WO2015016022A1 - Driving force control device for vehicle and method for controlling same - Google Patents

Driving force control device for vehicle and method for controlling same Download PDF

Info

Publication number
WO2015016022A1
WO2015016022A1 PCT/JP2014/068234 JP2014068234W WO2015016022A1 WO 2015016022 A1 WO2015016022 A1 WO 2015016022A1 JP 2014068234 W JP2014068234 W JP 2014068234W WO 2015016022 A1 WO2015016022 A1 WO 2015016022A1
Authority
WO
WIPO (PCT)
Prior art keywords
driving force
vehicle
vehicle speed
driver
deceleration
Prior art date
Application number
PCT/JP2014/068234
Other languages
French (fr)
Japanese (ja)
Inventor
伴弘 有吉
吉野 太容
雅司 小野
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Publication of WO2015016022A1 publication Critical patent/WO2015016022A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/48Parallel type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2054Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed by controlling transmissions or clutches
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D11/00Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated
    • F02D11/06Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance
    • F02D11/10Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type
    • F02D11/105Arrangements for, or adaptations to, non-automatic engine control initiation means, e.g. operator initiated characterised by non-mechanical control linkages, e.g. fluid control linkages or by control linkages with power drive or assistance of the electric type characterised by the function converting demand to actuation, e.g. a map indicating relations between an accelerator pedal position and throttle valve opening or target engine torque
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0005Controlling intake air during deceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/12Introducing corrections for particular operating conditions for deceleration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2250/00Driver interactions
    • B60L2250/26Driver interactions by pedal actuation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/60Input parameters for engine control said parameters being related to the driver demands or status
    • F02D2200/602Pedal position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2409Addressing techniques specially adapted therefor
    • F02D41/2422Selective use of one or more tables
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Definitions

  • the present invention relates to a vehicle driving force control device and a control method thereof.
  • JP 2005-45864A discloses a control device that selects a smaller torque as a creep torque among a vehicle speed corresponding torque that increases as the vehicle speed decreases and a braking force corresponding torque that increases as the braking torque decreases.
  • the creep torque decreases as the brake pedal depression amount increases and the braking torque increases. That is, an increase in braking force due to an increase in the amount of depression of the brake pedal and a decrease in creep torque due to an increase in the amount of depression of the brake pedal occur simultaneously.
  • the fluctuation amount of the deceleration becomes large, which may give the driver a sense of incongruity.
  • the driver may feel uncomfortable immediately before the vehicle is stopped, which is greatly affected by the variation in deceleration.
  • the fluctuation amount of the deceleration becomes large, it may be difficult to control the vehicle speed.
  • the present invention was invented to solve such problems, and it is an object of the present invention to suppress the uncomfortable feeling given to the driver when the brake pedal is depressed and to facilitate the control of the vehicle speed.
  • a vehicle driving force control apparatus includes a first driving force setting unit that sets a first driving force when the accelerator pedal opening degree according to a driving state is fully closed, and the first driving force.
  • a second driving force setting unit that sets a small second driving force, and a drive that selects the first driving force when there is no driver deceleration request, and that selects the second driving force when there is a driver deceleration request.
  • the accelerator pedal opening according to the driving state sets the first driving force when fully closed, and the second driving is different from the first driving force. Set the force, select the first driving force when there is no driver deceleration request, select the second driving force when there is a driver deceleration request, and control the drive source based on the selected driving force To do.
  • FIG. 1 is a schematic configuration diagram of a vehicle according to the present embodiment.
  • FIG. 2 is a time chart showing changes in acceleration and the like in the comparative example when the brake pedal is depressed during deceleration.
  • FIG. 3 is a flowchart for explaining the driving force control of this embodiment.
  • FIG. 4 is a schematic diagram showing the relationship between the vehicle speed and the driving force.
  • FIG. 5 is a block diagram showing the driving force control of this embodiment.
  • FIG. 6 is a block diagram showing the first driving force calculation unit.
  • FIG. 7 is a block diagram showing a deceleration request determination unit.
  • FIG. 8 is a block diagram showing the target driving force calculation unit.
  • FIG. 9 is a time chart showing a change in the target driving force when the driving force control of the present embodiment is used.
  • FIG. 1 is a schematic configuration diagram of a vehicle 10 according to the present embodiment.
  • the vehicle 10 of this embodiment is a hybrid vehicle.
  • the vehicle 10 includes an engine 1 and a motor generator 2 as drive sources, a battery 3 as a power source, an inverter 4 that controls the motor generator 2, and a drive system 5 that transmits the output of the drive source to wheels 9. .
  • the vehicle 10 also includes a controller 7 for controlling the engine 1, the motor generator 2, and the drive system 5.
  • the motor generator 2 is a synchronous motor generator in which a permanent magnet is embedded in a rotor and a stator coil is wound around a stator.
  • the motor generator 2 has a function as an electric motor that rotates by receiving electric power supply, and a function as a generator that generates an electromotive force at both ends of the stator coil when the rotor is rotated by an external force.
  • the battery 3 supplies electric power to various electric parts such as the motor generator 2 and stores the electric power generated by the motor generator 2.
  • the inverter 4 is a current converter that mutually converts two types of electricity, DC and AC.
  • the inverter 4 converts the direct current from the battery 3 into a three-phase alternating current having an arbitrary frequency and supplies it to the motor generator 2.
  • the motor generator 2 functions as a generator, the three-phase alternating current from the motor generator 2 is converted into direct current and supplied to the battery 3.
  • the drive system 5 includes a clutch 50, an automatic transmission 51, a forward / reverse switching mechanism 52, a final deceleration differential device 53, and a drive shaft 54.
  • the clutch 50 is provided between the engine 1 and the motor generator 2.
  • the clutch 50 is controlled in three states, an engaged state, a slip state (half-clutch state), and a released state, by changing the torque capacity.
  • the automatic transmission 51 is a continuously variable transmission that includes a primary pulley, a secondary pulley, and a belt that is wound around the primary pulley and the secondary pulley.
  • the gear ratio is changed by changing the contact radius between the belt and each pulley.
  • the forward / reverse switching mechanism 52 includes a planetary gear mechanism as a main component, and includes a forward clutch and a reverse brake.
  • the forward clutch is engaged, the reverse brake is released during the forward movement, the forward clutch is released during the reverse movement, and the reverse brake is engaged. Conclude.
  • the forward clutch and the reverse brake are controlled in three states, an engaged state, a slip state (half-clutch state), and a released state, by changing the torque capacity.
  • the final deceleration differential device 53 is an integration of the final deceleration device and the differential device.
  • the final deceleration differential device 53 decelerates the rotation transmitted from the output shaft of the automatic transmission 51 and transmits it to the left and right drive shafts 54. . Further, when it is necessary to create a speed difference between the rotational speeds of the left and right drive shafts 54 such as during a curve run, the speed difference is automatically given to enable smooth running. Wheels 9 are attached to the tips of the left and right drive shafts 54, respectively.
  • the wheel 9 When the brake pedal is depressed, the wheel 9 generates a braking force (hereinafter referred to as a braking force) corresponding to the depression amount of the brake pedal by the friction brake mechanism.
  • a braking force a braking force
  • the controller 7 includes a microcomputer having a central processing unit (CPU), a read-only memory (ROM), a random access memory (RAM), and an input / output interface (I / O interface).
  • CPU central processing unit
  • ROM read-only memory
  • RAM random access memory
  • I / O interface input / output interface
  • the controller 7 is a signal from the accelerator pedal sensor 20 that detects the amount of depression of the accelerator pedal, a signal from the vehicle speed sensor 21 that detects the vehicle speed, a signal from the brake pedal sensor 22 that detects the amount of depression of the brake pedal, and steering is operated.
  • a signal or the like from the inhibitor switch 27 is detected.
  • the controller 7 controls the engine 1, the motor generator 2, the clutch 50, the forward / reverse switching mechanism 52, and the automatic transmission 51 based on the input signal.
  • the vehicle 10 generates a predetermined driving force by the engine 1 and the motor generator 2 in order to enable creep running at a low vehicle speed even when the accelerator pedal is not fully depressed.
  • the driver depresses the brake pedal to request deceleration, and the vehicle 10 is decelerating, the engine 1 and the motor generator 2 do not have to generate driving force.
  • FIG. 2 when the vehicle 10 is decelerated and the brake pedal is depressed by the driver at time t1, the driving force generated by the engine 1 or the motor generator 2 at time t1 is applied to the brake pedal.
  • the driver feels strange due to the driving force step (shock). For example, when the vehicle 10 is traveling with a positive driving force, the deceleration suddenly increases as the driving force decreases, giving the driver a sense of discomfort. Further, when the vehicle 10 is traveling with a negative driving force, if the driving force increases, the deceleration suddenly decreases and the feeling of being pushed out increases, giving the driver a sense of incongruity.
  • the driving force control described below is performed when the accelerator pedal is not depressed and the vehicle 10 is decelerating.
  • step S100 the controller 7 determines whether or not the current vehicle speed is equal to or lower than the first predetermined vehicle speed.
  • the first predetermined vehicle speed is a vehicle speed at which the first driving force, which is the driving force when the accelerator pedal is not fully depressed and the accelerator pedal opening is in the fully closed state, is substantially zero during deceleration. As shown in FIG. 4, the first driving force increases as the vehicle speed decreases, and when the vehicle speed becomes lower than the first predetermined vehicle speed, the first driving force becomes a positive value.
  • a second driving force smaller than the first driving force is set in a region where the vehicle speed is lower than the first predetermined vehicle speed.
  • the second driving force is a value that does not change depending on the depression amount (operation) of the brake pedal, and is a value that is set for the purpose of improving fuel consumption and power consumption, and is substantially zero.
  • the driver has a driving force step (shock) generated by changing the target driving force. It is set to be an acceptable value.
  • the allowable driving force step has a predetermined width
  • the minimum driving force when the positive side has a predetermined width (plus minimum driving force) and the minimum driving force when the negative side has a predetermined width
  • the second driving force is set between (minus side minimum driving force).
  • the controller 7 determines whether the first driving force is substantially zero according to the current vehicle speed. If the first driving force becomes substantially zero, the process proceeds to step S101. If the first driving force is not substantially zero, that is, if the first driving force is less than substantially zero, the process is performed. Advances to step S103.
  • step S101 the controller 7 determines whether or not the brake pedal is depressed at the first calculation when the vehicle speed becomes less than the second predetermined vehicle speed, and a deceleration request is made by the driver.
  • the second predetermined vehicle speed is a vehicle speed higher than the first predetermined vehicle speed, and is a preset vehicle speed. If the second predetermined vehicle speed is set to a high vehicle speed, the driving state of the vehicle 10 such as operation of the brake pedal may be changed while the vehicle speed changes from the second predetermined vehicle speed to the first predetermined vehicle speed.
  • the vehicle speed be a low vehicle speed (a vehicle speed close to the first predetermined vehicle speed)
  • the determination in step S101 cannot be performed accurately if the vehicle speed is low.
  • step S101 based on the deceleration request determination cannot be made.
  • the second predetermined vehicle speed is set to a value close to the first predetermined vehicle speed on the higher vehicle speed side than the first predetermined vehicle speed and not too close. If the driver has requested deceleration when the vehicle speed is less than the second predetermined vehicle speed, the process proceeds to step S102, and the driver requests deceleration when the vehicle speed is less than the second predetermined vehicle speed. If not, the process proceeds to step S103.
  • step S102 the controller 7 sets the second driving force as the target driving force.
  • step S103 the controller 7 sets the first driving force as the target driving force.
  • the first request is made when the driver makes a deceleration request during the first calculation when the vehicle speed becomes less than the second predetermined vehicle speed.
  • the second driving force set to substantially zero from the time when the driving force becomes substantially zero (the time when the vehicle speed becomes the first predetermined vehicle speed) is set as the target driving force.
  • the first driving force is set as the target driving force, and then the driver requests deceleration.
  • the first driving force is set as the target driving force.
  • the controller 7 controls the engine 1 and the motor generator 2 based on the target driving force set in this way.
  • the driving force setting unit 100 includes a first driving force calculation unit 200, a deceleration request determination unit 300, and a target driving force calculation unit 400.
  • the first driving force calculation unit 200 will be described with reference to the block diagram of FIG.
  • the first driving force calculation unit 200 includes a D range driving force calculation unit 201, an R range driving force calculation unit 202, a first selection unit 203, and a driving force correction unit 204.
  • the D range driving force calculation unit 201 calculates the driving force when the shift lever is in the D range based on the vehicle speed.
  • the vehicle speed is detected based on a signal from the vehicle speed sensor 21.
  • the driving force increases as the vehicle speed decreases.
  • the R range driving force calculation unit 202 calculates the driving force when the shift lever is in the R range based on the vehicle speed. The driving force increases as the vehicle speed decreases.
  • the first selection unit 203 selects the first basic driving force based on the position of the select lever.
  • the signal of the inhibitor switch 27 is a signal of the D range
  • the first selection unit 203 selects the driving force calculated by the D range driving force calculation unit 201 as the first basic driving force
  • the signal of the inhibitor switch 27 Is an R range signal
  • the driving force calculated by the R range driving force calculation unit 202 is selected as the first basic driving force.
  • the driving force correction unit 204 corrects the first basic driving force by adding a driving force correction value calculated according to the driving state of the vehicle 10, for example, the temperature or atmospheric pressure, to the first basic driving force. One driving force is calculated.
  • the deceleration request determination unit 300 includes a braking force signal output unit 301, a vehicle speed signal output unit 302, a one-shot signal output unit 303, a deceleration request setting signal output unit 304, a deceleration request release signal output unit 305, and a deceleration request. And a signal output unit 306.
  • the brake force signal output unit 301 outputs a brake force signal based on the depression amount of the brake pedal.
  • the amount of depression of the brake pedal is detected based on a signal from the brake pedal sensor 22.
  • the brake force signal output unit 301 indicates that once the amount of depression of the brake pedal becomes equal to or greater than the first predetermined amount, the brake force signal is output as a brake force signal until the amount of depression of the brake pedal becomes equal to or less than a second predetermined amount that is smaller than the first predetermined amount. 1 "is output. In other cases, the brake signal output unit outputs “0” as the brake force signal.
  • the first predetermined amount is a value set in advance and is a value that can be determined that the driver is requesting deceleration.
  • the second predetermined amount is a value set in advance and is a value that can be determined that the driver's deceleration request has been eliminated.
  • the vehicle speed signal output unit 302 outputs a vehicle speed signal based on the vehicle speed.
  • the vehicle speed signal output unit 302 outputs “1” as the vehicle speed signal until the vehicle speed becomes the third predetermined vehicle speed higher than the second predetermined vehicle speed once the vehicle speed becomes equal to or lower than the second predetermined vehicle speed. "0" is output.
  • the third predetermined vehicle speed is a vehicle speed set in advance, and is a vehicle speed at which it can be determined that the vehicle 10 is accelerating after the vehicle speed becomes equal to or lower than the second predetermined vehicle speed.
  • the one-shot signal output unit 303 outputs a one-shot signal based on the vehicle speed.
  • the one-shot signal output unit 303 outputs “1” as the one-shot signal when the vehicle speed reaches the first predetermined vehicle speed, and outputs “0” as the one-shot signal in other cases.
  • the deceleration request setting signal output unit 304 outputs a deceleration request setting signal based on the brake force signal and the one-shot signal.
  • the deceleration request setting signal output unit 304 outputs “1” as a deceleration request setting signal when the brake force signal is “1” and the one-shot signal is “1”, and deceleration is performed otherwise. “0” is output as a request setting signal.
  • the deceleration request release signal output unit 305 is based on a signal obtained by inverting the brake force signal, a signal obtained by inverting the vehicle speed signal, an accelerator operation signal, a steering operation signal, a turn signal switch signal, a road gradient signal, and an automatic transmission oil temperature signal. To output a deceleration request release signal.
  • the deceleration request release signal output unit 305 outputs “1” as a deceleration request release signal when any of these signals is “1”, and outputs “0” when all signals are “0”. “0” is output as a deceleration request release signal.
  • As the accelerator operation signal “1” is output when the accelerator pedal is depressed.
  • As the steering operation signal “1” is output when the steering is operated.
  • the turn signal switch signal is “1” when the turn signal switch 24 is operated.
  • “1” is output when it is determined that the gradient of the road surface is equal to or greater than a predetermined gradient.
  • the automatic transmission oil temperature signal is output as “1” when it is determined that the temperature of the oil circulating through the automatic transmission 51 is equal to or higher than the first predetermined temperature or equal to or lower than the second predetermined oil temperature. In cases other than these conditions, “0” is output for each signal.
  • a driving force is required by a driver operation such as a brake pedal operation or a steering operation
  • “1” is output as a deceleration request release signal.
  • “1” is output as a deceleration request release signal. Further, when the oil temperature is high or low and the controllability of the automatic transmission 51 may deteriorate, “1” is output as a deceleration request release signal.
  • the deceleration request signal output unit 306 outputs “1” as a deceleration request signal until the deceleration request release signal becomes “1” once the deceleration request setting signal becomes “1”, otherwise the deceleration request signal "0" is output.
  • the target driving force calculation unit 400 includes a second selection unit 401, a driving force increase / decrease signal output unit 402, an addition unit 403, a third selection unit 404, a subtraction unit 405, a fourth selection unit 406, and a fifth selection unit.
  • a selection unit 407 and a sixth selection unit 408 are provided.
  • the second selection unit 401 selects the first driving force or the second driving force based on the deceleration request signal.
  • the second selection unit 401 selects the second driving force when the deceleration request signal is “1”, and selects the first driving force when the deceleration request signal is “0”.
  • the driving force increase / decrease signal output unit 402 compares the first driving force or the second driving force selected by the second selection unit 401 with the target driving force (hereinafter referred to as the previous value) calculated by the previous calculation. Then, a driving force increase / decrease signal is output.
  • the driving force increase / decrease signal output unit 402 outputs “1” as the driving force increase / decrease signal when the first driving force selected by the second selection unit 401 or the second driving force is equal to or more than the previous value, and is selected by the second selection.
  • “0” is output as the driving force increase / decrease signal.
  • the addition unit 403 adds the driving force increase amount to the previous value.
  • the amount of increase in driving force is a preset value.
  • the third selection unit 404 compares the value calculated by the addition unit 403 with the first driving force or the second driving force selected by the second selection unit 401, and selects the smaller value. Thereby, even when the output value of the 2nd selection part 401 increases rapidly, it can suppress that target drive force increases rapidly. For example, the third selection unit 404 loses the deceleration request when the vehicle speed is lower than the first predetermined vehicle speed, the deceleration request signal is changed from “1” to “0”, and the selection by the second selection unit 401 is performed. Is changed from the second driving force to the first driving force, the value obtained by adding the driving force increase amount to the previous value until the value obtained by adding the driving force increase amount to the previous value becomes the first driving force. select. Thereby, when the vehicle speed is lower than the first predetermined vehicle speed and there is no request for deceleration, it is possible to prevent the target driving force from rapidly increasing.
  • the subtraction unit 405 subtracts the driving force subtraction value from the previous value.
  • the driving force subtraction value is a preset value.
  • the fourth selection unit 406 compares the value calculated by the subtraction unit 405 with the first driving force or the second driving force selected by the second selection unit 401, and selects the larger value. Thereby, even when the output value of the 2nd selection part 401 falls rapidly, it can suppress that a target drive force falls rapidly.
  • the fifth selection unit 407 sets the value selected by the third selection unit 404 or the fourth selection unit 406 as the selection driving force based on the driving force increase / decrease signal.
  • the fifth selection unit 407 sets the value selected by the third selection unit 404 as the selection driving force when the driving force increase / decrease signal is “1”, and the fifth selection unit 407 sets the value selected by the third selection unit 404 as “0”.
  • the value selected by the 4 selection unit 406 is set as the selection driving force.
  • the sixth selection unit 408 compares the first driving force and the selected driving force, and sets the smaller value as the target driving force.
  • the deceleration request signal becomes “1” at a vehicle speed higher than the first predetermined vehicle speed, and is selected.
  • the second driving force is selected as the driving force
  • the first driving force is set as the target driving force until the first driving force becomes substantially zero.
  • the second driving force set to substantially zero when the first driving force becomes substantially zero is set as the target driving force. Even if the second driving force becomes an unintended large value, the first driving force is selected, and therefore the target driving force does not exceed the first driving force.
  • the first driving force is set as the target driving force until the vehicle 10 stops.
  • the second driving force is set as the target driving force
  • the vehicle 10 stops unless the deceleration request is canceled halfway, and then the second driving force is set as the target driving force until there is no deceleration request. Is set.
  • the driver depresses the brake pedal.
  • the amount of depression of the brake pedal exceeds the first predetermined amount and the vehicle speed reaches the second predetermined vehicle speed, it is determined that there is a deceleration request from the driver, and the deceleration request is made.
  • the signal becomes “1”. Since the first driving force is smaller than substantially zero (second driving force), the first driving force is set as the target driving force.
  • the second driving force is set as the target driving force.
  • the first driving force while the second driving force is set as the target driving force is indicated by a broken line.
  • the second driving force is set as the target driving force. Since the second driving force is a value that does not depend on the driver's brake pedal operation, after the second driving force is selected as the target driving force, the brake pedal depression amount increased or decreased as long as the driver's deceleration request continued. However, the target driving force does not change.
  • the deceleration request signal becomes “0”.
  • the target driving force gradually increases, and the first driving force is set as the target driving force at time t5.
  • the second driving force smaller than the first driving force is set as the target driving force.
  • the brake pedal is operated by the driver during deceleration, for example, an increase in braking force and a decrease in driving force generated by the engine 1 or motor generator 2 occur at the same time. It is possible to suppress the fluctuation amount from increasing, and to suppress the driver from feeling uncomfortable.
  • the fluctuation amount of the deceleration increases, it becomes difficult to control the vehicle speed.
  • the vehicle speed can be easily controlled. it can.
  • the second driving force is set as a driving force that does not change due to the driver's braking operation, and the second driving force is set as the target driving force when there is a driver deceleration request.
  • the first driving force is set by setting the second driving force smaller than the first driving force as the target driving force. It is possible to improve fuel consumption and power consumption compared to the case where the target driving force is set.
  • a driving force step may occur.
  • the target driving force is changed from the first driving force to the second driving force in the region where the first driving force that is lower than the first predetermined speed in FIG. 4 is positive
  • the deceleration suddenly increases, Gives the driver a feeling of strangeness.
  • the target driving force is changed from the first driving force to the second driving force in a region where the first driving force that is higher than the first predetermined speed in FIG. 4 is negative
  • the deceleration suddenly decreases. The feeling of being pushed out increases, giving the driver a sense of incongruity.
  • the second driving force when there is a driver's deceleration request and the second driving force is set as the target driving force, the second driving force that is set to substantially zero from the time when the first driving force becomes substantially zero is used. Set as the target driving force.
  • the target driving force when the target driving force is changed from the first driving force to the second driving force, the generation of a driving force step can be suppressed.
  • the second driving force set to substantially zero is set as the target driving force, the fuel consumption and the fuel consumption can be reduced as compared with the case where the first target driving force that increases as the vehicle speed decreases is set as the target driving force. Electricity costs can be improved.
  • the second driving force is set as a target by determining whether or not the driver has requested deceleration at the first calculation when the first driving force and the second driving force are equal to each other and become less than the second predetermined vehicle speed that is higher than the first predetermined vehicle speed.
  • the target driving force can be changed from the first driving force to the second driving force without delay at the timing when the first predetermined vehicle speed is reached. Thereby, it is possible to prevent a driving force step (shock) from occurring when the target driving force is changed from the first driving force to the second driving force.
  • the state is maintained until the vehicle 10 stops.
  • the driver from feeling uncomfortable at the time of deceleration immediately before stopping, which is greatly affected by fluctuations in deceleration, and the vehicle speed can be easily controlled.
  • the first driving force is set as the target driving force when the driver's request for deceleration disappears.
  • the driving force can be increased (generated) according to the driver's request.
  • the second driving force is set to substantially zero, but the present invention is not limited to this.
  • the vehicle 10 can be quickly accelerated (started) when the driver no longer requests deceleration.
  • the second driving force may be set from a plurality of values according to the driving state of the vehicle 10, for example, the road gradient. Thereby, when the driver's request for deceleration is eliminated, acceleration (start) can be performed according to the driving state.
  • the second driving force may be set by a driver.
  • the first predetermined vehicle speed is the vehicle speed at which the first driving force is substantially zero, but the first predetermined vehicle speed may be the vehicle speed at which the first driving force and the second driving force are equal.
  • the sixth selection unit 408 when the first driving force becomes equal to the second driving force, the second driving force is set as the target driving force.
  • the hybrid vehicle has been described.
  • the present invention may be used for an electric vehicle or a vehicle equipped with only an engine.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Transportation (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hybrid Electric Vehicles (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

In the present invention, a first driving force for when an accelerator pedal aperture that is in accordance with a driving state is completely closed is set, a second driving force that is smaller than the first driving force is set, the first driving force is selected when there is no deceleration request from a driver, the second driving force is selected when there is a deceleration request from the driver, and a drive source is controlled on the basis of the selected driving force.

Description

車両の駆動力制御装置、及びその制御方法Vehicle driving force control device and control method therefor
 本発明は車両の駆動力制御装置、及びその制御方法に関するものである。 The present invention relates to a vehicle driving force control device and a control method thereof.
 JP2005-45864Aは、車速が低くなるほど大きくなる車速対応トルクと、制動トルクが小さくなるほど大きくなる制動力対応トルクとのうち小さい方のトルクをクリープトルクとして選択する制御装置を開示している。 JP 2005-45864A discloses a control device that selects a smaller torque as a creep torque among a vehicle speed corresponding torque that increases as the vehicle speed decreases and a braking force corresponding torque that increases as the braking torque decreases.
 上記の制御装置では、制動力対応トルクをクリープトルクとして選択している場合に、ブレーキペダルの踏み込み量が大きくなり制動トルクが大きくなるとクリープトルクは小さくなる。つまり、ブレーキペダルの踏み込み量が増大することによるブレーキ力の増大と、ブレーキペダルの踏み込み量が増大することによるクリープトルクの減少とが同時に発生する。 In the above control device, when the braking force-corresponding torque is selected as the creep torque, the creep torque decreases as the brake pedal depression amount increases and the braking torque increases. That is, an increase in braking force due to an increase in the amount of depression of the brake pedal and a decrease in creep torque due to an increase in the amount of depression of the brake pedal occur simultaneously.
 また、ブレーキペダルの踏み込み量が小さくなり制動トルクが小さくなるとクリープトルクは大きくなり、ブレーキ力の減少と、ブレーキペダルの踏み込み量が減少することによるクリープトルクの増大とが同時に発生する。 Also, when the brake pedal depression amount is reduced and the braking torque is reduced, the creep torque is increased, and a decrease in brake force and an increase in creep torque due to a decrease in brake pedal depression amount occur simultaneously.
 そのため、ブレーキペダルの踏み込み量に伴うクリープトルクの増減を行わない場合と比較して、減速度の変動量が大きくなり、ドライバに違和感を与える恐れがある。特に、減速度の変動による影響が大きい車両停車直前においてドライバに違和感を与える恐れがある。また、減速度の変動量が大きくなると、車速の制御が難しくなる恐れがある。 Therefore, compared with the case where the creep torque is not increased or decreased according to the amount of depression of the brake pedal, the fluctuation amount of the deceleration becomes large, which may give the driver a sense of incongruity. In particular, the driver may feel uncomfortable immediately before the vehicle is stopped, which is greatly affected by the variation in deceleration. Further, when the fluctuation amount of the deceleration becomes large, it may be difficult to control the vehicle speed.
 本発明はこのような問題点を解決するために発明されたもので、ブレーキペダルが踏み込まれた場合に、ドライバに与える違和感を抑制し、車速の制御を容易にすることを目的とする。 The present invention was invented to solve such problems, and it is an object of the present invention to suppress the uncomfortable feeling given to the driver when the brake pedal is depressed and to facilitate the control of the vehicle speed.
 本発明のある態様に係る車両の駆動力制御装置は、運転状態に応じたアクセルペダル開度が全閉時の第1駆動力を設定する第1駆動力設定部と、第1駆動力よりも小さい第2駆動力を設定する第2駆動力設定部と、ドライバの減速要求が無い場合には第1駆動力を選択し、ドライバの減速要求が有る場合には第2駆動力を選択する駆動力選択部と、駆動力選択部によって選択した駆動力に基づいて駆動源を制御する制御部とを備える。 A vehicle driving force control apparatus according to an aspect of the present invention includes a first driving force setting unit that sets a first driving force when the accelerator pedal opening degree according to a driving state is fully closed, and the first driving force. A second driving force setting unit that sets a small second driving force, and a drive that selects the first driving force when there is no driver deceleration request, and that selects the second driving force when there is a driver deceleration request. A force selection unit; and a control unit that controls the drive source based on the drive force selected by the drive force selection unit.
 また、本発明の別の態様に係る車両の駆動力制御方法は、運転状態に応じたアクセルペダル開度が全閉時の第1駆動力を設定し、第1駆動力とは異なる第2駆動力を設定し、ドライバの減速要求が無い場合には第1駆動力を選択し、ドライバの減速要求が有る場合には第2駆動力を選択し、選択した駆動力に基づいて駆動源を制御する。 Further, in the vehicle driving force control method according to another aspect of the present invention, the accelerator pedal opening according to the driving state sets the first driving force when fully closed, and the second driving is different from the first driving force. Set the force, select the first driving force when there is no driver deceleration request, select the second driving force when there is a driver deceleration request, and control the drive source based on the selected driving force To do.
図1は本実施形態の車両の概略構成図である。FIG. 1 is a schematic configuration diagram of a vehicle according to the present embodiment. 図2は減速時にブレーキペダルが踏み込まれた場合の比較例における加速度などの変化を示すタイムチャートである。FIG. 2 is a time chart showing changes in acceleration and the like in the comparative example when the brake pedal is depressed during deceleration. 図3は本実施形態の駆動力制御を説明するフローチャートである。FIG. 3 is a flowchart for explaining the driving force control of this embodiment. 図4は車速と駆動力との関係を示す概略図である。FIG. 4 is a schematic diagram showing the relationship between the vehicle speed and the driving force. 図5は本実施形態の駆動力制御を示すブロック図である。FIG. 5 is a block diagram showing the driving force control of this embodiment. 図6は第1駆動力演算部を示すブロック図である。FIG. 6 is a block diagram showing the first driving force calculation unit. 図7は減速要求判定部を示すブロック図である。FIG. 7 is a block diagram showing a deceleration request determination unit. 図8は目標駆動力演算部を示すブロック図である。FIG. 8 is a block diagram showing the target driving force calculation unit. 図9は本実施形態の駆動力制御を用いた場合の目標駆動力の変化などを示すタイムチャートである。FIG. 9 is a time chart showing a change in the target driving force when the driving force control of the present embodiment is used.
 以下、添付図面を参照しながら本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
 本発明の実施形態の車両10について図1を用いて説明する。図1は、本実施形態の車両10の概略構成図である。 A vehicle 10 according to an embodiment of the present invention will be described with reference to FIG. FIG. 1 is a schematic configuration diagram of a vehicle 10 according to the present embodiment.
 本実施形態の車両10は、ハイブリッド車両である。車両10は、駆動源としてのエンジン1及びモータジェネレータ2と、電力源としてのバッテリ3と、モータジェネレータ2を制御するインバータ4と、駆動源の出力を車輪9に伝達する駆動系5とを備える。また、車両10は、エンジン1、モータジェネレータ2、駆動系5を制御するためのコントローラ7を備える。 The vehicle 10 of this embodiment is a hybrid vehicle. The vehicle 10 includes an engine 1 and a motor generator 2 as drive sources, a battery 3 as a power source, an inverter 4 that controls the motor generator 2, and a drive system 5 that transmits the output of the drive source to wheels 9. . The vehicle 10 also includes a controller 7 for controlling the engine 1, the motor generator 2, and the drive system 5.
 モータジェネレータ2は、ロータに永久磁石を埋設し、ステータにステータコイルが巻き付けられた同期型モータジェネレータである。モータジェネレータ2は、電力の供給を受けて回転駆動する電動機としての機能と、ロータが外力により回転しているときにステータコイルの両端に起電力を生じさせる発電機としての機能とを有する。 The motor generator 2 is a synchronous motor generator in which a permanent magnet is embedded in a rotor and a stator coil is wound around a stator. The motor generator 2 has a function as an electric motor that rotates by receiving electric power supply, and a function as a generator that generates an electromotive force at both ends of the stator coil when the rotor is rotated by an external force.
 バッテリ3は、モータジェネレータ2などの各種の電気部品に電力を供給するとともに、モータジェネレータ2で発電された電力を蓄える。 The battery 3 supplies electric power to various electric parts such as the motor generator 2 and stores the electric power generated by the motor generator 2.
 インバータ4は、直流と交流の2種類の電気を相互に変換する電流変換機である。インバータ4は、バッテリ3からの直流を任意の周波数の三相交流に変換してモータジェネレータ2に供給する。一方、モータジェネレータ2が発電機として機能するときは、モータジェネレータ2からの三相交流を直流に変換してバッテリ3に供給する。 The inverter 4 is a current converter that mutually converts two types of electricity, DC and AC. The inverter 4 converts the direct current from the battery 3 into a three-phase alternating current having an arbitrary frequency and supplies it to the motor generator 2. On the other hand, when the motor generator 2 functions as a generator, the three-phase alternating current from the motor generator 2 is converted into direct current and supplied to the battery 3.
 駆動系5は、クラッチ50と、自動変速機51と、前後進切替機構52と、終減速差動装置53と、ドライブシャフト54とを備える。 The drive system 5 includes a clutch 50, an automatic transmission 51, a forward / reverse switching mechanism 52, a final deceleration differential device 53, and a drive shaft 54.
 クラッチ50は、エンジン1とモータジェネレータ2との間に設けられる。クラッチ50は、トルク容量を変化させることで、締結状態、スリップ状態(半クラッチ状態)及び解放状態の3つの状態に制御される。 The clutch 50 is provided between the engine 1 and the motor generator 2. The clutch 50 is controlled in three states, an engaged state, a slip state (half-clutch state), and a released state, by changing the torque capacity.
 自動変速機51は、プライマリプーリと、セカンダリプーリと、プライマリプーリとセカンダリプーリとに掛け回されるベルトとを備える無段変速機である。ベルトと各プーリとの接触半径を変更することで変速比が変更される。 The automatic transmission 51 is a continuously variable transmission that includes a primary pulley, a secondary pulley, and a belt that is wound around the primary pulley and the secondary pulley. The gear ratio is changed by changing the contact radius between the belt and each pulley.
 前後進切替機構52は、遊星歯車機構を主たる構成要素とし、前進クラッチ、及び後進ブレーキを有し、前進時には前進クラッチを締結し、後進ブレーキを解放し、後進時には前進クラッチを解放し、後進ブレーキを締結する。前進クラッチ、及び後進ブレーキは、トルク容量を変化させることで、締結状態、スリップ状態(半クラッチ状態)及び解放状態の3つの状態に制御される。 The forward / reverse switching mechanism 52 includes a planetary gear mechanism as a main component, and includes a forward clutch and a reverse brake. The forward clutch is engaged, the reverse brake is released during the forward movement, the forward clutch is released during the reverse movement, and the reverse brake is engaged. Conclude. The forward clutch and the reverse brake are controlled in three states, an engaged state, a slip state (half-clutch state), and a released state, by changing the torque capacity.
 終減速差動装置53は、終減速装置と差動装置とを一体化したものであり、自動変速機51の出力軸から伝達される回転を減速させた上で左右のドライブシャフト54に伝達する。また、カーブ走行時など、左右のドライブシャフト54の回転速度に速度差を生じさせる必要があるときには、自動的に速度差を与えて円滑な走行ができるようにする。左右のドライブシャフト54の先端にはそれぞれ車輪9が取り付けられる。 The final deceleration differential device 53 is an integration of the final deceleration device and the differential device. The final deceleration differential device 53 decelerates the rotation transmitted from the output shaft of the automatic transmission 51 and transmits it to the left and right drive shafts 54. . Further, when it is necessary to create a speed difference between the rotational speeds of the left and right drive shafts 54 such as during a curve run, the speed difference is automatically given to enable smooth running. Wheels 9 are attached to the tips of the left and right drive shafts 54, respectively.
 車輪9は、ブレーキペダルが踏み込まれるとブレーキペダルの踏み込み量に応じた制動力(以下、ブレーキ力という。)が摩擦ブレーキ機構によって発生する。 When the brake pedal is depressed, the wheel 9 generates a braking force (hereinafter referred to as a braking force) corresponding to the depression amount of the brake pedal by the friction brake mechanism.
 コントローラ7は、中央演算装置(CPU)、読み出し専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、及び入出力インタフェース(I/Oインタフェース)を備えたマイクロコンピュータで構成される。 The controller 7 includes a microcomputer having a central processing unit (CPU), a read-only memory (ROM), a random access memory (RAM), and an input / output interface (I / O interface).
 コントローラ7は、アクセルペダルの踏み込み量を検出するアクセルペダルセンサ20からの信号、車速を検出する車速センサ21からの信号、ブレーキペダルの踏み込み量を検出するブレーキペダルセンサ22からの信号、ステアリングが操作されたかどうかを検出するステアリングセンサ23からの信号、ターンシグナルスイッチ24からの信号、Gセンサ25からの信号、自動変速機51の油温を検出する油温センサ26からの信号、シフトレバーの位置を検出するインヒビタスイッチ27からの信号などが入力される。コントローラ7は、入力された信号に基づいてエンジン1、モータジェネレータ2、クラッチ50、前後進切替機構52、及び自動変速機51を制御する。 The controller 7 is a signal from the accelerator pedal sensor 20 that detects the amount of depression of the accelerator pedal, a signal from the vehicle speed sensor 21 that detects the vehicle speed, a signal from the brake pedal sensor 22 that detects the amount of depression of the brake pedal, and steering is operated. A signal from the steering sensor 23 for detecting whether or not the signal is received, a signal from the turn signal switch 24, a signal from the G sensor 25, a signal from the oil temperature sensor 26 for detecting the oil temperature of the automatic transmission 51, and the position of the shift lever. A signal or the like from the inhibitor switch 27 is detected. The controller 7 controls the engine 1, the motor generator 2, the clutch 50, the forward / reverse switching mechanism 52, and the automatic transmission 51 based on the input signal.
 車両10は、アクセルペダルが踏み込まれていないアクセルペダル全閉時でも低車速時にクリープ走行を可能とするために、エンジン1やモータジェネレータ2によって所定の駆動力を発生させている。しかし、ドライバによってブレーキペダルが踏み込まれて減速要求がされ、車両10が減速している場合には、エンジン1やモータジェネレータ2によって駆動力を発生させなくてもよい。このような場合に、エンジン1やモータジェネレータ2によって発生させている駆動力を低減することで燃費・電費を向上することができる。例えば図2に示すように車両10が減速しており、時間t1においてドライバによってブレーキペダルが踏み込まれた場合には、時間t1においてエンジン1やモータジェネレータ2によって発生させている駆動力をブレーキペダルの踏み込み量に応じて低減することで、燃費・電費を向上することができる(図2では低減しない場合の駆動力を破線で示す。)。しかし、ブレーキペダルの踏み込み量に応じてエンジン1やモータジェネレータ2によって発生させている駆動力を低減すると、駆動力の低減と、ブレーキ力の増加とにより、車両10の減速度(加速度の減少)が大きくなり、ドライバに違和感を与える。 The vehicle 10 generates a predetermined driving force by the engine 1 and the motor generator 2 in order to enable creep running at a low vehicle speed even when the accelerator pedal is not fully depressed. However, when the driver depresses the brake pedal to request deceleration, and the vehicle 10 is decelerating, the engine 1 and the motor generator 2 do not have to generate driving force. In such a case, it is possible to improve fuel efficiency and power consumption by reducing the driving force generated by the engine 1 and the motor generator 2. For example, as shown in FIG. 2, when the vehicle 10 is decelerated and the brake pedal is depressed by the driver at time t1, the driving force generated by the engine 1 or the motor generator 2 at time t1 is applied to the brake pedal. By reducing it according to the amount of depression, fuel consumption and electricity consumption can be improved (in FIG. 2, the driving force when not reducing is shown with a broken line). However, if the driving force generated by the engine 1 or the motor generator 2 is reduced according to the depression amount of the brake pedal, the vehicle 10 is decelerated (decrease in acceleration) due to the reduction of the driving force and the increase of the braking force. Increases and gives the driver a sense of incongruity.
 また、エンジン1やモータジェネレータ2によって発生させている駆動力を急に増減すると、駆動力段差(ショック)により、ドライバに違和感を与える。例えば、車両10が正の駆動力で走行している場合に、駆動力が減少すると減速度が急に大きくなり、ドライバに違和感を与える。また、車両10が負の駆動力で走行している場合に、駆動力が増加すると減速度が急に小さくなって押し出され感が大きくなり、ドライバに違和感を与える。 Also, if the driving force generated by the engine 1 or the motor generator 2 is suddenly increased or decreased, the driver feels strange due to the driving force step (shock). For example, when the vehicle 10 is traveling with a positive driving force, the deceleration suddenly increases as the driving force decreases, giving the driver a sense of discomfort. Further, when the vehicle 10 is traveling with a negative driving force, if the driving force increases, the deceleration suddenly decreases and the feeling of being pushed out increases, giving the driver a sense of incongruity.
 そこで、本実施形態では、アクセルペダルが踏み込まれておらず、車両10が減速している場合に以下で説明する駆動力制御を行っている。 Therefore, in this embodiment, the driving force control described below is performed when the accelerator pedal is not depressed and the vehicle 10 is decelerating.
 本実施形態の駆動力制御について図3のフローチャートを用いて説明する。 The driving force control of this embodiment will be described with reference to the flowchart of FIG.
 ステップS100では、コントローラ7は、現在の車速が第1所定車速以下であるかどうか判定する。第1所定車速は、減速時に、アクセルペダルが踏み込まれておらず、アクセルペダル開度が全閉状態となっている場合の駆動力である第1駆動力が略ゼロとなる車速である。第1駆動力は図4に示すように車速が低くなるにつれて大きくなり、第1所定車速よりも車速が低くなると、第1駆動力は正の値となる。本実施形態では第1駆動力に加えて、車速が第1所定車速よりも低い領域において第1駆動力よりも小さい第2駆動力が設定されている。第2駆動力はブレーキペダルの踏み込み量(操作)で変化しない値であり、燃費・電費の向上を目的として設定される値であり、略ゼロである。略ゼロは、車速が第1所定車速となり、目標駆動力を第1駆動力から第2駆動力へ変更する場合に、目標駆動力が変更されることによって生じる駆動力段差(ショック)をドライバが許容できる値となるように設定されている。例えば許容できる駆動力段差が所定の幅である場合に、プラス側に所定の幅を有する場合の最小駆動力(プラス側最小駆動力)と、マイナス側に所定の幅を有する場合の最小駆動力(マイナス側最小駆動力)との間で第2駆動力を設定している。コントローラ7は、現在の車速に応じて第1駆動力が略ゼロとなったか判定する。そして、第1駆動力が略ゼロとなった場合には処理はステップS101に進み、第1駆動力が略ゼロとなっていない場合、つまり第1駆動力が略ゼロよりも小さい場合には処理はステップS103に進む。 In step S100, the controller 7 determines whether or not the current vehicle speed is equal to or lower than the first predetermined vehicle speed. The first predetermined vehicle speed is a vehicle speed at which the first driving force, which is the driving force when the accelerator pedal is not fully depressed and the accelerator pedal opening is in the fully closed state, is substantially zero during deceleration. As shown in FIG. 4, the first driving force increases as the vehicle speed decreases, and when the vehicle speed becomes lower than the first predetermined vehicle speed, the first driving force becomes a positive value. In the present embodiment, in addition to the first driving force, a second driving force smaller than the first driving force is set in a region where the vehicle speed is lower than the first predetermined vehicle speed. The second driving force is a value that does not change depending on the depression amount (operation) of the brake pedal, and is a value that is set for the purpose of improving fuel consumption and power consumption, and is substantially zero. When the vehicle speed is the first predetermined vehicle speed and the target driving force is changed from the first driving force to the second driving force, the driver has a driving force step (shock) generated by changing the target driving force. It is set to be an acceptable value. For example, when the allowable driving force step has a predetermined width, the minimum driving force when the positive side has a predetermined width (plus minimum driving force) and the minimum driving force when the negative side has a predetermined width The second driving force is set between (minus side minimum driving force). The controller 7 determines whether the first driving force is substantially zero according to the current vehicle speed. If the first driving force becomes substantially zero, the process proceeds to step S101. If the first driving force is not substantially zero, that is, if the first driving force is less than substantially zero, the process is performed. Advances to step S103.
 ステップS101では、コントローラ7は、車速が第2所定車速未満となった最初の演算時にブレーキペダルが踏み込まれており、ドライバによって減速要求がされていたかどうか判定する。第2所定車速は、第1所定車速よりも高い車速であり、予め設定された車速である。第2所定車速を高い車速に設定すると、車速が第2所定車速から第1所定車速まで変化する間に、ブレーキペダルの操作など車両10の運転状態が変更される場合があるので、第2所定車速は低い車速(第1所定車速に近い車速)にすることが望ましいが、低い車速にすると、ステップS101の判断が正確にできなくなる恐れがある。具体的には、前回演算時の車速が第2所定車速より高く、今回演算時の車速が第1所定車速より小さくなってしまうような場合、減速要求判断に基づいたステップS101の判断ができずにステップS103に進んでしまうといった恐れがある。そのため、これらを考慮して第2所定車速は第1所定車速よりも高車速側で第1所定車速に近く、かつ、近すぎない値に設定される。車速が第2所定車速未満となった最初の演算時にドライバによって減速要求がされていた場合には処理はステップS102に進み、車速が第2所定車速未満となった最初の演算時にドライバによって減速要求がされていなかった場合には処理はステップS103に進む。 In step S101, the controller 7 determines whether or not the brake pedal is depressed at the first calculation when the vehicle speed becomes less than the second predetermined vehicle speed, and a deceleration request is made by the driver. The second predetermined vehicle speed is a vehicle speed higher than the first predetermined vehicle speed, and is a preset vehicle speed. If the second predetermined vehicle speed is set to a high vehicle speed, the driving state of the vehicle 10 such as operation of the brake pedal may be changed while the vehicle speed changes from the second predetermined vehicle speed to the first predetermined vehicle speed. Although it is desirable that the vehicle speed be a low vehicle speed (a vehicle speed close to the first predetermined vehicle speed), there is a possibility that the determination in step S101 cannot be performed accurately if the vehicle speed is low. Specifically, if the vehicle speed at the previous calculation is higher than the second predetermined vehicle speed and the vehicle speed at the current calculation is lower than the first predetermined vehicle speed, the determination in step S101 based on the deceleration request determination cannot be made. There is a risk of proceeding to step S103. Therefore, in consideration of these, the second predetermined vehicle speed is set to a value close to the first predetermined vehicle speed on the higher vehicle speed side than the first predetermined vehicle speed and not too close. If the driver has requested deceleration when the vehicle speed is less than the second predetermined vehicle speed, the process proceeds to step S102, and the driver requests deceleration when the vehicle speed is less than the second predetermined vehicle speed. If not, the process proceeds to step S103.
 ステップS102では、コントローラ7は、第2駆動力を目標駆動力として設定する。 In step S102, the controller 7 sets the second driving force as the target driving force.
 ステップS103では、コントローラ7は、第1駆動力を目標駆動力として設定する。 In step S103, the controller 7 sets the first driving force as the target driving force.
 以上のように、アクセルペダルが踏み込まれておらず、車両10が減速している状況で、車速が第2所定車速未満となった最初の演算時にドライバによって減速要求がされた場合には第1駆動力が略ゼロとなった時点(車速が第1所定車速となった時点)から略ゼロに設定された第2駆動力を目標駆動力として設定する。一方、車速が第2所定車速未満となった最初の演算時にドライバによって減速要求がされていない場合には、第1駆動力を目標駆動力として設定し、その後はドライバによる減速要求がされた場合でも第1駆動力を目標駆動力として設定する。 As described above, in the situation where the accelerator pedal is not depressed and the vehicle 10 is decelerating, the first request is made when the driver makes a deceleration request during the first calculation when the vehicle speed becomes less than the second predetermined vehicle speed. The second driving force set to substantially zero from the time when the driving force becomes substantially zero (the time when the vehicle speed becomes the first predetermined vehicle speed) is set as the target driving force. On the other hand, when the driver does not request deceleration at the first calculation when the vehicle speed is less than the second predetermined vehicle speed, the first driving force is set as the target driving force, and then the driver requests deceleration. However, the first driving force is set as the target driving force.
 このようにして設定された目標駆動力に基づいて、コントローラ7は、エンジン1やモータジェネレータ2を制御する。 The controller 7 controls the engine 1 and the motor generator 2 based on the target driving force set in this way.
 次に本実施形態の駆動力制御について図5のブロック図を用いて詳しく説明する。駆動力設定部100は、第1駆動力演算部200と、減速要求判定部300と、目標駆動力演算部400とを備える。 Next, the driving force control of this embodiment will be described in detail with reference to the block diagram of FIG. The driving force setting unit 100 includes a first driving force calculation unit 200, a deceleration request determination unit 300, and a target driving force calculation unit 400.
 第1駆動力演算部200について図6のブロック図を用いて説明する。第1駆動力演算部200は、Dレンジ駆動力演算部201と、Rレンジ駆動力演算部202と、第1選択部203と、駆動力補正部204とを備える。 The first driving force calculation unit 200 will be described with reference to the block diagram of FIG. The first driving force calculation unit 200 includes a D range driving force calculation unit 201, an R range driving force calculation unit 202, a first selection unit 203, and a driving force correction unit 204.
 Dレンジ駆動力演算部201は、車速に基づいてシフトレバーがDレンジの場合の駆動力を算出する。車速は、車速センサ21からの信号に基づいて検出される。駆動力は車速が小さくなるにつれて大きくなる。 The D range driving force calculation unit 201 calculates the driving force when the shift lever is in the D range based on the vehicle speed. The vehicle speed is detected based on a signal from the vehicle speed sensor 21. The driving force increases as the vehicle speed decreases.
 Rレンジ駆動力演算部202は、車速に基づいてシフトレバーがRレンジの場合の駆動力を算出する。駆動力は車速が小さくなるにつれて大きくなる。 The R range driving force calculation unit 202 calculates the driving force when the shift lever is in the R range based on the vehicle speed. The driving force increases as the vehicle speed decreases.
 第1選択部203は、セレクトレバーの位置に基づいて第1基礎駆動力を選択する。第1選択部203は、インヒビタスイッチ27の信号がDレンジの信号である場合には、Dレンジ駆動力演算部201によって算出した駆動力を第1基礎駆動力として選択し、インヒビタスイッチ27の信号がRレンジの信号である場合には、Rレンジ駆動力演算部202によって算出した駆動力を第1基礎駆動力として選択する。 The first selection unit 203 selects the first basic driving force based on the position of the select lever. When the signal of the inhibitor switch 27 is a signal of the D range, the first selection unit 203 selects the driving force calculated by the D range driving force calculation unit 201 as the first basic driving force, and the signal of the inhibitor switch 27 Is an R range signal, the driving force calculated by the R range driving force calculation unit 202 is selected as the first basic driving force.
 駆動力補正部204は、車両10の運転状態、例えば気温や大気圧に応じて算出された駆動力補正値を第1基礎駆動力に加算することで、第1基礎駆動力を補正して第1駆動力を算出する。 The driving force correction unit 204 corrects the first basic driving force by adding a driving force correction value calculated according to the driving state of the vehicle 10, for example, the temperature or atmospheric pressure, to the first basic driving force. One driving force is calculated.
 次に、減速要求判定部300について図7のブロック図を用いて説明する。減速要求判定部300は、ブレーキ力信号出力部301と、車速信号出力部302と、ワンショット信号出力部303と、減速要求設定信号出力部304と、減速要求解除信号出力部305と、減速要求信号出力部306とを備える。 Next, the deceleration request determination unit 300 will be described with reference to the block diagram of FIG. The deceleration request determination unit 300 includes a braking force signal output unit 301, a vehicle speed signal output unit 302, a one-shot signal output unit 303, a deceleration request setting signal output unit 304, a deceleration request release signal output unit 305, and a deceleration request. And a signal output unit 306.
 ブレーキ力信号出力部301は、ブレーキペダルの踏み込み量に基づいてブレーキ力信号を出力する。ブレーキペダルの踏み込み量は、ブレーキペダルセンサ22からの信号に基づいて検出される。ブレーキ力信号出力部301は、ブレーキペダルの踏み込み量が、一旦第1所定量以上となると、ブレーキペダルの踏み込み量が第1所定量よりも小さい第2所定量以下となるまでブレーキ力信号として「1」を出力する。ブレーキ信号出力部は、それ以外の場合にはブレーキ力信号として「0」を出力する。第1所定量は、予め設定された値であり、ドライバが減速要求していると判断可能な値である。第2所定量は、予め設定された値であり、ドライバの減速要求がなくなったと判断可能な値である。 The brake force signal output unit 301 outputs a brake force signal based on the depression amount of the brake pedal. The amount of depression of the brake pedal is detected based on a signal from the brake pedal sensor 22. The brake force signal output unit 301 indicates that once the amount of depression of the brake pedal becomes equal to or greater than the first predetermined amount, the brake force signal is output as a brake force signal until the amount of depression of the brake pedal becomes equal to or less than a second predetermined amount that is smaller than the first predetermined amount. 1 "is output. In other cases, the brake signal output unit outputs “0” as the brake force signal. The first predetermined amount is a value set in advance and is a value that can be determined that the driver is requesting deceleration. The second predetermined amount is a value set in advance and is a value that can be determined that the driver's deceleration request has been eliminated.
 車速信号出力部302は、車速に基づいて車速信号を出力する。車速信号出力部302は、車速が一旦第2所定車速以下となると、第2所定車速よりも高い第3所定車速となるまで車速信号として「1」を出力し、それ以外の場合には車速信号として「0」を出力する。第3所定車速は予め設定された車速であり、車速が第2所定車速以下となった後に車両10が再加速していると判断可能な車速である。 The vehicle speed signal output unit 302 outputs a vehicle speed signal based on the vehicle speed. The vehicle speed signal output unit 302 outputs “1” as the vehicle speed signal until the vehicle speed becomes the third predetermined vehicle speed higher than the second predetermined vehicle speed once the vehicle speed becomes equal to or lower than the second predetermined vehicle speed. "0" is output. The third predetermined vehicle speed is a vehicle speed set in advance, and is a vehicle speed at which it can be determined that the vehicle 10 is accelerating after the vehicle speed becomes equal to or lower than the second predetermined vehicle speed.
 ワンショット信号出力部303は、車速に基づいてワンショット信号を出力する。ワンショット信号出力部303は、車速が第1所定車速となった時にワンショット信号として「1」を出力し、それ以外の場合にはワンショット信号として「0」を出力する。 The one-shot signal output unit 303 outputs a one-shot signal based on the vehicle speed. The one-shot signal output unit 303 outputs “1” as the one-shot signal when the vehicle speed reaches the first predetermined vehicle speed, and outputs “0” as the one-shot signal in other cases.
 減速要求設定信号出力部304は、ブレーキ力信号とワンショット信号とに基づいて減速要求設定信号を出力する。減速要求設定信号出力部304は、ブレーキ力信号が「1」であり、ワンショット信号が「1」である場合に、減速要求設定信号として「1」を出力し、それ以外の場合には減速要求設定信号として「0」を出力する。 The deceleration request setting signal output unit 304 outputs a deceleration request setting signal based on the brake force signal and the one-shot signal. The deceleration request setting signal output unit 304 outputs “1” as a deceleration request setting signal when the brake force signal is “1” and the one-shot signal is “1”, and deceleration is performed otherwise. “0” is output as a request setting signal.
 減速要求解除信号出力部305は、ブレーキ力信号を反転させた信号、車速信号を反転させた信号、アクセル操作信号、ステアリング操作信号、ターンシグナルスイッチ信号、道路勾配信号、自動変速機油温信号に基づいて減速要求解除信号を出力する。減速要求解除信号出力部305は、これらの信号のうち、いずれかの信号が「1」の場合には減速要求解除信号として「1」を出力し、全ての信号が「0」の場合には減速要求解除信号として「0」を出力する。アクセル操作信号は、アクセルペダルが踏み込まれると「1」が出力される。ステアリング操作信号はステアリングが操作された場合に「1」が出力される。ターンシグナルスイッチ信号は、ターンシグナルスイッチ24が操作された場合に「1」が出力される。道路勾配信号は路面の勾配が所定勾配以上であると判断される場合に「1」が出力される。自動変速機油温信号は、自動変速機51を循環する油の温度が第1所定温度以上である、または第2所定油温以下であると判断される場合に「1」が出力される。これらの条件以外の場合には、各信号は「0」が出力される。このように、ブレーキペダルの操作やステアリングの操作などドライバの操作によって駆動力が必要となる場合には減速要求解除信号として「1」が出力される。また、路面の勾配に基づいて車両10のずり下がりを防止するために駆動力が必要となる場合には減速要求解除信号として「1」が出力される。さらに、油温が高く、または低くなり自動変速機51の制御性が悪化する可能性がある場合には減速要求解除信号として「1」が出力される。 The deceleration request release signal output unit 305 is based on a signal obtained by inverting the brake force signal, a signal obtained by inverting the vehicle speed signal, an accelerator operation signal, a steering operation signal, a turn signal switch signal, a road gradient signal, and an automatic transmission oil temperature signal. To output a deceleration request release signal. The deceleration request release signal output unit 305 outputs “1” as a deceleration request release signal when any of these signals is “1”, and outputs “0” when all signals are “0”. “0” is output as a deceleration request release signal. As the accelerator operation signal, “1” is output when the accelerator pedal is depressed. As the steering operation signal, “1” is output when the steering is operated. The turn signal switch signal is “1” when the turn signal switch 24 is operated. As the road gradient signal, “1” is output when it is determined that the gradient of the road surface is equal to or greater than a predetermined gradient. The automatic transmission oil temperature signal is output as “1” when it is determined that the temperature of the oil circulating through the automatic transmission 51 is equal to or higher than the first predetermined temperature or equal to or lower than the second predetermined oil temperature. In cases other than these conditions, “0” is output for each signal. As described above, when a driving force is required by a driver operation such as a brake pedal operation or a steering operation, “1” is output as a deceleration request release signal. Further, when the driving force is required to prevent the vehicle 10 from sliding down based on the road surface gradient, “1” is output as a deceleration request release signal. Further, when the oil temperature is high or low and the controllability of the automatic transmission 51 may deteriorate, “1” is output as a deceleration request release signal.
 減速要求信号出力部306は、一旦減速要求設定信号が「1」になると減速要求解除信号が「1」となるまで減速要求信号として「1」を出力し、それ以外の場合には減速要求信号として「0」を出力する。 The deceleration request signal output unit 306 outputs “1” as a deceleration request signal until the deceleration request release signal becomes “1” once the deceleration request setting signal becomes “1”, otherwise the deceleration request signal "0" is output.
 次に目標駆動力演算部400について図8のブロック図を用いて説明する。目標駆動力演算部400は、第2選択部401と、駆動力増減信号出力部402と、加算部403と、第3選択部404と、減算部405と、第4選択部406と、第5選択部407と、第6選択部408とを備える。 Next, the target driving force calculation unit 400 will be described with reference to the block diagram of FIG. The target driving force calculation unit 400 includes a second selection unit 401, a driving force increase / decrease signal output unit 402, an addition unit 403, a third selection unit 404, a subtraction unit 405, a fourth selection unit 406, and a fifth selection unit. A selection unit 407 and a sixth selection unit 408 are provided.
 第2選択部401は、減速要求信号に基づいて第1駆動力または第2駆動力を選択する。第2選択部401は、減速要求信号が「1」の場合には第2駆動力を選択し、減速要求信号が「0」の場合には第1駆動力を選択する。 The second selection unit 401 selects the first driving force or the second driving force based on the deceleration request signal. The second selection unit 401 selects the second driving force when the deceleration request signal is “1”, and selects the first driving force when the deceleration request signal is “0”.
 駆動力増減信号出力部402は、第2選択部401によって選択した第1駆動力、または第2駆動力と、前回の演算によって算出された目標駆動力(以下、前回値という。)とを比較し、駆動力増減信号を出力する。駆動力増減信号出力部402は、第2選択部401によって選択した第1駆動力、または第2駆動力が前回値以上の場合には駆動力増減信号として「1」を出力し、第2選択部401によって選択した第1駆動力、または第2駆動力が前回値よりも小さい場合に駆動力増減信号として「0」を出力する。 The driving force increase / decrease signal output unit 402 compares the first driving force or the second driving force selected by the second selection unit 401 with the target driving force (hereinafter referred to as the previous value) calculated by the previous calculation. Then, a driving force increase / decrease signal is output. The driving force increase / decrease signal output unit 402 outputs “1” as the driving force increase / decrease signal when the first driving force selected by the second selection unit 401 or the second driving force is equal to or more than the previous value, and is selected by the second selection. When the first driving force or the second driving force selected by the unit 401 is smaller than the previous value, “0” is output as the driving force increase / decrease signal.
 加算部403は、前回値に駆動力増加量を加算する。駆動力増加量は予め設定された値である。 The addition unit 403 adds the driving force increase amount to the previous value. The amount of increase in driving force is a preset value.
 第3選択部404は、加算部403によって算出された値と、第2選択部401によって選択した第1駆動力、または第2駆動力とを比較し、小さい方の値を選択する。これにより、第2選択部401の出力値が急増した場合でも目標駆動力が急増することを抑制することができる。例えば、第3選択部404は、車速が第1所定車速よりも低くなっている状態で減速要求が無くなり、減速要求信号が「1」から「0」に変更され、第2選択部401による選択が第2駆動力から第1駆動力へ変更されると、前回値に駆動力増加量を加算した値が第1駆動力となるまでの間、前回値に駆動力増加量を加算した値を選択する。これにより、車速が第1所定車速よりも低く、減速要求が無くなった場合に目標駆動力が急増することを抑制することができる。 The third selection unit 404 compares the value calculated by the addition unit 403 with the first driving force or the second driving force selected by the second selection unit 401, and selects the smaller value. Thereby, even when the output value of the 2nd selection part 401 increases rapidly, it can suppress that target drive force increases rapidly. For example, the third selection unit 404 loses the deceleration request when the vehicle speed is lower than the first predetermined vehicle speed, the deceleration request signal is changed from “1” to “0”, and the selection by the second selection unit 401 is performed. Is changed from the second driving force to the first driving force, the value obtained by adding the driving force increase amount to the previous value until the value obtained by adding the driving force increase amount to the previous value becomes the first driving force. select. Thereby, when the vehicle speed is lower than the first predetermined vehicle speed and there is no request for deceleration, it is possible to prevent the target driving force from rapidly increasing.
 減算部405は、前回値から駆動力減算値を減算する。駆動力減算値は予め設定された値である。 The subtraction unit 405 subtracts the driving force subtraction value from the previous value. The driving force subtraction value is a preset value.
 第4選択部406は、減算部405によって算出された値と、第2選択部401によって選択した第1駆動力、または第2駆動力とを比較し、大きい方の値を選択する。これにより、第2選択部401の出力値が急減した場合でも目標駆動力が急減することを抑制することができる。 The fourth selection unit 406 compares the value calculated by the subtraction unit 405 with the first driving force or the second driving force selected by the second selection unit 401, and selects the larger value. Thereby, even when the output value of the 2nd selection part 401 falls rapidly, it can suppress that a target drive force falls rapidly.
 第5選択部407は、駆動力増減信号に基づいて、第3選択部404、または第4選択部406によって選択された値を選択駆動力として設定する。第5選択部407は、駆動力増減信号が「1」の場合には第3選択部404によって選択された値を選択駆動力として設定し、駆動力増減信号が「0」の場合には第4選択部406によって選択された値を選択駆動力として設定する。 The fifth selection unit 407 sets the value selected by the third selection unit 404 or the fourth selection unit 406 as the selection driving force based on the driving force increase / decrease signal. The fifth selection unit 407 sets the value selected by the third selection unit 404 as the selection driving force when the driving force increase / decrease signal is “1”, and the fifth selection unit 407 sets the value selected by the third selection unit 404 as “0”. The value selected by the 4 selection unit 406 is set as the selection driving force.
 第6選択部408は、第1駆動力と選択駆動力とを比較し、小さい方の値を目標駆動力として設定する。このように、第1駆動力と選択駆動力とを比較し、小さい方の値を目標駆動力として設定することで、第1所定車速よりも高い車速で減速要求信号が「1」となり、選択駆動力として第2駆動力が選択されている場合でも、第1駆動力が略ゼロとなるまでは、第1駆動力が目標駆動力として設定される。そして、第1駆動力が略ゼロとなった時点で略ゼロに設定された第2駆動力が目標駆動力として設定される。また、第2駆動力が意図しない大きな値となったとしても第1駆動力が選択されるため、目標駆動力が第1駆動力を上回ることはない。 The sixth selection unit 408 compares the first driving force and the selected driving force, and sets the smaller value as the target driving force. Thus, by comparing the first driving force with the selected driving force and setting the smaller value as the target driving force, the deceleration request signal becomes “1” at a vehicle speed higher than the first predetermined vehicle speed, and is selected. Even when the second driving force is selected as the driving force, the first driving force is set as the target driving force until the first driving force becomes substantially zero. Then, the second driving force set to substantially zero when the first driving force becomes substantially zero is set as the target driving force. Even if the second driving force becomes an unintended large value, the first driving force is selected, and therefore the target driving force does not exceed the first driving force.
 車速が第1所定車速以下となり、一旦第1駆動力が目標駆動力として設定されると、車両10が停車するまで第1駆動力が目標駆動力として設定される。また、第2駆動力が目標駆動力として設定された場合には、途中で減速要求が無くなる場合を除いて、車両10が停車し、その後減速要求が無くなるまで第2駆動力が目標駆動力として設定される。 Once the vehicle speed is equal to or lower than the first predetermined vehicle speed and the first driving force is set as the target driving force, the first driving force is set as the target driving force until the vehicle 10 stops. In addition, when the second driving force is set as the target driving force, the vehicle 10 stops unless the deceleration request is canceled halfway, and then the second driving force is set as the target driving force until there is no deceleration request. Is set.
 次に本実施形態の駆動力制御を用いた場合の目標駆動力の変化などについて図9のタイムチャートを用いて説明する。 Next, a change in the target driving force when the driving force control of this embodiment is used will be described with reference to the time chart of FIG.
 時間t0において、ドライバによってブレーキペダルが踏み込まれ、時間t1において、ブレーキペダルの踏み込み量が第1所定量以上となり、車速が第2所定車速となると、ドライバによる減速要求があると判断され、減速要求信号は「1」になる。なお、第1駆動力が略ゼロ(第2駆動力)よりも小さいので、第1駆動力が目標駆動力として設定されている。 At time t0, the driver depresses the brake pedal. At time t1, when the amount of depression of the brake pedal exceeds the first predetermined amount and the vehicle speed reaches the second predetermined vehicle speed, it is determined that there is a deceleration request from the driver, and the deceleration request is made. The signal becomes “1”. Since the first driving force is smaller than substantially zero (second driving force), the first driving force is set as the target driving force.
 時間t2において、車速が第1所定車速となり、第1駆動力が略ゼロになると、第2駆動力が目標駆動力として設定される。図9においては第2駆動力が目標駆動力として設定されている間の第1駆動力を破線で示す。ドライバによってブレーキペダルの踏み込み量が変更されても、ブレーキペダルの踏み込み量が第2所定量以下とならない場合には、第2駆動力が目標駆動力として設定される。第2駆動力はドライバのブレーキペダル操作に依存しない値であるため、目標駆動力として第2駆動力が選択された後は、ドライバの減速要求が継続する限り、ブレーキペダルの踏み込み量が増減したとしても目標駆動力が変化することはない。 At time t2, when the vehicle speed becomes the first predetermined vehicle speed and the first driving force becomes substantially zero, the second driving force is set as the target driving force. In FIG. 9, the first driving force while the second driving force is set as the target driving force is indicated by a broken line. Even if the amount of depression of the brake pedal is changed by the driver, if the amount of depression of the brake pedal does not become the second predetermined amount or less, the second driving force is set as the target driving force. Since the second driving force is a value that does not depend on the driver's brake pedal operation, after the second driving force is selected as the target driving force, the brake pedal depression amount increased or decreased as long as the driver's deceleration request continued. However, the target driving force does not change.
 時間t3において、車両10が停車し、時間t4においてブレーキペダルの踏み込み量が第2所定量以下となると、ドライバによる減速要求が無くなったと判断され、減速要求信号が「0」になる。目標駆動力は徐々に増加し、時間t5において目標駆動力として第1駆動力が設定される。 When the vehicle 10 stops at time t3 and the amount of depression of the brake pedal becomes equal to or less than the second predetermined amount at time t4, it is determined that there is no deceleration request from the driver, and the deceleration request signal becomes “0”. The target driving force gradually increases, and the first driving force is set as the target driving force at time t5.
 本発明の実施形態の効果について説明する。 The effect of the embodiment of the present invention will be described.
 ドライバの減速要求がある場合に、第1駆動力よりも小さい第2駆動力を目標駆動力として設定する。これにより、減速中にドライバによってブレーキペダルが操作された場合であっても、例えばブレーキ力の増加とエンジン1やモータジェネレータ2によって発生させている駆動力の低減とが同時に発生して減速度の変動量が大きくなることを抑制し、ドライバに違和感を与えることを抑制することができる。また、減速度の変動量が大きくなると、車速の制御が難しくなるが、本実施形態では、減速度の変動量が大きくなることを抑制することができるので、車速の制御を容易にすることができる。 When the driver requests deceleration, the second driving force smaller than the first driving force is set as the target driving force. As a result, even if the brake pedal is operated by the driver during deceleration, for example, an increase in braking force and a decrease in driving force generated by the engine 1 or motor generator 2 occur at the same time. It is possible to suppress the fluctuation amount from increasing, and to suppress the driver from feeling uncomfortable. In addition, when the fluctuation amount of the deceleration increases, it becomes difficult to control the vehicle speed. However, in this embodiment, since the fluctuation amount of the deceleration can be suppressed, the vehicle speed can be easily controlled. it can.
 第2駆動力をドライバのブレーキ操作で変化することがない駆動力として設定し、ドライバの減速要求がある場合に、第2駆動力を目標駆動力として設定する。これにより、減速中にドライバによってブレーキペダルが操作された場合であっても、減速度の変動量が大きくなることを抑制し、ドライバに違和感を与えることを抑制することができる。 The second driving force is set as a driving force that does not change due to the driver's braking operation, and the second driving force is set as the target driving force when there is a driver deceleration request. Thereby, even if it is a case where a brake pedal is operated by the driver during deceleration, it can suppress that the fluctuation amount of a deceleration becomes large, and can suppress giving an uncomfortable feeling to a driver.
 また、ドライバの減速要求が有る場合には、車速が第1所定車速以下となる場合に、第1駆動力よりも小さい第2駆動力を目標駆動力として設定することで、第1駆動力が目標駆動力として設定される場合よりも、燃費・電費を向上することができる。 Further, when there is a driver deceleration request, when the vehicle speed is equal to or lower than the first predetermined vehicle speed, the first driving force is set by setting the second driving force smaller than the first driving force as the target driving force. It is possible to improve fuel consumption and power consumption compared to the case where the target driving force is set.
 ドライバの減速要求があり、目標駆動力を第1駆動力から第2駆動力に変更する場合に、本実施形態を用いない場合には、駆動力段差(ショック)が発生するおそれがある。例えば図4の第1所定速度よりも低い車速となる第1駆動力が正となる領域で、目標駆動力を第1駆動力から第2駆動力へ変更すると、減速度が急に大きくなり、ドライバに違和感を与える。また、図4の第1所定速度よりも高い車速となる第1駆動力が負となる領域で、目標駆動力を第1駆動力から第2駆動力へ変更すると、減速度が急に小さくなり、押し出され感が大きくなり、ドライバに違和感を与える。 When there is a driver deceleration request and the target driving force is changed from the first driving force to the second driving force, if this embodiment is not used, a driving force step (shock) may occur. For example, when the target driving force is changed from the first driving force to the second driving force in the region where the first driving force that is lower than the first predetermined speed in FIG. 4 is positive, the deceleration suddenly increases, Gives the driver a feeling of strangeness. In addition, when the target driving force is changed from the first driving force to the second driving force in a region where the first driving force that is higher than the first predetermined speed in FIG. 4 is negative, the deceleration suddenly decreases. The feeling of being pushed out increases, giving the driver a sense of incongruity.
 本実施形態では、ドライバの減速要求があり、目標駆動力として第2駆動力を設定する場合に、第1駆動力が略ゼロとなった時点から略ゼロに設定されている第2駆動力を目標駆動力として設定する。これにより、目標駆動力を第1駆動力から第2駆動力へ変更する場合に、駆動力段差の発生を抑制することができる。また、略ゼロに設定された第2駆動力を目標駆動力として設定するので、車速が減少するにつれて増加する第1目標駆動力を目標駆動力として設定している場合と比較して、燃費・電費を向上することができる。 In the present embodiment, when there is a driver's deceleration request and the second driving force is set as the target driving force, the second driving force that is set to substantially zero from the time when the first driving force becomes substantially zero is used. Set as the target driving force. As a result, when the target driving force is changed from the first driving force to the second driving force, the generation of a driving force step can be suppressed. In addition, since the second driving force set to substantially zero is set as the target driving force, the fuel consumption and the fuel consumption can be reduced as compared with the case where the first target driving force that increases as the vehicle speed decreases is set as the target driving force. Electricity costs can be improved.
 第1駆動力と第2駆動力とが等しくなる第1所定車速よりも高い第2所定車速未満となった最初の演算時にドライバの減速要求の有無を判断することで、第2駆動力を目標駆動力として設定する場合に、第1所定車速となるタイミングで遅れなく第1駆動力から第2駆動力へ目標駆動力を変更することができる。これにより、第1駆動力から第2駆動力へ目標駆動力を変更する際の駆動力段差(ショック)が生じることを防ぐことができる。 The second driving force is set as a target by determining whether or not the driver has requested deceleration at the first calculation when the first driving force and the second driving force are equal to each other and become less than the second predetermined vehicle speed that is higher than the first predetermined vehicle speed. When the driving force is set, the target driving force can be changed from the first driving force to the second driving force without delay at the timing when the first predetermined vehicle speed is reached. Thereby, it is possible to prevent a driving force step (shock) from occurring when the target driving force is changed from the first driving force to the second driving force.
 目標駆動力として一旦第1駆動力、または第2駆動力が設定されると、車両10が停車するまでその状態を維持する。これにより、減速度の変動による影響が大きい停車直前の減速時に、ドライバに違和感を与えることを抑止することができ、車速の制御を容易にすることができる。 Once the first driving force or the second driving force is set as the target driving force, the state is maintained until the vehicle 10 stops. As a result, it is possible to prevent the driver from feeling uncomfortable at the time of deceleration immediately before stopping, which is greatly affected by fluctuations in deceleration, and the vehicle speed can be easily controlled.
 目標駆動力として第2駆動力が設定された後であっても、ドライバの減速要求が無くなった場合には、第1駆動力を目標駆動力として設定する。これにより、ドライバの要求に応じて駆動力を増加(発生)させることができる。 Even after the second driving force is set as the target driving force, the first driving force is set as the target driving force when the driver's request for deceleration disappears. As a result, the driving force can be increased (generated) according to the driver's request.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 The embodiment of the present invention has been described above. However, the above embodiment only shows a part of application examples of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above embodiment. Absent.
 上記実施形態では第2駆動力を略ゼロとしたが、これに限られることはない。例えば第2駆動力を大きくすることで、ドライバの減速要求がなくなった場合に車両10を素早く加速(発進)させることができる。また、複数の値から車両10の運転状態、例えば道路勾配に応じて第2駆動力を設定してもよい。これによって、ドライバの減速要求がなくなった場合に、運転状態に応じて加速(発進)させることができる。なお、第2駆動力をドライバによって設定可能としてもよい。 In the above embodiment, the second driving force is set to substantially zero, but the present invention is not limited to this. For example, by increasing the second driving force, the vehicle 10 can be quickly accelerated (started) when the driver no longer requests deceleration. Further, the second driving force may be set from a plurality of values according to the driving state of the vehicle 10, for example, the road gradient. Thereby, when the driver's request for deceleration is eliminated, acceleration (start) can be performed according to the driving state. The second driving force may be set by a driver.
 上記実施形態では、第1所定車速を第1駆動力が略ゼロとなる車速としたが、第1所定車速を第1駆動力と第2駆動力とが等しくなる車速としてもよい。この場合には、第6選択部408においては、第1駆動力が第2駆動力に等しくなると、第2駆動力が目標駆動力として設定される。 In the above embodiment, the first predetermined vehicle speed is the vehicle speed at which the first driving force is substantially zero, but the first predetermined vehicle speed may be the vehicle speed at which the first driving force and the second driving force are equal. In this case, in the sixth selection unit 408, when the first driving force becomes equal to the second driving force, the second driving force is set as the target driving force.
 上記実施形態では、ハイブリッド車両を用いて説明したが、電気自動車、エンジンのみを搭載した車両に用いてもよい。 In the above embodiment, the hybrid vehicle has been described. However, the present invention may be used for an electric vehicle or a vehicle equipped with only an engine.
 本願は2013年8月1日に日本国特許庁に出願された特願2013-160569、及び2013年8月1日に日本国特許庁に出願された特願2013-160651に基づく優先権を主張し、この出願の全ての内容は参照により本明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2013-160569 filed with the Japan Patent Office on August 1, 2013 and Japanese Patent Application No. 2013-160651 filed with the Japan Patent Office on August 1, 2013 The entire contents of this application are hereby incorporated by reference.

Claims (9)

  1.  車両の駆動力制御装置であって、
     運転状態に応じたアクセルペダル開度が全閉時の第1駆動力を設定する第1駆動力設定手段と、
     前記第1駆動力よりも小さい第2駆動力を設定する第2駆動力設定手段と、
     ドライバの減速要求が無い場合には前記第1駆動力を選択し、前記ドライバの減速要求が有る場合には前記第2駆動力を選択する駆動力選択手段と、
     前記駆動力選択手段によって選択した駆動力に基づいて駆動源を制御する制御手段と、を備える車両の駆動力制御装置。
    A driving force control device for a vehicle,
    First driving force setting means for setting the first driving force when the accelerator pedal opening according to the driving state is fully closed;
    Second driving force setting means for setting a second driving force smaller than the first driving force;
    Driving force selecting means for selecting the first driving force when there is no driver deceleration request, and selecting the second driving force when there is a driver deceleration request;
    A vehicle driving force control apparatus comprising: control means for controlling a driving source based on the driving force selected by the driving force selection means.
  2.  請求項1に記載の車両の駆動力制御装置であって、
     前記第2駆動力設定手段は、前記ドライバのブレーキ操作で変化することがない値として前記第2駆動力を設定する車両の駆動力制御装置。
    The vehicle driving force control device according to claim 1,
    The vehicle driving force control device, wherein the second driving force setting means sets the second driving force as a value that does not change due to a brake operation of the driver.
  3.  請求項1または2に記載の車両の駆動力制御装置であって、
     前記第1駆動力設定手段は、車速が減少するにつれて増加するように前記第1駆動力を設定し、
     前記第2駆動力設定手段は、前記車速が所定車速となると前記第1駆動力が前記第2駆動力よりも大きくなるように前記第2駆動力を設定する車両の駆動力制御装置。
    A driving force control apparatus for a vehicle according to claim 1 or 2,
    The first driving force setting means sets the first driving force to increase as the vehicle speed decreases;
    The vehicle driving force control device, wherein the second driving force setting means sets the second driving force such that the first driving force is larger than the second driving force when the vehicle speed reaches a predetermined vehicle speed.
  4.  請求項1から3のいずれか一つに記載の車両の駆動力制御装置であって、
     前記駆動力選択手段は、前記第1駆動力が前記第2駆動力と等しくなる前に前記ドライバの減速要求の有無に応じて前記第1駆動力または前記第2駆動力を選択し、
     前記制御手段は、選択時に前記ドライバの減速要求が有る場合には前記第1駆動力が前記第2駆動力と等しくなった時から前記第2駆動力に基づいて前記駆動源を制御する車両の駆動力制御装置。
    A driving force control apparatus for a vehicle according to any one of claims 1 to 3,
    The driving force selection means selects the first driving force or the second driving force according to the presence or absence of a deceleration request from the driver before the first driving force becomes equal to the second driving force,
    The control means controls the drive source based on the second driving force from the time when the first driving force becomes equal to the second driving force when there is a deceleration request of the driver at the time of selection. Driving force control device.
  5.  請求項1または2に記載の車両の駆動力制御装置であって、
     前記第1駆動力設定手段は、車速が減少するに従い増加するように前記第1駆動力を設定し、
     前記第2駆動力設定手段は、前記第2駆動力を略ゼロに設定し、
     前記駆動力選択手段は、前記車両の減速中に、前記第1駆動力が略ゼロとなるまでに前記第1駆動力、または前記第2駆動力を選択し、
     前記制御手段は、前記第2駆動力が選択された場合に、前記第1駆動力が略ゼロとなった時点から前記第2駆動力に基づいて前記駆動源を制御する車両の駆動力制御装置。
    A driving force control apparatus for a vehicle according to claim 1 or 2,
    The first driving force setting means sets the first driving force to increase as the vehicle speed decreases,
    The second driving force setting means sets the second driving force to substantially zero;
    The driving force selection means selects the first driving force or the second driving force until the first driving force becomes substantially zero during deceleration of the vehicle,
    When the second driving force is selected, the control means controls the driving source based on the second driving force from the time when the first driving force becomes substantially zero. .
  6.  請求項5に記載の車両の駆動力制御装置であって、
     前記第2駆動力は、プラス側最小駆動力からマイナス側最小駆動力内の値であり、
     前記制御手段は、前記ドライバの減速要求が有る場合に、前記第1駆動力が前記プラス側最小駆動力からマイナス側最小駆動力内の値となる時点で前記第1駆動力から前記第2駆動力へ切り替えて、前記第2駆動力に基づいて前記駆動源を制御する車両の駆動力制御装置。
    A driving force control apparatus for a vehicle according to claim 5,
    The second driving force is a value within the minimum minus driving force from the plus minimum driving force,
    The control means, when there is a deceleration request from the driver, from the first driving force to the second driving force when the first driving force becomes a value within the plus-side minimum driving force from the plus-side minimum driving force. A driving force control device for a vehicle that switches to a force and controls the driving source based on the second driving force.
  7.  請求項1から6のいずれか1つに記載の車両の駆動力制御装置であって、
     前記駆動力選択手段は、
     一旦前記第1駆動力を選択した後は、前記車両が停車するまで前記第1駆動力を選択し、
     一旦前記第2駆動力を選択した後は、前記車両が停車するまで前記第2駆動力を選択する車両の駆動力制御装置。
    A driving force control apparatus for a vehicle according to any one of claims 1 to 6,
    The driving force selection means includes
    Once the first driving force is selected, the first driving force is selected until the vehicle stops,
    A vehicle driving force control apparatus that selects the second driving force until the vehicle stops after the second driving force is selected.
  8.  請求項7に記載の車両の駆動力制御装置であって、
     前記駆動力選択手段は、前記第2駆動力を選択した後に、前記ドライバの減速要求が無くなった場合には、前記第1駆動力を選択する車両の駆動力制御装置。
    A driving force control apparatus for a vehicle according to claim 7,
    The driving force selection device is a vehicle driving force control device that selects the first driving force when the driver's request for deceleration disappears after selecting the second driving force.
  9.  車両の駆動力制御方法であって、
     運転状態に応じたアクセルペダル開度が全閉時の第1駆動力を設定し、
     前記第1駆動力よりも小さい第2駆動力を設定し、
     ドライバの減速要求が無い場合には前記第1駆動力を選択し、前記ドライバの減速要求が有る場合には前記第2駆動力を選択し、
     選択した駆動力に基づいて駆動源を制御する車両の駆動力制御方法。
    A driving force control method for a vehicle,
    Set the first driving force when the accelerator pedal opening according to the driving state is fully closed,
    Setting a second driving force smaller than the first driving force;
    When there is no driver deceleration request, the first driving force is selected. When the driver deceleration request is present, the second driving force is selected.
    A vehicle driving force control method for controlling a driving source based on a selected driving force.
PCT/JP2014/068234 2013-08-01 2014-07-08 Driving force control device for vehicle and method for controlling same WO2015016022A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-160569 2013-08-01
JP2013-160651 2013-08-01
JP2013160651 2013-08-01
JP2013160569 2013-08-01

Publications (1)

Publication Number Publication Date
WO2015016022A1 true WO2015016022A1 (en) 2015-02-05

Family

ID=52431562

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/068234 WO2015016022A1 (en) 2013-08-01 2014-07-08 Driving force control device for vehicle and method for controlling same

Country Status (1)

Country Link
WO (1) WO2015016022A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1075505A (en) * 1996-08-29 1998-03-17 Honda Motor Co Ltd Auxiliary driving force controller of vehicle
JP2007159171A (en) * 2005-11-30 2007-06-21 Toyota Motor Corp Vehicle and its control method
JP2009011057A (en) * 2007-06-27 2009-01-15 Toyota Motor Corp Controller of vehicle
JP2012065507A (en) * 2010-09-17 2012-03-29 Mitsubishi Motors Corp Apparatus for controlling motor torque

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1075505A (en) * 1996-08-29 1998-03-17 Honda Motor Co Ltd Auxiliary driving force controller of vehicle
JP2007159171A (en) * 2005-11-30 2007-06-21 Toyota Motor Corp Vehicle and its control method
JP2009011057A (en) * 2007-06-27 2009-01-15 Toyota Motor Corp Controller of vehicle
JP2012065507A (en) * 2010-09-17 2012-03-29 Mitsubishi Motors Corp Apparatus for controlling motor torque

Similar Documents

Publication Publication Date Title
JP6098723B2 (en) Vehicle control apparatus and vehicle control method
JP5045431B2 (en) Engine start control device for hybrid vehicle
KR101694074B1 (en) Shift control method for hybrid vehicle with dct
WO2014091917A1 (en) Vehicle driving-torque control device
JP2007168565A (en) Coast deceleration controller for vehicle
JP5918464B2 (en) Control device for hybrid vehicle
JP2011079451A (en) Controller for hybrid electric vehicle
JP6357582B2 (en) Vehicle and vehicle control method
WO2016152337A1 (en) Vehicle and vehicle control method
JP2013121753A (en) Hybrid vehicle control device
JP2010149714A (en) Control device of hybrid vehicle
JP5862783B2 (en) Vehicle control apparatus and vehicle control method
JP5462057B2 (en) Vehicle power transmission control device
JP6458324B2 (en) Braking control device for vehicle
JP6690428B2 (en) Vehicle driving force control method and driving force control device
WO2015016022A1 (en) Driving force control device for vehicle and method for controlling same
JP2010202150A (en) Controller for hybrid vehicle
JP2009202710A (en) Vehicle behavior control device and method thereof
JP6897596B2 (en) Vehicle control device
JP5287826B2 (en) Vehicle travel control device
JP6770317B2 (en) Powertrain control device and powertrain control method
JP2020039224A (en) Travel control device and vehicle
JP6175943B2 (en) Vehicle control device
JP5962799B2 (en) Vehicle travel control device
JP2017081242A (en) Vehicular control apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14832500

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14832500

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP