucleic acid having an RNAi effect, an antisense nucleic acid, a ribozyme, a miRNA, and the like that inhibits the expression of any of the genes RIP1, RIP3, and FADD. The pharmaceutical composition for prevention or treatment of radiation-induced gastrointestinal tract syndrome according to [9] above, which is a nucleic acid selected from the group consisting of nucleic acids encoding this;
[13] A screening method for a preventive or therapeutic agent for radiation-induced gastrointestinal syndrome,
Contacting the candidate compound with a cell expressing TLR3 and incubating;
Measuring the inhibition of binding between TLR3 and double-stranded RNA by the candidate compound, or the inhibition of TLR3-dependent and RIP1-mediated cell death induction signaling by the candidate compound,
About.
 本発明によれば、p53のDNA修復能を維持したまま、腸陰窩の細胞死を抑制して、電離放射線による消化管症候群の治療又は予防をすることができる。
 本発明に係る医薬組成物は、放射線照射前、照射後のいずれに投与しても奏功するので、放射線治療に先立って投与しても、事故等により被爆を受けた後に投与しても有用である。
According to the present invention, intestinal crypt cell death can be suppressed while maintaining the DNA repair ability of p53, and gastrointestinal syndrome due to ionizing radiation can be treated or prevented.
Since the pharmaceutical composition according to the present invention is effective before administration or after irradiation, it is useful even if it is administered prior to radiation treatment or after exposure to an accident. is there.
TLR3は放射線誘導性GISを悪化させる。(a) poly I:Cによる前処理あり又はなしのTBI後のTlr3+/+マウス及びTlr3-/-マウスのKaplan-Meier生存率解析。n=5;*p<0.05、**p<0.01(ログランク検定)。(b) poly I:Cによる前処理あり又はなしのTBI後のTlr3+/+マウス及びTlr3-/-マウスの下痢の重症度。n=5、結果は平均値±標準誤差;*p<0.05、**p<0.01(unpaired two-tailed Student's t-test)。(c) poly I:Cによる前処理あり又はなしのTBIから5日後のTlr3+/+マウス及びTlr3-/-マウスの体重減少。n=5、結果は平均値±標準誤差;*p<0.05、**p<0.01(unpaired two-tailed Student's t-test)。(d)及び(e)は、それぞれ、TBI後、0日目と5日目の血液中及びBMの白血球数。n=3;結果は平均値±標準誤差。(f) 0日目と5日目の脛骨のH&E染色。スケールバーは200μm。結果は3回の独立した実験の代表例である。TLR3 exacerbates radiation-induced GIS. (a) Kaplan-Meier survival analysis of Tlr3 + / + and Tlr3 − / − mice after TBI with or without pretreatment with poly I: C. n = 5; * p <0.05, ** p <0.01 (log rank test). (b) Severity of diarrhea after TBI with or without pretreatment with poly I: C and Tlr3 + / + and Tlr3 − / − mice. n = 5, results are mean ± standard error; * p <0.05, ** p <0.01 (unpaired two-tailed Student's t-test). (c) Weight loss of Tlr3 + / + and Tlr3 − / − mice 5 days after TBI with or without poly I: C pretreatment. n = 5, results are mean ± standard error; * p <0.05, ** p <0.01 (unpaired two-tailed Student's t-test). (d) and (e) are the white blood cell counts in blood and BM on day 0 and day 5 after TBI, respectively. n = 3; results are mean ± standard error. (f) H & E staining of tibia on day 0 and day 5. The scale bar is 200 μm. The results are representative of 3 independent experiments. Tlr3-/-マウスは、放射線誘導性の陰窩細胞死の減少によりGISを回避する。(a) TBI及び同種BMTを行ったTlr3+/+マウス及びTlr3-/-マウスのKaplan-Meier生存率解析。n=5;**p<0.01(ログランク検定)。(b) Tlr3+/+マウス及びTlr3-/-マウスの下痢の重症度。n=5;結果は平均値±標準誤差;*p<0.05、**p<0.01(unpaired two-tailed Student's t-test)。(c) Tlr3+/+マウス及びTlr3-/-マウスの5日目の体重減少。n=5;結果は平均値±標準誤差; **p<0.01(unpaired two-tailed Student's t-test)。(d) Tlr3+/+マウス及びTlr3-/-マウスの小腸の0時間及び6時間のTUNEL染色。TUNEL染色された上皮は緑色蛍光を示す。核はDAPI(青色)で染色した。スケールバーは100μm。右側のパネルは、TUNEL陽性細胞数を示す。n=4;結果は平均値±標準誤差; **p<0.01(unpaired two-tailed Student's t-test)。(e) Tlr3+/+マウス及びTlr3-/-マウスの0日目及び3日目の小腸陰窩のH&E染色。スケールバーは100μm。アスタリスクはマイクロコロニーを示す。右のパネルはマイクロコロニーの数を示す。n=3;結果は平均値±標準誤差; **p<0.01(unpaired two-tailed Student's t-test)。(f) Tlr3+/+マウス及びTlr3-/-マウスの0日目及び3日目の小腸陰窩におけるBrdUの免疫組織化学的検出。スケールバーは100μm。右のパネルはBrdUを取り込んだ細胞の数を示す。n=3;結果は平均値±標準誤差; **p<0.01(unpaired two-tailed Student's t-test)。(g) 0日目及び5日目のTlr3+/+マウス及びTlr3-/-マウスの小腸のH&E染色。スケールバーは100μm。結果は3回の独立した実験の代表例である。Tlr3 − / − mice avoid GIS by reducing radiation-induced crypt cell death. (a) Kaplan-Meier survival analysis of Tlr3 + / + and Tlr3 − / − mice subjected to TBI and allogeneic BMT. n = 5; ** p <0.01 (log rank test). (b) Severity of diarrhea in Tlr3 + / + and Tlr3 − / − mice. n = 5; results are mean ± standard error; * p <0.05, ** p <0.01 (unpaired two-tailed Student's t-test). (c) Weight loss on day 5 of Tlr3 + / + and Tlr3 − / − mice. n = 5; results are mean ± standard error; ** p <0.01 (unpaired two-tailed Student's t-test). (d) 0 and 6 hour TUNEL staining of the small intestine of Tlr3 + / + and Tlr3 − / − mice. TUNEL-stained epithelium exhibits green fluorescence. Nuclei were stained with DAPI (blue). Scale bar is 100 μm. The right panel shows the number of TUNEL positive cells. n = 4; results are mean ± standard error; ** p <0.01 (unpaired two-tailed Student's t-test). (e) H & E staining of small intestinal crypts on day 0 and day 3 of Tlr3 + / + and Tlr3 − / − mice. Scale bar is 100 μm. An asterisk indicates a microcolony. The right panel shows the number of microcolonies. n = 3; results are mean ± standard error; ** p <0.01 (unpaired two-tailed Student's t-test). (f) Immunohistochemical detection of BrdU in the small intestinal crypts on day 0 and day 3 of Tlr3 + / + and Tlr3 − / − mice. Scale bar is 100 μm. The right panel shows the number of cells that have incorporated BrdU. n = 3; results are mean ± standard error; ** p <0.01 (unpaired two-tailed Student's t-test). (g) H & E staining of the small intestine of Tlr3 + / + and Tlr3 − / − mice on day 0 and day 5. Scale bar is 100 μm. The results are representative of 3 independent experiments. TLR3をリガンドで刺激すると、小腸陰窩における細胞死が直接誘導される。(a) Tlr3+/+マウス及びTlr3-/-マウスの小腸のTlr3のmRNAのRT-PCR(上段)及び定量的リアルタイムPCR(下段)。Cr:陰窩。LP:粘膜固有細胞。M:サイズマーカー。SP:脾臓。V:絨毛。W:全腸。n=3;結果は平均値±標準誤差。(b) Tlr3+/+オルガノイド及びTlr3-/-オルガノイドの代表的な像。陰窩は、培養6日後にpoly I:Cと共にインキュベートした。スケールバーは100μm。(c) Tlr3+/+オルガノイド及びTlr3-/-オルガノイドのpoly I:C処理後の生存率。n=4;結果は平均値±標準誤差; *p<0.05(unpaired two-tailed Student's t-test)。(d) Tlr3+/+オルガノイド及びTlr3-/-オルガノイドのTUNEL染色。TUNEL染色された上皮は緑色蛍光を示す。核はDAPIで染色した(青色)。囲みは、陰窩様ドメインの拡大図である。スケールバーは100μm。(e) Tlr3+/+マウス及びTlr3-/-マウスのpoly I:C投与から6時間後の小腸陰窩のTUNEL染色。TUNEL染色された上皮は緑色蛍光を示す。核はDAPIで染色した(青色)。スケールバーは100μm。右のパネルは、TUNEL陽性細胞の数を示す。結果は平均値±標準誤差; **p<0.01(unpaired two-tailed Student's t-test)。結果は3回の独立した実験の代表例である。Stimulation of TLR3 with a ligand directly induces cell death in the small intestinal crypt. (a) RT-PCR (upper) and quantitative real-time PCR (lower) of Tlr3 mRNA in the small intestine of Tlr3 + / + and Tlr3 − / − mice. Cr: crypts. LP: Mucosal intrinsic cells. M: Size marker. SP: Spleen. V: Villi. W: Whole intestine. n = 3; results are mean ± standard error. (b) Representative images of Tlr3 + / + organoids and Tlr3 − / − organoids. The crypts were incubated with poly I: C after 6 days in culture. Scale bar is 100 μm. (c) Survival rate of Tlr3 + / + organoid and Tlr3 − / − organoid after poly I: C treatment. n = 4; results are mean ± standard error; * p <0.05 (unpaired two-tailed Student's t-test). (d) TUNEL staining of Tlr3 + / + organoid and Tlr3 − / − organoid. TUNEL-stained epithelium exhibits green fluorescence. Nuclei were stained with DAPI (blue). The box is an enlarged view of the crypt-like domain. Scale bar is 100 μm. (e) TUNEL staining of small intestinal crypts 6 hours after poly I: C administration of Tlr3 + / + mice and Tlr3 − / − mice. TUNEL-stained epithelium exhibits green fluorescence. Nuclei were stained with DAPI (blue). Scale bar is 100 μm. The right panel shows the number of TUNEL positive cells. Results are mean ± standard error; ** p <0.01 (unpaired two-tailed Student's t-test). The results are representative of 3 independent experiments. TLR3は、TRIF-RIP1経路を介した放射線誘導性陰窩細胞死を仲介する。(a) TBI及び同種BMTの6時間後におけるTlr3-/-マウス、Inf3-/-マウス、及びIfnar3-/-マウスの小腸陰窩のTUNEL染色。TUNEL染色された上皮は緑色蛍光を示す。核はDAPIで染色した(青色)。スケールバーは100μm。右のパネルはTUNEL陽性細胞の数を示す。n=4;結果は平均値±標準誤差; **p<0.01(unpaired two-tailed Student's t-test)。(b) Tlr3-/-マウス、Inf3-/-マウス、及びIfnar3-/-マウスの3日目の小腸陰窩のH&E染色。スケールバーは100μm。アスタリスクはマイクロクロニーを示す。右のパネルは、マイクロコロニーの数を示す。n=3-5;結果は平均値±標準誤差; **p<0.01(unpaired two-tailed Student's t-test)。(c) Nec-1で処理した、又は処理していないマウスのTBI及び同種BMTから6時間後の小腸陰窩のTUNEL染色。TUNEL染色された上皮は緑色蛍光を示す。核はDAPIで染色した(青色)。スケールバーは100μm。右のパネルは、TUNEL陽性細胞の数を示す。n=5;結果は平均値±標準誤差; **p<0.01(unpaired two-tailed Student's t-test)。(d) Nec-1で処理した、又は処理していないマウスの3日後の小腸陰窩のTUNEL染色。スケールバーは100μm。アスタリスクはマイクロコロニーを示す。右のパネルは、マイクロコロニーの数を示す。n=5;結果は平均値±標準誤差; **p<0.01(unpaired two-tailed Student's t-test)。結果は3回の独立した実験の代表例である。TLR3 mediates radiation-induced crypt cell death via the TRIF-RIP1 pathway. (a) TUNEL staining of small intestinal crypts of Tlr3 − / − mice, Inf3 − / − mice, and Ifnar3 − / − mice 6 hours after TBI and allogeneic BMT. TUNEL-stained epithelium exhibits green fluorescence. Nuclei were stained with DAPI (blue). Scale bar is 100 μm. The right panel shows the number of TUNEL positive cells. n = 4; results are mean ± standard error; ** p <0.01 (unpaired two-tailed Student's t-test). (b) H & E staining of small intestinal crypts on day 3 of Tlr3 − / − mice, Inf3 − / − mice, and Ifnar3 − / − mice. Scale bar is 100 μm. Asterisk indicates microchrony. The right panel shows the number of microcolonies. n = 3-5; results are mean ± standard error; ** p <0.01 (unpaired two-tailed Student's t-test). (c) TUNEL staining of small intestinal crypts 6 hours after TBI and allogeneic BMT of mice treated or not treated with Nec-1. TUNEL-stained epithelium exhibits green fluorescence. Nuclei were stained with DAPI (blue). Scale bar is 100 μm. The right panel shows the number of TUNEL positive cells. n = 5; results are mean ± standard error; ** p <0.01 (unpaired two-tailed Student's t-test). (d) TUNEL staining of small intestinal crypts 3 days after mice treated with or without Nec-1. Scale bar is 100 μm. An asterisk indicates a microcolony. The right panel shows the number of microcolonies. n = 5; results are mean ± standard error; ** p <0.01 (unpaired two-tailed Student's t-test). The results are representative of 3 independent experiments. TBI後のTLR3仲介性陰窩細胞死はp53依存的である。(a) TBI及び同種BMTから6時間後のp53+/+マウス及びp53-/-マウス小腸陰窩のTUNEL染色。TUNEL染色された上皮は緑色蛍光を示す。核はDAPIで染色した(青色)。スケールバーは100μm。下のパネルは、TUNEL陽性細胞の数を示す。n=3;結果は平均値±標準誤差; *p<0.05(unpaired two-tailed Student's t-test)。(b) p53+/+マウス及びp53-/-マウスの小腸におけるBax及びPUMAをコードするmRNAの定量的リアルタイムPCR。n=3;結果は平均値±標準誤差; *p<0.05、**p<0.01(unpaired two-tailed Student's t-test)。(c) TBI及び同種移植から0時間又は6時間後のTlr3+/+マウス及びTlr3-/-マウスの小腸陰窩におけるp53の免疫組織化学的検出。スケールバーは100μm。下のパネルは、p53陽性細胞の数を示す。n=3;結果は平均値±標準誤差。N.D.は検出なし。(d) Tlr3+/+マウス及びTlr3-/-マウスの小腸におけるBax及びPUMAをコードするmRNAの定量的リアルタイムPCR。n=3;結果は平均値±標準誤差; *p<0.05、**p<0.01(unpaired two-tailed Student's t-test)。(e) p53+/+マウス及びp53-/-マウスのpoly I:C投与から6時間後の小腸陰窩のTUNEL染色。TUNEL染色された上皮は緑色蛍光を示す。核はDAPIで染色した(青色)。スケールバーは100μm。右のパネルは、TUNEL陽性細胞の数を示す。n=3;結果は平均値±標準誤差;結果は3回の独立した実験の代表例である。TLR3-mediated crypt cell death after TBI is p53-dependent. (a) TUNEL staining of small intestinal crypts of p53 + / + mice and p53 − / − mice 6 hours after TBI and allogeneic BMT. TUNEL-stained epithelium exhibits green fluorescence. Nuclei were stained with DAPI (blue). Scale bar is 100 μm. The lower panel shows the number of TUNEL positive cells. n = 3; results are mean ± standard error; * p <0.05 (unpaired two-tailed Student's t-test). (b) Quantitative real-time PCR of mRNA encoding Bax and PUMA in the small intestine of p53 + / + and p53 − / − mice. n = 3; results are mean ± standard error; * p <0.05, ** p <0.01 (unpaired two-tailed Student's t-test). (c) Immunohistochemical detection of p53 in the small intestine crypts of Tlr3 + / + and Tlr3 − / − mice 0 or 6 hours after TBI and allogeneic transplantation. Scale bar is 100 μm. The lower panel shows the number of p53 positive cells. n = 3; results are mean ± standard error. ND is not detected. (d) Quantitative real-time PCR of mRNA encoding Bax and PUMA in the small intestine of Tlr3 + / + and Tlr3 − / − mice. n = 3; results are mean ± standard error; * p <0.05, ** p <0.01 (unpaired two-tailed Student's t-test). (e) TUNEL staining of small intestinal crypts 6 hours after administration of poly I: C in p53 + / + mice and p53 − / − mice. TUNEL-stained epithelium exhibits green fluorescence. Nuclei were stained with DAPI (blue). Scale bar is 100 μm. The right panel shows the number of TUNEL positive cells. n = 3; results are mean ± standard error; results are representative of 3 independent experiments. 腸内微生物叢はTBI後の陰窩細胞死と関連しない。(a)TBI及びBMT後6時間におけるSPFマウス及びGFマウスの小腸陰窩のTUNEL染色。TUNEL染色された上皮は緑色蛍光を示す。核はDAPIで染色した(青色)。スケールバーは100μm。右のパネルは、TUNEL陽性細胞の数を示す。n=3;結果は平均値±標準誤差。(b) SPFマウス及びGFマウスの3日目の陰窩のH&E染色。スケールバーは100μm。右のパネルはマイクロコロニーの数を示す。n=3;結果は平均値±標準誤差。結果は2回の独立した実験の代表例である。Intestinal microbiota is not associated with crypt cell death after TBI. (a) TUNEL staining of small intestine crypts of SPF mice and GF mice 6 hours after TBI and BMT. TUNEL-stained epithelium exhibits green fluorescence. Nuclei were stained with DAPI (blue). Scale bar is 100 μm. The right panel shows the number of TUNEL positive cells. n = 3; results are mean ± standard error. (b) H & E staining of crypts on day 3 of SPF and GF mice. Scale bar is 100 μm. The right panel shows the number of microcolonies. n = 3; results are mean ± standard error. The results are representative of two independent experiments. 放射線照射された陰窩細胞から、細胞内RNAがp53依存的に漏出し、これがTLR3仲介性陰窩細胞死を誘導する。(a) ヒトTLR3発現ベクターとISRE-ルシフェラーゼレポータープラスミドをHEK293細胞に一過性にトランスフェクトし(HEK293-hTLR3)、放射線照射した小腸のホモジネート、又はプロナーゼ、DNase、若しくはRNaseで処理したホモジネートと共にインキュベートした。Triplicateでレポーター活性を測定した。結果は平均値±標準誤差; *p<0.05(unpaired two-tailed Student's t-test)。(b) 照射1日後のp53+/+マウス及びp53-/-マウスの陰窩絨毛オルガノイドの培養上清における全RNAのサイズ分布の定量化。(c) 照射1日後のTlr3+/+マウス及びTlr3-/-マウスの陰窩絨毛オルガノイドの代表的な像。陰窩は、RNase処理、又は未処理であった。スケールバーは200μm。右のパネルは生存率を示す。生存率はtriplicateで測定した。結果は、平均値±標準誤差。N.S.は有意差なし。*p<0.05(unpaired two-tailed Student's t-test)。(d) HEK293-hTLR3細胞を、培地のみ(Med)、精製RNA、又はpoly I:Cと共に12時間インキュベートした。レポーター活性をtriplicateで測定した。結果は、平均値±標準誤差。*p<0.05、**p<0.01(unpaired two-tailed Student's t-test)。(e) Tlr3+/+マウス及びTlr3-/-マウスのMed又は精製RNAで処理してから2日後のin vitro培養した陰窩の代表的な像(左)と生存率(右)。スケールバーは200μm。生存率はtriplicateで測定した。結果は平均値±標準誤差。*p<0.05、**p<0.01(unpaired two-tailed Student's t-test)。結果は3回の独立した実験の代表例である。Intracellular RNA leaks from irradiated crypt cells in a p53-dependent manner, which induces TLR3-mediated crypt cell death. (a) Transiently transfect HEK293 cells with human TLR3 expression vector and ISRE-luciferase reporter plasmid (HEK293-hTLR3) and incubate with homogenate of irradiated small intestine or treated with pronase, DNase, or RNase did. Reporter activity was measured with Triplicate. Results are mean ± standard error; * p <0.05 (unpaired two-tailed Student's t-test). (b) Quantification of the size distribution of total RNA in the culture supernatant of crypt chorionic organoids of p53 + / + and p53 − / − mice one day after irradiation. (c) Representative images of crypt villi organoids of Tlr3 + / + and Tlr3 − / − mice one day after irradiation. The crypts were RNase treated or untreated. The scale bar is 200 μm. The right panel shows the survival rate. Survival was measured by triplicate. Results are mean ± standard error. NS is not significantly different. * p <0.05 (unpaired two-tailed Student's t-test). (d) HEK293-hTLR3 cells were incubated with medium alone (Med), purified RNA, or poly I: C for 12 hours. Reporter activity was measured by triplicate. Results are mean ± standard error. * p <0.05, ** p <0.01 (unpaired two-tailed Student's t-test). (e) Representative images (left) and viability (right) of in vitro cultured crypts 2 days after treatment with Tlr3 + / + and Tlr3 − / − mice with Med or purified RNA. The scale bar is 200 μm. Survival was measured by triplicate. Results are mean ± standard error. * p <0.05, ** p <0.01 (unpaired two-tailed Student's t-test). The results are representative of 3 independent experiments. TLR3のRNAへの結合阻害は放射線誘導性GISを改善する。(a) TBI及び同種BMTに先立ってTLR3/dsRNA結合阻害剤で処理したマウスのKaplan-Meier生存解析。n=6;**p<0.01(ログランク検定)。(b)及び(c) それぞれ、TLR3/dsRNA結合阻害剤で前処理した又は未処理のマウスの下痢の重症度と体重減少。n=6;結果は、平均値±標準誤差;*p<0.05、**p<0.01(unpaired two-tailed Student's t-test)。(d) TLR3/dsRNA結合阻害剤で処理してから6時間後のマウスの小腸陰窩のTUNEL染色。スケールバーは100μm。右のパネルはTUNEL陽性細胞の数を示す。n=5;結果は、平均値±標準誤差;*p<0.05(unpaired two-tailed Student's t-test)。(e) TLR3/dsRNA結合阻害剤で処理してから3日後のマウスの小腸陰窩のH&E染色。スケールバーは100μm。アスタリスクはマイクロコロニーを示す。右のパネルはマイクロコロニーの数を示す。n=5;結果は、平均値±標準誤差;**p<0.01(unpaired two-tailed Student's t-test)。結果は3回の独立した実験の代表例である。Inhibition of TLR3 binding to RNA improves radiation-induced GIS. (a) Kaplan-Meier survival analysis of mice treated with TLR3 / dsRNA binding inhibitors prior to TBI and allogeneic BMT. n = 6; ** p <0.01 (log rank test). (b) and (c) Diarrhea severity and weight loss in mice pre-treated or untreated with TLR3 / dsRNA binding inhibitors, respectively. n = 6; results are mean ± standard error; * p <0.05, ** p <0.01 (unpaired two-tailed Student's t-test). (d) TUNEL staining of mouse small intestinal crypts 6 hours after treatment with TLR3 / dsRNA binding inhibitor. Scale bar is 100 μm. The right panel shows the number of TUNEL positive cells. n = 5; results are mean ± standard error; * p <0.05 (unpaired two-tailed Student's t-test). (e) H & E staining of small intestinal crypts of mice 3 days after treatment with TLR3 / dsRNA binding inhibitor. Scale bar is 100 μm. An asterisk indicates a microcolony. The right panel shows the number of microcolonies. n = 5; results are mean ± standard error; ** p <0.01 (unpaired two-tailed Student's t-test). The results are representative of 3 independent experiments. TLR3/dsRNA結合阻害剤による後処理は放射線誘導性GISを改善する。(a) TBI及び同種BMTの後にTLR3/dsRNA結合阻害剤で処理したマウスのKaplan-Meier生存解析。n=6;*p<0.05(ログランク検定)。(b)及び(c) それぞれ、TLR3/dsRNA結合阻害剤で後処理した又は未処理のマウスの下痢の重症度と体重減少。n=4-6;結果は、平均値±標準誤差;*p<0.05(unpaired two-tailed Student's t-test)。結果は2回の独立した実験の代表例である。Post-treatment with TLR3 / dsRNA binding inhibitors improves radiation-induced GIS. (a) Kaplan-Meier survival analysis of mice treated with TLR3 / dsRNA binding inhibitors after TBI and allogeneic BMT. n = 6; * p <0.05 (log rank test). (b) and (c) The severity and weight loss of diarrhea in mice post-treated or untreated with TLR3 / dsRNA binding inhibitors, respectively. n = 4-6; results are mean ± standard error; * p <0.05 (unpaired two-tailed Student's t-test). The results are representative of two independent experiments. GISの病理学的メカニズム。イオン化したγ線が腸の陰窩細胞のDNAに損傷を与えると、p53がDNA修復のために細胞周期の停止を誘導する。DNA損傷が修復不可能なものである場合、p53は細胞死を開始させる。γ線照射によるp53仲介性細胞死により、細胞内RNAが細胞から放出されると、TLR3を仲介して広範囲の陰窩細胞死が誘導され、腸上皮細胞の供給が不十分となり、絨毛上皮が破壊され、GISによる死に至る。Pathological mechanism of GIS. When ionized gamma rays damage the DNA of intestinal crypt cells, p53 induces cell cycle arrest for DNA repair. When DNA damage is irreparable, p53 initiates cell death. When intracellular RNA is released from cells due to p53-mediated cell death by gamma irradiation, extensive crypt cell death is induced through TLR3, intestinal epithelial cell supply is insufficient, and chorionic epithelium is Destroyed and leads to death by GIS. TLR3のシグナル伝達経路を示す。The signal transduction pathway of TLR3 is shown. TLR3のシグナル伝達経路を示す。The signal transduction pathway of TLR3 is shown.
(医薬組成物)
〔TLR3阻害剤〕
 本発明に係る放射線誘導性消化管症候群の予防又は治療用医薬組成物の一態様は、Toll様受容体3(TLR3)阻害剤を含む。
 TLR3阻害剤は、TLR3依存性シグナル伝達による腸陰窩の細胞死誘導を阻害する限り、どのような物質であってもよいが、例えば、TLR3と二本鎖RNAとの相互作用の全部又は一部を阻害する物質とすることができる。このような物質としては、低分子化合物、抗TLR3抗体、TLR3のドミナントネガティブ変異体等が挙げられる。
(Pharmaceutical composition)
[TLR3 inhibitor]
One embodiment of the pharmaceutical composition for preventing or treating radiation-induced gastrointestinal syndrome according to the present invention comprises a Toll-like receptor 3 (TLR3) inhibitor.
The TLR3 inhibitor may be any substance as long as it inhibits intestinal crypt cell death induction by TLR3-dependent signaling, for example, all or one of the interactions between TLR3 and double-stranded RNA. It can be a substance that inhibits the part. Examples of such substances include low molecular weight compounds, anti-TLR3 antibodies, dominant negative mutants of TLR3, and the like.
〔TLR3と二本鎖RNAとの相互作用を阻害する低分子化合物〕
 TLR3と二本鎖RNAとの相互作用を阻害する低分子化合物も特に限定されないが、例えば、国際公開WO2012/099785に記載される化合物(I)が知られている。
Figure JPOXMLDOC01-appb-C000005
[式中、
 nは、1から3の整数であり;
 Arは、置換基を有していてもよいフェニル、インドール、又はナフタレンであり;
 Arは、置換基を有していてもよいインドール-2-yl、又はナフタレニルであり;
 Xは-NR-、-O-、又は-S-であり;
 Z及びZは、それぞれ独立に=NR、=O、又は=Sであり;
 Xは、-NR、-OR、又は-SRであり;
 Rは、それぞれ独立に水素、アルキル基、又は窒素保護基であり;
 Rは、水素、又はアルキル基であり;
 Rは、それぞれ独立に水素、アルキル基、又は水酸基保護基であり;及び
 Rは水素、アルキル基、又はチオール保護基を表す。]
[Small molecule compound that inhibits the interaction between TLR3 and double-stranded RNA]
A low molecular weight compound that inhibits the interaction between TLR3 and double-stranded RNA is not particularly limited. For example, compound (I) described in International Publication WO2012 / 099785 is known.
Figure JPOXMLDOC01-appb-C000005
[Where:
n is an integer from 1 to 3;
Ar 1 is an optionally substituted phenyl, indole, or naphthalene;
Ar 2 is optionally substituted indole-2-yl or naphthalenyl;
X 2 is —NR a —, —O—, or —S—;
Z 1 and Z 2 are each independently ═NR a , ═O, or ═S;
X 3 is —NR a R b , —OR c , or —SR d ;
Each R a is independently hydrogen, an alkyl group, or a nitrogen protecting group;
R b is hydrogen or an alkyl group;
R c is independently hydrogen, an alkyl group, or a hydroxyl protecting group; and R d represents hydrogen, an alkyl group, or a thiol protecting group. ]
 化合物(I)は、化合物より具体的には、以下の式(II)で表される。
Figure JPOXMLDOC01-appb-C000006
[式中、
 X及びXは、それぞれ独立に-NR-、-O-、又は-S-であり;
 Z及びZは、それぞれ独立に=NR、=O、又は=Sであり;
 Xは-NR、-OR、又は-SRであり;
 R、R、R及びRは、それぞれ独立に水素、アルキル基、-OR、ハロゲン、-NR、又はSRであり、但し、R乃至Rの少なくとも1つは水素ではなく;
 Rは、水素又はアルキル基であり;
 Rは、それぞれ独立に水素、アルキル基、又は水酸基保護基であり;及び
 Rは、水素、アルキル基、又はチオール保護基を表す。]
More specifically, the compound (I) is represented by the following formula (II).
Figure JPOXMLDOC01-appb-C000006
[Where:
X 1 and X 2 are each independently —NR a —, —O—, or —S—;
Z 1 and Z 2 are each independently ═NR a , ═O, or ═S;
X 3 is —NR a R b , —OR c , or —SR d ;
R 1 , R 2 , R 3 and R 4 are each independently hydrogen, an alkyl group, —OR c , halogen, —NR a R b , or SR d , provided that at least one of R 1 to R 4 Is not hydrogen;
R b is hydrogen or an alkyl group;
R c is independently hydrogen, an alkyl group, or a hydroxyl protecting group; and R d represents hydrogen, an alkyl group, or a thiol protecting group. ]
 国際公開WO2012/099785の開示は、全体として本明細書に参照により組み込まれる。
 本発明者らは、(R)-2-(3-chloro-6-fluorobenzo [b] thiophene-2-carboxamido)-3-phenylpropanoic acidが、放射線照射前、照射後のいずれに投与しても、放射線誘導性の腸陰窩の細胞死を抑制し、消化管症候群の発症及び悪化を抑制することを実証した。当該化合物は、これまで試薬として販売されている。
The disclosure of International Publication No. WO2012 / 099785 is hereby incorporated by reference in its entirety.
The present inventors can administer (R) -2- (3-chloro-6-fluorobenzo [b] thiophene-2-carboxamido) -3-phenylpropanoic acid either before or after irradiation. It has been demonstrated to suppress radiation-induced intestinal crypt cell death and suppress the onset and exacerbation of gastrointestinal syndrome. The compound has been sold as a reagent so far.
〔抗体〕
 また、TLR3と二本鎖RNAとの相互作用を阻害する物質としては、抗TLR3抗体を用いてもよい。抗TLR3抗体も特に限定されないが、例えば、TLR3における二本鎖RNAとの結合部位に結合する抗体とすることができる。
 本明細書において「抗体」は抗体断片も含むものとし、抗TLR3抗体は、モノクローナル抗体、ポリクローナル抗体、組換え抗体、ヒト抗体、ヒト化抗体、キメラ抗体、単鎖抗体、Fab断片、F(ab')2抗体、scFv、二重特異抗体、合成抗体等であり得る。
 これらの抗体は、当業者に公知の方法に従って作製することができる。例えば、モノクローナル抗体は、TLR3で免疫した非ヒト哺乳動物から抗体産生細胞を単離し、これを骨髄腫細胞等と融合させてハイブリドーマを作製し、このハイブリドーマが産生した抗体を精製することによって得ることができる。また、ポリクローナル抗体は、TLR3で免疫した動物の血清等から得ることができる。
 免疫に用いるTLR3は、ヒト由来であっても他の動物由来であってもよく、全長であっても断片であってもよく、当業者が適宜決定することができる。断片である場合、例えば、TLR3における、二本鎖RNAとの結合部位を含む断片としてもよい。
 TLR3と二本鎖RNAとの結合を効率よく阻害する非ヒトモノクローナル抗体を得ることができれば、これを遺伝子組換え法により産生することもできる。例えば、当該抗TLR3モノクローナル抗体を産生するハイブリドーマから標準的な手法により全RNAを調製し、市販のキットを用いて抗TLR3抗体をコードするmRNAを調製した後、逆転写酵素を用いてcDNAを合成すれば、抗TLR3抗体をコードするDNAを得ることができる。かかるDNAを含む発現ベクターを適当な宿主細胞にトランスフェクトし、適当な条件で培養することにより、抗TLR3抗体を発現させることができる。
〔antibody〕
An anti-TLR3 antibody may be used as a substance that inhibits the interaction between TLR3 and double-stranded RNA. The anti-TLR3 antibody is not particularly limited, and can be, for example, an antibody that binds to a binding site with a double-stranded RNA in TLR3.
In the present specification, “antibody” includes antibody fragments, and anti-TLR3 antibodies include monoclonal antibodies, polyclonal antibodies, recombinant antibodies, human antibodies, humanized antibodies, chimeric antibodies, single-chain antibodies, Fab fragments, F (ab ′ ) 2 antibodies, scFv, bispecific antibodies, synthetic antibodies and the like.
These antibodies can be prepared according to methods known to those skilled in the art. For example, monoclonal antibodies can be obtained by isolating antibody-producing cells from non-human mammals immunized with TLR3, fusing them with myeloma cells, etc. to produce hybridomas, and purifying the antibodies produced by the hybridomas. Can do. Polyclonal antibodies can be obtained from the sera of animals immunized with TLR3.
TLR3 used for immunization may be derived from humans or other animals, may be full length or a fragment, and can be appropriately determined by those skilled in the art. In the case of a fragment, for example, it may be a fragment containing a binding site for double-stranded RNA in TLR3.
If a non-human monoclonal antibody that efficiently inhibits the binding between TLR3 and double-stranded RNA can be obtained, it can also be produced by a gene recombination method. For example, after preparing total RNA from a hybridoma producing the anti-TLR3 monoclonal antibody using standard techniques, preparing mRNA encoding the anti-TLR3 antibody using a commercially available kit, and then synthesizing cDNA using reverse transcriptase Then, DNA encoding an anti-TLR3 antibody can be obtained. An anti-TLR3 antibody can be expressed by transfecting an appropriate host cell with an expression vector containing such DNA and culturing under an appropriate condition.
 また、上記cDNAを鋳型とするPCR法によって、CDR領域をコードするDNAを得ることもできる。かかるCDR領域をコードするDNAを利用して、常法に従って遺伝子組換え法によりヒト抗体やヒト化抗体を作製することもできる。例えば、非ヒト抗体に由来するCDR領域をコードするDNAと、ヒト抗体のフレームワーク領域を連結するように設計したDNAをPCR法により合成し、さらにヒト抗体定常領域をコードするDNAと連結することによって、ヒト抗体をコードするDNAを得ることができる。
 かかるDNAを公知の方法(制限酵素を利用する方法等)で、発現ベクター(例えば、プラスミド、レトロウイルス、アデノウイルス、アデノ随伴ウイルス(AAV)、カリフラワーモザイクウイルスやタバコモザイクウイルスなどの植物ウイルス、コスミド、YAC、EBV由来エピソーム)に挿入し、当該発現ベクターを適当な宿主細胞にトランスフェクトさせ、形質転換体を得る。なお、発現ベクターは、さらに抗体遺伝子の発現を調節するプロモータ、複製起点、選択マーカー遺伝子等を含むことができる。プロモータ及び複製起点は、宿主細胞とベクターの種類によって適宜選択することができる。
 次に、形質転換体を適当な条件で培養することにより、抗TLR3抗体のヒト抗体を発現させることができる。
 宿主細胞としては、例えば、哺乳類細胞(CHO細胞、COS細胞、ミエローマ細胞、HeLa細胞、Vero細胞等)、昆虫細胞、植物細胞、真菌細胞(サッカロミセス属、アスペルギルス属等)といった真核細胞や、大腸菌(E.Coli)、枯草菌などの原核細胞を用いることができる。
In addition, DNA encoding the CDR region can also be obtained by PCR using the above cDNA as a template. A human antibody or a humanized antibody can also be prepared by a gene recombination method according to a conventional method using DNA encoding such CDR region. For example, a DNA encoding a CDR region derived from a non-human antibody and a DNA designed to link the framework region of a human antibody are synthesized by PCR, and further linked to a DNA encoding a human antibody constant region. Thus, DNA encoding a human antibody can be obtained.
Such DNA is expressed by a known method (a method using a restriction enzyme, etc.) and an expression vector (eg, plasmid, retrovirus, adenovirus, adeno-associated virus (AAV), plant virus such as cauliflower mosaic virus or tobacco mosaic virus, cosmid) , YAC, EBV-derived episome) and the expression vector is transfected into an appropriate host cell to obtain a transformant. The expression vector may further contain a promoter that regulates the expression of the antibody gene, a replication origin, a selection marker gene, and the like. The promoter and origin of replication can be appropriately selected depending on the type of host cell and vector.
Next, a human antibody of an anti-TLR3 antibody can be expressed by culturing the transformant under appropriate conditions.
Examples of host cells include eukaryotic cells such as mammalian cells (CHO cells, COS cells, myeloma cells, HeLa cells, Vero cells, etc.), insect cells, plant cells, fungal cells (Saccharomyces, Aspergillus, etc.), E. coli (E. Coli), prokaryotic cells such as Bacillus subtilis can be used.
 発現させた抗体は、公知の方法(例えば、プロテインA等を用いたアフィニティカラム、その他のクロマトグラフィーカラム、フィルター、限外濾過、塩析、透析等)を適宜組み合わせて単離・精製することができる。
 本発明の抗TLR3抗体が、Fab断片、F(ab')2抗体、scFv等の低分子抗体である場合は、低分子抗体をコードするDNAを用いて上記方法で発現させることもでき、また、抗体をパパイン、ペプシン等の酵素で処理して作製することもできる。
The expressed antibody can be isolated and purified by appropriately combining known methods (for example, affinity columns using protein A, other chromatography columns, filters, ultrafiltration, salting out, dialysis, etc.). it can.
When the anti-TLR3 antibody of the present invention is a low molecular antibody such as a Fab fragment, F (ab ′) 2 antibody, scFv, etc., it can be expressed by the above method using a DNA encoding the low molecular antibody, Alternatively, the antibody can be prepared by treating with an enzyme such as papain or pepsin.
〔ドミナントネガティブ変異体〕
 TLR3阻害剤としては、TLR3のドミナントネガティブ変異体を用いてもよい。この場合、ドミナントネガティブ変異体をコードする遺伝子を含むベクターを投与して、生体内で当該変異体を発現させてもよい。かかるベクターは当業者が常法に従って作製することができる。例えば、プラスミド等のクローニングサイトに、TLR3のドミナントネガティブ変異体をコードするDNAを挿入する方法、アデノウイルスベクターのバックボーン配列をもつプラスミドと、それに相同的な配列を、TLR3のドミナントネガティブ変異体をコードするDNAの両端に配置したシャトルプラスミドとの両方を細胞や大腸菌に導入し、相同組換えによってウイルスベクターを作製する方法、等が挙げられる。
[Dominant negative mutant]
As a TLR3 inhibitor, a dominant negative mutant of TLR3 may be used. In this case, a vector containing a gene encoding a dominant negative mutant may be administered to express the mutant in vivo. Such vectors can be prepared by those skilled in the art according to conventional methods. For example, a method for inserting a DNA encoding a dominant negative mutant of TLR3 into a cloning site such as a plasmid, a plasmid having a backbone sequence of an adenoviral vector, and a sequence homologous thereto, and a dominant negative mutant of TLR3 And a method of preparing a viral vector by homologous recombination by introducing both a shuttle plasmid arranged at both ends of DNA to be introduced into cells or E. coli.
〔RNAi効果を有する二本鎖核酸、アンチセンス核酸、リボザイム〕
 TLR3阻害剤としては、TLR3の発現の全部又は一部を抑制する物質も挙げられる。かかる物質としては、例えば、RNAi効果を有する二本鎖核酸、アンチセンス核酸、リボザイム、及びこれらをコードする核酸を挙げることができる。
 RNAi効果は、二本鎖核酸によって誘導される配列特異的な遺伝子発現抑制機構である。標的特異性が非常に高く、生体内にもともと存在する遺伝子発現抑制メカニズムを利用する方法なので安全性が高い。
 RNAi効果を有する二本鎖核酸としては、例えば、siRNAが挙げられる。siRNAは、哺乳動物細胞に用いられる場合、通常19~30塩基程度、好ましくは21塩基~25塩基程度の二本鎖RNAであるが、酵素(Dicer)により切断されてsiRNAとなり得るより長い二本鎖RNAであってもよい。RNAi効果を有する二本鎖核酸は、一般に、その一方が標的核酸の一部と相補的な塩基配列を有し、他方がこれに相補的な配列を有する。RNAi効果を有する二本鎖核酸は、互いに3'末端に2塩基の突出塩基(オーバーハング)を有していることが一般的であるが、オーバーハングを有しないブラントエンド型であってもよい。例えば、25塩基のブラントエンドRNAは、インターフェロン応答遺伝子の活性化を最小にし、センス鎖由来のオフターゲット効果を防ぎ、血清中で安定性が非常に高いという利点を有し、in vivoでの使用にも適している。
 RNAi効果を有する二本鎖核酸は、標的遺伝子の塩基配列に基づき、公知の方法に従って設計することができる。また、RNAi効果を有する二本鎖核酸は、二本鎖RNAであってもよいし、DNA-RNAキメラ型二本鎖核酸であってもよく、人工核酸や各種の修飾が施された核酸であってもよい。
[Double-stranded nucleic acid having RNAi effect, antisense nucleic acid, ribozyme]
TLR3 inhibitors also include substances that suppress all or part of TLR3 expression. Examples of such substances include double-stranded nucleic acids having an RNAi effect, antisense nucleic acids, ribozymes, and nucleic acids encoding them.
The RNAi effect is a sequence-specific gene expression suppression mechanism induced by a double-stranded nucleic acid. The target specificity is very high, and it is highly safe because it uses a gene expression suppression mechanism that originally exists in vivo.
Examples of the double-stranded nucleic acid having an RNAi effect include siRNA. When siRNA is used in mammalian cells, it is usually a double-stranded RNA of about 19 to 30 bases, and preferably about 21 to 25 bases, but a longer double strand that can be cleaved by an enzyme (Dicer) to become siRNA. It may be a strand RNA. In general, a double-stranded nucleic acid having an RNAi effect has one base sequence complementary to a part of the target nucleic acid and the other complementary sequence. A double-stranded nucleic acid having an RNAi effect generally has two protruding bases (overhangs) at the 3 ′ end of each other, but may be of a blunt end type having no overhangs. . For example, a 25-base blunt-end RNA has the advantage of minimizing interferon-responsive gene activation, preventing off-target effects from the sense strand, and being very stable in serum for in vivo use Also suitable for.
A double-stranded nucleic acid having an RNAi effect can be designed according to a known method based on the base sequence of the target gene. The double-stranded nucleic acid having an RNAi effect may be a double-stranded RNA or a DNA-RNA chimera-type double-stranded nucleic acid, and may be an artificial nucleic acid or a nucleic acid subjected to various modifications. There may be.
 アンチセンス核酸は、標的遺伝子(典型的には転写産物であるmRNA)に相補的な塩基配列を有し、一般的には10塩基長~100塩基長、好ましくは15塩基長~30塩基長の一本鎖核酸である。アンチセンス核酸を細胞内に導入し、標的遺伝子にハイブリダイズさせることによって遺伝子の発現が阻害される。アンチセンス核酸は、標的遺伝子の発現阻害効果が得られる限り、標的遺伝子と完全に相補的でなくてもよい。アンチセンス核酸は、公知のソフトウエア等を用いて当業者が適宜設計することができる。アンチセンス核酸は、DNA、RNA、DNA-RNAキメラのいずれであってもよく、また修飾されていてもよい。 An antisense nucleic acid has a base sequence complementary to a target gene (typically mRNA that is a transcription product), and generally has a length of 10 to 100 bases, preferably 15 to 30 bases. Single-stranded nucleic acid. By introducing an antisense nucleic acid into a cell and hybridizing to a target gene, gene expression is inhibited. The antisense nucleic acid may not be completely complementary to the target gene as long as the effect of inhibiting the expression of the target gene is obtained. Antisense nucleic acids can be appropriately designed by those skilled in the art using known software or the like. The antisense nucleic acid may be any of DNA, RNA, DNA-RNA chimera, and may be modified.
 リボザイムは、標的RNAを触媒的に加水分解する核酸分子であり、標的RNAと相補的な配列を有するアンチセンス領域と、切断反応を担う触媒中心領域から構成されている。リボザイムは当業者が公知の方法に従って適宜設計することができる。リボザイムは一般的にはRNA分子であるが、DNA-RNAキメラ型分子を用いることもできる。 Ribozymes are nucleic acid molecules that catalytically hydrolyze target RNA, and are composed of an antisense region having a sequence complementary to the target RNA and a catalytic center region responsible for the cleavage reaction. The ribozyme can be appropriately designed by those skilled in the art according to known methods. Ribozymes are generally RNA molecules, but DNA-RNA chimeric molecules can also be used.
 上述したRNAi効果を有する二本鎖核酸、アンチセンス核酸、リボザイムのいずれかをコードする核酸も、本発明のTLR3の発現抑制剤として用いることができる。かかる核酸を含むベクターを細胞内に導入すれば、細胞内でRNAi効果を有する二本鎖核酸、アンチセンス核酸、及びリボザイムが発現し、それぞれTLR3の発現抑制効果を発揮する。
 RNAi効果を有する二本鎖核酸をコードする核酸としては、二本鎖のそれぞれをコードするDNAを用いてもよいし、二本鎖核酸がループを介して連結されてできる一本鎖核酸をコードするDNAを用いてもよい。後者の場合、細胞内で転写により得られる一本鎖RNAは、その相補的な部分が分子内でハイブリダイズし、ヘアピン型の構造を取る。このRNAはshRNA(short hairpin RNA)と呼ばれる。shRNAは細胞質に移行すると酵素(Dicer)によってループ部分が切断され、二本鎖RNAとなって、RNAi効果を発揮する。
A nucleic acid encoding any one of the above-described double-stranded nucleic acid, antisense nucleic acid, and ribozyme having the RNAi effect can also be used as a TLR3 expression inhibitor of the present invention. When a vector containing such a nucleic acid is introduced into a cell, a double-stranded nucleic acid, an antisense nucleic acid, and a ribozyme having an RNAi effect are expressed in the cell, and each exerts a TLR3 expression suppressing effect.
As a nucleic acid encoding a double-stranded nucleic acid having an RNAi effect, a DNA encoding each of the double strands may be used, or a single-stranded nucleic acid formed by connecting double-stranded nucleic acids via a loop is encoded. DNA may be used. In the latter case, the single-stranded RNA obtained by transcription in the cell has a complementary structure hybridized in the molecule and takes a hairpin type structure. This RNA is called shRNA (short hairpin RNA). When shRNA moves into the cytoplasm, the loop part is cleaved by the enzyme (Dicer) to form double-stranded RNA and exert RNAi effect.
 本発明に係る医薬組成物に含まれるTLR3阻害剤は、低分子化合物、タンパク質、ペプチド、核酸のいずれであるかにかかわらず、薬学的に許容可能な塩や溶媒和物であってもよい。 The TLR3 inhibitor contained in the pharmaceutical composition according to the present invention may be a pharmaceutically acceptable salt or solvate regardless of whether it is a low molecular compound, protein, peptide or nucleic acid.
〔TLR3依存性、且つRIP1介在性の細胞死誘導シグナル伝達の阻害剤〕
 本発明に係る放射線誘導性消化管症候群の予防又は治療用医薬組成物の一態様は、図3に示されるTLR3依存性、且つRIP1介在性の細胞死誘導シグナル伝達の阻害剤を含む。
 例えば、RIP1(receptor interacting protein 1)、RIP3(receptor interacting protein 3)、及びFADD(Fas-associated protein with Death Domain)に対する公知の阻害剤であってもよい。
 本発明者らは、RIP1に対する特異的阻害剤であるNecrostatin-1によって、放射線を照射した際の致死率、下痢の重症度、及び体重減少がいずれも改善され、小腸陰窩の細胞死も抑制されることを確認した。
[Inhibitor of TLR3-dependent and RIP1-mediated cell death induction signaling]
One embodiment of the pharmaceutical composition for preventing or treating radiation-induced gastrointestinal syndrome according to the present invention comprises the inhibitor of TLR3-dependent and RIP1-mediated cell death induction signaling shown in FIG.
For example, known inhibitors for RIP1 (receptor interacting protein 1), RIP3 (receptor interacting protein 3), and FADD (Fas-associated protein with Death Domain) may be used.
The present inventors have improved the lethality, the severity of diarrhea, and the weight loss when irradiated with Necrostatin-1, a specific inhibitor for RIP1, and also suppressed cell death of small intestinal crypts Confirmed that it will be.
 TLR3依存性、且つRIP1介在性の細胞死誘導シグナル伝達の阻害剤は、RIP1、RIP3、及びFADDのいずれかのドミナントネガティブ変異体、又はRIP1、RIP3、及びFADDのいずれかに対する抗体であってもよい。また、RIP1、RIP3、及びFADDのいずれかの遺伝子の発現を阻害する、RNAi効果を有する二本鎖核酸、アンチセンス核酸、リボザイム、miRNA、及びこれをコードする核酸であってもよい。
 これらのドミナントネガティブ変異体、抗体、RNAi効果を有する二本鎖核酸、アンチセンス核酸、リボザイム、miRNA、及びこれをコードする核酸との用語は、TLR3阻害剤について用いられた場合と同義であり、ここでは説明を省略する。
The inhibitor of TLR3-dependent and RIP1-mediated cell death induction signaling may be a dominant negative mutant of either RIP1, RIP3, or FADD, or an antibody to any of RIP1, RIP3, and FADD Good. Further, it may be a double-stranded nucleic acid having an RNAi effect, an antisense nucleic acid, a ribozyme, a miRNA, and a nucleic acid encoding the same, which inhibit the expression of any of RIP1, RIP3 and FADD genes.
The terms negative dominant mutant, antibody, double-stranded nucleic acid having RNAi effect, antisense nucleic acid, ribozyme, miRNA, and nucleic acid encoding the same are the same as those used for the TLR3 inhibitor, The description is omitted here.
 本発明の医薬組成物は、経口的又は非経口的に、全身にあるいは局所的に投与することができる。例えば、点滴などの静脈内注射、筋肉内注射、腹腔内注射、皮下注射、坐薬、注腸、経口性腸溶剤などを選択することができ、患者の年齢、症状により適宜投与方法を選択することができる。 The pharmaceutical composition of the present invention can be administered orally or parenterally, systemically or locally. For example, intravenous injection such as infusion, intramuscular injection, intraperitoneal injection, subcutaneous injection, suppository, enema, oral enteric solvent, etc. can be selected, and the administration method should be selected appropriately depending on the age and symptoms of the patient Can do.
 本発明の医薬組成物には、保存剤や安定剤等の製剤上許容しうる担体が添加されていてもよい。製剤上許容しうる担体は、薬理学的及び製剤学的に許容されるものであればよく、特に制限されない。例えば、水、食塩水、リン酸緩衝液、デキストロース、グリセロール、エタノール等薬学的に許容される有機溶剤、コラーゲン、ポリビニルアルコール、ポリビニルピロリドン、カルボキシビニルポリマー、カルボキシメチルセルロースナトリウム、ポリアクリル酸ナトリウム、アルギン酸ナトリウム、水溶性デキストラン、カルボキシメチルスターチナトリウム、ぺクチン、メチルセルロース、エチルセルロース、キサンタンガム、アラビアゴム、カゼイン、寒天、ポリエチレングリコール、ジグリセリン、グリセリン、プロピレングリコール、ワセリン、パラフィン、ステアリルアルコール、ステアリン酸、ヒト血清アルブミン、マンニトール、ソルビトール、ラクトース、界面活性剤、賦形剤、着香料、保存料、安定剤、緩衝剤、懸濁剤、等張化剤、結合剤、崩壊剤、滑沢剤、流動性促進剤、矯味剤等が挙げられるがこれらに限定されない。 In the pharmaceutical composition of the present invention, a pharmaceutically acceptable carrier such as a preservative and a stabilizer may be added. The pharmaceutically acceptable carrier is not particularly limited as long as it is pharmacologically and pharmaceutically acceptable. For example, pharmaceutically acceptable organic solvents such as water, saline, phosphate buffer, dextrose, glycerol, ethanol, collagen, polyvinyl alcohol, polyvinyl pyrrolidone, carboxyvinyl polymer, sodium carboxymethylcellulose, sodium polyacrylate, sodium alginate , Water-soluble dextran, sodium carboxymethyl starch, pectin, methylcellulose, ethylcellulose, xanthan gum, gum arabic, casein, agar, polyethylene glycol, diglycerin, glycerin, propylene glycol, petrolatum, paraffin, stearyl alcohol, stearic acid, human serum albumin , Mannitol, sorbitol, lactose, surfactant, excipient, flavor, preservative, stabilizer, buffer, suspension , Isotonizing agents, binders, disintegrants, lubricants, fluidity promoters, but flavoring agents and the like without limitation.
 本発明の医薬組成物は、通常の医療製剤の形態に製剤化することができる。当該医療製剤は、上記担体を用いて適宜調製される。医療製剤の形態としては特に限定はなく、治療目的に応じて適宜選択して使用される。その代表的なものとして錠剤、丸剤、散剤、液剤、懸濁剤、乳剤、顆粒剤、カプセル剤、坐剤、注射剤(液剤、懸濁剤、乳剤)等が挙げられる。これら製剤は、通常用いられる方法により製造すればよい。 The pharmaceutical composition of the present invention can be formulated into a normal medical preparation form. The medical preparation is appropriately prepared using the carrier. The form of the medical preparation is not particularly limited, and is appropriately selected depending on the purpose of treatment. Typical examples thereof include tablets, pills, powders, solutions, suspensions, emulsions, granules, capsules, suppositories, injections (solutions, suspensions, emulsions) and the like. These preparations may be produced by a commonly used method.
 本発明の医薬組成物が核酸を含む場合、リポソーム、高分子ミセル、カチオン性キャリア等のキャリアに核酸を封入して製剤化することができる。また、プロタミンのような核酸キャリアを利用してもよい。これらのキャリアに抗体等を結合させて、患部を標的化することも好ましい。また、核酸にコレステロール等を結合させて血中滞留性を高めることも可能である。また、本発明の医薬組成物が、siRNA等をコードする核酸を含み、投与された後細胞内で発現させるものである場合、当該核酸を、レトロウイルス、アデノウイルス、センダイウイルスなどのウイルスベクターやリポソームなどの非ウイルスベクターに挿入し、細胞内に投与することもできる。 When the pharmaceutical composition of the present invention contains a nucleic acid, it can be formulated by encapsulating the nucleic acid in a carrier such as a liposome, polymer micelle, or cationic carrier. A nucleic acid carrier such as protamine may also be used. It is also preferable to target the affected area by binding an antibody or the like to these carriers. It is also possible to increase the retention in blood by binding cholesterol or the like to the nucleic acid. In addition, when the pharmaceutical composition of the present invention contains a nucleic acid encoding siRNA or the like and is expressed in cells after administration, the nucleic acid may be a viral vector such as retrovirus, adenovirus, Sendai virus, It can also be inserted into non-viral vectors such as liposomes and administered into cells.
 また、本発明の医薬組成物に含まれる有効成分の量は、当業者が有効成分の種類に応じて適宜決定することができる。
 本発明の医薬組成物は、ヘルペスウイルス感染症の予防又は治療を目的として、ヒト又はヒト以外の哺乳動物(例えば、マウス、ラット、ウサギ、イヌ、ブタ、ウシ、ウマ、サル)等に投与することができる。
Moreover, the amount of the active ingredient contained in the pharmaceutical composition of the present invention can be appropriately determined by those skilled in the art according to the type of the active ingredient.
The pharmaceutical composition of the present invention is administered to humans or non-human mammals (eg, mice, rats, rabbits, dogs, pigs, cows, horses, monkeys) and the like for the purpose of preventing or treating herpes virus infection. be able to.
〔予防方法、治療方法〕
 本発明は、上述した本発明に係る医薬組成物を投与することを特徴とする放射線誘導性消化管症候群の予防又は治療方法も包含する。
 放射線誘導性消化管症候群の治療又は予防とは、放射線誘導性消化管症候群に関連する一つ又は複数の症状の緩和又は抑制、悪化や進行の阻止又は遅延、症状の発生の阻止又は遅延等を意味し、下痢の有無や症状の重篤度、体重、生存率のほか、腸陰窩細胞の細胞死の程度、形態等の少なくとも一つにより評価することができる。
 本発明に係る予防又は治療方法は、放射線に誘導されるあらゆる消化管症候群を対象とすることができるが、典型的には、事故による被爆や、放射線治療(特に、卵巣癌の腹膜播種の治療のための腹部全照射など、胃腸付近への照射をやむを得ず必要とする場合)が想定される。
 放射線治療の場合は、照射に先立って、本発明の医薬組成物を投与することにより、消化管症候群を予防的に抑制することが可能である。また、本発明者らが実証したとおり、本発明の医薬組成物は、放射線照射後に投与しても消化管症候群を緩和することから、事故による被爆の際も、本発明の医薬組成物を速やかに投与することによって、消化管症候群を抑制することが可能である。
 本発明の予防又は治療方法は、ヒト又はヒト以外の哺乳動物(例えば、マウス、ラット、ウサギ、イヌ、ブタ、ウシ、ウマ、サル)を対象として用いられる。
[Prevention method, treatment method]
The present invention also includes a method for preventing or treating radiation-induced gastrointestinal syndrome, which comprises administering the pharmaceutical composition according to the present invention described above.
Treatment or prevention of radiation-induced gastrointestinal syndrome includes alleviation or suppression of one or more symptoms related to radiation-induced gastrointestinal syndrome, prevention or delay of worsening or progression, prevention or delay of occurrence of symptoms, etc. Meaning, it can be evaluated by at least one of the presence or absence of diarrhea, the severity of symptoms, the weight, the survival rate, the degree of cell death of intestinal crypt cells, and the form.
The preventive or therapeutic method according to the present invention can be used for any gastrointestinal syndrome induced by radiation, but typically, exposure due to an accident or radiotherapy (especially treatment of peritoneal dissemination of ovarian cancer). For example, if irradiation of the gastrointestinal region is unavoidable, such as full irradiation of the abdomen.
In the case of radiotherapy, it is possible to prevent the digestive tract syndrome prophylactically by administering the pharmaceutical composition of the present invention prior to irradiation. In addition, as demonstrated by the present inventors, the pharmaceutical composition of the present invention alleviates the gastrointestinal syndrome even when administered after irradiation, so that the pharmaceutical composition of the present invention can be quickly used even in the event of an accidental exposure. By administering to the gastrointestinal tract, it is possible to suppress digestive tract syndrome.
The prevention or treatment method of the present invention is used for humans or mammals other than humans (for example, mice, rats, rabbits, dogs, pigs, cows, horses, monkeys).
〔スクリーニング方法〕
 本発明は、放射線誘導性消化管症候群の予防又は治療のための医薬のスクリーニング方法も提供する。
 本発明に係るスクリーニング方法の一態様は、
 候補化合物とTLR3を発現する細胞とを接触させてインキュベートする工程と、
 前記候補化合物によるTLR3と二本鎖RNAとの結合阻害、又は、前記候補化合物によるTLR3依存性、且つRIP1介在性の細胞死誘導シグナル伝達阻害を測定する工程と、を含む。
[Screening method]
The present invention also provides a method for screening a medicament for the prevention or treatment of radiation-induced gastrointestinal syndrome.
One aspect of the screening method according to the present invention is:
Contacting the candidate compound with a cell expressing TLR3 and incubating;
Measuring the inhibition of binding between TLR3 and double-stranded RNA by the candidate compound, or the inhibition of TLR3-dependent and RIP1-mediated cell death induction signaling by the candidate compound.
 候補化合物は、低分子化合物、高分子化合物、ペプチド、タンパク質、核酸、糖、脂質等どのような物質であってもよい。
 TLR3を発現する細胞も特に限定されないが、例えば、TLR3を発現する上皮細胞とすることができる。
The candidate compound may be any substance such as a low molecular compound, a high molecular compound, a peptide, a protein, a nucleic acid, a sugar, or a lipid.
A cell that expresses TLR3 is not particularly limited, and can be, for example, an epithelial cell that expresses TLR3.
 候補化合物とTLR3発現細胞とを接触させてインキュベートする工程における細胞の培地、候補化合物の濃度、温度、pHその他の条件は、細胞の種類や候補化合物の種類に応じて、当業者が適宜選択することができる。 Cell culture medium, candidate compound concentration, temperature, pH and other conditions in the step of incubating the candidate compound and TLR3-expressing cells in contact are appropriately selected by those skilled in the art depending on the type of cell and the type of candidate compound be able to.
 本発明に係るスクリーニング方法では、続いて、
 (i) 候補化合物によるTLR3と二本鎖RNAとの結合阻害、又は、
 (ii) 候補化合物によるTLR3依存性、且つRIP1介在性の細胞死誘導シグナル伝達阻害
を測定して、候補化合物を評価する。
 これらの方法も公知の方法、又はそれに準ずる方法にしたがって、当業者が適宜行うことができる。
In the screening method according to the present invention, subsequently,
(i) inhibition of binding between TLR3 and double-stranded RNA by a candidate compound, or
(ii) The candidate compound is evaluated by measuring TLR3-dependent and RIP1-mediated cell death induction signaling inhibition by the candidate compound.
These methods can also be appropriately performed by those skilled in the art according to a known method or a method analogous thereto.
 以下、本発明を実施例に基づいて具体的に説明するが、本発明は何らこれに限定されるものではない。当業者は、本発明の意義を逸脱することなく様々な態様に本発明を変更することができ、かかる変更も本発明の範囲に含まれる。 Hereinafter, the present invention will be specifically described based on examples, but the present invention is not limited thereto. Those skilled in the art can change the present invention into various modes without departing from the meaning of the present invention, and such changes are also included in the scope of the present invention.
(材料と方法)
〔マウス〕
 SPF又はGF条件の野生型BALB/cマウス(雌、8-12週齢)はCLEA Japanから購入した。Tlr2-/-、Tlr3-/-、Tlr4-/-、Tlr5-/-、Tlr7-/-、Tlr9-/-、Trif-/-、Irf-/-マウスは、BALB/cバックグラウンドに8世代以上戻し交配して作製した(参考文献12、23-28)。Ifnar-/-マウス(BALB/c)(参考文献29)、及びp53-/-マウス(BALB/c)(参考文献30)は、ヘテロ接合体欠損マウス(S. Miyatake及びN. Moriよりそれぞれ提供を受けた)を交配して作製した。マウスは、大阪大学感染動物実験施設のSPF環境にある温度制御された部屋で、明暗サイクルを12時間として標準的なケージで飼育した。標準的な実験マウス用飼料と飲料水に自由にアクセスできるようにした。GFマウスは、東京大学医科学研究所の実験動物施設におけるビニルアイソレータで飼育した。明暗サイクルは12時間とし、加圧滅菌処理した飼料と滅菌水に常時アクセスできるようにした。
(Materials and methods)
〔mouse〕
Wild-type BALB / c mice (female, 8-12 weeks old) under SPF or GF conditions were purchased from CLEA Japan. Tlr2 -/- , Tlr3 -/- , Tlr4 -/- , Tlr5 -/- , Tlr7 -/- , Tlr9 -/- , Trif -/- , Irf -/- mice are 8 generations in the BALB / c background This was produced by backcrossing (References 12, 23-28). Ifnar -/- mice (BALB / c) (reference 29) and p53 -/- mice (BALB / c) (reference 30) are provided by heterozygote-deficient mice (S. Miyatake and N. Mori, respectively) Received). Mice were housed in standard cages with a light-dark cycle of 12 hours in a temperature-controlled room in the SPF environment of the Osaka University Infectious Animal Laboratory. Free access to standard laboratory mouse feed and drinking water. GF mice were bred with vinyl isolators in laboratory animal facilities at the Institute of Medical Science, the University of Tokyo. The light / dark cycle was 12 hours, so that the autoclaved feed and sterilized water were always accessible.
〔poly I:C処理〕
 poly I:C(poly I:C-HMW, Invivogen)は、病原体フリーPBSでトランスフェクション試薬やリポソーム担体を使用せずに希釈した。poly I:Cは、マウスの腹腔内に注射投与した。
(Poly I: C treatment)
Poly I: C (poly I: C-HMW, Invivogen) was diluted with pathogen-free PBS without using a transfection reagent or a liposome carrier. Poly I: C was administered by intraperitoneal injection in mice.
〔Nec-1処理〕
 Nec-1(Sigma-Aldrich)はDMSOに溶解させ、病原体フリーPBSで希釈した。Nec-1は、GISに対する有意な保護作用を達成するように、マウスの腹腔内に複数回注射投与した。
[Nec-1 treatment]
Nec-1 (Sigma-Aldrich) was dissolved in DMSO and diluted with pathogen-free PBS. Nec-1 was injected multiple times intraperitoneally in mice to achieve a significant protective effect on GIS.
〔TLR3/dsRNA結合阻害剤処理〕
 TLR3/dsRNA結合阻害剤である(R)-2-(3-クロロ-6-フルオロベンゾ[b]チオフェン-2-カルボキシアミド)-3-フェニルプロパン酸(Calbiochem)はDMSOに溶解させ、病原体フリーPBSで希釈した。阻害剤は、マウスの腹腔内に複数回注射投与した。
(Treatment with TLR3 / dsRNA binding inhibitor)
(R) -2- (3-Chloro-6-fluorobenzo [b] thiophene-2-carboxamido) -3-phenylpropanoic acid (Calbiochem), a TLR3 / dsRNA binding inhibitor, is dissolved in DMSO and free of pathogens Dilute with PBS. Inhibitors were administered multiple times by intraperitoneal injection in mice.
〔放射線処理〕
 マウス(雌、8-12週齢)を、137Cs照射器(Gammacell 40 Exactor; MDS Nordion)を用いて、線量率88 cGy/minで10GyのTBIに暴露した。いくつかの実験では、照射1時間前にマウスをpoly I:C(体重1kg当たり20mg)で処理した。Nec-1(体重1kg当たり125mg)は、照射1時間前、2時間後、24時間後、48時間後、及び72時間後に投与した。TLR3/dsRNA結合阻害剤(1マウス当たり1mg)は、照射の1時間前又は1時間後に投与した。その後、24時間と48時間に阻害剤を注射した。特に断りのない限り、続いて、マウスに、系統、性別、及び遺伝子型が一致したドナーマウスから得た1×107個のBM細胞を静脈に単回注射した。放射線照射後、マウスには、1,000U/mlのポリミキシンBと、1mg/mlのネオマイシンを飲料水に入れて与えた。GISの重症度は体重減少と下痢を観察して評価した。下痢は肛門付近の毛で毎日兆候を確認し、兆候なしを0、薄茶色の糞を1、タール様の黒い糞を2としてスコア化した。
[Radiation treatment]
Mice (female, 8-12 weeks old) were exposed to 10 Gy TBI at a dose rate of 88 cGy / min using a 137 Cs irradiator (Gammacell 40 Exactor; MDS Nordion). In some experiments, mice were treated with poly I: C (20 mg / kg body weight) 1 hour before irradiation. Nec-1 (125 mg / kg body weight) was administered 1 hour before, 2 hours, 24 hours, 48 hours, and 72 hours after irradiation. TLR3 / dsRNA binding inhibitor (1 mg per mouse) was administered 1 hour before or 1 hour after irradiation. Thereafter, the inhibitors were injected at 24 and 48 hours. Unless otherwise noted, mice were subsequently injected once intravenously with 1 × 10 7 BM cells obtained from donor mice of matched strain, gender, and genotype. After irradiation, the mice were given 1,000 U / ml polymyxin B and 1 mg / ml neomycin in their drinking water. The severity of GIS was evaluated by observing weight loss and diarrhea. Diarrhea was scored daily on the hair near the anus and scored as 0 for no signs, 1 for light brown feces, and 2 for tar-like black feces.
〔血液中及びBM中の白血球数〕
 血液は後眼窩静脈から、放射線照射後0日と5日に採取した。血液を赤血球溶解緩衝液(Sigma-Aldrich)で処理して赤血球を除去した。その後、細胞をPBSに懸濁させ、アリコートをTurk液と混合して血球系で白血球を計測した。
 BM細胞は、放射線照射後0日と5日に28ゲージの針とシリンジを使用して、ハンクス液(Hanks' balanced salt solution)を流して大腿骨から採取した。赤血球溶解と白血球数の計測は上述のとおり行った。
[White blood cell count in blood and BM]
Blood was collected from the retroorbital vein on days 0 and 5 after irradiation. Blood was treated with erythrocyte lysis buffer (Sigma-Aldrich) to remove erythrocytes. Thereafter, the cells were suspended in PBS, an aliquot was mixed with Turk solution, and leukocytes were counted using a blood cell system.
BM cells were collected from the femur by flowing Hanks' balanced salt solution using a 28-gauge needle and syringe on days 0 and 5 after irradiation. Red blood cell lysis and white blood cell count were performed as described above.
〔組織学的分析〕
 放射線照射後、又はpoly I:C処理後、0、6、72及び120時間に胃十二指腸境界部の4センチ下の小腸から空腸組織を切り出し、PBSで洗浄して、10%ホルマリンで一晩固定し、パラフィンに包埋した。5μm切片をヘマトキシリン-エオシン(H&E)染色し、BZ-II Image Analysis Application(BZ-9000, Keyence)を用いて光学顕微鏡で観察した。陰窩の生存は、マイクロコロニーアッセイ(参考文献9)を改変した方法により、照射後3日に評価した。簡単に説明すると、空腸切片における「再生陰窩」の数を組織学的外観に基づいて数えた。ここで、10個以上の好色素性(chromophilic)の非パネート細胞と、少なくとも1個のパネート細胞を含むもの再生陰窩と定義した。照射後0日及び5日に脛骨を採取し、70%エタノールで3日間固定し、メチルメタクリレートレジンに包埋してH&E染色した。
 小腸の細胞死はTUNEL染色で評価した。小腸のパラフィン切片をin situ Cell Death Detection Kit, Fluorescein (Roche Diagnostics)の試薬で処理した。サンプルをProLong Gold Antifade Reagent with DAPI(invitrogen)で標本にし、BZ-II Image Analysis Applicationを使用して蛍光顕微鏡下で観察した。陰窩当たりのTUNEL陽性細胞数を求めるために、少なくとも50の陰窩を数えた。
[Histological analysis]
After irradiation or poly I: C treatment, the jejunum tissue was excised from the small intestine 4 cm below the gastroduodenal boundary at 0, 6, 72, and 120 hours, washed with PBS, and fixed overnight with 10% formalin. And embedded in paraffin. 5 μm sections were stained with hematoxylin-eosin (H & E) and observed with an optical microscope using BZ-II Image Analysis Application (BZ-9000, Keyence). Crypt survival was assessed 3 days after irradiation by a modified microcolony assay (Ref. 9). Briefly, the number of “regenerative crypts” in jejunal sections was counted based on histological appearance. Here, 10 or more chromophilic non-panate cells and those containing at least one panate cell were defined as regenerating crypts. On days 0 and 5 after irradiation, tibias were collected, fixed with 70% ethanol for 3 days, embedded in methyl methacrylate resin, and stained with H & E.
Intestinal cell death was assessed by TUNEL staining. Small intestine paraffin sections were treated with reagents from an in situ Cell Death Detection Kit, Fluorescein (Roche Diagnostics). Samples were prepared with ProLong Gold Antifade Reagent with DAPI (invitrogen) and observed under a fluorescence microscope using BZ-II Image Analysis Application. To determine the number of TUNEL positive cells per crypt, at least 50 crypts were counted.
〔免疫組織化学分析〕
 小腸における増殖期のS期の細胞を標識するために、犠死させる1時間前に、マウスにBrdU(5-ブロモ-2’-デオキシウリジン;体重1kgあたり50mg)を腹腔内注射した。小腸のパラフィン切片を上述の方法で調製した。内因性ペルオキシダーゼ活性を3%ヒドロペルオキシドで10分停止させた。切片を2NのHClで30分処理し、10%ヤギ血清(PBS中)で30分ブロッキングし、マウス抗BrdU抗体(100×、Ab-3、Lab Vision Corporation)により4℃で一晩染色した。切片を洗浄し、ビオチン結合ヤギ抗マウスIgG(1,500×、Kirkegaard & Perry Laboratories)と共に37℃で1時間インキュベートした後、ストレプトアビジン結合ホースラディッシュペルオキシダーゼ(Thermo Fisher Scientific)と共に室温で30分インキュベートした。切片は、3,3’-ジアミノベンジジンとヒドロペルオキシドで可視化し、ヘマトキシリンで対比染色した。少なくとも50の陰窩においてBrdU陽性細胞を数えた。
 p53タンパク質の蓄積を検出するために、切片をマウス抗p53抗体(×100、Pab 240、Abcam)と共に4℃で一晩処理し、クエン酸緩衝液(pH 6.0)中で、121℃で15分加熱して抗原を除去した。一次抗体の検出と可視化は、上述の方法で行った。活性化されたカスパーゼ3は、ウサギ抗切断型カスパーゼ3抗体(100×、5A1E、Cell Signaling Technology)を使用し、上述の方法で検出した。結合した一次抗体は、ビオチン結合ヤギ抗ウサギIgG(1,500×、Kirkegaard & Perry Laboratories)を用いて37℃で1時間反応させて検出し、上述の方法で可視化した。少なくとも50の陰窩において陽性細胞を数えた。
[Immunohistochemical analysis]
To label S phase cells in the proliferating phase in the small intestine, mice were injected intraperitoneally with BrdU (5-bromo-2'-deoxyuridine; 50 mg / kg body weight) one hour prior to sacrifice. Small intestine paraffin sections were prepared as described above. Endogenous peroxidase activity was stopped with 3% hydroperoxide for 10 minutes. Sections were treated with 2N HCl for 30 minutes, blocked with 10% goat serum (in PBS) for 30 minutes, and stained overnight at 4 ° C. with mouse anti-BrdU antibody (100 ×, Ab-3, Lab Vision Corporation). Sections were washed and incubated with biotin-conjugated goat anti-mouse IgG (1,500 ×, Kirkegaard & Perry Laboratories) for 1 hour at 37 ° C. and then with streptavidin-conjugated horseradish peroxidase (Thermo Fisher Scientific) for 30 minutes at room temperature. Sections were visualized with 3,3′-diaminobenzidine and hydroperoxide and counterstained with hematoxylin. BrdU positive cells were counted in at least 50 crypts.
To detect p53 protein accumulation, sections were treated with mouse anti-p53 antibody (x100, Pab 240, Abcam) at 4 ° C overnight and in citrate buffer (pH 6.0) at 121 ° C for 15 minutes. The antigen was removed by heating. Detection and visualization of the primary antibody was performed by the method described above. Activated caspase 3 was detected by the method described above using a rabbit anti-cleavable caspase 3 antibody (100 ×, 5A1E, Cell Signaling Technology). The bound primary antibody was detected by reacting with biotin-conjugated goat anti-rabbit IgG (1,500 ×, Kirkegaard & Perry Laboratories) at 37 ° C. for 1 hour and visualized by the method described above. Positive cells were counted in at least 50 crypts.
〔RT-PCR及び定量的リアルタイムPCR〕
 Fujimotoら(参考文献31)及びSatoら(参考文献10)の方法にしたがって、絨毛、陰窩、及び粘膜固有細胞を小腸から調製した。簡単に説明すると、小腸の組織断片を2mMのEDTA(PBS中)と共に氷上で30分インキュベートした。EDTAを除去した後、サンプルを冷PBSと激しく振とうし、遠心処理した結果、絨毛と陰窩を多く含む上清分画を得た。粘膜固有細胞の単離には、小腸断片を、10%FCSと10mMのEDTAを含むPBSにより37℃で30分処理して上皮細胞を除き、その後新鮮なPBSでよく洗浄した。小腸断片を、10%ウシ胎仔血清を加えたRPMI 1640中で、0.425mg/mlのLiberase T-flex(Roche)と100mg/mlのDNase I(Roche)と共に、37℃で60分継続的に撹拌して消化した。懸濁した細胞は、40%と75%(vol/vol)Percollでの密度勾配遠心分離に供した。界面から回収した細胞を洗浄し、粘膜固有細胞として使用した。全RNAは、Trizol reagent(Invitrogen)を用いて使用説明書に従って単離した。続いて、全RNAサンプルにRQ1 RNase-free DNase(Promega)を加え、37℃で45分インキュベートした。フェノール-クロロフォルム抽出による精製後、全RNAをエタノール沈殿させ、再蒸留水に再懸濁した。2μgの全RNAを、SuperScript III First-Strand Synthesis SuperMix(Invitrogen)を使用し、取扱説明書にしたがってプライマーとしてランダムヘキサマーを使って逆転写した。PCRのためのプライマーの配列は、以下のとおりである。
Figure JPOXMLDOC01-appb-T000007
[RT-PCR and quantitative real-time PCR]
According to the method of Fujimoto et al. (Reference 31) and Sato et al. (Reference 10), villi, crypts and mucosal intrinsic cells were prepared from the small intestine. Briefly, small intestine tissue fragments were incubated with 2 mM EDTA (in PBS) for 30 minutes on ice. After removing EDTA, the sample was vigorously shaken with cold PBS and centrifuged to obtain a supernatant fraction rich in villi and crypts. For isolation of mucosal intrinsic cells, small intestine fragments were treated with PBS containing 10% FCS and 10 mM EDTA at 37 ° C. for 30 minutes to remove epithelial cells, and then washed well with fresh PBS. The small intestine fragment was stirred continuously at 37 ° C for 60 minutes with 0.425 mg / ml Liberase T-flex (Roche) and 100 mg / ml DNase I (Roche) in RPMI 1640 supplemented with 10% fetal calf serum. And digested. Suspended cells were subjected to density gradient centrifugation at 40% and 75% (vol / vol) Percoll. Cells collected from the interface were washed and used as mucosal intrinsic cells. Total RNA was isolated using Trizol reagent (Invitrogen) according to the instructions for use. Subsequently, RQ1 RNase-free DNase (Promega) was added to the total RNA sample and incubated at 37 ° C. for 45 minutes. After purification by phenol-chloroform extraction, total RNA was ethanol precipitated and resuspended in double distilled water. 2 μg of total RNA was reverse transcribed using SuperScript III First-Strand Synthesis SuperMix (Invitrogen) and using random hexamers as primers according to the instructions. Primer sequences for PCR are as follows.
Figure JPOXMLDOC01-appb-T000007
 プライマーペアとTaqポリメラーゼ(Takara Shuzo)は、以下の条件で行ったPCRに供した:94℃5分;97℃30秒、57℃30秒、72℃30秒を30サイクル;72℃7分。PCR産物は、アガロースゲル電気泳動で分離した。
 定量的リアルタイムPCRは、cDNA、Real-time PCR Master Mix(Toyobo)、及び内部コントロールとして18S rRNA特異的プライマー(Applied Biosystems)、又はTlr3、Bax若しくはPuma特異的なプライマー(Applied Biosystems)を含む最終量25mlの溶液中で、ABI Prism 7700 sequence detection system(Applied Biosystems)を用いて行った。95℃で10分インキュベートした後、得られた産物を95℃15秒、60℃60秒、及び50℃120秒を35サイクルの条件で増幅した。
The primer pair and Taq polymerase (Takara Shuzo) were subjected to PCR performed under the following conditions: 94 ° C for 5 minutes; 97 ° C for 30 seconds, 57 ° C for 30 seconds, 72 ° C for 30 seconds; 72 ° C for 7 minutes. PCR products were separated by agarose gel electrophoresis.
Quantitative real-time PCR includes cDNA, Real-time PCR Master Mix (Toyobo), and final volume containing 18S rRNA-specific primers (Applied Biosystems), or Tlr3, Bax or Puma-specific primers (Applied Biosystems) as internal controls In 25 ml solution, it was performed using ABI Prism 7700 sequence detection system (Applied Biosystems). After incubating at 95 ° C. for 10 minutes, the resulting product was amplified at 35 ° C. for 15 seconds, 60 ° C. for 60 seconds, and 50 ° C. for 120 seconds under 35 cycles.
〔小さいRNA分画及び大きいRNA分画の調製〕
 全RNAを上述の方法で単離し、miRNeasy Mini Kit及びRNeasy MinElute Cleanup Kit(Qiagen)を用いて、小さいRNA(<200ヌクレオチド)分画と大きいRNA(>200ヌクレオチド)分画にさらに分離した。
 分離したRNAのサイズは、Agilent 2100 BioanalyzerとAgilent RNA 6000 Pico Kit(Agilent Technology)で確認した。
[Preparation of small RNA fraction and large RNA fraction]
Total RNA was isolated as described above and further separated into small RNA (<200 nucleotides) and large RNA (> 200 nucleotides) fractions using the miRNeasy Mini Kit and RNeasy MinElute Cleanup Kit (Qiagen).
The size of the separated RNA was confirmed with Agilent 2100 Bioanalyzer and Agilent RNA 6000 Pico Kit (Agilent Technology).
〔in vitroの陰窩の培養〕
 小腸陰窩は上述の方法で単離した。陰窩は、マトリゲル(Bd Biosciences)にマウントし、48ウェル平底プレートに、100mlのマトリゲル中に200個の陰窩を含むように播種した。各ウェルに、2%ウシ胎仔血清、100U/mlのペニシリン、100mg/mlのストレプトマイシン、10mMのHEPES、Glutamax(Invitrogen)、1×N2(Invitrogen)、1×B27(Invitrogen)、1mMのN-アセチルシステイン(Nakalai Tesque)、10mMのY-27632(Stemgent)及び成長因子(50ng/mlの上皮成長因子、100ng/mlのnoggin、及び1mg/mlのR-spondin-1)(いずれもR&D Systems)を含むAdvanced DMEM/F12(Invitrogen)を重層した。培地は、1日おきに加え、培養4日後にすべての培地を交換した。その際、Y-27632は加えず、その後の培養にも加えなかった。培養5~6日目、100mg/mlの精製したRNA又、はLipofectamine 2000試薬と複合体化したpoly I:Cで陰窩を処理するか、10Gyの放射線に暴露した。酵素消化アッセイのために、陰窩を5mg/mlのDNase-free RNase(Roche Diagnostics)とインキュベートした。培養した陰窩の像は、光学顕微鏡とBZ-II Image Analysis Applicationで撮影した。放射線照射又はRNAによる培養陰窩への殺細胞効果を評価するため、細胞の生存率を、MTT cell count kit(Nacalai Tesque)を用いてMTT(3-(4,5-ジメチル-2-チアゾリル)-2,5-ジフェニルテトラゾリウムブロマイド)で測定した。陰窩を、500mg/mlのMTTで1時間培養し、Cell Recovery Solution(BD Bioscience)によりマトリゲルで回収した。陰窩内で沈殿したホルマザン(formazan)を溶解させ、570nmの吸光度を測定した。陰窩細胞の生存率は、以下の式にしたがって計算した。
 生存率(%)=(処理した陰窩細胞の値/未処理の陰窩細胞の値)×100
 ホールマウント解析のために、培養した陰窩を、マトリゲルから回収後、4%パラホルムアルデヒドで直接固定し、in situ Cell Death Detection Kit, Fluoresceinを使って染色した。核は、10mg/mlのDAPI(4’,6’-ジアミジノ-2-フェニルインドール)で染色した。蛍光顕微鏡とBZ-II Image Analysis Applicationで撮像した。
 培養上清中のRNAの定量は、SUPERase-In RNase Inhibitor(Ambion)を0.5U/mlの濃度で加えた。放射線照射の1日後、上清を回収し、Trizol LS reagent(Invitrogen)を用いて、使用説明書にしたがってRNA抽出を行った。精製したRNAの定量は、Agilent 2100 BioanalyzerとAgilent RNA 6000 Pico Kitを用いて行った。
[In vitro crypt culture]
Small intestinal crypts were isolated as described above. The crypts were mounted on Matrigel (Bd Biosciences) and seeded in 48 well flat bottom plates to contain 200 crypts in 100 ml Matrigel. Each well contains 2% fetal bovine serum, 100 U / ml penicillin, 100 mg / ml streptomycin, 10 mM HEPES, Glutamax (Invitrogen), 1 × N2 (Invitrogen), 1 × B27 (Invitrogen), 1 mM N-acetyl Cysteine (Nakalai Tesque), 10 mM Y-27632 (Stemgent) and growth factors (50 ng / ml epidermal growth factor, 100 ng / ml noggin, and 1 mg / ml R-spondin-1) (all R & D Systems) Advanced DMEM / F12 (Invitrogen) containing was overlaid. The medium was added every other day, and all mediums were changed after 4 days of culture. At that time, Y-27632 was not added, nor was it added to the subsequent culture. On days 5-6 of culture, crypts were treated with 100 mg / ml purified RNA or poly I: C complexed with Lipofectamine 2000 reagent or exposed to 10 Gy radiation. For enzyme digestion assays, crypts were incubated with 5 mg / ml DNase-free RNase (Roche Diagnostics). Images of cultured crypts were taken with a light microscope and BZ-II Image Analysis Application. In order to evaluate the cell killing effect on cultured crypts by irradiation or RNA, cell viability was measured using MTT (3- (4,5-dimethyl-2-thiazolyl) using MTT cell count kit (Nacalai Tesque). -2,5-diphenyltetrazolium bromide). The crypts were cultured with 500 mg / ml MTT for 1 hour and collected on Matrigel with Cell Recovery Solution (BD Bioscience). Formazan precipitated in the crypts was dissolved and the absorbance at 570 nm was measured. The survival rate of crypt cells was calculated according to the following formula.
Viability (%) = (value of treated crypt cells / value of untreated crypt cells) × 100
For whole mount analysis, cultured crypts were recovered from Matrigel, fixed directly with 4% paraformaldehyde, and stained using in situ Cell Death Detection Kit, Fluorescein. Nuclei were stained with 10 mg / ml DAPI (4 ′, 6′-diamidino-2-phenylindole). Images were taken with a fluorescence microscope and BZ-II Image Analysis Application.
For quantification of RNA in the culture supernatant, SUPERase-In RNase Inhibitor (Ambion) was added at a concentration of 0.5 U / ml. One day after the irradiation, the supernatant was collected, and RNA extraction was performed using Trizol LS reagent (Invitrogen) according to the instruction manual. The purified RNA was quantified using Agilent 2100 Bioanalyzer and Agilent RNA 6000 Pico Kit.
〔腸ホモジネートの調製〕
 10Gyの照射の6時間後に小腸を採取し、殺菌したPBSでよく洗浄し、DMEMと共に15,000gで3分の遠心処理に供してホモジナイズした。上清を腸ホモジネートとして使用した。酵素消化アッセイのために、腸ホモジネートを、10U/mlのプロナーゼ、10U/mlのRNase-free-DNase、5mg/mlのDNase-free RNase(いずれもRoche Diagnostics)と共に、37℃で1時間インキュベートした。
[Preparation of intestinal homogenate]
The small intestine was collected 6 hours after 10 Gy irradiation, washed thoroughly with sterilized PBS, and homogenized by centrifugation at 15,000 g for 3 minutes with DMEM. The supernatant was used as an intestinal homogenate. For enzyme digestion assays, intestinal homogenates were incubated with 10 U / ml pronase, 10 U / ml RNase-free-DNase, 5 mg / ml DNase-free RNase (both Roche Diagnostics) for 1 hour at 37 ° C. .
〔レポーターアッセイ〕
 HEK293細胞(ATCC)を、10%ウシ胎仔血清を加えたDMEMで、37℃、5%CO2のインキュベータで培養した。HEK293細胞をISRE-ルシフェラーゼレポータープラスミドと、発現ベクタープラスミドpUNO-hTLR3又は空のコントロールベクターpUNO-mcs(Invivogen)と共に、Lipofectamine 2000試薬を用いて、一過性にトランスフェクトした。12時間後、細胞を96ウェルの平底プレートに、1ウェルあたり5×104細胞となるように播種した。その後、細胞を、20mg/mlの精製RNA又はLipofectamine 2000試薬と複合体化した0.5mg/mlのpoly I:C、又は腸ホモジネートと共にインキュベートした。培養12時間後、細胞を回収し、passive lysis buffer(Promega)で溶解させ、Dual-Luciferase Reporter Assay System(Promega)を使用してルシフェラーゼ活性を測定した。TKプロモータに駆動されるウミシイタケ(Renilla)ルシフェラーゼプラスミドを内部コントロールとして使用した。
[Reporter assay]
HEK293 cells (ATCC) were cultured in DMEM supplemented with 10% fetal calf serum in an incubator at 37 ° C. and 5% CO 2 . HEK293 cells were transiently transfected with Lipofectamine 2000 reagent with ISRE-luciferase reporter plasmid and expression vector plasmid pUNO-hTLR3 or empty control vector pUNO-mcs (Invivogen). After 12 hours, cells were seeded in 96-well flat-bottom plates at 5 × 10 4 cells per well. Cells were then incubated with 20 mg / ml purified RNA or 0.5 mg / ml poly I: C complexed with Lipofectamine 2000 reagent, or intestinal homogenate. After 12 hours of culture, the cells were collected, lysed with passive lysis buffer (Promega), and luciferase activity was measured using Dual-Luciferase Reporter Assay System (Promega). Renilla luciferase plasmid driven by the TK promoter was used as an internal control.
〔CD8+脾臓樹上細胞の培養〕
 CD8+樹状細胞を、野生型マウス(雌、8~12週齢)の脾臓から、CD8+Dendritic Cell Isolation Kit(Miltenyi Biotec)を用いたマグネティックソーティングにより精製した。ソートされた樹状細胞の純度は、通常>95%であった。CD8+樹状細胞を、96ウェル丸底プレートに、1ウェルあたり5×104細胞となるように播種し、10%のウシ胎仔血清を含む200mlのRPMI 1640中で、37℃、5%CO2のインキュベータで培養した。細胞は、10mg/mlのpoly I:Cによる刺激の1時間前に、100mMのTLR3/dsRNA結合阻害剤で前処理した。インキュベーション12時間後、IL-12p40をコードするmRNA、IFN-α4、及びIFN-βの発現レベルを定量的リアルタイムPCRで測定した。
[CD8 + spleen tree cell culture]
CD8 + dendritic cells were purified from the spleen of wild type mice (female, 8-12 weeks old) by magnetic sorting using CD8 + Dendritic Cell Isolation Kit (Miltenyi Biotec). The purity of the sorted dendritic cells was usually> 95%. CD8 + dendritic cells were seeded in 96-well round bottom plates at 5 × 10 4 cells per well, in 200 ml RPMI 1640 containing 10% fetal calf serum at 37 ° C., 5% CO Cultured in 2 incubators. Cells were pretreated with 100 mM TLR3 / dsRNA binding inhibitor 1 hour prior to stimulation with 10 mg / ml poly I: C. After 12 hours of incubation, expression levels of mRNA encoding IL-12p40, IFN-α4, and IFN-β were measured by quantitative real-time PCR.
〔統計解析〕
 統計的有意性は、unpaired Student'st-testにより両側検定で評価した。照射後の各群間の生存率の差は、Kaplan-Meierプロット及びログランク検定(log-rank tests)で評価した。p値が0.05未満のとき、統計的に有意差があるとみなした。
〔Statistical analysis〕
Statistical significance was assessed by a two-sided test with unpaired Student's st-test. Differences in survival rate between groups after irradiation were evaluated by Kaplan-Meier plot and log-rank tests. A p-value of less than 0.05 was considered statistically significant.
(結果)
TLR3は、放射線誘導性消化管症候群(GIS)の増悪因子である。
 GISに対するTLR3活性化の影響を調べるために、BALB/cバックグラウンドのTlr3+/+及びTlr3-/-マウスを、γ線の全身照射(total body γ-irradiation; TBI)に先立って、合成TLR3リガンドであるpoly I:C(参考文献7)で処理した。
 BALB/cマウスは、放射線感受性が高いことが知られていることから、放射線感受性を評価するために10-Gy TBIを行った(参考文献8)。poly I:C処理による保護効果は見られず、Tlr3+/+マウスのTBI感受性を有意に増大させた(図1a)。また、GISの主な症状である照射後の下痢と体重減少(参考文献1、2)も調べた。未処理Tlr3+/+マウスの下痢の症状はTBIの3日後から徐々に悪化したが、poly I:C処理したTlr3+/+マウスでは、1日目からより重篤な症状が見られた(図1b)。加えて、poly I:C処理は、Tlr3+/+マウスの体重減少を著しく促進した(図1c)。Tlr3+/+マウスと対照的に、Tlr3-/-マウスでは、TBI後の下痢と体重減少に対するpoly I:C処理の影響は見られなかった。このように、poly I:CによるTLR3刺激は、放射線誘導性GISを悪化させる。興味深いことに、Tlr3-/-マウスは、poly I:C処理の有無にかかわらず、Tlr3+/+マウスに比較して、死亡率、下痢、及び体重減少を含むGISの症状が優位に穏やかであった。
(result)
TLR3 is an exacerbation factor of radiation-induced gastrointestinal syndrome (GIS).
To investigate the effect of TLR3 activation on GIS, BALB / c background Tlr3 + / + and Tlr3 − / − mice were synthesized TLR3 prior to total body γ-irradiation (TBI). Treated with the ligand poly I: C (reference 7).
Since BALB / c mice are known to have high radiosensitivity, 10-Gy TBI was performed to evaluate radiosensitivity (Reference 8). No protective effect was observed with poly I: C treatment, which significantly increased the TBI sensitivity of Tlr3 + / + mice (FIG. 1a). We also examined post-irradiation diarrhea and weight loss (references 1 and 2), which are the main symptoms of GIS. Symptoms of diarrhea in untreated Tlr3 + / + mice gradually worsened after 3 days of TBI, but poly I: C-treated Tlr3 + / + mice showed more severe symptoms from day 1 ( FIG. 1b). In addition, poly I: C treatment significantly promoted weight loss in Tlr3 + / + mice (FIG. 1c). In contrast to Tlr3 + / + mice, Tlr3 − / − mice had no effect of poly I: C treatment on diarrhea and weight loss after TBI. Thus, TLR3 stimulation with poly I: C exacerbates radiation-induced GIS. Interestingly, Tlr3 -/- mice, with or without poly I: C treatment, had milder GIS symptoms including mortality, diarrhea, and weight loss compared to Tlr3 + / + mice. there were.
 次に、他のTLRファミリー欠損マウスの放射線誘導性GISに対する感受性を調べた。しかしながら、Tlr3-/-マウスと異なり、他のTLR欠損マウスは、野生型マウスに比較して、TBI後の生存率、下痢、及び体重減少の変化は見られなかった。続いて、Tlr3-/-マウスのHPSを調べた。しかしながら、TBI後のTlr3+/+マウスとTlr3-/-マウスの間で、骨髄(BM)抑制及び白血球減少に差は見られなかった(図1d~f)。このように、TLR3はTBI後に特異的に活性化され、GISを悪化させる。 Next, the sensitivity of other TLR family-deficient mice to radiation-induced GIS was examined. However, unlike Tlr3 − / − mice, other TLR-deficient mice did not show changes in survival, diarrhea, and weight loss after TBI compared to wild type mice. Subsequently, HPS of Tlr3 − / − mice was examined. However, there was no difference in bone marrow (BM) suppression and leukopenia between Tlr3 + / + and Tlr3 − / − mice after TBI (FIGS. 1d-f). Thus, TLR3 is specifically activated after TBI and exacerbates GIS.
TLR3は、放射線誘導性GISにおける陰窩細胞の細胞死を仲介する。
 造血症候群(hematopoietic syndrome; HPS)が影響する可能性を排除するために、Tlr3+/+マウスとTlr3-/-マウスにTBI直後に同種骨髄移植(bone marrow transplantation; BMT)を行った。Tlr3+/+マウスではTBIは致死的であったが、Tlr3-/-マウスは同条件で生存した(図2a)。このことは、放射線照射したTlr3-/-マウスがHPSで死亡したことを示した。Tlr3+/+BMTマウスに比較して、Tlr3-/-BMTマウスでは、下痢の症状と体重減少が有意に軽かった(図2b、c)。このように、Tlr3-/-マウスでは、GISは緩和された。
TLR3 mediates crypt cell death in radiation-induced GIS.
To eliminate the possibility of hematopoietic syndrome (HPS), Tlr3 + / + and Tlr3 -/- mice were subjected to bone marrow transplantation (BMT) immediately after TBI. TBI was lethal in Tlr3 + / + mice, but Tlr3 − / − mice survived under the same conditions (FIG. 2a). This indicated that irradiated Tlr3 − / − mice died of HPS. Compared to Tlr3 + / + BMT mice, Tlr3 − / − BMT mice had significantly less diarrhea symptoms and weight loss (FIGS. 2b, c). Thus, with Tlr3 -/- mice, GIS was relaxed.
 さらに、Tlr3-/-マウスからBM細胞をもらったTlr3+/+マウスと、Tlr3+/+マウスからBM細胞をもらったTlr3-/-マウスを準備した。その結果、ドナー細胞にかかわらず、Tlr3-/-レシピエントマウスにおいてGISが緩和された。このことは、非BM細胞上のTLR3が、GISの原因に大きく貢献しており、BM細胞上のTLR3は貢献していないことを示した。
 次に、小腸の陰窩上皮細胞(crypt epithelial cell)の細胞死を調べるために、TUNELアッセイを行った。図2dに示されるとおり、TBIから6時間後、Tlr3-/-マウスにおける陰窩あたりのTUNEL陽性細胞の数は、Tlr3+/+マウスにおける数よりもかなり少なかった。このように、TLR3は、照射後の陰窩細胞の細胞死に関与している。
 TBIの3日後、Tlr3+/+マウスの小腸には、陰窩再生の指標であるクリプトマイクロコロニーはほとんど見られなかったが、Tlr3-/-マウスでは、非常に多くのクリプトマイクロコロニーが存在した(図2e)。
In addition, Tlr3 - / - and Tlr3 + / + mice that had received a BM cells from a mouse, Tlr3 + / + Tlr3 got a BM cells from a mouse - / - were prepared mouse. As a result, GIS was relaxed in Tlr3 − / − recipient mice regardless of donor cells. This indicated that TLR3 on non-BM cells greatly contributed to the cause of GIS, and that TLR3 on BM cells did not contribute.
Next, a TUNEL assay was performed to examine cell death of crypt epithelial cells in the small intestine. As shown in FIG. 2d, after 6 hours from TBI, the number of TUNEL positive cells per crypt in Tlr3 − / − mice was significantly less than in Tlr3 + / + mice. Thus, TLR3 is involved in cell death of crypt cells after irradiation.
Three days after TBI, Tlr3 + / + mice had few cryptomicrocolony in the small intestine, which is an indicator of crypt regeneration, but Tlr3 -/- mice had very many cryptomicrocolony. (Figure 2e).
 次に、TBI後のTlr3+/+マウスとTlr3-/-マウスの小腸のGISの組織学的発現を比較した。Tlr3-/-マウスは、TBI前のTlr3+/+マウスと同じくらい正常な小腸の構造を示した(図2g)。このことは、TLR3が小腸の器官形成に関与していないことを示す。5日目、Tlr3+/+マウスの小腸では、先端の欠損(blunting)、融合(fusion)、及び上皮の露出などの絨毛の破壊の兆候が見られたが、Tlr3-/-マウスの小腸では絨毛構造が保存されていた(図2g)。絨毛性上皮の細胞死を調べたが、TBIの6時間後と3日後、Tlr3+/+マウスとTlr3-/-マウスのいずれにおいてもTUNEL陽性細胞の増加はほとんど見られなかった。また、TBIの6時間後と3日後、Tlr3+/+マウスとTlr3-/-マウスのいずれにおいても小腸絨毛における炎症細胞の集積はほとんど見られなかった。このように、放射線誘導性上皮細胞死も炎症も絨毛の完全性には影響していなかった。 Next, we compared the histological expression of GIS in the small intestine of Tlr3 + / + and Tlr3 − / − mice after TBI. Tlr3 − / − mice showed a normal intestinal structure as normal as Tlr3 + / + mice before TBI (FIG. 2g). This indicates that TLR3 is not involved in organ formation in the small intestine. On day 5, the small intestine of Tlr3 + / + mice showed signs of villous destruction such as blunting, fusion, and epithelial exposure, but in the small intestine of Tlr3 -/- mice The villi structure was preserved (Fig. 2g). Examination of chorionic epithelial cell death showed little increase in TUNEL positive cells in both Tlr3 + / + and Tlr3 − / − mice at 6 hours and 3 days after TBI. In addition, after 6 hours and 3 days after TBI, there was almost no accumulation of inflammatory cells in the small intestinal villi in both Tlr3 + / + mice and Tlr3 − / − mice. Thus, neither radiation-induced epithelial cell death nor inflammation had an effect on villi integrity.
 以上の結果は、Tlr3-/-マウスは、Tlr3+/+マウスよりも放射線誘導性陰窩細胞死が軽度であること、その結果Tlr3-/-マウスでは、3日目には再生した陰窩が見られ、5日目には小腸絨毛の正常な再上皮化が起こり、GIS誘導性の死が防止されることを示す。 These results show that Tlr3 − / − mice have milder radiation-induced crypt cell death than Tlr3 + / + mice, and as a result, Tlr3 − / − mice regenerated crypts on day 3. Shows that normal re-epithelialization of the small intestinal villi occurs on day 5 and prevents GIS-induced death.
TLR3は、小腸陰窩において細胞死を直接誘導する。
 Tlr3+/+マウスとTlr3-/-マウスでは、TBI後の陰窩細胞死の程度に差があったので、TLR3がこの現象に直接関与しているのか調べた。図3aに示されるとおり、陰窩上皮細胞はTlr3 mRNAを高発現していた。そこで、poly I:Cがどのように陰窩細胞に作用するのか、in vitro陰窩細胞培養法(参考文献10)を用いて調べた。Tlr3+/+マウスとTlr3-/-マウスの小腸陰窩を、マトリゲルベースの培養システムで6日間培養した(図3b)。Tlr3+/+マウスとTlr3-/-マウスの陰窩のいずれも、同様に陰窩絨毛オルガノイド(crypt-villus organoids)を形成した。陰窩絨毛オルガノイドでは、陰窩ドメインが、絨毛様上皮に裏打ちされた中央の管状構造を囲み、継続的に出芽現象が見られた。poly I:Cを投与すると、Tlr3+/+オルガノイドでは、陰窩ドメインが消失した。対照的にTlr3-/-オルガノイドでは、poly I:C刺激に関わらず、陰窩絨毛オルガノイドの構造は保たれた。
 次に、MTTアッセイにより、Tlr3+/+オルガノイドとTlr3-/-オルガノイドの細胞生存率を評価した(図3c)。poly I:C処理後、Tlr3+/+オルガノイドの細胞生存率は劇的に低下したが、Tlr3-/-オルガノイドでは生存率は変化しなかた。さらに、ホールマウント解析では、poly I:C刺激により、Tlr3+/+オルガノイドの陰窩ドメインにおけるTUNEL陽性細胞の数は増加するが、Tlr3-/-オルガノイドでは増加しないことが示された(図3d)。さらに、in vivoにおける小腸陰窩に対するpoly I:Cの効果を調べた。poly I:Cの腹腔内投与により、Tlr3+/+マウスのTUNEL陽性陰窩細胞の出現が誘導されたが、Tlr3-/-マウスでは誘導されなかった(図3e)。このように、TLR3のリガンド刺激は、陰窩上皮における広範な細胞死を直接誘導する。
TLR3 directly induces cell death in the small intestine crypts.
Since Tlr3 + / + and Tlr3 − / − mice differed in the extent of crypt cell death after TBI, we investigated whether TLR3 is directly involved in this phenomenon. As shown in FIG. 3a, crypt epithelial cells highly expressed Tlr3 mRNA. Thus, how poly I: C acts on crypt cells was examined using an in vitro crypt cell culture method (Reference 10). Small intestine crypts of Tlr3 + / + and Tlr3 − / − mice were cultured in a Matrigel-based culture system for 6 days (FIG. 3b). Both the crypts of Tlr3 + / + and Tlr3 − / − mice formed crypt-villus organoids as well. In the crypt chorionic organoids, the crypt domain surrounded the central tubular structure lined by the villi-like epithelium and budding was observed continuously. When poly I: C was administered, the crypt domain disappeared in Tlr3 + / + organoids. In contrast, Tlr3 − / − organoids maintained the structure of the crypt villi organoids regardless of poly I: C stimulation.
Next, the cell viability of Tlr3 + / + organoid and Tlr3 − / − organoid was evaluated by MTT assay (FIG. 3 c). After poly I: C treatment, the cell viability of Tlr3 + / + organoids decreased dramatically, but the viability of Tlr3 − / − organoids did not change. Furthermore, whole mount analysis showed that poly I: C stimulation increased the number of TUNEL positive cells in the crypt domain of Tlr3 + / + organoids, but not Tlr3 − / − organoids (FIG. 3d). ). Furthermore, the effect of poly I: C on small intestine crypts in vivo was investigated. Intraperitoneal administration of poly I: C induced the appearance of TUNEL positive crypt cells in Tlr3 + / + mice, but not in Tlr3 − / − mice (FIG. 3e). Thus, ligand stimulation of TLR3 directly induces extensive cell death in the crypt epithelium.
TLR3は、TRIF-RIP1経路を介してTBI後の陰窩細胞死を誘導する。
 TLRは、細胞外ドメイン、膜貫通ドメイン、及び、Toll/インターロイキン-1受容体相同(TIR)ドメインとして知られる細胞質シグナル伝達ドメインにより構成される(参考文献4)。TLRは細胞外ドメインを通じてリガンドを認識し、受容体のTIRドメインとアダプター分子のTIRドメインとの同型結合を誘導して、シグナルを伝達する。他のTLRファミリーのメンバーと異なり、TLR3は、アダプターである骨髄分化因子88(MyD88)(参考文献11、12)を使わない。その代わり、TLR3は、もう一つのアダプター分子であるTIRドメイン含有アダプター誘導性インターフェロンβ(TRIF)(TIR含有アダプター分子-1;TICAM-1としても知られる)をリクルートし、1型インターフェロン(IFN)遺伝子の転写のために、インターフェロン制御因子3(IRF3)の活性化を誘導する(参考文献12)。そこで、GISにおけるTRIFの役割を調べた。Tlr3-/-マウスと同様に、Trif-/-マウスは、Trif+/+マウスに比較して、10-GyのTBIの後に有意に長く生存した。Trif+/+マウスに比較して、Trif-/-マウスでは、下痢の症状も体重の減少も有意に軽かった。生存と症状に一致して、陰窩細胞死及はTrif+/+マウスよりTrif-/-マウスにおいて軽減された(図4a、b)。このように、Trif-/-マウスは、10-GyのTBI後、Tlr3-/-マウスと似た表現型を示した。そこで、さらに、Irf3-/-マウスとIfnar-/-マウスを使って、IRF3と1型IFN受容体(IFNAR)のGISへの関与を調べた。興味深いことに、Irf3+/+マウスとIrf3-/-マウスの間で、生存率、下痢、体重減少、陰窩損傷について有意差は見られなかった(図4a、b)。さらに、Ifnar-/-マウスとIfnar+/+マウスとの間にも、生存率、症状及び陰窩損傷の有意差は見られなかった(図4a、b)。このように、IRF3と1型IFNは、GISの原因には関与していなかった。TRIFのN末端領域は、TRIF仲介性のIRF3活性化に必須であるが、C末端領域はNF-κBの活性化と細胞死に重要であると報告されている。キナーゼを内部に持つ死ドメインである受容体相互作用タンパク質(receptor-interacting protein 1; RIP1)は、C末端領域にあるRIP同型相互作用モチーフドメインによりTRIFと結合し、NF-κB活性化及び細胞死のシグナルを伝達する(参考文献13、14)。TBI後のGISに対するRIP1の関与を調べるために、マウスを、RIP1特異的アロステリック阻害剤であるネクロスタチン-1(Nec-1)(参考文献15)で処理した。Nec-1処理は、生存率と下痢症状を改善したが、体重減少には有意な差をもたらさなかった。さらに、Nec-1処理は、TBIの6時間後におけるTUNEL陽性陰窩細胞の数を有意に増大させ、TBIの3日後におけるマイクロコロニーの数を増加させた(図4c、d)。
TLR3 induces crypt cell death after TBI via the TRIF-RIP1 pathway.
TLR is composed of an extracellular domain, a transmembrane domain, and a cytoplasmic signaling domain known as the Toll / interleukin-1 receptor homology (TIR) domain (Ref. 4). TLR recognizes the ligand through the extracellular domain and induces homotypic binding between the TIR domain of the receptor and the TIR domain of the adapter molecule to transmit a signal. Unlike other members of the TLR family, TLR3 does not use the adapter myeloid differentiation factor 88 (MyD88) (11, 12). Instead, TLR3 recruits another adapter molecule, TIR domain-containing adapter-inducible interferon beta (TRIF) (TIR-containing adapter molecule-1; also known as TICAM-1), and type 1 interferon (IFN) It induces the activation of interferon regulatory factor 3 (IRF3) for gene transcription (Reference 12). Therefore, we investigated the role of TRIF in GIS. Similar to Tlr3 − / − mice, Trif − / − mice survived significantly longer after 10-Gy TBI compared to Trif + / + mice. Compared to Trif + / + mice, Trif -/- mice had significantly less diarrhea symptoms and weight loss. Consistent with survival and symptoms, crypt cell death was reduced in Trif − / − mice than in Trif + / + mice (FIGS. 4a, b). Thus, Trif − / − mice showed a phenotype similar to Tlr3 − / − mice after 10-Gy TBI. Therefore, further, IRF3 - / - mice and Ifnar - / - with the mouse was examined the involvement of the GIS of IRF3 type 1 IFN receptor (IFNAR). Interestingly, there were no significant differences between survival, diarrhea, weight loss, and crypt damage between Irf3 + / + and Irf3 − / − mice (FIGS. 4a, b). Furthermore, no significant differences in survival rate, symptoms, and crypt damage were observed between Ifnar − / − mice and Ifnar + / + mice (FIGS. 4a and b). Thus, IRF3 and type 1 IFN were not involved in the cause of GIS. The N-terminal region of TRIF is essential for TRIF-mediated IRF3 activation, whereas the C-terminal region has been reported to be important for NF-κB activation and cell death. Receptor-interacting protein 1 (RIP1), a death domain with a kinase inside, binds to TRIF via the RIP homologous interaction motif domain in the C-terminal region, and activates NF-κB and cell death This signal is transmitted (References 13 and 14). To examine the involvement of RIP1 in GIS after TBI, mice were treated with necrostatin-1 (Nec-1) (reference 15), a RIP1-specific allosteric inhibitor. Nec-1 treatment improved survival and diarrhea, but did not significantly differ in weight loss. Furthermore, Nec-1 treatment significantly increased the number of TUNEL positive crypt cells 6 hours after TBI and increased the number of microcolony 3 days after TBI (FIGS. 4c, d).
 以上の結果は、TLR3が、TRIF-RIP1経路を通じて放射線誘導性陰窩細胞死を仲介することを示唆する。TLR3は、細胞型特異的に2つの異なる細胞死、すなわちアポトーシスとネクローシスを誘導すると考えられてきた(参考文献16)。アポトーシスは、細胞死受容体へのリガンド刺激と、細胞内損傷に応答して起こるカスパーゼファミリーのメンバーの活性化を通じて生じる(参考文献16)。TLR3仲介性アポトーシスでは、TRIFとRIP1との結合が、FADD(Fas-associated protein with death domain)とカスパーゼ8を通じて下流のシグナル伝達を誘導し、これがエフェクターカスパーゼ3を切断して、アポトーシスが実行される(参考文献17、18)。対照的に、ネクロトーシス(necroptosis)は、プログラムされたネクローシスであり、カスパーゼ機能が存在しないときや阻害されたときに、リガンドに活性化された死ドメイン受容体に誘導される(参考文献16)。Tlr3+/+マウスの陰窩では、TBI及びpoly I:C投与後に、活性化されたカスパーゼ3陽性細胞の増加がみられた。Tlr3-/-マウスでは、TBI及びpoly I:C投与後に、活性化されたカスパーゼ3陽性細胞の数が有意に減少した。このように、TBI後にTLR3経路に誘導される陰窩細胞死はアポトーシスである。 These results suggest that TLR3 mediates radiation-induced crypt cell death through the TRIF-RIP1 pathway. TLR3 has been thought to induce two different cell deaths in a cell type-specific manner, apoptosis and necrosis (Reference 16). Apoptosis occurs through ligand stimulation of the death receptor and activation of caspase family members in response to intracellular damage (Ref. 16). In TLR3-mediated apoptosis, binding of TRIF and RIP1 induces downstream signaling through FADD (Fas-associated protein with death domain) and caspase 8, which cleaves effector caspase 3 and apoptosis is performed (References 17, 18). In contrast, necroptosis is a programmed necrosis that is induced by a ligand-activated death domain receptor when caspase function is absent or inhibited (16). . In the crypts of Tlr3 + / + mice, there was an increase in activated caspase 3-positive cells after TBI and poly I: C administration. In Tlr3 − / − mice, the number of activated caspase 3 positive cells was significantly reduced after TBI and poly I: C administration. Thus, crypt cell death induced by the TLR3 pathway after TBI is apoptosis.
TBI後のTLR3仲介性陰窩細胞死はp53依存的である。
 p53は、放射線誘導性陰窩細胞死の主な原因因子であることが示唆されてきた(参考文献3)。電離放射線は、p53タンパク質のリン酸化を誘導し、それによりユビキチン化とそれに続くプロテアソーム分解を阻害する(参考文献3)。p53のリン酸化は転写活性化されたp53の核集積を引き起こし、その結果、Bax(Bcl-2関連Xタンパク質)やPUMA(p53-upregulated modulator of apoptosis)などのプロアポトーシス遺伝子を誘導する。実際、TBI後のp53-/-マウスでは、TUNEL陽性陰窩細胞と、Bax及びPumaのmRNAの誘導が、ほぼ完全に抑制された(図5a、b)。このように、TBIから6時間後の陰窩細胞死は、p53依存性であった。興味深いことに、TUNEL陽性陰窩細胞は、TBIの6時間後、Tlr3-/-マウスでは依然として検出された(図2d)。TBIの6時間後、Tlr3+/+マウスとTlr3-/-マウスの小腸では、陰窩細胞におけるP53タンパク質の蓄積と、Bax及びPuma mRNAの上方制御が有意に同程度に誘導された(図5c、d)。このように、TBI後のp53仲介性細胞死のシグナル伝達は、Tlr3-/-マウスでは失われなかった。
 最近の報告によると、いくつかのがん細胞株で、TLR3誘導がp53に制御されれている(参考文献19)。しかしながら、p53+/+マウスとp53-/-マウスでは、TBIに関わらず、小腸におけるTlr3 mRNA発現に有意差は見られなかった。次に、p53-/-マウスにおけるpoly I:C仲介性細胞死を調べた。p53+/+マウスと同様に、poly I:Cの腹腔内注射は、p53-/-マウスにおいて陰窩上皮細胞の細胞死を誘導した(図5e)。これらの結果は、陰窩細胞上のTLR3は、放射線照射の後のp53依存性のイベントがないと活性化されないことを示す。
TLR3-mediated crypt cell death after TBI is p53-dependent.
p53 has been suggested to be a major causative factor of radiation-induced crypt cell death (Ref. 3). Ionizing radiation induces phosphorylation of p53 protein, thereby inhibiting ubiquitination and subsequent proteasome degradation (Ref. 3). Phosphorylation of p53 causes nuclear accumulation of transcriptionally activated p53, and as a result, induces pro-apoptotic genes such as Bax (Bcl-2 related X protein) and PUMA (p53-upregulated modulator of apoptosis). In fact, in p53 − / − mice after TBI, the induction of TUNEL positive crypt cells and Bax and Puma mRNA was almost completely suppressed (FIGS. 5a and b). Thus, crypt cell death 6 hours after TBI was p53-dependent. Interestingly, TUNEL positive crypt cells were still detected in Tlr3 − / − mice 6 hours after TBI (FIG. 2d). Six hours after TBI, accumulation of P53 protein in crypt cells and up-regulation of Bax and Puma mRNA were induced in the small intestine of Tlr3 + / + and Tlr3 − / − mice to a significantly similar degree (FIG. 5c). D). Thus, signaling of p53-mediated cell death after TBI was not lost in Tlr3 − / − mice.
According to a recent report, TLR3 induction is regulated by p53 in several cancer cell lines (Reference 19). However, there was no significant difference in Tlr3 mRNA expression in the small intestine between p53 + / + and p53 − / − mice regardless of TBI. Next, poly I: C-mediated cell death in p53 − / − mice was examined. Similar to p53 + / + mice, intraperitoneal injection of poly I: C induced crypt epithelial cell death in p53 − / − mice (FIG. 5e). These results indicate that TLR3 on crypt cells is not activated without p53-dependent events after irradiation.
腸内微生物叢はTBI後の陰窩細胞死には重要ではない。
 次に、TBI後の陰窩細胞死を誘導するために、どの物質がTLR3を活性化しているのか調べた。哺乳動物の消化管は、腸内微生物叢を構成する多種の微生物を含む。TLR3はウイルスdsRNAセンサとして知られていることから(参考文献4、5、7)、TBI後における、無菌(GF)マウスの陰窩細胞死を調べた。しかしながら、GFマウスとSPFマウスでは、TBIから6時間後の陰窩細胞死と3日後の再生については差が見られなかった。このことは、腸内微生物叢は、TBI後のTLR3の活性化に関与しないことを示唆する(図6a、b)。
Intestinal microbiota is not important for crypt cell death after TBI.
Next, it was examined which substances activate TLR3 to induce crypt cell death after TBI. The mammalian gastrointestinal tract contains a variety of microorganisms that make up the gut microbiota. Since TLR3 is known as a viral dsRNA sensor (Refs. 4, 5, and 7), crypt cell death in sterile (GF) mice after TBI was examined. However, there was no difference between GF and SPF mice regarding crypt cell death 6 hours after TBI and regeneration after 3 days. This suggests that the gut microbiota is not involved in the activation of TLR3 after TBI (FIGS. 6a, b).
自己RNAがTLR3依存性陰窩細胞死を誘導する。
 微生物に由来する外因性リガンドに加えて、TLRは、損傷を受けた組織から放出される内因性リガンドに反応して炎症性反応を誘導することが示されてきている(参考文献20)。これらの宿主に由来する内因性リガンドは、細胞構成成分(intracellular constituents)、細胞外マトリックスタンパク質、及び核酸などの細胞成分又は誘導性遺伝子産物であり、TLR活性化を介して組織損傷を悪化させる。そこで、TBI後のTLR3仲介性陰窩細胞死には、内因性分子が関与しているとの仮説を立て、まず、10-GyのTBI後の小腸のホモジネートが、TLR3を介してISRE(interferon-stimulated response element)レポーター活性を刺激できるかどうか調べた。興味深いことに、小腸ホモジネートは、TLR3をコードする発現プラスミドで一過性にトランスフェクトすると、HEK293細胞におけるISREレポーター活性を有意に刺激した(図7a)。また、RNase処理では、小腸ホモジネートのTLR3を介したISREレポーター活性刺激能が低下したが、プロテイナーゼ処理やDNase処理では低下しなかった。このように、小腸ホモジネートのRNAは、TLR3を刺激することが示唆された。
Self RNA induces TLR3-dependent crypt cell death.
In addition to exogenous ligands derived from microorganisms, TLRs have been shown to induce inflammatory responses in response to endogenous ligands released from damaged tissues (Ref. 20). Endogenous ligands derived from these hosts are cellular components or inducible gene products such as intracellular constituents, extracellular matrix proteins, and nucleic acids that exacerbate tissue damage through TLR activation. Therefore, we hypothesized that endogenous molecules are involved in TLR3-mediated crypt cell death after TBI. First, 10-Gy post-TBI small intestine homogenate is interferon-mediated via TLR3. Stimulated response element) It was investigated whether reporter activity could be stimulated. Interestingly, the small intestine homogenate significantly stimulated ISRE reporter activity in HEK293 cells when transiently transfected with an expression plasmid encoding TLR3 (FIG. 7a). In addition, RNase treatment decreased the ability to stimulate ISRE reporter activity via TLR3 of small intestine homogenate, but not proteinase treatment or DNase treatment. Thus, it was suggested that small intestine homogenate RNA stimulates TLR3.
 次に、in vitro陰窩培養系を使って、放射線照射が、細胞内RNAの漏出を引き起こすかどうか調べた。p53+/+マウスとp53-/-マウス由来の小腸陰窩を培養し、γ線照射後の形態変化とオルガノイドの生存率を調べた。γ線照射後、p53+/+オルガノイドからは陰窩ドメインが消失したが、p53-/-オルガノイドからは消失しなかった。MTTアッセイでは、γ線照射によってp53+/+オルガノイドの生存率が著しく低下したが、p53-/-オルガノイドの生存率は低下しなかった。このように、in vitroでγ線照射によって引き起こされる陰窩細胞死は、p53依存性である。
 次に、培養上清由来の全RNAをAgilent 2100 bioanalyzerを用いて解析し、核酸の量とサイズ分布を測定した。興味深いことに、γ線照射後、p53+/+オルガノイドの培養上清からは、25ヌクレオチドから1000ヌクレオチドと様々な長さのRNA分子が検出されたが、p53-/-オルガノイドでは検出されなかった(図7b)。
 さらに、我々は、Tlr3+/+マウスとTlr3-/-マウスにおける陰窩絨毛オルガノイドの放射線誘導性細胞死を比較した。Tlr3+/+オルガノイドに比較して、Tlr3-/-オルガノイドにおける照射後の陰窩ドメインの消失は明らかに緩和されていた(図7c)。加えて、Tlr3-/-オルガノイドの細胞生存率は、Tlr3+/+オルガノイドの細胞生存率より有意に高かった。興味深いことに、オルガノイドをRNaseとインキュベートしたところ、Tlr3+/+オルガノイドの委縮が改善され、Tlr3-/-オルガノイドと同程度まで生存率が上昇した。
Next, using an in vitro crypt culture system, it was investigated whether radiation caused leakage of intracellular RNA. Small intestine crypts derived from p53 + / + mice and p53 − / − mice were cultured, and morphological changes after gamma irradiation and organoid survival were examined. After gamma irradiation, the crypt domain disappeared from the p53 + / + organoid, but not from the p53 − / − organoid. In the MTT assay, γ-irradiation significantly reduced the viability of p53 + / + organoids, but did not reduce the viability of p53 − / − organoids. Thus, crypt cell death caused by gamma irradiation in vitro is p53 dependent.
Next, total RNA derived from the culture supernatant was analyzed using an Agilent 2100 bioanalyzer, and the amount and size distribution of nucleic acids were measured. Interestingly, RNA molecules of various lengths ranging from 25 to 1000 nucleotides were detected in p53 + / + organoid culture supernatants after gamma irradiation, but not in p53 -/- organoids (FIG. 7b).
In addition, we compared radiation-induced cell death of crypt villi organoids in Tlr3 + / + and Tlr3 − / − mice. Compared to Tlr3 + / + organoids, loss of crypt domains after irradiation in Tlr3 − / − organoids was clearly mitigated (FIG. 7c). In addition, the cell viability of Tlr3 − / − organoids was significantly higher than that of Tlr3 + / + organoids. Interestingly, incubation of organoids with RNase improved Tlr3 + / + organoid atrophy and increased survival to the same extent as Tlr3 − / − organoids.
 以上の結果は、γ線照射後にp53依存性に細胞死した陰窩細胞に起因する内因性RNAが、TLR3を介して広範な細胞死を誘導することを示唆した。
 次に、TBI後の小腸から単離したRNAが、TLR3を介してISREレポーター活性を刺激するかどうか調べた。その結果、放射線照射した小腸由来の全RNAは、TLR3依存性にISREレポーター活性を有意に上昇させた(図7d)。図7bに示されるとおり、γ線照射後のp53+/+オルガノイドの培養上清からは、200ヌクレオチド以下の小さなRNA群が検出された。最近、siRNA(small interfering RNA)がTLR3を介して血管新生を抑制することが示された(参考文献21)。したがって、宿主由来のマイクロRNAなどのsmall non-coding RNAsが、TBI後のTLR3仲介性陰窩細胞死に関与すると考えた。しかしながら、200ヌクレオチド以下の小さなRNAによる、TLR3を介したISREレポーター活性の刺激は見られなかった(図7d)。
 予想に反して、4200ヌクレオチド以上の大きなRNAが、TLR3を介してISREレポーターを有意に刺激した。次に、大きなRNAがin vitroで陰窩細胞死を誘導するかどうか調べた。大きなRNAはTlr3+/+マウスの陰窩絨毛オルガノイドの破壊を誘導したが、小さなRNAは誘導せず、また、大きなRNAは、Tlr3-/-マウスの陰窩絨毛オルガノイドを破壊しなかった(図7e)。大きなRNAで処理した後、Tlr3+/+オルガノイドの生存率は有意に低下したが、Tlr3-/-オルガノイドの生存率は低下しなかった。このように、放射線照射された小腸細胞由来の大きなRNAがTLR3を介した陰窩細胞死を誘導することが示唆された。
The above results suggested that endogenous RNA derived from crypt cells that died p53-dependently after γ-irradiation induces extensive cell death via TLR3.
Next, it was examined whether RNA isolated from the small intestine after TBI stimulates ISRE reporter activity via TLR3. As a result, irradiated small intestine-derived total RNA significantly increased ISRE reporter activity in a TLR3-dependent manner (FIG. 7d). As shown in FIG. 7b, a small RNA group of 200 nucleotides or less was detected from the culture supernatant of p53 + / + organoid after γ-irradiation. Recently, siRNA (small interfering RNA) was shown to suppress angiogenesis via TLR3 (Reference 21). Therefore, we thought that small non-coding RNAs such as host-derived microRNAs are involved in TLR3-mediated crypt cell death after TBI. However, stimulation of ISRE reporter activity via TLR3 by small RNAs of 200 nucleotides or less was not observed (FIG. 7d).
Contrary to expectations, large RNAs of 4200 nucleotides or more significantly stimulated the ISRE reporter via TLR3. Next, we examined whether large RNAs induce crypt cell death in vitro. Large RNA induced destruction of crypt villi organoids in Tlr3 + / + mice, but not small RNA, and large RNA did not destroy crypt chorionic organoids in Tlr3 -/- mice (Fig. 7e). After treatment with large RNA, the survival rate of Tlr3 + / + organoids was significantly reduced, but the survival rate of Tlr3 − / − organoids was not reduced. Thus, it was suggested that large RNA derived from irradiated small intestinal cells induces crypt cell death via TLR3.
TLR3/dsRNS結合阻害剤は、マウスGISを抑制する。
 上記の結果から、内因性RNAがGISにおけるTLR3依存性陰窩細胞死を誘導する可能性が強く示唆された。in vivoでのメカニズムを解明するために、dsRNAとTLR3との結合の競合阻害剤である(R)-2-(3-クロロ-6-フルオロベンゾ[b]チオフェン-2-カルボキシアミド)-3-フェニルプロパン酸を用いた(参考文献22)。また、この低分子化合物が、poly I:C刺激後のCD8α陽性脾臓樹状細胞におけるIL-12p40をコードするmRNAの上方制御を抑制することも確認した。この上方制御は、TLR3に完全に依存する(参考文献6)。TBIの前にマウスをTLR3阻害剤で処理すると、生存率が有意に上昇し、下痢と体重減少が改善された(図8a-c)。さらに、TLR3阻害剤による前処理は、陰窩細胞死を有意に減少させ、TBIから6時間後及び3日後のマイクロコロニーを増加させた(図8d、e)。阻害剤処理は、TBI後に行った場合でも、生存率とGIS症状の有意な上昇をもたらした(図9a-c)。このように、TLR3/dsRNAの結合阻害は、陰窩細胞死を効果的に減少させ、GISからマウスを保護した。
TLR3 / dsRNS binding inhibitors suppress mouse GIS.
The above results strongly suggested that endogenous RNA could induce TLR3-dependent crypt cell death in GIS. To elucidate the mechanism in vivo, (R) -2- (3-chloro-6-fluorobenzo [b] thiophene-2-carboxamide) -3 is a competitive inhibitor of dsRNA-TLR3 binding -Phenylpropanoic acid was used (reference 22). It was also confirmed that this low molecular weight compound suppressed the upregulation of mRNA encoding IL-12p40 in CD8α-positive splenic dendritic cells after poly I: C stimulation. This upregulation is completely dependent on TLR3 (Ref. 6). Treatment of mice with a TLR3 inhibitor prior to TBI significantly increased survival and improved diarrhea and weight loss (FIGS. 8a-c). Furthermore, pretreatment with TLR3 inhibitors significantly reduced crypt cell death and increased microcolony 6 hours and 3 days after TBI (FIG. 8d, e). Inhibitor treatment resulted in a significant increase in survival and GIS symptoms even when performed after TBI (FIGS. 9a-c). Thus, inhibition of TLR3 / dsRNA binding effectively reduced crypt cell death and protected mice from GIS.
参考文献
1. Waselenko, J. K. et al. Medical management of the acute radiation syndrome: recommendations of the Strategic National Stockpile Radiation Working Group. Ann. Intern. Med. 140, 1037-1051 (2004).
2. Berger, M. E., Christensen, D. M., Lowry, P. C., Jones, O. W. & Wiley, A. L. Medical management of radiation injuries: current approaches. Occup. Med. (Lond) 56, 162-172 (2006).
3. Qiu, W. et al. PUMA regulates intestinal progenitor cell radiosensitivity and gastrointestinal syndrome. Cell Stem Cell 2, 576-583 (2008).
4. Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783-801 (2006).
5. Nish, S. & Medzhitov, R. Host defence pathways: role of redundancy and compensation in infectious disease phenotypes. Immunity 34, 629-636 (2011).
6. Burdelya, L. G. et al. An agonist of toll-like receptor 5 has radioprotective activity in mouse and primate models. Science 320, 226-230 (2008).
7. Alexopoulou, L., Holt, A. C., Medzhitov, R. & Flavell, R. A. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413, 732-738 (2001).
8. Williams, J. P. et al. Animal models for medical countermeasures to radiation exposure. Radiat. Res. 173, 557-578 (2010).
9. Withers, H. R. & Elkind, M. M. Microcolony survival assay for cells of mouse intestinal mucosa exposed to radiation. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med 17, 261-267 (1970).
10. Sato, T. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459, 262-265 (2009).
11. Adachi, O. et al. Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function. Immunity 9, 143-150 (1998).
12. Yamamoto, M. et al. Role of adaptor TRIF in the MyD88-independent toll-like receptor signalling pathway. Science 301, 640-643 (2003).
13. Kaiser, W. J. & Offermann, M. K. Apoptosis induced by the toll-like receptor adaptor TRIF is dependent on its receptor interacting protein homotypic interaction motif. J. Immunol 174, 4942-4952 (2005).
14. Meylan, E. et al. RIP1 is an essential mediator of Toll-like receptor 3-induced NF-kappaB activation. Nat. Immunol. 5, 503-507 (2004).
15. Degterev, A. et al. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat. Chem. Biol 4, 313-321 (2008).
16. Seya, T. et al. TLR3/TICAM-1 signalling in tumour cell RIP3-dependent necroptosis. Oncoimmunology 1, 917-923 (2012).
17. Feoktistova, M. et al. cIAPs block Ripoptosome formation, a RIP1/caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Mol. Cell 43, 449-463 (2011).
18. Elmore, S. Apoptosis: a review of programmed cell death. Toxicol. Pathol. 35, 495-516 (2007).
19. Taura, M. et al. p53 regulates Toll-like receptor 3 expression and function in human epithelial cell lines. Mol. Cell Biol. 28, 6557-6567 (2008).
20. Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805-820 (2010).
21. Kleinman, M. E. et al. Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature 452, 591-597 (2008).
22. Cheng, K., Wang, X. & Yin, H. Small-molecule inhibitors of the TLR3/dsRNA complex. J. Am. Chem. Soc. 133, 3764-3767 (2011).
23. Takeuchi, O. et al. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11, 443-451 (1999).
24. Hoshino, K. et al. Cutting edge: Toll-like receptor 4 (TLR4)-deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product. J. Immunol. 162, 3749-3752 (1999).
25. Uematsu, S. et al. Detection of pathogenic intestinal bacteria by Toll-like receptor 5 on intestinal CD11ct lamina propria cells. Nat. Immunol. 7, 868-874 (2006).
26. Hemmi, H. et al. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signalling pathway. Nat. Immunol. 3, 196-200 (2002).
27. Hemmi, H. et al. A Toll-like receptor recognizes bacterial DNA. Nature 408, 740-745 (2000).
28. Sato, M. et al. Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-alpha/beta gene induction. Immunity 13,
539-548 (2000).
29. Toma-Hirano, M., Namiki, S., Miyatake, S., Arai, K. & Kamogawa-Schifter, Y. Type I interferon regulates pDC maturation and Ly49Q expression. Eur. J. Immunol. 37, 2707-2714 (2007).
30. Jones, S. N., Roe, A. E., Donehower, L. A. & Bradley, A. Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53. Nature 378, 206-208 (1995).
31. Fujimoto, K. et al. A new subset of CD103tCD8alphat dendritic cells in the small intestine expresses TLR3, TLR7, and TLR9 and induces Th1 response and CTL activity. J. Immunol. 186, 6287-6295 (2011).
References
1. Waselenko, J. K. et al. Medical management of the acute radiation syndrome: recommendations of the Strategic National Stockpile Radiation Working Group. Ann. Intern. Med. 140, 1037-1051 (2004).
2. Berger, M. E., Christensen, D. M., Lowry, P. C., Jones, O. W. & Wiley, A. L. Medical management of radiation injuries: current approaches. Occup. Med. (Lond) 56, 162-172 (2006).
3. Qiu, W. et al. PUMA regulates intestinal progenitor cell radiosensitivity and gastrointestinal syndrome. Cell Stem Cell 2, 576-583 (2008).
4. Akira, S., Uematsu, S. & Takeuchi, O. Pathogen recognition and innate immunity. Cell 124, 783-801 (2006).
5. Nish, S. & Medzhitov, R. Host defense pathways: role of redundancy and compensation in infectious disease phenotypes. Immunity 34, 629-636 (2011).
6. Burdelya, L. G. et al. An agonist of toll-like receptor 5 has radioprotective activity in mouse and primate models. Science 320, 226-230 (2008).
7. Alexopoulou, L., Holt, A. C., Medzhitov, R. & Flavell, R. A. Recognition of double-stranded RNA and activation of NF-kappaB by Toll-like receptor 3. Nature 413, 732-738 (2001).
8. Williams, J. P. et al. Animal models for medical countermeasures to radiation exposure. Radiat. Res. 173, 557-578 (2010).
9. Withers, H. R. & Elkind, M. M. Microcolony survival assay for cells of mouse intestinal mucosa exposed to radiation. Int. J. Radiat. Biol. Relat. Stud. Phys. Chem. Med 17, 261-267 (1970).
10. Sato, T. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche.Nature 459, 262-265 (2009).
11. Adachi, O. et al. Targeted disruption of the MyD88 gene results in loss of IL-1- and IL-18-mediated function.Immunity 9, 143-150 (1998).
12. Yamamoto, M. et al. Role of adaptor TRIF in the MyD88-independent toll-like receptor signaling pathway.Science 301, 640-643 (2003).
13. Kaiser, W. J. & Offermann, M. K. Apoptosis induced by the toll-like receptor adaptor TRIF is dependent on its receptor interacting protein homotypic interaction motif. J. Immunol 174, 4942-4952 (2005).
14. Meylan, E. et al. RIP1 is an essential mediator of Toll-like receptor 3-induced NF-kappaB activation. Nat. Immunol. 5, 503-507 (2004).
15. Degterev, A. et al. Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat. Chem. Biol 4, 313-321 (2008).
16. Seya, T. et al. TLR3 / TICAM-1 signaling in tumour cell RIP3-dependent necroptosis. Oncoimmunology 1, 917-923 (2012).
17. Feoktistova, M. et al. CIAPs block Ripoptosome formation, a RIP1 / caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Mol. Cell 43, 449-463 (2011).
18. Elmore, S. Apoptosis: a review of programmed cell death. Toxicol. Pathol. 35, 495-516 (2007).
19. Taura, M. et al. P53 regulates Toll-like receptor 3 expression and function in human epithelial cell lines.Mol. Cell Biol. 28, 6557-6567 (2008).
20. Takeuchi, O. & Akira, S. Pattern recognition receptors and inflammation. Cell 140, 805-820 (2010).
21. Kleinman, M. E. et al. Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature 452, 591-597 (2008).
22. Cheng, K., Wang, X. & Yin, H. Small-molecule inhibitors of the TLR3 / dsRNA complex. J. Am. Chem. Soc. 133, 3764-3767 (2011).
23. Takeuchi, O. et al. Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity 11, 443-451 (1999).
24. Hoshino, K. et al. Cutting edge: Toll-like receptor 4 (TLR4) -deficient mice are hyporesponsive to lipopolysaccharide: evidence for TLR4 as the Lps gene product.J. Immunol. 162, 3749-3752 (1999).
25. Uematsu, S. et al. Detection of pathogenic intestinal bacteria by Toll-like receptor 5 on intestinal CD11ct lamina propria cells. Nat. Immunol. 7, 868-874 (2006).
26. Hemmi, H. et al. Small anti-viral compounds activate immune cells via the TLR7 MyD88-dependent signaling pathway. Nat. Immunol. 3, 196-200 (2002).
27. Hemmi, H. et al. A Toll-like receptor recognizes bacterial DNA. Nature 408, 740-745 (2000).
28. Sato, M. et al. Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-alpha / beta gene induction. Immunity 13,
539-548 (2000).
29. Toma-Hirano, M., Namiki, S., Miyatake, S., Arai, K. & Kamogawa-Schifter, Y. Type I interferon regulates pDC maturation and Ly49Q expression. Eur. J. Immunol. 37, 2707- 2714 (2007).
30. Jones, S. N., Roe, A. E., Donehower, L. A. & Bradley, A. Rescue of embryonic lethality in Mdm2-deficient mice by absence of p53.Nature 378, 206-208 (1995).
31. Fujimoto, K. et al. A new subset of CD103tCD8alphat dendritic cells in the small intestine expresses TLR3, TLR7, and TLR9 and induces Th1 response and CTL activity. J. Immunol. 186, 6287-6295 (2011).

Claims (13)

  1.  Toll様受容体(TLR)3阻害剤を含む、放射線誘導性消化管症候群の予防又は治療用医薬組成物。 A pharmaceutical composition for preventing or treating radiation-induced gastrointestinal syndrome, comprising a Toll-like receptor (TLR) 3 inhibitor.
  2.  前記TLR3阻害剤は、TLR3と二本鎖RNAとの相互作用を阻害する物質である、請求項1に記載の放射線誘導性消化管症候群の予防又は治療用医薬組成物。 The pharmaceutical composition for preventing or treating radiation-induced gastrointestinal syndrome according to claim 1, wherein the TLR3 inhibitor is a substance that inhibits the interaction between TLR3 and double-stranded RNA.
  3.  前記TLR3と二本鎖RNAとの相互作用を阻害する物質は、下記式(I)で表される化合物、その塩、又はその溶媒和物である、請求項2に記載の放射線誘導性消化管症候群の予防又は治療用医薬組成物。
    Figure JPOXMLDOC01-appb-I000001
    [式中、
     nは、1から3の整数であり;
     Arは、置換基を有していてもよいフェニル、インドール、又はナフタレンであり;
     Arは、置換基を有していてもよいインドール-2-yl、又はナフタレニルであり;
     Xは-NR-、-O-、又は-S-であり;
     Z及びZは、それぞれ独立に=NR、=O、又は=Sであり;
     Xは、-NR、-OR、又は-SRであり;
     Rは、それぞれ独立に水素、アルキル基、又は窒素保護基であり;
     Rは、水素、又はアルキル基であり;
     Rは、それぞれ独立に水素、アルキル基、又は水酸基保護基であり;及び
     Rは水素、アルキル基、又はチオール保護基を表す。]
    The radiation-induced gastrointestinal tract according to claim 2, wherein the substance that inhibits the interaction between TLR3 and double-stranded RNA is a compound represented by the following formula (I), a salt thereof, or a solvate thereof. A pharmaceutical composition for preventing or treating a syndrome.
    Figure JPOXMLDOC01-appb-I000001
    [Where:
    n is an integer from 1 to 3;
    Ar 1 is an optionally substituted phenyl, indole, or naphthalene;
    Ar 2 is optionally substituted indole-2-yl or naphthalenyl;
    X 2 is —NR a —, —O—, or —S—;
    Z 1 and Z 2 are each independently ═NR a , ═O, or ═S;
    X 3 is —NR a R b , —OR c , or —SR d ;
    Each R a is independently hydrogen, an alkyl group, or a nitrogen protecting group;
    R b is hydrogen or an alkyl group;
    R c is independently hydrogen, an alkyl group, or a hydroxyl protecting group; and R d represents hydrogen, an alkyl group, or a thiol protecting group. ]
  4.  前記化合物(I)が以下の式(II)で表される、請求項3に記載の放射線誘導性消化管症候群の予防又は治療用医薬組成物。
    Figure JPOXMLDOC01-appb-I000002
    [式中、
     X及びXは、それぞれ独立に-NR-、-O-、又は-S-であり;
     Z及びZは、それぞれ独立に=NR、=O、又は=Sであり;
     Xは-NR、-OR、又は-SRであり;
     R、R、R及びRは、それぞれ独立に水素、アルキル基、-OR、ハロゲン、-NR、又はSRであり、但し、R乃至Rの少なくとも1つは水素ではなく;
     Rは、水素又はアルキル基であり;
     Rは、それぞれ独立に水素、アルキル基、又は水酸基保護基であり;及び
     Rは、水素、アルキル基、又はチオール保護基を表す。]
    The pharmaceutical composition for preventing or treating radiation-induced gastrointestinal syndrome according to claim 3, wherein the compound (I) is represented by the following formula (II).
    Figure JPOXMLDOC01-appb-I000002
    [Where:
    X 1 and X 2 are each independently —NR a —, —O—, or —S—;
    Z 1 and Z 2 are each independently ═NR a , ═O, or ═S;
    X 3 is —NR a R b , —OR c , or —SR d ;
    R 1 , R 2 , R 3 and R 4 are each independently hydrogen, an alkyl group, —OR c , halogen, —NR a R b , or SR d , provided that at least one of R 1 to R 4 Is not hydrogen;
    R b is hydrogen or an alkyl group;
    R c is independently hydrogen, an alkyl group, or a hydroxyl protecting group; and R d represents hydrogen, an alkyl group, or a thiol protecting group. ]
  5.  前記化合物(II)が(R)-2-(3-chloro-6-fluorobenzo [b] thiophene-2-carboxamido)-3-phenylpropanoic acidである、請求項3に記載の放射線誘導性消化管症候群の予防又は治療用医薬組成物。 The radiation-induced gastrointestinal syndrome according to claim 3, wherein the compound (II) is (R) -2- (3-chloro-6-fluorobenzo [b] thiophene-2-carboxamido) -3-phenylpropanoic acid. A pharmaceutical composition for prevention or treatment.
  6.  前記Toll様受容体(TLR)3阻害剤が、
     TLR3のドミナントネガティブ変異体、又は抗TLR3抗体である、請求項1に記載の放射線誘導性消化管症候群の予防又は治療用医薬組成物。
    The Toll-like receptor (TLR) 3 inhibitor is
    The pharmaceutical composition for preventing or treating radiation-induced gastrointestinal syndrome according to claim 1, which is a dominant negative mutant of TLR3 or an anti-TLR3 antibody.
  7.  前記Toll様受容体(TLR)3阻害剤が、
     TLR3遺伝子の発現を阻害する、RNAi効果を有する二本鎖核酸、アンチセンス核酸、リボザイム、miRNA及びこれをコードする核酸からなる群より選択される核酸である、請求項1に記載の放射線誘導性消化管症候群の予防又は治療用医薬組成物。
    The Toll-like receptor (TLR) 3 inhibitor is
    The radiation-inducible protein according to claim 1, which is a nucleic acid selected from the group consisting of a double-stranded nucleic acid having RNAi effect, an antisense nucleic acid, a ribozyme, a miRNA and a nucleic acid encoding the same, which inhibits the expression of the TLR3 gene. A pharmaceutical composition for preventing or treating gastrointestinal syndrome.
  8.  TLR3依存性、且つRIP1介在性の細胞死誘導シグナル伝達の阻害剤を含む、放射線誘導性消化管症候群の予防又は治療用医薬組成物。 A pharmaceutical composition for preventing or treating radiation-induced gastrointestinal syndrome, comprising an inhibitor of TLR3-dependent and RIP1-mediated cell death induction signaling.
  9.  前記TLR3依存性、且つRIP1介在性の細胞死誘導シグナル伝達の阻害剤は、RIP1、RIP3及びFADDのいずれかの阻害剤である、請求項8に記載の放射線誘導性消化管症候群の予防又は治療用医薬組成物。 The prevention or treatment of radiation-induced gastrointestinal syndrome according to claim 8, wherein the inhibitor of TLR3-dependent and RIP1-mediated cell death induction signaling is any one of RIP1, RIP3 and FADD. Pharmaceutical composition.
  10.  前記RIP1、RIP3及びFADDのいずれかの阻害剤は、Necrostatin-1、その塩、又はその溶媒和物である、請求項9に記載の放射線誘導性消化管症候群の予防又は治療用医薬組成物。 The pharmaceutical composition for prevention or treatment of radiation-induced gastrointestinal syndrome according to claim 9, wherein the inhibitor of any of RIP1, RIP3 and FADD is Necrostatin-1, a salt thereof, or a solvate thereof.
  11.  前記RIP1、RIP3及びFADDのいずれかの阻害剤は、RIP1、RIP3及びFADDのいずれかのドミナントネガティブ変異体、又は、RIP1、RIP3及びFADDのいずれかに対する抗体である、請求項9に記載の放射線誘導性消化管症候群の予防又は治療用医薬組成物。 10. The radiation according to claim 9, wherein the inhibitor of any of RIP1, RIP3 and FADD is an antibody to any of RIP1, RIP3 and FADD, a dominant negative mutant, or any of RIP1, RIP3 and FADD. A pharmaceutical composition for preventing or treating inducible gastrointestinal syndrome.
  12.  前記RIP1、RIP3及びFADDのいずれかの阻害剤は、RIP1、RIP3及びFADDのいずれかの遺伝子の発現を阻害する、RNAi効果を有する二本鎖核酸、アンチセンス核酸、リボザイム、miRNA及びこれをコードする核酸からなる群より選択される核酸である、請求項9に記載の放射線誘導性消化管症候群の予防又は治療用医薬組成物。 The inhibitor of any of RIP1, RIP3, and FADD is a double-stranded nucleic acid having an RNAi effect, an antisense nucleic acid, a ribozyme, an miRNA, and the like that inhibits the expression of any of RIP1, RIP3, and FADD genes The pharmaceutical composition for prevention or treatment of radiation-induced gastrointestinal tract syndrome according to claim 9, which is a nucleic acid selected from the group consisting of:
  13.  放射線誘導性消化管症候群の予防又は治療剤のスクリーニング方法であって、
     候補化合物とTLR3を発現する細胞とを接触させてインキュベートする工程と、
     前記候補化合物によるTLR3と二本鎖RNAとの結合阻害、又は、前記候補化合物によるTLR3依存性、且つRIP1介在性の細胞死誘導シグナル伝達阻害を測定する工程と、を含む方法。
    A screening method for a preventive or therapeutic agent for radiation-induced gastrointestinal syndrome,
    Contacting the candidate compound with a cell expressing TLR3 and incubating;
    Measuring the inhibition of binding between TLR3 and double-stranded RNA by the candidate compound, or inhibition of TLR3-dependent and RIP1-mediated cell death induction signaling by the candidate compound.
PCT/JP2014/070127 2013-07-30 2014-07-30 Pharmaceutical composition for preventing or treating radiation-induced gastrointestinal syndrome WO2015016282A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361859814P 2013-07-30 2013-07-30
US61/859814 2013-07-30

Publications (1)

Publication Number Publication Date
WO2015016282A1 true WO2015016282A1 (en) 2015-02-05

Family

ID=52431812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070127 WO2015016282A1 (en) 2013-07-30 2014-07-30 Pharmaceutical composition for preventing or treating radiation-induced gastrointestinal syndrome

Country Status (1)

Country Link
WO (1) WO2015016282A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021212653A1 (en) * 2020-04-24 2021-10-28 苏州大学 Method for screening treatment target for acute radiation gastrointestinal syndrome, and application of tigar target in preparation of drug for treating radiation gastrointestinal syndrome

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012507564A (en) * 2008-10-31 2012-03-29 ヤンセン バイオテツク,インコーポレーテツド TOLL-like receptor 3 antagonist
WO2012099785A2 (en) * 2011-01-20 2012-07-26 The Regents Of The University Of Colorado, A Body Corporate Modulators of tlr3/dsrna complex and uses thereof
WO2013039471A1 (en) * 2011-09-12 2013-03-21 Janssen Biotech Inc. Toll-like receptor 3 antagonists for the treatment of metabolic and cardiovascular diseases

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012507564A (en) * 2008-10-31 2012-03-29 ヤンセン バイオテツク,インコーポレーテツド TOLL-like receptor 3 antagonist
WO2012099785A2 (en) * 2011-01-20 2012-07-26 The Regents Of The University Of Colorado, A Body Corporate Modulators of tlr3/dsrna complex and uses thereof
WO2013039471A1 (en) * 2011-09-12 2013-03-21 Janssen Biotech Inc. Toll-like receptor 3 antagonists for the treatment of metabolic and cardiovascular diseases

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
BURDELYA ET AL.: "An agonist of Toll-Like Receptor 5 has radioprotective activity in mouse and primate models", SCIENCE, vol. 320, 2008, pages 226 - 230, XP055014939, DOI: doi:10.1126/science.1154986 *
CHENG ET AL.: "Small-molecule inhibitors of the TLR3/dsRNA complex", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 133, 2011, pages 3764 - 3767 *
DEGTEREV ET AL.: "Identification of RIP1 kinase as a specific cellular target of necrostatins", NATURE CHEMICAL BIOLOGY, vol. 4, no. 5, 2008, pages 313 - 321, XP055019694, DOI: doi:10.1038/nchembio.83 *
SAHA ET AL.: "TLR9 agonist protects mice from radiation-induced gastrointestinal syndrome", PLOS ONE, vol. 7, no. ISSUE, 2012, pages E29357 *
SHAKHOV ET AL.: "Prevention and mitigation of acute radiation syndrome in mice by synthetic lipopeptide agonists of Toll-Like Receptor 2 (TLR2", PLOS ONE, vol. 7, no. ISSUE, 2012, pages E33044 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021212653A1 (en) * 2020-04-24 2021-10-28 苏州大学 Method for screening treatment target for acute radiation gastrointestinal syndrome, and application of tigar target in preparation of drug for treating radiation gastrointestinal syndrome

Similar Documents

Publication Publication Date Title
Takemura et al. Blockade of TLR3 protects mice from lethal radiation-induced gastrointestinal syndrome
Szretter et al. The immune adaptor molecule SARM modulates tumor necrosis factor alpha production and microglia activation in the brainstem and restricts West Nile Virus pathogenesis
Zemp et al. Treating brain tumor–initiating cells using a combination of myxoma virus and rapamycin
Raman et al. Integrin-linked kinase signaling promotes cyst growth and fibrosis in polycystic kidney disease
US9365851B2 (en) Spalt-like transcription factor 4 (SALL4) and uses thereof
BR112021012715A2 (en) SILENCING TGF-BETA 1 AND COX2 USING SIRNAS DELIVERED IN COMBINATION WITH IMMUNE CHECKPOINT INHIBITORS TO TREAT CANCER
JP2016538276A (en) Compositions and methods for inhibiting NF-κB and SOD-1 for the treatment of amyotrophic lateral sclerosis
Hasegawa et al. Urokinase-targeted fusion by oncolytic Sendai virus eradicates orthotopic glioblastomas by pronounced synergy with interferon-β gene
Lu et al. Short time tripterine treatment enhances endothelial progenitor cell function via heat shock protein 32
US20190023809A1 (en) Anti-nicotinamide phosphoribosyltransferase antibody genes and methods of use thereof
US11833188B2 (en) Methods and compositions for preventing or treating cancer
Zhang et al. Upregulation of microRNA‐351 exerts protective effects during sepsis by ameliorating skeletal muscle wasting through the Tead‐4‐mediated blockade of the Hippo signaling pathway
WO2020121546A1 (en) Method for deactivating active hepatic stellate cell
Liu et al. POLR2A blocks osteoclastic bone resorption and protects against osteoporosis by interacting with CREB1
WO2015016282A1 (en) Pharmaceutical composition for preventing or treating radiation-induced gastrointestinal syndrome
US8008273B2 (en) SHIP-deficiency to increase megakaryocyte progenitor production
Hegyesi et al. Radio-detoxified LPS alters bone marrow-derived extracellular vesicles and endothelial progenitor cells
CN115068612A (en) Application of DRD2 inhibitor in preparing medicine for treating diseases related to liver fibrosis
US20100239596A1 (en) Grp78 and tumor angiogenesis
Gu et al. Endothelium‐Derived Engineered Extracellular Vesicles Protect the Pulmonary Endothelial Barrier in Acute Lung Injury
WO2024029535A1 (en) Agent for detecting structurally abnormal protein and agent for reducing structurally abnormal protein
WO2024064879A2 (en) Interferon lambda (ifnl) inhibition in intestinal epithelial cells for treating inflammation
Mohamed et al. Netrin-1 Overexpression Induces Polycystic Kidney Disease: A Novel Mechanism Contributing to Cystogenesis in Autosomal Dominant Polycystic Kidney Disease
Chin et al. BAX requires VDAC2 to mediate apoptosis and to limit tumor development
US20220056155A1 (en) Phosphorylated dicer antibody and methods of use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14831696

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14831696

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP