WO2015016238A1 - Electron transfer system and application for same - Google Patents

Electron transfer system and application for same Download PDF

Info

Publication number
WO2015016238A1
WO2015016238A1 PCT/JP2014/070002 JP2014070002W WO2015016238A1 WO 2015016238 A1 WO2015016238 A1 WO 2015016238A1 JP 2014070002 W JP2014070002 W JP 2014070002W WO 2015016238 A1 WO2015016238 A1 WO 2015016238A1
Authority
WO
WIPO (PCT)
Prior art keywords
electron
humic acid
acid complex
iron
microorganism
Prior art date
Application number
PCT/JP2014/070002
Other languages
French (fr)
Japanese (ja)
Inventor
新太 片山
春芳 章
冬冬 張
智リン 李
大典 鈴木
Original Assignee
国立大学法人名古屋大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人名古屋大学 filed Critical 国立大学法人名古屋大学
Priority to JP2015529585A priority Critical patent/JP6410188B2/en
Publication of WO2015016238A1 publication Critical patent/WO2015016238A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B09DISPOSAL OF SOLID WASTE; RECLAMATION OF CONTAMINATED SOIL
    • B09CRECLAMATION OF CONTAMINATED SOIL
    • B09C1/00Reclamation of contaminated soil
    • B09C1/10Reclamation of contaminated soil microbiologically, biologically or by using enzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor

Definitions

  • the present invention relates to an electron transmission system using an organic / inorganic composite. Specifically, the present invention relates to an electron transmission system using a composite of metal and humic acid as an electron transmission medium and its use (application to environmental purification, etc.).
  • This application claims priority based on Japanese Patent Application No. 2013-158394 filed on Jul. 31, 2013, the entire contents of which are incorporated by reference.
  • Bioremediation is attracting attention as a technology for purifying contaminated environments (contaminated soil, groundwater, etc.).
  • Bioremediation is a biostimulation that promotes the degradation of pollutants by increasing the growth and activity of microorganisms in the environment, and a bio-aug that attempts to decompose pollutants by adding and adding microorganisms that can degrade pollutants. It is roughly divided into In general, biostimulation is simpler and cheaper and has been put into practical use, and there are many reports of research and development for practical use.
  • a decomposition accelerator In biostimulation, a decomposition accelerator is often used.
  • electron donors lactic acid-based, higher fatty acid-based, etc.
  • various decomposition accelerators are sold by various companies.
  • polylactic acid esters, higher fatty acid esters, lower fatty acid esters, etc. are added as promoters of microbial activity to contaminated sites where persistent organic pollutants such as dioxins and polychlorinated biphenyls have accumulated.
  • a method for improving the degradation activity of microorganisms against pollutants has also been proposed (see, for example, Patent Documents 1 to 3).
  • the main object of the present invention is to provide a new system or method suitable for the purification of a polluted environment under the above background. Another object is to provide an application of such a system or method.
  • Humic substances are a group of organic compounds that are abundant in soil, natural water, and various terrestrial and aquatic environments (References 1-3). Due to the high potential of humic substances, the effects of humic substances on anaerobic bioremediation using electron transport systems have been studied over the past 20 years (reference documents 4, 5). Most of the research on the redox transmission properties of humic substances concentrated on water-soluble humic substances that can be reduced by microorganisms, focusing on enhancing the ability of microorganisms to reduce iron oxides (references). 5-7). However, humic substances are present in a particulate form (solid humic substance) rather than dissolved in water in the natural environment. However, little is known about the ability of microorganisms to transfer electrons to solid humic substances (or microorganisms that accept electrons from a solid phase electron transfer material).
  • humic substances that exist universally in nature have the property of forming a complex by coordinating with metals present in soil, water and sediment. It has been reported that physicochemical coprecipitation occurs between humic substances and iron oxides (Reference Document 16). Our research group also found that humin, a humic fraction that is insoluble under any pH conditions, contains a fairly high concentration of iron (reference 15). This iron-rich insoluble humin showed stable electron transfer capacity for microbial reductive dechlorination of pentachlorophenol (PCP), while humic acid (HA) from the same soil source was dissolved The electron transfer activity was unstable.
  • PCP pentachlorophenol
  • HA humic acid
  • the iron humic acid complex promotes the dechlorination activity of aromatic chlorine compounds by microorganisms as well as Humin. That is, it has been clarified that the iron humic acid complex functions as an electron transfer medium that improves microbial activity for purifying contaminated organic substances. Since the iron humic acid complex is insoluble in water, it usually does not flow out from the input site even when it is input into soil or groundwater. Moreover, the iron humic acid complex is made of an organic compound existing in the natural environment and does not cause environmental pollution. That is, it can be said to be a safe and hygienic material that has an environmental purification effect.
  • the function of the iron humic acid complex as an electron transfer medium that improves the microbial activity of purifying contaminated organic matter is that an electron transfer system using microorganisms that can receive electrons from the iron humic acid complex can be constructed.
  • the electron transfer system is not only effective as a means of bioremediation (particularly biostimulation) as described above, but also used for microbial fuel cells, microbial electroculture (bringing microorganisms using electrical energy), etc. it can.
  • the same effect can be achieved even if a complex with humic acid is formed using not only iron but also transition metals such as manganese and cobalt, and metals such as magnesium, zinc and selenium. Can do. If the metal of the iron humic acid complex is changed to a metal other than iron, an electron transfer medium having a different redox potential is obtained. If the metal humic acid complex having a specific redox potential thus obtained is used, it can be expected that a specific microorganism can be selectively cultured. That is, it can be said that the electron transfer system is useful as a new microorganism culture technique.
  • the above-mentioned electron transmission system has a wide application range (use) and its value is extremely high.
  • iron and humic acid which is an essential micronutrient for all living organisms, and one of the most abundant metals in soil and sediment, has been extensively studied, and insoluble iron humic acid complexes have been introduced into plants.
  • iron supply source or a heavy metal adsorbent reference documents 17 to 19
  • the invention shown below is mainly based on the above knowledge or result.
  • An electron transfer system comprising a metal humic acid complex as an electron transfer medium, electron donating means, and a microorganism as an electron acceptor.
  • the metal constituting the metal humic acid complex is a transition metal, magnesium, zinc, or selenium.
  • the transition metal is manganese, iron, or cobalt.
  • the electron transfer system according to [1], wherein the metal constituting the metal humic acid complex is a metal having a plurality of redox potentials.
  • the electron donating means comprises a combination of a reducing organic compound and a reducing microorganism that receives electrons from the reducing organic compound and reduces the metal humic acid complex.
  • the reducing organic compound is one or more organic compounds selected from the group consisting of sugars, amino acids, organic acids, organic acid salts, alcohols, aromatic compounds, and biodegradable plastics.
  • the electron transfer system according to any one of [1] to [4], wherein the electron donating means is a cathode electrode.
  • microorganism as an electron acceptor is a dehalogenated microorganism, a bacterium having iron reducing ability, or a bacterium having nitrate reducing ability.
  • microorganism as an electron acceptor is a microorganism that can exchange electrons with an extracellular solid phase.
  • the microorganism as an electron acceptor is selected from the group consisting of Geobacter, Schwanella, Dehalobacter, Desulfitobacterium, Desulfromonas, Clostridium, Bacteroides, Desulfobrybacteria, Cedi
  • the electron transfer system according to any one of [1] to [9], wherein the electron transfer system is one or more bacteria selected from the group consisting of a genus Bacterium and a sulfurospirillum bacterium.
  • An environmental purification method comprising decomposing an organic halogen compound in a polluted environment by the electron transmission system according to [10].
  • An environmental purification method comprising adding a metal humic acid complex to a contaminated environment.
  • a step of adding a reducing organic compound and a reducing microorganism that receives the electron donation from the reducing organic compound and reduces the metal humic acid complex to a contaminated environment 14].
  • An environmental purification kit comprising a metal humic acid complex as an electron transfer medium and a reducing organic compound as an electron donor.
  • a metal humic acid complex as an electron transfer medium, a reducing organic compound as an electron donating means, and a reducing microorganism that receives the electrons from the reducing organic compound and reduces the metal humic acid complex
  • An environmental purification kit comprising: [21] An environmental purification kit comprising a metal humic acid complex as an electron transmission medium and a cathode electrode. [22] The kit for environmental purification according to any one of [19] to [21], further comprising a dehalogenated microorganism as an electron acceptor.
  • a method for selectively culturing a microorganism comprising culturing a microorganism-containing sample in the presence of a metal humic acid complex and an electron donor.
  • An electron transfer medium comprising a metal humic acid complex.
  • PCP dechlorination reaction is not observed under the condition that only iron or Aldrich humic acid sodium salt (AHA) is added as a control.
  • AHA Aldrich humic acid sodium salt
  • the 1st aspect of the present invention is related with an electronic transmission system.
  • the electron transfer system of the present invention utilizes a microorganism functioning as an electron acceptor (hereinafter referred to as “electron accepting microorganism” for convenience of explanation), and is the maximum in that a metal humic acid complex is used as an electron transfer medium.
  • the electron transfer system of the present invention includes a metal humic acid complex as an electron transfer medium, an electron donating means, and a microorganism (electron accepting microorganism) as an electron acceptor, and electrons from the electron donating means are metal humic acid complexes. To the electron-accepting microorganisms. As described above, the electron transfer system of the present invention transfers electrons outside the cell and is distinguished from the electron transfer system in the cell.
  • Humic acids that are one of the components of soil and sediment are classified into three types, humic acid, fulvic acid, and humin, based on solubility in alkali and acid.
  • Humic acid is also called humic acid.
  • Humic acid is roughly classified into natural humic acid (natural humic acid) and regenerated humic acid (regenerated humic acid) produced industrially by oxidative degradation of natural materials.
  • Humic acid is a component that is precipitated by acid extraction after soil or sediment is alkali extracted. That is, it is a polymer organic acid that is soluble in an alkaline aqueous solution and insoluble in an acidic aqueous solution.
  • Humic acid has many aromatic rings in its basic skeleton, and carboxyl groups and hydroxyl groups are bonded to the aromatic rings. Due to such structural features, humic acid exhibits a buffering action, a surface active action, an ion retention action and the like. Note that fulvic acid is a high-molecular organic acid that is soluble in both alkaline and acidic aqueous solutions, and humic acid is a humic substance that is insoluble in both alkaline and acidic aqueous solutions.
  • a complex of humic acid and metal (referred to as “metal humic acid complex” in the present invention) is used as an electron transfer medium.
  • the metal constituting the metal humic acid complex is not particularly limited as long as the complex exhibits electron transfer properties.
  • transition metals such as manganese, iron, and cobalt, magnesium, zinc, and selenium can be employed.
  • a preferred metal is iron. If a metal having a plurality of oxidation-reduction potentials (for example, transition metals of manganese, iron, and cobalt) is used, an electron transfer system that exhibits a plurality of oxidation-reduction potentials can be constructed.
  • “selective culture” includes (i) isolation culture of specific microorganisms (particularly difficult-to-cultivate microorganisms), (ii) maintenance culture of specific microorganisms (particularly difficult-to-cultivate microorganisms), and (iii) microbial populations Accumulation of specific microorganisms (especially difficult-to-culture microorganisms) from (iv), and (iv) maintenance culture of microorganisms containing specific bacteria.
  • the metal humic acid complex includes, for example, humic acid and an aqueous metal salt solution (in the case where the metal is iron, iron sulfate (II), iron chloride (II), iron citrate (III), etc. can be used)).
  • the pH of the solution is set to a weakly alkaline to neutral to weakly acidic range and maintained at a predetermined temperature (for example, 20 ° C. to 40 ° C.) for a predetermined period (for example, 1 day to 2 weeks), and the precipitate is recovered.
  • a predetermined temperature for example, 20 ° C. to 40 ° C.
  • the metal humic acid complex functions as an electron transfer medium. More specifically, an electron is received to change from an oxidized form to a reduced form, and an electron is supplied to change from a reduced form to an oxidized form.
  • the electrons for converting the metal humic acid complex from the oxidized form to the reduced form are generated by the electron donating means described in detail below.
  • Electron donating means The electron donating means used in the present invention will be described with reference to FIG. FIG. 7 shows four modes. For convenience of explanation, in FIG. 7, a dehalogenated microorganism (microorganism B) is used as the electron-accepting microorganism.
  • microorganism B a dehalogenated microorganism
  • a reducing organic compound and a reducing microorganism that receives an electron donation from the reducing organic compound and reduces the metal humic acid complex.
  • a combination with microorganism A) is used.
  • a reducing organic compound is used as the electron donor.
  • a reducing organic compound is an organic compound that generates electrons upon oxidation, such as sugar (3 to 7 carbon), amino acid, organic acid (lactic acid, fumaric acid, pyruvic acid, succinic acid, malic acid, Formic acid, acetic acid, citric acid, higher fatty acids, etc.) or organic acid salts (lactate, fumarate, pyruvate, succinate, malate, formate, acetate, citrate, higher fatty acid, etc.) , Alcohols (lower alcohols such as ethanol, propanol and butanol to higher alcohols such as palmitol), aromatic compounds (phenol, polyphenol, phenolic acid and salts thereof), biodegradable plastics (polyhydroxybutyric acid (PHB), Polycaprolactone (PCL), polylactic acid (PLA), polylactic acid-based resin (see, for example, JP-A-2011-104551), Starch-based resin) and the like are used.
  • organic acid lactic acid, fumaric acid, pyr
  • the reducing microorganism converts the oxidized metal humic acid complex into a reduced metal humic acid complex.
  • microorganisms that breathe using the metal humic acid complex as the final electron acceptor are used. Examples of such microorganisms include Schwanella bacteria and Geobacter bacteria that can exchange electrons with the extracellular solid phase.
  • a cathode electrode is used as the electron donating means. That is, the oxidized metal humic acid complex is directly electrochemically reduced using an electrode (cathode).
  • the material of the electrode is not particularly limited. Examples of electrode materials are C, Au, Pt, and Ti.
  • microorganism A ′ in the figure electrons obtained by respiration of the microorganism can be supplied to the cathode electrode (FIG. 7C).
  • electrons are supplied from the reducing organic compound to the anode electrode that is electrically connected to the cathode electrode via the microorganism.
  • microorganisms that use an electrode as the final electron acceptor include Schwanella bacteria and Geobacter bacteria that can exchange electrons with an extracellular solid phase.
  • microorganism A using the metal humic acid complex as a final electron acceptor
  • electrons can be exchanged using the metal humic acid complex also on the anode side (FIG. 7th (d) corresponding 4th aspect).
  • the reducing organic compound and the reducing microorganism that reduces the metal humic acid complex by receiving electrons from the reducing organic compound with respect to the anode electrode that is electrically connected to the cathode electrode. Electrons are supplied by the electron donating means comprising the combination.
  • microorganisms that use the metal humic acid complex as the final electron acceptor include Schwanella bacteria and Geobacter bacteria that can exchange electrons with the extracellular solid phase.
  • the third mode (FIG. 7 (c)) and the fourth mode (FIG. 7 (d)) take out microorganisms from organic compounds and flow them through an electric circuit, and are so-called “microbial fuel cells”. become.
  • Microorganism as an electron acceptor In the electron transfer system of the present invention, microorganisms are used as electron acceptors. “Microorganism as an electron acceptor” refers to a microorganism that receives electrons from the outside and uses the received electrons for growth, proliferation, function, and the like. Microorganisms as electron acceptors include, for example, Geobacter bacteria, Schwanella bacteria, Dehalobacter bacteria, Desulfitobacterium bacteria, Desulfromonas bacteria, Clostridium bacteria, Bacteroides bacteria, Desulfofibrio bacteria, Cedimenti Bacterium bacteria and sulfurospirillum bacteria are used.
  • microorganisms Two or more kinds of microorganisms may be used in combination. Moreover, you may decide to use the microorganism group thru
  • the microorganism group or microbial community here may contain a microorganism that does not function as an electron acceptor.
  • a microorganism that can exchange electrons with an extracellular solid phase is used.
  • respiration using electrons directly received from outside the cell becomes possible.
  • microorganisms include the genus Shuwanella and the genus Geobacter.
  • dehalogenated microorganism an electron transmission system suitable for dehalogenation of the environment such as soil, groundwater, river water, lake water, seawater and the like can be obtained.
  • dehalogenated microorganisms are Desulfomonile tiedjei DCB-1 strain, Dehalospirillum Dehalospirillum [Sulfurospirillum] multivorans, Dehalobacter restrictus PER-K23 strain (Dehalobacter restrictus PER-K23), Dehalobacter restrictusTETEA strain (Dehalobacter restrictus TEA), Dehalobacter sp. FTH1 strain (Dehalobacter sp. FTH1) Desulfitobacterium .
  • PCE1 strain (Desulfitobacterium sp. PCE1), Desulfitobacterium sp. PCE-S strain (Desulfitobacterium sp. PCE-S), Desulfitobacterium flapieri TCE1 strain (Desulfitobacterium frappieri TCE1), Desulfitobacterium sp. Y51 Strain (Desulfitobacterium sp.
  • Desulfuromonas chloroethenica TT4B Desulfuromonas chloroethenica TT4B
  • Clostridium bifermentans DPH-1 Clostridium bifermentans DPH-1
  • Dehalococcoides ⁇ maccartyi 195 Dehalococcoides maccartyi 195
  • Dehalococcoide GT Strain Dehalococcoides sp. GT
  • Dehalococcoides sp. VS strain (Dehalococcoides sp. VS) (Damborsky, J.
  • Spormann Molecular identification of the catabolic vinyl chloride reductase from Dehalococcoides sp. Strain VS and its environmental distribution (2005): Appl. Environ.9 -50 .; Yoshida, N. Ye, L., Baba, D. and Katayama, A .: A Novel Dehalobacter sp. Is involved in extensive 4,5,6,7-tetrachlorophthalide (fthalide) dechlorination (2009): Appl . Environ. Microbiol., 75, 2400-2405; Luijten, MLGC, GCDe Weert, J., Smidt, H., Boschker, HTS, De Vos, WM, Schraa, G.
  • the electron transfer system of the present invention can be used to promote iron reduction.
  • a bacterium having an iron reducing ability for example, a Geobacter bacterium
  • the electron transfer system of the present invention can be used to promote nitrate reduction.
  • organic acids and microorganisms (those that generate electrons by decomposing organic substances) existing in the environment to be purified can also be used as the electron donating means.
  • the metal humic acid complex as the electron transfer medium and the dehalogenated microorganism as the electron acceptor are applied to the environment to be purified, and the electron transfer system of the present invention is constructed in the environment. It will be. However, it does not interfere with the combined use of electron donating means prepared separately, for example, reducing organic compounds as electron donors, or reducing microorganisms that reduce metal humic acid complexes by receiving electrons from reducing organic compounds Alternatively, both of these may be added to the environment.
  • an electrode cathode
  • the electrodes are placed in the environment and electrons are donated.
  • the microorganism may be used as a dehalogenated microorganism as an electron acceptor.
  • the metal humic acid complex as the electron transfer medium and the electron donating means are applied to the environment to be purified, and the electron transfer system of the present invention is constructed in the environment (however, It does not prevent the combined use of microorganisms as electron acceptors prepared separately).
  • the second aspect of the present invention relates to an environmental purification method that is a typical application of the electron transmission system of the present invention.
  • the environment purification method of the present invention uses the electronic transmission system of the present invention. More specifically, the electron transfer system of the present invention is constructed in a polluted environment, and organic halogen compounds that are pollutants are decomposed and removed by the action of dehalogenated microorganisms as electron acceptors. Examples of contaminated environments include soil, sediment, groundwater, river water, lake water, seawater, drainage / drainage (life drainage, industrial wastewater, industrial wastewater, etc.).
  • Organic halogen compound is a general term for organic compounds containing halogen atoms in the molecule.
  • Organochlorine compounds such as pentachlorophenol (PCP), tetrachloroethylene, trichloroethylene, dichloroethylene, trichloroethane, vinyl chloride, carbon tetrachloride, chloroethane, methylene chloride, chloroform, dichloroethane, chloropropane, polychlorinated biphenyl (PCB), dioxins, poly
  • Organic halogen compounds include organic bromine compounds such as brominated diphenyl ether (PBDE), bromodichloromethane, chlorodibromomethane, and bromoform, and organic fluorine compounds such as fluorocarbons, chlorofluorocarbons, and perfluorocarboxylic acids.
  • Dioxins are a general term for polychlorinated dibenzopararadixin (PCDD) and polychlorinated dibenzofuran (PCDF).
  • PCDD polychlorinated dibenzopararadixin
  • PCDF polychlorinated dibenzofuran
  • One of the PCBs, coplanar PCB (Co-PCB) is also classified as a dioxin.
  • PCP Pentachlorophenol
  • the environmental purification method of the present invention necessary elements are added to the contaminated environment so that the above-described electron transmission system is constructed and functions in the contaminated environment.
  • the “addition” can be performed by charging, spreading, coating, mixing, or the like.
  • a metal humic acid complex as an electron transfer medium, an electron donating means, and a dehalogenated microorganism as an electron acceptor are added to a contaminated environment, and the electron transfer system of the present invention is constructed in the contaminated environment.
  • the electron transfer system of the present invention is constructed in the contaminated environment.
  • one or more elements may be replenished periodically or as needed.
  • the electron donor in the environment decreases as the environment is purified by the environmental purification method of the present invention.
  • the electron donor is a particularly desirable element to be replenished.
  • dehalogenated microorganisms as electron acceptors are also susceptible to the influence of the surroundings, and thus can be said to be an element to be replenished.
  • the present invention further provides a kit (environment purification kit) used for the environment purification method.
  • a metal humic acid complex as an electron transfer medium and a reducing organic compound as an electron donor (for example, sugar, amino acid, organic acid, organic acid salt, alcohol, aroma Group compound, one or more organic compounds selected from the group consisting of reducing organic substances such as biodegradable plastics).
  • the metal humic acid complex as an electron transfer medium, a reducing organic compound as an electron donating means, and the metal humic acid complex is reduced by receiving electrons from the reducing organic compound. And a combination of reducing microorganisms.
  • the kit of the further embodiment includes a metal humic acid complex as an electron transfer medium and an electrode (cathode) as an electron donating means.
  • a dehalogenated microorganism as an electron acceptor may be included in the kit of the present invention.
  • various substances useful for maintaining and growing dehalogenated microorganisms as electron acceptors may be included in the purification kit.
  • the environmental purification kit the environmental purification method of the present invention can be easily carried out.
  • each element is usually applied to the purification target simultaneously or sequentially. Preferably, all of the kit elements are applied simultaneously.
  • “Simultaneous” here does not require strict simultaneity. Therefore, not only when each element is applied under the condition that there is no time difference, such as applying each element after being mixed, but after applying one element, another element is applied immediately. Application under conditions without a substantial time difference is also included in the concept of “simultaneous” herein.
  • the present invention provides a selective culture method of microorganisms as a further aspect.
  • the method of the present invention can be used to accumulate or isolate specific microorganisms from a sample containing microorganisms. It can also be used to stably culture and maintain a specific microorganism or a group of microorganisms containing it.
  • the metal humic acid complex can exhibit a specific redox potential depending on its configuration. In the present invention, this characteristic is used to selectively culture a microorganism having a high affinity for a specific redox potential.
  • a microorganism-containing sample is cultured in the presence of a metal humic acid complex and an electron donating means.
  • a sample containing the target microorganism or a sample expected to have the target microorganism is used as the microorganism-containing sample.
  • various samples such as various soils (for example, fields, paddy fields, forests, etc.), river water, lake water, river sediments, marine sediments, and the like can be used.
  • a sample obtained by one or more treatments for example, removal of a specific component, culture, etc. can also be used.
  • the metal constituting the metal humic acid complex for example, transition metals such as manganese, iron, cobalt, etc. and magnesium, zinc, selenium
  • the metal constituting the metal humic acid complex is changed and the oxidation-reduction potential of the metal humic acid complex is changed, another type of microorganism can be selectively cultured.
  • the method of the present invention is applicable to selective culture of various microorganisms.
  • One of the preferred electron donating means is an electrode (cathode), but at the same time, an electron donor such as sugar, amino acid, organic acid, organic acid salt, alcohol, aromatic compound, biodegradable plastic can be used.
  • an electron donor such as sugar, amino acid, organic acid, organic acid salt, alcohol, aromatic compound, biodegradable plastic
  • the metal humic acid complex may be fixed to the electrode surface (for example, a part of the electrode may be covered with the metal humic acid complex), and the method of the present invention may be carried out. According to such an aspect, it becomes possible to selectively culture a specific microorganism in a state of being accumulated on the electrode. If two or more kinds of metal humic acid complexes having different oxidation-reduction potentials are used in combination, two or more kinds of microorganisms can be selectively cultured at the same time.
  • the culture temperature is, for example, 10 ° C to 50 ° C.
  • the culture period is, for example, 2 days to 3 months. You may sub
  • insoluble iron humic acid complex functions as a solid phase electron carrier for anaerobic microbial dechlorination of pentachlorophenol (PCP).
  • control sample prepared using the same procedure using only AHA and a sample prepared using the same procedure using only ferrous sulfate (control iron) were prepared.
  • an environmental sample (environmental humic acid) extracted from Kamashima paddy soil (KM) and Yatomi paddy soil (YA) (extraction method is based on the conventional alkali method) is mixed with ferrous sulfate to form an iron humic acid complex. Synthesis was performed. The formed composites were called Fe-KMHA and Fe-YAHA.
  • Anaerobic Humin Suspension Medium is a 20 ml mineral salt medium supplemented with 0.3 g lyophilized humin, 10 mM formic acid filtered through a 0.2 ⁇ m pore size filter, vitamin solution and 20 ⁇ M PCP. Before inoculation with nitrogen gas.
  • PCP-phenol dechlorinated humin culture by transferring the culture at 5% inoculum to a container containing 20 mL inorganic medium and 5 g L -1 humin suspension plus 10 mM formic acid and 20 ⁇ M PCP As an anaerobic microorganism group that dechlorinates PCP to phenol (Reference 15).
  • the culture time was 10 to 25 days, and static culture was performed at 30 ° C.
  • the composition of the inorganic medium (L -1 ) is as follows: 1.0 g NH 4 Cl; 0.05 g CaCl 2 ⁇ 2H 2 O; 0.1 g MgCl 2 ⁇ 6H 2 O; 0.4 g K 2 HPO 4 ; Elemental SL-10 solution (reference 20); 1 mL Se / W solution (reference 20); 15 mM MOPS (3- (N-morpholino) propanesulfonic acid) buffer (pH 7.2). PCP and its metabolites were analyzed using a gas chromatograph mass spectrometer QP2010 (Shimadzu, Kyoto) (DB-5MS capillary column, J & W Science, Folsom, CA) (Reference 21).
  • iron humic acid complex and control samples were investigated by culture experiments.
  • a sample of iron humic acid complex and control iron was added to the medium as a lyophilized powder at a concentration of 2.5 g L ⁇ 1 and autoclaved.
  • 10 mL of sample was added to a bottle containing 10 mL of medium and autoclaved.
  • the effect on dechlorination was determined after at least two generations of culture. All experiments were performed in duplicate or triplicate and were repeated at least three times to confirm the results of each experiment.
  • PCP and phenol were added at a concentration of 5 ⁇ M, 10 ⁇ M or 20 ⁇ M to a 60 mL bottle containing 20 mL inorganic medium with or without iron humic acid complex added (2.5 g / L).
  • the cells were cultured for 5 days under the same conditions as in the culture experiment.
  • the iron humic acid complex was removed by centrifugation, and the concentrations of PCP and phenol in the supernatant were analyzed.
  • the iron (III) oxide reduction experiment was carried out using 30 mL of NaHCO 3 buffer (30 mM, pH 6.8), iron humic acid complex (2.5 g L ⁇ 1 ), lactic acid (20 mM) and synthesized iron (III ) Oxide (10 mM) was added, washed S. putrefaciens CN-32 strain (10 9 cells mL ⁇ 1 ) was inoculated, and the reduced iron (II) concentration was compared.
  • two control samples were added: a control sample inoculated with S. putrefaciens strain CN-32 without addition of iron humic acid complex with addition of iron (III) oxide, and iron (III)
  • a control sample was prepared by inoculating the S.
  • Iron (III) oxide was synthesized by a method reported in the past (Reference 22). The medium was made oxygen-free by ventilating a mixed gas of N 2 / CO 2 (80% / 20%).
  • Electron-accepting ability experiment To calculate the electron-accepting ability (EAC) of the iron humic acid complex, microbial and chemical reduction assays were performed in an anaerobic chamber according to a previously reported protocol (Reference 2). 23). In the microbial reduction assay, 30 mL of NaHCO 3 buffer (30 mM, pH 6.8) supplemented with lactate (20 mM) and synthesized iron (III) oxide (10 mM) was added with iron humic acid complex (2.5 g L -1) or a control sample (i.e. control iron (2.5 g L -1) or control HA (1.5 g L -1)), and the mixture was washed thereto S.
  • EAC electron-accepting ability
  • putrefaciens CN-32 strain (10 9 cells mL - 1 ) was inoculated.
  • 5 palladium-coated aluminum oxide pellets were placed in 10 mM PIPES buffer (pH 6.8) and a 2.5 g L -1 sample (1.5 g for control HA).
  • L -1) was added, under 100% H 2 atmosphere while shaking at 0.99 rpm, and incubated for 5 days.
  • Electrochemical analysis For electrochemical experiments, a potentiostat (HSV-110, Hokuto Denko, Osaka, Japan) equipped with a bioelectrochemical cell was used, and the three-electrode method (graphite working electrode (5 mm x 15 cm) , Tokai Carbon, Tokyo, Japan); measured with platinum counter electrode (0.8 mm x 1 m, Niraco, Tokyo, Japan) and Ag / AgCl reference electrode (saturated potassium chloride HX-R8, Hokuto Denko, Osaka)) .
  • the bioelectrochemical cell consisted of two chambers separated by an effective volume of 200 mL for each chamber and a proton exchange membrane (Nafion 117, DuPont, USA).
  • the measurement conditions for cyclic voltammetry are: potential sweep rate 100 mV s -1 , iron humic acid complex concentration 2.5 g L -1 , potential range -0.8 V to 0.6 V (vs. Ag / AgCl), inorganic medium as electrolyte Using.
  • potential sweep rate 100 mV s -1 iron humic acid complex concentration 2.5 g L -1
  • potential range -0.8 V to 0.6 V vs. Ag / AgCl
  • inorganic medium as electrolyte Using.
  • One sample of the iron humic acid complex was measured after electrochemical reduction by applying for 18 hours at a potential of -500 mV (vs. standard hydrogen electrode) (electrolytic solution was inorganic medium).
  • insoluble iron humic acid complex (as freeze-dried powder) was obtained by complexing 1.39 g iron sulfate with 1.5 g purified AHA in aqueous solution. The recovery rate was 17.3% -22.5%.
  • the stable electron transfer properties of the iron humic acid complex were confirmed by the stable passage of PCP dechlorination activity of PCP-phenol dechlorinated humin cultures in experiments using different types of iron humic acid complexes. It was done. In the absence of PCP-phenol dechlorination humin culture or in the absence of iron humic acid complex, no dechlorination reaction was observed, PCP dechlorination activity was due to microorganisms, It can be said that a humic acid complex is necessary (Fig. 1b). PCP dechlorination was not observed when control iron or control HA samples were used ( Figure 1c).
  • Iron humic acid complexes prepared using naturally occurring humic acids were also shown to mediate PCP dechlorination by microorganisms. These results indicate that the solid iron humic acid complex plays an important role in maintaining PCP dechlorination by microorganisms.
  • the ash content of the iron humic acid complex (37.3%) was reduced to 19.1% for the NaOH-treated iron humic acid complex and 10.6% for the Na 4 P 2 O 7- treated iron humic acid complex.
  • the carbon content (21.3%) of the iron humic acid complex increased to 55.6% for the NaOH-treated iron humic acid complex and 59.1% for the Na 4 P 2 O 7- treated iron humic acid complex.
  • Electroaccepting ability of iron humic acid complex Electron accepting ability (EAC) reduces iron humic acid complex to microbial (S. putrefaciens CN-32 strain) and chemical (H 2 / Pd) ( 5 days), the electrical equivalent was measured and evaluated (Fig. 4).
  • EAC Electron accepting ability
  • the EAC value reached 0.98 mEq / g-dry weight.
  • the EAC value of the control iron was 0.14 mEq / g-dry weight
  • the EAC value of the control humic acid was 0.10 mEq / g-dry weight (FIG. 4a).
  • the redox potential of the iron humic acid complex was estimated to be 0.10 V (versus the standard hydrogen electrode), whereas the redox potential of control iron was estimated to be 0.08 V.
  • irregularly shaped CV was observed in the Na 4 P 2 O 7- treated iron humic acid complex (a redox couple could not be observed) (FIG. 6C).
  • the electron-accepting ability test revealed that the iron humic acid complex has an electric capacity that can be reduced microbially or chemically, that is, an electron-accepting capacity (FIG. 4).
  • the electron accepting capacity of the microbial redox active moiety was more than 2.5 times the electron accepting capacity of the chemical redox active moiety.
  • the iron humic acid complex has an electron accepting capacity of 0.98 mEq / g-dry weight higher than the electron accepting capacity reported for dissolved humic substances (Ref. 25) (FIG. 4a).
  • the iron humic acid complex has an exchangeable iron fraction of 4.6%, an acid soluble fraction of 9.6%, an iron fraction bound to organic matter of 52.7% and an iron fraction of hardly extracted 33.1%. It became clear that it contained. Probably humic acid and hydrolysable iron fractions (highly hydrated iron ions, eg Fe n (OH) m (H 2 O) x (3n-m) + or Fe m O n (OH) x (3m The formation of crystalline iron oxide is suppressed by the interaction of -2n-x) + ), and it is considered that low crystalline iron oxide such as ferrihydrite was formed (Reference Document 26).
  • Na 4 P 2 O 7 is much more capable of extracting organic-bound iron fractions from samples containing amorphous or imperfect crystalline iron oxyhydroxides such as ferrihydrite than NaOH and aqueous acetylacetone solutions.
  • the results of the iron humic acid complex treated with Na 4 P 2 O 7 showed much lower ash (10.6%) than the sample treated with NaOH (19.1%) are supported by this report (Ref. 27, 28). Therefore, it was suggested that the redox-mediated function of the iron humic acid complex is due to the organic matter-bound iron fraction eluted by Na 4 P 2 O 7 or the iron fraction with low crystallinity.
  • the insoluble iron humic acid complex has a stable electron-mediated function in the microbial dechlorination reaction of PCP, the microbial reduction reaction of iron, and the microbial reduction of nitrate.
  • the reaction center responsible for this electron-mediated function is considered to be an organic matter-bound iron fraction extractable with Na 4 P 2 O 7 or an iron fraction with low crystallinity. Further research is necessary to clarify the chemical reality of the site responsible for the electron-mediated function of the iron humic acid complex.
  • the metal humic acid complex acts as an electron transfer medium (electron acceptor and deliverer) that mediates surplus electrons generated in oxidation-reduction reactions such as decomposition of organic substances by microorganisms.
  • the metal humic acid complex can maintain an effect as an electron transfer medium for respiratory growth of microorganisms for a long period of time at the site where it is added.
  • a system using a metal humic acid complex as an electron transfer medium can be applied to bioremediation.
  • microorganisms that collect electric electrons generated in redox reactions in organic substance decomposition by microorganisms to obtain electrical energy
  • microbe electroculture that grows microorganisms using electrical energy.
  • the system of the present invention can also be applied to microbial fuel cells and microbial electroculture devices. By selecting the metal at the active center of the metal humic acid complex, it is possible to produce an electron transfer medium having a specific redox potential. If such an electron transfer medium is used, it can be expected that specific types of microorganisms can be selectively cultured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • General Health & Medical Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biomedical Technology (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Wood Science & Technology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Virology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Mycology (AREA)
  • Soil Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Processing Of Solid Wastes (AREA)
  • Treatment Of Biological Wastes In General (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)

Abstract

The problem addressed by the present invention is to provide a novel system suitable for cleaning a polluted environment. An electron transfer system is constructed using a metal humic acid complex as an electron transfer medium combined with an electron donor means and organisms as an electron acceptor.

Description

電子伝達システム及びその用途Electronic transmission system and its use
 本発明は有機・無機複合体を利用した電子伝達システムに関する。詳しくは、金属と腐植酸の複合体を電子伝達媒体とした電子伝達システム及びその用途(環境浄化への適用など)に関する。本出願は、2013年7月31日に出願された日本国特許出願第2013-158394号に基づく優先権を主張するものであり、当該特許出願の全内容は参照により援用される。 The present invention relates to an electron transmission system using an organic / inorganic composite. Specifically, the present invention relates to an electron transmission system using a composite of metal and humic acid as an electron transmission medium and its use (application to environmental purification, etc.). This application claims priority based on Japanese Patent Application No. 2013-158394 filed on Jul. 31, 2013, the entire contents of which are incorporated by reference.
 汚染環境(汚染された土壌や地下水など)を浄化する技術として、バイオレメディエーションが注目されている。バイオレメディエーションは、環境中の微生物の増殖、活性を高めることにより汚染物質の分解促進を図るバイオスティミュレーションと、汚染物質を分解可能な微生物を投入・添加して汚染物質の分解を図るバイオオーグメンテーションに大別される。一般に、バイオスティミュレーションの方が簡便かつ安価であることから実用化された例があり、また、実用化に向けた研究開発の報告も多い。 Bioremediation is attracting attention as a technology for purifying contaminated environments (contaminated soil, groundwater, etc.). Bioremediation is a biostimulation that promotes the degradation of pollutants by increasing the growth and activity of microorganisms in the environment, and a bio-aug that attempts to decompose pollutants by adding and adding microorganisms that can degrade pollutants. It is roughly divided into In general, biostimulation is simpler and cheaper and has been put into practical use, and there are many reports of research and development for practical use.
 バイオスティミュレーションでは分解促進剤が用いられることが多い。例えば、トリクロロエチレン等の脂肪族塩素系溶媒の地下水汚染への対処として、各社から種々の分解促進剤としての電子供与体(乳酸系、高級脂肪酸系など)が販売されている。また、ダイオキシンやポリ塩化ビフェニル等の難分解性有機汚染物質が蓄積した汚染現場に対して、微生物活性の促進剤としてポリ乳酸エステル、高級脂肪酸エステル、低級脂肪酸エステル等を添加し、難分解性有機汚染物質に対する微生物の分解活性を向上させる方法も提案されている(例えば特許文献1~3を参照)。一方、電子供与体の添加だけでは分解が進まない場合に電子伝達物質を添加して分解を促進させる方法も提案されている。例えば、微生物培養装置においてキノン骨格をもつ水溶性電子伝達物質を添加して微生物の呼吸増殖を促し、微生物によって難分解性有機汚染物質を分解させる例がある(例えば非特許文献1、2を参照)。 In biostimulation, a decomposition accelerator is often used. For example, as a countermeasure against groundwater contamination of aliphatic chlorinated solvents such as trichlorethylene, electron donors (lactic acid-based, higher fatty acid-based, etc.) as various decomposition accelerators are sold by various companies. In addition, polylactic acid esters, higher fatty acid esters, lower fatty acid esters, etc. are added as promoters of microbial activity to contaminated sites where persistent organic pollutants such as dioxins and polychlorinated biphenyls have accumulated. A method for improving the degradation activity of microorganisms against pollutants has also been proposed (see, for example, Patent Documents 1 to 3). On the other hand, a method has been proposed in which decomposition is promoted by adding an electron transfer substance when decomposition does not proceed only by addition of an electron donor. For example, there is an example in which a water-soluble electron transfer substance having a quinone skeleton is added to a microorganism culture apparatus to promote the respiratory growth of the microorganism, and the hardly degradable organic pollutant is decomposed by the microorganism (for example, see Non-Patent Documents 1 and 2). ).
特開2008-188478号公報JP 2008-188478 A 特開2008-296176号公報JP 2008-296176 A 特開2009-112949号公報JP 2009-1212949 A
 土壌や地下水の汚染に対する微生物分解の促進剤として上記の如き水溶性電子伝達物質を用いると、それ自体が難分解性物質であり、地下水環境中に広がるとともに残留するため、2次的な汚染を引き起こしてしまう。また、水溶性であるため注入は容易である一方で繰り返し注入することが必要であることから、2次的汚染を拡大してしまう。そのため、電子伝達物質の不足が考えられる汚染現場(浄化微生物が存在し、電子供与体を注入しても微生物分解が促進されない現場)でも、電子伝達物質の注入は実施されてこなかった。 When water-soluble electron mediators such as those mentioned above are used as promoters of microbial degradation against soil and groundwater contamination, they are persistent substances that spread and remain in the groundwater environment. It will cause. In addition, since it is water-soluble, it is easy to inject, but it is necessary to inject repeatedly, which increases secondary contamination. Therefore, injection of an electron transfer material has not been carried out even at a contaminated site where there is a shortage of electron transfer materials (sites where purified microorganisms exist and microbial degradation is not promoted even if an electron donor is injected).
 本発明は以上の背景の下、汚染環境の浄化に適した新たなシステムないし方法を提供することを主たる課題とする。また、そのようなシステムないし方法の用途を提供することも課題とする。 The main object of the present invention is to provide a new system or method suitable for the purification of a polluted environment under the above background. Another object is to provide an application of such a system or method.
 腐植物質は土壌、自然水、及び様々な陸生や水生環境に豊富に存在する有機化合物のグループである(参考文献1~3)。腐植物質の潜在力(ポテンシャル)の高さから、電子伝達系を利用した嫌気的バイオレメディエーションに対する腐植物質の効果が過去20年にわたり研究されてきた(参考文献4、5)。腐植物質の酸化還元伝達特性に関する研究の大部分は、鉄酸化物を還元することができる微生物の能力を高めることに注目した、微生物が還元可能な水溶性腐植物質に集中していた(参考文献5~7)。しかしながら、腐植物質は自然環境では水に溶解した形態よりもむしろ粒子状の形態(固相腐植物質)で存在している。しかし、固相腐植物質へ電子を伝達する微生物(または固相電子伝達物質から電子を受け取る微生物)の能力についてはほとんど分かっていない。 Humic substances are a group of organic compounds that are abundant in soil, natural water, and various terrestrial and aquatic environments (References 1-3). Due to the high potential of humic substances, the effects of humic substances on anaerobic bioremediation using electron transport systems have been studied over the past 20 years (reference documents 4, 5). Most of the research on the redox transmission properties of humic substances concentrated on water-soluble humic substances that can be reduced by microorganisms, focusing on enhancing the ability of microorganisms to reduce iron oxides (references). 5-7). However, humic substances are present in a particulate form (solid humic substance) rather than dissolved in water in the natural environment. However, little is known about the ability of microorganisms to transfer electrons to solid humic substances (or microorganisms that accept electrons from a solid phase electron transfer material).
 自然界に普遍的に存在する腐植物質は、土壌、水および堆積物中に存在する金属に配位して錯体を形成する性質がある。腐植物質と鉄酸化物の間では、物理化学的な共沈が発生することが報告されている(参考文献16)。本発明者らの研究グループにおいても、如何なるpH条件下でも不溶性の腐植物質画分であるヒューミンがかなり高濃度の鉄を含むことを発見した(参考文献15)。この鉄に富む不溶性ヒューミンはペンタクロロフェノール(PCP)の微生物的還元的脱塩素に関し、安定した電子伝達能力を示したが、一方で、同じ土壌源から得られた腐植酸(HA)は溶解形態での電子伝達活性が不安定であった。この事実と、鉄を多量に含むヒューミンに対して腐植酸の鉄含有量が少なかったことに着目し、腐植酸と鉄化合物を混合して有機・無機複合体である非水溶性の鉄腐植酸複合体を調製し、その特性を調べることにした。その結果、鉄腐植酸複合体がヒューミンと同様に微生物による芳香族塩素化合物の脱塩素活性を促進することが判明した。つまり、鉄腐植酸複合体が、汚染有機物を浄化する微生物活性を向上させる電子伝達媒体として機能することが明らかとなった。鉄腐植酸複合体は非水溶性であるため、通常は、土壌や地下水等に投入した場合でも投入現場から流出することがない。また、鉄腐植酸複合体は自然環境に存在する有機化合物を材料としたものであり、環境汚染の原因物質にもならない。即ち、環境浄化効果のある安全で衛生的に使用可能な材料といえる。 The humic substances that exist universally in nature have the property of forming a complex by coordinating with metals present in soil, water and sediment. It has been reported that physicochemical coprecipitation occurs between humic substances and iron oxides (Reference Document 16). Our research group also found that humin, a humic fraction that is insoluble under any pH conditions, contains a fairly high concentration of iron (reference 15). This iron-rich insoluble humin showed stable electron transfer capacity for microbial reductive dechlorination of pentachlorophenol (PCP), while humic acid (HA) from the same soil source was dissolved The electron transfer activity was unstable. Focusing on this fact and the fact that the iron content of humic acid was lower than that of humin containing a large amount of iron, water-insoluble iron humic acid that is an organic / inorganic composite by mixing humic acid and iron compound It was decided to prepare a complex and investigate its properties. As a result, it was found that the iron humic acid complex promotes the dechlorination activity of aromatic chlorine compounds by microorganisms as well as Humin. That is, it has been clarified that the iron humic acid complex functions as an electron transfer medium that improves microbial activity for purifying contaminated organic substances. Since the iron humic acid complex is insoluble in water, it usually does not flow out from the input site even when it is input into soil or groundwater. Moreover, the iron humic acid complex is made of an organic compound existing in the natural environment and does not cause environmental pollution. That is, it can be said to be a safe and hygienic material that has an environmental purification effect.
 ここで、汚染有機物を浄化する微生物活性を向上させる電子伝達媒体として鉄腐植酸複合体が機能したことは、鉄腐植酸複合体から電子を受け取ることの出来る微生物を利用した電子伝達システムを構築できることを意味する。当該電子伝達システムは、上記の通りバイオレメディエーション(特にバイオスティミュレーション)の手段として有効であることはもとより、微生物燃料電池や微生物電気培養(電気エネルギーを利用して微生物を育てる)等にも利用できる。 Here, the function of the iron humic acid complex as an electron transfer medium that improves the microbial activity of purifying contaminated organic matter is that an electron transfer system using microorganisms that can receive electrons from the iron humic acid complex can be constructed. Means. The electron transfer system is not only effective as a means of bioremediation (particularly biostimulation) as described above, but also used for microbial fuel cells, microbial electroculture (bringing microorganisms using electrical energy), etc. it can.
 一方、イオン特性を考慮すると、鉄に限らず、マンガン、コバルト等の遷移金属類や、マグネシウム、亜鉛、セレン等の金属を用いて腐植酸との複合体を形成しても同様の効果を発揮し得る。鉄腐植酸複合体の金属を鉄以外の金属に変更すれば、異なる酸化還元電位をもつ電子伝達媒体となる。このようにして得られた特定の酸化還元電位をもつ金属腐植酸複合体を用いれば、特定の微生物を選択的に培養できることも期待できる。即ち、上記電子伝達システムは、新たな微生物培養技術としても有用といえる。このように、上記電子伝達システムはその適用範囲(用途)が広く、その価値は極めて高い。尚、全ての生物の必須微量栄養素であり、そして土壌および堆積物中に最も豊富な金属の一つである鉄と腐植酸の錯体形成は広く研究され、不溶性鉄腐植酸複合体が植物への鉄供給源や重金属吸着剤になるとの報告はあるものの(参考文献17~19)、電子伝達媒体として機能し、微生物に対する電子の授受を介在できることは知られていない。
 以下に示す発明は、主として、以上の知見ないし成果に基づく。
 [1]電子伝達媒体としての金属腐植酸複合体と、電子供与手段と、電子受容体としての微生物と、を含む、電子伝達システム。
 [2]前記金属腐植酸複合体を構成する金属が遷移金属、或いはマグネシウム、亜鉛又はセレンである、[1]に記載の電子伝達システム。
 [3]前記遷移金属がマンガン、鉄又はコバルトである、[2]に記載の電子伝達システム。
 [4]前記金属腐植酸複合体を構成する金属が、酸化還元電位を複数有する金属である、[1]に記載の電子伝達システム。
 [5]前記電子供与手段が、還元性有機化合物と、該還元性有機化合物から電子の供与を受けて前記金属腐植酸複合体を還元する還元微生物との組合せからなる、[1]~[4]のいずれか一項に記載の電子伝達システム。
 [6]前記還元性有機化合物が、糖、アミノ酸、有機酸、有機酸塩、アルコール、芳香族化合物及び生分解性プラスチックからなる群より選択される一又は二以上の有機化合物である、[5]に記載の電子伝達システム。
 [7]前記電子供与手段がカソード電極である、[1]~[4]のいずれか一項に記載の電子伝達システム。
 [8]前記カソード電極に電気的に接続されるアノード電極に対して、微生物を介して還元性有機化合物から電子が供給される、[7]に記載の電子伝達システム。
 [9]前記カソード電極に電気的に接続されるアノード電極に対して、還元性有機化合物と該還元性有機化合物から電子の供与を受けて金属腐植酸複合体を還元する還元微生物との組合せからなる電子供与手段により電子が供給される、[7]に記載の電子伝達システム。
 [10]電子受容体としての前記微生物が脱ハロゲン化微生物、鉄還元能を有する細菌又は硝酸還元能を有する細菌である、[1]~[9]のいずれか一項に記載の電子伝達システム。
 [11]電子受容体としての前記微生物が、細胞外固相との間で電子授受が可能な微生物である、[1]~[9]のいずれか一項に記載の電子伝達システム。
 [12]電子受容体としての前記微生物が、ジオバクター属細菌、シュワネラ属細菌、デハロバクター属細菌、デサルフィトバクテリウム属細菌、デスルフロモナス属細菌、クロストリジウム属細菌、バクテロイデス属細菌、デサルフォビブリオ属細菌、セディメンティバクター属細菌及びスルフロスピリラム属細菌からなる群より選択される一又は二以上の細菌である、[1]~[9]のいずれか一項に記載の電子伝達システム。
 [13][10]に記載の電子伝達システムによって、汚染環境中の有機ハロゲン化合物を分解することを特徴とする、環境浄化方法。
 [14]金属腐植酸複合体を汚染環境に添加するステップ、を含む環境浄化方法。
 [15]更に、電子供与体としての還元性有機化合物を汚染環境に添加するステップを含む、[14]に記載の環境浄化方法。
 [16]更に、電子供与手段として、還元性有機化合物と、該還元性有機化合物から電子の供与を受けて前記金属腐植酸複合体を還元する還元微生物を汚染環境に添加するステップを含む、[14]に記載の環境浄化方法。
 [17]更に、電子供与手段としてのカソード電極を汚染環境中に設置するステップを含む、[14]に記載の環境浄化方法。
 [18]更に、電子受容体としての脱ハロゲン化微生物を汚染環境に添加するステップを含む、[14]~[17]のいずれか一項に記載の環境浄化方法。
 [19]電子伝達媒体としての金属腐植酸複合体と、電子供与体としての還元性有機化合物と、を含む、環境浄化用キット。
 [20]電子伝達媒体としての金属腐植酸複合体と、電子供与手段としての、還元性有機化合物と、該還元性有機化合物から電子の供与を受けて前記金属腐植酸複合体を還元する還元微生物の組合せと、を含む、環境浄化用キット。
 [21]電子伝達媒体としての金属腐植酸複合体と、カソード電極と、を含む、環境浄化用キット。
 [22]更に、電子受容体としての脱ハロゲン化微生物を含む、[19]~[21]のいずれか一項に記載の環境浄化用キット。
 [23]金属腐植酸複合体と電子供与体の存在下で微生物含有試料を培養するステップ、を含む、微生物の選択的培養法。
 [24]金属腐植酸複合体からなる電子伝達媒体。
On the other hand, considering the ionic characteristics, the same effect can be achieved even if a complex with humic acid is formed using not only iron but also transition metals such as manganese and cobalt, and metals such as magnesium, zinc and selenium. Can do. If the metal of the iron humic acid complex is changed to a metal other than iron, an electron transfer medium having a different redox potential is obtained. If the metal humic acid complex having a specific redox potential thus obtained is used, it can be expected that a specific microorganism can be selectively cultured. That is, it can be said that the electron transfer system is useful as a new microorganism culture technique. Thus, the above-mentioned electron transmission system has a wide application range (use) and its value is extremely high. It should be noted that the complex formation of iron and humic acid, which is an essential micronutrient for all living organisms, and one of the most abundant metals in soil and sediment, has been extensively studied, and insoluble iron humic acid complexes have been introduced into plants. Although it has been reported that it becomes an iron supply source or a heavy metal adsorbent (reference documents 17 to 19), it is not known that it functions as an electron transfer medium and can mediate the transfer of electrons to microorganisms.
The invention shown below is mainly based on the above knowledge or result.
[1] An electron transfer system comprising a metal humic acid complex as an electron transfer medium, electron donating means, and a microorganism as an electron acceptor.
[2] The electron transfer system according to [1], wherein the metal constituting the metal humic acid complex is a transition metal, magnesium, zinc, or selenium.
[3] The electron transfer system according to [2], wherein the transition metal is manganese, iron, or cobalt.
[4] The electron transfer system according to [1], wherein the metal constituting the metal humic acid complex is a metal having a plurality of redox potentials.
[5] The electron donating means comprises a combination of a reducing organic compound and a reducing microorganism that receives electrons from the reducing organic compound and reduces the metal humic acid complex. ] The electronic transmission system as described in any one of.
[6] The reducing organic compound is one or more organic compounds selected from the group consisting of sugars, amino acids, organic acids, organic acid salts, alcohols, aromatic compounds, and biodegradable plastics. ] The electronic transmission system of description.
[7] The electron transfer system according to any one of [1] to [4], wherein the electron donating means is a cathode electrode.
[8] The electron transfer system according to [7], wherein electrons are supplied from the reducing organic compound to the anode electrode electrically connected to the cathode electrode through a microorganism.
[9] A combination of a reducing organic compound and a reducing microorganism that reduces the metal humic acid complex by receiving electrons from the reducing organic compound with respect to the anode electrode electrically connected to the cathode electrode. The electron transmission system according to [7], wherein electrons are supplied by the electron donating means.
[10] The electron transfer system according to any one of [1] to [9], wherein the microorganism as an electron acceptor is a dehalogenated microorganism, a bacterium having iron reducing ability, or a bacterium having nitrate reducing ability. .
[11] The electron transfer system according to any one of [1] to [9], wherein the microorganism as an electron acceptor is a microorganism that can exchange electrons with an extracellular solid phase.
[12] The microorganism as an electron acceptor is selected from the group consisting of Geobacter, Schwanella, Dehalobacter, Desulfitobacterium, Desulfromonas, Clostridium, Bacteroides, Desulfobrybacteria, Cedi The electron transfer system according to any one of [1] to [9], wherein the electron transfer system is one or more bacteria selected from the group consisting of a genus Bacterium and a sulfurospirillum bacterium.
[13] An environmental purification method comprising decomposing an organic halogen compound in a polluted environment by the electron transmission system according to [10].
[14] An environmental purification method comprising adding a metal humic acid complex to a contaminated environment.
[15] The environmental purification method according to [14], further comprising a step of adding a reducing organic compound as an electron donor to the contaminated environment.
[16] Further, as an electron donating means, a step of adding a reducing organic compound and a reducing microorganism that receives the electron donation from the reducing organic compound and reduces the metal humic acid complex to a contaminated environment, 14].
[17] The environmental purification method according to [14], further including a step of installing a cathode electrode as electron donating means in a contaminated environment.
[18] The environmental purification method according to any one of [14] to [17], further comprising a step of adding a dehalogenated microorganism as an electron acceptor to the contaminated environment.
[19] An environmental purification kit comprising a metal humic acid complex as an electron transfer medium and a reducing organic compound as an electron donor.
[20] A metal humic acid complex as an electron transfer medium, a reducing organic compound as an electron donating means, and a reducing microorganism that receives the electrons from the reducing organic compound and reduces the metal humic acid complex An environmental purification kit comprising:
[21] An environmental purification kit comprising a metal humic acid complex as an electron transmission medium and a cathode electrode.
[22] The kit for environmental purification according to any one of [19] to [21], further comprising a dehalogenated microorganism as an electron acceptor.
[23] A method for selectively culturing a microorganism, comprising culturing a microorganism-containing sample in the presence of a metal humic acid complex and an electron donor.
[24] An electron transfer medium comprising a metal humic acid complex.
PCP-フェノール脱塩素ヒューミン培養物のPCP脱塩素反応に対する鉄腐植酸複合体(Fe-HA)の影響及びPCPとフェノールの吸着に対する鉄腐植酸複合体の影響。(a)不溶性鉄腐植酸複合体を添加したPCP-フェノール脱塩素ヒューミン培養物は安定したPCP(△)-フェノール(○)脱塩素活性を示した。矢印は、PCPを添加した新鮮培地にPCP-フェノール脱塩素ヒューミン培養物を5%接種したことを示す。(b)鉄腐植酸複合体の非存在下又はPCP-フェノール脱塩素ヒューミン培養物を接種していない場合、脱塩素が認められない。(c)コントロールとして鉄のみ又はAldrich腐植酸(Aldrich humic acid sodium salt, AHA)のみを加えた条件ではPCP脱塩素反応が観察されない。(d)鉄腐植酸複合体(2.5 g L-1)添加した無機培地及び添加していない無機培地におけるPCP(△)とフェノール(○)の濃度を示す。両培地条件で濃度に差がないことから、吸着が殆ど無いことが分かる。Effect of iron humic acid complex (Fe-HA) on PCP dechlorination reaction of PCP-phenol dechlorinated humin culture and effect of iron humic acid complex on adsorption of PCP and phenol. (a) The PCP-phenol dechlorination humin culture supplemented with the insoluble iron humic acid complex showed stable PCP (△) -phenol (○) dechlorination activity. The arrow indicates that 5% of the PCP-phenol dechlorinated humin culture was inoculated into fresh medium supplemented with PCP. (b) Dechlorination is not observed in the absence of iron humic acid complex or when not inoculated with PCP-phenol dechlorinated humin cultures. (c) PCP dechlorination reaction is not observed under the condition that only iron or Aldrich humic acid sodium salt (AHA) is added as a control. (d) The concentrations of PCP (Δ) and phenol (◯) in the inorganic medium with and without iron humic acid complex (2.5 g L −1 ) added. Since there is no difference in concentration between the two medium conditions, it can be seen that there is almost no adsorption. 鉄腐植酸複合体による微生物還元的脱塩素に対する各処理の影響。(a)MgCl2で処理した鉄腐植酸複合体、(b)NaOAc(酢酸ナトリウム)で処理した鉄腐植酸複合体、(c) NaOH(水酸化ナトリウム)で処理した鉄腐植酸複合体、(d) Na4P2O7(ピロリン酸ナトリウム)で処理した鉄腐植酸複合体。△:PCP、○:フェノール。矢印は、PCPを添加した新鮮培地にPCP-フェノール脱塩素ヒューミン培養物を5%接種したことを示す。ピロリン酸ナトリウムでは微生物還元的脱塩素反応が2回目の接種で起こらなくなったことから、ピロリン酸ナトリウム抽出画分に電子伝達機能が存在することが分かる。Effect of each treatment on microbial reductive dechlorination by iron humic acid complex. (A) Iron humic acid complex treated with MgCl 2 , (b) Iron humic acid complex treated with NaOAc (sodium acetate), (c) Iron humic acid complex treated with NaOH (sodium hydroxide), ( d) Iron humic acid complex treated with Na 4 P 2 O 7 (sodium pyrophosphate). Δ: PCP, ○: phenol. The arrow indicates that 5% of the PCP-phenol dechlorinated humin culture was inoculated into fresh medium supplemented with PCP. In sodium pyrophosphate, the microbial reductive dechlorination reaction did not occur in the second inoculation, indicating that the sodium pyrophosphate extract fraction has an electron transfer function. 鉄(III)酸化物の微生物還元に対する鉄腐植酸複合体の促進効果。Promoting effect of iron humic acid complex on microbial reduction of iron (III) oxide. 鉄腐植酸複合体の電子受容能力(EAC)。微生物的還元及び化学的還元を分析し、評価した。(a)微生物的(Sewanella putrefaciens CN-32)還元。(b)化学的(H2/Pd)還元。Electron accepting ability (EAC) of iron humic acid complex. Microbial and chemical reductions were analyzed and evaluated. (a) Microbial (Sewanella putrefaciens CN-32) reduction. (b) chemical (H 2 / Pd) reduction. フーリエ変換赤外吸収スペクトル。(a)鉄腐植酸複合体とNa4P2O7で処理した鉄腐植酸複合体。(b)腐植酸(AHA)とコントロール鉄サンプル。Fourier transform infrared absorption spectrum. (a) Iron humic acid complex treated with Na 4 P 2 O 7 and iron humic acid complex. (b) Humic acid (AHA) and control iron samples. サイクリックボルタモグラム(CV)。(a)-500 mV(対 標準水素電極)の電位における、還元前後の鉄腐植酸複合体とバックグラウンド試料。(b)コントロール鉄サンプルとコントロールHAサンプル。(c)-500 mV(対 標準水素電極)の電位を用いた電気的還元前と後のNa4P2O7で処理した鉄腐植酸複合体。無機培地を電解質及びバックグラウンド試料として分析した。Cyclic voltammogram (CV). (a) Iron humic acid complex and background sample before and after reduction at a potential of -500 mV (vs. standard hydrogen electrode). (b) Control iron sample and control HA sample. (c) Iron humic acid complex treated with Na 4 P 2 O 7 before and after electroreduction using a potential of -500 mV (vs standard hydrogen electrode). Inorganic medium was analyzed as electrolyte and background sample. 本発明の電子伝達システムの具体的態様の例。金属腐植酸複合体(M-HA)を介して電子の授受が行われる。電子受容体としての微生物Bが有機ハロゲン化合物を脱ハロゲンする。(a)では微生物Aが有機化合物から電子の供与を受けてM-HAを還元する。(b)では電子供与手段としてカソード電極が利用される。(c)ではアノード電極に対して微生物A’から電子が供給される。(d)ではM-HAを最終電子受容体として使う微生物A’’を用い、アノード側でもM-HAを用いた電子の授受を行う。The example of the specific aspect of the electronic transmission system of this invention. Electrons are exchanged through the metal humic acid complex (M-HA). Microorganism B as an electron acceptor dehalogenates an organic halogen compound. In (a), the microorganism A receives electrons from an organic compound and reduces M-HA. In (b), a cathode electrode is used as an electron donating means. In (c), electrons are supplied from the microorganism A 'to the anode electrode. In (d), a microorganism A ″ using M-HA as a final electron acceptor is used, and electrons are transferred using M-HA also on the anode side. 硝酸塩の微生物還元に対する鉄腐植酸複合体の促進効果。Promoting effect of iron humic acid complex on microbial reduction of nitrate.
1.電子伝達システム
 本発明の第1の局面は電子伝達システムに関する。本発明の電子伝達システムは電子受容体として機能する微生物(以下、説明の便宜上、「電子受容微生物」と呼ぶ)を利用するものであり、電子伝達媒体として金属腐植酸複合体を用いる点に最大の特徴がある。本発明の電子伝達システムは、電子伝達媒体としての金属腐植酸複合体、電子供与手段、及び電子受容体としての微生物(電子受容微生物)を含み、電子供与手段からの電子が金属腐植酸複合体を介して電子受容微生物へと受け渡される。このように、本発明の電子伝達システムは、細胞外で電子の授受が生ずるものであり、細胞内における電子伝達系と峻別される。
1. Electronic transmission system The 1st aspect of the present invention is related with an electronic transmission system. The electron transfer system of the present invention utilizes a microorganism functioning as an electron acceptor (hereinafter referred to as “electron accepting microorganism” for convenience of explanation), and is the maximum in that a metal humic acid complex is used as an electron transfer medium. There are features. The electron transfer system of the present invention includes a metal humic acid complex as an electron transfer medium, an electron donating means, and a microorganism (electron accepting microorganism) as an electron acceptor, and electrons from the electron donating means are metal humic acid complexes. To the electron-accepting microorganisms. As described above, the electron transfer system of the present invention transfers electrons outside the cell and is distinguished from the electron transfer system in the cell.
(1)金属腐植酸複合体
 土壌や堆積物の成分の一つである腐植物質は、アルカリと酸に対する溶解性に基づき、腐植酸、フルボ酸及びヒューミンの3種類に分類される。腐植酸はフミン酸とも呼ばれる。腐植酸は天然の腐植酸(天然フミン酸)と、天然材料の酸化分解等によって工業的に生産される再生腐植酸(再生フミン酸)に大別される。腐植酸は、土壌又は堆積物をアルカリ抽出した後、酸性にすることで沈殿する成分である。即ち、アルカリ性水溶液に可溶で酸性水溶液に不溶の高分子有機酸である。腐植酸は基本骨格に芳香族環を多数有し、芳香族環にはカルボキシル基や水酸基が結合している。このような構造的な特徴によって腐植酸は緩衝作用、界面活性作用、イオン保持作用等を示す。なお、フルボ酸はアルカリ性水溶液にも酸性水溶液にも可溶な高分子有機酸、ヒューミンはアルカリ性水溶液にも酸性水溶液にも不溶な腐植物質である。
(1) Metal Humic Acid Complex Humic substances that are one of the components of soil and sediment are classified into three types, humic acid, fulvic acid, and humin, based on solubility in alkali and acid. Humic acid is also called humic acid. Humic acid is roughly classified into natural humic acid (natural humic acid) and regenerated humic acid (regenerated humic acid) produced industrially by oxidative degradation of natural materials. Humic acid is a component that is precipitated by acid extraction after soil or sediment is alkali extracted. That is, it is a polymer organic acid that is soluble in an alkaline aqueous solution and insoluble in an acidic aqueous solution. Humic acid has many aromatic rings in its basic skeleton, and carboxyl groups and hydroxyl groups are bonded to the aromatic rings. Due to such structural features, humic acid exhibits a buffering action, a surface active action, an ion retention action and the like. Note that fulvic acid is a high-molecular organic acid that is soluble in both alkaline and acidic aqueous solutions, and humic acid is a humic substance that is insoluble in both alkaline and acidic aqueous solutions.
 本発明では腐植酸と金属との複合体(本発明において「金属腐植酸複合体」と呼ぶ)を電子伝達媒体として用いる。金属腐植酸複合体を構成する金属は、複合体が電子伝達特性を示す限り特に限定されない。例えば、マンガン、鉄、コバルト等の遷移金属類、マグネシウム、亜鉛、セレンを採用することができる。好ましい金属としては、鉄を挙げることができる。酸化還元電位を複数有する金属(例えばマンガン、鉄、コバルトの遷移金属類)を用いれば、複数の酸化還元電位を示す電子伝達システムを構築することができる。このような電子伝達システムは、目的の酸化還元電位に制御出来るという利点があり、微生物の選択的培養の用途に好適である。本明細書における「選択的培養」には、(i)特定の微生物(特に難培養微生物)の単離培養、(ii)特定の微生物(特に難培養微生物)の維持培養、(iii)微生物集団からの特定の微生物(特に難培養微生物)の集積、(iv)特定の菌を含む微生物群の維持培養を含む。金属腐植酸複合体は、例えば、腐植酸と金属塩水溶液(金属が鉄の場合には、硫酸鉄(II)、塩化鉄(II)、クエン酸鉄(III)等を用いることができる)を混合した後、溶液のpHを弱アルカリ性~中性~弱酸性域にして所定温度(例えば20℃~40℃)で所定期間(例えば1日~2週間)保持し、沈殿物を回収することにより得ることができる。 In the present invention, a complex of humic acid and metal (referred to as “metal humic acid complex” in the present invention) is used as an electron transfer medium. The metal constituting the metal humic acid complex is not particularly limited as long as the complex exhibits electron transfer properties. For example, transition metals such as manganese, iron, and cobalt, magnesium, zinc, and selenium can be employed. A preferred metal is iron. If a metal having a plurality of oxidation-reduction potentials (for example, transition metals of manganese, iron, and cobalt) is used, an electron transfer system that exhibits a plurality of oxidation-reduction potentials can be constructed. Such an electron transfer system has an advantage that it can be controlled to a target oxidation-reduction potential, and is suitable for use in selective culture of microorganisms. In this specification, “selective culture” includes (i) isolation culture of specific microorganisms (particularly difficult-to-cultivate microorganisms), (ii) maintenance culture of specific microorganisms (particularly difficult-to-cultivate microorganisms), and (iii) microbial populations Accumulation of specific microorganisms (especially difficult-to-culture microorganisms) from (iv), and (iv) maintenance culture of microorganisms containing specific bacteria. The metal humic acid complex includes, for example, humic acid and an aqueous metal salt solution (in the case where the metal is iron, iron sulfate (II), iron chloride (II), iron citrate (III), etc. can be used)). After mixing, the pH of the solution is set to a weakly alkaline to neutral to weakly acidic range and maintained at a predetermined temperature (for example, 20 ° C. to 40 ° C.) for a predetermined period (for example, 1 day to 2 weeks), and the precipitate is recovered. Obtainable.
 2種類以上の金属と腐植酸の複合体の使用、又は異なる金属を用いて形成された2種類以上の金属腐植酸の併用も可能である。 It is possible to use a composite of two or more kinds of metal and humic acid, or to use two or more kinds of metal humic acid formed using different metals.
 本発明では、金属腐植酸複合体が電子伝達媒体として機能する。詳細には、電子を受け取って酸化型から還元型になり、電子を供与することで還元型から酸化型となる。本発明では、金属腐植酸複合体を酸化型から還元型に変換するための電子は、以下で詳述する電子供与手段によって生成される。 In the present invention, the metal humic acid complex functions as an electron transfer medium. More specifically, an electron is received to change from an oxidized form to a reduced form, and an electron is supplied to change from a reduced form to an oxidized form. In the present invention, the electrons for converting the metal humic acid complex from the oxidized form to the reduced form are generated by the electron donating means described in detail below.
(2)電子供与手段
 図7を参照しながら、本発明に用いられる電子供与手段を説明する。図7には4つの態様が示されている。尚、説明の便宜上、図7では、電子受容微生物として脱ハロゲン化微生物(微生物B)を使用している。
(2) Electron donating means The electron donating means used in the present invention will be described with reference to FIG. FIG. 7 shows four modes. For convenience of explanation, in FIG. 7, a dehalogenated microorganism (microorganism B) is used as the electron-accepting microorganism.
 第1態様(図7(a)が対応する)では、電子供与手段として、還元性有機化合物と、当該還元性有機化合物から電子の供与を受けて金属腐植酸複合体を還元する還元微生物(図中では微生物A)との組合せを用いる。この態様では、電子供与体として還元性有機化合物を使用する。還元性有機化合物とは、酸化を受けて電子を生成する有機化合物であり、例えば、糖(3炭素から7炭素)、アミノ酸、有機酸(乳酸、フマル酸、ピルビン酸、コハク酸、リンゴ酸、ギ酸、酢酸、クエン酸、高級脂肪酸など)又は有機酸塩(乳酸塩、フマル酸塩、ピルビン酸塩、コハク酸塩、リンゴ酸塩、ギ酸塩、酢酸塩、クエン酸塩、高級脂肪酸塩など)、アルコール(エタノール、プロパノール、ブタノール等の低級アルコールからパルミトール等の高級アルコールなど)、芳香族化合物(フェノール、ポリフェノール、フェノール性酸およびその塩)、生分解性ブラスチック(ポリヒドロキシ酪酸(PHB)、ポリカプロラクトン(PCL)、ポリ乳酸(PLA)、ポリ乳酸系樹脂(例えば特開2011-104551号公報を参照)、デンプン系樹脂)等が用いられる。還元微生物は酸化型金属腐植酸複合体を還元型金属腐植酸複合体に変換する。典型的には、金属腐植酸複合体を最終電子受容体として呼吸する微生物が用いられる。該当する微生物の例として、細胞外固相との間で電子を授受できるシュワネラ属細菌やジオバクター属細菌を挙げることができる。 In the first embodiment (corresponding to FIG. 7 (a)), as an electron donating means, a reducing organic compound and a reducing microorganism (Fig. 7) that receives an electron donation from the reducing organic compound and reduces the metal humic acid complex. Among them, a combination with microorganism A) is used. In this embodiment, a reducing organic compound is used as the electron donor. A reducing organic compound is an organic compound that generates electrons upon oxidation, such as sugar (3 to 7 carbon), amino acid, organic acid (lactic acid, fumaric acid, pyruvic acid, succinic acid, malic acid, Formic acid, acetic acid, citric acid, higher fatty acids, etc.) or organic acid salts (lactate, fumarate, pyruvate, succinate, malate, formate, acetate, citrate, higher fatty acid, etc.) , Alcohols (lower alcohols such as ethanol, propanol and butanol to higher alcohols such as palmitol), aromatic compounds (phenol, polyphenol, phenolic acid and salts thereof), biodegradable plastics (polyhydroxybutyric acid (PHB), Polycaprolactone (PCL), polylactic acid (PLA), polylactic acid-based resin (see, for example, JP-A-2011-104551), Starch-based resin) and the like are used. The reducing microorganism converts the oxidized metal humic acid complex into a reduced metal humic acid complex. Typically, microorganisms that breathe using the metal humic acid complex as the final electron acceptor are used. Examples of such microorganisms include Schwanella bacteria and Geobacter bacteria that can exchange electrons with the extracellular solid phase.
 第2態様(図7(b)が対応する)では、電子供与手段として、カソード電極を用いる。即ち、電極(カソード)を用いて、酸化型金属腐植酸複合体を電気化学的に直接還元する。電極の材料は特に限定されない。電極材料の例を示せばC、Au、Pt、Tiである。 In the second mode (corresponding to FIG. 7B), a cathode electrode is used as the electron donating means. That is, the oxidized metal humic acid complex is directly electrochemically reduced using an electrode (cathode). The material of the electrode is not particularly limited. Examples of electrode materials are C, Au, Pt, and Ti.
 一方、電極を最終電子受容体として使う微生物(図中では微生物A’)を用いれば、当該微生物の呼吸によって得られた電子をカソード電極に供給することが可能である(図7(c)が対応する第3態様)。この第3態様では、カソード電極に電気的に接続されるアノード電極に対して、微生物を介して還元性有機化合物から電子が供給されることになる。電極を最終電子受容体として使う微生物の例として、細胞外固相との間で電子を授受できるシュワネラ属細菌やジオバクター属細菌を挙げることができる。 On the other hand, if a microorganism using the electrode as a final electron acceptor (microorganism A ′ in the figure) is used, electrons obtained by respiration of the microorganism can be supplied to the cathode electrode (FIG. 7C). Corresponding third aspect). In the third aspect, electrons are supplied from the reducing organic compound to the anode electrode that is electrically connected to the cathode electrode via the microorganism. Examples of microorganisms that use an electrode as the final electron acceptor include Schwanella bacteria and Geobacter bacteria that can exchange electrons with an extracellular solid phase.
 更には、金属腐植酸複合体を最終電子受容体として使う微生物(図中では微生物A’’)を用いれば、アノード側でも金属腐植酸複合体を用いた電子の授受を行うことができる(図7(d)が対応する第4態様)。この第4態様では、カソード電極に電気的に接続されるアノード電極に対して、還元性有機化合物と当該還元性有機化合物から電子の供与を受けて金属腐植酸複合体を還元する還元微生物との組合せからなる電子供与手段により電子が供給されることになる。金属腐植酸複合体を最終電子受容体として使う微生物の例として、細胞外固相との間で電子を授受できるシュワネラ属細菌やジオバクター属細菌を挙げることができる。 Furthermore, if a microorganism (microorganism A ″ in the figure) using the metal humic acid complex as a final electron acceptor is used, electrons can be exchanged using the metal humic acid complex also on the anode side (FIG. 7th (d) corresponding 4th aspect). In this fourth aspect, the reducing organic compound and the reducing microorganism that reduces the metal humic acid complex by receiving electrons from the reducing organic compound with respect to the anode electrode that is electrically connected to the cathode electrode. Electrons are supplied by the electron donating means comprising the combination. Examples of microorganisms that use the metal humic acid complex as the final electron acceptor include Schwanella bacteria and Geobacter bacteria that can exchange electrons with the extracellular solid phase.
 第3態様(図7(c))及び第4態様(図7(d))は、有機化合物から微生物的に電子を取り出して電気回路に流すものであり、いわゆる「微生物燃料電池」と呼ばれるシステムになる。 The third mode (FIG. 7 (c)) and the fourth mode (FIG. 7 (d)) take out microorganisms from organic compounds and flow them through an electric circuit, and are so-called “microbial fuel cells”. become.
 尚、電子供与手段として化学的還元(例えば水素ガス/パラジウム触媒や水素化ホウ素ナトリウムによる還元など)を利用することも可能である。但し、効率や地下水環境への導入の点から、上記の微生物的還元(第1態様)や電気化学的還元(第2態様~第4態様)の方が好ましい。 It should be noted that chemical reduction (for example, reduction with hydrogen gas / palladium catalyst or sodium borohydride) can be used as an electron donating means. However, the above-described microbial reduction (first aspect) and electrochemical reduction (second aspect to fourth aspect) are preferable from the viewpoint of efficiency and introduction into the groundwater environment.
(3)電子受容体としての微生物(図7では微生物B)
 本発明の電子伝達システムでは、電子受容体として微生物が用いられる。「電子受容体としての微生物」とは、外部から電子を受け取り、受け取った電子を生育、増殖、機能の発揮などに利用する微生物をいう。電子受容体としての微生物には、例えば、ジオバクター属細菌、シュワネラ属細菌、デハロバクター属細菌、デサルフィトバクテリウム属細菌、デスルフロモナス属細菌、クロストリジウム属細菌、バクテロイデス属細菌、デサルフォビブリオ属細菌、セディメンティバクター属細菌及びスルフロスピリラム属細菌等が用いられる。二種類以上の微生物を併用してもよい。また、電子受容体として機能する微生物を一種類以上含む微生物群ないし微生物群集を用いることにしてもよい。ここでの微生物群ないし微生物群集は、電子受容体として機能しない微生物を含んでいてもよい。
(3) Microorganism as an electron acceptor (microorganism B in FIG. 7)
In the electron transfer system of the present invention, microorganisms are used as electron acceptors. “Microorganism as an electron acceptor” refers to a microorganism that receives electrons from the outside and uses the received electrons for growth, proliferation, function, and the like. Microorganisms as electron acceptors include, for example, Geobacter bacteria, Schwanella bacteria, Dehalobacter bacteria, Desulfitobacterium bacteria, Desulfromonas bacteria, Clostridium bacteria, Bacteroides bacteria, Desulfofibrio bacteria, Cedimenti Bacterium bacteria and sulfurospirillum bacteria are used. Two or more kinds of microorganisms may be used in combination. Moreover, you may decide to use the microorganism group thru | or microbial community containing one or more types of microorganisms which function as an electron acceptor. The microorganism group or microbial community here may contain a microorganism that does not function as an electron acceptor.
 好ましくは、細胞外固相との電子授受が可能な微生物を用いる。当該微生物によれば、電子を細胞外から直接受け取った電子を利用した呼吸が可能になる。該当する微生物の例として、シュワネラ属細菌やジオバクター属細菌を挙げることができる。 Preferably, a microorganism that can exchange electrons with an extracellular solid phase is used. According to the microorganism, respiration using electrons directly received from outside the cell becomes possible. Examples of such microorganisms include the genus Shuwanella and the genus Geobacter.
 一方、脱ハロゲン化微生物を採用すれば、例えば土壌や地下水、河川水、湖沼水、海水等の環境の脱ハロゲン化に適した電子伝達システムとなる。脱ハロゲン化微生物の例は、デスルフォモナイル・ティージェイDCB-1株(Desulfomonile tiedjei DCB-1)、デハロスピリラム(スルフロスピリラム)・マルチボランス(Dehalospirillum Dehalospirillum [Sulfurospirillum] multivorans)、デハロバクター・レストリクタスPER-K23株(Dehalobacter restrictus PER-K23)、デハロバクター・レストリクタスTEA株(Dehalobacter restrictus TEA)、デハロバクター sp. FTH1株(Dehalobacter sp. FTH1)デサルフィトバクテリウム・デハロゲナンス(Desulfitobacterium dehalogenans)、デサルフィトバクテリウム sp. PCE1株(Desulfitobacterium sp. PCE1)、デサルフィトバクテリウムsp. PCE-S株(Desulfitobacterium sp. PCE-S)、デサルフィトバクテリウム・フラピエリTCE1株(Desulfitobacterium frappieri TCE1)、デサルフィトバクテリウムsp. Y51株(Desulfitobacterium sp. Y51)、デスルフロモナス・クロロエテニカTT4B株(Desulfuromonas chloroethenica TT4B)、クロストリジウム・バイファーメンタンスDPH-1株(Clostridium bifermentans DPH-1)、デハロコッコイデス・マッカーティ195株(Dehalococcoides maccartyi 195)、デハロコッコイデス sp. GT株(Dehalococcoides sp. GT)、デハロコッコイデス sp. VS株(Dehalococcoides sp. VS)である(Damborsky, J. (1999): Tetrachloroethene-dehalogenating bacteria, Folia Microbiologica, Vol.44, pp.247-262.; Holliger, C., Wohlfarth, G. and Diekert, G. (1999): Reductive dechlorination in the energy metabolism of anaerobic bacteria, FEMS Microbiology Reviews, Vol.22, pp.383-398.; Gerritse, J., Renard, V. Pedro Gomes, T.M., Lawson, P.A., Collins, M.D. and Gottschal, J.C. (1996): Desulfitobacterium sp. strain PCE1, an anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene or ortho-chlorinated phenols. Archives of Microbiology, Vol.165, pp.132-140.; Suyama, A., Iwakiri, R., Kai, K., Tokunaga, T., Sera, N. and Furukawa, K. (2001): Isolation and characterization of Desulfitobacterium sp. strain Y51 capable of efficient dehalogenation of tetrachloroethene and polychloroethanes, Bioscience, Biotechnology, and Biochemistry, Vol.65, pp.1474-1481.; Chang, Y.C., Hatsu, M., Jung, K., Yoo,Y.S. and Takamizawa, K. (2000) Isolation and characterization of a tetrachloroethylene dechlorinating bacterium, Clostridium bifermentans DPH-1. Journal of Bioscience and Bioengineering, Vol.89, pp.489-491.; Maymo-Gatell, X., Chien, Y., Gossett, J.M. and Zinder, S.H. (1997): Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene, Science, Vol.276, pp.1568-1571.; Maymo-Gatell, X., Anguish, T. and Zinder, S.H. (1999): Reductive dechlorination of chlorinated ethenes and 1, 2-dichloroethane by "Dehalococcoides ethenogenes" 195, Applied and Environmental Microbiology, Vol.65, pp.3108-3113.; Youlboong Sung,1, Kirsti M. Ritalahti,1 Robert P. Apkarian,3 and Frank E. Loffler1,(2006): Appl. Environ. Microbiol., vol. 72, pp. 1980-1987; Muller, J. A., B. M. Rosner, G. von Abendroth, G. Meshulam-Simon, P. L. McCarty, and A. M. Spormann: Molecular identification of the catabolic vinyl chloride reductase from Dehalococcoides sp. strain VS and its environmental distribution (2005): Appl. Environ. Microbiol. Sep ; 7(9):1442-50.; Yoshida, N. Ye, L., Baba, D. and Katayama, A.: A Novel Dehalobacter sp. is involved in extensive 4,5,6,7-tetrachlorophthalide (fthalide) dechlorination (2009): Appl. Environ. Microbiol., 75, 2400-2405; Luijten, M.L.G.C., De Weert, J., Smidt, H., Boschker, H.T.S., De Vos, W.M., Schraa, G. and Stams, A.J.M. (2003): Description of Sulfurospirillum halorespirans sp. nov., an anaerobic, tetrachloroethene-respiring bacterium, and transfer of Dehalospirillum multivorans to the genus Sulfurospirillum as Sulfurospirillum multivorans comb. nov., International Journal of Systematic and Evolutionary Microbiology, Vol.53, pp.787-793.)である。 On the other hand, if a dehalogenated microorganism is employed, an electron transmission system suitable for dehalogenation of the environment such as soil, groundwater, river water, lake water, seawater and the like can be obtained. Examples of dehalogenated microorganisms are Desulfomonile tiedjei DCB-1 strain, Dehalospirillum Dehalospirillum [Sulfurospirillum] multivorans, Dehalobacter restrictus PER-K23 strain (Dehalobacter restrictus PER-K23), Dehalobacter restrictusTETEA strain (Dehalobacter restrictus TEA), Dehalobacter sp. FTH1 strain (Dehalobacter sp. FTH1) Desulfitobacterium . PCE1 strain (Desulfitobacterium sp. PCE1), Desulfitobacterium sp. PCE-S strain (Desulfitobacterium sp. PCE-S), Desulfitobacterium flapieri TCE1 strain (Desulfitobacterium frappieri TCE1), Desulfitobacterium sp. Y51 Strain (Desulfitobacterium sp. Y51) Desulfuromonas chloroethenica TT4B (Desulfuromonas chloroethenica TT4B), Clostridium bifermentans DPH-1 (Clostridium bifermentans DPH-1), Dehalococcoides イ maccartyi 195 (Dehalococcoides maccartyi 195), Dehalococcoide GT Strain (Dehalococcoides sp. GT), Dehalococcoides sp. VS strain (Dehalococcoides sp. VS) (Damborsky, J. (1999): Tetrachloroethene-dehalogenating bacteria, Folia Microbiologica, Vol.44, pp.247-262 .; Holliger, C., Whlfarth, G. and Diekert, G. (1999): Reductive dechlorination in the energy metabolism of anaerobic bacteria, FEMS Microbiology Reviews, Vol.22, pp.383-398 .; Gerritse, J. Renard, V. Pedro Gomes, TM, Lawson, PA, Collins, MD and Gottschal, JC (1996): Desulfitobacterium sp. Strain PCE1, tetrachloroethene or ortho-chlorinated phenols. Archives of Microbiology, Vol.165, pp.132-140 .; Suyama, A., Iwakiri, R., Kai, K., Tokunaga, T., Sera, N. and Furukawa, K . (2001): Isolation and characterization of Desulfitobacterium sp. Strain Y51 capable of efficient dehalogenation of tetrachloroethene and polychloroethanes, Bioscience, Biotechnology, and Biochemistry, Vol.65, pp.1474-1481 .; Chang, YC, Hatsu, Jung, K., Yoo, YS and Takamizawa, K. (2000) Isolation and characterization of a tetrachloroethylene dechlorinating bacterium, ClostridiumtribifermentansmentDPH-1. Journal of Bioscience and Bioengineering, Vol.89, pp.489-491-491. Gatell, X., Chien, Y., Gossett, JM and Zinder, SH (1997): Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene, Science, Vol.276, pp.1568-1571 .; Maymo-Gatell, X ., Anguish, T. and Zinder, SH (1999): Reductive dec hlorination of chlorinated ethenes and 1, 2-dichloroethane by "Dehalococcoides ethenogenes" 195, Applied and Environmental Microbiology, Vol.65, pp.3108-3113 .; Youlboong Sung, 1, Kirsti M. Ritalahti, 1 Robertah and Frank E. Loffler1, (2006): Appl. Environ. Microbiol., vol. 72, pp. 1980-1987; Muller, J. A., B. M. Rosner, G. von Abendroth, G. Meshulam-Simon , P. L. McCarty, and A. M. Spormann: Molecular identification of the catabolic vinyl chloride reductase from Dehalococcoides sp. Strain VS and its environmental distribution (2005): Appl. Environ.9 -50 .; Yoshida, N. Ye, L., Baba, D. and Katayama, A .: A Novel Dehalobacter sp. Is involved in extensive 4,5,6,7-tetrachlorophthalide (fthalide) dechlorination (2009): Appl . Environ. Microbiol., 75, 2400-2405; Luijten, MLGC, GCDe Weert, J., Smidt, H., Boschker, HTS, De Vos, WM, Schraa, G. and Stams, AJM (2003): Description of Sulfurospirillum halorespirans sp. nov., an anaerobic, tetrachloroethene-respiring bacterium, Vol.53, pp.787-793.).
 鉄還元能を有する細菌(例えばジオバクター属細菌)を用いれば、本発明の電子伝達システムを鉄還元の促進に利用することができる。同様に、硝酸還元能を有する細菌(例えばシュワネラ属細菌)を用いれば、本発明の電子伝達システムを硝酸還元の促進に利用することができる。 If a bacterium having an iron reducing ability (for example, a Geobacter bacterium) is used, the electron transfer system of the present invention can be used to promote iron reduction. Similarly, if a bacterium having nitrate reducing ability (for example, a Schwannella bacterium) is used, the electron transfer system of the present invention can be used to promote nitrate reduction.
 本発明の電子伝達システムを環境浄化に利用する場合、浄化対象の環境中に存在する有機酸や微生物(有機物等を分解することによって電子を生じさせるもの)を電子供与手段として用いることもできる。当該態様では、浄化対象の環境に対して、電子伝達媒体としての金属腐植酸複合体と、電子受容体としての脱ハロゲン化微生物を適用し、当該環境中に本発明の電子伝達システムを構築することになる。但し、別途用意した電子供与手段の併用を妨げるものではなく、例えば、電子供与体としての還元性有機化合物、又は還元性有機化合物から電子の供与を受けて金属腐植酸複合体を還元する還元微生物、或いはこれら両者を当該環境中に添加することにしてもよい。本発明の電子伝達システムを環境浄化に利用する場合には、電子供与体として電極(カソード)を利用することも好ましい態様の一つである。この態様では電極を環境中に設置し、電子の供与を行うことになる。 When the electron transmission system of the present invention is used for environmental purification, organic acids and microorganisms (those that generate electrons by decomposing organic substances) existing in the environment to be purified can also be used as the electron donating means. In this aspect, the metal humic acid complex as the electron transfer medium and the dehalogenated microorganism as the electron acceptor are applied to the environment to be purified, and the electron transfer system of the present invention is constructed in the environment. It will be. However, it does not interfere with the combined use of electron donating means prepared separately, for example, reducing organic compounds as electron donors, or reducing microorganisms that reduce metal humic acid complexes by receiving electrons from reducing organic compounds Alternatively, both of these may be added to the environment. When the electron transfer system of the present invention is used for environmental purification, it is also one of preferred embodiments to use an electrode (cathode) as an electron donor. In this embodiment, the electrodes are placed in the environment and electrons are donated.
 一方、電子受容体として機能する脱ハロゲン化微生物が存在する環境の浄化に本発明の電子伝達システムを利用するのであれば、当該微生物を電子受容体としての脱ハロゲン化微生物として用いることにしてもよい。当該態様では、浄化対象の環境に対して、電子伝達媒体としての金属腐植酸複合体と、電子供与手段を適用し、当該環境中に本発明の電子伝達システムを構築することになる(但し、別途用意した、電子受容体としての微生物の併用を妨げるものではない)。 On the other hand, if the electron transfer system of the present invention is used to purify the environment where a dehalogenated microorganism that functions as an electron acceptor exists, the microorganism may be used as a dehalogenated microorganism as an electron acceptor. Good. In this aspect, the metal humic acid complex as the electron transfer medium and the electron donating means are applied to the environment to be purified, and the electron transfer system of the present invention is constructed in the environment (however, It does not prevent the combined use of microorganisms as electron acceptors prepared separately).
 また、電子供与手段として機能するもの(有機酸、微生物など)と、電子受容体として機能する脱ハロゲン化微生物の両者が環境中に存在するのであれば、電子伝達媒体としての金属腐植酸複合体のみを用いて環境中に本発明の電子伝達システムを構築することも可能である。 In addition, if both a substance that functions as an electron donating means (organic acid, microorganism, etc.) and a dehalogenated microorganism that functions as an electron acceptor exist in the environment, a metal humic acid complex as an electron transfer medium It is also possible to construct the electronic transmission system of the present invention in the environment using only
2.電子伝達システムの用途(環境浄化方法及び環境浄化用キット)
 本発明の第2の局面は、本発明の電子伝達システムの代表的な用途である環境浄化方法に関する。本発明の環境浄化方法では本発明の電子伝達システムを利用する。より具体的には、本発明の電子伝達システムを汚染環境中に構築し、電子受容体としての脱ハロゲン化微生物の働きによって、汚染物質である有機ハロゲン化合物を分解・除去する。汚染環境の例として土壌、底質、地下水、河川水、湖沼水、海水、排水/排液(生活排水、工業排水、工業廃液など)を挙げることができる。
2. Applications of electronic transmission system (environmental purification method and environmental purification kit)
The second aspect of the present invention relates to an environmental purification method that is a typical application of the electron transmission system of the present invention. The environment purification method of the present invention uses the electronic transmission system of the present invention. More specifically, the electron transfer system of the present invention is constructed in a polluted environment, and organic halogen compounds that are pollutants are decomposed and removed by the action of dehalogenated microorganisms as electron acceptors. Examples of contaminated environments include soil, sediment, groundwater, river water, lake water, seawater, drainage / drainage (life drainage, industrial wastewater, industrial wastewater, etc.).
 有機ハロゲン化合物とは分子内にハロゲン原子を含む有機化合物の総称である。ペンタクロロフェノール(PCP)、テトラクロロエチレン、トリクロロエチレン、ジクロロエチレン、トリクロロエタン、塩化ビニル、四塩化炭素、クロロエタン、メチレンクロリド、クロロホルム、ジクロロエタン、クロロプロパン、多塩素化ビフェニル(PCB)、ダイオキシン類等の有機塩素化合物、ポリ臭素化ジフェニルエーテル(PBDE)、ブロモジクロロメタン、クロロジブロモメタン、ブロモホルム等の有機臭素化合物、フルオロカーボン、クロロフルオロカーボン、パーフルオロカルボン酸類等の有機フッ素化合物が有機ハロゲン化合物に含まれる。尚、ダイオキシン類とは、ポリ塩化ジベンゾパラジオキシン(PCDD)及びポリ塩化ジベンゾフラン(PCDF)の総称である。PCBの一つコプラナーPCB(Co-PCB)はダイオキシン類にも分類される。 Organic halogen compound is a general term for organic compounds containing halogen atoms in the molecule. Organochlorine compounds such as pentachlorophenol (PCP), tetrachloroethylene, trichloroethylene, dichloroethylene, trichloroethane, vinyl chloride, carbon tetrachloride, chloroethane, methylene chloride, chloroform, dichloroethane, chloropropane, polychlorinated biphenyl (PCB), dioxins, poly Organic halogen compounds include organic bromine compounds such as brominated diphenyl ether (PBDE), bromodichloromethane, chlorodibromomethane, and bromoform, and organic fluorine compounds such as fluorocarbons, chlorofluorocarbons, and perfluorocarboxylic acids. Dioxins are a general term for polychlorinated dibenzopararadixin (PCDD) and polychlorinated dibenzofuran (PCDF). One of the PCBs, coplanar PCB (Co-PCB), is also classified as a dioxin.
 ペンタクロロフェノール(PCP)は土壌、堆積物や水生系で広範囲にわたって見られる高度に難分解性の塩素化有機汚染物質である。かつてPCPは殺菌剤、除草剤および木材防腐剤として広く使用されたが、肝臓と腎臓への毒性が高く、がんのリスクを高める毒性をもつために使用が禁止された(参考文献8)。PCPは今でも重要汚染物質として分類されており、アメリカおよび世界保健機構(WHO)の飲料水基準のリストに掲載されている(参考文献9、10)。 Pentachlorophenol (PCP) is a highly persistent chlorinated organic pollutant found extensively in soil, sediment and aquatic systems. In the past, PCP was widely used as a fungicide, herbicide and wood preservative, but its use was prohibited because it is highly toxic to the liver and kidneys and increases the risk of cancer (Reference 8). PCP is still classified as an important pollutant and is listed on the US and World Health Organization (WHO) list of drinking water standards (Refs. 9, 10).
 本発明の環境浄化方法では、上記の電子伝達システムが汚染環境中で構築され、機能するように、必要な要素を汚染環境に添加する。例えば、投入、散布、塗布、混合等によって、ここでの「添加」を行うことができる。典型的には、電子伝達媒体としての金属腐植酸複合体、電子供与手段、及び電子受容体としての脱ハロゲン化微生物を汚染環境に添加し、汚染環境中に本発明の電子伝達システムを構築する。しかしながら、前述のように、浄化対象の環境中に電子供与手段が存在する場合には、電子伝達媒体としての金属腐植酸複合体と電子受容体としての脱ハロゲン化微生物の2要素のみを添加することにしてもよい。但し、別途用意した電子供与手段の併用を妨げるものではなく、例えば、電子供与体としての還元性有機化合物、又は還元性有機化合物から電子の供与を受けて金属腐植酸複合体を還元する還元微生物、或いはこれら両者を当該環境中に添加することにしてもよい。一方、浄化対象の環境中に電子受容体として機能する脱ハロゲン化微生物が存在する場合には、電子伝達媒体としての金属腐植酸複合体と電子供与手段(例えば還元性有機化合物と、還元性有機化合物から電子の供与を受けて金属腐植酸複合体を還元する還元微生物の組合せ)の2要素のみを添加することにしてもよい。更には、浄化対象の環境中に電子供与体として機能する物質または微生物と、電子受容体として機能する脱ハロゲン化微生物が存在する場合には、電子伝達媒体としての金属腐植酸複合体のみを添加することにしてもよい。 In the environmental purification method of the present invention, necessary elements are added to the contaminated environment so that the above-described electron transmission system is constructed and functions in the contaminated environment. For example, the “addition” can be performed by charging, spreading, coating, mixing, or the like. Typically, a metal humic acid complex as an electron transfer medium, an electron donating means, and a dehalogenated microorganism as an electron acceptor are added to a contaminated environment, and the electron transfer system of the present invention is constructed in the contaminated environment. . However, as described above, when there is an electron donating means in the environment to be purified, only two elements of a metal humic acid complex as an electron transfer medium and a dehalogenated microorganism as an electron acceptor are added. You may decide. However, it does not interfere with the combined use of electron donating means prepared separately, for example, reducing organic compounds as electron donors, or reducing microorganisms that reduce metal humic acid complexes by receiving electrons from reducing organic compounds Alternatively, both of these may be added to the environment. On the other hand, when a dehalogenated microorganism that functions as an electron acceptor exists in the environment to be purified, a metal humic acid complex as an electron transfer medium and an electron donating means (for example, a reducing organic compound and a reducing organic compound). You may decide to add only two elements of the combination of the reducing microorganisms which receives an electron donation from a compound and reduces a metal humic acid complex. Furthermore, if there are substances or microorganisms that function as electron donors and dehalogenated microorganisms that function as electron acceptors in the environment to be purified, only the metal humic acid complex as an electron transfer medium is added. You may decide to do it.
 本発明の環境浄化方法による効果(即ち環境の浄化)を維持するため、或いは効率化のために、一以上の要素を定期的に又は随時、補充することにしてもよい。通常、本発明の環境浄化方法による環境の浄化に伴い環境中の電子供与体は減少する。従って、電子供与体は特に補充が望まれる要素である。また、電子受容体としての脱ハロゲン化微生物も周囲の影響などを受けやすいため、補充が望まれる要素といえる。 In order to maintain the effect (that is, environmental purification) of the environmental purification method of the present invention or to improve efficiency, one or more elements may be replenished periodically or as needed. Normally, the electron donor in the environment decreases as the environment is purified by the environmental purification method of the present invention. Thus, the electron donor is a particularly desirable element to be replenished. In addition, dehalogenated microorganisms as electron acceptors are also susceptible to the influence of the surroundings, and thus can be said to be an element to be replenished.
 本発明は更に、環境浄化方法に利用されるキット(環境浄化用キット)も提供する。本発明の環境浄化用キットの一態様では、電子伝達媒体としての金属腐植酸複合体と、電子供与体としての還元性有機化合物(例えば、糖、アミノ酸、有機酸、有機酸塩、アルコール、芳香族化合物、生分解性プラスチック等の還元性有機物からなる群より選択される一又は二以上の有機化合物)が含まれる。他の態様として、電子伝達媒体としての金属腐植酸複合体と、電子供与手段としての、還元性有機化合物と、当該還元性有機化合物から電子の供与を受けて前記金属腐植酸複合体を還元する還元微生物の組合せと、を含むキットが提供される。更なる態様のキットは、電子伝達媒体としての金属腐植酸複合体と、電子供与手段としての電極(カソード)を含む。本発明のキットに、電子受容体としての脱ハロゲン化微生物を含めても良い。また、電子受容体としての脱ハロゲン化微生物の維持、生育等に有用な各種物質(ミネラル、ビタミン、炭素源、還元剤等)、品質の保持に有用な各種物質(例えば防腐剤)等を環境浄化用キットに含めることにしてもよい。環境浄化用キットを用いることにより、本発明の環境浄化方法を簡便に実施することができる。環境浄化用キットでは、通常、各要素が同時又は順次、浄化対象に適用されることになる。好ましくは、キットの要素の全てを同時に適用する。ここでの「同時」は厳密な同時性を要求するものではない。従って、各要素を混合した後に浄化対象へ適用するなど、各要素の適用が時間差のない条件下で実施される場合は勿論のこと、ある要素の適用後、速やかに別の要素を適用するなど、実質的な時間差のない条件下での適用もここでの「同時」の概念に含まれる。 The present invention further provides a kit (environment purification kit) used for the environment purification method. In one embodiment of the environmental purification kit of the present invention, a metal humic acid complex as an electron transfer medium and a reducing organic compound as an electron donor (for example, sugar, amino acid, organic acid, organic acid salt, alcohol, aroma Group compound, one or more organic compounds selected from the group consisting of reducing organic substances such as biodegradable plastics). In another aspect, the metal humic acid complex as an electron transfer medium, a reducing organic compound as an electron donating means, and the metal humic acid complex is reduced by receiving electrons from the reducing organic compound. And a combination of reducing microorganisms. The kit of the further embodiment includes a metal humic acid complex as an electron transfer medium and an electrode (cathode) as an electron donating means. A dehalogenated microorganism as an electron acceptor may be included in the kit of the present invention. In addition, various substances useful for maintaining and growing dehalogenated microorganisms as electron acceptors (minerals, vitamins, carbon sources, reducing agents, etc.), various substances useful for maintaining quality (eg preservatives), etc. It may be included in the purification kit. By using the environmental purification kit, the environmental purification method of the present invention can be easily carried out. In the environmental purification kit, each element is usually applied to the purification target simultaneously or sequentially. Preferably, all of the kit elements are applied simultaneously. “Simultaneous” here does not require strict simultaneity. Therefore, not only when each element is applied under the condition that there is no time difference, such as applying each element after being mixed, but after applying one element, another element is applied immediately. Application under conditions without a substantial time difference is also included in the concept of “simultaneous” herein.
3.電子伝達システムの用途(微生物の選択的培養法)
 本発明は更なる局面として微生物の選択的培養法を提供する。本発明の方法は微生物が混在する試料の中から、特定の微生物を集積ないし単離することに利用できる。また、特定の微生物またはそれを含む微生物群を安定的に培養・維持することにも利用可能である。後述の実施例に示した実験で裏づけられるように、金属腐植酸複合体はその構成に応じて特定の酸化還元電位を示すことが可能である。本発明ではこの特性を利用し、特定の酸化還元電位に親和性の高い微生物を選択的に培養する。具体的な操作として、本発明の方法では金属腐植酸複合体と電子供与手段の存在下で微生物含有試料を培養する。典型的には、目的とする微生物が存在する試料、又は目的とする微生物の存在が期待される試料を微生物含有試料として用いる。この条件を満たす限り、各種土壌(例えば、畑、水田、森林など)、河川水、湖沼水、河川堆積物、海洋堆積物など、各種試料を用いることができる。また、一又は二以上の処理(例えば、特定の成分の除去、培養など)を得た試料を用いることもできる。
3. Applications of electron transfer system (selective culture method for microorganisms)
The present invention provides a selective culture method of microorganisms as a further aspect. The method of the present invention can be used to accumulate or isolate specific microorganisms from a sample containing microorganisms. It can also be used to stably culture and maintain a specific microorganism or a group of microorganisms containing it. As supported by the experiments shown in Examples described later, the metal humic acid complex can exhibit a specific redox potential depending on its configuration. In the present invention, this characteristic is used to selectively culture a microorganism having a high affinity for a specific redox potential. As a specific operation, in the method of the present invention, a microorganism-containing sample is cultured in the presence of a metal humic acid complex and an electron donating means. Typically, a sample containing the target microorganism or a sample expected to have the target microorganism is used as the microorganism-containing sample. As long as this condition is satisfied, various samples such as various soils (for example, fields, paddy fields, forests, etc.), river water, lake water, river sediments, marine sediments, and the like can be used. A sample obtained by one or more treatments (for example, removal of a specific component, culture, etc.) can also be used.
 目的に応じて、金属腐植酸複合体を構成する金属(例えばマンガン、鉄、コバルト等の遷移金属類およびマグネシウム、亜鉛、セレン)を選択すればよい。換言すると、金属腐植酸複合体を構成する金属を変更し、金属腐植酸複合体の酸化還元電位を変化させれば、別の種類の微生物を選択的に培養できることになる。このように、本発明の方法は様々な微生物の選択的培養に適用可能である。 Depending on the purpose, the metal constituting the metal humic acid complex (for example, transition metals such as manganese, iron, cobalt, etc. and magnesium, zinc, selenium) may be selected. In other words, if the metal constituting the metal humic acid complex is changed and the oxidation-reduction potential of the metal humic acid complex is changed, another type of microorganism can be selectively cultured. Thus, the method of the present invention is applicable to selective culture of various microorganisms.
 好ましい電子供与手段の一つは電極(カソード)であるが、同時に糖、アミノ酸、有機酸、有機酸塩、アルコール、芳香族化合物、生分解性プラスチック等の電子供与体を使用することもできる。電極を用いた場合、電極表面に金属腐植酸複合体を固定し(例えば電極の一部を金属腐植酸複合体で被覆する)、本発明の方法を実施することにしてもよい。このような態様によれば、電極に集積した状態で特定の微生物を選択的に培養することが可能となる。酸化還元電位の異なる2種類以上の金属腐植酸複合体を併用すれば、同時に2種類以上の微生物を選択的に培養することも可能である。培養温度は例えば10℃~50℃である。培養期間は例えば2日~3ヶ月である。培養の途中に継代してもよい。尚、培養の全過程を通して培養条件を統一する必要はない。 One of the preferred electron donating means is an electrode (cathode), but at the same time, an electron donor such as sugar, amino acid, organic acid, organic acid salt, alcohol, aromatic compound, biodegradable plastic can be used. When an electrode is used, the metal humic acid complex may be fixed to the electrode surface (for example, a part of the electrode may be covered with the metal humic acid complex), and the method of the present invention may be carried out. According to such an aspect, it becomes possible to selectively culture a specific microorganism in a state of being accumulated on the electrode. If two or more kinds of metal humic acid complexes having different oxidation-reduction potentials are used in combination, two or more kinds of microorganisms can be selectively cultured at the same time. The culture temperature is, for example, 10 ° C to 50 ° C. The culture period is, for example, 2 days to 3 months. You may subculture during culture | cultivation. It is not necessary to unify the culture conditions throughout the entire culture process.
 不溶性鉄腐植酸複合体がペンタクロロフェノール(PCP)の嫌気的微生物的脱塩素のための固相電子伝達体として機能することを以下で示す。 It is shown below that the insoluble iron humic acid complex functions as a solid phase electron carrier for anaerobic microbial dechlorination of pentachlorophenol (PCP).
1.材料と方法
(1)鉄腐植酸複合体(鉄腐植酸複合体)の製造方法
 鉄腐植酸複合体(鉄腐植酸複合体)を合成するため、まずAldrich腐植酸(AHA、Aldrich Chemical Company, USA)を1.5 g/Lの濃度に超純水で溶解した。不溶性部分を除去するために15分間15,000 gで遠心分離した。回収した上澄み(精製腐植酸)に5 mMの硫酸第一鉄を加え、混合と同時に撹拌した。pHを7.0に調整し、30℃で1週間保持した。続いて、この溶液を15分間15,000 gで遠心分離し、得られた沈殿物、つまり鉄腐植酸複合体を凍結乾燥した。AHAのみを使用し、同様の手順で調製した対照試料(コントロール腐植酸)と、硫酸第一鉄のみを使用し、同様の手順で調製した試料(コントロール鉄)を用意した。
1. Materials and Methods (1) Manufacturing Method of Iron Humic Acid Complex (Iron Humic Acid Complex) To synthesize iron humic acid complex (iron humic acid complex), first Aldrich Humic Acid (AHA, Aldrich Chemical Company, USA) ) Was dissolved in ultrapure water to a concentration of 1.5 g / L. Centrifuged at 15,000 g for 15 minutes to remove insoluble parts. 5 mM ferrous sulfate was added to the collected supernatant (purified humic acid) and stirred simultaneously with mixing. The pH was adjusted to 7.0 and held at 30 ° C. for 1 week. Subsequently, this solution was centrifuged at 15,000 g for 15 minutes, and the resulting precipitate, ie, iron humic acid complex, was lyophilized. A control sample (control humic acid) prepared using the same procedure using only AHA and a sample prepared using the same procedure using only ferrous sulfate (control iron) were prepared.
 一方、鎌島水田土壌(KM)および弥富水田土壌(YA)から抽出(抽出方法は従来のアルカリ法に基づく)した環境試料(環境腐植酸)を硫酸第一鉄と混合し鉄腐植酸複合体の合成を行った。形成された複合体をFe-KMHAおよびFe-YAHAと呼称することにした。 On the other hand, an environmental sample (environmental humic acid) extracted from Kamashima paddy soil (KM) and Yatomi paddy soil (YA) (extraction method is based on the conventional alkali method) is mixed with ferrous sulfate to form an iron humic acid complex. Synthesis was performed. The formed composites were called Fe-KMHA and Fe-YAHA.
(2)電子媒介する機能を担う鉄画分
 鉄腐植酸複合体中に含まれる鉄相に関する情報を提供するため、及び電子媒介機能を担う鉄画分を調べるため、鉄の逐次抽出を行った。以下に示す、異なる3種類の抽出剤を使用した。
 (i) MgCl2 (1 M, pH=7):鉄腐植酸複合体に交換可能な鉄画分を除去する
 (ii) 酢酸ナトリウム (1 M, 酢酸でpH 5に調整):酸可溶性画分を除去する
 (iii) アルカリ溶液(0.1M NaOH又はNa4P2O7):有機物と結合している鉄画分を除去する
(2) Iron fraction responsible for the electron-mediated function In order to provide information on the iron phase contained in the iron humic acid complex and to investigate the iron fraction responsible for the electron-mediated function, sequential extraction of iron was performed. . Three different types of extractants shown below were used.
(i) MgCl 2 (1 M, pH = 7): Remove the iron fraction exchangeable with iron humic acid complex (ii) Sodium acetate (1 M, adjusted to pH 5 with acetic acid): acid soluble fraction (Iii) Alkaline solution (0.1M NaOH or Na 4 P 2 O 7 ): Removes iron fraction bound to organic matter
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 鉄腐植酸複合体に含まれる鉄の溶出性の違いによる分画
表1に示した手順に従い、20 mLの抽出剤と50 mgの凍結乾燥した鉄腐植酸複合体を使用して逐次抽出法(3ステップ)を室温で行った。各処理の後、抽出物を遠心分離により分離した。鉄画分は各上清を誘導結合プラズマ発光分光分析装置(ICP-AES)によって測定した。また、鉄腐植酸複合体の全鉄含有量については、過塩素酸と硝酸で処理した後、ICP-AESによって分析した。
Fractionation due to differences in elution of iron contained in iron humic acid complex According to the procedure shown in Table 1, a sequential extraction method using 20 mL of extractant and 50 mg of lyophilized iron humic acid complex ( 3 steps) were performed at room temperature. After each treatment, the extract was separated by centrifugation. The iron fraction was measured for each supernatant using an inductively coupled plasma emission spectrometer (ICP-AES). The total iron content of the iron humic acid complex was analyzed by ICP-AES after treatment with perchloric acid and nitric acid.
(3)部分的な鉄抽出処理をした鉄腐植酸複合体の調製
 部分的な鉄抽出のために上記の抽出剤を使用した。鉄腐植酸複合体0.5 gを100 mLの抽出剤に添加し、150 rpmで24時間、振とうした後、遠心分離(15,000 g, 10分)により回収した。この抽出プロセスを2回繰り返し、回収した沈殿物を中和するまで蒸留水で洗浄した後、凍結乾燥した。抽出処理した鉄腐植酸複合体は、処理方法に応じてそれぞれ、MgCl2処理鉄腐植酸複合体、NaOAc処理鉄腐植酸複合体、NaOH処理鉄腐植酸複合体及びNa4P2O7処理鉄腐植酸複合体と命名した。
(3) Preparation of iron humic acid complex subjected to partial iron extraction treatment The above extractant was used for partial iron extraction. After adding 0.5 g of iron humic acid complex to 100 mL of the extractant, the mixture was shaken at 150 rpm for 24 hours, and then collected by centrifugation (15,000 g, 10 minutes). This extraction process was repeated twice, and the collected precipitate was washed with distilled water until neutralized and then lyophilized. The extracted iron humic acid complex is divided into MgCl 2 -treated iron humic acid complex, NaOAc-treated iron humic acid complex, NaOH-treated iron humic acid complex and Na 4 P 2 O 7- treated iron, respectively. It was named humic acid complex.
(4)PCP-フェノール脱塩素実験
 嫌気PCP-フェノール脱塩素ヒューミン培養物を接種源として使用した。当該培養物は、元もと土壌依存性でPCPをフェノールまで脱塩素する嫌気微生物群からなる培養物であり、後に土壌の代わりにヒューミン懸濁物を用いて脱塩素活性の維持した培養物で、5%ずつ継代培養したものである。嫌気ヒューミン懸濁培地は、20 mlの無機塩培地に0.3 gの凍結乾燥ヒューミン、0.2μmの孔径のフィルターでろ過した10 mMのギ酸、ビタミン溶液及び20μMのPCPを添加したものであり、培養物を接種する前に窒素ガスで置換したものである。20 mL無機培地と5 g L-1ヒューミン懸濁物を含む容器に10 mMギ酸及び20μM PCPを加えたものに、5%接種量で培養物を移すことにより、PCP-フェノール脱塩素ヒューミン培養物としてPCPをフェノールまで脱塩素する嫌気微生物群を維持した(参考文献15)。培養時間は10~25日間とし、30℃で静置培養した。無機培地の組成(L-1)は次の通りである: 1.0 g NH4Cl; 0.05 g CaCl2×2H2O; 0.1 g MgCl2×6H2O; 0.4 g K2HPO4; 1 mL 微量元素 SL-10 溶液(参考文献20); 1 mL Se/W 溶液(参考文献20); 15 mM MOPS(3-(N-モルフォリノ)プロパンスルホン酸)緩衝液(pH 7.2)。PCP及びその代謝物はガスクロマトグラフ質量分析計QP2010(島津、京都)(DB-5MSキャピラリーカラム,J&W Science, Folsom, CA)を用いて分析した(参考文献21)。
(4) PCP-phenol dechlorination experiment An anaerobic PCP-phenol dechlorination humin culture was used as an inoculum. The culture is originally a culture that consists of anaerobic microorganisms that are soil-dependent and dechlorinates PCP to phenol, and later maintained a dechlorination activity using a humin suspension instead of soil. Subcultured 5% at a time. Anaerobic Humin Suspension Medium is a 20 ml mineral salt medium supplemented with 0.3 g lyophilized humin, 10 mM formic acid filtered through a 0.2 μm pore size filter, vitamin solution and 20 μM PCP. Before inoculation with nitrogen gas. PCP-phenol dechlorinated humin culture by transferring the culture at 5% inoculum to a container containing 20 mL inorganic medium and 5 g L -1 humin suspension plus 10 mM formic acid and 20 μM PCP As an anaerobic microorganism group that dechlorinates PCP to phenol (Reference 15). The culture time was 10 to 25 days, and static culture was performed at 30 ° C. The composition of the inorganic medium (L -1 ) is as follows: 1.0 g NH 4 Cl; 0.05 g CaCl 2 × 2H 2 O; 0.1 g MgCl 2 × 6H 2 O; 0.4 g K 2 HPO 4 ; Elemental SL-10 solution (reference 20); 1 mL Se / W solution (reference 20); 15 mM MOPS (3- (N-morpholino) propanesulfonic acid) buffer (pH 7.2). PCP and its metabolites were analyzed using a gas chromatograph mass spectrometer QP2010 (Shimadzu, Kyoto) (DB-5MS capillary column, J & W Science, Folsom, CA) (Reference 21).
 微生物的PCP-フェノール脱塩素活性に対する鉄腐植酸複合体と対照試料の影響を培養実験により調べた。鉄腐植酸複合体とコントロール鉄のサンプルを2.5 g L-1の濃度で培地に凍結乾燥粉末として添加し、オートクレーブ滅菌を施した。コントロールHAについては、10 mLのサンプルを10 mLの培地入ったボトルに加えて、オートクレーブ滅菌を施した。脱塩素への影響は、少なくとも二世代培養後に判定した。すべての実験は二連又は三連で実施し、各実験の結果を確認するために、少なくとも3回繰り返した。 The effects of iron humic acid complex and control samples on microbial PCP-phenol dechlorination activity were investigated by culture experiments. A sample of iron humic acid complex and control iron was added to the medium as a lyophilized powder at a concentration of 2.5 g L −1 and autoclaved. For control HA, 10 mL of sample was added to a bottle containing 10 mL of medium and autoclaved. The effect on dechlorination was determined after at least two generations of culture. All experiments were performed in duplicate or triplicate and were repeated at least three times to confirm the results of each experiment.
(5)吸着実験
 鉄腐植酸複合体を添加(2.5 g/L)又は無添加の20 mL無機培地を含む60 mLのボトルに、PCPとフェノールを5μM、10μM又は20μMの濃度で添加し、上記の培養実験と同様の条件で5日間培養した。鉄腐植酸複合体を遠心分離により除去し、上清中のPCPとフェノールの濃度を分析した。
(5) Adsorption experiment PCP and phenol were added at a concentration of 5 μM, 10 μM or 20 μM to a 60 mL bottle containing 20 mL inorganic medium with or without iron humic acid complex added (2.5 g / L). The cells were cultured for 5 days under the same conditions as in the culture experiment. The iron humic acid complex was removed by centrifugation, and the concentrations of PCP and phenol in the supernatant were analyzed.
(6)鉄(III)酸化物の微生物的還元
 鉄(III)酸化物の微生物的還元に対する鉄腐植酸複合体の影響をシュワネラ・プトレファシエンス(Shewanella putrefaciens)CN-32株を用いて行った。Tryptic soy broth (Becton Dickinson,Sparks, USA)液体培地を用い、30℃、好気条件でS. putrefaciens CN-32株を培養し、遠心分離機を用いて洗浄集菌した。鉄(III)酸化物還元の実験は、30 mLのNaHCO3緩衝液(30 mM, pH 6.8)に鉄腐植酸複合体(2.5 g L-1)、乳酸(20 mM)及び合成した鉄(III)酸化物(10 mM)を加え、洗浄したS. putrefaciens CN-32株(109 cells mL-1)を接種し、還元した鉄(II)濃度を比較した。その対照実験として、二つの対照サンプル、即ち、鉄(III)酸化物を添加して鉄腐植酸複合体を添加せずにS. putrefaciens CN-32株を接種した対照サンプル、及び鉄(III)酸化物は無添加で鉄腐植酸複合体を添加しS. putrefaciens CN-32株を接種した対照サンプルを用意した。鉄(III)酸化物は過去に報告された方法で合成した(参考文献22)。培地は、N2/CO2(80%/20%)の混合ガスを通気することにより無酸素状態にした。
(6) Microbial reduction of iron (III) oxide The effect of iron humic acid complex on the microbial reduction of iron (III) oxide was performed using Shewanella putrefaciens CN-32 It was. The S. putrefaciens CN-32 strain was cultured using Tryptic soy broth (Becton Dickinson, Sparks, USA) liquid medium at 30 ° C. under aerobic conditions, and washed and collected using a centrifuge. The iron (III) oxide reduction experiment was carried out using 30 mL of NaHCO 3 buffer (30 mM, pH 6.8), iron humic acid complex (2.5 g L −1 ), lactic acid (20 mM) and synthesized iron (III ) Oxide (10 mM) was added, washed S. putrefaciens CN-32 strain (10 9 cells mL −1 ) was inoculated, and the reduced iron (II) concentration was compared. As a control experiment, two control samples were added: a control sample inoculated with S. putrefaciens strain CN-32 without addition of iron humic acid complex with addition of iron (III) oxide, and iron (III) A control sample was prepared by inoculating the S. putrefaciens CN-32 strain with the addition of the iron humic acid complex with no oxide added. Iron (III) oxide was synthesized by a method reported in the past (Reference 22). The medium was made oxygen-free by ventilating a mixed gas of N 2 / CO 2 (80% / 20%).
(7)電子受容能力実験
 鉄腐植酸複合体の電子受容能力(EAC)を計算するため、以前に報告されたプロトコルに従って嫌気性チャンバーで微生物還元アッセイおよび化学的還元アッセイを実施した(参考文献2、23)。微生物的還元アッセイでは、乳酸塩(20 mM)及び合成した鉄(III)酸化物(10 mM)を添加した30 mLのNaHCO3緩衝液(30 mM, pH 6.8)に鉄腐植酸複合体(2.5 g L-1)又は対照サンプル(即ちコントロール鉄(2.5 g L-1)又はコントロールHA(1.5 g L-1))を加え、そこに洗浄したS. putrefaciens CN-32株(109 cells mL-1)を接種した。化学的還元アッセイでは、10 mMのPIPES緩衝液(pH6.8)中に5粒のパラジウムコーティングした酸化アルミニウム(Pd-coated aluminium oxide)ペレットを入れ、2.5 g L-1 サンプル(コントロールHAでは1.5 g L-1)を添加し、100% H2雰囲気下で、150 rpmで振とうしながら、5日間保温した。
(7) Electron-accepting ability experiment To calculate the electron-accepting ability (EAC) of the iron humic acid complex, microbial and chemical reduction assays were performed in an anaerobic chamber according to a previously reported protocol (Reference 2). 23). In the microbial reduction assay, 30 mL of NaHCO 3 buffer (30 mM, pH 6.8) supplemented with lactate (20 mM) and synthesized iron (III) oxide (10 mM) was added with iron humic acid complex (2.5 g L -1) or a control sample (i.e. control iron (2.5 g L -1) or control HA (1.5 g L -1)), and the mixture was washed thereto S. putrefaciens CN-32 strain (10 9 cells mL - 1 ) was inoculated. For chemical reduction assays, 5 palladium-coated aluminum oxide pellets were placed in 10 mM PIPES buffer (pH 6.8) and a 2.5 g L -1 sample (1.5 g for control HA). L -1) was added, under 100% H 2 atmosphere while shaking at 0.99 rpm, and incubated for 5 days.
 鉄腐植酸複合体を微生物還元又は化学的還元するのに要した電子の量を定量化するために、試料懸濁液1 mlを、10 mMの鉄(III)-ニトリロ三酢酸2 mlと1分間以上反応した。この反応液を0.22 μmメンブレンフィルターでろ過し、ろ液0.5 mlを5 ml ferrozine 溶液(50 mM HEPES緩衝液に1 g L-1で溶解してNaOHでpH=7に調製したもの)に添加して発色反応させ、波長562 nmで検出・定量した。鉄(II)イオンの最終濃度(還元後)、初期濃度(還元前)との差を、試料のEAC(e- equivalent (電気当量、Eq) g-1 乾燥鉄腐植酸複合体)と定義した。 To quantify the amount of electrons required to microbially or chemically reduce the iron humic acid complex, 1 ml of the sample suspension was mixed with 2 ml of 10 mM iron (III) -nitrilotriacetic acid. Reacted for more than a minute. This reaction solution is filtered through a 0.22 μm membrane filter, and 0.5 ml of the filtrate is added to 5 ml ferrozine solution (dissolved in 1 mM L -1 in 50 mM HEPES buffer and adjusted to pH = 7 with NaOH). The color reaction was performed, and detection and quantification were performed at a wavelength of 562 nm. The difference between the final concentration of iron (II) ions (after reduction) and the initial concentration (before reduction) was defined as EAC (e - equivalent (Eq) g -1 dry iron humic acid complex) of the sample .
(8)電気化学分析
 電気化学的実験には生物電気化学セルを備えたポテンショスタット(HSV-110、北斗電工社、大阪、日本)を用い、三電極法(グラファイト作用極(5 mm×15 cm、東海カーボン、東京、日本);白金対極(0.8 mm×1 m、ニラコ、東京、日本)、およびAg/AgCl参照極(飽和塩化カリウムHX-R8,北斗電工、大阪)を使用)で測定した。生物電気化学セルは、各チャンバー200 mLの有効容積と、プロトン交換膜(ナフィオン117、デュポン、USA)で区切られた2つのチャンバーで構成した。サイクリックボルタンメトリーの測定条件は、電位掃引速度100 mV s-1、鉄腐植酸複合体濃度2.5 g L-1、電位範囲-0.8 V~0.6 V(対 Ag/AgCl)、電解液として無機培地を用いた。鉄腐植酸複合体の試料一組は、あらかじめ-500 mV(対 標準水素電極)の電位での18時間印加(電解液は無機培地)によって電気化学的に還元してから測定した。
(8) Electrochemical analysis For electrochemical experiments, a potentiostat (HSV-110, Hokuto Denko, Osaka, Japan) equipped with a bioelectrochemical cell was used, and the three-electrode method (graphite working electrode (5 mm x 15 cm) , Tokai Carbon, Tokyo, Japan); measured with platinum counter electrode (0.8 mm x 1 m, Niraco, Tokyo, Japan) and Ag / AgCl reference electrode (saturated potassium chloride HX-R8, Hokuto Denko, Osaka)) . The bioelectrochemical cell consisted of two chambers separated by an effective volume of 200 mL for each chamber and a proton exchange membrane (Nafion 117, DuPont, USA). The measurement conditions for cyclic voltammetry are: potential sweep rate 100 mV s -1 , iron humic acid complex concentration 2.5 g L -1 , potential range -0.8 V to 0.6 V (vs. Ag / AgCl), inorganic medium as electrolyte Using. One sample of the iron humic acid complex was measured after electrochemical reduction by applying for 18 hours at a potential of -500 mV (vs. standard hydrogen electrode) (electrolytic solution was inorganic medium).
(9)鉄腐植酸複合体の特徴付け
 構造解析と電子媒介特性の解析には、元素分析(C、H、N、灰分)と官能基分析(フーリエ変換赤外吸収スペクトル(FTIRスペクトル)、電子スピン共鳴スペクトルとサイクリックボルタンモグラム)を用いた。
(9) Characterization of iron humic acid complex For structural analysis and analysis of electron-mediated properties, elemental analysis (C, H, N, ash) and functional group analysis (Fourier transform infrared absorption spectrum (FTIR spectrum), electron Spin resonance spectrum and cyclic voltammogram) were used.
(10)硝酸塩の微生物的還元
 硝酸塩の微生物的還元(NO3-(硝酸塩)→NO2-(亜硝酸塩)→NH4+(アンモニウム))における鉄腐植酸複合体の効果を検討した。実験方法は、上記(4)に準じた(20μM PCPに代えて5mM 硝酸塩を使用したこと以外、同一の実験方法とした)。
(10) Microbial reduction of nitrate The effect of iron humic acid complex on microbial reduction of nitrate (NO 3− (nitrate) → NO 2− (nitrite) → NH 4+ (ammonium)) was examined. The experimental method was the same as the above (4) (the same experimental method was used except that 5 mM nitrate was used instead of 20 μM PCP).
2.結果
(1)鉄腐植酸複合体の物理化学的特性
 精製したAHAは、炭素を約52.8%、水素を約3.9%、窒素を約1.0%、灰分を約0.8%含んでいる。その一方で鉄腐植酸複合体には約23.2%の炭素、約2.8%の水素、約0.4%の窒素及び約33.6%の灰分が含有されていた。ICP-AES分析では、鉄腐植酸複合体が149.6±13.8 g kg-1の鉄量を有することが示された。逐次抽出からの結果は、鉄腐植酸複合体には交換可能な鉄画分4.6%、酸可溶性画分9.6%、有機物と結合している鉄画分52.7%及び不完全に利用可能な(poorly available)鉄画分33.1%が含有されていることが明らかになった。0.50~0.65 g不溶性の鉄腐植酸複合体(冷凍乾燥パウダーとして)は、水溶液中の1.39 gの硫酸鉄と1.5 gの精製AHAを錯体形成させることにより得た。17.3%~22.5%の回収率であった。
2. Results (1) Physicochemical properties of iron humic acid complex Purified AHA contains about 52.8% carbon, about 3.9% hydrogen, about 1.0% nitrogen, and about 0.8% ash. On the other hand, the iron humic acid complex contained about 23.2% carbon, about 2.8% hydrogen, about 0.4% nitrogen and about 33.6% ash. ICP-AES analysis showed that the iron humic acid complex had an iron content of 149.6 ± 13.8 g kg −1 . The results from sequential extraction show that the iron humic acid complex has 4.6% exchangeable iron fraction, 9.6% acid soluble fraction, 52.7% iron fraction combined with organic matter and poorly available (poorly available) It was revealed that the iron fraction contained 33.1%. 0.50-0.65 g insoluble iron humic acid complex (as freeze-dried powder) was obtained by complexing 1.39 g iron sulfate with 1.5 g purified AHA in aqueous solution. The recovery rate was 17.3% -22.5%.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 20.0%の平均回収率に基づけば、1.39 gの硫酸鉄(280 mgの鉄含量)から0.58 gの鉄腐植酸複合体(86.8 mgの鉄含量)が得られると予想される。これは、鉄腐植酸複合体を形成するために鉄イオンの31.0%が利用されたことになる。 Based on an average recovery of 20.0%, it is expected that 0.58 g iron humic acid complex (86.8 mg iron content) will be obtained from 1.39 g iron sulfate (280 mg iron content). This means that 31.0% of the iron ions were utilized to form the iron humic acid complex.
(2)PCPの微生物的脱塩素に対する鉄腐植酸複合体の影響
 土壌から固相画分として抽出されたヒューミンがPCP及びテトラブロモビスフェノールA(TBBPA)の微生物的脱ハロゲン反応に関して非常に安定な電子伝達能力を示すと以前に報告した(参考文献15、30)。同じ土壌から抽出された腐植酸の可溶形態での媒介能力は不安定であり、継代培養後には脱ハロゲン活性が失われた。不溶性鉄腐植酸複合体は、硫酸第一鉄と腐植酸の錯体形成反応で合成され、微生物のPCP-フェノール脱塩素活性に関する安定な電子伝達活性を示した(図1a)。一方、AHAにはPCP脱塩素活性は認められなかった(図1c)。PCP-フェノール脱塩素ヒューミン培養物のPCP脱塩素反応に必要な電子伝達能力が、AHAには無いものと考えられる。
(2) Effect of iron humic acid complex on microbial dechlorination of PCP Humin extracted from soil as a solid phase fraction is a very stable electron with respect to microbial dehalogenation of PCP and tetrabromobisphenol A (TBBPA) Previously reported to show transmission ability (Refs. 15, 30). The ability to mediate soluble forms of humic acid extracted from the same soil was unstable and dehalogenation activity was lost after subculture. The insoluble iron humic acid complex was synthesized by a complex formation reaction between ferrous sulfate and humic acid, and showed stable electron transfer activity related to PCP-phenol dechlorination activity of microorganisms (Fig. 1a). On the other hand, PCP dechlorination activity was not observed in AHA (Fig. 1c). It is considered that AHA does not have the electron transfer capacity necessary for PCP dechlorination reaction of PCP-phenol dechlorinated humin culture.
 鉄腐植酸複合体の安定した電子伝達特性は、異なる種類の鉄腐植酸複合体を使用した実験で、PCP-フェノール脱塩素ヒューミン培養物のPCP脱塩素活性が安定に継代維持できることからも確認された。PCP-フェノール脱塩素ヒューミン培養物を接種していない場合又は鉄腐植酸複合体の非存在下では脱塩素反応が観察されず、PCP脱塩素活性は微生物によるものであり、PCP脱塩素反応に鉄腐植酸複合体が必要であるといえる(図1b)。PCP脱塩素はコントロール鉄あるいはコントロールHAサンプルを使用した場合には観察されなかった(図1c)。自然に存在する腐植酸を使用して調製した鉄腐植酸複合体、即ちFe-KMHA及びFe-YAHAについても、微生物によるPCPの脱塩素を媒介することが示された。以上の結果から、微生物によるPCP脱塩素反応の維持に固体の鉄腐植酸複合体が重要な役割を果たすことが示された。 The stable electron transfer properties of the iron humic acid complex were confirmed by the stable passage of PCP dechlorination activity of PCP-phenol dechlorinated humin cultures in experiments using different types of iron humic acid complexes. It was done. In the absence of PCP-phenol dechlorination humin culture or in the absence of iron humic acid complex, no dechlorination reaction was observed, PCP dechlorination activity was due to microorganisms, It can be said that a humic acid complex is necessary (Fig. 1b). PCP dechlorination was not observed when control iron or control HA samples were used (Figure 1c). Iron humic acid complexes prepared using naturally occurring humic acids, namely Fe-KMHA and Fe-YAHA, were also shown to mediate PCP dechlorination by microorganisms. These results indicate that the solid iron humic acid complex plays an important role in maintaining PCP dechlorination by microorganisms.
 吸着実験では、鉄腐植酸複合体への吸着によってPCPの濃度が15%減少したが、フェノールは鉄腐植酸複合体に全く吸着されなかった。吸着実験において代謝産物が観察されなかったことから、鉄腐植酸複合体へのPCPの吸着は僅かであり、二つの化合物間に化学反応は生じなかったことが示された(図1d)。 In the adsorption experiment, the PCP concentration decreased by 15% due to adsorption to the iron humic acid complex, but phenol was not adsorbed to the iron humic acid complex at all. No metabolites were observed in the adsorption experiments, indicating that the adsorption of PCP to the iron humic acid complex was negligible and no chemical reaction occurred between the two compounds (FIG. 1d).
(3)鉄腐植酸複合体の電子媒介する機能を担う鉄画分
 PCPの微生物的還元的脱塩素における腐植酸の電子伝達特性を活性化および安定化させるために、硫酸第一鉄との錯体形成によって不溶性鉄腐植酸複合体を調製した。鉄腐植酸複合体について鉄画分の除去の影響及び鉄画分の割合の変化を調べた結果、微生物の還元的PCP脱塩素に鉄腐植酸複合体が重要な役割を果たすことが示唆された。
(3) Iron fraction responsible for electron-mediated function of iron humic acid complex Complex with ferrous sulfate to activate and stabilize humic acid electron transfer characteristics in microbial reductive dechlorination of PCP An insoluble iron humic acid complex was prepared by formation. The effects of iron fraction removal on iron humic acid complex and changes in the ratio of iron fraction were suggested, suggesting that iron humic acid complex plays an important role in microbial reductive PCP dechlorination. .
 交換可能な鉄画分(MgCl2処理鉄腐植酸複合体)または酸可溶性の鉄画分(NaOAc処理鉄腐植酸複合体)を除去(図2aと図2b)しても、PCP-フェノール脱塩素ヒューミン培養物のPCP-脱塩素活性に影響しなかった。有機物と結合している鉄画分を除去するとされるNaOH処理した鉄腐植酸複合体でも上記培養物のPCPの脱塩素反応(図2c)における電子媒介活性は失われなかったが、同様に有機物結合鉄画分を除去するとされるNa4P2O7処理した鉄腐植酸複合体では活性が不安定になった。脱塩素活性は最初の世代だけで示されるか、または脱塩素は全く観察されなかった(図2d)。 PCP-phenol dechlorination even after removal of exchangeable iron fraction (MgCl 2 treated iron humic acid complex) or acid soluble iron fraction (NaOAc treated iron humic acid complex) (Figures 2a and 2b) It did not affect PCP-dechlorination activity of humin cultures. Even in the NaOH-treated iron humic acid complex, which is supposed to remove the iron fraction bound to organic matter, the electron-mediated activity in the PCP dechlorination reaction of the above culture (Fig. 2c) was not lost. The activity became unstable in the iron humic acid complex treated with Na 4 P 2 O 7 which was supposed to remove the bound iron fraction. Dechlorination activity was shown only in the first generation, or no dechlorination was observed (Figure 2d).
 鉄腐植酸複合体(37.3%)の灰分含有量は、NaOH処理鉄腐植酸複合体で19.1%、Na4P2O7処理鉄腐植酸複合体で10.6%に減少した。鉄腐植酸複合体の炭素含有量(21.3%)はNaOH処理鉄腐植酸複合体で55.6%、Na4P2O7処理鉄腐植酸複合体で59.1%に増加した。 The ash content of the iron humic acid complex (37.3%) was reduced to 19.1% for the NaOH-treated iron humic acid complex and 10.6% for the Na 4 P 2 O 7- treated iron humic acid complex. The carbon content (21.3%) of the iron humic acid complex increased to 55.6% for the NaOH-treated iron humic acid complex and 59.1% for the Na 4 P 2 O 7- treated iron humic acid complex.
(4)鉄(III) 酸化物の微生物還元における鉄腐植酸複合体の影響
 鉄腐植酸複合体の添加および無添加条件での、S. putrefaciens CN-32株による不溶性鉄(III)酸化物の微生物的還元の経時的変化を図3に示す。還元した結果生ずる水溶性鉄(II)イオンの濃度は時間の経過に従って増加したが、鉄腐植酸複合体の添加の有無に関わらず、細胞の接種なしのボトルにも少量の鉄(II)イオンが検出された。鉄腐植酸複合体(2.5g/L)を添加した場合、培養菌を添加しなかったものと比べて酸化鉄(III)の微生物還元が促進された。5.1 mMもの高濃度の鉄(II)イオンが鉄腐植酸複合体とS. putrefaciens CN-32株を加えた場合に検出されたのに対して、鉄(III) 酸化物の添加の無い対照サンプルでは、鉄腐植酸複合体から還元されて鉄になる鉄(II)イオンは1.7 mM生じただけだった。還元溶解した鉄(II)イオン 濃度の差3.4 mMは、鉄腐植酸複合体を添加しなかった条件での培養終了時の濃度差(1.8 mM)よりも1.9倍高い値となった。鉄(III)酸化物の微生物還元が鉄腐植酸複合体により促進されたことが示された。
(4) Effect of iron humic acid complex on microbial reduction of iron (III) oxide Insoluble iron (III) oxide by S. putrefaciens CN-32 strain with and without iron humic acid complex The time course of microbial reduction is shown in FIG. Although the concentration of water-soluble iron (II) ions resulting from the reduction increased with time, small amounts of iron (II) ions were also present in the bottles without cell inoculation, with or without the addition of iron humic acid complex. Was detected. When the iron humic acid complex (2.5 g / L) was added, the microbial reduction of iron (III) oxide was promoted compared to the case where the culture was not added. A control sample without addition of iron (III) oxide, whereas iron (II) ions as high as 5.1 mM were detected when iron humic acid complex and S. putrefaciens CN-32 were added. Then, only 1.7 mM iron (II) ions were reduced from the iron humic acid complex to iron. The difference 3.4 mM in the reduced dissolved iron (II) ion concentration was 1.9 times higher than the concentration difference (1.8 mM) at the end of the culture in the condition where the iron humic acid complex was not added. It was shown that the microbial reduction of iron (III) oxide was promoted by the iron humic acid complex.
(5)鉄腐植酸複合体の電子受容能力
 電子受容能力(EAC)は、鉄腐植酸複合体を微生物的(S.putrefaciens CN-32株)及び化学的(H2/Pd)に還元し(5日間)、その電気当量を測定・評価した(図4)。微生物還元実験では、EAC値は0.98 mEq/g-乾重 に達した。微生物還元実験の場合のコントロール鉄のEAC値は0.14 mEq/g-乾重、コントロール腐植酸のEAC値は0.10 mEq/g-乾重であった(図4a)。一方、鉄腐植酸複合体を化学的に還元した場合は、EAC値は0.36 mEq/g dryであった(図4b)。化学的還元実験でのコントロール鉄のEAC値は0.13 mEq/g-乾重、コントロール腐植酸は0.07 mEq/g-乾重となった。
(5) Electroaccepting ability of iron humic acid complex Electron accepting ability (EAC) reduces iron humic acid complex to microbial (S. putrefaciens CN-32 strain) and chemical (H 2 / Pd) ( 5 days), the electrical equivalent was measured and evaluated (Fig. 4). In the microbial reduction experiment, the EAC value reached 0.98 mEq / g-dry weight. In the microbial reduction experiment, the EAC value of the control iron was 0.14 mEq / g-dry weight, and the EAC value of the control humic acid was 0.10 mEq / g-dry weight (FIG. 4a). On the other hand, when the iron humic acid complex was chemically reduced, the EAC value was 0.36 mEq / g dry (FIG. 4b). In the chemical reduction experiment, the EAC value of control iron was 0.13 mEq / g-dry weight, and the control humic acid was 0.07 mEq / g-dry weight.
(6)フーリエ変換赤外吸収スペクトル(FTIRスペクトル)
 鉄腐植酸複合体(図5a)のFTIRスペクトルは、AHA及びコントロール鉄と比較して、明確な差を示した(図5b)。AHAは腐植物質に典型的なスペクトルバンドを示した。AHAは硫酸第一鉄と錯体を形成すると、明らかな変化が1750~1200 cm-1の波長で観察され、いくつかの鮮明な新しいピークが1735 cm-1、1700 cm-1、1235 cm-1で出現し、また小さなピークが1500~1377 cm-1、1605~1500 cm-1及び1735~1605 cm-1に現れた。一方、微生物的PCP脱塩素反応で不安定な媒介活性を示したNa4P2O7処理鉄腐植酸複合体では、1750~1200 cm-1の範囲におけるピークが減少または消失した。
(6) Fourier transform infrared absorption spectrum (FTIR spectrum)
The FTIR spectrum of the iron humic acid complex (Figure 5a) showed a clear difference compared to AHA and control iron (Figure 5b). AHA showed a spectral band typical of humic substances. When AHA is complexed with ferrous sulfate, a clear change is observed at wavelengths between 1750 and 1200 cm -1 , with several sharp new peaks at 1735 cm -1 , 1700 cm -1 , 1235 cm -1 And small peaks appeared at 1500-1377 cm −1 , 1605-1500 cm −1 and 1735-1605 cm −1 . On the other hand, in the Na 4 P 2 O 7- treated iron humic acid complex that showed unstable mediated activity in the microbial PCP dechlorination reaction, the peak in the range of 1750 to 1200 cm −1 was reduced or eliminated.
(7)鉄腐植酸複合体のサイクリックボルタンメトリー特性
 電気化学的分析によって鉄腐植酸複合体の酸化還元特性が特徴付けた。分析結果を図6に示す。鉄腐植酸複合体(図6a)とコントロール腐植酸(コントロール-HA、図6b)の両方のサイクリックボルタモグラム(CV)が明らかなピークを示さなかった。一般に腐植物質及びその金属錯体は、電極活性が欠如しているため(参考文献24)、CVに明確なピークが観察されないことが多い。しかし、-500 mV(対 標準水素電極)で18時間電気的に還元した後に鉄腐植酸複合体のCVには、明確なピークが得られた。ピーク電位から、鉄腐植酸複合体の酸化還元電位は0.10 V (対 標準水素電極)と推定された、これに対し、コントロール鉄の酸化還元電位は0.08 Vと推定された。一方、電気的還元を行ってもNa4P2O7処理鉄腐植酸複合体には不規則な形状のCVが観察された(酸化還元対が観察できなかった)(図6C)。
(7) Cyclic voltammetric properties of the iron humic acid complex The electrochemical reduction characterized the redox properties of the iron humic acid complex. The analysis results are shown in FIG. The cyclic voltammograms (CV) of both the iron humic acid complex (FIG. 6a) and the control humic acid (control-HA, FIG. 6b) showed no obvious peaks. In general, humic substances and metal complexes thereof lack electrode activity (Reference Document 24), and thus no clear peak is often observed in CV. However, a clear peak was obtained in the CV of the iron humic acid complex after electrical reduction at -500 mV (vs standard hydrogen electrode) for 18 hours. From the peak potential, the redox potential of the iron humic acid complex was estimated to be 0.10 V (versus the standard hydrogen electrode), whereas the redox potential of control iron was estimated to be 0.08 V. On the other hand, even when electrical reduction was performed, irregularly shaped CV was observed in the Na 4 P 2 O 7- treated iron humic acid complex (a redox couple could not be observed) (FIG. 6C).
(8)硝酸塩の微生物還元における鉄腐植酸複合体の影響
 鉄腐植酸複合体が存在する場合には、速やかに硝酸塩が亜硝酸に代謝され始め、亜硝酸はアンモニウムへと代謝された(図8)。一方、鉄腐植酸複合体が存在しない場合には、硝酸塩から亜硝酸への代謝は緩やかであり、亜硝酸からアンモニウムの代謝はごく微量にとどまった(図8)。
(8) Effect of iron humic acid complex on microbial reduction of nitrate When iron humic acid complex was present, nitrate began to be rapidly metabolized to nitrous acid, and nitrous acid was metabolized to ammonium (Fig. 8). ). On the other hand, in the absence of the iron humic acid complex, the metabolism of nitrate to nitrous acid was slow, and the metabolism of nitrous acid to ammonium was very small (Fig. 8).
3.考察
 以上の実験の結果、不溶性鉄腐植酸複合体(硫酸第一鉄と市販の腐植酸との錯体形成による)を利用すれば、安定な微生物的PCP脱塩素化反応を実現できることを発見した(図1a)。また、自然に存在する腐植酸を使用して調製した複合体、即ちFe-KMHA及びFe-YAHAについてもPCPの微生物脱塩素活性があることが示された(結果は図示せず)。つまり、様々な環境中でPCP脱塩素を維持する際に固相鉄腐植酸複合体が有効であった。さらに、鉄腐植酸複合体が鉄(III)酸化物の微生物的還元も促進することが証明され(図3)、鉄腐植酸複合体における多様な酸化還元伝達機能の存在が示唆された。更なる検討によって、鉄腐植酸複合体は、微生物的PCB脱塩素化、鉄の微生物的還元のみならず、硝酸塩の微生物還元をも促進することが示された(図8)。
3. Discussion As a result of the above experiment, it was discovered that a stable microbial PCP dechlorination reaction can be realized by using an insoluble iron humic acid complex (by complex formation of ferrous sulfate and commercial humic acid) ( Figure 1a). Moreover, it was shown that the complex prepared using humic acid which exists naturally, ie, Fe-KMHA and Fe-YAHA, also has the microbial dechlorination activity of PCP (a result is not shown). In other words, solid-phase iron humic acid complex was effective in maintaining PCP dechlorination in various environments. Furthermore, it was proved that the iron humic acid complex also promotes the microbial reduction of iron (III) oxide (Fig. 3), suggesting the existence of various redox transmission functions in the iron humic acid complex. Further studies showed that the iron humic acid complex promotes not only microbial PCB dechlorination, microbial reduction of iron, but also microbial reduction of nitrate (Figure 8).
 電子受容能力試験によって、鉄腐植酸複合体が微生物的または化学的に還元できる電気容量、即ち電子受容容量、を持つことが判明した(図4)。微生物的酸化還元活性部分の電子受容容量は、化学的酸化還元活性部分の電子受容容量の2.5倍以上であった。また、溶解腐植質に関して報告された電子受容容量(参考文献25)よりも高い0.98 mEq/g-乾重の電子受容容量を鉄腐植酸複合体が持つことが示された(図4a)。 The electron-accepting ability test revealed that the iron humic acid complex has an electric capacity that can be reduced microbially or chemically, that is, an electron-accepting capacity (FIG. 4). The electron accepting capacity of the microbial redox active moiety was more than 2.5 times the electron accepting capacity of the chemical redox active moiety. Moreover, it was shown that the iron humic acid complex has an electron accepting capacity of 0.98 mEq / g-dry weight higher than the electron accepting capacity reported for dissolved humic substances (Ref. 25) (FIG. 4a).
 逐次抽出実験の結果によって、鉄腐植酸複合体は交換可能な鉄画分4.6%、酸可溶性画分9.6%、有機物と結合している鉄画分52.7%および殆ど抽出されない鉄画分33.1%を含有することが明らかになった。おそらくは、腐植酸と加水分解性鉄画分(高度に水和した鉄イオン。例えばFen(OH)m(H2O)x (3n-m)+またはFemOn(OH)x (3m-2n-x)+)の相互作用によって結晶性の鉄酸化物の形成が抑制され、フェリヒドライトのような結晶性の低い鉄酸化物を形成したものと考えられる(参考文献26)。1 M MgCl2、1 M酢酸ナトリウムおよび0.1 M NaOH(図 2a、図2b、図2c)で処理しても鉄腐植酸複合体に活性が観察されたことから、周辺環境の変化に関係無く、鉄腐植酸複合体が安定した活性成分をもつことが示唆された。一方、Na4P2O7処理鉄腐植酸複合体では、PCP脱塩素活性に対する媒介効果は最初の世代だけで認められるか、または脱塩素は全く観察されなかったという結果から(図2d)、電子媒介能力が不安定であることが示された。Na4P2O7は、フェリヒドライトの様な非晶質または不完全結晶の鉄オキシ水酸化物を含む試料から有機物結合鉄画分を抽出する能力が、NaOHやアセチルアセトン水溶液よりはるかに優れていることが報告されている(参考文献27、28)。NaOHで処理したサンプル(19.1%)よりNa4P2O7で処理した鉄腐植酸複合体がはるかに低い灰分(10.6%)を示した結果は、この報告に支持される(参考文献27、28)。したがって、鉄腐植酸複合体の酸化還元媒介機能が、Na4P2O7によって溶出される有機物結合鉄画分あるいは結晶性の低い鉄画分に起因していることが示唆された。 According to the results of sequential extraction experiments, the iron humic acid complex has an exchangeable iron fraction of 4.6%, an acid soluble fraction of 9.6%, an iron fraction bound to organic matter of 52.7% and an iron fraction of hardly extracted 33.1%. It became clear that it contained. Probably humic acid and hydrolysable iron fractions (highly hydrated iron ions, eg Fe n (OH) m (H 2 O) x (3n-m) + or Fe m O n (OH) x (3m The formation of crystalline iron oxide is suppressed by the interaction of -2n-x) + ), and it is considered that low crystalline iron oxide such as ferrihydrite was formed (Reference Document 26). Activity was observed in the iron humic acid complex even after treatment with 1 M MgCl 2 , 1 M sodium acetate and 0.1 M NaOH (Figure 2a, Figure 2b, Figure 2c). It was suggested that the iron humic acid complex has a stable active ingredient. On the other hand, in the Na 4 P 2 O 7- treated iron humic acid complex, a mediating effect on PCP dechlorination activity was observed only in the first generation, or no dechlorination was observed (FIG. 2d), It was shown that the electron-mediated ability is unstable. Na 4 P 2 O 7 is much more capable of extracting organic-bound iron fractions from samples containing amorphous or imperfect crystalline iron oxyhydroxides such as ferrihydrite than NaOH and aqueous acetylacetone solutions. (References 27 and 28). The results of the iron humic acid complex treated with Na 4 P 2 O 7 showed much lower ash (10.6%) than the sample treated with NaOH (19.1%) are supported by this report (Ref. 27, 28). Therefore, it was suggested that the redox-mediated function of the iron humic acid complex is due to the organic matter-bound iron fraction eluted by Na 4 P 2 O 7 or the iron fraction with low crystallinity.
 鉄腐植酸複合体(図5a)のFTIRスペクトルでは、明らかな変化が1735~1377 cm-1の波長で観察され、鉄との錯形成に関与するカルボン酸基やフェノール性水酸基に起因するピークが得られている(図5a)。一方、いくつかの鮮明な新しいピークが1735 cm-1、1700 cm-1、1235 cm-1で出現し、カルボキシル基のC=O伸縮振動、COO-の対称伸縮およびフェノール性水酸基のCO伸縮振動が確認された(参考文献29)。Na4P2O7処理鉄腐植酸 複合体では1750~1200 cm-1の波数域にピークが観察されなかった。 In the FTIR spectrum of the iron humic acid complex (Fig. 5a), a clear change is observed at a wavelength of 1735 to 1377 cm -1 , and peaks due to carboxylic acid groups and phenolic hydroxyl groups involved in complex formation with iron are observed. Has been obtained (FIG. 5a). On the other hand, some sharp new peak 1735 cm -1, 1700 cm -1, found at 1235 cm -1, C = O stretching vibration of the carboxyl group, COO - of symmetric stretching and CO stretching vibration of phenolic hydroxyl group Was confirmed (reference document 29). In the Na 4 P 2 O 7 treated iron humic acid complex, no peak was observed in the wave number range of 1750 to 1200 cm −1 .
 電気化学的分析法であるサイクリックボルタンメトリーでの測定結果から、酸化還元活性部位が鉄腐植酸複合体に存在することが明らかとなった(図6a)。鉄腐植酸複合体の酸化還元電位は0.10 V(対 標準水素電極)と推定された。一方、Na4P2O7処理鉄腐植酸複合体のサイクリックボルタモグラムには酸化還元対が観察できなかったことから、電子媒介する機能を担う鉄画分は、Na4P2O7処理によって抽出される有機物結合鉄画分或いは結晶性の低い鉄画分と考えられる。 From the measurement result by cyclic voltammetry, which is an electrochemical analysis method, it was revealed that a redox active site exists in the iron humic acid complex (FIG. 6a). The redox potential of the iron humic acid complex was estimated to be 0.10 V (vs. standard hydrogen electrode). On the other hand, since no redox couple could be observed in the cyclic voltammogram of the Na 4 P 2 O 7- treated iron humic acid complex, the iron fraction responsible for the electron-mediated function was treated by Na 4 P 2 O 7 treatment. It is considered as an organic matter-bound iron fraction to be extracted or an iron fraction with low crystallinity.
 以上の様に、不溶性鉄腐植酸複合体が、PCPの微生物的脱塩素反応および鉄の微生物還元反応、更には硝酸塩の微生物的還元において安定な電子媒介機能を持つことを明らかにした。この電子媒介機能を担う反応中心は、Na4P2O7抽出性の有機物結合鉄画分あるいは結晶性の低い鉄画分と考えられる。鉄腐植酸複合体の電子媒介機能を担う部位の化学的実態を明らかにするために、更なる研究が必要である。 As described above, it has been clarified that the insoluble iron humic acid complex has a stable electron-mediated function in the microbial dechlorination reaction of PCP, the microbial reduction reaction of iron, and the microbial reduction of nitrate. The reaction center responsible for this electron-mediated function is considered to be an organic matter-bound iron fraction extractable with Na 4 P 2 O 7 or an iron fraction with low crystallinity. Further research is necessary to clarify the chemical reality of the site responsible for the electron-mediated function of the iron humic acid complex.
 金属腐植酸複合体は、微生物による有機物分解等での酸化還元反応において生じる余剰の電子を仲介する電子伝達媒体(電子の受け手および渡し手)として作用する。金属腐植酸複合体は、それを添加した現場において、微生物の呼吸増殖のための電子伝達媒体としての効果を長期間にわたって維持できる。金属腐植酸複合体を電子伝達媒体として利用したシステム(電子伝達システム)はバイオレメディエーションに適用可能である。 The metal humic acid complex acts as an electron transfer medium (electron acceptor and deliverer) that mediates surplus electrons generated in oxidation-reduction reactions such as decomposition of organic substances by microorganisms. The metal humic acid complex can maintain an effect as an electron transfer medium for respiratory growth of microorganisms for a long period of time at the site where it is added. A system using a metal humic acid complex as an electron transfer medium (electron transfer system) can be applied to bioremediation.
 最近、微生物による有機物分解での酸化還元反応において生じる電子を電極に回収して電気エネルギーを得る「微生物燃料電池」の研究や電気エネルギーで微生物を育てる「微生物電気培養」の研究が盛んに行われている。本発明のシステムは微生物燃料電池や微生物電気培養の装置にも適用可能である。金属腐植酸複合体の活性中心の金属を選択することにより、特定の酸化還元電位をもつ電子伝達媒体の製造が可能である。このような電子伝達媒体を使用すれば、特定の種類の微生物を選択的に培養できることが期待できる。 Recently, research has been actively conducted on “microbial fuel cells” that collect electric electrons generated in redox reactions in organic substance decomposition by microorganisms to obtain electrical energy, and “microbe electroculture” that grows microorganisms using electrical energy. ing. The system of the present invention can also be applied to microbial fuel cells and microbial electroculture devices. By selecting the metal at the active center of the metal humic acid complex, it is possible to produce an electron transfer medium having a specific redox potential. If such an electron transfer medium is used, it can be expected that specific types of microorganisms can be selectively cultured.
 この発明は、上記発明の実施の形態及び実施例の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。本明細書の中で明示した論文、公開特許公報、及び特許公報などの内容は、その全ての内容を援用によって引用することとする。 The present invention is not limited to the description of the embodiments and examples of the above invention. Various modifications may be included in the present invention as long as those skilled in the art can easily conceive without departing from the description of the scope of claims. The contents of papers, published patent gazettes, patent gazettes, and the like specified in this specification are incorporated by reference in their entirety.
<参考文献>
 1. Stevenson, F. J., Humus Chemistry: Genesis, Composition, Reactions. Wiley: New York, 1994.
 2. Lovley, D. R.; Coates, J. D.; BluntHarris, E. L.; Phillips, E. J. P.; Woodward, J. C., Humic substances as electron acceptors for microbial respiration. Nature 1996, 382, (6590), 445-448.
 3. Lovley, D. R.; Fraga, J. L.; Coates, J. D.; Blunt-Harris, E. L., Humics as an electron donor for anaerobic respiration. Environmental Microbiology 1999, 1, (1), 89-98.
 4. Bradley, P. M.; Chapelle, F. H.; Lovley, D. R., Humic acids as electron acceptors for anaerobic microbial oxidation of vinyl chloride and dichloroethene. Applied and Environmental Microbiology 1998, 64, (8), 3102-3105.
 5. Van der Zee, F. R.; Cervantes, F. J., Impact and application of electron shuttles on the redox (bio)transformation of contaminants: A review. Biotechnology Advances 2009, 27, (3), 256-277.
 6. van der Zee, F. P.; Bouwman, R. H. M.; Strik, D.; Lettinga, G.; Field, J. A., Application of redox mediators to accelerate the transformation of reactive azo dyes in anaerobic bioreactors. Biotechnology and Bioengineering 2001, 75, (6), 691-701.
 7. Workman, D. J.; Woods, S. L.; Gorby, Y. A.; Fredrickson, J. K.; Truex, M. J., Microbial reduction of vitamin B-12 by Shewanella alga strain BrY with subsequent transformation of carbon tetrachloride. Environmental Science & Technology 1997, 31, (8), 2292-2297.
 8. Peper, M.; Ertl, M.; Gerhard, I., Long-term exposure to wood-preserving chemicals containing pentachlorophenol and lindane is related to neurobehavioral performance in women. American Journal of Industrial Medicine 1999, 35, (6), 632-641.
 9. ATSDR, Priority List of Hazardous Substances. In Comprehensive Environmental Response, C., and Liability Act (CERCLA), Ed. 2011.
 
10. WHO, Guidelines for drinking-water quality. 4th ed.; 2011.
 11. Li, Z. L.; Yang, S. Y.; Inoue, Y.; Yoshida, N.; Katayama, A., Complete Anaerobic Mineralization of Pentachlorophenol (PCP) Under Continuous Flow Conditions by Sequential Combination of PCP-Dechlorinating and Phenol-Degrading Consortia. Biotechnology and Bioengineering 2010, 107, (5), 775-785.
 12. Li, Z.; Inoue, Y.; Suzuki, D.; Ye, L.; Katayama, A., Long-term Anaerobic Mineralization of Pentachlorophenol in a Continuous-Flow System Using Only Lactate as an External Nutrient. Environmental Science & Technology 2012.
 13. Yang, S.; Shibata, A.; Yoshida, N.; Katayama, A., Anaerobic Mineralization of Pentachlorophenol (PCP) by Combining PCP-Dechlorinating and Phenol-Degrading Cultures. Biotechnology and Bioengineering 2009, 102, (1), 81-90.
 14. Zhang, C.; Suzuki, D.; Li, Z.; Ye, L.; Katayama, A., Polyphasic characterization of two microbial consortia with wide dechlorination spectra for chlorophenols. J Biosci Bioeng 2012, 114, (5), 512-7.
 15. Zhang, C. F.; Katayama, A., Humin as an Electron Mediator for Microbial Reductive Dehalogenation. Environmental Science & Technology 2012, 46, (12), 6575-6583.
 16. Gu, B.; Schmitt, J.; Chen, Z.; Liang, L.; McCarthy, J. F., Adsorption and desorption of natural organic matter on iron oxide: mechanisms and models. Environmental Science & Technology 1994, 28, (1), 38-46.
 17. Colombo, C.; Palumbo, G.; Sellitto, V. M.; Rizzardo, C.; Tomasi, N.; Pinton, R.; Cesco, S., Characteristics of Insoluble, High Molecular Weight Iron-Humic Substances used as Plant Iron Sources. Soil Science Society of America Journal 2012, 76, (4), 1246-1256.
 18. Janos, P.; Herzogova, L.; Rejnek, J.; Hodslavska, J., Assessment of heavy metals leachability from metallo-organic sorbent-iron humate-with the aid of sequential extraction test. Talanta 2004, 62, (3), 497-501.
 19. Janos, P., Sorption of basic dyes onto iron humate. Environmental Science & Technology 2003, 37, (24), 5792-5798.
 20. Widdel, F.; Kohring, G. W.; Mayer, F., Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. 3. Characterization of the filamentous gliding desulfonema-limicola gen-nov sp-nov. Archives of Microbiology 1983, 134, (4), 286-294.
 21. Yoshida, N.; Yoshida, Y.; Handa, Y.; Kim, H. K.; Ichihara, S.; Katayama, A., Polyphasic characterization of a PCP-to-phenol dechlorinating microbial community enriched from paddy soil. Science of the Total Environment 2007, 381, (1-3), 233-242.
22. Lovley, D. R.; Phillips, E. J. P., Organic-matter mineralization with ferric iron in anaerobic sediments. Applied and Environmental Microbiology 1986, 51, (4), 683-689.
 23. Roden, E. E.; Kappler, A.; Bauer, I.; Jiang, J.; Paul, A.; Stoesser, R.; Konishi, H.; Xu, H. F., Extracellular electron transfer through microbial reduction of solid-phase humic substances. Nature Geoscience 2010, 3, (6), 417-421.
 24. Donald T. Sawyer, A. S., Julian L. Roberts, Electrochemistry for Chemists. 2nd ed.; Wiley: New York, 1995.
 25. Ratasuk, N.; Nanny, M. A., Characterization and quantification of reversible redox sites in humic substances. Environmental Science & Technology 2007, 41, (22), 7844-7850.
 26. Schwertmann, U., Occurrence and formation of iron oxides in various pedoenvironments. In Iron in soils and clay minerals, Springer: 1987; pp 267-308.
 27. Bascomb, C.; Thanigasalam, K., Comparison of aqueous acetylacetone and potassium pyrophosphate solutions for selective extraction of organic‐bound Fe from soils. Journal of Soil Science 1978, 29, (3), 382-387.
 28. Hall, G.; Vaive, J.; MacLaurin, A., Analytical aspects of the application of sodium pyrophosphate reagent in the specific extraction of the labile organic component of humus and soils. J. Geochem. Explor. 1996, 56, (1), 23-36.
 29. Senesi, N., Metal-humic substance complexes in the environment. Molecular and mechanistic aspects by multiple spectroscopic approach. 1992.
 30. Zhang, C.; Li, Z.; Suzuki, D.; Ye, L.; Yoshida, N.; Katayama, A., A humin-dependent Dehalobacter species is involved in reductive debromination of tetrabromobisphenol A. Chemosphere 2013.
<References>
1. Stevenson, F. J., Humus Chemistry: Genesis, Composition, Reactions. Wiley: New York, 1994.
2. Lovley, D. R .; Coates, J. D .; Blunt Harris, E. L .; Phillips, E. J. P .; Woodward, J. C., Humic substances as electron acceptors for microbial respiration. Nature 1996, 382, (6590), 445-448.
3. Lovley, D. R .; Fraga, J. L .; Coates, J. D .; Blunt-Harris, E. L., Humics as an electron donor for anaerobic respiration. Environmental Microbiology 1999, 1, (1), 89-98.
4. Bradley, P. M .; Chapelle, F. H .; Lovley, D. R., Humic acids as electron acceptors for anaerobic microbial oxidation of vinyl chloride and dichloroethene. Applied and Environmental Microbiology 1998, 64, (8), 3102-3105.
5. Van der Zee, F. R .; Cervantes, F. J., Impact and application of electron shuttles on the redox (bio) transformation of contaminants: A review.Biotechnology Advances 2009, 27, (3), 256-277.
6.van der Zee, FP; Bouwman, RHM; Strik, D .; Lettinga, G .; Field, JA, Application of redox mediators to accelerate the transformation of reactive azo dyes in anaerobic bioreactors.Biotechnology and Bioengineering 2001, 75, ( 6), 691-701.
7. Workman, DJ; Woods, SL; Gorby, YA; Fredrickson, JK; Truex, MJ, Microbial reduction of vitamin B-12 by Shewanella alga strain BrY with subsequent transformation of carbon tetrachloride. Environmental Science & Technology 1997, 31, ( 8), 2292-2297.
8. Peper, M .; Ertl, M .; Gerhard, I., Long-term exposure to wood-preserving chemicals containing pentachlorophenol and lindane is related to neurobehavioral performance in women.American Journal of Industrial Medicine 1999, 35, (6) , 632-641.
9. ATSDR, Priority List of Hazardous Substances. In Comprehensive Environmental Response, C., and Liability Act (CERCLA), Ed. 2011.

10. WHO, Guidelines for drinking-water quality. 4th ed .; 2011.
11. Li, ZL; Yang, SY; Inoue, Y .; Yoshida, N .; Katayama, A., Complete Anaerobic Mineralization of Pentachlorophenol (PCP) Under Continuous Flow Conditions by Sequential Combination of PCP-Dechlorinating and Phenol-Degrading Consortia. Biotechnology and Bioengineering 2010, 107, (5), 775-785.
12. Li, Z .; Inoue, Y .; Suzuki, D .; Ye, L .; Katayama, A., Long-term Anaerobic Mineralization of Pentachlorophenol in a Continuous-Flow System Using Only Lactate as an External Nutrient. & Technology 2012.
13. Yang, S .; Shibata, A .; Yoshida, N .; Katayama, A., Anaerobic Mineralization of Pentachlorophenol (PCP) by Combining PCP-Dechlorinating and Phenol-Degrading Cultures. Biotechnology and Bioengineering 2009, 102, (1) , 81-90.
14. Zhang, C .; Suzuki, D .; Li, Z .; Ye, L .; Katayama, A., Polyphasic characterization of two microbial consortia with wide dechlorination spectra for chlorophenols. J Biosci Bioeng 2012, 114, (5) , 512-7.
15. Zhang, C. F .; Katayama, A., Humin as an Electron Mediator for Microbial Reductive Dehalogenation. Environmental Science & Technology 2012, 46, (12), 6575-6583.
16. Gu, B .; Schmitt, J .; Chen, Z .; Liang, L .; McCarthy, JF, Adsorption and desorption of natural organic matter on iron oxide: mechanisms and models. Environmental Science & Technology 1994, 28, ( 1), 38-46.
17. Colombo, C .; Palumbo, G .; Sellitto, VM; Rizzardo, C .; Tomasi, N .; Pinton, R .; Cesco, S., Characteristics of Insoluble, High Molecular Weight Iron-Humic Substances used as Plant Iron Sources. Soil Science Society of America Journal 2012, 76, (4), 1246-1256.
18. Janos, P .; Herzogova, L .; Rejnek, J .; Hodslavska, J., Assessment of heavy metals leachability from metallo-organic sorbent-iron humate-with the aid of sequential extraction test.Talanta 2004, 62, ( 3), 497-501.
19. Janos, P., Sorption of basic dyes onto iron humate. Environmental Science & Technology 2003, 37, (24), 5792-5798.
20. Widdel, F .; Kohring, GW; Mayer, F., Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. 3. Characterization of the filamentous gliding desulfonema-limicola gen-nov sp-nov. Archives of Microbiology 1983, 134, (4), 286-294.
21. Yoshida, N .; Yoshida, Y .; Handa, Y .; Kim, HK; Ichihara, S .; Katayama, A., Polyphasic characterization of a PCP-to-phenol dechlorinating microbial community enriched from paddy soil. the Total Environment 2007, 381, (1-3), 233-242.
22. Lovley, D. R .; Phillips, E. J. P., Organic-matter mineralization with ferric iron in anaerobic sediments. Applied and Environmental Microbiology 1986, 51, (4), 683-689.
23. Roden, EE; Kappler, A .; Bauer, I .; Jiang, J .; Paul, A .; Stoesser, R .; Konishi, H .; Xu, HF, Extracellular electron transfer through microbial reduction of solid-phase humic substances. Nature Geoscience 2010, 3, (6), 417-421.
24. Donald T. Sawyer, A. S., Julian L. Roberts, Electrochemistry for Chemists. 2nd ed .; Wiley: New York, 1995.
25. Ratasuk, N .; Nanny, M. A., Characterization and quantification of reversible redox sites in humic substances. Environmental Science & Technology 2007, 41, (22), 7844-7850.
26. Schwertmann, U., Occurrence and formation of iron oxides in various pedoenvironments.In Iron in soils and clay minerals, Springer: 1987; pp 267-308.
27. Bascomb, C .; Thanigasalam, K., Comparison of aqueous acetylacetone and potassium pyrophosphate solutions for selective extraction of organic-bound Fe from soils. Journal of Soil Science 1978, 29, (3), 382-387.
28. Hall, G .; Vaive, J .; MacLaurin, A., Analytical aspects of the application of sodium pyrophosphate reagent in the specific extraction of the labile organic component of humus and soils.J. Geochem. Explor. 1996, 56, (1), 23-36.
29. Senesi, N., Metal-humic substance complexes in the environment.Molecular and mechanistic aspects by multiple spectroscopic approach.1992.
30. Zhang, C .; Li, Z .; Suzuki, D .; Ye, L .; Yoshida, N .; Katayama, A., A humin-dependent Dehalobacter species is involved in reductive debromination of tetrabromobisphenol A. Chemosphere 2013.

Claims (24)

  1.  電子伝達媒体としての金属腐植酸複合体と、電子供与手段と、電子受容体としての微生物と、を含む、電子伝達システム。 An electron transfer system comprising a metal humic acid complex as an electron transfer medium, an electron donating means, and a microorganism as an electron acceptor.
  2.  前記金属腐植酸複合体を構成する金属が遷移金属、或いはマグネシウム、亜鉛又はセレンである、請求項1に記載の電子伝達システム。 The electron transfer system according to claim 1, wherein the metal constituting the metal humic acid complex is a transition metal, magnesium, zinc or selenium.
  3.  前記遷移金属がマンガン、鉄又はコバルトである、請求項2に記載の電子伝達システム。 The electron transfer system according to claim 2, wherein the transition metal is manganese, iron, or cobalt.
  4.  前記金属腐植酸複合体を構成する金属が、酸化還元電位を複数有する金属である、請求項1に記載の電子伝達システム。 The electron transfer system according to claim 1, wherein the metal constituting the metal humic acid complex is a metal having a plurality of redox potentials.
  5.  前記電子供与手段が、還元性有機化合物と、該還元性有機化合物から電子の供与を受けて前記金属腐植酸複合体を還元する還元微生物との組合せからなる、請求項1~4のいずれか一項に記載の電子伝達システム。 The electron donating means comprises a combination of a reducing organic compound and a reducing microorganism that receives electrons from the reducing organic compound and reduces the metal humic acid complex. The electronic transmission system according to Item.
  6.  前記還元性有機化合物が、糖、アミノ酸、有機酸、有機酸塩、アルコール、芳香族化合物及び生分解性プラスチックからなる群より選択される一又は二以上の有機化合物である、請求項5に記載の電子伝達システム。 6. The reducing organic compound is one or more organic compounds selected from the group consisting of sugars, amino acids, organic acids, organic acid salts, alcohols, aromatic compounds, and biodegradable plastics. Electronic transmission system.
  7.  前記電子供与手段がカソード電極である、請求項1~4のいずれか一項に記載の電子伝達システム。 The electron transmission system according to any one of claims 1 to 4, wherein the electron donating means is a cathode electrode.
  8.  前記カソード電極に電気的に接続されるアノード電極に対して、微生物を介して還元性有機化合物から電子が供給される、請求項7に記載の電子伝達システム。 The electron transfer system according to claim 7, wherein electrons are supplied from a reducing organic compound to the anode electrode electrically connected to the cathode electrode through a microorganism.
  9.  前記カソード電極に電気的に接続されるアノード電極に対して、還元性有機化合物と該還元性有機化合物から電子の供与を受けて金属腐植酸複合体を還元する還元微生物との組合せからなる電子供与手段により電子が供給される、請求項7に記載の電子伝達システム。 Electron donation comprising a combination of a reducing organic compound and a reducing microorganism that reduces the metal humic acid complex by receiving electrons from the reducing organic compound to the anode electrode electrically connected to the cathode electrode 8. The electron transmission system according to claim 7, wherein electrons are supplied by the means.
  10.  電子受容体としての前記微生物が脱ハロゲン化微生物、鉄還元能を有する細菌又は硝酸還元能を有する細菌である、請求項1~9のいずれか一項に記載の電子伝達システム。 The electron transfer system according to any one of claims 1 to 9, wherein the microorganism as an electron acceptor is a dehalogenated microorganism, a bacterium having an iron reducing ability, or a bacterium having a nitrate reducing ability.
  11.  電子受容体としての前記微生物が、細胞外固相との間で電子授受が可能な微生物である、請求項1~9のいずれか一項に記載の電子伝達システム。 The electron transfer system according to any one of claims 1 to 9, wherein the microorganism as an electron acceptor is a microorganism that can exchange electrons with an extracellular solid phase.
  12.  電子受容体としての前記微生物が、ジオバクター属細菌、シュワネラ属細菌、デハロバクター属細菌、デサルフィトバクテリウム属細菌、デスルフロモナス属細菌、クロストリジウム属細菌、バクテロイデス属細菌、デサルフォビブリオ属細菌、セディメンティバクター属細菌及びスルフロスピリラム属細菌からなる群より選択される一又は二以上の細菌である、請求項1~9のいずれか一項に記載の電子伝達システム。 The microorganism as an electron acceptor is a Geobacter bacterium, a Schwanella bacterium, a Dehalobacter bacterium, a Desulfitobacterium genus, a Desulfromonas bacterium, a Clostridium bacterium, a Bacteroides bacterium, a Desulfobrybacteria bacterium, a Sedientibacter genus The electron transfer system according to any one of claims 1 to 9, which is one or more bacteria selected from the group consisting of bacteria and sulfurospirillum bacteria.
  13.  請求項10に記載の電子伝達システムによって、汚染環境中の有機ハロゲン化合物を分解することを特徴とする、環境浄化方法。 An environmental purification method comprising decomposing an organic halogen compound in a polluted environment by the electron transmission system according to claim 10.
  14.  金属腐植酸複合体を汚染環境に添加するステップ、を含む環境浄化方法。 An environmental purification method comprising the step of adding a metal humic acid complex to a contaminated environment.
  15.  更に、電子供与体としての還元性有機化合物を汚染環境に添加するステップを含む、請求項14に記載の環境浄化方法。 The environmental purification method according to claim 14, further comprising a step of adding a reducing organic compound as an electron donor to the contaminated environment.
  16.  更に、電子供与手段として、還元性有機化合物と、該還元性有機化合物から電子の供与を受けて前記金属腐植酸複合体を還元する還元微生物を汚染環境に添加するステップを含む、請求項14に記載の環境浄化方法。 Furthermore, the electron donating means includes a step of adding a reducing organic compound and a reducing microorganism that receives the electron donation from the reducing organic compound and reduces the metal humic acid complex to a contaminated environment. The environmental purification method as described.
  17.  更に、電子供与手段としてのカソード電極を汚染環境中に設置するステップを含む、請求項14に記載の環境浄化方法。 Furthermore, the environmental purification method of Claim 14 including the step which installs the cathode electrode as an electron donor means in a contaminated environment.
  18.  更に、電子受容体としての脱ハロゲン化微生物を汚染環境に添加するステップを含む、請求項14~17のいずれか一項に記載の環境浄化方法。 The environmental purification method according to any one of claims 14 to 17, further comprising a step of adding a dehalogenated microorganism as an electron acceptor to the contaminated environment.
  19.  電子伝達媒体としての金属腐植酸複合体と、電子供与体としての還元性有機化合物と、を含む、環境浄化用キット。 An environmental purification kit comprising a metal humic acid complex as an electron transfer medium and a reducing organic compound as an electron donor.
  20.  電子伝達媒体としての金属腐植酸複合体と、電子供与手段としての、還元性有機化合物と、該還元性有機化合物から電子の供与を受けて前記金属腐植酸複合体を還元する還元微生物の組合せと、を含む、環境浄化用キット。 A combination of a metal humic acid complex as an electron transfer medium, a reducing organic compound as an electron donating means, and a reducing microorganism that receives the electron donation from the reducing organic compound and reduces the metal humic acid complex. A kit for environmental purification.
  21.  電子伝達媒体としての金属腐植酸複合体と、カソード電極と、を含む、環境浄化用キット。 An environmental purification kit including a metal humic acid complex as an electron transfer medium and a cathode electrode.
  22.  更に、電子受容体としての脱ハロゲン化微生物を含む、請求項19~21のいずれか一項に記載の環境浄化用キット。 The environmental purification kit according to any one of claims 19 to 21, further comprising a dehalogenated microorganism as an electron acceptor.
  23.  金属腐植酸複合体と電子供与体の存在下で微生物含有試料を培養するステップ、を含む、微生物の選択的培養法。 A method for selectively culturing microorganisms, comprising culturing a microorganism-containing sample in the presence of a metal humic acid complex and an electron donor.
  24.  金属腐植酸複合体からなる電子伝達媒体。 An electron transfer medium consisting of a metal humic acid complex.
PCT/JP2014/070002 2013-07-31 2014-07-30 Electron transfer system and application for same WO2015016238A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015529585A JP6410188B2 (en) 2013-07-31 2014-07-30 Electronic transmission system and its use

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-158394 2013-07-31
JP2013158394 2013-07-31

Publications (1)

Publication Number Publication Date
WO2015016238A1 true WO2015016238A1 (en) 2015-02-05

Family

ID=52431768

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/070002 WO2015016238A1 (en) 2013-07-31 2014-07-30 Electron transfer system and application for same

Country Status (2)

Country Link
JP (1) JP6410188B2 (en)
WO (1) WO2015016238A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105860989A (en) * 2016-06-06 2016-08-17 青岛理工大学 Soil remediation agent and application thereof in chlorohydrocarbon-contaminated soil remediation
CN106365310A (en) * 2016-10-21 2017-02-01 大连理工大学 Method for promoting biological reduction of nitrobenzene by synergy of clay mineral and humic acid
CN110468023A (en) * 2019-07-31 2019-11-19 安徽环境科技集团股份有限公司 A kind of promotion anaerobic fermentation of organisms device
CN110702762A (en) * 2019-10-25 2020-01-17 中国科学技术大学 Application of tungsten trioxide as biological electron medium in nano probe detection solution
CN111682229A (en) * 2020-06-24 2020-09-18 中国海洋大学 Humic acid-Fe composite modified anode, preparation method and application thereof, and seabed microbial fuel cell
CN113321289A (en) * 2021-05-14 2021-08-31 哈尔滨工业大学 Method for enhancing methane production efficiency of anaerobic digestion of wastewater sludge by electric field coupling Fe-C composite mediator

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11253926A (en) * 1997-08-06 1999-09-21 Ebara Corp Purifycation of polluted substance by halogenated organic compound
JP2012179585A (en) * 2011-03-02 2012-09-20 Eco Material:Kk Method for detoxifying dioxin-contaminated soil

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11253926A (en) * 1997-08-06 1999-09-21 Ebara Corp Purifycation of polluted substance by halogenated organic compound
JP2012179585A (en) * 2011-03-02 2012-09-20 Eco Material:Kk Method for detoxifying dioxin-contaminated soil

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
O'LOUGHLIN E. J. ET AL.: "Reductive Dechlorination of Trichloloethene Mediated by Humic-Metal Complexes", ENVIRONMENTAL SCIENCE AND TECHNOLOGY, vol. 33, 1 April 1999 (1999-04-01), pages 1145 - 1147, XP000822270, DOI: doi:10.1021/es9810033 *
OU X. ET AL.: "Photoinductive activity of humic acid fractions with the presence of Fe(III): The role of aromaticity and oxygen groups involved in fractions", CHEMOSPHERE, vol. 72, no. 6, 13 June 2008 (2008-06-13), pages 925 - 931, XP022702131, DOI: doi:10.1016/j.chemosphere.2008.03.031 *
SCHERR K. E. ET AL.: "Sequential application of electron donors and humic acids for the anaerobic bioremediation of chlorinated aliphatic hydrocarbons", NEW BIOTECHNOLOGY, vol. 29, no. 1, 15 December 2011 (2011-12-15), pages 116 - 125, XP028109844, DOI: doi:10.1016/j.nbt.2011.04.010 *
SUN J. ET AL.: "Redox mediator enhanced simultaneous decolorization of azo dye and bioelectricity generation in air-cathode microbial fuel cell", BIORESOURCE TECHNOLOGY, vol. 142, 24 May 2013 (2013-05-24), pages 407 - 414, XP028576209, DOI: doi:10.1016/j.biortech.2013.05.039 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105860989A (en) * 2016-06-06 2016-08-17 青岛理工大学 Soil remediation agent and application thereof in chlorohydrocarbon-contaminated soil remediation
CN106365310A (en) * 2016-10-21 2017-02-01 大连理工大学 Method for promoting biological reduction of nitrobenzene by synergy of clay mineral and humic acid
CN106365310B (en) * 2016-10-21 2019-04-23 大连理工大学 A kind of method that clay mineral cooperates with promotion biological reducing nitrobenzene with humic acid
CN110468023A (en) * 2019-07-31 2019-11-19 安徽环境科技集团股份有限公司 A kind of promotion anaerobic fermentation of organisms device
CN110702762A (en) * 2019-10-25 2020-01-17 中国科学技术大学 Application of tungsten trioxide as biological electron medium in nano probe detection solution
CN111682229A (en) * 2020-06-24 2020-09-18 中国海洋大学 Humic acid-Fe composite modified anode, preparation method and application thereof, and seabed microbial fuel cell
CN113321289A (en) * 2021-05-14 2021-08-31 哈尔滨工业大学 Method for enhancing methane production efficiency of anaerobic digestion of wastewater sludge by electric field coupling Fe-C composite mediator
CN113321289B (en) * 2021-05-14 2022-10-14 哈尔滨工业大学 Method for enhancing methane production efficiency of anaerobic digestion of wastewater sludge by electric field coupling Fe-C composite mediator

Also Published As

Publication number Publication date
JPWO2015016238A1 (en) 2017-03-02
JP6410188B2 (en) 2018-10-31

Similar Documents

Publication Publication Date Title
JP6410188B2 (en) Electronic transmission system and its use
Yao et al. Current progress in degradation and removal methods of polybrominated diphenyl ethers from water and soil: A review
Tran et al. Synergistic effects of biogenic manganese oxide and Mn (II)-oxidizing bacterium Pseudomonas putida strain MnB1 on the degradation of 17 α-ethinylestradiol
Sivan et al. Methanogens rapidly transition from methane production to iron reduction
Cervantes et al. Anaerobic mineralization of toluene by enriched sediments with quinones and humus as terminal electron acceptors
Gong et al. Coincorporation of N and S into zero-valent iron to enhance TCE dechlorination: kinetics, electron efficiency, and dechlorination capacity
Luu et al. Microbial mechanisms of accessing insoluble Fe (III) as an energy source
Bokare et al. Degradation of triclosan by an integrated nano-bio redox process
Bahar et al. Bioremediation of arsenic-contaminated water: recent advances and future prospects
Zhang et al. Antimony redox processes in the environment: A critical review of associated oxidants and reductants
He et al. Biological and chemical phosphorus solubilization from pyrolytical biochar in aqueous solution
Kim et al. Removal of 17α-ethinylestradiol by biogenic manganese oxides produced by the Pseudomonas putida strain MnB1
Qian et al. Simultaneous biodegradation of Ni–citrate complexes and removal of nickel from solutions by Pseudomonas alcaliphila
Shi et al. Enhanced bisphenol S anaerobic degradation using an NZVI–HA-modified anode in bioelectrochemical systems
Koenig et al. Aliphatic organochlorine degradation in subsurface environments
Jia et al. Enhanced iron (III) reduction following amendment of paddy soils with biochar and glucose modified biochar
Yang et al. Re‐activation of aged‐ZVI by iron‐reducing bacterium Shewanella putrefaciens for enhanced reductive dechlorination of trichloroethylene
Pat‐Espadas et al. Continuous removal and recovery of palladium in an upflow anaerobic granular sludge bed (UASB) reactor
Pisciotta et al. Bioelectrochemical and conventional bioremediation of environmental pollutants
Liu et al. Synergistic effect of soil organic matter and nanoscale zero-valent iron on biodechlorination
Shang et al. Formation of zerovalent iron in iron-reducing cultures of Methanosarcina barkeri
Zhang et al. Redox characterization of humins in sediments from the Yangtze Estuary to the East China Sea and their effects on microbial redox reactions
Jia et al. Biomineralization of 2′ 2′ 4′ 4′-Tetrabromodiphenyl ether in a Pseudomonas putida and Fe/Pd nanoparticles integrated system
Ghosh et al. Microbial remediation of metals by marine bacteria
Wu et al. The key role of biogenic manganese oxides in enhanced removal of highly recalcitrant 1, 2, 4-triazole from bio-treated chemical industrial wastewater

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14832040

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015529585

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14832040

Country of ref document: EP

Kind code of ref document: A1